

Lecture Notes in Computer Science 3378
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Joe Kilian (Ed.)

Theory of
Cryptography

Second Theory of Cryptography Conference, TCC 2005
Cambridge, MA, USA, February 10-12, 2005
Proceedings

13

Volume Editor

Joe Kilian
Yianilos Labs
707 State Rd., Rt. 206, Suite 212, Princeton, NJ 08540, USA
E-mail: joe@pnylab.com

Library of Congress Control Number: 2005920136

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, G, D.4.6, K.4.1, K.4.3, K.6.5

ISSN 0302-9743
ISBN 3-540-24573-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11390305 06/3142 5 4 3 2 1 0

Preface

TCC 2005, the 2nd Annual Theory of Cryptography Conference, was held in
Cambridge, Massachusetts, on February 10–12, 2005. The conference received 84
submissions, of which the program committee selected 32 for presentation. These
proceedings contain the revised versions of the submissions that were presented
at the conference. These revisions have not been checked for correctness, and
the authors bear full responsibility for the contents of their papers.

The conference program also included a panel discussion on the future of
theoretical cryptography and its relationship to the real world (whatever that
is). It also included the traditional “rump session,” featuring short, informal
talks on late-breaking research news.

Much as hatters of old faced mercury-induced neurological damage as an
occupational hazard, computer scientists will on rare occasion be afflicted with
egocentrism, probably due to prolonged CRT exposure. Thus, you must view
with pity and not contempt my unalloyed elation at having my name on the front
cover of this LNCS volume, and my deep-seated conviction that I fully deserve
the fame and riches that will surely come of it. However, having in recent years
switched over to an LCD monitor, I would like to acknowledge some of the many
who contributed to this conference.

First thanks are due to the many researchers from all over the world who
submitted their work to this conference. Lacking shrimp and chocolate-covered
strawberries, TCC has to work hard to be a good conference. As a community,
I think we have.

Shafi Goldwasser, the general chair, and Joanne Talbot Hanley, her admin-
istrative assistant, went far beyond the call of duty in their support for this
conference. It is a matter of debate whether temporary insanity is a prerequisite
for volunteering to be general chair, or a consequence. But, certainly, volun-
teering twice consecutively qualifies one for academic sainthood, if not martyr
status. I wish them both several months of well-deserved peace and quiet.

Evaluating submissions requires deep knowledge of the literature, razor-sharp
analytical skills, impeccable taste, wisdom and common sense. For my part, I
have some pretty good Python scripts. The rest was filled in by my committee.
I picked twelve people, and every last one of them did a great job. That just
doesn’t happen any more, not even in the movies. They supported me far more
than I led them.

Like everyone else these days, we outsourced. Our deliberations benefited
greatly from the expertise of the many outside reviewers who assisted us in our
deliberations. My thanks to all those listed in the following pages, and my thanks
and apologies to any I have missed.

I have had the pleasure of working with our publisher, Springer, and in par-
ticular with Alfred Hofmann, Ursula Barth, and Erika Siebert-Cole. Although
this was my second time working with Springer, I am sure I have not lost my

VI Preface

amateur status. It is wrong to prejudge based on nationality, so forgive me, but
I did sleep easier knowing that in Germany people spell “Kilian” correctly.

I am grateful to Mihir Bellare, the steering committee chair, and the steering
committee in general for making this conference possible.

The time I spent on this project was graciously donated by my places of em-
ployment and by my family. I thank NEC and Peter Yianilos for their support
and understanding. I thank Dina, Gersh and Pearl for their support, understand-
ing and love.

Finally, I wish to acknowledge the lives and careers of Shimon Even and Larry
Stockmeyer, who left us much too soon. Looking at my own work, I can point
to specific papers and research directions where their influence is direct. On a
deeper level, both shaped their fields by their work and by their interactions
with others. Many are their heirs without knowing it. Thank you.

December 2004 Joe Kilian
Program Chair
TCC 2005

TCC 2005

February 10–12, 2005, Cambridge, Massachusetts, USA

General Chair
Shafi Goldwasser, Massachusetts Institute of Technology, USA

Weizmann Institute, Israel
Administrative Assistant: Joanne Talbot Hanley

Program Committee

Boaz Barak . IAS and Princeton University, USA
Amos Beimel . Ben-Gurion University, Israel
Rosario Gennaro . IBM, USA
Joe Kilian (Chair). .Yianilos Labs, USA
Anna Lysyanskaya. .Brown University, USA
Tal Malkin . Columbia University, USA
Rafail Ostrovsky . UCLA, USA
Erez Petrank . Technion Institute, Israel
Tal Rabin . IBM, USA
Leonid Reyzin . Boston University, USA
Alon Rosen . MIT, USA
Amit Sahai. .UCLA, USA
Louis Salvail . Aarhus University, Denmark

Steering Committee

Mihir Bellare (Chair) (UCSD, USA), Ivan Damg̊ard (Aarhus University, Den-
mark), Oded Goldreich (Weizmann Institute, Israel), Shafi Goldwasser (MIT,
USA and Weizmann Institute, Israel), Johan H̊astad (Royal Institute of Technol-
ogy, Sweden), Russell Impagliazzo (UCSD, USA), Ueli Maurer (ETHZ, Switzer-
land), Silvio Micali (MIT, USA), Moni Naor (Weizmann Institute, Israel),
Tatsuaki Okamoto (NTT, Japan)

Table of Contents

Hardness Amplification and Error Correction

Optimal Error Correction Against Computationally Bounded Noise
Silvio Micali, Chris Peikert, Madhu Sudan, David A. Wilson 1

Hardness Amplification of Weakly Verifiable Puzzles
Ran Canetti, Shai Halevi, Michael Steiner . 17

On Hardness Amplification of One-Way Functions
Henry Lin, Luca Trevisan, Hoeteck Wee . 34

Graphs and Groups

Cryptography in Subgroups of Zn

Jens Groth . 50

Efficiently Constructible Huge Graphs That Preserve First Order
Properties of Random Graphs

Moni Naor, Asaf Nussboim, Eran Tromer . 66

Simulation and Secure Computation

Comparing Two Notions of Simulatability
Dennis Hofheinz, Dominique Unruh . 86

Relaxing Environmental Security: Monitored Functionalities and
Client-Server Computation

Manoj Prabhakaran, Amit Sahai . 104

Handling Expected Polynomial-Time Strategies in Simulation-Based
Security Proofs

Jonathan Katz, Yehuda Lindell . 128

Security of Encryption

Adaptively Secure Non-interactive Public-Key Encryption
Ran Canetti, Shai Halevi, Jonathan Katz . 150

X Table of Contents

Adaptive Security of Symbolic Encryption
Daniele Micciancio, Saurabh Panjwani . 169

Chosen-Ciphertext Security of Multiple Encryption
Yevgeniy Dodis, Jonathan Katz . 188

Steganography and Zero Knowledge

Public-Key Steganography with Active Attacks
Michael Backes, Christian Cachin . 210

Upper and Lower Bounds on Black-Box Steganography
Nenad Dedić, Gene Itkis, Leonid Reyzin, Scott Russell 227

Fair-Zero Knowledge
Matt Lepinski, Silvio Micali, Abhi Shelat . 245

Secure Computation I

How to Securely Outsource Cryptographic Computations
Susan Hohenberger, Anna Lysyanskaya . 264

Secure Computation of the Mean and Related Statistics
Eike Kiltz, Gregor Leander, John Malone-Lee . 283

Keyword Search and Oblivious Pseudorandom Functions
Michael J. Freedman, Yuval Ishai, Benny Pinkas,
Omer Reingold . 303

Secure Computation II

Evaluating 2-DNF Formulas on Ciphertexts
Dan Boneh, Eu-Jin Goh, Kobbi Nissim . 325

Share Conversion, Pseudorandom Secret-Sharing and Applications to
Secure Distributed Computing

Ronald Cramer, Ivan Damg̊ard, Yuval Ishai . 342

Toward Privacy in Public Databases
Shuchi Chawla, Cynthia Dwork, Frank McSherry, Adam Smith,
Hoeteck Wee . 363

Table of Contents XI

Quantum Cryptography and Universal
Composability

The Universal Composable Security of Quantum Key Distribution
Michael Ben-Or, Micha�l Horodecki, Debbie W. Leung,
Dominic Mayers, Jonathan Oppenheim . 386

Universally Composable Privacy Amplification Against Quantum
Adversaries

Renato Renner, Robert König . 407

A Universally Composable Secure Channel Based on the KEM-DEM
Framework

Waka Nagao, Yoshifumi Manabe, Tatsuaki Okamoto 426

Cryptographic Primitives and Security

Sufficient Conditions for Collision-Resistant Hashing
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky . 445

The Relationship Between Password-Authenticated Key Exchange and
Other Cryptographic Primitives

Minh-Huyen Nguyen . 457

On the Relationships Between Notions of Simulation-Based Security
Anupam Datta, Ralf Küsters, John C. Mitchell, Ajith Ramanathan . . . 476

Encryption and Signatures

A New Cramer-Shoup Like Methodology for Group Based Provably
Secure Encryption Schemes

Maŕıa Isabel González Vasco, Consuelo Mart́ınez,
Rainer Steinwandt, Jorge L. Villar . 495

Further Simplifications in Proactive RSA Signature
Stanis�law Jarecki, Nitesh Saxena . 510

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem
Shafi Goldwasser, Dmitriy Kharchenko . 529

Information Theoretic Cryptography

Entropic Security and the Encryption of High-Entropy Messages
Yevgeniy Dodis, Adam Smith . 556

XII Table of Contents

Error Correction in the Bounded Storage Model
Yan Zong Ding . 578

Characterizing Ideal Weighted Threshold Secret Sharing
Amos Beimel, Tamir Tassa, Enav Weinreb . 600

Author Index . 621

Optimal Error Correction
Against Computationally Bounded Noise

Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson

MIT CSAIL, 77 Massachusetts Ave,
Building 32, Cambridge, MA, 02139

{silvio, cpeikert, madhu, dwilson}@mit.edu

Abstract. For computationally bounded adversarial models of error,
we construct appealingly simple, efficient, cryptographic encoding and
unique decoding schemes whose error-correction capability is much
greater than classically possible. In particular:

1. For binary alphabets, we construct positive-rate coding schemes
which are uniquely decodable from a 1/2 − γ error rate for any con-
stant γ > 0.

2. For large alphabets, we construct coding schemes which are
uniquely decodable from a 1 − √

R error rate for any information rate
R > 0.

Our results are qualitatively stronger than related work: the con-
struction works in the public-key model (requiring no shared secret key
or joint local state) and allows the channel to know everything that the
receiver knows. In addition, our techniques can potentially be used to
construct coding schemes that have information rates approaching the
Shannon limit. Finally, our construction is qualitatively optimal: we show
that unique decoding under high error rates is impossible in several nat-
ural relaxations of our model.

1 Introduction

The theory of error correction is concerned with sending information reliably
over a “noisy channel” that introduces errors into the transmitted data. In this
setting, a sender starts with some message, which is a fixed-length string of
symbols over some alphabet. The sender encodes the message into a longer string
over the same alphabet, then transmits the block of data over a channel. The
channel introduces errors (or noise) by changing some of the symbols of the
transmitted block, then delivers the corrupted block to the recipient. Finally,
the recipient decodes the block (hopefully to the intended message). Whenever
the sender wants to transmit a new message, the process is repeated.

Two quantities are of special interest in this setting: the information rate
(i.e., the ratio of the message length to the encoded block length) and the error
rate (i.e., the ratio of the number of errors to the block length). Coding schemes
having high information rate and tolerating high error rate are, of course, the

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 S. Micali et al.

most desirable. Small alphabets are desirable too, and in particular most natural
channels are indeed best at transmitting only bits.

But the question remains: how should we model a noisy channel?

Standard Channels. There are two historically popular ways to model a noisy
channel. Shannon’s symmetric channel independently changes each symbol to a
random different one, with some fixed probability. Hamming’s adversarial chan-
nel changes symbols in a worst-case fashion, subject only to an upper bound
on the number of errors per block of data. In particular — though this is not
often stated explicitly — the adversarial channel is computationally unbounded.
Working with this “pessimistic” model certainly ensures the robustness of the
resulting coding scheme, but it also severely restricts the information and error
rates. For instance, when the alphabet is binary, the error rate must be less
than 1/4 for unique decoding to be possible (unless the blocks are exponentially
longer than the messages).

One way to recover from a higher error rate is to relax the task of decoder,
allowing it to output a short list of messages which contains the intended one.
To tolerate adversarial channels with high error rates, list decoding seems to be
the best one can do — but under a more “realistic” model of an adversarial
channel, is it possible to uniquely decode under high error rates?

Computationally Bounded Channels. In 1994, Lipton [9] put forward the notion
of a computationally bounded channel, which is essentially a Hamming channel
restricted to feasible computation. That is, the channel still introduces errors
adversarially (always subject to a given error rate), but must do so in time
polynomial in the block length.

We posit that natural processes can be implemented by efficient computation,
so all real-world channels are, in fact, computationally bounded. We therefore
have confidence that results in this model will be as meaningful and applicable
as classical codes. Indeed, the nature of the model is such that if some mali-
cious (or natural!) process is capable of causing incorrect decoding, then that
process can be efficiently harnessed to break standard hardness assumptions. In
contrast to coding schemes which are only guaranteed to work against chan-
nels that are modelled by very specific, limited probabilistic processes, results in
this model apply universally to any channel which can be modelled by efficient
computation.

Remarkably, under standard cryptographic assumptions and assuming that
sender and receiver share secret randomness, Gopalan, Lipton, and Ding [3]
proved that for such a bounded channel, it is possible to decode correctly from
higher error rates. Unfortunately, their result requires the communicating parties
to share a secret key which is unknown to the channel.

More significantly, though the bounded-channel model was first envisioned
over a decade ago, nobody has yet shown an essential use of this assumption
to yield any unique benefits over an unbounded channel. That is, previous con-
structions still work when the channel is computationally unbounded, as long
as the sender and receiver share some secret randomness. The bounded-channel

Optimal Error Correction Against Computationally Bounded Noise 3

assumption is used to reduce the amount of shared randomness that is needed,
but not to eliminate it altogether. This computational assumption is thus an ad-
ditional one, and does not supplant the assumption of secret randomness shared
between the sender and receiver.

Our goal is to provide a general method for optimal error correction, exploit-
ing the bounded-channel assumption in an essential way.

1.1 Our Contributions

Our Setting. We work in a very simple cryptographic setting: we assume that a
one-way function exists (the “minimal” cryptographic assumption) and that the
sender has a public key known to the receiver (and, perhaps, to the channel as
well).

The sender (but not the receiver) keeps a small amount of state information,
which he uses when encoding messages. Because the sender keeps state, our
constructions are actually dynamic coding schemes, in which the same message
results in a different encoding each time it is sent.

Our Results. Our setting yields great benefits in error correction for both binary
and large alphabets. Namely,

1. For binary alphabets, we construct positive-rate dynamic coding schemes
which are uniquely decodable from a 1/2 − γ error rate for any constant
γ > 0.
Classically, a 1/4−γ error rate is the best possible for unique decoding (and
positive information rate). We stress that in any reasonable model, decoding
of any kind (even list decoding) is impossible under an error rate of 1/2.
Therefore this result is optimal in a very strong sense, and matches the best
possible error rates in the weaker Shannon model.

2. For large alphabets, we construct dynamic coding schemes which are uniquely
decodable from a 1−

√
R error rate for any information rate R > 0.

The 1 −
√
R error rate is actually a consequence of known list decoding

algorithms, and not imposed by our technique. Note that when R < 1/4,
we can uniquely decode from error rates much greater than 1/2, which is
impossible in the Hamming model.

To achieve these results, we actually prove a very general reduction, namely,

If one-way functions exist, (dynamic) unique decoding from e errors in
the bounded-channel model reduces to efficient (static) list decoding from
e errors in the Hamming model (with no asymptotic loss in information
rate).

We obtain results 1 and 2 above by applying this reduction to the classical
Guruswami-Sudan [7] and Reed-Solomon codes.

4 S. Micali et al.

Optimality of Our Model. There are three defining characteristics of our model:
(1) the sender is stateful (the amount of state required is minimal; either a single
counter value or a local clock would suffice) while the receiver is stateless, (2) the
sender keeps a secret key which is unknown to the channel, and (3) the channel
is assumed to be computationally bounded.

We show that our model is qualitatively optimal: relaxing any of these three
requirements makes the task of unique decoding under high error rates impossi-
ble. Thus our construction can be seen as the “best possible” use of the bounded-
channel assumption for error correction. See Section 4.3 for details.

Overview of the Construction. Starting with any static code, we specify a cryp-
tographic sieving procedure, which only certain “authentic” codewords will pass.
Authentic words are hard for the adversary to compute (even after seeing other
authentic codewords), but easy for the sender to generate and for the recipient
to sieve out.

Upon receiving a corrupted word, the recipient first list decodes it. Of course,
list decoding only provides a set of candidate codewords. In order to uniquely
decode, the recipient next uses the cryptographic sieve to filter out only the
authentic word(s). Provided that the number of errors is suitably limited, the
intended codeword is guaranteed to appear in the decoded list and pass the sieve.
However, it may not be alone: though the bounded channel cannot produce any
new authentic codewords, it may be able to cause prior ones to appear in the
decoded list. This is where the sender’s state comes into play: dynamic encoding
allows the receiver to choose the “freshest” word that passes the sieve, resulting
(with overwhelming probability) in correct, unique decoding.

2 Related Work

We wish to contrast our results with several other models and techniques for
tolerating high error rates.

2.1 List Decoding

One of the best-known methods of decoding beyond classical limits under ad-
versarial error is known as list decoding. In list decoding, a received word is not
decoded to a unique message, but rather to a short list of possible messages. If
the number of errors is within the list-decoding radius, the original message will
appear in the list.

There exist codes with rate approaching the Shannon capacity of the chan-
nel and yielding constant-size lists (cf. [5]); however, no efficient list decoding
algorithms are known for such codes. Still, many popular codes have efficient list-
decoding algorithms that can decode significantly beyond the half-the-distance
bound.

The obvious drawback of list decoding is that one typically desires to know
the unique message that was sent, rather than a list of possible messages. The
works presented below, as well as our cryptographic sieve, use list decoding as a

Optimal Error Correction Against Computationally Bounded Noise 5

tool to extend the decoding radius, then employ additional assumptions in order
to identify the correct, unique message in the list.

2.2 List Decoding with Side Information

Guruswami [4] achieves unique decoding under high error rates for binary al-
phabets. However, he makes two strong assumptions: first, the communicating
parties must share a side channel which is noise-free, and must use it every time
a message is sent. (Note that the side channel does not trivialize the problem,
because it is only used to send strings that are much shorter than the messages.)
Second, the adversary must not know what is sent over the side channel when
introducing errors in the main channel; this imposes either a privacy or timing
constraint on the side-channel communication.

2.3 Code Scrambling Using Shared Randomness

The code-scrambling method of Gopalan, Lipton, and Ding [3] assumes that
the communicating parties share some secret random (or pseudorandom) data.
The randomness is used to “scramble” codewords, which reduces adversarial
noise to (random) Shannon noise. Under such a random-error model, and for
certain properly-chosen codes, maximum-likelihood decoding yields the correct
word with high probability.

Code scrambling and our cryptographic sieve are both based on the minimal
cryptographic assumption of the existence of one-way functions.1 But our underly-
ing model compares favorably to that of code scrambling in some important ways:

Cryptographic Setup. The code-scrambling method requires a random secret key
to be shared between the communicating parties and kept secret from the chan-
nel. Such a setup requires either the parties to meet in advance (which may be
unrealistic), or some interactive protocol to establish the private key (in addi-
tion, such a protocol would have to deal with the noisy channel that separates
the two parties!).

In contrast, our cryptographic sieve works in the public key setting: we only
require the sender to have a single public key that is known to the recipient.
In fact, our results hold even when the channel possesses all the information
available to the receiver, and is potentially even more computationally powerful
than the receiver. Previous results certainly do not allow the channel to be this
powerful.

Local State. In reality, two communicating parties usually send and receive many
messages over time. Using a classical (static) code, this is no problem: each
message is simply encoded and decoded on its own, with no implications for

1 The two employ different cryptographic primitives, both of which are implied by one-
way functions. Gopalan et al use a pseudorandom generator, while our solution uses
an existentially unforgeable signature scheme [2, 10].

6 S. Micali et al.

correctness. However, when shared randomness and state are introduced, one
must be more careful.

The first observation is that in the code-scrambling method, the shared key
(or portion thereof) must only be used one time. If any part is re-used, the
adversary gains information about how the codewords are scrambled, and may
be able to introduce “non-random” errors in the future. Therefore, the code-
scrambling method requires both parties to keep synchronized state. That is,
they must always agree on what fresh portion of their shared (pseudo)random
key should be used for scrambling and unscrambling the next message. If the
parties fall out of sync (say, due to an unexpected transmission or hardware
failure), then future messages will decode incorrectly.2

In contrast, our cryptographic sieve only requires the sender to maintain a
small amount of local state, independent of the recipient (who is stateless). If
a message is dropped or ignored, there is no effect on the correctness of future
messages.3

We also compare our quantitative results with those of Gopalan et al :

Binary Alphabets. For binary alphabets, the code-scrambling method can yield
coding schemes that handle the optimal error rate of ε = 1/2− γ for any γ > 0.
In addition, the information rate is optimal, because it meets the Shannon limit
of 1−H(ε).

Our method also provides unique decoding from a 1/2−γ error rate. We stress
that while our technique yields positive asymptotic information rate, it does not
yet match the Shannon limit, because the information rate is dictated by the un-
derlying efficiently list-decodable code. While list-decodable codes matching the
Shannon limit for any error rate are known to exist, it is not known how to effi-
ciently list decode them. Fortunately, improvements in list decoding techniques
automatically carry over to our construction.

Large Alphabets. Implemented with Reed-Solomon codes (which require large
alphabets), code scrambling allows unique decoding from a min(1−

√
R, 1−2R)

error rate (where R is the information rate), while classical unique decoding of
RS codes only allows a (1 − R)/2 error rate. Therefore, for R ≥ 1/3 the code-
scrambling method offers no advantage over classical decoding; for R ∈ (1/4, 1/3)
there are some benefits but they are not as pronounced as in the low-rate case.

2 To relax the synchronization requirements, one might imagine sending some “syn-
chronizing information” along with each message. However, the synchronizing in-
formation is also subject to errors, so it must be protected by some encoding, and
also be recoverable separately from the message. (Using a pseudorandom function
for synchronization suffers from a similar problem.) Eliminating the synchrony re-
quirement, while retaining desirable information and error rates, seems to be quite
difficult.

3 Of course, we cannot provide such a guarantee if the channel is allowed to arbitrarily
delay messages and swap their order — however, neither can any scheme that uses
synchronized state.

Optimal Error Correction Against Computationally Bounded Noise 7

In contrast, our method meets or exceeds the asymptotic error correction rate
of the code-scrambling method, at all information rates. In particular, it allows
unique decoding from a 1−

√
R error rate, for all values of R.

Universality. Because it relies on the randomness of the errors, the analysis of
the code-scrambling method depends essentially upon the properties of Reed-
Solomon codes.4 The authors also point out that a similar analysis can be ap-
plied to certain algebraic-geometry codes, and that experimental simulations
using expander codes have shown positive results. However, each application of
code scrambling to a new family of codes requires a new analysis (and yields,
potentially, a new set of workable parameters).

Our construction, instead, is fully general: it uses an efficient list-decoding
algorithm as a black-box, and requires no other special properties of the code.
It reduces unique decoding against a bounded adversary to list decoding against
an unbounded adversary, and retains all the asymptotic parameters of the code.

2.4 Private Codes

In a recent independent work, Langberg [8] describes “private codes” in which
the sender and recipient use a shared secret random key (which is not known to
the channel) to uniquely decode under high error rates.

Langberg assumes a computationally unbounded channel and focuses mainly
on existential (rather than efficiently constructible) results, and on tight bounds
for the length of the secret key. The construction uses certain combinatorial set
systems to define a “secret subcode” Cr of a given static code C, based on the
secret key r. Unique decoding is performed by maximum-likelihood decoding
within Cr. The analysis and security proof of the scheme are somewhat complex
and difficult to penetrate.

Compared to our cryptographic sieving, private codes share two main draw-
backs with code scrambling. Namely,

1. They require secret randomness to be shared between the sender and receiver
and kept secret from the channel. By contrast, in our model the channel is
on “equal footing” with the receiver: it knows everything that is known to
the latter.

2. They require sender and receiver to keep synchronized state. (Else they may
not be able to understand each other whenever multiple messages are sent.)
No such requirement exist in our model, and multiple messages can be safely
sent.

Finally, in our view, we contribute a conceptually cleaner framework and sim-
pler security proof. In retrospect, it is possible to cast private codes as a specific

4 For Lemma 3.2 in Gopalan et al, the maximum distance separability (MDS) property
of Reed-Solomon codes is the key ingredient. The MDS property is true of RS codes
but not true in general.

8 S. Micali et al.

construction in our general framework of message authentication and crypto-
graphic sieving.5 (We thank Adam Smith for pointing out this relationship.)

3 Preliminaries

3.1 Notation

Messages and words, which are just vectors over some alphabet, are written in
bold: e.g., m,x, r. The concatenation of two vectors x,y is denoted x ◦ y. The
set {1, . . . , n} is denoted by [n]. A negligible function in n is one which vanishes
faster than 1/p(n) for any fixed polynomial p, and is denoted by ν(n).

3.2 Relevant Coding Theory

Basic Concepts. The message is the information to be sent before it is encoded;
it is a vector of k symbols from some finite alphabet Σ (by convention, we define
q = |Σ|; a binary alphabet is one where q = 2). The message is encoded as a
codeword of n symbols from Σ (n is called the block length). The information rate
R of the code is defined as R = k/n; this is a measure of how much meaningful
information is carried by each transmitted symbol.

After passing through the channel, a (potentially corrupted) word is received
and decoded, ideally back to the intended k-symbol message. However, in order
for this to be the case, the number of errors must be suitably limited. The
Hamming distance Δ(x,y) between two words x and y is the number of symbols
that differ between the two; we wish to decode the received word to the message
whose codeword is nearest in Hamming distance.

Definition 1 (Hamming distance). For any x,y ∈ Σn, the Hamming dis-
tance between x and y, denoted Δ(x,y), is the number of positions i in which
xi and yi differ: Δ(x,y) = |{i ∈ [n] : xi �= yi}|.

Definition 2 (Coding scheme, rate). An (n, k)q-coding scheme C = (E,D)
over alphabet Σ is an encoding function E : Σk → Σn and a decoding function
D : Σn → Σk for some positive integers n ≥ k, q = |Σ| ≥ 2. The (relative) rate
or information rate of the scheme, denoted R, is defined as R = k/n. The scheme
tolerates error rate ρ if, for all m ∈ Σk and all r such that Δ(E(m), r) ≤ ρn,
D(r) = m.

List Decoding. Even if the actual error rate exceeds the rate ρ tolerated by a
coding scheme, in some contexts it may be sufficient to decode to a short list

5 One can interpret private codes as using an (information-theoretically secure) secret-
key message authentication code (MAC), rather than a (computationally secure)
digital signature scheme. In this interpretation, the “secret subcode” Cr consists
of encoded message-tag pairs, where the tag is a valid MAC of the message under
secret key r. Maximum-likelihood decoding within Cr can be accomplished by first
list decoding within C, then sieving out the decoded message-tag pairs that are
authentic relative to r.

Optimal Error Correction Against Computationally Bounded Noise 9

of messages containing the intended one. List decoding finds such a list of all
messages which encode to within some distance εn of the received word, where
ε may be significantly greater than ρ.

Definition 3 (List decodability). An (n, k)q coding scheme C = (E,D) over
Σ is (εn, L)-list decodable if, for any r ∈ Σn, there exist � ≤ L distinct messages
m1, . . . ,m� ∈ Σk such that Δ(r, E(mj)) ≤ εn for all j ∈ [�].

Asymptotics. In order to make meaningful asymptotic statements about the rate
of a coding scheme or the efficiency of encoding and (list) decoding, we must
consider infinite families having increasing block lengths.

Definition 4 (Family of coding schemes). An infinite family C of coding
schemes is a set C = {Ci}∞i=1 where Ci = (Ei, Di) is an (ni, ki)qi

coding scheme,
and limi→∞ ni =∞.

The (asymptotic) information rate (often just abbreviated rate) of C, denoted
R(C), is defined to be R(C) = lim infi→∞ ki/ni.

If Ci is an (εini, Li)-list decodable coding scheme, then we say that C is list
decodable under error rate ε(C) = lim infi→∞ εi.

If {Ei} and {Di} (respectively) can be computed by two uniform polynomial-
time algorithms, we say that the coding scheme is efficient.

Definition 5 (List decoding algorithm). If C = {Ci} is a family of (ni, ki)qi

coding schemes Ci = (Ei, Di) over alphabet Σi, and each Ci is (εini, Li)-list
decodable, then an efficient list decoding algorithm for these parameters is a
polynomial-time algorithm LD such that for all i and any r ∈ Σni

i , LD(r) out-
puts all � ≤ Li messages m1, . . . ,m� ∈ Σki

i such that Δ(r, Ei(mj)) ≤ εini for
all j ∈ [�].

Note that LD must run in polynomial time in the size of its input, so in
particular the list size Li must be polynomially related to ni. Many families are
indeed efficiently list decodable for high error rates.

3.3 Relevant Cryptography

We require signature schemes which are existentially unforgeable under chosen
message attack [2]. Such schemes were first shown to exist under a hardness of
factoring assumption, and later under the assumption that one-way functions
exist [10].

4 Dynamic Coding Schemes

4.1 The Formal Model

The issues of a bounded adversary, stateful players, and chosen-message attacks
are not captured by the classical coding theory definitions. Here we formally
define a bounded noisy channel and the requirements for the sender and receiver.

10 S. Micali et al.

For ease of notation, we provide definitions modeling the channel as a uniform
algorithm; a non-uniform treatment is easily adapted.

A dynamic coding scheme for a family of parameters {(ni, ki, qi)}∞i=1 (with
limi→∞ ni =∞) is a triple of probabilistic polynomial-time algorithms (G,S,R)
such that:

– G(1ki , 1ni) outputs a pair (pk, sk);
– S(m, sk, aux), where sk was produced by G(1ki , 1ni), m is of length ki over

a qi-ary alphabet Σi, and aux is some local state, outputs (x, aux′) where
x ∈ Σni

i , and aux′ is the updated local state that will be provided on the
next invocation of S;

– R(r, pk), where pk was produced by G(1ki , 1ni) and r ∈ Σni
i , outputs some

m′ ∈ Σki
i .

The information rate of such a scheme is lim infi→∞ ki/ni.
An (adversarial) channel C with error rate ε is a probabilistic poly-time

algorithm which interacts with a sender S and receiver R in a chosen-message
attack, which proceeds as follows:

1. G(1ki , 1ni) produces (pk, sk).
2. On input pk to C, the following process is repeated until C terminates:

– On the jth iteration, C chooses a message mj ∈ Σki
i and hands it to the

sender.
– The sender encodes mj using S(mj , sk, auxj), yielding auxj+1 and some

xj ∈ Σni
i , which is given to C.

– C produces a word rj such that Δ(xj , rj) ≤ εni with probability 1−ν(ni),
and hands rj to the recipient.

– The recipient runs R(rj , pk) and outputs a message m′
j .

We say that C succeeds at causing an incorrect decoding if, for any j in the
above experiment, m′

j �= mj . We say that a dynamic code uniquely decodes from
error rate ε if, for any channel C of error rate ε, Pr[C succeeds] ≤ ν(ni), where
the probability is taken over the random choices of G,S,R, and C.

Remark 1. In contrast to many cryptographic definitions of an adversary, our
channel is not allowed to drop or re-order messages. That is, the channel must
deliver a corrupted message before requesting a new message from the sender.

Against a more powerful channel which can drop and re-order messages, we
are still able to construct coding schemes which provide similar guarantees about
message integrity — provided that the receiver also keeps state. (However, the
receiver’s state is independent of the sender’s.) We omit the details in this version
of the paper.

4.2 The Construction

Intuition. The first attempt at a cryptographic sieve is to just sign each message
and send the signature along with it. This obviously doesn’t work because the
signature is also subject to errors. The natural fix is to protect the signature

Optimal Error Correction Against Computationally Bounded Noise 11

in transit by also encoding it, using appropriate parameters. Unfortunately, a
careful analysis (even using list decodable coding schemes for both the message
and signature) shows that this approach yields no improvement in overall rate.

The key insight is that the message and signature should be encoded together,
rather than separately. To communicate a message m, the sender first signs
m, then encodes the message-signature pair. To decode a received word r, the
recipient applies the list decoding algorithm to r, yielding a list of potential
message-signature pairs. If the number of errors is suitably bounded, then the
original pair will appear in the list, and the signature will verify. And by the
unforgeability of the signature scheme, the other pairs will not verify and can
be thrown out. Therefore the original message can be recovered uniquely.

There is one hidden difficulty in the above description: the list may actu-
ally include several pairs that verify, but which correspond to messages sent in
the past.6 This event cannot be used to break the signature scheme, because a
valid forgery must involve a new, unsigned message. Therefore we must find a
way to disambiguate among potentially several valid message-signature pairs in
the list.

The solution is for the sender to maintain a short counter t. The current
value of the counter is appended to each message (and signed along with it), then
incremented. Among all valid message-signature pairs in the decoded list, the
recipient chooses the one with the largest counter. In other words, the recipient
always decodes to the “freshest” message in the list. We note that the recipient
is stateless, while the sender need only maintain the value of the counter.

Indeed, there are only two essential requirements for the counter values: they
must not be reused, and the receiver must be able to recognize the most recent
counter value in a list. Any monotonically increasing sequence satisfies these
requirements; in particular, a timestamp is sufficient. (Note that the sender’s
clock need not be synchronized with any other clock, nor is relative clock drift a
concern.) Our construction may be viewed as confirmation of some conventional
wisdom: one should always date and sign one’s correspondence!

The Formal Construction. Let C denote some family C = {Ci} of (ni, ki)qi ,
(ei, Li) list decodable coding schemes that has an efficient encoding procedure
E and an efficient list decoding procedure LD for parameters (ei, Li). Note that
the efficiency constraints imply that ni grows polynomially with ki (in fact, we
are most interested in the case where this growth is linear), and that the decoded
list sizes are polynomial in ni.

Also assume we are given some signature scheme (Gen,Sig,Ver) which is
existentially unforgeable under an adaptive chosen-message attack. Recall that
the key generator Gen requires a security parameter k′; for simplicity we assume
wlog that the corresponding signature length is k′. We require the signature size
to be small relative to the message size, therefore when using code Ci we use a
security parameters of, say, k′

i =
√
ki.

6 This can happen if two prior message-signature pairs map to two codewords sepa-
rated by, say, the minimum distance of the code.

12 S. Micali et al.

Additionally, the sender S maintains a state variable t, which is a counter
initialized to 0. This counter will also appended to the message, so again we want
it to be short. When using code Ci, we append the value of the counter using
k′

i =
√
ki symbols in some canonical way; this provides for qk′

i
i unique counters,

which is super-polynomial in ni.
We now describe the dynamic coding scheme. The codes will have message

lengths of ki − 2k′
i = ki − 2

√
ki and corresponding block lengths of ni. The

algorithms are as follows:
– G(1ki , 1ni): let k′

i =
√
ki. Compute and output (pk, sk)← Gen(1k′

i).
– S(m, sk, aux = t): compute σ ← Sigsk(m ◦ t). Output (E(m ◦ t ◦ σ),

aux′ = t + 1).
– R(r, pk): list decode r: (m1 ◦ t1 ◦ σ1), . . . , (m� ◦ t� ◦ σ�) ← LD(r). Consider

all pairs (mi, ti) such that Verpk(mi ◦ ti, σi) = 1 and ti = maxj tj . If at
least one such mi exists and are all the same message, output that message.
Otherwise, output ⊥.

Theorem 1. Assuming one-way functions exist, the above dynamic code
(G,S,R) uniquely decodes from error rate ε(C) and has information rate R(C).

Proof. Clearly the rate of the scheme is R(C), because lim infi→∞(ki−2
√
ki)/ni

= lim infi→∞ ki/ni = R(C).
Now suppose for contradiction there exists a channel C with error rate ε that

causes R to incorrectly decode some message with probability 1/p(ni) for some
polynomial p(·) and for infinitely many ni. We will use C to construct a forger
F for the signature scheme. F will receive message requests from C and use
its signing oracle to simulate the sender, then pass authentic codewords to the
channel. The channel will produce corrupted words, and the forger will simulate
the recipient on them. If decoding is incorrect at any point (which is detectable),
the incorrect output can be used to construct a forgery. We now proceed more
formally.

First note that for infinitely many ni, C makes fewer than q
k′

i
i queries, and

the counter values are all distinct. From now on, we consider only those ni. Now
FO(pk) works as follows: let ki = (k′

i)
2, and ni be the block length corresponding

to ki, and t ← 0. Run C(pk). When C requests a message m to be sent, query
σ ← O(m◦ t), and return w = E(m, t, σ) to the channel. Receive r (a corrupted
version of w) from the channel, where Δ(r,w) ≤ εni (except with probability
ν(ni)), and list decode: (m1 ◦ t1 ◦ σ1), . . . , (m� ◦ t� ◦ σ�)← LD(r), where � ≤ Li.
By assumption on C, (m ◦ t ◦ σ) appears in the list (except with probability
ν(ni)). If there exists some mi such that Verpk(mi ◦ ti, σi) = 1 and ti > t, or
such that mi �= m and ti = t, then output (mi ◦ ti, σi) as a forgery. Otherwise,
increment t and repeat with the next message chosen by C, until it aborts.

Note that R decodes incorrectly if and only if some σi is a valid signature
of mi ◦ ti, and either ti > t, or ti = t and mi �= m (because all counters in
the experiment are unique). In the first case, O was never queried on mi ◦ ti,
because ti is too large. In the second case, O was never queried on mi◦ti because
only m �= mi was queried with counter t = ti. Therefore (mi ◦ ti, σi) constitutes

Optimal Error Correction Against Computationally Bounded Noise 13

a forgery. The success probability of FO on security parameter k′
i is negligibly

smaller than p(ni) (the success probability of C on block lengths of size ni),
and by assumption ni grows polynomially with ki = (k′

i)
2. This contradicts the

unforgeability of the signature scheme, as desired.

Remark 2. A similar construction works in the private-key setting, in which the
sender and recipient share a private key that is unknown to the channel. Instead
of signing each message, the sender uses a message authentication code (MAC)
that is existentially unforgeable under chosen-message attack.7 We stress that
the receiver remains stateless in this modified scheme. The only difference in the
proof is that the forger cannot detect a successful forgery, but instead chooses
a random element of the decoded list during a random query by the channel.
This alters the concrete security analysis of the scheme, but still leads to a
non-negligible chance of forgery.

Corollary 1. Assuming one-way functions exist, there exist binary dynamic
coding schemes with error rate 1/2 − γ for any γ > 0 and positive asymptotic
information rate.

Proof. Apply Theorem 1 to the concatenated codes of Guruswami and Sudan [7].
The Reed-Solomon concatenated codes are efficiently encodable, have asymptotic
rate Ω(γ8), and can be efficiently list decoded under error rate 1/2− γ, for any
constant γ > 0. The algebraic-geometry concatenated codes also have efficient
algorithms and asymptotic rate Ω(γ6 log 1/γ).

Alternatively, one may use the efficiently list-decodable codes of Guruswami
et al [5], which have asymptotic rate Ω(γ4) for error rate 1/2− γ.

Corollary 2. Assuming one-way functions exist, there exist large-alphabet dy-
namic coding schemes with error rate 1−

√
R for any information rate R > 0.

Proof. Apply Theorem 1 to Reed-Solomon codes. These codes are efficiently
encodable and list decodable under error rate 1 −

√
R using the Guruswami-

Sudan algorithm [6].

4.3 Optimality of the Model

In our model, the sender keeps a secret key and maintains some local state
between each encoding, and the channel is computationally bounded. Proposi-
tions 1, 2, and 3 establish that these features are essential : under several natrual
relaxations of the model, decoding from high error rates is impossible.

The following well-known lemma will be useful in our proofs:

Lemma 1 (Plotkin bound). For any 2n + 1 strings x1, . . . ,x2n+1 ∈ {0, 1}n,
there exist i, j such that i �= j and Δ(xi,xj) < n/2.

7 Such a MAC can be constructed using a pseudorandom function family, which exists
if and only if one-way functions exist [1].

14 S. Micali et al.

Proposition 1. Consider any dynamic coding scheme for parameters
{(ni, ki, qi)}i where both the sender and receiver are stateless.

If qi = 2 and 2ki ≥ 2ni +1 for infinitely many i, an adversarial channel with
any error rate > 1/4 can cause incorrect decoding with probability non-negligible
in ni.

For any values of qi, an adversarial channel with any error rate > 1/2 can
cause incorrect decoding with probability non-negligible in ni.

These results hold even if the sender and receiver are randomized and have
secret or public keys, and the channel is polynomially bounded.

Proof. We first prove the result for binary alphabets (i.e., qi = 2). (We assume
2ki ≥ 2ni + 1 simply to guarantee that at least 2n + 1 distinct messages can be
sent.)

For any n and x,x′ ∈ {0, 1}n, if Δ(x,x′) < n/2, define M(x,x′) to be some
canonical r such that Δ(x, r) < �n/4 and Δ(r,x′) ≤ �n/4. Note that M is
easily computable. We now describe a channel C which will cause an incorrect
decoding with non-negligible probability.
C chooses two distinct messages m,m′ at random and queries the sender on

m, yielding x ∈ {0, 1}n, then passes it to the receiver without error. C then
queries the sender on m′, yielding x′ ∈ {0, 1}n. If Δ(x,x′) < n/2, C sends either
M(x,x′) or M(x′,x) to the recipient, each with probability 1/2 (this requires
introducing at most �n/4 errors to x′). Otherwise, C sends x′ uncorrupted.

Conditioned on Δ(x,x′) < n/2, the receiver’s view of the second message is
distributed identically to its view in a world where m′ is queried first and m
is queried second. (This relies on the statelessness of both sender and receiver.)
Therefore, C will cause incorrect decoding with probability at least 1/2.

It remains to bound Pr[Δ(x,x′) < n/2]. Consider a thought experiment in
which the channel additionally queries 2n− 1 more distinct random messages be-
fore querying m and m′. By the Plotkin bound, the encodings of some two mes-
sages will have Hamming distance less than n/2. Since all messages are random
and each encoding is independent (due to the sender’s statelessness), Pr[Δ(x,x′) <
n/2] ≥ 1/

(2n+1
2

)
= Ω(1/n2). This completes the proof for binary alphabets.

For the large-alphabet case, we apply a similar (but simpler) argument. Since
all pairs of codewords of length n are within Hamming distance n for any al-
phabet, an adversarial channel with any error rate > 1/2 can cause incorrect
decoding with probability 1/2.

Proposition 2. Consider any dynamic coding scheme for parameters
{(ni, ki, qi)}i where all the sender’s inputs are known to the channel.

If qi = 2 and 2ki ≥ 2ni + 1 for infinitely many i, an adversarial channel
with any error rate > 1/4 can cause incorrect decoding with probability at least
Ω(1/n).

For any values of qi, an adversarial channel with any error rate > 1/2 can
cause incorrect decoding with probability at least 1/2.

These results hold even if the sender and receiver are randomized and stateful,
the receiver has secret inputs, and the channel is polynomially bounded.

Optimal Error Correction Against Computationally Bounded Noise 15

Proof. Because the sender is a polynomial-time algorithm with only public in-
puts, it can be “simulated” by the channel. That is, the channel C can simply
use the encoding function as a subroutine. Thus, instead of making queries to
the sender, C can simply simulate the process, encoding messages itself. This dif-
ference is essential: since the sender is not actually encoding these messages, his
internal state remains unchanged. The channel can thus simulate the execution
of the sender on a variety of inputs with the same internal state.

Once again we start with the binary case. As in the proof of Proposition 1,
for any n and x,x′ ∈ {0, 1}n, if Δ(x,x′) < n/2, define M(x,x′) to be some
canonical r such that Δ(x, r) < �n/4 and Δ(r,x′) ≤ �n/4. We now describe
an adversarial channel that can cause incorrect decoding:

The channel first makes a real query to the sender on a random message m1
and receives x1, its encoding. For block length n, the channel then simulates the
encoding 2n more random, distinct messages m2, . . . ,m2n+1. (If the sender is
stateful, the channel encodes with the sender’s state at the time m1 was encoded.)
Denote the encoding of mi as xi. By the Plotkin bound, there exist xi,xj such
that i �= j and Δ(xi,xj) < n/2. By symmetry and without loss of generality,
Pr[i = 1] >= 2/(2n+ 1). In the event that i = 1, the channel corrupts x1 in the
following way: it sends M(x1,xj) with probability 1/2, and M(xj ,x1) otherwise.

Conditioned on i = 1, the recipient’s view is distributed identically to the case
where the roles of x1 and xj are switched, and xj was the real query. Therefore
the recipient will decode incorrectly with probability Ω(1/n).

For large alphabets, a similar argument works with only one simulated mes-
sage encoding.

Proposition 3. Consider any dynamic coding scheme for parameters
{(ni, ki, qi)}i where and receiver is stateless and has only public inputs.

If qi = 2 and 2ki ≥ 2ni + 1 for infinitely many i, a computationally un-
bounded adversarial channel with any error rate > 1/4 can cause incorrect de-
coding with probability at least 1/2.

For any values of qi, a computationally unbounded adversarial channel with
any error rate > 1/2 can cause incorrect decoding with probability at least 1/2.

These results hold even if the sender and receiver are randomized, and the
sender has a public key.

Proof. We again start with the case of binary alphabets. Note that because
the receiver is stateless, its output distribution on a given word r is always the
same, regardless of what transmissions have preceded r. We now describe an
unbounded adversarial channel that can cause incorrect decoding:

For block length n, the channel will make up to 2n + 1 arbitrary distinct
message queries m1, . . . ,m2n+1. Denote the sender’s encoding of mi as xi. When
receiving xj , the channel exhaustively searches all r such that Δ(xj , r) ≤ �n/4.
Because the receiver is stateless and only has public inputs, the unbounded
channel can compute the receiver’s output distribution for word r. There are
two cases: (1) if for some r the receiver would fail to output mj with probability
≥ 1/2, the channel corrupts xj as r, sends it to the receiver, and halts; (2)
otherwise, the channel sends xj uncorrupted and makes the next query.

16 S. Micali et al.

We now need only argue that the case (1) eventually occurs for some query.
By the Plotkin bound, for some j there exists i < j and an r such that Δ(xi, r) ≤
�n/4 and Δ(r,xj) < n/4. Suppose that for queries 1, . . . , j − 1, case (1) did
not occur. Then by this assumption, on input r the receiver outputs mi with
probability ≥ 1/2. Therefore r is close enough to xj but fails to decode to mj

with probability at least 1/2, and we are done.
For large alphabets, a similar argument works with only two distinct message

queries.

Acknowledgements

We are grateful to Adam Smith for helpful discussions, including his explanation
of the results of Langberg [8] in our framework. We also thank the anonymous
reviewers for their helpful and thorough comments.

References

1. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

2. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

3. P. Gopalan, R. J. Lipton, and Y. Z. Ding. Error correction against computationally
bounded adversaries. Manuscript, October 2004.

4. V. Guruswami. List decoding with side information. In 18th IEEE Annual Con-
ference on Computational Complexity, pages 300–312, 2003.

5. V. Guruswami, J. H̊astad, M. Sudan, and D. Zuckerman. Combinatorial bounds
for list decoding. In Proceedings of the 38th Annual Allerton Conference on Com-
munication, Control and Computing, 2000.

6. V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In IEEE Symposium on Foundations of Computer Science, pages
28–39, 1998.

7. V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated
codes. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 181–190. ACM Press, 2000.

8. M. Langberg. Private codes or succinct random codes that are (almost) perfect. In
Proceedings of the forty-fifth annual IEEE Symposium on Foundations of Computer
Science, 2004.

9. R. J. Lipton. A new approach to information theory. In Proceedings of the 11th
Annual Symposium on Theoretical Aspects of Computer Science, pages 699–708.
Springer-Verlag, 1994.

10. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Com-
puting, pages 387–394. ACM Press, 1990.

Hardness Amplification of Weakly Verifiable
Puzzles

Ran Canetti�, Shai Halevi, and Michael Steiner

IBM T.J. Watson Research Center, Hawthorne, NY, USA
{canetti, msteiner}@watson.ibm.com, shaih@alum.mit.edu

Abstract. Is it harder to solve many puzzles than it is to solve just
one? This question has different answers, depending on how you define
puzzles. For the case of inverting one-way functions it was shown by Yao
that solving many independent instances simultaneously is indeed harder
than solving a single instance (cf. the transformation from weak to strong
one-way functions). The known proofs of that result, however, use in an
essential way the fact that for one-way functions, verifying candidate
solutions to a given puzzle is easy. We extend this result to the case
where solutions are efficiently verifiable only by the party that generated
the puzzle. We call such puzzles weakly verifiable. That is, for weakly
verifiable puzzles we show that if no efficient algorithm can solve a single
puzzle with probability more than ε, then no efficient algorithm can solve
n independent puzzles simultaneously with probability more than εn. We
also demonstrate that when the puzzles are not even weakly verifiable,
solving many puzzles may be no harder than solving a single one.

Hardness amplification of weakly verifiable puzzles turns out to be
closely related to the reduction of soundness error under parallel repeti-
tion in computationally sound arguments. Indeed, the proof of Bellare,
Impagliazzo and Naor that parallel repetition reduces soundness error in
three-round argument systems implies a result similar to our first result,
albeit with considerably worse parameters. Also, our second result is an
adaptation of their proof that parallel repetition of four-round systems
may not reduce the soundness error.

1 Introduction

This work is concerned with the fundamental question of hardness amplification
via parallel repetition. Suppose we knew that no efficient device succeeds in some
computational task with probability much better than ε. Then what can we say
about the success probability of efficient devices in performing n such tasks in
parallel? The answer clearly depends on the type of task at hand. For the simple
case where the task is inverting an efficiently computable function, the answer
implicit in the groundbreaking work of Yao [13] is that the success probability
cannot be much more than εn. A proof can be found in Goldreich’s book [6–
Chapter 2.3]. However, this proof relies heavily on the ability to efficiently verify

� Supported by NSF CyberTrust Grant #0430450.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 17–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 R. Canetti, S. Halevi, and M. Steiner

the correctness of a candidate solution: That is, on input y in the range of the
function f and candidate x from its domain, it is possible to efficiently verify
that indeed y = f(x). A natural question is whether parallel repetition amplifies
hardness also for other types of puzzles, and in particular for the case where the
entity posed with the puzzle cannot efficiently verify on its own the correctness
of candidate solutions. (Following [12, 8], we use the term “puzzles” to denote
somewhat-hard automatically-generated computational problems.)

We identify a more general class of puzzles for which parallel repetition indeed
amplifies hardness. Specifically, we show that the same hardness amplification
result holds even in the case where only the entity generating the puzzles can
efficiently verify correctness of candidate solutions. More precisely, we consider
the case where puzzles are generated (by some efficient algorithm) together with
some “secret check information”. Efficient verification of correctness of candi-
date solutions for a puzzle is guaranteed only if the corresponding secret check
information is known. In particular, the entity posed with the puzzle may not
be able to efficiently verify correctness of candidate solutions. We call such puz-
zles weakly verifiable. We show that, even in this setting, if no efficient algorithm
can solve a single puzzle with probability much more than ε, then no efficient
algorithm can simultaneously solve n puzzles with probability much more than
εn, which is essentially optimal.1 We also show that the weak verifiability prop-
erty is essential for obtaining such a general hardness amplification result: We
exhibit an example of puzzles that are not even weakly verifiable, and where the
probability of solving multiple instances is the same as the probability of solving
a single instance.

One example of weakly verifiable puzzles is the notion of computer-generated
inverse Turing tests, or CAPTCHAs [11, 1]. These are distribution of puzzles that
are easily solvable by humans, but are assumed to be solvable by computers only
with small (albeit noticeable) probability. Automatically verifying a solution to
a given CAPTCHA is typically just as hard as solving it, since the space of
solutions is fairly small. Still, CAPTCHAs are weakly verifiable, as it is possible
to efficiently generate a CAPTCHA together with its unique solution. In the work
of von-Ahn et al. [1], they suggests sequential repetition as a method of hardness
amplification for CAPTCHAs. Our work indicates that parallel repetition can
be used as well. We note that puzzles that are only weakly verifiable can be
constructed from one-way functions (e.g., the puzzle is f(x) and the solution is
a hard-core bit of x). On the other hand, our definition in Section 2 does not
imply one-way functions. See Section 2.2 for more discussion on the definition
of puzzles and relations to other notions of computational hardness.

1.1 Soundness Amplification of Argument Systems

Bellare, Impagliazzo, and Naor [2] investigated the problem of reducing the
soundness error of interactive argument systems (i.e., proof systems with compu-

1 As usual, the analysis incurs slackness of negligible quantities. This in particular
means that the amplification is only meaningful when ε is not negligible.

Hardness Amplification of Weakly Verifiable Puzzles 19

tational soundness). They showed that for three-round systems, n-fold parallel
repetition reduces the soundness error exponentially in n, whereas for four-round
systems parallel repetition may not reduce the soundness error at all. This prob-
lem turns out to be closely related to ours: For three-round systems, once the
first prover message is fixed, the remaining two messages can be regarded as a
weakly verifiable puzzle sent by the verifier to the prover, followed by a solu-
tion candidate sent by the prover. When there are more than three rounds, this
puzzle may not be even weakly verifiable without additional communication.
Indeed, the result in [2] for three-round argument systems implies that parallel
repetition of weakly verifiable puzzles reduces the success probability exponen-
tially. Similarly, their example of a four-round system whose soundness error is
not reduced by parallel repetition can be translated to a family of puzzles (that
are not weakly verifiable) where parallel repetition does not amplify hardness.

In terms of concrete parameters, however, the result in [2] is far from opti-
mal. Specifically, they show that if no algorithm can solve a single puzzle much
better than ε, then no algorithm can solve n independent puzzles simultaneously
with probability much better than δn, where δ ≈ exp

(
−(1−ε)2

128

)
. Note that δ is

quite close to one: we always have δ > exp(−1/128) > 0.99, regardless of ε. In
particular, if ε is small (say, ε = 1/poly), then it may take many repetitions
before any amplification whatsoever is guaranteed. Hence, although the bound
in [2] suffices for an asymptotic result, it is not very useful for the case of ampli-
fying hardness of moderately hard weakly verifiable puzzles. We remark that our
improved bounds apply also to the problem of parallel repetition of argument
systems. Also there, we obtain optimal bounds.

1.2 Our Techniques

To show hardness amplification, we need to transform an algorithm A that solves
n puzzles with probability εn into another algorithm A′ that solves a single puzzle
with probability ε. We consider the following matrix M that represents n-vectors
of puzzles: The columns are labeled by all the possibilities for the first puzzle,
and rows are labeled by all the possibilities for puzzles 2..n, so each entry in the
matrix corresponds to a particular n-vector of puzzles. Each entry consists of
two bits, where the first bit is 1 if the answer-vector that A returns for these n
puzzles includes a correct solution to the first puzzle, and the second bit is 1 if
it includes correct solutions to all the puzzles 2..n.

We make the following combinatorial observation. Assume that the fraction
of (1,1) entries in M is at least some positive γ, and let α,β be positive numbers
such that γ = α · β. Then, either M has some column with α-fraction of entries
of the form (�, 1), or else the conditional probability of a (1,1) entry given that
the entry is of the form (�, 1) is at least β.

We use this combinatorial observation with α = εn−1, β = ε and γ = α · β =
εn, and indeed we know that the fraction of (1, 1) entries in the matrix is at least
εn. We thus conclude that either there exists a particular puzzle x, such that
when x is the first puzzle, A correctly solves all the other puzzles with probability
εn−1, or the conditional probability of a correct answer to the first puzzle when

20 R. Canetti, S. Halevi, and M. Steiner

the answers to all the others are correct is at least ε. In the former case we triv-
ially get an algorithm that solves n−1 puzzles with probability εn−1 and we can
continue by induction. In the latter case we directly get an algorithm that solves
a single puzzle with probability ε: Simply choose many random (n− 1)-vectors
of puzzles, insert the input puzzle at the beginning to form an n-vector, and
run A on the resulting vector. Repeat this process until we get correct answers
to the last (n− 1) puzzles. Then we guess that we also have the right answer to
the input puzzle and output that answer. The heart of the analysis is proving
that this strategy indeed yields success probability (close to) ε.

Relations to xor-lemma proofs. We comment that there is some parallel between
proofs of hardness amplification and proofs of xor lemmas, and indeed our proof
is reminiscent of the xor-lemma proof of Myers [10]. In particular, he too has
two asymmetric cases, where in one case we only get dimension reduction by one
but it is essentially “for free”, and in the other case we directly go to dimension
one but pay some polynomial factor in complexity.

2 Notations and Definitions

Below we use the term efficient algorithms as a synonym to (probabilistic)
polynomial-time Turing machines. A function (from positive integers to pos-
itive real numbers) is negligible if it approaches zero faster than any inverse
polynomial. (Also, we informally say that something is noticeable when it is
larger than some inverse polynomial.) We use negl(·) to denote an unspecified
negligible function. We also use the notation Õ(x) as a shorthand for O(x logc x)
for some constant c.

2.1 Puzzles

A system for weakly verifiable puzzles consists of algorithms for generating ran-
dom puzzles and for verifying solutions to these puzzles. Specifically, it consists
of a pair of efficient algorithms Z = (G,V), such that
– The puzzle-generator algorithm G, on security parameter k, outputs a ran-

dom puzzle p along with some “check information” c, (p, c) $← G(1k).
– The “puzzle verifier” V is a deterministic efficient algorithm that on input

a puzzle p, check-information c, and answer a, outputs either zero or one,
V (p, c, a) ∈ {0, 1}.
A solver for this puzzle system is an efficient algorithm S that gets a puzzle p

as input and outputs an answer a. The success probability of S is the probability
that the answer is accepted by the puzzle verifier,

succZ [S] def= Pr
G,S

[
(p, c) $← G(1k), a

$← S(p) : V (p, c, a) = 1
]

where the probability is taken over the randomness of G and S. (Note that
succZ [S] is a function of the security parameter k.) The hardness of the puzzle
system Z is a bound on the success probability of any efficient solver.

Hardness Amplification of Weakly Verifiable Puzzles 21

Definition 1 (Hardness of puzzles). Let ε : IN → [0, 1] be an arbitrary func-
tion. A puzzle-system Z is said to be (1 − ε)-hard if for any efficient solver S,
there is a negligible function negl such that succZ [S] ≤ ε + negl.

Repetition. Let Z = (G,V) be a puzzle system, and let n : IN → IN be an
arbitrary function. We denote by Gn the algorithm that on security parameter
k runs G(1k) for n(k) times and outputs all the n puzzles with their check

information, (〈p1, . . . , pn〉 , 〈c1, . . . , cn〉) $← Gn(1k). Similarly, we denote by V n

the function that gets three n-vectors p, c,a and outputs one if and only if
V (pi, ci, ai) = 1 for all i ∈ {1, ..., n}. The n-fold repetition of Z is the puzzle
system Zn = (Gn,V n).

2.2 Discussion

We discuss some aspects of the definition of puzzles, and relate it to other
notions of computational hardness. First, note that our definition of weakly-
verifiable puzzles allows the veracity of answer a to puzzle p to depend on
the check-information c. Namely, we allow the possibility of two outputs (p, c),
and (p, c′) in the support of G (with the same p but different c’s), such that
for some answer a it holds that V (p, c, a) = 1 but V (p, c′, a) = 0. This ex-
tra generality may seems somewhat non-intuitive at first. In particular, it al-
lows the hardness of solving the puzzle to be information-theoretic. (For ex-
ample, consider a system where the puzzle is always the all-zero string, the
check information is a random k-bit string, and an answer is accepted if it
equals the check information.) We chose this more general formulation since
defining things this way is slightly simpler, and because it captures also the
soundness in proof systems where soundness is argued unconditionally. Also, it
makes our result a bit stronger (since it works even for this wider class of puz-
zles).

Still, the interesting cases for hardness amplification are usually the ones
where the veracity of the solution does not depend on the check information.
Notice that in such systems the hardness can only be computational. (Indeed, an
infinitely powerful solver, on input puzzle p, can exhaustively search for a pair
(c, a) where (p, c) is in the support of G and V (p, c, a) = 1.) Below we therefore
call such systems weakly-verifiable computational puzzle systems.

It may be instructive to relate the notion of weakly-verifiable computational
puzzles to the notion of average-case hardness due to Levin [9]. Recall that
according to Levin, a distributional problem is a pair (P,D), where P is a (search
or decision) problem andD is a distribution on the instances of P. Hence, weakly-
verifiable puzzles are a special case of distributional search problems. Most of the
literature concerning Levin’s theory is focused on the study of the case where P
is an NP-problem (either search or decision). From the perspective of the current
work, this means that candidate solutions are always efficiently verifiable. Hence
the previous proofs of Yao’s theorem can be used just as well to prove hardness
amplification for all these prior notions.

22 R. Canetti, S. Halevi, and M. Steiner

In contrast, in this work we consider search problems that are not even in NP.
When cast as distributional search problems, a weakly-verifiable computational
puzzle system is a distributional search problem (P,D) where D is efficiently
sampleable and the relation RP = {(p, a) : a is a correct solution for p}, is not
necessarily efficiently computable. (When viewed as a language, RP is itself in
NP, with the witness roughly being the check information c.)2 Hence, the class of
distributional search problems that result from weakly-verifiable computational
puzzle systems is a superset of the class 〈NP,P-sampleable〉 of Ben-David et al.
[3], in which RP in an NP-relation (where pairs can be recognized in polyno-
mial time).

The class 〈NP,P-sampleable〉 is itself a superset of the class DistNP from
Levin’s work [9], in which the distribution D is P-computable. However, it was
shown by Impagliazzo and Levin [7] that if 〈NP,P-sampleable〉 contains hard
problems, then so does DistNP. It is also easy to see that a hard weakly-
verifiable computational puzzle can be transformed into a hard problem in
〈NP,P-sampleable〉 (by changing the goal of the search problem from finding a
to finding (a, c)). Hence, if any of these classes contains hard problems, then
they all do. We finally comment that the existence of hard problems in these
classes is not known to imply the existence of one-way functions.

3 Hardness Amplification of Puzzles

Theorem 1. Let ε : IN → [0, 1] be an efficiently computable function, let n :
IN → IN be efficiently computable and polynomially bounded, and let Z = (G,V)
be a weakly verifiable puzzle system. If Z is (1 − ε)-hard, then Zn, the n-fold
repetition of Z, is (1− εn)-hard.

The core of the proof is a transformation that turns an algorithm A that
solves (Gn,V n) with probability δn (for some δ) into an algorithm A′ that solves
(G,V) with probability δ(1 − 1

q), where q is some “slackness parameter”.3 The
running time of A′ is polynomial in n, q, 1/δn, and the running times of A, G,
and V .

Lemma 1. Fix efficiently computable functions, n, q : IN → IN, and δ : IN →
(0, 1). Also fix a puzzle system Z = (G,V), and denote the running times of
G,V , by TG,TV , respectively. If there exists a solver A for Zn with success
probability δn and running time T , then there exists also a solver A′ for Z with
success probability δ(1− 1

q) and running time T ′ = Õ
(

nq3

δ2n−1 (T + nTG + nTV)
)
.

2 Technically, the witness has to be randomness of the generator when generating
(p, c). The reason is that even a computational puzzle system can have “invalid
check information” c′ such that V (p, c′, a) = 1 for an incorrect answer a, as long as
the generator G has probability zero of outputting (p, c′).

3 The parameter q is introduced in order to achieve an “optimal” hardness amplifica-
tion result, from ε to εn. One can instead set, say, q = 2, in which case you can only
prove amplification from ε to (2ε)n.

Hardness Amplification of Weakly Verifiable Puzzles 23

3.1 The Solver A′

Having input puzzle p the algorithm A′ consists of two phases. Roughly, in a
pre-processing phase, A′ tries to find a puzzle p∗

1, such that when p∗
1 is placed as

the first puzzle in a vector, the algorithm A correctly solves all the other puzzles
with probability at least δn−1. This pre-processing is the most time-consuming
operation in the execution of A′. If such p∗

1 is found, then A′ makes a “recursive
call to itself”, using as a solver for Zn−1 the algorithm A with p∗

1 hard-wired as
the first puzzle.

If A′ fails to find such puzzle p∗
1, it moves to the on-line phase, where it

actually tries to solve its input puzzle p. This is done by repeatedly sampling
(n−1)-vectors (p, c) ← Gn−1(1k), and running A on the n-vector (p,p), getting
the n-vector of answers (a,a) ← A(p,p). If the answers 2..n are correct (i.e.,
V n−1(p, c,a) = 1) then A′ “hopes that the solution to p is also valid”, and
outputs the first answer a. (If too many trials have passed without getting a
correct answers for puzzles 2..n, then A′ aborts.) A detailed description of A′

follows, and the code for A′ can be found in Figure 1.

Pre-processing phase: In the pre-processing phase, A′ tries to find a prefix of v ≤
n−1 puzzles that has high probability of residual success. That is, conditioned on
this prefix, A solves the suffix of n−v puzzles with probability at least δn−v. The
pre-processing phase consists of iterations, where in the iteration i, A′ already
has a prefix of i− 1 puzzles and it tries to add to it the i’th puzzle. This is done
in a straightforward manner: let prefix be the prefix of length i − 1 from the
previous iteration. A′ repeatedly chooses candidates to extend the prefix, and
for each candidate p∗ it estimates the residual-success probability of prefix ◦ p∗.
(I.e., the probability that A, on input (prefix, p∗, n− i random puzzles), solves
correctly the last n−i puzzles.) If A′ finds a candidate p∗ for which the estimated
probability is at least δn−i, then it adds it to the prefix and continues to the next
iteration. We stress that since A′ generates these last “n − i random puzzles”
by itself, it also has the corresponding check information so it can verify the
solutions to these puzzles.

In iteration i, A′ tries at most Ni =
⌈ 6q

δn−i+1 ln
(18qn

δ

)⌉
candidates. If none of

them yields estimated probability of δn−i then A′ terminates the pre-processing
and moves to the on-line phase. For each candidate, A′ estimates the probabil-
ity up to additive accuracy of δn−i/6q with confidence of δ/18qnNi. Namely,
Pr[|estimated − actual| > δn−i/6q] < 2δ/18qnNi. Using Chernoff bound, one
can see that it is sufficient to sample Mi = O(q2

δn−i ln(qn
δ)) points to get these

accuracy and confidence bounds.

On-line phase: Going into the on-line phase, A′ has an input puzzle p, and a
prefix of v ≤ n− 1 puzzles, and we know the residual-success probability of that
prefix was estimated to be at least δn−v. Due to the accuracy and confidence
bounds that were used in the estimation above, we can assume that the actual
probability is at least δn−v(1 − 1/6q) (and this assumption holds expect with
very small probability).

24 R. Canetti, S. Halevi, and M. Steiner

Solver A′(p): // Parameters: k, n, q, δ

Preprocessing phase:
0. initialize prefix ← empty-vector
1. for i = 1 to n − 1
2. p∗ ← Extend-prefix(prefix, i)
3. if p∗ =⊥ then v ← i, goto Online phase
4. else prefix ← prefix ◦ p∗

5. v ← n, goto Online phase

Online phase:
10. if v = n // Base case, prefix has n − 1 puzzles
11. a ← A(prefix, p)
12. return an

13. else // prefix has v − 1 ≤ n − 2 puzzles
14. repeat

⌈ 6q ln(6q)
δn−v+1

⌉
times:

15. (〈pv+1, . . . , pn〉 , 〈cv+1, . . . , cn〉) ← Gn−v(1k)
16. a ← A(prefix, r, pv+1, . . . , pn)
17. if V (pi, ci, ai) = 1 for all i ∈ {v + 1, . . . , n} then return av

18. if none of the repetitions succeeded then abort

Extend-prefix(prefix, i): // prefix has i − 1 puzzles
21. Ni ←

⌈
6q

δn−i+1 ln
(

18qn
δ

)⌉
21. repeat Ni times:
22. (p∗, c∗) ← G(1k)
23. μ̄p∗ ← Estimate-res-succ-prob(prefix ◦ p∗, i)
24. if μ̄p∗ ≥ δn−i then return p∗

25. return ⊥ // No good extension found

Estimate-res-succ-prob(prefix, i): // prefix has i puzzles

30. Mi ←
⌈

84q2

δn−i ln
(

18qn·Ni
δ

)⌉
31. repeat Mi times:
32. (〈pi+1, . . . , pn〉 , 〈ci+1, . . . , cn〉) ← Gn−i(1k)
33. a ← A(prefix, pi+1, . . . , pn)
34. this sample is successful if V (pj , cj , aj) = 1 for all j ∈ {i + 1, . . . , n}.
35. return number-of-successes/Mi

Fig. 1. The solver A′ for Z

If the prefix is of length n− 1, then we know that A solves any single puzzle
with probability at least δ(1 − 1/6q), so A′ directly uses it to solve the input
puzzle p. Otherwise, we know that the last iteration of the pre-processing phase
failed to find an extension to the prefix that has estimated residual-success prob-
ability of δn−v. As we will show later, this means that with the given prefix, the
conditional probability that A solves the v’th puzzle given that it solves puzzles
v + 1, . . . , n is very close to δ. Thus, A′ samples many random vectors of n− v
puzzles (with their check information) and use A(prefix, p, random puzzles)

Hardness Amplification of Weakly Verifiable Puzzles 25

to try and solve the random puzzles. Since the overall residual-success proba-
bility with the given prefix is close to δn−v+1 we expect to succeed after not
much more than 1/δn−v+1 trials (but for technical reasons A′ tries as many as
6q ln(6q)/δn−v+1 times). Once A′ gets an answer vector a that contains correct
solutions to the random puzzles v + 1, . . . , n, it outputs the answer av (i.e., the
one that corresponds to the input puzzle). If all the trials fail, then A′ aborts.

3.2 Analysis of A′

In the analysis we refer directly to the code of A′ from Figure 1. We begin with
the running time of A′. The pre-processing phase consists of at most n−1 calls to
Extend-prefix, where the i’th call makes at most Ni =

⌈ 6q
δn−i+1 ln

(18qn
δ

)⌉
calls

to Estimate-res-succ-prob. The routine Estimate-res-succ-prob (when
called during the i’th iteration) goes through its loop for Mi =

⌈
84q2

δn−i ln
(

18qnNi

δ

)⌉
times, and each loop makes one call to A and n− i < n calls to G and V . Thus,
the total time of the pre-processing phase is less than

n·6q

δn
·O

(
ln(

qn

δ
)
)
·84q2

δn−1 ·O
(
ln(

qn

δ
)
)
·(T+nTG+nTV)=Õ

(
nq3

δ2n−1 (T+nTG+nTV)
)

The on-line phase of A consists of at most 6q ln(6q)/δn−v+1 ≤ 6q ln(6q)/δn

repetitions of a loop, and each repetition makes one call to A and n−v < n calls
to G and V , so the time of this phase is O(q ln q

δn (T + nTG + nTV)). The total

running time is therefore Õ
(

nq3

δ2n−1 (T + nTG + nTV)
)
, as stated in Lemma 1.

Next we analyze the success probability, and we begin with a few notations.
For a vector p with i ≤ n− 1 puzzles, we denote the residual-success probability
of p by

rspi[p]def= Pr

[
(〈pi+1, . . . , pn〉 , 〈ci+1, . . . , cn〉) $←Gn−i(1k),a $←A(p, pi+1, . . . , pn)

: V (pj , cj , aj)=1 for all i + 1≤j≤n

]
.

(In this notation, it is assumed that the security parameter k is implicit in the
puzzles in p.) For a vector p with i−1 ≤ n−2 puzzles, we denote by Exti(p) the
set of “good extensions” of p, namely those puzzles p∗ such that the residual-
success probability of p ◦ p∗ is noticeably more than δn−i,

Exti(p) def= { p∗ : rspi(p ◦ p∗) ≥ δn−i(1 +
1
6q

) }

Next, we let prefixi be the random variable describing the prefix of length i
after the i’th iteration in the pre-processing phase, if there is one (otherwise we
let prefixi =⊥). By convention, prefix0 = Λ �=⊥.

We say that iteration i in the pre-processing phase makes the wrong decision,
either if it returns an extension to prefixi−1 with residual-success probability that
is too low, or if it fails to find an extension even though many good extensions
exist. Formally, the event Wrongi is defined when prefixi−1 �=⊥, and one of the
following holds:

26 R. Canetti, S. Halevi, and M. Steiner

(a) either prefixi �=⊥ (i.e., the routine Extend-prefix(prefixi−1, i) returned
some p∗ �=⊥), but rsp(prefixi) < δn−i(1− 1

6q),
(b) or prefixi =⊥ (i.e., the routine Extend-prefix(prefixi−1, i) returned ⊥), but

it holds that Pr[(p, c) $← G(1k) : p ∈ Exti(prefixi−1)] ≥ δn−i+1

6q .

Claim. For all i ≤ n− 1, Pr[Wrongi] ≤ δ
6qn .

Proof. This claim essentially follows from the Chernoff bound. Recall that the
Chernoff bound asserts that for any 0-1 random variable with mean μ, is we
choose M independent samples of that variable and let μ̄ be their average, then
for any γ > 0 we have

Pr[μ− μ̄ > γ] < exp
(
−Mγ2

2μ(1− μ)

)
< exp

(
−Mγ2

2μ

)
(and the same expression also bounds Pr[μ̄−μ > γ]). Fix some i and assume that
prefixi−1 �=⊥, which means that the pre-processing phase indeed calls Extend-
prefix(prefixi−1, i). For any possible value of prefixi−1, we now bound the prob-
ability of Wrongi conditioned on this value of prefixi−1. For each puzzle p∗ that
can be chosen by Extend-prefix in line 22, let μp∗ = rspi(prefixi−1 ◦ p∗). Note

that the estimation routine uses Mi =
⌈

84q2

δn−i ln
(

18qnNi

δ

)⌉
samples to provide an

estimate μ̄p∗ for μp∗ . Using the Chernoff bound, we have for any puzzle p∗ such
that μp∗ ≤ δn−i(1− 1

6q)

Pr
[
μ̄p∗ ≥ δn−i

]
≤ Pr

[
μ̄p∗ − μp∗ > δn−i/6q

]
< exp

(
−Mi ·

δ2(n−i)

72q2μp∗

)
< exp

(
−Mi ·

δn−i

72q2

)
< exp

(
− ln

(
18qnNi

δ

))
=

δ

18qnNi

and since the routine Extend-prefix examines at most Ni candidates p∗, the
probability that it gets an estimate μ̄p∗ ≥ δn−i for any candidate p∗ with μp∗ ≤
δn−i(1 − 1/6q) is at most δ/18qn. Hence the probability of sub-case (a) is at
most δ/18qn. Similarly, for a puzzle p∗ such that μp∗ exactly equals δn−i(1+ 1

6q)
we have

Pr
[
μ̄p∗ < δn−i

]
≤ Pr

[
μ̄p∗ − μp∗ < −δn−i/6q

]
< exp

(
−Mi ·

δ2(n−i)

72q2μp∗

)
< exp

(
−Mi ·

δn−i

72q2(1 + 1
6q)

)
< exp

(
−84

72(1 + 1
6q)

ln
(

18qnNi

δ

))
≤ δ

18qnNi

where the last inequality holds since 84
72(1+1/6q) ≥

84
72(1+1/6) = 1. Clearly, if

μp∗ > δn−i(1 + 1/6q) then the probability of μ̄p∗ < δn−i is even smaller. We see
that when the routine Extend-prefix picks any p∗ ∈ Ext(prefixi−1) in line 22,
it returns that p∗ in line 24 with probability more than 1− δ

18qnNi
. On the other

hand, if the probability weight of Exti(prefixi−1) is more than δn−i+1

6q , then the

Hardness Amplification of Weakly Verifiable Puzzles 27

probability that none of the Ni candidates that Extend-prefix picks belongs
to Exti(prefixi−1) is at most(

1− δn−i+1

6q

)Ni

=
(

1− δn−i+1

6q

) 6q

δn−i+1 ln(18qn/δ)

< exp(− ln(
18qn

δ
)) =

δ

18qn

We conclude that the probability of sub-case (b) is at most 2δ
18qn , and therefore

the overall probability of the event Wrongi is at most δ
18qn + 2δ

18qn = δ
6qn .

In the analysis below of the online phase, we therefore assume that the pre-
processing phase never makes the wrong decision, and this assumption effects
the overall error probability of A′ by at most (n− 1) δ

6qn < δ
6q .

The Online Phase of A′. Consider now the on-line phase of A′. Recall that
this phase gets a prefix with v− 1 puzzles, prefixv−1, and an input puzzle p, and
that these two are independent (since the pre-processing phase is independent
of the input). Below we denote the input puzzle by p∗

v, and we denote by c∗
v the

corresponding check information (that A′ never actually sees, but may deter-
mines the veracity of A′’s answer.) Assuming that the pre-processing phase did
not make a wrong decision, we know that

rsp(prefixv−1) ≥ δn−v+1(1− 1
6q

) (1)

(since iteration v − 1 of the pre-processing returned some pv−1 �=⊥). If v = n,
this means that rsp(prefixv−1) ≥ δ(1 − 1/6q), so running A(prefixv−1, p

∗
v) and

taking the last answer yields a correct solution to p∗
v with probability at least

δ(1− 1/6q).
The more interesting case to analyze is when v < n, which means that iter-

ation v in the pre-processing phase failed to extend the prefix. Assuming again
that this was not a wrong decision, it means that

Pr[(p, c) $← G(1k) : p ∈ Extv(prefixv−1)] <
δn−v+1

6q
(2)

From now on, we fix some value for prefixv−1 for which Equations 1 and 2
hold. For convenience in the discussion below, we let E be the set of pairs (p, c)
such that p ∈ Extv(prefixv−1). Namely,

E
def= { (p, c) : rspv(prefixv−1 ◦ p) ≥ δn−v(1 +

1
6q

) }

and from Equation 2 we know that

Pr[(p, c) $← G(1k) : (p, c) ∈ E] <
δn−v+1

6q
.

Consider the experiment where we choose at random a single vector of n −
v + 1 puzzles, (pj , cj) ← G(1k) for j = v, . . . , n, and then run A to get a ←

28 R. Canetti, S. Halevi, and M. Steiner

A(prefixv−1, pv, . . . , pn). We are interested in the “success” event where a con-
tains the right answers to all the puzzles pv, . . . , pn, and in the “almost success”
event where we only know that the answers to pv+1, . . . , pn are right. For any
pair (pv, cv) we let w(pv, cv), s(pv, cv), a(pv, cv), respectively, be the probabil-
ity weight of that pair, and the probabilities of “success” and “almost success”
conditioned on it.

w(pv, cv) def= Pr[G(1k) = (pv, cv)]

s(pv, cv) def= Pr

⎡⎣ (〈pv+1, . . . , pn〉 , 〈cv+1, . . . , cn〉) ← Gn−v(1k),
a ← A(prefixv−1, pv, pv+1, . . . , pn)
: V (pj , cj , aj) = 1 for all j ∈ {v, . . . , n}

⎤⎦
a(pv, cv) def= Pr

⎡⎣ (〈pv+1, . . . , pn〉 , 〈cv+1, . . . , cn〉) ← Gn−v(1k),
a ← A(prefixv−1, pv, pv+1, . . . , pn)
: V (pj , cj , aj) = 1 for all j ∈ {v + 1, . . . , n}

⎤⎦
Clearly, the overall probability of “success” is exactly the residual-success

probability of prefixv−1, namely,∑
(pv,cv)

w(pv, cv)s(pv, cv) = rsp(prefixv−1) ≥ δn−v+1(1− 1
6q

). (3)

Also, from what we know about E

a(pv, cv) ≤ δn−v(1+
1
6q

) for any (pv, cv) /∈ E, and
∑

(pv,cv)∈E

w(pv, cv) ≤ δn−v+1

6q

(4)
Recall that A′, on input p∗

v, chooses at random many continuations
(pv+1, . . . , pn)(cv+1, . . . , cn) until it finds an answer vector a that is an “almost
success”. Then A′ outputs av, and this is correct only if a is also a “success”.
This means that conditioned on not aborting, the success probability of A′ is
exactly s(p∗

v, c∗
v)/a(p∗

v, c∗
v). That is, for any fixed pair (p∗

v, c∗
v) we have

Pr[V (p∗
v, c∗

v,A′(p∗
v)) = 1 | A′(p∗

v) does not abort] = s(p∗
v, c∗

v)/a(p∗
v, c∗

v) (5)

Next, let B (for Bad) be the set of input puzzles (and their associated check
information) on which A′ is unlikely to succeed. More specifically,

B
def= {(pv, cv) : s(pv, cv) < δn−v+1/6q}. (6)

It is easy to see that when (p∗
v, c∗

v) /∈ B, then A(p∗
v) almost never aborts.

Indeed A′ aborts only if it does not find puzzles pv+1, . . . , pn that A solves
correctly after 6q ln(6q)

δn−v+1 trials. As each trial success with probability a(p∗
v, c∗

v) ≥
s(p∗

v, c∗
v) ≥ δn−v+1

6q , the probability that they all fail is at most 1/6q,

Pr
A′

[A′(p∗
v) aborts] ≤ 1

6q
, for all (p∗

v, c∗
v) /∈ B (7)

Hardness Amplification of Weakly Verifiable Puzzles 29

The last crucial observation that we need is that the sets B and E together
cannot contribute too much to the probability of success. Namely,∑
(pv,cv)∈B∪E

w(pv, cv)s(pv, cv) ≤
∑

(pv,cv)∈B

w(pv, cv)s(pv, cv) +
∑

(pv,cv)∈E

w(pv, cv)s(pv, cv)

≤
∑

(pv,cv)∈B

w(pv, cv)δn−v+1/6q +
∑

(pv,cv)∈E

w(pv, cv)

≤ δn−v+1

6q
+

δn−v+1

6q
=

δn−v+1

3q

and combined with Equation 3 we get∑
(pv,cv)/∈B∪E

w(pv, cv)s(pv, cv) ≥ δn−v+1(1− 1
6q

)− δn−v+1

3q
= δn−v+1(1− 1

2q
)

(8)
Putting everything together, we have

Pr[A′ answers correctly] =
∑

(p∗
v,c∗

v)

w(p∗
v, c∗

v) · Pr[V (p∗
v, c∗

v,A′(p∗)) = 1]

≥
∑

(p∗
v,c∗

v)/∈B∪E

w(p∗
v, c∗

v) · (1− Pr[A′(p∗
v) aborts])

· Pr[V (p∗
v, c∗

v,A′(p∗
v)) = 1 | A′(p∗

v) does not abort]
(a)
≥

∑
(p∗

v,c∗
v)/∈B∪E

w(p∗
v, c∗

v) · (1− 1
6q

) · s(p
∗
v, c∗

v)
a(p∗

v, c∗
v)

(b)
≥

∑
(p∗

v,c∗
v)/∈B∪E

w(p∗
v, c∗

v) · (1− 1
6q

) · s(p∗
v, c∗

v)
δn−v(1 + 1/6q)

=
1− 1/6q

δn−v(1 + 1/6q)

∑
(p∗

v,c∗
v)/∈B∪E

w(p∗
v, c∗

v)s(p∗
v, c∗

v)

(c)
≥ 1− 1/6q

δn−v(1 + 1/6q)
· δn−v+1(1− 1/2q) = δ · (1− 1/6q)(1− 1/2q)

1 + 1/6q
> δ(1− 5

6q
)

where inequality (a) is due to Equations 5 and 7, inequality (b) is due to (the
first part of) Equation 4, and inequality (c) is due to Equation 8. We conclude
that the probability of a wrong decision in the preprocessing phase is at most
δ/6q, and that if no wrong decisions were made then the online phase of A′ solves
the input puzzle with probability at least δ(1− 5/6q), hence the overall success
probability of A′ is at least δ(1− 5/6q)− δ/6q = δ(1− 1/q). This completes the
proof of Lemma 1. ��

3.3 Proof of Theorem 1

All that is left now is to provide an asymptotic interpretation to the concrete
bounds from Lemma 1. Let Z be a (1 − ε)-hard puzzle system, and assume

30 R. Canetti, S. Halevi, and M. Steiner

toward contradiction that there exists a T -time solver Sn that (for infinitely
many k’s) solves (Gn,V n) with probability at least ε(k)n + 1/r(k), where both
T (·), r(·) are polynomials.

Let us denote q = 4nr, and let δ be the solution to δn = εn + 1/r. We note
that since δn is noticeably larger than εn, then also δ is noticeably larger than ε,
specifically δ > ε + 1/2rn. To see this, denote γ = δ − ε, and assume toward
contradiction that γ < 1/2rn < 1/n. Then we have

(ε + γ)n = εn +
n∑

t=1

(
n

t

)
εn−tγt = εn + γ

n∑
t=1

(
n

t

)
εn−tγt−1

< εn + γ
n∑

t=1

(
n

t

)
εn−t

nt−1 < εn + γ
n∑

t=1

nt

t!
· ε

n−t

nt−1

= εn + γn
n∑

t=1

εn−t/t! < εn + 2γn

Thus, εn + 2γn > (ε + γ)n = δn = εn + 1/r, and therefore γ > 1/2rn,
contradiction.

Applying Lemma 1 with the given n, q, δ and T , we get an algorithm S for
solving (G,V), with success probability

δ(1− 1/q) ≥ (ε + 1/2rn)(1− 1/4rn) > ε + 1/8rn,

which is noticeably larger than ε (since r, n are both polynomial in k). The run-
ning time of S is polynomial in n, q,T ,TG,TV and 1/δn, which are all polynomial
in k. (Note that δn = εn + 1/r is noticeable since r is polynomial in k.) This
contradicts the (1− ε) hardness of Z, concluding the proof of Theorem 1. ��

4 The Weak Verification Property (Informal)

As discussed in the introduction, the proof of Theorem 1 relies on the fact that
we have efficient generation and verification algorithms, so that A′ can generate
puzzles and recognize correct solutions to these puzzles. We now show that
without this property, hardness amplification is not guaranteed. In particular, we
describe a “puzzle system” where the verification algorithm is not efficient, and
show that solving a few puzzles in parallel is not any harder than solving just one.

The example is essentially the one that was used by Bellare, Impagliazzo and
Naor, except that we do not need the last two flows of their protocol. Assume
that we have a non-interactive, perfectly-binding commitment scheme for one
bit, C(·), and fix some parameter n. The generator for the puzzle system picks
at random a bit b, and outputs as puzzle a random commitment c = C(b). A
potential solution to this puzzle is a vector of n − 1 commitments c′

1, . . . , c
′
n−1

such that (i) each c′
i is indeed a valid commitment to some bit b′

i, (ii) c′
i �= c for

all i, and (iii) b⊕ b′
1 ⊕ · · · ⊕ b′

n = 0. (Note that the last condition is well defined
since the commitment scheme is perfectly binding.)

Hardness Amplification of Weakly Verifiable Puzzles 31

It is easy to see that if C(·) is non-malleable [5], then no efficient solver can
solve this system with probability noticeably more than 1/2. Informally, since
the solver cannot return c′

i = c, then the bits b′
i must be almost independent

of b, so their sum must also be almost independent of b, and therefore Pr[b⊕b′
1⊕

· · · ⊕ b′
n = 0] ≈ 1/2.

On the other hand, a solver that gets n random puzzles c1, . . . , cn can return
as a solution to puzzle ci all the other puzzles cj , j �= i. To analyze the success
probability of the solver, let bi denote the committed bit defined by commitment
ci. (bi is well defined since the commitment is perfectly binding.) Then, with
probability one half we have that b1 ⊕ · · · ⊕ bn = 0. In this case, the solver has
solved all the puzzles. (Indeed, the probability that any two of the ci’s are the
same is negligible.)

The only problem with this example is that there are no known provable
constructions of non-interactive, perfectly-binding, non-malleable commitment
schemes in the “bare model”. Such schemes are only known to exist in the
common-random-string model [4] (or the common-reference-string model, or the
random-oracle model, etc.) At the current state of affairs, this example is there-
fore only valid with respect to one of these models. However, since we only need
non malleability with respect to one specific relation, it may be possible to de-
vise such scheme in the bare model. In particular, assuming that such scheme
exist seems like a rather reasonable assumption. (We comment that the nega-
tive result of Bellare, Impagliazzo, and Naor, for four-round proofs also requires
non-interactive, non-malleable commitment schemes.)

References

1. L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using hard AI
problems for security. In Advances in Cryptology - EUROCRYPT’03, volume 2656
of Lecture Notes in Computer Science, pages 294–311. Springer-Verlag, 2003.

2. M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower the error
in computationally sound protocols? In 38th Annual Symposium on Foundations
of Computer Science (FOCS’97), pages 374–383. IEEE, 1997.

3. S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average
case complexity. Journal of Computer and System Sciences, 44(2):193–219, 1992.
Preliminary version in STOC’89.

4. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable
commitment. In Proceedings of the thirtieth annual ACM symposium on theory of
computing (STOC’98), pages 141–150. ACM Press, 1998.

5. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. on
Computing, 30(2):391–437, 2000. Preliminary version in STOC’91.

6. O. Goldreich. Foundations of Cryptography, Basic tools. Cambridge University
Press, 2001.

7. R. Impagliazzo and L. A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In 31st Annual Symposium on Foundations of
Computer Science (FOCS’90), pages 812–821. IEEE, 1990.

8. A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connec-
tion depletion attacks. In Proceedings of the 1999 Network and Distributed System
Security Symposium (NDSS’99), pages 151–165. Internet Society (ISOC), 1999.

32 R. Canetti, S. Halevi, and M. Steiner

9. L. A. Levin. Average case complete problems. SIAM Journal of Computing,
15(1):285–286, 1986. Preliminary version in STOC’84.

10. S. Myers. Efficient amplification of the security of weak pseudo-random function
generators. Journal of Cryptology, 16(1):1–24, 2003. Extended Abstract appeared
in EUROCRYPT 2001.

11. M. Naor. Verification of a human in the loop or identifica-
tion via the Turing test. Manuscript, available on-line from
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human abs.html, 1996.

12. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and time-released
crypto. Technical Report MIT/LCS/TR-684, MIT laboratory for Computer Sci-
ence, 1996.

13. A. C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Sym-
posium on Foundations of Computer Science, pages 80–91. IEEE, Nov. 1982.

A Results for Proof Systems

A computationally-sound proof system for a language L ⊆ {0, 1}∗, is a pair
P = (P,V) of polynomial time interactive Turing machines, who gets a common
input string x, whose length is considered the security parameter. (The honest
prover may also get some additional input that the verifier does not see.) Since
we only care about soundness, then it is enough to consider only the verifier V .
The success probability of a “cheating prover” B on input x is the probability
that V accepts when interacting with B on common input x. The probability is
taken over the randomness of B and V .

Definition 2 (Soundness error). Fix a language L and a verifier V , and let
ε : IN → (0, 1) be some function. We say that V has soundness error at most ε
if for any efficient prover B there is a negligible function negl, such that for any
x /∈ L, the success probability of (B,V)(x) is at most ε(|x|) + negl(|x|).

We comment that to be of interest, the proof system also has to satisfy
some completeness property (say, for a prover that is given an NP witness for
the membership of x in L). In this work, however, we are only interested in
soundness.

The n-fold parallel repetition of a proof system P = (P,V) is defined in
a straightforward manner: there are n independent copies of the verifier (and
the honest prover), all running in “lock steps” in parallel on the same common
input x. The n-fold parallel repetition of P is denoted Pn = (Pn,V n).

A.1 Hardness Amplification for Three-Round Proof Systems

A rather straightforward adaptation of our result from Section 3 yields:

Theorem 2. Let ε : IN → (0, 1), n : IN → IN be efficiently computable functions,
where n is polynomially bounded, and let P = (P,V) be an interactive proof
system with three flows (or less) and soundness error at most ε. Then the proof
system Pn has soundness error at most εn.

Hardness Amplification of Weakly Verifiable Puzzles 33

Proof. (sketch) We again assume that there exists a cheating prover B such that
for infinitely many common inputs x /∈ L, the success probability of (B,V n)(x)
is at least ε(|x|)n + 1/r(|x|) for some polynomial r. We show a cheating prover
B′ such that for those x’es, the success probability of (B′,V)(x) is noticeably
more than ε.

Assume w.l.o.g. that the proof system has exactly three flows of communica-
tion, which means that the first flow is from the prover to the verifier. The prover
B′ first samples (polynomially) many first-flow messages of B, and for each one
it estimates the success probability of (B,V n)(x) conditioned on that message.
B′ tries N = poly(r, n) candidate first messages, and for each candidate it es-
timates the conditional success probability with accuracy 1/4r and confidence
1/32rnN . Since the overall success probability of P is at least εn + 1/r, then P ′

can find a first-flow message y with estimated conditional success probability of
at least εn + 3/4r after trying only N = poly(r, n) candidates. With the given
accuracy and confidence bounds, it follows that except with probability 1/32rn,
P ′ indeed finds such first-flow message y, and the conditional success probability
of y is at least εn + 1/2r .

Now P ′ consider the puzzle system with the generating algorithm defined
by the verifier V n on input x and y, and whose verifying function is the final
verification procedure of V n. (This does not quite satisfy our definition of the n-
fold repetition of a puzzle system, since each copy now has a different generating
and verifying procedures, because of the different first-flow messages. However,
this difference does not change anything in the proof of Lemma 1.) P ′ applies
the transformation from Lemma 1 with δn = εn + 1/2r, and slackness q = 8rn,
thus obtaining a strategy that convinces V with probability at least ε+ 1/16rn.
Since we have an error probability 1/32rn for choosing y, then the overall success
probability of (P ′,V)(x) is at least ε+1/32rn, which is noticeably more than ε.

A comment about the common-reference-string model Computationally-sound
proofs were define in the work of Bellare et al. [2] somewhat more generally than
above: essentially they defined proofs in the common-reference-string model. We
note, however, that their “positive result” (as well as ours) does not extend to
this model. Indeed, they only show hardness amplification when the common
reference string is fixed (so the soundness error is defined with respect to a fixed
reference string, rather than with respect to a random choice of that string).

For example, one may think of a cheating prover B that on εn fraction of
the reference strings is able to convince the verifier with probability one, and on
other strings it always fails. It is not hard to see that no black-box reduction
can transform this prover to one that succeeds in a single proof with probability
more than εn.

On Hardness Amplification of One-Way
Functions

Henry Lin, Luca Trevisan�, and Hoeteck Wee�

Computer Science Division, UC Berkeley
{henrylin, luca, hoeteck}@cs.berkeley.edu

Abstract. We continue the study of the efficiency of black-box reduc-
tions in cryptography. We focus on the question of constructing strong
one-way functions (respectively, permutations) from weak one-way func-
tions (respectively, permutations). To make our impossibility results
stronger, we focus on the weakest type of constructions: those that start
from a weak one-way permutation and define a strong one-way function.

We show that for every “fully black-box” construction of a ε(n)-
secure function based on a (1 − δ(n))-secure permutation, if q(n) is the
number of oracle queries used in the construction and �(n) is the input
length of the new function, then we have q ≥ Ω(1

δ
· log 1

ε
) and � ≥

n+Ω(log 1/ε)−O(log q). This result is proved by showing that fully black-
box reductions of strong to weak one-way functions imply the existence
of “hitters” and then by applying known lower bounds for hitters. We
also show a sort of reverse connection, and we revisit the construction of
Goldreich et al. (FOCS 1990) in terms of this reverse connection.

Finally, we prove that any “weakly black-box” construction with
parameters q(n) and �(n) better than the above lower bounds implies
the unconditional existence of strong one-way functions (and, therefore,
the existence of a weakly black-box construction with q(n) = 0). This
result, like the one for fully black-box reductions, is proved by reasoning
about the function defined by such a construction when using the identity
permutation as an oracle.

1 Introduction

We continue the study of efficiency of reductions in cryptography, and we focus
on the question of constructing strong one-way functions or permutations from
weak one-way functions or permutations.

1.1 Efficiency of Cryptographic Reductions

Several fundamental results in the foundations of cryptography, most notably the
proof that pseudorandom generators exist if one-way functions exist [HILL99],
are proved via constructions and reductions that are too inefficient to be used

� Work supported by US-Israel BSF Grant 2002246.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 34–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Hardness Amplification of One-Way Functions 35

in practice. It is natural to ask whether such inefficiency is a necessary conse-
quence of the proof techniques that are commonly used, namely “black-box”
constructions and reductions.

The first proof of a lower bound to the efficiency of a reduction for con-
structing a cryptographic primitive from another was by Kim, Simon and Tetali
[KST99], in the context of constructing one-way hash functions from one-way
permutations. Later work by Gennaro and Trevisan [GT00] and by Gennaro,
Gertner and Katz [GGK03] has focused on constructions of pseudorandom gen-
erators from one-way permutations and of signature schemes and encryption
schemes from trapdoor permutations.

The study of limitations of black-box reductions was initiated by Impagliazzo
and Rudich [IR89], who showed that key agreement and public-key encryption
cannot be based on one-way functions or one-way permutations using black-
box reductions. Several other impossibility results for black-box reductions are
known, including a result of Rudich [Rud88] and Khan, Saks, and Smyth [KSS00]
ruling out constructions of one-way permutations based on one-way functions,
a result of Rudich [Rud91] ruling out round-reduction procedures in public key
encryption, and results of Gertner et al. [GKM+00] and Gertner, Malkin and
Reingold [GMR01] giving a hierarchy of assumptions in public key encryption
that cannot be proved equivalent using black-box reductions.

1.2 Black-Box Constructions

To illustrate the definition of a black-box construction, consider for example the
notion of black-box construction of a key agreement protocol based on one-way
functions formalized in [IR89]. In this model, the one-way function f() is given
as an oracle, and the protocols A and B for Alice and Bob are oracle procedures
with access to f(). This, for example, means that a protocol where the code
(or circuit) of f() is used in the interaction is not black-box as defined above.
The security of the protocol is also defined in a black-box way as follows: we
assume that there is a security reduction R (a probabilistic polynomial time
oracle algorithm) such that if E is a procedure for Eve (of arbitrary complexity)
that breaks (Af ,Bf), then RE,f inverts f on a noticeable fraction of inputs.
Notice that a proof of security in which the code (or circuit) of the adversary E
is used in the reduction would not fit the above model. This model, in which both
the “one-way function” f() and the adversary E are allowed to be of arbitrary
complexity, is called the fully black-box model in [RTV04]. In all the above cited
papers [IR89, Rud88, Rud91, KST99, KSS00, GT00, GKM+00, GMR01, GGK03],
as well as in the results of this paper, fully black-box reductions are ruled out
unconditionally.

A less restrictive model of black-box construction, introduced in [GT00] and
formally defined in [RTV04], is the weak black-box model. As before, in a weakly
black-box construction of key agreement from one-way functions, the algorithms
for Alice and Bob are oracle algorithms that are given access to a function f().
A proof of security, however, only states that if f() is hard to invert for efficient
procedures that are given oracle access to f(), then the protocol is secure in the

36 H. Lin, L. Trevisan, and H. Wee

standard sense (that is, for adversaries that are ordinary probabilistic polynomial
time algorithms with no oracles). In this model one is still not allowed to use
the code of f() in the construction or in the security analysis. The code of
the adversary, however, may be used in the security analysis. Note that if we
have a provably secure construction of, say, a key agreement protocol, then
we also have a weakly black-box construction of key agreement based on one-
way functions: just make the algorithms for Alice and Bob be oracle algorithms
that never use the oracle. For this reason, one cannot unconditionally rule out
weakly black-box constructions: at most, one can show that a weakly black-box
construction implies the unconditional existence of some cryptographic primitive
and possibly complexity theoretic separations that we do not know how to prove.
Negative results for weakly black-box constructions are proved in [GT00] and
[GGK03], where the authors show that weakly black-box constructions that make
a small number of oracle queries imply the existence of one-way functions. The
other lower bounds cited above [IR89, Rud88, Rud91, KST99, KSS00, GKM+00,
GMR01], however, do not rule out weakly black-box reductions.

The reason for this lack of negative results about weakly black-box reductions
is partly explained in [RTV04]. For example, Reingold et al. [RTV04] prove
that, unless one-way functions exist and key agreement is impossible in the real
world, then there is a weak black-box construction of key agreement based on
one-way functions. In other words, from the existence of a weakly black-box
construction of key agreement from one-way functions it is impossible to derive
any other consequence besides the obvious one that the existence of one-way
functions implies the existence of key agreement schemes. See [RTV04] for a
precise statement of this result and for a discussion of its interpretation.

In this paper, we are able to prove unconditional lower bounds for fully black-
box reductions, and to show that a weakly black-box reduction improving on our
lower bounds implies the unconditional existence of one-way functions.

1.3 Amplification of Hardness

We say that a function f() is α(n)-secure1 if for every family of polynomial-
size oracle circuits {Cn} and for all n, the probability that Cf

n(f(x)) outputs a
preimage of f(x) is at most α(n), where the probability is taken over the uniform
choice of x from {0, 1}n. We say that a function f() is a strong one-way function
if it is computable in polynomial time and is also ε(n)-secure, for ε(n) = n−ω(1).
We say that f() is a weak one-way function if it is computable in polynomial
time and is also (1− δ(n))-secure, for δ(n) = n−O(1).

The problem of “amplification of hardness” is to deduce the existence of
strong one-way functions (respectively, permutations) from the existence of weak
one-way functions (respectively, permutations).

1 We avoid definitions and statements in terms of concrete security as they do not
directly apply to adversaries of arbitrary complexity in fully black-box reductions.
The results in Section 5 may be restated with concrete security parameters in a
straight-forward manner.

On Hardness Amplification of One-Way Functions 37

The “direct product” construction is a simple approach to prove amplifica-
tion of hardness results. Given a weak one-way function f() we define a new
function f ′() as f ′(x1, x2, . . . , xq(n)) = (f(x1), f(x2), . . . , f(xq(n))), where q(n)
is a polynomial. The function f ′ is still computable in polynomial time, and a
non-trivial analysis shows that if f is weak one-way then f ′ is strong one-way.2

Furthermore, if f() is a permutation then f ′() is a permutation. See for example
[Gol01–Sec 2] for more details.

The direct product construction is not, however, “security-preserving,” in
that the input length of the new function is polynomially larger than the input
length of the original function. (In a security-preserving construction, the input
length of the new function would be linear in the input length of the original
one.) See for example [Lub96] for a discussion of “security preserving” reductions
and the importance, in a cryptographic reduction, of not increasing the input
length of the new primitive by too much.

For one-way permutations, we do have a security-preserving construction due
to Goldreich et al. [GIL+90] based on random walks on expanders. We stress
that our results do not rule out fully black-box security-preserving hardness
amplification for one-way functions, and we hope that the connections presented
in this paper will help resolve this open problem.

1.4 Our Results

We say that a polynomial time computable oracle function F (·) is a fully black-
box construction of ε(n)-secure functions from (1 − δ(n))-secure functions if
there is a probabilistic polynomial time oracle algorithm R(·,·) such that for
every function f : {0, 1}n → {0, 1}n and adversary A() with the property that
A() inverts F f on a ≥ ε(n) fraction of inputs, then RA,f () inverts f() on a
≥ 1 − δ(n) fraction of inputs. From this definition it is immediate to see that
if f() is polynomial time computable and no polynomial time adversary can
invert it on more than a 1 − δ(n) fraction of inputs, then it follows that F f

is polynomial time computable and no polynomial time adversary can invert it
on more than a ε(n) fraction of inputs. The definition, however, requires the
reduction R to transform an adversary A() of arbitrary complexity that inverts
F f () into an adversary that inverts f() in polynomial time given oracle access
to A() and f().

A polynomial time computable oracle function F (·) is a weak black-box con-
struction of ε(n)-secure functions from (1 − δ(n))-secure functions if for every
function f : {0, 1}n → {0, 1}n and polynomial time adversary A() with the
property that A() inverts F f on a ≥ ε(n) fraction of inputs, then there is a
polynomial time oracle adversary R(·) such that Rf inverts f() on a ≥ 1− δ(n)
fraction of inputs.

Impossibility of Fully Black-Box Constructions. Our first main result is
as follows.

2 This approach is typically credited to [Yao82].

38 H. Lin, L. Trevisan, and H. Wee

Theorem 1. Let F (·) be a fully black-box construction of ε(n)-secure functions
from (1−δ(n))-secure permutations, let � be the input length of F (), n the length
of inputs of the oracle function, and q be the number of oracle queries.

Then q ≥ Ω(1
δ log 1

ε) and � ≥ n−O(log q) + Ω(log 1
ε).

In comparison, the direct product construction has q = O(1
δ log 1

ε), which is
tight, but � = nq. The construction of [GIL+90], that only works if the oracle
is a permutation, has q = O(1

δ log 1
ε), which is tight, and � = O(n + log 1

ε) for
δ = n−O(1), which is nearly tight.

It should be noted that our result applies even to constructions that require
the oracle to be a permutation and that do not guarantee the new function to
be a permutation. In particular, it applies as a special case to constructions that
map permutations into permutation and functions into functions.

To prove Theorem 1, we first show that a fully black-box reduction of strong
to weak one-way functions or permutations implies the existence of a disperser,
or a “hitter” in the terminology of [Gol97] with efficiency parameters that de-
pend on the efficiency of the reduction. A hitter is a randomized algorithm that
outputs a small number of strings in {0, 1}n such that for every sufficiently dense
subset of {0, 1}n, the output of the hitter hits the set (that is, at least one of
these strings is contained in the set) with high probability. In a hitter, we would
like to use a small number of random bits, to generate a small number of strings,
and we would like the density of the sets to be low and the probability of hit-
ting them to be high. Various impossibility results are known for hitters and,
in particular, if � is the number of random bits, q is the number of strings, δ is
the density of the sets and 1− ε is the hitting probability, then it is known that
q ≥ Ω(1

δ · log 1
ε) and � ≥ n− log q+Ω(log 1

ε). Our negative results for fully black-
box constructions will follow from the connection between such constructions
and hitters and from the above negative results for hitters.

The intuition for the connection is, with some imprecision, as follows: a func-
tion f : {0, 1}n → {0, 1}n may be (1 − δ)-secure and still be extremely easy to
invert on a 1− δ fraction of inputs, while only a subset H of density δ of inputs
is very hard to invert. If the computation of F f (z) involves only oracle queries
to f() on inputs outside H, then F f () is not “using” the hardness of f(), and
F f (z) will be “easy” to invert. Considering that at most an ε fraction of inputs
of F f () can be easy to invert, it follows that, for at least a 1 − ε fraction of
the choices of z, the oracle queries of the computation F f (z) hit the set H. In
conclusion, using � random bits (to choose z) we have constructed q strings in
{0, 1}n (the oracle queries in the computation F f (z)) such that a set of density
δ (the set H) is hit with probability at least 1 − ε. Of course none of this is
technically correct, but the above outline captures the main intuition.

Moving on to a more precise description of our proof, we show that if F (·)

is a fully black-box construction of ε-secure functions from (1 − δ)-secure ones,
where � is input length of F , n the input length of the oracle, and q the number
of oracle queries, then we can derive a hitter that uses randomness �, produces q
strings, and has hitting probability 1−

√
ε for sets of density 2δ. The hitter, given

On Hardness Amplification of One-Way Functions 39

an �-bit random string z, simply outputs the oracle queries in the computation
of F id(z), where id is the identity permutation.

Suppose that the construction is not a hitter as promised, then there is a
set H of density 2δ such that F id(z) avoids querying elements of H for a

√
ε

fraction of the z. Let π : {0, 1}n → {0, 1}n be a permutation that is the identity
on elements not in H and that is a random permutation on H. Then F id and
Fπ agree on at least a

√
ε fraction of inputs. We can also show that if A is

a uniform (possibly, exponential time) algorithm that inverts F id everywhere
then A inverts Fπ on at least a fraction ε of the inputs. (We would not lose
this quadratic factor if we insisted that F id and Fπ be permutations.) In fact,
such an A exists as long as F is polynomial time computable. Now we have
that RA,π is a uniform algorithm that inverts π on at least a 1 − δ fraction of
inputs, using polynomial number of oracle queries into π. Restricting ourselves
to H, we get that RA,π inverts π on at least 1/2 of the elements of H, which is
impossible because π is a random permutation over H, and it cannot be inverted
on many inputs by a uniform procedure (regardless of running time) that makes
a polynomial number of oracle queries [IR89, Imp96, GT00]. We have reached a
contradiction, and so our construction was indeed a hitter as promised.

Impossibility of Weakly Black-Box Constructions. For weakly black-box
constructions, we show that improving beyond our lower bounds is possible only
by constructing strong one-way functions from scratch.

Theorem 2. Let F (·) be a weakly black-box construction of ε(n)-secure permu-
tations from (1 − δ(n))-secure permutations, let � be the input length of F (), n
the length of inputs of the oracle function, and q be the number of oracle queries.

There are constants c1, c2, c3 such that if q ≤ c1
1
δ log 1

ε or � ≤ n − c2 log q +
c3 log 1

ε , then one-way permutations exist unconditionally and, in particular, F id

is a (1− ε(n))-secure permutation.

The proof is similar to the one of Theorem 1. We define a hitter based on the
computation of F id as before. If q and � are too small, then the hitter must fail,
and there must be some set H of density 2δ that is avoided with probability at
least 2ε. Then we define a permutation π that is random on H and the identity
elsewhere, and we note that F id and Fπ have agreement at least 2ε. If there were
a polynomial time algorithm that inverts F id on a 1 − ε fraction of inputs, the
same algorithm would invert Fπ on a ε fraction of inputs. This would yield a
polynomial time oracle algorithm that given oracle access to π, inverts π on a
1−δ fraction of inputs, which is again a contradiction. Therefore F id is a (weak)
one-way permutation.

A Reverse Connection. We also point out a reverse connection, namely that
special types of hitters yield fully black-box amplification of hardness (F,R).
Specifically, we require that the F satisfy two additional properties (apart from
computing a hitter). Suppose F f on input z queries f on x1, . . . , xq. The first
property tells us that inverting F f on F f (z) is at least hard as inverting f on all
of f(x1), . . . , f(xq). Next, given a challenge f(x), the second property allows us

40 H. Lin, L. Trevisan, and H. Wee

to sample a challenge F f (z) (with the appropriate distribution) by substituting
f(x) for one of f(x1), . . . , f(xq). We may view both hardness amplification via
direct product and via random walks on expanders [GIL+90] in this framework,
which yields a more modular and arguably simpler presentation of both results.

1.5 Perspective

The new connection between fully black-box hardness amplification and hitters
makes explicit the construction of hitters in previous results on hardness ampli-
fication (namely a hitter from independent sampling in amplification via direct
product and from random walks on expanders in [GIL+90]) and shows that
such a construction is in fact necessary. In addition, we see from [GIL+90] in
order to address the major open problem in this area of research - whether we
can achieve security-preserving hardness amplification for one-way functions, it
would be sufficient to give a hardness amplification procedure based on (δ, ε)-
hitters with randomness complexity O(n + 1/δ log 1/ε) (which is optimal up to
constant factors for constant δ but not sub-constant δ). There are simple and
direct constructions of hitters achieving such parameters, and reviewing these
constructions may prove to be a fruitful starting point for resolving this open
problem.

2 Preliminaries

2.1 Notation

We use Un to denote the uniform distribution over {0, 1}n. Given a function G :
{0, 1}m → ({0, 1}n)k, Gi : {0, 1}m → {0, 1}n, for i = 1, 2, . . . , k, is the function
that on input z, outputs the i’th block of G(z). In probability expressions that
involve a probabilistic computation (of a probabilistic algorithm, say), the prob-
ability is also taken over the internal coin tosses of the underlying computation.

2.2 Notions of Reducibility

Here, we are only interested in hardness amplification wherein the construction
of the strong one-way function f ′ uses black-box access to a weak one-way permu-
tation f . However, we distinguish between fully black-box and weakly black-box
constructions, following the work of [RTV04], depending on whether the proof
of security is black-box.

Definition 1 (Fully Black-Box Amplification of Hardness). A fully black-
box construction of ε(n)-secure functions from (1− δ(n))-secure permutations is
a pair of polynomial time computable oracle procedures F and R (where F is
deterministic whereas R may be randomized) such that, for every permutation
f : {0, 1}n → {0, 1}n, F f is a function mapping �(n) bits into �(n) bits, and for
every function A : {0, 1}�(n) → {0, 1}�(n), if

Pr
z∼U�(n)

[A(F f (z)) = z′ : F f (z′) = F f (z)] ≥ ε(n)

On Hardness Amplification of One-Way Functions 41

then
Pr

x∼Un

[RA,f (f(x)) = x] ≥ 1− δ(n) .

By requiring that F and R be polynomial time computable, we guarantee
that if f and A are polynomial time computable, then F f and RA,f are also
polynomial time computable. However, (F,R) must also satisfy the stated prop-
erty even when given oracle access access to some function f and A that may
not be polynomial time computable.

Definition 2 (Weakly Black-Box Amplification of Hardness). A weakly
black-box construction of ε(n)-secure functions from (1− δ(n))-secure permuta-
tions is a (deterministic) polynomial time computable oracle procedure F such
that, for every permutation f : {0, 1}n → {0, 1}n, F f is a function mapping �(n)
bits into �(n) bits, and if there is a probabilistic polynomial time algorithm A
such that

Pr
z∼U�(n)

[A(F f (z)) = z′ : F f (z′) = F f (z)] ≥ ε(n)

then there is a probabilistic polynomial time oracle algorithm I such that

Pr
x∼Un

[If (f(x)) = x] ≥ 1− δ(n) .

Remark 1. In both definitions, the new function defined by the construction is
ε(n)-secure on inputs of length N = �(n), and so, according to our definition, it
would be more precise to call it a ε(�(−1)(N))-secure function.

2.3 Hitters

Definition 3 (Hitter [Gol97]). A function G : {0, 1}m → ({0, 1}n)k is a
(δ, ε)-hitter if all for sets H ⊆ {0, 1}n of density at least δ,

Pr
z∼Ul

[∀ i = 1, 2, . . . , k,Gi(z) /∈ H] ≤ ε

We refer to m and k as the randomness complexity and sample complexity
of G respectively.

An equivalent, and more common, notion is that of a disperser. Using a
notation consistent with the one above, a function D : {0, 1}m×{0, 1}κ → {0, 1}n
is a (b, δ)-disperser if for every distribution X over {0, 1}m of min-entropy at
least b, and for every set H ⊆ {0, 1}n of density at least δ, there is a non-zero
probability that D(X,Uκ) hits H. Such an object is easily seen to be equivalent
to a (2b−n, δ)-hitter with k = 2κ. We will use the hitter notation because it is
more convenient for our purposes. The following lower bounds for hitters are
proved in [Gol97, RTS97].

Theorem 3 (Lower Bounds for Hitters). If G : {0, 1}m → ({0, 1}n)k is a
(δ, ε)-hitter, then:

(sample complexity) k ≥ 1
2δ

ln
1
2ε

provided ε ≤ 1/8

(randomness complexity) m > n− log k + log
1
ε

+ log log
1
δ

42 H. Lin, L. Trevisan, and H. Wee

Efficient constructions of hitters are known that match these lower bounds
up to constant factors.

Theorem 4. [Gol97] There exists a polynomial time computable (δ, ε)-hitter
with sample complexity O(1

δ log 1
ε) and randomness complexity 2n + O(log 1

ε).

The construction of dispersers of Ta-Shma [TS98] give even tighter bounds.

2.4 Hardness of Inverting Random Permutations

We begin by establishing that a permutation that is a random permutation on a
subset of {0, 1}n of density 2δ and is the identity everywhere else is (1−δ)-secure.
We will be using this permutation as a weak one-way function for establishing
lower bounds for black-box hardness amplification.

Lemma 1. Fix T (n) = nlog n. For all sufficiently large n, for all δ > 1
T (n) , for

all sets H ⊆ {0, 1}n of density 2δ, there exists a permutation πH on {0, 1}n such
that πH is the identity on {0, 1}n − H, and for all oracle Turing machines M
with description at most log n bits that makes at most T (n) oracle queries,

Pr
x∼Un

[MπH (πH(x)) = x] < 1− δ

Proof. Let ΠH denote the set of permutations that is the identity on {0, 1}n−H.
Fix an oracle Turing machine M . Then,

Eπ∼ΠH
[#{y ∈ H : Mπ(y) = π(−1)(y)}] ≤ 2δ · 2n

(
nlog n + 1

2δ · 2n − nlog n

)
<

δ

4n
· 2n

Hence,

Pr
π∼ΠH

[#{x ∈ H : Mπ(π(x)) = x} ≥ δ2n] ≤ 1
4n

This allows us to take a union bound over all oracle Turing machines M with
description at most log n bits. ��

Note that we could also derive a non-uniform analogue of this lemma using
the counting argument of [GT00]:

Lemma 2. Fix T (n) = nlog n. For all sufficiently large n, for all δ > 1
T (n) , for

all sets H ⊆ {0, 1}n of density 2δ, there exists a permutation πH on {0, 1}n such
that πH is the identity on {0, 1}n − H, and for all probabilistic oracle Turing
machines M with description at most log n bits that makes at most T (n) oracle
queries and uses at most T (n) bits of non-uniformity and at most T (n) random
coin tosses,

Pr
x∼Un

[MπH (πH(x)) = x] < 1− δ

Remark 2. We stress that in both Lemma 1 and Lemma 2, we allow the machine
M to have arbitrary (possibly exponential) running time, but we require that M
has bounded non-uniformity, makes a bounded number of oracle queries and uses
a bounded number of random coins; in this sense, M still has “low complexity”.

On Hardness Amplification of One-Way Functions 43

3 Fully Black-Box Hardness Amplification

We use id to denote the identity function on {0, 1}n. If F () is an oracle procedure
from � bits to � bits that makes at most q queries, we use Gf : {0, 1}� → ({0, 1}n)q

to denote the function computing the sequence of oracle queries (possibly adap-
tive) that F f makes.

Theorem 1 follows from the following lemma and from the lower bounds for
hitters of Lemma 3.

Lemma 3 (Fully BB versus Hitters). Let (F,R) be a fully black-box con-
struction of ε-secure functions f from (1 − δ)-secure permutations. Then, Gid :
{0, 1}� → ({0, 1}n)q is a (polynomial time computable) (2δ,

√
ε)-hitter.

Before proving Lemma 3, we first prove a technical result that will be useful
later. The point of the result is that if f and g have a noticeable agreement, and
we are able to invert f in a strong sense (namely, uniformly sample pre-images),
then we are also able to invert g on a noticeable fraction of inputs.

Lemma 4. Let f, g : {0, 1}n → {0, 1}n be functions with agreement ε, and let
A() be a probabilistic procedure such that, for every y ∈ {0, 1}n, A(y) outputs
⊥ if f (−1)(y) = ∅, and the output of A(y) is uniform over f (−1)(y) otherwise.
Then, the probability that A(g(x)) ∈ g(−1)(g(x)) is at least ε2, when taken over
the uniform choice of x ∈ {0, 1}n and over the internal coin tosses of A.

Furthermore, if f, g are permutations with agreement ε and if A is such that
A(f(x)) = x for every x, then A inverts g on at least an ε fraction of inputs.

Proof. Given f, g with agreement ε, we define for each s ∈ {0, 1}n:

σs = Pr
x∼Un

[f(x) = s]

τs = Pr
x∼Un

[f(x) = g(x) = s]

Clearly,
∑

s∈{0,1}n σs = 1 and
∑

s∈{0,1}n τs = ε. Observe that:

Pr
x∼Un

[A(g(x)) ∈ g(−1)(g(x))]

≥ Pr
x∼Un

[f(x) = g(x) and g(A(f(x))) = f(x)]

We may rewrite the expression on the right-hand-side of the inequality as:∑
s∈f({0,1}n)

τs ·
τs

σs
=
(∑

s∈f({0,1}n)

τ2
s

σs

)(∑
s∈f({0,1}n)

σs

)
≥
(∑

s∈f({0,1}n)

τs

)2
= ε2

where the inequality follows from Cauchy-Schwartz. The case where f and g are
permutations is trivial. ��

We can now give the proof of Lemma 3.

44 H. Lin, L. Trevisan, and H. Wee

Proof (Of Lemma 3). Suppose Gid is not a (2δ,
√
ε)-hitter. Then, there exists a

set H ⊆ {0, 1}n of density 2δ such that

Pr
z∼Ul

[∀ i = 1, 2, . . . , q, Gid
i (z) /∈ H] >

√
ε

Let A denote the uniform algorithm that inverts F id everywhere using brute
force; that is, A on input F id(z) ∈ {0, 1}� computes F id on all z′ ∈ {0, 1}�, and
outputs a randomly chosen z′ such that F id(z′) = F id(z), and ⊥ if no such z′

exists. Let πH denote the permutation guaranteed by Lemma 2.
Observe that for each z ∈ {0, 1}� such that Gid

i (z) /∈ H for all i = 1, 2, . . . , q,
it must be the case that FπH (z) = F id(z), and, in particular, we have that F id

and FπH have agreement at least
√
ε. From Lemma 4 we have that A inverts

FπH with probability at least ε, and so RA,πH inverts πH on a 1− δ fraction of
inputs. By incorporating A into R, we have a probabilistic oracle Turing machine
M (with exponential running time) that given oracle access to just πH makes at
most a polynomial number of queries (and so less than nlog n) into πH , flips a
polynomial number of random coins and inverts πH on a 1−δ fraction of inputs,
a contradiction to Lemma 2. ��

Remark 3. To be more precise, we should say, fix δ, ε : N → (0, 1/2). Then, for
all sufficiently large n, Gid is a (2δ,

√
ε)-hitter.

4 Weakly Black-Box Hardness Amplification

Theorem 2, our negative result for weakly black-box constructions, follows from
the result below and from Lemma 3, the negative results about hitters.

Lemma 5 (Weakly BB versus Hitters). Suppose there exists a weakly black-
box construction of a ε-secure permutation F () : {0, 1}� → {0, 1}� from a (1−δ)-
secure permutation f : {0, 1}n → {0, 1}n, which makes at most q queries to f .
Then, one of the following is true:

1. Gid : {0, 1}� → ({0, 1}n)q is a polynomial time computable (2δ, 2ε)-hitter;
2. F id is a (1− ε)-secure permutation.

Proof. Suppose neither statement is true. Then, there exists a set H ⊆ {0, 1}n
of density 2δ such that

Pr
z∼Ul

[∀ i = 1, 2, . . . , q, Gid
i (z) /∈ H] > 2ε

In addition, there exists an efficient algorithm A that inverts F id on a 1 − ε
fraction of inputs. Again, let πH denote the permutation guaranteed by Lemma 2.
By the “furthermore” part of Lemma 4 we have Pr[F id(z) = FπH (z)] > 2ε, so it
follows that

Pr
z∼U�

[A(FπH (z)) = z] > ε

On Hardness Amplification of One-Way Functions 45

By the weakly black-box property of F (), there exists an efficient oracle al-
gorithm B such that

Pr
x∼Un

[BπH (πH(x)) = x] ≥ 1− δ

a contradiction. ��

5 Revisiting the Direct Product Construction and
[GIL+90]

We present a simple, modular and unified view of the analysis for previous
results for fully black-box hardness amplification. We stress that the analysis is
not novel, and is based largely on the exposition of [GIL+90] in [Gol01–Sec 2.6].

Theorem 5. Let F be a (deterministic) polynomial time computable oracle pro-
cedure such that for every function (resp permutation) f : {0, 1}n → {0, 1}n, F f

is a function mapping �(n) bits to �(n) bits and makes at most q(n) oracle queries.
Let G() : {0, 1}� → ({0, 1}n)q be the function that computes the sequence of q
oracle queries that F makes. Suppose F also satisfies the following properties for
every function (resp permutation) f : {0, 1}n → {0, 1}n:

1. (consistent) for any z, z′ ∈ {0, 1}� such that F f (z′) = F f (z), we have
f(Gf

i (z′)) = f(Gf
i (z)) for all i.

2. (restrictable) there exists a polynomial time oracle algorithm that given oracle
access to f , and given input i ∈ [k] and y ∈ f({0, 1}n), outputs a random
sample from the distribution3 {F f (Ul) | f(Gf

i (Ul)) = y}.
3. (hitting) Gf is a (δ/2, ε/2)-hitter.

Then, there exists a probabilistic polynomial time oracle procedure R such
that (F,R) constitute a fully black-box construction of a ε-secure function from a
(1− δ)-secure function (resp permutation). In addition, RA,f makes O(q2

ε log 1
δ)

oracle queries to A.

Consider what happens in a black-box reduction for a proof of security of
hardness amplification. We are given oracle access to an algorithm A that inverts
F f on a ε fraction of input and a challenge f(x). The “consistent” property tells
us (informally) that inverting F f on F f (z) is at least as hard as inverting f on
all of the f(Gf

i (z))’s (i = 1, 2, . . . , q), and the “restrictable” property allows us
to construct from f(x) a challenge F f (z) for A by substituting f(x) for one of
the f(Gf

i (z))’s. Note that the “consistent” property is trivially satisfied if F f is
injective. We also do not need to make any assumptions about the distributions
Gf

i (U�), i = 1, 2, . . . , q.

3 The distribution may be described more precisely by the following two-step exper-
iment: pick z uniformly at random from {z ∈ {0, 1}� : f(Gf

i (z)) = y} and output
F f (z). We stress that the sampling algorithm may not compute z explicitly.

46 H. Lin, L. Trevisan, and H. Wee

Proof. Let A be a function that inverts F f on an ε fraction of input. Now,
consider an oracle procedure I that given oracle access to A, f and on input
y ∈ {0, 1}n, does the following: for each i = 1, 2, . . . , q,

1. samples y(i) from {F f (Ul) | f(Gf
i (Ul)) = y}, and computes z(i) = A(y(i));

2. checks whether f(Gf
i (z(i))) = y, and if so, outputs Gf

i (z(i)).

Define the set H (for “hard”) by:

H = {x ∈ {0, 1}n | Pr[IA,f (f(x)) ∈ f (−1)(f(x))] < ε/2q}

It is easy to see that x ∈ H iff f(x) ∈ f(H).

Claim. |H| < δ/2 · 2n

Proof. (of claim) Suppose otherwise. Then,

Pr
z∼U�

[A inverts F f (z)]

≤ Pr
z∼U�

[∀i, Gf
i (z) /∈ H] +

q∑
i=1

Pr
z∼U�

[A inverts F f (z) and Gf
i (z) ∈ H]

≤ ε/2 +
q∑

i=1

Pr
z∼U�

[A inverts F f (z) and f(Gf
i (z)) ∈ f(H)] (by “hitting”)

≤ ε/2 +
q∑

i=1

max
y∈f(H)

Pr
z∼U�

[A inverts F f (z) | f(Gf
i (z)) = y]

≤ ε/2 +
q∑

i=1

max
y∈f(H)

Pr
z∼U�

[IA,f inverts y] (by “consistent”)

< ε/2 + q · ε/2q ≤ ε

a contradiction. ��

Consider the oracle procedure R that given oracle access to A and f , runs IA,f

O(q
ε log 1

δ) times. This allows us to amplify the success probability of inverting
values not in H to 1− δ/2. Hence,

Pr
x∈Un

[RA,f (f(x)) /∈ f (−1)(f(x))]

≤ Pr
x∈Un

[x ∈ H] + Pr
x∈Un

[RA,f (f(x)) /∈ f (−1)(f(x)) | x /∈ H] < δ

The result follows. ��

Next, we review previous results on hardness amplification in our framework:

Direct Product. [Yao82] Here, we start with a (1 − δ)-secure function f ,
and we define F f : ({0, 1}n)q → ({0, 1}n)q is given by F (x1, . . . , xq) =
(f(x1), . . . , f(xq)), where q = O(1/δ log 1/ε). Gf : {0, 1}nq → ({0, 1}n)q is then

On Hardness Amplification of One-Way Functions 47

the identity function for all f . It is easy to check that F satisfies all of the 3
properties, from which hardness amplification via direct product follows.

Random Walk on Expanders. [GIL+90] Here, we start with a (1− δ)-secure
permutation π and a family of d-regular explicitly constructible expanders {Γn}
with vertex set {0, 1}n, where d is a constant. We define Gπ : {0, 1}n × [d]t →
({0, 1}n)t+1 as follows:

Gπ
1 (x, σ1, . . . , σt) = x

Gπ
i+1(x, σ1, . . . , σt) = gσi(π(Gπ

i (x, σ1, . . . , σt))) i = 1, 2, . . . , t

where gσ(x) for x ∈ {0, 1}n and σ ∈ [d] denotes the σ’th neighbor of vertex x in
Γn. Note that the output of G is the set of vertices visited in a random walk on
G started at x along the path σ1, . . . , σt, interspersed with an application of π
before each step. Since π is a permutation, applying π does not affect the mixing
properties of the random walk, and therefore if we take t = O(1/δ log 1/ε), then
Gπ yields a (δ/2, ε/2)-hitter. The new function Fπ : {0, 1}n×[d]t → {0, 1}n×[d]t

is given by

Fπ(x, σ1, . . . , σt) = (Gπ
t+1(x, σ1, . . . , σt), σ1, . . . , σt)

It is easy to see that Fπ is injective, and thus F is “consistent” and Fπ is
a permutation. The “restrictable” property is satisfied using the following algo-
rithm: given i ∈ [t+1] and y ∈ {0, 1}n, pick σ1, . . . , σt independently at random
from [d], and output (π(gσt

(. . . gσi
(y) . . .)), σ1, . . . , σt). This constitutes the ba-

sic building block: a fully black-box construction of ε-secure permutations from
(1− δ)-secure permutations with � = n+ O(1/δ log 1/ε) and q = O(1/δ log 1/ε).

To obtain a security-preserving construction of an ε-secure permutation on
{0, 1}O(cn+log 1/ε) from a (1− 1/nc)-secure permutation on {0, 1}n, we compose
the basic building block c+1 times as follows: we first construct a (1−1/2nc−1)-
secure permutation, then a (1− 1/2nc−2)-secure one, and right up to 1/2-secure
permutation. In the last composition, we construct a ε-secure permutation from
a 1/2-secure one.

6 Conclusion

Our negative result for weakly black-box constructions is less general than the
one for fully black-box constructions: in the former case we restrict ourselves
to constructions that define a permutation if the original primitive is a per-
mutation. It should be noted that both the direct product construction and the
construction of [GIL+90] satisfy this property. It would be possible to strengthen
Lemma 5 to hold under the assumption that F () is a construction of ε-secure
functions, and with the conclusion that either Gid is a (2δ, 2ε)-hitter or that
one-way functions exist uncondtionally. The proof would have followed along
the lines of the proof of Lemma 3, using a result of Impagliazzo and Luby [IL89]
to construct a polynomial time algorithm that approximates algorithm A in the

48 H. Lin, L. Trevisan, and H. Wee

proof of Lemma 3 assuming that one-way functions do not exist. We will give
more details in the full version of this paper.

The main open problem that is still unresolved is whether there is a fully
black-box security-preserving hardness amplification for one-way functions. From
the work of [GIL+90], we know that it would suffice to construct a “restrictable”
and “consistent” hitter (see the statement of Theorem 5 for the terminology)
with randomness complexity O(n + 1/δ log 1/ε).

References

[GGK03] Rosario Gennaro, Yael Gertner, and Jonathan Katz. Lower bounds on the
efficiency of encryption and digital signature schemes. In Proceedings of
the 35th ACM Symposium on Theory of Computing, pages 417–425, 2003.

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid Levin, Ramarathnam
Venkatesan, and David Zuckerman. Security preserving amplification of
hardness. In Proceedings of the 31st IEEE Symposium on Foundations of
Computer Science, pages 318–326, 1990.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivi-
ous transfer. In Proceedings of the 41st IEEE Symposium on Foundations
of Computer Science, pages 325–335, 2000.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of
basing trapdoor functions on trapdoor predicates. In Proceedings of the
42nd IEEE Symposium on Foundations of Computer Science, pages 126–
135, 2001.

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on
sampling. Technical Report TR97-020, Electronic Colloquium on Compu-
tational Complexity, 1997.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1. Cambridge
University Press, 2001.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In Proceedings of the 41st IEEE Sym-
posium on Foundations of Computer Science, pages 305–313, 2000.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom gener-
ator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for
complexity based cryptography. In Proceedings of the 30th IEEE Sympo-
sium on Foundations of Computer Science, pages 230–235, 1989.

[Imp96] Russell Impagliazzo. Very strong one-way functions and pseudo-random
generators exist relative to a random oracle. Unpublished manuscript,
1996.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Proceedings of the 21st ACM Sympo-
sium on Theory of Computing, pages 44–61, 1989.

[KSS00] J. Kahn, M. Saks, and C. Smyth. A dual version of Reimer’s inequality and
a proof of rudich’s conjecture. In Proceedings of the 15th IEEE Conference
on Computational Complexity, 2000.

On Hardness Amplification of One-Way Functions 49

[KST99] J.H. Kim, D.R. Simon, and P. Tetali. Limits on the efficiency of one-
way permutations-based hash functions. In Proceedings of the 40th IEEE
Symposium on Foundations of Computer Science, pages 535–542, 1999.

[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996.

[RTS97] J. Radhakrishnan and A. Ta-Shma. Tight bounds for depth-two supercon-
centrators. In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, pages 585–594, 1997.

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility
between cryptographic primitives. In Proceedings of the 1st Theory of
Cryptography Conference, pages 1–20. LNCS 2951, 2004.

[Rud88] S. Rudich. Limits on the provable consequences of one-way functions. PhD
thesis, University of California at Berkeley, 1988.

[Rud91] S. Rudich. The use of interaction in public cryptosystems. In Proceedings
of CRYPTO’91, pages 242–251, 1991.

[TS98] A. Ta-Shma. Almost optimal dispersers. In Proceedings of the 30th ACM
Symposium on Theory of Computing, 1998.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings
of the 23th IEEE Symposium on Foundations of Computer Science, pages
80–91, 1982.

Cryptography in Subgroups of Z
∗
n

Jens Groth�

jg@brics.dk

Abstract. We demonstrate the cryptographic usefulness of a small sub-
group of Z

∗
n of hidden order. Cryptographic schemes for integer commit-

ment and digital signatures have been suggested over large subgroups of
Z

∗
n, by reducing the order of the groups we obtain quite similar but more

efficient schemes. The underlying cryptographic assumption resembles
the strong RSA assumption.

We analyze a signature scheme known to be secure against known
message attack and prove that it is secure against adaptive chosen mes-
sage attack. This result does not necessarily rely on the use of a small sub-
group, but the small subgroup can make the security reduction tighter.

We also investigate the case where Z
∗
n has semi-smooth order. Using

a new decisional assumption, related to high residuosity assumptions,
we suggest a homomorphic public-key cryptosystem.

Keywords: RSA modulus, digital signature, homomorphic encryption,
integer commitment.

1 Introduction

Consider an RSA-modulus n = pq, where p and q are large primes. Many cryp-
tographic primitives take place in the multiplicative group Z

∗
n and use the as-

sumption that even if n is public, the order of the group ϕ(n) = (p − 1)(q − 1)
is still unknown. Concrete examples of such primitives are homomorphic integer
commitments [FO97, DF02], public key encryption [RSA78, Rab79, Pai99, CF85,
KKOT90, NS98] and digital signatures that do not use the random oracle model
[BR93] in their security proofs [CS00, CL02, Fis03].

In order to speed up cryptographic computations it is of interest to find as
small groups of hidden order as possible. We suggest using a small subgroup
of Z

∗
n. More precisely, if we have primes p′|p − 1, q′|q − 1, then we look at the

unique subgroup G ≤ Z
∗
n of order p′q′. We make a strong root assumption for

this group, which roughly states that it is hard to find a non-trivial root of a
random element in G. We call this the strong RSA subgroup assumption.

Following Cramer and Shoup [CS00] several very similar signature schemes
have been suggested. One variation is the following: We publish n and elements
a, g, h ∈ QRn. To sign a 160-bit message m, select at random a 161-bit random-
izer r and a 162-bit prime e. Compute y so ye = agmhr mod n. The signature is

� Work done while at Cryptomathic, Denmark and BRICS, Dept. of Computer Sci-
ence, University of Aarhus, Denmark.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 50–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cryptography in Subgroups of Z
∗
n 51

(y, e, r). A natural question to ask is whether we really need the randomizer r.
We analyze this question and show that indeed it is not needed provided we are
willing to accept a weaker security reduction.

Restricting ourselves to an even more specialized group, we look at n =
pq = (2p′rp + 1)(2q′rq + 1), where rp, rq consists of distinct odd prime fac-
tors smaller than some low bound B. We can form a new cryptosystem us-
ing modular arithmetic in Z

∗
n. Let g have order p′q′rg and h have order p′q′.

Assuming random elements of G are indistinguishable from random elements
of QRn we can encrypt m as c = gmhr mod n. To decrypt we compute
cp′q′

= gp′q′mhp′q′r = (gp′q′
)m mod n. Since gp′q′

has order rg|rprq, which only
has small prime factors, it is now possible to extract m mod rg. This cryptosys-
tem is homomorphic, has a low expansion rate |c|

|m| and fast encryption. The
decryption process is slow, yet as we shall see, there are applications of this kind
of cryptosystem. A nice property of the cryptosystem is that under the strong
RSA assumption it serves at the same time as a homomorphic integer commit-
ment scheme. This comes in handy in verifiable encryption where we want to
prove that the plaintext satisfies some specified property.

2 Subgroup Assumptions

As mentioned in the introduction, it is of interest to find a small group, where
some sort of strong root assumption holds. Obviously, a prerequisite for a strong
root assumption is that the order of the group is hidden. Otherwise we have for
any g ∈ G that g = g1+ord(G) giving us a non-trivial root. We suggest using a
subgroup of Z

∗
n, where n is some suitable RSA modulus.

A small RSA subgroup of unknown order. Throughout the paper we shall work
with RSA moduli on the form n = pq, where p, q are primes. We choose these
moduli in a manner such that p = 2p′rp +1, q = 2q′rq +1, where p′, q′ are primes
so there is a unique subgroup G ≤ Z

∗
n of order p′q′. Let g be a random generator

for this group. We call (n, g) an RSA subgroup pair.

Definition 1 (Strong RSA subgroup assumption). Let K be a key gen-
eration algorithm that produces an RSA subgroup pair (n, g). The strong RSA
subgroup assumption for this key generation algorithm is that it is infeasible to
find u ∈ Z

∗
n,w ∈ G and d, e > 1 such that g = uwe mod n and ud = 1 mod n.

In comparison with the strong RSA assumption [BP97] we have weakened the
assumption by only worrying about non-trivial roots of elements from G. On the
other hand, we have strengthened the assumption by generating the RSA modulus
in a special way and publicizing a random generator g of a small subgroup of Z

∗
n.

We write �p′ , �q′ for the bit-length of the primes p′, q′. The order of G then
has bit-length �G = �p′ + �q′ . A possible choice of parameters is �p′ = �q′ = 100.
We shall also use a statistical hiding parameter �s. Given some number a and a
random |a|+ �s-bit integer r, the idea is that a+ r and r should be statistically
indistinguishable. A reasonable choice is �s = 60.

52 J. Groth

Lemma 1. Consider a subgroup pair (n, g) generated in a way such that the
strong RSA subgroup assumption holds. Let g1, . . . , gk be randomly chosen gen-
erators of G. Give (n, g1, . . . , gk) as input to an adversary A and let it produce
(y, e, e1, . . . , ek) such that ye = ge1

1 · · · gek

k mod n. If e = 0, then e1, . . . , ek = 0.
Else we have e|e1, . . . , e|ek and y = u

∏k
i=1 g

ei/e
i mod n, where ue = 1 mod n.

Proof. Pick γ1, . . . , γk ← {0, 1}�G+�s and set gi = gγi mod n. We give
(n, g1, . . . , gk) to A that with noticeable probability produces (y, e, e1, . . . , ek).
We have ye = g

∑k
i=1 γiei mod n. If e = 0 then g = g1+

∑k
i=1 γiei . Unless

e1, . . . , ek = 0 this is likely to be a breach of the strong RSA subgroup as-
sumption.

Assume from now on e �= 0. Let d = gcd(e,
∑k

i=1 γiei) and choose α,β such
that d = αe + β

∑k
i=1 γiei. We have gd = gαe+β

∑k
i=1 γiei = (gαyβ)e mod n. If

p′q′|d then g = g1+e and a breach of the strong RSA subgroup assumption has
been found. If 1 < gcd(d, p′q′) < p′q′, then we have 1 < gcd(gd − 1, n) < n
giving us a non-trivial factorization of n, and indirectly a breach of the strong
RSA subgroup assumption. Therefore, d is invertible modulo p′q′ and we have
g = u(gαyβ)e/d mod n, where ud = 1 mod n. Unless d = ±e, this breaks the
strong RSA subgroup assumption.

So e|
∑k

i=1 γiei. Write γi = κip
′q′ +λi. We have e|p′q′ ∑k

i=1 κiei +
∑k

i=1 λiei.
Since κi is completely hidden to the adversary and randomly chosen this implies
e|ei for all i. We now have y = u

∏k
i=1 g

ei/e
i mod n, where ue = 1 mod n. ��

Definition 2 (Decisional RSA subgroup assumption). Let K be a key gen-
eration algorithm that produces an RSA subgroup pair (n, g). The decisional RSA
subgroup assumption for this key generation algorithmK is that it is hard to distin-
guish elements drawn at random from G and elements drawn at random from QRn.

The assumption is related to high-residuosity assumptions made by other au-
thors [GM84, CF85, KKOT90, NS98]. These assumptions are on the form: Given
(n, r), where r|rprq, it is hard to distinguish a random element and a random
element on the form zr mod n. In comparison, the decisional RSA subgroup as-
sumption is weaker in the sense that we do not publish r = rprq. On the other
hand, it is stronger in the sense that we may have a much smaller group G.

Under the decisional RSA subgroup assumption, the strong RSA subgroup
assumption implies the standard strong RSA assumption. To see this, consider
choosing r ← {0, 1}�G+�s at random and feeding gr to the strong RSA assump-
tion adversary. Under the decisional RSA subgroup assumption this looks like
a random element and the SRSA assumption adversary might return w, e > 1
so gr = we. Write r = κp′q′ + λ, then κ is perfectly hidden from the adversary.
There is at least 50% chance of gcd(e, κp′q′ + λ) �= e. This contradicts Lemma
1, which states e|r.

2.1 RSA with Semi-smooth Order

In Section 7, we restrict the way we generate the RSA subgroup pair. Con-
sider choosing p, q so p = 2p′p1 · · · ptp

+ 1, q = 2q′q1 · · · qtq
+ 1, where

Cryptography in Subgroups of Z
∗
n 53

p1, . . . , ptp
, q1, . . . , qtq

are distinct odd primes smaller than some small bound
B. We call (n, g) a semi-smooth RSA subgroup pair.

Define PB =
∏

1<p<B,p is prime p. Choosing h at random and setting g = hPB

we have overwhelming probability of g generating G. In other words, given n it
is easy for anybody to find a generator for G. We can therefore save specifying
g and just make n public.

Typical parameters would be �p′ = �q′ = 160 and B = 215. Setting �pi
= 15,

we choose t = tp + tq distinct odd primes p1, . . . , ptp
, q1, . . . , qtq

such that p =
2p′p1 · · · ptp

+ 1, q = 2q′q1 · · · qtq
+ 1 are primes.

Lemma 2. Let n be a semi-smooth RSA subgroup modulus generated with pa-
rameters as described above. Pick g at random from QRn and let d be an arbitrary
non-negative integer smaller than t. With probability at least 1 − 1/p′ − 1/q′ −

(t21−�pi)d+1

(1−t21−�pi)(d+1)!
the order of g is greater than p′q′2(t−d)(�pi

−1).

Proof. Consider a generator h of QRn. Pick at random x ∈ Zp′q′rprq
. Then

g = hx is uniformly distributed in QRn. Consider the prime factors p1, . . . , pt

of rprq. We will consider the probability that x = 0 mod pi for more than d of
these prime factors. Each event is independent of the others and has at most
probability 21−�pi of occurring. Therefore, from Lemma 3 we get a probability
lower than (t21−�pi)d+1

(1−t21−�pi)(d+1)!
. Combine this with the probabilities 1/p′ and 1/q′

for respectively x = 0 mod p′ and x = 0 mod q′ to conclude the proof. ��

Lemma 3. Consider n independent Bernoulli-trials with probability p, where
np < 1. The probability of having at least k successes out of n trials is lower
than (np)k

(1−np)k! .

Proof.
n∑

i=k

(
n

i

)
pi(1− p)n−i ≤

n∑
i=k

(
n

i

)
pi ≤

n∑
i=k

ni

i!
pi ≤ 1

k!

n∑
i=k

(np)i

=
1
k!

(np)k − (np)n+1

1− np
≤ (np)k

(1− np)k!
.

��

3 Factorization Attacks

If we can factor n we know p − 1, q − 1 and it is easy to break the strong RSA
subgroup assumption. In the case of a semi-smooth RSA subgroup modulus, the
factorization would also tell us the factors p′, q′ and we can break the decisional
RSA subgroup assumption. We do not know of any non-factorization attacks
that could be used to break either the strong RSA subgroup assumption or the
decisional RSA subgroup assumption, therefore we will focus on the possibility
of factoring n.

54 J. Groth

Pollard’s rho method. Consider a semi-smooth RSA subgroup pair (n, g). We
can use the following variation of Pollard’s ρ-method [Pol75] to factor n. We
define f by f(0) = g and f(i + 1) = (f(i) + 1)PB mod n. Intuitively this cor-
responds to taking a random walk on G starting in g. Actually, modulo p, it
corresponds to taking a random walk on a group of size p′, and modulo q, it
corresponds to taking a random walk on a group of size q′. We now hope to
find points i, j such that f(i) = f(j) mod p or f(i) = f(j) mod q. This would
give us gcd(n, f(i) − f(j)) > 1 and most likely a non-trivial factor of n. Us-
ing Brent’s [Bre80] cycle finding method we expect to find a factorization using
O(min(

√
p′,
√
q′) log(PB)) = O(2�p′ /2B) modular multiplications.

In case (n, g) is simply a normal RSA subgroup modulus it seems hard to
find a function f that always ends up inside G. It therefore seems like Pollard’s
ρ-method is of little use.

Other factorization methods. Other methods such as the baby-step giant-step
algorithm of Shanks [Sha71], Pollard’s λ-method [Pol78] or Pollard’s p−1 method
[Pol74] seem to use at least 2�p′ modular multiplications.

While the above mentioned algorithms take advantage of a special structure
of the divisors of n, other algorithms such as the elliptic curve method (ECM)
[Len87] or the general number field sieve (GNFS) [CP01] do not. We therefore
believe that the best one can do here is to run the general number field sieve
with heuristic running time exp((1.92 + o(1)) ln(n)1/3 ln ln(n)2/3).

Dangers. It is of course important not to give away too much information about
the factorization of p − 1 and q − 1. An adversary knowing p′ could compute
gcd(n, gp′ − 1) = p. For this reason, we do not release p′q′.1

Likewise, if we were to release σ|(p− 1)(q − 1) with |σ| > |n|/4 then we may
risk the factorization attack described in [NS98]. Therefore, we must make sure
that there is enough entropy in the primes pi|(p − 1)(q − 1) that the adversary
cannot guess a significant portion of them. Unlike other high-residuosity schemes,
we cannot publicize the value

∏
pi|(p−1)/2 pi

∏
qi|(q−1)/2 qi.

4 Signature

Cramer and Shoup [CS00] suggest an efficient signature scheme based on the
strong RSA assumption where security can be proved in the standard model
without using random oracles. Subsequently, Fischlin [Fis02] has proposed ef-
ficient schemes for both the case of a statefull signer and a stateless signer.
Koprowski [Kop03] points out a minor flaw in the statefull signature scheme
and an easy correction of it. Camenisch and Lysyanskaya [CL02] have suggested
a variant that is more suitable as a building block in larger protocols such as
group signatures. Finally, Zhu [Zhu03] suggests a variation that combines the

1 Actually, such a factorization attack is possible on scheme 3 of the Paillier cryptosys-
tem [Pai99], since it uses an element g = 1 mod q. In a subsequent variant [PP99]
this has been corrected and they work in a subgroup of the same nature as we do.

Cryptography in Subgroups of Z
∗
n 55

efficiency of the stateless version of Fischlin’s scheme with the suitability of the
Camenisch and Lysyanskaya signature scheme. All these signature schemes use
safe-prime product moduli. We will suggest similar looking signature schemes
for both the statefull and the stateless case and prove security under the strong
RSA subgroup assumption. We are not the first to use RSA moduli that are not
safe-prime products, Damg̊ard and Koprowski [DK02, Kop03] have generalized
the Cramer-Shoup signature approach to basing signature schemes on general
groups with a strong root assumption. RSA subgroups as we suggest using can
be seen as an example of such a group.

Key generation: We generate an RSA subgroup G and pick a, g, h← G. The
private key is p′q′, the order of G. We select a positive integer t so t(�e −
1) + 1 > �m.
Public verification key vk = (n, a, g, h, t). Private signature key sk = p′q′.

Signature: To sign a message m ∈ {0, 1}�m , choose an �e-bit prime e that
has not been used before. Choose at random r ∈ Zet . Compute y =
(agmhr)e−t mod p′q′

mod n.
The signature on m is (y, e, r).

Verification: Given a purported signature (y, e, r) on m ∈ {0, 1}�m , check that
e is an �e-bit number and r ∈ Zet . It is not necessary to check specifically
that e is a prime. Accept if yet

= agmhr mod n.

For a stateless signature scheme it would be reasonable to choose �m =
160, �e = 161 and t = 1. We can use the method from [CS00] to pick the primes
e, this way it is still unlikely that we run into a collision where we use the same
prime in two different signatures. For a statefull signature scheme we can pick
�m = 160, �e = 28 and t = 6 and keep track of the last prime we used. Whenever
we wish to sign, we pick the subsequent prime and use that in the signature. For
so small primes, the exponentiation is the dominant computational cost.

Theorem 1. If the strong RSA subgroup assumption holds for the key genera-
tion algorithm, then the signature scheme described above is secure against ex-
istential forgery under adaptive chosen message attack.

Proof. There are three cases to consider. The first case is where the adversary
forges a signature using a prime e that it has not seen before. The second case
is where the adversary reuses a prime, i.e., e = ei, where ei is the prime from
query i but r �= ri. The third case is where the adversary reuses both ei and ri

for some i.

Case 1: e �= ei. With non-negligible probability, we can guess the number k of
signing queries the adversary is going to make. Choose according to the signature
algorithm distinct �e-bit primes e1, . . . , ek. Set E =

∏k
j=1 e

t
j . Given random

elements α, γ, η ∈ G we set a = αE , g = γE , h = ηE . We give (n, a, g, h) to the
adversary. We can answer the ith query since we know et

i-roots of a, g, h. Consider
now the adversary’s signature (y, e, r). We have yet

= agmhr = αEγEmηEr so
by Lemma 1 we have et|E. This means, e = ei for some i, i.e., the first case only
occurs with negligible probability.

56 J. Groth

Case 2: e = ei, r �= ri. Consider next the case of an adversary that reuses ei.
We guess the query i, where the adversary is going to make the forgery. We
pick ri at random and set up a = αEh−ri , g = γE , h = ηE/et

i . We can easily
answer queries j �= i, and for query i we return the answer (yi, ei, ri), where
yi = αE/et

iγmiE/et
i . Consider now the adversary’s signature (y, ei, r) on message

m. We have (y/yi)et
i = gm−mihr−ri = γ(m−mi)Eη(r−ri)E/et

i . By Lemma 1, we
have et

i|(r − ri)E/et
i. Since ei does not divide E/et

i and |r − ri| < et
i this means

r = ri, so the second case occurs with negligible probability.

Case 3: e = ei, r = ri. Consider finally the case where the adversary reuses
both ei and ri. We make the following setup. Pick at random rm ∈ Zet

i+2�m .
Set a = αEg−rm , g = γE/et

i , h = gηE . On query mi we pick ri = rm − mi,
which enables us to compute yi. ri is uniformly distributed over Zet

i+2�m −mi

and has more than 50% chance of being inside Zet
i
. Conditioned on ri ∈ Zet

i
, we

have a correctly distributed signature. Suppose now the adversary forms a new
signature (y, ei, ri) on message m. We get (y/yi)et

i = gm−mi = γ(m−mi)E/et
i . By

Lemma 1 we have et
i|(m−mi)E/et

i so m = mi. ��
To form a signature we make an exponentiation with e−t mod p′q′. In com-

parison, the other schemes use an exponent of size �n. Especially for the statefull
signature scheme, we obtain a significant reduction in computation.

Strong signature. A signature scheme is strong if it impossible to form a new
signature on a message m, even if we have already seen many signatures on this
message under the chosen message attack. If we ensure that no �e-bit primes
divide ϕ(n), then it is impossible to find a non-trivial u such that ue = 1, where e
is an �e-bit prime. Generating the modulus like this makes the signature scheme
strong, since this way the adversary can only use y belonging to G because
((agmhr)e−t

y−1)et

= 1.

Applications. An advantage of the signature scheme is that it allows us to sign
a committed message without knowing the content. The receiver creates a com-
mitment c = ugmhr mod n and proves knowledge of an opening (m, (u, e, r)) of
c. We then choose a prime e and return (y, e) where y = (ac)e−t mod p′q′

mod n.
The receiver now has a signature (y, e, r mod et) on m.

This kind of committed signature can be set up in a safe-prime product
modulus as suggested in [CL02]. To hide m this requires a large r. We gain an
advantage by working in a small group and thus needing a much shorter r. One
application of this is to speed up group signatures such as [CG04].

5 Simplified Signature

It is well known that if a signature scheme secure against known message attack
suffices, then we can drop the r in the scheme described in the previous section.
I.e., a stateless signature can look like (y, e), where ye = agm mod n. The public
key is also shorter since we do not need h any more. We shall investigate whether
this signature scheme is actually secure against adaptive chosen message attack.

Cryptography in Subgroups of Z
∗
n 57

Key generation: We generate an RSA subgroup G and pick a, g ← G.
Public verification key vk = (n, a, g). Private signature key sk = p′q′.

Signature: To sign a message m ∈ {0, 1}�m choose a random �e-bit prime e.
Compute y = (agm)e−1 mod p′q′

mod n.
The signature on m is (y, e).

Verification: Given a purported signature (y, e) on m ∈ {0, 1}�m check that e
is an �e-bit number. It is not necessary to check specifically that e is a prime.
Accept if ye = agm mod n.

In practice, there may be more convenient ways to choose the prime e than
completely at random. Consider for instance the method of Cramer and Shoup
for generating 161-bit primes [CS00]. It is important for the proof of Theorem 2
that the primes have a distribution that is somewhat close to uniform though.

Choosing parameters for the signature scheme is not straightforward. We do
certainly need �e > �m, as well as �n to be large enough to make factoring n
hard. We also want the group G to be large enough to make it hard to break
the strong RSA subgroup assumption. To simplify notation we will assume p′, q′

both are �p′-bit primes, i.e., �G = 2�p′ . On the other hand, for reasons that will
become apparent in the proof of Theorem 2 we must be able to factor �e +�p′ -bit
numbers.

Consider a rigorous factorization algorithm such as the class-group-relations
method. Lenstra and Pomerance [LP92] prove that it takes time L(2�) = exp((1+
o(1))

√
ln(2�) ln ln(2�)) to factor an �-bit number. We want L(�) < �dn for some

degree d, i.e., a running time that is polynomial in the security parameter. This
is satisfied if � is chosen such that � ln(2) ln(� ln(2)) ≤ (d ln(�n)/(1+o(1)))2. With
this choice of � we also have � ≤ ln2(�n)

ln(2)
d2

(1+o(1))2 ln(� ln(2)) . Letting � = �e + �p′ we
have an upper bound on the length of �p′ = �− �e.

For the strong RSA subgroup assumption to hold, we need that it is hard to
guess the order of the group G. Known algorithms that compute this order use
at least time 2�p′ . We therefore want 2�p′ to be superpolynomial in the security
parameter. Suppose we choose the parameters so �/3 ≤ �p′ , then we want to
choose � as large as possible so 2�/3 is superpolynomial. To see whether there is
room for that consider choosing � so � = ln2(�n)

ln(2)
d2

(1+o(1))2 ln(� ln(2)) . We then have

2�/3 = �
ln(�n)

ln(� ln(2))
d2

3(1+o(1))2
n ≥ �

ln(�n)
ln((d ln(�n)/(1+o(1)))2)

d2

3(1+o(1))2
n .

This is a superpolynomial function of �n. So we do have reasonable hope to
have wriggle-room for choosing �e, �p′ so that the strong RSA subgroup assump-
tion holds and at the same time, it takes polynomial time to factor �e + �p′ -bit
numbers.

Theorem 2. If the strong RSA subgroup assumption holds for the key genera-
tion algorithm and factoring of �e + �p′-bit numbers can be done in polynomial
time then the signature scheme described above is a strong signature scheme
secure against existential forgery under adaptive chosen message attack.

58 J. Groth

Proof. We consider two cases. In the first case the adversary forges a signature
using a prime e that it has not seen before in an adaptive chosen message attack.
In the second case the adversary reuses a prime ei that it has received in an
answer to query i.

Case 1: e �= ei. Consider first a variation where we choose α, γ at random
from G. We guess the number of signature queries the adversary will make
and choose at random corresponding primes e1, . . . , ek. Let E =

∏k
i=1 ei. Then

a = αE , g = γE look like random elements from G and we can answer the k
queries. After having asked the queries the adversary must produce a message
m and a signature (y, e) so ye = agm. I.e., ye = αEγmE , which by Lemma 1
implies that e|E. Since e must be an �e-bit number this means e = ei for some i.
Case 1 occurs with negligible probability, a successful forger must reuse a prime
ei from one of the oracle queries.

Case 2: e = ei. Consider a different way to set up the signature scheme. We
choose z at random from G, and α ← {0, 1}�p′ , γ ← {0, 1}�p′ , η ← {0, 1}�e . We
guess the number of signing queries k that the adversary will make and an index i

for which it will make a forgery. Set E =
∏

i
=j ej . We set a = zE(α2�e+η), g = zEγ

and give the public key (n, a, g) to the adversary.
The probability of α < p′, γ < q′ is at least 25%. Conditioned on α <

p′, γ < q′ our key looks like a real public key. If we work modulo p, then we
have a = (zEη)(zE2�e)α mod p, which is distributed as a random element. If
we work modulo q, then we have g = (zE)γ mod q, which is distributed as a
random element too. Overall, it therefore looks like the discrete logarithm x so
a = gx is perfectly random. Since z is chosen at random from G we also have g is
randomly distributed. So a, g are perfectly indistinguishable from two randomly
chosen elements from G.

It is easy to answer signature queries j �= i by returning y =
z(α2�e+η+γmj)E/ej together with ej . Remaining is the question of answer-
ing query i. Suppose signature query i ask for a signature on mi. Consider
α2�e + η + γmi. Since η is statistically hidden to the adversary, it must choose
mi independently of η. α2�e + η + γmi mod 2�e therefore looks like a random
number. By assumption we can factor α2�e + η + γmi in polynomial time. With
some luck it contains an �e-bit prime factor ei, if not we give up in the simulation.
We can now return yi = zE(α2�e+η+γmi)/ei .

With the method presented above a given �e-bit prime has either probability
21−�e or probability 22−�e of being chosen. In the real signature scheme, the
distribution of primes may be different. Consider for instance the method of
Cramer and Shoup [CS00] for picking primes, this distribution is very differ-
ent from what we have. However, we can consider our distribution of primes
as a weighted sum of two distributions: The correct distribution and a resid-
ual distribution. We include in the residual distribution all the cases where
we simply do not find any prime-factor of α2�e + η + γmi. I.e., we have
Distour = wDistcorrect + (1 − w)Distresidual. In [CS00] they suggest using 161-
bit primes and get a distribution where none of the possible primes has more

Cryptography in Subgroups of Z
∗
n 59

than probability 2−144 of being chosen. In our distribution each prime, and thus
each of those primes, has at least probability 2−160 of being chosen. Thus, w can
be chosen to be at least 2−16.

With probability w, we end up in a case where we give the adversary a
signature that is statistically indistinguishable from a real signature. Consider
now a signature (y, ei) on message m produced by this adversary. We have
yei = agm so (y/yi)ei = gm−mi = zγ(m−mi)E/ei . By Lemma 1 it must be the
case that ei|(γ(m−mi)E/ei). However, ei is a prime and ei > γ, ei > |m−mi|
and ei does not divide E/ei. Therefore, m = mi. We can therefore not produce
a signature on a new message if w is non-negligible.

Strong signature. We still need to argue that the signature scheme is strong.
Consider the adversary’s signature (y, ei) on m = mi, where the signature oracle
returned (yi, ei). We then have yei = yei

i = agm. This means y = uyi, where
uei = 1. However, with overwhelming probability gcd(ei, p

′q′rprq) = 1 so u = 1.
��

In the proof we need to factor α2�e + η+ γmi. We discussed the class-group-
relations method earlier since this has a rigorously proved run-time. Other pos-
sible choices include the GNFS, which is not relevant for practical parameters
but gives good asymptotics, and the QS [CP01], which works better than the
class-group-relations method in practice. The best option would probably be to
use the ECM, which has a heuristic run-time of L(p)

√
2+o(1), with p being the

smallest prime factor. This prime factor should be no larger than �p′ bit in our
case.

If we use the ECM we can also consider tackling the original safe-prime setting
of this type of signature schemes, where p = 2p′ + 1, q = 2q′ + 1. In this case
α, η, γ are so large that we cannot reasonably hope to factor α2�e + η + γmi,
however, all we need is an �e-bit prime factor. As long as �e is small enough, it
is feasible to get out such a small prime factor using the ECM.

Applications. Consider a tag-based simulation sound trapdoor commitment
scheme as defined by MacKenzie and Yang [MY04]. It takes as input a mes-
sage and a tag and forms a commitment. With the trapdoor, it is possible to
open the commitment with this tag to any message. The hiding property is de-
fined as usual, however, the binding property is strengthened in the following
way: Even if we have seen arbitrary trapdoor openings of commitments with
various tags, it is still hard to open a commitment to two different messages
using a tag for which no commitment has been equivocated.

[MY04] construct a simulation sound trapdoor commitment scheme based on
the Cramer-Shoup signature scheme. Essentially, a commitment to message m
using tag tag is a simulated honest verifier zero-knowledge argument of knowl-
edge of a signature on tag using challenge m. We can simplify this trapdoor
simulation sound commitment scheme by instead simulating an honest verifier
zero-knowledge argument of a signature on tag using challenge m, where we
use the simplified signature scheme. I.e., we pick a prime e, pick at random r

60 J. Groth

and set c = re(agtag)−m mod n. The commitment is (c, e, tag), while the open-
ing is (r,m). A double opening would give us (r/r′)e = (agtag)m′−m. Since
gcd(e,m′ −m) = 1, this gives us an e-root of agtag, i.e., a signature on tag.

[MY04] use 5 exponentiations to form their simulation sound trapdoor com-
mitment and remark that using the Fischlin signature scheme it can be reduced
to 4 exponentiations. In comparison, we only use 3 exponentiations.

6 Commitment

Homomorphic integer commitments based on the strong RSA assumption were
first suggested by Fujisaki and Okamoto [FO97]. Later Damg̊ard and Fujisaki
[DF02] corrected a flaw in the security proof of the former paper and generalized
the commitment scheme to abelian groups satisfying some specific assumptions.
In this section, we suggest a similar integer commitment scheme based on the
strong RSA subgroup assumption.

Key generation: We generate an RSA subgroup G and choose at random two
generators g, h.
The public key is pk = (n, g, h).

Commitment: To commit to integer m using randomizer (u, e, r), where ue =
1 mod n, e > 0 and r ∈ Z we compute

c = commit(n,g,h)(m; (u, e, r)) = ugmhr mod n.

When making a commitment from scratch we choose r ← {0, 1}�G+�s and
use the randomizer (1, 1, r).

Opening: To open commitment c we reveal (m, (u, e, r)) such that c =
ugmhr mod n, where ue = 1 mod n, e > 0 .

Theorem 3. The commitment scheme is statistically hiding and if the strong
RSA subgroup assumption holds for the key generation algorithm then it is com-
putationally binding.

Proof. It is easy to see that the commitment is statistically hiding since hr is
almost uniformly distributed on G.

To see that the commitment scheme is binding consider a commitment c and
two openings (m, (u, e, r)) and (m′, (u′, e′, r′)) produced by the adversary. We
have c = ugmhr = u′gm′

hr′
, ue = 1, (u′)e′

= 1. We must have gcd(e, p′q′) =
gcd(e′, p′q′) = 1, since otherwise we can as in the proof of Lemma 1 break
the strong RSA subgroup assumption. This means u, u′ ∈ Z

∗
n/G and therefore

u = u′. We then have 10 = gm−m′
hr−r′

. By Lemma 1 we get m = m′. ��

The commitment scheme has several nice properties. It is homomorphic in
the sense that for all (m, (u, e, r)), (m, (u′, e′, r′)) we have commit(n,g,h)(m +
m′; (uu′, ee′, r + r′)) = commit(n,g,h)(m; (u, e, r))commit(n,g,h)(m′; (u′, e′, r′)).
It is a trapdoor commitment scheme, if we know both p′q′ and x such that

Cryptography in Subgroups of Z
∗
n 61

g = hx and an opening (m, (u, e, r)) of c, then we can open c to m′ by re-
vealing (m′, (u, e, r′)), where r′ is picked at random from {0, 1}�G+�s such that
r′ = (m−m′)x+r mod p′q′. Finally, it has the following root extraction property:
Consider an adversary that produces (c,m, (u, e, r), d) so ce = ugmhr, ud = 1,
then we can find a valid opening of c. Notably, we have cde = gdmhdr so from
Lemma 1 we get e|m, e|r and c = (u′)g

m
e h

r
e , where (u′)ed = 1. The homomor-

phic property combined with the root extraction property means that we can
form efficient honest verifier zero-knowledge arguments (Σ-protocols [CDS94])
for many interesting properties of the message inside the commitment.

The commitment schemes of [FO97, DF02] pick the randomness from
{0, 1}�n+�s while we pick the randomness from {0, 1}�G+�s . This means that
we have a much shorter exponentiation when computing the commitment.

7 Encryption

Recall that a semi-smooth RSA subgroup modulus n = (2p′rp + 1)(2q′rq + 1)
has B-smooth rp, rq. Suppose we have h ∈ G and g has order p′q′rg. Given
c = gmhr we can compute cp′q′

= gp′q′mhp′q′r = (gp′q′
)m mod rg . Since rg is

B-smooth, we can from this compute m mod rg. This is the main idea in the
following cryptosystem.

Key generation: Generate an RSA subgroup modulus n = pq = (2p′rp +
1)(2q′rq + 1), where rp, rq are B-smooth and all prime factors are distinct.
Select g ← QRn and h← G.
The public key is (n, g, h). The secret key is the factorization of ϕ(n).

Encryption: We wish to encrypt a message m ∈ {0, 1}�m using randomness
(u, r) ∈ {−1, 1} × Z. The ciphertext is

c = E(n,g,h)(m; (u, r)) = ugmhr mod n.

We usually choose u = 1 and r ← {0, 1}�G+�s .
Decryption: Given a ciphertext c ∈ Z

∗
n we compute Cp = cp′

= (gp′
)mp mod p.

Since the order of gp′
in Z

∗
p is smooth, we can now find mp mod pi for all

pi|rp, pi|ord(g). Similarly, we can find mq mod qi for qi|rq, qi|ord(g). Using
the Chinese remainder theorem, we end up with m mod gcd(rprq, ord(g)). If
m ∈ {0, 1}�m we output m, otherwise we output invalid.

Theorem 4. If the decisional RSA subgroup assumption holds for the key gen-
eration algorithm then the cryptosystem is semantically secure against chosen
plaintext attack.

Proof. By the decisional RSA subgroup assumption, we can replace g in the pub-
lic key with a randomly chosen element from G without the adversary noticing
it. This leaves us with a statistically hiding commitment, which of course does
not allow the adversary to distinguish plaintexts. ��

62 J. Groth

It is worthwhile to observe that given a semi-smooth RSA subgroup modulus
n an adversary can only produce trivial (u, e) so ue = 1, e > 1. It is with over-
whelming probability the case that u = ±1. To see this first note as in the proof
of Lemma 1 that if gcd(e, p′q′) > 1, then we can break the strong RSA subgroup
assumption. If there is a prime pi < B so pi| gcd(e, ord(u)) then we can find s so
U = ue/ps

i �= 1 mod n and Upi = 1 mod n. This means U = 1 mod p, U �= 1 mod
q or the other way around. I.e., 1 < gcd(n,U−1) < n gives us a factorization of n.

The cryptosystem looks just like the integer commitment scheme, where we
always choose u = ±1 and e = 2. As we argued above it is not possible for an
adversary to find u �= ±1 so this is not a problem. Since we cannot distinguish
between a random g from QRn and a random g from G we actually have all the
nice properties of the commitment scheme we presented before. In particular, the
cryptosystem is homomorphic as long as we are careful to avoid overflows where
the messages are longer than �m bits. It also has the root extraction property
that is useful in zero-knowledge arguments.

Let us consider the length of the messages �m. The ciphertext has length �n,
however, �G bits are used for the randomization. Suppose d is chosen such that
there is negligible probability that more than d of the primes pi, qi do not divide
the order of g. We are then left with �m ≤ (t− d)(�pi

− 1).
In comparison with other cryptosystems such as [Pai99, NS98, OU98] the

present scheme offers a better expansion rate. Generalized Paillier encryption
[DJ01] has expansion rate |c|/|m| = 1+1/s, where s is some small positive inte-
ger. Their scheme, however, requires a modulus of size ns+1. Okamoto-Uchiyama
encryption uses a modulus n of about the same size as we do, however, the ex-
pansion rate is around 3. Our cryptosystem has an expansion rate as low as
�n/�m = �n/((t − d)(�pi

− 1)). With the parameters �n = 1280, �p′ = �q′ =
160,B = 215, t = 64, d = 7 we get from Lemma 2 that the order of g has bit-
length no smaller than 320 + (64 − 7)(15 − 1) = 1118 with probability higher
than 1− 2−80, giving us an expansion rate of 1280/798 ≈ 1.6.

Applications. Strengthening the decisional RSA subgroup assumption a little, we
could get away with picking g of full order p′q′rprq. This way, we can increase
the message space {0, 1}�m slightly. According to Lemma 2 a random g does
have high order so the difference is not that big though.

The reason we prefer a random g is that part of the public key can be picked
by coin-flipping. This property can be useful. Consider as an example the univer-
sally composable commitment scheme of Damg̊ard and Nielsen [DN02, Nie03].
In their scheme, they first carry out a 2-move coin-flipping protocol to determine
the key for what they call a mixed-commitment scheme. If a corrupt party is
making a commitment, the coin-flipping protocol makes the key be a so-called
X-key. The setup is such that a simulator knows the corresponding secret key,
and thus can extract what the corrupt party committed to. On the other hand, if
an honest party is making a commitment we can tweak the coin-flipping protocol
to produce a so-called E-key. A commitment under an E-key is equivocable. The
simulator can therefore make the commitment now, and later when learning the
real value it can equivocate the commitment to this value.

Cryptography in Subgroups of Z
∗
n 63

Damg̊ard and Nielsen suggest universally composable commitments based
on the subgroup-p assumption [OU98] and based on the decisional composite
residuosity assumption [Pai99]. Our cryptosystem provides an efficient alterna-
tive to these variations. We generate a (n, h) as in the key generation of the
cryptosystem. The corresponding trapdoor is the factorization of ϕ(n). Running
a coin-flipping protocol we get a random element g. Using this g we can commit
to m ∈ {0, 1}�m as gmhr. If g is random, then it is a ciphertext and we can
extract m with our knowledge of the factorization. On the other hand, we could
also select x ← {0, 1}�G+�s , g = hx, which would make g an E-key. With this g
we have set up the statistically hiding commitment scheme and with knowledge
of the trapdoor x we can form commitments that can be opened to our liking.

Notice, we only use the decryption property in the simulation in the security
proof. In a real run of the universally composable commitment protocol we never
decrypt anything. Therefore, it does not hurt us that the decryption process
is slow.

Consider further the universally composable threshold cryptosystem of
Damg̊ard and Nielsen [DN03]. Here the sender encrypts his message and at
the same time makes a universally composable commitment to it. He also proves
that the two messages are identical.

The cryptosystem itself needs to be a threshold cryptosystem. They suggest
using a variation over the Paillier cryptosystem, which gives us a message space
on the form Zn, with known n. However, the UC commitment scheme does not
need to be a threshold scheme. Actually, it is only used in the security proof
where the simulator can extract the message from the UC commitment rather
than the ciphertext itself. Using our universally composable commitment scheme,
we have the additional advantage that it serves as an integer commitment. This
means, it is easy to make an efficient zero-knowledge argument of the ciphertext
and the commitment containing the same message, even though the message
spaces are different.

References

[BP97] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In proceedings of EUROCRYPT ’97,
LNCS series, volume 1233, pages 480–494, 1997.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM CCS ’93, pages 62–
73, 1993.

[Bre80] Richard P. Brent. An improved monte carlo factorization algorithm. BIT,
20:176–184, 1980.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In proceedings
of CRYPTO ’94, LNCS series, volume 893, pages 174–187, 1994.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptograph-
ically secure election scheme. In proceedings of FOCS ’85, pages 372–382,
1985.

64 J. Groth

[CG04] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and
new theoretical aspects. In proceedings of SCN ’04, LNCS series, 2004.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In SCN ’02, LNCS series, volume 2576, pages 268–289, 2002.

[CP01] Richard Crandall and Carl Pomerance. Prime Numbers - a Computational
Perspective. Springer Verlag, 2001.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong
rsa assumption. ACM Transactions on Information and System Security
(TISSEC), 3(3):161–185, 2000.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer com-
mitment scheme based on groups with hidden order. In proceedings of
ASIACRYPT ’02, LNCS series, volume 2501, pages 125–142, 2002.

[DJ01] Ivan Damg̊ard and Mads J. Jurik. A generalisation, a simplification and
some applications of paillier’s probabilistic public-key system. In proceed-
ings of PKC ’01, LNCS series, volume 1992, 2001.

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root ex-
traction and signature schemes in general groups. In proceedings of EURO-
CRYPT ’02, LNCS series, volume 2332, pages 256–271, 2002.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and per-
fect binding universally composable commitment schemes with con-
stant expansion factor. In proceedings of CRYPTO ’02, LNCS se-
ries, volume 2442, pages 581–596, 2002. Full paper available at
http://www.brics.dk/RS/01/41/index.html.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In pro-
ceedings of CRYPTO ’03, LNCS series, volume 2729, pages 247–264, 2003.

[Fis02] Marc Fischlin. On the impossibility of constructing non-interactive
statistically-secret protocols from any trapdoor one-way function. In pro-
ceedings of CT-RSA ’02, LNCS series, volume 2271, pages 79–95, 2002.

[Fis03] Marc Fischlin. The cramer-shoup strong-rsasignature scheme revisited. In
proceedings of PKC ’03, LNCS series, volume 2567, pages 116–129, 2003.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In proceedings of CRYPTO
’97, LNCS series, volume 1294, pages 16–30, 1997.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[KKOT90] Kaoru Kurosawa, Yutaka Katayama, Wakaha Ogata, and Shigeo Tsujii.
General public key residue cryptosystems and mental poker protocols. In
proceedings of EUROCRYPT ’90, LNCS series, volume 473, pages 374–388,
1990.

[Kop03] Maciej Koprowski. Cryptographic protocols based on root extracting. Dis-
sertation Series DS-03-11, BRICS, 2003. PhD thesis. xii+138 pp.

[Len87] Hendrik W. Lenstra. Factoring integers with elliptic curves. Ann. of Math.,
126:649–673, 1987.

[LP92] Hendrik W. Lenstra and Carl Pomerance. A rigourous time bound for
factoring integers. J. Amer. Math. Soc., 5:483–516, 1992.

[MY04] Philip D. MacKenzie and Ke Yang. On simulation-sound trap-
door commitments. In proceedings of EUROCRYPT ’04, LNCS se-
ries, volume 3027, pages 382–400, 2004. Full paper available at
http://eprint.iacr.org/2003/252.

Cryptography in Subgroups of Z
∗
n 65

[Nie03] Jesper Buus Nielsen. On protocol security in the cryptographic model.
Dissertation Series DS-03-8, BRICS, 2003. PhD thesis. xiv+341 pp.

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem based
on higher residues. In ACM Conference on Computer and Communications
Security, pages 59–66, 1998.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosys-
tem as secure as factoring. In proceedings of EUROCRYPT ’98, LNCS
series, volume 1403, pages 308–318, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite residuosity
classes. In proceedings of EUROCRYPT ’99, LNCS series, volume 1592,
pages 223–239, 1999.

[Pol74] John M. Pollard. Theorems of factorization and primality testing. Proc.
Cambridge Phil. Soc., 76:521–528, 1974.

[Pol75] John M. Pollard. A monte carlo method for factorization. BIT, 15:331–334,
1975.

[Pol78] John M. Pollard. Monte carlo methods for index computation (mod p).
Math.Comp., 32(143):918–924, 1978.

[PP99] Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems
provably secure against active adversaries. In proceedings of ASIACRYPT
’99, LNCS series, volume 1716, pages 165–179, 1999.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as in-
tractable as factorization. Technical Report MIT/LCS/TR-212, MIT Lab-
oratory for Computer Science, 1979.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In
1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969), pages 415–440. Amer. Math.
Soc., Providence, R.I., 1971.

[Zhu03] Huafei Zhu. A formal proof of zhu’s signature scheme. Cryptology ePrint
Archive, Report 2003/155, 2003. http://eprint.iacr.org/.

Efficiently Constructible Huge Graphs That
Preserve First Order Properties of Random

Graphs

Moni Naor�, Asaf Nussboim��, and Eran Tromer

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

{moni.naor, asaf.nussbaum, eran.tromer}@weizmann.ac.il

Abstract. We construct efficiently computable sequences of random-
looking graphs that preserve properties of the canonical random graphs
G(2n, p(n)). We focus on first-order graph properties, namely properties
that can be expressed by a formula φ in the language where variables
stand for vertices and the only relations are equality and adjacency (e.g.
having an isolated vertex is a first-order property ∃x∀y(¬edge(x, y))).
Random graphs are known to have remarkable structure w.r.t. first order
properties, as indicated by the following 0/1 law: for a variety of choices
of p(n), any fixed first-order property φ holds for G(2n, p(n)) with prob-
ability tending either to 0 or to 1 as n grows to infinity.

We first observe that similar 0/1 laws are satisfied by G(2n, p(n)) even
w.r.t. sequences of formulas {φn}n∈N with bounded quantifier depth,
depth(φn) ≤ n

lg(1/p(n)) . We also demonstrate that 0/1 laws do not hold for
random graphs w.r.t. properties of significantly larger quantifier depth.
For most choices of p(n), we present efficient constructions of huge graphs
with edge density nearly p(n) that emulate G(2n, p(n)) by satisfying
Θ(n

lg(1/p(n)))-0/1 laws. We show both probabilistic constructions (which
also have other properties such as K-wise independence and being
computationally indistinguishable from G(N, p(n))), and determinis-
tic constructions where for each graph size we provide a specific graph
that captures the properties of G(2n, p(n)) for slightly smaller quantifier
depths.

1 Introduction

We deal with small families of graphs that resemble large ones. In general we
think of our graphs as being huge so they are not represented explicitly, but
rather by a procedure that evaluates edge-queries using a succinct representation
(a seed) of the graph. Such small families are sampled by randomly picking the
succinct representation.

� Partly supported by a grant from the Israel Science Foundation.
�� Partly supported by the Minerva Foundation 2-8495.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 66–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficiently Constructible Huge Graphs That Preserve First Order Properties 67

We attempt to capture a large class of properties of truly random graphs
G(N, p) where N = 2n vertices are fixed and the edges are independently picked
each with probability p = p(n). A prominent class of properties is that of first
order properties, namely those that can be expressed by a formula φ in the
language where variables stand for vertices and the only relations are equality
and adjacency (e.g containing a triangle is a first order property of quantifier
depth 3 written as ∃x∃y∃z (edge(x, y))

∧
(edge(x, z))

∧
(edge(y, z)). Random

graphs are known to exhibit remarkable structure w.r.t. first order properties,
namely the famed 0/1 law: any fixed first-order property φ holds for G(N, p)
with probability tending either to 0 or to 1 as N grows to infinity1. Thus one
can view this work as dealing with graphs that look random to distinguishers
that are expressible as first order properties.

We show that for sufficiently large k, any exact k-wise independent graphs
(defined below) preserve the 0/1 law of random graphs (this is not true for almost
k-wise independent graphs). We also show a construction of computationally
pseudo-random graphs that satisfy the 0/1 law of random graphs (note that in
general, computational pseudo-randomness does not imply such combinatorial
properties). Finally, we provide for each graph size a single graph that captures
the first order properties of G(N, p), and is efficiently computable. Those results
can be extended to first-order properties of quantifier depth up to n

log(1/p) .
On the other hand we show that no efficiently constructed family of graphs

can achieve D(n)-equivalence to random graphs w.r.t. to an arbitrarily large
polynomial D(n). Before elaborating on our main results, we review other notions
that capture aspects of the structure of random graphs.

1.1 Random-Looking Graphs

Several characterizations for the concept of a “random-looking” graph have been
extensively studied and are known to have a wealth of applications in combina-
torics and computer science:

K(n)-wise independent graphs. These are a relaxation of G(N, p(n)) in the
sense that each edge appears w.p. p(n), and the distribution of any fixed K(n)
potential edges is mutually independent. Efficient constructions of nc-wise in-
dependent graphs are known for all fixed c and a wide variety of densities p(n)
(e.g., [2]).

Combinatorial pseudo-random graphs. This term refers to a collection of
definitions that consider a single graph gn for each size n and intend to capture
the edge distribution of G(N, p) by requiring that any induced subgraph of gn

has density ≈ p. Two of the variants are Thomason’s jumbled graphs where for
each vertex set U ,

∣∣|E(U)| − p
(|U |

2

)∣∣ ≤ α|U |, where α =
√
pN is the desired

accuracy achieved by G(N, p) and E(U) is the set of vertices in the subgraph
induced by U (see [23]). A weaker (yet very useful) definition is quasi-random

1 Note that despite the term “law”, the 0/1 law is actually a characteristic that may
or may not hold for specific families of graphs.

68 M. Naor, A. Nussboim, and E. Tromer

graphs, which requires only that ∀U
∣∣|E(U)| − p

(|U |
2

)∣∣ ≤ o(N2). Quasi-random
graphs were shown by Chung, Graham and Wilson ([6]) to be equivalent to the
surprisingly innocent condition that the number of labeled cycles of length 4 is
(pN)4(1±o(1)) when E(gn) = (p±o(1))

(
N
2

)
. Several deterministic constructions

are known for such quasi-random and jumbled graphs (see a recent survey by
Krivelevich and Sudakov [16]).

Computationally pseudo-random graphs. These are defined as graphs which
are computationally indistinguishable from random graphs [13], in the sense of
[12]. Namely, no polynomial-time distinguishing algorithm that performs edge-
queries of its choice can tell apart a pseudo-random graph from a random graph
G(N, p(n)). Explicit constructions of computationally pseudo-random graphs are
easily derived from pseudo-random functions. The latter are known to exist iff
one-way functions exist [12, 15].

Graphs that preserve specific combinatorial properties of random
graphs. Random graphs are known to exhibit a remarkable combinatorial struc-
ture (see Bollobás’s survey [4]). For instance, consider G(2n, 1/2) which is the
same as the uniform distribution on all 2n-vertices graphs, and let N = 2n.
Then for some value s(N) ≈ 2 lg N , it holds that with overwhelming probability
G(2n, 1/2) is:

1. Connected, Hamiltonian, and has a perfect matching.
2. Has clique number and independence number precisely s(N)± 1.
3. Has chromatic number N

s(N) (1±
1√

lg(N)
).

4. Has maximal and minimal degree 1
2N(1± 2

√
lg(N)

N).

5. Has connectivity number 1
2N(1± 2

√
lg(N)

N).

Some, of these properties are met by poly(n)-wise independent graphs, and
by combinatorial pseudo-random graphs. It was shown in [13][17] that there
are efficient constructions of graphs which are simultaneously: computationally
pseudo-random (w.r.t. G(2n, 1/2)), almost nc-wise independent, preserve prop-
erties 1–3 above, and approximate properties 4 and 5.

Our work. While the constructions of [13][17] are tailor-made to preserve a
fixed number of prescribed properties (some of which are provably more complex
then first-order properties), the current work constructs small families of graphs
that preserve arbitrary first-order properties of random graphs and in addition
may be computationally pseudo-random (w.r.t. G(N, p)) and nc-wise indepen-
dent. Alternatively we construct a single graph that satisfies arbitrary first-order
properties of random graphs.

1.2 Preserving First-Order Properties of Random Graphs

First-order properties are graph properties that can be expressed in first or-
der language, where the variables stand for vertices and the only relations are

Efficiently Constructible Huge Graphs That Preserve First Order Properties 69

equality and adjacency. For instance, having an isolated vertex can be written
as ∃x∀y¬edge(x, y) (see section 2 for definitions).

From the first-order lens, random graphs exhibit a remarkable structure (see
Spencer’s [19] for an excellent survey). The following 0/1 law is known to hold
for G(N, p): every first order property ψ holds with probability tending ei-
ther to 0 or to 1 as the size of the graph grows to infinity. The case where
p is constant is due to Fagin [9] and independently Glebskii et al [11]. The
other known case where p(n) = 2−αn for an irrational α is due to Shelah and
Spenser [22].

Can one efficiently construct random-looking graphs that resemble G(N, p(n))
and satisfy this 0/1 law? The answer is positive, but we shall actually consider
graphs that meet a much stronger requirement.

Generalized 0/1 Laws. Rather than fixing a single first-order formula, we
shall consider sequences of formulas Φ = {φn}n∈N. Such a sequence can express
much richer properties than a single formula. For instance, containing a clique
of size lg n can be expressed by the sequence where φn = ∃x1...∃xlg n

∧
i
=j((xi �=

xj)
∧

edge(xi, xj)), and the quantifier depth is depth(φn) = lgn (quantifier
depths are formally defined in section 2).

A natural generalization of the basic 0/1 law is the D(n)-0/1 law which
is satisfied by huge graphs G if for any sequence Φ having quantifier depth
depth(φn) ≤ D(n) it holds that

lim
n→∞

Pr[Gn |= φn] ∈ {0, 1}. (1)

Choosing the quantifier depth as the complexity measure for Φ, rather than
the entire length of the formulas, will be well-motivated by the discussed results.
Some relaxation of this definition is required, however, since for any sequence
Φ satisfying the limit condition in (1), if we negate all formulas for odd n then
the limit no longer exists. This shows that with the above definition can never
be satisfied, even when D(n) = 1. This is overcome by requiring (instead of
condition (1)) that for each sequence Φ satisfying depth(φn) ≤ D(n) there exists
a similar sequence Φ′ s.t. φ′

n ∈ {φn,¬φn}, and Pr[Gn |= φ′
n] n→∞−→ 1.

Alas, it can be easily seen that with the above relaxation, the D(n)-0/1 laws
no longer imply the basic 0/1 law. Thus, to reinstate this implication we explicitly
also require that for any fixed formula φ ∈ Φ the limit limn→∞ Pr[Gn |= φ] should
exist. Note that with this final definition, satisfying the basic 0/1 law is identical
to satisfying the D(n)-0/1 law for all D(n) = Θ(1).

Next, recall that we wish to formalize the notion of some huge graphs G1

preserving the first-order properties of G2 = G(N, p). Having a 0/1 law hold for
both G1 and G2 may not suffice as it might be the case that Pr[G1

n |= φn] n→∞−→ 1,
whereas Pr[G2

n |= φn] n→∞−→ 0. Therefore the following definition is introduced: G1

and G2 are said to be D(n)-equivalent, if for any sequence Φ having quantifier
depth depth(φn) ≤ D(n), it holds that lim(Pr[G1

n |= φn]− Pr[G2
n |= φn]) n→∞−→ 0.

70 M. Naor, A. Nussboim, and E. Tromer

1.3 Our Results

Maximal 0/1 laws for random graphs. We start by establishing the maximal
depth, D(n), for which G(N, p(n)) satisfies D(n)-0/1 laws. For any choice of
p(n),2 we set D∗ = D∗(n, p(n)) = n(1−o(1))

lg(1/p(n)) and show that G(N, p(n)) satisfies
the D∗-0/1 law. On the other hand, we show that for any p(n) there exists
p′(n) = p(n)(1− o(1)) s.t. G(N, p′(n)) defies the 2D∗-0/1 law as long as p(n) ≥
2o(

√
n).

A probabilistic construction. For D∗ as above, we show that arbitrary
n3-wise independent graphs satisfy the D∗-0/1 law and are D∗ equivalent to
G(N, p(n)). Since for any non-trivial3 density p(n) there are explicit efficient con-
structions of n3-wise independent graphs G with density p′(n) = p(n)(1− o(1)),
our goal is accomplished. A modification of the construction for G can guaran-
tee (in addition to the above), the computational indistinguishability of G from
G(N, p(n)), if one-way functions exist.

Deterministic construction using Paley graphs. We show that for every
n and p there exists a specific efficiently computable graph of size N ′ = 2Θ(n)

and edge density p′ = p ± ε, which is D(n)-equivalent to G(N ′, p′). Here D(n)
depends on ε; for example, for ε(n) > Θ(1/n) we get D(n) > n

2 lg(1/ε) (1−o(1)).
For the special case p = 1/2 we obtain edge density exactly p and D(n) = Θ(n)
which is optimal up to a factor of 4 + o(1).

Negative results. While the above positive results are close to optimal, one
may still consider the case where D(n) equivalence to random graphs is desired
for D(n) so large that D(n)-0/1 laws no longer hold for G(N, p). We obtain the
following negative result: efficiently constructed graphs G with seed length m(n)
are never D(n)-equivalent to G(2n, 1

2), for D(n) = ω(n+
√
m(n)). If one wishes

to separate G from G(2n, 1
2) by sequences that have poly(n) total length, then a

similar negative result holds for D(n) = 2m + ω(n +
√
m(n))n. Similar results

can be obtained for various choices of p.

1.4 Relationships Among Concepts of Random-Looking Graphs

Figure 1 summarizes the relationships between the main notions of random-
looking graphs for a given density p(n). A black arrow stands for implication,
while a dotted one implies that implication fails to hold (the bottom left square
refers to the conjunction of the properties). Interestingly, while no notion implies
all the others, a single construction achieves all four requirements simultaneously
(assuming that one-way functions exist).

We sketch the references to the information given in the table. The two
following facts are well known. Any computationally pseudo-random graphs with

2 Throughout this subsection we assume that p(n) ≤ 1
2 . Otherwise each term p(n)

concerning quantifier depths should be replaced by min{p(n), 1 − p(n)}).
3 A trivial density is one for which the graph is empty w.p. 1 − o(1).

Efficiently Constructible Huge Graphs That Preserve First Order Properties 71

D(n)−0/1 laws +

D(n)−equivalence

independence

poly(n)−wise Computational

pseudorandomness

Quasi−randomness

Fig. 1. Relation between notions of random-looking graphs

seed length nc are statistically far from any nc+1-wise independent graphs. On
the other hand, nc-wise independent graphs generated via polynomials of degree
nc, are easily distinguished from random graphs using only nc + 1 edge queries.

Next, quasi-randomness, D(n)-0/1 laws and D(n)-equivalence to random
graphs may hold even for a single graph per size, and consequently, these con-
ditions do not imply neither K-wise independence nor computational pseudo-
randomness.

Using the equivalent condition for quasi-randomness concerning the number
of 4-cycles, it is easy to show that quasi-randomness is guaranteed by either
computational pseudo-randomness or by Θ(1)-wise independence.

Next, it can be seen that computational pseudo-randomness, and (conse-
quently by the above) also quasi-randomness, both fail to imply even depth-2
0/1 laws and depth-2 equivalence to random graphs. Indeed, assuming the exis-
tence of one-way functions, by [13] there exist pseudorandom graphs that have
an isolated vertex for odd n but are connected for even n.

Although we can provide graphs satisfying D(n)-0/1 laws without achieving
quasi-randomness, it is not clear whether D(n)-0/1 laws combined with D(n)-
equivalence to random graphs implies quasi-randomness or not.

Finally, our probabilistic construction shows that n3-wise independence en-
sures optimal 0/1 laws and optimal equivalence to random graphs. When this
construction is strengthen to maintain computational pseudo-randomness (as-
suming that one-way functions exist), we achieve a single construction which
simultaneously meets all 4 criteria for a being random-looking graph.

2 Preliminaries

2.1 First Order Logic on Graphs

Formally, the alphabet of first order logic on graphs is made of:

1. Infinitely many variable symbols such as ‘x’,‘y’,‘z’ .
2. The binary relation symbols ‘=’ and ‘edge’.
3. The quantifier symbols ‘∀’ and ‘∃’, the connective symbols ‘¬’, ‘

∨
’, ‘
∧

’, and
the signs ‘(’ and ‘)’.

A first order formula is a formula written in graphs’ first order logic. A first
order property is a graph property that can be expressed by a first order formula

72 M. Naor, A. Nussboim, and E. Tromer

where the variables x, y, z stand for vertices, ‘=’ stands for equality and ‘edge’
stands for adjacency.

The quantifier depth depth(φ) of a formula φ is defined inductively:

1. For atomic expressions, depth(x = y) = depth(edge(x, y)) = 0.
2. depth(¬φ) = depth((φ)) = depth(φ).
3. depth(φ

∨
ψ) = depth(φ

∧
ψ) = max{depth(φ), depth(ψ)}

4. depth(∃xφ) = depth(∀xφ) = depth(φ) + 1.

For instance, the property of being either an empty graph or containing a
triangle is a first order property that can be expressed by the following formula of
quantifier depth 3: (∀u∀v¬edge(u, v))

∨
(∃x∃y∃z (edge(x, y))

∧
(edge(x, z))∧

(edge(y, z)).

2.2 Distributions on Huge Graphs

Definition 1 (Distributions on Huge Graphs). Let � : N −→ N be a
poly(n)-bounded length function. Distributions on huge graphs with vertex sets
{Vn}n∈N, Vn ⊆ {0, 1}�(n) are a sequence of distributions G = {Gn}n∈N, where
each Gn is taken over the set of simple, labeled undirected graphs over Vn.

For our probabilistic constructions the vertex sets are simply Vn = {0, 1}n.
For our deterministic constructions the distributions Gn are degenerate (i.e.,
have support of size 1). We often abbreviate the term “distributions over huge
graphs” and refer to “huge graphs” instead.

Definition 2 (Efficiently constructible huge graphs). Let �1, �2 : N −→ N

be poly(n)-bounded length functions. Distributions on huge graphs G = {Gn}n∈N

with vertex sets {Vn}n∈N, Vn ⊆ {0, 1}�1(n) are efficiently constructible if there
exists a deterministic polynomial-time evaluation algorithm E such that for all
n ∈ N : for uniformly drawn s ∈ {0, 1}�2(n), the distribution of graph

(Vn, {(u, v) : E(s, u, v) = 1})

is identical to Gn.

Note that for our deterministic constructions, Gn is degenerate and �2(n) = 0.

Definition 3 ((p(n),K(n))-wise independent graphs). Let p : N → [0, 1],
and K : N→ R

+. Huge graphs G = {Gn}n∈N are (p(n),K(n))-wise independent
if in Gn every potential edge appears w.p. p(n), and the distribution of any K(n)
potential edges is mutually independent.

Computational Indistinguishability between distributions over huge graphs
is defined exactly like (standard) computational indistinguishability between
distributions over functions, with function evaluation replaced by graph edge
queries. (For more details the reader may consult [13] [17].)

Efficiently Constructible Huge Graphs That Preserve First Order Properties 73

2.3 New Definitions: Generalized 0/1 Laws

Definition 4 (D(n)-0/1 law). Let G be huge graphs, and let D : N→ N. The
D(n)-0/1 law holds for G if for any sequence of formulas Φ having quantifier
depth depth(φn) ≤ D(n) the following conditions are satisfied:

– There exist a sequence Φ′ = {φ′
n}n∈N, such that φ′

n ∈ {φn,¬φn}, and
Pr[Gn |= φ′

n] n→∞−→ 1.
– For any single formula φ ∈ Φ the limit limn→∞ Pr[Gn |= φ] exists.

For the motivation of this definition, see Section 1.2. Note that meeting the
basic 0/1 law is precisely the same as satisfying the D(n)-0/1 law for all D(n) =
Θ(1).

Definition 5 (D(n)-equivalence of huge graphs). Let D : N → N. Two
huge graphs G1,G2 are D(n)-equivalent if for any sequence of formulas Φ having
quantifier depth depth(φn) ≤ D(n) it holds that lim(Pr[G1

n |= φn] − Pr[G2
n |=

φn]) n→∞−→ 0.

3 Extension Properties and 0/1 Laws

We now describe extension properties, which were used by Fagin as a sufficient
condition for his basic 0/1 law [9]. These extension properties will be used for two
purposes: first, to establish the maximal depth, D(n), for which D(n)-0/1 laws
are satisfied by G(N, p(n)), and later, for proving D(n)-0/1 laws for efficiently
constructed graphs.

Definition 6 (Extension Properties).

– A single graph g maintains the t-extension property PEXT
t if for all distinct

vertices v1, ..., vt and any bits b1, ..., bt there exists an extending vertex u /∈
{v1, ..., vt} s.t. the edge {u, vi} appears in g iff bi = 1.

– Let T : N→ N. A sequence of huge graphs G = {Gn}n∈N achieves the T (n)-
extension property if Pr[Gn |= PEXT

T (n)] n→∞−→ 1.

We first state the sufficiency of D(n)-extension to D(n)-0/1 laws. We remark
that although Spencer considers only the case of a single formula (rather then
a sequence of formulas), the following Theorem is actually proved in Spencer’s
[19–Section 2.5]:

Theorem 1. Let G be huge graphs, and let D : N→ N be an arbitrary increasing
function. If G achieves D(n)-extension, then G satisfies the D(n)-0/1 law.

We next prove that any pair of huge graphs that achieve D(n)-extension are
D(n)-equivalent.

Theorem 2. Let G1 and G2 be huge graphs, and let D : N→ N be an arbitrary
increasing function. If both G1 and G2 achieve D(n)-extension, then G1 and G2

are D(n)-equivalent.

74 M. Naor, A. Nussboim, and E. Tromer

Proof. Assume towards contradiction that G1 and G2 (as above) are not D(n)-
equivalent. By Theorem 1, both G1 and G2 satisfy the D(n)-0/1 law. Therefore
our negation assumption implies that there exist an infinite subset N ⊂ N and
a sequence Φ = {φn}n∈N having quantifier depth dΦ(n) ≤ D(n), s.t. Pr[G1

n |=
φn]

n∈N,n→∞−→ 1, whereas Pr[G2
n |= φn]

n∈N,n→∞−→ 0.
Consider a third distribution G3 = 1

2G1 + 1
2G2. Namely, we construct two

graphs g1, g2 according to G1,G2 resp. and then toss a fair coin to choose the
final graph g3 ∈ {g1, g2}. We get Pr[G3

n |= φn]
n∈N,n→∞−→ 1/2. On the other hand,

G3 clearly achieves the T (n)-extension property, so Theorem 1 implies that G3

satisfies the D(n)-0/1 law. This contradiction completes the proof. �

We next claim that the maximal extension achieved by G(N, p(n)) is approx-
imately n

lg(1/p(n)) (the proof is omitted in this preliminary version):

Theorem 3. For arbitrary p : N→ (0, 1), set p′(n) = min{p(n), 1− p(n)}, and
let T (n) = n−2 lg n

lg(1/p′(n)) . Then G(2n, p(n)) achieves the T (n)-extension property,
and does not achieve the (1+Δ)T (n)-extension property for any constant Δ > 0.

An interesting consequence of Theorem 3 is that from the lens of first order
logic, very sparse graphs and very dense graphs look the same. Formally, this
is expressed by the fact that by Theorem 3 G(N, p) and G(N, 1 − p) have the
same extension. This coincides with the intuition that for p < 1/2, finding an
extending vertex for the hardest requirement that “all edges must appear” is
just as hard as finding an extending vertex for the requirement that “all edges
must not appear” when p′ = 1−p. For instance, we get that depth- n

10 properties
can not distinguish between G(2n, 0.001) and G(2n, 0.999).

Is the D(n)-extension property not only a sufficient but also a necessary
condition for D(n)-0/1 laws? While for general graphs the answer is no (we
can show examples where 2ω(n)-0/1 laws are satisfied without achieving even
2-extension), we now show that for G(N, p(n)) the maximal extension and the
maximal depth of 0/1 laws are roughly the same in the following sense: for any
choice of p(n) there exists p′(n) ≈ p(n) s.t. G(N, p′(n)) cannot achieve D(n)-0/1
laws for D(n) larger than twice its maximal extension:

Theorem 4. Let p : N→ (0, 1), s.t. 1
p(n) and 1

1−p(n) = 2o(
√

n). Then there exists
p′ : N→ (0, 1) where p′(n) = p(n)(1±o(1)), s.t. G(2n, p′(n)) defies the D(n)-0/1
law for D(n) = (2± o(1)) n

lg(1
p′(n))

.

Proof. The claim will follow by presenting p′(n) as above and a sequence of
first-order formulas Φ = {φn}n∈N having depth(φn) = (2± o(1)) n

lg(1/p′(n)) s.t.

1. For sufficiently large n, 1/4 ≤ Pr[G(2n, p′(n)) |= φn] ≤ 3/4.
2. The limit limn→∞ Pr[G(2n, p′(n)) |= φn] does not exist.

We use formulas φn that state the existence of a clique of size ≈ 2 n
lg(1/p(n))

in the graph. We assume w.l.o.g. that p(n) ≤ 1/2 (otherwise, let p(n) > 1/2, φn

states the existence of independent sets that size).

Efficiently Constructible Huge Graphs That Preserve First Order Properties 75

By the classical analysis of Bollobás and Erdös concerning cliques in random
graphs [5], there exists an integer S∗ = S∗(n, p(n)) = (2− o(1)) n

lg(1/p(n)) s.t. S∗-
cliques appear in G(2n, p(n)) almost surely. Namely, for φn = ∃v1...vS∗

∧
i
=j((vi

�= vj)
∧

edge(vi, vj)), we have Pr[G(2n, p(n)) |= φn] = 1− o(1).
Fix a sufficiently large n s.t. Pr[G(2n, p(n)) = φn] ≥ 3/4, and define H as

follows:
H(q) = Pr[G(2n, q) |= φ] =

Σg|=φ Pr[G(2n, q) = g] = Σg|=φq
E(g)(1− q)(

2n

2)−E(g),

where E(g) denotes the number of edges in g. Clearly, H(·) is continuous in q,
and φn is a monotone property4. Thus, for any choice of 1/4 ≤ μ(n) ≤ 3/4 there
exists (a unique) p′(n) ≤ p(n) s.t. Pr[G(2n, p′(n)) = φn] = μ(n). In particular, we
can take {μ(n)}n∈N s.t. the sequence has no limit. We thus get that G(2n, p′(n))
defies the 2 n

lg(1/p(n)) -0/1 law.
We need to prove that the≈ 2 n

lg(1/p′(n)) -0/1 law is also defied by G(2n, p′(n)),
so to complete the entire proof we will show that:

1. lg(1/p(n)) = lg(1/p′(n))(1± o(1)), and
2. p′(n) = p(n)(1− o(1)).

Indeed, fix n so p = p(n), p′ = p′(n),μ = μ(n) and φ = φn, and let δ = δ(n)
be defined by p′ = p(1− δ). Let ES,n,q denote the expected number of S-cliques
in G(2n, q). Again, by [5] ES∗,n,p ≤ 2(2+o(1))n. Next, Markov’s inequality gives:

1/4 ≤ μ
def= Pr[G(2n, p′) = φ] ≤ ES∗,n,p′ =

(
2n

S∗

)
× p′(S∗

2) =
(

2n

S∗

)
p(

S∗
2)(1− δ)(

S∗
2)

≤ 2(2+o(1))n(1− δ)(
S∗
2)=2(2+o(1))ne−Θ(δ(S∗)2) = 2(2+o(1))ne

−Θ(δ(n

lg(1
p

)
)2)

Thus δ(n) = o(1) iff (lg 1
p)2 = o(n) but the latter condition is met since the

conditions of the theorem include 1
p = 2o(

√
n). This proves that p′(n)def= p(n)(1−

δ(n)) = p(n)(1− o(1)).
Finally, as 0 < δ ≤ 1/2 we get 1

1−δ = 1 + δ
1−δ ≤ 1 + 2δ ≤ e2δ. Consequently,

lg 1
p′

lg(1/p)
=

lg 1
p(1−δ)

lg(1/p)
=

lg 1
p + lg 1

1−δ

lg(1/p)
≤ 1 +

lg e2δ

lg(1/p)
= 1 +Θ(

δ

lg(1/p)
) = 1 + o(1),

since δ(n) = o(1). The claim follows. �

An immediate corollary of Theorems 1, 3, and 4 is that the maximal depth
D∗(n) for which G(N, p) satisfies D∗(n)-0/1 laws is Θ(n

lg(1
p)):

4 Namely, if g |= φ and g′ is obtained by adding edges to g, then g′ |= φ as well.

76 M. Naor, A. Nussboim, and E. Tromer

Theorem 5. Let p : N→ (0, 1). Then

1. G(2n, p(n)) satisfies the [n−2 lg n
lg(1/p(n))]-0/1 law.

2. If 1
p(n) ,

1
1−p(n) ≤ 2o(

√
n), then there exists p′ : N → (0, 1) s.t. , p′(n) =

p(n)(1± o(1)), and G(2n, p′(n)) defies the [2n
lg(1/p′(n))]-0/1 law.

In light of Theorem 5, our aim becomes to efficiently construct graphs that
satisfy Θ(n

lg(1
p))-0/1 laws and are Θ(n

lg(1
p))-equivalent to G(N, p).

4 Computational and k-wise Independent Graphs and
Equivalence

Given the tight relationship between extensions and first-order graph properties,
constructing computational and k-wise independent graphs satisfying the 0/1-
laws is simple. The next theorem shows that n3-wise independence in graphs
guarantees the optimal n

lg(1
p) -0/1 laws and thus n

lg(1
p) -equivalence to random

graphs.

Theorem 6. Let p : N → (0, 1), and set p′(n) = min{p(n), 1 − p(n)}. Let
D(n) =

n
2 −2 lg n

lg(1/p′(n)) and let K(n) = 2nD2(n). Let G be (p(n),K(n))-wise inde-
pendent huge graphs (see definition 3). Then G satisfies the D(n)-0/1 law and
is D(n)-equivalent to G(2n, p(n)).

The proof is via the extension property and we omit it in this preliminary
version. Recall that for arbitrary p(n), one can construct (based on [13, 17]),
poly(n)-wise independent graphs that are also computationally pseudo-random
w.r.t. G(2n, p(n)). Combining this with Theorem 6 one can show the following:

Theorem 7. Let c > 0, p : N → [0, 1]. Then there exist an explicit efficient
construction of huge graphs G that for some D(n) = n

lg(1/p(n)) (1− o(1)) are:

1. (p′(n), nc)-wise independent for some p′(n) s.t. |p′(n)− p(n)| ≤ 2−3n.
2. Satisfy the D(n)-0/1 law and are D(n) equivalent to G(2n, p(n)).
3. Computationally indistinguishable from G(2n, p(n)) if one-way functions ex-

ist.

5 A Single Graph Equivalent to Random Graphs

In this section we demonstrate a single huge graph (for each size) that is deter-
ministically constructible and “behaves like G(N, p(n))”: the sequence is D(n)-
equivalent to G(N, p(n)) and have edge density p(n) ± ε. The construction is
based on Paley graphs, which are known to preserve a variety of properties of
random graphs [2]. We employ the following generalized definition:

Efficiently Constructible Huge Graphs That Preserve First Order Properties 77

Definition 7 (Paley graph). Let F be a finite field of size N , let M ∈ N such
that 2M | (N − 1), and let p ∈

{ 1
M , 2

M , . . . , M−1
M

}
. Let Z ⊂

{
a ∈ F : aM = 1

}
with |Z| = pM . Then the Paley graph GF,M,p,Z = (F , EF,M,p,Z) is given by

EF,M,p,Z =
{
{u, v} : u, v ∈ F , (u− v)(N−1)/M ∈ Z

}
(2)

It is readily verified that every node has exactly p(N−1) neighbors, and that
the graph is undirected since the exponent in (2) is even.

The rest of this section is structured as follows. First, as a technical aid we
define sets of linear equalities that contain certificates to “x �≡ 0 (mod M)”, and
observe that for certain M these sets can be small. Then, we show that the D(n)-
0/1 properties of a Paley graph GF,M,p,Z are related to the size of the smallest
such certifying set for M . Next, we show that for appropriate parameters we can
efficiently compute edge queries in GF,M,p,Z . Finally, we describe two concrete
sequences of Paley graphs, and invoke the aforementioned lemmas to derive their
efficient computability and D(n)-0/1 properties.

Definition 8 (nonzero-certifying set). A set C ⊂ N×Z is nonzero-certifying
modulo M if

∑
(y,z)∈C y < M and for all x ∈ Z:

x �≡ 0 (mod M) iff ∃(y, z) ∈ C : yjx ≡ zj (mod M) (3)

For example, for any M ∈ N the set {(1, r)}r∈{1,...,M−1} is nonzero-certifying
modulo M . Smaller sets can be obtained by the following:

Lemma 1. Let M = qe1
1 qe2

2 · · · qes
s for distinct primes qi and ei ∈ N. Then there

exists a set C which is nonzero-certifying modulo M and |C| =
∑s

t=1 et(qt − 1).

Proof (sketch). Denote πt =
∏s

t′=t+1 q
et′
t′ , and set C =

{(
πtq

i
t , πt(M/qt)r

)}
t,i,r

where t ∈ {1, . . . , s}, i ∈ {0, . . . , et − 1}, r ∈ {1, . . . , qt − 1}. Then |C| =∑s
t=1 et(qt − 1) <

∑s
t=1(lg q

et
t)(B − 1) = (B − 1) lgM , and it is readily ver-

ified that
∑

(y,z)∈C y = M − 1. To show that (3) indeed holds, show that it
holds modulo each qet

t by considering the qt-ary representation of z mod qet
t ;

then apply the Chinese Remainder Theorem.5 �

The next lemma shows that Paley graphs satisfy D(n)-0/1 laws with D(n)
that is related to the size of nonzero-certifying sets. The analysis follows Graham
and Spencer’s proof of the connection between similar Paley graphs (restricted
to M = 2) and tournament problems [14][3]. Recall that for a finite field F , a
character χ : F → C of order M is a multiplicative homomorphism from F∗

onto the M -th roots of unity, extended with χ(0) = 0; such χ exist whenever
M | (N − 1). We will invoke Weil’s theorem:

5 Essentially, we are forming a system of linear equations which expresses a special
case of the additive analogue of the Pohlig-Hellman-Silver algorithm [18].

78 M. Naor, A. Nussboim, and E. Tromer

Theorem 8 (Weil). Let F be a finite field, let N = |F|, and let χ be a character
of order M . Let f(x) ∈ F [x] be a monic polynomial that is not an M -th root of
any polynomial in F [x]. Then:∣∣∣∣∣∑

u∈F
χ(f(u))

∣∣∣∣∣ < (degF − 1)
√

N

Lemma 2. Let G = {GF,M,p,Z}n be a sequence of Paley graphs with F = F(n),
M = M(n), p = p(n), Z = Z(n), N = |F(n)| such that N > Mω(1). Let
� = �(n), and suppose that for every n there exist a set of size � which is nonzero-
certifying modulo M . Then G satisfies the D(n)-0/1 law for D(n) = lg N

2� (1−o(1)).

Proof. By Theorem 11, it suffices to show that GF,M,p,Z satisfies the D(n)-
extension law. Denote d = D(n), � = �(n). Let C = {(yj , zj)}�j=1 be nonzero-
certifying modulo M , and let χ : F → C be a character of order M .

Let v1, . . . , vd ∈ F be arbitrary vertices, and let b1, . . . , bd ∈ {0, 1}. We wish to
show that there exists an extending vertex u ∈ F\{v1, . . . , vd} such that {u, vi} ∈
EF,M,p,Z iff bi = 1 for all i = 1, . . . , d. Let w1, . . . ,wd ∈ F be chosen arbitrarily
subject to w

(N−1)/M
i ∈ Z iff bi = 1, for i = 1, . . . d. Then by definition of

EF,M,p,Z , it suffices to show that there exists a vertex u /∈ {v1, . . . , vd} such that
(u−vi)(N−1)/M = w

(N−1)/M
i for all i. This further reduces to χ(u−vi) = χ(wi),

since in this case μi = (u− vi)/wi is in Kerχ = χ−1(1) so the order of μi divides
|Kerχ| = (N − 1)/M , whence (u− vi)(N−1)/M/w

(N−1)/M
i = μ

(N−1)/M
i = 1.

It thus suffices to show that there exists u ∈ F such that χ(u− vi) = χ(wi)
for all i. Let α be a generator of F∗, and denote:

h(u) =
d∏

i=1

hi(u) where hi(u) =
�∏

j=1

(
1− χ(u− vi)yj

χ(wyj

i αzj)

)
(i = 1, . . . , d)

Note that hi(u) = 0 iff there exists j ∈ {1, . . . , �} such that χ(u − vi)yj/
χ(wyj

i αzj) = 1. Since χ(α) is a generator of the multiplicative group of M -th
roots of unity in C, which has order M , for u �= vi we can take discrete logs to
base χ(α). Then:

hi(u) = 0 iff ∃j ∈ {1, . . . , �} : yj logχ(α) ((u− vi)/wi) ≡ zj (mod M)

Since Cn is nonzero-certifying modulo M , by considering x = logχ(a)
((u− vi)/wi) we get that hi(u) = 0 iff x ≡ 0 (mod M), i.e., iff χ(u−vi) �= χ(wi).
Our task is thus reduced to showing the existence of an “extending vertex”
u ∈ F \ {v1, . . . , vd} such that h(u) �= 0.

Denote S =
∑

u∈F h(u). By the triangle inequality:

|S| ≤
∑
u∈F

h(u)
=0

d∏
i=1

�∏
j=1

(
1 +

∣∣∣∣χ(u− vi)yj

χ(wyj

i αzj)

∣∣∣∣) ≤ ∑
u∈F

h(u)
=0

2d� = d2d�+
∑

u∈F\{v1,...,vd}
h(u)
=0

2d�

(4)

Efficiently Constructible Huge Graphs That Preserve First Order Properties 79

Thus, if |S| > d2d� then there exists an extending vertex. To lower bound
|S|, we first expand the product over i and j. Denote I = {1, . . . , d}× {1, . . . �}.
Then:

S =
∑
u∈F

d∏
i=1

�∏
j=1

(
1 +

χ(u− vi)yj

−χ(wyj

i αzj)

)
=

∑
u∈F

∑
I⊆I

∏
(i,j)∈I

χ(u− vi)yj

−χ(wyj

i αzj)

=
∑
u∈F

∑
I⊆I

PI

⎛⎝ ∏
(i,j)∈I

χ(u− vi)yj

⎞⎠ where PI =
∏

(i,j)∈I

1
−χ(wyj

i αzj)

By separating the case I = ∅ and, changing order of summation and using
the multiplicativity of χ, we then obtain:

S = N +
∑
I⊆I
I
=∅

PI

∑
u∈F

χ(fI(u)) where fI(u) =
∏

(i,j)∈I

(u− vi)yj

For all I ⊆ I with I �= ∅, fI(u) has at least one root vi and the multiplicity
of any root vi is at most

∑�
j=1 yi < M by Definition 8, so fI(u) is not an M -

th power of any polynomial in F [u]. Also, deg fI ≤ d(M − 1). Invoking Weil’s
theorem, we obtain for all such I:∣∣∣∣∣∑

u∈F
χ(fI(u))

∣∣∣∣∣ ≤ (d(M − 1)− 1)
√

N

Then by the triangle inequality,

|S| ≥ N −
∑
I⊆I
I
=∅

PI

∣∣∣∣∣∑
u∈F

χ(fI(u))

∣∣∣∣∣ > N − 2d�d(M − 1)
√

N

By (4), there remains to show that 2d�d ≥ N − 2d�d(M − 1)
√

N . Indeed:(
N − 2d�d(M − 1)

√
N
)
− 2d�d ≥

√
N
(√

N − 2d�dM
)

and the latter is greater than 0 when lg N > 2 (d� + lg d + lgM), i.e., when
d > lg N−2 lg M

(2+o(1))� > lg N−2 lg N/ω(1)
(2+o(1))� = lg N

2� (1−o(1)). �

Remark 1. Since the choice w1, . . . ,wd ∈ F in the above proof was arbitrary, we
have actually shown a stronger result: for the same parameters as in Lemma 2,
there exists an edge labeling L : F ×F → {1, . . . ,M} of the full graph of size N ,
such that for any d vertices v1, . . . , vd and labels a1, . . . ad there exists a vertex
u ∈ F \ {v1, . . . , vd} such that L(u, vi) = ai for all i = 1, . . . , d. �

Recall that M ∈ N is called B-smooth if no prime divisor of M is larger
than B.

80 M. Naor, A. Nussboim, and E. Tromer

Corollary 1. Let G = {GF,M,p,Z}n be a sequence of Paley graphs with F =
F(n), M = M(n), p = p(n), Z = Z(n), N = |F(n)| such that N > Mω(1) and
M is B-smooth for B = B(n). Then G satisfies the D(n)-0/1 law for

D(n) = lg N
2(B−1) lg M (1−o(1))

Proof. Let M = qe1
1 qe2

2 · · · qes
s for distinct primes qi ≤ B and ei ∈ N. Then

by Lemma 1, there exists a set C which is nonzero-certifying modulo M and
�(n) = |C| =

∑s
t=1 et(qt − 1) <

∑s
t=1(lg q

et
t)(B − 1) = (B − 1) lgM . The claim

follows by Lemma 2. �
We now address the issue of efficient computability. The following lemma

shows that there are sequences of Paley graphs in which edge queries can be
computed efficiently, under constraints which will be addressed by the concrete
sequences described later.

Lemma 3. There exists a deterministic algorithm A which, for any F , N , M
and p as in Definition 7, evaluates edge queries in a Paley graph GF,M,p,Z in the
following sense: given an oracle OF which computes the basic operations in F ,
and given an element g ∈ F of order M in F∗, there exists Z as in Definition 7
such that AOF (N,M, p, g, u, v) = 1 iff (u, v) ∈ EF,M,p,Z . Moreover, if M is
B-smooth then A runs in time poly(log N,B).

Proof. Note that 〈g〉 =
{
a ∈ F : aM = 1

}
, and set Z =

{
a ∈ 〈g〉 : logg a < pM

}
.

For u �= v, to test whether a = (u−v)(N−1)/M fulfills a ∈ Z, it suffices to compute
discrete logarithms in the group 〈g〉, whose order is B-smooth. This can be done
deterministically in time poly(log N,B, |CF |) using the Pohlig-Hellman-Silver
algorithm [18]. �

We can now proceed to describe two specific efficiently computable huge
graphs based on sequences of Paley graphs. As we have seen, it suffices to find
a deterministically computable sequence of pairs (N,M) such that N is a prime
power, 2M |(N − 1), M is highly smooth, and we can deterministically find an
efficient representation of the finite field F = GF(N) and an element g ∈ F∗

of order M . Moreover, we wish the sequence to be dense: for every n ∈ N there
should be (N,M) fulfilling M = 2Θ(n).

Recall the following results about finite fields, from [20] and [21].

Theorem 9 (Shoup). (a) Let q be prime and m ∈ N. Then there exists a de-
terministic algorithm that computes an irreducible polynomial I(X) of degree m
in GF(q)[X] in time poly(q,m). (b) Let I(X) be any an irreducible polynomial
of degree m in GF(q)[X], and let F = GF(q)[X]/(I(X)). There exists a deter-
ministic algorithm which, given I(X), runs in time poly(q,m) and outputs a set
of elements in F which contains at least one generator of F∗.

The following is an explicit construction which approximates any desired edge
density p(n) up to an additive term of ε(n) < Θ(1/n), and achieves D(n) which
is optimal up to a constant. Here, we choose N and M using Euler’s theorem.

Efficiently Constructible Huge Graphs That Preserve First Order Properties 81

Theorem 10. Let p = p(n) ∈ (0, 1) and let ε = ε(n) ≥ c0/n for a certain
constant c0 > 0. Then there exists a deterministically efficiently computable huge
graph G = {gn}n which satisfies the D(n)-0/1 law for D(n) = n

2 log(1/ε) (1−o(1)),
and gn has size 2θ(n) and edge density p′(n) such that |p′(n)− p(n)| < ε(n).

Proof. Set c0 = 2 lg 3. Let N = 3n′
where n′ = 2k and k = �lg(n/ lg 3). Let M =

2�lg(1/ε)�. Note that 2n < N ≤ 22n, and that M < 2lg(1/ε)+1 < 2lg(n/2 lg 3)+1 =
2lg(n/ lg 3) ≤ n′, so M | n′. Since 3 is relatively prime to 2n′, Euler’s theo-
rem yields 3ϕ(2n′) ≡ 1 (mod 2n′), where ϕ(2n′) = n′. Hence 2M | (N − 1).
We have ε/2 < 1

M ≤ ε, and can choose p′(n) ∈
{ 1

M , 2
M , . . . , M−1

M

}
such that

|p′(n)− p(n)| ≤ 1
M ≤ ε.

By Theorem 9(a), we can deterministically compute an irreducible polyno-
mial of degree n′ in GF(3)[X] in time poly(n′) = poly(n), and can thus efficiently
calculate in the field F = GF(3n′

).6 To deterministically find an element of or-
der M in time poly(n), run the algorithm of Theorem 9(b) and, for each output
element β, directly test whether γ = β(N−1)/S has order M by computing the
first M powers of γ. Note that when β generates F∗, γ indeed has order M .

By the above and Lemma 3 there exists a set Z such that GF,M,p,Z is
a Paley graph whose edge queries can be computed deterministically in time
poly(log N) = poly(n). Then G =

{
GF(n),M(n),p′(n),Z(n)

}
n

is a deterministi-
cally efficiently computable huge graph with density p′ = p ± ε. Since M is 2-
smooth, by Corollary 1 G satisfies the D(n)-0/1 law for D(n) = lg N

2 lg M (1−o(1)) ≥
n

2 lg(1/ε) (1−o(1)). �

The above allows only ε(n) > Θ(1/n), which means we cannot meaningfully
approximate graphs with density p � 1/n. To enable better approximation ε,
and also to obtain N closer to 2n (albeit at some cost in the extension D(n)),
we will replace Euler’s totient function ϕ(·) with Carmichael’s function λ(·),
which likewise satisfies that bλ(a) ≡ 1 (mod a) for any relatively prime a, b ∈ N.
The benefit is that λ(a) occasionally assumes much smaller values than ϕ(a)
(cf. [8]). For square-free a ∈ N, λ(a) = lcm {q − 1 : q prime, q | a}. For b ∈ N,
let η(b) =

∏
q prime, q−1|b q. Note that λ(η(| b)) = b. Then by [1]:

Theorem 11 (Pomerance, Odlyzko). There exists a constant c1 > 0 such
that for all sufficiently large A, there exists b < (lnA)c1 ln ln ln A s.t. η(b) > A.

Theorem 12. Let p = p(n) ∈ (0, 1) and let ε > 2−n1/c2 ln ln n

for a constant c2 >
0. Then there exists a deterministically efficiently computable huge graph G =
{gn}n which satisfies the D(n)-0/1 law for D(n) = n/ log(1/ε)Θ(log log log(1/ε)),
and gn has size 2n(1+o(1)) and edge density p′(n) such that |p′(n)− p(n)| < ε(n).

Proof. We first find appropriate N,M . Let B = (ln(6/ε))c1 ln ln ln(6/ε). Then by
Theorem 11, for sufficiently large n there exists b < B such that η(b) > 6/ε. We
can deterministically find such b by exhaustive search in time poly(B) < poly(n).

6 Alternatively replace 5 with 3, and by [10], X2k − 2 is irreducible in GF(3)[X].

82 M. Naor, A. Nussboim, and E. Tromer

Fix any c2 larger than c1. It is readily verified that log(6/ε)c1 ln ln n < n/
√

lnn
for sufficiently large n, and since n > ln(6/ε) we get B < n/

√
lg n and thus

b < n/
√

lnn = o(n). Let n′ be the smallest multiple of b that is larger than n,
and let N = 3n′

. Then 2n ≤ N ≤ 2n(1+o(1)).
Let M =

∏
prime q|η(b), q>κ q where κ is the largest such that M ≥ 1/ε. Note

that M | η(b) and 2 | η(b) but 2 � M , so 2M | η(b), and and from the definition of
λ we get λ(2M) | λ(η(| b)) = b. Thus λ(2M) | n′, and since 3 � M we get 32rb ≡ 1
(mod 2M), i.e., 2M |(N − 1). Also note that all prime factors of M are at most
b + 1, so M is (B + 1)-smooth and M < (B + 1)/ε = (1/ε)1+o(1). Since 1

M ≤ ε,
we can choose p′(n) ∈

{ 1
M , 2

M , . . . , M−1
M

}
such that |p′(n)− p(n)| ≤ 1

M ≤ ε.
Conclude as in Theorem 10, with two differences. First, to test whether γ =

β(N−1)/M is of order M , use the fact that M is (B + 1)-smooth and square-free:
by the Chinese Remainder, γ has order M iff γS/q �= 1 (and thus γM/q has order
q) for every prime q |M , and this can be checked in time poly(B lgM) = poly(n).
Second, M is (B+1)-smooth so we get D(n) = n

2B lg M (1−o(1)) = n/B1+o(1). �

6 The Limits of Small Families

We now argue that no small and efficient family can be D(n)-equivalent to
G(2n, 1/2) once D(n) is an arbitrary polynomial in n. We can generalize the
theorem to hold for various choices of p.

Theorem 13. Let G be an efficiently constructed distribution on huge graphs
with seed length m(n), and let D : N→ N, s.t. D(n) = 2m(n)+ω(

√
m(n)+n)n.

Then G is not D(n)-equivalent to G(2n, 1/2).

Proof. Intuitively, the theorem stems from the fact that any efficiently con-
structed graph has a low Kolmogorov complexity (KC), whereas random graphs
exhibit a high KC. The claim will follow once we provide a sequence of sepa-
rating formulas Φ = {φn}n∈N which have depth depth(φn) = D(n) and length
|φn| = nΘ(1) s.t. Pr[Gn |= φn] = 1, but Pr[G(2n, 1

2) |= φn] n→∞−→ 0.
Fix n and let m = m(n), d = D(n). Let E be the evaluating algorithm of

G. Namely, to each graph g in the support of G there corresponds a seed s =
s(g) ∈ {0, 1}m s.t. for any vertex pair u, v ∈ {0, 1}n, it holds that E(s, u, v) = 1
when the edge {u, v} appears in g, and E(s, u, v) = 0 otherwise. The standard
reduction from Turing machines to Boolean circuits implies the existence of a
poly(n)-size Boolean formula ψE,n s.t. ψE,n(s, u, v) = E(s, u, v) for all inputs
s, u, v of appropriate length.

We wish the separating formulas to hold for a graph g iff g is in the support
of G, namely, when there exists a seed s = s(g) s.t. all the edges of g are
correctly evaluated by ψE,n(s, ·, ·). However, to reduce the quantifier depth of
φn, we only attempt that φn expresses the following condition where r = r(n)
is specified later:

Condition 1. Every subgraph on r vertices v1, ..., vr is isomorphic to some sub-
graph correctly evaluated by ψE,n using some seed s ∈ {0, 1}m.

Efficiently Constructible Huge Graphs That Preserve First Order Properties 83

Condition 1 can be expressed as follows (here ui1 ...uin
denote the bits of a

vertex ui ∈ {0, 1}n):

ψn = ∀v1, v2 . . . vr∃u11 . . . u1n
, . . . , ur1 ...urn

∃s = s1...sm∧
i
=j

edge(vi, vj)⇔ ψE,n(s1...sm, u11 ...u1n , ur1 ...urn).

This expression is, however, not a first-order sentence on graphs. In first-
order language the variables stand for vertices, whereas in the above expression
ψE,n(s1...sm, u11 ...u1n

, ur1 ...urn
) actually refers to the bits si and uij

. This is
resolved as each bit can be encoded using a single edge (or non-edge). Indeed, a
string x = x1...x� ∈ {0, 1}� is encoded using 2� (not necessarily distinct) vertices
x̄1, ..., x̄�, x̄

′
1, ..., x̄

′
� s.t. Enc(x) = edge(x̄1, x̄

′
1)...edge(x̄�, x̄

′
�). Note that for any

string x, a valid encoding exists as long as the graph contains both edges and
non-edges.7

We recall that all the encodings in ψn are valid as long as the graph is
neither the complete nor the empty graph. Thus we define the separating formula
φn by φn = ψn

∨
γ
∨
γ′, where γ, γ′ are two fixed formulas which state that

the graph is either complete or empty (γ = ∀u, v(u �= v ⇒ edge(u, v)), and
γ′ = ∀u, v(¬edge(u, v))).

We finally prove that φn indeed separates Gn from G(2n, 1
2). We first note

that Pr[Gn |= φn] = 1. Indeed for any single graph g in the support of Gn,
if the graph is either complete or empty we are done. Otherwise, each ver-
tex in g has a valid encoding. Since all the encodings in ψn are valid, clearly
g |= ψn.

On the other hand G(2n, 1
2) is complete or empty with only vanishing prob-

ability. Hence it suffices to show that w.h.p. G(2n, 1
2) �|= ψn. Indeed assume

for a fixed graph g, that g |= ψn. This implies that for any subgraph on
r vertices gr of g the following holds: there exist strings s̄ ∈ {0, 1}m, and
v̄i ∈ {0, 1}n, i = 1, ..., r s.t. when the evaluator E = EG is given all

(
r
2

)
in-

puts in lexicographic order, then E(s̄, v̄i, v̄j) is exactly the adjacency string of
gr. In particular this implies that gr has Kolmogorov complexity KC(gr) ≤
m + rn + Θ(1). Since with overwhelming probability a r-subgraph of a random
graph has KC(gr) ≥ Ω(r2), we get that ψn rarely holds for random graphs when
m + rn ≤ o(r2), namely when we set r = ω(

√
m + n). As the depth of φn is

clearly r + 2nr + 2m = 2m + ω(
√
m + n)n the claim follows and this concludes

the proof. �

Remark 2. The above can be strengthened to show that G is not D(n)-equivalent
to G(2n, 1/2) even for D(n) = ω(

√
m(n)+n), at the expense of using seperating

formulas of size exponential in n.

7 Note that one cannot write a first order expression that states the validity of the
encoding, namely, the requirement that indeed edge(x̄i, x̄

′
i) = xi. Yet, this encoding

will suffice for our needs.

84 M. Naor, A. Nussboim, and E. Tromer

Acknowledgments. The second author wishes to thank Nati Linial and Avi
Wigderson for helpful discussions and Daniel Reichman for referring him to
[16]. We thank Ronen Gradwohl, Eran Ofek, Guy Rothblum, Tal Sagiv and Udi
Wieder for helpful comments on an earlier draft.

References

1. L. M. Adleman, C. Pomerance and R. S. Rumely, On Distinguishing Prime Num-
bers from Composite Numbers, Annals of Mathematics, vol. 117, no. 1, 173–206,
1983.

2. N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons, 1992.
3. L. Babai, Character Sums, Weil’s Estimates, and Paradoxical Tournaments, lec-

ture notes, http://people.cs.uchicago.edu/~laci/reu02.dir/paley.pdf
4. B. Bollobás. Random Graphs, Academic Press, 1985.
5. B. Bollobás and P. Erdös, Cliques in Random Graphs, Cambridge Philosophical

Society Mathematical Proc., vol. 80, 419–427, 1976.
6. F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combi-

natorica, vol. 9, 345–362, 1989.
7. A. Ehrenfeucht, An Application of Games to the Completeness Problem for For-

malized Theories, Fundamenta Mathematicae, vol. 49, 129–141, 1961.
8. P. Erdös, C. Pomerance and E. Schmutz, Carmichael’s Lambda Function, Acta

Arithmetica, vol. 58, 363-385, 1991.
9. R. Fagin, Probabilities in Finite Models, Journal of Symbolic Logic, vol. 41, 50–58,

1969.
10. S. Gao and D. Panario, Tests and Constructions of Irreducible Polynomials Over

Finite Fields, Foundations of Computational Mathematics (F. Cucker, M. Shub,
Eds.), 346–361, Springer, 1997.

11. Y. V. Glebskii, D. I. Kogan, M. I. Liagonkii, V. A. Talanov, Range and Degree of
Realizability of Formulas in the Restricted Predicate Calculus, Cybernetics, vol. 5,
142–154, 1976.

12. O. Goldreich, S. Goldwasser, S. Micali, How to Construct Random Functions, Jour-
nal of the ACM, vol. 33, no. 4, 276–288, 1985.

13. O. Goldreich, S. Goldwasser, A. Nussboim, On the Implementation of Huge Ran-
dom Objects, proc. 44th IEEE Symposium on Foundations of Computer Science,
68–79, 2003.

14. R. L. Graham and J. H. Spencer, A Constructive Solution to a Tournament Prob-
lem, Canadian Math Bulletin, vol. 14, 45–48, 1971.

15. J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby, A Pseudo-Random Generator
from any One-Way Function, SIAM Journal on Computing, vol. 28, num. 4, 1364–
1396, 1999.

16. M. Krivelevich and B. Sudakov, Pseudo-random Graphs, preprint,
http://www.math.princeton.edu/~bsudakov/papers.html

17. A. Nussboim. Huge Pseudo-Random Graphs that Preserve Global Properties of
Random Graphs, M.Sc. Thesis, Advisor: S. Goldwasser, Weizmann Institute of
Science, 2003. http://www.wisdom.weizmann.ac.il/~asafn/psdgraphs.ps

18. S. C. Pohlig and M. E. Hellman, An Improved Algorithm for Computing Logarithms
Over GF(p) and Its Cryptographic Significance, IEEE Transactions on Information
Theory, Vol. IT-24, 106–110, 1978.

Efficiently Constructible Huge Graphs That Preserve First Order Properties 85

19. J. H. Spencer. The Strange Logic of Random Graphs. Springer Verlag, 2001.
20. V. Shoup, New Algorithms for Finding Irreducible Polynomials over Finite Fields,

Mathematics of Computation, vol. 54, 435–447, 1990.
21. V. Shoup, Searching for primitive roots in finite fields, Mathematics of Computa-

tion, vol. 58, 369–380, 1992.
22. J. H. Spencer and S. Shelah, Zero-One Laws for Sparse Random Graphs, Journal

of the American Mathematical Society, vol. 1, 97–115, 1988.
23. A. Thomason, Pseudo-random graphs, Proceedings of Random Graphs, Annals of

Discrete Mathematics 33, 307–331, 1987.

Comparing Two Notions of Simulatability

Dennis Hofheinz and Dominique Unruh

IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth,
Fakultät für Informatik, Universität Karlsruhe, Am Fasanengarten 5,

76 131 Karlsruhe, Germany

Abstract. In this work, relations between the security notions standard
simulatability and universal simulatability for cryptographic protocols
are investigated.

A simulatability-based notion of security considers a protocol π as
secure as an idealization τ of the protocol task, if and only if every attack
on π can be simulated by an attack on τ .

Two formalizations, which both provide secure composition of proto-
cols, are common: standard simulatability means that for every π-attack
and protocol user H, there is a τ -attack, such that H cannot distinguish
π from τ . Universal simulatability means that for every π-attack, there
is a τ -attack, such that no protocol user H can distinguish π from τ .

Trivially, universal simulatability implies standard simulatability. We
show: the converse is true with respect to perfect security, but not with
respect to computational or statistical security.

Besides, we give a formal definition of a time-lock puzzle, which may
be of independent interest. Although the described results do not depend
on any computational assumption, we show that the existence of a time-
lock puzzle gives an even stronger separation of standard and universal
simulatability with respect to computational security.

Keywords: Reactive simulatability, universal simulatability, protocol
composition.

1 Introduction

Recently, simulatability-based characterizations of security for cryptographic
protocols received a lot of attention. In particular, several modelings of multi-
party computation have been presented which allow for secure composition of
protocols, cf. [PW00, Can00, PW01, Can01, BPW04b]. All these models share the
idea of simulatability: a protocol is considered secure only relative to another
protocol. That is, a protocol π is as secure as another protocol τ (usually an ide-
alization of the respective protocol task), if every attack on π can be simulated
by an attack on τ .

A little more formally, this means that for every adversary Aπ attacking π,
there is an adversary Aτ (sometimes referred to as the simulator) that attacks
τ , such that from an outside view, both attacks and protocols “look the same.”
There are different interpretations of what “looking the same” means concretely.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 86–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Comparing Two Notions of Simulatability 87

Roughly, the interpretation of [Can01] is the following: π is as secure as τ , iff
for every Aπ, there is an Aτ such that no protocol user H (this entity is called the
environment Z in [Can01]) is able to distinguish running with π and Aπ from
running with τ and Aτ .

Although [PW00, PW01, BPW04b] provide this criterion as “universal sim-
ulatability,” the default notion of security in these works is that of “standard
simulatability.” Roughly, standard simulatability demands that for every Aπ and
every protocol user H, there is an Aτ such that H cannot distinguish π and Aπ

from τ and Aτ . So basically, the difference between these notions is that with
standard simulatability, the simulator Aτ may depend on the user H, whereas
universal simulatability requests the existence of “user-universal” simulators Aτ .

All presently known proofs (e.g., in [Can01, BPW04a]) that one can securely
compose a polynomial number of concurrent protocols depend on the fact that
the honest user/environment is chosen in dependence of the simulator. Conse-
quently, we do not know how to prove such a composition theorem in the case
of standard security.

1.1 Our Results

In this contribution, we study the relation between standard and universal sim-
ulatability. Therefore, we focus on the modeling of [BPW04b], which provides
both flavors of simulatability. For a relation to the framework [Can01, CLOS02]
of universal composability, see Section 1.2.

By definition, universal simulatability implies standard simulatability. We
show that even the converse is true when requiring perfect security (i.e., equal-
ity of user-views in the definitions). Apart from giving structural insights, this
result may be of practical interest: especially when dealing with idealized proto-
cols, often perfect simulatability can be achieved. Our result enables to conduct
a (potentially easier) proof of standard simulatability, and then to conclude uni-
versal simulatability using Theorem 1.

On the other hand, we can show that standard simulatability does not imply
universal simulatability with respect to statistical or computational security. For
this, we construct a protocol which is secure only with respect to standard simu-
latability (in the statistical or computational case). This result shows that proofs
of universal simulatability can be stronger than proofs of standard simulatability.

Unfortunately, the constructed protocol is not strictly polynomial-time. So in
the computational case, one may wish to have a stronger separation by means of
a strictly polynomial-time protocol. We provide such a protocol, and prove that
it separates standard and universal simulatability in the computational case.
As a technical tool, we need the computational assumption of time-lock puzzles,
cf. [RSW96]. So additionally, we provide a formal definition of a time-lock puzzle,
which may be of independent interest.

1.2 Connections to Universal Composability

Although the framework [Can01, CLOS02] of Universal Composability (UC) does
not directly provide an equivalent to the notion of standard simulatability, a

88 D. Hofheinz and D. Unruh

formulation of standard simulatability there would seem straightforward. As our
proofs below do not depend on specific model characteristics, we believe that our
proofs can then be adapted to that framework; this would show that standard
and universal simulatability can be separated there, too.

However, recently we have been told [Can04] by Ran Canetti, that in a slightly
modified UC setting with a different formulation of polynomial-time, the two no-
tions coincide. At a closer look, this is no contradiction to our results. Namely,
Canetti proposes a different notion of standard simulatability than used in, e.g.,
[BPW04b]: in Canetti’s formulation, the environment1 has a runtime bounded
polynomially in the length of its auxiliary input, which again is chosen in de-
pendence of the simulator. So effectively, the (polynomial) runtime bound of the
environment is chosen after the simulator, whence our proofs do not apply in
that case.

However, since we show that our separating examples also hold for the case
of honest users H with non-uniform auxiliary input (that does not affect H’s
runtime), they should be applicable to the notion of “Specialized-simulator UC”2

defined in [Lin03].

1.3 Organisation

Section 2 establishes the equality of standard and universal simulatability for the
case of perfect security; in Section 3, a separation of these notions for statistical
and computational security is presented. The discussed stronger separation by
means of a strictly polynomial-time protocol using time-lock puzzles is investi-
gated in Section 4. This work ends with a conclusion in Section 5. In Appendix A,
we briefly review the modeling of [BPW04b].

2 The Perfect Case

We start by relating standard and universal simulatability for the case of perfect
security. Perfect security demands that the respective user-views in the compared
protocol situations are completely equal. We show that with respect to perfect
security, standard and universal simulatability are equivalent notions. For this,
we only need to show that standard simulatability already implies universal
simulatability—the other direction is trivial from the definitions.

The idea of our proof is to construct a “universal” protocol user Hu, that
simply chooses all of its outputs at random, such that any finite sequence of
outputs occurs with nonzero probability. In a sense, Hu incorporates all possible
protocol users H.

Now standard simulatability implies that there is a simulator which is “good”
with respect to this user Hu. But informally, anything H could do will be done by

1 i.e., the UC counterpart of the honest user H
2 This notion is identical to standard simulatability, except that a possible non-uniform

auxiliary input for the environment is chosen after the simulator.

Comparing Two Notions of Simulatability 89

Hu with nonzero probability. Since Hu’s views are completely identical in both
protocols, this allows to conclude that this simulator is not only “good” with
respect to Hu, but with respect to all possible users H.

Theorem 1. With respect to perfect security, standard simulatability implies
universal simulatability.

Proof. As a prerequisite, let D be a probability distribution over Σ∗ which sat-
isfies Pr [s← D] > 0 for all s ∈ Σ∗. (As in [PW01, BPW04b], Σ denotes the
(finite) message alphabet over which messages sent by machines are formed.)
Such a D necessarily exists, since Σ∗ is countable.

Let (M̂1, S) and (M̂2, S) be structures with (M̂1, S) ≥perf
sec (M̂2, S). Then, let

further (M̂1, S,H,A1) ∈ ConfM̂2(M̂1, S). That is, let H,A1 be a valid pair of user
and adversary for protocol M̂1. Without loss of generality, we assume H to have
exactly one self-clocked self-connection (i.e., a connection from H to itself) with
name loop, and to have its ports ordered lexicographically.3 Then the sequence
of ports of H only depends on A1.

Let Hu be a machine with the same port sequence as H, but with a state set
Σ∗ and initial states {1}∗. Hu’s transition function makes Hu switch as follows:
independent of state and input, Hu’s next state and all of its outputs, including
outputs on clock ports, are drawn (independently) from D.

Intuitively, Hu is universal in the following sense: for a fixed A1, Hu is inde-
pendent of H. Hu’s construction guarantees that every finite prefix of Hu-outputs
and -states has non-zero probability.

Clearly we have (M̂1, S,Hu,A1) ∈ ConfM̂2(M̂1, S), which means that Hu,A1
is a valid pair of user and adversary for protocol M̂1. Then the standard security
(M̂1, S) ≥perf

sec (M̂2, S) which we assumed ensures the existence of an A2 with

view (M̂1,S,Hu,A1)(Hu) = view (M̂2,S,Hu,A2)(Hu). (1)

We will show

view (M̂1,S,H,A1)(H) = view (M̂2,S,H,A2)(H), (2)

which suffices to prove (M̂1, S) ≥uni,perf
sec (M̂2, S), since A2 does not depend on H.

So let k ∈ N be an arbitrary security parameter.4 The following notation for
views of H in protocol runs with A1 and M̂1, resp. A2 and M̂2 will simplify the
presentation: let tr (1)

H := view (M̂1,S,H,A1),k(H), and tr (2)
H := view (M̂2,S,H,A2),k(H).

Analogously, we define tr (1)
u and tr (2)

u for views of Hu. For n ∈ N, let (tr)n denote
the n-th step in a view tr ; (tr)1..n is the n-step prefix of tr . When it is clear that
I ∈ Σ∗ is a vector of inputs, we write I ∈ st to denote the event that in a step
st , the machine input vector is I.

3 Every H can be turned into an H′ of this form, so that there is a probability-respecting
identification of H-views and H′-views.

4 Note that this already determines the initial state 1k for both H and Hu

90 D. Hofheinz and D. Unruh

We prove the following two statements simultaneously by induction over
n ∈ N:

A(n) :
(
tr (1)

H

)
1..n

=
(
tr (2)

H

)
1..n

,

and

B(n) : ∀s : Pr
[(

tr (1)
H

)
1..n

= s
]
> 0 ⇒ Pr

[(
tr (1)

u

)
1..n

= s
]
> 0.

A(0) and B(0) hold trivially. So assume that A(n) and B(n) hold. Let an
arbitrary (n + 1)-step prefix (st)1..n+1 with

α := Pr

[(
tr (1)

H

)
1..n+1

= (st)1..n+1

]
> 0 (3)

be given. To show A(n + 1), it suffices to prove

Pr

[(
tr (2)

H

)
1..n+1

= (st)1..n+1

]
= α. (4)

To see (4), we first remark that for the machine input vector In+1 in (st)n+1,
(1) implies

Pr

[
In+1 ∈

(
tr (1)

u

)
n+1
|
(
tr (1)

u

)
1..n

= (st)1..n

]
= Pr

[
In+1 ∈

(
tr (2)

u

)
n+1
|
(
tr (2)

u

)
1..n

= (st)1..n

]
.

(5)

Here we also need B(n) to be sure that the probabilities of the conditions are
not only equal, but also positive. Furthermore, we have for i ∈ {1, 2}:

Pr

[
In+1 ∈

(
tr (i)

H

)
n+1
|
(
tr (i)

H

)
1..n

= (st)1..n

]
= Pr

[
In+1 ∈

(
tr (i)

u

)
n+1
|
(
tr (i)

u

)
1..n

= (st)1..n

]
> 0,

(6)

because the distribution on the next user-inputs is completely determined by the
history over all preceding user-outputs. The probabilities for the conditions are
positive by (3), A(n), and the construction of Hu. From here, B(n + 1) follows
from the construction of Hu.

We continue proving A(n + 1). Combining (5) and (6) yields

Pr

[
In+1 ∈

(
tr (1)

H

)
n+1
|
(
tr (1)

H

)
1..n

= (st)1..n

]
= Pr

[
In+1 ∈

(
tr (2)

H

)
n+1
|
(
tr (2)

H

)
1..n

= (st)1..n

]
.

Comparing Two Notions of Simulatability 91

But since input and current state already determine the distribution on out-
puts and next states, we have

Pr

[(
tr (1)

H

)
n+1

= (st)n+1 |
(
tr (1)

H

)
1..n

= (st)1..n

]
= Pr

[(
tr (2)

H

)
n+1

= (st)n+1 |
(
tr (2)

H

)
1..n

= (st)1..n

]
.

(7)

Because the probabilities for the respective conditions in (7) are positive and
equal by A(n) and 3, this shows (4), and thus A(n + 1).

Summarising, A(n) holds for all n, which in particular implies (2), and thus
shows the theorem. ��

This proof idea does not work in the computational or statistical case. Very
informally, Hu behaves like a given user H too seldom; the resulting success to
distinguish protocols would be much smaller than that of H.

So one may ask whether Theorem 1 also holds for computational or statistical
security. The next section shows that this is not the case.

3 The Statistical and the Computational Case

Recall that simulatability with respect to statistical security demands that poly-
nomial prefixes of the user-views in the real, resp. ideal model must be of “small”
statistical distance. Here, “small” may denote a negligible or even exponentially
small function in k. The following proof deals with negligible functions as those
“small” functions. However, the proof carries over to other classes of “small”
functions.

On the other hand, for simulatability with respect to computational security,
users and adversaries are restricted to (strict) polynomial-time. In this case,
the user-views in the real, resp. ideal model only need to be computationally
indistinguishable.

Here we give a real and an ideal protocol such that the real protocol is as
secure as the ideal one with respect to standard simulatability, but not with
respect to universal simulatability. Roughly, the ideal protocol asks adversary
and user for bitstrings and then outputs who of them gave the longest bitstring.
The real protocol does the same, but always outputs “adversary”.

A successful simulator must hence be able to give a longer input than the
user with overwhelming probability. We show that such a simulator exists for
any given user; we also show that there can be no such simulator which gives
longer inputs than every user.

Theorem 2. With respect to computational and statistical security, standard
simulatability does not imply universal simulatability. This holds also if we allow
non-uniform polynomial-time honest users for the case of computational security.

Proof. Let (M̂1, S) be a structure with machines M̂1 = {M1} and service ports
S, where Sc = {user!, user�!, out?}. The machine M1 is depicted in Figure 1. M1

92 D. Hofheinz and D. Unruh

�
�

�

out

M1 A1

user

H

adv

Fig. 1. Machines in the real case

waits for an input h on port user?, and an input a on port adv?; only the first
respective input is considered. When having received both such inputs h and a,
M1 outputs and clocks the value b = 0 on out!.

Let (M̂2, S) be a structure with M̂2 = {M2}. The machine M2 is identical
to M1, except that the value b that is eventually output on out! is determined
as b = 1 if |h| > |a|, and b = 0 otherwise. So intuitively, b = 1 (resp. b = 0)
indicates that the user (resp. the simulator) delivered the longest bitstring.

We claim (M̂1, S) ≥NEGL
sec (M̂2, S). So let a real configuration (M̂1, S,H,A1) ∈

ConfM̂2(M̂1, S) be given. Denote by hk the random variable that describes M1’s
first user?-input in runs with security parameter k, or ⊥, if there is no user?-
input. Since H and A1 are fixed, there is a function f : N→ N for which

Pr [hk < f(k) ∨ hk = ⊥] > 1− 2−k. (8)

Thus, let A2 be the combination of A1 and a special machine S, cf. Figure 2.
In this combination, the adv! and adv�! ports of A1 are renamed to adv! and
adv

�
!, respectively. The special machine S converts every adv?-input into an

adv!-output 1f(k), which is clocked by S immediately. If we restrict to runs in

�
�

� �

outuser

H

adv
A1

adv
SM2

Fig. 2. The simulator for standard simulatability

which either hk = ⊥ or hk < f(k), then we get exactly the same distribution on
H-views as in the real configuration. Using (8), we get

view (M̂1,S,H,A1)(H) ≈NEGL view (M̂2,S,H,A2)(H).

This implies in particular (M̂1, S) ≥NEGL
sec (M̂2, S).

On the other hand, we claim (M̂1, S) �≥uni,NEGL
sec (M̂2, S). For this, consider

the following real adversary A1, which is master scheduler and has an additional
token connection to the honest user. In its first activation, A1 outputs and clocks

Comparing Two Notions of Simulatability 93

the value a(1) = 1 on adv!. In its second activation, it activates H by outputting
and clocking 1 on port token!.

Furthermore, for a function g : N → N, let Hg be the machine which writes
and clocks h = 1g(k) onto out! in its first activation. The remaining ports of Hg

are chosen to close the collection {M1,Hg,A1}.
We show that for every simulator A2, there is a function g for which Hg

distinguishes M1 and A1 from M2 and A2. So let A2 be a simulator for which
(M̂2, S,H1,A2) ∈ Conf(M̂2, S). (Then (M̂2, S,Hg,A2) ∈ Conf(M̂2, S) for all g.)
Denote by a

(2)
k the random variable that describes the first adv?-input that M2

gets in runs with security parameter k, or ⊥, if there is no adv? input. Since A2
is fixed, there is a function g for which

Pr
[
a
(2)
k < g(k) ∨ a(2)

k = ⊥
]
> 1− 2−k. (9)

In the configuration (M̂1, S,Hg,A1), H’s view in its second activation contains
out?-input 0. But by (9), and since the distribution of a(2)

k is independent of g, Hg’s
view in (M̂2, S,Hg,A2) contains out?-input 0 with only negligible probability. So
(M̂1, S) �≥uni,NEGL

sec (M̂2, S), and the theorem follows for the statistical case.
The proof above carries over literally to the computational case (with respect

to uniform as well as non-uniform honest users), because for polynomial-time H
and A, there are polynomials f and g fulfilling (8) and (9). ��

4 A Stronger Separation

The proof from the preceding section does not work, if we restrict to protocol
machines (i.e., structures) that are strictly polynomial-time. Although the ma-
chines M1 and M2 used in the proof above are weakly polynomial-time (i.e.,
they are polynomial-time in the overall length of their inputs and the security
parameter, cf. [BPW04b]), at least M2 needs to accept arbitrarily long inputs.5

For a separation of the computational simulatability notions by means of strictly
polynomial-time structures, we have to work a little harder. As a technical tool,
we use time-lock puzzles (see [RSW96]).

Definition 1. A PPT-algorithm6 G (called the problem generator) together with
a PPT-algorithm V (the solution verifier) is called a time-lock puzzle iff the
following holds:
– sufficiently hard puzzles: for every PPT-algorithm B and every e ∈ N, there

is some c ∈ N with

sup
t≥kc,|h|≤ke

Pr
[
(q, a)← G(1k, t) : V(1k, a,B(1k, q, h)) = 1

]
(10)

negligible in k.

5 However, intuitively, nothing “superpolynomial” happens: M2 determines the length
of its inputs.

6 Probabilistic polynomial time algorithm

94 D. Hofheinz and D. Unruh

– sufficiently good solvers: there is some b ∈ N such that for every d ∈ N there
is a PPT-algorithm C such that

min
t≤kd

Pr
[
(q, a)← G(1k, t); c← C(1k, q) : V(1k, a, c) = 1 ∧ |c| ≤ kb

]
(11)

is overwhelming in k.

Intuitively, G(1k, t) generates a puzzle q of hardness t, and a description a of
valid solutions for q. V(1k, a, b) verifies if b is a valid solution as specified by a.

First, we require that any given PPT-algorithm B can’t solve sufficiently
hard puzzles. Formally, we want B to be unable to solve puzzles which are of
hardness t, t ≥ kc for some c depending on B.

We add an auxiliary input h (of polynomial length) to prevent the following
scenario: Bob (B) wants to show to Alice, that he is able to perform calculations
of some hardness t, therefore he chooses t, and then Alice (G) chooses the puzzle.
It is now imaginable, that Bob may choose some auxiliary information h and
the hardness t simultaneously, s.t. using h one can solve time-lock puzzles of
hardness t.7 This is prevented by our definition, since (10) is negligible even in
presence of polynomially length-bounded auxiliary inputs h.8

Second, we demand that for every polynomial hardness value, there is an
algorithm C solving puzzles of this hardness. It is sensible here to ask for short
solutions (i.e., |c| ≤ kb): otherwise, the definition allows time-lock puzzles in
which the solution of every t-hard puzzle is deterministically 1t.9

[RSW96] promotes the following family of puzzles as candidates for time-
lock puzzles. A puzzle of hardness t consists of the task to compute 22t′

mod n
where t′ := min{t, 2k} and n = pq is a Blum integer.10 In our notation, this is
denoted by G(1k, t) = ((n,min{t, 2k}), (p, q,min{t, 2k})), where n is a random
k-bit Blum integer with factorisation n = pq, and V(1k, (p, q, t′), c) = 1 if and
only if c ≡ 22t′

mod pq. (Note that 2t′
mod ϕ(pq) can be efficiently computed

with knowledge of p and q.)
We return to the problem of separating standard and universal simulatability

by means of strictly polynomial-time structures. The idea is very similar to the
one used in the proof of Theorem 2. In the ideal setting, we let a machine
M2 check and output whether H has more “computational power” than the
adversary A2. The corresponding real machine M1 always outputs “no”. Here we

7 Imagine that, e.g., being able to find the pre-image of t under some function would
already solve the puzzle.

8 Note that for the proof of Theorem 3, this additional constraint is not necessary.
9 In fact, using such a “degenerate” puzzle would yield a proof for Theorem 2, very

similar to that given in Section 3.
10 One might wonder why our formulation uses t′ = min{t, 2k} instead of t (in contrast

to the original formulation in [RSW96]). It can be shown that for t := (2k)! + 1
it is 22t ≡ 4 mod n for all k-bit Blum integers. Therefore (10) would be violated
(consider B(1k, q, h) = 4). For practical purposes, this does not pose a threat, since
the length of t = (2k)! + 1 is not polynomial in k.

Comparing Two Notions of Simulatability 95

have standard simulatability, since A2 can be chosen in dependence of H (and
thus more powerful). On the other hand, the simulatability is not universal, since
an A2-dependent user H can be chosen so powerful that M2 outputs “yes”.

Now time-lock puzzles are exactly what M2 needs to check the computational
power of A2 and H. Concretely, M2 simply picks a puzzle for both A2 and H and
outputs “yes” if H is the only one to solve that puzzle. Our definition of time-lock
puzzles guarantees that puzzles can be generated and solutions can be checked
by a strictly polynomially bounded M2.

An exact theorem statement and a proof follow:

Theorem 3. Assume that time-lock puzzles exist. Then for computational se-
curity, standard simulatability and universal simulatability can be separated by
two strictly polynomial-time structures. This holds also if we allow non-uniform
polynomial-time honest users.

Proof. First, let D denote a PPT-algorithm which, upon input 1k, returns a
uniformly chosen t from {21, 22, . . . , 2k}.

Let (G,V) be a time-lock puzzle. Let (M̂1, S) be a structure with machines
M̂1 = {M1} and service ports S, where Sc = {user!, user�!, puz user?, out?}.

The machine M1 is depicted in Figure 3. All indicated connections (not count-
ing the potential connections between A1 and H) are clocked by the sending
machine.

�
�

� �

�

M1

H

user

adv

puz adv
A1

out

puz user

Fig. 3. Machines in the real case

Upon its first activation, M1 chooses t ← D(1k). Then it computes (q, a) ←
G(1k, t).

Upon the first input via user?, M1 sends and clocks q via puz user to H. Upon
the first input via adv?, M1 sends and clocks q via puz adv to A1.

The second input via user? (called cH) is verified via vH ← V(1k, a, cH), and
analogously we set vA ← V(1k, a, cA) upon the second adv?-input cA.

At the time both vH and vA are determined, M1 outputs and clocks b = 0 on
out!.

Let (M̂2, S) be a structure with machines M̂2 = {M2}. The machine M2 is
identical to M1, except that the value b ∈ {0, 1} that is eventually output on
out! is determined as an evaluation of the predicate vH ∧ ¬vA. Intuitively, b = 1
happens (i.e., H can distinguish) if and only if H is able to successfully solve
harder puzzles than the adversary.

Note that by setting suitable length functions (i.e., l(user?) = l(adv?) = kb

for the b ∈ N from (11), M1 and M2 can be made polynomial-time.

96 D. Hofheinz and D. Unruh

The rest of this proof follows an idea similar to that of the proof of Theo-
rem 2. For showing that (M̂1, S) ≥poly

sec (M̂2, S), we construct a simulator A2 that
can solve any puzzle H can solve, and for showing (M̂1, S) �

uni,poly
sec (M̂2, S) we

construct a H which can solve some puzzles A2 cannot solve.
For showing (M̂1, S) ≥poly

sec (M̂2, S), let a real configuration (M̂1, S,H,A1) ∈
ConfM̂2(M̂1, S) be given.

We sketch how to view H as a PPT-algorithm B: B(1k, q′, h) simulates a run
of the collection [{H,A1,M1}] with security parameter k (auxiliary input h is
ignored); only a possible message q from M1 to H or A1 on user puz or adv puz
is substituted by q′. B outputs H’s answer aH (i.e., M1’s second user?-input), or
⊥, if M2 never receives such an aH.

Let f(k) = kc for the c ∈ N that arises from (10) for this B. Let C be
the PPT-algorithm from (11) when setting d = c. So intuitively, C is able to
solve (except with negligible error) any puzzle that H can solve. Similar to the
construction of the simulator A2 in the proof of Theorem 2 (cf. also Figure 2),
let S be a machine which places itself between A1 and M1. A1’s ports puz adv?,
adv!, and adv�! are renamed to puz adv?, adv!, and adv

�
!, respectively. Finally,

A2 is the combination of A1 and this machine S.
The idea of S is simple: Whenever A1 sends a (possibly wrong) solution of a

puzzle of hardness f(k) to M2, S solves the puzzle and sends a correct solution
to M2. This will allow to show indistinguishability, since H will only notice that
it runs with the ideal protocol if A2 sends a wrong solution to M2 for a puzzle
H was able to solve.

More formally, S immediately forwards all messages from M2 to A2. However,
the first message q on adv puz is stored. When A1 sends the second message to M2
via adv, that message is replaced by a solution c← C(1k, q) and then forwarded
to M2.

Using a suitable length function, S can be made polynomial-time. Similar
to Figure 2, let A2 be the combination of S and A1 (with renamed ports).
S only substitutes messages between M1 and A1, and does not change the
scheduling.

We can now observe the following: First, if we can show that for the output
b = vH ∧ ¬vA by M2, it is b = 1 with only negligible probability, then H’s views
when running with the real and the ideal protocol are indistinguishable, and
thus (M̂1, S) ≥poly

sec (M̂2, S).
Second, consider the definition of B. We can define B′ completely analogous,

using A2 and M2 instead of A1 and M1. By noticing that H’s answer to the puzzle
is chosen before M1 or M2 outputs b, we see that B and B′ have the same output
distributions.

Let vA and vH denote the corresponding predicates calculated by M2 in a
run of the ideal protocol, where we set vA = ⊥ and vH = ⊥ if the respective
variable predicate is never determined (this can happen only when no answer to
the respective puzzle is made).

Comparing Two Notions of Simulatability 97

By (10), the following is negligible:

sup
t≥kc,|h|≤ke

Pr
[
(q, a)← G(1k, t) : V(1k, a,B(1k, q, h)) = 1

]
≥ Pr

[
t← D(1k), (q, a)← G(1k, t) : V(1k, a,B(1k, q, 0)) = 1 ∧ t ≥ kc

]
(∗)
= Pr [vH = 1 ∧ t ≥ kc]
≥ Pr [vH = 1 ∧ vA = 0 ∧ t ≥ kc] . (12)

(Note that in the last two terms of (12), t denotes the t chosen by M2.) These
inequalities hold for all sufficiently large k. To see (∗), note that M2 chooses
t, q, a via t ← D(1k), (q, a) ← G(1k, t), and then calculates vH via V(1k, a, aH).
Further B(1k, q, 0) generates aH by simulating the ideal configuration for given
q, so (∗) follows.

Since A2 solves the puzzle with overwhelming probability for t < kc (it uses C,
which again does so by (11)), the following is negligible:

Pr [vA = 0 ∧ t < kc]
≥ Pr [vH = 1 ∧ vA = 0 ∧ t < kc] . (13)

By (12,13), the probability Pr [vH = 1 ∧ vA = 0] is negligible, too, therefore
we can conclude (M̂1, S) ≥poly

sec (M̂2, S).
If we allow non-uniform honest users, we have to modify the definition of B

as follows: B(1k, q′, h) runs a simulation as above, but now h is given to the
non-uniform honest user as auxiliary input. Then, for some function h̃ (map-
ping the security parameter to the auxiliary input), B(1k, q′, h̃(k)) simulates the
network containing the non-uniform honest user H. Replacing B(1k, q, 0) with
B(1k, q, h̃(k)) in (12) yields a valid proof for the non-uniform case.

Note that this construction even applies when the auxiliary input h̃ of the
honest user H is chosen in dependence of the simulator (as with the “Specialized-
simulator UC” formulation in [Lin03]).

The remaining statement (M̂1, S) �≥uni,poly
sec (M̂2, S) can be shown in a similar

way: We define a family of honest users Hd, such that no simulator will be able
to solve all puzzles these Hd can solve. Formally:

For any d, let Cd be the puzzle-solver C whose existence is guaranteed by (11)
for that d. Then Hd is the user having ports {user!, user�!, out?, puz user?, init?}
and running the following program: Upon the first activation via init?, send (and
schedule) a non-empty message to M1. When receiving q via puz user? from M1,
let c← Cd(1k, q) and send (and schedule) c to M2.

The real adversary A1 has ports {adv!, adv�!, init!, init�!, puz adv?} and runs
the following program: Upon the first activation, activate Hd via init, and upon
any further activation send and schedule 1 to M2 via adv.

The resulting network is depicted in Figure 4.
We now assume for contradiction that (M̂1, S) ≥uni,poly

sec (M̂2, S). Because
then confd

1 := (M̂1, S,Hd,A1) ∈ ConfM̂2(M̂1, S) for all d, there is a polyno-
mial simulator A2, s.t. for all d, confd

2 := (M̂2, S,Hd,A2) ∈ Conf(M̂2, S) and

98 D. Hofheinz and D. Unruh

�
�

� �

� �

user

adv

puz adv
A1

Hd

M1

init

out

puz user

Fig. 4. The configuration confd
1

view confd
1
(Hd) ≈poly view confd

2
(Hd). (14)

Similar to the construction of B in the first part of this proof, let Bd(1k, q′, h)
simulate a run of the collection [{Hd,A2,M2}] with security parameter k (aux-
iliary input h is ignored); only a possible message q from M2 to H or A1 on
user puz or adv puz is substituted by q′. Bd outputs A2’s answer aA (i.e., M2’s
second adv?-input), or ⊥, if M2 never receives aA.

It is easy to see that A2’s answers do not depend on Hd’s answers, therefore
Bd is independent of d.

Now, by (10), there is some c, s.t.

sup
t≥kc,|h|≤ke

Pr
[
(q, a)← G(1k, t) : V(1k, a,B0(1k, q, h)) = 1

]
is negligible.

We will now examine the situation, where Hc+1 runs with A2,M2; that is,
we consider runconfc+1

2
. Let as above vH and vA denote the corresponding vari-

ables of M2, with vH = ⊥ or vA = ⊥ if the corresponding variable is not
set.

First note, that by definition of D, it is

Pr
[
t← D(1k) : kc ≤ t ≤ kc+1] ≥ 1

k (15)

for sufficiently large k.
By definition of c and (10), the following is overwhelming:

min
kc≤t≤kc+1

Pr
[
(q, a)← G(1k, t) : V(1k, a,B0(1k, q, 0)) �= 1

]
≤ Pr

[
t← D(1k), (q, a)← G(1k, t) : V(1k, a,B0(1k, q, 0)) �= 1 | kc ≤ t ≤ kc+1]

= Pr
[
t← D(1k), (q, a)← G(1k, t) : V(1k, a,Bc+1(1k, q, 0)) �= 1 | kc ≤ t ≤ kc+1]

(∗∗)
= Pr

[
vA �= 1 | kc ≤ t ≤ kc+1] . (16)

Here (∗∗) is shown like (∗) in the first part of the proof.
Note further that by definition of Hd (in the particular case d = c + 1) and

(11), and considering (15), we have that

Pr
[
vH �= 0 | kc ≤ t ≤ kc+1] (17)

is overwhelming.

Comparing Two Notions of Simulatability 99

Combining (17) and (16), we conclude that

Pr
[
vH �= 0 ∧ vA �= 1 | kc ≤ t ≤ kc+1] ≤ Pr

[
b = 1 ∨ b = ⊥ | kc ≤ t ≤ kc+1]

are both overwhelming (consider that M2’s output is b = 0 only if vH and vA are
defined and ¬vH ∨ vA). Using (15), we finally have that

Pr [b = 1 ∨ b = ⊥]

is non-negligible. Since in the run of the real configuration confc+1
1 , it is b = 0

with overwhelming probability, and b shows up in Hc+1’s view, this is a contra-
diction to (14) and shows (M̂1, S) �≥uni,poly

sec (M̂2, S). ��

5 Conclusion

We have separated standard and universal simulatability in the case of computa-
tional and statistical security. This shows that these security notions are indeed
different. However, it would be nice to know whether there is a less “artificial”
separating example than ours. In particular, it is not clear whether there is a
more “cryptographic” example.

We have also shown that for perfect security, standard and universal simu-
latability coincide. This result may ease security proofs—showing standard sim-
ulatability automatically shows universal simulatability.

Acknowledgements

We thank Ran Canetti, Jörn Müller-Quade, and Rainer Steinwandt for interest-
ing and valuable discussions. Furthermore, we thank the anonymous referees for
helpful comments.

References

[Bac04] Michael Backes. E-mail communication with the authors, June 2004.
[BPW04a] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general com-

position theorem for secure reactive systems. In Moni Naor, editor, Theory
of Cryptography, Proceedings of TCC 2004, number 2951 in Lecture Notes
in Computer Science, pages 336–354. Springer-Verlag, 2004. Online avail-
able at http://www.zurich.ibm.com/security/publications/2004/
BaPfWa2004MoreGeneralComposition.pdf.

[BPW04b] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asyn-
chronous reactive systems. IACR ePrint Archive, March 2004. Online
available at http://eprint.iacr.org/2004/082.ps.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic pro-
tocols. Journal of Cryptology, 3(1):143–202, 2000. Full version online
available at http://eprint.iacr.org/1998/018.ps.

100 D. Hofheinz and D. Unruh

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42th Annual Symposium on Founda-
tions of Computer Science, Proceedings of FOCS 2001, pages 136–
145. IEEE Computer Society, 2001. Full version online available at
http://eprint.iacr.org/2000/067.ps.

[Can04] Ran Canetti. Personal communication with one of the authors at TCC,
February 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In 34th
Annual ACM Symposium on Theory of Computing, Proceedings of STOC
2002, pages 494–503. ACM Press, 2002. Extended abstract, full version
online available at http://eprint.iacr.org/2002/140.ps.

[Lin03] Yehuda Lindell. General composition and universal composabil-
ity in secure multi-party computation. In 44th Annual Sympo-
sium on Foundations of Computer Science, Proceedings of FOCS
2003, pages 394–403. IEEE Computer Society, 2003. Online
available at http://www.research.ibm.com/people/l/lindell/PAPERS/
gc-uc.ps.gz.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preser-
vation of secure reactive systems. In 7th ACM Conference on Com-
puter and Communications Security, Proceedings of CCS 2000, pages
245–254. ACM Press, 2000. Extended version online available at
http://www.semper.org/sirene/publ/PfWa_00CompInt.ps.gz.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous re-
active systems and its application to secure message transmission. In
IEEE Symposium on Security and Privacy, Proceedings of SSP 2001, pages
184–200. IEEE Computer Society, 2001. Full version online available at
http://eprint.iacr.org/2000/066.ps.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-
lock puzzles and timed-release crypto. Technical Report
MIT/LCS/TR-684, Massachusetts Institute of Technology, February
1996. Online available at http://theory.lcs.mit.edu/~rivest/
RivestShamirWagner-timelock.ps.

A Review of Reactive Simulatability

In this section, we present the notion of reactive simulatability. This introduction
only very roughly sketches the definitions, and the reader is encouraged to read
[BPW04b] for more detailed information and formal definitions.

Reactive Simulatability is a definition of security which defines a protocol M̂1
(the real protocol) to be as secure as another protocol M̂2 (the ideal protocol, the
trusted host), if for any adversary A1 (also called the real adversary), and any
honest user H, there is a simulator A2 (also called the ideal adversary), s.t. the
view of H is indistinguishable in the following two scenarios:

– The honest user H runs together with the real adversary A1 and the real
protocol M̂1

– The honest user H runs together with the simulator A2 and the ideal proto-
col M̂2.

Comparing Two Notions of Simulatability 101

p?� �
�Sending machine Receiving machine

Buffer p̃

p!

Scheduler for buffer p̃

p�!

Fig. 5. A connection

Note that there is a security parameter k common to all machines, so that
the notion of indistinguishability makes sense.

This definition allows to specify some trusted host—which is defined to be
a secure implementation of some cryptographic task—as the ideal protocol, and
then to consider the question, whether a real protocol is as secure as the trusted
host (and thus also a secure implementation of that task). In order to under-
stand the above definitions in more detail, we have to specify what is meant by
machines “running together”. Consider a set of machines (called a collection).
Each machine has so-called simple in-ports (written p?), simple out-ports (writ-
ten p!), and clock out-ports (written p�!). Ports with the same name (p in our
example) are considered to belong together and are associated with a buffer p̃.
These are then interconnected as in Figure 5 (note that some or all ports may
originate from the same machine). Now, when a collection runs, the following
happens: At every time, exactly one machine is activated. It may now read its
simple in-ports (representing incoming network connections), do some work, and
then write output to its simple out-ports. After such an activation the contents
of the simple out-ports p! are appended to the queue of messages stored in the
associated buffer p̃. However, since now all messages are stored in buffers and will
not be delivered by themselves, machines additionally have after each activation
the possibility to write a number n ≥ 1 to at most one clock out-port p�!. Then
the n-th undelivered message of buffer p̃ will be written to the simple in-port p?
and deleted from the buffer’s queue. The machine that has the simple in-port
p? will be activated next. So the clock out-ports control the scheduling. Usually,
a connection is clocked by (i.e., the corresponding clock out-port is part of) the
sender, or by the adversary. Since the most important use of a clock out-port is
to write a 1 onto it (deliver the oldest message in the buffer), we say a machine
clocks a connection or a message when a machine writes a 1 onto the clock port
of that connection.

At the start of a run, or when no machine is activated at some point, a
designated machine called the master scheduler is activated For this, the master
scheduler has a special port, called the master clock port clk�?.

Note that not all collections can be executed, only so-called closed collections,
where all connections have their simple in-, simple out-, and clock out-port. If a
collection is not closed, we call the ports having no counterpart free ports.

In order to understand how this idea of networks relates to the above sketch of
reactive simulatability, one has to get an idea of what is meant by a protocol. A

102 D. Hofheinz and D. Unruh

protocol is represented by a so-called structure (M̂, S), consisting of a collection
M̂ of the protocol participants (parties, trusted hosts, etc.), and a subset of
the free ports of M̂ , the so-called service ports S. The service ports represent
the protocol’s interface (the connections to the protocol’s users). The honest
user can then only connect to the service ports (and to the adversary), all other
free ports of the protocol are intended for the communication with the adversary
(they may e.g. represent side channels, possibilities of attack, etc.). Since usually
a protocol does not explicitly communicate with an adversary, such free non-
service ports are more commonly found with trusted hosts, explicitly modelling
their imperfections.

With this information we can review the above “definition” of security.
Namely, the honest user H, the adversary, and the simulator are nothing else
but machines, and the protocols are structures. The view of H is then the re-
striction of the run (the transcripts of all states and in-/output of all machines
during the protocols execution, also called trace) to the ports and state of H.

The definition, as presented so far, still has one drawback. We have not in-
troduced the concept of a corruption. This can be accommodated by defining
so-called systems. A system is a set of structures, where to each “corruption sit-
uation” (set of machines, which are corrupted) one structure corresponds. That
is, when a machine is corrupted, it is not present anymore in the corresponding
structure, and the adversary takes its place. For a trusted host, the correspond-
ing system usually consists of structures for each corruption situation, too, where
those connections of the trusted host, that are associated with a corrupted party,
are under the control of the adversary.

We can now refine the definition of security as follows: A real system Sys1 is
as secure as an ideal system Sys2, if every structure in Sys1 is as secure as the
corresponding structure in Sys2.

A major advantage of a security definition by simulatability is the possibility
of composition. The notion of composition can be sketched as follows: If we have
on structure or system A (usually a protocol) implementing some other structure
or system B (usually some primitive), and we have some protocol XB (having
B as a sub-protocol, i.e. using the primitive), then by replacing B by A in XB ,
we get a protocol XA which is as secure as XB . This allows to modularly design
protocols: first we design a protocol XB , and then we find an implementation
for B.

A.1 Glossary

In this section we explain the technical terms used in this paper. Longer and
formal definitions can be found in [BPW04b].

[Ĉ][Ĉ][Ĉ]: Completion of the collection Ĉ. Results from adding all missing buffers
to Ĉ. Confx(M̂2, S)Confx(M̂2, S)Confx(M̂2, S): Set of ideal configurations that are possible for structure
(M̂2, S). ConfM̂2

x (M̂1, S)ConfM̂2
x (M̂1, S)ConfM̂2
x (M̂1, S): Set of real configurations possible for structure

(M̂1, S). ports(M)ports(M)ports(M): The set of all ports, a machine or collection M has.
to clock: To write 1 onto a clock out-port. EXPSMALL : The set
of exponentially small functions. NEGL: The set of negligible functions

Comparing Two Notions of Simulatability 103

(asymptotically smaller than the inverse of any polynomial). buffer: Stores
message sent from a simple out- to a simple in-port. Needs an input from a clock
port to deliver. clock out-port p�!p�!p�!: A port used to schedule connection.
closed collection: A collection is closed, if all ports have all their necessary
counterparts. collection: A set of machines. combination: The combination
of a set of machines is a new machine simulating the other machines. A set of
machines can be replaced by its combination without changing the view of any
machine. composition: Replacing sub-protocols by other sub-protocols.
computational security: When in the security definition, honest user and
adversary are restricted to machines running in polynomial time, and the views
are computationally indistinguishable. configuration: A structure together
with an honest user and an adversary. free ports: The free ports of a
collection are those missing their counterpart. honest user: Represents
the setting in which the protocol runs. Also called environment. intended
structure: A structure from which a system is derived making a structure for
every corruption situation. master clock port clk�?clk�?clk�?: A special port by which
the master scheduler is activated. master scheduler: The machine that gets
activated when no machine would get activated. perfect security: When
in the security definition, the real and ideal run have to be identical, not only
indistinguishable. Further the machines are completely unrestricted.11 run:
The transcript of everything that happens while a collection is run. Formally
a random variable over sequences. runconf,k,l is the random variable of the run
when running the configuration conf upon security parameter k, restricted to
its first l elements. If k is omitted, a family of random variables is meant. If l
is omitted, we mean the full run. service ports: The ports of a structure to
which the honest user may connect. They represent the interface of the protocol.
As service ports are most often ports of a buffer, they are sometimes specified
through the set Sc of their complementary ports; Sc consists of all ports which
directly connect to a service port. simple in-port p?p?p?: A port of a machine,
where it can receive messages from other machines. simple out-port p!p!p!: As
simple in-port, but for sending. statistical security: When in the security
definition the statistical distance of polynomial prefixes of the views have a
statistical distance which lies in a set of small functions SMALL (in the security
parameter k). Usually SMALL = NEGL. Further the machines are completely
unrestricted.110 structure: A collection together with a set of service ports,
represents a protocol. view: A subsequence of the run. The view(M) of some
collection or machine M consists of the run restricted to the ports and states of
M . Possible indices are as with runs.

11 In [BPW04b] a machine can in every activation for a given input and current state
only reach one of a finite number of states (this convention has been chosen for
simplicity [Bac04]). However, this cannot even model the simple Turing machine
that tosses (within one activation) coins until a 1 appears, and then stores the
number of coin tosses. Therefore we will here adopt the convention that each state
can have a countable number of potential successor states, from which one is chosen
following some distribution depending on the input and the current state.

Relaxing Environmental Security: Monitored
Functionalities and Client-Server Computation

Abstract. Definition of security under the framework of Environmental Security
(a.k.a Network-Aware Security or Universally Composable Security) typically re-
quires “extractability” of the private inputs of parties running a protocol. Formal-
izing concepts that appeared in an earlier work [19], we introduce a framework of
“Monitored Functionalities,” which allows us to avoid such a requirement from
the security definition, while still providing very strong composition properties.
We also consider a specialization of the Environmental Security framework by
designating one party as a “server” and all other parties as clients. Both these con-
tributions in the work are aimed at being able to provide weaker Environmental
Security guarantees to simpler protocols. We illustrate the usability of the Moni-
tored Functionalities framework by providing much simpler protocols in the plain
model than in [19] for some limited functionalities in the server-client model.

1 Introduction

At the onset of theoretical investigations into defining and achieving cryptographic se-
curity, idealized settings involving just one protocol were used. A highly successful
theory was developed which gave satisfactory solutions to a multitude of cryptographic
problems like encryption and multi-party computation, reducing the nebulous questions
of security to concrete problems in computational complexity theory. Having success-
fully tackled these problems, this nascent field of computer science started focusing on
more challenging problems, thrown its way by the new requirements of the fast chang-
ing world of information technology.

An important challenge was to enhance the theory so that it could handle less ideal-
ized settings relevant to the modern world – where there are many computers connected
to an unreliable network. Rather annoyingly, this complicated the situation spectacu-
larly. Definitions of security turned out to be inadequate as new attacks came into the
picture. Protocols which were provably secure earlier either became insecure, or worse
still, remained open challenges to be proven secure or insecure.

Two important works which explored these complications identified Non-
malleability [8] and Concurrent simulation [9] as two most basic problems to be stud-
ied. Since then a significant amount of work went into tackling these basic aspects.

� Part of this work was done while the author was an intern at IBM TJ Watson Research Center.
�� Research done while the author was at Princeton University. Research supported in part by

NSF ITR, NSF Cybertrust, and the Alfred P. Sloan Foundation.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 104–127, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Manoj Prabhakaran� and Amit Sahai��

Princeton University and UCLA
{mp, sahai}@cs.princeton.edu

Relaxing Environmental Security: Monitored Functionalities 105

While there has been quite some success in resolving many challenges, the new pro-
tocols kept getting more complicated and less efficient. A fresh look at the problem
was taken in [3], which offered a comprehensive definition of security, namely that of
Environmental Security (ES, for short) or Network-Aware Security. (It was introduced
in [3] under the name Universally Composable (UC) Security; hence we shall refer to
this version of Environmental Security as ES/UC.) ES/UC security, at once subsumes
non-malleability and concurrency. This allowed simpler and intuitive compositions of
protocols. Using a setup called the “common reference string,” (where all parties are
provided a string produced by a trusted party), or alternatively using a trust assumption
of “honest majority” (where majority of players among a pre-defined subset of parties
are trusted to be honest), it was shown how to do “secure multi-party computation,” ar-
guably the ultimate cryptographic task [3, 7]. However it fell short of offering a viable
solution to the protocol designers: it was shown that to achieve provable security under
this new model, some “trust assumption” would be necessary in most cases of inter-
est [3, 4, 6]. Recently [19] showed a way to get around the need for trust assumption by
modifying the ES/UC framework to obtain what is called the generalized Environmen-
tal Security (gES), or generalized Network-Aware Security, framework.

This Work. Environmental Security (ES/UC as well as gES) addresses the concern that
protocols are run in an arbitrary environment along with other processes and network
activity. However the comprehensive definitions of security offered by these frame-
works tend to require complex protocols. The thesis of this work is that we need to
develop relaxed notions of Environmental Security which will help us prove some level
of security for simpler protocols, at least for certain limited applications. We explore
two separate directions simultaneously.

First, we develop a model intended to remove some of the concerns of universal
composability from environmental security. The model restricts the protocol executions
for which security analysis will be applied, by requiring “fixed roles” for the partic-
ipants across all protocol executions. (This can be viewed as a generalization of the
setup introduced in concurrent zero knowledge [9], to the ES setting.) This restriction
frees us from concerns of certain “man-in-the-middle” attacks (or malleability of the
protocols). Our interest in the client-server model is as a useful theoretical construct
in itself – a platform for tackling some of the Environmental Security issues without
having to deal with all the composition issues. For the protocols in this work, use of this
model is not crucial, but it leads to somewhat simpler protocols, simpler assumptions
and simpler analysis.

Second – and this is the main focus in this work – we introduce a significant relax-
ation of the security requirements in the ES framework, in a new framework of Mon-
itored Functionalities. Indeed, [19] shows how to relax ES/UC, without much loss in
applicability.1 gES removes the restriction in the ES/UC framework that the “simula-
tion” used to define security should be computationally bounded, and still manages to
retain Universal Composability. However the gES protocols in [19] are still complex.

1 Technically, security in gES framework is not a relaxation of security in ES/UC framework,
but involves a relaxation followed by a strengthening, which in general makes it incomparable
with the latter.

106 M. Prabhakaran and A. Sahai

We go one step further, and redefine security in such a way that one more requirement
from the ES/UC framework is removed – namely that of “extractability.” We show how
to define meaningful notions of security without the extractability requirement, and yet
obtain Environmentally Secure and Universally Composable protocols. This is achieved
by introducing a new entity alongside the “trusted party” in the ideal world: it is a com-
putationally unbounded “monitor” which can watch over the ideal world execution and
raise an alarm if some specific condition is violated.

Two of our protocols (for commitment and zero-knowledge proofs) are adapted
from [19], with simplifications allowed by the client-server model. The results in [19]
do show that those protocols can be used to obtain full-fledged gES security for these
tasks (against static adversaries, without the client-server restriction, and without re-
sorting to monitored functionalities). However it is far from a direct use: they are used
as subroutines within a larger protocol for commitment. Our attempt is to use these
protocols in a more direct fashion and obtain much simpler protocols.

Our Results. We introduce a new framework of Environmental Security, where the cor-
rectness and security requirements of a protocol are separately defined (unlike [3, 19]).
Further, we consider a model, called “client-server model,” which considers restricted
patterns of executions of the protocols analysed. Both are aimed at getting relaxations of
the existing ES frameworks, so that possibly weaker levels of Environmental Security
can be defined and proven for simpler protocols.

Then we show how to realize tools like commitment, zero knowledge proof and
commit-and-prove functionalities in this setting. We illustrate the use of these tools in
implementing a special class of functionalities called the “server-client” functionali-
ties. All our protocols are very simple and relatively efficient (compared to protocols
in ES/UC and gES models). The protocols are all in the “plain-model” (no common
reference string, or other trust assumptions), and are much more efficient than even the
ones in [19] (which solve a more difficult problem).

We point out that the 4 message zero knowledge protocol we give is, in particular, a
concurrent zero knowledge argument with only 4 messages, wherein the simulator (and
corrupt verifiers) are allowed some super polynomial computational power. Previous
results (which worked with polynomial time simulators) gave either protocols with a
large number of rounds (dependent on the security parameter), or were dependent on
the number of verifiers that the protocol was secure against. Further, our protocol is a
simple variant of a well-known simple protocol which has been around for many years,
but for which no such strong composability has been proven till now.

Limitations of Our Results. There are some serious limitations to our current results.
It is not clear if the approach in this work can directly yield protocols for the most
general kind of functionalities. Firstly, our 2-party protocol is for a very special kind
of multi-party computations only, which we term the server-client computation. (In a
server-client computation, the client receives as output some function of its input and
the server’s input. But the server receives as output, the client’s input.)

But a more serious limitation lies with the nature of security guarantee provided.
Along with correctness and secrecy guarantees, one would like to have a guarantee
that the server’s input to the function is independent of the client’s input. The security

Relaxing Environmental Security: Monitored Functionalities 107

definition provided in this work does not make this last guarantee. Nevertheless, we
sketch how this can be remedied under the condition that the client never uses its input
previously (the full technical details of which will be published elsewhere).

Despite the limitations, our new framework is a step in the direction of formalizing
relaxed notions of security (relaxed, but still accounting for a general environment),
which will help prove security guarantees for simpler and more efficient protocols.

Previous Results. As mentioned above [3, 17] introduced the ES/UC framework, as a
model to consider general composability and complex environments. But in the plain-
model very little was available in terms of positive results. Recently, [19] introduced a
modified notion of security, by allowing the IDEAL world environment and adversary
access to super-polynomial powers. This made it possible to achieve secure multi-party
computation in the plain model. However the protocols in [19] are still much more
involved than the ones presented here. An earlier attempt at reducing the requirements
of the ES/UC framework was in [5], which also introduced a semi-functionality-like
notion in the context of secure Key-Exchange.

Work on concurrent model stretches back to [9], who introduced it in the con-
text of Zero Knowledge proofs, followed by a sequence of works in the same con-
text [20, 11, 18], where an arbitrary polynomial number of concurrent executions can
be handled, but with the number of rounds in the protocol growing with the security
parameter. [1] gave a constant round protocol for bounded concurrent ZK, in which the
communication complexity depended on the number of concurrent sessions that can be
handled. A similar result, but with similar limitations, was shown for general 2-party
computations (general, as opposed to our Client-Server Computation) recently [12, 16].
All these protocols are somewhat complicated and conceptually involved. Relaxing the
requirement of polynomial time simulation in the definition of security was used in
some earlier works [13, 14] too, in the context of zero knowledge proofs.

Connections with [19]. Our starting point is the two “semi-functionalities” for com-
mitment and zero-knowledge proofs, introduced in [19]. There they are used for the
specific purpose of implementing a (full-fledged gES) commitment functionality. How-
ever we seek to directly use them for “end uses.” Our new framework for monitored
functionalities lets us extend the approach there to a formal definition of security. We
introduce two more semi-functionalities, namely commit-and-prove and server-client
computation. We give protocols for these semi-functionalities and also prove that these
semi-functionalities have the required correctness property in our framework. We then
observe that for such functionalities to be more useful, it would help if the correctness
guarantees on the semi-functionalities are strengthened. We show that such a strength-
ening can indeed be formalized and proven (see Section 6.2).

2 Basic Ideas

The next few subsections introduce the novel tools and concepts we employ. All these
are new, except the ideas in Section 2.3 (which were recently introduced in [19]).

108 M. Prabhakaran and A. Sahai

2.1 Client-Server Model

We present the Client-Server model as a simplified setting to investigate some of the
Environmental Security issues, without having to deal with all the composition issues.
In this model, the security guarantees will be given only to sessions of protocols in all
of which the participants have the same “fixed roles.” The inspiration for this model is
the model used for concurrent zero knowledge proofs [9].

The specific fixed role restriction in our model is as follows. There is a special
party called the server S. All the other parties are considered clients. We shall use K to
denote a generic client. We allow only static adversaries, i.e., parties can be corrupted
only at the beginning of the system. (Recall that the concurrent ZK-model also has
a static adversary.) In this model we shall typically investigate functionalities where S

plays a special role: for instance, a commitment functionality where S is the committing
party (and a client receives the commitment), or a zero knowledge proof where S is the
prover. We also consider a class of multi-party computation problems where S has a
special role. Universal composition in the client-server model is limited to concurrent
sessions of the protocols where the same party plays the server in all sessions. Thus, in
particular, we do not offer general non-malleability, just as in the case of concurrent zero
knowledge. However unlike there, we require environmental security: i.e., the security
definition incorporates the presence of an arbitrary environment.

Note that the client-server model does not have a different definition of security, but
rather inherits it from the underlying ES model. (The new security definition we intro-
duce in this work is given in Section 2.2). It only specifies restrictions on the protocol
executions for which security will be defined.

The main purpose of introducing the client-server model is to allow simplification
of protocols, by exploiting the asymmetry in the model. It allows us to use simpler
assumptions, as will be described in Section 2.3.

2.2 A New Framework for Specifying Security

In the concurrent ZK-model security requirement (for concurrent ZK proofs) is spec-
ified by the two properties: zero-knowledge (secrecy) and soundness (correctness). In
contrast, in the ES/UC model security requirements are specified by giving an ideal
functionality, which totally captures both these requirements. We propose a new frame-
work, where we still require Environmental Security for the more subtle secrecy re-
quirement. But the correctness requirement is specified separately, as in the concurrent
ZK model. Below we elaborate on this.

“Semi-Functionalities” and “Monitors.” In the ES/UC-model, a 2-party IDEAL func-
tionality usually interacts with both the parties in an ideal way. For instance the IDEAL

commitment functionality would involve receiving a value from the sender secretly, and
notifying the receiver (and adversary) of the receipt, and later on receiving a command
to reveal from the sender, sending the original value to the receiver. This functionality
makes sure that the sender is bound to a value on committing (this is the “correctness
guarantee”) and that the value remains secret (“secrecy guarantee”). The idea behind
defining a semi-functionality is to free one of these requirements from the IDEAL func-
tionality, and somehow enforce that requirement separately.

Relaxing Environmental Security: Monitored Functionalities 109

Commitment: 〈FC̃OM〉

Semi-Functionality FC̃OM:

COMMIT PHASE

S ↔ FC̃OM : Arbitrary protocol

FC̃OM → K, S : commit

REVEAL PHASE

S ↔ FC̃OM : Arbitrary Protocol

FC̃OM → K, S : (reveal, b)

b determined

arbitrarily by FC̃OM

Completeness: If S is honest, FC̃OM never
aborts.
Monitor: When FC̃OM sends the message
commit, the monitor must record one value
b∗ as the committed value. If S is honest this
value must be the intended value for commit-
ment. Later if FC̃OM sends (reveal, b) but
b �= b∗ then the monitor notifies the receiver
by raising an alarm.

(a) Commitment

Zero Knowledge Proof: 〈FZ̃K〉
Parametrized by a polynomial time relation
R : {0, 1}�1 × {0, 1}�2 → {0, 1}. Common
input to S and K: x ∈ {0, 1}�1 .
Semi-Functionality:

S ↔ FZ̃K : Arbitrary protocol

FZ̃K → K, S : (proven, x)

Completeness: If S is honest, FZ̃K sends the
proven message to K.
Monitor: If FZ̃K sends the message
(proven, x) to the verifier, and there
exists no y ∈ {0, 1}�2 such that R(x, y) = 1
then the monitor notifies the verifier by
raising an alarm.

(b) Zero Knowledge Proof

Commit and Prove: 〈FC̃AP〉
Parametrized by a polynomial time relation
R : {0, 1}�1 ×{0, 1}�2 ×{0, 1}�3 → {0, 1}.

Semi-Functionality:

COMMIT PHASE:

S ↔ FC̃AP : Arbitrary protocol

FC̃AP → K, S : commit

PROOF PHASE (CAN BE MULTIPLE TIMES):

S → FC̃AP → K, S : x

S ↔ FC̃AP : Arbitrary Protocol

FC̃AP → K, S : (proven, x)

Completeness: Interacting with an honest
prover S, FC̃AP never aborts.
Monitor: At the end of the commit phase,
the monitor internally records a value w. If
the FC̃AP sends (proven, x) later in the proof
phase then the monitor checks if there is a
value y such that R(w, x, y) = 1. If not it
raises an alarm.

(c) Commit and Prove

Client-Server Computation: 〈FC̃SC〉
Parametrized by a function F .
Semi-Functionality:

S ↔ FC̃SC : Arbitrary Protocol

FC̃SC → K, S : commit

K → FC̃SC → S, S : xK

S ↔ FC̃SC : Arbitrary Protocol

FC̃SC → K, S : z (z determined

arbitrarily by FC̃SC)

Completeness: Interacting with an honest
prover S with input xS , if K sends it input xK ,
FC̃SC sends xK to S and z = F (xS , xK) to K.
Monitor: At the end of the first step, the
monitor internally records a value x∗. If FC̃SC

sends xK to S and z to K, the monitor checks
if z = F (x∗, xK). If not it raises an alarm.

(d) 2-Party Client-Server Computation

Fig. 1. Monitored Functionalities 〈FC̃OM〉, 〈FZ̃K〉, 〈FC̃AP〉 and 〈FC̃SC〉

110 M. Prabhakaran and A. Sahai

A monitored functionality (e.g., 〈FC̃OM〉 described in Figure 1(a)) consists of a semi-
functionality (FC̃OM in Figure 1(a)) and some conditions on the semi-functionality. The
semi-functionality is syntactically just a functionality, but it is not “ideal” enough. It is
typically defined based on an arbitrary protocol. For instance the specification of FC̃OM

consists of arbitrary interaction between the server and FC̃OM (which is unspecified in
Figure 1(a), but will be later specified in such a way that binding property can be argued
separately). Note that the arbitrary protocol is carried out between the semi-functionality
and a party, and not between the two parties. This is why the semi-functionality guar-
antees secrecy – in the case of FC̃OM, the only message it sends to the receiver and the
adversary before the reveal phase is commit. To complete the specification of the ideal
functionality we need to also give a guarantee that the semi-functionality is functional
(i.e., it can be used by the server to make commitments) and correct (i.e., it is binding
on the server). These requirements are specified separately as properties that the semi-
functionality needs to satisfy. It is all these three requirements together that make up
the specification of the ideal commitment functionality. We shall call such a collection
of requirements a monitored functionality.

IDEAL world of Monitored Functionality. The Monitored Functionality is proposed as
an IDEAL functionality, which captures all the security properties of a given task. In
Figure 1 we show the four Monitored Functionalities used in this work. We point out
some of the important features of this new formalism.

In Figure 1, the semi-functionalities are not fully specified, but allows arbitrary
interaction between the server and the semi-functionalities. Once a protocol is cho-
sen, the semi-functionality will be specialized to suit that protocol. That is, the semi-
functionality will carry out the client’s part in the protocol. Note that the view of the
server is unchanged if we replace the interaction with the semi-functionality by the pro-
tocol with the client. The important thing here is that irrespective of the protocol that
is used, these semi-functionalities are designed to capture the secrecy requirements of
the respective tasks. For instance, in commitment, the only messages sent to the client
are “commit” and “(reveal, b).” Indeed, in all four semi-functionalities the mes-
sages reaching the client and the IDEAL world adversary are exactly those messages
that a corresponding IDEAL functionality in the ES/UC model would specify. The name
semi-functionality is to emphasize that they provide only the secrecy guarantee, and
correctness needs to be ensured separately. But otherwise there is nothing “semi” about
them – technically these are full-fledged functionalities in the ES/UC model.

Next, we draw the reader’s attention to the way the correctness requirement is spec-
ified. For convenience and concreteness, we employ a new notion, called monitors. A
monitor is a conceptual device used to specify the security requirements of a function-
ality. If the security requirement is violated we want the monitor to alert the parties by
“raising an alarm.” Each session of the functionality has its own monitor. A monitor is
a (computationally unbounded) function which can inspect the entire system including
all parties and functionalities (except any other monitors) and maintain its own internal
state. This is in contrast to the PPT functionalities. There is only one way a monitor can
affect the system, namely, by raising an alarm.

Relaxing Environmental Security: Monitored Functionalities 111

Securely Realizing a Monitored Functionality in REAL world. In the REAL world we
would like to have protocols which can replace Monitored Functionalities. That is, if we
replace the IDEAL monitored functionality (i.e., the semi-functionality and monitor) by
a protocol, no environment should be able to detect the difference (we are allowed also
to replace the REAL adversary A, by an IDEAL adversary S). This involves two things:
first the protocol should securely realize the semi-functionality (in the conventional
sense of [3]). But in addition, it should be able to mimic being monitored. But clearly
there are no monitors in the REAL world. So we require that even in the IDEAL world
having the monitor should not be detectable to the environment. Note that this is a
requirement on the functionality, and not on the protocol. However, it depends on the
protocol in that the functionality is fully specified depending on the protocol.

Definition 1. We say a protocol securely realizes a monitored functionality if

1. for every adversary there exists a simulator such that no environment can tell be-
tween interacting with the protocol in the REAL world (running the protocol) and
interacting with the semi-functionality of the monitored functionality in the IDEAL

world (this is the condition for the UC theorem to hold), and
2. there exists a monitor satisfying the specified requirements, such that for any en-

vironment and adversary, the probability that the monitor raises an alarm is neg-
ligible, even when there are other protocols, functionalities and monitors in the
system.

Note that in the above definition, the first condition is stated for a stand-alone set-
ting, as the UC theorem [3, 19] ensures that it holds in a composed setting also. But the
second condition needs to be met for the composed setting, as we do not have a compo-
sition theorem for (computationally unbounded) monitors. (i.e., a monitor may behave
entirely differently when, in some part of the system, a REAL protocol is replaced by an
IDEAL functionality). Hence we need to show the existence of a monitor for the com-
posed setting- i.e., after all REAL protocols have been transformed to IDEAL function-
alities or semi-functionalities. Further there may be other monitors in the system. But
the monitors are independent of each other and the only way a monitor interferes with
the system is by raising an alarm. Hence other monitors can be ignored for analysing
the monitor of a particular session.

Expiring Monitors. For concreteness in our analysis, we shall consider monitors Mτ

which expire after time τ from the start of the protocol. The guarantee given by the
monitor holds only till it expires. But for any τ polynomial in the security parameter,
we shall show that the monitor raises an alarm with negligible probability. Thus for any
τ polynomially large in the security parameter, the guarantee would hold.

Locked States. For our guarantees to be useful, we would often require that the monitor
cannot inspect some parts of the system. In FC̃SC, for example, we would like the moni-
tor to record the server’s input independent of the client’s input. We cannot make such a
guarantee if the client has released its input into the system earlier (either explicitly, or
by giving out a commitment, even if the commitment is perfectly hiding). However, if
the client’s input is kept “locked” and unused until after the sever makes its commitment
step, then we should provide the above guarantee. We do this in Section 6.2.

112 M. Prabhakaran and A. Sahai

2.3 Generalized Environmental Security

We assume that the reader is somewhat familiar with the ES/UC framework [3]. An
IDEALfunctionality is specified to define a task as well as the security requirements
on it. A REAL world protocol is said to securely realize the IDEAL functionality, if
replacing access to the IDEAL functionality by execution of the REAL protocol does
not let the adversaries take advantage of this in any environment. That is, for every
REAL world adversary A, there is an IDEAL world adversary S, such that no environ-
ment will behave differently when in the REAL world (running the protocol), instead
of the IDEAL world (with access to the functionality). All the parties, the adversary,
the environment and the IDEAL functionalities are probabilistic polynomial time (PPT)
machines.

However for most of the interesting cryptographic tasks, there are no protocols
which are secure under the ES/UC model, in the standard model [3, 4, 6]. The only pro-
tocols for these tasks, which are ES/UC secure require some strong trust assumptions
in the model (eg. honest majority, or a trusted common random string) In [19] this diffi-
culty was overcome by altering the definition of security, to obtain a new framework
called the generalized Environmental Security (gES) framework.2 There the IDEAL

world adversary is given extra computational power via oracle access to an exponential
time machine (referred to as the “Imaginary Angel,” or simply Angel). When an imagi-
nary angel Γ is used, the resulting model will be called the Γ-ES model. A protocol for
a functionality is said to Γ-ES-realize the functionality against PPT adversaries, if for
every PPT adversaryA, we can demonstrate a PPT simulator S with oracle access to Γ.

As in [19], here the information provided by the imaginary angel will be about
a hash function. Suitable assumptions of hardness related to this hash function will
be made in Section 2. The specification of the imaginary angel is given in Section 2.
Though our assumptions on the hash function and our imaginary angel are similar to
those in [19], they are somewhat simpler in our case. In fact, we avoid a strong “non-
malleability flavored” assumption. (Correspondingly, however, we restrict ourselves to
the client-server model introduced in Section 2.1.)

[19] proves the composition theorem below for the generalized setting, for any
imaginary angel, which when queried, returns a (probabilistic) function of the set of
corrupted parties and the query. For further details, we refer the reader to [19].

Theorem 1. (Extended Universal Composition Theorem- Informal Statement) [19]
Let C be a class of real-world adversaries and F be an ideal functionality. Let ρ be an
n-party protocol that Γ-ES-realizes F against adversaries of class C. Also, suppose π
is an n-party protocol in the F-hybrid model which Γ-ES-realizes a functionality F’
against adversaries of class C. Then the protocol πρ (obtained from π by replacing in-
vocations of F by invocations of the protocol ρ) Γ-ES-realizes F’ against adversaries
of class C.

Hash Function. As in [19], our computational assumptions have to do with a “hash
function.” However our assumptions are weaker than those there. We assume a hash
functionH : {0, 1}k1 × {0, 1}k2 × {0, 1} → {0, 1}�, with the following properties:

2 In [19] it was called generalized Environmental Security.

Relaxing Environmental Security: Monitored Functionalities 113

A1 (Difficult to find collisions with same prefix): For all PPT circuits M , for a ran-
dom r ← {0, 1}k1 , probability that M(r) outputs (x, y) such that H(r, x, 0) =
H(r, y, 1) is negligible.

A2 (Collisions and Indistinguishability): For every r ∈ {0, 1}k1 , there is a distribution
Dr over the set {(x, y, z)|H(r, x, 0) = H(r, y, 1) = z} �= φ, such that

{(x, z)|(x, y, z) ← Dr} ≈ {(x, z)|x ← {0, 1}k2 , z = H(r, x, 0)}

{(y, z)|(x, y, z) ← Dr} ≈ {(y, z)|y ← {0, 1}k2 , z = H(r, y, 1)}

Further, given sampling access to Dr to a distinguisher, these distributions still
remain indistinguishable.

The last condition essentially says that the hash function is “equivocable”: i.e., for
every r it is possible (but computationally infeasible) to give a z such that z can be
explained as a hash of 0 (H(r, x, 0) for some x) as well as a hash of 1 (H(r, y, 1)
for some y), and both explanations look as if it came from a uniform choice of x or
y. Note that for random oracles all these conditions trivially hold (where k1, k2,
 are
polynomially related).

These assumptions suffice for achieving concurrent Zero Knowledge proofs and
commit-and-prove functionality. To securely realize “client-server computation,” we
make one more assumption (a stronger variety of trapdoor permutations) in Section 5.1.
All these assumptions were used in [19] as well (where, in fact, the assumptions used
are stronger than the ones here).

Imaginary Angel Γ . We specify the imaginary angel Γ that we use through out this
work. Γ first checks if the server S is corrupted or not (recall that we do not allow S

to be adaptively corrupted). If it is corrupted Γ functions as a null-angel, i.e., it returns
⊥ on any query. But if S is not corrupted, then when queried with a string r Γ draws
a sample from Dr described above and returns it. This is very similar to the imagnary
angel used in [19], but slightly simpler.

3 Monitored Commitment and Zero Knowledge Proof

The semi-functionalities FC̃OM and FZ̃K were introduced in [19] where protocols were
given for these semi-functionalities. Further, lemmas were proved there which showed
binding and soundness properties of these functionalities. Our protocols in this section
are very similar to (but slightly simpler than) the corresponding ones in [19]. The proofs
are similar too, except that the binding and soundness properties are now proven in
terms of the probability with which a monitor raises alarm.

3.1 Monitored Commitment

The monitored functionality for Commitment 〈FC̃OM〉 was described in Figure 1(a), as
composed of the Commitment semi-functionalityFC̃OM and a monitor to ensure binding.
Now we give a protocol which realizes this functionality, in Figure 2.

114 M. Prabhakaran and A. Sahai

Commitment Protocol COM

The committing party is the server S, and the receiving party is some client K.

COMMIT PHASE

K → S : r ← {0, 1}k1

S → K : c = H(r, r′, b) where r′ ← {0, 1}k2

REVEAL PHASE

S → K : (b, r′)

K : if H(r, r′, b) = c then accept b as revealed

Fig. 2. Commitment Protocol COM

(Given the protocol, we can go back to the specification of 〈FC̃OM〉 and complete the
semi-functionality specification, by replacing the “Arbitrary protocol” steps with the
corresponding steps from the protocol.)

As mentioned earlier, we call the protocol secure if it achieves the semi-functionality
and there exists a monitor as specified by the functionality, which will raise an alarm
with negligible probability. The following lemmas which assure us of this.

Lemma 1. For any polynomial (in the security parameter k) τ , under assumption A1,
there is a monitor satisfying the requirements specified by 〈FC̃OM〉, such that the proba-
bility of the monitor raising an alarm within time τ is negligible.

Proof. Firstly, if the adversary does not corrupt the sender, then the monitor reads the
committed value from the honest sender’s input to the protocol and sets b∗ to that value.
It is easy to verify that this monitor meets all the requirements and never raises an alarm.

So suppose the adversary corrupts the sender. In this case the imaginary oracle func-
tions as a null-oracle. Thus the entire system of all the parties and the environment
is probabilistic polynomial time. (We need not consider other monitors, as explained
above.) The monitor Mτ chooses b∗ as follows: examine the state of the entire system
and determine the probability p0 of the sender (legally) revealing this commitment as
0 within time τ , and the probability p1 of the sender revealing it as 1 within that time.
Choose b∗ = 0 if p0 ≥ p1; else choose b∗ = 1.

We shall demonstrate a (non-uniform) PPT machine M which accepts r ← {0, 1}k
and outputs (x, y) such that H(r, x, 0) = H(r, y, 1), with a probability polynomially
related to the probability of the monitor raising an alarm.

M simulates the system internally, starting at the point the session is initiated. Recall
that this session is to be run with access to the IDEAL semi-functionality. But instead, M
will play the role of the semi-functionality for this session. It sends the input it received
r as the first message to the sender. Then the sender responds with a string c. At this
point M makes two copies of the system, and runs them with independent randomness,
for time τ each. If the sender eventually reveals the commitment as (x, 0) in one run
and as (y, 1) in the other run, then M outputs (x, y).

Relaxing Environmental Security: Monitored Functionalities 115

Define random variable p0 (respectively, p1) as the probability that after sending c
the sender reveals the commitment as 0 (respectively, 1) within time τ . The probability
that the monitor raises an alarm is at most

E[min{p0, p1}] ≤ E[
√

p0p1] ≤
√

E[p0p1] =

√
1
2

Pr [M succeeds]

because after forking two copies of the system, M succeeds (i.e., it manages to out-
put (x, y) such that H(r, x, 0) = H(r, y, 1)) when in one of the runs the event with
probability p0 occurs and in the other the event with probability p1.

Since the probability that M succeeds is negligible by assumption on H, so is the
probability that the monitor Mτ raises an alarm. Clearly this holds for any τ polynomial
in the security parameter.

Lemma 2. COM Γ-ES-realizes FC̃OM against static adversaries, under assumption A2.

Proof (sketch): For every PPT adversary A we demonstrate a PPT simulator S such
that no PPT environment Z can distinguish between interacting with the parties and A
in the REAL world, and interacting with the parties and S in the IDEAL world. We do
this in the presence of the imaginary oracle Γ.

Corrupt Server. Note that the semi-functionality is designed such that choosing the
simulator S to be identical toA (except that it sends the messages to FC̃OM instead of to
K) works.

Honest Server. During simulation S runs A internally. When A starts the commitment
protocol, S initiates a session with the IDEAL functionality. When A sends out the first
message in the protocol r, S forwards this to the oracle Γ and receives (x, y, z) ←
Dr. Then, when FC̃OM gives the commit message, S provides A with z as the mes-
sage from S to K (whether K is corrupted or not). Later if FC̃OM gives the message
(reveal, 0), S provides A with (0, x) as the REAL message, and if FC̃OM gives the
message (reveal, 1), S provides (1, y) to A. Under the assumption on Dr, it can be
shown that this is a good simulation.

3.2 Monitored Zero Knowledge Proof

In Figure 3 we show a simple protocol ZK in the FC̃OM-hybrid model which Γ-ES-
realizes 〈FZ̃K〉 against static adversaries. The particular relation R used in 〈FZ̃K〉 is of
Hamiltonicity (ie, given a graph, whether it contains a Hamiltonian cycle or not). The
protocol is a simple adaptation of the well-known zero knowledge protocol for this
relation. However that protocol (as well as its previous variants) is not known to be
secure in a concurrent setting.

Multi-bit Commitment. Multiple bits can be committed to by running independent copies
of the protocol in Section 3.1 in parallel. (Better efficiency can be achieved by making
suitable assumptions on the hash function H. But in this work we do not address this
aspect of efficiency.) For convenience, we denote this collection of sessions of FC̃OM

by F∗
C̃OM

. For simplifying the description, we shall use the notation S ↔ F∗
C̃OM

→ K :
COM(M) to denote a step where S sends a commitment to the bits of M , to K through

116 M. Prabhakaran and A. Sahai

the semi-functionality F∗
C̃OM

, and S ↔ F∗
C̃OM

→ K : REV(M ′) will denote a reveal to
M ′ ⊂M later using (the same copy of) F∗

C̃OM
.

Note that we are providing the protocol ZK in the F∗
C̃OM

-hybrid model. So in the
semi-functionality FZ̃K, the “arbitrary protocol” will involve interaction of FZ̃K (and S)
with F∗

C̃OM
. This simply means that F∗

C̃OM
is internally run by FZ̃K, when interacting

with S.
The prover receives a Hamiltonian cycle H ⊂ G as witness. First it verifies that the

H is indeed a valid Hamiltonian cycle in G. (Else it aborts the protocol.) We use the
above notation for commitments and reveals of n × n matrices. The adjacency matrix
of a graph is naturally represented as an n × n bit-matrix. For convenience we let a
permutation φ of [n] also to be represented by an n×n bit-matrix Φ defined as Φij = 1
iff φ(i) = j (else Φij = 0).

The idea is that the prover has to commit to the pair of n × n matrices (M1,M2)
where the verifier expects M1 = φ(G) and M2 = Φ for some permutation φ with
the representation Φ. In response to sending b = 0 the verifier expects the prover to
reveal all of M1 and M2, where as for b = 1 it expects the prover to reveal the bits in
M1 corresponding to a Hamiltonian cycle in φ(G). An edge is represented by an index
(i, j) into this matrix. Given a set of edges ζ, we use M |ζ to denote the entries in the
matrix M given by the edges in ζ.

Lemma 3. For any polynomial (in the security parameter k) τ , there is a monitor sat-
isfying the requirements specified by 〈FZ̃K〉, such that the probability of the monitor
raising an alarm within time τ is negligible.

Proof. Our monitor does exactly what the specification requires: it checks if G is
Hamiltonian. If not and ifFZ̃K sends the message HAMILTONIAN to K, then the monitor
raises an alarm.

We shall use the result that FC̃OM has a monitor, to argue that the probability this
monitor raises an alarm is negligible. For each of the n parallel sessions, consider the
behaviour of the monitors forFC̃OM for the 2n2 sessions ofFC̃OM. These monitors record
values b∗

ij , (i, j) ∈ [n]× [2n] internally.
For convenience, we define the following events: ALARM is the above event that the

monitor raises an alarm; BADCOM is the event that some FC̃OM monitor raises an alarm;
ALLGOODQUERIES is the event that in each of the n sessions, for the bit selected by
K the bits recorded by commitment monitors define a valid answer (i.e., for b = 0 the
monitors have recorded M1 = φ(G),M2 = Φ and for b = 1 the monitors have recorded
an M1 with Hamiltonian cycle. If any pair (M1,M2) recorded by the monitors defines
a valid answer for both b = 0 and b = 1, it implies that the graph is Hamiltonian; else
we call the pair “bad.” Let ALLBADPAIRS be the event that in all the n sessions, bits
recorded by the commitment monitors give bad pairs of matrices. Then it is easy to see
(as shown in the soundness proof for the corresponding protocol, in [19]) that

Pr [ALARM] ≤ Pr [ALLGOODQUERIES|ALLBADPAIRS] + Pr [BADCOM].

If a pair is bad it can define a valid answer for at most one of the two possible
queries. That is, with probability at most 1

2 , K makes a good query on that pair. So,

Pr [ALLGOODQUERIES|ALLBADPAIRS] ≤ 2−n

Relaxing Environmental Security: Monitored Functionalities 117

Zero Knowledge Proof Protocol: ZK

Common input to S and K: a graph G.

REPEAT IN PARALLEL n TIMES:

S ↔ F∗
C̃OM → K : COM(M1 = φ(G), M2 = Φ), where φ (represented by the matrix Φ)

is a randomly chosen permutation of [n].

K → S : b ← {0, 1}
IF b = 0

S ↔ F∗
C̃OM → K : REV(M1, M2)

ELSE

S ↔ F∗
C̃OM → K : REV(M1|ζ)

where ζ corresponds to the edges of the cycle φ(H)

ENDIF

END REPEAT

K : if in all parallel repetitions

b = 0 =⇒ M2 represents a permutation φ, and M1 represents a graph

such that φ(G) = M1

b = 1 =⇒ ζ corresponds to the edges of a Hamiltonian cycle,

and ∀(i, j) ∈ ζ, M1ij = 1

then ACCEPT

Fig. 3. Protocol for the Monitored Functionality for ZK Proof

Since Pr [BADCOM] is also negligible, we conclude that Pr [ALARM] is negligible.

Lemma 4. ZK Γ-ES-realizes FZ̃K against static adversaries in the FC̃OM-hybrid model.

Proof. Corrupt Server. Just as in the case of FC̃OM, if the server is corrupt, a trivial
simulator in the IDEAL world, which acts transparently between an internal copy of
A and the semi-functionality FZ̃K perfectly simulates the protocol between the corrupt
server and an honest client.

Server not Corrupt. Recall that the protocol is in the FC̃OM-hybrid model. If the server
is not corrupt, the only protocol messages thatA can see are the statement to be proven,
the length of the messages from S to FC̃OM, the commit messages from FC̃OM, the bit
b sent by K (K may be corrupt or honest), and the final proven message. All these
are available to simulator S in the IDEAL execution too. Note that if K is not corrupted,
the bit b can be chosen uniformly at random during simulation. On the other hand, if K

118 M. Prabhakaran and A. Sahai

is corrupted (before it sends out b), then this bit is indeed produced by the copy of A
that S runs internally. Then it is easily verified that S can indeed simulate in this case
perfectly.

The above two lemmas can be summarized as follows.

Lemma 5. Protocol ZK in FC̃OM-hybrid model Γ-ES-realizes 〈FZ̃K〉 against static ad-
versaries.

Using the composition theorem Theorem 1 and Lemma 2 we get a protocol ZKCOM in
the REAL world which Γ-ES-realizes 〈FZ̃K〉 against static adversaries. Note that ZKCOM

is a 4-round protocol. In the language of Zero-Knowledge proofs, we can state this
result as follows.

Theorem 2. There is a 4-round concurrent Zero Knowledge argument for Hamiltonic-
ity when the simulator (as well as corrupt verifiers) has sampling access to Dr for all
r ∈ {0, 1}k1 .

4 Monitored Commit and Prove

Somewhat surprisingly, our model of security allows very simple protocols for the
commit and prove (monitored) functionality (Figure 1(c)) as well. Below is the semi-
functionality FC̃AP, with respect to a relation R, and monitor for it.

For the commit phase, we use a straight-forward extension of the bit commitment
protocol COM to multiple bits (see Section 3.2). A transcript of the commitment phase
consists of two messages (r, c), where c = H(r, r′,w), where r′ is a random string
privately chosen by S and w is the string committed to. H : {0, 1}k1t × {0, 1}k2t ×
{0, 1}t → {0, 1}�t is a multi-bit version ofH:H((r1 · · · rt), (r′

1 · · · r′
t), (w1 · · ·wt)) =

(H(r1, r
′
1,w1), · · · ,H(rt, r

′
t,wt)).

We introduce some more notation to conveniently describe the protocol. Let S ↔
FZ̃K→K : ZKPR(x; r, c) denote the following specification: first, parties S and K reduce
the problem “∃w, y, r′ such that R′(w, x, r, r′, c, y) = 1” to a Hamiltonicity problem
instance G(x, r, c), where R′(w, x, r, r′, c, y) = 1 if and only if R(w, x, y) = 1 and
H(r, r′,w) = c. This reduction is carried out in such a way that given a Hamiltonian cy-
cle in G, it is possible to recover (w, r′, y) as above. Then S uses the semi-functionality
FZ̃K to prove to K that G is Hamiltonian.

The protocol is given in Figure 4. We shall prove the following:

Lemma 6. Protocol CAP Γ-ES-realizes monitored functionality 〈FC̃AP〉 against static
adversaries, under assumptions A1 and A2.

Proof. 1. CAP Γ-ES-realizes FC̃SC against static adversaries in the FZ̃K-hybrid model.

Corrupt Server. Just as in the case of FC̃OM and FZ̃K, a trivial simulator which acts
transparently between an internal copy of A and the semi-functionality FC̃AP perfectly
simulates the protocol between the corrupt server and an honest client.

Server not Corrupt. The protocol is in the FZ̃K-hybrid model, and hence so is the semi-
functionality FC̃AP. When the server is not corrupted, the only protocols messages A

Relaxing Environmental Security: Monitored Functionalities 119

Commit and Prove Protocol: CAP
COMMIT PHASE:

K → S : r ← {0, 1}k1

S → K : c = H(r, r′, w) where r′ ← {0, 1}k2

PROOF PHASE (CAN BE MULTIPLE TIMES):

S → K : x

S ↔ FZ̃K → K : ZKPR(x; c)

K : Accept if accepted in the above protocol

Fig. 4. Protocol for the Monitored Functionality for Commit and Prove

can see are the initial commitment messages r and c, lengths of the messages from S to
FZ̃K, and the (proven, G(x, r, c)) message from FZ̃K at the end of each proof phase.
The only non-trivial task for the simulator is to produce the commitment text c. Since c
will never be revealed (because the server is honest and the adversary cannot adaptively
corrupt S), S can simply use a commitment to a random text using r to produce a
purported commitment of w.

Note that assumption A2 implies that the distributions of commitments to 0 and to
1 are indistinguishable (even with access to Dr): that is, for all r ∈ {0, 1}k1

{z|x ← {0, 1}k2 , z = H(r, x, 0)} ≈ {z|y ← {0, 1}k2 , z = H(r, y, 1)},

because both the distributions are indistinguishable from {z|(x, y, z) ← Dr}. From
this, it is a routine exercise to show that no PPT environment (with access to the imag-
inary oracle Γ) can distinguish between the simulation in the IDEAL world and the
execution in the FZ̃K-hybrid model.
2. For any polynomial (in the security parameter k) τ , there is a monitor satisfying the
requirements specified by 〈FC̃AP〉, such that the probability of the monitor raising an
alarm within time τ is negligible.

We restrict ourselves to the case when 〈FC̃AP〉 allows only one proof phase per ses-
sion. It is possible to extend it to multiple proofs, but the details become lengthy and
tedious.

First we describe how a value w∗ is recorded by Mτ . Consider an “extractor” PPT
machine Mτ which simulates the entire (composed IDEAL) system internally, starting
at the point where the session of interest running our Commit-and-Prove protocol starts
(this start state is given to Mτ as non-uniform advice), for at most τ time-steps. Mτ runs
the system until the proof phase of started, and the prover makes the commitment step.
At this point Mτ clones the system and runs the two copies independent of each other.
If in both the copies the proof is accepted by the verifier, Mτ checks if the n-bit queries
made by the verifier in ZKPR(x; r, c) are identical or not. If they are not identical this
lets Mτ extract a Hamiltonian cycle for G (assuming the monitors for the FC̃OMs do not

120 M. Prabhakaran and A. Sahai

raise any alarm). Then Mτ derives a witness (w, r′, y) from this Hamiltonian cycle, and
outputs it. Else Mτ outputs ⊥.

Now we use Mτ to describe the monitor Mτ . When FC̃AP sends commit to K, for
each w Mτ checks the probability of Mτ outputting w, and records the one with the
highest such probability, say w∗. Later if FC̃AP sends (proven, x) for some x such
that for no y R(w∗, x, y) holds, then it raises an alarm. Also, for purposes of analysis,
when the prover executes the commitment protocol (semi-functionality) as part of the
zero-knowledge proof protocols, Mτ starts the monitors for FC̃OM as sub-monitors. The
monitors will also be run when the extractor Mτ runs. If any of these sub-monitors
raises an alarm, then too Mτ will raise an alarm.

Clearly Mτ satisfies the requirements of the functionality (up to the time bound τ).
We go on to prove that the probability that Mτ raises an alarm (which event we denote
by ALARM) is negligible. In the rest of the proof, we condition on the event that none
of these sub-monitors raise an alarm. Since we have already shown that this is an event
of negligible probability (and only polynomially many such sub-monitors are run), this
will not change our conclusions.

Now, consider the point at which Mτ forks the system. Let pw be the probabil-
ity that Mτ outputs w starting at (conditioned on) this point, within τ time-steps.
Let q be the probability that K accepts the proof ZKPR(x; c) within τ time-steps,
but �(y, r′)R′(w∗, x, r, r′, c, y) = 1. Note that Pr [ALARM] = E[q], where the ex-
pectation is over the distribution on the state of the system at the point at which Mτ

forks.
Since we assume that the sub-monitors do not raise alarm, Mτ outputs some w

if the two copies it runs both accept the proof, and in the second copy the verifier
sends a query different from the one in the first copy. So,

∑
w
=w∗ pw ≥ q(q − 2−n).

Then,

Pr [Mτ outputs w �= w∗] ≥ E[q(q − 2−n]

≥ E[q]2 − 2−nE[q]

≥ 1
2
E[q]2 if E[q] ≥ 2−n+1

If the assumption in the last line above does not hold, we would be done, because
Pr [ALARM] = E[q]. So we make that assumption and proceed.

Now we shall demonstrate a (non-uniform) PPT machine M ′
τ which accepts r ←

{0, 1}k and outputs (x, y) such thatH(r, x, 0) = H(r, y, 1), with a probability polyno-
mially related to the probability of the monitor raising an alarm. M ′

τ (r) starts Mτ and
runs the commit phase by sending r. It forks Mτ after the commitment from P arrives.
Then it runs the two independent copies of Mτ (which involves forking the system
again), and checks if they output different values (w1, r

′
1) and (w2, r

′
2), with w1 �= w2.

If so, M ′
τ derives a collision to the hash function from some bit at which w1 and w2

differ, and outputs the corresponding portions of r′
1, r

′
2. We say that M ′

τ succeeds if it
gets (w1,w2), such that w1 �= w2 from two runs of Mτ .

Relaxing Environmental Security: Monitored Functionalities 121

Pr [M ′
τ succeeds] ≥

∑
w′

pw′
∑

w
=w′
pw

≥
∑
w′

pw′
∑

w
=w∗
pw because for all w′, pw∗ ≥ pw′

= (
∑
w′

pw′)(
∑

w
=w∗
pw) ≥ (

∑
w
=w∗

pw)2

≥ 1
4
E[q]4 =

1
4

Pr [ALARM]4

Putting it all together we have that Pr [ALARM] ≤ (4Pr [M ′
τ finds a collision])

1
4 ,

which is negligible by assumption onH.

5 Applications of the New Framework

As we have shown above, theoretically interesting cryptographic tools like commitment
and zero-knowledge proofs can be securely realized in the new framework, relatively
efficiently (compared to those in previous Environmental Security models). The reason
for this is that our security requirements are much more relaxed. However this raises
the question if these weakened versions of the above tools are useful to achieve security
for practically interesting tasks. In this section we make some progress towards making
the new framework usable for multi-party computation problems. We restrict ourselves
to 2-party computations of a very specific kind, as described below.

5.1 Client-Server Computation

A 2-party Client-Server Computation functionality 〈FC̃SC〉 is given earlier in Figure 1(d).
Note that the client does not keep any secrets from the server S. But the server must
commit to its inputs (and the monitor shall record the committed input) before the client
sends its inputs. First, we shall give a protocol for this Monitored functionality, before
discussing some of its limitations.

Secret Commit and Prove. In order to give a protocol for 〈FC̃SC〉, we need to modify the
Commit-and-Prove functionality, so that if both the server and the client are honest, the
adversary is not given the statements that the server proves. (This is because the adver-
sary should not learn the client’s input.) Such a functionalityFSECRET-C̃AP can be securely
realized in the FENC-hybrid model, where FENC is the encryption functionality. For this
FZ̃K and FC̃OM are modified to the SECRET versions, which do not send the statement
proven (FSECRET-Z̃K) or the bit revealed (FSECRET-C̃OM) to the adversary. FSECRET-C̃OM can
be securely realized by the protocol COM modified to encrypt the reveal step, using
the functionality FENC. In the static case FENC is known to be easy to implement, us-
ing CCA2-secure public-key encryption with new keys each time (see for instance [3]),
which in turn can be implemented assuming a family of trapdoor permutations (using
the construction in [21], for instance). But since we are in the Γ-ES-model, we need to
revisit the assumptions used to securely realize FENC, namely the existence of trapdoor
permutations.

Then,

122 M. Prabhakaran and A. Sahai

Client-Server Computation Protocol: CSC

The protocol is parametrized by a function F .
S ↔ FSECRET-C̃AP → K : COMMIT-PHASE(xS)

K → FENC → S : xK

S → FENC → K : z = F (xS , xK)

S ↔ FSECRET-C̃AP → K : PROOF-PHASE(z == F (xS , xK))

Fig. 5. Protocol for the Monitored Functionality for Client-Server Computation

A3 There exists a family of trapdoor permutations secure against non-uniform PPT
adversaries which are given sampling access to Dr for all r.

This is also an assumption made in [19]. With this assumption in place, we get the
following result.

Lemma 7. There are protocols which Γ-ES-realize FENC and FSECRET-C̃AP against static
adversaries, under assumptions A1, A2 and A3.

5.2 The Protocol

Theorem 3. The protocol CSC Γ-ES-realizes the monitored functionality 〈FC̃SC〉 against
static adversaries in the FSECRET-C̃AP,FENC-hybrid model.

Proof. 1. For any polynomial (in the security parameter k) τ , there is a monitor sat-
isfying the requirements specified by 〈FC̃SC〉, such that the probability of the monitor
raising an alarm within time τ is negligible.

We can build a monitor Mτ for 〈FC̃SC〉 using the monitor for 〈FC̃AP〉. Mτ starts the
monitor for 〈FC̃AP〉, and if the protocol proceeds beyond the first step, it would record
a value x∗ internally as the committed value. Mτ will copy that value and record it as
the input of S. Later if the monitor for 〈FC̃AP〉 raises an alarm, Mτ will raise an alarm.
If FC̃SC sends the value z to K, then FC̃AP must return (proven, z = F (x∗, xK)). So
if the monitor for 〈FC̃AP〉 does not raise an alarm, it means indeed z = F (x∗, xK) and
Mτ need not raise any alarm either. Thus Mτ does satisfy the reuirements specified by
〈FC̃SC〉. Further the probability that Mτ raises an alarm is the same as that the monitor
for 〈FC̃AP〉 raises an alarm. By earlier analysis, this is indeed negligible.
2. CSC Γ-ES-realizes FC̃SC against static adversaries in the FSECRET-C̃AP,FENC-hybrid
model.

For every PPT adversary A we demonstrate a PPT simulator S such that no PPT
environment Z can distinguish between interacting with the parties and A in the REAL

world, and interacting with the parties and S in the IDEAL world.
As usual S internally runsA (which expects to work in the FSECRET-C̃AP,FENC-hybrid

with the parties running the CSC protocol), and works as an interface between A and
the parties. When A starts the CSC protocol, S initiates a session with the IDEAL func-
tionality FC̃SC.

Relaxing Environmental Security: Monitored Functionalities 123

Corrupt Server. Again, as in the case of all the monitored functionalities introduced
in this work, thanks to the way the semi-functionality is designed, a trivial simulator
in the IDEAL world, which acts transparently between an internal copy of A and the
semi-functionality FZ̃K perfectly simulates the protocol.

Server not Corrupt. The client K may or may not be corrupt. We analyse the two cases
separately:

– Honest K: In this case all thatA can see are the lengths of the messages xS, xK and
F (xS, xK), given to it by FSECRET-C̃AP and FENC. These are known to S (because F
is publicly known), and it can send them to A.

– Corrupt K: In this case S gets xK and F (xS, xK). In additionA expects to see the
messages commit and proven from FSECRET-C̃AP (in the first and last steps of the
protocol). These are easily provided by the simulator.

It is easy to see that in all the cases, the simulation is perfect.

From this theorem, using Lemma 7 and the composition theorem Theorem 1, we
get the following corollary.

Corollary 4. There is a protocol which Γ-ES-realizes monitored functionality 〈FC̃SC〉
against static adversaries, under assumptions A1, A2 and A3.

5.3 Extensions to Adaptive Adversaries

Above we analyzed security in the presence of static adversaries, for the sake of sim-
plicity. Here we mention how the tools developed here can be extended to the case
of adaptive adversaries. Firstly, if we expand the adversary class to allow the adaptive
corruption of only the clients, it is easy to see that the analyses still hold. The only
modification required is that (in the case of the “SECRET” versions of the functionali-
ties), the encryption protocols used will need to be secure against adaptive adversaries
as well.

However extending to full-fledged adaptive corruption (i.e., adaptive corruption of
the server as well) requires more modifications. Note that the Imaginary Angel Γ func-
tions as a null-angel when the server S is corrupted, but otherwise gives access to the
distribution Dr. If S is initially uncorrupted and corrupted later on, removing access to
Dr is not enough; having had access toDr in the past gives the adversary an advantage.
To fix this, we can use the hash function used in [19] for commitment, which takes one
more parameter, namely, the ID of the receiving party. The assumptions used and the
Imaginary Angel will then be the same as in [19]. The difference with [19] is that the
“basic commitment” and “basic ZK proof” protocols there cannot be directly used to
satisfy the security requirements there, where as the final protocols developed are secure
only against static adversaries. In our case these basic protocols can be directly used to
securely realize monitored functionalities. Note however that there is no significant ad-
vantage in using the client-server model anymore if we use the same assumptions as in
[19]. Indeed, the resulting protocols securely realize the monitored functionalities in the

124 M. Prabhakaran and A. Sahai

unrestricted environmental setting (without the restrictions of the client-server model),
against adaptive adversaries.

6 Limitations and Challenges

6.1 Problem with 〈FC̃SC〉
Though we have successfully applied our tools in the new framework to obtain a 2-party
computation protocol, there are some serious limitations to this functionality. Clearly,
the set of functions that are computed are limited (namely, only client-server compu-
tations). But more seriously, the guarantee given by the monitor is not satisfactory.
In particular, there is no guarantee of “independence” of inputs. Though the monitor
records a value for the server’s input prior to the client sending out its input, the value
recorded is allowed to be dependent on the entire system, and in particular on the input
of the client!3

6.2 The Solution: Restricting the Monitors

In ongoing work, we suggest ways to address this problem. There we show that if the
clients keep their private inputs totally unused until the point of commitment (but may
use them immediately afterwards), then the monitor can be required to record a value
independent of their private inputs. As it turns out, the protocols are not altered, but
some restrictions are imposed on the monitor, and some parts of the proof become
significantly more involved.

We allow that some part of the state of the system can be kept “locked.” This part,
which we shall call the locked state, cannot be used in the system (until it is unlocked).
The requirement on the monitor is that it does not have access to the part of the system
state if it is locked at the point the monitor is required to record a value; it will have to
record a value based on the rest of the system, which we shall call the open state.

Technically, the locked state corresponding to a protocol execution is defined at the
beginning of that execution: it is the maximal part of the system state, not including
any of the adversary’s state, such that the distribution of the rest of the system state at
the recording point is independent of it. Note that the independence requirement im-
plies in particular that the probability of unlocking the state before the monitor finishes
recording, is zero (unless the locked state is completely predictable a priori from the
open state).

We do allow the locked state to evolve, as long as the independence is maintained
(in particular, no information should pass between the locked state and the open state).
Further, for full generality, we allow the locked state to be randomized: i.e., its value is a
random variable. However, we shall require that this random variable is efficiently sam-
pleable (which is implied by the assumption that the non-adverserial part of the system

3 The monitor’s recorded value is independent of as yet unsampled randomness in the system.
So if the client’s input is only a freshly sampled random value, as is the case in a ZK proof or
coin-tossing protocol, this issue does not arise.

Relaxing Environmental Security: Monitored Functionalities 125

is PPT). In particular all the “future” randomness, i.e., randomness which issampled
after the monitor finishes recording, can be considered part of the locked state.4

As indicated earlier, the reason we allow the notion of a locked state in our frame-
work has to do with the meaningfulness of the two-party computation scenario. With the
modification sketched above in place, we can allow the client to keep its input locked,
and then even the monitor does not get to see it, before recording the other party’s input.

However, note that to keep an input locked, it can never be used in the system at
all (until it is unlocked).5 This is because the monitor is computationally unbounded.
Note that this is related to the problem of malleability: if it was used in the system
previously, somehow that can be mauled and used to make a commitment related to
it. (It is an interesting problem to relax this information theoretic locking constraint to
a computational equivalent.) However, interestingly we do avoid the problem of mal-
leability while opening a commitment: the locked state is allowed to be unlocked before
the commitment is opened. Indeed, if the locked states are to be kept locked until after
the protocol terminates completely, restricting the monitor to the rest of the system state
is automatic. But to be useful, we need to allow locked states which can be opened after
the monitor records its value, but before the protocol terminates.

In work under progress we show how to prove that in all the monitored functional-
ities we use, the monitors can be required not to inspect the locked state of the system.
Surprisingly, this complicates the construction of the monitor and the proofs consider-
ably. Below we sketch the changes in the proof in the case of FC̃OM.

Lemma 8. For any polynomials (in the security parameter k) τ and Π , under assump-
tion A1, there is a monitor satisfying the requirements specified by 〈FC̃OM〉 which does
not inspect the locked state of the system, such that the probability of the monitor raising
an alarm within time τ is less than 1/Π .

Proof (sketch): WhenFC̃OM sends the commitmessage the monitor Mτ,Π must record
a bit b∗ internally. First, we sketch how Mτ,Π does this. As before, the basic idea is
for the monitor to look ahead in the system, and record the more likely bit that the
sender will ever reveal; if the sender can reveal to both bits with significant probability,
a reduction can be used to obtain a circuit for finding collisions in the hash function.
But note that here Mτ,Π does not know the value of the locked state, and so it cannot
calculate the bit as above. However, we can show that for no two values for the locked
state, can the sender feasibly reveal the commitment in different ways. Intuitively then,
the monitor can use an arbitrary value for the locked state and use it to carry out the
calculation. However, there are a couple of problems with this. Firstly, revealing can

4 Incidentally, in the use of semi-functionalities in [19], the only locked state is future random-
ness. However this is an especially simple special case, taken care of by the original proof
there. [19] does not introduce or require a generalization. As it turns out generalizing to other
locked states complicates our arguments considerably.

5 In other words, the inputs are for one time use only. After that if it is used as a client input
in a server-client computation protocol, there is no guarantee that the server’s input will be
independent of that input. This is a significant limitation. However note that a client’s input for
a “server-client” computation, with a corrupt server is the last time it can be used secretly, as
the computation gives the client’s input to the server.

126 M. Prabhakaran and A. Sahai

depend not only on the open state of the system at the end of commitment, but also on
the locked state, as it might be unlocked after the commit phase is over. In particular,
for certain values of the locked state (and open state), the sender might never complete
the reveal phase. So using a single value of the locked state will not suffice. The second
problem is that while Mτ,Π is computationally unbounded, the reduction to finding
collision should use a polynomial sized circuit. This circuit will need to be given the
value(s) of the locked state with which it will emulate the system. Further, the circuit
will obtain as input the random challenge in the commitment. Thus, the value(s) of the
locked state that it obtains should be defined prior to seeing the random challenge.

Nevertheless, we show how to define polynomially many values for the locked state
of the system, based only on the open state of the system, and obtain a bit b∗ using just
these values. To show that the probability of Mτ,Π raising an alarm within time τ is
less than 1/Π , we show that otherwise we can give a polynomial sized circuit (with the
above mentioned values of the locked states builtin) which can find a collision in our
hash function for a random challenge with significant possibility.

The construction of the monitor for FC̃AP is also changed in a similar fashion. How-
ever, since the monitor in this case is defined based on an extractor, and the extractor
itself will need to be modified to take polynomially many values of the locked state,
the proof is much more involved. The monitors for the FZ̃K and FC̃SC need to be modi-
fied too. However since their description and proof is based on those of FC̃OM and FC̃AP

respectively they do not involve much change.

7 Conclusion

We introduced a framework of Monitored Functionalities, which provides a way to de-
fine and prove relaxed (but ES) security guarantees for (relatively simple) protocols. We
also introduced a restricted model called the Client-Server model, which allows simpler
protocols to be secure, and potentially under simpler computational assumptions. Both
these relaxations, we believe, would help in further exploring Environmental Security
(Network-Aware Security).

However, the applicability of the security guarantees from this work are somewhat
limited. It is an open problem to work around these limitations, while still maintaining
the relaxed nature of the security requirement so that simple protocols are possible. We
suggest restricting the computational powers of the monitors (but still giving them more
power than the players) as a useful direction.

There are many other ways in which this line of research can be furthered. It is a
challenge to try and base these results on more conventional computational assump-
tions, without setups. On the other hand it should be relatively simpler to allow setups
and replace the use of gES model here, by the ES/UC model. A general direction to
pursue is to use Monitored Functionalities or other similar notions to give some secu-
rity guarantee to many simple, efficient and intuitively secure protocols currently used
in practice.

Relaxing Environmental Security: Monitored Functionalities 127

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. FOCS 2001: 106-115.
2. Boaz Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared

Random String Model. FOCS 2002: 345-355.
3. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.

FOCS 2001: 136-145.
4. R. Canetti and M. Fischlin. Universally composable commitments. Crypto 2001: 19-40.
5. Ran Canetti and Hugo Krawczyk. Universally Composable Notions of Key Exchange and

Secure Channels. EuroCrypt 2002: 337-351.
6. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable

two-party computation without set-up assumptions. EuroCrypt 2003: 68-86.
7. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and

multi-party secure computation. STOC 2002: 494-503.
8. Danny Dolev, Cynthia Dwork, Moni Naor. Nonmalleable Cryptography. SIAM J. Comput.

30(2) 2000: 391-437.
9. Cynthia Dwork, Moni Naor, Amit Sahai. Concurrent Zero-Knowledge. STOC 1998: 409-

418.
10. S. Goldwasser, Y. Lindell. Secure Computation without Agreement. DISC 2002: 17-32.
11. Joe Kilian, Erez Petrank. Concurrent and resettable zero-knowledge in poly-loalgorithm

rounds. STOC 2001: 560-569.
12. Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assump-

tions. STOC 2003: 683-692.
13. Tatsuaki Okamoto. An Extension of Zero-Knowledge Proofs and Its Applications. AsiaCrypt

1991: 368-381.
14. Rafael Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Compo-

sition. EuroCrypt 2003: 160-176.
15. Rafael Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Major-

ity. STOC 2004: 232-241.
16. Rafael Pass, Alon Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant

Number of Rounds. FOCS 2003: 404-413.
17. Birgit Pfitzmann, Michael Waidner. Composition and integrity preservation of secure reac-

tive systems. ACM Conference on Computer and Communications Security 2000: 245-254.
18. Manoj Prabhakaran, Alon Rosen, Amit Sahai. Concurrent Zero Knowledge with Logarith-

mic Round-Complexity. FOCS 2002: 366-375.
19. Manoj Prabhakaran, Amit Sahai. New Notions of Security: Achieving Universal Compos-

ability without Trusted Setup. STOC 2004: 242-251.
20. Ransom Richardson, Joe Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.

EuroCrypt 1999: 415-431.
21. Amit Sahai. Non-malleable Non-interactive Zero Knowledge and Adaptive Chosen Cipher-

text Security. FOCS 1999: 543-553.

Handling Expected Polynomial-Time Strategies
in Simulation-Based Security Proofs

Jonathan Katz1 and Yehuda Lindell2,�

1 Department of Computer Science, University of Maryland, USA
jkatz@cs.umd.edu

2 Department of Computer Science, Bar-Ilan University, Israel
lindell@cs.biu.ac.il

Abstract. The standard class of adversaries considered in cryptogra-
phy is that of strict polynomial-time probabilistic machines (or circuits).
However, expected polynomial-time machines are often also considered.
For example, there are many zero-knowledge protocols for which the
only simulation techniques known run in expected (and not strict) poly-
nomial-time. In addition, it has been shown that expected polynomial-
time simulation is essential for achieving constant-round black-box zero-
knowledge protocols. This reliance on expected polynomial-time simula-
tion introduces a number of conceptual and technical difficulties. In this
paper, we develop techniques for dealing with expected polynomial-time
adversaries in the context of simulation-based security proofs.

1 Introduction

Informally speaking, the simulation paradigm (introduced in [15]) states that
a protocol is secure if the adversary’s view in a real protocol execution can
be generated solely from the information that it legitimately possesses (i.e., its
input and output). The implication of this statement is that the adversary learns
nothing from the protocol execution, since everything that the adversary sees in
such an execution could be generated by the adversary itself. This paradigm can
be instantiated in a number of different ways, where the differences that we refer
to here relate to the complexity of the real adversary and the complexity of the
simulator that generates the adversary’s view.

The most straightforward way of instantiating the simulation paradigm is
to require that for every strict polynomial-time adversary there exists a strict
polynomial-time simulator that generates the required view. However, in many
cases it is not known how to construct such simulators; rather, it is shown that for
every strict polynomial-time adversary there exists an expected polynomial-time
simulator that generates the required view. Essentially, this instantiation of the
simulation paradigm has become the default one (at least for zero-knowledge).
This reliance on expected polynomial-time simulation is problematic for the
following reasons:

� Most of this work was carried out while the author was at IBM T.J. Watson.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 128–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Handling Expected Polynomial-Time Strategies 129

1. Aesthetic Considerations: The intuition behind the simulation paradigm
is that anything an adversary can learn from its interaction in a real protocol
execution, it could also learn given only the input and the output. This follows
because the adversary can run the simulator itself and thus obtain a view that
is essentially the same as its view in a real execution. However, if the adversary
is only allowed to run in strict polynomial-time while the simulator may run in
expected polynomial-time, then the adversary cannot run the simulator (because
it doesn’t have enough time). One immediate solution to this problem is to allow
the adversary to run in expected polynomial-time as well. However, as we will
see in Section 1.1 below, this turns out to be problematic for technical reasons.

2. Technical Considerations (Composition): Consider the case that a se-
cure protocol π calls a secure subprotocol ρ. Furthermore, both π and ρ are
proven secure for strict polynomial-time adversaries using expected polynomial-
time simulation. (Here, this means that π is proven secure under the assumption
that ρ is replaced by some ideal function evaluation.) Now, the typical way of
proving that π is secure when it calls the real subprotocol ρ is to first replace
ρ with a simulated version, and then prove the security of π. However, this
strategy will fail since it yields an expected polynomial-time adversary for π (be-
cause the adversary for π actually runs an internal expected polynomial-time
simulation of ρ); yet π is proven secure only for strict polynomial-time adver-
saries.

In order to stress the implications of this difficulty, consider the following
natural protocol. The parties first run a coin-tossing protocol (that uses ex-
pected polynomial-time simulation) in order to generate a common random
string. Following this, the parties run a protocol that is secure in the com-
mon random string model (in this model, some trusted party provides both
parties with the same uniformly distributed string). If the protocol that is de-
signed for the common random string model is proven secure with respect to
strict polynomial-time adversaries (which is usually the case), then the security
of the coin-tossing protocol does not imply that the larger protocol is secure.
The reason for this “gap” is the fact that simulation of the coin-tossing proto-
col yields an expected polynomial-time adversary, in the presence of which the
protocol in the common random string model may not be secure. We remark
that – seemingly due, at least in part, to these difficulties – all simulation-
based composition theorems of which we are aware (e.g., [14, 4, 5]) deal only
with the case of protocols proven secure via strict polynomial-time
simulation.

In conclusion, expected polynomial-time simulation is currently a fact of life
when it comes to proving the security of many cryptographic protocols. However,
this causes difficulties especially when a protocol proven secure using expected
polynomial-time simulation is used as a subprotocol.

1.1 Potential Ways of Resolving the Difficulties

There are at least two possible ways of dealing with the difficulties raised above:

130 J. Katz and Y. Lindell

1. Require Simulators to be “as Powerful” as Adversaries: One way of
resolving the above difficulties is to require simulators and adversaries to lie in
the same complexity class. Here, there are two natural choices: (a) require both
the adversary and the simulator to run in strict polynomial-time, or (b) allow
both the adversary and the simulator to run in expected polynomial-time.

Limitations of the first choice (requiring strict polynomial-time for both
adversary and simulator) were demonstrated in [3], who show that there do not
exist constant-round zero-knowledge protocols with black-box simulators run-
ning in strict polynomial time. We note that non black-box simulation strategies
running in strict polynomial-time are known to exist [1, 2]. However, all known
“highly efficient” protocols are black-box. Thus, given our current knowledge,
strict polynomial-time simulation techniques still pose a limitation on efficiency.

Before considering the second choice, where both simulators and adversaries
run in expected polynomial-time, we briefly address the issue of defining ex-
pected polynomial-time adversaries. Loosely speaking, Feige [7] defined that an
adversary A attacking a protocol π runs in expected polynomial-time if it runs
in expected polynomial-time when interacting with the honest parties running π.
Here, A may run for an unbounded amount of time when interacting with other
machines (for example, an adversarial verifier for zero-knowledge needs only run
in expected polynomial-time when interacting with the honest prover). The justi-
fication for such a definition is that the goal of an adversary is to attack an honest
party. Therefore, any strategy that is “efficient” when interacting with an honest
party is “feasible”. We call this notion expected polynomial-time with respect to
the protocol π. A more stringent definition, advocated by Goldreich [9], requires
the adversary to run in expected polynomial-time when interacting with any
interactive machine. We call this notion expected polynomial-time in any interac-
tion. Clearly, any machine that is expected polynomial-time in any interaction is
also expected polynomial-time with respect to any protocol π; it is also not hard
to see that the converse is not true. Thus, the second notion defines a strictly
smaller set of adversaries than the first.

We are now ready to discuss the implementation of the simulation paradigm
in which both the adversary and the simulator run in expected polynomial-time.
Feige [7] showed that the known simulation strategies for computational zero-
knowledge all fail when considering adversaries that run in expected polynomial-
time with respect to the protocol. In contrast, it was shown by [16–Appendix
A.1] that the Feige-Shamir zero-knowledge argument system [7, 8] remains both
zero-knowledge and an argument of knowledge even when the adversarial party
runs in expected polynomial-time in any interaction. (We stress that the re-
sult of [16] does not hold for adversaries that run in expected polynomial-time
with respect to the protocol.) It was further demonstrated by [16–Appendix A.2]
that the known simulator for the Goldreich-Kahan zero-knowledge proof 1 sys-
tem [11] does not remain zero-knowledge for adversaries that run in expected

1 Recall that in a proof system soundness holds even for all-powerful provers, whereas
in an argument system it holds only for polynomial-time provers.

Handling Expected Polynomial-Time Strategies 131

polynomial-time in any interaction (and so likewise for expected polynomial-time
with respect to the protocol). Furthermore, there is no computational proof sys-
tem that is known to remain zero-knowledge for adversaries that run in expected
polynomial-time (under any definition). We therefore conclude that allowing
both the adversary and the simulator to run in expected polynomial-time is
problematic because we simply don’t know how to construct simulators for such
adversaries. This is in contrast to the case when both the adversary and the
simulator run in strict polynomial-time which, as we have mentioned, suffers
from limitations which are inherent.

We remark that requiring simulators to be “as powerful” as adversaries ad-
dresses not only the aesthetic difficulty raised above, but also the issue of com-
position. This is due to the fact that once the simulator lies in the same class as
the adversary, the general strategy for proving secure composition (as sketched
above) is a viable one.

2. Prove a Direct Composition Theorem: A second and incomparable ap-
proach addresses the technical issue of protocol composition, but does not deal
with the above-mentioned aesthetic considerations. (Arguably, we can live more
easily without aesthetics than without protocol composition.) In this approach, a
composition theorem of the following type is proven: If two protocols π and ρ are
both proven secure for strict polynomial-time adversaries while using expected
polynomial-time simulation, then the composition of π with ρ is also secure for
strict polynomial-time adversaries while using expected polynomial-time simula-
tion. Such an approach may be pursued independently of the previous approach,
and is worthwhile since many known protocols only satisfy the “strict/expected”
notion of security. Namely, even if it is possible to construct protocols that are
secure when both the adversary and the simulator run in expected polynomial-
time, one may still want to use existing protocols that have been proven secure
only for adversaries that run in strict polynomial-time (while using expected
polynomial-time simulation).

1.2 Our Results

The main focus of this paper is to develop techniques for working with expected
polynomial-time adversaries and simulation. We take the first steps in this direc-
tion and present two incomparable results, corresponding to the two approaches
discussed in the previous section.

1. Simulation for Expected Polynomial-Time Adversaries. Our first re-
sult focuses on achieving expected polynomial-time simulation for expected poly-
nomial-time adversaries. Before describing the result, we discuss one of the cen-
tral technical problems that arises when dealing with expected polynomial-time
adversaries: expected polynomial-time machines are not closed under “oracle
composition”. In more detail, let A be an oracle machine belonging to a class C
and let B be any machine that also belongs to class C. Then, we say the class C is
closed under oracle composition if the machine AB also belongs to C (when count-
ing the steps of both A and B in their executions). This property of closure under

132 J. Katz and Y. Lindell

oracle composition is important for black-box simulations (where machine A is
the simulator and machine B is the adversary), and holds for the class of strict
polynomial-time machines. However, the class of expected polynomial-time ma-
chines is not closed under oracle composition. To see this, consider the following
two machines:
1. Machine A queries its oracle with the message 0 and receives back a message

x. Next, A queries its oracle with x and halts.
2. Machine B receives an input q. If q equals its random tape r (where |q| =
|r| = k, the security parameter), then B runs for 2k steps and halts. Other-
wise, it replies with r and halts.

Machine A runs in strict (and thus expected) polynomial-time. Likewise, ma-
chine B runs in expected polynomial-time because the probability (over choice of
random tapes) that q = r is 2−k (and thus B runs for 2k steps with probability
2−k). However, the composed machine AB always runs for more than 2k steps.
We therefore conclude that the composition of an expected polynomial-time sim-
ulator with an expected polynomial-time adversary may not yield an expected
polynomial-time simulation. We stress that this problem is not just hypotheti-
cal. Rather, as we have mentioned earlier, many concrete protocols and expected
polynomial-time simulators suffer from this problem [7, 16]. Furthermore, simple
solutions, like truncating the execution after some polynomial number of steps,
do not work; see [3] for some discussion.

Ideally, we would like to present conditions under which closure under oracle
composition can be achieved for expected polynomial-time machines. This would
allow us to construct an expected polynomial-time simulator that fulfills the
conditions, and immediately derive simulation even when the adversary runs
in expected polynomial-time. Toward this goal, we prove a theorem that shows
how to automatically convert a class of simulators (characterized by a certain
property) so that they remain expected polynomial-time even if the adversary
runs in expected polynomial-time. More precisely, let S be a black-box simulator
with the following two properties:
1. S runs in expected polynomial-time when given any oracle A (even if A is

all-powerful). We stress that here we do not include A’s running time in the
complexity of S. We also remark that most known black-box simulators have
this property.

2. Every oracle query that S makes to its oracle A during its simulation is
“strongly indistinguishable” to A from some partial view of a real protocol
execution. By “strongly indistinguishable”, we mean that the oracle query
is computationally indistinguishable for circuits of size α(k), for some super-
polynomial function α(k) = kω(1). We remark that by making an appropriate
α(k)-hardness assumption, most known black-box simulators can be easily
modified so that they fulfill this property.

Let A be an expected polynomial-time adversary and let S be a simulator
that fulfills the above properties. We show that by truncating SA at α(k) steps,
the resulting machine is a “good” simulator that runs in expected polynomial-
time. We thus obtain a type of closure under oracle composition, as desired.

Handling Expected Polynomial-Time Strategies 133

An important corollary of this theorem is a proof that, under mildly su-
perpolynomial hardness assumptions, there exist computational zero-knowledge
proofs for all NP that remain zero-knowledge even if the adversarial verifier runs
in expected polynomial-time. As we have mentioned above, prior to this work
no such proof system was known to exist. We note that our corollary has the
following caveat: Our simulator for the zero-knowledge proof runs in expected
polynomial-time only when given a statement x that is in the language L; see
Section 3.3 for more details.2

We note that the above result does not achieve closure under oracle com-
position in its utmost generality, because it holds only for the above-described
class of simulators. Nevertheless, many (if not most) known simulators can be
modified so that they belong to this class. Furthermore, it is impossible to prove
closure for all simulators, because closure under oracle composition for expected
polynomial-time machines simply does not hold. Of course, it may still be pos-
sible to widen the class of simulators for which closure holds, and to remove the
superpolynomial hardness assumptions.

2. A Composition Theorem. The above theorem holds for a restricted class
of simulators, but achieves generality with respect to closure under oracle compo-
sition. Our second result is the opposite in that it holds for all black-box simula-
tors, but relates only to a specific type of composition. Specifically, under a super-
polynomial hardness assumption, we prove an analogue of the modular sequential
composition theorem of Canetti [4] for protocols that are proven secure for strict
polynomial-time adversaries using expected polynomial-time simulation. Loosely
speaking, the modular sequential composition theorem of [4] states that if a secure
protocol π contains sequential ideal calls to some functionalities, then it remains
secure even when these ideal calls are replaced by sequential executions of sub-
protocols that securely realize the functionalities. The original result of [4] was
previously known to hold only for protocols proven secure via strict polynomial-
time simulation (in fact, in the full version we show that the proof of [4] fails in
general for protocols proven secure via expected polynomial-time simulation). In
contrast, our analogous result holds even if these protocols are proven secure using
expected polynomial-time simulation (and only for strict polynomial-time adver-
saries). However, we also note that the proof of [4] requires no hardness assump-
tions, in contrast to ours which requires a superpolynomial hardness assumption.

We remark that both our results hold even for the larger class of adversaries
running in expected polynomial-time with respect to the protocol under consid-
eration [7].

Related Work. The problem of simulation in expected polynomial-time was
first posed by [7]; here we provide the first (partial) answers to some of the

2 Standard definitions require a simulator to generate a distribution that is indis-
tinguishable from the view of the verifier only when it receives a statement x ∈ L.
However, polynomial-time machines are typically required to run in polynomial-time
for all inputs (i.e., even for x /∈ L).

134 J. Katz and Y. Lindell

open questions posed there. The existence of constant-round zero-knowledge
arguments with strict polynomial-time (non black-box) simulation was demon-
strated in [1, 2]. The feasibility of obtaining constant-round arguments of knowl-
edge with strict polynomial-time extraction was then shown in [3]. They also
showed that such protocols do not exist when the simulator or extractor is
black-box. Thus, the protocols of [1, 2, 3] provide an alternative to expected
polynomial-time simulation. In this work, we take a different approach and de-
velop techniques for working with expected polynomial-time simulation. This
has the advantage of not ruling out the many protocols (including most of
the highly efficient protocols) that rely on expected polynomial-time
simulation.

2 Definitions and Preliminaries

The security parameter is denoted by k; for conciseness, we equate the security
parameter with the input length. (We therefore consider security for “sufficiently
long inputs”.) We denote by A(x, z, r) the output of machine A on input x,
auxiliary input z, and random coins r. The running time of A is measured in
terms of the length of its first input x (where |x| = k), and the exact running
time of the deterministic computation A(x, z, r) is denoted by timeA(A(x, z, r)).
A runs in strict polynomial time if there is a polynomial p(·) such that for
all x, z, and all r, it holds that timeA(A(x, z, r)) ≤ p(|x|). A runs in expected
polynomial time if there is a polynomial p(·) such that for all x and z, it holds
that Expr[timeA(A(x, z, r))] ≤ p(|x|).

Running Time for ITMs. If A is an interactive Turing machine (ITM), we let
A(x, z, r; ·) denote the “next message function” of A on inputs x, z, and random
coins r. The ITM A runs in strict polynomial time if there is a polynomial
p(·) such that for all x, z, r, and any sequence of messages m, it holds that
timeA(A(x, z, r;m)) ≤ p(|x|).

Defining expected polynomial-time ITMs is more complicated, and at least
two such definitions have been considered. We first present the definition of
Feige [7]. As mentioned in the Introduction, the idea behind this definition is that
any adversarial strategy that is efficient when run against the specified target is
feasible. Thus, the running-time of an adversary when interacting with an arbi-
trary ITM (that is not the honest party under attack) is irrelevant. Informally,
an ITM A is therefore said to run in expected polynomial-time with respect to a
particular protocol π if there exists a polynomial p(·) such that for all inputs, the
expected running time of A when interacting with honest parties running π is at
most p(|x|). (The expectation here is taken over the random coins of both A and
the honest parties.) More formally, let timeA(〈A(x, zA, r),B(y, zB , s)〉) denote
the running time of A with input x, auxiliary input zA, and random coins r,
when interacting with B having input y, auxiliary input zB , and random coins
s. Then:

Handling Expected Polynomial-Time Strategies 135

Definition 1. An ITM A runs in expected polynomial-time with respect to an
ITM B if there exists a polynomial p(·) such that for all x, y with |x| = |y| and
all auxiliary inputs zA, zB ∈ {0, 1}∗, the following holds:

Expr,s [timeA(〈A(x, zA, r),B(y, zB , s)〉)] ≤ p(|x|).

Let π = (P1,P2) be a two-party protocol. Then an adversary A runs in
expected polynomial-time with respect to π if it runs in expected polynomial-time
with respect to P1 and in expected polynomial-time with respect to P2.

The above definition relates to the case of two-party protocols. The extension
to the multiparty case is obtained by considering the expected running-time of
A when interacting (simultaneously) with every subset of honest parties.

As we have mentioned above, the fact that an adversary A runs in expected
polynomial-time with respect to a protocol π means nothing about its running
time when it interacts with other machines. A definition of the above sort makes
sense in a cryptographic context, but is arguably a somewhat strange way of
defining a “complexity class”. An alternative approach advocated by Goldre-
ich [9] therefore states that an ITM runs in expected polynomial time if there
exists a polynomial p(·) such that for all inputs, the expected running time of
A when interacting with any (even all powerful) ITM is at most p(|x|). Here,
the expectation is taken over the random coins of A only. In such a case, we say
that A runs in expected polynomial-time in any interaction. More formally:

Definition 2. An ITM A runs in expected polynomial-time in any interaction if
for every ITM B it holds that A runs in expected polynomial-time with respect
to B (as defined in Definition 1).

It is immediate that if an ITM A runs in expected polynomial-time in any
interaction, then A also runs in expected polynomial-time with respect to any
protocol π. Furthermore, it is not difficult to show that for many protocols π,
the class of adversaries running in expected polynomial-time with respect to π is
strictly larger than the class of adversaries running in expected polynomial-time
in any interaction. Since all our results hold even with respect to the stronger
definition, and we view it as preferable in the cryptographic context, we adopt
Definition 1 in this paper.

Expected Polynomial-Time Oracle Machines. Let A be an oracle machine
that receives oracle access to an ITM B. In the execution of A with B, denoted by
AB(y,zB ,s;·)(x, zA, r), machine A receives input x, auxiliary-input zA and random
tape r, and provides queries of the form m to its oracle which are answered as
B(y, zB , s;m). We distinguish between two notions of running time for an oracle
machine AB :

1. timeA(AB(y,zB ,s;·)(x, zA, r)) denotes the exact running time of A on input
x, auxiliary-input zA, and random tape r when interacting with the oracle
B(y, zB , s; ·), counting calls to B as a single step (i.e., we only “look” at the
steps taken by A).

136 J. Katz and Y. Lindell

2. timeA+B(AB(y,zB ,s;·)(x, zA, r)) denotes the total running time of both A and
B in the analogous execution. Here, the steps taken by B to answer A’s
queries are also counted.

Given the above, we can define expected polynomial-time oracle machines.
An oracle machine A is said to run in expected polynomial-time if there exists a
polynomial p(·) such that for every (even all powerful) machine B, all sufficiently-
long inputs x, and every auxiliary input z, Expr[timeA(AB(x, z, r))] ≤ p(|x|).
Likewise, the composed machine AB is said to run in expected polynomial-
time if there exists a polynomial p(·) such that for all sufficiently-long inputs
x and y with |x| = |y|, and all auxiliary inputs zA and zB , it holds that
Expr,s[timeA+B(AB(y,zB ,s)(x, zA, r))] ≤ p(|x|). Note that for any strict poly-
nomial-time B, if A runs in expected polynomial-time (not counting the steps
of B) then so does AB (where B’s steps are counted). We stress, however, that
this does not necessarily hold when B runs in expected polynomial time (under
either definition considered earlier).

Requiring an expected polynomial-time oracle machine to run in the same
(expected) amount of time when interacting with any machine B, even one
which is computationally unbounded, seems to be overly stringent. However,
all black-box simulators that we are aware of fulfill this condition. This extra
condition is also needed for our results. We also remark that our definition of
expected polynomial-time oracle and composed machines is asymptotic. That is,
the machine is only required to run in (expected) time p(|x|) for all long enough
x’s. As long as all machines considered halt on all inputs (and all random tapes),
this is equivalent to the standard notion. (Indeed, we will assume this “halting
condition” for all machines.)

3 Simulation for Expected Polynomial-Time Adversaries

In this section, we show how protocols proven secure against strict poly-time
adversaries using a certain class of black-box simulation can in fact be proven
secure against expected poly-time adversaries as well.

3.1 Preliminaries

As we have mentioned, the results of this section hold for a certain class of black-
box simulators. We begin with a high-level description of secure computation,
and then define the class of simulators. For the sake of simplicity, we present
the results here for the case of two-party protocols. The extension to multiparty
protocols is straightforward.

Secure Two-Party Computation. We provide a very brief and informal over-
view of the definition of security for two-party computation. For more details,
see [4, 10]. In the setting of two-party computation, two parties wish to jointly
compute a (possibly probabilistic) functionality f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×
{0, 1}∗, where f = (f1, f2). That is, upon respective inputs x and y, the parties

Handling Expected Polynomial-Time Strategies 137

wish to compute f(x, y) so that party P1 receives f1(x, y) and party P2 receives
f2(x, y). Furthermore, the parties wish to ensure that nothing more than the
output is revealed and that the function is correctly computed, even if one of
the parties behaves adversarially. These requirements (and others) are formalized
by comparing a real protocol execution to an ideal execution involving a trusted
party. In an ideal execution with f , the parties send their inputs x and y to a
trusted party who computes f(x, y) and sends f1(x, y) to P1 and f2(x, y) to P2.
Of course, the adversary who controls one of the parties can choose to send any
input it wishes to the trusted party.3 In contrast, in a real execution the parties
P1 and P2 run a protocol π, where one of the parties may be corrupted and thus
under the complete control of the adversary A. Informally, we say a protocol π
is secure if for every real-model adversary A interacting with an honest party
running π, there exists an ideal-model adversary S interacting with a trusted
party computing f , such that the output of A and the honest party in the real
model is computationally indistinguishable from the output of S and the honest
party in the ideal model. We note that in this work we consider static adversaries
who corrupt one of the parties before the protocol execution begins.

Notation. Let π = (P1,P2) be a two-party protocol and let f be a two-party
functionality. We denote by realπ,A(x, y, z) the output of a real execution of π
where party P1 has input x, party P2 has input y, and the adversary A has input
z. Likewise, we denote by idealf,S(x, y, z) the output of an ideal execution with
f where the respective inputs are as above. Since we are interested in black-box
simulation, we present the definition for a black-box simulator S:

Definition 3. (secure computation with black-box simulation): Let f and π be as
above. Protocol π is said to black-box securely compute f (in the malicious model)
if there exists a non-uniform probabilistic expected polynomial-time oracle ma-
chine (ideal adversary/simulator) S such that for every non-uniform probabilis-
tic polynomial-time real-model adversary A, every non-uniform polynomial-time
distinguisher D, every polynomial p(·), all sufficiently-long inputs x and y such
that |x| = |y|, and all z ∈ {0, 1}poly(|x|),∣∣Pr[D(idealf,SA(z)(x, y, λ)) = 1]− Pr[D(realπ,A(x, y, z)) = 1]

∣∣ < 1
p(|x|) .

We note that S is an expected polynomial-time oracle machine as defined ear-
lier. That is, for every A the expected value of timeS(SA) is polynomial (even if
A is computationally unbounded). To be more exact, however, the running-time
of S may also depend on the messages it receives from the trusted party (and in
particular, the random coins used by the trusted party to compute the functional-
ity). We therefore denote by timeS(idealf,SA(z)(x, y, λ)) the running-time of SA

here. Adapting the earlier notation, we denote the expected running-time of SA

not counting A’s steps by Exps[timeS(idealf,SA(z,r)(1|z|,s)(x, y, λ)], and its ex-
pected time counting A’s steps by Expr,s[timeS+A(idealf,SA(z,r)(1|z|,s)(x, y, λ)].

3 The adversary also has control over the delivery of the output from the trusted party
to the honest party. Therefore, fairness and output delivery are not guaranteed.

138 J. Katz and Y. Lindell

(The expectations above are actually also over the random-coins of the function-
ality. In this extended abstract, we ignore this issue.)

We now define a stronger notion of simulation which, informally, requires
not only that the final output of idealf,SA be indistinguishable from realπ,A,
but also that each partial transcript generated during the simulation is indistin-
guishable from the (corresponding) partial transcript of a real execution of the
protocol. Furthermore, we require that indistinguishability holds in a “strong”
sense even against algorithms running in some slightly superpolynomial time.
We begin by defining the following distributions:

1. simf,SA(x, y, z, r, i) is defined by the following experiment: choose a random-
tape s ∈R {0, 1}∗ and run SA(z,r;·)(1|z|, s) in the ideal model with f . Let
queryi be the ith oracle query made by S to A; if no such query is made,
then set queryi = ⊥. Output queryi.

2. realπ,A(x, y, z, r, i) is defined by the following experiment: choose s ∈R

{0, 1}∗ and run a real execution where A has random-tape r and the honest
party has random-tape s. Let T be the vector of messages sent by the honest
party to A in this execution, and let T j denote the first j messages in T .
Next, run the experiment simf,SA(x, y, z, r, i) above (with an independent
choice of s) and obtain queryi. If queryi = ⊥, then output ⊥. Otherwise, let
j denote the number of messages in queryi, and output T j .

We note that the reason for running sim in the second distribution is just
to decide the length of the partial transcript to output. That is, we wish to
compare the distribution of queryi to the partial transcript of a real execution
of the appropriate length. We are now ready for the formal definition.

Definition 4. (α-strong black-box simulation): Let π be a two-party protocol
that is secure under black-box simulation, and let S be a black-box simulator
for π. We say that S is an α-strong black-box simulator for π (and say that π
is secure under α-strong black-box simulation), if for every strict polynomial-time
adversary A, every non-uniform algorithm D running in time at most α(k), all
i ∈ N, all sufficiently large x and y, and all z, r ∈ {0, 1}∗,∣∣Pr[D(simf,SA(x, y, z, r, i)) = 1]− Pr[D(realπ,A(x, y, z, r, i)) = 1]

∣∣ < 1
α(k)

.

If the above holds for adversaries A that are expected polynomial-time with
respect to π, then we say that π is secure under α-strong black-box simulation for
expected polynomial-time adversaries.

Extended Black-Box Simulation. Finally, we introduce a generalization of
black-box simulation in which the black-box simulator is allowed to truncate its
oracle after it exceeds some (poly-time computable) number of steps α(·). We call
such a simulator extended black-box. We argue that this generalization is natural
in the sense that the simulator still does not “look” at the internal workings
of its oracle. We remark that when computing timeA(AB), oracle calls are still
considered a single step (even if A truncates B after some number of steps).

Handling Expected Polynomial-Time Strategies 139

Of course, timeA+B(AB) also remains unchanged. We note that by requiring
α(·) to be polynomial-time computable, we ensure that any extended black-box
simulator can be implemented by a non black-box simulator.

3.2 Simulation for Expected Polynomial-Time Adversaries

Theorem 5. Let α(k) = kω(1) be a superpolynomial function that is poly-time
computable, and let π be a protocol that is secure under α-strong (extended)
black-box simulation for strict polynomial-time adversaries. Then there exists a
superpolynomial function α′(k) such that π is secure under α′-strong extended
black-box simulation for expected polynomial-time adversaries.

Proof: The idea behind the proof of this theorem is as follows. Since each
query made by the α-strong simulator S to the real adversary A is indistin-
guishable from a partial real transcript even for circuits of size α(k), it follows
that as long as A does not exceed α(k) steps, it cannot behave in a notice-
ably different way when receiving an oracle query or a real partial transcript.
In particular, it cannot run longer when it receives an oracle query than it
would run when interacting in a real protocol execution, and we know that it
runs in expected polynomial-time in the latter case. We therefore construct a
new simulator S̃ that works in the same way as S, except that it halts if A
ever exceeds O(α(k)) steps when answering a query. This enables us to pre-
vent A from ever running for a very long time (something which can cause
its expected running-time to be superpolynomial). Furthermore, by what we
have claimed above, A will behave in almost the same way as before, because
it can exceed α(k) steps only with probability that is inversely proportional
to α(k). This will suffice for us to show that the new simulator is expected
polynomial-time even if A is expected polynomial-time. Of course, we must also
prove that the new simulation is no different than the old one. This follows
again from the fact that A must behave in the “same way” as in a real execu-
tion, as long as α(k) steps are not exceeded. We now proceed with the actual
proof.

Throughout the proof, we let k denote the length of x. Let S be the α-strong
black-box simulator for π that is assumed to exist, and define Â as the algorithm
that behaves exactly as A except that it outputs ⊥ if it ever exceeds α(k)/2
steps. Then, we construct a new simulator Ŝ that receives oracle access to A and
emulates a simulation of S with Â. That is, Ŝ chooses a random tape s ∈ {0, 1}∗
and invokes S with random-tape s. Then, all oracle queries from S are forwarded
by Ŝ to its own oracle A and the oracle replies are returned to S unless the
oracle exceeds α(k)/2 steps while answering the query, in which case Ŝ returns
⊥ (thereby emulating Â). Furthermore, all communication between S and the
trusted party computing f is forwarded unmodified by Ŝ. We remark that Ŝ
is an extended black-box simulator because it truncates its oracle. (It makes no
difference whether S was extended black-box or not.) We first show that Ŝ runs
in expected polynomial time, even when A runs in expected polynomial-time
with respect to π.

140 J. Katz and Y. Lindell

Claim 6. For every expected polynomial-time adversary A, the composed ma-
chine ŜA runs in expected polynomial time. That is, for every A there exists a
polynomial p(·) such that all sufficiently large x and y, and all z ∈ {0, 1}∗, it
holds that Expr,s[timeŜ+A(idealf,ŜA(z,r)(1|z|,s)(x, y, λ)] ≤ p(k).

Proof: To prove the claim, first note that the running time of Ŝ consists of
two components: the steps taken by S and the steps taken by Â in answer-
ing all of the oracle queries of S. By the linearity of expectations, it suffices
to show that the expectation of each of these components is polynomial. Since
S is an expected polynomial-time oracle machine, its expected running time is
polynomial when interacting with any oracle (see the end of Section 2). It there-
fore remains to bound the total number of steps taken by Â. This is equal to
Expr,s[

∑τ
i=1 timeS

Â(z,r)(i)], where τ is a random variable denoting the number of

oracle queries made by S, and timeS
Â(z,r)(i) is a random variable denoting the run-

ning time of Â(z, r) in answering the ith query from S. (Note that these random
variables may depend on both r and s, and also on the honest party’s inputs.)
The expected value of τ is polynomial because S is an expected polynomial-
time oracle machine. We now show that the expected value of timeS

Â(z,r)(i) is
also polynomial for any i. Applying Wald’s inequality (see Appendix A) then
completes the proof that the expected total number of steps taken by Â is poly-
nomial.

For any i, it holds that Expr,s[timeS
Â(z,r)(i)] = Expr[Exps[timeS

Â(z,r)(i)]].

Furthermore, since Â halts after α(k)/2 steps, it follows that for any fixed r,

Exps

[
timeS

Â(z,r)(i)
]
=

α(k)/2∑
t=1

t·Prs

[
timeS

Â(z,r)(i) = t
]

=
α(k)/2∑

t=1

Prs

[
timeS

Â(z,r)(i) ≥ t
]
.

Notice that the distribution on the message sequence input to Â here (namely,
the ith query from S) is exactly that given by simf,SÂ(x, y, z, r, i). Now, let
timeÂ(z,r)(i) be a random variable denoting the running time of Â(z, r) when
run on input distributed according to realπ,Â(x, y, z, r, i). (Recall that this is a
message of the same length as queryi, that Â receives in a real execution.) We
first claim that, for large enough x and y, for any z, r, i, and for t ≤ α(k)/2,∣∣∣Prs[timeÂ(z,r)(i) ≥ t]− Prs[timeS

Â(z,r)(i) ≥ t]
∣∣∣ < 1

α(k)
. (1)

This follows because otherwise we obtain a non-uniform distinguisher, in
contradiction to the fact that S is an α-strong black-box simulator. In more
detail, given an auxiliary input z′ = (z, r, t) with t ≤ α(k)/2, and a sequence of
j messages T j we simply run Â(z, r) on message sequence T j , and output 1 iff Â
exceeds t steps. For large enough k, the total running time of this distinguishing
algorithm (including the overhead for maintaining a counter and running Â) is
at most α(k). Therefore, by Definition 4, it follows that Eq. (1) holds. We remark
that the non-uniformity of Definition 4 is essential here. We thus have that:

Handling Expected Polynomial-Time Strategies 141

α(k)/2∑
t=1

Prs

[
timeS

Â(z,r)(i) ≥ t
]
≤

α(k)/2∑
t=1

(
Prs[timeÂ(z,r)(i) ≥ t] +

1
α(k)

)

=
1
2

+
α(k)/2∑

t=1

Prs[timeÂ(z,r)(i) ≥ t], (2)

and therefore the expected value of timeS
Â(z,r)(i) is bounded by the expression

in Eq. (2). Using the simple observations that: (1) timeÂ(z,r)(i) ≤ timeÂ(z,r)

(where the latter expression refers to the total running time of Â(z, r) in a real
execution), and (2) timeÂ(z,r) ≤ timeA(z,r) (because Â is truncated whereas A
is not), we see that the expected value of timeS

Â(z,r)(i) is bounded by:

1
2

+
α(k)/2∑

t=1

Prs[timeA(z,r) ≥ t] ≤ 1
2

+ Exps[timeA(z,r)]

where Exps[timeA(z,r)] is simply the expected running time of A in a real
protocol execution with the honest parties. The fact that A runs in expected
polynomial-time with respect to π therefore implies that the expected value of
timeS

Â(z,r)(i) is polynomial, completing the proof of Claim 6.

Until now, we have shown that Ŝ runs in expected polynomial-time. It re-
mains to show that it is an α′-strong (extended black-box) simulator for expected
polynomial-time adversaries, for some superpolynomial function α′(k). First, Ŝ
is an expected polynomial-time oracle machine because it inherits this from S.
Next, we claim that for every expected polynomial-time A, every non-uniform
algorithm D running in time at most α(k), all i ∈ N, all sufficiently large x and
y, and all z, r ∈ {0, 1}∗,∣∣∣Pr[D(simf,ŜA(x, y, z, r, i)) = 1]− Pr[D(simf,SA(x, y, z, r, i)) = 1]

∣∣∣ < 1
α′′(k)

for some superpolynomial function α′′(k). This follows from the facts that (1)
the composed machine ŜA runs in expected polynomial-time, and (2) the only
time that ŜA and SA differ is if A exceeds α(k)/2 steps. That is, let p(k) be
the expected running time of the composed machine ŜA. Then, by Markov’s in-
equality, the probability that ŜA will exceed α(k)/2 steps is at most 2p(k)/α(k).
Therefore, the statistical difference between simf,ŜA(x, y, z, r, i) and

simf,SA(x, y, z, r, i) is at most α′′(k) def= 2p(k)/α(k). Combining this with the
assumption that S is an α-strong simulator and so simf,SA(x, y, z, r, i) can be
distinguished from realπ,A(x, y, z, r, i) with probability at most 1/α(k), we con-
clude that∣∣∣Pr[D(simf,ŜA(x, y, z, r, i)) = 1]− Pr[D(realπ,A(x, y, z, r, i)) = 1]

∣∣∣ < 1
α′(k)

where α′(k) def= (1/α(k) + 1/α′′(k))−1. We conclude that Ŝ is an α′-strong ex-
tended black-box simulator, as required.

142 J. Katz and Y. Lindell

3.3 Zero-Knowledge Proofs – A Corollary

Consider now the zero-knowledge functionality for an NP-language L. This func-
tion is defined by f(x, x) = (λ, χL(x)), where χL(x) = 1 if and only if x ∈ L.
A zero-knowledge protocol is a protocol π that securely realizes f for strict
polynomial-time adversaries. Now, for the sake of concreteness, consider the
zero-knowledge protocol of Goldreich, Micali, and Wigderson [13]. Assuming
the existence of commitment schemes that are hiding for circuits of size α(k),
it is easy to verify that the black-box simulator provided by [13] is α-strong
for strict polynomial-time adversaries. Therefore, by applying Theorem 5, we
obtain that the protocol of [13] is also black-box secure for adversaries that
run in expected polynomial-time with respect to the protocol. The soundness
condition is unaffected by the above. We therefore obtain the first computa-
tional zero-knowledge proof system that remains zero-knowledge for expected
polynomial-time adversaries (with respect to either of the definitions in Sec-
tion 2).4 Thus, as a corollary of Theorem 5, we partially resolve the open ques-
tions from [7, 16] discussed in the Introduction. (The result is only “partial”
because we need superpolynomial hardness assumptions, and due to the caveat
below.)

We remark that there is a subtle, yet important, caveat to the above. The
simulator is only α-strong in the case that the input is a statement x ∈ L.
This is due to the fact that when x /∈ L, it may be possible for a distin-
guisher D to distinguish partial transcripts of the simulator from partial tran-
scripts of a real execution just by checking if the statement is in the lan-
guage (unless distinguishing x ∈ L from x /∈ L is also assumed to be hard
for circuits of size α(k)). On the one hand, this is fine because simulators
are only required to generate indistinguishable distributions in the case that
x ∈ L. On the other hand, this is a problem because our simulator is not
even guaranteed to run in expected polynomial-time for x /∈ L. Thus, within
a proof of security, one cannot invoke the zero-knowledge simulator on a state-
ment x that may or may not be in the language, unless it is assumed that
it is hard to distinguish x ∈ L from x /∈ L in time α(k). In the full ver-
sion of this paper, we discuss the ramifications of this caveat in greater de-
tail.

3.4 Protocol Composition and Other Scenarios

We note that our result above has been stated for the stand-alone setting
of secure computation. However, it actually holds for any setting, as long as
the black-box simulator is α-strong for that setting. In particular, the result
holds also for the setting of protocol composition where many protocol execu-
tions are run (and thus the simulator interacts with the trusted party many
times).

4 In fact, computational zero-knowledge arguments were also not known to exist for
adversaries that are expected polynomial-time with respect to the protocol.

Handling Expected Polynomial-Time Strategies 143

4 A Modular Composition Theorem

Our goal in this section is to prove a modular composition theorem for secure
multi-party computation which is analogous to the result of Canetti [4], but
which holds even for protocols proven secure against strict polynomial-time ad-
versaries while using expected polynomial-time simulation. As in Section 3, the
results of this section are stated for the two-party case; the extension to the
multiparty case is straightforward.

The sequential composition theorem of [4] can be informally described as
follows. Let π be a two-party protocol computing a function g, designed in an
(idealized) model in which the parties have access to a trusted party who eval-
uates functions f1, . . . , fm; furthermore, assume that at most one ideal function
call is made during any round of π. This model is called the (f1, . . . , fm)-hybrid
model, denoted hybridf1,...,fm , because parties send real messages from the pro-
tocol π and also interact with a trusted party computing functions f1, . . . , fm.
Let ρ1, . . . , ρm be a sequence of two-party protocols such that ρi securely com-
putes fi (as in Definition 3), and let πρ1,...,ρm denote the “composed protocol”
in which each ideal call to fi is replaced by an invocation of ρi (we stress that
each executed protocol ρi is run to completion before continuing the execution
of π). The composition theorem then states that if π securely computes g in the
hybrid model, and if each ρi securely computes fi, then the composed real pro-
tocol πρ1,...,ρm securely computes g. An important point to note is that the proof
of [4] only considers the case that each of the component protocols ρi is proven
secure via strict polynomial-time simulation. In fact, the proof of [4] demon-
strably fails (in general) for the case of protocols proven secure via expected
polynomial-time simulation; a counterexample is provided in the full version of
this paper. In this section, we show that a suitable modification of the approach
of [4] can be used to prove an analogous modular composition theorem even when
each of the component protocols is proven secure via expected polynomial-time
simulation.

We view this result as important both for conceptual reasons as well as for
reasons of efficiency and practicality. Conceptually, there seems to be no fun-
damental reason that a composition theorem of this sort should not hold for
the case of expected polynomial-time simulation; a number of technical barriers,
however, make proving such a result difficult. From a practical point of view,
many existing protocols – and, in particular, efficient ones – seem to require
a proof of security via expected polynomial-time simulation. The composition
theorem proven here enables protocol designers to enjoy the benefits of modular
design and analysis, while ultimately allowing (more) efficient sub-protocols to
be “plugged-in” for each of the components.

Preliminaries. We assume that the reader is familiar with [4], and so we borrow
notation to the extent possible. In our proof, we use pseudorandom function
families that are indistinguishable from random even for circuits of size α(k), for
some superpolynomial function α. We call these α-secure pseudorandom functions.

144 J. Katz and Y. Lindell

The Composition Theorem. The composition theorem we prove is analogous
to the one shown in [4] for the case of strict polynomial-time simulation. The
only differences are that on the one hand, our proof holds also for the case of
expected polynomial-time simulation, and on the other hand, we require black-
box simulation and the existence of α-secure pseudorandom functions (the proof
of [4] holds for any type of simulation and requires no hardness assumptions). We
stress that, unlike in Section 3, here we consider the case that the real adversary
runs in strict polynomial-time. Our proof of Theorem 7 is rather informal; a full
and rigorous proof appears in the full version.

Theorem 7. Assume the existence of α(k)-secure pseudorandom functions for
some α(k) = kω(1). Let f1, . . . , fm and g be two-party functions, let π be an two-
party protocol that black-box securely computes g in the (f1, . . . , fm)-hybrid
model where no more than one ideal evaluation call is made at each round, and
let ρ1, . . . , ρm be two-party protocols such that each ρi securely computes fi.
Then protocol πρ1,...,ρm securely computes g.

Proof: We follow the structure and notation of the proofs of [4–Theorems
5, 15] and [4–Corollaries 7, 17] as closely as possible. We focus on the case
m = 1; the general case follows easily using the techniques described here (and
is omitted due to lack of space). We begin with a high-level overview of our
proof, stressing where it diverges from [4]: Let f = f1 be a two-party function,
π a protocol in the f -hybrid model, ρ a protocol that securely computes f , and
πρ the composed protocol. Given a strict polynomial-time adversary A in the
real world (who interacts with parties running πρ), our goal is to construct an
expected polynomial-time ideal-world adversary S (interacting with a trusted
party who evaluates g) such that idealg,S

c≡ realπρ,A. We proceed in the
following steps:

– As in [4], we first construct from A a (natural) real-world adversary Aρ who
interacts with parties running ρ as a stand-alone protocol. The security of
ρ implies the existence of an expected polynomial-time simulator Sρ, who
interacts with a trusted party evaluating f , such that idealf,Sρ

c≡ realρ,Aρ
.

– As in [4], using A and Sρ we construct an adversary Aπ interacting with par-
ties running π in the f -hybrid model and satisfying hybridf

π,Aπ

c≡ realπρ,A.
Contrary to [4], we cannot at this point claim the existence of an expected
polynomial-time ideal-world adversary S, who interacts with a trusted party
evaluating g, such that idealg,S

c≡ hybridf
π,Aπ

(such a claim, if true, would
complete the proof). We cannot make such a claim because Aπ runs in ex-
pected polynomial-time but the security of π only guarantees the existence
of a “simulator” for strict polynomial-time adversaries.

– Instead, we first construct a modified adversary A′
π (still interacting with

parties running π in the f -hybrid model) that runs in expected polynomial
time and for which hybridf

π,A′
π

c≡ hybridf
π,Aπ

under the assumption that
α-secure pseudorandom functions exist. This forms the crux of our proof,
and further details are given below.

Handling Expected Polynomial-Time Strategies 145

– Let Sπ denote a black-box simulator for π (as in Definition 3). We define
an ideal-world adversary S by running a slightly modified version of Sπ

with oracle access to A′
π. We then prove that (1) idealg,S

c≡ hybridf
π,A′

π
;

and (2) that S runs in expected polynomial time (even when taking the
running time of A′

π into account). The proof of the second claim relies
on the existence of α-secure pseudorandom functions. We stress that we
do not claim the above is true when Sπ is run with oracle access to an
arbitrary expected polynomial time machine (indeed, the claims may not
be true if Sπ is run with oracle access to the original Aπ), but rather
we only make these claims with regard to the specific A′

π that we con-
struct.

We now proceed with the proof. Since the first steps of our proof – namely,
the construction of Aρ, Sρ, and Aπ – are exactly as in [4], we omit the details
here but instead provide only a high-level description of the adversary Aπ which
runs in the f -hybrid model. Loosely speaking, Aπ runs A until the protocol ρ
is supposed to begin. At this point, A expects to run ρ, whereas Aπ should use
an ideal call to f . Therefore, Aπ invokes Sρ giving it the current internal state
zρ of A as its auxiliary input, and forwarding the messages between Sρ and the
trusted party computing f . The output of Sρ is an internal state of A at the
end of the execution of ρ; adversary Aπ continues by invoking A on this state
and running A until the conclusion of π. We remark that Aπ’s random-tape
is parsed into r and r∗, and Aπ invokes A with random-tape r and Sρ with
random-tape r∗. This concludes the (informal) description of Aπ. As in [4], it
holds that hybridf

π,Aπ

c≡ realπρ,A. In this case, however, Aπ is an expected
polynomial-time adversary.

Sidetrack – Motivation for the Proof. At this point, it is possible to pro-
vide the key idea behind the proof of the theorem. Let Sπ be the simulator
that is guaranteed to exist by the fact that π black-box securely computes g in
the f -hybrid model. Then, the main problem that arises in the proof of [4] is
that the expected running-time of Sπ when given access to the oracle Aπ may
not be polynomial. Consider the case that the strategy of Sπ involves “rewind-
ing” Aπ. Then, it is possible that Aπ will invoke Sρ a number of times with
the same random-tape r∗. This introduces dependence between the executions,
and may cause Sρ to always run for a very long time. (The composition of the
machines A and B described in the Introduction yielded an exponential-time
machine exactly due to the fact that A invoked B with the same random-tape
twice.) The first solution that comes to mind would be to have Aπ choose an
independent random-tape every time that it invokes Sρ. However, Sπ works
when given an oracle Aπ with a fixed random-tape, and therefore this solu-
tion does not work. Our solution is to instead modify Aπ so that it invokes Sρ

with a new pseudorandom tape each time (in a way reminiscent of a similar
technique used in [6]). By using α-strong pseudorandom functions, we ensure
that the pseudorandom tapes “look random” throughout the entire simulation
by Sπ.

146 J. Katz and Y. Lindell

Back to the Proof. As described above, we modify Aπ to an adversary A′
π,

using a family F of α-secure pseudorandom functions for α(k) = kω(1). The
random tape of A′

π is parsed as r, s, where r is used exactly as above (i.e., A′
π

invokes A with random-tape r), and s is used as a key to an α-secure pseudoran-
dom function. Then A′

π sets the random-tape r∗ for Sρ to r∗ = Fs(zρ), where
zρ is the current internal state of A when Sρ is invoked (instead of choosing
it randomly like Aπ). In addition, A′

π halts with output ⊥ if it ever exceeds
α(k)/2 steps overall (not including steps used in computing Fs).5 Apart from
the above, A′

π works in exactly the same way as Aπ. We now prove the following
claims:

Claim 8. Assuming that F is an α-secure family of pseudorandom functions,
A′

π runs in expected polynomial time.

Proof (sketch): Consider a modified simulator Âπ who chooses a truly random-
tape r∗ for Sρ instead of a pseudorandom one. (In particular, the only difference
between Âπ and Aπ is that Âπ outputs ⊥ if it ever exceeds α(k)/2 steps.)
Then, the expected running time of Âπ on any set of global inputs global (which
includes both the inputs explicitly given to Âπ as well as the inputs and random
coins of the honest parties and the random coins of the trusted party) is at most:

α(k)/2∑
t=1

Prr,r∗ [timeÂπ
(global) ≥ t] ≤

α(k)/2∑
t=1

Prr,r∗ [timeAπ (global) ≥ t]

≤
∞∑

t=1

Prr,r∗ [timeAπ
(global) ≥ t] ≤ pAπ

(k)

where pAπ (·) is the polynomial upper-bound on the expected running-time of
Aπ, and where we ignore the time required to maintain a counter for the number
of steps (since this only affects the expected running time by a multiplicative
polynomial factor). Now, since r∗ is actually chosen pseudorandomly by A′

π, we
have that for large enough k, every value of global and all t ≤ α(k)/2:∣∣∣Prr,s[timeA′

π
(global) ≥ t]− Prr,r∗ [timeÂπ

(global) ≥ t]
∣∣∣ ≤ 1

α(k)
. (3)

(Eq. (3) ignores the time spent by A′
π in computing Fs because, as above, it

only affects the expected running-time by a multiplicative polynomial factor).
Otherwise, we can construct a distinguisher D for F as in the proof of Claim 6
(details appear in the full version). We conclude that the expected running-time
of A′

π on global inputs global and large enough k equals

5 There is an additional subtlety here, in that Sρ may require a superpolynomial
number of coins while the output of Fs is polynomial. However, this can be easily
resolved: by construction, we never require more than α(k) coins for Sρ.Coins for Sρ

can thus be generated as needed by letting the ith coin required by Sρ be given by
Fs(zρ| 〈i〉) where 〈i〉 is the log(α(k))-bit representation of i.

Handling Expected Polynomial-Time Strategies 147

α(k)/2∑
t=1

Prr,s[timeA′
π
(global) ≥ t] ≤

α(k)/2∑
t=1

(
Prr,r∗ [timeÂπ

(global) ≥ t] +
1

α(k)

)
which equals at most pAπ

(k) + 1, and so is polynomial.

Claim 9. Assuming that F is an α-secure family of pseudorandom functions,
it holds that hybridf

π,A′
π

c≡ hybridf
π,Aπ

.

Proof (sketch): Let Âπ be the same as in Claim 8. Since the expected running-
time of Aπ on security parameter 1k is polynomial (for any set of global inputs),
the probability that Aπ exceeds α(k)/2 steps is negligible. Hence hybridf

π,Âπ

is statistically close to hybridf
π,Aπ

. Now, A′
π is identical to Âπ except that it

uses a pseudorandom r∗ while Âπ uses a truly random r∗. Since A′
π and Âπ

both run in at most α(k)/2 steps (for the case of A′
π, not counting the time

required to compute Fs), the assumption that F is an α-secure family of pseu-
dorandom functions immediately implies that hybridf

π,A′
π

is computationally

indistinguishable from hybridf

π,Âπ
(details omitted), completing the proof.

Defining the Simulator S. Since π black-box securely computes g, there exists
an oracle machine Sπ satisfying the conditions of Definition 3 (with appropriate
modifications for comparing the f -hybrid and ideal models). Our simulator S
works by simply invoking Sπ with oracle A′

π, with the limitation that it halts
with output ⊥ if it ever exceeds α(k)/2 steps (including the running time of A′

π

but, again, not including time spent computing Fs). Our aim is to show that
(1) S runs in expected polynomial-time (even when taking the running time of
A′

π into account), and (2) hybridf
π,A′

π

c≡ idealg,S . We stress that neither of
these claims are immediate since A′

π is an expected polynomial-time adversary,
and the simulator Sπ has only been proven for the case that it is given a strict
polynomial-time oracle.

Claim 10. Assuming that F is an α-secure family of pseudorandom functions,
S runs in expected polynomial time.

Proof (sketch): We use the same general technique as in the proof of Claim 8,
but the proof here is slightly more complicated. First imagine an adversary S̃
that differs from S in the following way: whenever Sρ is called from within A′

π,
S̃ monitors the value of zρ at that point. Let zρ

i denote the ith value of zρ in
the execution of S̃. Then instead of setting r∗

i = Fs(z
ρ
i), S̃ instead chooses r∗

i

as follows: if zρ
i = zρ

j for some j < i, then set r∗
i = r∗

j . Otherwise, choose r∗
i

uniformly at random (the technicalities raised in footnote 5 can be handled in
the obvious way). We first show that S̃ runs in expected polynomial-time, and
then claim (as in the proof of Claim 8) that the expected running-times of S̃
and S cannot differ “too much”.

The running time of S̃ is the sum of three components: timeSπ
, the running

time of Sπ when counting its oracle calls to A′
π as a single step; timeA′

π
, the

148 J. Katz and Y. Lindell

running time of A′
π (when answering oracle calls of Sπ) but excluding time

spent running Sρ; and timeSρ
, and the running time of Sρ when called by A′

π

(each time A′
π is run).6 By linearity of expectation, we can analyze each of these

individually. The expected value of timeSπ
is polynomial since Sπ is an expected

polynomial-time oracle machine (as defined in Section 2). Furthermore, since
A′

π runs in strict polynomial time when excluding the steps of Sρ, and since
Sπ makes an expected polynomial number of calls to A′

π, the expected value of
timeA′

π
is polynomial as well. It remains to analyze timeSρ

. This variable is equal
to

∑timeSπ
i=1 timeSρ

(i), where timeSρ
(i) represents the running time of Sρ in its ith

execution. Since the random coins r∗
i used in the ith execution of Sρ are chosen

at random, the expectation of timeSρ
(i) is polynomial for all i. Wald’s inequality

(cf. Appendix A) thus implies that the expected value of timeSρ
is polynomial.

Exactly as in the proof of Claim 8, the fact that F is α-secure can be used
to show that S runs in expected polynomial time as well. We omit the details
(which are identical) here.

To complete the proof of the main theorem, we need to prove that idealg,S
c≡

hybridf
π,A′

π
. The proof of this is largely similar to the end of the proof of The-

orem 5 and appears in the full version of this paper.

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106–115, 2001.

2. B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th
IEEE Conference on Computational Complexity, pages 194–203, 2002.

3. B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction.
SIAM Journal on Computing, 33(4):783–818, 2004.

4. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

5. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd FOCS, pages 136–145, 2001.

6. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge.
STOC 2000.

7. U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. Thesis,
Weizmann Institute, 1990.

8. U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 526–544, 1989.

9. O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge
University Press, 2001.

10. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge University Press, 2004.

11. O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP . Journal of Cryptology, 9(3):167–190, 1996.

6 As discussed earlier, we again ignore time spent computing Fs.

Handling Expected Polynomial-Time Strategies 149

12. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Journal on Computing 25(1):169–192, 1996.

13. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of
the ACM 38(1):691–729, 1991.

14. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. Journal of Cryptology 7(1):1–32, 1994.

15. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

16. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. Journal of Cryptology, 16(3):143–184, 2003.

A Wald’s Inequality

We state a (slightly modified version of) Wald’s inequality here. The proof is
provided in the full version.

Lemma 11. Let Y1, Y2, . . . be an infinite sequence of non-negative random vari-
ables such that Exp [Yi] ≤ N for all i. Let τ be a non-negative integer random
variable for which, for all i, Pr[τ = i] depends only on Y1, . . . , Yi. Define Y

def=∑τ
i=1 Yi (with the sum defined as 0 in case τ = 0). Then Exp

[
Y
]
≤ N ·Exp [τ].

Adaptively-Secure, Non-interactive Public-Key
Encryption�

Ran Canetti1, Shai Halevi1, and Jonathan Katz2

1 IBM T.J. Watson Research Center, NY, USA
2 Department of Computer Science, University of Maryland

Abstract. Adaptively-secure encryption schemes ensure secrecy even
in the presence of an adversary who can corrupt parties in an adaptive
manner based on public keys, ciphertexts, and secret data of already-
corrupted parties. Ideally, an adaptively-secure encryption scheme
should, like standard public-key encryption, allow arbitrarily-many par-
ties to use a single encryption key to securely encrypt arbitrarily-many
messages to a given receiver who maintains only a single short decryp-
tion key. However, it is known that these requirements are impossible to
achieve: no non-interactive encryption scheme that supports encryption
of an unbounded number of messages and uses a single, unchanging de-
cryption key can be adaptively secure. Impossibility holds even if secure
data erasure is possible.

We show that this limitation can be overcome by updating the de-
cryption key over time and making some mild assumptions about the
frequency of communication between parties. Using this approach, we
construct adaptively-secure, completely non-interactive encryption
schemes supporting secure encryption of arbitrarily-many messages from
arbitrarily-many senders. Our schemes additionally provide forward se-
curity and security against chosen-ciphertext attacks.

1 Introduction

Imagine a band of political dissidents who need to go into hiding from an oppres-
sive regime. While in hiding, the only form of communication with the outside
world is via the public media. Before going into hiding, each individual wants
to publish a key that will allow anyone (even parties not currently known to
this individual) to publish encrypted messages that only this individual can de-
cipher. Since it is not known in advance how long these members will need to be
in hiding, reasonably short public keys must suffice for encrypting an unbounded
number of messages. Furthermore, messages encrypted to each dissident must
remain secret even if other dissidents are caught and their secrets are extracted
from them. Do encryption schemes satisfying these requirements exist?

� This work was supported by NSF Trusted Computing Grant #0310751 and Cy-
berTrust Grant #0430450.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 150–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adaptively-Secure, Non-interactive Public-Key Encryption 151

At first glance, a standard public-key encryption scheme seems to suffice. In-
deed, a public-key encryption schemes allows a receiver to publish a key that can
then be used by anyone to send encrypted messages to the receiver. The pub-
lic key is short (i.e., of fixed polynomial length) and can be used by arbitrary
senders (potentially unknown to the receiver at the time the key is published) to
securely send arbitrarily-many messages to the receiver without further interac-
tion. Furthermore, senders need not maintain any state other than the receiver’s
public key, and the receiver similarly need not maintain any state except for his
secret key.

However, standard public-key encryption schemes do not provide the desired
level of security. Standard definitions of security, including semantic security
against passive attacks [gm84] as well as various notions of security against
active attacks [ny90,rs91,ddn00,bdpr98], only consider the case where the
adversary never learns any secret key. However, when an adversary can com-
promise players and learn their internal states in an adaptive manner, possibly
depending on previously-observed ciphertexts and information learned during
previous corruptions, the standard notions no longer apply. In particular, in the
adaptive setting encrypting with a CCA-secure encryption scheme is not known
to provide secure communication.

To obtain provable security against adaptive adversaries, one must ensure
that the information gathered by the adversary when compromising parties
(namely, their secret keys) does not give the adversary any additional advantage
toward compromising the security of the yet-uncorrupted parties. The standard
way of formulating this is by requiring the existence of a simulator that can
generate “dummy ciphertexts” which can be later “opened” (i.e., by revealing
an appropriate secret key) as encryptions of any message; see, e.g., [cfgn96]. A
scheme satisfying this additional condition is said to be adaptively secure.

Several methods are known for achieving adaptively-secure encrypted com-
munication, but none can be used in the basic setting exemplified by the above
toy problem. Beaver and Haber [bh92] propose an adaptively secure encryp-
tion protocol in which the sender and receiver must interact before they can
securely communicate for the first time. Furthermore, the parties must maintain
a shared secret key per connection. This key must be continually updated, with
the old key being erased, as more messages are encrypted. Non-committing en-
cryption schemes [cfgn96,b97,dn00] more closely mimic the functionality of
standard public-key encryption, and in particular do not require maintenance
of per-connection state. (In addition, these solutions also remove the need for
secure data erasure.) In these schemes, however, both the public and secret keys
are at least as long as the overall number of bits to be encrypted. In fact, as
noted by Nielsen [n02], any adaptively-secure scheme with non-interactive en-
cryption must have a decryption key which is at least as long as the number of
bits to be decrypted under this key. In a nutshell, this is because the simulator
must “open” the “dummy ciphertexts” as encryptions of any given sequence of
messages by presenting an appropriate secret key; therefore, the number of pos-
sible secret keys must be at least the number of possible message-sequences. The

152 R. Canetti, S. Halevi, and J. Katz

unfortunate conclusion is that a public-key encryption scheme that can encrypt
an unbounded number of messages with short and unchanging keys cannot be
adaptively secure. This holds even if secure data erasures are possible, and even
in a weaker setting where only receivers can be corrupted.

We also comment that previous work on adaptively-secure encryption did not
address resistance to chosen-ciphertext attacks.

Our Contributions. This work demonstrates that we can circumvent Nielsen’s
negative result if the secret decryption key is allowed to periodically change, and
some mild assumptions about the frequency of communication between parties
are made. That is, under standard hardness assumptions, there exist adaptively-
secure, non-interactive public-key encryption schemes with short keys that can
handle arbitrarily-many messages and senders. In particular, our schemes solve
the toy example from above in a way that is essentially the best possible under
the given constraints.

This is done by considering key-evolving encryption schemes [chk03] in which
the secret key is locally updated by the receiver according to a globally-known
schedule (say, at the end of every day), while the public key remains fixed. The
secret key for the previous period is securely erased once it is no longer needed.
Using this approach, we construct adaptively-secure, non-interactive encryption
schemes that can be used to encrypt arbitrarily-many bits as long as the number
of encrypted bits (for any particular key) is bounded per time period. As discussed
above, an assumption of this sort is essential to circumvent Nielsen’s negative
results. Also, this assumption is reasonable in many cases: for instance, one
may easily posit some known upper bound on the number of incoming e-mails
processed per day.

In addition to being adaptively secure, our schemes also provide both forward
security [a97,chk03] and security against chosen-ciphertext attacks. (We com-
ment that although forward security is reminiscent of adaptive security, neither
security property implies the other.) Accordingly, we refer to schemes satisfy-
ing our security requirements as adaptively- and forward-secure encryption (AFSE)
schemes. We formalize the requirements for AFSE schemes within the UC frame-
work [c01]. That is, we present an functionality Fafse that captures the desired
properties of AFSE schemes. This functionality is a natural adaptation of the
“standard” public-key encryption functionality of [c01,ckn03] to the context of
key-evolving encryption. As in the non-adaptive case, Fafse guarantees security
against active adversaries, which in particular implies security against chosen-
ciphertext attacks. Using the composability properties of the UC framework,
our constructions are guaranteed to remain secure in any protocol environment.
Indeed, the formulation of Fafse, which blends together the notions of forward
security, chosen-ciphertext security, and adaptive security of public-key encryp-
tion schemes, is another contribution of this work.

Techniques and Constructions. We first note that dealing with corruption of
senders is easy, since a sender can simply erase its local state upon completing the
encryption algorithm. We thus concentrate on the more difficult case of receiver

Adaptively-Secure, Non-interactive Public-Key Encryption 153

corruption. We then show that it suffices to consider AFSE for the case when
only a single message is encrypted per time period, since any such construction
can be extended in a generic manner to give a scheme which can be used to en-
crypt any bounded number of messages per time period. With this in mind, our
first construction uses the paradigm of Naor-Yung and Sahai [ny90, s99] to con-
struct an AFSE scheme based on any forward-secure encryption (FSE) scheme
and any simulation-sound non-interactive zero-knowledge (NIZK) proof system
[ddops01]. Recall that, under the Naor-Yung/Sahai paradigm, the sender en-
crypts messages by essentially using two independent copies of a semantically-
secure encryption scheme together with an NIZK proof of consistency. To de-
crypt, the receiver verifies the proof and then decrypts either one of the com-
ponent ciphertexts. Naor and Yung prove that this provides security against
“lunch-time” (i.e., non-adaptive) chosen-ciphertext attacks when an arbitrary
NIZK proof system is used, and Sahai later showed that this technique achieves
full (i.e., adaptive) CCA-security if a one-time simulation-sound NIZK proof sys-
tem is used. We show that if a semantically-secure FSE scheme is used as the
underlying encryption scheme, and the NIZK proof system is “fully” simulation
sound (as defined in [ddops01]), the resulting construction is also an AFSE
scheme. This approach can be extended to encrypt a polynomial number of bits
per ciphertext using only a single NIZK proof. (We remark that, as opposed to
the case of standard CCA-secure encryption [s99], here it is not enough that the
underlying NIZK is one-time simulation sound.)

While the above approach is conceptually simple, it is highly impractical
due to the inefficiency of known NIZKs. We thus propose an alternate approach
that leads to more efficient solutions based on specific, number-theoretic assump-
tions. As part of this approach, we first define and construct “standard” (i.e., non
key-evolving) encryption schemes which are secure against lunch-time chosen-
ciphertext attacks and are adaptively-secure for encryption of a single message
(in total). We call such schemes receiver non-committing encryption (RNCE)
schemes.1 Our construction of an AFSE scheme proceeds by first encrypting the
message using any RNCE scheme, and then encrypting the resulting ciphertext
using any CCA-secure FSE scheme. Informally, this construction achieves adap-
tive security for an unbounded number of messages (as long as only one message
is encrypted per time period) because the secret key of the outer FSE scheme
is updated after every period and so the simulator only needs to “open” one ci-
phertext (i.e., the one corresponding to the current time period) as an arbitrary
message. It can accomplish the latter using the “inner” RNCE scheme.

Obtaining an efficient scheme using this approach requires efficient instan-
tiation of both components. Relatively efficient CCA-secure FSE schemes (in
particular, schemes which avoid the need for NIZK proofs) are already known
[chk04,bb04]. Therefore, we focus on constructing efficient RNCE schemes

1 Indeed, this is a relaxation of the notion of non-committing encryption from
[cfgn96]. It is similar to the relaxation studied by Jarecki and Lysyanskaya [jl00],
except that we also require security against lunch-time chosen-ciphertext attacks.

154 R. Canetti, S. Halevi, and J. Katz

based on specific number-theoretic assumptions. Our first RNCE scheme is based
on the Cramer-Shoup encryption scheme [cs98] (and adapts techniques of [jl00])
and its security is predicated on the decisional Diffie-Hellman (DDH) assump-
tion. However, this scheme allows encryption of only a logarithmic number of
bits per ciphertext. We also show a second RNCE scheme based on the schemes
of [gl03,cs03] (which, in turn, build on [cs02]), whose security relies on the de-
cisional composite residuosity assumption introduced by Paillier [p99] and which
can be used to encrypt a polynomial number of bits per ciphertext.

Organization. The AFSE functionality is defined and motivated in Section 2.
Our construction of AFSE using the Naor-Yung/Sahai paradigm is described
in Section 3. In Section 4, we present definitions for RNCE and show two con-
structions of RNCE schemes based on specific number-theoretic assumptions.
Finally, in Section 5 we construct an AFSE scheme from any RNCE scheme
and any CCA-secure FSE scheme. In Appendix A, we include definitions of
key-evolving and forward-secure encryption, while a brief overview of the UC
framework and its application to secure encryption is provided in Appendix B.
In this abstract we omit all proofs due to lack of space. The proofs can be found
in the full version of this paper [chk05].

2 Definition of AFSE

We define AFSE by specifying an appropriate ideal functionality in the UC
security framework (cf. Appendix B). This functionality, denoted Fafse and
presented in Figure 1, is obtained by appropriately modifying the “standard”
public-key encryption functionality Fpke [c01,ckn03] which is reviewed in Ap-
pendix B.1.

Intuitively, Fafse captures the same security notions as Fpke except that it
also provides a mechanism by which the receiver can “update” its secret key;
Fafse guarantees security only as long as a bounded number of messages are
encrypted between key updates. In fact, for simplicity, the functionality as de-
fined only guarantees security when a single ciphertext is encrypted between
key updates. Say a ciphertext encrypted with respect to a particular time pe-
riod t is outstanding until the receiver has updated its secret key a total of
t + 1 times. Then, if more than one outstanding ciphertext is requested, the
functionality guarantees no security whatsoever for this ciphertext. (Formally,
this is captured by handing the corresponding plaintext to the adversary.) Sec-
tion 2.1 discusses how Fafse can be extended to allow any bounded number of
outstanding ciphertexts, which corresponds to ensuring security as long as at
most this many messages are encrypted between key updates. It also presents a
generic transformation from protocols secure for a single outstanding ciphertext
to protocols secure for the general case.

For convenience, we highlight some differences between Fafse and Fpke.
First, an additional parameter — a time period t — is introduced. An encryption
request now additionally specifies a time period for the encryption called the

Adaptively-Secure, Non-interactive Public-Key Encryption 155

Functionality Fafse

Fafse proceeds as follows, when parameterized by message domain ensemble
D = {Dk}k∈N and security parameter k.

Key Generation: Upon receiving a request (KeyGen, sid) from party R∗,
do: Verify that sid = (sid′, R∗) (i.e., that the identity R∗ is encoded in
the session ID). If not, then ignore this input. If yes:
1. Hand (KeyGen, sid) to the adversary.
2. Receive a value pk∗ from the adversary, and hand pk∗ to R∗. Initialize

t∗ ← 0 and messages-outstanding ← 0.
Encryption: Upon receiving from some party P a tuple

(Encrypt, sid, pk, t, m) proceed as follows:
1. If m ∈ Dk, pk = pk∗, and either t < t∗ or messages-outstanding = 0,

then send (Encrypt,sid, pk, t, P) to the adversary. In all other cases,
send (Dummy-Encrypt, sid, pk, t, m, P) to the adversary (i.e., reveal
the plaintext to the adversary).

2. Receive a reply c from the adversary and send (ciphertext,c) to P .
In addition, if m ∈ Dk, pk = pk∗, and t ≥ t∗, then do:
(a) If messages-outstanding = 0, set messages-outstanding ← 1 and

flag ← outstanding. Else, set flag ← dummy.
(b) record the tuple (m, t, c, flag) in the list of ciphertexts.

Decryption: Upon receiving a tuple (Decrypt, sid, c) from player P , if P �=
R∗ then ignore this input. Otherwise:
1. If the list of ciphertexts contains a tuple (m, t, c, �) with the given

ciphertext c and t = t∗, then return m to R∗.
2. Otherwise send a message (Decrypt, sid, t∗, c) to the adversary, re-

ceive a reply m, and forward m to R∗.
Update: Upon receiving (Update, sid) from player P , if P = R∗ do:

1. Send a message (Update, sid) to the adversary.
2. Remove from the list of ciphertexts all the tuples (m, t∗, c, flag) with

the current time t∗. If any of these tuple has flag = outstanding, then
reset messages-outstanding ← 0.

3. Set t∗ ← t∗ + 1.
Corruptions: Upon corruption of party P , if P = R∗ then send to the

adversary all tuples (m, t, c, �) in the list of ciphertexts with t ≥ t∗. (If
P �= R∗ then do nothing.)

Fig. 1. The AFSE functionality, Fafse

“sender time”, and the functionality maintains a variable t∗ called the “receiver
time”. The receiver time is initialized to 0, and is incremented by the receiver
R∗ using an Update request. A ciphertext generated for sender time t is only
decrypted by Fafse (upon request of the appropriate receiver) when the current
receiver time is t∗ = t.

Second, Fafse limits the information gained by the adversary upon cor-
ruption of parties in the system. When corrupting parties other than R∗, the
adversary learns nothing. When corrupting R∗ at some “receiver time” t∗, the

156 R. Canetti, S. Halevi, and J. Katz

adversary does not learn any information about messages that were encrypted at
“sender times” t < t∗. (This is akin to the level of security provided by forward-
secure encryption schemes, and in fact strengthens the usual notion of adaptive
security which potentially allows an adversary to learn all past messages upon
corruption of a party.) In addition, adaptive security is guaranteed for a sin-
gle message encrypted at some sender time t ≥ t∗ (i.e., a single outstanding
message).

The fact that security is guaranteed only for a single outstanding message
is captured via the variable messages-outstanding, which is initialized to 0 and
is set to 1 when a message is encrypted for time period t with t ≥ t∗. When
the receiver’s time unit t∗ advances beyond the time unit t of the outstanding
ciphertext, the variable messages-outstanding is reset to 0. If another encryption
request arrives with time period t ≥ t∗ while messages-outstanding is equal to
1, then Fafse discloses the entire plaintext to the adversary (and thus does not
ensure any secrecy in this case).

We remark that Fafse can be used in a natural way to realize a variant
of the “secure message transmission functionality” [c01,af04] in synchronous
networks with respect to adaptive adversaries. We omit further details.

2.1 Handling Multiple Outstanding Ciphertexts

While the functionality Fafse and all the constructions in this work are de-
scribed assuming a bound of at most one outstanding ciphertext, both the func-
tionality and the constructions can be generalized to the case of any bounded
number of outstanding ciphertexts (corresponding to a bounded number of mes-
sages encrypted per time period). Generalizing the functionality is straightfor-
ward, so we do not describe it here. As for constructions, any AFSE scheme
which is secure for the case of a single outstanding ciphertext can be extended
generically so as to be secure for any bounded number � of outstanding ciphertext
in the following way: The public key of the new scheme consists of � indepen-
dent keys pk1, . . . , pk� generated using the original scheme. To encrypt a message
m, the sender computes the “nested encryption” Epk1

(Epk2
(· · ·Epk�

(m) · · ·)) and
sends the resulting ciphertext to the receiver. One can show that this indeed
realizes Fafse for at most � outstanding ciphertexts. The formal proof, however,
is more involved and is omitted.

2.2 Realizing Fafse Using Key-Evolving Encryption Schemes

We present our constructions as key-evolving encryption schemes (i.e., as a col-
lection of algorithms) rather than as protocols (as technically required by the UC
framework). For completeness, we describe the (obvious) transformation from
key-evolving encryption schemes to protocols geared toward realizing Fafse.

Recall that a key-evolving encryption scheme consists of four algorithms
(Gen,Upd,Enc,Dec), where (Gen,Enc,Dec) are the key generation, encryption,
and decryption routines (as in a standard encryption scheme, except that the
encryption and decryption routines also take as input a time period t), and Upd

Adaptively-Secure, Non-interactive Public-Key Encryption 157

is the secret-key update algorithm that takes as input the current secret key and
time unit, and outputs the secret key for the next time unit. The definition is
reviewed in Appendix A.

Given a key evolving encryption scheme S = (Gen,Upd,Enc,Dec), one may
construct the protocol πS as follows: An activation of πS with input message
KeyGen, Update, Encrypt, or Decrypt is implemented via calls to the algorithms
Gen,Upd,Enc, or Dec, respectively. The only state maintained by πS between
activations is the secret key that was generated by Gen (and that is modified
in each activation of Update), and the current time period. Any other local
variables that are temporarily used by any of the algorithms are erased as soon
as the activation completes. With this transformation we can now define an
AFSE scheme:

Definition 1. A key-evolving encryption scheme S is an adaptively- and
forward-secure encryption (AFSE) scheme if the protocol πS resulting from the
transformation above securely realizes Fafse with respect to adaptive adversaries.

3 AFSE Based on Forward-Secure Encryption

In this section we show how to construct an AFSE scheme from any FSE scheme
secure against chosen-plaintext attacks along with any simulation-sound NIZK
proof system. (See Appendix A for definitions of key-evolving encryption and
forward security, both against chosen-plaintext and chosen-ciphertext attacks.)
We describe in detail a construction that allows encryption of only a single
bit per ciphertext and then discuss how this may be generalized to allow for
encryption of any polynomial number of bits per ciphertext. Our construction
uses a simple twist of the Naor-Yung/Sahai transformation [ny90, s99]; when
applied to two FSE schemes, the resulting scheme yields not only CCA security
but also security against adaptive corruptions. We comment that, as opposed
to the case of non-adaptive CCA security, “one-time” simulation sound NIZK
proofs are not sufficient to achieve security against adaptive corruptions; instead,
we require NIZK proofs satisfying the stronger notion of unbounded simulation
soundness [ddops01].

The Construction. Let E ′ = (G′, U ′, E′, D′) be a key-evolving encryption
scheme, and let P = (�,P,V) be an NIZK proof system (where �(k) is the
length of the common random string for security parameter k) for the following
NP language

LE′
def= {(t, pk′

0, c
′
0, pk′

1, c
′
1) :

∃ m, r0, r1 s.t. c′
0 = E′(pk′

0, t;m; r0), c′
1 = E′(pk′

1, t;m; r1)}.

We construct a new key-evolving encryption scheme E = (G,U,E,D) as
follows:

Key Generation, G. On security parameter 1k, run two independent copies
of the key generation algorithm of E ′ to obtain (pk′

0, sk
′
0) ← G′(1k) and

158 R. Canetti, S. Halevi, and J. Katz

(pk′
1, sk

′
1) ← G′(1k). Choose a random bit b ∈ {0, 1} and a random �(k)-bit

string crs ∈ {0, 1}�(k). The public key is the triple (pk′
0, pk′

1, crs), and the
secret key is (b, sk′

b). Erase the other key sk′
b̄.

Key Update, U . Key update is unchanged, namely U(t, (b, sk′))=(b, U ′(t, sk′)).
Encryption, E. To encrypt a bit m ∈ {0, 1} at time t, first pick two inde-

pendent random strings r0, r1 as needed for the encryption algorithm E′

and compute c′
0 ← E′(pk′

0, t;m; r0), c′
1 ← E′(pk1, t;m; r1), and a proof that

(t, pk′
0, c

′
0, pk′

1, c
′
1) ∈ LE′ ; namely π ← P (crs; t, pk′

0, c
′
0, pk′

1, c
′
1;m, r0, r1). The

ciphertext is the triple c = (c′
0, c

′
1, π).

Decryption, D. To decrypt a ciphertext c = (c′
0, c

′
1, π) at time t, first run the

verifier V (crs; t, pk′
0, c

′
0, pk′

1, c
′
1). If V rejects, the output is ⊥. Otherwise, the

recipient uses (b, sk′
b) to recover m← D′(sk′

b; c
′
b).

We claim the following theorem:

Theorem 1. If E ′ is forward-secure against chosen-plaintext attacks (fs-CPA,
cf. Definition 4) and if (P,V) is an unbounded simulation-sound NIZK proof
system [ddops01–Def. 6], then E is an AFSE scheme.

The proof appears in the full version, but we provide some intuition here.
Underlying our analysis is the observation that a simulator (who can generate
proofs for false assertions) can come up with a valid-looking “dummy ciphertext”
whose component ciphertexts encrypt different messages (i.e., both 0 and 1). The
simulator, who also knows both underlying decryption keys, can thus open the
dummy ciphertext as an encryption of either 0 or 1, depending on which decryp-
tion key is presented to an adversary. (Note further that the adversary will be
unable to generate dummy ciphertexts of this form due to the simulation sound-
ness of the NIZK proof system.) The above argument demonstrates adaptive
security for a single encrypted bit. Adaptive security for an unbounded number
of bits (as long as only one ciphertext is outstanding) holds since the secret keys
of the underlying FSE schemes evolve after each encryption. We remark that
one-time simulation soundness for (P,V) would not be sufficient here, since the
simulator must generate multiple “fake ciphertexts” and the hybrid argument
that works in the non-adaptive case (see [s99]) does not work here.

AFSE for Longer messages. To obtain a construction of an AFSE scheme
for n-bit messages, one can simply use n pairs of public keys generated using E ′

(the receiver now chooses at random one secret key from each pair to store, while
the other is erased). The rest is an obvious extension of the proof intuition from
above, with the only subtle point being that the resulting ciphertext contains a
single NIZK proof computed over the entire vector of n ciphertext pairs (with
the language being defined appropriately).

4 Receiver Non-committing Encryption

This section defines and constructs receiver non-committing encryption (RNCE)
that is secure against “lunch-time attacks” (aka CCA1-secure). We note that

Adaptively-Secure, Non-interactive Public-Key Encryption 159

RNCE was considered in [jl00] for the more basic case of chosen-plaintext
attacks. Section 5 shows how to combine any RNCE scheme with any FSE
scheme secure against chosen-ciphertext attacks to obtain a secure AFSE scheme.
Since our proposed constructions of RNCE schemes are quite efficient (and since
relatively-efficient constructions of FSE schemes secure against chosen-ciphertext
attacks are known [chk03,chk04,bb04]), we obtain (relatively) efficient AFSE
schemes.

On a high level, a receiver non-committing encryption scheme is one in which
a simulator can generate a single “fake ciphertext” and later “open” this cipher-
text (by showing an appropriate secret key) as any given message. These “fake
ciphertexts” should be indistinguishable from real ciphertexts, even when an
adversary is given access to a decryption oracle before the fake ciphertext is
known.

4.1 Definition of RNCE

Formally, a receiver non-committing encryption (RNCE) scheme consists of five
ppt algorithms (G,E,D, F̃ , R̃) such that:

– G,E, and D are the key-generation, encryption, and decryption algorithms.
These are defined just as for a standard encryption scheme, except that
the key generation algorithm also outputs some auxiliary information z in
addition to the public and secret keys pk and sk.

– The fake encryption algorithm F̃ takes as input (pk, sk, z) and outputs a
“fake ciphertext” c̃.

– The reveal algorithm R̃ takes as input (pk, sk, z), a “fake ciphertext” c̃, and
a message m ∈ D. It outputs a “secret key” s̃k. (Intuitively, s̃k is a secret
key for which c̃ decrypts to m.)

We make the standard correctness requirement; namely, for any pk, sk, z out-
put by G and any m ∈ D, we have D(sk;E(pk;m)) = m.

Our definition of security requires, informally, that for any message m an
adversary cannot distinguish whether it has been given a “real” encryption of
m along with a “real” secret key, or a “fake” ciphertext along with a “fake”
secret key under which the ciphertext decrypts to m. This should hold even
when the adversary has non-adaptive access to a decryption oracle. We now give
the formal definition.

Definition 2 (RNC-security). Let E = (G,E,D, F̃ , R̃) be an RNCE scheme.
We say that E is RNC-secure (or simply “secure”) if the advantage of any ppt
algorithm A in the game below is negligible in the security parameter k.

1. The key generation algorithm G(1k) is run to get (pk, sk, z).
2. The algorithm A is given 1k and pk as input, and is also given access to a

decryption oracle D(sk; ·). It then outputs a challenge message m ∈ D.
3. A bit b is chosen at random. If b = 1 then a ciphertext c← E(pk;m) is com-

puted, and A receives (c, sk). Otherwise, a “fake” ciphertext c̃← F̃ (pk, sk, z)

160 R. Canetti, S. Halevi, and J. Katz

and a “fake” secret key s̃k ← R̃(pk, sk, z; c̃,m) are computed, and A re-
ceives (c̃, s̃k). (After this point, A can no longer query its decryption oracle.)
A outputs a bit b′.

The advantage of A is defined as 2 ·
∣∣Pr[b′ = b]− 1

2

∣∣.
It is easy to see that the RNC-security of (G,E,D, F̃ , R̃) according to Def-

inition 2 implies in particular that the underlying scheme (G,E,D) is secure
against non-adaptive chosen-ciphertext attacks. It is possible to augment Defi-
nition 2 so as to grant the adversary access to the decryption oracle even after
the ciphertext is known, but we do not need this stronger definition for our
intended application (Section 5). We also comment that the Naor-Yung con-
struction [ny90] is RNC-secure for 1-bit messages (if the secret key is chosen
at random from the two underlying secret keys); a proof can be derived from
[ny90] as well as our proof of Theorem 1.

4.2 A Secure RNCE Scheme for Polynomial-Size Message Spaces

Here, we show that the Cramer-Shoup cryptosystem [cs98] can be modified to
give a secure RNCE scheme for polynomial-size message spaces. Interestingly,
because our definition of security only involves non-adaptive chosen-ciphertext
attacks, we can base our construction on the simpler and more efficient “Cramer-
Shoup lite” scheme. In fact, the only difference is that we encode a message m
by the group element gm, rather than encoding it directly as the element m.
(This encoding is essential for the reveal algorithm R̃.2)

In what follows, we let G = {Gk}k∈N be a family of finite, cyclic groups
(written multiplicatively), where each group Gk has (known) prime order qk

and |qk| = k. For simplicity, we describe our RNCE scheme for the message
space {0, 1}; however, we will comment briefly afterward how the scheme can be
extended for any polynomial-size message space.

Key Generation, G. Given the security parameter 1k, let G denote Gk and
q denote qk. Choose at random g1 ← G \ {1}, and also choose random
α, x1, x2, y1, y2 ← Zq. Set g2 = gα

1 ;h = gx1
1 gx2

2 ; and d = gy1
1 gy2

2 . The public
key is pk = (g1, g2, h, d), the secret key is sk = (x1, x2, y1, y2), and the
auxiliary information is z = α.

Encryption, E. Given a public key pk = (g1, g2, h, d) and a message m ∈
{0, 1}, choose a random r ∈ Zq, compute u1 = gr

1 u2 = gr
2, e = gm

1 hr and
v = dr. The ciphertext is 〈u1, u2, e, v〉.

Decryption, D. Given a ciphertext 〈u1, u2, e, v〉 and secret key sk = (x1, x2,
y1, y2), proceed as follows: First check whether uy1

1 uy2
2 = v. If not, then

output ⊥. Otherwise, compute w = e/ux1
1 ux2

2 . If w = 1 (i.e., the group
identity), output 0; if w = g1, output 1. (If w /∈ {1, g1} then output ⊥.)

2 Looking ahead, it is for this reason that the present construction only handles
polynomial-size message spaces: the receiver only directly recovers gm, and must
search through the message space to find the corresponding message m.

Adaptively-Secure, Non-interactive Public-Key Encryption 161

Fake Encryption, F̃ . Given pk = (g1, g2, h, d) and sk = (x1, x2, y1, y2), choose
at random r ∈ Zq. Then compute ũ1 = gr

1, ũ2 = g1g
r
2, ẽ = gx2

1 hr and
ṽ = ũy1

1 ũy2
2 , and output the “fake” ciphertext c̃ = 〈ũ1, ũ2, ẽ, ṽ〉.

Reveal Algorithm, R̃. Given pk = (g1, g2, h, d), sk = (x1, x2, y1, y2), z = α, a
“fake” ciphertext 〈ũ1, ũ2, ẽ, ṽ〉, and a message m ∈ {0, 1}, set x′

2 = x2 −m
and x′

1 = x1 + mα (both in Zq) and output the “fake” secret key s̃k =
(x′

1, x
′
2, y1, y2).

One can check that the secret key s̃k matches the public key pk, since

g
x′
1

1 g
x′
2

2 = gx1+mα
1 gx2−m

2 = (gx1
1 gm

2)gx2−m
2 = gx1

1 gx2
2 = h;

moreover, s̃k decrypts the “fake” ciphertext 〈ũ1, ũ2, ẽ, ṽ〉 to m, since

e

ũ
x′
1

1 ũ
x′
2

2

=
gx2
1 (gx′

1
1 g

x′
2

2)r

(gr
1)x′

1(g1gr
2)x′

2
=

g
x2+rx′

1
1 g

rx′
2

2

g
rx′

1+x′
2

1 g
rx′

2
2

= g
x2−x′

2
1 = gm

1 .

The above scheme can be immediately extended to support any polynomial-
size message space: encryption, fake encryption, and reveal would be exactly the
same, and decryption would involve computation of w, as above, followed by an
exhaustive search through the message space to determine m def= logg1

w. A proof
of the following appears in the full version:

Theorem 2. If the DDH assumption holds for G, then the above scheme is
RNC-secure.

4.3 A Secure RNCE Scheme for Exponential-Size Message Spaces

The RNCE scheme in the previous section can be used only for message spaces
of size polynomial in the security parameter, as the decryption algorithm works
in time linear in the size of the message space. We now show a scheme that
supports message spaces of size exponential in the security parameter. Just as
in the previous section, we construct our scheme by appropriately modifying a
(standard) cryptosystem secure against chosen-ciphertext attacks. Here, we base
our construction on schemes developed independently by Gennaro and Lindell
[gl03] and Camenisch and Shoup [cs03], building on earlier work by Cramer and
Shoup [cs02]. Security of our scheme, as in these earlier schemes, is predicated
on the decisional composite residuosity (DCR) assumption [p99].

Let p, q, p′, q′ be distinct primes with p = 2p′ +1 and q = 2q′ +1 (i.e., p, q are
strong primes). Let n = pq and n′ = p′q′, and observe that the group Z

∗
n2 can

be decomposed as the direct product Gn ·Gn′ ·G2 ·T, where each Gi is a cyclic
group of order i and T is the order-2 subgroup of Z

∗
n2 generated by (−1 mod n2).

This implies that there exist homomorphisms φn, φn′ , φ2, φT from Z
∗
n2 onto Gn,

Gn′ , G2, and T, respectively, and every x ∈ Z
∗
n2 is uniquely represented by

the 4-tuple (φn(x), φn′(x), φ2(x), φT (x)). We use also the fact that the element
γ

def= (1 + n) mod n2 has order n in Z
∗
n2 (i.e., it generates a group isomorphic to

Gn) and furthermore γa mod n2 = 1 + an, for any 0 ≤ a < n.

162 R. Canetti, S. Halevi, and J. Katz

Let Pn
def= {xn mod n2 : x ∈ Z

∗
n2} denote the subgroup of Z

∗
n2 consisting of

all nth powers; note that Pn is isomorphic to the direct product Gn′ · G2 · T.
The DCR assumption (informally) is that, given n, it is hard to distinguish a
random element of Pn from a random element of Z

∗
n2 .

Our RNCE scheme is defined below. In this description, we let G be an
algorithm that on input 1k randomly chooses two primes p′, q′ as above with
|p′| = |q′| = k. Also, for a positive real number r we denote by [r] the set
{0, . . . , !r" − 1}.

Key Generation, G. Given the security parameter 1k, use G(1k) to select two
random k-bit primes p′, q′ for which p = 2p′+1 and q = 2q′+1 are also prime,
and set n = pq and n′ = p′q′. Choose random x, y ∈ [n2/4] and a random
g′ ∈ Z

∗
n2 , and compute g = (g′)2n, h = gx, and d = gy. The public key is

pk = (n, g, h, d), the secret key is sk = (x, y), and the auxiliary information
is z = n′.

Encryption, E. Given a public key as above and a message m ∈ [n], choose
random r ∈ [n/4], compute u = gr, e = γmhr, and v = dr (all in Z

∗
n2), and

output the ciphertext c = 〈u, e, v〉.
Decryption, D. Given a ciphertext 〈u, e, v〉 and secret key (x, y), check whether

u2y = v2; if not, output ⊥. Then, set m̂ = (e/ux)n+1. If m̂ = 1 + mn for
some m ∈ [n], then output m; otherwise, output ⊥.
Correctness follows, since for a valid ciphertext 〈u, e, v〉 we have u2y =
(gr)2y = d2r = v2, and also (e/ux)n+1 = (γmhr/grx)n+1 = (γm)n+1 =
γm = 1 +mn (using for the third equality the fact that the order of γ is n).

Fake Encryption, F̃ . Given pk = (n, g, h, d) and sk = (x, y), choose at random
r ∈ [n/4], compute ũ = γ · gr, ẽ = ũx, and ṽ = ũy (all in Z

∗
n2), and output

the “fake” ciphertext c̃ = 〈ũ, ẽ, ṽ〉.
Reveal Algorithm, R̃. Given pk = (n, g, h, d), sk = (x, y), z = n′, a “fake”

ciphertext 〈ũ, ẽ, ṽ〉 as above, and a message m ∈ [n], proceed as follows:
Using the Chinese Remainder Theorem and the fact that gcd(n, n′) = 1,
find the unique x′ ∈ [nn′] satisfying x′ = x mod n′, and x′ = x−m mod n,
and output the secret key s̃k = (x′, y).

It can be verified that the secret key s̃k matches the public key pk and also
decrypts the “fake” ciphertext to the required message m: For the second
component y this is immediate and so we focus on the first component x′.
First, the order of g divides n′ and so gx′

= gx′ mod n′
= gx mod n′

= gx = h.
Furthermore, using also the fact that the order of γ in Z

∗
n2 is n, we have(

ẽ

ũx′

)n+1

=
(

γxgrx

γx′grx′

)n+1

=
(
γx−x′ mod n

)n+1
= γm.

In the full version we define the decisional composite residuosity assumption
(DCR) with respect to G (cf. [p99]), and show:

Theorem 3. If the DCR assumption holds for G, then the above scheme is
RNC-secure.

Adaptively-Secure, Non-interactive Public-Key Encryption 163

5 AFSE Based on Receiver Non-committing Encryption

We describe a construction of an AFSE scheme based on any secure RNCE
scheme and any FSE scheme secure against chosen-ciphertext attacks. Let E ′ =
(G′, E′, D′, F̃ , R̃) be an RNCE scheme, and let E ′′ = (G′′, U ′′, E′′, D′′) be a
key-evolving encryption scheme. The message space of E ′ is D, and we as-
sume that ciphertexts of E ′ belong to the message space of E ′′. We construct a
new key-evolving encryption scheme E = (G,U,E,D) with message space D as
follows:

Key Generation, G. On security parameter 1k, run the key-generation al-
gorithms of both schemes, setting (pk′, sk′, z) ← G′(1k) and (pk′′, sk′′

0) ←
G′′(1k). The public key is (pk′, pk′′) and the initial secret key is (sk′, sk′′

0).
(The extra information z is ignored.)

Key update, U . The key-update operation is derived as one would expect from
E ′′; namely: U(t; sk′, sk′′

t) = (sk′, U ′′(t; sk′′
t)).

Encryption, E. To encrypt a message m ∈ D at time t, first compute
c′ ← E′(pk′;m) and then c ← E′′(pk′′, t; c′). The resulting ciphertext is
just c.

Decryption, D. To decrypt a ciphertext c, set c′ ← D′′(sk′′
t ; c) and then com-

pute m← D′(sk′; c′).

Theorem 4. If E ′ is RNC-secure, and if E ′′ is forward-secure against chosen-
ciphertext attacks, then the combined scheme given above is an AFSE scheme.

We provide some informal intuition behind the proof of the above theorem.
The most interesting scenario to consider is what happens upon player corrup-
tion, when the adversary obtains the secret key for the current time period t∗. We
may immediately note that messages encrypted for prior time periods t < t∗ re-
main secret; this follows from the FSE encryption applied at the “outer” layer.
Next, consider adaptive security for the (at most one) outstanding ciphertext
which was encrypted for some time period t ≥ t∗. Even though the adversary
can “strip off” the outer later of the encryption (because the adversary now
has the secret key for time period t∗), RNC security of the inner layer en-
sures that a simulator can open the inner ciphertext to any desired message.
The main point here is that the simulator only needs to “fake” the opening of
one inner ciphertext, and thus RNC security suffices. (Still, since the simula-
tor does not know in advance what ciphertext it will need to open, it actually
“fakes” all inner ciphertexts.) Chosen-ciphertext attacks are dealt with using
the chosen-ciphertext security of the outer layer, as well as the definition of
RNC security (where “lunch-time security” at the inner layer is sufficient). Also,
we note that reversing the order of encryptions does not work: namely, using
RNCE(FSE(m)) does not yield adaptive security, even if the RNCE scheme is
fully CCA secure.

164 R. Canetti, S. Halevi, and J. Katz

References

[af04] M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Ap-
plications to Universally-Composable Threshold Cryptography. Crypto
2004, LNCS vol. 3152, pp. 317–334, 2004. Full version available at
eprint.iacr.org/2004/119.

[a97] R. Anderson. Two Remarks on Public Key Cryptol-
ogy. Invited lecture, given at ACM CCCS ’97. Available at
http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf.

[b97] D. Beaver. Plug and Play Encryption. Crypto 1997, LNCS vol. 1294, pp.
75–89, 1997.

[bh92] D. Beaver and S. Haber. Cryptographic Protocols Provably Secure Against
Dynamic Adversaries. Eurocrypt 1992, LNCS vol. 658, pp. 307–323, 1992.

[bdpr98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
Notions of Security for Public-Key Encryption Schemes. Crypto 1998, LNCS
vol. 1462, pp. 26–45, 1998.

[bb04] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based En-
cryption Without Random Oracles. Eurocrypt 2004, LNCS vol. 3027, pp.
223–238, 2004.

[cs03] J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption
of Discrete Logarithms. Crypto 2003, LNCS vol. 2729, pp. 126–144, 2003.

[c01] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. 42nd IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 136–145, 2001. Also available as ECCC TR 01-16, or
from http://eprint.iacr.org/2000/067.

[cfgn96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Com-
putation. 28th ACM Symposium on Theory of Computing (STOC), pp. 639–
648, 1996. Full version in MIT-LCS-TR #682, 1996.

[chk03] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. Eurocrypt 2003, LNCS vol. 2656, pp. 255–271, 2003. Full version
available at http://eprint.iacr.org/2003/083.

[chk04] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from
Identity-Based Encryption. Eurocrypt 2004, LNCS vol. 3027, pp. 207–222,
2004. Full version available at http://eprint.iacr.org/2003/182.

[chk05] R. Canetti, S. Halevi, and J. Katz. Adaptively-Secure, Non-
Interactive Public-Key Encryption. Full version available at
http://eprint.iacr.org/2004/317.

[ckn03] R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing Chosen Ciphertext Se-
curity. Crypto 2003, LNCS vol. 2729, pp. 565–582, 2003. Full version avail-
able at http://eprint.iacr.org/2003/174.

[cs98] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably
Secure Against Chosen Ciphertext Attack. Crypto 1998, LNCS vol. 1462,
pp. 13–25, 1998.

[cs02] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adap-
tive Chosen Ciphertext Secure Public-Key Encryption. Eurocrypt 2001,
LNCS vol. 2332, pp. 45–63, 2001.

[dn00] I. Damg̊ard and J. B. Nielsen. Improved Non-Committing Encryption
Schemes Based on General Complexity Assumptions. Crypto 2000, LNCS
vol. 1880, pp. 432–450, 2000.

Adaptively-Secure, Non-interactive Public-Key Encryption 165

[ddops01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai.
Robust Non-Interactive Zero Knowledge. Crypto 2001, LNCS vol. 2139, pp.
566–598, 2001.

[ddn00] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM. J.
Computing 30(2): 391-437, 2000.

[gl03] R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated
Key Exchange. Eurocrypt 2003, LNCS vol. 2656, pp. 524–543, 2003. Full
version available at http://eprint.iacr.org/2003/032.

[gm84] S. Goldwasser and S. Micali. Probabilistic Encryption. J. Computer System
Sciences 28(2): 270-299, 1984.

[hms03] Dennis Hofheinz, Joern Mueller-Quade, and Rainer Steinwandt. On
Modeling IND-CCA Security in Cryptographic Protocols. Available at
http://eprint.iacr.org/2003/024.

[jl00] S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography:
Introducing Concurrency, Removing Erasures. Eurocrypt 2000, LNCS vol.
1807, pp. 221–242, 2000.

[ny90] M. Naor and M. Yung. Public-Key Cryptosystems Provably-Secure against
Chosen-Ciphertext Attacks. 22nd ACM Symposium on Theory of Comput-
ing (STOC), pp. 427–437, 1990.

[n02] J.B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case. Crypto 2002, LNCS vol.
2442, pp. 111–126, 2002.

[p99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes. Eurocrypt 1999, LNCS vol. 1592, pp. 223–238, 1999.

[rs91] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowl-
edge and Chosen Ciphertext Attack. Crypto 1991, LNCS vol. 576, pp. 433–
444, 1991.

[s99] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive
Chosen-Ciphertext Security. 40th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 543–553, 1999.

A Key-Evolving and Forward-Secure Encryption

We review the definitions of key-evolving and forward-secure encryption schemes
from [chk03].

Definition 3. A (public-key) key-evolving encryption (ke-PKE) scheme is a 4-
tuple of ppt algorithms (Gen,Upd,Enc,Dec) such that:

– The key generation algorithm Gen takes as input a security parameter 1k

and the total number of time periods N . It returns a public key pk and an
initial secret key sk0.

– The key update algorithm Upd takes as input pk, an index t < N of the
current time period, and the associated secret key skt. It returns the secret
key skt+1 for the following time period.

– The encryption algorithm Enc takes as input pk, an index t ≤ N of a time
period, and a message M . It returns a ciphertext C.

166 R. Canetti, S. Halevi, and J. Katz

– The decryption algorithm Dec takes as input pk, an index t ≤ N of the
current time period, the associated secret key skt, and a ciphertext C. It
returns a message M .

We require that Dec(skt; t; Enc(pkt, t,M)) = M holds for all (pk, sk0) output
by Gen, all time periods t ≤ N , all correctly generated skt for this t, and all
messages M .

Definition 4. A ke-PKE scheme is forward-secure against chosen plaintext at-
tacks (fs-CPA) if for all polynomially-bounded functions N(·), the advantage of
any ppt adversary in the following game is negligible in the security parameter:
Setup: Gen(1k,N(k)) outputs (PK,SK0). The adversary is given PK.
Attack: The adversary issues one breakin(i) query and one challenge(j,M0,M1)
query, in either order, subject to 0 ≤ j < i < N . These queries are answered as
follows:

– On query breakin(i), key SKi is computed via Upd(PK, i− 1, · · ·Upd(PK, 0,
SK0) · · ·). This key is then given to the adversary.

– On query challenge(j,M0,M1), a random bit b is selected and the adversary
is given C∗ = Enc(PK, j,Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The
adversary’s advantage is the absolute value of the difference between its success
probability and 1/2.

Forward security against (adaptive) chosen-ciphertext attacks (fs-CCA secu-
rity) is defined by the natural extension of the above definition in which the ad-
versary is given decryption oracle access during both the “Attack” and “Guess”
stages.

B The UC Framework, Abridged

We provide a brief review of the universally composable security framework
[c01]. The framework allows for defining the security properties of cryptographic
tasks so that security is maintained under general composition with an un-
bounded number of instances of arbitrary protocols running concurrently. Defi-
nitions of security in this framework are called universally composable (UC).

In the UC framework, the security requirements of a given task (i.e., the
functionality expected from a protocol that carries out the task) are captured
via a set of instructions for a “trusted party” that obtains the inputs of the par-
ticipants and provides them with the desired outputs (in one or more iterations).
Informally, a protocol securely carries out a given task if running the protocol
with a realistic adversary amounts to “emulating” an ideal process where the
parties hand their inputs to a trusted party with the appropriate functionality
and obtain their outputs from it, without any other interaction.

The notion of emulation in the UC framework is considerably stronger than
that considered in previous models. Traditionally, the model of computation in-
cludes the parties running the protocol and an adversary A that controls the

Adaptively-Secure, Non-interactive Public-Key Encryption 167

communication channels and potentially corrupts parties. “Emulating an ideal
process” means that for any adversary A there should exist an “ideal process
adversary” (or simulator) S that causes the outputs of the parties in the ideal
process to have similar distribution to the outputs of the parties in an execution
of the protocol. In the UC framework the requirement on S is more stringent.
Specifically, an additional entity, called the environment Z, is introduced. The
environment generates the inputs to all parties, reads all outputs, and in addition
interacts with the adversary in an arbitrary way throughout the computation.
A protocol is said to securely realize functionality F if for any “real-life” ad-
versary A that interacts with the protocol and the environment there exists an
“ideal-process adversary” S, such that no environment Z can tell whether it
is interacting with A and parties running the protocol, or with S and parties
that interact with F in the ideal process. In a sense, Z serves as an “inter-
active distinguisher” between a run of the protocol and the ideal process with
access to F .

The following universal composition theorem is proven in [c01]. Consider a
protocol π that operates in the F-hybrid model, where parties can communicate
as usual and in addition have ideal access to an unbounded number of copies
of the functionality F . Let ρ be a protocol that securely realizes F as sketched
above, and let πρ be identical to π with the exception that the interaction with
each copy of F is replaced with an interaction with a separate instance of ρ.
Then, π and πρ have essentially the same input/output behavior. In particular,
if π securely realizes some functionality I in the F-hybrid model then πρ securely
realizes I in the standard model (i.e., without access to any functionality).

B.1 The Public-Key Encryption Functionality Fpke

(This section is taken almost verbatim from [ckn03].) Within the UC framework,
public-key encryption is defined via the public-key encryption functionality, de-
noted Fpke and presented in Figure 2. Functionality Fpke is intended to capture
the functionality of public-key encryption and, in particular, is written in a way
that allows realizations consisting of three non-interactive algorithms without
any communication. (The three algorithms correspond to the key generation,
encryption, and decryption algorithms in traditional definitions.)

Referring to Figure 2, we note that sid serves as a unique identifier for an
instance of functionality Fpke (this is needed in a general protocol setting when
this functionality can be composed with other components, or even with other
instances of Fpke). It also encodes the identity of the decryptor for this instance.
The “public key value” pk has no particular meaning in the ideal scenario beyond
serving as an identifier for the public key related to this instance of the function-
ality, and this value can be chosen arbitrarily by the attacker. Also, in the ideal
setting ciphertexts serve as identifiers or tags with no particular relation to the
encrypted messages (and as such are also chosen by the adversary without knowl-
edge of the plaintext). Still, rule 1 of the decryption operation guarantees that
“legitimate ciphertexts” (i.e., those produced and recorded by the functionality
under an Encrypt request) are decrypted correctly, while the resultant plaintexts

168 R. Canetti, S. Halevi, and J. Katz

Functionality Fpke

Fpke proceeds as follows, when parameterized by message domain ensemble
D = {Dk}k∈N and security parameter k.

Key Generation: Upon receiving a value (KeyGen, sid) from some party
R∗, verify that sid = (sid′, R∗). If not, then ignore the input. Otherwise:
1. Hand (KeyGen, sid) to the adversary.
2. Receive a value pk∗ from the adversary, and hand pk∗ to R∗.
3. If this is the first KeyGen request, record R∗ and pk∗.

Encryption: Upon receiving from some party P a value
(Encrypt, sid, pk, m) proceed as follows:
1. If m /∈ Dk then return an error message to P .
2. If m ∈ Dk then hand (Encrypt, sid, pk, P) to the adversary. (If pk �=

pk∗ or pk∗ is not yet defined then hand also the entire value m to the
adversary.)

3. Receive a “ciphertext” c from the adversary, record the pair (c, m),
and send (ciphertext,c) to P . (If pk �= pk∗ or pk∗ is not yet defined
then do not record the pair (c, m).)

Decryption: Upon receiving a value (Decrypt, sid, c) from R∗ (and R∗

only), proceed as follows:
1. If there is a recorded pair (c, m) then hand m to R∗. (If there is more

than one such pair then use the first one.)
2. Otherwise, hand the value (Decrypt, sid, c) to the adversary. When

receiving a value m′ from the adversary, hand m′ to R∗.

Fig. 2. The public-key encryption functionality, Fpke

remain unknown to the adversary. In contrast, ciphertexts that were not legiti-
mately generated can be decrypted in any way chosen by the ideal-process ad-
versary. (Since the attacker obtains no information about legitimately-encrypted
messages, we are guaranteed that illegitimate ciphertexts will be decrypted to
values that are independent from these messages.) Note that the same illegiti-
mate ciphertext can be decrypted to different values in different activations. This
provision allows the decryption algorithm to be non-deterministic with respect
to ciphertexts that were not legitimately generated.

Another characteristic of Fpke is that, when activated with a KeyGen request,
it always responds with an (adversarially-chosen) encryption key pk′. Still, only
the first key to be generated is recorded, and only messages that are encrypted
with that key are guaranteed to remain secret. Messages encrypted with other
keys are disclosed to the adversary in full. This modeling represents the fact
that a single copy of the functionality captures the security requirements of
only a single instance of a public-key encryption scheme (i.e., a single pair of
encryption and decryption keys). Other keys may provide correct encryption and
decryption, but do not guarantee any security (see [ckn03] for further discussion
about possible alternative formulations of the functionality).

Adaptive Security of Symbolic Encryption�

Daniele Micciancio and Saurabh Panjwani

University of California, San Diego, La Jolla, CA 92093, USA
{daniele, panjwani}@cs.ucsd.edu

Abstract. We prove a computational soundness theorem for the sym-
bolic analysis of cryptographic protocols which extends an analogous
theorem of Abadi and Rogaway (J. of Cryptology 15(2):103–127, 2002)
to a scenario where the adversary gets to see the encryption of a sequence
of adaptively chosen symbolic expressions. The extension of the theorem
of Abadi and Rogaway to such an adaptive scenario is nontrivial, and
raises issues related to the classic problem of selective decommitment,
which do not appear in the original formulation of the theorem.

Although the theorem of Abadi and Rogaway applies only to pas-
sive adversaries, our extension to adaptive attacks makes it substantially
stronger, and powerful enough to analyze the security of cryptographic
protocols of practical interest. We exemplify the use of our soundness
theorem in the analysis of group key distribution protocols like those
that arise in multicast and broadcast applications. Specifically, we pro-
vide cryptographic definitions of security for multicast key distribution
protocols both in the symbolic as well as the computational framework
and use our theorem to prove soundness of the symbolic definition.

Keywords: Symbolic encryption, adaptive adversaries, soundness the-
orem, formal methods for security protocols.

1 Introduction

Traditionally, security protocols have been designed and analyzed using two com-
peting approaches: the symbolic one, and the computational one. The symbolic
approach is characterized by an abstract (adversarial) execution model, where
cryptographic operations and objects are treated as an abstract data type, not
only when used by honest protocol participants, but also when used by malicious
players attacking the system. This allows for simple proofs of security, typically
based on syntactic properties of the messages exchanged during the execution of
the protocol. The computational approach is based on a more detailed execution
model that accounts for a much wider class of adversaries attacking the sys-
tem, namely arbitrary probabilistic polynomial time bounded adversaries that

� Research supported in part by NSF grants 0313241 and 0430595. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 169–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 D. Micciancio and S. Panjwani

do not necessarily respect the cryptographic abstractions used by the protocol.
The stronger security guarantees offered by the computational approach come
at a substantial price in complexity: proofs of security in this framework typi-
cally involve subtle probabilistic arguments, complicated running time analysis,
and the ubiquitous use of computational assumptions, like the intractability of
factoring large integers.

Recently, there has been a lot of interest in combining the two approaches,
with the generic goal of coming up with abstract models that allow computa-
tionally sound symbolic security analysis, i.e., a method to translate symbolic
security proofs into precise computational statements about the security of con-
crete protocol executions in the computational framework.

Our work follows a line of research initiated by Abadi and Rogaway in [2],
where a simple language of encrypted expressions is defined, together with a
computationally sound symbolic semantics. Technically, [2] introduces a map-
ping from expressions to patterns that characterize the information leaked by the
expressions when evaluated using a computationally secure encryption scheme.
The structure of the soundness result of [2] is rather simple: an adversary at-
tacking the system produces a symbolic expression and subsequently receives the
computational evaluation of either the expression or its pattern. The soundness
theorem of [2] states that if the expression satisfy certain syntactic restrictions
(namely, it does not contain encryption cycles) then the adversary cannot effi-
ciently determine if it received the evaluation of the expression or its pattern.

The result of [2] is an interesting first step demonstrating the feasibility of
computationally sound symbolic security analysis. The class of encrypted ex-
pressions considered in [2] is fairly general, and allows to describe the messages
transmitted in many practical protocols. However, the result itself is too simple
for direct application to security analysis of protocols. Intuitively, the scenario
considered in [2] involves a party sending a single message to another party over
an authenticated channel, and a passive adversary monitoring the channel. In
practice, security protocols involve the exchange of several messages, among two
or more parties, and in different directions. Moreover, messages may depend on
the computational interpretation of previously chosen messages and/or external
inputs that are not known at the beginning of the protocol.

Our Results. In this paper, we consider an extension of [2] wherein the ad-
versary produces a sequence of expressions, which are subsequently evaluated
according to a common key assignment. If all the expressions in the sequence
were specified at the same time, then this wouldn’t be any different from the
original soundness theorem of [2], as all the expressions in the sequence could be
concatenated into a single expression. What makes our extension interesting and
nontrivial is the fact that the sequence is adversarially specified in an adaptive
way, so that each expression in the sequence may depend on the computational
evaluation of the previous ones. The ability to specify the expressions adaptively
allows the adversary to generate probability distributions that do not correspond
to any fixed sequence of expressions, and immediately raises issues related to the
classic problem of selective decommitment [9] and adaptive corruption [5]. (See

Adaptive Security of Symbolic Encryption 171

Section 3 for details.) In order to avoid these problems we introduce some syn-
tactical restrictions on the expressions, beside the acyclicity condition already
considered by [2]. Informally, the syntactic restrictions postulate that each key
is used in two stages: a key distribution stage during which the key can be used
as a message, and a key deployment stage during which the key is used to en-
crypt other messages. Using these syntactic restrictions, we are able to bypass
the selective decommitment problems, and prove a soundness result for symbolic
encryption with adaptively chosen expressions.

Our soundness result allows to analyze a generic class of protocols that in-
volve communication between multiple parties over an authenticated network.1

The execution model for these protocols involves an adversary that observes all
messages sent over the network and can adaptively change the execution flow
of the protocol (e.g., through interaction with the execution environment), but
is not allowed to modify or delete any of the messages sent or received by the
legitimate parties.

Our soundness result for adaptively chosen encrypted expressions substan-
tially increases the expressive power of the soundness theorem of [2], making it
powerful enough to analyze practical cryptographic protocols. We exemplify the
use of our soundness theorem in the analysis of group key distribution protocols,
like those used in multicast applications [23, 6, 22]. In the multicast key distri-
bution problem, a data source wants to broadcast information to a dynamically
changing group of parties, in such a way that at any given point in time only
current group members can decipher the transmitted messages. The problem is
typically solved by establishing a secret key, known to all and only the “current”
group members. Each time a user joins or leaves the group, a group controller
broadcasts some messages which are used by the new set of members to update
the group key.

We give formal definitions of security for multicast key distribution proto-
cols, in both the computational framework and the symbolic framework, and
show that if a protocol is secure in the symbolic setting, then the (implemen-
tation of the) protocol is also secure in the computational setting (provided the
messages used in the protocol conform with the syntactic restrictions of our
soundness theorem). Most multicast key distribution protocols we are aware of
(e.g., [23, 6]) satisfy these restrictions and can thus be proven secure (against
powerful computational adversaries) using the symbolic definition. To the best
of our knowledge, formal definitions for security of these protocols have not been
discussed in the literature prior to this work nor has there been any attempt to
relate security analysis of these protocols in the symbolic framework (as is done
implicitly in many papers) to computational security guarantees on their im-
plementations. Our soundness theorem is an important building block in that
direction.

1 Authenticated channels are a widely used model in cryptographic protocol design,
and can be implemented on top of non-authenticated networks using standard tech-
niques, like message authentication codes and digital signatures.

172 D. Micciancio and S. Panjwani

Related Work. Several improvements and refinements have followed the origi-
nal work of Abadi and Rogaway [2], but they are mostly orthogonal to our results.
In [19], Micciancio and Warinschi prove a converse of the soundness theorem,
showing that if a sufficiently strong encryption scheme is used, then a compu-
tationally bounded adversary can recover all and only the information captured
by the symbolic patterns. The result is further refined by Gligor and Horvitz
[10], who give an exact characterization of the computational requirements on
the encryption scheme under which the completeness theorem of [19] holds true.

An extension of the soundness result of [2] to multiple message/player set-
tings, is presented by Abadi and Jürjens in [1]. This result considers an arbitrary
set of parties exchanging several messages over an authenticated network over
time. However, the protocol specification language used in [1] only allows to de-
scribe protocols in which all messages transmitted during the protocol execution
can be uniquely determined before the execution of the protocol begins. In other
words, the result of [1] does not account for scenarios where the messages are
chosen adaptively, and from a technical point of view, it is much closer to [2]
than to our work.

The papers [20, 14] present two different extensions of the framework of [2]
that allow for active attacks, i.e., adversaries that have a total control of the
communication network and may drop, alter, or inject messages in the network.
Both works are based on encryption schemes satisfying the stronger notion of
security against chosen ciphertext attack (CCA [21, 8]). Our results hold for any
encryption scheme secure against chosen plaintext attack (CPA [11]). Moreover,
the results of [20, 14] have a qualitatively different and somehow more complex
formulation than the results presented in this paper. In [20] Micciancio and
Warinschi consider trace properties2 of both symbolic and computational execu-
tions of cryptographic protocols and relate the two models by proving that (if a
CCA secure encryption scheme is used) any protocol that satisfies a trace prop-
erty in all its symbolic executions, also satisfies the corresponding trace property
in computational executions with overwhelming probability. We remark that the
results in [20] are incomparable with those presented in this paper as trace prop-
erties do not allow to readily model indistinguishability properties as considered
in this paper. Laud’s result [14] is quite different from the other soundness re-
sults considered so far. Rather than considering a computational and a symbolic
execution models, and relating the two, [14] only considers a computational exe-
cution model and a set of symbolic program transformations, and proves that the
symbolic transformations are computationally sound in the sense that they pre-
serve computational secrecy properties when both the original and transformed
program are executed in the computational model.

Other approaches to the problem of computationally sound symbolic analysis
are exemplified by [4, 3, 15, 13]. In [4, 3] Backes, Pfitzmann and Waidner present

2 These are a class of properties, extensively used in the formal verification of dis-
tributed protocols, which can be represented as the allowable sequences of internal
states (or external actions) performed by the honest protocol participants.

Adaptive Security of Symbolic Encryption 173

an implementation of Dolev-Yao style terms achieving a simulation based se-
curity definition within a general computational framework. It is important to
notice that while [4, 3] allow to formulate and prove computational security prop-
erties of protocols built using their library, their results do not apply to protocols
that make direct use of encryption schemes satisfying standard security notions,
like CPA or CCA indistinguishability. We remark that [3] relies on syntactic
restrictions on the use of symmetric encryption similar to those used in this pa-
per. Our work shows that the difficulties encountered in [3] in trying to lift these
restrictions are not specific to their universally composable security framework,
but arise already in much simpler scenarios as those considered in this paper.
In [15] Lincoln, Mitchell, Mitchell and Scedrov present a probabilistic process
calculus that can be used to analyze computational security properties of cryp-
tographic protocols. All these works are both substantially more complex and
powerful than (though, technically incomparable to) the line of work initiated
by [2], as they allow to describe arbitrary probabilistic polynomial time compu-
tations. The work of Impagliazzo and Kapron [13] approaches the problem of
computationally sound symbolic analysis from still another side. They present
an axiomatic system with limited forms of recursion that can be used to carry
out proofs of the type used in the analysis of basic cryptographic constructions
without the explicit use of nested quantifiers and asymptotic notation. An inter-
esting question is whether the soundness theorem proved in this paper can be
proved within the logic of [13].

Organization. After giving some basic definitions in Section 2, we present our
soundness theorem in Section 3. The proof of the soundness theorem is given in
Section 5, after describing an application to multicast key distribution in Sec-
tion 4. Section 6 concludes with a discussion of future work and open problems.

2 Preliminaries

Let Keys and Const be two sets of symbols called keys and constants respec-
tively. We can assume that both sets are finite, and have size bounded by a
polynomial in the security parameter. For a given value of the security param-
eter, let Keys := {K1, · · · ,Kn} be the set of keys. We define a language, Exp,
of expressions, called basic expressions, that is generated using the following
syntactic rules:

M → (M,M)|{M}K1 |{M}K2 | · · · |{M}Kn

M → Each symbol in Keys ∪Const

The rule M → (M,M) symbolizes a pairing operation while M → {M}Ki

for any Ki symbolizes encryption under Ki. Sequences of expressions can be
converted into a single expression using the paring operation in the obvious
way, e.g., the sequence (M [1], . . . ,M [q]) can be represented by the expression
(M [1], (M [2], . . . , (M [q − 1],M [q]) . . .)). For any sequence (M [1], . . . ,M [q]) and

174 D. Micciancio and S. Panjwani

indexes 1 ≤ i ≤ j ≤ q, we use notation M [i..j] to denote the subsequence
(M [i],M [i + 1], . . . ,M [j]).

For any M ∈ Exp, a key that occurs as a plaintext in some sub-expression
of M is referred to as a message key while one that is used to encrypt some sub-
expression is called an encryption key. We denote the set of all message (resp.
encryption) keys of M by MsgKeys(M) (resp. EncKeys(M)). We say that a
key Ki encrypts Kj (or Kj is encrypted under Ki) in M , denoted Ki →M Kj ,
if M contains a sub-expression {M ′}Ki

such that Kj ∈ MsgKeys(M ′). As in
[2], we call a key recoverable in M if it is in MsgKeys(M) and occurs in it
either unencrypted or encrypted under keys that are, in turn, recoverable in it.
The set of all recoverable keys of M is denoted RecKeys(M). The set of all
unrecoverable encryption keys in M , i.e. the set EncKeys(M)\RecKeys(M), is
denoted UEncKeys(M). As an example, if M = ((K1, {K2}K1), {K4}K3), then
EncKeys(M) = {K1,K3};MsgKeys(M) = {K1,K2,K4};RecKeys(M) =
{K1,K2} and UEncKeys(M) = {K3}.

Formal Semantics. The information that can be extracted from an expression
using known keys and the decryption algorithm can be represented by a syn-
tactic object, called pattern. We use a definition of patterns recently proposed
in [16] which characterizes encryption schemes satisfying the standard notion
of semantic security under chosen plaintext attack [11]. (These patterns are
slightly different from those used in [2, 19, 10], which correspond to encryption
schemes satisfying a variant of semantic security. A definition similar to ours was
also used in [12].) We define the structure of an expression M ∈ Exp, denoted
struct(M), as the expression obtained by substituting all message keys in M
by a symbol K ′, all encryption keys in it by K and all constants by a symbol
c, where K,K ′ /∈ Keys and c /∈ Const are all fresh symbols. For example,
struct({0}K2 , {(K2, {K1}K2)}K3) = ({c}K , {(K ′, {K ′}K)}K).

Definition 1. For any M ∈ Exp, the pattern of M given a set of keys T ,
denoted pat(M,T), is an expression defined recursively as follows:

– If M ∈ Keys ∪Const, then pat(M,T) = M .
– If M = (M1,M2), then pat(M,T) = (pat(M1,T), pat(M2,T)).
– If M = {M ′}Ki

and Ki ∈ T , then pat(M,T) = {pat(M ′,T)}Ki
.

– If M = {M ′}Ki
and Ki /∈ T , then pat(M,T) = {struct(M ′)}Ki

.

The pattern of M , denoted pattern(M), is defined as pat(M,RecKeys(M)).

This definition of patterns captures the intuitive idea that given a bitstring
interpretation of any expression encrypted under say Ki, an adversary can learn
everything about the expression if he knows Ki, but can learn nothing more
than its structure if he does not know Ki.

Just as in [2], we say that two expressions M1,M2 ∈ Exp are equivalent,
denoted M1 $ M2, if their patterns, when viewed as strings of symbols, are
identical up to renaming of their keys. That is, M1 and M2 are equivalent if
there exists an injective map, φ, from the keys in M1 to the keys in M2 such that
when every key Ki (other than a structure key) in pattern(M1) is substituted

Adaptive Security of Symbolic Encryption 175

with φ(Ki), the resulting expression is identical to pattern(M2). For example,
if we consider the expressions

M1 = ((K1, {0}K2), {K2, {K1}K2}K3)
M2 = ((K1, {1}K6), {K5, {K6}K1}K2)
M3 = ((K1, {K5}K2), {K5, {K6}K1}K2)

we have M1 $M2 but M1 �$M3.

Computational Semantics. We define computational semantics of all expres-
sions, including all basic expressions and their respective patterns, using a single
procedure. (We denote the set of all such expressions by Exp′ below). For any
symmetric encryption scheme, Π = {K, E ,D}, let Km(η) denote the random
variable corresponding to a vector of m keys sampled independently using the
key generation algorithm K, giving it security parameter η as input. The pro-
cedure for defining computational semantics of expressions takes the security
parameter η as input and works in two steps.

1. We generate a key vector τ from the distribution Kn+2(η) (where n =
|Keys|) and map all keys in Keys ∪ {K ′,K} to elements in this vector.
Specifically, for all i ∈ {1, · · · , n}, τ [i] corresponds to Ki, τ [n+ 1] to K ′ and
τ [n + 2] to K.

2. In the second step, we look at expressions in Exp′ and for each expression
M we define the bitstring interpretation of M given τ as a random variable,
[[M]]Π,τ , in the following recursive manner:
– If M ∈ Const ∪ {c}, then [[M]]Π,τ is the bitstring representation of M ,

using some standard encoding.
– If M = Ki ∈ Keys, then [[M]]Π,τ≡ τ [i]. If M = K ′, then [[M]]Π,τ≡

τ [n + 1].
– If M = (M1,M2) for some M1,M2 ∈ Exp′, then [[M]]Π,τ is the random

variable corresponding to ([[M1]]Π,τ , [[M2]]Π,τ) (we use some standard
efficiently computable and invertible encoding for the pairing operation).

– If M = {M ′}Ki for some M ′ ∈ Exp′ and Ki ∈ Keys, then [[M]]Π,τ is
the random variable corresponding to Eτ [i]([[M ′]]Π,τ). If M = {M ′}K for
some M ′ ∈ Exp′, then [[M]]Π,τ is the random variable corresponding to
Eτ [n+2]([[M ′]]Π,τ).

Security of Encryption. We consider encryption schemes that are semantically
secure against chosen plaintext attacks. For any symmetric encryption scheme
Π = {K, E ,D}, a left-right oracle, LRΠ,b for Π is a program that first generates
a key k using the key generating algorithm K and then for each query, (m0,m1)
(m0 and m1 being bitstrings of equal length), given to it replies with the cipher-
text Ek(mb). Π is called ind-cpa secure if for any probabilistic polynomial-time
distinguisher D the following quantity

Advind−cpa
Π (D, η) = |Pr[DLRΠ,0(η)(η) = 1]− Pr[DLRΠ,1(η)(η) = 1]|

is a negligible function of η, i.e., it is less than 1/ηc for any c > 0 and sufficiently
large η.

176 D. Micciancio and S. Panjwani

3 Soundness

We consider a setting in which an adversary gets to see the computational eval-
uation of a sequence of (adaptively chosen) expressions. We want to model the
fact that the adversary does not learn anything about the expressions, beside
whatever information can be deduced from their patterns.

We formalize the problem using a cryptographic experiment as follows. Fix
a symmetric encryption scheme Π = {K, E ,D}. Let A be any probabilistic
polynomial-time machine that issues queries consisting of pairs3 of basic ex-
pressions, the ith query of A being denoted by (M0[i],M1[i]). The experiment
runs in one of two worlds, decided based on a bit b sampled uniformly at ran-
dom in the beginning. After selecting b, the adversary is executed (given some
security parameter as input) and the queries of the adversary are answered using
an oracle, OΠ,b, parameterized by the encryption scheme Π and the bit b. This
oracle first selects a random key vector τ using the key generation algorithm of
Π, K, and for each query (M0[j],M1[j]), replies with a sample from the distri-
bution [[Mb[j]]]Π,τ , i.e. the bitstring interpretation of the bth expression in the
query (with respect to Π and τ). A concise description of the oracle and the
experiment appears below.

Oracle OΠ,b(η)
Let τ

$← Kn+2(η)
For the jth query received, (M0[j], M1[j]), re-
ply with a sample from [[Mb[j]]]Π,τ

Exptadpt
Π (A)

Let b
$← {0, 1}. Fix η.

Run AOΠ,b(η)(η)

The goal of the adversary is to guess the value of b with probability better
than random, and under the constraint that the two sequences of expressions
queried to the oracle have the same pattern. More specifically, let q denote
the number of queries made by A in any execution of the experiment, and let
Mb = Mb[1..q] be the sequence of expressions encrypted by the oracle OΠ,b(η).
(Without loss of generality, q can be assumed to be a fixed polynomial in the
security parameter, e.g., a polynomial upper bound on the running time of A.)
We require that M0 $M1. For technical reasons, in order to prove our soundness
theorem we need to introduce some additional restrictions on the syntax of M0
and M1.

Definition 2. A sequence of basic expressions, Mb[1],Mb[2], · · · ,Mb[q], is called
legal if it satisfies the following two properties:

1. The expressions M0 and M1 contain no encryption cycles.4

2. No unrecoverable encryption key in Mb[1..i] occurs as a message key in Mb[j]
for any j > i. That is, for all i < j ≤ q

3 As standard in cryptography, we use distinguishability of pairs of messages to model
leakage of partial information about those messages.

4 An expression M is said to contain an encryption cycle if there exist keys
Ki1 , Ki2 , · · · Kim such that Ki1 →M Ki2 →M · · · Kim−1 →M Kim →M Ki1 . Ex-
amples of such expressions are {K1}K1 and ({K1}K2 , {(K3, {K2}K3)}K1).

Adaptive Security of Symbolic Encryption 177

UEncKeys(Mb[1..i]) ∩MsgKeys(Mb[j]) = ∅

For example, if Mb[1] = {Ki}Kj then it is illegal to have Mb[2] = {Kj}Kl
or

even Mb[2] = Kj.

The first requirement is standard in cryptography, and was already used in
[2]. The second requirement is also very natural and it informally states that
each key is used in two stages: a key distribution stage where the key is used as
a message, and a subsequent deployment stage where the key is used to encrypt
other messages and keys. This is the way keys are used in many cryptographic
protocols, e.g., the key distribution protocols of [23, 6]. Intuitively, the reason
we introduce this requirement is that if a key is first used to encrypt messages,
and then revealed, the symbolic patterns of previously received messages may
change and, consequently, our proof breaks down. At a more technical level,
in the absence of the second requirement, an adversary can play the following
game: first issue the expressions {M1}K1 , . . . , {Ml}Kl

, and then, after getting the
corresponding ciphertexts, ask for a randomly chosen set of keys {ki1 , . . . , kim

}
(i1, · · · , im ∈ {1, · · · , l}) by issuing the expression (Ki1 , . . . ,Kim

). The question
of whether security of the ciphertexts (other than those that can be decrypted
using the revealed keys) is ensured in this game is the classic problem of selective
decryption for which no answer is known to date [9].

An adversary in Exptadpt
Π is called legal if the queries issued by it are such that

both M0[1], · · · ,M0[q] and M1[1], · · · ,M1[q] are legal sequences and M0 $ M1.
The advantage of A in the experiment, denoted Advadpt

Π (A, η), is defined as the
following quantity:

Advadpt
Π (A, η) = |P[AOΠ,0(η)(η) = 1]−P[AOΠ,1(η)(η) = 1]|

where the probabilities are taken based on the randomness used by A and OΠ,b.
We now state our soundness theorem:

Theorem 1. If Π is an ind-cpa secure encryption scheme, then for any legal
adversary A, Advadpt

Π (A, η) is a negligible function of η.

We provide an overview of the proof of the soundness theorem in Section 5 but
before doing that, we discuss an application to multicast key distribution.

4 Application to Secure Multicast

In this section, we present an example to illustrate how our soundness theorem
can be used in the analysis of real cryptographic protocols. Our example is the
multicast key distribution problem in which a large set of users communicates
using a multicast (or broadcast) channel and at any time some of these users,
called “group members”, share a secret key which is known only to them and not
to the rest of the users. The group members change dynamically and in order to
maintain the secrecy property of the group key over time, a central authority,
called the group center, broadcasts messages to enable the members to update

178 D. Micciancio and S. Panjwani

the key whenever a new member joins or an old member leaves the group. In
other words, the center “rekeys” the group whenever its composition changes.
The goal is to ensure that at any point in time, the non-members are unable to
compute the group key, even if several of them collude together and share all
their information in an attempt to do so.

This problem arises in many practical scenarios and has been studied ex-
tensively by the cryptography as well as computer networks communities. (See
for example [23, 6, 7, 22, 18].) However, there seems to have been very little at-
tempt towards formulating a sound cryptographic model for the problem and
proving security of any of the proposed solutions using standard cryptographic
techniques. Although some works implicitly use a Dolev-Yao like framework in
arguing for security of multicast key distribution protocols, it is not clear how
such analysis relates to actual security of the protocols. Our soundness theorem
provides a useful tool in relating proofs of security for these protocols in the
formal framework to security proofs in the standard computational framework
used in cryptography.

4.1 Security in the Computational Framework

We model a multicast key distribution protocol as a set of three programs Γ =
{I, C,U} where I is an initialization program, C is the group center’s program
used to compute the rekey messages and U is the program run by the group
members U = {u1, · · · , uN}.

These programs work as follows. I takes the security parameter η as input
and outputs the initial state of the center, sC

0 , the initial states of all users
s1
0, s

2
0, · · · , sN

0 and the initial group membership G0 ⊂ U . (Typically, G0 = ∅.)
The center’s program, C, takes as input η, the current state sC

t and a command
comt and returns a message mt (the rekey message at time t) and the updated
state of the center sC

t+1. Each command comt given to the center is either of the
form add(ui) (which adds a new user to the group) or of the form del(ui) (which
removes an existing member from the group). The users’ program, U , takes as
input η, a user index i (≤ N), the previous state si

t−1 of user ui, and the current
rekey message mt, and outputs a string ki

t and the updated state si
t of ui. For

correctness, we require that at every time instant t ≥ 0, ki
t be identical for every

member ui in the current group Gt. This value is called the group key at time t
and is denoted kt.

Security Definition: The security of multicast key distribution is modelled
using an adversary that controls a subset of corrupted users and adaptively
issues commands to change membership of the group. The adversary’s goal is
to gain information about the group key when none of the corrupted users are
part of the group. Formally, for any protocol Γ = {I, C,U}, we consider the
following experiment, which we denote by Exptgkd

Γ . First, I is used to generate
the initial states of the group center and all users, and the adversary A is given
a set of corrupted users B ⊂ U , together with their initial states {si

0|ui ∈ B}.
The adversary then issues a sequence of t commands com1, · · · , comt and for

Adaptive Security of Symbolic Encryption 179

each command comt′ , it is given the corresponding rekey message mt′ , computed
according to program C and the group center’s initial state produced by I. (At
any point in time, the users in B may or may not be in the group). Let k1, · · · , kt

be the group keys at times 1, · · · , t as computed by the honest group members.
Let also T ⊆ {1, · · · , t} be the set of time instants when none of the corrupted
users are in the group, and let k̄T = {ki : i ∈ T} be the corresponding keys. The
security requirement is that the keys in k̄T are pseudorandom. More precisely,
let k̄′

T be a set of |T | uniformly and independently chosen keys, and let b be a
random bit. At the end of the experiment, the adversary is given either k̄T or k̄′

T

(depending on whether b = 0 or b = 1, respectively) and her goal is to correctly
guess the value of b.5

Let pA(B, b) be the probability that A outputs 1 in Exptgkd
Γ when the cor-

rupted set of users is B (here probabilities are taken based on the random choices
of A, I and C). The advantage function of A in the experiment is defined as:

Advgkd
Γ (A,B, η) = |pA(B, 0)− pA(B, 1)|

Definition 3. A multicast key distribution protocol Γ is secure if for all prob-
abilistic polynomial-time adversaries A and all sets B ⊆ U , Advgkd

Γ (A,B, η) is
a negligible function of η.

We remark that the definition above allows the adversary to change the group
membership in an adaptive way, but does not permit adaptive corruption of the
users, i.e. the set of corrupted users must be chosen before the protocol starts
executing.

4.2 Computationally Sound Security in the Dolev-Yao Model

We now define security of multicast key distribution in the Dolev-Yao frame-
work and for this we consider a special class of key distribution protocols that
encompasses most of the protocols used in practical applications. Let ΓF =
{IF , CF ,UF } denote a multicast key distribution protocol in the Dolev-Yao
framework. The program IF works just as I in the previous definition except
that it initializes the state of every user ui as a fixed symbolic key Ki that is
unique to that user and the state of the center as the set of all the unique keys
K1,K2, · · · ,KN , where N is a bound on the number of users.6 The program CF
takes commands of the form add(ui) and del(ui) as before but for each command
comt, returns an expression Mt (denoting the rekey message for time t). The in-
ternal state of CF at time t consists of all unique keys, all rekey messages sent till

5 We remark that this definition can be made stronger by giving to the adversary
either the key kt′ (if b = 0) or a random key k′

t′ (if b = 1) at every time instant t′

for which B ∩ Gt′ = ∅ (instead of giving the set of these keys, k̄t or k̄′
t, at the end

of the experiment as is done above). This strengthening does not affect our result in
any way and we use the above definition only for the sake of simplicity.

6 In practice, the group center can store a compact representation of all these keys
using a pseudorandom function.

180 D. Micciancio and S. Panjwani

time t and the group composition at time t, Gt. UF takes a user index i as input
and returns a key, Ki

t , that can be obtained by applying the Dolev-Yao rules on
all the rekey messages received till the current time, given the knowledge of the
key Ki. Ki

t should also be such that it is not used as an encryption key in any of
the rekey messages sent by the group center at any time7. Again, for correctness
we require that for all time instants t, Ki

t be identical for each group member
ui at time t. We let M̄t denote the expression (M1,M2, . . . ,Mt) and for any set
B ⊆ U , we let KB denote the set of unique keys of all users in the set B ⊆ U .

Definition 4. A multicast key distribution protocol ΓF is secure in the Dolev-
Yao framework if for every sequence of commands, com1, com2, · · · , comt and for
every subset B ⊆ U , the following holds: Let Kt′ and Gt′ be the group key and
group member set at time t′ ≤ t, and let T be the set of all t′ such that B∩Gt′ = ∅.
Then, ((M̄t,KT),KB) $ ((M̄t,K

′
T),KB), where KT = {Kt′ : t′ ∈ T} and K ′

T is
a set of |T | fresh keys.

For any protocol ΓF in the Dolev-Yao framework, the translation of ΓF in
the computational framework with respect to a symmetric encryption scheme
Π, is the protocol ΓΠ

F which behaves identically to ΓF with the difference that
a key assignment τ is generated for the set of all keys ever used in the protocol
execution (using the key generation algorithm for Π) and each symbolic expres-
sions M (a key or a rekey message) used in ΓF is replaced with the bitstring
interpretation of M , [[M]]Π,τ . Using our soundness theorem, we can now show
the following connection between the above two definitions.

Theorem 2. Let ΓF be a multicast key distribution protocol in the Dolev-Yao
framework with the property that for any sequence of commands com1, · · · , comt,
the sequence of rekey messages, M1,M2, · · · ,Mt, returned by the center’s pro-
gram CF is a legal sequence. Let Π be any ind-cpa secure symmetric encryption
scheme. If ΓF is secure in the Dolev-Yao framework (Definition 4), then ΓΠ

F is
secure in the computational framework (Definition 3).

Proof (Sketch): Suppose, towards contradiction, that ΓF satisfies Definition 4,
but ΓΠ

F does not satisfy Definition 3. Let A be a computational adversary and
B ⊂ U a set of initially corrupted users such that Advgkd

Γ Π
F

(A,B, η) is non-
negligible (in η). Given any such choice of A and B, we can build an adversary A′

that uses A as a black-box and has non-negligible advantage in the experiment
Exptadpt

Π defined in our soundness theorem. A′ first queries its oracle on the
unique keys of all users in B and invokes A on input B and the corresponding
keys. For any query comt′ of A, A′ uses the program CF to determine the rekey
message Mt′ and uses its oracle to determine the computational interpretation
of the same (which it then returns to A). Finally, A′ queries its oracle on the pair

7 The reason we introduce this requirement is that if a key is used to encrypt a message,
then the key is no necessarily pseudorandom anymore, as the encryption scheme may
leak partial information about the key.

Adaptive Security of Symbolic Encryption 181

(KT ,K
′
T) where T = {t′ : B ∩Gt′ = ∅} and K ′

T is a set of |T | fresh (symbolic)
keys and the reply is passed on to A. A′ outputs whatever A outputs.

Given that the sequence of rekey messages generated in any run of ΓF is a
legal sequence and the fact that no key in KT is ever used as an encryption
key in any of the messages, it follows that the adversary A′ constructed above
is a legal adversary. It is easy to see that the advantage of A′ in Exptadpt

Π is
exactly the same as that of A in Exptgkd

Γ Π
F

(which means that if the latter is a
non-negligible quantity, so is the former). This leads us to a contradiction of our
soundness theorem.

We remark that many practical group key distribution schemes (e.g., [23])
satisfy the precondition of Theorem 2 (that requires all sequences of rekey mes-
sages generated by the protocol to be legal sequences). Moreover, these protocols
can be easily proved secure in the symbolic framework. It follows that their nat-
ural implementation is also secure in the computational framework.

5 Proof of the Soundness Theorem

This section provides an overview of the proof of our soundness theorem. More
details appear in the full version of the paper [17].

5.1 Defining Orders for Legal Sequences of Expressions

For any acyclic expression M ∈ Exp, the “encrypts” relation defines a partial
order on the keys in M and we consider the restriction of this partial order on just
its unrecoverable encryption keys. Any total order on the set of unrecoverable
encryption keys of M that is consistent with such a partial order is called a good
order for M . For example, in the expression

M := (((K1, {K2}K3), {(K6, {K1}K3)}K2), {K4}K5)

the unrecoverable encryption keys are K2,K3 and K5, and we have K3 →M K2.
This gives us a partial order K3 ≤ K2 on UEncKeys(M) and so the good
orders for M are K3 ≤ K2 ≤ K5, K3 ≤ K5 ≤ K2 and K5 ≤ K3 ≤ K2.

We now re-interpret the definition of legal sequences of expressions given in
Section 3. Recall that for any such sequence, M [1],M [2], · · · ,M [q], the expression
M = M [1..q] is acyclic and for any i < j ≤ q, no unrecoverable encryption key
in M [1..i] is a message key in M [j]. The latter condition implies that for any
i ∈ {1, · · · , q− 1} no unrecoverable encryption key in M [1..i] can be recoverable
in M [1..i + 1], and therefore the sets

UEncKeys(M [1 . . . 1]) ⊆ UEncKeys(M [1 . . . 2]) ⊆ · · · ⊆ UEncKeys(M [1..q])

form a monotonically nondecreasing sequences.
This relation enables us to partition the unrecoverable encryption keys of M

into q sets such that the ith set in the partition, say UEnci, contains the keys
that are used as encryption keys in M [i] but in none of M [1],M [2], · · · ,M [i−1],

182 D. Micciancio and S. Panjwani

i.e. UEnci := UEncKeys(M [1..i]) \UEncKeys(M [1..i− 1]). The definition of
legal sequences implies that for any i < j ≤ q, no key from UEncj can encrypt
any key from UEnci in M . Now, using the fact that M is acyclic, we can find a
good order ≤ for every M [1..i] such that for any 1 ≤ i1 < j1 ≤ i, the keys from
UEnci1 “precede” all the keys from UEncj1 in ≤ i.e. for all Ki′ ∈ UEnci1 and
Kj′ ∈ UEncj1 , Ki′ ≤ Kj′ . We select the lexicographically first order among all
orders having this property and denote it by ≤M [1..i]. The order ≤M [1..1] is just
the lexicographically first good order defined on M [1] and for each i < q, the
ordering produced by ≤M [1..i−1] is a prefix of that produced by ≤M [1..i].

As an example, consider the following sequence of expressions:

M [1] = (K1, {K2}K3)
M [2] = {(K6, {K1}K3)}K2

M [3] = {K4}K5

Observe that this sequence is consistent with our definition of legal sequences.
The expressions M [1..2] and M [1..3] are

M [1..2] = ((K1, {K2}K3), {K6, {K1}K3}K2)
M [1..3] = (((K1, {K2}K3), {K6, {K1}K3}K2), {K4}K5)

We have UEncKeys(M [1..1]) = {K3}; UEncKeys(M [1..2]) = {K2,K3}
and UEncKeys(M [1..3]) = {K2,K3,K5} and so UEnc1 = {K3};UEnc2 =
{K2} and UEnc3 = {K5}. The lexicographically first good orders for M [1..2]
and M [1..3] are given by K3 ≤ K2 and K3 ≤ K2 ≤ K5. These relations are
denoted ≤M [1..2] and ≤M [1..3] respectively.

5.2 Defining Hybrid Oracles

The proof of the soundness theorem uses a hybrid technique. We define a set of
2n + 2 hybrid oracles (where n = |Keys|)8 and relate the success probability
of any legal adversary in distinguishing between any neighboring pair of these
oracles to its success probability in distinguishing between the instances of the
oracle OΠ,b (viz. OΠ,0 and OΠ,1) used in experiment Exptadpt

Π . We then use
this relation to show how any legal adversary with a non-negligible advantage
in Exptadpt

Π (i.e. a non-negligible success probability in distinguishing between
OΠ,0 and OΠ,1) can be used to mount a successful attack against the ind-cpa
security of the underlying encryption scheme Π.

We denote the hybrid oracles by O0
Π,0,O1

Π,0, · · · On
Π,0,On

Π,1,On−1
Π,1 , · · · ,O0

Π,1.
The extreme oracles, O0

Π,0 and O0
Π,1, correspond to the instantiations of OΠ,b

with b = 0 and b = 1 respectively. The behavior of oracle O0
Π,0 is close to that of

O1
Π,0, the behavior of O1

Π,0 is close to that of O2
Π,0 and so on up to On

Π,0. Simi-

8 Without loss of generality, the number of key symbols that can potentially be used
by the adversary in generating queries can be assumed to be a fixed polynomial in
the security parameter.

Adaptive Security of Symbolic Encryption 183

larly, On
Π,1’s behavior is similar to that of On−1

Π,1 ’s, On−1
Π,1 ’s close to On−2

Π,1 ’s and so
on up to O0

Π,1. For each i ∈ {1, 2, · · · , n}, the oracle Oi
Π,0 is defined as follows:

Oracle Oi
Π,0(η)

1. Let τ $← Kn+2(η)
2. For the jth query received, (M0[j],M1[j]), do the following:

(a) Compute the order ≤M0[1..j] and let S be the set of those keys in M0[j]
that are among the smallest i keys of ≤M0[1..j].

(b) Let Mnew be the expression obtained by substituting, for all Kl ∈ S, all
sub-expressions in M0[j] of the form {M ′}Kl

with {struct(M ′)}Kl
.

(c) Return [[Mnew]]Π,τ .

The oracles Oi
Π,1 (for i ∈ [n]) are defined analogously with the difference that

in steps 2(a) and 2(b), M0[j] gets replaced by M1[j] and ≤M0[1..j] by ≤M1[1..j].
The following fact about oracles On

Π,0 and On
Π,1 is easy to deduce:

Lemma 1. Whenever the queries received by the oracles come from a legal ad-
versary, the two oracles On

Π,0 and On
Π,1 have identical behavior i.e. for any se-

quence of queries, the distribution of the replies given by one of them is exactly
the same as that of the replies given by the other.

For any i ∈ [n] and b ∈ {0, 1}, we define the advantage of A in distinguishing
between oracles Oi

Π,b and Oi−1
Π,b , Advadpt

Π,i,b, as the following quantity:

Advadpt
Π,i,b(A, η) =

∣∣∣P[AOi
Π,b(η)(η) = 1]−P[AOi−1

Π,b (η)(η) = 1]
∣∣∣

The following lemma relates these advantages to the advantage of A in
Exptadpt

Π .

Lemma 2.
∑n

i=1
∑

b∈{0,1} Advadpt
Π,i,b(A, η) ≥ Advadpt

Π (A, η)

5.3 The Reduction

Given any legal adversary A in experiment Exptadpt
Π , we construct a distin-

guisher D attacking the ind-cpa security of Π such that the advantage of D in
performing an ind-cpa attack on Π is related (by a polynomial multiplicative
factor) to A’s advantage in Exptadpt

Π . This essentially implies that any successful
attack in Exptadpt

Π can be effectively translated into an attack on the underlying
encryption scheme itself.

Our construction of D will be such that the advantage of D in Exptind−cpa
Π

will be 1/poly times the expected advantage of A in distinguishing between oracles
Oi

Π,b and Oi−1
Π,b , where i and b are treated as random variables sampled uniformly

from {1, · · · , n} and {0, 1}. More precisely, the construction will be such that

Advind−cpa
Π (D, η) =

1
n
E

i
$←[n];b $←{0,1}

(
Advadpt

Π,i,b(A, η)
)

=
1
n

n∑
i=1

∑
b∈{0,1}

(
1
n
· 1
2
·Advadpt

Π,i,b(A, η)
)

184 D. Micciancio and S. Panjwani

Now, applying Lemma 2 we get

Advind−cpa
Π (D, η) ≥ 1

2n2 Advadpt
Π,i,b(A, η)

Thus, a non-negligible advantage of A in experiment Exptadpt
Π would imply

a non-negligible advantage of D in Exptind−cpa
Π and the theorem would follow

immediately from this.

The Construction. The distinguisher D works as follows: it first selects a ran-
dom number i′ in the range {1, · · · , n} and a random bit b′ ∈ {0, 1} and then
tries to simulate the behavior of the oracle pair {Oi′

Π,b′ ,Oi′−1
Π,b′ } using its own

oracle LRΠ,b. D runs A inside it and answers A’s queries using its simulated
setup. To carry out the simulation, it guesses a value i randomly from {1, · · · , n}
and hopes that each query, (M0[j],M1[j]), issued by A would be such that the
i′th key in the order ≤Mb′ [1..j] is Ki (or else the number of unrecoverable en-
cryption keys in Mb′ [1..j] is smaller than i′ and Ki is neither a recoverable
key nor an unrecoverable encryption key in Mb′ [1..j]). If D fails in its guess, it
gives up and outputs 0. Else, it treats the key used by LRΠ,b as correspond-
ing to Ki and answers A’s queries in such a way that the behavior of LRΠ,b

with b = 0 (resp. b = 1) corresponds to the simulation of the oracle Oi′−1
Π,b′

(resp. Oi′
Π,b′).

Adversary DLRΠ,b(η)(η)

1. Let i′ $← {1, 2, · · · , n} and b′ $← {0, 1}.
2. Guess a value i

$← {1, 2, · · · , n}.
3. Generate a key vector τ as follows: (τ [1], . . . , τ [i − 1], τ [i + 1], . . . , τ [n + 2])

$← Kn+1(η) (the ith entry in τ is empty and the rest are random keys).
4. Run A(η).
5. When A issues the jth query (M0[j],M1[j]), do the following:

(a) Compute the order ≤Mb′ [1..j]. Check if either Ki is the i′th key in
≤Mb′ [1..j]; OR |UEncKeys(Mb′ [1..j])| < i′ and Ki /∈ UEncKeys(Mb′

[1..j]) ∪RecKeys(Mb′ [1..j])
(b) If so, do the following:

i. Let S be the set of those keys in Mb′ [j] that are among the smallest
(i′ − 1) keys of ≤Mb′ [1..j].

ii. Let Mnew be the expression obtained by substituting, for all Kl ∈ S,
all sub-expressions in Mb′ [j] of the form {M ′}Kl

with
{struct(M ′)}Kl

.
iii. Return SampleLRΠ,b(Mnew,Ki, τ) to A.

(c) Else, output 0 and halt.
6. Output whatever A outputs.

The crux of the code lies in the subroutine Sample (invoked at the end of
step 5(b)) which is given below

Adaptive Security of Symbolic Encryption 185

Procedure SampleLRΠ,b(M,Ki, τ)

1. If M is a constant or c, return the corresponding bitstring.
2. If M = Kl (for some l ∈ [n]), return τ [l]. If M = K ′, return τ [n + 1].
3. If M = (M1,M2), return (Sample(M1,Ki, τ), Sample(M2,Ki, τ)).
4. If M = {M ′}Kl

and l �= i, return Eτ [l](Sample(M ′,Ki, τ)). If M = {M ′}K ,
return Eτ [n+2](Sample(M ′,Ki, τ)).

5. If M={M ′}Kl
and l= i, return LRΠ,b(Sample(M ′,Kj ,τ), [[struct(M ′)]]Π,τ).

The proofs of the two lemmas and the analysis of the distinguisher can be
found in the full version of the paper[17].

6 Future Work

We have proved a generalization of the soundness theorem of [2] in which the
adversary can issue a sequence of adaptively chosen expressions, rather than
a single expression, and demonstrated the usefulness of the theorem in an ap-
plication to secure multicast key distribution. For simplicity, in this paper we
considered a language of expressions that make use of only symmetric encryp-
tion operations, but most of the techniques can be easily extended to other
cryptographic primitives whose security can be expressed as an indistinguisha-
bility property. Examples of such primitives are public key encryption, in which
two different keys are used to encrypt and decrypt messages, and pseudoran-
dom number generators, that can be used to expand a key into a sequence of
multiple seemingly independent keys. Some of these extensions (e.g., the use of
pseudorandom generators) are especially interesting in the context of multicast
security protocols as the protocol of [6] (which was shown to be optimal in the
Dolev-Yao model in [18]) makes use of these operations.

The proof of our soundness theorem introduces a syntactic restriction (besides
the acyclicity condition already used in [2]) about the order in which each key
is used as a message or as an encryption key. An interesting question is whether
either restriction can be lifted, possibly using a special encryption scheme with
additional security properties (a good candidate might be non-committing en-
cryption introduced by Canetti, Feige, Goldreich and Naor in [5]). Although
most practical protocols satisfy the syntactic restrictions in our soundness the-
orem, removing the ordering restriction would allow to model attack scenarios
with adaptive corruption of users, where, when the adversary wants to corrupt
user i (holding a secret key ki as its internal state) it can simply issue the ex-
pression Ki to learn the value of the key. Currently this is allowed only if Ki

has not already been used to encrypt other messages. Designing protocols that
are secure against adaptive corruption raises issues similar to the selective de-
commitment problem discussed in Section 3, and is not easily addressed using
the techniques developed in this paper. We leave the investigation of multicast
key distribution protocols secure under adaptive corruption of the users to fu-
ture work.

186 D. Micciancio and S. Panjwani

References

1. M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpreta-
tion. In N. Kobayashi and B. Pierce, editors, Proceedings of the 4th International
Symposium on Theoretical Aspects of Computer Software - TACS 2001, volume
2215 of Lecture Notes in Computer Science, pages 82–94, Sendai, Japan, Oct.
2001. Springer-Verlag.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

3. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In Proceedings of the 17th IEEE computer security
foundations Workshop, pages 204–218, Pacific Grove, CA, USA, June 2004. IEEE
Computer Society.

4. M. Backes, B. Pfitzmann, and M. Waidner. A Composable Cryptographic Library
with Nested Operations. In Proceedings of the 10th ACM conference on computer
and communications security - CCS 2003, pages 220–230, Washington, DC, USA,
Oct. 2003. ACM.

5. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multiparty
Computation. In Proceedings of the twenty-eighth annual ACM symposium on the
theory of computing - STOC ’96, pages 639–648, Philadelphia, Pennsylvania, USA,
May 1996. ACM.

6. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multi-
cast security: A taxonomy and some efficient constructions. In INFOCOM 1999.
Proceedings of the Eighteenth Annual Joint conference of the IEEE computer and
communications societies, volume 2, pages 708–716, New York, NY, Mar. 1999.
IEEE.

7. R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage tradeoffs for
multicast encryption. In J. Stern, editor, Advances in Cryptology - EUROCRYPT
’99, Proceedings of the International Conference on the Theory and Application
of Cryptographic Techniques, volume 1592 of Lecture Notes in Computer Science,
Prague, Czech Republic, May 1999. Springer-Verlag.

8. D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cyptography. SIAM Journal on
Computing, 30(2):391–437, 2000. Preliminary version in STOC 1991.

9. C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic Functions. Journal
of the ACM, 50(6):852–921, Nov. 2003.

10. V. Gligor and D. O. Horvitz. Weak Key Authenticity and the Computational
Completeness of Formal Encryption. In D. Boneh, editor, Advances in cryptology -
CRYPTO 2003, proceedings of the 23rd annual international cryptology conference,
volume 2729 of Lecture Notes in Computer Science, pages 530–547, Santa Barbara,
California, USA, Aug. 2003. Springer-Verlag.

11. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sience, 28(2):270–299, 1984. Preliminary version in Proc. of STOC 1982.

12. J. C. Herzog. Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, Massachusetts Institute of Technology, Boston, USA, 2004.

13. R. Impagliazzo and B. Kapron. Logics for Reasoning about Cryptographic Con-
structions. In Proceedings of the 44rd annual symposium on foundations of com-
puter science - FOCS 2003, pages 372–383, Cambridge, MA, USA, Nov. 2003.
IEEE.

Adaptive Security of Symbolic Encryption 187

14. P. Laud. Symmetric Encryption in Automatic Analyses for Confidentiality against
Active Adversaries. In IEEE symposium on security and Privacy, pages 71–85,
Berkeley, CA, USA, May 2004. IEEE Computer Society.

15. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In Proceedings of the fifth ACM conference on
computer and communications security - CCS ’98, pages 112–121, San Francisco,
California, USA, Nov. 1998. ACM.

16. D. Micciancio. Towards Computationally Sound Symbolic Se-
curity Analysis, June 2004. Tutorial. Slides available at
http://dimacs.rutgers.edu/Workshops/Protocols/slides/micciancio.pdf.

17. D. Micciancio and S. Panjwani. Adaptive Security of Symbolic Encryp-
tion, Nov. 2004. Full version of this paper. Available from http://www-
cse.ucsd.edu/users/spanjwan/papers.html.

18. D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distributio. In C. Cachin and J. Camenisch, editors, Advances in
cryptology - EUROCRYPT 2004, proceedings of the internarional conference on
the theory and application of cryptographic techniques, volume 3027 of Lecture
Notes in Computer Science, Interlaken, Switzerland, May 2004. Springer-Verlag.

19. D. Micciancio and B. Warinschi. Completeness theorems for the abadi-rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.
Preliminary version in WITS 2002.

20. D. Micciancio and B. Warinschi. Soundness of Formal Encryption in the presence
of Active Adversaries. In M. Naor, editor, Theory of cryptography conference -
Proceedings of TCC 2004, volume 2951 of Lecture Notes in Computer Science,
pages 133–151, Cambridge, MA, USA, Feb. 2004. Springer-Verlag.

21. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in Cryptology
- CRYPTO ’91, Proceedings, volume 576 of Lecture Notes in Computer Science,
Santa Barbara, California, USA, Aug. 1991. Springer-Verlag.

22. S. Rafaeli and D. Hutchinson. A survey of key management for secure group
communication. ACM Computing Surveys, 35(3):309–329, Sept. 2003.

23. C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. IEEE/ACM Transactions on Networking, 8(1):16–30, Feb. 2000. Prelimi-
nary version in SIGCOMM 1998.

Chosen-Ciphertext Security of Multiple
Encryption

Yevgeniy Dodis1,� and Jonathan Katz2,��

1 Dept. of Computer Science, New York University
2 Dept. of Computer Science, University of Maryland

Abstract. Encryption of data using multiple, independent encryption
schemes (“multiple encryption”) has been suggested in a variety of con-
texts, and can be used, for example, to protect against partial key ex-
posure or cryptanalysis, or to enforce threshold access to data. Most
prior work on this subject has focused on the security of multiple en-
cryption against chosen-plaintext attacks, and has shown constructions
secure in this sense based on the chosen-plaintext security of the com-
ponent schemes. Subsequent work has sometimes assumed that these
solutions are also secure against chosen-ciphertext attacks when compo-
nent schemes with stronger security properties are used. Unfortunately,
this intuition is false for all existing multiple encryption schemes.

Here, in addition to formalizing the problem of chosen-ciphertext se-
curity for multiple encryption, we give simple, efficient, and generic con-
structions of multiple encryption schemes secure against chosen-ciphertext
attacks (based on any component schemes secure against such attacks) in
the standard model. We also give a more efficient construction from any
(hierarchical) identity-based encryption scheme secure against selective-
identity chosen plaintext attacks. Finally, we discuss a wide range of
applications for our proposed schemes.

1 Introduction

Encrypting data using multiple, independent instantiations of a basic encryp-
tion scheme (or schemes) is a simple — yet powerful — approach which can
be used both to improve security as well as to provide additional functionality
not present in any of the underlying schemes. The security implications of mul-
tiple encryption (as we refer to it here) were noted as early as Shannon [38],
who proposed using “product ciphers” to enhance the security of symmetric-
key primitives. This idea was further explored and rigorously formalized in a
number of subsequent works (e.g., [32, 21, 31]) analyzing the security of cascade
ciphers (in which a message m is encrypted via Ek1(E ′

k2
(m)), where k1, k2 are

� This work was supported by the NSF under CAREER Award CCR-0133806 and
Trusted Computing Grant CCR-0311095.

�� This work was supported by NSF Trusted Computing Grant CCR-0310751.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 188–209, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Chosen-Ciphertext Security of Multiple Encryption 189

two independent keys and E , E ′ are symmetric-key encryption schemes) in the
symmetric-key setting. The approach can be applied to public-key encryption as
well; for example, “cascaded encryption” (which we will call sequential encryp-
tion) was advocated as part of the NESSIE recommendation [34]: “[f]or very high
level security we note that double encryption. . . gives a good range of security”.

Multiple encryption, of which sequential encryption is but one example, of-
fers at least two potential security advantages: First, the resulting scheme may
be secure as long as any one of the component schemes is secure (indeed, se-
quential encryption is secure against chosen-plaintext attacks as long as either of
the component schemes are). Thus, multiple encryption offers a way to “hedge
one’s bets” about the security of any particular scheme (see also the recent work
of Herzberg [28]). This is especially important when the security of different
schemes depends upon different, and incomparable, cryptographic assumptions.
A second potential advantage of multiple encryption is that the resulting encryp-
tion scheme may in fact be more secure than any of the component schemes;
this is the rationale, for example, behind using triple-DES (see also [1]).

Beyond the security-oriented advantages listed above, multiple encryption
schemes potentially offer functionality not present in any of the component
schemes. We briefly highlight two applications of multiple encryption, and defer
a more detailed discussion of these and other applications to Section 6:

Threshold Encryption. In a threshold encryption scheme [16], the data is en-
crypted in such a way that only particular sets of users can recover it; typically,
a scheme requires any t-out-of-n users in order to decrypt, but more general
access structures can also be considered. Multiple encryption gives generic con-
structions of threshold encryption in either the private- or public-key settings.
For example, to enforce n-out-of-n decryption in the private-key setting, one
may provide each user i with an independent key ki and encrypt a message
M via E1

k1
(M1), . . . , E i

ki
(Mi), where the Mi are chosen at random subject to

⊕n
i=1Mi = M (and the E i may, in general, be different schemes). Let J (with
|J | < n) represent the set of corrupted players; i.e., if j ∈ J then the adversary
has the key kj . The above scheme, which we will refer to as parallel encryp-
tion, informally satisfies the following level of security against chosen-plaintext
attacks: as long as any encryption scheme E i with i �∈ J is secure, the message
remains secret. Thus, in addition to enabling threshold access to the data, this
scheme also allows one again to “hedge one’s bets” about the security of any
particular scheme (as in the case of sequential encryption, discussed earlier).

(Strong) Key-Insulated Encryption. Multiple encryption has also been used
to give a generic construction of a key-insulated public-key encryption scheme
secure against chosen-plaintext attacks [20]. Without going into the full details —
and omitting some details unimportant for the present discussion — in this case a
message M is encrypted by first splitting the message into shares M1, . . . ,Mi and
then encrypting each share Mi with respect to a particular public key PKi. (This
general technique is similar to the parallel encryption discussed above; indeed,
parallel encryption is obtained if the shares constitute an n-out-of-n sharing

190 Y. Dodis and J. Katz

of M .) If the message is “split” a second time (before the sharing described
above), and one of these shares is encrypted with a public key whose secret key
is known only to the user, it is possible to obtain a generic construction of strong
key-insulated encryption [20].

Other Applications. We remark that multiple encryption is applicable to many
other domains as well, including anonymous routing [14, 26], broadcast encryp-
tion [22], proxy encryption (see [19]), and certificate-based encryption [24]. We
defer a more detailed discussion to Section 6.

1.1 Motivation for Our Work

Chosen-ciphertext security (“CCA security”) is as much of a concern in each
of the above settings as it is in the case of standard encryption. One might
hope to achieve CCA security for any of the above settings by simply “plugging
in” an appropriate CCA-secure multiple encryption scheme. However (with one
recent exception; see below), we are unaware of any previous work which con-
siders chosen-ciphertext security for multiple encryption. To be clear: there has
been much work aimed at giving solutions for specific applications using spe-
cific number-theoretic assumptions: for example, in the context of CCA-secure
threshold encryption [40, 13, 30], broadcast encryption [20], and key-insulated
encryption [18]. However, this type of approach suffers from at least two draw-
backs: first, it does not provide generic solutions, but instead only provides
solutions based on very specific assumptions. Second, the derived solutions are
application-dependent, and must be constantly “re-invented” and modified each
time one wants to apply the techniques to a new domain. Although solutions
based on specific assumptions are often more efficient than generic solutions, it is
important to at least be aware that a generic solution exists so that its efficiency
can be directly compared with a solution based on specific assumptions. Indeed,
we argue in Section 6 that for some applications, a generic solution may be
roughly as efficient as (or may offer reasonable efficiency tradeoffs as compared
to) the best currently-known solutions based on specific assumptions.

Making the problem even more acute is that currently-known schemes for
multiple encryption are demonstrably insecure against chosen-ciphertext attacks
(this holds even with respect to the weakest definition considered here; see Sec-
tion 3.1). Zhang, et al. [41] have also recently noticed this problem, and appear
to be the first to have considered chosen-ciphertext security for multiple encryp-
tion. We compare our work to theirs in the following section.

1.2 Our Contributions

Our results may be summarized as follows:

Definitions of Security. We provide formal definitions of chosen-ciphertext
security for multiple encryption. Interestingly, multiple definitions make sense
in this context, and we introduce three such definitions and briefly comment on
the relationships between them. We also which of these definitions is the “right”
one for a number of different applications.

Chosen-Ciphertext Security of Multiple Encryption 191

CCA-Secure Multiple Encryption. We show two constructions of CCA-
secure multiple encryption schemes which are generic (i.e., they may be con-
structed based on any CCA-secure standard encryption scheme) and are proven
secure in the standard model. Our first construction achieves a “basic” level of se-
curity which suffices for many (but not all!) applications of multiple encryption.
Our second construction satisfies the strongest notion of security proposed here,
and suffices for all applications we consider. We also show a more efficient con-
struction based on any (hierarchical) identity-based encryption scheme secure
against selective-identity chosen plaintext attacks.

Applications. As mentioned earlier, our work was motivated by the applications
of CCA-secure multiple encryption to a variety of settings; we therefore conclude
the paper by sketching a number of applications of the constructions given here.
Our resulting schemes are, for most cases, the first known generic constructions
achieving CCA security in the given setting. Furthermore, in some cases the
solutions we give are roughly as efficient as (or even more efficient than) previous
solutions which were based on very specific assumptions. As one example, we
show a CCA-secure threshold encryption scheme with completely non-interactive
decryption (and a proof of security in the standard model); for the two-party
case, our solution is roughly as efficient as the only previous solution [30].

Comparison to Previous Work. Our definitions differ from those given by
Zhang, et al. [41], and the definitions given in their work are weaker than those
given here. In fact, the best construction given by Zhang, et al. only satisfies
the weakest of our definitions; therefore, their constructions are not sufficient
for certain applications such as threshold encryption. (Indeed, they concentrate
primarily on the application to key-insulated encryption, while we consider a
much wider range of applications.) Finally, their constructions require the ran-
dom oracle model whereas our results all hold in the standard model.

2 Preliminaries

We begin by introducing some notation. A (standard) public-key encryption
scheme E = (Gen,Enc,Dec) consists of three ppt algorithms: the key-generation
algorithm Gen takes as input security parameter 1k and outputs a encryption
key EK and a decryption key DK. The randomized encryption algorithm Enc
takes as input EK, a label �, and a message m, and outputs a ciphertext C; for
brevity, we sometimes omit EK and write this as C ← Enc�(m). The decryption
algorithm Dec takes as input DK, a ciphertext C, and a label �; it outputs a
message m, or ⊥ if C is “invalid”. We write this as m ← Dec�(C) (where we
again sometimes omit DK). We assume Dec�(Enc�(m)) = m for any message m
and label �. Security for encryption is defined following [3, 39]. In particular, we
use “CPA-secure” to refer to what is called IND-CPA security in [3], and “CCA-
secure” to refer to what is called IND-CCA2 in [3] (modified to take labels into
account as in [39]).

192 Y. Dodis and J. Katz

A signature scheme Σ = (Sig-Gen, Sig,Ver) consists of three ppt algorithms:
the key-generation algorithm Sig-Gen takes as input a security parameter 1k and
outputs a signing key SK and a verification key VK. The signing algorithm Sig
takes as input SK and a message m, and outputs a signature σ; we will sometimes
omit SK and write σ ← Sig(m). The verification algorithm Ver takes as input
VK, a message m, and a signature σ; it outputs 1 iff the signature is valid. We
write this as a ← Ver(m,σ) (again, sometimes omitting VK). We require that
Ver(m,Sig(m)) = 1, for all m.

Unless specified otherwise, the notion of security we consider for signature
schemes is that of strong unforgeability under adaptive chosen-message attacks,
following [27, 4]. We also use the notion of one-time signature schemes which sat-
isfy an analogous definition of security except that an adversary is only allowed
to request a signature on a single message.

Secret Sharing Schemes. A secret sharing scheme is a pair of transforma-
tions SSS = (Share,Rec).1 Share(·) is a probabilistic transformation which takes
a message M and outputs n secret shares s1, . . . , sn and possibly one public
share pub. Rec is a deterministic transformation which takes n shares s′

1, . . . , s
′
n

(some of which might be ⊥) and (if present) the public share pub, and out-
puts some message M ′ (possibly ⊥). The basic correctness property states that
Rec(Share(M)) = M . Security may be quantified by the following thresholds:

– tp — the privacy threshold. Determines the maximum number of shares
which (together with pub) reveal “no information” about the message.

– tf — the fault-tolerance threshold. Determines the minimum number of cor-
rect shares which (together with pub) suffice to recover the message, when
the other shares are missing.

– tr — the robustness threshold. Determines the minimum number of correct
shares which (together with pub) suffice to recover the message, when the
other shares are adversarially set.

– ts — the soundness threshold. Determines the minimum number of correct
shares which (together with pub) ensure that it is impossible to recover an
incorrect message M ′ �∈ {M,⊥}, when the other shares are adversarially set.

The above must satisfy tp + 1 ≤ tf ≤ tr ≤ n and ts ≤ tr. The security prop-
erties corresponding to the thresholds above can all be formalized in a straight-
forward way, so we omit them. In a basic secret sharing scheme, only privacy
and fault-tolerance are addressed. This is useful when all the parties holding the
corresponding shares are trustworthy, but some shares may have been leaked to
an adversary and/or some parties may be (temporarily) unavailable. Shamir’s
scheme [37] is the classical example; this scheme achieves information-theoretic
privacy, has no public share, and achieves tf = tp + 1 and |M | = |si|. General-
izing this idea [23], one can achieve arbitrary tf > tp. Krawczyk [29] extended
Shamir’s scheme to the computational setting by using the scheme to share a

1 Sometimes, we may also have a setup procedure which prepares public parameters.
For simplicity, we omit this from our description.

Chosen-Ciphertext Security of Multiple Encryption 193

short symmetric key k, and then encrypting the message M using k. The result-
ing ciphertext can either be stored publicly, or shared among the servers using an
information dispersal scheme [35] (i.e., a secret sharing scheme which achieves
fault-tolerance and/or robustness, but has tp = 0). In fact, this approach can be
applied to any information-theoretic secret sharing scheme to obtain a computa-
tional scheme with share size proportional to the security parameter and public
part proportional to the message length. When fault-tolerance is not needed,
one can also use computational all-or-nothing transforms (AONTs) [36, 11] to
achieve extremely short shares.

Sometimes, basic secret sharing schemes already enjoy certain robustness
properties. For example, Shamir’s scheme achieves tr = (n + tf)/2. Moreover,
there are several simple methodstotransformany(tp, tf , n)-secret sharing scheme
into a robust (tp, tf , tr, ts, n)-secret sharing scheme (in a computational sense),
achieving optimal values ts = 0 and tr = tf . We describe two such methods now.
In both methods, the dealer first computes the regular sharing (s1, . . . , sn, pub)
of M . In the first method, the dealer then generates signing/verification keys
(SK,VK) for a signature scheme, and sets s′

i = (si,SigSK(i, si)), pub′ = (pub,VK).
To reconstruct, users apply the original reconstruction algorithm only to shares
whose signatures are correct. In the second method, the dealer uses a com-
mitment scheme to commit to (i, si); let ci (resp., di) be the corresponding
commitment (resp., decommitment). The dealer then sets s′

i = (si, di), pub′ =
(pub, c1, . . . , cn). As before, users will only use those shares whose proper decom-
mitment is revealed. In this second method the size of the public information is
O(n), but using, e.g., Merkle trees this storage can be reduced considerably at
the expense of slightly increasing the share size.

3 Multiple Encryption

We now define a multiple encryption scheme.

Definition 1. A (non-interactive) public-key multiple encryption scheme is a
tuple of ppt algorithms T E = (TGen,TEnc,Split,TDec,Combine) such that:

– TGen, the key generation algorithm, is a probabilistic algorithm which takes
as input a security parameter 1k and outputs a public key TEK along with n
secret keys TDK = (TDK1, . . . ,TDKn).

– TEnc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key TEK, a message M , and a label L. It outputs a ciphertext
C ← TEncL(M).

– Split, the splitting algorithm, is a deterministic algorithm which takes as
input a public key TEK, a ciphertext C and a label L. It either outputs ⊥,
or n ciphertext shares C = (C1, . . . , Cn) and some auxiliary info aux.

– TDec, the partial decryption algorithm, takes as input i ∈ {1, . . . , n}, a se-
cret key TDKi, and a ciphertext share Ci; it outputs the message share Mi

194 Y. Dodis and J. Katz

or the distinguished symbol ⊥. We denote the output of this algorithm by
TDeci(Ci). We also let DEC(C, aux) def= (TDec1(C1), . . . ,TDecn(Cn), aux).

– Combine, the combining algorithm, takes as input shares M = (M1, . . . ,Mn)
and the auxiliary info aux, and outputs a message M or ⊥.
Correctness (refined later) requires that for all TEK,TDK output by TGen, all

messages M and labels L, we have: Combine(DEC(SplitL(TEncL(M)))) = M .

Before discussing security, a few remarks are in place. It is important to rec-
ognize that multiple encryption might be used in a number of different scenarios.
In one scenario, the set of decryption keys TDK (or some subset of these keys)
are co-located, so a single user receiving a ciphertext C would perform the split-
ting, partial decryption, and combining by itself. In another scenario, there are
a set of n servers and server i stores TDKi. Here, a user receiving a ciphertext C
would perform the splitting himself to obtain C, aux, would keep aux, and would
send the ciphertext share Ci to server i for decryption. Server i would respond
with Mi and the various message shares would be combined by the user to re-
cover the original message. These different ways of thinking about the decryption
process are each appropriate for different applications of multiple encryption.

When decryption keys TDKi are stored at different locations (i.e., on different
servers), the above definition implies that servers do not communicate with each
other and do not keep any intermediate state. Also, we remark that we could have
ignored the splitting algorithm altogether and simply have TDKi operate on the
entire ciphertext C (performing any splitting itself, as necessary). The reason for
not doing so is that C might contain information which is not “relevant” to server
i, and thus sending the entire ciphertext to each server might be wasteful. In
fact, our solutions achieve

∑
|Ci| = O(|C|), so the total communication between

the user and all servers is proportional to the size of the original ciphertext.
In either of the above scenarios (i.e., whether the decryption keys are co-

located or stored at different servers), it is possible for some of the decryption
keys to be compromised by an adversary. This raises the first security issue, which
is that of message privacy. When keys are stored on separate servers, there is
also the possibility that some servers may be compromised in their entirety; this
raises the additional issue of decryption robustness. Since the security issues in
the latter case are stronger than those in the former case, for the remainder of this
section we will speak in terms of a central user running the splitting/combining
algorithm and n servers performing the partial decryption of each share.

Message Privacy. We assume that the adversary may learn tp < n decryption
keys, where tp is the privacy threshold. Formally, given a set I =

{
i1, . . . , itp

}
, an

adversary is given a randomly-generated public key TEK, the set of secret keys
TDKI =

{
TDKi1 , . . . ,TDKitp

}
, and oracle access to some oracle O whose mean-

ing will be clarified shortly. B outputs two messages M0,M1 (along with some la-
bel L), and receives a challenge ciphertext C ← TEnc(Mb) for a randomly-chosen
b. The adversary succeeds if it correctly guesses b, and the adversary’s advantage
is defined as the absolute value of the difference between its success probability
and 1/2. If the oracle O is “empty”, we say that B is performing a (multiple)

Chosen-Ciphertext Security of Multiple Encryption 195

chosen-plaintext attack (MCPA). As for the (multiple) chosen-ciphertext attack,
there are several meaningful flavors described below in the order of increasing
adversarial power.

In the weakest such attack, denoted wMCCA (“weak MCCA”), we have O =
Combine(DEC(Split(·)(·))) (where the adversary is prohibited from submitting
(C,L) to this oracle). Namely, B only gets access to the entire decryption pro-
cess without seeing any partial decryption results and without being able to ask
questions to the decryption servers directly. While this notion already suffices for
some applications, it assumes that the adversary can never see the intermediate
decryption shares. In a (regular) MCCA attack, we let O = DEC(Split(·)(·)) (as
before, we forbid the adversary from submitting (C,L) to this oracle). Namely,
we still assume that the ciphertext gets passed through a proper splitting pro-
cedure but B also learns the intermediate decryption results M1, . . . ,Mn. As we
shall see, this attack is sufficient for most applications of multiple encryption.

However, sometimes we need to consider an even stronger attack denoted
sMCCA (for “strong MCCA”), where we have O = TDec(·)(·). Namely, we allow
B to ask arbitrary and questions to the individual decryption servers. Of course,
to make sense of this attack, we need to add some restrictions. First and most
obvious, for a challenge ciphertext C (with label L) we disallow questions (i, Ci),
where Ci is the ciphertext share for server i that results from “splitting” C
using label L. Second and less obvious, we assume (for all i) that the mapping
Spliti from (C,L) to Ci is weakly collision-resistant. This means that no ppt
adversary A can succeed with non-negligible probability in the following game:
A(TDK) supplies some pair (M,L) to the encryption oracle, and gets back a
ciphertext C ← TEncL(M). A succeeds if it can output a pair (C ′, L′) �= (C,L)
and an index i such that Spliti(C,L) = Spliti(C ′, L′). Indeed, without this latter
condition it seems unnecessarily restrictive to prohibit the adversary B in the
sMCCA game from asking questions (i, Ci = Spliti(C,L)). This is because there
is a chance such a question might have “legally” come from a different ciphertext
(C ′, L′) �= (C,L). We further observe that when the Split procedure does satisfy
this condition, the sMCCA attack is at least as strong as the MCCA attack,2

and it is easy to see that this conclusion does not hold without weak collision
resistance. Therefore, we will insist on weak collision-resistance when talking
about sMCCA attacks.

Definition 2. Let X ∈ {MCPA,wMCCA,MCCA, sMCCA}. We say multiple en-
cryption scheme T E is X-secure with privacy threshold tp, if the advantage
of any ppt adversary B performing attack X with any set I of size tp is
negligible.

Decryption Robustness. The correctness property of Definition 1 only ensures
correct decryption when all algorithms are honestly and correctly executed. Just
as in the case of secret sharing, however, one may often desire fault-tolerance,

2 This is so since one can simulate (with all but negligible probability) any “allowed”
call to DEC(Split(·)(·)) by n “allowed” calls to TDec(·)(·).

196 Y. Dodis and J. Katz

robustness, and/or soundness. As in the case of secret sharing, these are pa-
rameterized by thresholds tf , tr, ts, whose meaning is completely analogous to
their meaning in the case of secret sharing (described earlier). Our solutions
can achieve optimal ts = 0, tr = tf , and any tp < tf .

3.1 Insecurity of Known Multiple Encryption Schemes

It is instructive to note that known constructions of multiple encryption schemes
(even when instantiated with a CCA-secure standard encryption scheme) are
insecure under the weakest definition of chosen-ciphertext security considered
above. We briefly illustrate this for the simplest case of n = 2.

In sequential encryption, M is encrypted via C ← EncEK1(EncEK2(M)). An
adversary, when given the decryption key DK1 and a challenge ciphertext C, can
break the encryption scheme as follows: decrypt C using DK1 to obtain C ′ ∈
EncEK2(M) and then re-encrypt C ′ using EK1; this results in a second, different
ciphertext C̃. Now, by submitting C̃ to its decryption oracle, the adversary will
receive in return the original message M .

Attacks are also possible for the case of parallel encryption. Here, a message
M is encrypted as C = 〈C1, C2〉, where C1 ← EncEK1(s1), C2 ← EncEK2(s2),
and s1 and s2 are chosen at random subject to s1⊕ s2 = M . Now, even without
being given any decryption keys, an adversary given a challenge ciphertext C can
compute C̃1 ← EncEK1(0) and C̃2 ← EncEK2(0), and then submit the ciphertexts
〈C̃1, C2〉 and 〈C1, C̃2〉. Note that the adversary thus obtains both s1 and s2
separately, from which it can recover the original message M = s1 ⊕ s2.

4 Generic Constructions

In this section we describe how to build MCCA- and sMCCA-secure multiple en-
cryption schemes from any (standard) CCA-secure encryption scheme E . In our
schemes, the decryption keys will simply be decryption keys DKi independently-
generated by E , and partial decryption will essentially require only a single de-
cryption with this key. Our results achieve: (1) ciphertext length linear in the
length of the plaintext message; (2) communication with each server independent
of the number of servers and the length of the message. We also stress that when
the decryption keys are held by several servers, no interaction between servers
is required. A drawback is that the ciphertext and public-key lengths in our so-
lutions are proportional to the number of decryption keys n (of course, for small
n, such as the important case of n = 2, this is not a problem). We believe that
this dependence in unavoidable if we are not willing to assume any algebraic
structure on E . Indeed, in the following section we show how this dependence
can be avoided when starting from (hierarchical) identity-based encryption.

For the remainder of this section, let SSS = (Share,Rec) be a (tp, tf , tr, ts, n)-
secret sharing scheme. All multiple encryption schemes we construct will inherent
the same thresholds tp, tf , tr, ts, which elegantly allows us to push all the privacy
and robustness constraints onto the much simpler secret sharing primitive.

Chosen-Ciphertext Security of Multiple Encryption 197

4.1 Achieving Chosen-Ciphertext Security

Recall that in parallel encryption the message M is first shared using SSS,
and then each share is separately encrypted using an independent key. As noted
earlier, this folklore scheme is not secure against chosen-ciphertext attacks (even
against a weak MCCA attack and with no corrupted keys). We show a simple and
elegant way to extend parallel encryption so as to solve this problem, without
introducing much extra complexity. In brief, we use a secure one-time signature
scheme Σ = (Sig-Gen, Sig,Ver) to bind all the local ciphertexts to each other
(and to the label L). The main twist which makes this work is that we also bind
the verification key of Σ to each of the ciphertexts.

Before giving the formal description of our solution, we illustrate our con-
struction for the case n = 2 (with tf = tr = ts = 2, tp = 1, and no labels). The
public key consists of two independently-generated keys EK1,EK2, and the secret
key contains the corresponding decryption keys DK1,DK2. Let Enc1

def= EncEK1

and similarly for Enc2. To encrypt M , a sender first “splits” M by choosing
random s1 and setting s2 = M ⊕ s1. The sender then generates a key pair
(VK,SK) for a one-time signature scheme, and computes C1 ← EncVK

1 (s1) and
C2 ← EncVK

2 (s2). Finally, the sender computes σ = SigSK(C1, C2); the complete
ciphertext is 〈VK, C1, C2, σ〉. Decryption is done in the obvious way: if σ is not
a valid signature on C1, C2 with respect to VK, the ciphertext is invalid. Other-
wise, DK1 and DK2 are used to obtain s1 and s2 from which the original message
M = s1 ⊕ s2 can be recovered.

We now generalize this solution to arbitrary n and using an arbitrary secret
sharing scheme SSS = (Share,Rec).

– TGen(1k): For i = 1, . . . , n, let (EKi,DKi) ← Gen(1k) and set TEK =
(EK1, . . . ,EKn), TDKi = DKi, so that TDK = (DK1, . . . ,DKn). Below, let
Enci

def= EncEKi
and Deci

def= DecDKi
.

– TEncL(M): Let (s1, . . . , sn, pub)← Share(M), and (VK,SK)← Sig-Gen(1k).
Set Ci = EncVK

i (si) (for i = 1, . . . , n) and then compute the signature σ =
SigSK(C1, . . . , Cn, pub, L). Output C = (C1, . . . , Cn, pub,VK, σ).

– SplitL(C): Parse C as (C1, . . . , Cn, pub,VK, σ), and reject if verification fails;
i.e., if VerVK((C1, . . . , Cn, pub, L), σ) = 0. Otherwise, set ciphertext share
Ĉi = (Ci,VK) and aux = pub.

– TDeci(Ci,VK): Output s′
i = DecVK

i (Ci).
– Combine(s′

1, . . . , s
′
n, pub): Output Rec(s′

1, . . . s
′
n, pub).

As with the folklore scheme, each decryption server simply performs a single
regular (now CCA-secure) decryption, but here using a label which is the veri-
fication key of a one-time signature scheme (and which is used to bind all the
ciphertexts together). We claim:

Theorem 1. If E is CCA-secure, SSS is a (tp, tf , tr, ts, n)-secret sharing
scheme, and Σ is a secure one-time signature scheme, then T E is MCCA-secure
with thresholds tp, tf , tr, ts.

198 Y. Dodis and J. Katz

Proof. Robustness thresholds tf , tr, ts follow immediately from those of the se-
cret sharing scheme, due to the definition of Combine = Rec. We now argue
message privacy.

Assume there exists some ppt adversary B attacking MCCA-security who
has some non-negligible advantage. Recall, this B has oracle access to O(·, ·) =
DEC(Split(·)(·)), chooses some messages M0,M1 and a label L, gets an unknown
ciphertext C = (C1, . . . , Cn, pub,VK, σ), and tries to guess whether this corre-
sponds to the encryption of M0 or M1 (with label L). Let X denote the event
that B asks O a query (C ′, L′) �= (C,L), where C ′ includes the same verification
key VK′ = VK as the challenge, but σ′ is a new, valid signature (with respect
to VK) of the corresponding “message” (C ′

1, . . . , C
′
n, pub′, L′). It is immediate

that Pr[X] = negl(k), or else an easy argument (omitted) shows that we can use
B to construct a ppt adversary breaking the security of the one-time signature
scheme Σ with non-negligible advantage.

We can therefore construct an adversary B′ who never makes a query to O
using the same verification key as in the challenge ciphertext, yet whose advan-
tage is negligibly close to the advantage of B. Let ε0 denote the advantage of
B′, and assume w.l.o.g. that B′ corrupts servers {n− tp + 1, . . . , n}. We refer to
this game involving B′ as G0, and now gradually change this game into games
G1, . . . , Gn−tp . In general, Gi is identical to G0, except for one step in the com-
putation of the challenge ciphertext C. Recall, in G0 we have Cj ← EncVK

j (sj),
where sj is the j-th share of the secret sharing scheme. In game Gi we instead
do this only for j > i, but set Ci ← EncL

i (0) for j ≤ i (where 0 is some arbitrary
fixed message in our space). In other words, Gi−1 and Gi are identical except
Gi−1 sets Ci ← EncVK

i (si), while Gi sets Ci ← EncVK
i (0) Denote by εi the advan-

tage of B′ in predicting the challenge bit b in game Gi. We claim that for every
1 ≤ i ≤ n− tp we have |εi − εi−1| = negl(k).

To show the claim, using B′ we construct an adversary Ai who succeeds
in breaking CCA-security of E with advantage δi = 1

2 |εi−1 − εi|. Since E is
assumed to be CCA-secure, the claim follows. Ai gets an encryption key EK
for E , sets EKi = EK, and generates the remaining (n − 1) public/secret keys
by himself. These public keys, as well as the last tp secret keys, are given to
B′. Adversary Ai then honestly simulates the run of Gi−1/Gi until B′ submits
the challenge (M0,M1, L). At this point, Ai chooses a random bit b, generates
(SK,VK), computes the shares (s1, . . . , sn, pub) ← Share(Mb), and prepares Cj

for j �= i just as in Gi−1 and Gi. Furthermore,A′ outputs the challenge (si, 0,VK)
in its own CCA game. Upon receiving the challenge ciphertext C, it sets Ci = C,
signs whatever is needed, and passes the resulting challenge ciphertext to B′.
It only remains to specify how Ai deals with oracle queries of B′. Notice that
Ai can decrypt all ciphertexts C ′

j for j �= i by himself, since the appropriate
decryption keys are known. As for C ′

i, since (by construction) B′ does not reuse
the challenge value VK, this means thatAi can always submit C ′

i to its decryption
oracle using the label VK′ �= VK. Finally, Ai outputs 1 iff B′ correctly predicts
b. This completes the description of Ai, and it is not hard to see that Ai gives a

Chosen-Ciphertext Security of Multiple Encryption 199

perfect simulation of either game Gi−1 or Gi depending on which of si or 0 was
encrypted. The claim regarding |εi−1 − εi| follows easily.

Now, since (n− tp) is polynomial in k and ε0 is assumed to be non-negligible,
we get that εn−tp

is non-negligible as well. But let us now examine the game
Gn−tp more closely. When encrypting the challenge Mb, only t = tp shares (and
the value pub) are used in creating the ciphertext. But then the privacy of the
secret sharing scheme implies that εn−tp

must be negligible, a contradiction.
(This is not hard to see, and we omit the obvious details.)

Replacing Signatures with MACs. At the expense of settling for (weaker)
wMCCA-security, we can use the recent technique of Boneh and Katz [10] to
replace the one-time signature scheme by the more efficient combination of a
message authentication code (MAC) and a weak form of commitment. The idea
is to commit to a MAC key τ , then encrypt both the message M and the de-
commitment d using the secret sharing technique above, but with the public
verification key VK replaced by the commitment c. Finally, τ is used to compute
a message authentication code on the entire resulting ciphertext. In brief, the
reason this only yields wMCCA-security is that the message authentication code
computed over the ciphertext (as opposed to the one-time signature computed
above) can only be verified after all the shares are collected. More details are
given in Appendix A.

4.2 Achieving Strong Chosen-Ciphertext Security

The scheme above does not enjoy sMCCA-security since, in particular, the map-
ping Spliti from (C,L) to Ci is not weakly collision-resistant; indeed, it ignores
all ciphertexts other than Ci. A natural first thought is to simply append a hash
α of the entire ciphertext C to each of the local decryption shares Ci (and let
each server simply ignore α). While this may make each Spliti weakly collision-
resistant, it will not achieve sMCCA-security: Since the servers ignore α anyway,
the adversary can simply replace α by “garbage” while keeping the rest of the
Ci the same; this will result in a “valid” decryption request to each server, but
will result in a proper decryption of Ci to the adversary.

A natural way to fix this is to let each server check the hash α by sending
to the server the entire ciphertext C. In fact, if we are willing to send the entire
ciphertext to each server, we no longer need α: each server can just perform the
corresponding splitting procedure on C by itself. In fact, doing so will trivially
give sMCCA-security. However, sending all of C (and having each server perform
the splitting procedure) may be wasteful in some scenarios; it therefore remains
interesting to explore improved solutions with lower user-server communication
and in which more of the work is shifted to the user rather than the servers.

For the case of the particular MCCA-secure scheme T Ecca of the previous
section, sMCCA-security can be achieved at a very small additional cost. Let
H = {H} be a family of collision-resistant hash functions. We now describe the
modified scheme T Escca.

200 Y. Dodis and J. Katz

– TGen(1k). Sample H ← H and for i = 1, . . . , n, let (EKi,DKi) ← Gen(1k).
Set TEK = (EK1, . . . ,EKn, H), TDKi = DKi. Below, denote Enci = EncEKi

,
Deci = DecDKi

.
– TEncL(M). Let (s1, . . . , sn, pub)← Share(M), and (VK,SK)← Sig-Gen(1k).

Set Ci = EncVK
i (si) for i = 1, . . . , n; then compute α = H(C1, . . . , Cn, pub, L)

and σ = SigSK(α). Output C = (C1, . . . , Cn, pub,VK, σ).
– SplitL(C). Parse C = (C1, . . . , Cn, pub,VK, σ), set α = H(C1, . . . , Cn, pub, L),

and reject if VerVK(α, σ) = 0. Otherwise, set the ciphertext share to be
Ĉi = (Ci,VK,α, σ) and set aux = pub.

– TDeci(Ci,VK,α, σ). Output DecVK
i (Ci) if VerVK(α, σ) = 1, and ⊥ otherwise.

– Combine(s′
1, . . . , s

′
n, pub). Output Rec(s′

1, . . . s
′
n, pub).

Thus, the only effective change is to force each server to verify a signature
(of a one-time signature scheme) before performing the decryption. The cost of
this will typically be small compared to the cost of decryption.

We now consider the security of the above. On an intuitive level, when an
adversary makes a decryption query, either: (1) the adversary reuses a previ-
ous VK, which implies that it uses a previous α (due to unforgeability of the
signature scheme), which in turn implies that the query is illegal (since H is
collision-resistant); or (2) the adversary uses a new VK, in which case the chosen-
ciphertext security of the underlying encryption schemes (which use VK as a la-
bel) implies that the resulting ciphertexts are unrelated to the challenge. Notice,
there is no need for the server to check that α is the correct hash; having a valid
signature of α implicitly assures the server that either this decryption query is
unrelated to the challenge, or α is indeed correct due to the unforgeability of
the one-time signature scheme. Notice also that once again the communication
between the user and each server is independent of n. The above intuition can
in fact be used to prove the following theorem:

Theorem 2. If E is CCA-secure, SSS is a (tp, tf , tr, ts, n)-secret sharing scheme,
Σ is a secure one-time signature scheme, and H is collision-resistant, then
T Escca is sMCCA-secure with thresholds tp, tf , tr, ts.

Proof. As before, robustness thresholds tf , tr, ts follow immediately from those of
the secret sharing scheme since Combine = Rec. We now argue message privacy.
Here we need to argue two things: indistinguishability of the scheme against
sMCCA attack and weak collision resistance of the splitting procedure.

We start with the second part. Take any adversary A attacking weak collision
resistance of T Escca. A gets the entire secret key TDK, produces a pair (M,L),
gets C ← TEncL(M), and outputs (C ′, L′) �= (C,L) and an index i. If it is the
case that Spliti(C,L) = Spliti(C ′, L′) then (by definition of Split) this means
that (Ci,VK,α, σ) = (C ′

i,VK′,α′, σ′). But then H(C1 . . . Cn, pub, L) = α = α′ =
H(C ′

1 . . . C
′
n, pub′, L′) and this violates collision-resistance of H.

Next, we show security against sMCCA attack. Assume there exists some ad-
versary B attacking sMCCA-security who has some non-negligible advantage. Re-
call,B has oracle access toO(·, ·) = TDec(·)(·), chooses some messagesM0,M1 and

Chosen-Ciphertext Security of Multiple Encryption 201

a label L, gets a challenge ciphertext C = (C1, . . . , Cn, pub,VK, σ), and tries to
predict whether this ciphertext corresponds to an encryption ofM0 or ofM1 (with
label L). Let X denote the event that B asks O a query (i, (C ′

i,VK,α′, σ′)), where
VK is the same verification key as the one used in the challenge ciphertext but σ′ is
a new, valid signature with respect to VK of the corresponding message α′. Namely,
σ′ is a valid signature of α′, but (α′, σ′) �= (α, σ). Clearly, Pr(X) = negl(k) or oth-
erwise B can be used to break the security of the one-time signature scheme Σ.

We thus assume that X never occurs in the run of B, yet B still has non-
negligible advantage. Since B is forbidden to ask any challenge query of the form
(i, (Ci,VK,α, σ)), this means that every query (i, (C ′

i,VK′,α′, σ′)) that B makes
satisfies one of three conditions: (1) VerVK′(α′, σ) = 0, in which case the response
is automatically ⊥ (and so we can assume that B never makes such a query);
(2) (VK′,α′, σ′) = (VK,α, σ), but C ′

i �= Ci (recall, we proved that VK′ = VK
implies (α′, σ′) = (α, σ), so the only way for this query to be legal while keeping
VK′ = VK is to have C ′

i �= Ci); (3) VK′ �= VK. Since we excluded queries of
type (1), we combine cases (2) and (3) to conclude that every query of B must
have (C ′

i,VK′) �= (Ci,VK).
Given this observation, the rest of the proof is almost identical to the proof

of Theorem 1 (with obvious syntactic modifications). Namely, we create hybrid
games in which encryptions of the shares of Mb are gradually replaced by encryp-
tions of 0. As in the proof of the previous theorem, we show that any such change
cannot be noticed byB since the corresponding encryption scheme Ei isCCA-secure.
The only new aspect of this proof is the description of how Ai handles B’s queries
(j, (C ′

j ,VK′,α′, σ′)). When j �= i, then Ai can simply decrypt by itself, as before.
For j = i, Ai first checks the validity of the signature, and then asks its own de-
cryption oracle to decrypt (C ′

i,VK′). So all we need to argue is that this query is
different fromAi’s own challenge (Ci,VK) (whichAi is forbidden to ask). But this
is precisely what we argued about B’s behavior in the previous paragraph.

Remark 1. The existence of collision-resistant hash functions does not seem to
follow from the existence of CCA-secure encryption schemes. However, by slightly
sacrificing the efficiency of our construction, we can rely on universal one-way
hash functions (UOWHFs) (which are implied by the existence of CCA-secure
encryption) thus making our construction completely generic. Briefly, instead of
using a single H ∈ H in the public key, the sender will choose a new H ← H
for every encryption. The description of H will then be included as part of the
ciphertext, signed together with α, and be included as part of each server’s
share. Since one can achieve |H| ∼ logn [6], this still keeps the user-server
communication very low.

5 Direct Constructions from Selective Identity
IBE/HIBE Schemes

We assume the reader is familiar with the basic terminology of identity-based
encryption (IBE) and hierarchical identity-based encryption (HIBE); see [8, 25].

202 Y. Dodis and J. Katz

Recently, Canetti et al. [12] gave a simple and elegant construction transform-
ing a “weak” (so called selective-identity-secure) IBE scheme secure against CPA
attacks into a CCA-secure (standard) public-key encryption scheme. Their trans-
formation uses a secure one-time signature scheme, by first encrypting the mes-
sage M with the identity VK (for newly chosen keys (SK,VK)), and then signing
the resulting ciphertext with SK. The receiver, who stores the master secret key
for the IBE scheme, can then decrypt the ciphertext if the signature is valid.

We could then use the resulting CCA-secure encryption schemes in our trans-
formations to get CCA-secure multiple encryption schemes, where each server
would store a master key for an independent IBE scheme. However, this will
result in generating (n + 1) one-time keys and signatures per ciphertext, which
is wasteful. Instead, we notice that the same verification key VK can be used as
the identity for all n IBE schemes, and then used to sign the concatenation of
n ciphertexts (or its hash). This gives a much more efficient direct construction
with only a single one-time signature per ciphertext.

However, just like our original scheme, the public key of the resulting mul-
tiple encryption is still proportional to the number of parties n. We now show
that using a two-level hierarchical IBE scheme (secure against selective-identity
CPA-attack), we can make the first relatively generic multiple encryption scheme
whose public key is independent of the number of players (although the ciphertext
size still is). Specifically, the public key pk is simply the mater public key of the
two-level HIBE. The i-th decryption key TDKi consists of level-1 identity-based
secret key corresponding to identity i. To encrypt a message M , the sender
(as before) generates a key pair (SK,VK) ← Sig-Gen(1k) and applies a secret
sharing scheme to the message M resulting in shares s1 . . . sn (and pub). Now,
however, the sender encrypts si “to” the level-2 identity (i,VK), and then signs
the resulting ciphertexts (or their hash) using SK. Each server i can still de-
crypt its share since it knows the level-1 secret key for the parent identity i,
while the collusion-resistance of the HIBE easily implies that no other coalition
of servers can get any information from this share. We omit a formal proof in
this abstract.

We remark that Boneh and Boyen [7] have recently constructed simple and
efficient selective-identity IBE/HIBE schemes, which immediately give rise to sim-
ple and efficient multiple encryption schemes using our paradigm. In particular,
using their HIBE scheme we get an efficient multiple encryption scheme with
a constant-size public key. We also notice that the technique of replacing sig-
natures by MACs [10] also applies here to obtain more efficient wMCCA-secure
multiple encryption.

6 Applications

We outline in brief a number of applications of multiple encryption.

CCA-Secure Threshold Encryption. In the generally-considered model for
threshold encryption, there is a combiner who receives a ciphertext and sends

Chosen-Ciphertext Security of Multiple Encryption 203

some information to various servers who may then potentially interact, either
with each other or with the combiner. The information sent to the servers is
typically assumed to be the ciphertext itself, but in general (and in our case in
particular) it is possible to transmit a smaller amount of information to each
server. In either case, the servers then send decryption shares back to the com-
biner, who uses these to recover the original message. In a chosen-ciphertext
attack on a threshold encryption scheme (see, e.g., [40, 13, 30]), an adversary
can expose the decryption shares stored at some number of servers, observe a
ciphertext C, and send ciphertexts C ′ �= C to the combiner. When it does so,
in addition to receiving the decryption of C ′, it is also typically assumed that
the adversary can observe all communication in the network, both between the
servers and the combiner as well as between the servers themselves.

It is not hard to see that the adversarial model thus described corresponds
exactly to a MCCA-attack. Moreover, if the combiner itself is untrusted (and can
send what it likes to the servers), we effectively have a sMCCA-attack. Thus, any
MCCA/sMCCA-secure multiple encryption scheme with privacy threshold tp im-
mediately gives a threshold encryption scheme with the same privacy threshold.
Furthermore, a MCCA/sMCCA-secure multiple encryption scheme with robust-
ness threshold tr immediately gives a threshold encryption scheme in which the
ciphertext can be correctly decrypted as long as tr servers remain uncorrupted.
Thresholds tf and ts can be interpreted similarly.

Our techniques thus give the first generic construction for CCA-secure thresh-
old encryption (note that no previous generic solution existed even in the ran-
dom oracle model). We remark further that for small values of n, our schemes
are competitive with previous threshold schemes. For example, when n = 2
and we use the Cramer-Shoup [15] encryption scheme as our building block, we
obtain a CCA-secure two-party public-key encryption scheme (in the standard
model) which has more efficient decryption than the scheme recently proposed by
MacKenzie [30]. In fact, although this construction increases the encryption time
and ciphertext size by (roughly) a factor of two as compared to [30], the time
required for decryption (by each server) is actually a factor of 10 more efficient;
furthermore decryption in our case is completely non-interactive. As another
example, if we use RSA-OAEP as our building block we obtain a very efficient
solution for CCA-secure, RSA-based threshold encryption with completely non-
interactive decryption (in the random oracle model).

CCA-Secure Key-Insulated and Strong Key-Insulated Encryption. We
assume the reader is somewhat familiar with the key-insulated model, as well
as with the generic constructions of [20] (which achieve only CPA security). In a
key-insulated public-key encryption scheme there is a server and a user ; at the
beginning of each time period, the user communicates with the server to update
the user’s secret key. Ciphertexts sent during any time period can be decrypted
by the user alone, without any further communication with the server. The main
property of such schemes is that exposing the secret information stored by the
user during many time periods leaves all non-exposed periods secure.

204 Y. Dodis and J. Katz

At a high level, in the generic solution of [20] the server stores n secret keys for
a standard encryption scheme (and the n corresponding public keys constitute
the public key of the key-insulated scheme). At the beginning of each time period,
some � of these secret keys are given to the user. To encrypt a message during a
particular time period, the sender first splits the message into � shares using a
secret-sharing scheme, and then encrypts each of these shares using one of the
� keys associated with the current time period. The keys are chosen in such a
way so that multiple exposures of the user do not compromise “enough” of the �
keys associated with any other time periods. (In [20], it is shown how to “tune”
n and � to achieve the desired level of security in a reasonably-efficient way.)

It is immediately apparent that the above encryption process (namely, split-
ting the message and then encrypting each share with an independent key)
corresponds exactly to multiple encryption. For this particular application, a
single user stores all � keys that are used to decrypt during a given time pe-
riod; therefore, a chosen-ciphertext attack against a key-insulated cryptosystem
is equivalent to a wMCCA attack on a multiple encryption scheme (that is, an
adversary does not get to see the individual shares output by each partial de-
cryption algorithm). Thus, any wMCCA-secure multiple encryption scheme can
be used to achieve CCA-secure key-insulated encryption. We remark that robust-
ness is not needed for this particular application since all keys are stored by a
single entity (namely, the user).

Dodis, et al. [20] also show a generic conversion from any CPA-secure key-
insulated scheme to a CPA-secure strong key-insulated scheme (where in a strong
key-insulated scheme, encrypted messages are kept confidential even from the
server itself). In their conversion, they split the plaintext message into two shares,
encrypt one share using any “basic” key-insulated scheme, and encrypt the sec-
ond share using a key that is stored (at all times) only by the user. Again, it
can be seen that this solution corresponds to “double” encryption; thus, the
techniques outlined in this paper suffice to construct generic CCA-secure strong
key-insulated schemes from any CCA-secure key insulated scheme (thereby an-
swering a question left open by [5]).

CCA-Secure Certificate-Based Encryption. The notion of certificate-based
encryption (CBE) was recently introduced by Gentry [24]. In this model, a cer-
tificate — or, more generally, a signature — acts not only as a “certification”
of the public key of a particular entity, but serves also as a decryption key. In
particular, to decrypt a message a key-holder needs both its secret key and an
up-to-date certificate from its certification authority (CA). Certificate-based en-
cryption combines the aspects of identity-based encryption (IBE) and public-key
encryption (PKE). Specifically, the sender of the message does not need to check
whether the user is properly certified before sending the message, and the user
can decrypt the message only if he has been certified (this is called implicit certi-
fication, a feature of IBE but not of PKE). Additionally, (1) the certificates from
the CA can be sent to the user in the clear (as in PKE but unlike IBE), and
(2) the CA cannot decrypt messages sent to to the user since he does not know
the user’s private key (i.e., there is no escrow, again like PKE but unlike IBE).

Chosen-Ciphertext Security of Multiple Encryption 205

From the above description, one would expect that it should be possible to
construct a CBE scheme using a simple combination of any IBE and regular PKE.
In fact, this was the intuitive description of CBE as presented by Gentry [24],
and this approach achieves security against chosen-plaintext attacks. Unfortu-
nately, this does not suffice to achieve security against chosen-ciphertext attacks.
As a result, [24] only constructed a CCA-secure CBE scheme based on specific
assumptions, and left open the problem of designing a generic CCA-secure CBE
scheme. Using the techniques from this paper with n = 2, but applying them to
an IBE and a PKE (instead of two PKEs), we can easily resolve this open ques-
tion. Note that ones only needs a wMCCA-secure multiple encryption scheme
with no robustness in this case, since the user holds both keys and never reveals
any intermediate results.

Our technique also applies to most of the CBE extensions presented by Gentry,
such as hierarchical CBE (which combines CCA-secure hierarchical IBE and PKE)
and the general technique (based on subset covers) to reduce CA computation
in a multi-user environment.

CCA-Secure Broadcast Encryption. A broadcast encryption scheme allows
the sender to securely distribute data to a dynamically changing set of users over
an insecure channel, with the possibility of “revoking” users when they are no
longer “qualified”. One of the most challenging settings for this problem is that
of stateless receivers, where each user is given a fixed set of keys which cannot
be updated for the lifetime of the system. This setting was considered by Naor,
Naor, and Lotspiech [33], who also present a general “subset cover framework”
for this problem. Although originally used in the symmetric-key setting, Dodis
and Fazio [17] extended the subset cover framework to the public-key setting,
where anybody can encrypt the data using a single public key of the system.

Without getting into technical details, each user (more or less) stores a cer-
tain, user-specific subset of secret keys, while all the public keys are freely avail-
able to everybody (specifically, are efficiently derived from a single “global pub-
lic key”; in the case of [17] this is done by using an appropriate identity-based
mechanism whose details are not important for the present discussion). When
one wants to revoke a certain subset of users, one cleverly chooses a small subset
P of public keys satisfying the following two properties: (1) every non-revoked
user possesses at least one secret key corresponding to some key in P ; but (2) ev-
ery revoked user possesses no secret keys in P . Once this is done, a message is
simply encrypted in parallel using every key in P .

Clearly, the above corresponds exactly to a multiple encryption scheme with
tp = 0 and tf = 1. However, as acknowledged in [33, 17], the resulting broad-
cast encryption scheme is at best secure against “lunch-time” chosen-ciphertext
attacks even if the underlying encryption scheme being used is CCA-secure. Us-
ing the techniques of this paper, we can resolve this problem and extend the
subset-cover framework to achieve CCA-security (provided, of course, that the
corresponding basic encryption schemes are CCA-secure). This results in the first
generic CCA-secure broadcast encryption scheme. When instantiated with any of
the two subset cover methods given in [33, 17], we obtain two “semi-generic” con-

206 Y. Dodis and J. Katz

structions of CCA-secure broadcast encryption: from any regular (e.g. [8]) or any
hierarchical (e.g. [25]) identity-based encryption scheme, respectively. Each of
these schemes, when properly instantiated, will offer several advantages over the
only previously known CCA-secure broadcast encryption scheme [18] (which was
based on specific assumptions), including a fixed public-key size, an unbounded
number of revocations, and qualitatively stronger traitor-tracing capabilities.

We remark that although wMCCA-security is already enough for this ap-
plication, a more communication-efficient solution can be achieved using our
sMCCA-secure scheme (since each user can then simply “ignore” the majority of
the ciphertext which is “not relevant” to him).

Cryptanalysis-Tolerant CCA-Secure Encryption. As discussed in the
Introduction, a multiple encryption scheme may be viewed as achieving
“cryptanalysis-tolerance” for public-key encryption: namely, a message can be
encrypted with respect to multiple encryption schemes (using independent keys)
such that the message remains confidential as long as any one of these schemes
remains secure (see [28] for further discussion of this concept). Herzberg [28]
shows constructions of cryptanalysis-tolerant CPA-secure encryption schemes;
the techniques outlined here resolve the question of constructing cryptanalysis-
tolerant CCA-secure encryption schemes.

CCA-Secure Proxy Encryption. Proxy encryption [19] may be viewed as non-
interactive, two-party, threshold encryption, where one server is the end-user and
the other server is called the proxy. The proxy receives the ciphertext C, partially
decrypts it into some ciphertext C ′, and forwards C ′ to the end-user. The user
stores the second part of the decryption key and can now recover the message
M from C ′. In [19], the authors give a formal treatment of proxy encryption but
left open the question of constructing a generic, CCA-secure scheme. The generic
2-party multiple encryption scheme presented in this paper resolves this open
question in the natural way. We remark that we require MCCA-security for this
application, since the attacker (who is one of the servers) has full oracle access
to the other server.

Other Applications. We believe that multiple encryption schemes will find
even more uses; we highlight two. One interesting direction is to apply multiple
encryption to the construction of “anonymous channels” [14] using, e.g., “onion
routing” [26]. It would be interesting to see if our methods can be extended
to give CCA-secure constructions in this setting. For the second application, we
mention recent work of Boneh, et al. [9] on searchable public-key encryption.
Here, one wants to design an encryption scheme for which one can encrypt some
keyword W as a ciphertext C such that that: (1) given some trapdoor TW one
can test whether C is an encryption of W ; (2) without such trapdoor, one gets
no information about W , even when given many other trapdoors TX for X �= W
(except that W is not one of these X’s). It is not hard to see that this concept is
also related to anonymous IBE, where the ciphertext should not reveal anything
about the identity of the recipient of the message. Alternately, it is also related

Chosen-Ciphertext Security of Multiple Encryption 207

to key-insulated encryption in which the ciphertext does not reveal the time
period for which the ciphertext was encrypted. In all these cases, one can adapt
the generic construction of key-insulated encryption from [20], discussed earlier
in this section, to obtain a CPA-secure version of the corresponding primitive,
provided that the regular encryption E is key-indistinguishable [2]. Indeed, one
of the constructions in [9] exactly follows this route. Using the techniques in
this paper, we can obtain generic CCA-secure searchable encryption, recipient-
anonymous IBE, or time-anonymous key-insulated encryption, provided one uses
a CCA-secure, key-indistinguishable encryption scheme (such as the Cramer-
Shoup encryption scheme [15], shown to be key-indistinguishable by [2]).

References

1. B. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan. Security Amplification
by Composition: the Case of Doubly-Iterated, Ideal Ciphers. Crypto ’98.

2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-Privacy in Public-Key
Encryption. Asiacrypt 2001.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions
of Security for Public-Key Encryption Schemes. Crypto ’98.

4. M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm. Asiacrypt 2000.

5. M. Bellare and A. Palacio. Protecting against Key Exposure: Strongly
Key-Insulated Encryption with Optimal Threshold. Available at
http://eprint.iacr.org/2002/064.

6. M. Bellare and P. Rogaway. Collision-Resistant Hashing: Towards Making
UOWHFs Practical. Crypto ’97.

7. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. Eurocrypt 2004.

8. D. Boneh and M. Franklin. Identity-Based Encryption From the Weil Pairing.
Crypto 2001.

9. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Searchable Public Key
Encryption. Eurocrypt 2004.

10. D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity Based Encryption. RSA — Cryptographers’ Track 2005, to appear.

11. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient
Functions and All-or-Nothing Transforms. Eurocrypt 2000.

12. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-
Based Encryption. Eurocrypt 2004.

13. R. Canetti and S. Goldwasser. An Efficient Threshold Public-Key Cryptosystem
Secure Against Adaptive Chosen-Ciphertext Attack. Eurocrypt ’99.

14. D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Comm. ACM 24(2): 84–88 (1981).

15. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Chosen Ciphertext Attack. Crypto ’98.

16. Y. Desmedt. Society and Group-Oriented Cryptography: a New Concept. Crypto
’87.

17. Y. Dodis and N. Fazio. Public Key Broadcast Encryption for Stateless Receivers.
ACM Workshop on Digital Rights Management, 2002.

208 Y. Dodis and J. Katz

18. Y. Dodis and N. Fazio. Public Key Broadcast Encryption Secure Against Adaptive
Chosen Ciphertext Attack. PKC 2003.

19. Y. Dodis and A. Ivan. Proxy Cryptography Revisited. NDSS 2003.
20. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public-Key Cryptosystems.

Eurocrypt 2002.
21. S. Even and O. Goldreich. On the Power of Cascade Ciphers. ACM Trans. Comp.

Systems 3: 108–116 (1985).
22. A. Fiat and M. Naor. Broadcast Encryption. Crypto ’93.
23. M. Franklin and M. Yung. Communication Complexity of Secure Computation.

STOC ’92.
24. C. Gentry. Certificate-Based Encryption and the Certificate Revocation Problem.

Eurocrypt 2003.
25. C. Gentry and A. Silverberg. Hierarchical Id-Based Cryptography. Asiacrypt 2002.
26. D. Goldschlag, M. Reed, and P. Syverson. Onion Routing. Comm. ACM 42(2):

39–41 (1999).
27. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308, 1988.
28. A. Herzberg. On Tolerant Cryptographic Constructions. Available at

http://eprint.iacr.org/2002/135/.
29. H. Krawczyk. Secret Sharing Made Short. Crypto ’93.
30. P. MacKenzie. An Efficient Two-Party Public Key Cryptosystem Secure Against

Adaptive Chosen Ciphertext Attack. PKC 2003.
31. U. Maurer and J. Massey. Cascade Ciphers: the Importance of Being First. J.

Crypto 6(1): 55–61 (1993).
32. R. Merkle and M. Hellman. On the Security of Multiple Encryption. Comm. ACM

24(7): 465–467 (1981).
33. D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless

Receivers. Crypto 2001.
34. NESSIE consortium. Portfolio of Recommended Crypto-

graphic Primitives. Manuscript, Feb. 2003. Available at
http://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/decision-final.pdf.

35. M. Rabin. Efficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance. J. ACM 36(2): 335–348 (1989).

36. R. Rivest. All-or-Nothing Encryption and the Package Transform. FSE ’97.
37. A. Shamir. How to Share a Secret. Comm. ACM 22(11): 612–613 (1979).
38. C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical

Journal, vol. 28, Oct. 1949.
39. V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, version 2.1.

Available at http://eprint.iacr.org/2001/112/
40. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems Against Chosen

Ciphertext Attack. J. Crypto 15(2): 75–96 (2002).
41. R. Zhang, G. Hanaoka, J. Shikata, and H. Imai. On the Security of Multiple En-

cryption, or CCA-security+CCA-security=CCA-security? Public Key Cryptogra-
phy (PKC) 2004. Also available at http://eprint.iacr.org/2003/181.

A Replacing Signatures by MACs

Recall, a message authentication code (MAC) is given by a deterministic algo-
rithm Tag which outputs an “existentially unforgeable” tag T = Tagτ (M) for

Chosen-Ciphertext Security of Multiple Encryption 209

a given message M using a secret key τ . In fact, a “one-time” message authen-
tication code (defined analogously to a one-time signature scheme) is sufficient
for our purposes. We define a relaxed commitment scheme C = (Setup,Commit,
Open) (termed encapsulation in [10]) as follows: Setup(1k) outputs the public
commitment key CK, which is always input to both Commit and Open and is
omitted for brevity. Commit takes no inputs and produces a triple of values
(τ, c, d), where τ is a (random) key, c is the commitment to this key, and d is
the corresponding decommitment. Open(c, d) should produce τ under normal
circumstances. The hiding property states that τ “looks random” given c (i.e.,
one cannot efficiently distinguish (CK, c, τ) from (CK, c, r) for random r). The
relaxed binding property states that given a random triple (τ, c, d) output by
Commit, it is infeasible to produce d′ �= d such that Open(c, d′) �∈ {τ,⊥}. It is
easy to construct simple and efficient MACs and relaxed commitment schemes
(see [10]).

Given the above, we construct T Ewcca as follows:

– TGen(1k). Let CK← Setup(1k), and for i = 1 . . . n, let (EKi,DKi)← Gen(1k).
Set TEK = (EK1 . . .EKn,CK), TDKi = DKi, so that TDK = (DK1 . . .DKn).
Below, denote Enci = EncEKi

, Deci = DecDKi
.

– TEncL(M). Let (τ, c, d)← Commit(1k) and (s1, . . . , sn, pub)← Share(M,d).
Set Ci = Encc

i (si) (i = 1 . . . n) and compute σ = Tagτ (C1, . . . , Cn, pub, L).
Output C = (C1, . . . , Cn, pub, c, σ).

– SplitL(C). Parse C = (C1, . . . , Cn, pub, c, σ), and let ciphertext share Ĉi =
(Ci, c), and aux = (pub, c, L).

– TDeci(Ci, c). Output s′
i = Decc

i (Ci).
– Combine(s′

1, . . . , s
′
n, (pub, c, L)). Let (M,d) = Rec(s′

1, . . . s
′
n, pub) (if invalid,

reject). Let τ = Open(c, d). Reject if σ �= Tagτ (C1, . . . , Cn, pub, L). Other-
wise, output M .

Theorem 3. T Ewcca is wMCCA-secure with thresholds tp, tf , tr, ts, provided E
is CCA-secure, SSS is (tp, tf , tr, ts, n)-robust, C is a relaxed commitment scheme,
and MAC is a one-time message authentication code.

We give the complete proof in the full version, here only briefly sketching our
argument (which is based on [10]). The problem is the apparent circularity in the
usage of the MAC as Tag is applied to data which depends on the MAC key τ .
Intuitively, what saves us here is the relaxed binding property which holds even
when the adversary knows d. This means that when the attacker is given the
challenge ciphertext C, it has to either (1) try to use new value c (which does not
help due to the CCA-security of the underlying encryption scheme which uses c
as a label); or (2) reuse the same c and cause an invalid d′ �= d to be recovered
(which leads to rejection anyway); or (3) reuse the same pair (c, d), which results
in the same τ and then also to rejection due to the one-time security of the MAC.
The latter argument is the most delicate, and its proof in fact requires several
sub-arguments. See [10] for further details.

Public-Key Steganography with Active Attacks

Michael Backes and Christian Cachin

IBM Zurich Research Laboratory,
CH-8803 Rüschlikon, Switzerland

{mbc, cca}@zurich.ibm.com

Abstract. A complexity-theoretic model for public-key steganography with ac-
tive attacks is introduced. The notion of steganographic security against adaptive
chosen-covertext attacks (SS-CCA) and a relaxation called steganographic se-
curity against publicly-detectable replayable adaptive chosen-covertext attacks
(SS-PDR-CCA) are formalized. These notions are closely related to CCA-security
and PDR-CCA-security for public-key cryptosystems. In particular, it is shown
that any SS-(PDR-)CCA stegosystem is a (PDR-)CCA-secure public-key cryp-
tosystem and that an SS-PDR-CCA stegosystem for any covertext distribution
with sufficiently large min-entropy can be realized from any PDR-CCA-secure
public-key cryptosystem with pseudorandom ciphertexts.

1 Introduction

Steganography is the art and science of hiding information by embedding messages
within other, seemingly harmless messages. As the goal of steganography is to hide the
presence of a message, it can be seen as the complement of cryptography, whose goal
is to hide the content of a message.

Consider two parties linked by a public communications channel which is under the
control of an adversary. The parties are allowed to exchange messages as long as they are
not adding a hidden meaning to their conversation. A genuine communication message
is called covertext; but if the sender of a message has embedded hidden information in
a message, it is called stegotext. The adversary, who also knows the distribution of the
covertext, tries to detect whether a given message is covertext or stegotext.

Steganography has a long history as surveyed by Anderson and Petitcolas [2], but
formal models for steganography have only recently been introduced. Several informa-
tion-theoretic formalizations [4, 24, 15] and one complexity-theoretic model [12] have
addressed private-key steganography, where the participants share a common secret key.
These models are all limited to a passive adversary, however, who can only read messages
on the channel.

Von Ahn and Hopper [22] have recently formalized public-key steganography with a
passive adversary and, in a restricted model, also with an active adversary. Their notion
offers security against “attacker-specific” chosen-stegotext attacks, where the recipient
must know the identity of the sender, however; this is a limitation of the model compared
to the bare public-key scenario.

In this paper, we introduce a complexity-theoretic model for public-key steganog-
raphy with active attacks, where the participants a priori do not need shared secret

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 210–226, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Public-Key Steganography with Active Attacks 211

information and the adversary may write to the channel and mount a so-called adaptive
chosen-covertext attack. This attack seems to be the most general attack conceivable
against a public-key stegosystem. It allows the adversary to send an arbitrary sequence
of adaptively chosen covertext messages to a receiver and to learn the interpretation of
every message, i.e., if the receiver considers a message to be covertext or stegotext, plus
the decoding of the embedded message in the latter case. (Note that here and in the
sequel, a message on the channel is sometimes also called a “covertext” when we do not
want to distinguish between stegotext and covertext in the proper sense.)

We do not address denial-of-service attacks in this work, where the adversary tries
to disrupt the hidden communication among the participants. Although they also qualify
as “active” attacks and are very important in practice, we think that protection against
them can be addressed orthogonally to the methods presented here.

Our model is based on the intuition that a public-key stegosystem essentially is a
public-key cryptosystem with the additional requirement that its output conforms to a
given covertext distribution. As in previous formalizations of steganography [4, 12, 9,
22], the covertext distribution is publicly known in the sense that it is accessible through
an oracle that samples the distribution. We introduce the notions of steganographic
security against adaptive chosen-covertext attacks (SS-CCA) and steganographic secu-
rity against publicly-detectable replayable adaptive chosen-covertext attacks (SS-PDR-
CCA) and show that they are closely linked to the analogous notions for public-key
cryptosystems, called security against adaptive chosen-ciphertext attacks (or CCA-
security) [16] and security against publicly-detectable replayable adaptive chosen-ci-
phertext attacks [5] (or PDR-CCA-security), respectively. (PDR-CCA-security is the
same as benign malleability [19] and generalized CCA-security [1].)

In particular, we show that stegosystems are related to public-key cryptosystems in
the following ways:

Theorem 1 (informal statement). Any SS-(PDR-)CCA stegosystem is a (PDR-)CCA-
secure public-key cryptosystem.

Theorem 2 (informal statement). An SS-PDR-CCA stegosystem for covertext distribu-
tions with sufficiently large min-entropy can be constructed from any PDR-CCA-secure
public-key cryptosystem whose ciphertexts are pseudorandom (i.e., computationally in-
distinguishable from a random bit string).

A corollary of Theorem 2 is that SS-PDR-CCA stegosystems exist in the standard
model under the Decisional Diffie-Hellman (DDH) assumption and in the random or-
acle model under the assumption of trapdoor one-way permutations. The stegosystem
constructed in the proof of Theorem 2 uses the “rejection sampler” construction found in
essentially all previous work in the area [12, 9, 22], which is already described by Ander-
son and Petitcolas [2]. However, our system embeds more hidden bits per stegotext than
any previous system. This follows from an improved analysis of the rejection sampler.
It is not known if a result analogous to Theorem 2 holds for CCA-security; finding an
SS-CCA stegosystem that works for an arbitrary covertext distribution with sufficiently
large min-entropy remains an interesting open problem.

Our model for public-key steganography is introduced in Section 2, where also the
relation to previous models for steganography is discussed in detail. Section 3 recalls

212 M. Backes and C. Cachin

the definitions of CCA- and PDR-CCA-security for public-key cryptosystems, states our
results formally, and presents the proof of Theorem 1. Section 4 gives the construction
of an SS-PDR-CCA stegosystem and proves Theorem 2.

2 Definitions

2.1 Notation

A function f : N → R≥0 is called negligible if for every constant c ≥ 0 there exists
kc ∈ N such that f(k) < 1

kc for all k > kc. Given some set S, a subset of almost
all elements contains all but a negligible fraction of elements from S. A (randomized)
algorithm is called efficient if its running time is bounded by a polynomial except with
negligible probability (over the coin tosses of the algorithm).

Let x← y denote the algorithm that assigns a value y to x. If A(·) is a (randomized)
algorithm, the notation x ← A(y) denotes the algorithm that assigns to x a randomly
selected value according to the probability distribution induced by A(·) with input y over
the set of its outputs.

If S is a probability distribution, then the notation x
R← S denotes any algorithm

which assigns to x an element randomly selected according to S. If S is a finite set, then
the notation x

R← S denotes the algorithm which assigns to x an element selected at
random from S with uniform distribution over S.

If p(·, ·, · · ·) is a predicate, the notation

Pr[x R← S; y R← T ; · · · : p(x, y, · · ·)]

denotes the probability that p(x, y, · · ·) will be true after the ordered execution of the
algorithms x

R← S, y
R← T, · · · . If X is a (randomized) algorithm, a distribution, or a

set, then PrX [x] is short for Pr
x

R←X
[x], which is short for Pr[s R← X : s = x].

The statistical distance between two distributions X and Y over the same set X is
defined as ‖X − Y‖ = maxX0⊆X

∣∣∑
x∈X0

PrX (x) − PrY(x)
∣∣. The min-entropy of a

distribution X over an alphabet X is defined as H∞(X) = − log maxx∈X PrX [x]. (All
logarithms are to the base 2.)

2.2 Public-Key Stegosystems

We define a public-key stegosystem as a triple of algorithms for key generation, message
encoding, and message decoding, respectively. The notion corresponds to a public-key
cryptosystem in which the ciphertext should conform to a target covertext distribution.

For the scope of this work, the covertext is modeled by a distribution C over a given
set C. The distribution is only available via an oracle; it samples C upon request, with
each sample being independent. In other words, it outputs a sequence of independent
and identically distributed covertexts. W.l.o.g., PrC [c] > 0 for all c ∈ C.

The restriction to independent repetitions is made here only to simplify the notation
and to focus on the contribution of this work. All our definitions and results can be
extended in the canonical way to the very general model of a covertext channel as
introduced by Hopper et al. [12]. They model a channel as an unbounded sequence of

Public-Key Steganography with Active Attacks 213

values drawn from a set C whose distribution may depend in arbitrary ways on past
outputs; access to the channel is given only by an oracle that samples from the channel.

Such a channel underlies only one restriction: The sampling oracle must allow ran-
dom access to the channel distribution, i.e., the oracle can be queried with an arbitrary
prefix of a possible channel output and will return the next symbol according to the
channel distribution. In other words, the channel sampler cannot only be rewound to
an earlier state of its execution but also restarted from a given state. (Hence it may be
difficult to use an email conversation among humans for a covertext channel since that
cannot easily be restarted.)

The sampling oracle for the covertext distribution is available to all users and to
the adversary. In order to avoid technical complications, assume w.l.o.g. that the sam-
pling oracle is implemented by a probabilistic polynomial-time algorithm and therefore
does not help an adversary beyond its own capabilities (for example, with solving a
computationally hard problem).

Definition 1. [Public-Key Stegosystem] Let C be a distribution on a set C of cover-
texts. A public-key stegosystem is a triple of probabilistic polynomial-time algorithms
(SK,SE,SD) with the following properties.

– The key generation algorithm SK takes as input the security parameter k and outputs
a pair of bit strings (spk , ssk), called the [stego] public key and the [stego] secret
key. W.l.o.g. SK induces the uniform distribution over the set of possible key pairs
for security parameter k.

– The steganographic encoding algorithm SE takes as inputs the security parameter k,
a public key spk and a message m ∈ {0, 1}l(k), where l(k) is an arbitrary polyno-
mial, and outputs a covertext c ∈ C. The plaintext m is often called the embedded
message.

– The steganographic decoding algorithm SD takes as inputs the security parameter k,
a secret key ssk , and a covertext c ∈ C and outputs either a message m ∈ {0, 1}l(k)

or a special symbol⊥. An output value of⊥ indicates a decoding error, for example,
when SD has determined that no message is embedded in c.

We require that for almost all (spk , ssk) output by SK(1k) and all m ∈ {0, 1}l(k),
the probability that SD(1k, ssk ,SE(1k, spk ,m)) �= m is negligible in k.

Note that except for the presence of the covertext distribution, this definition is
equivalent to that of a public-key cryptosystem. Although all algorithms have oracle
access to C, only SE needs it in the stegosystems considered in this paper. For ease of
notation, the security parameter will be omitted henceforth.

The probability that the decoding algorithm outputs the correct embedded message
is referred to as the reliability of the stegosystem. Although one might also allow a
non-negligible decoding error in the definition of a stegosystem (as done in previous
work [12]), we require that the decoding error probability is negligible in order to main-
tain the analogy between a stegosystem and a cryptosystem.

Security definition. Coming up with the “right” security definition for a cryptographic
primitive has always been a challenging task because the sufficiency of a security prop-
erty cannot be demonstrated by running the cryptosystem. Only its insufficiency can

214 M. Backes and C. Cachin

be shown by pointing out a specific attack, but finding an attack is usually hard. Often,
security definitions had to be strengthened when a primitive was used as part of a larger
system. Probably the most typical example is the security of public-key cryptosystems:
the original notion of semantic security [11], which considers only a passive or eaves-
dropping adversary, was later augmented to security against adaptive chosen-ciphertext
attacks or non-malleability, which allows also for active attacks [16, 10, 3].

We introduce here the notion of steganographic security against adaptive chosen-
covertext attacks, abbreviated SS-CCA, and its slightly relaxed variant steganographic
security against publicly-detectable replayable chosen-covertext attacks, abbreviated
SS-PDR-CCA. Both notions are based on the intuition that a stegosystem is essentially
a cryptosystem with a prescribed ciphertext distribution. We first recall the definition of
compatible [publicly computable] relations, adopted from public-key cryptosystem to
stegosystems, on which the definition of SS-PDR-CCA is based.

Definition 2. [Compatible Relation [19]] Let Σ = (SK,SE,SD) be a stegosystem. A
family of binary relations ≡spk (indexed by the public keys of Σ) on covertext pairs is
called a compatible relation family for Σ if for almost all key pairs (spk , ssk) we have:

– For any two covertexts c and c′, if c ≡spk c′ then SD(ssk , c) = SD(ssk , c′), except
with negligible probability over the random choices of the algorithm SD.

– For any two covertexts c and c′, it can be determined except with negligible prob-
ability whether c ≡spk c′ using a probabilistic polynomial-time algorithm taking
inputs spk , c, and c′.

SS-CCA and SS-PDR-CCA are defined by the following experiment. Let an arbi-
trary distribution C on a set C be given and consider a (stego-)adversary, defined by
two arbitrary probabilistic polynomial-time algorithms SA1 and SA2. For the SS-PDR-
CCA experiment, let also an arbitrary compatible relation family ≡spk be given. The
experiment consists of five stages, where both notions only differ in the fourth stage.

Key Generation: A key pair (spk , ssk) is generated by the key generation algorithm
SK.

First Decoding Stage: Algorithm SA1 is run with the public key spk as input and has
access to the sampling oracle forC and to a decoding oracle SO1. The decoding oracle
knows the secret key ssk . Whenever it receives a covertext c, it runs SD(ssk , c) and
returns the result to SA1.

When SA1 finishes its execution, it outputs a tuple (m∗, s), where m∗ ∈ {0, 1}l
is a message and s is some additional information which the algorithm wants to
preserve.

Challenge: A bit b is chosen at random and a challenge covertext c∗ is determined de-
pending on it: If b = 0 then c∗ ← SE(spk ,m∗) else c∗ R← C. c∗ is given to algorithm
SA2, who should guess the value of b, i.e., determine whether the message m∗ has
been embedded in c∗ or whether c∗ has simply been chosen according to C.

Second Decoding Stage: SA2 is run on input c∗, and s, i.e., it knows the challenge
covertext and the state provided by SA1.

For SS-CCA, SA2 may access a decoding oracle SOcca
2 , which is analogous to

SO1 except that upon receiving query c∗, oracle SOcca
2 returns ⊥.

Public-Key Steganography with Active Attacks 215

For SS-PDR-CCA, SA2 has access to a decoding oracle SOpdr-cca,≡spk
2 , which is

identical to SOcca
2 except that it does not allow any query that is equivalent to c∗ under

≡spk . In particular, upon receiving query c, SOpdr-cca,≡spk
2 returns ⊥ if c ≡spk c∗;

otherwise, it returns SD(ssk , c).
Guessing Stage: When SA2 finishes its execution, it outputs a bit b′.

The stego-adversary succeeds in distinguishing stegotext from covertext if b′ = b in
the above experiment. We require that for a secure stegosystem, no efficient adversary
can distinguish stegotext from covertext except with negligible probability over random
guessing.

Definition 3. [Steganographic Security against Active Attacks] Let C be a distribution
on a covertext set C and let Σ = (SK,SE,SD) be a stegosystem. We say that Σ
is steganographically secure against adaptive chosen-covertext attacks (SS-CCA) with
respect to C if for all probabilistic polynomial-time adversaries (SA1, SA2), there exists
a negligible function ε such that

Pr
[
(spk , ssk)← SK; (m∗, s)← SASO1

1 (spk); b
R← {0, 1};

if b = 0 then c∗ ← SE(spk ,m∗) else c∗ R← C :

SASOcca
2

2 (spk ,m∗, c∗, s) = b
]

=
1
2

+ ε(k).

Similarly, we say that Σ is steganographically secure against publicly-detectable
replayable adaptive chosen-covertext attacks (SS-PDR-CCA) with respect to C if there
exists a compatible relation family ≡spk such that for all probabilistic polynomial-time
adversaries (SA1, SA2), there exists a negligible function ε such that the above equation

holds with SOcca
2 replaced by SOpdr-cca,≡spk

2 .

Note that this leaves the adversary free to query the decoding oracle with any ele-
ment of the covertext space before the challenge is issued. By definition, an SS-CCA
stegosystem is also SS-PDR-CCA.

2.3 Discussion

The relation to public-key cryptosystems. A stegosystem should enable two parties to
communicate over a public channel in such a way that the presence of a message in the
conversation cannot be detected by an adversary. It seems natural to conclude from this
that the adversary must not learn any useful information about an embedded message,
should there be one. The latter property is the subject of cryptography: hiding the content
of a message transmitted over a public channel. This motivates the approach of von Ahn
and Hopper [22] and of this paper that models a public-key stegosystem after a public-key
cryptosystem in which the ciphertext conforms to a particular covertext distribution.

The most widely accepted formal notion of a public-key cryptosystem secure against
an active adversary is indistinguishability of encryptions against an adaptive chosen-
ciphertext attack (CCA-security) [16] and is equivalent to non-malleability of ciphertexts
in the same attack model [10, 3]. CCA-security is defined by an experiment with almost

216 M. Backes and C. Cachin

the same stages as above, except that the first part of the adversary outputs two messages
m0 and m1, of which one is chosen at random and then encrypted. The resulting value
c∗, also called the target ciphertext, is returned to the adversary and the adversary has
to guess what has been encrypted. In the second query stage, the adversary is allowed
to obtain decryptions of any ciphertext except for c∗.

This appears to be the minimal requirement to make the definition of a cryptosystem
meaningful, but it has turned out to be overly restrictive in some cases. For example,
consider a CCA-secure cryptosystem where a useless bit is appended to each ciphertext
during encryption and that is ignored during decryption. Although this clearly does not
affect the security of the cryptosystem, the modified scheme is no longer CCA-secure.

Several authors have relaxed CCA-security to allow for such “benign” modifica-
tions [19, 1, 5]. The corresponding relaxed security notion has been called publicly-
detectable replayable CCA-security or PDR-CCA-security by Canetti et al. [5] because
the modifications are apparent without knowledge of the secret key. The difference to
CCA-security is that in the second query stage, the adversary is more restricted and does
not allow any query that is equivalent to the target ciphertext under some compatible
relation that can be derived from the public key. The intuition is that such a cryptosystem
allows anyone to modify a ciphertext into an equivalent one if this is apparent from the
public key, and therefore to “replay” the target ciphertext.

Our notion of an SS-CCA stegosystem is analogous to a CCA-secure cryptosystem,
in that it only excludes the target covertext from the queries to the second decoding
oracle. Likewise, our notion of an SS-PDR-CCA stegosystem contains a restriction that
is reminiscent of a PDR-CCA-secure cryptosystem, by not allowing queries that are
publicly identifiable transformations of the challenge covertext. These similarities are
no coincidence: We show in Section 3 that any SS-CCA stegosystem is a CCA-secure
public-key cryptosystem, and similarly for their replayable counterparts.

Canetti et al. [5] also propose a further relaxation of CCA-security called replayable
CCA-security (or R-CCA-security), where anyone can generate new ciphertexts that de-
crypt to the same value as a given ciphertext, but the equivalence may not be publicly
detectable. We note that it is possible to formulate the corresponding notion of stegano-
graphic security against replayable chosen-ciphertext attacks (SS-R-CCA) by suitably
modifying Definition 3. Our results of Sections 3 and 4 can be adapted analogously.

Related work on steganography. The first published model of a steganographic system is
the “Prisoners’ Problem” by Simmons [21]. This work addresses the particular situation
of message authentication among two communicating parties, where a so-called sublim-
inal channel might be used to transport a hidden message in the view of an adversary
who tries to detect the presence of a hidden message. Although a subliminal channel
in that sense is only made possible by the existence of message authentication in the
model, it can be seen as the first formulation of a general model for steganography.

Cachin [4] presented an information-theoretic model for steganography, which was
the first to explicitly require that the stegotext distribution is indistinguishable from the
covertext distribution to an adversary. Since the model is unconditional, a statistical
information measure is used.

Hopper et al. [12] give the first complexity-theoretic model for private-key stegano-
graphy with passive attacks; they point out that a stegosystem is similar to a cryptosystem

Public-Key Steganography with Active Attacks 217

whose ciphertext is indistinguishable from a given covertext. In Section 3 we establish
such an equivalence formally for public-key systems with active attacks.

Dedić et al. [9] study the efficiency of stegosystems that have black-box access to
the covertext distribution and provide lower bounds on their efficiency.

Recently, vonAhn and Hopper [22] have formalized public-key steganography with a
passive adversary, i.e., one who can mount a chosen-message attack. The resulting notion
is the analogue of a cryptosystem with security against chosen-plaintext attacks (i.e., a
cryptosystem with semantic security). They also formalize the notion of a stegosystem
that offers security against “attacker-specific” chosen-stegotext attacks; this means that
the decoder must know the identity of the encoder, however, and restricts the usefulness
of their notion compared to SS-CCA and SS-PDR-CCA.

No satisfying formal model for public-key steganography with active attacks has
been published so far, although the subject was discussed by several authors, and some
systems with heuristic security have been proposed [8, 2]. A crucial element that seems
to make our formalizations useful is the restriction of the stage-two decoding oracle
depending on the challenge covertext.

3 Results

This section investigates the relation between SS-(PDR-)CCA stegosystems and
(PDR-)CCA-secure public-key cryptosystems. Two results are presented:

1. Any SS-CCA stegosystem is a CCA-secure public-key cryptosystem and, similarly,
any SS-PDR-CCA stegosystem is a PDR-CCA-secure public-key cryptosystem.

2. An SS-PDR-CCA stegosystem for covertext distributions with sufficiently large
min-entropy can be constructed from any PDR-CCA-secure public-key cryptosys-
tem whose ciphertexts are pseudorandom.

We first recall the formal definitions for public-key encryption with CCA- and PDR-
CCA-security, respectively. A public-key cryptosystem is a triple (K,E,D) of proba-
bilistic polynomial-time algorithms. Algorithm K, on input the security parameter k,
generates a pair of keys (pk , sk). The encryption and decryption algorithms, E and D,
have the property that for almost all pairs (pk , sk) generated by K and for any plain-
text message m ∈ {0, 1}l(k) where l is an arbitrary polynomial in k, the probability
that D(1k, sk ,E(1k, pk ,m)) �= m is negligible in k. (The security parameter is omitted
henceforth.)

CCA-security and PDR-CCA-security for a public-key encryption scheme are de-
fined by the following experiment. Consider an adversary defined by two arbitrary
polynomial-time algorithms A1 and A2. First, a key pair (pk , sk) is generated by K.
Next, A1 is run on input the public key pk and may access a decryption oracle O1.
Oracle O1 knows the secret key sk , and whenever it receives a ciphertext c, it applies
D with key sk to c and returns the result to A1. When A1 finishes its execution, it out-
puts a triple (m0,m1, s), where m0,m1 ∈ {0, 1}l are two arbitrary messages and s is
some additional state information. Now a bit b is chosen at random and mb is encrypted
using E under key pk, resulting in a ciphertext c∗. Algorithm A2 is given m0 and m1,
ciphertext c∗, and state s, and has to guess the value of b, i.e., whether m0 or m1 has

218 M. Backes and C. Cachin

been encrypted. For CCA-security, A2 may access a decryption oracle Occa
2 , which is

analogous to O1 and knows sk, but returns ⊥ upon receiving query c∗. For PDR-CCA-
security, the cryptosystem also specifies a compatible relation family≡ pk according to
Definition 2 with the stegosystem being replaced by the cryptosystem. A2 may access
a decryption oracle O

pdr-cca,≡pk
2 , which is identical to Occa

1 except that it answers ⊥ for
any query c with c ≡pk c∗. Finally, A2 outputs a bit b′ as its guess for b.

A secure cryptosystem requires that no efficient adversary can distinguish an encryp-
tion of m0 from an encryption of m1 except with negligible probability.

Definition 4. [(PDR-)CCA-Security for Public-Key Cryptosystems [3, 5]] Let Ω =
(K,E,D) be a public-key cryptosystem. We say that Ω is CCA-secure if for all proba-
bilistic polynomial-time adversaries A = (A1,A2), there exists a negligible function ε
such that

Pr
[
(pk , sk)← K; (m0,m1, s)← AO1

1 (pk); b
R← {0, 1};

c∗ ← E(pk,mb); AOcca
2

2 (pk ,m0,m1, c
∗, s) = b

]
=

1
2

+ ε(k).

We say that Ω is PDR-CCA-secure if there exists a compatible relation family≡pk such

that the above condition holds with Occa
2 replaced by Opdr-cca,≡pk

2 .

The following is our first main result.

Theorem 1. Let Σ = (SK,SE,SD) be a public-key stegosystem. If Σ is SS-CCA (SS-
PDR-CCA) with respect to some distribution C, then Σ is a CCA-secure (PDR-CCA-
secure) public-key cryptosystem.

Proof. Note first that Σ satisfies the definition of a public-key cryptosystem. We prove
that Σ is (PDR-)CCA-secure by a reduction argument. Assume that Σ is not a
(PDR-)CCA-secure cryptosystem and hence there exists an (encryption-)adversary (A1,
A2) that breaks the (PDR-)CCA-security of Σ, i.e., it wins in the experiment of Defi-
nition 4 with probability 1

2 + δ(k) for some non-negligible function δ. Let ≡pk denote
a compatible relation family for Σ in the case of PDR-CCA security. We construct
a (stego-)adversary (SA1, SA2) against Σ as a stegosystem with respect to C that has
black-box access to (A1,A2) as follows.

Key Generation: When SA1 receives a public-key pk , it invokes A1 with this key.
First Decoding Stage: Whenever A1 queries its decryption oracle O1 with a ciphertext

c, SA1 passes c on to its decoding oracle SO1, waits for the response and forwards
the response to A1.
When A1 halts and outputs (m0,m1, s), the stego-adversary SA1 chooses a random
bit b′, and outputs (mb′ , (m0,m1, b

′, s)).
Challenge: A challenge covertext c∗ is computed according to the definition of a ste-

gosystem and given to SA2.
Second Decoding Stage: SA2 receives inputs mb′ , c∗, and (m0,m1, b

′, s) and invokes
A2 on inputs m0, m1, c∗, and s. Otherwise, SA2 behaves in the same way as SA1
during the first decoding stage, forwarding the decryption requests that A2 makes to

Public-Key Steganography with Active Attacks 219

O2 to the respective decoding oracle SOcca
2 or SOpdr-cca,≡pk

2 and the responses back to
A2. If the distinction between SOcca

2 and SOpdr-cca,≡pk
2 is irrelevant, we simply write

SO2, similarly for the decryption oracle O2.

Guessing Stage: When A2 outputs a bit b∗, the stego-adversary SA2 tests if b∗ = b′ and
outputs 0 if true, and 1 otherwise.

We now analyze the environment simulated by the stego-adversary (SA1, SA2) to the
encryption-adversary (A1,A2), and the probability that the stego-adversary can distin-
guish stegotext from covertext.

Clearly, key generation and the first decoding stage perfectly simulate the decryption
oracle to adversary A1. During the challenge, a random bit b is chosen and a challenge
covertext is computed as c∗ ← SE(pk,mb′) in case b = 0 and as c∗ R← C in case b = 1.

Note that when b = 1, algorithm A2 and its final output b∗ are independent of b′.
Hence, we have Pr[b′ = b∗|b = 1] = 1

2 and the stego-adversary has no advantage
over randomly guessing b′ in that case. When b = 0, we show that during the second
decoding phase, SA2 correctly simulates the decryption oracle O2 to A2. For SS-CCA,
correct simulation for queries c �= c∗ is clear by definition. For a query c = c∗, the
decoding oracle SOcca

2 will output⊥, and so will the decryption oracle Occa
2 , which gives

a correct simulation again. For SS-PDR-CCA, correct simulation for queries c �≡pk c∗ is

again clear by definition. For queries c with c ≡pk c∗, the decoding oracle SOpdr-cca,≡pk
2

will output ⊥, and so will the decryption oracle Opdr-cca,≡pk
2 .

Since the encryption-adversary A2 by assumption breaks the (PDR-)CCA-security
of the cryptosystem, and A2 is independent of b′ when b = 1 as argued above, it obtains
all its advantage in the case b = 0 and we have Pr[b′ = b∗|b = 0] = 1

2 + δ(k). By the
definition of SA2, this is also the probability that the stego-adversary guesses b correctly
when b = 0. Hence, the overall probability that SA2 guesses b correctly is 1

2 + δ(k)
2 ,

which exceeds 1
2 by a non-negligible quantity and shows that Σ is not SS-(PDR-)CCA

with respect to any C.

Theorem 1 shows that an SS-CCA stegosystem is a special case of a CCA-secure
public-key cryptosystem, and similarly for their replayable variants. In the converse
direction, we show now that some PDR-CCA-secure public-key cryptosystems, namely
those with “pseudorandom ciphertexts,” can also be used to construct SS-PDR-CCA
stegosystems. Constructing an SS-CCA stegosystem from a CCA-secure public-key
cryptosystem — or from other assumptions, for that matter — for an arbitrary covertext
distribution with sufficiently large min-entropy remains an open problem.

In a cryptosystem with pseudorandom ciphertexts, the encryption algorithm outputs
a bit string that is indistinguishable from a random string of the same length for any
efficient distinguisher that has knowledge of the public key. We make the assumption that
the encryption of a plaintext of length l(k) always results in a ciphertext of length n(k),
for some polynomial n in k.

Definition 5. [Public-key Cryptosystem with Pseudorandom Ciphertexts [22]] A pub-
lic-key cryptosystem (K,E,D) is said to have pseudorandom ciphertexts if for all prob-
abilistic polynomial-time adversaries A = (A1,A2), there exists a negligible function ε
such that

220 M. Backes and C. Cachin

Pr
[
(pk , sk)← K; (m, s)← A1(pk); c0 ← E(pk ,m); c1

R← {0, 1}n(k);

b
R← {0, 1}; A2(pk ,m, cb, s) = b

]
=

1
2

+ ε(k).

It seems difficult to construct SS-(PDR-)CCA stegosystems for any covertext dis-
tribution. We show that it is possible for covertexts whose distribution conforms to a
sequence of independently repeated experiments and has sufficiently large min-entropy.
(According to the remark in Section 2.2, this result generalizes to an arbitrary covertext
channel.) Given a covertext distribution C and positive t, let Ct denote the probability
distribution consisting of a sequence of t independent repetitions of C.

The next theorem is our second main result. Its proof is the subject of Section 4.

Theorem 2. SS-PDR-CCA stegosystems with respect to a covertext distribution Ct for
any C with sufficiently large min-entropy can be efficiently constructed from any PDR-
CCA-secure cryptosystem with pseudorandom ciphertexts.

Theorem 2 leaves us with the task of finding a PDR-CCA-secure cryptosystem with
pseudorandom ciphertexts. Such cryptosystems exist under a variety of standard as-
sumptions if one asks for security against a passive adversary only, i.e., security against
chosen-plaintext attacks (CPA). For example, von Ahn and Hopper [22] demonstrate
a scheme that is as secure as RSA and one that is secure under the Decisional Diffie-
Hellman (DDH) assumption. It is also straightforward to verify that the generic method
of encrypting a single bit by xoring it with the hard-core predicate of a trapdoor one-way
permutation has pseudorandom ciphertexts.

But any PDR-CCA-secure cryptosystem can be turned into one with pseudorandom
ciphertexts using the following method, suggested by Lindell [13]: Take the ciphertext
output by the PDR-CCA-secure encryption algorithm and encrypt it again, using a second
cryptosystem with pseudorandom ciphertexts, which is secure against chosen-plaintext
attacks. Decryption proceeds analogously, by first applying the decryption operation
of the second cryptosystem and then the decryption operation of the PDR-CCA-secure
cryptosystem. It can be verified that the composed cryptosystem retains PDR-CCA-
security because the stage-two decryption oracle knows both secret keys. This method
yields SS-PDR-CCA stegosystems in three different models as follows.

By applying the above generic CPA-secure cryptosystem with pseudorandom ci-
phertexts to a generic non-malleable cryptosystem [10, 18], we obtain an SS-PDR-CCA
stegosystem under general assumptions.

Corollary 1. Provided that trapdoor one-way permutations exist, there is an SS-PDR-
CCA stegosystem in the common random string model.

Using the above DDH-based cryptosystem with pseudorandom ciphertexts combined
with the Cramer-Shoup cryptosystem [7], we obtain also an efficient SS-PDR-CCA
stegosystem in the standard model.

Corollary 2. Under the Decisional Diffie-Hellman assumption, there is an SS-PDR-
CCA stegosystem.

A more practical cryptosystem with pseudorandom ciphertexts exists also in the
random oracle model: the OAEP+ scheme of Shoup [20]. OAEP+ is a CCA-secure
cryptosystem based on an arbitrary trapdoor one-way permutation.

Public-Key Steganography with Active Attacks 221

Corollary 3. Provided that trapdoor one-way permutations exist, there is an SS-PDR-
CCA stegosystem in the random oracle model.

4 An SS-PDR-CCA Stegosystem

In this section, we propose a stegosystem that is steganographically secure against
publicly-detectable replayable adaptive chosen-covertext attacks.

This stegosystem works for any covertext distribution that consists of a sequence of
independent repetitions of a base-covertext distribution. Deviating from the notation of
Section 2, we denote the base-covertext distribution by C and the covertext distribution
used by the stegosystem by Ct = Πt

i=1C. As noted in Section 2.2, through the introduc-
tion of a history, our construction also generalizes to arbitrary covertext channels.

Let (K,E,D) be a PDR-CCA-secure public-key cryptosystem with pseudorandom
ciphertexts and compatible relation ≡pk . Suppose its cleartexts are l-bit strings and its
ciphertexts are n-bit strings.

A class G of functions X → Y is called strongly 2-universal [23] if, for all distinct
x1, x2 ∈ X and all (not necessarily distinct) y1, y2 ∈ Y , exactly |G|/|Y |2 functions
from G take x1 to y1 and x2 to y2. Such a function family is sometimes simply called a
strongly 2-universal hash function for brevity.

4.1 Description

The SS-PDR-CCA stegosystem consists of a triple of algorithms (keygen, encode,
decode). The idea behind it is to encrypt a message using the public-key cryptosystem
first and to embed the resulting ciphertext into a covertext sequence, as shown in Figure 1.

{0,1}l {0,1}n Ctencrypt sample

Fig. 1. The encoding process of the stegosystem: a message is first encrypted and then embedded
using Algorithm sample. The decoding process works analogously in the reverse direction

Algorithm sampleC

Input: security parameter k, a function g : C → {0, 1}f , and a value b ∈ {0, 1}f
Output: a covertext x

1: j ← 0
2: repeat
3: x

R← C
4: j ← j + 1
5: until g(x) = b or j = k
6: return x

222 M. Backes and C. Cachin

The encoding method is based on the following algorithm sample, which has oracle
access to C and samples a base-covertext according to C such that a given f -bit string
b is embedded in it. This algorithm is the well-known rejection sampler [2, 12, 17, 9],
generalized to embed multi-bit messages instead of only single-bit messages.

Intuitively, algorithm sample returns a covertext chosen from distribution C, but
restricted to that subset of C which is mapped to the given b by g. sample may also fail
and return a covertext c with g(c) �= b, but this happens only with negligible probability
in k. As will be shown in Section 4.2, when b is a random f -bit string, g is chosen
randomly from a 2-universal hash function, and C has sufficient min-entropy, then the
output distribution of sample is statistically close to C.

We now turn to the description of the stegosystem. Let f ≤ γ log k for a positive
constant γ < 1 and let G : C → {0, 1}f denote a strongly 2-universal hash function.

Algorithm keygen chooses a random g
R← G and computes a tuple (pk , sk) ← K,

by running the key generation algorithm of the cryptosystem. The output of keygen is
the tuple (spk , ssk) = ((pk , g), sk).

Algorithm encode first encrypts an input message m using the given encryption
algorithm E, which outputs in a ciphertext y. Assuming w.l.o.g. that y is an n-bit string
(bounded by a polynomial in k) and n = tf , encode then repeatedly invokes sample
to embed y in pieces of f bits a time into a sequence of t covertext symbols. Formally:

Algorithm encode

Input: security parameter k, a public key spk = (pk , g), and a message m ∈ {0, 1}l
to encode

Output: a covertext (c1, . . . , ct)
1: y ← E(pk ,m)
2: parse y as y1‖ · · · ‖yt, where yi ∈ {0, 1}f
3: for i = 1 to t do
4: ci ← sampleC(k, g, yi)
5: return (c1, . . . , ct)

Algorithm decode proceeds analogously. From each of the t symbols in the cover-
text, a string of f bits is extracted by g; then the concatenation of these bit strings is
decrypted by D, and the resulting value is returned (this is either an l-bit message or the
symbol ⊥):

Algorithm decode
Input: security parameter k, a secret key ssk = (sk , g), and a covertext (c1, . . . , ct) ∈

Ct to decode
Output: a decoded l-bit message or ⊥

1: for i = 1 to t do
2: yi ← g(ci)
3: y ← y1‖ · · · ‖yt

4: x← D(sk , y)
5: return x

Public-Key Steganography with Active Attacks 223

The compatible relation≡spk of the stegosystem is computed as follows: given a pair
of covertexts (c1, . . . , ct) and (c′

1, . . . , c
′
t), they are first mapped to a pair of ciphertexts

y and y′, respectively, by running lines 1–3 of Algorithm decode. Then the relation is
determined according to y ≡pk y′.

4.2 Analysis

This section is devoted to an analysis of the above stegosystem. Theorems 3 and 4 below
together imply Theorem 2.

Theorem 3. (keygen, encode, decode) is a valid stegosystem for covertext distribu-
tions with sufficiently large min-entropy.

Proof (Sketch). According to Definition 1, the only non-trivial steps are to show that the
algorithms are efficient and that the stegosystem is reliable, i.e., that

decode(ssk ,encode(spk ,m)) = m

for almost all pairs (spk , ssk) and all m ∈ {0, 1}l except with negligible probability.
Efficiency follows immediately from the construction, the assumption f ≤ γ log k,

and the efficiency of the public-key cryptosystem.
For reliability, it suffices to analyze the output of encode because the decoding

operation is deterministic.
Consider iteration i in Algorithm encode, in which Algorithm sample tries to

find a covertext x that is mapped to yi by g. Because g is chosen from a strongly 2-
universal class of hash functions, the entropy smoothing theorem [14] implies that over
the random choices of g and c

R← C, the random variable (g, g(c)) is exponentially
close to the uniform distribution over f -bit strings, provided C has enough min-entropy.
Hence, there exists a negligible quantity ε(k) � 2−f such that for almost all g, the
distance of g(c) from the uniform distribution is at most ε(k) over the choice c

R← C.
Thus, the probability that in any particular iteration of sample, an x is chosen with
g(x) �= yi, is at most 1− 2−f + ε(k).

For any such g, since the k iterations and choices of C in sample are independent,
the algorithm returns c with g(c) �= yi only with some negligible probability ε′(k) for
f ≤ γ log k. Hence, by the union bound, the probability that any iteration of Algo-
rithm encode fails to embed the correct value is at most tε′(k), which is negligible.

The proof of security is based on the following result. It shows that the joint dis-
tribution of the output from Algorithm sample and G is statistically close to the joint
distribution of C and G, where G denotes the distribution of choosing g uniformly from
G, and where sample is run with a uniformly chosen b. The proof of Proposition 1 is
given in the full version of the paper.

Proposition 1. If the min-entropy of the covertext distribution C is large enough com-
pared to f , then the statistical distance between (S(k),G) and (C,G) is negligible.

Theorem 4. For a covertext distributionCt such thatC has sufficiently large min-entropy
and provided that (K,E,D) is a PDR-CCA-secure public-key cryptosystem with pseu-
dorandom ciphertexts, the stegosystem (keygen,encode,decode) is SS-PDR-CCA.

224 M. Backes and C. Cachin

Proof (Sketch). We prove that the stegosystem (keygen,encode,decode) is SS-PDR-
CCA by a reduction argument. Assume that it is not SS-PDR-CCA and and hence there
exists a (stego-)adversary (SA1, SA2) that succeeds in the experiment of Definition 3 with
probability 1

2 + δ(k) for some non-negligible function δ. We construct an (encryption-
)adversary (A1,A2) that has black-box access to (SA1, SA2) and breaks the PDR-CCA-
security of (K,E,D) as follows.

Key Generation: When A1 receives a public-key pk generated by K, it chooses g
R← G,

computes spk ← (pk , g), and invokes SA1 with spk .
First Decryption Stage: When SA1 sends a query (c1, . . . , ct) to its decoding oracle

SO1, then A1 computes y ← y1‖ · · · ‖yt for yi ← g(ci), gives y to its decryption
oracle O1, waits for the response and forwards the response to SA1.

Challenge: When SA1 halts and outputs (m∗, s), the encryption-adversary A1 chooses
an arbitrary plaintext message m′ ∈ {0, 1}l, different from m∗, and outputs a
triple (m∗,m′, g). According to the definition of a public-key cryptosystem, a chal-
lenge ciphertext y∗ is computed. Now A2 is invoked with inputs pk , m∗, m′, y∗,
and g. It parses y∗ as a sequence y∗

1‖ · · · ‖y∗
t of f -bit strings, computes c∗

i ←
sampleC(k, g, y∗

i) for i = 1, . . . , t, and invokes SA2 with inputs (pk , g), m∗,
(c∗

1, . . . , c
∗
t), and s.

Second Decryption Stage: A2 behaves in the same way as A1 during first decryption
stage: It computes a ciphertext y from any decoding request that SA2 makes as above,
submits y to the decryption oracle O2, and returns the answer to SA2.

Guessing Stage: When SA2 outputs a bit b∗, indicating its guess as to whether message
m∗ is contained in the challenge covertext (c∗

1, . . . , c
∗
t), the encryption-adversary

A2 returns b∗ as its own guess of whether m∗ or m′ is encrypted in y∗.

We now analyze the environment simulated by the encryption-adversary (A1,A2)
to the stego-adversary (SA1, SA2) and the probability that the encryption-adversary can
distinguish the encrypted messages.

Clearly, during key generation and the first decoding stage, the simulation for the
stego-adversary SA1 is perfect. During the encoding stage, a random bit b is chosen
according to Definition 4 and the challenge ciphertext is computed as y∗ ← E(pk ,m∗)
if b = 0 and y∗ ← E(pk ,m′) if b = 1.

When b = 0, then, according to the definition of A1, the challenge covertext c∗ is
computed in the same way as expected by the stego-adversary in the experiment of
Definition 3 and the simulation is perfect.

When b = 1, however, SA2 expects (c∗
1, . . . , c

∗
t) to be a random covertext drawn

according to Ct, but receives c∗
i = sampleC(k, g, y∗

i) for i = 1, . . . , t instead, where
the concatenation of the y∗

i is an encryption of m′ under key pk with E.
Proposition 1 implies that for every i ∈ {1, . . . , t}, the statistical distance between

C and the distribution of c∗
i as computed by Algorithm sample when run with input a

uniformly chosen f -bit string is bounded by a negligible quantity ε∗1(k). Furthermore,
since the cryptosystem (K,E,D) has pseudorandom ciphertexts, for every distinguisher
SA2 there exists a negligible quantity ε∗2(k) such that its advantage (over guessing ran-
domly) in distinguishing between y∗ as used by A2 and the uniform distribution on n-bit
strings is at most ε∗2(k).

Public-Key Steganography with Active Attacks 225

By combining these two facts, it follows that the behavior of the stego-adversary
SA2 who observes (c∗

1, . . . , c
∗
t) in the simulation when b = 1 does not differ from its

behavior in experiment of Definition 3, where it observes covertext Ct, with more than
probability ε∗(k) = tε∗1(k) + ε∗2(k).

By definition, the output of the encryption-adversary A2 is the same as that of the
stego-adversary SA2. Since SA2 succeeds with probability 1

2 + δ(k) in attacking the
stegosystem and since the simulated view of SA2 is correct except with probability ε∗(k)
when b = 1, the probability that SA2 breaks PDR-CCA-security is 1

2 + δ(k) − ε∗(k)
2 ,

which exceeds 1
2 by a non-negligible quantity and establishes the theorem.

References

1. J. H. An, Y. Dodis, and T. Rabin, “On the security of joint signatures and encryption,” in
Advances in Cryptology: EUROCRYPT 2002 (L. Knudsen, ed.), vol. 2332 of Lecture Notes
in Computer Science, Springer, 2002.

2. R. J. Anderson and F. A. Petitcolas, “On the limits of steganography,” IEEE Journal on
Selected Areas in Communications, vol. 16, May 1998.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations among notions of security
for public-key encryption schemes,” in Advances in Cryptology: CRYPTO ’98 (H. Krawczyk,
ed.), vol. 1462 of Lecture Notes in Computer Science, Springer, 1998.

4. C. Cachin, “An information-theoretic model for steganography,” Information and Computa-
tion, vol. 192, pp. 41–56, July 2004. Parts of this paper appeared in Proc. 2nd Workshop on
Information Hiding, Springer, 1998.

5. R. Canetti, H. Krawczyk, and J. Nielsen, “Relaxing chosen-ciphertext security,” in Advances
in Cryptology: CRYPTO 2003 (D. Boneh, ed.), vol. 2729 of Lecture Notes in Computer
Science, Springer, 2003.

6. T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley, 1991.
7. R. Cramer and V. Shoup, “A practical public-key cryptosystem provably secure against adap-

tive chosen-ciphertext attack,” in Advances in Cryptology: CRYPTO ’98 (H. Krawczyk, ed.),
vol. 1462 of Lecture Notes in Computer Science, Springer, 1998.

8. S. Craver, “On public-key steganography in the presence of an active warden,” in Informa-
tion Hiding, 2nd International Workshop (D. Aucsmith, ed.), vol. 1525 of Lecture Notes in
Computer Science, pp. 355–368, Springer, 1998.

9. N. Dedić, G. Itkis, L. Reyzin, and S. Russell, “Upper and lower bounds on black-box steganog-
raphy,” in Proc. 2nd Theory of Cryptography Conference (TCC) (J. Kilian, ed.), Lecture Notes
in Computer Science, Springer, 2005.

10. D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” SIAM Journal on Com-
puting, vol. 30, no. 2, pp. 391–437, 2000.

11. S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System
Sciences, vol. 28, pp. 270–299, 1984.

12. N. J. Hopper, J. Langford, and L. von Ahn, “Provably secure steganography,” in Advances in
Cryptology: CRYPTO 2002 (M. Yung, ed.), vol. 2442 of Lecture Notes in Computer Science,
Springer, 2002.

13. Y. Lindell. Personal communication, Jan. 2004.
14. M. Luby, Pseudorandomness and Cryptographic Applications. Princeton University Press,

1996.
15. T. Mittelholzer, “An information-theoretic approach to steganography and watermarking,”

in Information Hiding, 3rd International Workshop, IH’99 (A. Pfitzmann, ed.), vol. 1768 of
Lecture Notes in Computer Science, pp. 1–16, Springer, 1999.

226 M. Backes and C. Cachin

16. C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack,” in Advances in Cryptology: CRYPTO ’91 (J. Feigenbaum, ed.), vol. 576
of Lecture Notes in Computer Science, pp. 433–444, Springer, 1992.

17. L. Reyzin and S. Russell, “Simple stateless steganography.” Cryptology ePrintArchive, Report
2003/093, 2003. http://eprint.iacr.org/.

18. A. Sahai, “Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security,” in Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 543–553, 1999.

19. V. Shoup, “A proposal for an ISO standard for public key encryption.” Cryptology ePrint
Archive, Report 2001/112, 2001. http://eprint.iacr.org/.

20. V. Shoup, “OAEP reconsidered,” Journal of Cryptology, vol. 15, no. 4, pp. 223–249, 2002.
21. G. J. Simmons, “The prisoners’ problem and the subliminal channel,” in Advances in Cryp-

tology: Proceedings of Crypto 83 (D. Chaum, ed.), pp. 51–67, Plenum Press, 1984.
22. L. von Ahn and N. J. Hopper, “Public-key steganography,” in Advances in Cryptology: Eu-

rocrypt 2004 (C. Cachin and J. Camenisch, eds.), vol. 3027 of Lecture Notes in Computer
Science, pp. 322–339, Springer, 2004.

23. M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and set
equality,” Journal of Computer and System Sciences, vol. 22, pp. 265–279, 1981.

24. J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotraschke, A. Westfeld, G. Wicke,
and G. Wolf, “Modeling the security of steganographic systems,” in Information Hiding, 2nd
International Workshop (D. Aucsmith, ed.), vol. 1525 of Lecture Notes in Computer Science,
pp. 344–354, Springer, 1998.

Upper and Lower Bounds
on Black-Box Steganography

Extended Abstract

Nenad Dedić, Gene Itkis, Leonid Reyzin, and Scott Russell

Boston University Computer Science,
111 Cummington St.

Boston MA 02215 USA
{nenad, itkis, reyzin, srussell}@cs.bu.edu

Abstract. We study the limitations of steganography when the sender
is not using any properties of the underlying channel beyond its entropy
and the ability to sample from it. On the negative side, we show that the
number of samples the sender must obtain from the channel is exponen-
tial in the rate of the stegosystem. On the positive side, we present the
first secret-key stegosystem that essentially matches this lower bound
regardless of the entropy of the underlying channel. Furthermore, for
high-entropy channels, we present the first secret-key stegosystem that
matches this lower bound statelessly (i.e., without requiring synchronized
state between sender and receiver).

1 Introduction

Steganography’s goal is to conceal the presence of a secret message within an
innocuous-looking communication. In other words, steganography consists of
hiding a secret hiddentext message within a public covertext to obtain a ste-
gotext in such a way that any observer (except, of course, the intended recip-
ient) is unable to distinguish between a covertext with a hiddentext and one
without.

The first rigorous complexity-theoretic formulation of secret-key steganogra-
phy was provided by Hopper, Langford and von Ahn [HLvA02]. In this formu-
lation, steganographic secrecy of a stegosystem is defined as the inability of a
polynomial-time adversary to distinguish between observed distributions of un-
altered covertexts and stegotexts. (This is in contrast with many previous works,
which tended to be information-theoretic in perspective; see, e.g., [Cac98] and
other references in [HLvA02, Cac98].)

The model of [HLvA02], which we adopt with slight changes, assumes that the
two communicating parties have some underlying channel C of covertext docu-
ments that the adversary expects to see. They also share a secret key (public-key
steganography is addressed in [vAH04, BC04]). The sender is allowed to draw
documents from C; the game for the sender is to alter C imperceptibly for the
adversary, while transmitting a meaningful hiddentext message to the recipient.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 227–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 N. Dedić et al.

Conversely, the game for the (passive) adversary is to distinguish the distribution
of transmitted messages from C.

1.1 Desirable Characteristics of a Stegosystem

Black-Box. In order to obtain a stegosystem of broad applicability, one would
like to make as few assumptions as possible about the understanding of the un-
derlying channel. Indeed, as Hopper et al. [HLvA02] point out, the channel (such
as human email traffic or images of various scenes) may well be very complex
and not easily described. For example, if the parties are using photographs of
city scenes as covertexts, it is reasonable to assume that the sender can obtain
such photographs, but unreasonable to expect the sender and the recipient to
know a polynomial-time algorithm that can construct such photographs from
uniformly distributed random strings. In this work, we therefore concentrate on
the study of black-box steganography. Namely, the sender and the recipient need
not know anything about the underlying channel distribution (beyond a lower
bound on its min-entropy). The sender’s only access to the channel is via an
oracle that draws a random sample from the channel distribution. The recipient
need not access the channel at all.

Efficient and Secure. Stegosystems have several performance characteristics.
First, of course, it is desirable that the encoding algorithm of sender and the
decoding algorithm of the receiver be efficient. A particularly important charac-
teristic of the efficiency of the sender is the number of samples that the sender is
required to draw from C. In fact, in all proposed black-box stegosystems, sender
computation is proportional to the number of samples drawn, with actual com-
putation per sample being quite minimal. Because most real-life channels are
quite complex, the drawing of the samples is likely to dominate the running
time of an actual implementation.

Another important performance measure is the transmission rate of the
stegosystem, which is the number of hiddentext bits transmitted per single ste-
gotext document sent (a document is the value returned by a single request to
the channel sampling oracle—e.g., a photograph). Transmission rate is tied to
reliability, which is the probability of successful decoding of an encoded message
(correspondingly, unreliability is one minus reliability). The goal is to construct
stegosystems that are reliable and transmit at a high rate (it is, of course, easier
to transmit at a high rate if reliability is low and the recipient will not understand
much of what is transmitted).

Finally, even a most efficient stegosystem is useless if not secure. Quantita-
tively, insecurity is defined as the adversary’s advantage in distinguishing stego-
text from C (and security as one minus insecurity). Naturally, we are interested
in stegosystems with insecurity as close to 0 as possible.

The efficiency and security of a stegosystem, even if it is black-box, may
depend on the channel distribution. In particular, we will be interested in the
dependence on the channel min-entropy h. Ideally, a stegosystem would work
well even for low-min-entropy channels.

Upper and Lower Bounds on Black-Box Steganography 229

Stateless. It is desirable to construct stateless stegosystems, so that the sender
and the recipient need not maintain synchronized state in order to communicate
long messages. Indeed, the need for synchrony may present a particular problem
in steganography in case messages between sender and recipient are dropped or
arrive out of order. Unlike in counter-mode symmetric encryption, where the
counter value can be sent along with the ciphertext in the clear, here this is not
possible: the counter itself would also have to be steganographically encoded to
avoid detection, which brings us back to the original problem of steganographi-
cally encoding multibit messages.

1.2 Our Contributions

We study the optimal efficiency achievable by black-box steganography, and
present secret-key stegosystems that are nearly optimal. Specifically, we demon-
strate the following results:

– A lower bound, which states that a secure and reliable black-box stegosystem
with rate of w bits per document sent requires the encoder to take at least
c2w samples from the channel per w bits sent, for some constant c. The
value of c depends on security and reliability, and tends to 1/(2e) as security
and reliability approach 1. This lower bound applies to secret-key as well as
public-key stegosystems.

– A stateful black-box secret-key stegosystem STF that transmits w bits per
document sent, takes 2w samples per w bits, has unreliability of 2−h+w per
document, and negligible insecurity, which is independent of the channel. (A
very similar construction was independently discovered by Hopper [Hop04–
Construction 6.10].)

– A stateless black-box secret-key stegosystem STL that transmits w bits per
document sent, takes 2w samples per w bits, has unreliability 2−Θ(2h), and
insecurity negligibly close to l22−h+2w for lw bits sent.

Note that for both stegosystems, the rate vs. number of samples tradeoff is very
close to the lower bound—in fact, for channels with sufficient entropy, the opti-
mal rate allowed by the lower bound and the achieved rate differ by log2 2e < 2.5
bits (and some of that seems due to slack in the bound). Thus, our bound is quite
tight, and our stegosystems quite efficient. The proof of the lowerbound involves
a surprising application of the huge random objects of [GGN03], specifically of
the truthful implementation of a boolean function with interval-sum queries. The
lowerbound demonstrates that significant improvements in stegosystem perfor-
mance must come from assumptions about the channel.

The stateless stegosystem STL can be used whenever the underlying channel
distribution has sufficient min-entropy h for the insecurity to be acceptably low.
It is extremely simple, requiring just evaluations of a pseudorandom function for
encoding and decoding, and very reliable.

If the underlying channel does not have sufficient min-entropy, then the state-
ful stegosystem STF can be used, because its insecurity is independent of the

230 N. Dedić et al.

channel. While it requires shared synchronized state between sender and re-
ceiver, the state information is only a counter of the number of documents sent
so far. If min-entropy of the channel is so low that the error probability of 2−h+w

is too high for the application, reliability of this stegosystem can be improved
through the use of error-correcting codes over the 2w-ary alphabet (applied to
the hiddentext before stegoencoding), because failure to decode correctly is in-
dependent for each w-bit block. Error-correcting codes can increase reliability
to be negligibly close to 1 at the expense of reducing the asymptotic rate from
w to w − (h + 2)2−h+w. Finally, of course, the min-entropy of any channel can
be improved from h to nh by viewing n consecutive samples as a single draw
from the channel; if h is extremely small to begin with, this will be more efficient
than using error-correcting codes (this improvement requires both parties to be
synchronized modulo n, which is not a problem in the stateful case).

This stateful stegosystem STF also admits a few variants. First, the loga-
rithmic amount of shared state can be eliminated at the expense of adding a
linear amount of private state to the sender and reducing reliability slightly (as
further described in 4.1), thus removing the need for synchronization between
the sender and the recipient. Second, under additional assumptions about the
channel (e.g., if each document includes time sent, or has a sequence number),
STF can be made completely stateless. The remarks of this paragraph and the
previous one can be equally applied to [Hop04–Construction 6.10].

1.3 Related Work

The bibliography on the subject of steganography is extensive; we do not review
it all here, but rather recommend references in [HLvA02].

Constructions. In addition to introducing the complexity-theoretic model for
steganography, [HLvA02] proposed two constructions of black-box1 secret-key
stegosystems, called Construction 1 and Construction 2.

Construction 1 is stateful and, like our stateful construction STF, boasts
negligible insecurity regardless of the channel. However, it can transmit only 1
bit per document, and its reliability is limited by 1/2 + 1/4(1− 2−h) per docu-
ment sent, which means that, regardless of the channel, each hiddentext bit has
probability at least 1/4 of arriving incorrectly (thus, to achieve high reliability,
error-correcting codes with expansion factor of at least 1/(1 − H2(1/4)) ≈ 5
are needed). In contrast, STF has reliability that is exponentially (in the min-
entropy) close to 1, and thus works well for any channel with sufficient entropy.
Furthermore, it can transmit at rate w for any w < h, provided the encoder has
sufficient time for the 2w samples required. It can be seen as a generalization of
Construction 1.

1 Construction 2, which, strictly speaking, is not presented as a black-box construction
in [HLvA02], can be made black-box through the use of extractors (such as universal
hash functions) in place of unbiased functions, as shown in [vAH04].

Upper and Lower Bounds on Black-Box Steganography 231

Construction 2 of [HLvA02] is stateless. Like the security of our stateless con-
struction STL, its security depends on the min-entropy of the underlying channel.
While no exact analysis is provided in [HLvA02], the insecurity of Construction
2 seems to be roughly

√
l2(−h+w)/2 (due to the fact that the adversary sees l

samples either from C or from a known distribution with bias roughly 2(−h+w)/2

caused by a public extractor; see Appendix A), which is higher than the inse-
curity of STL (unless l and w are so high that h < 3w + 3 log l, in which case
both constructions are essentially insecure, because insecurity is higher than the
inverse of the encoder’s running time l2w). Reliability of Construction 2, while
not analyzed in [HLvA02], seems close to the reliability of STL. The rate of Con-
struction 2 is lower (if other parameters are kept the same), due to the need for
randomized encryption of the hiddentext, which necessarily expands the number
of bits sent.

It is important to note that the novelty of STL is not the construction itself,
but rather its analysis. Specifically, its stateful variant appeared as Construc-
tion 1 in the Extended Abstract of [HLvA02], but the analysis of the Extended
Abstract was later found to be flawed by [KMR02]. Thus, the full version of
[HLvA02] included a different Construction 1. We simply revive this old con-
struction, make it stateless, generalize it to w bits per document, and, most
importantly, provide a new analysis for it.

In addition to the two constructions of [HLvA02] described above, and inde-
pendently of our work, Hopper in [Hop04] proposed two more constructions: Con-
structions 6.10 (“MultiBlock”) and 3.15 (“NoState”). As already mentioned,
MultiBlock is essentially the same as our STF. NoState is an interesting varia-
tion of Construction 1 of [HLvA02], that addresses the problem of maintaining
shared state at the expense of lowering the rate even further.

Bounds on the Rate and Efficiency. Hopper in [Hop04–Section 6.2] establishes a
bound on the rate vs. efficiency tradeoff. Though quantitatively similar to ours
(in fact, tighter by the constant of 2e), this bound applies only to a restricted
class of black-box stegosystems: essentially, stegosystems that encode and decode
one block at a time and sample a fixed number of documents per block. The
bound presented in this paper applies to any black-box stegosystem, as long as
it works for a certain reasonable class of channels, and thus can be seen as a
generalization of the bound of [Hop04]. Our proof techniques are quite different
than those of [Hop04], and we hope they may be of independent interest. We
refer the reader to Section 3.3 for an elaboration. Finally it should be noted that
non-black-box stegosystems can be much more efficient—see [HLvA02, vAH04,
Le03, LK03].

2 Definitions

2.1 Steganography

The definitions here are essentially those of [HLvA02]. We modify them in three
ways. First, we view the channel as producing documents (symbols in some,

232 N. Dedić et al.

possibly very large, alphabet) rather than bits. This simplifies notation and
makes min-entropy of the channel more explicit. Second, we consider stegosystem
reliability as a parameter rather than a fixed value. Third, we make the length
of the adversary’s description (and the adversary’s dependence on the channel)
more explicit in the definition.

The Channel. Let Σ be an alphabet; we call the elements of Σ documents.
A channel C is a map that takes a history H ∈ Σ∗ as input and produces a
probability distribution DH ∈ Σ. A history H = s1s2...sn is legal if each sub-
sequent symbol is obtainable given the previous ones, i.e., P rDs1s2...si−1

[si] > 0.
Min-entropy of a distribution D is defined as H∞(D) = mins∈D{− log2 PrD[s]}.
Min-entropy of C is the minH H∞(DH), where the minimum is taken over legal
histories H.

Our stegosystems will make use of a channel sampling oracle M , which, on
input H, outputs a symbol s according to DH.

Definition 1. A black-box secret-key stegosystem is a pair of probabilistic poly-
nomial time algorithms S = (SE ,SD) such that, for a security parameter κ,

1. SE has access to a channel sampling oracle M for a channel C and takes
as input a randomly chosen key K ∈ {0, 1}κ, a string m ∈ {0, 1}∗ (called
the hiddentext), and the channel history H. It returns a string of symbols
s1s2 . . . sl ∈ Σ∗ (called the stegotext)

2. SD takes as input a key K ∈ {0, 1}κ, a stegotext s1s2 . . . sl ∈ Σ∗ and a
channel history H, and returns a hiddentext m ∈ {0, 1}∗.

We further assume that the length l of the stegotext output by SE depends only
on the length of hiddentext m but not on its contents.

Stegosystem Reliability. The reliability of a stegosystem S with security param-
eter κ for a channel C and messages of length l is defined as

RelS(κ),C,l = min
m∈{0,1}l,H

{ Pr
K∈{0,1}κ

[SD(K,SEM (K,m,H),H) = m]} .

Unreliability (as a parallel to insecurity) is defined as UnRelS(κ),C,l = 1 −
RelS(κ),C,l.

The Adversary. We consider only passive adversaries who mount a chosen hid-
dentext attack on S (stronger adversarial models for steganography have also
been considered, see e.g. [HLvA02, vAH04, BC04]). The goal of such an adver-
sary is to distinguish whether it is seeing encodings of the hiddentext it supplied
to the encoder, or simply random draws from the channel. To this end, define
an oracle O(·,H) that produces random draws from the channel starting with
history H as follows: on input m ∈ {0, 1}∗, O computes the length l of the ste-
gotext that SEM (K,m) would have output, and outputs s1s2 . . . sl where each
si is drawn according to DH◦s1s2...si−1 .

Upper and Lower Bounds on Black-Box Steganography 233

Definition 2. W 2 is a (t, d, q, l) passive adversary for stegosystem S if

1. W runs in expected time t (including the running time needed by the ste-
goencoder to answer its queries) and has description of length d (in some
canonical language).

2. W has access to C via the sampling oracle M(·).
3. W can make an expected number of q queries of combined length l bits to an

oracle which is either SEM (K, ·, ·) or O(·, ·).
4. W outputs a bit indicating whether it was interacting with SE or with O.

Stegosystem Security. The advantage AdvSS (here SS stands for “Steganographic
Secrecy) of W against S with security parameter κ for a channel C is defined as

AdvSS
S(κ),C(W) =

∣∣∣∣ Pr
K←{0,1}κ

[WM,SEM (K,·,·) = 1]− Pr[WM,O(·,·) = 1]
∣∣∣∣ .

For a given (t, d, q, l), the insecurity of a stegosystem S with respect to channel
C is defined as

InSecSS
S(κ),C(t, d, q, l) = max

(t,d,q,l) adversary W
{AdvSS

S(κ),C(W)} ,

and security Sec as 1− InSec.
Note that the adversary’s algorithm can depend on the channel C, subject to

the restriction on the algorithm’s total length d. In other words, the adversary
can possess some description of the channel in addition to the black-box access
provided by the channel oracle. This is a meaningful strengthening of the ad-
versary: indeed, it seems imprudent to assume that the adversary’s knowledge
of the channel is limited to whatever is obtainable by black-box queries (for in-
stance, the adversary has some idea of a reasonable email message or photograph
should look like). It does not contradict our focus on black-box steganography:
it is prudent for the honest parties to avoid relying on particular properties of
the channel, while it is perfectly sensible for the adversary, in trying to break
the stegosystem, to take advantage of whatever information about the channel
is available.

2.2 Pseudorandom Functions

We use pseudorandom functions [GGM86] as a tool. Because the adversary in
our setting has access to the channel, any cryptographic tool used must be
secure even given the information provided by the channel. Thus, our underlying
assumption is the existence of pseudorandom functions that are secure given the
channel oracle, which is equivalent [HILL99] to the existence of one-way functions

2 The adversary in the context of steganography is sometimes referred to as the “war-
den.” The idea of the adversary as a warden and the use of W to designate it is a
consequence of original problem formulation in [Sim83].

234 N. Dedić et al.

that are secure given the channel oracle. Thus is the minimal assumption needed
for steganography [HLvA02].

Let F = {Fseed}seed∈{0,1}∗ be a family of functions, all with the same domain
and range. For a probabilistic adversary A, and channel C with sampling oracle
M , the PRF-advantage of A over F is defined as

AdvPRF
F(n),C(A) =

∣∣∣∣ Pr
seed←{0,1}n

[AM,Fseed(·) = 1]− Pr
g

[AM,g(·) = 1]
∣∣∣∣ ,

where g is a random function with the same domain and range. For a given
(t, d, q), the insecurity of a pseudorandom function family F with respect to
channel C is defined as

InSecPRF
F(n),C(t, d, q, l) = max

(t,d,q,l) adversary A
{AdvSS

F(n),C(A)} ,

where the maximum is taken over all adversaries that run in expected time t,
whose description size is at most d, and that make an expected number of q
queries to their oracles.

3 The Lower Bound

Recall that we define the rate of a stegosystem as the average number of hid-
dentext bits per document sent (this should not be confused with the average
number of hiddentext bits per bit sent; note also that this is the sender’s rate,
not the rate of information actually decoded by the recipient, which is lower due
to unreliability). We set out to prove that a reliable stegosystem with black-box
access to the channel with rate w, must make roughly l2w queries to the channel
to send a message of length lw. Intuitively, this should be true because each
document carries w bits of information on average, but since the encoder knows
nothing about the channel, it must keep on sampling until it gets the encoding
of those w bits, which amounts to 2w samples on average.

In particular, it suffices for the purposes of this lower bound to consider a
restricted class of channels: the distribution of the sample depends only on the
length of the history (not on its contents). We will write D1, D2, ..., Di, ..., instead
of DH, where i is the length of the historyH. Furthermore, it will suffice for us to
consider only distributions Di that are uniform on a subset of Σ. We will identify
the distribution with the subset (as is often done for uniform distributions).

Let |Di| = H = 2h and |Σ| = S. Because the encoder receives the min-
entropy h of the channel as input, if H = S, then encoder knows the channel
completely (it’s simply uniform on Σ), and our lower bounds do not hold, because
no sampling from the channel is necessary. Thus, we require that h be smaller
than log2 S. Let R = 1/(1−H/S).

Our proof proceeds in two parts. First, we consider a stegoencoder SE that
does not output anything that it did not receive as a response from the channel-
sampling oracle. To be reliable, such an encoder has to make many queries, as

Upper and Lower Bounds on Black-Box Steganography 235

shown in Lemma 1. Second, we show that to be secure, a black-box SE cannot
output anything it did not receive from the channel-sampling oracle.

The second half of the proof is somewhat complicated by the fact that we
want to assume security only against bounded adversaries: namely, ones whose
description size and running time are polynomial in the description size and run-
ning time of the encoder (in particular, polynomial in logS rather than S). This
requires us to come up with pseudorandom subsets Di of Σ that have concise
descriptions and high min-entropy, and whose membership is impossible for the
stegoencoder to predict. In order to do that, we utilize techniques from the truth-
ful implementation of a boolean function with interval-sum queries of [GGN03]
(truthfulness is important because min-entropy has to be high unconditionally).

3.1 Lower Bound When Only Query Results Are Output

We consider the following channel: if D1, D2, . . . are subsets of Σ, we write
D = D1 ×D2 × . . . to denote the channel that, on history length i, outputs an
uniformly random element of Di; if |D1| = |D2| = . . . = 2h then we say that
D is a flat h-channel. Normally, one would think of the channel sampling oracle
for D as making a fresh random choice from Di when queried on history length
i. Instead, we will think of the oracle as having made all its choices in advance.
Imagine that the oracle already took “enough” samples:

s1,1, s1,2, . . . , s1,j , . . . from D1,
s2,1, s2,2, . . . , s2,j , . . . from D2,

. . . ,
si,1, si,2, . . . , si,j , . . . from Di

. . . .

We will denote the string containing all these samples by S, and refer to it as
a draw-sequence from the channel. We will give our stegoencoder access to an
oracle (also denoted by S) that, each time it’s queried with i, returns the next
symbol from the sequence si,1, si,2, . . . , si,j , Choosing S ∈ Σ∗∗ at random and
giving the stegoencoder access to it is equivalent to giving the encoder access to
the usual channel-sampling oracle M for our channel D.

Assume SES(K,m,H) = t = t1t2 . . . tl, where ti ∈ Σ. Note that ti is an
element of the sequence si,1, si,2, . . . , si,j , If ti is the j-th element of this
sequence, then it took j queries to produce it. We will denote by weight of
t with respect to S, the number of queries it took to produce t: W (t,S) =∑k

i=1 min{j | si,j = yi}. In the next lemma, we prove (by looking at the decoder)
that for any S, most messages have high weight.

Lemma 1. Let F : Σ∗ → {0, 1}∗ be an arbitrary (possibly unbounded) deter-
ministic stegodecoder that takes a sequence t ∈ Σl and outputs a message m of
length lw bits.

Then the probability that a random lw-bit message has an encoding of weight
significantly less than (1/e)l2w, is small. More precisely, for any S ∈ Σ∗∗ and
any N ∈ N:

236 N. Dedić et al.

Prm∈{0,1}lw [(∃t ∈ Σl)(F (t) = m ∧ W (t,S) ≤ N)] ≤
(
N
l

)
2lw

<

(
Ne

l2w

)l

.

Proof. Simple combinatorics show that the number of different sequences t that
have weight less than N (and hence the number of messages that have encodings
of weight less than N) is at most

(
N
l

)
: indeed, it is simply the number of positive

integer solutions to x1 + . . .+xl ≤ N , which is the number of ways to put l bars
among N − l stars (the number of stars to the right of the i-th bar corresponds
to xi− 1), or, equivalently, the number of ways choose l positions out of N . The
total number of messages is 2lw. The last inequality follows from

(
N
l

)
<
(

Ne
l

)l
.��

Observe that taking the probability over a random lw-bit message, as we
do above, is meaningful. Indeed, if the distribution of messages encoded is not
uniform, then compression could reduce their size and thus improve the efficiency
of the stegosystem, rendering our bound pointless. Our lower bound applies
when the designer of the stegosystem assumes that the messages are distributed
uniformly. (For any other distribution, data compression should be applied before
stegoencoding.)

3.2 Secure Stegosystems Almost Always Output Query Answers

The next step is to prove that the encoder of a secure black-box stegosystem
must output only what it gets from the oracle, with high probability. Assume
D is a flat h-channel chosen uniformly at random. Then it is easy to demon-
strate that, if the encoder outputs in position i a symbol si ∈ Σ that it did not
receive as a response to a query to Di, the chances that si is in the support of
Di are H/S. It can then be shown that, if the stegoencoder has insecurity ε,
then it cannot output something it did not receive as response to a query with
probability higher than ε/(1−H/S).

The problem with the above argument is the following: it assumes that the
adversary can test whether si the support of Di. This is not possible if we assume
Di is completely random and the adversary’s description is small compared to
S = |Σ|. However, it does serve as a useful warm-up, and leads to the following
theorem when combined with the results of the previous section.
Theorem 1. Let (SE ,SD) be a black-box stegosystem with insecurity ε against
an adversary who has an oracle for testing membership in the support of C,
unreliability ρ and rate w for an alphabet Σ of size S. Then there exists a channel
with min-entropy h = log2 H such that the probability that the encoder makes at
most N queries to send a random message of length lw, is upper bounded by(

Ne

l2w

)l

+ ρ + εR ,

and the expected number of queries per stegotext symbol is therefore at least

2w

e

(
1
2
− ρ− εR

)
,

where R = 1/(1−H/S).

Upper and Lower Bounds on Black-Box Steganography 237

Proof. See the full version [DIRR04]. ��

3.3 Lower Bound for Computationally Bounded Parties

We now want to establish the same lower bound without making such a strong
assumption about the security of the stegosystem. Namely, we do not want to
assume that the insecurity ε is low unless the adversary’s description size and
running time are small (“small,” when made rigorous, will mean some fixed poly-
nomials in the description size and running time, respectively, of the stegoen-
coder, and a security parameter for a function that is pseudorandom against
the stegoencoder). Recall that our definitions allow the adversary to depend on
the channel; thus, our goal is to construct channels that have short descrip-
tions for the adversary but look like random flat h-channels to the black-box
stegoencoder. In other words, we wish to replace a random flat h-channel with
a pseudorandom one.

We note that the channel is pseudorandom only in the sense that it has a short
description, so as to allow the adversary to be computationally bounded. The
min-entropy guarantee, however, can not be replaced with a “pseudo-guarantee”:
else the encoder is being lied to, and our lower bound is no longer meaningful.
Thus, a simpleminded approach, such as using a pseudorandom predicate with
bias H/S applied to each symbol and history length to determine whether the
symbol is in the support of the channel, will not work here: because S is constant,
eventually (for some history length) the channel will have lower than guaranteed
min-entropy (moreover, we do not wish to assume that S is large in order to
demonstrate that this is unlikely to happen; our lower bound should work for any
alphabet). Rather, we need the pseudorandom implementation of the channel to
be truthful3 in the sense of [GGN03], and so rely on the techniques developed
therein.

The result is the following theorem.

Theorem 2. There exist polynomials p, q and constants c1, c2 with the following
property. Let S(κ) be a black-box stegosystem with description size δ, insecurity
InSecSS

S(κ),C(t, d, q, l), unreliability ρ, rate w and running time τ for an alphabet
Σ of size S. Assume there exists a pseudorandom function family F(n) with
insecurity InSecPRF

F(n)(t, d, q). Then there exists a channel C with min-entropy
h = log2 H such that the probability that the encoder makes at most N queries
to send a random message of length lw, is upper bounded by(

Ne

l2w

)l

+ ρ + RInSecSS
S(κ),C(q(τ), n + c1, 1, lw)+

(R + 1)
(
InSecPRF

F(n)(p(τ), δ + c, p(τ)) + 2−n
)
,

and the expected number of queries per stegotext symbol is therefore at least

3 In this case, truthfulness implies that for each history length, the support of the
channel has exactly H elements.

238 N. Dedić et al.

2w

e

(
1
2
− ρ−RInSecSS

S(κ),C(q(τ), n + c1, 1, lw)
)
−

2w

e
(R + 1)

(
InSecPRF

F(n)(p(τ), δ + c, p(τ)) + 2−nt)
)
,

where R = 1/(1−H/S).

Proof. See the full version [DIRR04]. ��

Discussion. The proof of Theorem 2 relies fundamentally on Theorem 1. In other
words, to prove a lower bound in the computationally bounded setting, we use
the corresponding lower bound in the information-theoretic setting. To do so, we
replace an object of an exponentially large size (the channel) with one that can
be succinctly described. This replacement substitutes some information-theoretic
properties with their computational counterparts. However, for a lower bound
to remain “honest” (i.e., not restricted to uninteresting channels), some global
properties must remain information-theoretic. This is where the truthfulness of
huge random objects of [GGN03] comes to the rescue. We hope that other in-
teresting impossibility results can be proved in a similar fashion, by adapting an
information-theoretic result using the paradigm of [GGN03]. We think truthful-
ness of the objects will be important in such adaptations for the same reason it
was important here.

Note that the gap in the capabilities of the adversary and encoder/decoder
is different in the two settings: in the information-theoretic case the adversary is
given unrestricted computational power, while in the computationally bounded
case it is assumed to run in polynomial time, but is given the secret channel
seed. However, in the information-theoretic case we may remove the gap alto-
gether, by providing both the adversary and the encoder/decoder with a channel
membership oracle, and still obtain a lower bound analogous4 to that of The-
orem 2. We see no such opportunity to remove the gap in the computationally
bounded case (e.g., equipping the encoder/decoder with the channel seed seems
to break our proof). Removing this asymmetry in the computationally bounded
case seems challenging and worth pursuing.

4 The Stateful Construction STF

The construction STF relies on a pseudorandom function family F . In addition
to the security parameter κ (the length of the PRF key K), it depends on the
rate parameter w. Because it is stateful, both encoder and decoder take a counter
ctr as input.

4 A lower bound on the number of samples per document sent, becomes trivially zero
if the encoder is given as much time as it pleases, in addition to the membership
oracle of the flat channel. Yet it should not be difficult to prove that it must then
run for O(2w) steps per document sent.

Upper and Lower Bounds on Black-Box Steganography 239

Our encoder is similar to the rejection-sampler-based encoder of [HLvA02]
generalized to w bits: it simply samples elements from the channel until the
pseudorandom function evaluated on the element produces the w-bit symbol
being encoded. The crucial difference of our construction is the following: to
avoid introducing bias into the channel, if the same element is sampled twice, the
encoder simply flips a random coin to decide whether to output that element with
probability 2−w. Hopper in [Hop04–Construction 6.10] independently proposes a
similar construction, except instead of flipping a fresh random coin, the encoder
evaluates the pseudorandom function on a new counter value (there is a separate
counter associated to each sampled document, indicating how many times the
document has been sampled), thus conserving randomness.

Observe that, assuming F is truly random rather than pseudorandom, each
sample from the channel has probability 2−w of being output, independent of
anything else, because each time fresh randomness is being used. Of course, this
introduces unreliability, which is related to the probability of drawing the same
element from DH twice.

Procedure STF.SE (K,w,m,H, ctr):
Let m = m1 . . .ml, where |mi| = w
for i← 1 to l:

j ← 0; f ← 0; ctr ← ctr + 1
repeat :

j ← j + 1
si,j ←M(H)
if ∃j′ < j s.t. si,j = si,j′

let c ∈R {0, 1}w
if c = mi then f ← 1

else if FK(ctr , si,j) = mi

then f ← 1
until f = 1
si ← si,j ; H ← H||si

output s = s1s2 . . . sl

Procedure STF.SD(K,w, s, ctr):
Let s = s1 . . . sl, where si ∈ Σ
for i = 1 to l

ctr ← ctr + 1
mi ← FK(ctr , si)

output m = m1m2 · · ·ml

Theorem 3. The stegosystem STF has insecurity InSecSS
STF(κ,w)(t, d, l, lw) =

InSecPRF
F(κ)(t + O(1), d + O(1), l2w). For each i, the probability that si is de-

coded incorrectly is 2−h+w+InSecPRF
F(κ)(2

w,O(1), 2w), and unreliability is at most
l(2−h+w + InSecPRF

F(κ)(2
w,O(1), 2w)).

Proof. Insecurity bound is apparent from the fact that if F were truly random,
then the system would be perfectly secure, because its output is distributed
identically to C (simply because the encoder samples from the channel, and in-
dependently at random decides which sample to output, because the random
function is never applied more than once to the same input). Hence, any adver-
sary for the stegosystem would distinguish F from random.

240 N. Dedić et al.

The reliability bound per symbol can be demonstrated as follows. Assuming
F is random, the probability that si = si,j is (1− 2−w)j−12−w. If that happens,
the probability that ∃j′ < j such that si,j = si,j′ is at most (j−1)2−h. Summing
up and using standard formulas for geometric series, we get

∞∑
j=1

(j − 1)2−h
(
1− 2−w

)j−1 2−w =

= 2−h−w
∞∑

j=1

((
1− 2−w

)j

(∞∑
k=0

(1− 2−w)k

))
< 2w−h. ��

Note that errors are independent for each symbol, and hence error-correcting
codes over alphabet of size 2w can be used to increase reliability: one simply en-
codes m before feeding it to SE . Observe that, for a truly random F , if an error
occurs in position i, the symbol decoded is uniformly distributed among all ele-
ments of {0, 1}w−{mi}. Therefore, the stegosystem creates a 2w-ary symmetric
channel with error probability 2w−h(1 − 2−w) = 2−h(2w − 1) (this comes from
more careful summation in the above proof). Its capacity is w−H[1−2−h(2w−
1), 2−h, 2−h, . . . , 2−h] (where H is Shannon entropy of a distribution) [McE02–p.
58]. This is equal to w+(2w−1)2−h log 2−h+(1−2−h(2w−1)) log(1−2−h(2w−1)).
Assuming error probability 2−h(2w − 1) ≤ 1/2 and using log(1 − x) ≥ −2x for
0 ≤ x ≤ 1/2, we get that the capacity of the channel created by the encoder is
at least w + 2−h(2w − 1)(−h− 2) ≥ w− (h+ 2)2−h+w. Thus, as l grows, we can
achieve rates close to w− (h+2)2−h+w with near perfect security and reliability
(independent of h).

4.1 Stateless Variants of STF

Our stegosystem STF is stateful because we need F to take ctr as input, to
make sure we never apply the pseudorandom function more than once to the
same input. This will happen automatically, without the need for ctr , if the
channel C has the following property: for any histories H and H′ such that H is
the prefix ofH′, the supports of DH and DH′ do not intersect. For instance, when
documents have monotonically increasing sequence numbers or timestamps, no
shared state is needed.

To remove the need for shared state for all channels, we can do the following.
We remove ctr as an input to F , and instead provide STF.SE with the set Q of
all values received so far as answers from M . We replace the line “if ∃j′ < j s.t.
si,j = si,j′” with “if si,j ∈ Q” and add the line “Q← Q∪{si,j}” before the end
of the inner loop. Now shared state is no longer needed for security, because we
again get fresh coins on each draw from the channel, even if it collides with a draw
made for a previous hiddentext symbol. However, reliability suffers, because the
larger l is, the more likely a collision will happen. A careful analysis, omitted
here, shows that unreliability is l22−h+w (plus the insecurity of the PRF).

Unfortunately, this variant requires the encoder to store the set Q of all the
symbols ever sampled from C. Thus, while it removes shared state, it requires

Upper and Lower Bounds on Black-Box Steganography 241

a lot of private state. This storage can be reduced somewhat by use of Bloom
filters [Blo70] at the expense of introducing potential false collisions and thus
further decreasing reliability. An analysis utilizing the bounds of [BM02] (omit-
ted here) shows that using a Bloom filter with (h−w− log l)/ ln 2 bits per entry
will increase unreliability by only a factor of 2, while potentially reducing stor-
age significantly (because the symbols of Σ require at least h bits to store, and
possibly more if the DH is sparse).

5 The Stateless Construction STL

The stateless construction STL is simply STF without the counter and collision
detection (and is a generalization to rate w of the construction that appeared in
the extended abstract of [HLvA02]). Again, we emphasize that the novelty is not
in the construction but in the analysis. The construction requires a reliability
parameter k, to make sure that expected running time of the encoder does not
become infinite due a low-probability event of infinite running time.

Procedure STL.SE (K,w, k,m,H):
Let m = m1 . . .ml, where |mi| = w
for i← 1 to l:

j ← 0
repeat :

j ← j + 1
si,j ←M(H)

until FK(si,j) = mi or j = k
si ← si,j ; H ← H||si

output s = s1s2 . . . sl

Procedure STL.SD(K,w, s):
Let s = s1 . . . sl, where si ∈ Σ
for i = 1 to l

mi ← FK(si)
output m = m1m2 · · ·ml

Theorem 4. The stegosystem STL has insecurity

InSecSS
STL(κ,w,k),C(t, d, l, lw) ∈

O(2−h+2wl2 + le−k/2w

) + InSecPRF
F(κ)(t + O(1), d + O(1), l2w) .

More precisely,

InSecSS
STL(κ,w,k),C(t, d, l, lw) < 2−h

(
l(l + 1)22w − l(l + 3)2w + 2l

)
+2l

(
1− 1

2w

)k

+InSecPRF
F(κ)(t + 1, d + O(1), l2w).

Proof. The proof of Theorem 4 consists of a hybrid argument. The first step in
the hybrid argument is replace the stegoencoder SE with SE 1, which is the same
as SE except that it uses a truly random G instead of pseudorandom F , which
accounts for the term InSecPRF

F(κ)(t+O(1), d+O(1), l2w). Then, rather than con-
sider directly the statistical difference between C and the output of SE 1 on an

242 N. Dedić et al.

lw-bit message, we bound it via a series of steps involving related stegoencoders
(these are not encoders in the sense defined in Section 2, as they do not have cor-
responding decoders; they are simply related procedures that help in the proof).

We now describe these encoders SE 2, SE 3, and SE 4. SE 2 is the same as
SE 1, except that it maintains a set Q of all answers received from M so far.
After receiving an answer si,j ← M(H), it checks if si,j ∈ Q; if so, it aborts
and outputs “Fail”; else, it adds si,j to Q. It also aborts and outputs “Fail” if j
ever reaches k during an execution of the inner loop. SE 3 is the same as SE 2,
except that instead of thinking of random function G as being fixed before hand,
it creates G “on the fly” by repeatedly flipping coins to decide the w-bit value
assigned to si,j . Since, like SE 2, it aborts whenever a collision between strings of
covertexts occurs, the function will remain consistent. Finally, SE 4 is the same
as SE 3, except that it never aborts with failure.

In a sequence of lemmas, we bound the statistical difference between the
outputs of SE 1 and SE 2; show that it is the same as the statistical difference
between the outputs of SE 3 and SE 4; and show that the outputs of SE 2 and
SE 3 are distributed identically. Finally, observe that SE 4 does nothing more
than sample from the channel and then randomly and obliviously to the sample
keep or discard it. Hence, its output is distributed identically to the channel.
The details of the proof are contained in the full version [DIRR04]. ��
Theorem 5. The stegosystem STL has unreliability

UnRelSS
STL(κ,w,k),C,l ≤

l
(
2w exp

[
−2h−2w−1]+ exp

[
−2−w−1k

])
+ InSecPRF

F(κ)(t, d, l2
w) ,

where t and d are the expected running time and description size, respectively,
of the stegoencoder and the stegodecoder combined.

Proof. As usual, we consider unreliability if the encoder is using a truly random
G; then, for a pseudorandom F , the encoder and decoder will act as a distin-
guisher for F (because whether something was encoded correctly can be easily
tested by the decoder), which accounts for the InSecPRF term.

Now, fix channel historyH and w-bit message m, and consider the probability
that G(DH) is so skewed that the weight of G−1(m) in DH is less c2−w for some
constant c < 1 (note that the expected weight is 2−w). Let Σ = {s1 . . . sn} be the
alphabet, and let PrDH [si] = pi. Define random variable Xi as Xi = 0 if G(si) =
m and Xi = pi otherwise. Then the weight of G−1(m) equals 1−

∑n
i=1 Xi. Note

that the expected value of
∑n

i=1 Xi = 1 − 2−w. Using Hoeffding’s inequality
(Theorem 2 of [Hoe63]), we obtain

Pr[1−
n∑

i=1

Xi ≤ cR] ≤ exp

[
−2(1− c)22−2w/

n∑
i=1

p2
i

]

≤ exp

[
−2(1− c)22−2w/2−h/

n∑
i=1

pi

]
= exp

[
−2(1− c)22h−2w

]
,

Upper and Lower Bounds on Black-Box Steganography 243

where the second to last step follows from pi ≤ 2−h and the last step follows
from

∑n
i=1 pi = 1. If we now set c = 1/2 and take the union bound over all

message m ∈ {0, 1}w, we get 2w exp
[
−2h−2w−1

]
.

Assuming G(DH) is not so skewed, the probability of failure is

(1− c2−w)k ≤ exp
[
−c2−wk

]
.

The result follows from the union bound over l. ��

Acknowledgements

We are grateful to Nick Hopper for clarifying related work.
The authors were supported in part by the National Science Foundation

under Grant No. CCR-0311485. Scott Russell’s work was also facilitated in part
by a National Physical Science Consortium Fellowship and by stipend support
from the National Security Agency.

References

[BC04] Michael Backes and Christian Cachin. Public-key steganography with
active attacks. Technical Report 2003/231, Cryptology e-print archive,
http://eprint.iacr.org, 2004.

[Blo70] B. Bloom. Space/time tradeoffs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, July 1970.

[BM02] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. In Proceedings of the Fortieth Annual Allerton Conference on
Communication, Control and Computing, 2002.

[Cac98] C. Cachin. An information-theoretic model for steganography. In Second
Internation Workshop on Information Hiding, volume 1525 of Lecture Notes
in Computer Science, pages 306–316, 1998.

[DIRR04] Nenad Dedić, Gene Itkis, Leonid Reyzin, and Scott Russell. Upper and lower
bounds on black-box steganography. Technical Report 2004/246, Cryptol-
ogy e-print archive, http://eprint.iacr.org, 2004.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

[GGN03] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementa-
tion of huge random objects. In 44th Annual Symposium on Foundations of
Computer Science, pages 68–79, Cambridge, Massachusetts, October 2003.

[HILL99] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Com-
puting, 28(4):1364–1396, 1999.

[HLvA02] N. Hopper, J. Langford, and L. von Ahn. Provably secure
steganography. Technical Report 2002/137, Cryptology e-print archive,
http://eprint.iacr.org, 2002. Preliminary version in Crypto 2002.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, March
1963.

244 N. Dedić et al.

[Hop04] Nicholas J. Hopper. Toward a Theory of Steganography. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, July 2004. Available
as Technical Report CMU-CS-04-157.

[KMR02] Lea Kissner, Tal Malkin, and Omer Reingold. Private communication to N.
Hopper, J. Langford, L. von Ahn, 2002.

[Le03] Tri Van Le. Efficient provably secure public key steganography. Techni-
cal Report 2003/156, Cryptology e-print archive, http://eprint.iacr.org,
2003.

[LK03] Tri Van Le and Kaoru Kurosawa. Efficient public key steganography secure
against adaptively chosen stegotext attacks. Technical Report 2003/244,
Cryptology e-print archive, http://eprint.iacr.org, 2003.

[McE02] Robert J. McEliece. The Theory of Information and Coding. Camridge
University Press, second edition, 2002.

[Rey04] Leonid Reyzin. A Note On the Statistical Difference of Small
Direct Products. Technical Report BUCS-TR-2004-032, CS De-
partment, Boston University, September 21 2004. Available from
http://www.cs.bu.edu/techreports/.

[Sim83] G. J. Simmons. The prisoners’ problem and the subliminal channel. In
David Chaum, editor, Advances in Cryptology: Proceedings of Crypto 83,
pages 51–67. Plenum Press, New York and London, 1984, 22–24 August
1983.

[vAH04] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology—
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

A On Using Public ε-Biased Functions

Many stegosystems [HLvA02, vAH04, BC04] (particularly public-key ones) use
the following approach: they encrypt the plaintext using encryption that is in-
distinguishable from random, and then use rejection sampling with a public
function f : Σ → {0, 1}w to stegoencode the plaintext.

For security, f should have small bias on DH: i.e., for every c ∈ {0, 1}w,
Prs∈DH [s ∈ f−1(c)] should be close to 2−w. It is commonly suggested that a
universal hash function with a published seed (e.g., as part of the public key) be
used for f .

Assume the stegosystem has to work with a memoryless channel C, i.e., one
for which the distribution D is the same regardless of history. Let E be the
distribution induced on Σ by the following process: choose a random c ∈ {0, 1}w
and then keep choosing s ∈ D until f(s) = c. Note that the statistical difference
between D and E is exactly the bias ε of f . We are interested in the statistical
difference between Dl and El.

For a universal hash function f that maps a distribution of min-entropy h
to {0, 1}w, the bias is roughly ε = 2(−h+w)/2. As shown in [Rey04], if l < 1/ε
(which is reasonable to assume here), statistical difference between Dl and El is
roughly at least

√
lε.

Hence, the approach based on public hash functions results in statistical
insecurity of about

√
l2(−h+w)/2.

Fair-Zero Knowledge

Matt Lepinski, Silvio Micali, and Abhi Shelat

Massachusetts Institute of Technology, Cambridge MA 02114, USA
{lepinski, silvio, abhi}@csail.mit.edu

http://crypto.csail.mit.edu/~abhi

Abstract. We introduce Fair Zero-Knowledge, a multi-verifier ZK sys-
tem where every proof is guaranteed to be “zero-knowledge for all veri-
fiers.” That is, if an honest verifier accepts a fair zero-knowledge proof,
then he is assured that all other verifiers also learn nothing more than
the verity of the statement in question, even if they maliciously collude
with a cheating prover.

We construct Fair Zero-Knowledge systems based on standard com-
plexity assumptions (specifically, the quadratic residuosity assumption)
and an initial, one-time use of a physically secure communication channel
(specifically, each verifier sends the prover a private message in an enve-
lope). All other communication occurs (and must occur) on a broadcast
channel.

The main technical challenge of our construction consists of provably
removing any possibility of using steganography in a ZK proof. To over-
come this technical difficulty, we introduce tools —such as Unique Zero
Knowledge— that may be of independent interest.

1 Introduction

A New Worry. A traditional zero-knowledge proof enjoys two crucial properties,
soundness and zero knowledge, each guarding the interests of mutually cautious
parties. Soundness protects the verifier: a malicious prover has practically no
chance to convince the verifier of a false statement. Zero knowledge protects the
prover: a malicious verifier has practically no chance of learning anything about
the statement in question beyond the fact that it is indeed true.

A new threat emerges, however, when there are multiple verifiers. In such a
situation, a malicious prover may collude with some of the verifiers by gener-
ating proofs that convey additional information to them while remaining zero-
knowledge to all others. Indeed, an honest verifier that accepts a ZK proof of a
given theorem learns nothing more that the verity of the theorem statement in
question, but can he be sure that the same holds for his “colleagues?”

Notice that the traditional definition of a zero-knowledge proof is orthogonal
to the above concern. Let us illustrate this point by constructing the following
(somewhat artificial) NIZK proof system, (P ′,V ′) —which uses as a subroutine
(P,V), the original NIZK proof system of [BSMP91].

P ′ initially chooses (PK,SK), the public and secret key of a uniquely de-
cryptable public-key cryptosystem. Later on, whenever it receives as an input

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 245–263, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 M. Lepinksi, S. Micali, and A. Shelat

a member x of a NP-language L together with a witness w for x ∈ L, P ′

first computes w′, an encryption of w relative to PK, and then outputs a
proof string π′ which consists of (1) PK, (2) w′, and (3) a NIZK proof —
according to (P,V) and some common reference string σ— of the statement
“there is a decryption key corresponding to PK (i.e., SK) such that after
decrypting w′ with said key, one obtains a witness for x ∈ L.”

Clearly each such π′ is accepted by (and is zero-knowledge for) all honest
verifiers. But, a malicious prover P ′ may, without notice, ensure that it is “much
more informative” for some colluding verifiers. There are very subtle ways for
him to accomplish this, but the simplest one consists of having P ′ provide each
colluding verifier with SK, so that each subsequent π′ reveals the corresponding
witness w in its entirety to each colluding verifier!

A New Goal. We wish to build a multi-verifier zero-knowledge system that is
provably fair. That is, we wish to guarantee that whenever an honest verifier
accepts a fair ZK proof, then he is assured that all other verifiers too (whether
honest or colluding with a malicious prover) learn nothing more than the ver-
ity of the statement in question. In other words, we wish to extend the zero-
knowledgeness property of a ZK system to protect also the Verifier(s) and not
just the Prover!

A Motivating Example. In repeated auctions of similar items,1 it may be desir-
able that all bids in an individual auction (including the winning bid) remain
secret in subsequent ones. This goal appears to be a golden opportunity for
encryption and zero-knowledge proofs, but special care must be taken. The fol-
lowing example illustrates.

A closely-watched auctioneer possessing a public encryption key PK sells
a series of n lithographs from the same etching by repeating the following
two-step process, once for each lithograph. First, the bidders publicly an-
nounce their individual bids encrypted with PK; second, the auctioneer
proves in zero knowledge who the winner of the current lithograph is. At
the very end, the auctioneer privately collects all right amounts from the
winners.

Using zero-knowledge proofs in Step 2 aims at providing the minimum amount
of knowledge enabling the bidders to decide whether they should continue bid-
ding in subsequent auctions. At a superficial level, this aim seems to be achieved:
First, if the auctioneer is honest, then standard zero-knowledge proofs guarantee
that no additional bid information is leaked prematurely. Second, even if the auc-
tioneer were dishonest, by virtue of being closely-watched he could not use any
“side channels” to divulge additional bid information to a selected subset of the
bidders. A better analysis, however, shows that our new worry naturally arises
in this setting: no matter how closely watched, a dishonest auctioneer might use

1 A well-studied problem in economics.

Fair-Zero Knowledge 247

the ZK proof itself as a mechanism to leak bid information to a colluding bidder
(thus giving him an advantage in later rounds).

In sum, a standard ZK proof of who is winner of an individual auction is not
enough here: what is really needed is a Fair ZK proof!

Fair Zero Knowledge. Syntactically, Fair ZK is a two-phase process. The first
phase consists of a preprocessing protocol, where various quantities (e.g., public
keys) are established, and private channels are (seemingly necessarily) used.
The second phase consists of a proving protocol, where it is imperative that the
Prover be restricted to communicate via broadcast only. (Were a malicious prover
connected to some colluding verifiers via private channels during the proving
phase, it would be impossible to prevent the selective dissemination of witness
information!) In a sense, Prover and Verifiers might execute the preprocessing
phase on Earth, but for the proving phase, Prover is sent to the moon from
where anything he says is heard by all Verifiers.

Semantically, Fair Zero Knowledge guarantees that, for any NP-theorem that
(1) has a single witness and (2) is chosen after preprocessing ends, the prover
cannot undetectably communicate anything more than the truthfulness of the
theorem in question to any verifier, no matter what arrangements they might
have made beforehand.

Postponing for a moment a discussion of our “unique-witness constraint,”
notice that Fair Zero Knowledge does not provide any guarantees for theorems
whose witnesses are known beforehand to the prover. In this case, the (to be)
prover could have already divulged witness information to anyone he wanted, and
protocol designers have no responsibility for what happens before the protocol
starts! 2

A bit more precisely, assume that, for a unique-witness NP-language L and
for all i = 1, 2, . . . , (a) xi ∈ L is chosen on-line and its statement made public,
and (b) wi, the witness of xi, is privately given to the Prover. Then, Fair ZK
enables the Prover to prove to a set of verifiers that every xi, individually and
in order, indeed belongs to L, so that

1. When the Prover is honest, no set of malicious verifiers can learn anything
more than the mere sequence of statements “xi ∈ L and it is the ith theorem;”
and

2. No dishonest prover can convey any knowledge other than xi ∈ L to any
colluding verifier —no matter how much information they secretly share up
to the last round of preprocessing— without being detected by all honest ver-
ifiers.

2 In this extended abstract we wish to keep the notion of Fair ZK as simple as pos-
sible. In the final version, however, we shall allow colluding verifiers to have prior
partial information y about a proven theorem x, and extend Fair ZK to ensure that
they cannot get any knowledge from the proofs beyond y and x’s truthfulness. The
difficulty of doing this right lies in the fact that a malicious prover himself may know
some other information z about x beforehand, including what information y some
verifiers know.

248 M. Lepinksi, S. Micali, and A. Shelat

We are actually able to construct a non-interactive version of Fair ZK un-
der physical-channel and standard complexity assumptions. Namely, under the
quadratic residuosity assumption, there exists a Fair ZK proof system whose
prover —after a preprocessing protocol in which he receives an envelope from
each verifier— proves every theorem xi non-interactively by broadcasting a proof
string πi.

Technical Challenges. There are two obstacles in constructing Fair ZK.
The first, and main obstacle is preventing steganography. The prover of any

zero knowledge proof must be probabilistic, and this very probabilism ushers
in the ability for a malicious prover to communicate with colluding verifiers
over “subliminal channels.” That is, a malicious prover can use the proba-
bilism of a ZK proof to convey steganographically, to a subset of verifiers,
witness information about any NP theorem —even one chosen after he has
been “sent to the moon.” For example, in the above repeated-auction pro-
cess, all theorems are of the type “the winner of the current auction is bidder
X”, and thus are generated after the prover (i.e., the auctioneer) starts be-
ing closely watched. Yet, a malicious auctioneer may agree beforehand with a
subset of colluding bidders on a way to encode the actual amount of the high-
est bid in the bits he broadcasts in the corresponding ZK proof.3 In fact, as
early as 1987, Desmedt, Goutier and Bengio [DGB87] illuminated this prob-
lem by showing that a particular zero-knowledge protocol due to Fiat and
Shamir can easily be used as a perfect subliminal channel. More generally, Lang-
ford, Hopper, and von Ahn [NHvA02] show that whenever there is entropy,
steganographic communication —provably undetectable by honest parties—
always exists.

Perhaps surprisingly, in light of their result, we show how to provably prevent
steganography in our context. In our approach, we construct a novel type of ZK
system, uniZK, in which the prover’s probabilism is confined to a preprocessing
phase after which not only is he made totally deterministic, but his determinism
is actually made universally verifiable. Very roughly, in a uniZK system the
prover first establishes a suitable public key, so that, for any NP-theorem x
having a single witness, it is universally verifiable that there exists a single ZK
way to prove x that is acceptable by an honest verifier. Such “unique provability”
therefore provably bans steganography from uniZK proofs.

Note that in our application we need verifiable determinism, and not just
determinism. Naively, one might consider constructing a uniZK system by re-
placing the probabilistic prover of any NIZK system with one who chooses a short
random seed for a pseudo-random function [GGM86] and acts deterministically
ever after. However, while this would be conceptually simple to do, it would also
be impossible for an efficient verifier to check that the prover indeed behaved
in such a fashion instead of flipping new coins for each proof. Thus, an honest
verifier may not be convinced that a malicious prover is not steganographically

3 For example, a naive approach is to make the first 20 bits of the proof the same as
those of the winning bid.

Fair-Zero Knowledge 249

conveying additional witness information to colluding verifiers. In sum, prover
determinism might be easy, but verifiable prover determinism is not!

After so overcoming steganography, a second obstacle remains in building Fair
Zero Knowledge. While, in a uniZK system, knowledge of the prover’s public key
ensures that there is only one acceptable proof, knowledge of the corresponding
secret key may enable anyone to read off the entire witness from such a proof!
Thus, we must ensure that the prover is the only one possessing knowledge of
his secret key. If the generation of his public-secret key pair were totally up to
him, however, this would be impossible, because the prover and his accomplices
may agree on which public-secret keys he will choose. Instead, we show how to
generate and distribute the prover’s keys by a protocol involving all verifiers
so that, as long as there is one honest verifier, then only the prover will know
the resulting secret key. It is in this subprotocol that we make a single use of
a physically secure communication channel: namely every verifier sends to the
prover a single message in an envelope. After this, all communication (in the
prover-key-generation subprotocol and in all subsequent uniZK proofs) is via
broadcast.

More on Preprocessing. Our protocol and even our definition of Fair ZK includes
preprocessing. The reason for this is that Zero Knowledge, as any secure proto-
col, requires randomness and (as discussed above) any amount of entropy enables
undetectable steganography, which defeats fairness. We prove, however, that we
can confine the necessary entropy “somewhere” where it is actually “innocu-
ous”. Such a place is our preprocessing phase. Though steganography may be
rampant during preprocessing, it is also useless since the theorems to be proved
in zero-knowledge have not yet been selected – and thus no information about
their proofs can be conveyed. Nor can such information be conveyed afterward
preprocessing, since all communication after preprocessing is via broadcast and
verifiably unique!

More On Envelopes. Usage of a physically secure channel is crucial to our pre-
processing. In our application, it is unclear how to simulate these channels by
an “encrypt-and-broadcast” process, since such methodology must start with
the prover choosing a suitable encryption key, and he could always choose a key
whose corresponding secret key is already known to his accomplices. In such
a case, any message sent encrypted to the prover by an honest verifier will be
understood by a dishonest one, defeating the very reason for encrypting it. By
delivering a message to the prover in an envelope, however, honest verifiers are
guaranteed that the message will indeed remain secret to any malicious verifier,
thus “dividing the state of knowledge of the prover from that of the verifier” at
a specific moment of the protocol. (The protocol must then ensure —e.g., via
“steganography-free broadcasting”— that these divided states of knowledge will
indeed continue to remain so!)

But if physically secure channels must be used, why envelopes rather than
traditional private channels? The point is that traditional private channels are
“bidirectional.” We instead need to prevent a malicious prover, after receiving

250 M. Lepinksi, S. Micali, and A. Shelat

a private message M from an honest verifier along a physically secure channel,
from forwarding M to a colluding verifier along another, similar channel. Thus,
we require mono-directional channels from the verifiers to the prover. Envelopes
in our protocol are just good (and well known!) examples of mono-directional
physically secure channels. Let us remark that, since envelopes may be more
inconvenient than broadcasting in many a setting, it is a feature of our protocol
that envelope communication is confined to a single round!

More on Witness Uniqueness. Let us now explain why we define Fair ZK for
NP-languages whose members have a unique witness. We allow a Fair ZK proof
to depend (via an underlying uniZK proof) on the given input witness w. Thus, if
the prover knows two or more witnesses for x ∈ L, he can have “a multiplicity of
Fair ZK proofs to choose from,” which would again enable steganographic com-
munication. For instance, the NP-complete language of 3-colorability appears to
be unsuitable for Fair ZK proofs as we define them, because from any coloring
of a graph one can immediately compute 5 more colorings by just permuting the
three colors!

Note, however, that our unique NP-witness requirement is often automati-
cally satisfied in cryptographic applications. This is so because underlying com-
plexity problems (e.g., integer factorization, discrete logarithm, etc.) often have
unique solutions, and appropriate NP reductions can be used so as to “preserve
such uniqueness.” For example, the desired ZK proofs of our motivating example
are for unique-witness languages, because all bids are encrypted by means of a
uniquely decryptable cryptosystems.

More generally, Fair ZK actually applies to computationally unique-witness
languages, that is, to languages for which it is hard for the prover to generate a
second witness from a first one. (For example, this encompasses statements which
refer to most computationally binding commitment schemes.) In sum therefore,
this enlarged constraint is very mild in a cryptographic setting, making Fair ZK
widely applicable.

Notice, that while Fair ZK is quite meaningful when applied to NP-languages
having computationally unique witnesses, uniZK can be meaningfully defined
for all NP-languages.4 Thus, in the next section we define uniZK for all NP-
languages, and then, in Section 3, we define Fair ZK only for those languages
having computationally unique witnesses.

2 Notation

We shall follow, verbatim, [BSMP91] and [GMR88]. A function μ(·) from non-
negative integers to reals is called negligible if for every constant c > 0 and
all sufficiently large n, μ(n) < n−c. An efficient algorithm is a probabilistic
algorithm running in expected polynomial time. If S is a probability space,

4 Essentially, as we shall see, “ any witness efficiently maps to a uniZK proof, and vice
versa.”

Fair-Zero Knowledge 251

then “x ← S” denotes the probabilistic algorithm consisting of choosing an
element x at random according to S and returning x. If p is a predicate, then
the notation “x ← S|p(x)” denotes the assignment consisting of choosing an
element x at random according to S, and returning the first x such that p(x) is
true. Let S1, S2, . . . be probability spaces, then the notation Pr[x1 ← S1; x2 ←
S2; . . . : p(x1, x2, . . .)] denotes the probability that the predicate p(x1, x2, . . .)
is true after the ordered execution of the assignments x1 ← S1; x2 ← S1; . . . If
S, T , . . . are probability spaces, the notation {x ← S; y ← T ; · · · : (x, y, · · ·)}
denotes the new probability space over {(x, y, · · ·)} generated by the ordered
execution of the assignments x← S, y ← T, · · · .

3 Unique Non-interactive Zero-Knowledge

We define Unique Non-interactive Zero-Knowledge (uniZK) proofs as special
types of NIZK proofs. Thus, we begin this section with a review of NIZK, and
then proceed to give a precise formalization and construction of uniZK.

NIZK, in a Nut Shell. An NIZK proof system [BFM88] [BSMP91] for a NP-
language L consists of a pair of efficient algorithms, a prover P and a verifier V ,
and a public, random string, σ, called the reference string. When proving that
the statement “x is a member of L”, it is assumed that P is also privately given a
witness w for x ∈ L. The proof process is extremely simple: P computes a single
string π (for proof), π = P (x,w, σ), and sends it to V . The verifier, on inputs
x, σ and proof string π accepts or rejects, without having to reply to P (hence,
non-interactively). This process can be repeated, with the same reference string,
for an unbounded number of theorems (i.e., members of L).

Semantically, an NIZK satisfies the usual ZK properties of Completeness,
Soundness and Zero Knowledgeness. In this non-interactive setting, complete-
ness means that, for every reference string and every genuine member of L,
the verifier accepts all honestly generated proofs. soundness means that, for
most reference strings, no acceptable “proof ” π∗ exists for any x∗ �∈ L. Zero-
Knowledgeness means that there exists an efficient simulator S that first gen-
erates a reference string σ′ and then, for any sequence of theorems, xi, x2, . . . ,
(and without any witness information) generates strings π′

1, π
′
2, . . ., such that

the sequence σ′, π′
1, π

′
2, . . . is indistinguishable from the sequence consisting of

a random reference string followed by the proofs that an honest prover would
generate for the same theorem sequence —with the proper witness information!

The construction of [BSMP91] actually satisfies (but does not claim) a
stronger notion of Zero Knowledgeness, that was put forward in [FLS90]. Namely,
the simulator S (rather than being given the sequence of theorems x1, x2, . . . up-
front) must produce each string πi knowing theorem xi but not future ones.
(Thus, although we adopt this stronger notion of zero knowledgeness for uniZK,
we can base our uniZK construction on the NIZK system of [BSMP91].)

Adding Verifiably Unique Provability to NIZK. As anticipated in the Introduc-
tion, we wish to define uniZK for all NP-languages (rather than for those having

252 M. Lepinksi, S. Micali, and A. Shelat

computationally unique witnesses). We do so by demanding that, for any x ∈ L,
any prover —honest or malicious— “may produce a single uniZK proof for every
witness he knows.” How can this be formalized?

The easiest way would be demanding that, every x ∈ L, no matter how many
witnesses it may have, has a single uniZK proof. Unfortunately, no such uniZK
system may exist. (We certainly do not know how to construct one.)

A second way might be demanding the existence of a unique uniZK proof
for each NP-witness. Unfortunately, relative to our steganography-free goals,
such a definition may not be sufficiently meaningful, because it leaves open the
possibility for a malicious prover to choose from a multiplicity of uniZK proofs
by “rewriting” then. Assume that an efficient, malicious prover P ′ were given a
witness w of a theorem x belonging to an NP-language L with computationally
unique witnesses. Then, w would be the only witness of x ∈ L known to P ′, and
by Completeness, P ′ could certainly produce one uniZK proof, πw. But now, if
from πw one could also compute additional uniZK proofs for x ∈ L, P ′ could
compute a multiplicity of uniZK proofs for x ∈ L from a single witness!

We thus formalize uniZK by demanding that (for most reference strings σ
and public keys PK) the honest algorithm P forms an easy-to-invert bijection
between the witness set of x ∈ L (denoted Wx) and the set of acceptable uniZK
proofs (denoted ΠPK(x, σ)). This captures the notion that any prover “can only
produce a single uniZK proof for any witness he knows:” his ability to produce
multiple uniZK proofs from a single witness can solely originate from his ability
of producing multiple witnesses from a single one.

To complete our formalization, we must handle the case of a cheating prover
who posts an invalid public key PK∗; that is, a key that does not pass a proper
inspection of a honest verifier. In this case, it is reasonable for the verifier to
reject any subsequent proof: after all, he knows for certain that the prover is
malicious! Therefore, our definition requires that either the set of acceptable
proofs ΠPK∗(x, σ) is empty, or else there exists a secret key SK∗ such that
P (x, ·, σ, SK∗) forms an efficient bijection from Wx to ΠPK∗(x, σ). For this to
be meaningful, however, such SK∗ should be unique, that is, there must be a
function sk (possibly hard to compute) mapping any “reasonable looking” public
key PK∗ to the right SK∗.

In sum, our definition states that unless ΠPK∗(x, σ) is empty, P (x, ·, σ,
sk(PK∗)) forms an efficient bijection from Wx to ΠPK∗(x, σ).

3.1 Formal Definition

Let L be an NP language, and RL be its corresponding, polynomial-time relation.
We say that a sequence of pairs of strings, (x1,w1), (x2,w2), . . ., is a theorem-
witness sequence for L if each xi ∈ L and wi ∈ RL(xi).

Definition 1. A triple of efficient algorithms, (G,P,V), where P is determin-
istic, is a unique non-interactive zero-knowledge (uniZK) proof system for an NP-
language L if there exists a positive constant c and a negligible function μ such
that the following properties are satisfied:

Fair-Zero Knowledge 253

Completeness: ∀ theorem-witness sequences (x1,w1), (x2,w2), . . . for L, and for
all k > 2

Pr
[

(PK,SK)← G(1k); σ ← {0, 1}kc

; π1 = P (x1,w1, σ, SK, 1);
π2 = P (x2,w2, σ, SK, 2) . . . :

∧
i V (xi, σ,PK,πi, i) = 1

]
= 1

Soundness: ∀k > 2 and ∀ algorithms P ∗

P r
[
σ←{0, 1}kc

; (x∗,PK∗, π∗, i)←P ∗(σ) : x∗ �∈L∧V (σ, x∗,PK∗, π∗, i)=1
]
<μ(k)

Zero-Knowledgeness: ∃ an efficient algorithm S such that ∀ theorem-witness se-
quences (x1,w1), (x2,w2), . . . for L, the following two ensembles are computa-
tionally indistinguishable:{

(PK,SK)← G(1k);σ ← {0, 1}kc

;π1 = P (x1,w1, σ, SK, 1);
π2 = P (x2,w2, σ, SK, 2) . . . : (σ,PK,π1, π2, . . .)

}
k{

(PK ′, SK ′, σ′)← S(1k); π′
1 ← S(SK ′, x1, 1);

π′
2 ← S(SK ′, x2, 2), . . . : (σ′,PK ′, π′

1, π
′
2, . . .)

}
k

Uniqueness: ∃ a deterministic function sk(·) and an efficient deterministic al-
gorithm P−1 such that ∀x ∈ L, ∀i > 0, and ∀PK∗ ∈ {0, 1}∗,

Pr

⎡⎢⎣σ ← {0, 1}kc

;
(
|Πi

PK∗(x, σ)| > 0
)
⇒

P (σ, x, ·, sk(PK∗), i) : Wx
1−1−→ Πi

PK∗(x, σ)
∧

P−1(σ, x, ·, sk(PK∗), i) : Πi
PK∗(x, σ) 1−1−→Wx

⎤⎥⎦ > 1− μ(k)

where Wx = {w : w ∈ RL(x)} and Πi
PK∗(x, σ) = {π : V (x, σ,PK ′, π, i) = 1}.

3.2 Constructing uniZK

We can construct a uniZK system based on the hardness of the quadratic resid-
uosity problem[GM84], for Blum integers, by modifying the protocol of Blum,
De Santis, Micali and Persiano [BSMP91]. 5

Theorem 1. If quadratic residuosity is hard, then there exist uniZK systems
for 3SAT.

Proof Sketch: The key generator, G(1k), produces a public key consisting of a
randomly selected k-bit Blum integer, x, and a quadratic non-residue, y mod x.
We denote the tuple (x, y) as a proving pair. The secret key consists of the
factorization of x.

Let (a1, . . . , am) be a tuple of k-bit integers that have Jacobi symbol 1
mod x. If (b1, . . . , bm) is tuple of bits then we say that (a1, . . . , am) has type

5 We can also make a uniZK system for CIRCUIT-SAT by combining the single-theorem
protocol of Damgärd [Dam92] with the multi-theorem techniques of Blum, De Santis,
Micali and Persiano.

254 M. Lepinksi, S. Micali, and A. Shelat

(b1, . . . , bm) if each ai is a square mod x if and only if bi is 0. If (c1, . . . , cm) is
a tuple of k-bit integers then we say that (a1, . . . , am) and (c1, . . . , cm) have the
same type if ai is a square mod x if and only if ci is a square mod x.

A prover who knows the factorization of x can prove that the tuple
(a1, . . . , am) has type (b1, . . . , bm) by providing, for each i, a square root of aiy

bi

mod x. Similarly, a prover can prove that (a1, . . . , am) and (c1, . . . , cm) have
the same type by providing, for each i, a square root of aici mod x. To make
these proofs unique, whenever the prover provides a square root, he provides the
Jacobi-symbol 1 square root which is less than n/2. (Since x is a Blum integer,
there is exactly one such root for every quadratic residue.) The verifier rejects
any proof in which a different square root is provided.

Following [BSMP91], we first present a proving algorithm, P , for the single
theorem case. Let 3-SAT be the language of satisfiable boolean 3-CNF formulas.
Let φ ∈ 3 − SAT be a theorem with m clauses and variables v1, . . . , vn and let
w be a satisfying assignment for φ.

1. Break the reference string into two parts, ρ and τ where |ρ| = 16k3 and
|τ | = 64k2n + 48k3m.

2. Parse ρ into k-bit integers; skip any values that are greater than x or have
Jacobi symbol −1.

3. Prove that each of the remaining k-bit integers in ρ has either type 0 or type
1 by giving a square root mod x or a square root of it times y mod x. As
in [BSMP91], this proves that (x, y) is a properly-formed proving pair, that
is, that x is a Blum Integer and y is a quadratic non-residue mod x.

4. Parse τ into k-bit integers as in Step 2.
5. Acquire n pairs of k-bit integers such that each pair is either of type (1, 0) or

type (0, 1). To do this, parse a section of τ as 8kn pairs. Then for each pair
(s, t) (in order) either give a square root of st mod x and discard the pair or
give a square root of sty mod x and select the pair. Once n pairs have been
selected, discard any remaining pairs.

6. Now define a value ui corresponding to each variable vi in φ as follows: let
ui be the quadratic residue in the ith pair acquired in Step 5 if vi is false in
w, and to the non-residue in the pair otherwise.

7. Let vd, ve and vf be the three variables that appear in clause j of φ. For each
clause j of φ, form a triple (aj , bj , cj) where aj is equal to ud if vd appears
non-negated in the clause or to the product of ud and y mod x otherwise.
The values bj and cj are analogously defined.

8. Parse the remaining portion of τ as 8k2m triples of k-bit integers. Among the
jth set of 8k2 triples, select 8 triples that all have different types as follows:
within a set of 8k2 triples, inspect each triple in order and either select it
or provide a proof that it is of the same type as a previously selected triple.
If at the end, 8 triples have been selected, then either all 8 triples are of
different types, or one type did not occur within the set at all. In the former
case, prove that one of the selected triples has type (0, 0, 0) and discard it.
Denote the remaining 7 selected triples as ((α1

j ,β
1
j , γ

1
j), . . . , (α7

j ,β
7
j , γ

7
j)).

Fair-Zero Knowledge 255

9. Finally, for each j, show that for some 1 ≤ t ≤ 7, (aj , bj , cj) is of the same
type as (αt

j ,β
t
j , γ

t
j). Note, this proves that the clause is satisfied since the

identified triple (αj ,βj , γj) is not of type (0, 0, 0).

In the following, we refer to the portion of π generated by step I in the honest
prover algorithm as πI . The single-theorem verifier algorithm, V , proceeds as
follows.

1. Run the honest-prover algorithm as per step 1, 2, 4 and 7 to generate π2, π4, π7
and verify that the corresponding proof string parts are equivalent. Also ver-
ify that every root given in the proof string has Jacobi symbol 1 and is less
than n/2. Reject if not.

2. As per [BSMP91], verify π3, which is the proof that (x, y) is well-formed.
3. Verify π5 by making sure that each pair is handled, and that the proof string

contains a proper root of the pair.
4. Verify π8 by checking that for each set of triples, the prover has handled the

pairs in order, and that each of the proofs given between triples is sound.
Finally, verify that the opened pair is of type (0, 0, 0)

5. For each clause, verify the proof that it is associated with one of it’s remain-
ing seven selected triples.

As in [BSMP91], we now transform the single theorem system to a multiple
theorem one by breaking the random string into three pieces, ρ, τ1 and τ2. We
use ρ to prove that (x0, y0) in a proper proving pair6 . This is done exactly as in
Step 3. At this point, x0 and y0 can be used with τ2 to prove the first theorem as
in the single theorem case (starting from Step 4 since the correctness of (x0, y0)
has already been established).

At this point, our construction diverges from [BSMP91]. Originally, for the
second theorem, the prover in [BSMP91] randomly selects completely new prov-
ing pairs (x00, y00) and (x01, y01) and then uses (x0, y0) and τ1 along with the
single theorem system to prove the auxiliary theorem, “(x00, y00) and (x01, y01)
are properly formed proving pairs.” 7 This approach, however, does not work
in our setting because selecting new random values after posting the public key
compromises the Uniqueness property.

To circumvent this difficulty, we add a seed, s, for a pseudo-random function
f [GGM86] to the prover’s secret key, and a perfectly binding commitment to s
to the prover’s public key. Now whenever the prover in [BSMP91] is instructed
to prove that

“(x0b1...bi0, y0b1...bi0) and (x0b1...bi1, y0b1...bi1) are properly formed prov-
ing pairs”

our prover instead proves that

6 We have changed notation from (x, y) above to (x0, y0) in order to match the notation
from [BSMP91]

7 In general, [BSMP91] describes a tree structure in which (x0b1...bi , y0b1...bi) is used
to certify (x0b1...bi0, y0b1...bi0) and (x0b1...bi1, y0b1...bi1) which are then used to prove
the b1 . . . bi0th and b1 . . . bi1th theorems.

256 M. Lepinksi, S. Micali, and A. Shelat

“(x0b1...bi0, y0b1...bi0) and (x0b1...bi1, y0b1...bi1) are generated using the
BDMP honest prover algorithm with coins fs(0b1 . . . bi)”

Observe that this auxiliary theorem is an NP-statement whose length is a
fixed polynomial in k and can therefore be proven using the single theorem uniZK
system with a sufficiently long τ1. This assures both that (x0b1...bi0, y0b1...bi0) and
(x0b1...bi1, y0b1...bi1) have the necessary properties and also that the prover had
no choice in selecting these values (given his public key).8

We can also extend our system to work for theorems of arbitrary size by using
techniques similar to those in [BSMP91]. Let φ be an arbitrarily long formula
and let (x̂, ŷ) be the next proving pair in the tree construction described above.
First, use (x̂, ŷ) to complete steps 4 through 7. Observe that we cannot continue
with step 8 because τ2 is not long enough to accommodate all of the clauses of
φ. Instead, for each clause, we form the NP-statement

In clause j of φ, the triple (aj , bj , cj) contains one non-residue mod x̂.

Note that the length of this statement is fixed and independent of the size of
φ. Therefore, by making τ2 sufficiently long, we can prove each of these statement
as separate theorems using the successor pairs of (x̂, ŷ) as per the multi-theorem
construction. Note that the prover has no choices to make since the form of the
statement and the order in which they are proven are fixed by the statement φ.

Security Properties. The proof that this scheme is complete, sound, and zero-
knowledge closely follows the corresponding proofs in [BSMP91]. Therefore, we
will only sketch a proof that our construction satisfies Uniqueness.

First, we consider Uniqueness in the single-theorem case. Define the secret
key extraction function, sk(), to take in a proving pair PK = (x, y) and return
the factorization of x. We now observe that if PK is not properly constructed,
then with overwhelmingly high probability over the choice of random string,
the verifier will reject any proof (because of soundness in Step 3), and therefore
ΠPK(σ, φ) will be empty and uniqueness is automatic.

Therefore, we restrict attention to the case when PK is properly formed.
First we observe that P (with auxiliary inputs σ, φ and the factorization of x) is
a deterministic function and that by completeness it maps Wx into ΠPK(σ, φ).
We then put forward an efficient algorithm P−1 (with the same auxiliary inputs)
and show that it is the inverse of P . Finally, we show P and P−1 are bijections
by proving that P−1 is an injection.

In the following we refer to the portion of π generated by step I in the honest
prover algorithm as πI . Let P−1 on input π ∈ ΠPK(σ, φ) inspect the portion
π6, use the factorization of x to determine the quadratic character (mod x) of
u1, . . . , un, and output the corresponding assignment w. Note by inspection of

8 Note here that we need to use a commitment scheme with only a single valid de-
commit message (to assure that the prove does not have a choice in selecting the
witness for the auxiliary theorem).

Fair-Zero Knowledge 257

step 6 P−1 returns the exact assignment that was used to generate π, so P−1 is
the inverse of P .

All that remains to be shown is that P−1 is injective. We do this by showing
that if π∗ �= π = P (σ, φ,w, sk(PK)) and yet P−1(σ, φ, π∗, sk(PK)) = w then
π∗ �∈ ΠPK(σ, φ). We establish this using case analysis. Suppose the first point
at which π and π∗ differ is portion πI . For all cases, except for I = 8, the proof
is straightforward based on the Verifier’s algorithm.

For case I = 8, we first argue that the sub-proof used to show that two triples
are of the same type is sound. This follows directly from the fact that (x, y) is
properly formed.

We next show that π∗ cannot select two triples of the same type. If π∗ se-
lects two triples of the same type, then some type, is not selected. With high
probability, this unselected type appears in the set of 8k2 triples. Therefore, the
Verifier rejects π∗ since π∗ cannot prove that the unselected type is similar to a
previously selected triple. Hence, π∗ must select all 8 types.

If π and π∗ select the same 8 triples, then the fact that π∗ is rejected follows
from the fact that each quadratic residue has exactly one Jacobi symbol 1 root
less than x/2.

Assume π and π∗ select different triples. If π selects a triple that π∗ does
not, then π∗ must give a false proof that this triple was the same as a previously
selected one, and we already know that the Verifier rejects such proofs. Alterna-
tively, if π∗ selects a triple not selected by π, then π∗ cannot contain 8 different
types, and we know that the Verifier rejects in this case as well.

This completes our proof of uniqueness in the single-theorem case. The only
difference in the multi-theorem case is that π and π∗ might use different pairs
(x, y) �= (x∗, y∗) to prove theorem i. This means that (x∗, y∗) is not the output
of the honest prover algorithm with coins specified by the committed seed in the
prover’s public key. In this case, by the soundness of the single-theorem proof
system, the verifier will reject any auxiliary proof certifying (x∗, y∗). ��

Remark: Choosing The Right NP-Complete Problem. We deliberately choose
3SAT (over, say, 3-Colorability) because, in order to satisfy the Uniqueness
property, our multi-theorem construction requires a reduction from general NP-
statements to 3-SAT formula which preserves the number of witnesses (in our
case, one to one). Notice that even parsimonious reductions for 3-colorability
map one witness to six possible colorings.

Remark: Choosing The Right Complexity Assumption. There are several NIZK
systems based on the more general assumption that trap-door permutations exist
(e.g., [FLS90] and [KP98]). Adapting such systems to admit Unique proofs,
however, seems to require substantially new techniques.

4 Fair Zero-Knowledge Proofs
Informally, the goal of Fair ZK is to be a ZK proof system which remains se-
cure even when the prover maliciously colludes with some subset of the verifiers.

258 M. Lepinksi, S. Micali, and A. Shelat

This goal is embodied by the four properties of completeness, soundness, zero-
knowledgeness, and fairness. Completeness states that if the prover and all veri-
fiers are honest, than all true theorems are provable. Soundness states that even
if a (computationally unbounded) dishonest prover collaborates with malicious
verifiers during the set-up stage, no honest verifier will accept a false theorem.
Zero knowledgeness states that even if all verifiers are malicious, they are unable
to extract from the prover any extra information except that xi is true and it
is the ith theorem. Zero knowledgeness is formalized by the existence of an effi-
cient simulator S that generates the same view that the malicious verifiers would
have seen had they interacted with the honest prover about the same sequence of
theorems (without seeing the corresponding witnesses). Importantly, S succeeds
even if it is given each theorem one at a time (without knowing what future
theorems might be). Fairness states that, as long as an honest verifier accepts
all of the theorems, then, no matter how a dishonest prover might collude with
a set of malicious verifiers, no verifier learns anything other than “xi is true and
it is the ith theorem.” This is again formalized via a second simulator S∗ that
generates the same views that the malicious verifiers would have seen if they
interacted with the dishonest prover. Again, S∗ succeeds even though it is given
the sequence of theorems one at at time. As far as we know, this is the first
use of the simulator paradigm to protect the secrets of one dishonest party from
another dishonest party.

Remarks

1. The primary difficulty with simulating a dishonest prover is that the prover
has a witness, and the simulator does not! Clearly, if the prover decides to
cheat and output the witness (or some partial information about it) in lieu of
a valid proof, there is no hope for a simulator to produce indistinguishable
transcripts. Thus, the best one can hope for is to require that simulated
proofs are indistinguishable from real proofs conditioned on the event that
an honest verifier accepts all the real proofs.

2. It is crucial to the applicability of Fair ZK that it applies to an unbounded
sequence of theorems. And it is this feature that prevents us (at least for now)
from relying on general cryptographic assumption. In particular, “single-
theorem” Fair ZK can be achieved without number-theoretic assumptions
by suitable modifying [DMP91].

3. In order to guarantee that no verifier gets additional knowledge about theo-
rem xi, an honest verifier must monitor all “utterances” of the prover as soon
as he hands him an envelope in the preprocessing phase. In particular, the
honest verifier must also monitor the first i− 1 proofs : If all honest verifiers
are “out to lunch”, a dishonest prover may send sk to her accomplices!

4. The order in which a sequence of theorems is proven must be fixed. Giving
the prover freedom to choose this order provides yet another opportunity for
steganography. (Achieving Fair ZK requires us to run a tight ship!) However,
the prover may receive all theorems and witnesses, if available, immediately
after completing the setup protocol successfully.

Fair-Zero Knowledge 259

4.1 Formal Definition

A setup protocol is a protocol, (P,V1, . . . ,Vn), with a distinguished ITM P, the
prover (referred to as player 0), and n ITMs, V1, . . . ,Vn, the verifiers (respectively
referred to as players 1 through n). All players in this protocol exchange message
via broadcast; in addition the verifiers may also send messages in envelopes and
the prover also receives messages in envelopes. Each execution e of the setup
protocol produces a common public output pk ∈ {0, 1}∗ ∪ {⊥} and a secret
output sk for the prover.

In an execution e of this protocol with security parameter 1k, we denote
by viewi(e) the triple (1k, ρi,Mi), where ρi is the random tape for player i
and Mi is the set of messages received by player i during the execution. If
T = (a, b, . . .) is a sequence of players, then denote by viewT (e) the sequence of
views (viewa(e),viewb(e), . . .).

We denote by (pk, sk), e← 〈P 1k

←−→V1, . . . ,Vn〉 the random variable obtained
by uniformly and independently selecting a random tape ρi for each player i,
executing the setup protocol with security parameter 1k and random tapes ρi’s,
and outputting the so generated execution e, with its corresponding outputs pk
and sk.

Definition 1 (Fair Zero Knowledge). Let L be a (computationally) unique-
witness language9 A Fair zero-knowledge proof system for L consists of (1) a
setup protocol, (P,V1, . . . ,Vm); (2) an efficient deterministic proving algorithm
P , (3) an efficient verification algorithm V , and a negligible function, μ, such
that the following properties are satisfied:

Completeness. ∀ theorem-witness sequences (x1,w1), (x2,w2), . . . for L and ∀k ∈
Z+,

Pr

⎡⎢⎣ (pk, sk), e← 〈P 1k

←−→V1, . . . ,Vm〉;
π1 ← P (x1,w1, sk, 1); π2 ← P (x2,w2, sk, 2); . . .

:
∧

i V (xi, πi, pk, i) = 1

⎤⎥⎦ > 1− μ(k)

Soundness. ∀ P ∗,V ∗
1 , . . . ,V

∗
i−1,V

∗
i+1, . . . ,V

∗
n , ∀ sufficiently large k ∈ Z+,

Pr

⎡⎢⎣ (pk∗, sk∗), e← 〈P ∗ 1k

←−→V ∗
1 , . . . ,V

∗
i−1,Vi,V

∗
i+1, . . . ,V

∗
n 〉;

(x∗, π∗, i)← P ∗(view0(e))
: x∗ �∈ L ∧ V (x∗, π∗, pk∗, i) = 1

⎤⎥⎦ < μ(k)

Zero-Knowledgeness. ∀ efficient ITMs V ∗
1 , . . . ,V

∗
n , ∃ an efficient algorithm S

such that ∀ theorem-witness sequences (x1,w1), (x2,w2), . . . for L,

9 A computationally unique-witness language is one in which, given a witness w for a
statement x ∈ L, it is hard to produce a new witness for the same statement.

260 M. Lepinksi, S. Micali, and A. Shelat

⎧⎪⎪⎨⎪⎪⎩
(pk,α,view)← S(1k);

π1 ← S(x1,α, 1);
π2 ← S(x2,α, 2); . . . :

pk,view, x1, π1, x2, π2 . . .

⎫⎪⎪⎬⎪⎪⎭
k

c≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(pk, sk), e← 〈P 1k

←−→V ∗
1 , . . . ,V

∗
n 〉;

π1 ← P (x1,w1, sk, 1);
π2 ← P (x2,w2, sk, 2); . . . :

pk,view1,...,n(e), x1, π1, x2, π2 . . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
k

Fairness. ∀ efficient P ∗,V ∗
1 , . . . ,V

∗
i−1,V

∗
i+1, . . . ,V

∗
n , ∃ an efficient S∗ such that

∀ theorem-witness sequences (x1,w1), (x2,w2), . . . for L, the following two en-
sembles are computationally indistinguishable:⎧⎨⎩ (pk∗,α,view)← S∗(1k);

π∗
1 ← S∗(x1,α, 1); π∗

2 ← S∗(x2,α, 2); . . .
: pk∗,view, x1, π

∗
1 , x2, π

∗
2 . . .

⎫⎬⎭
k⎧⎪⎨⎪⎩

(pk∗, sk∗), e←〈P ∗ 1k

←−→V ∗
1 , . . . ,V

∗
i−1,Vi,V

∗
i+1, . . . ,V

∗
n 〉;

π∗
1 ← P ∗(x1,w1, sk

∗, 1); π∗
2 ← P ∗(x2,w2, sk

∗, 2); . . .
: pk∗,view1,...,i−1,i+1,...,n(e), x1, π

∗
1 , x2, π

∗
2 , . . .

∣∣∣∣∣∣∣
∧

iV (xi, πi, pk
∗, i)=1

⎫⎪⎬⎪⎭
k

4.2 Constructing Fair ZK

Our goal is to defeat steganographic attacks by using uniZK. However, we can-
not allow the prover to pick his own secret key (since he might share it with a
verifier beforehand). Therefore, we need to incorporate randomness from all of
the verifiers during the selection of a prover secret key. We show that if we allow
the prover to receive a single envelope from each verifier during the preprocess-
ing, that we can transform any UniZK system into a Fair zero-knowledge proof
system.

Theorem 2. The existence of a uniZK proof system and a family of trap-door
one-way permutations implies a fair zero knowledge proof system in which, dur-
ing the preprocessing phase, each verifier sends the prover a single envelope.

Proof Sketch: We first present our fair zero-knowledge protocol and then sketch a
proof that the protocol satisfies the security properties specified in our definition
of fair zero-knowledge.

– Preprocessing Phase:
1. The players engage in a simulatable coin-flipping protocol which is se-

cure against an unbounded Prover to generate a reference string, σ. For
example, in order to generate a single bit, the prover uses a perfectly
binding commitment scheme to commit to a random bit. Then all the
verifiers broadcast (in turn) a commitment of a randomly chosen bit,
then decommit the bits in the opposite order, and finally the prover de-
commits her bit. The output is defined as the xor of all opened bits. This
can be repeated sequentially to generate longer reference strings.

2. The players partially execute the secure function evaluation protocol
from [GMW87] with privacy threshold set to n− 1 in order to compute
the following n-valued function:

Fair-Zero Knowledge 261

F (ε, . . . , ε) = {
Prover’s output

SKuzk ,
Verifiers’ outputs

PKuzk, . . . ,PKuzk}
That is, the function produces a private output for the prover consisting
of a uniZK secret key, and produces the corresponding uniZK public key
as the output for all of the verifiers.
The GMW protocol is executed until all of the players have shares of
each of the output values, but have not yet sent each other these shares.

3. All of the shares for the verifiers’ outputs are broadcast to all parties.
Note that there is no need to encrypt these shares as all of the verifiers
have the same output values. As in the original GMW protocol, all par-
ties use interactive zero-knowledge proofs in order to prove to all other
parties that the share they have broadcast is correctly computed.

4. In the final round all verifiers send their shares of the prover’s output
as well as all random coins that they used during preprocessing to the
prover using an envelope channel.

5. The prover runs the honest verifier algorithm to verify that the shares
sent by the verifiers were computed correctly. It then computes its private
output, namely the SKuzk, by combining the shares. At this point, the
prover has unique knowledge of a uniZK secret key, and all parties have
a corresponding uniZK public key and a reference string, σ.

– Proof Phase:
In the proof phase, the prover can prove any number of theorems by using
the uniZK prover algorithm with secret key SKuzk and reference string, σ.
The verifiers use the corresponding uniZK verifier algorithm with public key
PKuzk and random string σ to verify each proof. As soon as a single proof
fails to verify, the verifiers are instructed to reject all subsequent proofs.

Security Properties. The completeness of this system is straightforward.
Therefore, we will only sketch proofs that our system satisfies Soundness, Zero-
Knowledgeness and Fairness.

Soundness. Here we must show that any prover who manages to cheat against
a set of verifiers either breaks the correctness property of the coin flipping pro-
tocol, or breaks the soundness property of the uniZK system, both of which are
unconditionally secure. Assume that the output from the coin-flipping protocol
is truly random. In this case, the prover’s algorithm for cheating can be used
without modification to break the soundness of the uniZK system. Note, even
if the Prover breaks the correctness of the SFE, thereby generating the uniZK
keys of her choice, this does not allow the Prover to break soundness since the
uniZK system is sound, even when the prover chooses his key after seeing the
reference string.

Zero-knowledgeness. Our simulator, S, works as follows:

1. First run the uniZK simulator in order to generate a reference string σ∗ as
well as a public and private key, PKuniZK and SKuniZK.
The goal is to now manipulate the coin-flipping protocol and the secure
function evaluation in order to produce σ∗ and PKuniZK.

262 M. Lepinksi, S. Micali, and A. Shelat

2. Use the simulator for the coin-flipping protocol in order to generate a tran-
script with output σ∗.

3. Begin running the secure function evaluation protocol. At any point during
which S is required to send a message on behalf of any party, write the
message to the transcript as an honest party would.

4. During the last step when each party broadcasts its share of the public
output and proves that it was formed correctly, S uses it ability to rewind
the malicious parties in order to do two things. First, it learns the shares
of each of the malicious parties by proceeding honestly. It then rewinds the
malicious parties, and broadcasts shares on behalf of the honest parties to
force the public output to be PKuniZK. Finally, by rewinding, it simulates
the zero-knowledge proofs that the broadcast shares are correct.

5. The envelopes that are sent from the malicious parties are opened and the
random coins inside are used for verification. Upon failure, S aborts.

6. S now uses the uniZK simulator in order to generate the proofs for the
sequence of theorems that arrive using its key SKuniZK and σ∗.
In order to prove that the transcripts produced by this Simulator are indis-

tinguishable from those of a real execution, we first note that the transcript for
the coin-flipping protocol is generated by a simulator and thus indistinguishable.
During the SFE portion of the protocol, all of the steps are identical until Step 4.
During the last two steps, S is using another simulator to generate indistinguish-
able transcripts for a zero-knowledge proof. Therefore, any distinguisher of the
Fair ZK protocol’s transcripts can be trivially used to break the zero-knowledge
property of the proof used in this step. Since the envelope traffic is not part of
the view of the verifiers, it does not matter what is sent in them. Therefore, the
verifiers have no information about the SKuniZK since they have no information
about the Prover’s share. Therefore, any distinguisher between the key produced
by S and the key produced in a real execution can be used to break the uniZK
simulator.

Similarly, the proof strings are henceforth produced by the uniZK simulator
and therefore any distinguisher can also be used (in a straightforward reduction)
to break the uniZK simulator.

Fairness. The same simulator used to prove the zero-knowledgeness property is
also used to prove the Fairness property. The only difference is that the simulator
must use the cheating prover algorithm in order to generate all of the prover
messages during the preprocessing phase. Note that during preprocessing the
simulator is able to directly run the malicious prover algorithm because until a
witness is given to the prover, the prover has no secrets which the simulator does
not know. This step ensures that any secret agreements between the cheating
prover and any malicious set of verifiers reflect themselves during the simulated
transcripts (and therefore maintain indistinguishability with real executions).

Once the envelopes are sent to the prover, the uniqueness property of the
uniZK system guarantees that for each theorem either the prover gives the single
acceptable uniZK proof (which can be simulated) or she sends any other string
in which case the honest verifier algorithm rejects. In the former case, fairness

Fair-Zero Knowledge 263

is guaranteed by the indistinguishability of uniZK. In the later case, fairness is
vacuous because an honest verifier rejects. ��

Corollary 1. Under the Quadratic Residuosity assumption, there exists a fair
zero knowledge proof system consisting of a preprocessing phase during which
each verifier sends the prover a single envelope.

This result follows directly from Theorem 2 and Theorem 1.

References

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In STOC 1988, pages
103–112, 1988.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM J. Computing, 20(6):1084–1118,
1991.

[Dam92] I. Damgard. Non-interactive circuit based proofs and non-interactive per-
fect zeroknowledge with preprocessing. In EUROCRYPT ’92. Springer-
Verlag, 1992.

[DGB87] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the
Fiat-Shamir passport protocol. In CRYPTO ’87. Springer-Verlag, 1987.

[DMP91] Alfredo DeSantis, Silvio Micali, and Giuseppe Persiano. Non-interactive
zero-knowledge with preprocessing. In CRYPTO 1988. Springer-Verlag,
1991.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string. In Proc. 31th FOCS,
pages 308–317, 1990.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In Proc of STOC ’87, pages 218–229. ACM, 1987.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems. SIAM. J. Computing, 18(1):186–208, February
1989.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Science, 28(2), 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput-
ing, 17(2):281–308, April 1988.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge
proof system for np with general assumptions. J. Cryptology, 11(1):1–27,
1998.

[NHvA02] John Langford Nicholas Hopper and Luis von Ahn. Provably secure
steganography. In CRYPTO 2002. Springer-Verlag, 2002.

How to Securely Outsource Cryptographic
Computations

Susan Hohenberger1,� and Anna Lysyanskaya2,��

1 CSAIL, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

srhohen@mit.edu
2 Computer Science Department, Brown University,

Providence, RI 02912 USA
anna@cs.brown.edu

Abstract. We address the problem of using untrusted (potentially ma-
licious) cryptographic helpers. We provide a formal security definition for
securely outsourcing computations from a computationally limited device
to an untrusted helper. In our model, the adversarial environment writes
the software for the helper, but then does not have direct communication
with it once the device starts relying on it. In addition to security, we also
provide a framework for quantifying the efficiency and checkability of an
outsourcing implementation. We present two practical outsource-secure
schemes. Specifically, we show how to securely outsource modular expo-
nentiation, which presents the computational bottleneck in most public-
key cryptography on computationally limited devices. Without outsourc-
ing, a device would need O(n) modular multiplications to carry out mod-
ular exponentiation for n-bit exponents. The load reduces to O(log2 n)
for any exponentiation-based scheme where the honest device may use
two untrusted exponentiation programs; we highlight the Cramer-Shoup
cryptosystem [13] and Schnorr signatures [28] as examples. With a re-
laxed notion of security, we achieve the same load reduction for a new
CCA2-secure encryption scheme using only one untrusted Cramer-Shoup
encryption program.

1 Introduction

Modern computation has become pervasive: pretty much any device these days,
from pacemakers to employee ID badges, is expected to be networked with other
components of its environment. This includes devices, such as RFID tags, that
are not designed to carry out expensive computations. In fact, RFID tags do
not even have a power source. This becomes a serious concern when we want to
guarantee that these devices are integrated into the network securely: if a device

� Supported by an NDSEG Fellowship.
�� Supported by NSF Career grant CNS-0347661.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 264–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How to Securely Outsource Cryptographic Computations 265

is computationally incapable of carrying out cryptographic algorithms, how can
we give it secure and authenticated communication channels?

In this paper, we study the question of how a computationally limited device
may outsource its computation to another, potentially malicious, but much more
computationally powerful device. In addition to powering up from an external
power source, an RFID tag would have some external helper entity do the bulk
of the computation that the RFID tag needs done in order to securely and
authentically communicate with the outside world. The non-triviality here is
that, although this external helper will be carrying out most of the computation,
it can, potentially, be operated by a malicious adversary. Thus, we need to ensure
that it does not learn anything about what it is actually computing; and we also
need to, when possible, detect any failures.

There are two adversarial behaviors that the helper software might engage in:
intelligent and unintelligent failures. Intelligent failures occur any time that the
helper chooses to deviate from its advertised functionality based on knowledge
it gained of the inputs to the computation it is aiding. For example, the helper
might refuse to securely encrypt any message once it sees the public key of a
competing software vendor; it might pass any signature with its manufacturer’s
public key without checking it; it might even choose to broadcast the honest de-
vice’s secret key to the world. The first goal of any outsourcing algorithm should
be to hide as much information as possible about the actual computation from
the helper, thus removing its ability to bias outputs or expose secrets. Obviously,
software may also unintelligently fail. For example, the helper might contain a
malicious bug that causes it to fail on every 1,000th invocation regardless of who
is using it. Thus, we face a real challenge: get helper software to do most of the
computations for an honest device, without telling it anything about what it is
actually doing, and then check its output!

In this paper, we give the definition of security for outsourced computation,
including notions of efficiency and checkability. We also provide two practical
outsource-secure schemes.

In Section 3, we show how to securely outsource variable-exponent, variable-
base modular exponentiation. Modular exponentiation has been considered pro-
hibitively expensive for embedded devices. Since it is required by virtually any
public-key algorithm, it was believed that public-key cryptography for devices
such as RFID tags is impossible to achieve. Our results show that outsourced
computation makes it possible for such devices to carry out public-key cryptogra-
phy. Without outsourcing, a device would need O(n) modular multiplications to
carry out a modular exponentiation for an n-bit exponent. Using two untrusted
programs that purportedly compute exponentiations (and with the restriction
that at most one of them will deviate from its advertised functionality on a
non-negligible fraction of inputs), we show that an honest device can get away
with doing only O(log2 n) modular multiplications itself – while able to catch an
error with probability 1

2 . This result leads to a dramatic reduction in the bur-
den placed on the device to support Cramer-Shoup encryption [13] and Schnorr

266 S. Hohenberger and A. Lysyanskaya

signatures [28] with error rates of 1
8 and 1

4 respectively. (Consider that after a
small number of uses, malfunctioning software is likely to be caught.)

In Section 4, we show how to securely outsource a CCA2-secure variant of
Cramer-Shoup encryption, using only one Cramer-Shoup encryption program as
an untrusted helper. Since this is a randomized functionality, its output can-
not generally be checked for correctness. However, suppose we can assume that
the untrusted helper malfunctions on only a negligible fraction of adversarially
chosen inputs; for example, suppose it is encryption software that works prop-
erly except when asked to encrypt a message under a certain competitor’s public
key. Normally, software that fails on only a negligible fraction of randomly-chosen
inputs can be tolerated, but in the context of secure outsourcing we cannot tol-
erate any intelligent failures (i.e., failures based on the actual public key and
message that the user wishes to encrypt). That is, secure outsourcing requires
that the final solution, comprised of trusted and untrusted components, works
with high probability for all inputs. Consider that Alice may have unwittingly
purchased helper software for the sole purpose of encrypting messages under one
of the few public keys for which the software is programmed to fail. Thus, in
this scenario, we provide a solution for Alice to securely encrypt any message
under any public key with high probability (where the probability is no longer
taken over her choice of message and key). One can easily imagine how to hide
the message and/or public key for RSA or El Gamal based encryption schemes;
however, our second result is non-trivial because we show how to do this for
the non-malleable Cramer-Shoup encryption scheme, while achieving the same
asymptotic speed-up as before.

Related Work. Chaum and Pedersen [11] previously introduced “wallets with
observers” where a third party, such as a bank, is allowed to install a piece of
hardware on a user’s computer. Each transaction between the bank and the user
is designed to use this hardware, which the bank trusts, but the user may not.
This can be viewed as a special case of our model.

This work shares some similarities with the TPM (Trusted Platform Mod-
ule) [29], which is currently receiving attention from many computer manufac-
turers. Like the TPM, our model separates software into two categories: trusted
and untrusted. Our common goal is to minimize the necessary trusted resources.
Our model differs from TPM in that we have the trusted component controlling
all the input/output for the system, whereas TPM allows some inputs/outputs
to travel directly between the environment and untrusted components.

In the 1980s, Ben-Or et al. used multiple provers as a way of removing in-
tractability assumptions in interactive proofs [4], which led to a series of results
on hiding the input, and yet obtaining the desired output, from an honest-but-
curious oracle [1, 2, 3]. Research in program checking merged into this area when
Blum, Luby, and Rubinfeld [5, 7, 6] considered checking adaptive, malicious pro-
grams (i.e., oracles capable of intelligently failing).

The need for a formal security definition of outsourcing is apparent from
previous research on using untrusted servers for RSA computations, such as
the work of Matsumoto et al. [22] which was subsequently broken by Nguyen

How to Securely Outsource Cryptographic Computations 267

and Shparlinski [24]. We incorporate many previous notions including: the idea
of an untrusted helper [19], confining untrusted applications and yet allowing a
sanitized space for trusted applications to operate [30], and oracle-based checking
of untrusted software [23]. Our techniques in Section 4 also offer novel approaches
to the area of message and key blinding protocols [10, 18, 31].

Secure outsourcing of exponentiations is a popular topic [27, 28, 17, 8, 25, 22,
1, 2, 3, 12], but past approaches either focus on fixed-base (or fixed-exponent)
exponentiation or meet a weaker notion of security.

2 Definition of Security

Suppose that we have a cryptographic algorithm Alg . Our goal is to split Alg
up into two components: (1) a trusted component T that sees the input to Alg
but is not very computationally intensive; (2) luckily T can make oracle queries
to the second component, U , which is an untrusted component (or possibly
components) that can carry out computation-intensive tasks.

Informally, we say that T securely outsources some work to U , and that (T, U)
thereby form an outsource-secure implementation of a cryptographic algorithm
Alg if (1) together, they implement Alg , i.e., Alg = TU and (2) suppose that,
instead of U , T is given oracle access to a malicious U ′ that records all of its
computation over time and, every time it is invoked, tries to act maliciously
– e.g., not work on some adversarially selected inputs; we do not want such a
malicious U ′, despite carrying out most of the computation for TU ′

(x), to learn
anything interesting about the input x. For example, we do not want a malicious
U ′ to trick T into rejecting a valid signature because U ′ sees the verification key
of a competing software vendor or a message it does not like.

To define outsource-security more formally, we first ask ourselves how much
security can be guaranteed. The least that U ′ can learn is that T actually received
some input. In some cases, for a cryptographic algorithm Alg = TU that takes
as input a secret key SK , and an additional input x, we may limit ourselves
to hiding SK but not worry about hiding x. For example, we might be willing
to give a ciphertext to the untrusted component U ′, but not our secret key. At
other times, we may want to hide everything meaningful from U ′. Thus, the
inputs to Alg can be separated into two logical groups: (1) inputs that should
remain hidden from the untrusted software U ′ at all times (for example, keys
and messages), and (2) inputs that U ′ is entitled to know if it is to be of any
help in running Alg (for example, if Alg is a time-stamping scheme, then U ′

may need to know the current time). Let us denote these two types of input as
protected and unprotected.

Similarly, Alg has protected and unprotected outputs: those that U ′ is entitled
to find out, and those that it is not. For example, if Alg = TU is an encryption
program it may ask U ′ to help it compute a part of the ciphertext, but then
wish to conceal other parts of the ciphertext from U ′.

However, U ′ is not the only malicious party interacting with Alg . We model
the adversary A as consisting of two parts: (1) the adversarial environment E

268 S. Hohenberger and A. Lysyanskaya

that submits adversarially chosen inputs to Alg ; (2) the adversarial software
U ′ operating in place of oracle U . One of the fundamental assumptions of this
model is that E and U ′ may first develop a joint strategy, but once they begin
interacting with an honest party T , they no longer have a direct communication
channel. Now, E may get to see some of the protected inputs to Alg that U ′ does
not. For example, E gets to see all of its own adversarial inputs to Alg , although
T might hide some of these from U ′. Consider that if U ′ was able to see some
values chosen by E, then E and U ′ can agree on a joint strategy causing U ′ to
stop working upon receiving some predefined message from E. Thus, there are
going to be some inputs that are known to E, but hidden from U ′, so we ought
to formalize how different their views need to be.

We have three logical divisions of inputs to Alg : (1) secret – information only
available to T (e.g., a secret key or a plaintext); (2) protected – information
only available to T and E (e.g., a public key or a ciphertext); (3) unprotected –
information available to T , E, and U ′ (e.g., the current time). These divisions
are further categorized based on whether the inputs were generated honestly
or adversarially, with the exception that there is no adversarial, secret input –
since by definition it would need to be both generated by and kept secret from E.
Similarly, Alg has secret, protected, and unprotected outputs. Thus, let us write
that Alg takes five inputs and produces three outputs. This is simplified notation
since these inputs may be related to each other in some way. For example, the
secret key is related to the public key.

As an example of this notation, consider a signing algorithm sign such that we
want to hide from the malicious software U ′ the secret key SK and the message
m that is being signed, but not the time t at which the message is signed. The key
pair was generated using a correct key generation algorithm and the time was
honestly generated, while the message may have been chosen adversarially. Also,
we do not want the malicious U ′ to find out anything about the signature that is
output by the algorithm. Then we write sign(SK , ε, t,m, ε)→ (ε, σ, ε) to denote
that the signature σ is the protected output, there are no secret or unprotected
outputs, SK is the honest, secret input, t is the honest, unprotected input, m is
the adversarial, protected input, and there are no other inputs. This situation
grows more complex when we consider Alg operating in a compositional setting
where the protected outputs of the last invocation might become the adversarial,
unprotected inputs of the next; we will further discuss this subtlety in Remark 2.

Let us capture an algorithm with this input/output behavior in a formal
definition:

Definition 1 (Algorithm with outsource-IO). An algorithm Alg obeys the
outsource input/output specification if it takes five inputs, and produces three
outputs. The first three inputs are generated by an honest party, and are classified
by how much the adversary A = (E,U ′) knows about them. The first input is
called the honest, secret input, which is unknown to both E and U ; the second
is called the honest, protected input, which may be known by E, but is protected
from U ; and the third is called the honest, unprotected input, which may be
known by both E and U . In addition, there are two adversarially-chosen inputs

How to Securely Outsource Cryptographic Computations 269

generated by the environment E: the adversarial, protected input, which is known
to E, but protected from U ; and the the adversarial, unprotected input, which
may be known by E and U . Similarly, the first output called secret is unknown
to both E and U ; the second is protected, which may be known to E, but not U ;
and the third is unprotected, which may be known by both parts of A.

At this point, this is just input/output notation, we have not said anything
about actual security properties. We now discuss the definition of security.

The two adversaries E,U ′ can only communicate with each other by passing
messages through T , the honest party. In the real world, a malicious manufac-
turer E might program its software U ′ to behave in an adversarial fashion; but
once U ′ is installed behind T ’s firewall, manufacturer E should no longer be able
to directly send instructions to it. Rather, E may try to establish an indirect
communication channel with U ′ via the unprotected inputs and outputs of Alg .
For example, if E knows that the first element in a signature tuple is unpro-
tected (meaning, T always passes the first part of a signature tuple, unchanged,
to U ′), it might encode a message in that element instructing U ′ to “just tell T
the signature is valid” – even though it may not be. Alternatively, an indirect
communication channel might be realized by U ′ smuggling secrets about the
computation it helped T with, through the unprotected outputs, back to E. For
example, if, in the course of helping T with decryption, U ′ learned the secret
key, it might append that key to the next unprotected output it creates for T .
Obviously, T must use U ′ with great care, or he will be completely duped.

Our definition of outsource-security requires that anything secret or protected
that a malicious U ′ can learn about the inputs to TU from being T ’s oracle
instead of U , it can also learn without that. Namely, there exists a simulator
S2 that, when told that TU (x) was invoked, simulates the view of U ′ without
access to the secret or protected inputs of x. This property ensures that U ′

cannot intelligently choose to fail.
Similarly, our definition of outsource-security must also prevent the malicious

environment E from gaining any knowledge of the secret inputs and outputs of
TU , even when T is using malicious software U ′ written by E. Again, there exists
a simulator S1 that, when told that TU ′

(x) was invoked, simulates the view of
E without access to the secret inputs of x.

Definition 2 (Outsource-security). Let Alg(·, ·, ·, ·, ·) be an algorithm with
outsource-IO. A pair of algorithms (T, U) is said to be an outsource-secure im-
plementation of an algorithm Alg if:
Correctness. TU is a correct implementation of Alg.
Security. For all probabilistic polynomial-time adversaries A = (E,U ′), there
exist probabilistic expected polynomial-time simulators (S1, S2) such that the fol-
lowing pairs of random variables are computationally indistinguishable. Let us
say that the honestly-generated inputs are chosen by a process I.
Pair One: EVIEW real ∼ EVIEW ideal (The external adversary, E, learns noth-
ing.):

270 S. Hohenberger and A. Lysyanskaya

– The view that the adversarial environment E obtains by participating in the
following REAL process:

EVIEW i
real = {(istatei, xi

hs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estatei, ji, xi
ap, x

i
au, stop

i)← E(1k,EVIEW i−1
real , x

i
hp, x

i
hu);

(tstatei, ustatei, yi
s, y

i
p, y

i
u)←TU ′(ustatei−1)(tstatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yi
p, y

i
u)}

EVIEW real = EVIEW i
real if stopi = TRUE.

The real process proceeds in rounds. In round i, the honest (secret, pro-
tected, and unprotected) inputs (xi

hs, x
i
hp, x

i
hu) are picked using an honest,

stateful process I to which the environment does not have access. Then the
environment, based on its view from the last round, chooses (0) the value
of its estatei variable as a way of remembering what it did next time it
is invoked; (1) which previously generated honest inputs (xji

hs, x
ji

hp, x
ji

hu) to
give to TU ′

(note that the environment can specify the index ji of these in-
puts, but not their values); (2) the adversarial, protected input xi

ap; (3) the
adversarial, unprotected input xi

au; (4) the Boolean variable stopi that deter-
mines whether round i is the last round in this process. Next, the algorithm
TU ′

is run on the inputs (tstatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au), where tstatei−1

is T ’s previously saved state, and produces a new state tstatei for T , as well
as the secret yi

s, protected yi
p and unprotected yi

u outputs. The oracle U ′ is
given its previously saved state, ustatei−1, as input, and the current state
of U ′ is saved in the variable ustatei. The view of the real process in round
i consists of estatei, and the values yi

p and yi
u. The overall view of the envi-

ronment in the real process is just its view in the last round (i.e., i for which
stopi = TRUE).

– The IDEAL process:

EVIEW i
ideal = {(istatei, xi

hs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estatei, ji, xi
ap, x

i
au, stop

i)← E(1k,EVIEW i−1
ideal , x

i
hp, x

i
hu);

(astatei, yi
s, y

i
p, y

i
u)← Alg(astatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, replace

i)← S
U ′(ustatei−1)
1 (sstatei−1, . . .

. . . xji

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zi
p, z

i
u) = replacei(Y i

p , Y
i
u) + (1− replacei)(yi

p, y
i
u) :

(estatei, zi
p, z

i
u)}

EVIEW ideal = EVIEW i
ideal if stopi = TRUE.

The ideal process also proceeds in rounds. In the ideal process, we have a
stateful simulator S1 who, shielded from the secret input xi

hs, but given the
non-secret outputs that Alg produces when run all the inputs for round i,

How to Securely Outsource Cryptographic Computations 271

decides to either output the values (yi
p, y

i
u) generated by Alg, or replace them

with some other values (Y i
p , Y

i
u). (Notationally, this is captured by having the

indicator variable replacei be a bit that determines whether yi
p will be replaced

with Y i
p .) In doing so, it is allowed to query the oracle U ′; moreover, U ′ saves

its state as in the real experiment.

Pair Two: UVIEW real ∼ UVIEW ideal (The untrusted software, U ′, learns
nothing.):

– The view that the untrusted software U ′ obtains by participating in the REAL
process described in Pair One. UVIEW real = ustatei if stopi = TRUE.

– The IDEAL process:

UVIEW i
ideal = {(istatei, xi

hs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estatei, ji, xi
ap, x

i
au, stop

i)← E(1k, estatei−1, xi
hp, x

i
hu, y

i−1
p , yi−1

u);

(astatei, yi
s, y

i
p, y

i
u)← Alg(astatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)← S
U ′(ustatei−1)
2 (sstatei−1, xji

hu, x
i
au) :

(ustatei)}

UVIEW ideal = UVIEW i
ideal if stopi = TRUE.

In the ideal process, we have a stateful simulator S2 who, equipped with only
the unprotected inputs (xi

hu, x
i
au), queries U ′. As before, U ′ may maintain

state.

There are several interesting observations to make about this security defini-
tion.

Remark 1. The states of all algorithms, i.e., I, E, U ′,T , S1, S2, in the security
experiments above are initialized to ∅. Any joint strategy that E and U ′ agree
on prior to acting in the experiments must be embedded in their respective
codes. Notice the intentional asymmetry in the access to the untrusted software
U ′ given to environment E and the trusted component T . The environment E is
allowed non-black-box access to the software U ′, since E may have written code
for U ′; whereas U ′ will appear as a black-box to T , since one cannot assume
that a malicious software manufacturer will (accurately) publish its code. Or,
consider the example of an RFID tag outsourcing its computation to a more
powerful helper device in its environment. In this case we cannot expect that, in
the event that it is controlled by an adversary, such a helper will run software
that is available for the purposes of the proof of security.

Remark 2. For any outsource-secure implementation, the adversarial, unpro-
tected input xau must be empty. If xau contains even a single bit, then a covert
channel is created from E to U ′, in which k bits of information can be transfered
after k rounds. In such a case, E and U ′ could jointly agree on a secret value
beforehand, and then E could slowly smuggle in that k-bit secret to U ′. Thus,

272 S. Hohenberger and A. Lysyanskaya

UVIEW real would be distinguishable from UVIEW ideal , since E may detect
that it is interacting with Alg instead of TU ′

(since Alg ’s outputs (yi
p, y

i
u) are

always correct), and communicate this fact to U ′ through the covert channel. A
non-empty xau poses a real security threat, since it would theoretically allow a
software manufacturer to covertly reprogram its software after it was installed
behind T ’s firewall and without his consent.

Remark 3. No security guarantee is implied in the event that the environment E
and the software U ′ are able to communicate without passing messages through
T . For example, in the event that E captures all of T ’s network traffic and then
steals T ’s hard-drive (containing the memory of U ′) – all bets are off!

RFID tags and other low-resource devices require that a large portion of
their cryptographic computations be outsourced to better equipped computers.
When a cryptographic algorithm Alg is divided into a pair of algorithms (T, U),
in addition to its security, we also want to know how much work T saves by
using U . We want to compare the work that T must do to safely use U to the
work required for the fastest known implementation of the functionality TU .

Definition 3 (α-efficient, secure outsourcing). A pair of algorithms (T, U)
are an α-efficient implementation of an algorithm Alg if (1) they are an
outsource-secure implementation of Alg, and (2) ∀ inputs x, the running time
of T is ≤ an α-multiplicative factor of the running time of Alg(x).

For example, say U relieves T of at least half its computational work; we
would call such an implementation 1

2 -efficient. The notion above considers only
T ’s computational load compared to that of Alg . One might also choose to
formally consider U ’s computational burden or the amount of precomputation
that T can do in his idle cycles versus his on-demand load. We will not be
formally considering these factors.

The above definition of outsource-security does not prevent U ′ from deviating
from its advertised functionality, rather it prevents U ′ from intelligently choosing
her moments for failure based on any secret or protected inputs to Alg (e.g., a
public key or the contents of a message). Since this does not rule out unintelligent
failures, it is desirable that T have some mechanism for discovering that his
software is unsound. Thus, we introduce another characteristic of an outsourcing
implementation.

Definition 4 (β-checkable, secure outsourcing). A pair of algorithms (T, U)
are a β-checkable implementation of an algorithm Alg if (1) they are an
outsource-secure implementation of Alg, and (2) ∀ inputs x, if U ′ deviates from
its advertised functionality during the execution of TU ′

(x), T will detect the error
with probability ≥ β.

Recall that the reason T purchased U in the first place was to get out of doing
work, so any testing procedure should be far more efficient than computing the
function itself; i.e., the overall scheme, including the testing procedure, should
remain α-efficient. We combine these characteristics into one final notion.

How to Securely Outsource Cryptographic Computations 273

Definition 5 ((α,β)-outsource-security). A pair of algorithms (T, U) are an
(α,β)-outsource-secure implementation of an algorithm Alg if they are both α-
efficient and β-checkable.

3 Outsource-Secure Exponentiation Using Two
Untrusted Programs

Since computing exponentiations modulo a prime is, by far, the most expensive
operation in many discrete-log based cryptographic protocols, much research has
been done on how to reduce this work-load. We present a method to securely
outsource most of the work needed to compute a variable-exponent, variable-base
exponentiation modulo a prime, by combining two previous approaches to this
problem: (1) using preprocessing tricks to speed-up offline exponentiations [27,
28, 17, 8, 25] and (2) untrusted server-aided computation [22, 1, 2, 3].

The preprocessing techniques (introduced by Schnorr [27, 28], broken by de
Rooij [14, 15, 17], and subsequently fixed by others [16, 9, 21, 8, 25]) seek to opti-
mize the production of random (k, gk mod p) pairs used in signature generation
(e.g., El Gamal, Schnorr, DSA) and encryption (e.g., El Gamal, Cramer-Shoup).
By offline, we mean the randomization factors that are independent of a key or
message; that is, exponentiations for a fixed base g, where the user requires
nothing more of the exponent k than that it appear random. We leverage these
algorithms to speed-up online exponentiations as well; that is, given random
values x ∈ Zord(G) and h ∈ Z

∗
p, compute hx mod p. Generally speaking, given

any oracle that provides T with random pairs (x, gx mod p) (we discuss the
exact implementation of this oracle in Section 3.2), we give a technique for ef-
ficiently computing any exponentiation modulo p. To do this, we use untrusted
server-aided (or program-aided) computation.

Blum, Luby, and Rubinfeld gave a general technique for computing and check-
ing the result of a modular exponentiation using four untrusted exponentiation
programs – that cannot communicate with each other after deciding on an ini-
tial strategy [6]. Their algorithm leaks only the size of the inputs (i.e., |x|, |g| for
known p) to the programs and runs in time O(n log2 n) for an n-bit exponent
(this includes the running time of each program). The output of the Blum et al.
algorithm is always guaranteed to be correct.

We provide a technique for computing and checking the result of a modu-
lar exponentiation using two untrusted exponentiation boxes U ′ = (U ′

1, U
′
2) –

that again, cannot communicate with each other after deciding on an initial
strategy. In this strategy, at most one of them can deviate from its advertised
functionality on a non-negligible fraction of the inputs. Our algorithm reveals no
more information than the size of the input and the running time is reduced to
O(log2 n) multiplications for an n-bit exponent.1 More importantly, we focus on
minimizing the computations done by T to compute an exponentiation, which

1 Disclaimer: these running times assume certain security properties about the EBPV
generator [25] which we discuss in detail in Section 3.2.

274 S. Hohenberger and A. Lysyanskaya

is O(log2 n). This is an asymptotic improvement over the 1.5n multiplications
needed to compute an exponentiation using square-and-multiply. We gain some
of this efficiency by only requiring that an error in the output be detected with
probability 1

2 . The rationale is that software malfunctioning on a non-negligible
amount of random inputs will not be on the market long.

Our (O(log2 n
n), 1

2)-outsource-secure exponentiation implementation, combined
with previously known preprocessing tricks, yields a technique for using two un-
trusted programs U1, U2 to securely do most of the resource-intensive work in
discrete log based protocols. By way of example, we highlight an asymptotic
speed-up in the running time of an honest user T (from O(n) to O(log2 n)) for
the Cramer-Shoup cryptosystem [13] and Schnorr signature verification [27, 28]
when using U1, U2. Let’s lay out the assumptions for using the two untrusted
programs more carefully.

3.1 The Two Untrusted Program Model

In the two untrusted program model, E writes the code for two (potentially differ-
ent) programs U ′

1, U
′
2. E then gives this software to T , advertising a functionality

that U ′
1 and U ′

2 may or may not accurately compute, and T installs this software
in a manner such that all subsequent communication between any two of E,U ′

1
and U ′

2 must pass through T . The new adversary attacking T (i.e., trying to read
T ’s messages or forge T ’s signatures) is now A = (E,U ′

1, U
′
2).

The one-malicious version of this model assumes that at most one the pro-
grams U ′

1, U
′
2 deviates from its advertised functionality on a non-negligible frac-

tion of the inputs; but we do not know which one and security means that there
is a simulator for both. This is the equivalent of buying the “same” advertised
software from two different vendors and achieving security as long as one of them
is honest without knowing which one.

The concept of an honest party gaining information from two (or more) pos-
sibly dishonest, but physically separated parties was first used by Ben-Or, Gold-
wasser, Kilian, and Wigderson [4] as a method for obtaining interactive proofs
without intractability assumptions. Blum et. al. expanded this notion to allow
an honest party to check the output of a function rather than just the validity
of a proof [7, 6]. Our work, within this model, demonstrates, rather surprisingly,
that an honest party T can leverage adversarial software to do the vast majority
of its cryptographic computations!

Our (O(log2 n
n), 1

2)-outsource-secure implementation of Exp, exponentiation
modulo a prime function, appears in Figure 1 and Section 3.3. Figure 1 also
demonstrates how to achieve an asymptotic speed-up in T ’s running time, us-
ing Exp and other known preprocessing techniques [25], for the Cramer-Shoup
cryptosystem [13] and Schnorr signature verification [27, 28] (this speed-up was
already known for Schnorr signature generation [25]).

3.2 Rand1, Rand2: Algorithms for Computing (b, gb mod p) Pairs

The subroutine Rand1 in Figure 1 is initialized by a prime p, a base g3 ∈ Z
∗
p,

and possibly some other values, and then, on each invocation must produce a

How to Securely Outsource Cryptographic Computations 275

Outsource-secure Encryption and Signatures: Alg = (T , U1, U2)
(in the two untrusted program model)

Global Setup (denoted gp as honest, unprotected inputs)
◦ Security parameter: 1k.
◦ Global Encryption parameters: a group G of prime order q with generators
g1, g2, a (can be weakly) collision-resistant hash function H : {0, 1} → Zq.
◦ Global Signature parameters: a k-bit prime q, p = 2q +1, a generator g3 for Z

∗
p,

and a collision-resistant hash function H : {0, 1}∗ → Zq.
Advertised Functionality of U1 and U2

◦ U1(b, g) → gb

◦ U2(b, g) → gb

Subroutines Executed by T with access to U1, U2

◦ Rand1 → (b, gb
3). T computes alone as in Section 3.2.

◦ Rand2 → (b, gb
1, g

b
2). T computes alone as in Section 3.2.

◦ Exp(a, u) → ua. T uses U1 and U2 to compute ua as in Section 3.3.
Functionality of Alg = (T , U1, U2)

Outsource-Secure Cramer-Shoup Cryptosystem [13]
Key Generation: Generated by an honest process on input 1k:

PK = (B = gx1
1 gx2

2 , C = gy1
1 gy2

2 , D = gz
1), SK = (x1, x2, y1, y2, z).

Encryption: Alg .Enc(m, (PK , t), gp, ε, ε) → (ε, τ, ε).
On input PK = (B, C, D), m ∈ G, and t ∈ {0, 1}∗,
1. T computes Rand2 → (r, u1 = gr

1 , u2 = gr
2).

2. T computes Exp(r, D) → Dr, e = Drm, κ = H(u1, u2, e, t).
3. T computes Exp(r, B) → Br,Exp(rκ, C) → Crκ, v = BrCrκ.
4. T outputs the ciphertext τ = (u1, u2, e, v, t).

Decryption: Alg .Dec(SK , ε, gp, τ, ε) → (m, ε, ε).
(If E generates ciphertext, Alg .Dec(SK , ε, gp, τ, ε) → (ε, m, ε).)
On input SK = (x1, x2, y1, y2, z) and τ = (u1, u2, e, v, t),
1. T computes κ = H(u1, u2, e, t).
2. T computes Exp(x1 + κy1, u1) → α,Exp(x2 + κy2, u2) → β.
3. T checks if αβ = v; if not, it outputs “invalid”.
4. Otherwise, T computes Exp(z, u1) → δ and outputs m = e/δ.

Outsource-Secure Schnorr Signatures [27, 28]
Key Generation: Generated by an honest process: SVK = ga,SSK = a.
Signature Generation: Alg .Sign(SSK , m, gp, ε, ε) → (ε, σ, ε).

On input SSK = a and m ∈ {0, 1}∗,
1. T computes Rand1 → (k, r = gk

3).
2. T computes e = H(r||m) and s = ae + k mod q.
3. T outputs the signature σ = (r, s).

Signature Verification: Alg .V f(ε,SVK , gp, (m, σ), ε) → (ε, {0, 1}, ε).
On input SVK = y, m ∈ {0, 1}∗, and σ = (r, s),
1. T checks that 1 ≤ r ≤ p − 1, if not, it outputs 0.
2. T computes e = H(r||m), Exp(s, g3) → α and Exp(e, y) → β.
3. T checks that α = βr. If so, T outputs 1; otherwise it outputs 0.

Fig. 1. An honest user T , given untrusted exponentiation boxes U1, U2, achieves
outsource-secure encryption and signatures

276 S. Hohenberger and A. Lysyanskaya

random, independent pair of the form (b, gb
3 mod p), where b ∈ Zq. The subrou-

tine Rand2 is the natural extension of Rand1 initialized by two bases g1, g2 and
producing triplets (b, gb

1 mod p, gb
2 mod p). Given a, perhaps expensive, initial-

ization procedure, we want to see how expeditiously these subroutines can be
executed by T .

One naive approach is for a trusted server to compute a table of random,
independent pairs and triplets in advance and load it into T ’s memory. Then
on each invocation of Rand1 or Rand2, T simply retrieves the next value in the
table. (We will see that this table, plus access to the untrusted servers, allows
an honest device to compute any exponentiation by doing only 9 multiplications
regardless of exponent size!)

For devices that are willing to do a little more work, in exchange for requir-
ing less storage, we apply well-known preprocessing techniques for this exact
functionality. Schnorr first proposed an algorithm which, takes as input a small
set of truly random (k, gk) pairs and then, produces a long series of “nearly
random” (r, gr) pairs as a means of speeding-up signature generation in smart-
cards [27]. However, the output of Schnorr’s algorithm is too dependent, and
de Rooij found a series of equations that allow the recovery of a signer’s secret
key [14]. A subsequent fix by Schnorr [28] was also broken by de Rooij [15, 17].
Since then several new preprocessing algorithms were proposed [16, 9, 21, 8, 25].
Among the most promising is the EBPV generator by Nguyen, Shparlinski, and
Stern [25], which adds a feedback extension (i.e., reuse of the output pairs) to the
BPV generator proposed by Boyko, Peinado, and Venkatesan [8], which works by
taking a subset of truly random (k, gk) pairs and combing them with a random
walk on expanders on Cayley graphs to reduce the dependency of the pairs in
the output sequence. The EBPV generator, secure against adaptive adversaries,
runs in time O(log2 n) for an n-bit exponent. (This holds for the addition of a
second base in Rand2 as well.)

A critical property that we will shortly need from Rand1 and Rand2 is that
their output sequences be computationally indistinguishable from a truly ran-
dom output sequence. It is conjectured that with sufficient parameters (i.e.,
number of initial (k, gk) pairs, etc.) the output distribution of the EBPV gener-
ator is statistically-close to the uniform distribution [25]. We make this working
assumption throughout our paper. In the event that this assumption is false,
our recourse is to use the naive approach above and, thus, further reduce our
running time, in exchange for additional memory.

3.3 Exp: Outsource-Secure Exponentiation Modulo a Prime

Our main contribution for Section 3 lies in the subroutine Exp from Figure 1.
In Exp, T out-sources its exponentiation computations, while maintaining its
privacy, by invoking U1 and U2 on a series of (exponent, base) pairs that appear
random in the limited view of the software.

The Exp Algorithm. Let primes p, q be the global parameters, where Z
∗
p has

order q. Exp takes as input a ∈ Zq and u ∈ Z
∗
p, and outputs ua mod p. As used

in Figure 1, Exp’s input a may be secret or (honest/adversarial) protected; its

How to Securely Outsource Cryptographic Computations 277

input u may be (honest/adversarial) protected; and its output is always secret
or protected. Exp also receives the (honest, unprotected) global parameters gp;
there are no adversarial, unprotected inputs. All (secret/protected) inputs are
computationally blinded before being sent to U1 or U2.

To implement this functionality using (U1, U2), T runs Rand1 twice to create
two blinding pairs (α, gα) and (β, gβ). We denote

v = gα and vb = gβ , where b = β/α.

Our goal is to logically break u and a into random looking pieces that can
then be computed by U1 and U2. Our first logical divisions are

ua = (vw)a = vawa = vbvcwa, where w = u/v and c = a− b.

As a result of this step, u is hidden, and the desired value ua is expressed in
terms of random v and w. Next, T must hide the exponent a. To that end, it
selects two blinding elements d ∈ Zq and f ∈ G at random. Our second logical
divisions are

vbvcwa = vb(fh)cwd+e = vbfchcwdwe, where h = v/f and e = a− d.

Next, T fixes two test queries per program by running Rand1 to obtain
(t1, gt1), (t2, gt2), (r1, gr1) and (r2, gr2). T queries U1 (in random order) as

U1(d,w)→ wd, U1(c, f)→ fc, U1(t1/r1, gr1)→ gt1 , U1(t2/r2, gr2)→ gt2 ,

and then queries U2 (in random order) as

U2(e,w)→ we, U2(c, h)→ hc, U2(t1/r1, gr1)→ gt1 , U2(t2/r2, gr2)→ gt2 .

(Notice that all queries to U1 can take place before any queries to U2 must
be made.) Finally, T checks that the test queries to U1 and U2 both produce
the correct outputs (i.e., gt1 and gt2). If not, T outputs “error”; otherwise, it
multiplies the real outputs of U1, U2 with vb to compute ua as

vbfchcwdwe = vb+cwd+e = vawa = (vw)a = ua.

We point out that this exponentiation outsourcing only needs the Rand1 func-
tionality; the Rand2 functionality discussed in Figure 1 is used for the Cramer-
Shoup outsourcing.

Theorem 1. In the one-malicious model, the above algorithms (T, (U1, U2)) are
an outsource-secure implementation of Exp, where the input (a, u) may be honest,
secret, or honest, protected, or adversarial, protected.

Proof of Theorem 1 is in the full version of the paper. The correctness prop-
erty is fairly straight-forward. To show security, both simulators S1 and S2 send
random (exponent, base) pairs to the untrusted components U ′

1 and U ′
2. One can

see that such an S2 simulates a view that is computationally indistinguishable

278 S. Hohenberger and A. Lysyanskaya

from the real world view for the untrusted helper. However, it is our construc-
tion of S1 which must simulate a view for the environment that requires the
one-malicious model. Consider what might happen in the real world if both U ′

1
and U ′

2 deviate from their advertised functionalities. While the event that U ′
1

misbehaves is independent of the input (a, u), and the same is true for the event
that U ′

2 misbehaves, the event that both of them misbehave is not independent
of the input (a, u).

Lemma 1. In the one-malicious model, the above algorithms (T, (U1, U2)) are
an O(log2 n

n)-efficient implementation of Exp.

Proof. Raising an arbitrary base to an arbitrary power by the square-and-multiply
method takes roughly 1.5n modular multiplications (MMs) for an n-bit expo-
nent. Exp makes six calls to Rand1 plus 9 other MMs (additions are negligible
by comparison). Exp takes O(log2 n) MMs using the EBPV generator [25] for
Rand1 and O(1) MMs when using a table-lookup for Rand1. ��

Lemma 2. In the one-malicious model, the above algorithms (T, (U1, U2)) are
a 1

2 -checkable implementation of Exp.

Proof. By Theorem 1, U1 (resp,. U2) cannot distinguish the two test queries
from the two real queries T makes. If U1 (resp., U2) fails during any execution
of Exp, it will be detected with probability 1

2 . ��

We combine Theorem 1, Lemmas 1 and 2, and known preprocessing tech-
niques [25] to arrive at the following result. (Schemes differ in β-checkability
depending on the number of Exp calls they make.)

Theorem 2. In the one-malicious model, the algorithms (T, (U1, U2)) in Fig-
ure 1 are (1) an (O(log2 n

n), 1
2)-outsource-secure implementation of Exp, (2) an

(O(log2 n
n), 7

8)-outsource-secure implementation of the Cramer-Shoup cryptosys-
tem [13], and (3) an (O(log2 n

n), 3
4)-outsource-secure implementation of Schnorr

Signatures [27, 28].

4 Outsource-Secure Encryption Using One Untrusted
Program

Suppose Alice is given an encryption program that is guaranteed to work cor-
rectly on all but a negligible fraction of adversarially-chosen public keys and
messages. She wants to trick this software into efficiently helping her encrypt
any message for any intended recipient – even those in the (unknown) set for
which her software adversarially fails. This is a non-trivial exercise when one
wants to hide both the public key and the message from the software – and even
more so, when one wants to achieve CCA2-secure encryption, as we do.

Section 3 covered an O(log2 n
n)-efficient outsource-secure CCA2 encryption

scheme using two untrusted programs. Here, using only one untrusted program,

How to Securely Outsource Cryptographic Computations 279

we remain O(log2 n
n)-efficient and CCA2-secure. To efficiently use only one pro-

gram, one must assume that the software behaves honestly on random inputs
with high-probability. After all, it isn’t hard to imagine a commercial product
that works most of the time, but has a few surprises programmed into it such
that on a few inputs it malfunctions. Moreover, some assumption about the cor-
rectness of a probabilistic program is necessary since there will be no means of
checking its output. (To see this, consider that there is no way for T to know
if the “randomness” U ′ used during the probabilistic encryption was genuinely
random or a value known by E.) In Figure 2, present an outsource-secure im-
plementation for CCA2-secure encryption only. We leave open the problem of
efficiently outsourcing the decryption of these ciphertexts, as well as any signa-
ture verification algorithm, using only one untrusted program.

The One Untrusted Program Model. This model is analogous to the two
untrusted program model in Section 3.1, where only one of U1, U2 is available to
T and the advertised functionality of U is tagged Cramer-Shoup encryption [13].
(Recall that ciphertexts in tagged CS encryption include a public, non-malleable
string called a tag.)

4.1 Com: Efficient, Statistically-Hiding Commitments

We use Halevi and Micali’s commitment scheme based on collision-free hash
families [20]. Let HF : {0, 1}O(k) → {0, 1}k be a family of universal hash func-
tions and let MD : {0, 1}∗ → {0, 1}k be a collision-free hash function. Given
any value m ∈ {0, 1}∗ and security parameter k, generate a statistically-hiding
commitment scheme as follows: (1) compute s = MD(m), (2) pick h ∈ HF and
x ∈ {0, 1}O(k) at random, so that h(x) = s and (3) compute y = MD(x). (One
can construct h by randomly selecting A and computing b = s − Ax modulo
a prime set in HF .) The commitment is φC = (y, h). The decommitment is
φD = (x,m). Here, we denote the commitment scheme as Com and the decom-
mitment scheme as Decom.

4.2 CCA2 and Outsource-Security of T U Encryption

First, we observe that the Cramer-Shoup variant in Figure 2 is CCA2-secure [26].
Here, we only need to look at the honest algorithm TU .

Theorem 3. The cryptosystem TU is secure against adaptive chosen-ciphertext
attack (CCA2) assuming the CCA2-security of Cramer-Shoup encryption [13]
and the security of the Halevi-Micali commitment scheme [20].

The full proof of Theorem 3 is included in the full version of this paper. It
follows a fairly standard reduction from tagged Cramer-Shoup.

Using Exp, we achieve the same asymptotic speed-up as in Section 3. Check-
ing the output of this probabilistic functionality is theoretically impossible. Thus,
we summarize the properties of this scheme as:
Theorem 4. The algorithms (T, U).Enc in Figure 2 are an O(log2 n

n)-efficient,
outsource-secure implementation of CCA2-secure encryption.

280 S. Hohenberger and A. Lysyanskaya

Outsource-secure Encryption: Alg = (T , U)
(in the one untrusted program model)

Global Setup (denoted gp as honest, unprotected inputs)
◦ Security parameter: 1k.
◦ Global Encryption parameters: a group G of prime order q with genera-
tors g1, g2, a weakly collision-resistant hash function H : {0, 1} → Zq, and a
statistically-hiding commitment scheme Com : {0, 1}∗ → φC with a decommit-
ment of φD.

Advertised Functionality of U : CCA2-Secure Cramer-Shoup Encryption [13]
◦ U(pk, m, t) → τ = (u1, u2, e, v, t). (See Figure 1 for details.)

Subroutines Executed by T

◦ Rand1 → (b, gb
1). (See Section 3.2 for details.)

Functionality of Alg = (T , U): CCA2 and Outsource-Secure Cryptosystem
Key Generation: Generated by an honest process on input 1k:

PK = (B = gx1
1 gx2

2 , C = gy1
1 gy2

2 , D = gz
1), SK = (x1, x2, y1, y2, z).

Encryption: Alg .Enc(m, (PK , t), gp, ε, ε) → (ε, φD, τ).
On input PK = (B, C, D), m ∈ G, and t ∈ {0, 1}∗,
1. T computes Rand1 → (x′

1, g
x′
1

1),Rand1 → (y′
1, g

y′
1

1),Rand1 → (z′, gz′
1).

2. T computes PK ′ = (Bg
x′
1

1 , Cg
y′
1

1 , Dgz′
1).

3. T selects a random w ∈ G and computes β = wm.
4. T computes (φC , φD) = Com(β||t||x′

1||y′
1||z′).

5. T calls U(PK ′, w, φC) → τ , where τ = (u1, u2, e, v, φC).
6. T outputs the ciphertext (τ, φD).

Decryption: Alg .Dec(SK , (τ, φD), gp, ε, ε) → (m, ε, ε).
(If E generates ciphertext, Alg .Dec(SK , ε, gp, (τ, φD), ε) → (ε, m, ε).)
On input SK = (x1, x2, y1, y2, z) and (τ = (u1, u2, e, v, φC), φD),
1. T computes (β||t||x′

1||y′
1||z′) = Decom(φC , φD).

2. T computes x̂1 = x1 + x′
1, ŷ1 = y1 + y′

1, ẑ = z + z′.
3. T computes κ = H(u1, u2, e, φC), α = ux̂1+κŷ1

1 , and π = ux2+κy2
2 .

4. T checks if απ = v; if not, it outputs “invalid”.
5. Otherwise, T computes w = e/uẑ

1 and outputs m = β/w with tag t.

Fig. 2. An honest user T , given untrusted Cramer-Shoup encryption software U ,
achieves outsource-secure encryption. Note that the speed-up is for encryption only,
not decryption

Proof sketch. All inputs to U , besides the (honest, unprotected) global pa-
rameters, are computationally blinded by T . The public key is re-randomized
using Rand1; a random message w ∈ G is selected; and the tag φC , that
binds these new values to the old key and message, is a statistically-hiding
commitment. Thus, both S1 and S2 query U ′ on random triplets of the form
(PK ∈ (Z∗

p)
3,w ∈ G, t ∈ {0, 1}|φC |). In pair one, S1 always sets replacei = 0,

since the output of TU ′
in the real experiment is wrong with negligible probabil-

ity. For efficiency, observe that the commitment scheme Com can be implemented
with only a constant number of modular multiplications.

How to Securely Outsource Cryptographic Computations 281

Acknowledgments. We are grateful to Ron Rivest for many useful discussions
and for suggesting the use of the generators in Section 3.2. We also thank Srini
Devadas, Shafi Goldwasser, Matt Lepinski, Alon Rosen, and the anonymous
referees for comments on earlier drafts.

References

1. M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle.
Journal of Comput. Syst. Sci., 39(1):21–50, 1989.

2. D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proceed-
ings of STAC ’90, pages 37–48, 1990.

3. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions:
Improvements and applications. Journal of Cryptology, 10(1):17–36, 1997.

4. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In Proceedings of STOC, pages
113–131, 1988.

5. M. Blum and S. Kannan. Designing programs that check their work. Journal of
the ACM, pages 269–291, 1995.

6. M. Blum, M. Luby, and R. Rubinfeld. Program result checking against adaptive
programs and in cryptographic settings. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 107–118, 1991.

7. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Science, pages 549–595,
1993.

8. V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log and factoring
based schemes via precomputations. In Proceedings of Eurocrypt ’98, volume 1403
of LNCS, pages 221–232, 1998.

9. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponenti-
ation with precomputation. In Proceedings of Eurocrypt ’92, volume 658 of LNCS,
pages 200–207, 1992.

10. D. Chaum. Security without identification: transaction systems to make big brother
obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

11. D. Chaum and T. P. Pedersen. Wallet Databases with Observers. In Proceedings
of Crypto ’92, volume 740 of LNCS, pages 89–105, 1992.

12. D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E. Suh. Speeding up
Exponentiation using an Untrusted Computational Resource. Technical Report
Memo 469, MIT CSAIL Computation Structures Group, August 2003.

13. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal of
Computing, 2003. To appear. Available at http://www.shoup.net/papers.

14. P. de Rooij. On the security of the Schnorr scheme using preprocessing. In Pro-
ceedings of Eurocrypt ’91, volume 547 of LNCS, pages 71–80, 1991.

15. P. de Rooij. On Schnorr’s preprocessing for digital signature schemes. In Proceed-
ings of Eurocrypt ’93, volume 765 of LNCS, pages 435–439, 1993.

16. P. de Rooij. Efficient exponentiation using precomputation and vector addition
chains. In Proceedings of Eurocrypt 1994, volume 950 of LNCS, pages 389–399,
1994.

17. P. de Rooij. On Schnorr’s preprocessing for digital signature schemes. Journal of
Cryptology, 10(1):1–16, 1997.

282 S. Hohenberger and A. Lysyanskaya

18. M. Franklin and M. Yung. The blinding of weak signatures (extended abstract).
In Proceedings of Eurocrypt ’95, volume 950 of LNCS, pages 67–76, 1995.

19. I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for
untrusted helper applications. In Proceedings of the 6th Usenix Security Sympo-
sium, 1996.

20. S. Halevi and S. Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Proceedings of Crypto ’96, volume 1109 of LNCS, pages
201–212, 1996.

21. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In
Proceedings of Crypto ’94, volume 839 of LNCS, pages 95–107, 1994.

22. T. Matsumoto, K. Kato, and H. Imai. Speeding up secret computations with
insecure auxiliary devices. In Proceedings of Crypto ’88, volume 403 of LNCS,
pages 497–506, 1988.

23. G. C. Necula and S. P. Rahul. Oracle-based checking of untrusted software. ACM
SIGPLAN Notices, 36(3):142–154, 2001.

24. P. Q. Nguyen and I. Shparlinski. On the insecurity of a server-aided RSA protocol.
In Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 21–35, 2001.

25. P. Q. Nguyen, I. E. Shparlinski, and J. Stern. Distribution of modular sums and
the security of server aided exponentiation. In Proceedings of the Workshop on
Comp. Number Theory and Crypt., pages 1–16, 1999.

26. C. Rackoff and D. Simon. Noninterative zero-knowledge proof of knowledge and
chosen ciphertext attack. In Proceedings of Crypto ’91, volume 576 of LNCS, pages
433–444, 1991.

27. C.-P. Schnorr. Efficient identification and signatures for smart cards. In Proceedings
of Crypto ’89, volume 435 of LNCS, 1989.

28. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptog-
raphy, 4:161–174, 1991.

29. Trusted Computing Group. Trusted computing platform alliance, main specifica-
tion version 1.1b, 2004. Date of Access: February 10, 2004.

30. D. A. Wagner. Janus: an approach for confinement of untrusted applications.
Technical Report CSD-99-1056, UC Berkeley, 12, 1999.

31. B. R. Waters, E. W. Felten, and A. Sahai. Receiver anonymity via incomparable
public keys. In Proceedings of the 10th ACM CCS Conference, pages 112–121,
2003.

Secure Computation of the Mean and Related
Statistics

Eike Kiltz1,3, Gregor Leander1, and John Malone-Lee2

1 Fakultät für Mathematik,
Ruhr-Universität Bochum, 44780 Bochum, Germany

gregor.leander@ruhr-uni-bochum.de
2 University of Bristol, Department of Computer Science,

Woodland Road, Bristol, BS8 1UB, UK
malone@cs.bris.ac.uk

3 University of Southern California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0114, USA

ekiltz@cs.ucsd.edu

Abstract. In recent years there has been massive progress in the devel-
opment of technologies for storing and processing of data. If statistical
analysis could be applied to such data when it is distributed between sev-
eral organisations, there could be huge benefits. Unfortunately, in many
cases, for legal or commercial reasons, this is not possible.

The idea of using the theory of multi-party computation to analyse
efficient algorithms for privacy preserving data-mining was proposed by
Pinkas and Lindell. The point is that algorithms developed in this way
can be used to overcome the apparent impasse described above: the own-
ers of data can, in effect, pool their data while ensuring that privacy is
maintained.

Motivated by this, we describe how to securely compute the mean of
an attribute value in a database that is shared between two parties. We
also demonstrate that existing solutions in the literature that could be
used to do this leak information, therefore underlining the importance
of applying rigorous theoretical analysis rather than settling for ad hoc
techniques.

1 Introduction

In recent years there has been massive progress in the development of technolo-
gies for networking, storage and data processing. Such progress has allowed the
creation of enormous databases storing unprecedented quantities of information.
This possibility to store and process huge quantities of information throws up
the question of privacy. The need for privacy may be a legal requirement, in the
UK for example there are strict rules for any party that holds information about
individuals [24]. It may also be motivated by commercial interests: a pharma-
ceutical company does not want the results of its trials to become available while
products are still being developed based on these results. On the other hand,

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 283–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 E. Kiltz, G. Leander, and J. Malone-Lee

if it were not for such privacy considerations, there could be significant mutual
benefit in pooling data for research purposes, whether it be scientific, economic
or market research. This apparent impasse is the motivating factor for our work.

We consider a situation in which there are two parties, each owning a database.
Suppose that there is some attribute present in both databases. We propose a
protocol which the two parties can use to evaluate the mean of this attribute
value for the union of their databases. This is done in such a way that, at the
end of the protocol, the two parties learn the mean and nothing else. No trusted
party is required.

Related Work. The problem that we have described above is a case of secure
two-party computation. This notion was first investigated by Yao who proposed
a general solution [28]. The two-party case was subsequently generalised to the
multi-party case [3, 6, 18]. Although these solutions are general, they may not be
terribly efficient when used with huge inputs and complex algorithms. We are
therefore interested in a tailor-made protocol for the problem in question.

In [20, 21] Pinkas and Lindell analysed an algorithm for data-mining in the
model for secure two-party computation. This work has stimulated research in
the cryptography community into tools for working securely with large, dis-
tributed databases [1, 15].

Several algorithms that could be used for two parties to compute the mean
of their combined data have already been proposed [9, 11, 12]. None of these
solutions have been analysed in the formal model of security for two-party com-
putation; moreover, in the appendices of this paper we demonstrate that they
leak information. Similar weaknesses are also found in related protocols proposed
elsewhere [7, 9, 10, 11, 12, 13, 25, 26].

Outline. The paper proceeds as follows. In Section 2 we discuss the notion of
secure two-party computation that we will be working with. We describe how
our protocol works in Section 3 and Section 4: in Section 3 we assume the
existence of oracles to compute the low-level functions required by our protocol
and in Section 4 we give secure implementations of these oracles. We conclude
Section 4 by comparing of our protocol with Yao’s general solution for two-party
computation applied to computing the mean. In the appendices we discuss other
solutions that have been proposed and show why they are insecure.

2 Secure Two-Party Computation: Definitions and
Results

We define secure two-party computation following Goldreich [17]. An equivalent
model and results may be found in [4]. Henceforth, all two-party protocols will
involve the two parties P1 and P2.

We will consider semi-honest adversaries. A semi-honest adversary is an ad-
versary that follows the instructions defined by the protocol; however, it might
try to use the information that it obtains during the execution of the protocol to

Secure Computation of the Mean and Related Statistics 285

learn something about the input of the other party. Using techniques such as the
GMW compiler of Canetti et al. [5], a protocol that is secure against semi-honest
adversaries can be made secure against adversaries that attempt to deviate from
the protocol.

2.1 Definitions

Using the notation of Pinkas and Lindell [20, 21], let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗×{0, 1}∗ be a function. Denote the first element of f(x1, x2) by f1(x1, x2)
and the second by f2(x1, x2). Let π be a two-party protocol for computing f .
The views of P1 and P2 during an execution of π(x1, x2), denoted viewπ

1 (x1, x2)
and viewπ

2 (x1, x2) respectively, are

viewπ
1 (x1, x2) := (x1, r1,m1,1, . . . ,m1,t) and

viewπ
2 (x1, x2) := (x2, r2,m2,1, . . . ,m2,t)

where ri denotes Pi’s random input, and mi,j denotes the j-th message received
by Pi. The outputs P1 and P2 during an execution of π(x1, x2) are denoted
outputπ1 (x1, x2) and outputπ2 (x1, x2) respectively. We define

outputπ(x1, x2) := (outputπ1 (x1, x2), outputπ2 (x1, x2)).

Definition 1 (Privacy w.r.t. semi-honest behaviour). We say that π pri-
vately computes a function f if there exist probabilistic, polynomial-time algo-
rithms S1 and S2 such that

{S1(x1, f1(x1, x2)), f(x1, x2)} ≡ {viewπ
1 (x1, x2), outputπ(x1, x2)}, and (1)

{S2(x2, f2(x1, x2)), f(x1, x2)} ≡ {viewπ
2 (x1, x2), outputπ(x1, x2)} (2)

where ≡ denotes computational indistinguishability.

Equations (1) and (2) state that the view of the parties can be simulated
given access to the party’s input and output only. Recall that the adversary
here is semi-honest and therefore the view is exactly according to the protocol
definition. Note that it is not sufficient for simulator Si to generate a string
indistinguishable from viewi(x1, x2): the joint distribution of the simulator’s
output and the functionality output f(x1, x2) must be indistinguishable from
{viewπ

i (x1, x2), outputπ(x1, x2)}. This is necessary for probabilistic functionali-
ties [17].

A Simpler Formulation for Deterministic Functionalities. In the case
that the functionality f is deterministic, it suffices to require that simulator Si

generates the view of party Pi, without considering the joint distribution with
the output. That is, we can require that there exist S1 and S2 such that

{S1(x1, f1(x1, x2))} ≡ {viewπ
1 (x1, x2)}, and

{S2(x2, f2(x1, x2))} ≡ {viewπ
2 (x1, x2)}.

The reason that this suffices is that when f is deterministic, outputπ(x1, x2)
must equal f(x1, x2). See [17] for a more complete discussion.

286 E. Kiltz, G. Leander, and J. Malone-Lee

Private Approximations. If we privately compute an approximation of a
function, we may reveal more information than we would by computing the
function itself. To capture this we use the framework of Feigenbaum et al. [14]
for private approximations. We restrict ourself to the case of deterministic func-
tions f .

We say that f̂ is an ε-approximation of f if, for all inputs (x1, x2),

|f(x1, x2)− f̂(x1, x2)| < ε.

Definition 2. We say that f̂ is functionally private with respect to f if there
exist a probabilistic, polynomial-time algorithm S such that

S(f(x1, x2)) ≡ f̂(x1, x2)

where ≡ denotes computational indistinguishability.

Definition 3. Let f be a deterministic function. We say that π privately com-
putes an ε-approximation of function f if π privately computes a (possibly ran-
domised) function f̂ such that f̂ is functionally private with respect to f and f̂
is an ε-approximation of f .

2.2 Secure Composition of Two-Party Protocols

Before stating the composition theorem that we will use, we first need to define
two notions: oracle-aided protocols and reducibility of protocols.

Definition 4 (Oracle-aided protocols). An oracle-aided protocol is a proto-
col augmented by two things: (1) pairs of oracle-tapes, one for each party; and
(2) oracle-call steps. An oracle-call step proceeds by one party sending a special
oracle-request message to the other party. Such a message is typically sent after
the party has written a string, its query, to its write-only oracle-tape. In response
the other party writes its own query to its write-only oracle-tape and responds
to the requesting party with an oracle-call message. At this point the oracle is
invoked and the result is that a string is written onto the read-only oracle-tape
of each party. Note that these strings may not be the same. This pair of strings
is the oracle answer.

In an oracle-aided protocol, oracle-call steps are only ever made sequentially,
never in parallel.

Definition 5 (Reducibility of protocols)

– An oracle-aided protocol uses the oracle-functionality f if its oracle answers
according to f . That is, when the oracle is invoked with requesting party
query x1 and responding party query x2, the oracle answers f1(x1, x2) to the
requesting party and f2(x1, x2) to the responding party.

– An oracle-aided protocol using the oracle functionality f is said to privately
compute a function g if there exist polynomial-time algorithms S1 and S2 that
satisfy (1) and (2) (from Definition 1) respectively, where the corresponding
views of the oracle-aided protocol g are defined in the natural manner.

Secure Computation of the Mean and Related Statistics 287

– An oracle-aided protocol privately reduces g to f if it privately computes g
when using the oracle-functionality f . If this is so, we say that g is privately
reducible to f .

Theorem 1 (Composition theorem [17]). Suppose that g is privately re-
ducible to f and that there exists a protocol for privately computing f . Then,
the protocol g′ derived from g by replacing oracle calls to f with the protocol for
computing f privately computes g.

Theorem 1 above will greatly simplify our analysis. It allows us to first de-
scribe and analyse an oracle-aided protocol in Section 3 before separately dis-
cussing how to implement the low-level details in Section 4.

3 An Oracle-Aided Protocol for Computing the Mean

In this section we describe oracle-aided protocol for computing an approximation
of the mean. We first describe the oracles that we will use in Section 3.1 before
discussing the actual protocol in Section 3.2. The notation that we will be using
in the remainder of the paper is described below.

Notation. Let a be a real number. We denote by !a" the largest integer b ≤ a,
by �a the smallest integer b ≥ a, and by �a" the largest integer b ≤ a+1/2. We
denote by trunc(a) the integer b such that b = �a if a < 0 and b = !a" if a ≥ 0;
that is, trunc(a) rounds a towards 0.

Let p be a positive integer. All arithmetic modulo p is done centred around
0; that is c mod p = c− �c/p"p.

3.1 The Oracles

Much of our computation is going to occur in a suitably large finite field. Hence-
forth we denote this field Fp. We will elaborate on what “suitably large” means
in Section 4 when we discuss how to implement the oracles used by our protocol.

We will make use of various oracles for two-out-of-two sharing. These are
described below. In all the definitions we assume that P1 and P2 input y1 and
y2 to the oracle respectively, and we let f be a function of (y1, y2).

Oracle for additive shares of f(y1, y2) over Fp: The oracle chooses s1 at
random from Fp, sends s1 to P1, and sends s2 = f(y1, y2)−s1 to P2. Players
now hold s1 and s2 such that s1 + s2 = f(y1, y2).

Oracle for multiplicative shares of f(y1, y2)(�= 0) over F
∗
p: The oracle

chooses s1 at random from F
∗
p, sends s1 to P1, and sends s2 = f(y1, y2)/s1

to P2. Players now hold s1 and s2 such that s1s2 = f(y1, y2).

Oracle for additive shares of f(y1, y2) over the integers: This definition
requires a little more care. First we assume that f(y1, y2) ∈ [−A,A] for
some A and we let ρ be a security parameter. Now, the oracle chooses s1 at
random from [−A2ρ,A2ρ], sends s1 to P1, and sends s2 = f(y1, y2) − s1 to
P2. Players now hold s1 and s2 such that s1 + s2 = f(y1, y2).

288 E. Kiltz, G. Leander, and J. Malone-Lee

Note 1. By defining an appropriate f , the oracles above can be used to convert
shares of one type to shares of another type.

The primitive that we will make the most use of is oblivious polynomial
evaluation (OPE).

Oracle for OPE: One of the players takes the role of the sender and inputs a
polynomial P of (public) degree l over Fp to the oracle. The second player,
the receiver, inputs z ∈ Fp to the oracle. The oracle responds to the receiver
with P (z). The sender requires no response.

The idea of OPE was first considered in [22] where an efficient solution re-
quiring O(l) exponentiations and with a communication cost of O(l log p) was
proposed. This method uses a 1-out-of-N oblivious transfer (OT) from [23]. This
OT protocol requires O(1) exponentiations. We note that all exponentiations can
be carried out over a different – potentially smaller – finite field.

3.2 The Protocol

Suppose that P1 has n1 entries in its databases and P2 has n2. Denote these
{x1,1, x1,2, . . . , x1,n1} and {x2,1, x2,2, . . . , x2,n2} respectively. Let

x1 =
n1∑
i=1

x1,i and x2 =
n2∑
i=1

x2,i.

Without loss of generality we will assume that x1 and x2 are integers; appro-
priate scaling can be applied otherwise. Our problem becomes computing

M =
x1 + x2

n1 + n2

where P1 knows (x1, n1) and P2 knows (x2, n2). We will assume that there are
some publicly known values N1 and N2 such that

−2N1 ≤ x1 + x2 ≤ 2N1 , 0 < n1 + n2 < 2N2 .

We describe an oracle-aided protocol for privately computing an approxima-
tion

M̂ ≈ x1 + x2

n1 + n2
.

By adding random noise we show how our protocol can be modified to pri-
vately approximate the mean M in the framework of Feigenbaum et al. [14].

Let m be the closest power of 2 to n1 + n2, that is

2m−1 + 2m−2 ≤ n1 + n2 < 2m + 2m−1 and m ≤ N2.

Let m1 and m2 be defined analogously for n1 and n2 respectively. Let

k = max{m1,m2}+ 1 ∈ {m,m + 1}.

Secure Computation of the Mean and Related Statistics 289

With k thus defined we have

n1 + n2 = 2k(1− ε) where − 1
2
< ε ≤ 5

8
.

We can express

1
n1 + n2

=
1

2k(1− ε)
=

1
2k

(∞∑
i=0

εi

)
=

1
2k

(
d∑

i=0

εi

)
+

1
2k

Rd

where |Rd| < 8
3 (5

8)d+1 < 2− 2
3 d+1.

It follows that

2N2d+k

n1 + n2
=

d∑
i=0

(2N2ε)i2N2(d−i) + 2N2dRd. (3)

Let

Z =
d∑

i=0

(2N2ε)i2N2(d−i). (4)

We are almost ready to describe our protocol, first we define some polynomials
that it will use. For i = 2, . . . ,N2 + 1, let Pi(X) be a degree N2 − 1 polynomial
such that, for X ∈ {2, . . . ,N2 + 1}

Pi(X) =

{
1 X = i

0 otherwise.

With the definitions above we can now describe the protocol. In the descrip-
tion, when we say that P1 or P2 “inputs” something we mean that it inputs it
to an oracle that computes the required functionality. Without loss of generality
we can assume x1 + x2 �= 0 (we do this to allow field multiplication); the case
x1 + x2 = 0 can be handled as a special case.

Note 2. We assume that Fp is sufficiently large that whenever a conversion from
the integers to Fp is necessary, for an oracle or a player, it can be done in the
obvious way without having to do any modular reduction. We will see what this
means for the value of p in Section 4.

Protocol 1. Oracle-aided protocol to compute a private 2−t-approximation M̂
of M = x1+x2

n1+n2

Set d = � 32 (t + N1 + 2).
1. P1 and P2 input n1 and n2 respectively. Oracle returns additive shares

aF
1 , aF

2 of Z over Fp.

290 E. Kiltz, G. Leander, and J. Malone-Lee

2. P1 and P2 input aF
1 and aF

2 respectively. Oracle returns additive shares
aI
1, a

I
2 of Z over Z.

3. For j = 2, . . . ,N2 + 1:
– P1 computes b1,j = !aI

1/2
j"

– P2 computes b2,j = !aI
2/2

j"
4. Parties locally convert their shares back into additive Fp shares ci,j ,

where share ci,j is the Fp equivalent of integer share bi,j .
5. P1 and P2 input m1 and m2 respectively. Oracle returns additive shares

d1, d2 of k over Fp.
6. P1 chooses e1 at random from Fp and defines the polynomial

R1(X) =
N2+1∑
i=2

c1,iPi(d1 + X)− e1.

P1 runs an OPE protocol with P2 so that P2 learns e2 = R1(d2) and
P1 learns nothing.

7. P2 chooses f2 at random from Fp and defines the polynomial

R2(X) =
N2+1∑
i=2

c2,iPi(d2 + X)− f2.

P2 runs an OPE protocol with P1 so that P1 learns f1 = R2(d1) and
P2 learns nothing.

8. P1 and P2 input e1 + f1 and e2 + f2 respectively. Oracle returns mul-
tiplicative shares g1, g2 of (e1 + f1) + (e2 + f2) over Fp.

9. P1 inputs x1 and P2 inputs x2. Oracle returns multiplicative shares h1,
h2 of x1 + x2 over Fp.

10. P1 computes M̂1 = g1h1 · 2−N2d and sends it to P2.
11. P2 computes M̂2 = g2h2 · 2−N2d and sends it to P1.
12. P1 computes and outputs M̂ = M̂1M̂2.
13. P2 computes and outputs M̂ = M̂1M̂2.

Theorem 2. Protocol 1 correctly computes an 2−t-approximation of M = x1+x2
n1+n2

.

Proof. By (3), (4) and by definition of the oracles used in steps 1 and 2, after
step 2 of the protocol, P1 and P2 hold aI

1 and aI
2 respectively such that∣∣∣∣ 2N2d+k

n1 + n2
− (aI

1 + aI
2)
∣∣∣∣ ≤ 2N2dRd.

Once the local computation takes place in step 3, P1 and P2 hold b1,k and
b2,k such that∣∣∣∣ 2N2d

n1 + n2
− (b1,k + b2,k)

∣∣∣∣ ≤ 2N2d−kRd + 2 ≤ 2N2dRd + 2.

Secure Computation of the Mean and Related Statistics 291

Using the bound on the error term Rd we get∣∣∣∣ 2N2d

n1 + n2
− (b1,k + b2,k)

∣∣∣∣ ≤ 2d(N2− 2
3)+2. (5)

However, the players cannot identify k.
By definition of the oracle invoked at step 5 and the construction of the poly-

nomials R1 and R2, after step 7 P1 and P2 hold (e1, f1) and (e2, f2) respectively
such that

e1 + e2 = c1,k and f1 + f2 = c2,k.

Moreover, by (5) and the properties of the conversion used at step 4, when
e1, e2, f1 and f2 are considered as integers we have∣∣∣∣ 2N2d

n1 + n2
− ((e1 + f1) + (e2 + f2))

∣∣∣∣ ≤ 2d(N2− 2
3)+2. (6)

Once the final steps have been executed, by (6) and by definition of N1, when
M̂ is treated as an integer we have∣∣∣∣(x1 + x2

n1 + n2

)
2N2d − M̂2N2d

∣∣∣∣ ≤ 2d(N2− 2
3)+N1+2.

Therefore, once the factor of 2N2d is removed from M̂ , we obtain an approx-
imation such that ∣∣∣∣(x1 + x2

n1 + n2

)
− M̂

∣∣∣∣ ≤ 2− 2
3 d+N1+2 ≤ 2−t. (7)

��

Theorem 3. Protocol 1 is private.

Proof. To prove privacy we must define simulators S1 and S2 as in Definition 1.
We describe simulator S1 as a list of steps 1-13 to output what comes into view
of P1 at the appropriate step of Protocol 1. The description of S2 is similar.

S1(x1, M̂)
1. Choose aF

1 at random from Fp.
2. Choose aI

1 at random from [−A2ρ,A2ρ].
3. Do nothing - local computation going on.
4. Do nothing - local computation going on.
5. Choose d1 at random from Fp.
6. Do nothing - P1 learns nothing from an oracle for OPE.
7. Choose f1 at random from Fp - P2 would choose f2 at random and so

f1 has the correct distribution.
8. Choose g1 at random from F

∗
p.

9. Choose h1 at random from F
∗
p.

10. Do nothing - local computation going on.
11. Compute M̂2 = M̂/(g1h1) mod p.
12. Do nothing - local computation going on.
13. Output M̂ .

��

292 E. Kiltz, G. Leander, and J. Malone-Lee

Achieving Functional Privacy. We sketch how our protocol can be modified
to achieve functionally privacy with respect to the mean function. This is done
by adding random noise before outputting the approximation (see also [14]).

Assume that Protocol 2 is being used to compute a 2−2t-approximation of the
mean M . The modified protocol proceeds as before as far as step 9. In the new
step 10, P1 inputs g1h1 and P2 inputs g2h2 to an oracle that returns additive
shares of g1h1g2h2 over Z. Each player performs division of the resulting shares
by 2N2d locally. The players now have additive shares of M̂ . Let us denote these
M̂ ′

1 and M̂ ′
2. If the players output their shares at this point, the result would

be identical to that for Protocol 1; however, before P1 and P2 output M̂ ′
1 and

M̂ ′
2 respectively, the players individually add uniform random noise in the range

[−2−t, 2−t] to their shares. Only once this random noise is added do the players
individually output their shares with precision 2−2t. Adding these shares gives
an approximation M̂ ′ of the mean M .

It is easy to verify that the modified protocol computes a 2−2t + 2−t+1-
approximation M̂ ′ of M . It remains to show that the M̂ ′ computed in the
modified protocol is functionally private with respect to M : we require a simu-
lator as described in Definition 2. Suppose that a simulator given M = x1+x2

n1+n2

adds uniform random noise R1 and R2 in the range [−2−t, 2−t] and outputs
S(M) = M + R1 + R2 with precision 2−2t. It can be readily checked that
the statistical difference between S(M) and M̂ is about 2−t. This implies that
the function computed by the modified protocol is functionally private with re-
spect to the mean. The properties of the modified protocol give us the following
theorem.

Theorem 4. There exists a protocol that privately computes an approximation
of the mean.

3.3 The Variance and Standard Deviation

Using the notation of Section 3.2, let

x̃1 =
n1∑
i=1

x2
1,i, x̃2 =

n2∑
i=1

x2
2,i and M̃ =

x̃1 + x̃2

n1 + n2
.

It is easy to use the techniques of Protocol 1 to compute the sample variance

σ2 =
1

n1 + n2

(
n1∑
i=1

(x1,i −M)2 +
n2∑
i=1

(x2,i −M)2
)

=
x̃1 + x̃2

n1 + n2
−M2

as follows. One first computes multiplicative shares of M by following Protocol 1
until P1 and P2 hold M̂1 and M̂2 respectively. These shares are squared locally
to give P1 and P2 multiplicative shares of M2 which are then then converted
to additive shares a1 and a2. The next step is to apply Protocol 1 replacing x1
and x2 with x̃1 and x̃2 respectively until P1 and P2 hold multiplicative shares
of M̃ which are then converted to additive shares b1 and b2. Now, b1 − a1 and
b2−a2 is an additive sharing of the variance as required. The standard deviation
is obtained by taking the non-negative square root.

Secure Computation of the Mean and Related Statistics 293

4 Implementing the Oracles

Here we describe how to implement the various oracles used by Protocol 1.
The security of the resulting construction then follows from Theorem 1. These
protocols all use an oblivious polynomial evaluation protocol OPE, for example
that proposed in [22] could be used.

Conversion Protocols. Protocol 2 (ATM) can be used for converting additive
to multiplicative shares over Fp as required in steps 8 and 9 of Protocol 1.

Protocol 2. ATM(a1, a2) where a1 + a2 = x(�= 0)

1. P1 chooses m1 at random from F
∗
p and constructs the polynomial

P (X) = m−1
1 a1 + m−1

1 X.
2. P1 runs OPE with P2 so that P2 learns m2 = P (a2) = m−1

1 a1 +
m−1

1 a2 = m−1
1 x.

At the end the parties hold multiplicative shares m1,m2 of x.

Protocol 3 (MTA) can be used for converting multiplicative to additive shares
over Fp. It will be necessary for Protocol 5 that we describe shortly.

Protocol 3. MTA(m1,m2) where m1m2 = x

1. P1 chooses a1 at random from F
∗
p and constructs the polynomial P (X) =

−a1 + m1X.
2. P1 runs OPE with P2 so that P2 learns a2 = P (m2) = −a1 +m1m2 =

x− a1.
At the end the parties hold additive shares a1, a2 of x.

Step 2 of Protocol 1 require a protocol to convert additive shares from Fp into
additive shares from the integers. This is not as straightforward as it sounds.
Suppose that z = zF

1 +zF
2 over Fp. The corresponding equation over the integers

is z = zF
1 + zF

2 − lp for some l. We therefore need to know l in order to make
the conversion.

Suppose that our parties have shares (zF
1 , z

F
2) over Fp where

−2n−1 < z = zF
1 + zF

2 mod p < 2n−1

294 E. Kiltz, G. Leander, and J. Malone-Lee

for some n. If p > 2ρ+n+4, where ρ is a security parameter (see Section 4.1),
the parties can use Protocol 4 to compute additive shares zI

1 , zI
2 of z over the

integers. Protocol 4 is taken from [2] and specialised to the two-party case.

Protocol 4. FTI(zF
1 , z

F
2) where z = zF

1 + zF
2 mod p

Let t = ρ + n + 2. P1 and P2 execute the following steps.

1. P2 reveals a2 = trunc
(

zF
2
2t

)
to P1.

2. P1 computes l = � zF
1 +2ta2

p ".
3. P1 chooses an integer b1 at random from [−p2ρ, p2ρ] and reveals b2 =

0− b1 to P2.
4. P1 sets zI

1 = zF
1 + b1 − lp.

5. P2 sets zI
2 = zF

2 + b2.
At the end the parties hold additive shares zI

1 and zI
2 of z over the integers.

Other Protocols. Step 1 of Protocol 1 requires a protocol for sharing Z ad-
ditively over Fp. Before describing a protocol to do this we give a protocol,
Protocol 5, for sharing 2N2ε.

Protocol 5. Sharing of 2N2ε

1. The parties run ATM(n1, n2) to obtain multiplicative shares a1, a2 of
n1 + n2.

2. The parties run Protocol 7 followed by ATM to obtain multiplicative
shares b1, b2 of 2k.

3. P1 computes c1 = 2N2a1b
−1
1 mod p, P2 computes c2 = a2b

−1
2 mod p.

4. The parties run MTA(c1, c2) to obtain additive shares d1, d2 of c1c2 mod
p.

5. P1 computes e1 = d1 − 2N2−1 mod p and P2 computes e2 = d2 −
2N2−1 mod p.

At the end the parties hold additive shares e1, e2 of

2N2ε = (n1 + n2)2N2−k − 2N2 .

We now have Protocol 6 for computing additive shares of Z over Fp.

Secure Computation of the Mean and Related Statistics 295

Protocol 6. Sharing of Z

1. The parties run Protocol 5 to obtain additive shares a1, a2 of 2N2ε.
2. P1 chooses b1 at random and defines the polynomial

P (X) =
d∑

i=0

(a1 + X)i2N2(d−i) − b1.

3. P1 runs OPE with P2 so that P2 learns b2 = P (a2) and P1 learns
nothing.

At the end the Parties hold additive shares b1, b2 of Z.

At Step 5 of Protocol 1 we require a protocol for obtaining an additive sharing
of k over Fp. Protocol 7 below does this; it requires a polynomials Qa and Qb

that we define first.
We have m1,m2 ∈ {1, . . . ,N2} and so m1−m2 ∈ {−(N2−1), . . . , (N2−1)} =

S; there are 2N2 − 1 possibilities. Let Qa(X) and Qb(X) be the polynomials of
degree |S| − 1 = 2N2 − 2 such that for s ∈ S,

Qa(s) =

{
0 if s < 0
1 if s ≥ 0

and Qb(s) =

{
0 if s ≤ 0
1 if s > 0

(8)

Protocol 7. Sharing of k and 2k

1. P1 chooses a1 at random from Fp and defines the polynomial

P1(X) = Qa(m1 −X)2m1+1 − a1.

2. P1 runs OPE with P2 so that P2 learns a2 = P1(m2) and P1 learns
nothing.

3. P2 chooses b2 at random from Fp and defines the polynomial

P2(X) = Qb(m2 −X)2m2+1 − b2

4. P2 runs OPE with P1 so that P1 learns b1 = P2(m1) and P2 learns
nothing.

At the end the parties hold additive shares a1+b1, a2+b2 of 2k. By replacing
2m1+1 and 2m2+1 with m1 +1 and m2 +1 respectively, the same technique
can be used for sharing k.

It is straightforward to prove the correctness and the privacy of the protocols
in this section in the same manner as Theorem 2 and Theorem 3 for Protocol 1.
The security of the protocol derived from Protocol 1 by replacing each oracle call
with the appropriate protocol from this section then follows from Theorem 1.

296 E. Kiltz, G. Leander, and J. Malone-Lee

4.1 Complexity

All that remains is to analyse the complexity of the final protocol and discuss
the security parameters.

Our protocol clearly runs in a constant number of communication rounds
between the two parties. The complexity of our protocol depends chiefly on the
accuracy of the result; this corresponds to the length d of the Taylor expansion.
After execution of Protocol 1, by (7) both parties end up with a real number M̂
such that ∣∣∣∣x1 + x2

n1 + n2
− M̂

∣∣∣∣ ≤ 2− 2
3 d+N1+2 ≤ 2−t. (9)

Let us consider the size of the finite field Fp. For Protocol 1, we have to
choose p to be sufficiently large so that no unwanted wrap-around (modulo p)
can occur. The value Z that is computed in the first step satisfies the bound

0 < Z ≤
d∑

i=0

(
(5/8)2N2

)i
2N2(d−i) = 2N2d

d∑
i=0

(5/8)i ≤ 2N2d+2.

Consequently for Protocol 4 (FTI protocol) to work we need a prime p >
2N2d+ρ+8, where ρ is a security parameter, typically chosen as ρ = 80.

In steps 10 and 11 we have to ensure that the value of g1h1g2h2 ≈ 2N2d(x1 +
x2)/(n1 +n2) does not exceed p. Now, we have the bound |g1h1g2h2| ≤ 2N2d+N1 .
From these bounds on Z and g1h1g2h2, we conclude that the prime p must satisfy
log p > N2d + max{ρ + 8,N1}. By an improved FTI protocol (using an implicit
representation of l in terms of shares) we can improve the requirement made to
the prime p to log p > N2d + N1. This does not affect the asymptotic running
time of the FTI protocol.
The complexity of the protocol is clearly dominated by two operations: (1) Pro-
tocol 6 to compute shares of Z using OPE with a polynomial of degree d; and
(2) step 5 (implemented by Protocol 7), and steps 6 and 7 of Protocol 1 using
OPE with polynomials of degree 2N2 − 2 and N2 − 1 respectively.

Assume N = N1 + N2. Using the OPE protocol from [22] this makes a com-
putation cost of O(N2 + d) = O(N + t) exponentiations and a communication
cost of O((N2 + d) log p) = O((N + t)2N).

4.2 Comparison with the Generic Solution

In [28] Yao presents a constant-round protocol for privately computing any prob-
abilistic polynomial-time functionality. We compare the complexity of our solu-
tion with the one obtained by using Yao’s generic solution.

Assume the given probabilistic polynomial-time functionality is given as a
binary circuit with N inputs and G gates. Without going into details, Yao’s
protocol requires a communication of O(G) times the length of the output of a
pseudo-random function (which we denote by β and is typically 80 bits long).
The main computational overhead of the protocol is the computation of the N
oblivious transfers plus the application of G pseudorandom functions.

Secure Computation of the Mean and Related Statistics 297

In our case set N = N1 + N2. A circuit computing an 2−t-approximation of
M = x1+x2

n1+n2
should compute the Taylor series, namely d = O(t + N) multipli-

cations in Fp. Assuming multiplication requires circuits of quadratic size 1 we
estimate the number of gates as G = O((t + N)N2). This results in a commu-
nication cost of O(β(t + N) log2 p) = O((t + N)3N2β) which is larger than the
cost of our protocol by a factor of (t + N)Nβ. On the other hand, the number
of oblivious transfers (and so the number of exponentiations) for the generic
protocol is O(N). If we also take into account the O((N + t)N2) applications of
the pseudorandom generator, the computation cost remains much the same in
both cases.

For comparison, note that there is a computation–communication tradeoff
for oblivious transfer suggested in [23]. This can reduce the number of exponen-
tiations by a factor of c at the price of increasing the communication by a factor
of 2c.

We also note that, using our techniques, all application of Yao’s circuits
in the log protocol from [20, 21] can be abandoned. This essentially leads to
a slight improvement – a multiplicative factor β – in the communication cost
of [20, 21].

Acknowledgement. We thank the anonymous referees for the helpful com-
ments. The first author was partially supported by a DAAD postdoc fellowship.

References

1. G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the kth-ranked
element. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 40–55. Springer-Verlan, 2004.

2. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a
shared secret with application to the generation of shared safe-prime products.
In Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 417–432. Springer-Verlag, 2002.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In 20th ACM Symposium
on Theory of Computing, pages 1–10. ACM Press, 1988.

4. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

5. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party computation. In 34th ACM Symposium on Theory of Computing, pages
494–503. ACM Press, 2002.

6. D. Chanm, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure proto-
cols. In 20th ACM Symposium on Theory of Computing, pages 11–19. ACM Press,
1988.

1 There exist circuits of size O(log p log2 log p) for multiplication; however, assuming
quadratic circuits seems reasonable for realistic values of log p. We note that this
convention is also made in [2, 20, 21].

298 E. Kiltz, G. Leander, and J. Malone-Lee

7. W. Du. A Study of Several Specific Secure Two-party Computation Problems. PhD
thesis, Department of Computer Science, Purdue University, 2001.

8. W. Du and J. Atallah. Privacy-preserving cooperative scientific computations. In
14th IEEE Computer Security Foundations Workshop, pages 273–282, 2001.

9. W. Du and M. J. Atallah. Privacy-preserving cooperative statistical analysis. In
2001 ACSAC: Annual Computer Security Applications Conference, pages 102–110,
2001.

10. W. Du and M. J. Atallah. Secure multi-party computation problems and their
applications: A review and open problems. In New Security Paradigms Workshop,
pages 11–20, 2001.

11. W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In 4th SIAM International Conference on Data
Mining, 2004.

12. W. Du and Z. Zahn. Building decision tree classifier on private data. In Workshop
on Privacy, Security, and Data Mining at The 2002 IEEE International Conference
on Data Mining (ICDM), pages 1–8, 2002.

13. W. Du and Z. Zhan. A practical approach to solve secure multi-party computation
problems. In New Security Paradigms Workshop, pages 127–135, 2002.

14. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. N. Wright.
Secure multiparty computation of approximations. In ICALP, volume 2076 of
Lecture Notes in Computer Science, pages 927–938. Springer-Verlan, 2001. Full
version on Cryptology ePrint Archive, Report 2001/024.

15. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 1–19. Springer-Verlan, 2004.

16. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, New York, 2 edition, 2003.

17. O. Goldreich. Foundations of Cryptography, Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

18. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game: A
completeness theorem for protocols with honest majority. In 19th ACM Symposium
on Theory of Computing, pages 218–229. ACM Press, 1997.

19. O. Goldreich and R. Vainish. How to solve any protocol problem - an efficiency
improvement. In Advances in Cryptology - CRYPTO ’87, volume 293 of Lecture
Notes in Computer Science, pages 73–86. Springer-Verlag, 1987.

20. Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances in Cryp-
tology - CRYPTO 2000, volume 1800 of Lecture Notes in Computer Science, pages
35–24. Springer-Verlag, 2000.

21. Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology,
15(3):117–206, 2002.

22. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In 31st

ACM Symposium on Theory of Computing, pages 245–254. ACM Press, 1999. Full
version available at http://www.wisdom.weizmann.ac.il/\%7Enaor/onpub.html.

23. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 448–457, 2001.

24. UK Government. Data protection act 1998. Available at
http://www.hmso.gov.uk/acts/acts1998/19980029.htm.

25. J. Vaidya and C. Clifton. Privacy preserving naive bayes classifier for vertically
partitioned data. In 4th SIAM International Conference on Data Mining, 2004.

26. J. S. Vaidya. Privacy Preserving Data Mining over Vertically Partitioned Data.
PhD thesis, Department of Computer Science, Purdue University, 2004.

Secure Computation of the Mean and Related Statistics 299

27. X. Wang and V. Y. Pan. Acceleration of Euclidean algorithm and rational number
reconstruction. SIAM Journal on Computing, 32(2):548–556, 2003.

28. A. C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science, pages 162–167. IEEE Computer Science Press,
1986.

A Flaws in Existing Protocols

In this Section we review some protocols in the area of private information
retrieval appearing or used in [7, 9, 10, 11, 12, 13, 25, 26]. We identify two general
design techniques in protocols that lead to insecure solutions. First, to hide an
(integer) number, multiplying by a random integer and publishing the resulting
product is a bad idea as we outline below. This kind of “hiding by multiplication”
technique only makes sense over a finite field where multiplication by a random
field element results in a random field element.

Second, as a tradeoff between security and efficiency, it could be tempting
to design protocols that leak some secret information. However, when revealing
some information about a secret value, one has to take extreme care not to
apply the protocol to another dependent instance (sequential composition) that
may result in leaking more information than initially intended. This is discussed
further below.

The Mean Protocol of Du and Atallah [9]. In this subsection we review
the mean protocol from [9] (see also [7]) and show that it leaks information.

Protocol 8. Protocol to compute the mean M = x1+x2
n1+n2

.

1. P1 generates two random integer numbers r and s (chosen from a suf-
ficiently large interval).

2. P1 runs OPE with P2 twice. The first time P2 learns a = r(x1 + x2)
the second time it learns b = s(n1 + n2). P1 learns nothing.

3. P1 sends t = s/r to P2.
4. P2 computes t · a

b = x1+x2
n1+n2

and sends it to P1.

First note that, after the second step of the protocol, P2 learns something
about x1: P2 knows all the divisors of x2 and so if a|x2 and a � |r(x1 +x2) then it
knows that a � |x1. We note that protocols 6 and 7 from [13] and the log protocol
from Du and Zhan (Section 5.2 in [12]) suffer from the same problem as the
above protocol and hence leak secret information.

Now we show that in some cases P1 can completely determine x2 and n2.
Suppose that the random numbers r and s in the first step are integers chosen

300 E. Kiltz, G. Leander, and J. Malone-Lee

from the interval [0, 2k − 1]. (The distribution of r and s is not specified in [9].
To properly hide x1 + x2 and n1 + n2, r and s have to be chosen uniformly at
random from a large enough interval. We can assume that r and s are integer
values, otherwise appropriate scaling can be applied.) To properly hide x1 + x2
and n1+n2 in Step 2, we assume that k ≈ 2N where N = max{N1,N2}. Suppose
now that r > s. The problem comes in Step 3 where the rational number t = s/r
must be transfered to P2. Using the well known technique of rational number
approximation, we show that under some choice of parameters, t leaks r and s
– a complete break of the protocol.

Transferring a rational number t typically is done by using fixed point arith-
metic. Let t′ be the fixed point representation of t, so t′ equals t up to a (public)
number d of digits: t′ = u′/2d for an integer 0 ≤ u′ < 2d. To guarantee P2 a
sufficiently good approximation t′ · a

b of t · a
b = x1+x2

n1+n2
in the last step, we need

d > k + 2N + 1. Now, P2 runs an algorithm to compute a rational number ap-
proximation of t′, that is to find (if it exists) the unique pair of coprime integers
r′ < s′ in the interval [0, 2k − 1] such that

|u′/2d − s′/r′| < 1/22k+1. (10)

There are algorithms for this with complexity O(d log3 d). See [16, 27] for
example.

Assume that r and s are coprime (by a theorem of Dirichlet this happens
with asymptotic probability 6/π2). Now, |u′/2d− s/r| < 1/2d ≤ 1/22k+1. Hence
there must exist two integers r′ and s′ satisfying (10). Since such integers are
unique we must have r′ = r and s′ = s. Of course, given r and s, P2 can compute
x1 and n1 – a complete break of the protocol.

We note that the mean protocol from Abdallah and Du is used in several
places [10, 25, 26] ([25, 26] also discuss alternative solutions).

The Matrix Multiplication Protocol of Du, Han, and Chen [11]. Here
we review the matrix multiplication protocol from [11] and indicate why certain
applications of it leak information. Such an application is used in [11].

We start explaining a multiplication protocol (Protocol 2 of [11]). On input
of two n×n matrices A = (Aij) and B = (Bij) (for what follows we do not need
to further specify where the elements of A and B are chosen from) it outputs
shares V1 and V2 such that V1 + V2 = AB.

We vertically divide the n×n matrix M into two equal-sized sub-matrices Ml

and Mr of size n×n/2 (we assume n is even); we horizontally divide M I = M−1

into two equal-sized sub-matrices M I
t and M I

b of size n/2× n.

Protocol 9. MUL(A,B)

1. Both players generate a random, public, invertible n× n matrix M .
2. P1 computes A1 = AMl, A2 = AMr and sends A2 to P2.
3. P2 computes B1 = M I

t B, B2 = M I
b B and sends B2 to P1.

Secure Computation of the Mean and Related Statistics 301

4. P1 computes V1 = A2B2 and P2 computes V2 = A1B1.
At the end of the protocol P1 holds V1, P2 holds V2 such that V1+V2 = AB.

It is easy to see that the indicated protocol correctly computes shares V1 and
V2 of the matrix product AB. However, as also noted in [11], the protocol leaks in-
formation to both players: P2, for example, learns the n/2×n matrix A2 = AMr

in Step 2, where Mr is a public matrix it knows. Intuitively (if M is properly cho-
sen) this provides some information about the secret matrix A. To be more pre-
cise, since Mr is a n×n/2 matrix, for each fixed column j of the matrix A, P2 gets
a system of n/2 linear equations with n unknown variables Aij , 1 ≤ i ≤ n. In to-
tal P2 gets n2/2 linear equations with n2 unknown variables Aij , 1 ≤ i, j ≤ n. We
note that in [11] the matrices M in the first step are chosen according to a more
complex distribution. However, our simplification does not affect what follows.

If only applying the protocol once this may not be a problem. However, when
using this protocol more than once one has to be extremely careful: Any com-
position of this protocol applied to dependent instances may lead to a complete
break of the protocol.

This problem occurs in Section 4.5 of [11] when computing the inverse of
a matrix. Protocol MUL is applied to two dependent matrices: to a (random)
matrix Q and to its inverse Q−1. Unfortunately this inversion protocol is a crucial
building block for all main results in [11].

We now describe the inversion protocol. The setting is that P1 holds matrix
A, P2 holds matrix B, and both want to securely compute shares V1 and V2 such
that V1 + V2 = (A + B)−1. This is done in two main steps. In the first step P2
generates two random, invertible matrices, P and Q. The two players use MUL so
that P1 learns C = P (A+B)Q but P2 learns nothing about C. In a second step
P1 locally computes C−1 = Q−1(A + B)−1P−1 and both players run a protocol
to compute matrices V1 and V2 such that V1 + V2 = QC−1P = (A + B)−1. We
will show that after the execution of the protocol, P1 can learn P and Q.

In the first step P2 must reveal some information about Q, namely in the MUL
protocol P1 learns M I

b Q for some public n/2×n matrix M I
b . In the second step

(as an intermediate step), P2 has to create shares of Q = Q1+Q2 and send Q1 to
P1. P1 has to create shares of C−1 = C1+C2 and send C2 to P2. Now both run a
multiplication protocol to get shares W1 and W2 such that W1 +W2 = C−1Q =
(C1 +C2)(Q1 +Q2) = C1Q1 +C1Q2 +C2Q2 +C2Q1. To compute the shares W1
and W2, the players have to run the protocol MUL twice: on inputs (C1, Q2) and
on inputs (C2, Q2). But at the point where the players run the multiplication
protocol MUL on inputs (C1, Q2), P1 learns Q2M̂r = (Q−1 −Q1)M̂r, where the
n× n/2 matrix M̂r and the n× n matrix Q1 are known to P1.

So far in this inversion protocol P1 has learnt

S := M I
b Q and (11)

T := (Q−1 −Q1)M̂r + Q1M̂r = Q−1M̂r (12)

for a known n× n/2 matrix M I
b , and for a known n/2× n matrix M̂r.

302 E. Kiltz, G. Leander, and J. Malone-Lee

Let Q = (Qij) and Q−1 = (Q−1
ij). Equation (11) provides n2/2 linear equa-

tions in the unknown Qij , (12) provides n2/2 linear equations in the unknown
Q−1

ij . Since Q−1 depends on Q, combining (11) and (12) we get n2 (not necessar-
ily linear) equations in the unknown Qij . If M and M̂ where chosen at random,
with high probability the equations are independent and hence knowledge of S
and T provides enough information for P1 to compute Q. For small n, the matrix
Q can be computed efficiently. By a similar argument P1 also learns P enabling
it to compute P2’s input B and hence to completely break the protocol.

To save the MUL protocol from [11], one could argue that when the matrix M̂
is chosen properly (depending on Q,Q−1 and M), then one may hope that the
resulting linear equations obtained by P1 can be made dependent on the previous
ones such that no new information about Q is released to P1. However, in [11]
the protocols using MUL or the inversion protocol as a sub-protocol become very
complex (as do the dependencies) and so this is very likely to become impractical.

We note that the main results of [11] still hold when one replaces the MUL
protocol by one that is provably secure. We suspect that the protocol proposed by
Atallah and Du [8] (which itself builds on an idea by Goldreich and Vainish [19])
can be proved secure.

Keyword Search and
Oblivious Pseudorandom Functions

Michael J. Freedman1, Yuval Ishai2, Benny Pinkas3, and Omer Reingold4

1 New York University
mfreed@cs.nyu.edu

2 Technion
yuvali@cs.technion.ac.il

3 HP Labs, Israel
benny.pinkas@hp.com

4 Weizmann Institute of Science
omer.reingold@weizmann.ac.il

Abstract. We study the problem of privacy-preserving access to a
database. Particularly, we consider the problem of privacy-preserving
keyword search (KS), where records in the database are accessed accord-
ing to their associated keywords and where we care for the privacy of
both the client and the server. We provide efficient solutions for vari-
ous settings of KS, based either on specific assumptions or on general
primitives (mainly oblivious transfer). Our general solutions rely on a
new connection between KS and the oblivious evaluation of pseudoran-
dom functions (OPRFs). We therefore study both the definition and
construction of OPRFs and, as a corollary, give improved constructions
of OPRFs that may be of independent interest.

Keywords: Secure keyword search, oblivious pseudorandom functions,
private information retrieval, secure two-party protocols, privacy-
preserving protocols.

1 Introduction

Keyword search (KS) is a fundamental database operation. It involves two main
parties: a server, holding a database comprised of a set of records and their asso-
ciated keywords, and a client, who may send queries consisting of keywords and
receive the records associated with these keywords. A natural question in the area
of secure computation is the design of protocols for efficient, privacy-preserving
keyword search. These protocols enable keyword queries while providing privacy
for both parties: namely, (1) hiding the queries from the database (client pri-
vacy) and (2) preventing the clients from learning anything but the results of
the queries (server privacy).

To be more specific, the private keyword-search problem may be defined by
the following functionality. The database consists of n pairs {(xi, pi)}i∈[n]; we
denote xi as the keyword and pi as the payload (database record). A query from

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 303–324, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 M.J. Freedman et al.

a client is a searchword w, and the client obtains the result pi if there is a value
i for which xi = w and obtains a special symbol ⊥ otherwise. Given that KS
allows clients to input an arbitrary searchword, as opposed to selecting pi by an
input i, keyword search is strictly stronger than the better-studied problems of
oblivious transfer (OT) and symmetrically private information retrieval (SPIR).

1.1 Contributions

Our applied and conceptual contributions can be divided into the following:

– Specific Protocols for KS. We construct direct instantiations of KS pro-
tocols, providing privacy for both parties, based on the use of oblivious poly-
nomial evaluation and homomorphic encryption. The protocols have a com-
munication complexity which is logarithmic in the size of the domain of the
keywords and polylogarithmic in the number of records, and they require
only one round of interaction, even in the case of malicious clients.1 All
previous fully-private KS protocols either require a linear amount of com-
munication or multiple rounds of interaction, even in the semi-honest model.

– KS Using Oblivious Pseudorandom Functions (OPRFs). We describe
a generic, yet very efficient, reduction from KS to what we call semi-private
KS, in which only the client’s privacy is maintained. Specifically, we show
that any KS protocol providing (only) client privacy can be upgraded to
provide server privacy as well, by using an additional oblivious evaluation
of pseudorandom functions. This reduction is motivated by the fact that
efficient semi-private KS is quite easy to obtain by combining PIR with a
suitable data structure supporting keyword searches [20, 7].2 Thus, we derive
a general construction of fully-private KS protocols based on PIR, a data
structure supporting keyword searches, and an OPRF.

– New Notion of OPRF. Motivated by the KS application and the above
general reduction, we put forward a new relaxed notion of OPRF which facil-
itates more efficient constructions and is of independent theoretical interest.

– Constructions of OPRF. We show a construction of an OPRF protocol
based on the DDH assumption. In addition, one of the our main contribu-
tions is a general construction of (relaxed) OPRF from OT. This construction
is based on techniques from [23, 25], yet improves on these works as (1) it
preserves privacy against (up to t) adaptive queries, (2) it is obliviously eval-
uated in constant number of rounds, and (3) it handles exponential domain
size. These improvements are partially relevant also in the context of t-out-
of-n OT, as originally studied in [23, 25]. We note that this is a black-box

1 In the case of malicious parties, we use a slightly relaxed notion of security, following
one suggested in the context of OT [1, 23] (see Section 2).

2 In fact, if we allow a setup phase with linear communication complexity, we can
obtain a semi-private KS supporting adaptive queries by simply sending the entire
database to the client.

Keyword Search and Oblivious Pseudorandom Functions 305

construction of t-time OPRF from OT. From a theoretical point-of-view,
one of the most interesting open questions left by our work is to find an
efficient black-box construction of fully-adaptive OPRF and KS (supporting
an arbitrary number of queries) which only makes a black-box use of OT. In
contrast, such a construction is easy to obtain by making a non-black-box
use of OT. Thus, we have a rare example of a non-black-box construction
in cryptography for which no black-box construction is known, even in the
random-oracle model. In fact, we are not aware of any other such simple and
natural example that fully resides in the semi-honest model.

1.2 Related Work

The work of Kushilevitz and Ostrovsky [20], which was the first to suggest
a single-server PIR protocol, described how to use PIR together with a hash
function for obtaining a semi-private KS protocol (we denote a KS protocol as
“semi-private” if it does not ensure server privacy). Chor et al. [7] described how
to implement semi-private KS using PIR and any data structure supporting
keyword queries, and they added server privacy using a trie data structure and
many rounds. Our reduction from KS to semi-secure KS provides a more efficient
and general alternative, requiring only a small constant number of rounds.

Ogata and Kurosawa [27] show an ad-hoc solution for KS for adaptive queries,
using a setup stage with linear communication. The security of their main con-
struction is based on the random oracle assumption and on a non-standard
assumption (related to the security of blind signatures). The system requires a
public-key operation per item for every new query.

A problem somewhat related to KS is that of “search on encrypted data” [30,
3]. The scenario involves giving encrypted data to a third party. This party is
later given a trapdoor key, enabling it to search the encrypted data for specific
keywords, while hiding any other information about the data. This problem
seems easier than ours since the search key is provided by the party which
previously encrypted the data. Furthermore, there are protocols for “search on
encrypted data” (e.g., [30]) which use only symmetric-key crypto. therefore it is
unlikely that they can be used for implementing KS, as KS implies OT.

Another related problem is that of “secure set intersection” [10], where two
parties whose inputs consist of sets X,Y privately compute X∩Y . KS is a special
case of this problem with |X| = 1. On the other hand, set intersection can be
reduced to KS by running a KS invocation for every item in X. Thus, our results
can be applied to obtain efficient solutions to the set-intersection problem.

Cryptographic Primitives. We make use of several standard cryptographic
primitives that can be defined as instances of private two-party computation be-
tween a server and a client, including oblivious transfer (OT) [29, 9], single-server
private information retrieval (PIR) [8, 20], symmetrically-private information re-
trieval (SPIR) [11, 23], and oblivious polynomial evaluation (OPE) [23]. Some
specific constructions for non-adaptive KS require a semantically-secure homo-
morphic encryption system.

306 M.J. Freedman et al.

1.3 Organization

The remainder of this paper is structured as follows. We provide definitions
and variants of keyword search in Section 2. Section 3 describes some direct
constructions of (non-adaptive) KS protocols based on OPE and homomorphic
encryption. In Section 4 we introduce our new relaxed notion of OPRF and use
it to obtain a reduction from fully-private KS to semi-private KS. We conclude
by providing efficient implementations of OPRFs in Section 5.

2 Preliminaries

This section defines the private keyword search problem and some of its variants.
We assume the reader’s familiarity with standard simulation-based definitions
of secure computation (cf. [5, 13]).

2.1 Private Keyword Search

The system is comprised of a server S and a client C. The server’s input is a
database X of n pairs (xi, pi), each consisting of a keyword and a payload. Key-
words can be strings of an arbitrary length and payloads are padded to some fixed
length. We may also assume, without loss of generality, that all xi are distinct.
The client’s input is a searchword w. If there is a pair in the database in which
the keyword is equal to the searchword, then the output is the corresponding
payload. Otherwise the output is a special symbol ⊥.

Private keyword search (KS for short) requires privacy for both the client and
the server, i.e., neither party learns anything more than is defined by the above
transaction. The strongest way of formalizing this requirement is by appealing to
general definitions of secure computation from the literature. That is, a KS pro-
tocol can be defined as a secure two-party protocol realizing the above KS func-
tionality. However, when constructing specific KS protocols—rather than general
reductions from KS to other primitives—efficiency considerations dictate a slight
relaxation of this definition which still suffices to capture the core correctness
and privacy requirements. Specifically, when simulating a malicious server, the
relaxed definition only requires one to simulate the server’s view alone, without
considering its joint distribution with the honest client’s output. (In the setting
of semi-honest parties, this relaxed definition is equivalent to the original one.)

With respect to a malicious server, this relaxed definition only requires that
the client’s query w remains private: It does not require the server to commit to
or even “know” a database to which a client’s search is effectively applied. Such
a relaxation is standard for related primitives such as OT (cf. [1, 23]) or PIR
(cf. [20, 4]). Moreover, it seems necessary for obtaining protocols that require
only a single round of interaction yet still achieve security against malicious
parties. (We note, however, that our protocols can be amended to satisfy the
stronger definition by adding proofs of knowledge.)

It is interesting to contrast the goals of KS and those of zero-knowledge
sets [22]. While KS provides privacy for both parties but does not require the

Keyword Search and Oblivious Pseudorandom Functions 307

server to commit to its input, zero-knowledge sets require the server to commit
to its input but provides privacy for the server yet not the client.

The requirements of a private KS protocol can be divided into correctness,
client privacy, and server privacy components. We first define these properties
independently, and then define a private KS protocol as a protocol that satisfies
these definitions. (To avoid cumbersome notation, we omit the auxiliary inputs
required for sequential composition.)

Definition 1 (Correctness). If both parties are honest, then, after running
the protocol on inputs (X,w), the client outputs pi such that w = xi, or ⊥ if no
such i exists.

Definition 2 (Client’s privacy: indistinguishability). For any PPT S ′ ex-
ecuting the server’s part and for any inputs X,w,w′, the views that S ′ sees on
input X, in the case that the client uses the searchword w and the case that it
uses w′, are computationally indistinguishable.

For both client and server privacy, indistinguishability is parameterized by
a privacy parameter k, given to both parties as a common input. Note that
this definition, protecting only the privacy of the client’s query w, captures the
aforementioned relaxation.

In order to show that the client does not learn more or different information
from the protocol than from merely obtaining its output, we compare the pro-
tocol to the ideal implementation. In the ideal implementation, a trusted third
party gets the server’s database X and the client’s query w as input, and outputs
the corresponding payload to the client. Privacy requires that the protocol does
not leak to the client more information than in the ideal implementation.

Definition 3 (Server’s privacy: comparison with the ideal model). For
every PPT machine C′ substituting the client in the real protocol, there exists a
PPT machine C′′ that plays the client’s role in the ideal implementation, such
that on any inputs (X,w), the view of C′ is computationally indistinguishable
from the output of C′′. (In the semi-honest model C′ = C.)

Remark 1. The protocols from Section 3, as originally described, will actually
satisfy the following incomparable notion of server privacy: any computationally
unbounded client C′ can be simulated by an unbounded simulator C′′. This can
be viewed as a pure form of information-theoretic privacy. Inefficient simulation
seems necessary in order to obtain 1-round KS protocols (see a discussion in [1]
for the similar case of OT). However, it is easy to convert these protocols to
ones that support efficient simulation, using standard zero-knowledge proofs of
knowledge: Clients should prove that they know the secret key corresponding
to the public key they generate. Such proofs need to be performed only once,
during the system’s initialization.

Definition 4 (Private KS protocol). A two-party protocol satisfying Defini-
tions 1 (correctness), 2 (client privacy) and 3 (server privacy).

308 M.J. Freedman et al.

The above definition can be immediately applied to protocols computing any
deterministic client-server functionality f . We refer to such a protocol as private
protocol for f .

Finally, we will later use KS protocols in which the server privacy is not
preserved (i.e., satisfy only Definitions 1 and 2). We refer to such protocols as
semi-private KS protocols.

2.2 Problem Variants

The default KS primitive can be extended and generalized in several ways. We
first outline three orthogonal variations on the basic model, and then define the
two main settings on which we focus.

– Multiple Queries. The default notion of KS allows the client to search for
a single keyword. While this procedure can be repeated several times, one
may seek more efficient solutions allowing the client to retrieve t keywords
at a reduced cost. This generalized notion of t-time KS is straightforward to
define and makes sense even when t(n, since the client does not necessarily
have an a-priori knowledge of the keywords. (This is in contrast to the case
of 1-out-of-n OT or SPIR, where there is no point in letting t > n, since the
entire database can be learned using t queries.)

– Allowing Setup. By default, KS does not assume any previous interac-
tion between the client and server. To facilitate prompt responses to future
queries, the client and server may engage in a setup phase involving a poly-
nomial amount of work. During the online phase, each keyword search may
then only require a sub-linear amount of work.

– Adaptive Queries. In the default non-adaptive setting, the client may
ask multiple queries, but the queries must be defined before it receives the
server’s first answer. In the adaptive setting, the client can decide on the value
of each query after receiving the answers to previous queries. An adaptive
t-time KS protocol allows the client to make at most t adaptive queries. The
privacy definition in this case extends the above in a natural way, similarly
to that of adaptive OT in [24].

The results of this work have applications to all of the above variations.
However, to make the presentation more focused, we restrict our discussion to
two “typical” settings for KS:

Non-Adaptive t-Time KS Without Setup. In our default notion of KS,
when t is unspecified, it is taken to be 1. This setting’s main goal in this setting
is to obtain solutions whose total communication complexity is sub-linear in n.
Thus, the problem can be viewed as an extension of PIR and SPIR.

Adaptive t-Time KS with Setup. In this setting, allowing t adaptive queries,
the setup phase typically consists of a single message in which the server sends
the database in encrypted form to the client. (This is the default setting also

Keyword Search and Oblivious Pseudorandom Functions 309

considered in [23, 25, 27].) In general, however, the setup may be polynomial in
the database size. Ideally, each adaptive query should involve a small amount
of work—sub-linear in the database size—including both communication and
computation. When t is unspecified, it is taken to be an arbitrary polynomial in
the database size, where this polynomial may be larger than the cost of the setup.
Thus, one cannot apply solutions that separately handle each future query.

For brevity, we subsequently refer to these settings as non-adaptive KS and
adaptive KS, respectively.

3 Non-adaptive KS from OPE

In this section, we construct a non-adaptive keyword search protocol using obliv-
ious polynomial evaluation (OPE) [23]. The basic idea of the construction is to
encode the database entries in X = {(x1, p1), . . . , (xn, pn)} as values of a poly-
nomial, i.e., to define a polynomial Q such that Q(xi) = (pi). Note that this
design is different than previous applications of OPE, where a polynomial (of
degree k) was used only as a source for (k + 1)-wise independent values. Com-
pared to our other constructions and to previous solutions from the literature,
this construction is unique in achieving sub-linear communication overhead in a
single round of communication.3

The following scheme uses any generic OPE to build a KS protocol. We then
show a specific implementation of the OPE based on homomorphic encryption.

Protocol 1 (Generic polynomial-based KS)
Input: Client: an evaluation point w; Server: {xi, pi}i∈[n], all xi’s are distinct
Output: Client: pi if w = xi, nothing otherwise; Server: nothing

1. The server defines L bins and maps the n items into the L bins using a
random, publicly-known hash function H with a range of size L. H is applied
to the database’s keywords, i.e., (xi, pi) is mapped to bin H(xi). Let m be a
bound such that, with high probability, at most m items are mapped to any
single bin. (At this point, we keep L and m as parameters.)

2. For every bin j, the server defines two polynomials Pj and Qj of degree
(m−1). The polynomials are defined such that for every pair (xi, pi) mapped
to bin j, it holds that Pj(xi) = 0 and Qj(xi) = (pi|0�), where � is a statistical
security parameter.

3. For each bin j, the server picks a new random value rj and defines the
polynomial Zj(w) = rj · Pj(w) + Qj(w).

4. The two parties run an OPE protocol in which the client evaluates all L
polynomials at the searchword w.

5. The client learns the result of ZH(w)(w), i.e., of the polynomial associated
with the bin H(w). If this value if of the form p|0� the client outputs p,
otherwise it outputs ⊥.

3 Protocol 1 uses a public hash function H. To run it in the “plain” model, the client
can pick the hash function and send it to the server in its first message.

310 M.J. Freedman et al.

To instantiate this generic scheme, we need to detail the following three open
issues: (1) the OPE method used by the parties, (2) the number of bins L, and
(3) the method by which the client receives the OPE output for the relevant
bin. Additionally, one could consider using carefully-chosen hashing methods to
obtain a balanced allocation of items into bins, although this approach would
not yield substantial improvements.

An OPE Method. Our construction uses an OPE method based on homo-
morphic encryption4 (such as Paillier’s system [28]) in the following way. We
first introduce this construction in terms of a single database bin.
– The server’s input is a polynomial of degree m, where P (w) =

∑m
i=0 aiw

i.
The client’s input is a value w.

– The client sends to the server homomorphic encryptions of the powers of w
up to the mth power, i.e., Enc(w), Enc(w2), . . . , Enc(wm).

– The server uses the homomorphic properties to compute the following:

m∏
i=0

Enc(aiw
i) = Enc(

m∑
i=0

aiw
i) = Enc(P (w))

The server sends this result back to the client.

In the case of semi-honest parties, it is clear that the OPE protocol is correct
and private. Furthermore, the protocol can be applied in parallel to multiple
polynomials, and the structure of the protocol enforces that the client evaluates
all polynomials at the same point.

Now, consider that the server’s input is L polynomials, one per bin. The
protocol’s overhead for computing all polynomials is the following. The client
computes and sends m encryptions. Every polynomial Pj used by the server is
of degree dj ≤ m (where dj + 1 items are mapped to bin j), and the server can
evaluate it using dj + 1 homomorphic multiplications of plaintexts. Thus, the
total work of the server is

∑L−1
j=0(dj +1) = n exponentiations. The server returns

just a single value for each of the L polynomials.

A Simple Protocol. Let the server assign the n items to L bins arbitrarily
and evenly, ensuring that L items are assigned to every bin; thus, L =

√
n.

The client need not know which items are mapped to which bin. The client’s
message during the OPE consists of L = O(

√
n) homomorphic encryptions; the

server evaluates L polynomials by performing n homomorphic multiplications
(exponentiations), and replies with the L =

√
n results. This protocol has a

communication overhead of O(
√
n), O(n) computation overhead at the server’s

side, and O(
√
n) computation overhead at the client’s side.

Reducing Communication: Receiving the OPE Output Using PIR.
Note that the client does not need to learn the outputs of all polynomials but

4 Other OPE constructions could be based on the hardness of noisy polynomial inter-
polation or on using log |F| 1-out-of-2 OTs, where F is the underlying field [23].

Keyword Search and Oblivious Pseudorandom Functions 311

rather only the value of the polynomial associated with the bin to which w could
be mapped. To further lower the communication complexity, the protocol uses
a public hash-function H and invokes PIR to retrieve the result of the relevant
polynomial evaluation. Namely, the function H is chosen independently of the
content of the database, and it is used to map items to bins. After the server
evaluates the L polynomials on the client’s input w, the client runs a 1-out-of-L
PIR scheme to learn the result of the polynomial of bin H(w).

The total communication overhead is O(m) ≈ n/L (client to server) plus the
overhead of the PIR scheme. A good choice is to use a PIR scheme with a poly-
logarithmic communication overhead, such as the scheme of Cachin et al. [4]
(based on the Φ-hiding assumption) or the schemes of Chang [6] or Lipmaa [21]
(based on the Paillier and Damg̊ard-Jurik cryptosystems, respectively). In these
cases, setting L = n/ log n gives a total communication of O(polylog n). We note
that the client can combine the first message from its KS scheme with that of its
PIR scheme. Thus, the round overhead of the combined protocol is the same as
that of the PIR protocol alone. The computation overhead of the server is O(n)
plus that of a PIR scheme with L inputs; the client’s overhead is O(m) plus that
of a PIR scheme with L inputs.

Theorem 1. There exists a KS system for semi-honest parties with a com-
munication overhead of O(polylog n) and a computation overhead of O(logn)
“public-key” operations for the client and O(n) for the server. The security of
the KS system is based on the assumptions used for proving the security of the
KS protocol’s homomorphic encryption system and of the PIR system.

Proof (sketch for semi-honest parties): Given a pair (xi, pi) in the server’s
input such that w = xi, it is clear that the client outputs pi. If w �= xi for all i,
the client outputs ⊥ with probability at least 1− 2−�. The protocol is therefore
correct. Since the server receives semantically-secure homomorphic encryptions
and the PIR protocol protects the privacy of the client, the protocol ensures
the client’s privacy: The server cannot distinguish between any two client inputs
x, x′. Finally, the protocol protects the server’s privacy: If a polynomial Z with
fresh randomness is prepared for every query on every bin, then the result of the
client’s query w is random if w is not a root of P , i.e., if w is not in the server’s
input X. A party running the client’s role in the ideal model can therefore
simulate the client’s view in the real execution.

Handling Malicious Servers. Assume that the PIR protocol provides client
privacy in the face of a malicious server (as is the case with virtually all PIR
protocols from the literature). Then the protocol is secure against malicious
servers (per Definition 2), as the only information that the server receives, in
addition to messages of the PIR protocol, is composed of semantically-secure
encryptions of powers of the client’s input searchword.

Handling Malicious Clients. If the client is malicious then server privacy is
not guaranteed by Protocol 1 as given. For example, a malicious client could send
encryptions that do not correspond to powers of a value w. However, if the OPE

312 M.J. Freedman et al.

protocol used in Protocol 1 is secure against malicious clients, then the overall
protocol provides security against malicious clients, regardless of the security of
the PIR protocol. (Note that there are no server privacy requirements on PIR;
it is used merely to reduce communication complexity.)

One conceptually-simple solution therefore requires the client to prove that
the encryptions it sends in the OPE protocol are well-formed, i.e., correspond to
encryptions of a sequence of values w,w2, . . . ,wm. Unfortunately, such a proof
in the standard model requires more than a single round of messages.

A more efficient solution can be based on a known reduction of the OPE of
a polynomial of degree m, to m OPEs of linear polynomials [12]. The overhead
of the resulting protocol is similar to that of a direct OPE of the polynomial,
and the protocol consists of only a single round (the m OPEs of the linear
polynomials are done in parallel). We describe the reduction of [12] in the full
version of this paper.

When the OPE protocol (based on homomorphic encryption) is applied to
a linear polynomial, any encrypted value (w) sent by the client corresponds to
a valid input to the polynomial, and thus the OPE of the linear polynomial
computes a legitimate value of the polynomial. Therefore, if we ensure that the
client sends a legitimate encryption we obtain a linear OPE (and thus a general
OPE) secure against malicious clients.

When considering concrete instantiations of the OPE protocol, we note that
the El Gamal cryptosystem has the required property, namely that any cipher-
text can be decrypted.5 The El Gamal cryptosystem can therefore be used for
implementing a single-round OPE secure against a malicious client. Yet, the
El Gamal system has a different drawback: given that it is multiplicatively ho-
momorphic, it can only be used for an OPE in which the receiver obtains gP (x),
rather than P (x) itself. Thus, a direct use of El Gamal in KS is only useful for
short payloads, as it requires encoding the payload in the exponent and asking
the receiver to compute its discrete log.

We can slightly modify the KS protocol to use El Gamal yet still support
payloads of arbitrary length. A detailed description appears in the full version
of the paper. The main idea, however, is to have the server map the items to
n/ log n bins as usual, but define, for every bin j, a random polynomial Zj of
degree m = O(logn). For an item (xi, pi), the server encrypts pi|0� using the key
gZH(xi)(xi). The client sends a first message for an El Gamal-based OPE, namely
encryptions of gw, gw2

, . . . , gwm

. The server then prepares, for every bin j, a
message 〈 gZj(w), {EncZj(xj,i)(pj,i|0�)}i∈[m] 〉, where the xj,i’s are the messages
mapped to bin j. The client uses PIR to learn the message of its bin of interest,
and then can decrypt the payload corresponding to w if ∃ xj,i = w.

The only difference with this modified protocol is that the message learned
during the PIR is of size O(|pi| log n) rather than of size O(|pi|). The overall

5 Unfortunately, as was observed for example in [1], the Paillier cryptosystem is not
verifiable. That is, given a public key and a ciphertext, it is not known how to verify
that the ciphertext is valid and can be correctly decrypted.

Keyword Search and Oblivious Pseudorandom Functions 313

communication complexity does not change, however, since the PIR has poly-
logarithmic overhead. We obtain essentially the same overhead, including round
complexity, as Protocol 1. (Note also that the security of the new protocol is
proved in the model of Remark 1.)

Multiple Invocations. The privacy of the server in Protocol 1 and its variants
is based on the fact that the client can evaluate each polynomial Z at most
once. Therefore, fresh randomness ri must be used in order to generate new
polynomials Z1, . . . , ZL for every invocation of the protocol. This means that
using the protocol for multiple queries must essentially be done by independent
invocations of the protocol.

4 Keyword Search from OPRFs

In this section, we describe a general reduction of KS to semi-private KS us-
ing oblivious pseudorandom functions (OPRFs). Unlike the protocol from the
previous section, this reduction can yield fully-adaptive KS protocols. We first
recall the original notion of OPRFs from the literature [26] and then introduce
a new natural relaxation, which arguably suffices for most applications. Finally,
we describe our reduction from KS to semi-private KS using the relaxed no-
tion of OPRF. New constructions of such OPRFs will be presented in the next
section.

4.1 Oblivious Pseudorandom Functions

The strongest definition of OPRF is as a secure two-party protocol realizing the
functionality g(r,w) = (λ, fr(w)) for some pseudorandom function family fr.
(Here and in the following, the first input or output corresponds to the server
S and the second to the client C; by λ we denote an empty output.) As usual,
the term “secure” can be interpreted in several ways. For consistency with the
security definitions of Section 2 and the constructions of the next section, we
interpret “secure” here as “private”. We note, however, that the definitions and
results of this section naturally extend the case of full security.

Definition 5 (Strongly-private OPRF (s-OPRF)). A two-party protocol π
is said to be a strongly-private OPRF (or strong OPRF for short) if there exists
some PRF family fr, such that π privately realizes the following functionality.

– Inputs: Client holds an evaluation point w; Server holds a key r.
– Outputs: Client outputs fr(w); Server outputs nothing.

One can similarly define adaptive and non-adaptive t-time variants of strong
OPRFs. Note that server privacy guarantees that a malicious client C′ cannot
learn anything about r except what follows from fr(w′) for some w′. Compos-
ability of secure computation [5] implies that a 1-time s-OPRF can be invoked

314 M.J. Freedman et al.

multiple times (with the same r and different wi) to realize an adaptive t-time
s-OPRF, where t can be an arbitrary polynomial in the security parameter.6

It follows from known reductions between cryptographic primitives that strong
OPRF exists if OT exists [14, 19, 16]. We note, however, that the construction of
s-OPRF from OT makes a non-black-box use of the OT primitive, even in the
semi-honest setting: The OT-based protocol for evaluating the PRF depends on
the function’s circuit representation [19], which in turn depends on the repre-
sentation of the OT primitive from which the PRF is derived.

A New Relaxed Type of OPRF. As noted above, a strong OPRF guarantees
that the client learn no additional information about the PRF key r. As we shall
see, some natural and efficient OPRF protocols do not satisfy the strong defini-
tion, yet are sufficient for the KS application. We thus turn our consideration to
relaxing the definition of server privacy to the following.

Roughly speaking, we require that following the execution of the OPRF pro-
tocol, the client obtains no additional information about the outputs of a random
function fr, other than what follows from a legitimate set of queries, whose size
is bounded by t in the t-time case. (Recall that the strong definition requires
that no information be learned about the key of an arbitrary function fr.) In
other words, the outputs of fr on unqueried inputs cannot be distinguished
from the outputs of a random function, even given the client’s view. Note that
this does not prevent the client from learning substantial partial information
about r (which does not provide information about other values of fr).7

This intuitive property is relatively straightforward to formalize in the case of
a semi-honest client. Specifically, one may require that following the protocol’s
execution, the client cannot efficiently distinguish between fr and a random
function if it only queries them on points not included in its queries w1, . . . ,wt.
Obtaining a suitable definition for the case of malicious clients, however, requires
more care. In particular, the inputs on which the client queries fr in a particular
execution of the protocol may not even be well-defined.

We formalize our relaxed notion of OPRF by a careful modification of the
underlying functionality. The client’s privacy is defined as before. However, for
the purpose of defining the server’s privacy, we view fr as a randomized function-
ality (with randomness r picked by the TTP in the ideal implementation), and

6 Note that our definitions of KS and OPRF do not require protecting the client
against a malicious server who may choose different keys r in different invocations.
On the other hand, our definition coincides with that of [5] for the case of simulating
a (potentially malicious) client.

7 As a concrete simple example, consider the following pseudo-random function based
on the Naor-Reingold construction. The key r consists of two sets x1, . . . , xm and
y1, . . . , ym; the function is defined for inputs (i, j) such that 1 ≤ i, j ≤ m, and
its value is fr(i, j) = gxiyj in a group where the DDH assumption holds and g is
a generator. Consider a 1-time OPRF protocol where a client whose input is (i, j)
learns xi and yj and uses them to compute fr(i, j). Although these values reveal part
of the key r to the client, the other outputs of the function remain pseudo-random.

Keyword Search and Oblivious Pseudorandom Functions 315

we allow both the client and the server to provide inputs to and receive outputs
from this functionality.

Definition 6 (Relaxed OPRF (r-OPRF)). A two-party protocol π is said
to be a (non-adaptive, 1-time) relaxed OPRF if there exists some PRF family
fr, such that the following hold.

Correctness and client’s privacy. These properties remain the same as in
Definition 5, i.e., using the functionality g(r,w) = (⊥, fr(w)).

Server’s privacy. To define server’s privacy in π, we make the following men-
tal experiment. Consider an augmented protocol π̃ in which the input of S con-
sists of n evaluation points x1, . . . , xn (instead of a key r) and the input of C is an
evaluation point w (as in π). Protocol π̃ proceeds as follows: (1) S picks a key r
at random; (2) S, C invoke π on inputs (r,w); (3) S outputs (fr(x1), . . . , fr(xn))
and C outputs its output in π. We require that the augmented protocol π̃ provide
server security with respect to the following randomized functionality g̃:

– Inputs: Client holds an evaluation point w; Server holds an arbitrary set of
evaluation points (x1, . . . , xn).

– Outputs: Client outputs fr(w) and Server outputs (fr(x1), . . . , fr(xn)), where
the key r is uniformly chosen by the functionality.8

Specifically, for any (efficient, malicious) client C′ attacking π̃, there is a
simulator C′′ playing the client’s role in the ideal implementation of g̃, such that
on all inputs ((x1, . . . , xn),w), the view of C′ concatenated with the output of
S in π̃ is computationally indistinguishable from the output of C′′ concatenated
with that of S in the ideal implementation of g̃.

This definition applies to the non-adaptive 1-time case. In the t-time case, we
replace w with w1, . . . ,wt, and fr(w) with (fr(w1), . . . , fr(wt)). In the adaptive
case, the protocols π, π̃ and the functionalities g, g̃ have multiple phases, where
the client’s input w in each phase may depend on the outputs of previous phases.

The above server’s privacy requirement implies that the client’s view gives no
information about the server’s inputs and outputs (x1, fr(x1)), . . . , (xn, fr(xn)),
other than what follows from some valid set (w′

1, fr(w′
1)), . . . , (w

′
t, fr(w′

t)). More-
over, this holds for an arbitrary choice of points xi made by the server (including
those possibly intersecting w′

i). In fact, this is precisely the requirement needed
for the keyword-search application.

Finally, we note that Definition 6 is indeed a relaxation of Definition 5.

Claim. If π is an s-OPRF, then it is also an r-OPRF.

Proof: The server’s privacy requirement of Definition 5 implies, in particular,
that on a uniformly-chosen r and an arbitrary w, the view V ′ of a malicious

8 Equivalently, fr can be replaced here with a totally random function. We prefer the
current formulation because of its closer correspondence with the notion of s-OPRF,
as well as the convention that ideal functionalities are efficiently computable.

316 M.J. Freedman et al.

client C′ concatenated with r is indistinguishable from the output V ′′ of its
simulator C′′ concatenated with r. This in turn implies that (V ′, {(fr(xi)}i∈[n])
is indistinguishable from (V ′′, {(fr(xi)}i∈[n]), as required by Definition 6.

4.2 Reducing KS to Semi-private KS

We now present a general method of using (either variant of) OPRF to upgrade
any semi-private KS protocol into fully-private KS.

Recall that a semi-private KS protocol is a KS protocol which guarantees
privacy for the client but not for the server, similar to the privacy offered by
PIR protocols. (The notion of semi-private KS was first considered in [7], where
it was referred to as private information retrieval by keywords.) Semi-private KS
can be simply implemented by letting the server send its input X, or (better
yet) a data structure Y representing X, to the client. When the communication
is required to be sublinear, semi-private KS can be implemented using PIR to
probe the data structure Y , as suggested in [7].

Using the following high-level idea, we can now construct a fully-private KS
protocol from a semi-private KS protocol: The server uses a PRF to assign ran-
dom pseudo-identities to the original keywords xi (as well as mask the payloads
pi), and the client uses an OPRF protocol to learn the values of the PRF on the
selected searchword(s). Since the PRF values on unselected searchwords remain
random from the client’s point-of-view, knowledge of the original and pseudo-
identity pairs of the selected searchwords does not provide any more information
than does knowledge of just the set of searchwords that are in the database along
with their payloads.

More formally, given a semi-private KS protocol and a (possibly relaxed)
OPRF realizing fr, the KS protocol proceeds as follows. For simplicity, we ad-
dress below the case non-adaptive KS with t=1.

Protocol 2 (A KS protocol based on semi-private KS and r-OPRF)

1. The server picks a random key r for the PRF. For 1 ≤ i ≤ n, it parses fr(xi)
as (x̂i, p̂i) and constructs a pseudo-database X ′ = {(x′

i, p
′
i)}i∈[n] with x′

i = x̂i

and p′
i = pi ⊕ p̂i. (Both X and X ′ must be treated as unordered sets, whose

representation does not reveal the index i of each element; alternatively, one
may think of X and X ′ as lexicographically-sorted sequences.)

2. The parties invoke the r-OPRF protocol, with server input r and client input
w. As a result, the client learns fr(w) and parses it as (ŵ, p̂).

3. The parties invoke the semi-private KS protocol with server input X ′ and
client input ŵ. As a result, the client learns whether ŵ ∈ X ′, and if so, also
learns the corresponding payload p′

i. If ŵ ∈ X ′, the client outputs p′
i ⊕ p̂;

otherwise, it outputs ⊥.

We stress that, due to the lack of server’s privacy in semi-private KS, we
should make the worst-case assumption that the client learns the entire pseudo-
database X ′ in Step 3. Still, the use of an OPRF in Step 2 guarantees that the
client does not learn more than it is entitled.

Keyword Search and Oblivious Pseudorandom Functions 317

Remark 2. If a setup phase with linear communication is allowed, the semi-
private KS in Step 3 can be replaced by having X ′ (or a corresponding data
structure Y ′) sent to the client in the clear following Step 1.

Theorem 2. Protocol 2 is a private KS protocol.

Proof (sketch): The protocol’s correctness is easy to verify. The client’s privacy
follows immediately from its privacy in the OPRF and the semi-private KS.

Server’s Privacy. Letting π denote the r-OPRF protocol, it is convenient to
reformulate the above protocol in the following equivalent way:

– The parties invoke the augmented protocol π̃ (from Definition 6) on server
input (x1, . . . , xn) and client input w. At the end of this protocol, S outputs
(fr(x1), . . . , fr(xn)) and C outputs fr(w).

– The server parses each fr(xi) as (x̂i, p̂i) and creates a pseudo-database X ′ =
{(x′

i, p
′
i)}i∈[n] with x′

i = x̂i and p′
i = pi ⊕ p̂i, as before. Again, the client

parses fr(w) as (ŵ, p̂). The parties invoke the semi-private KS protocol with
server input X ′ and client input ŵ. As a result, the client learns whether
ŵ ∈ X ′, in which case the client outputs p′

i ⊕ p̂; otherwise, it outputs ⊥.

By Definition 6, when considering only the client’s simulation, π̃ must be
secure with respect to the randomized functionality g̃ mapping (x1, . . . , xn) and
w to (fr(x1), . . . , fr(xn)) and fr(w), respectively. Hence, using protocol com-
position [5], it suffices to prove the server’s privacy in a simpler “hybrid” pro-
tocol, where the invocation of π̃ is replaced by a call to an oracle (or TTP)
computing g̃. Moreover, by the pseudorandomness of fr, we can replace the
oracle g̃ by a similar oracle G̃ in which fr is replaced by a truly random
function.

The resultant hybrid protocol is in fact perfectly private. Given a malicious
client C′ attacking the hybrid protocol, a corresponding simulator C′′ can proceed
as follows. C′′ invokes C′ on input w. In the first step, after learning the query w′

which C′ sends to the oracle computing G̃, the simulator C′′ sends the query w′

to the TTP computing KS. As a response, it gets pi if w′ = xi or ⊥ if no such i
exists. Now the second step can be simulated jointly with the response (ŵ, p̂) of
the G̃ oracle. First, C′′ chooses X ′ to be a uniformly-random pseudo-database
of size n. Next, it simulates (ŵ, p̂) so that they are consistent with X ′ and the
response of KS: if a payload p was obtained from KS, then ŵ is taken to be
a random keyword from X ′ and p̂ is set to the exclusive-or of the keyword’s
corresponding payload and p; otherwise, ŵ and p̂ are chosen at random from
their respective domains. Finally, C′′ simulates the view of C′ in the semi-private
KS protocol by simply running the protocol on inputs (X ′,w′).

Efficiency. The cost of the protocol is dominated by that of the semi-private KS
and the OPRF. In the t-time non-adaptive model, this cost is typically dominated
by that of the semi-private KS, which in turn is dominated by the cost of the
underlying PIR protocol. We note that the latter cost can be amortized over
t non-adaptive queries [2, 18]. In the adaptive model—more generally, in any

318 M.J. Freedman et al.

setting allowing setup—the offline cost is dominated by linear communication in
the size of the database, and the online cost by the efficiency of the underlying
OPRF. We now consider efficient implementations of the OPRF primitive.

5 Constructing OPRFs

A generic implementation of an s-OPRF can be based on general secure two-
party evaluation. Namely, the server has as input a key r of a PRF fr and,
whenever the client wants to evaluate fr on x, the parties perform a secure
function evaluation (SFE), during which the client learns fr(x). As noted above,
this gives rise to a non-black-box reduction from strong OPRF to OT. In this
section, we discuss two other types of constructions:

– Constructions of fully-adaptive s-OPRFs based on specific assumptions
(mainly on DDH). These constructions are either given or implicit in [26, 24]
and are more efficient than the generic SFE-based construction sketched
above.

– General constructions of t-time adaptive r-OPRFs making a black-box use of
OT. From a theoretical point of view, one of the most interesting open ques-
tions left by our work is to come up with any efficient black-box construction
of fully-adaptive r-OPRFs. This is indeed a rare example of a non-black-box
construction in cryptography for which no black-box construction is known.

For simplicity, we discuss these constructions mainly from the viewpoint of
the semi-honest model.

5.1 Strong OPRFs Based on DDH or Factoring

Naor and Reingold gave two constructions of PRFs based on number-theoretic
assumptions in [26]: one based on the Decisional Diffie-Hellman assumption
(DDH), and the other based on the hardness of factoring. The constructions
have a simple algebraic structure, and they were used to give oblivious, fully-
adaptive evaluations for these functions. While more efficient than general secure
function evaluation, these s-OPRFs have the disadvantage of requiring a linear
number of rounds and a linear number of exponentiations. Implicit in the work
of Naor and Pinkas on OT [23, 24],9 one can find a significantly more efficient
evaluation of the DDH-based PRFs of [26]. We now sketch this construction.

Initialization: Let g be a generator of a group Gg of prime order p for which the
DDH assumption holds. The key r̄ of the pseudo-random function fr̄ : {0, 1}m)→
Gg contains m values {r1, . . . , rm}, sampled uniformly at random in Z∗

p . The
function fr̄(x) is defined to be gΠxi=1ri , for any m-bit x = x1x2 . . . xm. (This
function was shown in [26] to be pseudorandom.)

9 The construction was used to generate values that mask the server’s input in an
adaptive OT protocol.

Keyword Search and Oblivious Pseudorandom Functions 319

Secure Evaluation: The client has inputs x = x1x2 . . . xm. The server selects m
values {a1, . . . , am} sampled uniformly at random in Z∗

p . For each i, the parties
perform a 1-out-of-2 OT (denoted by

(2
1

)
-OT), with the server using as inputs

the two values ai and ai · ri. Thus, the client learns ai if xi = 0 and ai · ri

otherwise. In addition, the server sends ĝ = g1/Πm
i=1ai in the clear. Let A be the

product of the values learned by the client, then A = (Πm
i=1ai) · (Πxi=1ri). Thus,

the client can compute ĝA and learn the desired value fr̄(x).

Security: This protocol’s security follows from the security of the OT protocol:
The distribution of the m values learned by the m OTs, combined with g1/Πm

i=1ai ,
can be easily sampled given access to fr̄(x) alone.

Efficiency: The computational cost of the protocol (for both client and server)
is m

(2
1

)
-OTs and one exponentiation. The main cost in communication is that

incurred by the m OTs. Given the work on batch OT of [17], the OTs performed
by the oblivious evaluation protocol above can be considered, for practical pur-
poses, to be almost as efficient as private-key operations. In particular, using
these s-OPRFs in the transformation of Section 4.2 gives quite an efficient solu-
tion to KS. Unlike [27], this solution is in the standard model—rather than in
the random oracle model—and only relies on standard assumptions.

5.2 Relaxed OPRFs Based on Black-Box OT

We now present a new construction of adaptive t-time r-OPRFs based on general
assumptions, using the OT and PRF primitives in a black-box manner. (In fact,
as discussed earlier, PRF is itself black-box implied by OT [14, 16, 15].) Our start-
ing point is a construction of Naor and Pinkas [23] that gives PRFs—originally
designed for sub-exponential domains—with some weak form of oblivious eval-
uation.

Consider a set of known PRFs {gs} over the domain [N] = [M]2. Naor and
Pinkas [23] construct related PRFs {fr̄} over the same domain. First, let each
key r̄ be composed of two sets of M random g keys (i.e., r̄1 = {r1,1, . . . , r1,M}
and r̄2 = {r2,1, . . . , r2,M}). Then, define fr̄(x) as gr1,x1

(x) ⊕ gr2,x2
(x) for any

x = (x1, x2) ∈M2.10

We can now use fr̄ in place of gs to our advantage, as there exists a somewhat
oblivious way of evaluating fr̄(x). Namely, perform two independent

(
M
1

)
-OTs

to retrieve r1,x1 ∈ r̄1 and r2,x2 ∈ r̄2, and then evaluate fr̄(x) as desired using
these random keys. Of course, the client now learns r1,x1 and r2,x2 in addition
to just fr̄(x). Still, it is easy to argue that fr̄, when restricted to all inputs other
than x, remains pseudorandom. With a small additional effort, fr̄ can be turned
into a 1-time r-OPRF.

What happens if we perform an oblivious evaluation of fr̄ on t different
inputs? In this case, the client learns up to t keys in both r̄1 and r̄2, allowing it
to evaluate fr̄ in up to t2 places, which is certainly undesirable. Still, fr̄ maintains
a considerable amount of pseudorandomness, as its output looks random other

10 This is a simple version of the construction; some useful optimizations are possible.

320 M.J. Freedman et al.

than at these t2 locations. In light of this property, [23] gives a technique that
can be translated into a construction of a non-adaptive t-time r-OPRF.

The PRF F (·) used in this construction is the exclusive-or of some � functions
fr̄i(σi(·)), where fr̄i is defined as before and each σi is a random permutation
over [N]. All random inputs (for the sub-keys, r̄i

1 and r̄i
2, and for the permutations

σi) are chosen independently by the server for all 1 ≤ i ≤ �. The evaluation of
F (·) on t inputs x1 . . . xt proceeds in � rounds. In the ith round, σi is sent to the
client and the parties perform t oblivious evaluations of fr̄i , as above.

This construction’s main idea is the following: In each round, the client may
learn at most t2 values of the current fr̄i(σi(·))—a t × t sub-matrix—from the
total of M2 possible values over which the PRF is defined. However, to learn
the value of F for t + 1 distinct inputs, the client must learn all intermediate
values for each one of the � functions fr̄i(σi(·)) on these t+1 inputs. The random
permutations σi—each learned only during the execution of subsequent rounds—
ensure that this will only happen with negligible probability. See [23] for more
details. Note that for this probabilistic argument to hold, the number of rounds
� must depend on the security parameter.

Challenges. The above construction raises the following challenges left open by
[23] and the subsequent [24]: (1) Can the construction be made secure against
adaptive queries? We note that the adaptive solutions given in [24] rely either
on specific assumptions or on random oracles. (2) Can one obtain oblivious eval-
uation in a constant number of rounds? Note that the number of rounds of the
above protocols depends on the security parameter. (3) Can the construction
handle an exponential domain size N? Various difficulties arise when naively ex-
tending the above solution to larger values of N . First, the random permutations
σi are too large to sample and transmit. Second, one has to extend the construc-
tion to higher dimensions than two and view [N] as [M]� for non-constant �: We
certainly want M to be sub-exponential, given that we are performing

(
M
1

)
-OTs.

We can indeed perform this extension, but the natural method as used below
reveals many more values of the PRFs: In t queries, the client learns t sub-keys in
every dimension. Thus, it can evaluate the function at t� locations, where t� may
be exponentially large (specifically, polynomially related to N). This expansion
seems to complicate the analysis and, in particular, implies a larger number of
rounds that also depends on t.

Our Construction. In this section, we simultaneously answer all of the above
challenges: We obtain adaptive t-time r-OPRFs that can handle an exponential
domain size and can be securely evaluated in a constant number of rounds.

The technique of [23] for turning their 1-time r-OPRF into a t-time r-OPRF
is based on providing only indirect access to the functions fr̄i . Namely, the value
of the PRF F on x depends on the values fr̄i(σi(x)), rather than on fr̄i(x). How-
ever, since the permutation σi is transmitted in its entirety to the client, this
type of indirection is not very useful for obliviousness by itself. Instead, the pro-
tocol must be designed using several functions, revealing additional information
(each σi) in synchronous stages.

Keyword Search and Oblivious Pseudorandom Functions 321

Instead, we will use only one function fr̄ and therefore will need only a single
permutation σ for the indirect access to fr̄. Rather than transmitting the entire
permutation σ to the client, we allow the client access only to t locations of σ
in some oblivious way. Since σ is now not completely known to the client, we
overcome both the need for a super-constant number of rounds and the large cost
of sending σ for large domain sizes. Of course, if σ is random or pseudorandom,
then the oblivious evaluation of σ is exactly the problem we wanted to solve in the
first place! Therefore, we relax this randomness requirement by replacing σ with
(t+ 2)-wise independent functions (although, in fact, even weaker requirements
suffice).11 We proceed to the detailed construction of adaptive t-time r-OPRFs,
focusing on the setting where N is exponential.

Notion of Privacy. In the above description and below, we argue that a func-
tion is an oblivious PRF if it remains pseudorandom on all inputs other than the
ones retrieved by the client. This makes our discussion simpler and more intu-
itive. However, this type of definition seems only to make sense in the semi-honest
model (as otherwise, the inputs retrieved by the client may not be well-defined).
Even in the semi-honest model, this notion—though sufficiently strong for the
KS application—falls short of obtaining the requirements of a r-OPRF, which
are defined in terms of simulation. Nevertheless, the protocol below gives a t-time
r-OPRF: All that is needed is that the basic PRFs {gs} used by this protocol will
have the additional property that, given t inputs and t corresponding outputs,
a random seed s can be sampled under the restriction that gs is consistent with
these inputs and outputs. This is easy to obtain if each gs is an exclusive-or of a
PRF and a t-wise independent function (as t-wise independent functions usually
have such “interpolation” property).

Extending the 1-Time r-OPRF to Higher Dimensions. Let {gs} be PRFs
over a domain [N] = [M]�. Define the related PRFs {fr̄} over the same domain,
where each key r̄ is composed of � sets {r̄1, . . . r̄�} of M random g keys, where
r̄i = {ri,1, . . . , ri,M}. Thus, r̄ defines an �×M matrix. For any x = {x1, . . . x�} ∈
M �, the value fr̄(x) is defined to be

⊕�
i=1 gi,xi(x).

The 1-time oblivious evaluation of fr̄(x) goes as follows. First, perform �
independent

(
M
1

)
-OTs to retrieve ri,xi

∈ r̄i, for i = 1, . . . , �. Then, the client can
evaluate fr̄(x) as desired. As mentioned above, t evaluations of fr̄ may now give
information on t� values. However, fr̄ remains pseudorandom when restricted
to all inputs other than x.

Oblivious Evaluation of (t + 2)-Wise Independent Functions. The sec-
ond ingredient in our construction is a family H = {h : [N])→ [N]} of (t + 2)-
wise independent functions. This definition means that, restricted to any (t+ 2)

11 A different variant of the construction uses the 1-time r-OPRFs based on [23] instead
of the random permutations. This construction may be more efficient in some settings
of the parameters. On the other hand, it seems theoretically inferior and somewhat
more complicated (e.g., it requires two levels of indirection). We therefore omit it
from this version for clarity.

322 M.J. Freedman et al.

inputs, a function h sampled from H is completely random.12 We also rely
on H to have an oblivious evaluation (or a t-time oblivious evaluation). This
problem is an easier task than that of r-OPRFs. In particular, as (t + 2)-
wise independent functions exist unconditionally, they have oblivious evalua-
tion based on OTs in a black-box manner. Note that while this observation
is based on general secure evaluation, more efficient oblivious evaluations can
be designed for specific families of hash functions: for example, an OPE-based
evaluation can be used for a polynomial-based (t + 2)-wise independent hash
function.

The New Adaptive t-Time r-OPRFs. We set M = 2t and assume without
loss of generality that � is at least the security parameter.13 The key of these
adaptive t-time r-OPRFs is composed of a (t + 2)-wise independent hash func-
tion h ∈ H and a key r̄ of the �-dimension 1-time r-OPRF fr̄(·) defined above.
The value of this function Fh,r̄ on any input x ∈ [N] is given by Fh,r̄(x) def=
fr̄(h(x)). The oblivious evaluation of Fh,r̄(x) proceeds by first evaluating y =
h(x) and then evaluating fr̄(y), using the corresponding oblivious evaluation
protocols.

Security of the Construction (Sketch). We want to claim that after t eval-
uations of Fh,r̄(·), its restriction on all other inputs is indistinguishable from a
random function. Intuitively, this is true since each dimension has 2t keys of
which the client learns at most t, and the probability that another value of the
function is evaluated using only these learned keys is at most 2−�. Consider
the hybrid function R(h(·)), where R is a random function. It is easy to ar-
gue that R(h(·)) is indistinguishable from random: It only can be distinguished
from random by querying inputs that cause collisions of h. Since conditioned on
the values of h already learned by the client, h is still pair-wise independent,
collisions are encountered with negligible probability. It remains to argue that
R(h(·)) is indistinguishable from fr̄(h(·)). Note that at most t� values of fr̄ are
compromised by the client, and fr̄ is still pseudorandom on the rest. To dis-
tinguish R(h(·)) from fr̄(h(·)), the distinguisher needs to query with an input
that causes the output of h to fall into the compromised set. As the fraction
of compromised fr̄-inputs is negligible (at most 2−�), this happens with negligi-
ble probability.

Acknowledgements. Michael Freedman is supported by a National Defense
Science and Engineering Graduate Fellowship. Yuval Ishai is supported by Is-
rael Science Foundation grant 36/03. Omer Reingold is the incumbent of the
Walter and Elise Haas Career Development Chair at the Weizmann Institute
of Science and is supported by US-Israel Binational Science Foundation Grant
2002246.

12 In fact, h can be only statistically close to random or even just pseudorandom.
13 This implies r-OPRFs also for smaller values of N , although further optimizations

may be possible for these cases.

Keyword Search and Oblivious Pseudorandom Functions 323

References

1. Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, Innsbruck, Austria, May 2001.

2. Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computation in
private information retrieval: Pir with preprocessing. In CRYPTO, Santa Barbara,
CA, August 2000.

3. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Pub-
lic key encryption with keyword search. In EUROCRYPT, Interlaken, Switzerland,
May 2004.

4. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. In EUROCRYPT,
Prague, Czech Republic, May 1999.

5. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. Yan-Cheng Chang. Single database private information retrieval with logarithmic
communication. In Proc. 9th ACISP, Sydney, Australia, July 2004.

7. Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by key-
words. Technical Report TR-CS0917, Dept. of Computer Science, Technion, 1997.

8. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In Proc. 36th FOCS, Milwaukee, WI, 23–25 October 1995.

9. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

10. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In EUROCRYPT, Interlaken, Switzerland, May 2004.

11. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data
privacy in private information retrieval schemes. In Proc. 30th ACM STOC, Dallas,
TX, May 1998.

12. Niv Gilboa. Topics in Private Information Retrieval. PhD thesis, Technion - Israel
Institute of Technology, 2000.

13. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

14. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

15. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Con-
struction of pseudorandom generator from any one-way function. SIAM Journal
on Computing, 28(4):1364–1396, 1999.

16. Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography. In Proc. 30th FOCS, Research Triangle Park, NC,
October–November 1989.

17. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In CRYPTO, Santa Barbara, CA, August 2003.

18. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In Proc. 36th ACM STOC, Chicago, IL, June 2004.

19. Joe Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM
STOC, Chicago, IL, May 1988.

20. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proc. 38th FOCS, Miami Beach,
FL, October 1997.

21. Helger Lipmaa. An oblivious transfer protocol with log-squared communication.
Crypto ePrint Archive, Report 2004/063, 2004.

324 M.J. Freedman et al.

22. Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Proc. 44th
FOCS, Cambridge, MA, October 2003.

23. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proc. 31st ACM STOC, Atlanta, GA, May 1999.

24. Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In
CRYPTO, Santa Barbara, CA, August 1999.

25. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proc. 12th
SIAM SODA, Washington, DC, January 2001.

26. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In Proc. 38th FOCS, Miami Beach, FL, October 1997.

27. Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Crypto ePrint
Archive, Report 2002/182, 2002.

28. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, Prague, Czech Republic, May 1999.

29. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

30. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Proc. IEEE Symposium on Security and Privacy,
Berkeley, CA, May 2000.

Evaluating 2-DNF Formulas on Ciphertexts

Dan Boneh1,�, Eu-Jin Goh1, and Kobbi Nissim2,��

1 Computer Science Department, Stanford University,
Stanford CA 94305-9045, USA

{dabo, eujin}@cs.stanford.edu
2 Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel
kobbi@cs.bgu.ac.il

Abstract. Let ψ be a 2-DNF formula on boolean variables x1, . . . , xn ∈
{0, 1}. We present a homomorphic public key encryption scheme that
allows the public evaluation of ψ given an encryption of the variables
x1, . . . , xn. In other words, given the encryption of the bits x1, . . . , xn,
anyone can create the encryption of ψ(x1, . . . , xn). More generally, we
can evaluate quadratic multi-variate polynomials on ciphertexts provided
the resulting value falls within a small set. We present a number of
applications of the system:

1. In a database of size n, the total communication in the basic step of
the Kushilevitz-Ostrovsky PIR protocol is reduced from

√
n to 3

√
n.

2. An efficient election system based on homomorphic encryption where
voters do not need to include non-interactive zero knowledge proofs
that their ballots are valid. The election system is proved secure
without random oracles but still efficient.

3. A protocol for universally verifiable computation.

1 Introduction

Secure computation allows several parties to compute a function of their joint
inputs without revealing more than what is implied by their own inputs and
the function outcome. Any polynomial time functionality can be computed by
a secure protocol, requiring polynomial resources [32, 16]. These seminal results
are obtained by a generic transformation that converts an insecure computation
of a functionality to a secure version (often referred to as the ‘garbled circuit’
transformation).

Secure protocols generated from the garbled circuit transformation typically
have poor efficiency. In particular, the communication complexity of the resulting
protocols is proportional to the size of a circuit evaluating the functionality, and
hence precludes sub-linear communication protocols. The result is that unless
circuits are very small, the garbled circuit transformation is seldom used in
protocols.

� Supported by NSF.
�� Work done while the author was at Microsoft Research, SVC.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 325–341, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

326 D. Boneh, E.-J. Goh, and K. Nissim

To avoid using the garbled circuit transformation, researchers have sought
for tools that give more efficient protocols for specific functionalities. Homomor-
phic encryption enables “computing with encrypted data” and is hence a useful
tool for secure protocols. Current homomorphic public key systems [17, 11, 25]
have limited homomorphic properties: given two ciphertexts Encrypt(PK, x) and
Encrypt(PK, y), anyone can compute either the sum Encrypt(PK, x + y), or the
product Encrypt(PK, xy), but not both.1 The problem of constructing ‘doubly
homomorphic’ encryption schemes where one may both ‘add and multiply’ is a
long standing open question already mentioned by Rivest et al. [29].

Homomorphic encryption schemes have many applications, such as proto-
cols for electronic voting schemes [7, 2, 8, 9], computational private information
retrieval (PIR) schemes [20], and private matching [13]. Systems with more gen-
eral homomorphisms (such as both addition and multiplication) will benefit all
these problems.

1.1 Our Results

A Homomorphic Encryption Scheme. We present a homomorphic public
key encryption scheme based on finite groups of composite order that support
a bilinear map. Using a construction along the lines of Paillier [25], we obtain
a system with an additive homomorphism. In addition, the bilinear map allows
for one multiplication on encrypted values. As a result, our system supports
arbitrary additions and one multiplication (followed by arbitrary additions) on
encrypted data. This property in turn allows the evaluation of multi-variate
polynomials of total degree 2 on encrypted values. Our applications follow from
this new capability.

The security of our scheme is based on a new hardness assumption that we
put forward – the subgroup decision problem. Namely, given an element of a
group of composite order n = q1q2, it is infeasible to decide whether it belongs
to a subgroup of order q1.

Applications. As a direct application of the new homomorphic encryption
scheme, we construct a protocol for obliviously evaluating 2-DNFs. Our pro-
tocol gives a quadratic improvement in communication complexity over garbled
circuits. We show how to get a private information retrieval scheme (PIR) as a
variant of the 2-DNF protocol. Our PIR scheme is based on that of Kushilevitz-
Ostrovsky [20] and improves the total communication in the basic step of their
PIR protocol from

√
n to 3

√
n for a database of size n.

As noted above, our encryption scheme lets us evaluate quadratic multi-
variate polynomials on ciphertexts provided the resulting value falls within a
small set; in particular, we can compute dot products on ciphertexts. We use

1 An exception is the scheme by Sander et al. [30] that is doubly homomorphic over a
semigroup. On the other hand, the homomorphism comes with the cost of a constant
factor expansion per semigroup operation. See also its comparison with our results
in Section 1.1 below.

Evaluating 2-DNF Formulas on Ciphertexts 327

this property to create a gadget that enables the verification that an encrypted
value is one of two ‘good’ values. We use this gadget to construct an efficient
election protocol where voters do not need to provide proofs of vote validity.
Finally, we generalize the election protocol to a protocol of universally verifiable
computation.

Comparison to Other Public-Key Homomorphic Systems. Most homo-
morphic systems provide only one homomorphism, either addition, multiplica-
tion, or xor. One exception is the system of Sander et al. [30] that provides the
ability to evaluate NC1 circuits on encrypted values. Clearly their construction
also applies to 2-DNF formula. Unfortunately, the ciphertext length in their sys-
tem grows exponentially in the depth of the 2-DNF formula when written using
constant fan-in gates. In our system, the ciphertext size is independent of the
formula size or depth; this property is essential for improving the communication
complexity basic step of the Kushilevitz-Ostrovsky PIR protocol.

Organization. The rest of this paper is organized as follows. In Section 2 we
review the bilinear groups underlying our construction and put forward our new
hardness assumption. Section 3 details the construction of a semantically secure
public key encryption scheme, its security and homomorphic properties. The
basic application to 2-DNF evaluation is presented in Section 4, followed by the
election and universally verifiable computation protocols in sections 5 and 6.
Section 7 summarizes our results and poses some open problems.

2 Preliminaries

We briefly review the groups underlying our encryption scheme.

2.1 Bilinear Groups

Our construction makes use of certain finite groups of composite order that
support a bilinear map. We use the following notation:

1. G and G1 are two (multiplicative) cyclic groups of finite order n.
2. g is a generator of G.
3. e is a bilinear map e : G × G → G1. In other words, for all u, v ∈ G and

a, b ∈ Z, we have e(ua, vb) = e(u, v)ab. We also require that e(g, g) is a
generator of G1.

We say that G is a bilinear group if there exists a group G1 and a bilinear
map as above. In the next section we also add the requirement that the group
action in G,G1, and the bilinear map can be computed in polynomial time.

Constructing Bilinear Groups of a Given Order n. Let n > 3 be a given
square-free integer that is not divisible by 3. We construct a bilinear group G of
order n as follows:

1. Find the smallest positive integer � ∈ Z such that p = �n − 1 is prime and
p = 2 mod 3.

328 D. Boneh, E.-J. Goh, and K. Nissim

2. Consider the group of points on the (super-singular) elliptic curve y2 = x3+1
defined over Fp. Since p = 2 mod 3 the curve has p + 1 = �n points in Fp.
Therefore the group of points on the curve has a subgroup of order n which
we denote by G.

3. Let G1 be the subgroup of F
∗
p2 of order n. The modified Weil pairing on the

curve [22, 19, 3, 23] gives a bilinear map e : G × G → G1 with the required
properties.

2.2 The Subgroup Decision Problem

We define an algorithm G that given a security parameter τ ∈ Z
+ outputs a tuple

(q1, q2,G,G1, e) where G,G1 are groups of order n = q1q2 and e : G × G → G1
is a bilinear map. On input τ , algorithm G works as follows:

1. Generate two random τ -bit primes q1, q2 and set n = q1q2 ∈ Z.
2. Generate a bilinear group G of order n as described at the end of Section 2.1.

Let g be a generator of G and e : G×G→ G1 be the bilinear map.
3. Output (q1, q2,G,G1, e).

We note that the group action in G,G1 as well as the bilinear map can be
computed in polynomial time in τ .

Let τ ∈ Z
+ and let (q1, q2,G,G1, e) be a tuple produced by G(τ) where

n = q1q2. Consider the following problem: given (n,G,G1, e) and an element
x ∈ G, output ‘1’ if the order of x is q1 and output ‘0’ otherwise; That is,
without knowing the factorization of the group order n, decide if an element x is
in a subgroup of G. We refer to this problem as the subgroup decision problem.
For an algorithm A, the advantage of A in solving the subgroup decision problem
SD-AdvA(τ) is defined as:

SD-AdvA(τ) =
∣∣∣∣Pr

[
A(n,G,G1, e, x) = 1 :

(q1, q2,G,G1, e)← G(τ),
n = q1q2, x← G

]
− Pr

[
A(n,G,G1, e, x

q2) = 1 :
(q1, q2,G,G1, e)← G(τ),

n = q1q2, x← G

] ∣∣∣∣.
Definition 1. We say that G satisfies the subgroup decision assumption if for
any polynomial time algorithm A we have that SD-AdvA(τ) is a negligible func-
tion in τ .

Informally, the assumption states that the uniform distribution on G is in-
distinguishable from the uniform distribution on a subgroup of G. Recall that
the factorization of the order of G is hidden so that the order of subgroups of G

remains unknown to a polynomial time adversary.

3 A Homomorphic Public-Key System

We can now describe our public key system. The system resembles the Pail-
lier [25] and the Okamoto-Uchiyama [24] encryption schemes. We describe the
three algorithms making up the system:

Evaluating 2-DNF Formulas on Ciphertexts 329

KeyGen(τ): Given a security parameter τ ∈ Z
+, run G(τ) to obtain a tuple

(q1, q2,G,G1, e). Let n = q1q2. Pick two random generators g, u
R← G and

set h = uq2 . Then h is a random generator of the subgroup of G of order q1.
The public key is PK = (n,G,G1, e, g, h). The private key is SK = q1.

Encrypt(PK,M): We assume the message space consists of integers in the set
{0, 1, . . . ,T} with T < q2. We encrypt bits in our main application, in which
case T = 1. To encrypt a message m using public key PK, pick a random
r

R← {0, 1, . . . , n− 1} and compute

C = gmhr ∈ G.

Output C as the ciphertext.
Decrypt(SK, C): To decrypt a ciphertext C using the private key SK = q1,

observe that
Cq1 = (gmhr)q1 = (gq1)m

Let ĝ = gq1 . To recover m, it suffices to compute the discrete log of Cq1 base
ĝ. Since 0 ≤ m ≤ T this takes expected time Õ(

√
T) using Pollard’s lambda

method [21–p.128].

Note that decryption in this system takes polynomial time in the size of the
message space T . Therefore, the system as described above can only be used
to encrypt short messages. Clearly one can use the system to encrypt longer
messages, such as session keys, using any mode of operation that converts a
cipher on a short block into a cipher on an arbitrary long block. We note that one
can speed-up decryption by precomputing a (polynomial-size) table of powers of
ĝ so that decryption can occur in constant time.

3.1 Homomorphic Properties

The system is clearly additively homomorphic. Let (n,G,G1, e, g, h) be a public
key. Given encryptions C1, C2 ∈ G1 of messages m1,m2 ∈ {0, 1, . . . ,T} respec-
tively, anyone can create a uniformly distributed encryption of m1 + m2 mod n
by computing the product C = C1C2h

r for a random r in {0, 1, . . . , n− 1}.
More importantly, anyone can multiply two encrypted messages once using

the bilinear map. Set g1 = e(g, g) and h1 = e(g, h). Then g1 is of order n and
h1 is of order q1. Also, write h = gαq2 for some (unknown) α ∈ Z. Suppose we
are given two ciphertexts C1 = gm1hr1 ∈ G and C2 = gm2hr2 ∈ G. To build an
encryption of the product m1 ·m2 mod n given only C1 and C2, do: 1) pick a
random r ∈ Zn, and 2) set C = e(C1, C2)hr

1 ∈ G1. Then

C = e(C1, C2)hr
1 = e(gm1hr1 , gm2hr2)hr

1 = gm1m2
1 hm1r2+r2m1+αq2r1r2+r

1

= gm1m2
1 hr̃

1 ∈ G1

where r̃ = m1r2 + r2m1 +αq2r1r2 + r is distributed uniformly in Zn as required.
Thus, C is a uniformly distributed encryption of m1m2 mod n, but in the group

330 D. Boneh, E.-J. Goh, and K. Nissim

G1 rather than G (this is why we allow for just one multiplication). We note
that the system is still additively homomorphic in G1.

Note. In some applications we avoid blinding with hr, making the homomorphic
computation deterministic.

Quadratic Polynomials. Let F (x1, . . . , xu) be a u-variate polynomial of total
degree 2. The discussion above shows that given the encryptions C1, . . . , Cu of
values x1, . . . , xu, anyone can compute the encryption of C = F (x1, . . . , xu). On
the other hand, to decrypt C, the decryptor must already know that the result
F (x1, . . . , xu) lies in a certain polynomial size interval.

3.2 Security

We now turn to proving semantic security of the system under the subgroup
decision assumption. The proof is standard and we briefly sketch it here.

Theorem 1. The public key system of Section 3 is semantically secure assuming
G satisfies the subgroup decision assumption.

Proof. Suppose a polynomial time algorithm B breaks the semantic security of
the system with advantage ε(τ). We construct an algorithm A that breaks the
subgroup decision assumption with the same advantage. Given (n,G,G1, e, x) as
input, algorithm A works as follows:

1. A picks a random generator g ∈ G and gives algorithm B the public key
(n,G,G1, e, g, x).

2. Algorithm B outputs two messages m0,m1 ∈ {0, 1, . . . ,T} to which A re-
sponds with the ciphertext C = gmbxr ∈ G for a random b

R← {0, 1} and
random r

R← {0, 1, . . . , n− 1}.
3. Algorithm B outputs its guess b′ ∈ {0, 1} for b. If b = b′ algorithm A outputs

1 (meaning x is uniform in a subgroup of G); otherwise A outputs 0 (meaning
x is uniform in G).

It is easy to see that when x is uniform in G, the challenge ciphertext C is
uniformly distributed in G and is independent of the bit b. Hence, in this case
Pr[b = b′] = 1/2. On the other hand, when x is uniform in the q1-subgroup of G,
then the public key and challenge C given to B are as in a real semantic security
game. In this case, by the definition of B, we know that Pr[b = b′] > 1/2 + ε(τ).
It now follows that A satisfies SD-AdvA(τ) > ε(τ) and hence A breaks the
subgroup decision assumption with advantage ε(τ) as required. �

We note that if G satisfies the subgroup decision assumption then semantic
security also holds for ciphertexts in G1. These ciphertexts are the output of the
multiplicative homomorphism. If semantic security did not hold in G1, then it
would also not hold in G because one can always translate a ciphertext in G to a
ciphertext in G1 by “multiplying” by the encryption of 1. Hence, by Theorem 1,
semantic security must also hold for ciphertexts in G1.

Evaluating 2-DNF Formulas on Ciphertexts 331

4 Two Party Efficient SFE for 2-DNF

In this section we show how to use our homomorphic encryption scheme to
construct efficient secure function evaluation protocols. Our basic result is a di-
rect application of the additive and multiplicative homomorphisms of our public
key encryption scheme. We consider a two-party scenario where Alice holds a
Boolean formula φ(x1, . . . , xn) and Bob holds an assignment a = a1, . . . , an. As
the outcome, Bob learns φ(a). We restrict our attention to 2-DNF formulas:

Definition 2. A 2-DNF formula over the variables x1, . . . , xn is of the form
∨k

i=1 (�i,1 ∧ �i,2) where �i,1, �i,2 ∈ {x1, . . . , xn, x̄1, . . . , x̄n}.

We first give a protocol for the model of semi-honest parties, and then modify
it to cope with a malicious Bob, capitalizing on an ‘input verification’ gadget.

In the semi-honest model, both parties are assumed to perform computations
and send messages according to their prescribed actions in the protocol. They
may also record whatever they see during the protocol (i.e. their own input and
randomness, and the messages they receive). On the other hand, a malicious
party may deviate arbitrarily from the protocol. We sketch the security defi-
nitions for the simple case where only one party (Bob) is allowed to learn the
output. We refer readers to Goldreich’s book [15] for the complete definitions.

Security in the Semi-Honest Model. The definition is straightforward since
only one party (Bob) is allowed to learn the output:

– Bob’s security – indistinguishability: We require that Alice cannot distin-
guish between the different possible inputs Bob may hold.

– Alice’s security – comparison to an ideal model: Alice’s security is formalized
by considering an ideal trusted party that gets the inputs φ() and a, and
gives φ(a) to Bob. We require in the real implementation that Bob does not
get any information beyond whether a satisfies φ().

Security Against Malicious Parties. The security definition for this model
captures both the privacy and correctness of the protocol and is limited to the
case where only one of the parties is corrupt. Informally, the security definition
is based on a comparison with an ideal trusted party model (here the corrupt
party may give an arbitrary input to the trusted functionality). The security
requirement is that for any strategy a corrupt party may play in a real execution
of the protocol, there is an efficient strategy it could play in the ideal model with
computationally indistinguishable outcomes.

4.1 The Basic Protocol

Protocol 2-DNF in Figure 1 uses our homomorphic encryption scheme for ef-
ficiently evaluating 2-DNFs with semi-honest parties. We get a three message
protocol with communication complexity O(n · τ) — a quadratic improvement
in communication with respect to Yao’s garbled-circuit protocol [32] that yields
communication proportional to the potential formula length, Θ(n2).

332 D. Boneh, E.-J. Goh, and K. Nissim

Input: Alice holds a 2-DNF formula φ(x1, . . . , xn) = ∨k
i=1 (�i,1 ∧ �i,2) and Bob

holds an assignment a = a1, . . . , an ∈ {0, 1}n. Both parties’ inputs include a
security parameter τ .

1. Bob performs the following:
(a) He invokes KeyGen(τ) to compute keys SK, PK, and sends PK to Alice.
(b) He computes and sends Encrypt(PK, aj) for j = 1, . . . , n.

2. Alice performs the following:
(a) She computes an arithmetization Φ of φ by replacing “∨” by “+”, “∧”

by “·” and “x̄j” by “(1−xj)”. Note that Φ is a polynomial in x1, . . . , xn

with total degree 2.
(b) Alice computes the encryption of r ·Φ(a) for a randomly chosen r using

the encryption scheme’s homomorphic properties. The result is sent to
Bob.

3. If Bob receives an encryption of 0, he outputs 0; otherwise, he outputs 1.

Fig. 1. Protocol 2-DNF

Claim. Protocol 2-DNF is secure against semi-honest Alice and Bob.

Proof (Sketch). Alice’s security follows as the distribution on Bob’s output only
depends on whether φ() is satisfied by a or not. Bob’s security follows directly
from the semantic security of the encryption scheme. �

Note. Protocol 2-DNF (as well Malicious-Bob-2-DNF below) is secure even
against a computationally unlimited Bob. Interestingly, the garbled circuit pro-
tocol (where Alice garbles φ) has the opposite property where it can be secured
against an unbounded Alice but not an unbounded Bob. (See also Cachin et
al. [5] for a discussion of computing on encrypted data versus garbled circuits).

4.2 Example Application – Private Information Retrieval

A private information retrieval (PIR) scheme allows a user to retrieve informa-
tion from an n-bit database without revealing any information on which bit he
is interested in [6, 20]. SPIR (symmetric PIR) is a PIR scheme that also protects
the database privacy – a (semi-honest) user will only learn one of the database
bits [14]. In this section, we show how an immediate application of protocol
2-DNF results in a PIR/SPIR scheme. Our constructions are based on that of
Kushilevitz and Ostrovsky [20].

A SPIR Scheme. We get a SPIR scheme with communication O(τ ·
√
n) as an

immediate application of protocol 2-DNF. Without loss of generality, we assume
that the database size n is a perfect square and treat the database as a table
D of dimensions

√
n ×
√
n. Using this notation, suppose Bob wants to retrieve

entry (I, J) of D. Alice (the database holder) holds the 2-DNF formula φ over
x1, . . . , x√

n, y1, . . . , y√
n:

φ(x1, . . . , x√
n, y1, . . . , y√

n) = ∨Di,j=1 (xi ∧ yj) ,

Evaluating 2-DNF Formulas on Ciphertexts 333

and Bob’s assignment a sets xI and yJ to 1 and all other variables to 0. Bob and
Alice carry out the 2-DNF protocol with this assignment and 2-DNF formula. It
is clear that φ(a) = DI,J as required.

An Alternative Construction. Using the 2-DNF protocol for SPIR restricts
database entries to bits. We provide an alternative construction that allows each
database entry to contain up to O(logn) bits. We consider the data as a table
of dimensions

√
n ×
√
n as above. To retrieve entry (I, J) of D, Bob creates

two polynomials p1(x) and p2(x) of degree
√
n − 1 such that p1(i) is zero on

0 ≤ i <
√
n except for p1(I) = 1, and similarly p2(j) is zero on 0 ≤ j <

√
n

except for p2(J) = 1. Bob sends to Alice the encryption of the coefficients of
p1(x) and p2(x). Alice uses the encryption scheme’s homomorphic properties to
compute the encryption of

DI,J =
∑

0≤i,j<
√

n

p1(i)p2(j)Di,j .

We allow Di,j to be b-bit values where b = O(logn). Bob recovers Di,j in time
O(2b/2) by computing a discrete logarithm e.g. using the baby-step giant-step
algorithm.

A PIR Scheme. Standard communication balancing of our SPIR scheme results
in a PIR scheme where each party sends O(τ · 3

√
n) bits. In particular, view

the database as comprising of n1/3 chunks, each chunk containing n2/3 entries,
where Bob is interested in retrieving entry (I, J,K) of D. Bob sends Alice the
coefficients of two polynomials p1(x) and p2(x) of degree 3

√
n − 1 such that

p1(i) = p2(i) = 0 on 0 ≤ i < 3
√
n except for p1(I) = p2(J) = 1. Alice uses the

encryption scheme’s homomorphic properties to compute encryptions of

DI,J,k =
∑

0≤i,j< 3√n

p1(i)p2(j)Di,j,k

for 0 ≤ k < 3
√
n. Alice sends the 3

√
n resulting ciphertexts to Bob who decrypts

the Kth entry.
Recursively applying this balancing (as in Kushilevitz-Ostrovsky [20]) results

in a protocol with communication complexity O(τnε) for any ε > 0. We note
that the recursion depth to reach ε is lower in our case compared to that of
Kushilevitz-Ostrovsky [20] by a constant factor of log2 3.

4.3 Security of the 2-DNF Protocol Against a Malicious Bob

A malicious Bob may try to learn about Alice’s 2-DNF formula by sending Alice
an encryption of a non-boolean assignment a1, . . . , an. He may also let Alice
evaluate φ for an encrypted assignment that Bob cannot decrypt himself. Both
types of behaviors do not correspond to a valid run in the ideal model.

To prevent the first attack, we present a gadget that allows Alice to ensure a
ciphertext she receives contains one of two ‘valid’ messages v0, v1. This gadget is

334 D. Boneh, E.-J. Goh, and K. Nissim

applicable outside of the scope of 2-DNF as we demonstrate in sections 5 and 6.
The second attack is prevented using standard methods — Alice presents Bob
with a challenge that cannot be resolved unless he can decrypt. This decryption
ability is then used when Bob is simulated to create valid inputs for the trusted
party.2

A Gadget for Checking c ∈ {v0,v1}. This gadget exploits our ability to
evaluate a polynomial of total degree 2 on the encryption of c. We choose a
polynomial that has v0 and v1 as zeros as follows: given an encryption of a value
c, Alice uses the homomorphic properties of the encryption scheme to compute
r · (c− v0) · (c− v1) for a randomly chosen r. For c ∈ {v0, v1}, this computation
results in the encryption of 0. For other values of c, the result is random. In the
special case of c ∈ {0, 1}, Alice computes r · c · (c− 1).

The Protocol. The result is protocol Malicious-Bob-2-DNF described in
Figure 2.

Input: as in protocol 2-DNF in Figure 1.

1. Alice and Bob engage in the following ‘proof of decryption ability’ protocol:
(a) Bob invokes KeyGen(τ) to compute keys SK, PK and sends PK to

Alice.
(b) Alice chooses τ random bits m1, . . . , mτ and sends their encryptions

Encrypt(PK, m1), . . . , Encrypt(PK, mτ) to Bob.
(c) Bob replies with a decryption m′

1, . . . , m
′
τ of the received encryptions.

Alice aborts if any of Bob’s decryptions is incorrect.
2. Bob computes and sends Encrypt(PK, aj) for j = 1, . . . , n.
3. Alice performs the following:

(a) She computes an arithmetization Φ of φ as in protocol 2-DNF.
(b) Using the homomorphic properties of the encryption scheme, she com-

putes the encryption of r · Φ(a) +
∑n

i=1 ri · ai · (ai − 1) for randomly
chosen r, ri. She sends the result to Bob.

4. If Bob receives an encryption of 0, he outputs 0; otherwise, he outputs 1.

Fig. 2. Protocol Malicious-Bob-2-DNF

Claim. Protocol 2-DNF is secure against semi-honest Alice and malicious Bob.

Proof (Sketch). Security against semi-honest Alice follows as in protocol 2-DNF.
Security against malicious Bob follows by simulation. Note that the ‘proof of

2 The ‘standard’ use of this technique is to give Bob a random message for a challenge.
Bob’s simulator would then use the self reducibility properties of the encryption
scheme to (i) map an encrypted message Encrypt(PK, m) to an encryption of a
random message, say Encrypt(PK, m + r), (ii) use Bob’s procedure to retrieve m′ =
m + r, and (iii) retrieve m = m′ − r. As the message space is limited in our scheme
due to decryption limitations, we need a slightly modified scheme.

Evaluating 2-DNF Formulas on Ciphertexts 335

decryption ability’ sub-protocol can be used to decrypt Bob’s message in Step 2
of the protocol, hence providing the inputs to the trusted party. �

5 An Efficient Election Protocol Without Random
Oracles

In this section, we describe an electronic election protocol where voters submit
boolean (“yes/no”) votes. Such protocols were first considered by Benaloh and
Fisher [7, 2] and more recently by Cramer et al. [8, 9].

A key component of electronic election schemes is a proof, attached to each
vote, of its correctness (or validity); for example, a proof that the vote really
is an encryption of 0 or 1. Otherwise, voters may corrupt the tally by sending
an encryption of an arbitrary value. Such proofs of validity are typically zero-
knowledge (or witness indistinguishable) proofs. These interactive zero knowl-
edge proofs of bit encryption are efficiently constructed (using zero knowledge
identification protocols) for standard homomorphic encryption schemes such as
ElGamal [11, 18], Pedersen [26, 8], or Paillier [25, 10]. The proof of validity is
then usually made non-interactive using the Fiat-Shamir heuristic of replacing
communication with an access to a random oracle [12]. In the actual instantia-
tion, the random oracle is replaced by some ‘cryptographic function’ such a hash
function. Security is shown hence to hold in an ideal model with access to the
random oracle, and not in the standard model [27].

Our election protocol has the interesting feature that voters do not need to
include proofs of validity or any other information except for their encrypted
votes when casting their ballots. Instead, the election authorities can jointly
verify that a vote is valid based solely on its encryption. The technique is based
on the gadget we constructed in Section 2. This gadget allows us to avoid using
the Fiat-Shamir heuristic and yet makes our scheme efficient. As a result, our
election scheme is very efficient from the voter’s point of view as it requires only
a single encryption operation (two exponentiations) to create a ballot.3

5.1 The Election Scheme

Our scheme belongs to the class of election protocols proposed by Cramer et
al. [8, 9] where votes are encrypted using a homomorphic encryption scheme.

For robustness, we use a threshold version of the encryption scheme in Sec-
tion 3. For simplicity (following Shoup [31]), we assume that a trusted dealer
first generates the public/private keys, shares the private keys between the elec-
tion authorities, and then deletes the private key (a generic secure computation
may be used to replace the trusted dealer, as this is an offline phase). With this
assumption, a threshold version of our encryption scheme can be constructed
using standard techniques from discrete log threshold cryptosystems [26].

3 Curiously, this voting scheme is probably the most efficient for the voter, taking into
account the efficiency of operating in an elliptic curve group.

336 D. Boneh, E.-J. Goh, and K. Nissim

Correctness of Threshold Decryption. One caveat is that threshold decryp-
tion requires a zero knowledge of correct partial decryption from each election
authority that contributes a share of its private key. Since the number of election
authorities is typically a small constant, the proof of correct partial decryption
can be performed interactively with relative efficiency between election authori-
ties; transcripts of such interactions are made public for verification (note that
transcripts do not leak information on votes). Another possible technique is to
use a trusted source of random bits (such as a beacon [28]) among the elec-
tion authorities, or for the authorities to collectively generate a public source of
random bits. In a typical run of our protocol, the election authorities run only
a limited number of these proofs (see below), hence the usage of either tech-
nique results in a reasonably efficient protocol, and allows us to avoid using the
Fiat-Shamir heuristic.

We note that these techniques can also be used in existing election protocols
for verifying a voter’s ballot, which avoids the Fiat-Shamir heuristic; but the
resulting protocol becomes unwieldy and inefficient especially when the number
of voters is large (and we expect that there is at least several orders of magnitude
more voters than election authorities).

Vote Verification. Here we use the verification gadget of Section 2 in combi-
nation with threshold decryption. We let all authorities compute an encryption
of v · (v − 1) and then jointly decrypt the result. To save on computation, we
check a batch of votes at once (i.e.

∑
ri · vi · (vi − 1) where the ri’s are chosen

by the verifiers) and then run a binary search to identify the invalid votes [1].

The Protocol. We assume the existence of an online bulletin board where the
parties participating in the protocol post messages. Our election protocol works
as follows:

Setup: As discussed above, a trusted dealer first generates the public parame-
ters and the private key for the encryption scheme of Section 3, and shares
the private key between the k election authorities so that at least t out
the k election authorities are needed to decrypt. Finally, the trusted dealer
deletes the private key and has no further role in the protocol. The public
parameters are posted on a public bulletin board.
Denote one of the k election authorities as a leader (the election authority
that organizes a quorum for decryption requests). After the public param-
eters are posted to the public board, the leader publishes an encryption of
the bit 1 and the random bits used to create that encryption. Denote this
encryption of the bit 1 as E1. With the random bits, the other k−1 election
authorities can check that E1 is indeed an encryption of 1.

Vote Casting: Voters cast their ballots by encrypting a bit indicating their
vote, and then publishing the encrypted bit to the public bulletin board.

Vote Verification: When a ballot v has been posted, all k election authorities
compute a ciphertext c corresponding to v · (v − 1) where E1 is used as
the encryption of “1” (hence, c is ‘deterministic’ given the encryption of v).
The leader forms a quorum of t − 1 other election authorities to decrypt c

Evaluating 2-DNF Formulas on Ciphertexts 337

(the other election authorities agree to participate only if c agrees with the
ciphertext they computed). If c decrypts to something other than 0, then
the vote v is invalid and is discarded.

For better efficiency in optimistic scenarios, any number of votes v1, . . . , vk

can be verified in bulk by first computing r1 ·v1 ·(v1−1)+ . . .+rk ·vk ·(vk−1)
where the ri’s are collectively chosen by the election authorities, and then
checking that the decryption of the result is 0. All invalid votes are efficiently
located by binary search. We note that in general it suffices for ri to be rel-
atively short, as the chance of

∑
ri · vi · (vi− 1) being zero when some of the

summed votes are invalid is exponentially small in |r|.
Vote Tabulation and Tally Computation: After all the votes are posted

and verified, all k election authorities each add all the valid encrypted votes
on the public board together (using the additive homomorphic property of
the encryption scheme) to form the tallied vote V . The leader obtains a
quorum of election authorities to decrypt V . Each election authority decides
whether to participate in the decryption request by comparing V with her
own tally.

We note that our election protocol also possesses the necessary properties
of voter privacy (from semantic security of the encryption scheme), universal
verifiability (from the homomorphic property of the encryption scheme and also
because all votes and proof transcripts are posted to the bulletin board), and
robustness (from the threshold encryption scheme). The reader is referred to [7,
2, 8, 9] for discussions of these properties.

6 Universally Verifiable Computation

We now describe a related application for the gadget of Section 2. Consider an
authority performing a computation, defined by a (publicly known) circuitC over
the joint private inputs a = (a1, . . . , an) of the n users. The authority publishes
the outcome C(a) in a way that 1) lets everyone check that the computation was
performed correctly, but 2) does not reveal any other information on the private
inputs. Besides voting, other applications of universally verifiable computation
include auctions.

To simplify our presentation, we only consider the case where ai ∈ {0, 1};
general inputs are treated similarly using any binary representation. We describe
a single authority protocol that is easily transformed into a threshold multi-
authority protocol using standard methods.

6.1 A Protocol for Verifying C(a)

Setup. The authority uses KeyGen(τ) to generate a public-key/private-key pair
PK,SK. We assume the existence of a bulletin board where each user i posts
an encryption ci = Encrypt(PK, ai) of her input. We also assume the existence
of a random function H accessible by all parties, which implies that we prove

338 D. Boneh, E.-J. Goh, and K. Nissim

security only in the random oracle model. As in the previous section, we can do
without a random oracle in the multi-authority case (details omitted).

We first give a high level overview of the protocol. After all users post their
encrypted inputs onto the bulletin board, the authority decrypts each user’s
input and evaluates the circuit on these inputs. In the process of evaluating the
circuit, the authority computes and publishes ciphertexts for all the wire values
in C. In addition, the authority also publishes an encryption of the bit 1 and the
random bits used to create that encryption. Denote this encryption of the bit
1 as E1. Finally, the authority publishes an encrypted value V and a witness-
indistinguishable proof that V is an encryption of 0; for now, we defer the exact
definition of V .

To convince a verifier that the circuit was computed correctly, the authority
needs to prove that 1) all inputs are binary, and 2) all gate outputs are correct.
We show how a verifier checks that both conditions hold using validators v that
can be publicly constructed from the public encrypted wire values. We first show
how to construct validators for the user inputs and gate outputs before showing
how to use these validators to verify the computation.

Building Validators for User Inputs. In the process of evaluating the circuit,
the authority publishes the values on every wire of the circuit. We enumerate
the wires and denote the value on wire i as ai. We also denote the encryption
of ai as ci. Recall that each user posts ci = Encrypt(PK, ai) of her input ai on
the bulletin board (the ai’s are never revealed in the clear). For each input wire
i with value ai, let ri = H(i, ci); note that ri can be computed by any of the
parties. The validator for ai is vi = ri · ai · (1− ai), and the computation occurs
modulo q2 where q2 is one of the factors of the modulus n (recall that SK = q1).
It is easy to see that the encryption of vi can be computed by anyone given H, ci,
and E1.

We note that even given q2 and allowing a polynomial (in the security pa-
rameter τ) number of applications of H, the probability that an adversary suc-
cessfully generates an invalid ci with vi = 0 is bounded by O(poly(τ)/q2), which
is negligible in τ .

Building Validators for Gate Outputs. Let g ∈ C be a binary gate for
which both input wires x, y are validated. In addition, let G(x, y) be the bivariate
polynomial of total degree 2 that realizes the gate g. For example, an AND gate
has Gand(x, y) = xy, an OR gate has Gor(x, y) = x + y − xy, and a NOT
gate has Gnot(x) = 1− x. The validator for the output wire (enumerated z) of
gate g is vz = rz · (az −G(x, y)) where rz = H(z, cz) and cz is the encryption of
the value az on wire z. Again, it is easy to see that any party can compute the
encryption of vz given H, cx, cy, cz, and E1.

Verifying the Circuit Using Validators. Using the homomorphic properties
of the encryption scheme, anyone can compute (by herself) an encryption of the
sum of validators for the circuit. Note that if all posted encryptions are correct,
then the sum of validators is zero. Otherwise, it is zero with only a negligible

Evaluating 2-DNF Formulas on Ciphertexts 339

probability. The authority supplies its own version of the encrypted validator
sum called V , together with a zero-knowledge proof that the resulting sum is
zero; in this case, the encryption is of the form hr so one can use protocols
designed for the Pedersen encryption [26]. To verify the circuit computation,
a verifier computes her own validator sum V ′, checks that V ′ = V , and then
verifies the witness-indistinguishable proof that V is an encryption of 0.

7 Summary and Open Problems

We presented a homomorphic encryption scheme that supports addition and one
multiplication. We require that the values being encrypted lie in a small range
as is the case when encrypting bits. These homomorphic properties enable us to
evaluate multi-variate polynomials of total degree 2 given the encrypted inputs.
We described a number of applications of the system. Most notably, using our
encryption scheme, we (i) reduced the amount of communication in the basic step
of the Kushilevitz-Ostrovsky PIR, (ii) improved the efficiency of election systems
based on homomorphic encryption, and (iii) implemented universally verifiable
secure computation. We hope this scheme will have many other applications.

We end with a couple of open problems related to our encryption scheme:

n-Linear Maps. The multiplicative homomorphism was possible due to proper-
ties of bilinear maps. We note that an n-linear map would enable us to evaluate
polynomials of total degree n rather than just quadratic polynomials. This pro-
vides yet another motivation for constructing cryptographic n-linear maps [4].

Message Space. Our scheme is limited in the size of message space due to the
need to compute discrete logarithms during decryption. An encryption scheme
that allows for a large message space would enable more applications, such as
an efficient shared RSA key generation.

References

1. M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In Proceedings of Eurocrypt ’98, volume 1403,
1998.

2. J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.
3. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM

Journal of Computing, 32(3):586–615, 2003. Extended abstract in Proceedings of
Crypto 2001.

4. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. In
Topics in Algebraic and Noncommutative Geometry, number 324 in Contemporary
Mathematics. American Mathematical Society, 2003.

5. C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computa-
tion and secure autonomous mobile agents. In 27th International Colloquium on
Automata, Languages and Programming (ICALP ’2000), volume 1853 of Lecture
Notes in Computer Science, pages 512–523. Springer-Verlag, Berlin Germany, July
2000.

340 D. Boneh, E.-J. Goh, and K. Nissim

6. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In 36th Annual Symposium on Foundations of Computer Science, pages 41–50,
Milwaukee, Wisconsin, 23–25 Oct. 1995. IEEE.

7. J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election
scheme. In Proceedings of 26th IEEE Symposium on Foundations of Computer
Science, pages 372–382, 1985.

8. R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-
ballot elections with linear work. In U. Maurer, editor, Proceedings of Eurocrypt
1996, volume 1070 of LNCS, pages 72–83. Springer, 1996.

9. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. European Transactions on Telecommunications,
8(5):481–490, Sep 1997.

10. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, Proceedings of
Public Key Cryptography 2001, volume 1992 of LNCS, pages 119–136. Springer,
2001.

11. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, Jul 1985.

12. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. Odlyzko, editor, Proceedings of Crypto 1986, volume
263 of LNCS, pages 186–194. Springer, 1986.

13. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt
2004, volume 3027 of LNCS, pages 1–19. Springer-Verlag, May 2004.

14. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. Journal of Computer and System Sciences,
60(3):592–629, 2000.

15. O. Goldreich. The Foundations of Cryptography - Volume 2. Cambridge Univesity
Press, 2004.

16. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, pages 174–187,
Toronto, Ontario, Canada, 27–29 Oct. 1986. IEEE.

17. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the fourteenth annual ACM
symposium on Theory of computing, pages 365–377. ACM Press, 1982.

18. M. Jakobsson and A. Juels. Millimix: Mixing in small batches. Technical Re-
port 99-33, Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS), Oct 1999.

19. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor,
Proceedings of 4th Algorithmic Number Theory Symposium, number 1838 in LNCS,
pages 385–394. Springer, Jul 2000.

20. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval (extended abstract). In 38th Annual
Symposium on Foundations of Computer Science, pages 364–373, Miami Beach,
Florida, 20–22 Oct. 1997. IEEE.

21. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

22. V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.
23. V. Miller. The Weil pairing, and its efficient calculation. J. of Cryptology, 17(4),

2004.

Evaluating 2-DNF Formulas on Ciphertexts 341

24. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factor-
ing. In K. Nyberg, editor, Proceedings of Eurocrypt 1998, volume 1403 of LNCS,
pages 308–318. Springer-Verlag, May 1998.

25. P. Pallier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages
223–238. Springer-Verlag, May 1999.

26. T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. Davies, ed-
itor, Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522–526. Springer,
1991.

27. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Mau-
rer, editor, Proceedings of Eurocrypt 1996, volume 1070 of LNCS, pages 387–398.
Springer, 1996.

28. M. Rabin. Transaction protection by beacons. Journal of Computer and System
Science, 27(2):256–267, 1983.

29. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 1978.

30. T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS),
pages 554–567, New York, NY, USA, Oct. 1999. IEEE Computer Society Press.

31. V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of
Eurocrypt 2000, volume 1807 of LNCS, pages 207–220. Springer, 2000.

32. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Sym-
posium on Foundations of Computer Science (FOCS), pages 160–164. IEEE Com-
puter Society Press, 1982.

Share Conversion, Pseudorandom Secret-Sharing
and Applications to Secure Computation

Ronald Cramer1, Ivan Damg̊ard2,�, and Yuval Ishai3,��

1 CWI, Amsterdam and Mathematical Institute, Leiden University
cramer@cwi.nl

2 Aarhus University
ivan@daimi.au.dk
3 Technion, Haifa

yuvali@cs.technion.ac.il

Abstract. We present a method for converting shares of a secret into
shares of the same secret in a different secret-sharing scheme using only
local computation and no communication between players. In particular,
shares in a replicated scheme based on a CNF representation of the
access structure can be converted into shares from any linear scheme for
the same structure.

We show how this can be combined with any pseudorandom
function to create, from initially distributed randomness, any number
of Shamir secret-sharings of (pseudo)random values without communica-
tion. We apply this technique to obtain efficient non-interactive
protocols for secure computation of low-degree polynomials, which in
turn give rise to other applications in secure computation and threshold
cryptography. For instance, we can make the Cramer-Shoup threshold
cryptosystem by Canetti and Goldwasser fully non-interactive, or con-
struct non-interactive threshold signature schemes secure without ran-
dom oracles.

The latter solutions are practical only for a relatively small number
of players. However, in our main applications the number of players is
typically small, and furthermore it can be argued that no solution that
makes a black-box use of a pseudorandom function can be more efficient.

1 Introduction

A secret-sharing scheme enables a dealer to distribute a secret among n players,
such that only some predefined qualified subsets of the players can recover the
secret from their joint shares and others learn nothing about it. The collection
of qualified sets that can reconstruct the secret is called an access structure. One

� Supported by BRICS, Basic research in Computer Science, Center of the Danish
National Research Foundation and FICS, Foundations in Cryptography and Security,
funded by the Danish Natural Sciences Research Council.

�� Research supported by Israel Science Foundation grant 36/03.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 342–362, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Share Conversion, Pseudorandom Secret-Sharing and Applications 343

useful type of secret-sharing schemes are threshold schemes, in which the access
structure includes all sets of more than t players, for some threshold t.

Secret-sharing schemes have found numerous applications in cryptography.
In most of these applications, one tries to use the “best” known scheme for the
access structure at hand. Indeed, in the most popular threshold case, applications
typically rely on Shamir’s scheme [28], which is optimal with respect to its share
size. It turns out, however, that there are contexts where it is not desirable, or
even not at all possible, to use the most succinct available secret-sharing scheme.
(Some examples will be provided below.) In such contexts it may be beneficial
to share a secret using one secret-sharing scheme and later convert its shares
to a different representation, corresponding to another secret-sharing scheme,
enjoying the relative advantages of both schemes.

Non-interactive share conversion. Motivated by this general scenario, as
well as by the more concrete applications discussed below, we introduce and
study the following notion of local conversion between secret-sharing schemes.
For secret sharing schemes S,S ′, we say that S is locally convertible to S ′, if any
valid S-sharing of a secret s may be converted by means of local transformations
(performed by each player separately) to valid, though not necessarily random,
S ′-sharing of the same secret s. Before describing our results on share conver-
sion and their applications, we turn to describe a special class of secret-sharing
schemes that play a central role in these results. Replicated secret-sharing.

A very useful type of “inefficient” secret-sharing scheme is the so-called repli-
cated scheme [23].1 The replicated scheme for an access structure Γ proceeds
as follows. First, the dealer splits the secret s into additive shares, where each
additive share corresponds to some maximal unqualified set T �∈ Γ . That is, we
view s as an element of some finite field K, and write s =

∑
T∈T rT , where T is

the collection of all maximal unqualified sets, and where the additive shares rT

are random subject to the restriction that they add up to s. Then, the dealer
distributes to each player Pj all additive shares rT such that j �∈ T .

Pseudorandom secret-sharing. In the threshold case, the replicated scheme
involves

(
n
t

)
additive shares and is thus far worse than Shamir’s scheme in terms

of share size. However, it enjoys the following key property: shares of a random
secret s ∈ K consist of replicated instances of random and independent elements
from K. This property comes handy in applications which require a large number
of (pseudo-)random secret-shared values: viewing each replicated share rT as an
independent key to a pseudorandom function, we may get a virtually unlimited
supply of independent pseudorandom secrets, each shared using the replicated
scheme. Thus, we may use this method to obtain replication-shared secrets at a
very low amortized cost. The main difficulty is that these shared secrets cannot
be securely used in a higher level application without paying the

(
n
t

)
communi-

1 This scheme can also be obtained from the formula-based construction of [6] by using
a CNF representation of the access structure. Hence, it is sometimes referred to in
the literature as a CNF-based scheme.

344 R. Cramer, I. Damg̊ard, and Y. Ishai

cation overhead for each secret being used. The goal of share conversion, in this
case, would be to locally convert replicated shares of each shared secret used by
the application into an equivalent Shamir representation. This would allow to
enjoy the best of both worlds, combining the share independence advantage of
the replicated scheme with the succinctness advantage of Shamir’s scheme.

1.1 Our Results

Our contribution goes in two directions. First, we put forward the notion of
share conversion and obtain some results on the possibility and efficiency of
share conversion. Second, we present various applications of our share conversion
results, mainly within the domains of multiparty computation and threshold
cryptography. We now provide a more detailed account of these results.

Results on Share Conversion. Our main result is that shares from the repli-
cated scheme described above can be locally converted into shares of any linear
scheme2 for the same (or smaller) access structure. In particular, shares from the
replicated scheme for a threshold structure can be converted into Shamir-shares
for the same structure. We start by describing a simple conversion procedure
for the latter special case, and then generalize it to arbitrary linear schemes and
access structures. The general conversion result relies on a representation of the
access structure by a canonical span program [24].

The share convertibility relation induces a partial order on secret-sharing
schemes. Under this order, the replicated scheme is maximal in the class of all
linear schemes realizing a given access structure. We also identify a minimal
scheme in this class, and prove some negative results regarding the possibility
and efficiency of share conversion. In particular, we show that the

(
n
t

)
overhead

cannot be avoided when converting replicated shares to Shamir shares.

Applications. As discussed above, share conversion can be combined with any
pseudorandom function to securely create, from initially distributed randomness,
a virtually unlimited supply of Shamir secret sharings of (pseudo)random values
without further interaction. We present several applications of this idea in a
setting where the cost of pre-distributing

(
n
t

)
keys can be afforded.

Distributed PRFs. We obtain a communication-efficient variant of a dis-
tributed PRF construction of Naor, Pinkas, and Reingold [27] by converting its
replicated shares to Shamir shares. A natural application of distributed PRFs is
to distributing a key-distribution center.

Secure multiparty computation. We present efficient protocols for securely
evaluating low-degree polynomials, requiring only two rounds of interaction: a
round of broadcast messages followed by a round of point-to-point messages.

2 In a linear secret-sharing scheme the secret is taken from a finite field, and each
player’s share is obtained by computing some linear function of the secret and the
dealer’s randomness. Essentially all known useful schemes are linear.

Share Conversion, Pseudorandom Secret-Sharing and Applications 345

(If no setup is allowed, then this is provably impossible [19].) Using known
techniques, these results for low-degree polynomials can be extended to gen-
eral functions. In the case of functions which only take a random input (e.g., a
function dealing cards to poker players) the first round of broadcasts can be elim-
inated. Thus, we get efficient and fully non-interactive protocols for distributing
a trusted dealer in a wide array of applications.

Threshold cryptography. The above results on multiparty computation can
be specialized to obtain non-interactive implementations of threshold cryptosys-
tems, taking advantage of their simple algebraic structure. For instance, we show
how to make the Cramer-Shoup threshold cryptosystem by Canetti and Gold-
wasser [11] fully non-interactive and how to construct non-interactive threshold
signature schemes secure without random oracles.

Towards assessing the practicality of these solutions, we note that many of
them, in particular the threshold cryptography applications, are designed for a
client-server model, where we would typically have a small number of quite pow-
erful servers and some number of (possibly less powerful) clients. Even the appli-
cation to general multiparty computation can be naturally set in a client-server
model, for instance when a large number of players provide input to a computa-
tion, but where it is not practical to have them all participate in the computation
– this is then left to a small number of servers. Our solutions fit nicely into such
a scenario, since they only require the servers to handle the

(
n
t

)
overhead locally,

and since here n is the number of servers which is typically small.
It is important to understand that all our applications could have been re-

alized with the same functionality without using share conversion. Instead, the
players would work directly on the replicated shares. For instance, this is exactly
what was done for distributed PRF’s in [27] and could be done for threshold cryp-
tography and multiparty computation by adapting Maurer’s techniques [25] in a
straightforward way. However, such solutions would be much less practical. First,
the

(
n
t

)
overhead would now also apply to the communication, and hence also to

the local computation of the clients. Second, various possibilities for optimization
would be lost. For instance, the threshold cryptography applications typically
require servers to use shares of fresh (pseudo)random values every time they are
called by a client. Using share conversion, many sets of such (Shamir) shares can
be generated off-line and stored compactly, making the on-line work and storage
of servers efficient in n and t. Without share conversion, the

(
n
t

)
overhead would

apply to the entire storage generated off-line, destroying the on-line advantage.
Finally, share conversion also yields significant savings in the local computation
performed by the servers. Without share conversion, the servers’ computation
in our applications would increase (roughly) by a factor of either

(
n
t

)
or

(
n
t

)2.
Conceptual contribution. All of the above applications are related to the
use of replicated secret-sharing in conjunction with pseudorandomness. But there
are also other types of applications which seem to benefit from the use of repli-
cated secret-sharing in different, and sometimes unexpected, ways. For instance,
replicated shares yield the most efficient information-theoretic private informa-

346 R. Cramer, I. Damg̊ard, and Y. Ishai

tion retrieval protocols and locally decodable codes [5], the best round complexity
for verifiable secret-sharing [18], and the simplest protocols for secure multiparty
computation with respect to generalized adversaries [3, 25]. Our results on share
conversion provide an explanation for the usefulness of the replicated scheme,
suggesting that anything that can be achieved using linear secret-sharing can
also be achieved (up to an

(
n
t

)
overhead) using this specific scheme. This may

also serve as a useful guideline for the design of cryptographic protocols (e.g.,
when attempting to improve [5]).

Related Work. The idea of distributing pseudorandom functions by replicating
independent keys has been previously used by Micali and Sidney [26] and by
Naor et al. [27]. However, without the tool of share conversion, their protocols are
either very expensive in communication or lose some of their appealing features.
We note that an alternative number-theoretic construction of distributed PRFs,
suggested in [27], is not suitable for our applications due to the “multiplicative”
representation of the output.

Most relevant to the current work is the work on compressing cryptographic
resources by Gilboa and Ishai [20]. The problem considered there is that of
using replicated pseudorandom sources to securely “compress” useful correlation
patterns. In particular, a conversion from replicated shares of a random secret
to Shamir shares of a random secret (though not necessarily the same secret) is
implicit in their results. The results of [20] do not explicitly refer to the access
structure associated with a given correlation pattern, and do not imply our
general results on share conversion.

2 Preliminaries

We define an n-player secret sharing scheme by a tuple S = (K,(S1,. . . , Sn), R,D),
where K is a finite secret-domain (typically a finite field), each Sj is a finite share
domain from which Pj ’s share is picked (typically Sj = Kaj for some aj), R is a
probability distribution from which the dealer’s random input is picked, and D
is a share distribution function mapping a secret s and a random input r to an
n-tuple of shares from S1 × · · · × Sn. We say that S realizes an access structure
Γ ⊆ 2[n] if it satisfies the following.

– Correctness: For any qualified set Q = {j1, . . . , jm} ∈ Γ there exists a
reconstruction function recQ : Sj1×· · ·×Sjm

→ K such that for every secret
s ∈ K, Pr[recQ(D(s,R)Q) = s] = 1, where D(s,R)Q denotes a restriction of
D(s,R) to its Q-entries.

– Privacy: for any unqualified set U �∈ Γ and secrets s, s′ ∈ K the random
variables D(s,R)U and D(s′, R)U are identically distributed.

In a linear secret-sharing scheme (LSSS) the secret-domain K is a finite field,
and the randomness R is a uniformly random m-tuple (r1, . . . , rm) ∈ Km. The
share distribution function D is a linear function of s, r1, . . . , rm.

In this work we will refer to the following specific LSSS:

Share Conversion, Pseudorandom Secret-Sharing and Applications 347

1. Shamir’s secret-sharing [28]. Let K be a finite field such that |K| > n.
Each player Pj is assigned a unique non-zero element from K, which we
denote j (by abuse of notation if K is not a prime field). In the t-private
Shamir scheme, the dealer picks t random and independent field elements
r1, . . . , rt, which define the univariate polynomial f(y) = s + r1y + r2y

2 +
. . . + rty

t, and distributes to each player Pj the share sj = f(j).
2. Replicated secret-sharing [23]. Let Γ⊆2[n] be a (monotone) access

structure, and let T include all maximal unqualified sets of Γ . The replicated
scheme for Γ , denoted RΓ , proceeds as follows. To share a secret s ∈ K
the dealer first additively share s into |T | shares, each labelled by a different
set from T ; that is, it lets s =

∑
T∈T rT where the shares rT are otherwise-

random field elements. Then, the dealer distributes to each player Pj all
shares rT such that j �∈ T ; that is, Pj ’s share vector is (rT)T
�j . Privacy
follows from the fact that members of every maximal unqualified set T ∈ T
jointly miss exactly one additive share, namely the share rT (hence members
of any unqualified set miss at least one share). On the other hand, since Γ is
monotone, a qualified set Q ∈ Γ cannot be contained in any unqualified set;
hence, members of Q jointly view all shares rT and can thus reconstruct s.

3. DNF-based secret-sharing [23]. In the DNF-based scheme, the secret is
additively shared between the members of each minimal qualified set, where
each additive sharing uses independent randomness. This scheme can be
obtained by applying the construction of [6] to the monotone DNF repre-
sentation of Γ .

In the case of threshold access structures, the latter two schemes may be
practical only in contexts where

(
n
t

)
is not too large. Their asymptotic complexity

is polynomial in n when t = O(1) or n− t = O(1).

3 Share Conversion

In this section we present our main results on local share conversion. We start
by defining this notion, which induces a partial order on secret-sharing schemes.

Definition 1 (Share conversion). Let S,S ′ be two secret-sharing scheme over
the same secret-domain K. We say that S is locally convertible to S ′ if there exist
local conversion functions g1, . . . , gn such that the following holds. If (s1, . . . , sn)
are valid shares of a secret s in S (i.e., Pr[D(s,R) = (s1, . . . , sn)] > 0), then
(g1(s1), . . . , gn(sn)) are valid shares of the same secret s in S ′. We denote by
g the concatenation of all gi, namely g(s1, . . . , sn) = (g1(s1), . . . , gn(sn)), and
refer to g as a share conversion function.

Note that the above definition does not require that random shares of a
secret s in S will be converted into random shares of s in S ′. However, due
to the locality feature of the conversion, converted shares cannot reveal more
information about s than the original shares. Moreover, in typical applications
of our technique the converted shares S ′ will indeed be random.

348 R. Cramer, I. Damg̊ard, and Y. Ishai

3.1 From Replicated Shares to Shamir

We first address the important special case of threshold structures. Suppose that
a secret s has been shared according to the t-private replicated scheme. Thus,
we may write:

s =
∑

A⊆[n] : |A|=n−t

rA

where rA has been given to all players in A.
To locally convert these shares into shares of s according to the t-private

Shamir scheme, we assign to player Pi the point i in the field. Now, for each set
A⊆[n] of cardinality n− t, let fA be the (unique) degree-t polynomial such that:

1. fA(0) = 1 and
2. fA(i) = 0 for all i ∈ [n] \A.

Each player Pj can compute a share sj as follows:

sj =
∑

A⊆[n] : |A|=n−t,j∈A

rA · fA(j).

We claim that this results in a set of shares from Shamir’s scheme, consistent
with the original secret s. To see this, define a polynomial

f =
∑

A⊆[n] : |A|=n−t

rA · fA.

Clearly, f has degree (at most) t, and it is straightforward to verify that condition
1 above on the fA’s implies f(0) = s and condition 2 implies f(j) = sj .

3.2 Conversion in General

We now generalize the previous conversion result to non-threshold structures.
Specifically, we show that shares of the replicated scheme for an arbitrary access
structure Γ can be locally converted into shares of any other LSSS for Γ (in
fact, even for any Γ ′ ⊂ Γ).

To this end, it will be useful to rely on a representation of LSSS via span
programs, a linear algebra based model of computation introduced by Karchmer
and Wigderson [24]. A span program over the variables {x1, . . . , xn} assigns
to each literal xi or x̄i some subspace of a linear space V . The span program
accepts an assignment z ∈ {0, 1}n if the n subspaces assigned to the satisfied
literals span some fixed nonzero vector in V , referred to as the target vector. We
will be interested in the monotone version of this model, formalized below.

Definition 2 (MSP). A monotone span program (MSP) is a triple M =
(K,M, ρ), where K is a finite field, M is an a×b matrix over K, and ρ : [a]→ [n]
labels the rows of M by player indices. The size of M is the number of rows a.
For any set A⊆[n] let MA denote the submatrix obtained by restricting M to its
rows with labels from A (and similarly for any other matrix with a rows). We

Share Conversion, Pseudorandom Secret-Sharing and Applications 349

say that M accepts A if the rows of MA span the all-ones vector 1. We denote
by ΓM the collection of all sets in 2[n] that are accepted by M, and by TM the
collection of maximal sets not accepted by M.

Note that for any MSPM, the structure ΓM is monotone. We also note that
any nonzero vector could have been used as a target vector; however, the specific
choice of 1 will be convenient in what follows. We now associate with any MSP
M a corresponding LSSS in which the total number of field elements distributed
by the dealer is equal to the size of M.

Definition 3 (LSSS induced by MSP). Let M = (K,M, ρ) be an MSP,
where M is an a× b matrix. The LSSS induced byM, denoted by SM, proceeds
as follows. To share a secret s ∈ K:

– Additively share s into r = (r1, . . . , rb).
– Evaluate s = Mr, and distribute to each player Pj the entries s{j} (i.e.,

those corresponding to rows labelled by j).

It is easy to verify that the induced scheme SM is indeed linear and, in fact,
that any LSSS is induced by some corresponding MSPM. Finally, the following
claim from [24] establishes the expected link between the MSP semantics and
the secret-sharing semantics.

Claim. [24] The scheme SM realizes the access structure ΓM.

Towards proving the main result of this section, it will be convenient to use
the notion of canonic span programs, introduced in [24]. We use the following
monotone version of their construction.

Definition 4 (Canonic MSP). Let M = (K,M, ρ) be an MSP, where M is
an a×b matrix. We define a canonic MSP M̂ = (K, M̂, ρ) as follows. M̂ has the
same size and row labeling asM, but possibly a different number of columns. Let
T = TM be the collection of maximal unqualified sets of ΓM. For every T ∈ T ,
let wT be a length-b column vector satisfying MT ·wT = 0 and 1 ·wT = 1.3 For
each maximal unqualified set T ∈ T , the matrix M̂ will include a corresponding
column cT def= M ·wT (so that altogether M̂ has as many columns as sets in TM).

It can be shown that ΓM̂ = ΓM [24]. (This can also be derived as a corollary
of the next two lemmas.) The scheme SM̂ induced by the canonic program
M̂ may be viewed as a randomness-inefficient implementation of SM. We will
use SM̂ as an intermediate scheme in the process of converting shares of the
replicated scheme for ΓM into shares of SM.

Lemma 1. The scheme SM̂ is locally convertible to SM via the identity function
g(s) = s.

3 The existence of such wT may be argued as follows: Since M does not accept T , the
linear system (MT)T · x = 1 has no solution (where (MT)T is the transpose of MT);
hence there must be a way to linearly combine the equations so that a contradiction
of the form 0 · x = 1 is obtained.

350 R. Cramer, I. Damg̊ard, and Y. Ishai

Proof. We need to show that any valid shares in SM̂ could have also been ob-
tained in SM under the same secret s. Let r̂ ∈ Kb be some additive sharing of
s = 1 · r̂ induced by the dealer’s randomness in SM̂. Let r = W r̂ where W is
a concatenation of all column vectors wT in the order used for constructing M̂ .
By the construction of M̂ we have M̂ = MW and so M̂ r̂ = MW r̂ = Mr. Thus,
r produces the same shares in SM as r̂ produces in SM̂. Finally, since every wT

must satisfy 1 ·wT = 1, we have 1 · r = 1 ·W r̂ = 1 · r̂, and thus r is consistent
with the same secret s. ��

Lemma 2. Let RΓ be the replicated scheme realizing Γ over a finite field K,
M′ = (K,M ′, ρ′) an MSP such that Γ ′ def= ΓM′ satisfies Γ ′⊆Γ , and M̂′ =
(K, M̂ ′, ρ′) a canonic MSP of M′. Then, RΓ is locally convertible to SM̂′ .

Proof. Suppose first that Γ ′ = Γ . Let T be the collection of maximal unqualified
sets of Γ . The RΓ -shares viewed by a player Pi are si

def= (rT)T
�i, where r is an
additive sharing of the secret s. Define the i-th local conversion function to be

gi(si) =
∑
T
�i

rT · cT
{i}.

Since each column cT of M̂ ′ has only zeros in its T -entries, the above functions
gi jointly define the conversion function g which maps RΓ -shares s, obtained
by replicating additive shares r = (rT)T∈T , into the SM̂′-shares s′ = M̂ ′r. The
correctness of this conversion is witnessed by letting r′ = r, namely the same
additive sharing of s producing s in RΓ will also produce g(s) in SM̂′ .

The general case, where Γ ′ may be a proper subset of Γ , is only slightly more
involved. Let T ′ denote the maximal unqualified sets in Γ ′, and assign to each
T ∈ T some set T ′ ∈ T ′ containing it. For each T ′ ∈ T ′, define rT ′ to be the sum
of all rT such that T is assigned to T ′ (or 0 if there is no T assigned to T ′). Then,
the local conversion functions may be defined by gi(si) =

∑
T ′
�i rT ′cT ′

{i}, and the
correctness of the induced conversion g is witnessed by letting r′ = (rT ′)T ′∈T ′ .

��

As a direct corollary of the last two lemmas (and using the transitivity of
local conversions) we get the main result of this section:

Theorem 1. The replicated scheme RΓ , realizing Γ over a field K, is locally
convertible to any LSSS over K realizing an access structure Γ ′⊆Γ .

The above proof in fact provides a constructive way for defining the local
conversion function from RΓ to any LSSS S realizing Γ (or a subset of Γ), given
an MSP for S.

Theorem 1 shows that the (CNF-based) replicated scheme RΓ is maximal
with respect to the convertibility relation among all LSSS realizing Γ . Turning
to the other extreme, we now argue that the DNF-based scheme (defined in
Section 2) is minimal with respect to convertibility.

Theorem 2. Any LSSS realizing Γ is convertible to the DNF-based scheme
for Γ .

Share Conversion, Pseudorandom Secret-Sharing and Applications 351

Proof sketch. Suppose that s has been shared according to some LSSS S for Γ .
We need to show that each minimal qualified set Q ∈ Γ can locally compute an
additive sharing of s. This easily follows from the linearity of the reconstruction
function recQ. ��

3.3 Negative Results for Share Conversion

We now show some negative results related to the possibility and efficiency of
share conversion. We start by showing that the convertibility relation is non-
trivial, in the sense that not all schemes realizing the same access structure
are convertible to each other. In fact, we show that Shamir shares cannot be
generally converted to replicated shares.

Claim. Let S be the 1-private 3-player Shamir scheme over a field K (|K| > 3)
and S ′ be the replicated scheme with the same parameters. Then S is not locally
convertible to S ′.

Proof. By the correctness requirement, the value of g on any valid 3-tuple
(s1, s2, s3) of S-shares must take the form g(s1, s2, s3) = ((r′

2, r
′
3), (r

′
1, r

′
3),

(r′
1, r

′
2)). We now use the locality requirement to show that g must be a constant

function, contradicting the correctness requirement. Suppose that one of the lo-
cal functions gi is non-constant. Assume wlog that g1(0) �= g1(1) and that they
differ in their first output r′

2. Then, either g(0, s2, 0) outputs illegal S ′-shares for
all s2 ∈ K or g(1, s2, 0) outputs illegal S ′-shares for all s2 ∈ K (since in either of
these cases the first share of P1 is different from the second share of P3). Since
there exist both valid S-shares of the form (0, s2, 0) and of the form (1, s2, 0),
we obtain the desired contradiction. ��

Motivated by the following applications, it is natural to ask whether one can
reduce the amount of replication in the replicated scheme RΓ and still allow to
convert its shares to other useful LSSS for Γ . Specifically, let S be a secret-sharing
scheme for Γ with the property that a qualified set of players can reconstruct
not only the secret, but also the shares of all players. Note that Shamir’s scheme
enjoys this property. We show that the scheme RΓ cannot be replaced by a more
efficient replicated scheme which is still convertible to S and at the same time
is private with respect to all unqualified sets of S.

Definition 5. A generic conversion scheme from replicated shares to S consists
of a set of independently distributed random variables R1, . . . , Rm, an assignment
of a subset Bj of these to each player Pj, and local conversion functions gj such
that if each Pj applies gj to the variables in Bj, we obtain values (s1, ..., sn)
forming consistent S-shares of some secret s. Furthermore, given the information
accessible to any unqualified set of Γ , the uncertainty of s is non-zero.

Note that neither S nor the conversion functions gj are assumed to be linear.
Also note that the convertibility requirement formulated above is weaker than
our default requirement. However, we are about to show a negative result which
is only made stronger this way.

352 R. Cramer, I. Damg̊ard, and Y. Ishai

Proposition 1. For any generic conversion scheme for S as defined above, it
holds that m is at least the number of maximal unqualified sets.

Proof. Fix any maximal unqualified set T , and let BT be the set of Ri’s known
to T . We may assume that for each Ri ∈ Bj , it is the case that H(sj |Bj \Ri) > 0,
i.e., Ri is necessary for sj . If there was not the case, we could remove Ri from Bj

and get a more efficient scheme. For each player Pj � inT , we let Cj,T = Bj \ T ,
thus representing the information available to Pj but not to T . Each such set
must be non-empty, otherwise T could determine the value of s.

Now, the set T ∪Pj is qualified, and hence, for any other Pi �∈ T , it is the case
that the share si = gi(Bi) is uniquely determined from BT ∪Bj – by assumption
on S. It follows that Bi ⊂ BT ∪Bj and therefore that Ci,T ⊂ Cj,T . If this was not
the case, then by independence of the Ri’s, si would not be uniquely determined
from BT ∪Bj . Since this argument works for any Pj �∈ T , it follows that in fact
Ci,T = Cj,T , so we call this set CT for short.

Now, consider a different maximal unqualified set T ′. We will be done if we
show that CT ∩ CT ′ = ∅, since this and each CT being non-empty means that
there must be as many Ri’s as there are sets T .

So assume some Ri ∈ CT ∩ CT ′ , and consider a player Pj who is in T ′ \ T .
This means that Pj knows all variables in CT , in particular also Ri, but this is
a contradiction since Ri is also in CT ′ and BT ′ ∩ CT ′ = ∅ by construction. ��

4 Applications

The ability to convert replicated shares to Shamir shares allows to create, from
initially distributed randomness, any number of Shamir secret sharings of
(pseudo) random values without communication.4 In this section we present
several applications of this idea.

We begin by describing some useful sub-protocols that are common to most
of these applications. The first protocol provides precisely the functionality
described above: secure generation of (pseudo)random Shamir-shared secrets
without communication. Recall the share conversion procedure described in Sec-
tion 3.1. A secret s has been shared according to the t-private replicated scheme,
namely s =

∑
A⊆[n] : |A|=n−t rA where rA has been given to all players in A. To

locally convert these shares into Shamir shares, each player Pj computes its share
as sj =

∑
|A|=n−t,j∈A rA · fA(j), where fA is a degree-t polynomial determined

by A.
The main observation is that when the secret s is random, all replicated shares

rA will be random and independent. Hence we may use the initially distributed
rA as keys to a PRF ψ·(·), and as long as players agree on a common input a
to the function, all players in A can compute ψrA

(a) and use it in the above
construction in place of rA. Concretely, we get the following.

4 While we focus the attention on Shamir-based schemes for threshold access struc-
tures, the results of this section can be extended to linear schemes realizing general
access structures.

Share Conversion, Pseudorandom Secret-Sharing and Applications 353

Protocol. Pseudorandom Secret-Sharing (PRSS)
Common inputs: a value a and independent keys {rA} that have been predis-
tributed as above. Each player Pj computes his share sj as:

sj =
∑

A⊆[n] : |A|=n−t,j∈A

ψrA
(a) · fA(j) (1)

Note that if we choose K to be of characteristic 2, we can modify the PRSS
protocol so that the shared value is guaranteed to be 0 or 1 by simply using a PRF
that always outputs 0 or 1. We call this Binary Pseudorandom Secret-Sharing
(BPRSS). Assuming that t < n/3 it is easy to turn this into a non-interactive
verifiable secret-sharing scheme, in a model where a broadcast primitive is avail-
able: we simply arrange it such that a Dealer knows all the involved keys. This
allows him to compute the pseudorandom shared value and correct it into the
value he wants to share:

Protocol. Non-Interactive Verifiable Secret-Sharing (NIVSS)
Common inputs: a value a and keys {rA} as above. A dealer D holds all keys as
well as an input value v ∈ K. Each player Pj computes a preliminary share s̃i as
in Eq. 1. Using his knowledge of the keys, D computes the secret s determined
by the preliminary shares. D then broadcasts (v − s). Each Pj computes his
share as s̃j + (v − s).

It is straightforward to verify that this creates a valid Shamir sharing of v
if D is honest, and will create a valid sharing of some value no matter how D
acts. Furthermore, since t < n/3, this value can be reconstructed using standard
error correction techniques as long as at most t of the shares are wrong. Finally,
for the privacy, we have the following.

Lemma 3. Consider an adversary Adv that corrupts up to t of the players, but
not D. Adv may invoke the protocol NIVSS multiple times, (adaptively) choosing
a secret vj and a distinct evaluation point aj at each invocation. The adversary
gets to see the executions of NIVSS where in the j-th invocation aj is used as the
common input and either (case 0) vj or (case 1) a random independent value is
given as input to D. Assuming the underlying PRF is secure, cases 0 and 1 are
computationally indistinguishable.

Proof. Assume that some Adv can distinguish case 0 and 1, and make the (worst
case) assumption that Adv corrupts t players. This means that only one key rA

is unknown to Adv, where A consists of the n− t uncorrupted players. We build
an algorithm Alg that breaks the PRF. It gets oracle access to either ψrA

() or
a random oracle and must tell the two apart. Alg gets the inputs aj , vj from
Adv and at each invocation simply invokes the NIVSS protocol on these inputs,
except that it calls the oracle whenever it needs to compute ψrA

(). It is now
straightforward to verify that if Alg’s oracle is random, Adv will see an exact
emulation of case 1: in this case the value of s computed at each invocation will
be uniformly random and independent of previous values (by uniqueness of aj)
and so will vj − sj . On the other hand, if Alg talks to ψrA

() we emulate exactly

354 R. Cramer, I. Damg̊ard, and Y. Ishai

case 0. Thus Adv’s ability to distinguish case 0 and 1 translates to breaking the
PRF with the same advantage. ��

It is easy to adapt the NIVSS protocol such that we are guaranteed that
the shared value is 0 or 1, along the same lines as the BPRSS protocol. We
will refer to this as BNIVSS. Note also that if we just want to create a shared
random value known to the dealer, we can simply omit the broadcast step and
use the preliminary shares as final shares. We will refer to this as NIVSS without
broadcast.

The technique for pseudo-random secret-sharing can be generalized to create
sharings of a particular value, such as zero. We explain how this is done for
the same threshold t access structure as before, but for polynomials of degree
2t, since this is what we need in the following. Generalizations to other degrees
follow easily. Consider a set A of size n− t and consider the set of polynomials

FA = {f | deg(f) ≤ 2t, f(0) = 0, j �∈ A⇒ f(j) = 0}.

If we think of the set of all degree-(2t) polynomials as a vector space over K,
it is easy to see that FA is a subspace of dimension 2t + 1 − t − 1 = t. So we
choose for each A, once and for all, a basis for FA consisting of t polynomials
f1

A, ..., f
t
A. Finally, we distribute initially t keys r1

A, ..., r
t
A to every player in A.

This leads to the following protocol:

Protocol. Pseudorandom Zero-Sharing (PRZS)
Common input: a value a, keys {ri

A|i = 1..t, |A| = n− 1} that have been predis-
tributed as above. Each player Pj computes his share sj as:

sj =
∑

A⊆[n] : |A|=n−t,j∈A

t∑
i=1

ψri
A
(a) · f i

A(j)

It is straightforward to verify that this results in shares consistent with the
polynomial f0 =

∑
A,|A|=n−t,Pj∈A

∑t
i=1 ψsi

A
(a) · f i

A, that deg(f0) ≤ 2t and that
f0(0) = 0.

The above ideas for “non-interactive random secret-sharing” are less efficient
if the number of sets A is large.5 On the other hand, the pseudo-random function
is used as a black-box and hence any pseudo-random function can be used. By
Proposition 1, our solution is optimal among a class of generic schemes making
a black-box use of a PRF.

Distributed PRFs. An immediate application of the basic PRSS protocol de-
scribed above is to the problem of distributing pseudorandom functions (or
KDCs), studied by Naor, Pinkas and Reingold [27]. A distributed PRF should

5 Note that when t is constant, the number of sets A is polynomial in n. Thus, share
conversion allows to efficiently achieve a constant level of privacy with an arbitrarily
high level of robustness.

Share Conversion, Pseudorandom Secret-Sharing and Applications 355

allow a client to query its value on any chosen input a by contacting n servers,
where the output should remain private from any collusion of t servers. More-
over, even if t servers are actively corrupted, the client should still learn the right
output. A simple solution to this problem is to use the PRSS protocol, where the
client sends a to each server Pj and receives sj , the corresponding Shamir-share
of the output, in return. A similar scheme that was suggested in [27] relies on
replicated PRFs but does not use share conversion. Thus, the communication
complexity of the scheme from [27] is very high, as servers are required to send
all replicated shares to the client.

4.1 Applications to Secure Multiparty Computation

We show how the pseudorandom secret-sharing approach can be used to securely
compute low-degree polynomials via an efficient two-round protocol. We then
discuss an extension of this result to general functions.

It will be convenient to use the following model for secure computation:
the input will be supplied by m input clients I1, ..., Im. The computation will
be performed by n servers P1, ..,Pn. The outputs are to be distributed to v
output clients O1, ...,Ov. Since one player can play several of these roles, this is
a generalization of the standard model, which fits well with the applications we
give later. We will assume that input clients can broadcast information to the
servers and we also assume secure point to point channels between servers and
output clients. A typical protocol will have the following two-round structure: in
Round 1 each input client broadcasts values to the servers (one value for each
input) and in Round 2 each server sends (over a secure channel) a message to
each output client. For some applications Round 1 will not be necessary, in which
case we get fully non-interactive protocols.

We assume an adversary that can corrupt any number of clients and up to
t servers. We consider both the case of a passive and an active adversary. The
adversary is for now assumed to be static (non-adaptive).

We will make the following set-up assumptions: sets of keys for a pseudoran-
dom function have been distributed to input clients and servers, such that each
input client can act as the dealer in the NIVSS protocol and the servers can
execute the PRSS and PRZS protocols.

Secure Computation of Low-Degree Polynomials. We show how to se-
curely compute the value of a degree d multivariate polynomial Q() in m vari-
ables, where Ij supplies the j-th variable xj . We assume that the output value
Q(x) is to become known to all output clients. Generalizations to more input
variables, more polynomials and different polynomials for different output clients
follow easily. For a passive adversary, we assume dt < n, while for an active ad-
versary we assume (d + 2)t < n. The protocol proceeds as follows:
1. In round 1, each input client Ij acts as the dealer in the NIVSS protocol using

xj as his private input. (If the inputs xi should be restricted to take binary
values, BNIVSS is used instead of NIVSS.) Let xj,i be the share obtained
by server Pi. We execute the PRZS protocol adapted such that we create

356 R. Cramer, I. Damg̊ard, and Y. Ishai

shares of a degree dt polynomial that evaluates to 0 on 0. Let zi be the share
obtained by Pi. Each Pi now computes Q(x1,i, ..., xm,i) + zi.

2. In round 2, each server sends Q(x1,i, ..., xm,i) + zi to all output clients.
3. Each output client considers the values it receives as values of a degree dt

polynomial f - where up to t values may be wrong if the adversary is active.
He reconstructs the value f(0) (using standard error correction in the active
adversary case) and defines this to be his output.

Note that if we only wanted to compute shares of the value Q(x1, ..., xm) we
could do this by simply omitting steps 2 and 3. Using Canetti’s definition of
secure function evaluation from [9], we get:

Theorem 3. The above protocol computes the function Q(x1, ..., xm) securely
against a passive, static adversary if dt < n and against an active, static adver-
sary if (d + 2)t < n.

Proof sketch. For some adversary Adv, the required Ideal model adversary, or
simulator, works as follows: it simulates the broadcast of honest input clients by
broadcasting random values. Since it knows the keys that corrupt input clients
use in the NIVSS protocols, it can compute the values that these clients are
sharing, and send them to the ideal functionality. Note that it also knows the keys
held by corrupt servers so it can compute the share shj = Q(x1,i, ..., xm,i) + zi

that each corrupt Pj holds of the result. When given the output value y, it
therefore chooses a random polynomial f such that f(0) = y and f(j) = sj for
each corrupt Pj . And for each honest Pi, it sends f(i) to corrupt output clients
in round 2, to simulate the contributions of honest servers to the result.

To argue that the simulation works, we can argue along the same lines as
for Lemma 3. If for some adversary Adv and some set of inputs x1, ..., xm, the
output from the real process could be distinguished from that of the ideal process,
we could build an algorithm Alg for breaking the pseudorandom function. Alg
will have oracle access to ψs() for all keys s not known to Adv, or to a set
of random oracles. Alg will now use the given inputs x1, ..., xm and keys for
the corrupt players that it chooses itself, to execute the protocol with Adv.
It emulates the honest players according to the protocol, except that it calls its
oracles whenever an honest player would have used a key not known to Adv. One
can now verify that if the oracles contain pseudorandom functions, we produce
output distributed exactly as in the real process, whereas of they are random, we
produce output according to the ideal process. It is in this last part that we need
dt < n ((d + 2)t < n) since this ensures that the polynomial f reconstructed by
the honest output clients will determine the correct output value y, regardless
of whether f was constructed by the simulator or by Alg.

Thus the ability to distinguish between the real and the ideal process trans-
lates to breaking the pseudorandom function with the same advantage. ��

Note that this result extends easily to computing polynomials where some of
the inputs are to be chosen at random: we just use the PRSS protocol to create
shares of these inputs.

Share Conversion, Pseudorandom Secret-Sharing and Applications 357

General MPC in 2 Rounds. Using known techniques, one can reduce the secure
computation of general functions to that of degree-3 polynomials. In case of
functions that can be efficiently represented by (boolean or arithmetic) branching
programs, such a reduction is given by constructions of randomizing polynomials
from [21, 22]. A similar reduction for arbitrary (polynomial-time computable)
functions is possible under standard intractability assumptions [1]. Alternatively,
it is possible to modify the garbled circuit technique of Yao [31] and Beaver,
Micali and Rogaway [2] to obtain 2-round protocols for arbitrary functions using
our protocol for degree-3 polynomials. Using either approach, one can get 2-
round general MPC protocols with security threshold t < n/3 (t < n/5) in the
passive (active) case.

Distributing a Trusted Dealer. An important class of multi-party functionalities
are those that distribute correlated random resources to output clients (without
taking any inputs). For such functionalities, we can distribute a trusted dealer
via a totally non-interactive protocol in which each server send a single message
to each output client. Applications of such functionalities range from emulating
a trusted poker dealer to providing players with correlated resources for general
MPC protocols (e.g., [14, 16]). For the applications to threshold cryptography,
discussed next, we use a similar approach but rely on the special structure of
the relevant functionalities to gain better efficiency.

4.2 Applications to Threshold Cryptography

As mentioned above, low-degree polynomials that take only random inputs, pos-
sibly along with other inputs that have been pre-shared, can be securely com-
puted in only one round using our techniques. In this section, we show that
this efficiently extends to functions defined over finite groups of prime order,
involving exponents that are low degree polynomials. It will later become clear
how such functions can be used to handle problems in threshold cryptography
without interaction.

We will assume that we work in a fixed finite group G of prime order q, such as
a subgroup of Z∗

p , where q divides p−1. Furthermore, we assume we have an ideal
implementation of a function that chooses a vector X = (x1, ..., xu) ∈ Zu

q , secret-
shares these values according to Shamir’s scheme with polynomials of degree
≤ t, and outputs shares xi,j , j = 1..u, to each server Pi. Finally, the function
chooses and distributes seeds as required for the PRSS and PRZS protocols we
described earlier. This corresponds to the key generation phase in a threshold
cryptosystem.

We assume as usual an adversary that corrupts at most t servers. For simplic-
ity, we assume first that the adversary is static and passive. Consider a random-
ized function Φ(), which we will define using a fixed set of multivariate degree 2
polynomials Q1(X,R), ..., Qw(X,R) (the following extends trivially to small de-
grees larger than 2, but degree 2 is all we will need in the following). To compute
the function, all servers input the shares they received earlier, while an input
client broadcasts elements g1, ..., gw ∈ G to the servers. We need that the shares

358 R. Cramer, I. Damg̊ard, and Y. Ishai

supplied by servers uniquely determine X. This is always the case if the adver-
sary is passive, and is also the case for an active adversary, provided t < n/3.
The function outputs to all players the element

Φ(g1, ..., gw, {xi,j | i = 1..n, j = 1..u}) = g
Q1(X,R)
1 · · · gQw(X,R)

w

where R = (r1, ..., rv) ∈ Zv
q consists of v uniformly random numbers. We let

(λ1, ..., λn) be chosen as Lagrange interpolation coefficients such that f(0) =∑n
i=1 λif(i) for any polynomial f with deg(f) < n.
To build a protocol for evaluating Φ(), we use a technique similar to what

we used before, but we now put everything “in the exponent”: assuming players
have shares of the xi’s and ri’s, they can compute the “same” expression as in
the definition of Φ, using their respective shares in place of the xi’s and ri’s.
When each local result is broadcast, one can find the answer using interpolation
“in the exponent”. And even though the shares of the ri’s are not predistributed,
we can create them non-interactively using PRSS. Also as previously, we need
to randomize the degree 2t polynomial that is (implicitly) revealed, using the
PRZS technique.

Protocol. Compute Φ()

1. Each server Pi computes a share rj,i of a pseudorandom value rj , for j = 1..v,
as well as a share ti in a degree-(2t) sharing of 0, as described in protocols
PRSS and PRZS. Let Ri = (r1,i, ..., rv,i) and Xi = (x1,i, ..., xu,i). He sends
to the output client(s) the group element

Gi = g
Q1(Xi,Ri)
1 · · · gQw(Xi,Ri)

w gti
1

2. The output client(s) compute the output as
∏n

i=1 G
λi
i .

For the above protocol, one can prove the following:

Theorem 4. Assuming a passive, static adversary, t < n/2, and that ψ·(·)
(used in the pseudo-random secret-sharing) is a pseudo-random function, the
above protocol computes Φ() securely.

Proof sketch. Rewriting the definition of Φ() by expressing all group elements as
powers of some fixed generator g of G, it is clear that the output value is of form
gQ(X,R) for some multivariate degree 2 polynomial. Hence, from an information
theoretic point of view, we are in fact computing Q(X,R) using exactly the
protocol we saw earlier. Therefore, essentially the same proof as for the earlier
protocol applies here. ��

Note that since we need to assume that the number of servers is small in
order to use PRSS in the first place, the results from [10] imply that this same
protocol is also adaptively secure.

For the case of an active, static adversary, we can use the same protocol,
provided that t < n/4 and that we make a modification in the final step. In
the earlier protocol for computing low-degree polynomials, we could use stan-
dard error correction, but this will not work here. We are faced with elements

Share Conversion, Pseudorandom Secret-Sharing and Applications 359

G1, ..., Gn and all we know is that all but t of them are of form Gi = gf(i) for
some polynomial f of degree at most 2t. Since we cannot expect to compute
discrete logs, direct error correction does not apply.

Since the number of servers is small, one option is to find the correct subset
by exhaustive search. But this may not be entirely satisfactory. We do have to
assume that servers have enough memory and computing power to handle such
a problem (in order to carry out the PRSS protocol). But in a real application,
we may not want to assume this about the clients.

We sketch a solution to this using results from [13]. We will assume two-level
sharings, that is the xj ’s have been shared and then the shares have themselves
been shared using degree t polynomials. If xj,i is Pi’s share, Pi also receives as
part of his share the polynomial used for sharing xj,i. We will use the same
type of two-level sharing for the random rj ’s and for the degree 2t sharing of 0.
This can all be done non-interactively by our results on general share conversion,
because such a two-level sharing is a linear scheme.

Hence, when Pi claims that the value Gi he contributes really satisfies Gi =
g

Q1(Xi,Ri)
1 · · · gQw(Xi,Ri)

w gti
1 , we can assume that the exponents are shared among

the servers using degree-(2t) polynomials and Pi knows the polynomials that
have been used. Therefore the value can non-interactively be shown to be correct
using a straightforward generalization of the techniques from [13].

Theorem 5. Assuming an active, static adversary, t < n/4, and that ψ·(·)
(used in the pseudo-random secret-sharing) is a pseudo-random function, the
above protocol, modified as described for active adversaries, computes Φ() se-
curely (and non-interactively).

We expect that this general technique will be useful in many contexts. Below
we give a few examples for applications to some concrete threshold cryptosys-
tems.

Threshold Cramer-Shoup. Canetti and Goldwasser [11] proposed a thresh-
old version of the Cramer-Shoup cryptosystem, the first really efficient public-
key system that could proved secure under chosen ciphertext attacks, without
assuming random oracles.

This scheme works in a group G of order q as we did above. The private
key is (x1, x2, y1, y2, z), all chosen at random in Zq. The public key consists of a
number of elements in G, namely g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz

1 .
A ciphertext is a 4-tuple of elements (u1, u2, e, v). To decrypt, one computes

a value α from the ciphertext using a public hash function. Then we set v′ =
ux1+y1α

1 ux2+y2α
2 . We choose r ∈ Zq at random and compute b = uz

1(v
′v−1)r.

Finally, the output (which will be the decrypted message if the ciphertext was
valid) is eb−1.

The randomization introduced by r is a modification of the original scheme
suggested in [11] to maintain CCA security even if one defines the decryption
algorithm to output b always - instead of an error message in case the ciphertext
was invalid. Clearly, if one can securely compute b assuming that x1, x2, y1, y2, z

360 R. Cramer, I. Damg̊ard, and Y. Ishai

have been pre-shared, a secure threshold version of the scheme follows. In [11]
this was done non-interactively, essentially assuming that a number of random
values had been pre-shared, so they could play the role of r. This resource runs
out quickly since r-values cannot be reused, so this is not a satisfactory solu-
tion. Indeed Canetti and Goldwasser asked whether it was possible to create
shares of r pseudorandomly without interaction. This is exactly possible using
our techniques. Indeed by rewriting, the value we need to compute is

b = uz+x1r+αy1r
1 ux2r+αy2r

2 v−r

It should be clear that this expression is a special case of the (class of)
function(s) Φ(). Hence a protocol for computing b securely follows immediately
from the protocols for computing Φ, both in the passive and active adversary
case. We also obtain the same bounds on t as in [11] 6.

Threshold Signatures. It is known how to obtain efficient non-interactive
threshold signatures in the random oracle model based on RSA, see for instance
[29]. If we drop the random oracle assumption, things seem to be much more
difficult. We do know efficient secure signature schemes that need no random
oracles [15, 17], but it is not at all clear how one could design a non-interactive
threshold version of those schemes.

However, we can make use of the fact that Boneh and Boyen in [8] suggested
a fully secure ID based encryption scheme without random oracles. A more
efficient scheme was suggested by Waters in [30].

Briefly, an ID based encryption scheme has a public key pk, and a master
secret key sk. Each user has an identity ID, and using the master key one can
derive a secret key skID for this user. Knowing only the ID, it is possible to
encrypt a message such that only the user who knows skID can decrypt.

Our interest in this comes from the fact that any such scheme implies a
signature scheme, with public key pk and private key sk. To sign a string, one
thinks of it as an identity and uses sk to extract skID which now plays the role
of a signature. The security properties of the ID based scheme imply security of
the signature scheme in a natural way.

The scheme of [30] works in a prime order group G equipped with a bilinear
mapping (which we do not have to consider explicitly here). Keys are generated
as follows: fix a generator g of G, choose a random α ∈ Zq and set g1 = gα. Also
pick random elements g2, u

′, u1, ..., ul where l is the length of identities. Then
the public key is g, g1, g2, u

′, u1, ..., ul and the master secret key is gα
2 . The secret

key corresponding to identity v where the i’th bit of v is vi is constructed by
choosing r at random and setting skID to be the pair

skID = (gα
2 (u′

∏
i∈V

ui)r, gr)

6 In the active case, it was claimed in [11] that their solutions work for t < n/3 non-
interactively and for t < n/2 with interaction, but this is not correct. The authors of
[11] have confirmed that the correct bounds are t < n/4 and t < n/3, respectively.

Share Conversion, Pseudorandom Secret-Sharing and Applications 361

where V is the set of indices such that vi = 1. Now, since u′ ∏
i∈V ui is an

element all players can compute by themselves, also this expression is a special
case of our function Φ. It follows that the protocol for computing Φ can be used
to compute, non-interactively and securely, a signature in the scheme derived
from [7].

This is the first non-interactive threshold signature scheme that can be shown
secure without random oracles. We note that concurrently and independently
from our work, Boneh and Boyen have recently found a different technique for
distributing this signature scheme. This method is tailored to their scheme and
does not use share conversion based techniques. It scales better w.r.t. the number
of players than our method, but is less general. For instance, our technique also
applies directly to distribute non-interactively the recent signature scheme by
Camenisch and Lysyanskaya [12]. This leads to a distributed signature scheme
with a much smaller public key than starting from Waters’ scheme, and it also
implies a distributed implementation of the authorities issuing credentials in
their anonymous credential scheme.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. Manuscript, 2004.

2. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In Proc. of 22nd STOC, pages 503–513, 1990.

3. D. Beaver and A. Wool. Quorum-based secure multi-party computation. In Proc.
of EUROCRYPT ’98, LNCS 1403, Springer Verlag, pages 375–390, 1998.

4. A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis,
Technion, 1996.

5. A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond. Breaking the O(n1/(2k−1))
Barrier for Information-Theoretic Private Information Retrieval. In Proceedings of
the 43rd IEEE Conference on the Foundations of Computer Science (FOCS ’02),
pages 261–270, 2002.

6. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.
In Proc. of CRYPTO ’88, LNCS 403, Springer Verlag, pages 27–35, 1990.

7. D. Boneh and X. Boyen. Efficient Selective Identity-based Encryption. In Proc. of
Eurocrypt ’04.

8. D. Boneh and X. Boyen. Secure Identity-Based Encryption Without Random
Oracles. In Proc. of Crypto ’04.

9. R. Canetti. Security and composition of multiparty cryptographic protocols. In J.
of Cryptology, 13(1), 2000.

10. R. Canetti, I. Damg̊ard, S. Dziembowski, Y. Ishai, and T. Malkin. On Adaptive vs.
Non-adaptive Security of Multiparty Protocols. In J. of Cryptology, 17(3), 2004.
Preliminary version in Eurocrypt ’01.

11. R. Canetti and S. Goldwasser. An efficient threshold public-key cryptosystem
secure against adaptive chosen ciphertext attacks. In Proc. of Eurocrypt ’99.

12. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. In Proc. of Crypto 2004.

13. R. Cramer and I. Damg̊ard. Secret-Key Zero-Knowledge and Non-interactive Ver-
ifiable Exponentiation. In Proc. TCC ’04.

362 R. Cramer, I. Damg̊ard, and Y. Ishai

14. R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Proc. of EUROCRYPT ’01 , LNCS 2045, pp. 280-299,
2001.

15. R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. In Proc. ACM Conference on Computer and Communications Security, 1999.

16. M. Fitzi, S. Wolf and J. Wullschleger. Pseudo-signatures, broadcast, and multi-
party computation from correlated randomness. In Proc. Crypto ’04.

17. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
Random Oracles. In Proc. of Eurocrypt ’99.

18. R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. The Round Complexity of
Verifiable Secret Sharing and Secure Multicast. In Proceedings of the 33rd ACM
Symp. on Theory of Computing (STOC ’01), pages 580-589, 2001.

19. R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. On 2-round secure multiparty
computation. In Proc. Crypto ’02.

20. N. Gilboa and Y. Ishai. Compressing cryptographic resources. In Proc. of CRYPTO
’99.

21. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Proc. 41st FOCS, pp. 294–
304, 2000.

22. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. 29th ICALP, pp. 244–256, 2002.

23. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structures. In Proc. IEEE Global Telecommunication Conf., Globecom 87, pages
99–102, 1987.

24. M. Karchmer and A. Wigderson. On span programs. In Proc. of 8th IEEE Structure
in Complexity Theory, pages 102–111, 1993.

25. U. Maurer. Secure multi-party computation made simple. In Proc. of SCN ’02.
26. S. Micali and R. Sidney. A simple method for generating and sharing pseudo-

random functions with applications to clipper-like key escrow systems. In Proc. of
CRYPTO ’95, LNCS 963, Springer Verlag, pages 185–196, 1995.

27. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In Proc. of EUROCRYPT ’99, LNCS 1592, Springer Verlag, pages 327–346,
1999.

28. A. Shamir. How to share a secret. Commun. ACM, 22(6):612–613, June 1979.
29. V. Shoup. Practical Threshold Signatures. In Proc. of Eurocrypt ’00.
30. B. R. Waters. Efficient Identity-Based Encryption Without Random Oracles.

Eprint report 2004/180.
31. A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pp.

162–167, 1986.

Toward Privacy in Public Databases�

Shuchi Chawla1, Cynthia Dwork2, Frank McSherry2,
Adam Smith3,��, and Hoeteck Wee4

1 Carnegie Mellon University
shuchi@cs.cmu.edu

2 Microsoft Research SVC
{dwork, mcsherry}@microsoft.com

3 Weizmann Institute of Science
adam.smith@weizmann.ac.il

4 University of California, Berkeley
hoeteck@cs.berkeley.edu

In Memoriam
Larry Joseph Stockmeyer

1948–2004

Abstract. We initiate a theoretical study of the census problem. Infor-
mally, in a census individual respondents give private information to a
trusted party (the census bureau), who publishes a sanitized version of
the data. There are two fundamentally conflicting requirements: privacy
for the respondents and utility of the sanitized data. Unlike in the study
of secure function evaluation, in which privacy is preserved to the extent
possible given a specific functionality goal, in the census problem privacy
is paramount; intuitively, things that cannot be learned “safely” should
not be learned at all.

An important contribution of this work is a definition of privacy (and
privacy compromise) for statistical databases, together with a method
for describing and comparing the privacy offered by specific sanitization
techniques. We obtain several privacy results using two different sanitiza-
tion techniques, and then show how to combine them via cross training.
We also obtain two utility results involving clustering.

1 Introduction

We initiate a theoretical study of the census problem. Informally, in a census
individual respondents give private information to a trusted party (the census
bureau), who publishes an altered or sanitized version of the data. There are two
fundamentally conflicting requirements: privacy for the respondents and utility

� A full version of this paper may be found on the World Wide Web at
http://research.microsoft.com/research/sv/DatabasePrivacy/.

�� This research was done while A.S. was a student at MIT, partially supported by a
Microsoft fellowship and by US ARO Grant DAAD19-00-1-0177.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 363–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

364 S. Chawla et al.

of the sanitized data. While both require formal definition, their essential tension
is clear: perfect privacy can be achieved by publishing nothing at all – but this
has no utility; perfect utility can be obtained by publishing the data exactly
as received from the respondents, but this offers no privacy. Very roughly, the
sanitization should permit the data analyst to identify strong stereotypes, while
preserving the privacy of individuals.

This is not a new problem. Disclosure control has been studied by researchers
in statistics, algorithms and, more recently, data mining. However, we feel that
many of these efforts lack a sound framework for stating and proving guarantees
on the privacy of entries in the database. The literature is too extensive to survey
here; we highlight only a few representative approaches in Section 1.2.

1.1 Summary of Our Contributions and Organization of the Paper

Definitions of Privacy and Sanitization. We give rigorous definitions of privacy
and sanitization (Sections 2 and 3, respectively). These definitions, and the
framework they provide for comparing sanitization techniques, are a principal
contribution of this work.

For concreteness, we consider an abstract version of the database privacy
problem, in which each entry in the database—think of an individual, or a par-
ticular transaction—is an unlabeled point in high-dimensional real space IRd.
Two entries (points) that are close in IRd (say, in Euclidean distance) are con-
sidered more similar than two entries that are far.

Our first step was to search the legal and philosophical literature to find
a good English language definition of privacy relevant to statistical databases.
The phrase “protection from being brought to the attention of others” in the
writings of Gavison [19] resonated with us. As Gavison points out, not only
is such protection inherent in our understanding of privacy, but when this is
compromised, that is, when we have been brought to the attention of others,
it invites further violation of privacy, as now our every move is examined and
analyzed. This compelling concept – protection from being brought to the atten-
tion of others – articulates the common intuition that our privacy is protected
to the extent that we blend in with the crowd; moreover, we can convert it
into a precise mathematical statement: intuitively, we will require that, from
the adversary’s point of view, every point be indistinguishable from at least
t − 1 other points, where t is a threshold chosen according to social consider-
ations. Sweeney’s seminal work on k-anonymity is similarly motivated [31]. In
general, we think of t as much, much smaller than n, the number of points in
the database.

In analogy to semantic security [21], we will say that a sanitization technique
is secure if the adversary’s probability of breaching privacy does not change sig-
nificantly when it sees the sanitized database, even in the presence of auxiliary
information (analogous to the history variable in the definition of semantic se-
curity). As noted below, auxiliary information is (provably) extremely difficult
to cope with [14].

Toward Privacy in Public Databases 365

Histograms Preserve Privacy. A histogram for a database is a partition of IRd

along with the exact counts of the number of database points present in each
region. Histograms are prevalent in official statistics, and so they are a nat-
ural technique to consider for sanitization. We analyze a recursive histogram
sanitization, in which the space is partitioned recursively into smaller regions
(called cells) until no region contains 2t or more real database points. Ex-
act counts of the numbers of points in each region are released. The intuition
is that we reveal more detailed information in regions where points are more
densely clustered. We prove a strong result on the privacy provided when the
data are drawn uniformly from the d-dimensional unit cube, in the absence
of auxiliary information. Generalizations are discussed in Remark 4 and Sec-
tion 7.

Density-Based Perturbation Provides Utility. Section 5 describes a simple input
perturbation technique, in which noise from a spherically symmetric distribution
(such as a Gaussian) is added to database points. The magnitude of the noise
added to a real database point is a function of the distance to the point’s t-th
nearest neighbor. The intuition for this sanitization is two-fold. On one hand,
we are “blending a point in with its crowd,” so privacy should be preserved.
On the other hand, points in dense regions should be perturbed much less than
points in sparse regions, and so the sanitization should allow one to recover a lot
of useful information about the database, especially information about clusters
and local density.

We formalize the intuition about utility via two results. First, we show a
worst-case result: an algorithm that approximates the optimal clustering of the
sanitized database to within a constant factor gives an algorithm that approx-
imates the optimal clustering of the real database to within a constant factor.
Second, we show a distributional result: if the data come from a mixture of
Gaussians, then this mixture can be learned from the perturbed data. Our algo-
rithmic and analysis techniques necessarily vary from previous work on learning
mixtures of Gaussians, as the noise that we add to each point depends on the
sampled data itself.

The intuition about privacy—namely, that this style of perturbation blends a
point in with its crowd—is significantly harder to turn into a proof. We explain
why privacy for this type of sanitization is tricky to reason about, and describe
some simplistic settings in which partial results can be proven.

Privacy of Perturbed Data via Cross-Training. In Section 6 we describe a variant
for which we can again prove privacy when the distribution is uniform over the
d-dimensional unit cube. The idea is to use cross-training to get the desirable
properties of histograms and spherical perturbations. The real database points
are randomly partitioned into two sets, A and B. First, a recursive histogram
sanitization is computed for set B. As stated above, this information can be
released safely. Second, for each point in set A we add random spherical noise
whose magnitude is a function of the histogram for B (it is based on the diameter
of the B-histogram cell into which the point falls). We release the histogram for

366 S. Chawla et al.

set B and the perturbed points from set A. Since the only information about
the first set used for the perturbation is information provably safe to reveal, the
privacy of the points in the first set is not compromised. An additional argument
is used to prove privacy of the points in the second set. The intuition for the
utility of the spherical perturbations is the same as before: points which lie in
dense regions will lie in small histogram cells, and so will be perturbed little,
thus preserving clusters approximately.

Open Questions. Our work suggests a rich set of fascinating questions, several
of which we have begun exploring together with other researchers. We mention
some of these in Section 7.

1.2 Related Work

We briefly highlight some techniques from the literature. Many additional refer-
ences appear in the full paper (see the title page of this paper for the URL).

Suppression, Aggregation, and Perturbation of Contingency Tables. Much of the
statistics literature is concerned with identifying and protecting sensitive entries
in contingency tables (see, e.g., [12, 22]). For example, in the 2-dimensional case,
for discrete data, these are frequency counts, or histograms, indicating how many
entries in the database match each possible combination of the values of two
particular attributes (e.g. number of cars and number of children). It is common
to regard an entry as sensitive if it corresponds to a pair of attribute values that
occurs at most a fixed number of times (typically 1 or 2) in the database. One
reason for regarding low-count cells as sensitive is to prevent linkage with other
databases: if a given pair of attribute values uniquely identifies an individual,
then these fields can be used as a key in other databases to retrieve further
information about the individual.

Input Perturbation. A second broad approach in the literature is to perturb the
data (say via swapping attributes or adding random noise) before releasing the
entire database, or some subset thereof (such raw, unaggregated entries are typi-
cally called microdata). Various techniques have been considered in the statistics
[34, 35, 28] and data mining [4, 1, 16] communities. In some cases, privacy is mea-
sured by how (un)successfully existing software re-identifies individuals in the
database from the sanitized data and a small amount of auxiliary information.
In other cases, the notion of privacy fails to take into account precisely this
kind of auxiliary information. The work of Efvimievski et al. [16] is a significant,
encouraging exception, and is discussed below.

Imputation. A frequent suggestion is for the census bureau to learn D and then
publish artificial data obtained by sampling from the learned distribution (see,
e.g., [29]). We see two difficulties with this approach: (1) we want our sanitized
database to reflect (possibly statistically insignificant) “facts on the ground”.
For example, if a municipality is deciding where to run a bus line, and a certain
geographic region of the city has a higher density of elderly residents, it may
make sense to run the bus line through this region. Note that such “blips” in

Toward Privacy in Public Databases 367

populations can occur even when the underlying distribution is uniform; (2) any
model necessarily eliminates information; we feel it is not reasonable to assume
that the sanitizer can predict (privacy-respecting) statistical tests that may be
invented in the future.

k-Anonymity, Input Aggregation, and Generalization. Similarly to input per-
turbation, one can also suppress or aggregate fields from individual records to
reduce the amount of identifying information in the database. A database is said
to be k-anonymized if every modified entry in the sanitized database is the same
as at least k others [32]. The intuition is that privacy is protected in this way by
guaranteeing that each released record will relate to at least k individuals. This
requirement on the sanitization does not directly relate to what can and cannot
be learned by the adversary. For example, the definition may permit informa-
tion to be leaked by the choice of which records to aggregate (there are many
aggregations that will make a database k-anonymous), or from the fact that cer-
tain combination of attribute values does not exist in the database. Information
may also be gleaned based on the underlying distribution on data (for example,
if the suppressed attribute is sex and the number of identical records with sex
suppressed is two).

Interactive Solutions. In query monitoring, queries to an online database are au-
dited to ensure that, even in the context of previous queries, the responses do not
reveal sensitive information. This is sometimes computationally intractable [25],
and may even fail to protect privacy, for example, in the setting in which the
adversary knows even one real database record [11].

A related approach is output perturbation, in which a query control mecha-
nism receives queries, computes exact answers, and then outputs a perturbed
answer as the response to the query [9, 5]. This approach can sometimes be inse-
cure, intuitively, because noise added in response to multiple queries can cancel
out (see [2, 11]). The limitation can be shown to be inherent: if the number of
queries to the database is large (even polynomial in the number of entries (rows)
in the database), the amount of noise added to answers must be large [11]. By
restricting the total number of queries allowed, one can in fact circumvent this
and get strong privacy guarantees while adding much less noise [11, 15]. This
approach is not available in our context: in an interactive solution, the query in-
terceptor adds fresh noise to the response to each query; in our context, a noisy
version of the database is constructed and published once and for all. Although
this seems to make the problem more difficult, there are obvious advantages:
the sanitization can be done off-line; the real data can be deleted or locked in a
vault, and so may be less vulnerable to bribery of the database administrator.

A Recent Definitional Approach. The definitions of privacy in [11, 15, 16] (written
concurrently with this work – see [13]) are consonant with our point of view, in
that they provide a precise, meaningful, provable guarantee. All three follow
the same paradigm: for every record in the database, the adversary’s confidence
in the values of the given record should not significantly increase as a result
of interacting with or exposure to the database. The assumption is that the

368 S. Chawla et al.

adversary can name individual records in the database; this captures the setting
in which the database is multi-attribute, and the adversary has somehow, out
of band, figured out enough about some individual to construct a query that
effectively names the individual. Even in such a setting, it should be impossible
to learn the value of even a single additional binary data field or the value of
any predicate of the data tuple.

The work of Evfimievsky et al. [16] is in our model, ie, it describes a san-
itization method (in this case, for transactions). Specifically, it is an input-
perturbation technique, in which items are randomly deleted from and added
to transactions. As we understand their work, both their specific technique and
their definitions only consider applying the same, fixed, perturbation to each
point in the database, independent of the other points in the database. Neither
our definitions nor our techniques make this assumption. This both enhances
utility and complicates privacy arguments.

Cryptographic Approaches. Much work in cryptography has focused on topics
closely related to database privacy, such as private information retrieval and
secure function evaluation (see, e.g., [18] and [20]). These problems are somewhat
orthogonal to the one considered here. In secure function evaluation, privacy is
preserved only to the extent possible given a specific functionality goal; but
which functions are “safe” in the context of statistical databases? The literature
is silent on this question.

2 A Formal Definition of Privacy

2.1 What do We Mean by “Privacy”?

As mentioned above, our notion of privacy breach is inspired by Gavison’s writ-
ing on protection from being brought to the attention of others. This phrase
articulates the common intuition that our privacy is protected to the extent that
we blend in with the crowd. To convert this intuition into a precise mathematical
statement we must abstract the concept of a database, formulate an adversary
(by specifying the information to which it has access and its functionality), and
define what it means for the adversary to succeed.

2.2 Translation into Mathematics

Under our abstraction of the database privacy problem, the real database (RDB)
consists of n unlabeled points in high dimensional space IRd, each drawn inde-
pendently from an underlying distribution D. Intuitively, one is one’s collection
of attributes. The census bureau publishes a sanitized Database (SDB), contain-
ing some n′ points, possibly in a different space. This is a very general paradigm;
it covers the case in which the SDB contains only summary information.

To specify security of a cryptographic primitive we must specify the power
of the adversary and what it means to break the system. Since the goal of our
adversary is to “single out” a record in the database, we call the adversary an
isolator. The isolator takes two inputs – the sanitized database and auxiliary

Toward Privacy in Public Databases 369

information (the auxiliary information is analogous to the history variable in
the definition of semantic security). The isolator outputs a single point q ∈ IRd.
This completes the description of the functionality of the adversary. Note that
the definition admits adversaries of unbounded computational power. Our results
require no complexity-theoretic assumptions1.

We next define the conditions under which the adversary is considered to have
succeeded in isolating. The definition is parameterized with two values: a privacy
threshold t, intuitively, the size of the “crowd” with which one is supposed to
blend in, and an isolation parameter c, whose use will be clear in a moment.
Roughly, c helps to formalize “blending in”.

For a given isolating adversary I, sanitized database SDB, and auxiliary
input z, let q = I(SDB, z) (I may be a randomized algorithm). Let δ be the
distance from q to the nearest real database point, and let x be an RDB point
at distance δ from q. Let B(p, r) denote a ball of radius r around point p. If
the d-dimensional ball of radius cδ and centered at q contains at least t real
database points, that is, if |RDB ∩ B(q, cδ)| ≥ t, then the adversary fails to
isolate x. Otherwise, the adversary succeeds.

We will give a slightly more general definition shortly. First we give some
intuition for the definition. The adversary’s goal is to single out someone (i.e.,
some RDB point) from the crowd, formalized by producing a point that is much
closer to some x ∈ RDB than to t− 1 other points in the RDB. The most likely
victim x is the RDB point closest to q. So q “looks something like” x. On the
other hand, if B(q, cδ) contains at least t RDB points, then q also looks almost
as similar to lots of (i.e., t−1) other RDB points, so x hasn’t really been singled
out.

Note that the definition of isolation is a relative one; the distance requirement
for success varies according to the local density of real database points. This
makes sense: if we name an intersection in New York City, there are perhaps a
few hundred people living at or very near the intersection, so our point is “close
to” many points (people) in the RDB. In contrast, if we name an intersection
in Palo Alto, there are perhaps 10 people living near the intersection2. More
generally, we have the following definition:

Definition 1. ((c, t)-isolation) Let y be any RDB point, and let δy = ‖q− y‖.
We say that q (c, t)-isolates y if B(q, cδy) contains fewer than t points in the
RDB, that is, |B(q, cδy) ∩ RDB| < t.

We frequently omit explicit mention of t, and speak of c-isolation. It is an
easy consequence of the definitions that if q = I(SDB, z) fails to c-isolate the
nearest RDB point to q, then it fails to c-isolate even one RDB point.

For any point p (not necessarily in the RDB), we let τp be the minimum
radius so that B(p, τp) contains t RDB points. We call this the t-radius of p.

1 We do not object to using complexity-theoretic assumptions. We simply have not
yet had a need to employ them.

2 This analogy was suggested by Helen Nissenbaum.

370 S. Chawla et al.

3 Definition of Sanitization

Suppose one of us publishes all our information on the web — that is, we publish
our RDB point x where the adversary can find it — so that the point is part
of the adversary’s auxiliary information. Clearly, the adversary can isolate x by
setting q = x (in which case δx = 0 and B(q, cδx) contains only x — we assume
no two points are identical). It seems unfair to blame the sanitizing procedure for
this isolation; indeed, there is an adversary simulator that, without access to the
sanitized database, can also isolate x, since x is part of the auxiliary information.
We are therefore concerned with how much seeing the sanitized database helps
the adversary to succeed at isolating even one RDB point. Intuitively, we do not
want that seeing the SDB should help “too much”. Our notion of “too much”
is fairly relaxed. Letting ε denote the probability that isolation may occur, we
tend to think in terms of, say, ε = 1/1000. This says that about one out of every
1,000 sanitized databases created may be vulnerable to an isolation event3. The
parameter ε can be a function of d and n. Note, however, that ε cannot depend
only on n – otherwise privacy could be improved simply by the introduction of
additional points.

More formally, a database sanitizer, or simply sanitizer for short, is a random-
ized algorithm that takes as input a real database of some number n of points in
IRd, and outputs a sanitized database of some number n′ of points, in a possibly
different space IRd′

.
A sanitizer is perfect if for every distribution D over IRn×d from which the

real database, for all isolating adversaries I, and points are drawn, there exists
an adversary simulator I ′ such that with high probability over choice of RDB,
for all auxiliary information strings z, the probability that I(SDB, z) succeeds
minus the probability that I ′(z) succeeds is small. The probabilities are over the
coin tosses of the sanitization and isolation algorithms. We allow the sanitizer
to depend on the parameters c, t, and also allow I, I ′ to have access to D.

More precisely, let ε be a parameter (for example, ε = 2−d/2). We require that
for all I there exists an I ′ such that, if we first pick a real database RDB ∈R D,
then with overwhelming probability over RDB, for all z,

∀S ⊆ RDB |P r[∃x ∈ S : I(SDB, z) isolates x]−P r[∃x ∈ S : I ′(z) isolates x]|< ε

where the probabilities are over the choices made by I, I ′, and the sanitization
algorithm.

Remark 1. The use of the sets S in the definition is for the following rea-
son. Suppose the adversary knows, as part of its auxiliary information, some
point y ∈ RDB. For every x �= y ∈ RDB, we want x’s chances of being
isolated to remain more or less unchanged when the adversary is given ac-
cess to the sanitized database. Thus, if we were to write the more natural

3 The adversary has no oracle to tell it when it has succeeded in isolating an RDB
point.

Toward Privacy in Public Databases 371

|Pr[∃x I(SDB, z) isolates x] − Pr[∃x I ′(z) isolates x]| < ε, then we might have
z = y ∈ RDB, I ′(z) = y, and I(SDB, z) could (somehow) isolate a different
point x �= y ∈ RDB with probability one. This is clearly unsatisfactory.

This is excessively ambitious, and in fact a nontrivial perfect sanitizer does
not exist [14]. However, by specifying the ideal we can begin to articulate the
value of specific sanitization techniques. For a given technique, we can ask what
can be proved about the types of distributions and auxiliary information for
which it can ensure privacy, and we can compare different techniques according
to these properties.

4 Histograms

Consider some partition of our space IRd into disjoint cells. The histogram for
a dataset RDB is a list describing how many points from the dataset fall into
each cell. A sanitization procedure is histogram-based if it first computes the
histogram for the dataset and bases the output only on that information.

For example, in one dimension the cells would typically be sub-intervals of
the line, and the histogram would describe how many numbers from the dataset
fall into each of the intervals. In higher dimensions, the possibilities are more
varied. The simplest partition divides space into cubes of some fixed side-length
(say at most 1). That is, each cell is a cube [a1, a1 + 1] × · · · × [ad, ad + 1] for
integers a1, ..., ad.

Our principal result for histograms is that, if the original data set RDB
consists of n points drawn independently and uniformly from some large cube
[−1, 1]d, then the following sanitization procedure preserves privacy:

Recursive Histogram Sanitization: Divide the cube into 2d equal-
sized subcubes in the natural way, i.e., by bisecting each side at the
midpoint. Then, as long as there exists a subcube with at least 2t points
from RDB, further subdivide it into 2d equal-sized cubes. Continue until
all subcubes have fewer than 2t points, and release the exact number of
points in each subcube.

Theorem 1. Suppose that RDB consists of n points drawn i.i.d. and uniformly
from the cube [−1, 1]d. There exists a constant csecure (given in Lemma 2) such
that the probability that an adversary, given a recursive histogram sanitization
as described above, can csecure-isolate an RDB point is at most 2−Ω(d).

The proof is quite robust (in particular, the error bound does not depend
on n). Using the techniques developed in this section, several variants on the
partitioning described above can be shown to preserve privacy, even under less
rigid assumptions about the underlying distribution. Thus, our goals are to prove
privacy of histogram sanitizations, to illustrate techniques that are useful for
proving privacy, and to establish a result which we will need when we deal with
cross-training-based sanitizers later on.

The technical heart of the proof of Theorem 1 is following proposition:

372 S. Chawla et al.

Proposition 2. Suppose that the adversary knows only that the dataset con-
sists of n points drawn i.i.d. from the cube [−1, 1]d, and that we release the exact
histogram (cell counts) for the natural partition of this cube into 2d subcubes of
side-length 1. Then the probability that the adversary succeeds at c-isolating a
point for c > 121 is at most 2−Ω(d), as long as t = 2o(d).

The constant 121 in the proposition can in fact be improved significantly, to
approximately 30, with minor changes to the proofs in this section.

This result is strong—it essentially states that for any point q which the
adversary might produce after seeing the histogram, the distance to q’s nearest
neighbor is at most a constant less than the distance between q and its 2o(d)-
th nearest neighbor. When n = 2o(d), the result is perhaps less surprising: the
distance between q and its nearest neighbor is Ω(

√
d) with high probability, and

2
√
d is an upper bound on the distance from q to its farthest neighbor (assuming

q is in the large cube [−1, 1]d). For very large values of n (say 2Ω(d)), the proof
becomes much more involved.

Remark 2. We would like to understand the probability that the adversary iso-
lates a point after seeing the sanitization, given reasonable assumptions about
the adversary’s a priori view of the database. Currently we assume that the
underlying distribution is uniform on a d-dimensional hypercube. The follow-
ing example shows that such a “smoothness” condition is necessary to obtain a
bound on the adversary’s probability of success, when a histogram of the data
is released.

Consider the following distribution. In each of the 2d subcubes of the hyper-
cube, there is an infinite sequence of points p1, p2, The probability density
at point pi is 1

2d
1
2i . That is, each subcube has equal mass, and within a sub-

cube, mass is distributed over the infinite sequence of points in an exponentially
decreasing manner. Now, if the adversary knows the number of points in a sub-
cube, say m, then, she produces the point q = plog m in that subcube. With a
constant probability, there are at least one, but no more than t, points at q, and
the adversary succeeds. On the other hand, without knowledge of the number of
points in each subcube (as given by the histogram), the adversary simulator I ′

has an exponentially low probability of succeeding.

The next subsections sketch the proof of Proposition 2. The full version of
the paper contains the details of the proof, as well as extensions to cover finer
subdivisions of the cube and the recursive sanitization described above.

4.1 Simplifying the Adversary

We distinguish two related definitions of isolation. The adversary is always given
the sanitized database SDB as input (the adversary may also receive side infor-
mation about the real database—typically, in our setting, the distribution from
which the points in the real database are drawn).
– A ball adversary produces a pair (q, r) where q ∈ IRn is a point in space

and r ∈ IR+ is a non-negative real number. The adversary succeeds if B(q, r),

Toward Privacy in Public Databases 373

the ball of radius r centered at q, contains at least one point in RDB, but
B(q, cr) contains fewer than t points in RDB (equivalently, r < τq/c).

– A point adversary produces only a point q ∈ IRn. The adversary succeeds
at c-isolation if there is a point in D within distance τq/c of q, i.e. if there
exists some r for which the corresponding ball adversary would have won.

We first prove Proposition 2 for ball adversaries since their behavior is eas-
ier to understand. At the end of the proof, we show that point adversaries do
essentially no better than ball adversaries in this context, and so the restriction
to ball adversaries is made without loss of generality.

4.2 Proof Sketch for Proposition 2

We sketch here the proof of Proposition 2. Recall that the points in the real
database RDB are drawn uniformly from the large cube [−1, 1]d, and the san-
itization consists of the number of points from RDB contained in each of the
cubes obtained by dividing [−1, 1]d once along each dimension. That is, a cell C
is a d-dimensional hypercube of side-length and volume 1, which has one vertex
at (0, 0, ..., 0) and the opposite vertex in the set {−1,+1}d. The total number of
points in the database is n, and we denote the number of points appearing in a
cell C by nC . The sanitization is simply the list of all 2d values nC .

Define a function f : IRn → IR+ which captures the adversary’s view of the
data.

f(x) =
nC

n
· 1
Vol(C)

for x ∈ C. (1)

The function f is a probability density function. The adversary does not
see the data as being drawn i.i.d. according to f , but the function is useful
nonetheless for bounding the adversary’s probability of success.

Lemma 1. If a ball adversary succeeds at c-isolation with probability ε, then
there exists a pair (q, r) such that Prf [B(q, r)] ≥ ε/n and Prf [B(q, cr)] ≤ (2t +
8 log(1/ε))/n. 4

The intuition for the proof of Lemma 1 is simple: it is sufficient to show that
if one considers only the number of points landing in a particular region, there is
almost no difference between the adversary’s view of RDB and a set of n points
sampled i.i.d. from f .

Roughly, Lemma 1 means that for a ball adversary to succeed, a necessary
(but not sufficient) condition is that:

Prf [B(q, r)]
Prf [B(q, cr)]

≥ ε/n

(2t + 8 log(1/ε))/n
= ε/(2t + 8 log(1/ε)). (2)

4 We are assuming that n is at least 2t + 8 log(1/ε). The assumption is not necessary,
but simplifies the proofs. In fact, when n is small one can use completely different
proofs from the ones described here which are much simpler.

374 S. Chawla et al.

This means that it is sufficient to bound the ratio on the left-hand side above
by some negligible quantity to prove privacy against ball adversaries (in fact,
the upper bound need only hold as long as Prf [B(q, r)] is itself not too large).
The better the bound on the ratio in Eqn. (2), the better the result on privacy.
To get the parameters described in the statement of Proposition 2, it will be
sufficient to prove a bound of 2−Ω(d) for the ratio: we can then think of ε as
2−γd, for a constant γ < 1, and think of t as being 2−o(d).

The upper bound, and the proof of Proposition 2, rely on the following lemma:

Lemma 2. There is a constant 1/60 < β < 1 such that, for any point q, radius
r > 0 and cell C for which B(q, r) ∩ C �= 0, we have:

1. If r ≤ β
√
d, then

Vol(B(q, r) ∩ C)
Vol(B(q, 3r) ∩ C)

≤ 2−Ω(d). (3)

2. If r > β
√
d, then for all cells C ′ neighboring C:

C ′ ⊆ B(q, csecurer) (4)

where csecure ≤ (2/β)+1. A neighboring cell is a cube of the same side-length
which shares at least one vertex with C.

Remark 3. The value of the constant β can be made much larger, at least 1/15.
Obtaining this bound requires more careful versions of the proofs below.

A detailed proof is in the full version. Roughly, to prove Part 1, we need to
estimate the probability that a point chosen from a ball lies is a cube. To this
end, we approximate sampling from a ball by sampling from an appropriately
chosen spherical Gaussian. This allows us to analyze behavior one coordinate at
a time. Our (rather involved) analysis only holds for radii r ≤ β

√
d. It is possible

that a different analysis would yield a better bound on β and hence on β.
Part 2 is much simpler; it follows from the fact that the diameter of the cube

[−1, 1]d is 2
√
d.

We can now prove Proposition 2, which states that releasing the histogram
preserves privacy, with the adversary’s success probability bounded by 2−Ω(d).
We first give a proof for ball adversaries, and then observe that (almost) the
same proof works for point adversaries too.

Proof (of Proposition 2). Ball adversaries: Assume there is a ball adversary who
chooses the best possible pair (q, r) based on SDB.

First, suppose that r ≤ β
√
d (the constant is from Lemma 2). In that case,

we will actually show that 3-isolation (not 121-isolation!) is possible only with
very small probability. Our proof relies on Part 1 of the lemma. We can write
the mass of B(q, r) under f as a weighted sum of the volume of its intersections
with all the possible cubes of C:

Pr
f

[B(q, r)] =
∑
C

nC

n
· Vol(B(q, r) ∩ C)

Toward Privacy in Public Databases 375

We can bound each of these intersections as an exponentially small fraction
of the mass of B(q, 3r):

Pr
f

[B(q, r)] ≤
∑
C

nC

n
· 2−Ω(d) · Vol(B(q, 3r) ∩ C) = 2−Ω(d) · Pr

f
[B(q, 3r)]

Now the mass of B(q, 3r) is at most 1, which means that the ratio in Eqn. (2)
is at most 2−Ω(d), and so ε/(2t + 8 log(1/ε)) ≤ 2−Ω(d). This is satisfied by
ε = 2−Ω(d) (for essentially the same constant in the Ω-notation), and so in this
case, 3-isolating the point q is possible only with probability 2−Ω(d).

Now consider the case where r > β
√
d. If B(q, r) doesn’t intersect any cells

C, then we are done since the ball captures a point with probability 0. If there
is a cell C which intersects B(q, r), then, by Part 2 of Lemma 2, B(q, csecurer)
(for csecure ≤ (2/β) + 1) contains all the cells C ′ which are neighbors to C, in
particular all of [−1, 1]d. (Recall that our points are initially uniform in [−1, 1]d,
and we consider a subdivision which splits the cube into 2d axis-parallel subcubes
of equal size). The adversary succeeds with probability zero at csecure-isolation,
since all n points will be within distance csecurer.

Point adversaries: Suppose the adversary outputs a particular point q, and let
r be the smallest radius such that Prf [B(q, r)] = ε. By the previous discussion,
B(q, csecurer) contains mass at least (2t + 8 log(1/ε))/n. Thus, with probability
at least 1 − 2ε, there is no point inside B(q, r) and there are t points inside
B(q, csecurer) (by the proof of Lemma 1). The ratio between the distances to the t-
th nearest point and to the nearest point to q is then at most csecurer/r = csecure.
The point adversary succeeds at csecure-isolating a point with probability at
most 2ε.

Because β > 1/60, the constant csecure is at most 121, and so the adversary
fails to 121-isolate any point in the database. ��

Remark 4. The proof technique of this section is very powerful and extends in
a number of natural ways. For example, it holds even if the adversary knows
an arbitrary number of the points in the real database, or (with a worse isola-
tion constant), if the adversary knows a constant fraction of the attributes of a
database point. The analysis holds if the underlying distribution is a mixture of
(sufficiently separated) hypercubes.

Recent work also indicates that histogram sanitization, at least to a limited
depth of recursion, can be constructed for “round” distributions such as the
sphere or the ball [6]. Together, these techniques yield privacy for sufficiently
separated mixtures of round and square distributions.

5 “Round” Perturbation Sanitizations

Perturbation via additive noise is a common technique in the disclosure control
literature. In this section, we present a variant on this technique in which the

376 S. Chawla et al.

magnitude of the noise added to a point depends on the local density of the
database near the point. We consider three perturbation sanitizers that are very
similar when the dimension d is large. In these sanitizers, d′ = d and n′ = n
(that is, the sanitized database consists of points in the same space as the real
database, and the numbers of points in the real and sanitized databases are
identical). As before, let B(p, r) denote the ball of radius r around p, let S(p, r)
denote the corresponding sphere, or the surface of B(p, r). Let N (μ, σ2) denote
a d-dimensional Gaussian with mean μ and variance σ2 in every dimension. For
x ∈ IRd, the t-radius τx is the minimum radius such that B(x, τx) contains t
RDB points (x need not be an RDB point.)

1. The Ball Sanitizer: For x ∈ RDB, BSan(x,RDB) ∈R B(x, τx).
2. The Sphere Sanitizer: For x ∈ RDB, SSan(x,RDB) ∈R S(x, τx).
3. The Gaussian Sanitizer: For x ∈ RDB, GSan(x,RDB) ∈R N (x, τ2

x/d).

We will refer to these as round, or spherical sanitizers, because of the shape of
the noise distribution. The intuition for these sanitizations is three-fold: we are
blending a point in with a crowd of size t, so privacy should be preserved; points
in dense regions should be perturbed much less than points in sparse regions,
and so the sanitization should allow one to recover a lot of useful information
about the database, especially information about clusters and local density; we
are added noise with mean zero, so data means should be preserved.

Round sanitizations have been studied before, typically with independent,
identically distributed noise added to each point in the database. This approach
implicitly assumes that the density of the data is more or less uniform in space
for the entire data set. Even with data drawn i.i.d. from a uniform distribution on
a fixed region, this need not be the case. Indeed, Roque [28] showed that (in low
dimensions) re-identification software defeats this i.i.d. spherical noise, though
the standard packages fail if the noise is not spherical (say, drawn from from a
mixture of Gaussians). Kargupta et al. [24] argue that independent additive per-
turbation may have limited application to preserving privacy insofar as certain
informative features of the data set (e.g.: the principal components) are largely
unaffected by such perturbations. Their argument assumes (critically) that the
sanitizer applies a fixed distribution to each element, and ultimately describes
how to reconstruct the covariance matrix of the attributes. In this work, we ap-
ply data-driven distributions to the elements, and prove privacy guarantees for
the individuals. Moreover, we conjecture it is possible to exploit what Kargupta
et al. perceive as a weakness (reconstructing the covariance matrix, which we
can do), while provably maintaining privacy (which we conjecture)5. Finally, the
data-dependent noise distribution provides more potential functionality than a
fixed noise distribution [4, 1, 16], at the cost of a more difficult analysis.

5 Specifically, given recent results in constructing histograms for round distribu-
tions [6], we conjecture it will be possible to obtain cross-training results for mixtures
of Gaussians, analogous to our cross-training results for the hypercube described in
Section 6 below.

Toward Privacy in Public Databases 377

5.1 Results for Round Sanitizers

We have obtained several results on the privacy and utility of round sanitizations.
Our most powerful result is concerned with learning a mixture of Gaussians from
the sanitized data. This result is of independent interest, and is described in the
Section 5.2. We first summarize our results.

Utility. The task of extracting information from a database whose points have
been spherically perturbed is essentially one of learning from noisy data. Stan-
dard techniques do not apply here, since the noise distribution actually depends
on the data. Nonetheless, we prove two results using the intuition that round per-
turbations preserve expectations (on average) and that our particular strategy
is suited to clustering.

1. When the data are drawn uniformly from a mixture of Gaussians D, there is
an efficient algorithm that learns D from the Gaussian sanitization. Learn-
ing mixtures of Gaussians has already been heavily investigated [3, 8, 33],
however existing analyses do not apply in our setting. The algorithm and its
analysis are sketched in Section 5.2.

2. For any distribution, suppose we are given an algorithm to find k clusters,
each of cardinality at least t, minimizing the maximum diameter of a cluster,
and assume the data are sanitized with either BSan or SSan. Then running
the algorithm on the sanitized data does a good job of clustering the original
data. More precisely, any algorithm that approximates the optimal cluster-
ing of the sanitized database to within a constant factor gives an algorithm
that approximates the optimal clustering of the real database to within a
constant factor, and the maximum diameter of a cluster exceeds the maxi-
mum diameter of an optimal k-clustering on the RDB by at most a factor
of 3.

Privacy. The intuition for privacy is significantly harder to turn into a complete
proof than is the one for utility. We analyze two special cases, and give a lower
bound showing that high-dimensionality is necessary for the privacy of this type
of sanitization. The proofs of the results below appear in the full version of the
paper.

1. The database consists of only two points, x and y, which are sanitized with
respect to each other, and the underlying distribution is the unit sphere
in d dimensions. That is, t = 2 and each of x and y is perturbed using
SSan with perturbation radius ‖x− y‖. The adversary is given ‖x− y‖, and
the sanitizations x′ and y′. We show that the probability of 4-isolation is
exponentially small in d, with overwhelming probability over the choice of
x and y. The proof is by symmetry: we construct many pairwise-distant
“decoy” pairs x′, y′ which are equiprobable in the adversary’s view.

2. The real database consists of n sanitized points, drawn from the d-
dimensional unit sphere. The adversary is given all but one point in the
clear, together with a sanitization of the final point using SSan. The adver-
sary’s goal is to 4-isolate the last point. Intuitively, privacy holds because the

378 S. Chawla et al.

hidden point can lie in any direction from its sanitization, while any point q
produced by the adversary can only isolate points lying in an exponentially
small fraction of these directions. The result is proved for t = 2.

3. Sanitization cannot be made arbitrarily safe: for any distribution, if sani-
tization is done using BSan, then there is a polynomial time adversary I
requiring no auxiliary information, such that the probability that the adver-
sary succeeds is Ω(exp(−d)/ log(n/t)).

Remark 5. The second result above highlights the delicacy of proving privacy for
this type of sanitization. Contrary to intuition, it is not the case that seeing the
sanitizations of the remaining n− 1 points, rather than their exact values, gives
less information. The reason is that the sanitization of y, implicitly contains in-
formation about the t-neighborhood of y. This sort of dependency is notoriously
hard to deal with in cryptography, e.g. in the selective decommitment problem.
We have not yet proved or disproved the viability of the above-mentioned sani-
tizations; instead we circumvent the difficulty via cross-training.

5.2 Learning Mixtures of Gaussians

In this section we look at an algorithm for mining sanitized data. We address the
well-studied problem of learning a mixture of Gaussians, with the twist that the
samples have been sanitized using one of the round sanitizers discussed above.
The distribution that results from the sanitization is no longer a mixture of
Gaussians (samples are not even independent!) and traditional algorithms for
learning mixtures of Gaussians do not apply. Nonetheless, we will see that the
core properties that make Gaussian mixtures learnable remain intact, and prove
that the mixtures can be read from an optimal low rank approximation.

We assume there are k mean vectors μi, each with an associated mixing
weight wi. Let wmin denote the minimum of the mixing weights. Each point
in the data set is independently produced by selecting a μi with probability
proportional to the wi, and applying independent, normally distributed noise
to each coordinate. We assume that the Gaussians are spherical, in that every
Gaussian has an associated variance that is used for each of the coordinates. Let
σ2

1 denote the maximum such variance. We assume that the sanitization process
amounts to applying an additive perturbation established by choosing a point
uniformly at random from the unit sphere, which is then scaled in length by a
random variable at most 2σ2

√
d, where σ2 may depend on the sampled data and

t. Notice that this is sufficiently general to capture all the perturbation based
sanitizations described above – SSan, BSan, and GSan – the latter two using a
random variable for the scaling factor.

For the purposes of analysis, we assume that we have access to two data
sets A and B that have been independently sanitized. Each is assumed to result
from the same underlying set of means, and to be independent of the other.
We use Au to denote the sanitized vector associated with u, Âu the unsanitized
vector associated with u, and Au the original mean vector associated with u.
We form the matrices A, Â, and A by collecting these columns for each point

Toward Privacy in Public Databases 379

in the data set. Let wu denote the mixing weight associated with the Gaussian
with mean Au. The matrices B, B̂, and B and their associated columns are
analogous, though they represent an independently sanitized disjoint data set.
While this setting is not difficult for the sanitization process to accommodate,
the motivation is simply for the clarity of analysis and it is unclear whether
disjoint data sets are necessary in practice.

The main linear algebraic tool that we use is a matrix’s optimal rank k pro-
jection. For every matrix M , this is a projection matrix PM , such that for all
rank k matrices D, we have ‖M−PMM‖2 ≤ ‖M−D‖2. Computing the optimal
projection is not difficult; in most cases it is an O(dn log(dn)) operation. We
also make use of the single linkage clustering algorithm [30]. For our purposes,
given a collection of points, single linkage repeatedly inserts an edge between
the closest pair of non-adjacent points until the resulting graph has k connected
components. Our actual algorithm can be stated succinctly:

Cluster(A,B, k)
1. Compute PA and PB , and form C = [PBA|PAB].
2. Apply single linkage to C, forming k clusters.

Cluster takes a pair of data sets, and uses the structure define by each data
set to filter the noise from the points in the other. If the mean vectors μi have
sufficient separation, all inter-cluster distances in C will exceed all intra-cluster
distances in C, and single linkage will associate exactly those points drawn from
the same mean.

Theorem 3. Assume that d < n/2. If for each pair of means μi,μj,

‖μi − μj‖ ≥ 4(σ1 + σ2)(16/w1/2
min +

√
k log(kn/δ))

then with probability 1 − 2(e−nwmin/8 + 2− log6 n/2 + δ), Cluster partitions the
columns of A and B according to the underlying Gaussian mixture.

Proof. The proof is conducted by bounding ‖μu − Cu‖ for each u. Assume,
without loss of generality, that μu = Au and Cu = PBAu. Notice that

‖μu − Cu‖ = ‖Au − PBAu‖ ≤ ‖Au − PBAu‖+ ‖PBAu − PBAu‖

In Lemmas 3 and 4 below, we bound these two terms, so that their sum is at
most 1/4 the assumed separation of the mean vectors. With such separation, all
inter-cluster distances are at least 1/2 the mean separation, and all intra-cluster
distances are at most 1/2 the mean separation.

Although the above result requires a uniform bound on the pairwise separa-
tion between the means of the clusters, by using a more sophisticated clustering
algorithm than Single-Linkage on the low-dimensional projection of the data,
we can improve the results such that the requisite separation between a pair of
means depends only on the variances of the corresponding Gaussians.

380 S. Chawla et al.

Lemma 3 (Systematic Error). Assume d < n/2. With probability at least
1− (e−nwmin/8 + 2− log6 n/2), for all u

‖(I − PB)Au‖ ≤ 16(σ1 + σ2)/w1/2
u

Proof. (Sketch) In previous work using cross training techniques, [26] shows
that

‖(I − PB)Au‖ ≤ 4‖B −B‖2/nwu

To continue, [26] uses a result of Furedi and Komlos [17], which places a high
probability bound on the norm of zero mean random matrices with independent
entries of bounded variance. While B − B does not have independent entries –
the sanitization process depends on the result of the random events producing B̂
– each of the matrices B−B̂ and B̂−B do. As such, we get that with probability
at least 1− 2− log6 n/2

‖B −B‖2 ≤ ‖B − B̂‖2 + ‖B̂ −B‖2 ≤ 4(σ1 + σ2)
√
n

Lemma 4 (Random Error). For each u,

P r[‖PB(Au −Au)‖ > c(σ1 + σ2)
√
k] ≤ 2ke−c2

6 Combining Histograms and Perturbations:
Cross-Training

We are drawn to spherical sanitizations because of their apparent utility (see
the discussion in Section 5.1). However, as noted in Remark 5, we have some
concerns regarding the privacy offered: it is not the privacy of the perturbed
points that concerns us, but the privacy of the points in the t-neighborhood of
the perturbed points (since the sanitization radius itself leaks information about
these points). In this section, we combine a histogram-based sanitization with
a spherical sanitization to obtain a provably private spherical sanitization for
n = 2o(d) points, (again in the absence of auxiliary information).

We randomly divide the dataset into two sets — A and B6. We construct a
recursive histogram on B (as in Section 4). We then sanitize points in A using
only their position in the histogram on B. We release the sanitizations of points
in A, along with the exact count, for every cell in the histogram, of points in
A and B lying in that cell. We also assume that the adversary knows for every
sanitized point v′ ∈ SDB, the cell in the histogram that its pre-image v ∈ A lies
in (this only helps the adversary).

For a point v ∈ A, let C be the cell containing v in the recursive histogram
constructed for B. Let P (C) be the parent cell of C. P (C) has twice the side-
length of C, and contains at least t points. Consider the following sanitization
procedure:

6 In fact, our proof only requires that A contain at most 2o(d) points.

Toward Privacy in Public Databases 381

Cross-Training Round Sanitization: Let ρv be the side-length of the
cube C. Select a point Nv at random from a spherical Gaussian which
has variance ρ2

v in each coordinate. Output v′ = v + Nv.

As shown above, this procedure protects the privacy of points in B since the
information released about these points depends only on the recursive histogram
of the set B. In this section we prove that it also protects the privacy of points
in A, under the assumption that from the adversary’s point of view, the a priori
distribution of points in the database is uniform when restricted to the cell C.

Consider a particular point v ∈ A. Suppose the side-length of the cell C
containing v is ρv. Lemma 5 below shows that with probability 1− 2−Ω(d) over
the choice of RDB and the coins of the sanitization algorithm, the following
occurs: for any point q which the adversary might produce, the distance between
q and v will be Ω(ρv

√
d). Since the t-radius of v is O(ρv

√
d), this implies that

adversary c-isolates v with probability at most 2−Ω(d) (for some constant c).
The result is quite useful. If A contains 2o(d) points, then a union bound

shows that with probability at least 1−2−(Ω(d)−o(d)), the sanitization is “good”:
that is, the adversary can succeed at isolating some point with probability at
most 2−Ω(d).

Below, we state the main lemma of this section; the proof, omitted for lack
of space, is in the full version.

Lemma 5. Suppose that v is uniformly distributed in the cube C, and q is the
output of the adversary on input v′ = v + Nv. There is a constant α < 9 such
that with probability 1− 2−Ω(d), the ball B(q, (α + 1)‖v− q‖) contains the entire
parent cell P (C). The probability is over choice of the real database RDB and
the coins of the sanitization algorithm.

7 Future Work
Isolation in few dimensions. Many have raised the case in which the adversary,
studying the sanitized data, chooses a small set of attributes and outputs values
that uniquely identify a point in the RDB (no other point in the RDB agrees
well with the given point on this particular set of attributes). This may not be
a privacy breach as we have defined it, since the adversary may have very bad
luck at guessing the remaining attribute values, and therefore the point q that
the adversary produces may not be particularly close to any point in the RDB.
However, as M. Sudan has pointed out, the adversary may know the difference
between the attributes on which it is guessing and the ones it has learned from
the sanitized data.

We are uncertain exactly what it means for the adversary to “know” this
difference. Our notion of privacy breach essentially says we don’t care about
such things: after all, releasing a histogram cell count of 1 says there is a unique
individual in a certain subcube, but we prove that the advesary cannot isolate
this individual. However, the question is provocative.

The attack corresponds imprecisely to identification of a short key for a pop-
ulation unique (see the discussion in Section 1.2). Alternatively, the adversary

382 S. Chawla et al.

may know a key to a population unique and the worry is that the sanitization
may permit the learning of additional attribute values. On the one hand, we
note that our definition of a perfect sanitization precludes either of these pos-
sibilities: roughly speaking, if it were possible to learn the key to a population
unique then there is a choice for the auxiliary information that would permit
the remaining attribute values to be learned, which would constitute an isola-
tion. On the other hand, we have already noted that perfect sanitizers cannot
exist [14], and our privacy results have been proved, for the most part, without
permitting the adversary auxiliary information.

With this in mind, one may extend the definition of isolation to allow the
adversary to approximate a real point in only a few attributes. Note however,
that as the number of attributes estimated by the adversary decreases, the no-
tion of isolation must become more and more stringent. This corresponds to an
increase in the parameter c in our definition of c-isolation.

This suggests the following extended definition. The adversary, upon receiving
the SDB, outputs a k-dimensional axis-parallel hyperplane H (k ≤ d), and a
point q in this hyperplane. Let ΠH(y) denote the projection of an RDB point y
onto the hyperplane H. Let y be the RDB point which is closest to q under the
projection ΠH . For a given function φ(k), we say that q (φ, c, t)-isolates y in H
iff ΠH(y) is (φ(k)c, t)-isolated by q in the projected space H. Recursive histogram
sanitizations are safe with respect to (φ,O(1), 2o(d))-isolation for φ(k) = 2d/k.

We believe that understanding these issues is the most important conceptual
challenge arising from this work.

Histogram Sanitizations of Round Distributions and of Mixtures. An immediate
focus of future work will be to investigate histogram sanitizations in the context
of the “round” (spherical, ball, and Gaussian) distributions. (Chawla et al. [6]
prove privacy of a first-level histogram for balls and spheres, in which the dis-
tribution is partitioned into exp(d) regions, but as of this writing the results
only extend to a constant number of recursive steps). Together with a cross-
training result for round distributions, such a result would nicely complement
our learning algorithm for mixtures of Gaussians.

The results extend immediately to the case in which the underlying distribu-
tion is a mixture of sufficiently separated “nice” distributions such as hypercubes,
balls, and spheres.

Utility. Another pressing direction is to further explore utility, in particular, a
method for assessing the validity of results obtained by applying a given statis-
tical test to sanitized data. The statistics literature on imputed data (e.g., [27]
should be helpful in this endeavor.

Changes over Time. An important aspect of any sanitization technique is to con-
sider its application in an online setting, where the database changes over time.
We feel that sanitizations of points should not be recomputed independently
as the database changes, because an adversary collecting information over time
may be able to gather enough to filter out the noise. However, in situations such
as when one of the t-nearest neighbors of a point dies, one may be forced to

Toward Privacy in Public Databases 383

recompute the sanitization. We believe that in such a case the new sanitization
should be conditioned on the previous one appropriately, so as to prevent leak-
age of extra information. A related open area is to extend the definitions and
techniques to multiple databases.

Real-Life Data. Then, there are the more obvious questions: how to cope with
discrete data, or even non-numerical data. In general, to draw a connection to
real life data, we will need to scale different attributes appropriately, so that the
data are well-rounded. This requires some formal treatment.

Impossibility Results. M. Naor has suggested studying impossibility results, for
example, searching for utilities that cannot be obtained while maintaining pri-
vacy. Initial investigations, already mentioned in the paper, have been fruitful.
This is a subject of work in progress [14].

Acknowledgements

We have benefited enormously from numerous conversations with many people,
and are particularly grateful to Dimitris Achlioptas, Gagan Aggarwal, Jin-Yi
Cai, Petros Drineas, John Dunagan, Amos Fiat, Michael Freedman, Russel Im-
pagliazzo, Michael Isard, Anna Karlin, Moni Naor, Helen Nissenbaum, Kobbi
Nissim, Anna Redz, Werner Steutzle, Madhu Sudan, and Luca Trevisan.

Not knowing of his terminal illness, but feeling his interest in research di-
minish, Larry Stockmeyer withdrew from this paper in April, 2004. We will
always think of him as our co-author, and we dedicate this work to his
memory.

References

1. D. Agrawal and C. Aggarwal, On the Design and Quantification of Privacy Pre-
serving Data Mining Algorithms, Proceedings of the 20th Symposium on Principles
of Database Systems, 2001.

2. N. R. Adam and J. C. Wortmann, Security-Control Methods for Statistical
Databases: A Comparative Study, ACM Computing Surveys 21(4): 515-556 (1989).

3. S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. ACM STOC,
2001.

4. R. Agrawal and R. Srikant, Privacy-preserving data mining, Proc. of the ACM
SIGMOD Conference on Management of Data, pp. 439–450, 2000.

5. Beck, L., A security machanism for statistical database, ACM Transactions on
Database Systems (TODS), 5(3), p.316-3338, 1980.

6. Chawla S., Dwork, C., McSherry, F., Talwar, K., On the Utility of Privacy-
Preserving Histograms, in preparation, November, 2004.

7. Cox, L. H., New Results in Disclosure Avoidance for Tabulations, International
Statistical Institute Proceedings of the 46th Session, Tokyo, 1987, pp. 83-84.

8. S. Dasgupta, Learning mixtures of Gaussians, IEEE FOCS, 1999.
9. Denning, D., Secure statistical databases with random sample queries, ACM Trans-

actions on Database Systems (TODS), 5(3), p.291-315, 1980.

384 S. Chawla et al.

10. P. Diaconis and B. Sturmfels, Algebraic Algorithms for Sampling from Conditional
Distributions, Annals of Statistics 26(1), pp. 363–397, 1998

11. I. Dinur and K. Nissim, Revealing information while preserving privacy, Proceedings
of the Symposium on Principles of Database Systems, pp. 202-210, 2003.

12. A. Dobra and S.E. Fienberg, and M. Trottini, Assessing the risk of disclosure of
confidential categorical data, Bayesian Statistics 7, pp. 125–14, Oxford University
Press, 2000.

13. C. Dwork, A Cryptography-Flavored Approach to Privacy in Public
Databases, lecture at Aladdin Workshop on Privacy in DATA, March, 2003;
http://www.aladdin.cs.cmu.edu/workshops/privacy/slides/pdf/dwork.pdf)

14. C. Dwork, M. Naor, et al., Impossibility Results for Privacy-Preserving Data San-
itization, in preparation, 2004.

15. C. Dwork and K. Nissim, Privacy-Preserving Datamining on Vertically Partitioned
Databases, Proc. CRYPTO 2004.

16. A. V. Evfimievski, J. Gehrke and R. Srikant, Limiting privacy breaches in privacy
preserving data mining, Proceedings of the Symposium on Principles of Database
Systems, pp. 211-222, 2003.

17. Füredi, Zoltán and Komlós, János, The eigenvalues of random symmetric matrices,
Combinatorica, 1:3, 1981, pages 233–241.

18. W. Gasarch, A Survey on Private Information Retrieval. BEATCS Computational
Complexity Column, 82, pp. 72-107, Feb 2004.

19. R. Gavison, Privacy and the Limits of the Law, in Deborah G. Johnson and Helen
Nissenbaum, editors, Computers, Ethics, and Social Values, pp. 332–351. Prentice
Hall, 1995.

20. O. Goldreich, The Foundations of Cryptography - Volume 2. Cambridge University
Press, 2004.

21. S. Goldwasser and S. Micali, Probabilistic Encryption, JCSS 28(2), pp. 270–299,
1984.

22. D. Gusfield, A Graph Theoretic Approach to Statistical Data Security, SIAM Jour-
nal on Computing 17(3), pp. 552–571, 1988

23. P. Indyk and R. Motwani. Approximate Nearest Neighbor: Towards Removing
the Curse of Dimensionality. Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, 1998.

24. H. Kargupta, S. Datta, Q. Wang, K. Sivakumar. On the Privacy Preserving Prop-
erties of Random Data Perturbation Techniques. Proceedings of the Third ICDM
IEEE International Conference on Data Mining, 2003.

25. J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan, Auditing Boolean At-
tributes, J. Comput. Syst. Sci. 66(1), pp. 244–253, 2003

26. F. McSherry, Spectral Partitioning of Random Graphs, Proc. 42nd FOCS, pp. 529
– 537, 2001

27. T.E. Raghunathank, J.P. Reiter, and D.B. Rubin, Multiple Imputation for Statis-
tical Disclosure Limitation, J. Official Statistics 19(1), 2003, pp. 1–16.

28. G. Roque. Application and Analysis of the Mixture-of-Normals Approach to Mask-
ing Census Public-use Microdata. Manuscript, 2003.

29. D. B. Rubin, Discussion: Statistical Disclosure Limitation, Journal of Official
Statistics 9(2), 1993, pp. 461–468.

30. Sibson, R, SLINK: an optimally efficient algorithm for the single-link cluster
method, In the Computer Journal Vol. 16, No. 1, 1973, pages 30–34.

31. L. Sweeney, k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), 2002; 557-570.

Toward Privacy in Public Databases 385

32. L. Sweeney, Achieving k-anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10 (5), 2002; 571-588.

33. S. Vempala and G. Wang, A spectral algorithm for learning mixtures of distribu-
tions, IEEE FOCS, 2002.

34. W. E. Winkler. Masking and Re-identification Methods for Public-Use Microdata:
Overview and Research Problems. In Proc. Privacy in Statistical Databases 2004,
Springer LNCS 3050.

35. W. E. Winkler. Re-identification Methods for Masked Microdata. In Proc. Privacy
in Statistical Databases 2004, Springer LNCS 3050.

The Universal Composable Security
of Quantum Key Distribution

Michael Ben-Or1,4,6, Micha�l Horodecki2,6, Debbie W. Leung3,4,6,
Dominic Mayers3,4, and Jonathan Oppenheim1,5,6

1 Institute of Computer Science,
The Hebrew University, Jerusalem, Israel

2 Institute of Theoretical Physics and Astrophysics,
University of Gdańsk, Poland

3 Institute of Quantum Information,
California Institute of Technology, Pasadena, USA

4 Mathematical Science Research Institute, Berkeley, USA
5 DAMTP, University of Cambridge, Cambridge, UK

6 Isaac Newton Institute, University of Cambridge, Cambridge, UK
benor@cs.huji.ac.il, fizmh@univ.gda.pl,

{wcleung, dmayers}@cs.caltech.edu, J.Oppenheim@damtp.cam.ac.uk

Abstract. The existing unconditional security definitions of quantum
key distribution (QKD) do not apply to joint attacks over QKD and the
subsequent use of the resulting key. In this paper, we close this potential
security gap by using a universal composability theorem for the quan-
tum setting. We first derive a composable security definition for QKD.
We then prove that the usual security definition of QKD still implies
the composable security definition. Thus, a key produced in any QKD
protocol that is unconditionally secure in the usual definition can indeed
be safely used, a property of QKD that is hitherto unproven. We pro-
pose two other useful sufficient conditions for composability. As a simple
application of our result, we show that keys generated by repeated runs
of QKD degrade slowly.

1 Introduction

Quantum cryptography differs strikingly from its classical counterpart. On one
hand, quantum effects are useful in the construction of many cryptographic
schemes. On the other hand, dishonest parties can also employ more powerful
quantum strategies when attacking cryptographic schemes.

The Security of Quantum Key Distribution. One of the most important
quantum cryptographic applications is quantum key distribution (QKD) [1, 2, 3].
The goal of key distribution (KD) is to allow two remote parties, Alice and Bob,
to share a secret bit string. Classically, KD cannot be unconditionally secure
(i.e. secure against all possible classical attacks) (see Sect. 2). Furthermore, the

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 386–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Universal Composable Security of Quantum Key Distribution 387

security of existing KD schemes is based on assumptions in computation com-
plexity or limitations of the memory space of the adversary, Eve. In contrast,
QKD is based on an intrinsic property of quantum mechanics, “extracting in-
formation about an unknown quantum state inevitably disturbs it,” [4] which
allows eavesdropping activities to be detected in principle. Indeed, QKD can
be unconditionally secure, i.e., against Eve whose capability is only limited by
quantum mechanics [5, 6, 7, 8, 9, 10, 11]. Furthermore, QKD remains secure even
if the quantum states are sent through a noisy quantum channel, as long as the
observed error rates are below certain threshold values.

In what sense is QKD secure? We will describe the assumptions and secu-
rity definitions more formally in Sect. 2. In QKD, Alice and Bob are assumed to
start with a small initial key Ki (for authentication purposes). They have access
to uncorrelated randomness that is not controlled by Eve. They may exchange
quantum and classical messages in both directions via channels that are com-
pletely under the control of Eve, and may perform local quantum operations
and measurements. Based on their measurement outcomes, Alice and Bob either
abort QKD or generate their respective keys KA,KB. Correspondingly, we say
that the QKD test is failed or passed, and the events can be described as M=0 or
M>0, where M is the length of the key generated. Eve also obtains quantum and
classical data (her “view” or “transcript”) from which she extracts classical data
KE via a measurement. What happens during a specific run of QKD depends on
Eve’s strategy as well as the particular outcomes of the coins and quantum mea-
surements of all the parties. However, the security of QKD can still be captured
by requiring that (1) the conditional mutual information I(KE :KA,KB |M) is
negligible and (2) for all eavesdropping strategies with nonnegligible Pr(M>0),
KA, KB are near-uniform and Pr(kA �= kB) is negligible. Throughout the paper,
we use capitalized letters KA, KB, KE, and M to denote the random variables,
and uncapitalized letters to denote specific outcomes.

The Security Problem of Using QKD. Proofs of security of QKD (in the
sense described above) address all attacks on the QKD scheme allowed by quan-
tum mechanics. The problem is that QKD is not the only occasion for attack
— further attack may occur when Alice and Bob use the keys generated. In
particular, Eve may never have made a measurement during QKD to obtain any
KE. Eve’s transcript is a quantum state. She could have delayed measurements
until after more attack during the application, a strategy with power that has no
classical counterpart. In other words, security statements in QKD that revolve
around bounding I(KE :KA,KB |M) is not applicable if the key is to be used!

The limitations of mutual-information-based security statements were known
as a folklore for some time (for example, see Sec. 4.2 in [11]). One of the earliest
known security problems in QKD is the “key degradation problem” [12]: QKD
requires a key for authentication, which in turns may come from previous runs
of QKD. Since each run of QKD is slightly imperfect, repeated runs of QKD
produce less and less secure keys. A conclusive analysis on the degradation has
been elusive, since joint attacks over all runs of QKD have to be considered.

388 M. Ben-Or et al.

As it turns out, joint attacks on QKD and the subsequent use of the generated
key have to be considered in many other occasions. For example, suppose Alice
and Bob perform QKD to obtain a key, and then use the key to encrypt quantum
states [13, 14]. Eve eavesdrops during both QKD and encryption and performs
a collective measurement on the two eavesdropped states. It is well-known that
such a collective measurement may yield more accessible information than the
sum of information obtained in two separate measurements [15].

Our current study is further motivated by the results in [16, 17], which show
that there are ensembles of quantum states that provide little accessible infor-
mation on their own, but can provide much more information when a little more
classical data is available. The extra information can be arbitrarily large com-
pared to both the initial information and the amount of extra classical data. Such
strange property reveals a new, unexpected, inadequacy of mutual-information-
based statements. In particular, in the context of QKD, the usefulness of bound-
ing the initial accessible information of Eve becomes very questionable, if Eve
delays her measurement until further data is available during the application of
the key — the security of the key is questionable even in classical applications!

The goal of the current paper is to study the security of using a key generated
by QKD, i.e., the composability of QKD.

The Universal Composability Approach. Composability is an active area of
research that is concerned with the security of composing cryptographic prim-
itives in a possibly complex manner. The simplest example is the security of
using a cryptographic primitive as a subroutine in another application. We will
follow the universal composability approach. For a specific task (functionality),
a primitive that realizes the task is said to be universal composable if any appli-
cation using the primitive is about as secure as one using the ideal functionality.
A security definition that ensures universal composability was recently proposed
by Canetti [18]. A simpler model in the quantum setting and a corresponding
universal composable security definition were reported by by some of us [19, 20].
Universal composable security definitions are useful because they are in terms
of the ideal functionality only, without reference to the potential application.
The security of a complex protocol can then be analyzed in terms of the security
of each individual component in a systematic and error-proof manner. In the
quantum setting, universal composability provides the only existing systematic
technique for analyzing security in the presence of subtleties including entan-
glement and collective attacks. In this paper, universal composability provides
the precise framework for proving the security of using the keys generated from
QKD, a problem that appears intractable at first sight.

An alternative approach to composability in the classical setting was obtained
in [21], with a generalization to the quantum setting studied in [22, 23].

Main Results. We have pointed out a serious potential security problem in
using the keys generated from QKD. We will address the problem in the rest of
the paper. We derive a new security definition for QKD that is universal compos-
able. The essence is that QKD and certain ideal KD should be indistinguishable

The Universal Composable Security of Quantum Key Distribution 389

from the point of view of potential adversaries. Then, we prove that the original
mutual-information-based security definition implies the new composable defi-
nition. Other simple sufficient conditions for the composable security of QKD
will be discussed. One of these conditions, high singlet-fidelity, has always been
an intermediate step in the widely-used “entanglement-based” security proofs of
QKD. We show that high singlet-fidelity is much more closely related to com-
posable security than the usual security definition, and we obtain much better
security bounds for known QKD schemes. We thus prove the security of using
a key generated by QKD in various ways, and provide simple criteria for future
schemes. As a corollary, we analyze the extent of key-degradation in repeated
use of QKD [12].

Our work also has non-cryptographic applications in the study of correlations
in quantum systems. The various security conditions are tied to correlation mea-
sures in quantum systems. Each derivation for the composable security for QKD
is based on relating a pair of correlation measures.

Related Work. Since the current result was initially presented [24, 25], various
related results were reported. The composable security of generic classes of QKD
schemes were proved in [26, 27], following a different approach of showing the
composable security of certain privacy amplification procedures against quantum
adversaries [26]. These related works share the concerns raised in this paper, with
results complementary to ours.

Organization of the Paper. We end this section by introducing some basic
elements in the quantum setting. We review QKD in Sect. 2, stating our defini-
tions and assumptions more formally. In Sect. 3, we review the quantum universal
composability theorem. We will restrict ourselves to the simpler case concerning
unconditional security. We start describing our main results in Sect. 4, which
contains a derivation of a simple criteria for the universal composable security
for QKD. In Sect. 5, we prove that the usual security definition for QKD implies
the universal composable security. In addition, we demonstrate two other suffi-
cient conditions for composable security. One is based on bounding the Holevo
information of Eve on the key. The other is based on bounding the singlet-fidelity
in security proofs using entanglement-purification. The latter implies much bet-
ter security of existing QKD protocols than is generically implied by the usual
security definition. We conclude with lessons learnt from the current results.
Frequently used notations and functions are listed in the appendix.

Basic Elements of Quantum Mechanics. A quantum system or register is
associated with a Hilbert space H. We only consider finite dimensional Hilbert
spaces. Let B(H) and U(H) denote, respectively, the set of bounded operators
and the unitary group acting on H. We loosely refer to the system as H also. A
composite quantum system is associated with the tensor product of the Hilbert
spaces associated with the constituent systems.

The state of H is specified by a positive semidefinite density matrix ρ ∈ B(H)
of unit trace. A density matrix is a convex combination of rank-1 projectors (com-

390 M. Ben-Or et al.

monly called pure states) and represents a probabilistic mixture of pure states.
Pure states can be represented as vectors in H, up to a physically unobservable
phase. |ψ〉 and |ψ〉〈ψ| denote the vector and rank-1 projector respectively.

A measurementM on H is specified by a POVM — a set of positive semidefi-
nite operators {Ok} such that

∑
k Ok = I. If the state is initially ρ, the measure-

ment M yields the outcome k with probability Tr(Okρ) and changes the state
to
√

Okρ
√

Ok/Tr(Okρ). M is said to be along a basis {|k〉} if {Ok} = {|k〉〈k|}.
Measuring an unknown state generally disturbs it.

The most general evolution of the state is given by a trace-preserving
completely-positive (TCP) linear map E acting on B(H). Any such E can be
implemented by preparing a pure state in some ancillary system H

′, applying
a joint unitary operator U ∈ U(H⊗H

′), and discarding H
′ (i.e., a partial trace

over H
′).

We mention two distance measures for quantum states. First, the trace dis-
tance ‖ρ1 − ρ2‖1 between two density matrices is twice the maximum probabil-
ity of distinguishing between the two states. Second, the fidelity is F (ρ1, ρ2) =
max|ψ1〉,|ψ2〉 |〈ψ1|ψ2〉|2, where ρ1,2 ∈ B(H), |ψ1,2〉 ∈ H⊗H

′ are “purifications” of
ρ1,2 (i.e., TrH′ |ψ1,2〉〈ψ1,2| = ρ1,2), and 〈·|·〉 is the inner product in H.

We refer our readers to the excellent textbook by Nielsen and Chuang [28] for
a more comprehensive review of the quantum model of information processing.

2 Quantum Key Distribution

The goal of key distribution (KD) is to allow two remote parties, Alice and Bob,
to share a secret bitstring such that no third party, Eve, will have much infor-
mation about the bitstring. KD is impossible unless Alice and Bob can identify
one another and detect alterations of their communication. In other words, the
task of message authentication is necessary for KD. There are unconditionally
secure methods for authenticating a classical message with a much shorter key
[29]. Thus, KD uses authentication as a subroutine, and achieves key expansion
(producing a key using a much shorter initial key).

Classically, unconditionally secure KD between two remote parties is impos-
sible. Classical physics permits an eavesdropper to have exact duplicates of all
communications in any KD procedure without being detected. In contrast, while
quantum key distribution (QKD) cannot prevent eavesdropping, it can detect
eavesdropping. This allows Alice and Bob to avoid generating compromised keys
with high probability. The usefulness of QKD is to avoid Alice and Bob being
fooled into having a false sense of security. It is worth emphasizing what QKD
does not offer. First, QKD does not promise to always produce a key, since Eve
can cause QKD to be aborted with high probability by intense eavesdropping.
Second, there is a vanishing but non-zero chance that Eve is undetected, so that
one cannot make simple security statements conditioned on not aborting QKD.

How and Why QKD Works, Through an Example. Various QKD schemes
have been proposed and we only name a few here: BB84 [1], E91 [2], B92 [3],

The Universal Composable Security of Quantum Key Distribution 391

and the six-state scheme [30, 31]. We illustrate the general features and prin-
ciples behind QKD by describing the class of “prepare-&-measure schemes.”
Recall that Alice and Bob are given secure local coin tosses. Step 1: Alice first
generates a random bitstring, encodes it in some quantum state ρA, and sends
ρA to Bob through an insecure quantum channel controlled by Eve. During this
time, Eve can manipulate the message (system A) in any way allowed by quan-
tum mechanics. Eventually, she will have to give some quantum message ρB
to Bob for QKD to proceed. Mathematically, Eve’s most general operation can
be described as attaching a private system E in the state |0〉〈0|E, applying a
joint unitary operation U to produce a joint state ρ = U (ρA⊗|0〉〈0|E)U†, and
passing system A to Bob (relabeled as system B). Thus, Bob and Eve share the
joint state ρ, and ρB := TrE ρ, ρE := TrBρ are their respective reduced density
matrices. Meanwhile, Bob measures ρB (according to his coin tosses). Step 2:
Bob acknowledges to Alice receipt of the quantum message. Step 3: Only after
Alice hears from Bob will further classical discussion be conducted over a public
but authenticated channel. Step 4: At the end, based on their measurement out-
comes and discussions, Alice and Bob either abort QKD (m = 0), or generate
keys KA and KB (m > 0), and they announce m. Eve will have access to all
the classical communication between Alice and Bob, besides the state ρE. She
can measure ρE at any time to obtain a classical string KE, though it is to her
advantage to wait until after she receive the classical communication. See Fig. 1
for a schematic diagram for the class of prepare-&-measure QKD schemes.

The principle behind QKD is that, in quantum mechanics, one can only
reversibly extract information from an unknown quantum state if the state is
drawn from an orthogonal set [4]. Thus in the prepare-&-measure scheme de-

Step 1

Step 2

Step 3

Step 4

Alice

rA ρA �
��

A B

|0〉
U

E

�
�	 ρB

ρE

� measure

Eve

kE

Bob

rB

�
measure

“received”��

� �“discussion”

� �“m”

kA

m-bit

kB

m-bit

Fig. 1. Schematic diagram for the class of prepare-&-measure QKD schemes. The clas-
sical messages, represented by double lines, are available to Eve. Eve can make her
measurement any time after step 1. Dashed boxes represent private laboratory spaces.
Outcomes of Alice and Bob’s local coins are represented by rA, rB

392 M. Ben-Or et al.

scribed above, if Alice encodes her message using a random basis chosen from
several nonorthogonal possibilities, and Eve is to obtain any information on the
outcomes of KA, KB, then ρB �= ρA. To detect the disparity, Bob measures some
of the received qubits (the “test-qubits” chosen randomly to avoid Eve tailoring
her attack) and discusses with Alice to check if his measurement outcomes are
consistent with what Alice has sent. This intuition can be turned into a provably
secure procedure. Alice and Bob estimate various error rates on the test-qubits.
If the observed error rates are above certain thresholds, Alice and Bob abort
QKD. Otherwise, error reconciliation and privacy amplification are applied to
the untested qubits to extract bitstrings kA and kB for Alice and Bob respec-
tively. It is unlikely that the observed error rates are low while untested qubits
have higher error rates. QKD remains secure whether the observed noise is due
to natural channel noise or due to eavesdropping.

General Features of Any QKD Scheme. There are other QKD schemes
besides prepare-&-measure schemes, for example, the entanglement-based QKD
schemes (see [2, 7, 32]). Unless otherwise stated, our discussion applies to all QKD
schemes. The basic ingredients are still secure local coins, completely insecure
quantum communication, and authenticated public classical communication be-
tween Alice and Bob. In the most general QKD scheme, the ingredients may be
used in any possible way. Alice and Bob still obtain some bitstrings as the output
keys, kA and kB, of certain length m. Eve’s view is still given by some quantum
and classical data, denoted collectively by ρE,kA,kB , with explicit dependence on
kA, kB. (Her view is a draw from an ensemble.)

We emphasize a limitation in QKD. Eve can be “lucky.” For example, she may
have attacked only the untested qubits, or may have attacked every qubit without
causing inconsistency in Alice and Bob’s measurements. Thus, it is unlikely, but
still possible, for Eve to have a lot of information on the generated key without
being detected. QKD does not promise that “conditioned on passing the test, the
keys KA, KB will be so-and-so.” With the above limitation in mind, there are
several approaches to a proper security statement. The approach that is most
commonly used in existing security proofs is to bound the probability that Alice
and Bob generate bitstrings that are not equal, uniform, or private. We will use
a more compact statement in the following.

Let n be a security parameter in QKD (for example, the number of qubits
transmitted from Alice to Bob). Fix an arbitrary eavesdropping strategy. The
attack induces a distribution Pr(M=m) on the key length M . The average value
of M is typically a small fraction of n. The outcome m in a particular run of
QKD depends on the outcome of the coins and measurements by Alice and Bob.
We can assume that m is made public at the end of QKD. Recall m > 0 if the
QKD test is passed and m = 0 if QKD is aborted.

Let p
(m)
qkd denote the distribution of KA,KB generated in QKD conditioned

on |KA| = |KB| = m, i.e.,

p
(m)
qkd (kA, kB) = Pr(KA = kA,KB = kB|M = m) . (1)

The Universal Composable Security of Quantum Key Distribution 393

Let pideal(m) be the following distribution over two m-bit strings,{
p
(m)
ideal (l, l) = 2−m

p
(m)
ideal (l, l

′) = 0 if l �= l′ .
(2)

Let V denote the set of exponentially decaying functions of n. With these nota-
tions, a simple statement for the security condition can be made.

Usual Security Definition for QKD. A QKD scheme is said to be secure if
the following properties hold for all eavesdropping strategies.

• Equality-and-uniformity: ∃μ1 ∈ V s.t.∑
m=0

Pr(m)
∥∥ p(m)

ideal − p
(m)
qkd

∥∥
1 ≤ μ1 (3)

• Privacy: ∃μ2 ∈ V s.t.∑
m=0

Pr(m)× I(KE :KA,KB |M = m) ≤ μ2 (4)

where I denotes the mutual information [33] between KE and KA,KB con-
ditioned on M = m. Using the equality condition, we only need to focus on
kA =: k in (4). In particular,

• Privacy: ∃μ′
2 ∈ V s.t.∑

m=0

Pr(m)× I(KE :K |M = m) ≤ μ′
2 (5)

The above security conditions revolve around bounding expressions that can
be interpreted as deviations from the desired properties, averaged over m. The
product in each summand is bounded, precisely capturing the security require-
ment that an undesired event occurs with low probability. Note that the m = 0
terms do not contribute, as ‖ p(m)

ideal − p
(m)
qkd ‖1 = 0 and I(KE:KA,KB|M =0)=0.

3 Quantum Universal Composability Theorem

Cryptographic protocols often consist of a number of simpler components. A
single primitive is rarely used alone. A strong security definition for the primitive
should thus reflect the security of using it within a larger application. This
allows the security of a complex protocol to be based only on the security of the
components and how they are put together, but not in terms of the details of
the implementation.

A useful approach is to consider the universal composability of cryptographic
primitives [18, 19, 20]. The first ingredient is to ensure the security of a basic
composition. We need a security definition stated for a single execution of the

394 M. Ben-Or et al.

primitive that still guarantees security of composition with other systems. This
definition involves a description of some ideal functionality of the primitive
(i.e. the ideal task the primitive should achieve). More concretely, we want a
security definition such that, if σ is a secure realization of an ideal subroutine
σI, and a protocol P using σI, written as P+σI, is a secure realization of PI (the
ideal functionality of P), P+σ is also a secure realization of PI. Throughout the
paper, we denote the associated ideal functionality of a protocol by adding a
subscript I, and we denote a protocol P calling a subprotocol σ as P+σ (this
last expression stretches the meaning of P a little bit to refer to the module of
P calling σ). The second ingredient is a universal composability theorem stating
how a complex protocol can be built out of secure components. It is simply a
recipe on how to securely perform basic composition recursively.

The Simplifications in Analyzing the Composable Security of QKD.
Our goal is to analyze the unconditional security of QKD using known results in
quantum universal composability [19, 20]. The setting for QKD is simpler than
that considered in [19, 20] in two important aspects. First, we are only concerned
with unconditional security. Second, in QKD, Alice and Bob are known to be
honest, and Eve is known to be adversarial, and no party is corrupted unpredict-
edly. The formal corruption rules are not used in our derivation of a composable
security definition for QKD. We will describe a simplified model that is suffi-
cient for our derivation of a universal composable security definition for QKD.
This definition is applicable in the general setting considered in [19, 20] – so long
as an appropriate model is used for analyzing the rest of the application when
applying Theorems 1 and 2.

The Simplified Model. We first describe the model for quantum protocols and
other concepts involved in the quantum composable security definition. We base
our discussion on the (acyclic) quantum circuit model (see, for example, [34, 35]),
with an important extension [20] (see also the endnotes [36]). Throughout the
paper, we only consider circuits in the extended model.

1. Structure of a protocol. A (cryptographic) protocol P can be viewed as a
quantum circuit in the extended model [20, 36], consisting of inputs, outputs, a
set of registers, and some partially ordered operations. A protocol may consist
of a number of subprotocols and parties. Each subprotocol consists of smaller
units called “unit-roles,” within each the operations are considered “local.” For
example, the operations and registers of each party in each subprotocol form
a unit-role. Communications between unit-roles within a subprotocol represent
internal communications; those between unit-roles in different subprotocols rep-
resent input/output of data to the subprotocols. A channel is modeled by an
ordered pair of operations by the sender and receiver on a shared register. The
channel available for the communication determines its security features.
2. The game: security in terms of indistinguishability from the ideal function-
ality. Let PI denote the ideal functionality of P. Intuitively, P is secure (in a
sense defined by PI) if P and PI behave similarly under any adversarial attack.
“Similarity” between P and PI is modeled by a game between an environment E

The Universal Composable Security of Quantum Key Distribution 395

and a simulator S. These are sets of registers and operations to be defined, and
they are sometimes personified in our discussion. In general, P and PI have very
different internal structures and are very distinguishable, and the simulator S is
added to PI to make an extended ideal protocol PI+S that is less distinguish-
able from P. E consists of the adversaries that act against P and an application
protocol that calls P as a subprotocol. At the beginning of the game, P or PI+S
are picked at random. E will call and act against the chosen protocol, and will
output a bit Γ at the end of the game. The similarity between P and PI+S (or
the lack of it) is captured in the statistical difference in the output bit Γ .
3. Valid E. The application and adversarial strategy of E are first chosen (the
same whether it is interacting with P or PI+S). E has to obey quantum me-
chanics, but is otherwise unlimited in computation power. If P is chosen in the
game, E can (i) control the input/output of P, (ii) attack insecure internal com-
munication as allowed by the channel type, (iii) direct the adversarial parties to
interact with the honest parties in P. E+P has to be an acyclic circuit in the
extended model [20, 36].
4. Valid PI and S. If PI+S is chosen in the game, E (i) controls the input/output
of PI as before. However, the interaction given by (ii) and (iii) above will now
occur between E and S instead. (S is impersonating or simulating P.) The strat-
egy of S can depend on the strategy of E . PI should have the same input/output
structure as P, but is otherwise arbitrary. (Of course, the security definition is
only useful if PI carries the security features we want to prove for P.) In par-
ticular, PI may be defined with internal channels and adversaries different from
those of P. S can (ii′) attack insecure internal communication of PI and (iii′)
direct the adversarial parties to interact with the honest parties in PI. Thus, PI
exchanges information with S, and this can modified the security features of PI.
To E , S acts like part of PI, “padding” it to look like P, while to PI, S acts like
part of E . It is amusing to think of S as making a “man-in-the-middle” attack
between E and PI. Finally, E+PI+S has to be an acyclic circuit in the extended
circuit model [20, 36]. See Fig. 2 for a summary of the game and the rules.

With a slight abuse of language, the symbols P and PI+S are also used to
denote the respective events of their being chosen at the beginning of the game.
We can now state the universal composable security definition.

P

��Γ

�

��

�

E

ii,iiii i

E

PI

��Γ

�

�

�

�

S
� �ii ′

iii′

ii,iii

Fig. 2. The game defining the composable security definition. The curved region in
E represents the adversaries against P, and the curved region in S represents the
adversaries against PI. We label the types of interactions as described in the text

396 M. Ben-Or et al.

Definition 1: P is said to ε-securely realize PI (shorthand P ε-s.r. PI) if

∀E ∃S s.t.
∣∣Pr(Γ=0|P)− Pr(Γ=0|PI+S)

∣∣ ≤ ε . (6)

We call ε in (6) the distinguishability-advantage between P and PI. This security
definition (in the model described) is useful because security of basic composi-
tion follows “by definition” [19, 20]. We have the following simple version of a
universal composability theorem.
Theorem 1. Suppose a protocol P calls a subroutine σ. If σ εσ-s.r. σI and P+σI
eP -s.r. PI, then P+σ ε-s.r. PI for ε ≤ εP+εσ.

Theorem 1 can be generalized to any arbitrary protocol with a proper modular
structure. An example of an improper modular structure is one with a security
deadlock, in which the securities of two components are interdependent.

Proper modular structures can be characterized as follows. Let P+σ1+σ2+ · · ·
be any arbitrary protocol using a number of subprotocols. This can be repre-
sented by a 1-level tree, with P being the parent and {σi} the children. For each
σi that uses other subprotocols, replace the corresponding node by an appropri-
ate 1-level subtree. This is done recursively, until the highest-level subprotocols
(the leaves) call no other subprotocols. These are the primitives. It was proved
in [20] that more general modular structures, represented by an acyclic directed
graph, can be transformed to a tree. The following composability theorem relates
the security of a protocol P to the security of all the components in the tree.
Theorem 2. Let P be a protocol and TP its associated tree. Let M be a sub-
protocol corresponding to any node in TP with subprotocols {Ni}i=1,··· ,l. Then,
if M+N1I+ · · ·+NlI εM-s.r.MI, we have P ε-s.r. PI for ε ≤

∑
M εM.

Theorem 2 is obtained by recursive use of Theorem 1 and the triangle inequality.
The idea is to recursively replace each subprotocol by its ideal functionality,
from the highest to the lowest level toward the root. The distinguishability-
advantage between P and PI is upper bounded by the sum of all the individual
distinguishability-advantages between pairs of protocols before and after each
replacement. See Fig. 4 for an example of TP that describes repeated QKD.

In the next section, we analyze QKD in the composability framework. This
is part of our main result and it also illustrates the composability framework.

4 Universal Composable Security Definition of QKD

We first describe a general QKD scheme in the composability framework. Then,
we tailor an ideal functionality for KD that resembles QKD. Finally, the universal
composable security definition of QKD is restated as a distinguishability criteria.

4.1 QKD in the Game Defining Security

Our discussion relies on the existence of authentication schemes that are univer-
sal composable in the quantum setting. Furthermore, the authentication scheme

The Universal Composable Security of Quantum Key Distribution 397

should use a key much shorter than the message to be authenticated (so that
QKD indeed expands a key). For example, the scheme in [29] satisfies such con-
ditions (composability is proved in [37]). Let α denote any such authentication
scheme and let αI denote ideal authentication. Let κ+α denote QKD using au-
thentication scheme α and let κI denote an ideal KD protocol to be defined.
By Theorem 1, we can focus on the security of κ+αI, i.e., QKD using perfectly
authenticated classical channels. The initial key requirement is embedded in the
subroutine αI. In this case, QKD has no input and outputs some bitstrings kA,
kB of certain length m to Alice and Bob, with m = 0 if and only if QKD is
aborted. (We can assume that m is a publicly announced output of QKD.) Eve’s
view (including both quantum and classical data) is given by the state ρE,kA,kB .

We now turn to the game defining the composable security definition of QKD.
Eve is an adversary that is part of the environment E . Following the discussion
in Sect. 3, E will fix an arbitrary strategy. Since there is no input to QKD, the
optimal application in E is simply to receive the output keys from κ+αI or κI.
E will also consist of the action of Eve and other circuits that compute Γ . A
schematic diagram is given in Fig. 3.

κ+αI

�� ΓEve
ρ
EkAkB

���

m
kA kB

E

iiii i 1�2�

A B

1�3�

2�

A′ B′

ρ̃|m|

A B

i i

E

κI

�� ΓEve

�

��

��

m
k k

S

���
m

iii′

iii

Fig. 3. The game defining the composable security definition of QKD, with our choice
of ideal KD and simulator. An ordering of the interactions is given in circles. We also
label the types of interactions (see rules 3 and 4 in Sect. 3) explicitly. Upon an input
m, the checkered box generates a perfect key of length m to Alice and Bob

If E is interacting with κ+αI, E will: (i) receive the output bitstrings kA, kB,
and m= |kA|= |kB|, and (iii) obtain ρE,kA,kB which depends on Eve’s strategy
and kA, kB. Altogether, E will be in possession of the state

ρqkd =
∑

kA,kB

Pr(kA, kB) |kA, kB〉〈kA, kB| ⊗ ρE,kA,kB (7)

in which ρE,kA,kB and kA, kB can be correlated. We have omitted an explicit
register for m, because the information is redundant given kA, kB.

398 M. Ben-Or et al.

4.2 Ideal KD and the Simulator

We now define the ideal functionality for QKD. In general, when formulating
an ideal functionality, one need not be concerned with how the functionality is
realized. What is important is to impose the essential security features while
mimicking the analyzed protocol from the point of view of E .

Our ideal KD functionality κI has to model both the possibility to generate
a perfect key, and the possibility for Eve to cause QKD to be aborted. Besides
Alice and Bob, κI has a box that accepts a value m from an adversary “Devil”
and outputs a perfect m-bit key K to Alice and Bob (m = 0 means abort).
When κI is run, Devil sends m to the box, which sends K to Alice and Bob.
This formulation of κI satisfies the security conditions (3) and (5) perfectly
(μ1,μ2 = 0). See Fig. 3 for a schematic diagram.

Consider the following simulator S. S runs a “fake QKD” with fake Alice′

and Bob′. They interact with Eve (in E) and run verification procedure as in
QKD. A value m is announced for the fake QKD, but the fake output keys are
unused and kept secret in S. The Devil in S then sends m to the box in κI, which
generates a perfect m-bit key string k to Alice and Bob in κI, who forward their
outputs to E . Let

ρ̃m =
∑

kA,kB:|kA|=|kB|=m

Pr(kA, kB|M=m) ρE,kA,kB . (8)

Then, at the end of the game, E will be in possession of the state

ρideal =
∑

k

Pr(M=|k|) 2−|k| |k, k〉〈k, k| ⊗ ρ̃|k| . (9)

How κI + S interacts with E is summarized in Fig. 3.

4.3 Universal Composable Security Definition and Simple Privacy
Condition

Recall that at the beginning of the game, one of κ and κI+S is chosen at random
to interact with E . The distinguishability-advantage is upper bounded by the
trace distance of the two possible final states of E right before Γ is computed,∣∣Pr(Γ=0 |κ)− Pr(Γ=0 |κI+S)

∣∣ ≤ 1
2

∥∥ ρqkd − ρideal
∥∥

1 ≤ (10)

≤ 1
2

∥∥ ρqkd − ρqi1
∥∥

1 + 1
2

∥∥ ρqi1 − ρqi2
∥∥

1 + 1
2

∥∥ ρqi2 − ρideal
∥∥

1 , (11)

where ρqi1 and ρqi2 are hybrid, intermediate, states between ρqkd and ρideal
defined as

ρqi1 =
∑

k

Pr(M=|k|) 2−|k||k, k〉〈k, k| ⊗ ρE,k,k , (12)

ρqi2 =
∑

k

Pr(M=|k|) 2−|k| |k, k〉〈k, k| ⊗ ρ̄|k| , (13)

The Universal Composable Security of Quantum Key Distribution 399

with ρ̄m = 1
2m

∑
k:|k|=m

ρE,k,k. The sum of the first and the last terms in (11)
can be bounded by μ1 in the equality-and-uniformity condition ((3) in Sect. 2)
as follows. Using (7) and (12),∥∥ ρqkd − ρqi1

∥∥
1 =

∥∥∥∥ ∑
kA
=kB

Pr(kA,kB) |kA,kB〉〈kA,kB| ⊗ ρE,kA,kB +

+
∑

k

[
Pr(k,k)−Pr(|k|)2−|k|

]
|k,k〉〈k,k| ⊗ ρE,k,k

∥∥∥∥
1
≤ μ1 .

Using (9) and (13),∥∥ ρqi2 − ρideal
∥∥

1 ≤
∑
m

Pr(M=m)
∥∥ ρ̄m − ρ̃m

∥∥
1 ≤ μ1

where we have used

ρ̄m =
∑

kA,kB

p
(m)
ideal(kA, kB) ρE,kA,kB , ρ̃m =

∑
kA,kB

p
(m)
qkd(kA, kB) ρE,kA,kB , (14)

and the equality-and-uniformity condition (3) for the last inequality. The re-
maining term in the composable security condition (11) is given by

1
2

∥∥ ρqi1 − ρqi2
∥∥

1 =
1
2

∥∥∥∥∑
k

Pr(M=|k|) 2−|k| |k,k〉〈k,k| ⊗
[
ρ̄|k| − ρE,k,k

] ∥∥∥∥
1

≤ 1
2

∑
k

Pr(M=|k|) 2−|k| ∥∥ ρ̄|k| − ρE,k,k

∥∥
1 , (15)

which can be interpreted as a new privacy condition.
We have thus compartmentalized the quantity governing the composable se-

curity definition for QKD, (10) or (11), into two parts: a term governed by the
equality-and-uniformity condition (3) and a new term (15) related to privacy, a
bound of which will be called a “composable privacy condition” for QKD. Once
(15) is bounded by some μ∗

2, QKD using ideal authentication κ+αI εκ-securely
realizes the ideal KD κI, if μ1 + μ∗

2 ≤ εκ. Following Theorems 1 and 2, one can
use the key “as if it were perfect.” Proving such a bound on (15) is relatively
straightforward, as compared to a direct proof of the security of using a slightly
imperfect key from QKD (without the composability theorem).

In the following section, we prove several bounds for (15). First, we show
that for any QKD scheme satisfying the usual privacy condition (5), (15) can
be bounded as well, albeit with a potentially large but manageable degradation.
Second, we prove a tighter bound on (15) assuming a privacy condition in terms
of Eve’s Holevo information on the key. Finally, we propose a new, tight, sufficient
condition for bounding (10) (the full composable security condition) based on
the singlet-fidelity considered in most existing security proofs for QKD. This
bypasses (5) and incorporates all of equality, uniformity, and privacy. As an
application, we obtain sharp upper bounds for (10) for existing QKD schemes.

400 M. Ben-Or et al.

5 Universal Composability of QKD

We state some composable security results of QKD; proofs can be found in [38].

Usual Privacy Condition Implies Composable Privacy Condition.
Given the usual privacy condition (5),

∑
m=0 Pr(m)×I(KE :K |M = m) ≤ μ2,

the following bound for (15) holds, ensuring composable privacy:∥∥ρqi1 − ρqi2
∥∥

1 ≤ 2max(m)/2+1√μ2 . (16)

Typically, max(m) is a small fraction of n, the security parameter such as the
number of qubits communicated. Since μ2 ∈ V, the set of exponentially decaying
functions of n, bounding the key rate m/n ensures the above is in V also.

Small Holevo Information Implies Composable Privacy. Suppose, in-
stead of the usual privacy condition (5) in terms of the accessible information,
we have

• Privacy: ∃μ′
2 ∈ V s.t. ∑

m

Pr(M=m)× χ(Fm) ≤ μ′
2 (17)

where χ is the Holevo information [39],andFm is the ensemble {2−m, ρE,k,k}|k|=m.
Equation (17) is more stringent than (5) since the Holevo information is an upper
bound for the accessible information. In fact, (17) implies∥∥ρqi1 − ρqi2

∥∥
1 ≤

√
2 (ln 2) μ′

2 (18)

which does not have an overhead exponential in the length of the key generated.

A New Sufficient Condition for Composable Security. We can easily
analyze the composable security of any QKD scheme that has a security proof
based on entanglement purification protocol. All existing QKD schemes have
such security proofs. The final keys KA, KB are outcomes of Alice and Bob’s
measurements on a shared state ρm

AB for some m, and ρm
AB is supposed to be

Φ⊗m in the absence of eavesdropping. Here, m is again the key length and
Φ = 1

2 (|00〉+ |11〉)(〈00|+ 〈11|). The usual privacy condition (5) is often obtained
by showing the following.

• High fidelity: ∃μ′′
2 ∈ V s.t.∑

m

Pr(m)
[

1− F (ρm
AB, Φ

⊗m)
]
≤ μ′′

2 (19)

(See Sect. 1 for the definition of F .) The above turns out implying a sharp bound
on (15):

1
2

∥∥ ρqkd − ρideal
∥∥

1 ≤
√

μ′′
2 . (20)

The Universal Composable Security of Quantum Key Distribution 401

Equation (19) is thus a good new sufficient condition for composable security,
being part of the standard QKD proof and implying a tight bound on (10)
simultaneously. It also implies both equality-and-uniformity and privacy (unlike
a bound on Holevo information or mutual information which only implies the
composable privacy condition).

6 Discussions and Applications

We have motivated this work with a discussion of the potential gap between the
desired security of using a key generated by QKD and the security promised
by the privacy condition (5) used in many previous studies of “unconditional
security” of QKD. Then, we apply the universal composability theorem to obtain
a new security condition that will guarantee the security of using a key generated
from QKD. We propose a new composable privacy condition based on bounding
(15), and we propose useful sufficient conditions such as bounds on (17) or (19).
Most interesting of all, we show that a bound on the singlet-fidelity (19) directly
implies the composable security condition (a bound on (10)). These are our main
contributions (in the context of cryptography).

We also provide a proof that the existing privacy condition (5) does imply
composable security (a bound on (15)) though the bound degrades exponentially
in the key size. Despite the existence of such connections, we emphasize that
future security proofs should bound (10), (15), (17), or (19) directly. We also
provide a sharp bound on (15) based on Holevo’s information (17) or singlet-
fidelity (19). We show that most existing security proofs for QKD imply sharp
bounds on (10), when bypassing the usual privacy condition (5). Outside the
context of cryptography, these connections between various privacy conditions
can be useful for the study of correlations in quantum systems.

The pathologies of the accessible information exhibited recently [16, 17] sug-
gest a conjecture that, when going from (5) to (15), the degradation of the
security parameter exponential in the key size is necessary.

As a final application, we analyze the security of repeating QKD t times,
without assuming the availability of an authenticated classical channel. (Note
that t is a fixed parameter that does not grow with the problem size.) Each run
of QKD κ calls a composable authentication scheme α as a subroutine, and each
run of α requires a composably secure key, which is provided by the previous
round of κ (as a subroutine to α). Call the t rounds of QKD our protocol P.
The associated tree for P, and the ideal realization PI are given in the far left
and right of Fig. 4.

If κ+αI εκ-s.r. κI (as in (10)) and if α+κI εα-s.r. αI, P t(εκ+εα)-s.r. PI. In
other words, each extra around of QKD degrades the overall distinguishability-
advantage by an additive constant (εκ +εα). The same result can be obtained by
using Theorem 2, or conversely, this simple exercise illustrates the idea behind
Theorem 2.

402 M. Ben-Or et al.

P
κ
�
α
�···
�
κ
�
α
�
κ
�
α
�

κ0

εα
κ
�
α
�···
�
κ
�
α
�
κ
�

αI

εκ
κ
�
α
�···
�
κ
�
α
�

κI

εα
κ
�
α
�···
�
κ
�

αI
�

κI

εκ
κ
�
α
�···
�

κI

�
κI

κI

�···
�

κI

�
κI

εκ

· · · ·

PI

Fig. 4. Associated tree for t rounds of κ in the left. κ0 represents some initially shared
key. The arrows point from parents to children. Each tree to the right is obtained by
replacing one node by its ideal functionality. The distinguishability-advantage of each
pair of consecutive schemes is marked between their trees near the roots. Authentication
is omitted in the ideal functionality PI

Acknowledgement. We thank Charles Bennett, Daniel Gottesman, Aram Har-
row, and John Smolin for interesting discussions on the security concerns of
using a key obtained from QKD. We also thank Dominique Unruh and Jörn
Müller-Quade for interesting discussions on their alternative framework of com-
posability.

Part of this work was completed while MH and JO were visiting the MSRI
program on quantum information, Berkeley, 2002. MB acknowledges the sup-
port of the Israel Science Foundation and a research grant from the Israeli Min-
istry of Defense. MH is supported by EU grants RESQ (IST-2001-37559) and
QUPRODIS (IST-2001-38877). DL acknowledges the support from the Tolman
Foundation and the Croucher Foundation. DL and DM acknowledge support
from the US NSF under grant no. EIA-0086038. JO is supported by an EU grant
PROSECCO (IST-2001-39227) and a grant from the Cambridge-MIT Institute.

A Notations

We gather notations frequently used in the paper, roughly in order of first ap-
pearance:
– KD: key distribution
– QKD: quantum key distribution
– Alice and Bob: two honest parties trying to establish a common key
– Eve: an active adversary
– A, B, E: subscripts labelling objects related to Alice, Bob, and Eve

A, B, E: labels of their respective quantum systems
– Capitalized letters denote random variables and the corresponding

uncapitalized letters denote particular outcomes

The Universal Composable Security of Quantum Key Distribution 403

– KA, kA, KB, kB: output keys for Alice and Bob
– K, k: k := kA when kA = kB

– M , m: length of key generated by QKD, with M = 0 iff QKD is aborted
– KE, kE: classical data possibly extracted by Eve at the end of QKD by

measuring her quantum state
– Pr(·): probability of the event “·”
– log: logarithm in base 2
– For random variables X, Y , Z:

H(X) := −
∑

x Pr(x) log Pr(x) is the entropy of X
I(X:Y) := H(X)+H(Y)−H(XY) is the mutual information between X,Y
I(X:Y |Z=z) is the mutual information between X,Y conditioned on Z=z
I(X:Y |Z) :=

∑
z Pr(z)I(X:Y |Z=z) is the conditional mutual information

– ρ: generic symbol for a density matrix
– |·〉: a vector in a Hilbert space, with label “·”
|·〉〈·|: the projector onto the subspace spanned by |·〉, also known as “outer-
product” of |·〉 and 〈·|

– Tr(·): the trace
– TrH1(·): the partial trace over the system H1. Let ρ12 be the density matrix

for a joint state on H1 and H2. TrH1(ρ12) is the state after H1 is discarded.
– ‖·‖1: the trace distance, which can be taken as the sum of the singular values
– F : the fidelity. For two states ρ1, ρ2 in H, F (ρ1, ρ2) = max|ψ1〉,|ψ2〉 |〈ψ1|ψ2〉|2

where |ψ1,2〉 ∈ H⊗H
′ are “purifications” of ρ1,2 (i.e., TrH′ |ψ1,2〉〈ψ1,2| = ρ1,2),

and 〈·|·〉 is the inner product. Here, we can take dim(H′) = dim(H).
– ρE,kA,kB : Eve’s view (both quantum and classical data) when the key outputs

to Alice and Bob are kA, kB.
– n: security parameter such as the number of qubits communicated in QKD
– p

(m)
qkd: p

(m)
qkd (kA, kB) = Pr(KA=kA,KB=kB|M=m), i.e., the distribution of

KA,KB generated in QKD conditioned on |KA| = |KB| = m

– p
(m)
ideal: the distribution over two m-bit strings l, l′ defined as
p
(m)
ideal (l, l

′) = 0 if l �= l′, p(m)
ideal (l, l) = 2−m.

– V: the set of exponentially decaying functions of n
– σ, P, σI, PI: σ and P are generic labels for protocols, with σ possibly used as

a subroutine. The symbol of a protocol with a subscript I denotes the ideal
functionality of the protocol. P+σ: a protocol P calling a subroutine σ.

– E , S: the environment and the simulator. These are sets of registers and
operations and they are sometimes personified in our discussion.

– Γ : output bit of E
– ε-s.r. : P ε-s.r. PI is a shorthand for P ε-securely realizes PI (see mathemat-

ical definition in (6)). ε is called the distinguishability-advantage between P
and PI.

– TP : the associated tree for a protocol P
– α, αI: universal composable authentication with negligible key requirement

and its ideal functionality
– κ+α, κ+αI, κI: QKD using authentication α, QKD using ideal authentica-

tion αI, and ideal KD defined in Sect. 4.2

404 M. Ben-Or et al.

– Devil: an adversary that determines the key length m generated by κI
– ρqkd: state possessed by E after interacting with κ+αI, see (7)
– ρideal: state possessed by E after interacting with κI, see (9)
– ρqi1, ρqi2: hybrid, intermediate, states between ρqkd and ρideal, see (12), (13)
– ρ̃m: Eve’s state when M = m, averaged over KA, KB. See (8)
– ρ̄m: uniform average of ρE,k,k for |k| = m. See the line right after (13)
– Ensemble {qx, x}x: a distribution {qx}x of quantum states x

– Iacc: accessible information of an ensemble {qx, x}x, i.e., the maximum mu-
tual information between X and outcome Y obtained from measuring a
specimen x

– Fm: the ensemble {2−m, ρE,k,k}|k|=m

– χ({qx, x}): Holevo information of the ensemble {qx, x}, given by S(
∑

x qx x)
−
∑

x qxS(x) where S(·)=Tr(· log(·)) is the von Neumann entropy
– ρm

AB: state on which measurements by Alice and Bob output KA, KB in
QKD-security-proofs based on entanglement purification

– Φ: a perfect EPR pair 1
2 (|00〉+ |11〉)(〈00|+ 〈11|)

– Singlet fidelity: F (ρm
AB, Φ

⊗m). Note that “singlet” usually refers to a state
that is only unitarily equivalent to Φ, but we borrow the term in this paper.

References

1. C. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, pages 175–179, New York, 1984. IEEE. Bangalore,
India, December 1984.

2. A. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.,
67(6):661–663, 1991.

3. C. Bennett. Quantum cryptography using any two nonorthogonal states. Phys.
Rev. Lett., 68(21):3121–3124, 1992.

4. C. Bennett, G. Brassard, R. Jozsa, D. Mayers, A. Peres, B. Schumacher, and
W. Wootters. Reduction of quantum entropy by reversible extraction of classical
information. Journal of Modern Optics, 41(12):2307–2314, 1994.

5. D. Mayers. Quantum key distribution and string oblivious transfer in noisy chan-
nels. In Advances in Cryptography–Proceedings of Crypto’96, pages 343–357, New
York, 1996. Springer-Verlag.

6. D. Mayers. Unconditional security in quantum cryptography. J. Assoc. Comp.
Mach, 48:351, 2001. quant-ph/9802025.

7. H.-K. Lo and H. F. Chau. Unconditional security of quantum key distribution over
arbitrarily long distances. Science, 283:2050–2056, 1999. quant-ph/9803006.

8. E. Biham, M. Boyer, P. Boykin, T. Mor, and V. Roychowdhury. A proof of the
security of quantum key distribution. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC), pages 715–724, New York, 2000.
ACM. quant-ph/9912053.

9. P. Shor and J. Preskill. Simple proof of security of the bb84 quantum key distri-
bution protocol. Phys. Rev. Lett., 85:441–444, 2000. quant-ph/0003004.

10. K. Tamaki, M. Koashi, and N. Imoto. Unconditionally secure key distribution
based on two nonorthogonal states. Phys. Rev. Lett., 90:167904, 2003. quant-
ph/0212162.

The Universal Composable Security of Quantum Key Distribution 405

11. G. Gottesman and H.-K. Lo. Proof of security of quantum key distribution with
two-way classical communications. IEEE Transactions on Information Theory,
49(2):457–475, 2003. quant-ph/0105121.

12. C. Bennett and J. Smolin first suggested the key degradation problem to one of
us, and A. Harrow has obtained partial results.

13. A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf. Private quantum channels. In
IEEE Symposium on Foundations of Computer Science (FOCS), pages 547–553,
2000. quant-ph/0003101.

14. P. Boykin and V. Roychowdhury. Optimal encryption of quantum bits. quant-
ph/0003059.

15. A. Peres and W. Wootters. Optimal detection of quantum information. Phys. Rev.
Lett., 66:1119–1122, 1991.

16. D. DiVincenzo, M. Horodecki, D. Leung, J. Smolin, and B. Terhal. Locking clas-
sical correlation in quantum states. Phys. Rev. Lett., 92:067902, 2004. quant-
ph/0303088.

17. P. Hayden, D. Leung, P. Shor, and A. Winter. Randomizing quantum state: con-
structions and applications. quant-ph/0307104.

18. R. Canetti. Universal composable security: A new paradigm for cryptographic pro-
tocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 136–145. IEEE, 2001.

19. M. Ben-Or and D. Mayers. Composability theorem. Part I of presenta-
tion by D. Mayers, QIP 2003, MSRI, Berkeley. See http://www.msri.org/publi-
cations/ln/msri/2002/qip/mayers/1/index.html .

20. M. Ben-Or and D. Mayers. Composing quantum and classical protocols. quant-
ph/0409062.

21. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In First Theory of Cryptography Conference (TCC), pages
336–354, 2004.

22. D. Unruh. Relating formal security for classical and quantum proto-
cols. Presentation at the Special week on Quantum crytography, Isaac
Newton Institute for Mathematical Sciecnes, September 2004. Available at
http://www.unruh.de/DniQ/publications.

23. D. Unruh. Simulation security for quantum protocols. quant-ph/0409125.
24. M. Ben-Or, M. Horodecki, D. Leung, D. Mayers, and J. Oppenheim. Composability

of QKD. Part II of presentation by D. Mayers, QIP 2003, MSRI, Berkeley. See
http://www.msri.org/publi-cations/ln/msri/2002/qip/mayers/1/index.html .

25. M. Ben-Or, M. Horodecki, D. Leung, D. Mayers, and J. Oppenheim. Composability
of quantum proocols - applications to quantum key distribution and quantum
authentication. Part II of presentation by D. Leung, QIP 2004, IQC, University of
Waterloo. See http://www.iqc.ca/conferences/qip/presentations/leung-.pdf.

26. R. Renner and Konig. Universally composable privacy amplification against quan-
tum adversaries. quant-ph/0403133.

27. M. Christandl, R. Renner, and A. Ekert. A generic security proof for quantum key
distribution. quant-ph/0402131.

28. M. Nielsen and I. Chuang. Quantum computation and quantum information. Cam-
bridge University Press, Cambridge, U.K., 2000.

29. M. Wegman and J. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265–279, 1981.

30. D. Bruss. Optimal eavesdropping in quantum cryptography with six states. Phys.
Rev. Lett., 81:3018–3021, 1998.

406 M. Ben-Or et al.

31. H. Bechmann-Pasquinucci and N. Gisin. Incoherent and coherent eavesdropping
in the 6-state protocol of quantum cryptography. quant-ph/9807041.

32. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera.
Quantum privacy amplification and the security of quantum cryptography over
noisy channels. Phys. Rev. Lett., 77:2818, 1996. quant-ph/9604039.

33. T. Cover and J. Thomas. Elements of Information Theory. John Wiley and Sons,
New York, 1991.

34. A. Yao. Quantum circuit complexity. Proc. of the 34th Ann. IEEE Symp. on
Foundations of Computer Science, pages 352–361, 1993.

35. D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed states.
quant-ph/9806029.

36. An acyclic circuit is a partially ordered set of gates. However, associating the
circuit with constraints on the timing of the adversarial attack is a delicate issue.
Suppose the circuit contains conditional gates controlled by random public classical
registers. The gates on the target may or may not be applied depending on the
values of the control registers. When the gates are not applied, the associated
time-constraints of the adversarial attack disappear. In the extension to the usual
acyclic circuit model, we consider all possible values of the control registers and
the resulting sets of nontrivial partially ordered operations, and the corresponding
constraints on the adversarial attack.

37. P. Hayden, D. Leung, and D. Mayers. On the composability of quantum message
authentication and key recycling.

38. M. Ben-Or, M. Horodecki, D. Leung, D. Mayers, and J. Oppenheim. The universal
composable security of quantum key distribution. quant-ph/0409078.

39. A. Holevo. Information-theoretical aspects of quantum measurement. Problemy
Peredachi Informatsii, 9(2):31–42, 1973. [A. S. Kholevo, Problems of Information
Transmission, vol. 9, pp. 110-118 (1973)].

Universally Composable Privacy Amplification
Against Quantum Adversaries

Renato Renner and Robert König

Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
{renner, rkoenig}@inf.ethz.ch

Abstract. Privacy amplification is the art of shrinking a partially secret
string Z to a highly secret key S. We show that, even if an adversary
holds quantum information about the initial string Z, the key S obtained
by two-universal hashing is secure, according to a universally composable
security definition. Additionally, we give an asymptotically optimal lower
bound on the length of the extractable key S in terms of the adversary’s
(quantum) knowledge about Z. Our result has applications in quantum
cryptography. In particular, it implies that many of the known quantum
key distribution protocols are universally composable.

1 Introduction

1.1 Privacy Amplification

Consider two parties having access to a common string Z about which an ad-
versary might have some partial information. Privacy amplification, introduced
by Bennett, Brassard, and Robert [10], is the art of transforming this partially
secure string Z into a highly secret key S by public discussion. A good technique
is to compute S as the output of a publicly chosen two-universal hash function1

F applied to Z. Indeed, it has been shown [10, 21, 9] that, if the adversary holds
purely classical information W about Z, this method yields a secure key S and,
additionally, is asymptotically optimal with respect to the length of S. For in-
stance, if both the initial string Z and the adversary’s knowledge W consist of
many independent and identically distributed parts, the number of extractable
key bits roughly equals the conditional Shannon entropy H(Z|W).

The analysis of privacy amplification can be extended to a situation where
the adversary holds quantum instead of only classical information about Z. This
generalizes the classical setting in a non-trivial way. In particular, the adver-
sary might store her quantum information until she learns the hash function
F (which is publicly chosen) and then perform a measurement depending on
F . This might allow her to obtain more information about the function output
(i.e., the resulting key S) than if she had measured her state at the beginning
(independently of F).

1 See Section 2.1 for a definition of two-universal functions.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 407–425, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

408 R. Renner and R. König

1.2 Universal Composability

Cryptographic primitives (such as a secret key or an authentic communication
channel) are often used as components within a larger system (e.g., a system for
secure message transmission usually makes use of a secret key for encryption). It
is thus natural to require that the security of these components is not compro-
mised when they are used in any (arbitrarily complex) scheme. This requirement
is captured by the notion of universal composability. Roughly speaking, a crypto-
graphic primitive is said to provide universally composable security if it is secure
in any arbitrary context. For instance, the universally composable security of a
secret key S guarantees that any bit of S remains secret even if some other part
of S is given to an adversary.

In the past few years, composable security has attracted a lot of interest
and led to important new definitions and proofs (see, e.g., the framework of
Canetti [11] or Pfitzmann and Waidner [27]). Recently, Ben-Or and Mayers [5, 6]
and Unruh [30] have generalized the notion of universal composability to the
quantum world. Universally composable security definitions are usually based on
the idea of characterizing the security of a cryptographic scheme by its distance
to an ideal system which (by definition) is perfectly secure. For instance, a secret
key S is said to be secure if it is close to an independent and almost uniformly
distributed string U . This implies that any cryptosystem which is proven secure
when using a perfect key U remains secure when U is replaced by the (real)
key S.

Unfortunately, most of the existing security definitions in quantum cryptog-
raphy do not provide universal composability. For instance, the security of the
key S generated by a quantum key distribution (QKD) scheme is usually defined
by the requirement that the mutual information between S and the classical out-
come W obtained from an arbitrary measurement of the adversary’s quantum
system be small (for a formal definition, see, e.g., [26] or [18]). This, however,
does not necessarily imply composability. Indeed, an adversary might wait with
the measurement of her quantum state until she learns some of the bits of S,
which possibly allows her to obtain information about the remaining bits (cf.
Section 3).

1.3 Contributions

We address the problem of privacy amplification in a setting where an adversary
holds quantum information. We show that, by two-universal hashing, one can
obtain a key S which is secure according to a universally composable security
definition. This means that, in any context, S is virtually as secure as a perfect
key, i.e., a uniformly distributed string U which is completely independent of
the adversary’s knowledge. This has implications in quantum cryptography. In
particular, since the security of many of the known QKD protocols such as
BB84 [8] or B92 [7] can be proven based on the security of privacy amplification
(cf. [13] and [22], or [23]), it follows immediately from our results that these
protocols provide universal composability (cf. Section 4.5).

Universally Composable Privacy Amplification 409

Our main technical result (Section 4) is an easily computable lower bound on
the length of the extractable key S in terms of (smooth) Rényi entropy (see Sec-
tion 2.4 for a definition of smooth Rényi entropy). The bound is asymptotically
tight if the initial information Z as well as the adversary’s (quantum) knowledge
consist of n independent pieces, for n approaching infinity (Section 4.4).

1.4 Related Work

The problem of privacy amplification against quantum adversaries has first been
studied for the case where the adversary can only store a certain limited number
of qubits. Based on a result on communication complexity [1], Ben-Or [2] argued
that it is possible to extract at least one secret bit from a uniformly distributed
string Z, if Z is sufficiently longer than the size of the adversary’s storage de-
vice. In [22], it is shown that two-universal hashing allows for the extraction of a
secure key S whose length roughly equals the difference between the entropy of
the original string Z and the number of qubits stored by the adversary. The se-
curity definition used in [22] does, however, not provide universal composability.
Simultaneously, Devetak and Winter [15] gave a full analysis of privacy amplifi-
cation for the special case where the initial string Z as well as the adversary’s
information consist of many independent pieces. Interestingly, their result can
be reproduced from our general bound (Section 4.4).

Ben-Or, Horodecki, Leung, Mayers, and Oppenheim [3, 4] were the first to
address the problem of universal composability in the context of QKD. Our
security definition (cf. Definition 3 in Section 3) is essentially equivalent to the
definitions proposed in [3, 4], which are based on the framework developed in [6].
More precisely, if S is ε-secure according to our definition, it satisfies the security
definition of [3] for some parameter ε′ depending on ε. It is thus an immediate
consequence of the results in [3] that our security definition provides universal
composability with respect to the framework of [6].

2 Preliminaries

2.1 Random Functions and Two-Universal Functions

A random function F from X to Y is a random variable taking values from
the set of functions with domain X and range Y. F is called a two-universal
(random) function if Prf←PF

[f(x) = f(x′)] ≤ 1
|Y| , for any distinct x, x′ ∈ X .2 In

particular, F is two-universal if, for any distinct x, x′ ∈ X , the random variables
F (x) and F (x′) are independent and uniformly distributed. For instance, the
random function distributed uniformly over the set of all functions from X to Y
is two-universal. Examples of two-universal functions requiring less randomness
can, e.g., be found in [12] and [31].

2 In the literature, two-universality is usually defined for families F of functions: A
family F is called two-universal if the random function F with uniform distribution
over F is two-universal.

410 R. Renner and R. König

2.2 Density Operators and Random States

LetH be a Hilbert space. We denote by P(H) the set of non-negative (hermitian)
operators ρ on H with tr(ρ) ≤ 1, and call its elements density operators. We
say that ρ ∈ P(H) is normalized if tr(ρ) = 1. A normalized density operator
ρ ∈ P(H) is called pure if it has rank 1, i.e., ρ = P|φ〉 for some vector |φ〉 ∈ H
(where P|φ〉 denotes the projector along |φ〉).

We will be concerned with settings involving both classical and quantum
information. More precisely, we will consider a situation where the state ρx ∈
P(H) of a quantum system depends on the value x of a classical random variable
X with range X . Note that ρX is then itself a random variable with range P(H).
In the following, we call such a random variable with range P(H) a random state
on H, and denote it by a bold symbol ρ. We say that the random state ρ is
normalized if tr(ρ) ≡ 1.

It is often convenient to represent classical information as a state of a quan-
tum system. Let X be a set and let H be a Hilbert space with orthonormal
basis {|x〉}x∈X . The state representation of x ∈ X , denoted {x}, is defined as
the projector along |x〉, i.e., {x} := P|x〉. In particular, for a random variable X
on X , {X} is a random state on H.

Consider a quantum system described by a random state ρ on H, i.e., if
the random variable ρ takes the value ρ, then the system is in state ρ. For an
observer which is ignorant of the value of the random variable ρ, the system is
described by the density operator [ρ] defined as the expectation value of ρ,

[ρ] := E
ρ←Pρ

[ρ] =
∑

ρ∈P(H)

Pρ(ρ)ρ ,

where Pρ is the probability distribution of ρ. More generally, for any event E ,
we define

[ρ|E] := E
ρ←Pρ|E

[ρ] .

Let X be a random variable and let ρ be a random state. The random state
{X} ⊗ ρ then describes a system consisting of both a state representation of X
and a quantum subsystem which is in state ρx := [ρ|X = x] whenever X takes
the value x. The density operator [{X} ⊗ ρ] of the overall system is thus given
by

[{X} ⊗ ρ] = E
x←PX

[
P|x〉 ⊗ ρx

]
=

∑
x∈X

PX(x)P|x〉 ⊗ ρx . (1)

In particular, [{X} ⊗ ρ] = [{X}]⊗ [ρ] if and only if X is independent of ρ.

2.3 Distance Measures and Non-uniformity

The variational distance between two probability distributions P and Q over the
same range X is defined by

δ(P, Q) :=
1
2

∑
x∈X

∣∣P (x)−Q(x)
∣∣ .

Universally Composable Privacy Amplification 411

The variational distance between P and Q can be interpreted as the probability
that two random experiments described by P and Q, respectively, are different.
This is formalized by the following lemma.

Lemma 1. Let P and Q be two probability distributions. Then there exists a
joint probability distribution PXX′ such that PX = P , PX′ = Q, and

Pr
(x,x′)←PXX′

[x �= x′] = δ(P, Q) .

The trace distance between two density operators ρ and σ on the same Hilbert
space H is defined as

δ(ρ, σ) :=
1
2
tr
(
|ρ− σ|

)
.

The trace distance is a metric on the set of density operators P(H). We say
that ρ is ε-close to σ if δ(ρ, σ) ≤ ε, and denote by Bε(ρ) the set of density
operators which are ε-close to ρ, i.e., Bε(ρ) = {σ ∈ P(H) : δ(ρ, σ) ≤ ε}.

The trace distance is subadditive with respect to the tensor product, i.e., for
any ρ, σ ∈ P(H) and ρ′, σ′ ∈ P(H′),

δ(ρ⊗ ρ′, σ ⊗ σ′) ≤ δ(ρ, σ) + δ(ρ′, σ′) , (2)

with equality if ρ′ = σ′ is normalized,

δ(ρ⊗ ρ′, σ ⊗ ρ′) = δ(ρ, σ) . (3)

Moreover, δ(·, ·) cannot increase when the same quantum operation E is ap-
plied to both arguments, i.e.,

δ(E(ρ), E(σ)) ≤ δ(ρ, σ) . (4)

The variational distance can be seen as a (classical) special case of the trace
distance. Let X and Y be random variables. Then the variational distance be-
tween the probability distributions of X and Y equals the trace distance between
the state representations [{X}] and [{Y }], i.e.,

δ(PX ,PY) = δ
(
[{X}], [{Y }]

)
.

In particular, it follows directly from (4) that the trace distance between
two normalized density operators ρ and σ is an upper bound for the variational
distance between the probability distributions PX and PY of the outcomes when
applying the same measurement to ρ and σ, respectively, i.e.,

δ(PX ,PY) ≤ δ(ρ, σ) . (5)

The trace distance between two density operators involving a state represen-
tation of the same classical random variable X can be written as the expectation
of the trace distance between the density operators conditioned on X.

412 R. Renner and R. König

Lemma 2. Let X be a random variable and let ρ and σ be random states. Then

δ
(
[{X} ⊗ ρ], [{X} ⊗ σ]

)
= E

x←PX

[
δ(ρx, σx)

]
where ρx := [ρ|X = x] and σx := [σ|X = x].

Proof. Using (1) and the orthogonality of the vectors |x〉, we can write

δ
(
[{X} ⊗ ρ], [{X} ⊗ σ]

)
=

1
2
tr
(∣∣∣ E

x←PX

[
P|x〉 ⊗ (ρx − σx)

]∣∣∣)
=

1
2
tr
(

E
x←PX

[∣∣P|x〉 ⊗ (ρx − σx)
∣∣]) .

The assertion then follows from the linearity of the trace and the fact that
tr(|P|x〉 ⊗ (ρx − σx)|) = tr(|ρx − σx|). ��

In Section 3, we will see that a natural measure for characterizing the se-
crecy of a key is its trace distance to a uniform distribution. This motivates the
following definition.

Definition 1. Let X be a random variable with range X and let ρ be a random
state. The non-uniformity of X given ρ is defined by

d(X|ρ) := δ
(
[{X} ⊗ ρ], [{U}]⊗ [ρ]

)
where U is a random variable uniformly distributed on X .

Note that d(X|ρ) = 0 if and only if X is uniformly distributed and indepen-
dent of ρ.

2.4 (Smooth) Rényi Entropy

Let ρ ∈ P(H) be a density operator and let α ∈ [0,∞]. The Rényi entropy of
order α of ρ is defined by3

Sα(ρ) :=
1

1− α
log

(
tr(ρα)

)
with the convention Sα(ρ) := limβ→α Sβ(ρ) for α ∈ {0, 1,∞}.4 In particular,
for α = 0, S0(ρ) = log

(
rank(ρ)

)
and, for α = ∞, S∞(ρ) = − log

(
λmax(ρ)

)
where λmax(ρ) denotes the maximum eigenvalue of ρ. Note that, for a classical
random variable X, the Rényi entropy Sα([{X}]) of the state representation of
X corresponds to the (classical) Rényi entropy Hα(X) of X [29].

The notion of ε-smooth Rényi entropy Hε
α has been introduced in [28] for

the classical case, and can be seen as a generalization of (conventional) Rényi

3 All logarithms in this paper are binary.
4 Note that, for this definition, the density operator ρ must not necessarily be nor-

malized.

Universally Composable Privacy Amplification 413

entropy Hα (see Appendix C for a definition). Smooth Rényi entropy is useful
for characterizing basic properties of random variables such as the amount of ex-
tractable randomness or the minimum encoding length. Moreover, it has natural
properties similar to Shannon entropy.

Definition 2 below generalizes classical smooth Rényi entropy Hε
α to density

operators. This quantum version of smooth Rényi entropy will be useful to state
our main results.

Definition 2. Let ρ ∈ P(H) and let ε ≥ 0. The ε-smooth Rényi entropy of
order α of ρ is defined by5

Sε
α(ρ) :=

1
1− α

log
(

inf
σ∈Bε/2(ρ)

(
tr(σα)

))
,

for α ∈ (0, 1) ∪ (1,∞), and Sε
α(ρ) := limβ→α Sε

β(ρ), for α ∈ {0,∞}.

The classical definition of smooth Rényi entropy can be seen as a special case
of Definition 2. In particular, the smooth Rényi entropy Hε

α(X) of a classical
random variable X is equal to the smooth Rényi entropy Sε

α([{X}]) of the state
representation of X. On the other hand, the smooth Rényi entropy of a density
operator ρ can be expressed in terms of the classical smooth Rényi entropy of
its eigenvalues. Formally,

Sε
α(ρ) = Hε

α(P) , (6)

where P is the (not necessarily normalized) probability distribution defined by
the eigenvalues λ1, . . . , λd of ρ, i.e., P (i) = λi, for i ∈ {1, . . . , d}.

It is important to note that equation (6) provides an efficient method for
computing the smooth Rényi entropy Sε

α(ρ) of a given density operator ρ. In
particular, since the smooth Rényi entropy Hε

α(P) of a classical probability dis-
tribution P can be calculated in a simple way (see Appendix C), it is also easy
to compute Sε

α(ρ) if the eigenvalues of ρ are known.
The following lemma is a direct generalization of the corresponding statement

for classical smooth Rényi entropy (see Lemma 15 in Appendix C) saying that
the smooth Rényi entropy Hε

α(Zn) of a random variable Zn consisting of many
independent and identically distributed pieces asymptotically equals its Shannon
entropy H(Zn).

Lemma 3. Let ρ be a normalized density operator. Then, for any α ∈ [0,∞],

lim
ε→0

lim
n→∞

1
n
Sε

α(ρ⊗n) = S(ρ) ,

where S(ρ) denotes the von Neumann entropy of ρ.

5 Recall that Bε/2(ρ) denotes the set of non-negative operators σ ∈ P(H) such that
δ(σ, ρ) ≤ ε

2 , i.e., tr(|σ − ρ|) ≤ ε.

414 R. Renner and R. König

3 Secret Keys and Composability

A very intuitive way of defining the security of a real cryptographic protocol
is to compare it with an ideal functionality. The ideal functionality of a secret
key S is simply an independent and uniformly distributed random variable U (in
particular, U is fully independent of the adversary’s information). This motivates
the following definition.

Definition 3. Let S be a random variable, let ρ be a random state, and let
ε ≥ 0. S is said to be ε-secure with respect to ρ if d(S|ρ) ≤ ε.

Consider a situation where S is used as a secret key and where the adversary’s
information is given by a random state ρ. If S is ε-secure with respect to ρ then it
is guaranteed that this situation is ε-close—with respect to the trace distance—
to an ideal setting where S is replaced by a perfect key U which is uniformly
distributed and independent of ρ. Since the trace distance does not increase when
appending an additional quantum system (cf. (2) or (3)) or when applying any
arbitrary quantum operation (cf. (4)), this also holds for any further evolution
of the system. In particular, it follows from (5) and Lemma 1 that the real and
the ideal setting can be considered to be identical with probability at least 1−ε.

Note that our security definition can be seen as a natural generalization
of classical security definitions based on the variational distance (which is the
classical analogue of the trace distance). Indeed, if the adversary’s knowledge is
purely classical, Definition 3 is equivalent to a security definition as it is, e.g.,
used in [17].

The security of a key S according to Definition 3 implies that S is also secure
according to many of the widely used security definitions in quantum cryptog-
raphy. One of the most popular security requirements for a key S with respect
to an adversary holding information ρ is that S be almost independent of the
classical outcome W resulting from any arbitrary measurement of ρ.6 Obviously,
if a key S is ε-secure with respect to ρ (according to our definition), the prob-
ability distribution PSW is ε-close (with respect to the variational distance) to
a product distribution. Note, however, that the converse is not true: Even if S
and W are almost independent for any measurement of ρ, the quantum state ρ
might still strongly depend on S.

Indeed, security definitions which are formulated in terms of the adversary’s
measurement results W do not necessarily provide universal composability: If it
is only known that a key S is almost independent of the classical outcome W
obtained from measuring the quantum state ρ—for any measurement strategy
chosen independently of S—, one cannot necessarily use S in any arbitrary
cryptosystem, e.g., as a one-time pad. Consider for instance a cryptographic
application where S consists of two parts S1 and S2, and where S is used in such
a way that an adversary learns S1. Hence, the adversary can let the measurement
of her quantum system depend on the specific value of S1. This might provide

6 See, e.g., [26], and the references therein.

Universally Composable Privacy Amplification 415

her with more information about S2 than if she had chosen her measurement
independently of S1.7

4 Main Result
4.1 Theorem and Proof

Consider a situation where an adversary holds quantum information ρ about a
classical string Z. Additionally, let S be a key of length s computed by applying a
(publicly chosen) two-universal function F to Z, that is, S := F (Z). Theorem 1
below states that, if the length s is chosen to be sufficiently smaller than s̄ :=
S2([{Z} ⊗ ρ]) − S0([ρ]), then the key S is ε-secure with respect to ρ (for ε de-
creasing exponentially fast in the difference s̄− s). In other words, a two-universal
function F can be used to turn a partially secure string Z into a highly secure key
S of length roughly s̄. In Section 4.3, we will discuss this application in more detail.

Theorem 1. Let Z be a random variable with range Z, let ρ be a random state,
and let F be a two-universal function from Z to S = {0, 1}s which is independent
of Z and ρ. Then

d(F (Z)|{F} ⊗ ρ) ≤ 1
2
2− 1

2 (S2([{Z}⊗ρ])−S0([ρ])−s) .

Let us state some technical lemmas to be used for the proof of Theorem 1.

Lemma 4. Let Z be a random variable with range Z, let ρ be a random state,
and let F be a random function on Z which is independent of Z and ρ. Then

d(F (Z)|{F} ⊗ ρ) = E
f←PF

[d(f(Z)|ρ)] .

Proof. Let U be a random variable uniformly distributed on the range of F and
independent of F and ρ. Then

d(F (Z)|{F} ⊗ ρ) = δ ([{F (Z)} ⊗ ρ⊗ {F}], [{U} ⊗ ρ⊗ {F}]) .

Now, applying Lemma 2 to the random states {F (Z)}⊗ρ and {U}⊗ρ gives
the desired result since

[{F (Z)} ⊗ ρ|F = f] = [{f(Z)} ⊗ ρ]
[{U} ⊗ ρ|F = f] = [{U}]⊗ [ρ] ,

which holds because F is independent of Z, ρ, and U . ��

7 The effect of side information on the maximum classical correlation that can be
obtained by measurements has been studied in different contexts [16, 19]. A simple
example which demonstrates that classical information is indeed helpful for choosing
a “good” measurement is as follows: Let S1 and S2 be random bits and let ρ be the
state of a two-dimensional quantum system obtained by encoding the bit S2 using
either the rectilinear basis (if S1 = 0) or the diagonal basis (if S1 = 1). Clearly, if
S1 is known, S2 can easily be determined by applying the appropriate measurement
to ρ. On the other hand, the probability of correctly guessing S2 from the outcome
of any measurement chosen independently of S1 is bounded away from 1.

416 R. Renner and R. König

The following lemmas can most easily be formalized in terms of the square
of the Hilbert-Schmidt distance. For two density operators ρ and σ, let

Δ(ρ, σ) := tr
(
(ρ− σ)2

)
.

Moreover, for a random variable X and a random state ρ, we define

D(X|ρ) := Δ([{X} ⊗ ρ], [{U}]⊗ [ρ])

where U is a random variable uniformly distributed on X .

Lemma 5. Let ρ and σ be two density operators on H. Then

δ(ρ, σ) ≤ 1
2

√
rank(ρ− σ) ·Δ(ρ, σ) .

Proof. The assertion follows directly from Lemma 11 (cf. Appendix A) and the
definition of the distance measures δ(·, ·) and Δ(·, ·). ��

Lemma 6. Let X be a random variable with range X and let ρ be a random
state. Then

d(X|ρ) ≤ 1
2
2

H0(X)+S0([ρ])
2

√
D(X|ρ) .

Proof. Note that the rank of [{X}⊗ρ]−[{U}]⊗[ρ] is bounded by 2H0(X)+S0([ρ]).
The assertion thus follows as an immediate consequence of the definitions and
Lemma 5. ��

Lemma 7. Let X be a random variable with range X and let ρ be a random
state. Then

D(X|ρ) = tr
((∑

x∈X
PX(x)2ρ2

x

)
− 1
|X | [ρ]2

)
where ρx := [ρ|X = x], for any x ∈ X .

Proof. From (1) and the fact that tr(P|x〉P|x′〉) = δx,x′ (where δx,x′ is the Kro-
necker delta which equals 1 if x = x′ and 0 otherwise), we find

D(X|ρ) = tr

((∑
x∈X

PX(x)P|x〉 ⊗ ρx −
1
|X |

∑
x∈X

P|x〉 ⊗ [ρ]
)2

)

= tr
(∑

x∈X

(
PX(x)ρx −

1
|X | [ρ]

)2
)

= tr
(∑

x∈X
PX(x)2ρ2

x −
2
|X | [ρ]

∑
x∈X

PX(x)ρx +
1
|X | [ρ]2

)
.

Inserting the identity
[ρ] =

∑
x∈X

PX(x)ρx

concludes the proof. ��

Universally Composable Privacy Amplification 417

Lemma 8. Let Z be a random variable, let ρ be a random state, and let F be
a two-universal function on Z chosen independently of Z and ρ. Then

E
f←PF

[
D(f(Z)|ρ)

]
≤ 2−S2([{Z}⊗ρ]) .

Proof. Let us define ρz := [ρ|Z = z] for every z ∈ Z and let S be the range of
F . With Lemma 7, we obtain

E
f←PF

[
D(f(Z)|ρ)

]
= tr

(
E

f←PF

[∑
s∈S

Pf(Z)(s)2[ρ|f(Z) = s]2
])
− 1
|S| tr([ρ]2) ,

(7)

where we have used the linearity of the trace. Note that

Pf(Z)(s) · [ρ|f(Z) = s] =
∑

z∈f−1({s})

PZ(z)ρz .

Using this identity and rearranging the summation order, we get∑
s∈S

Pf(Z)(s)2[ρ|f(Z) = s]2 =
∑

z,z′∈Z
PZ(z)PZ(z′)ρzρz′δf(z),f(z′) .

Taking the expectation value over the random choice of F then gives

E
f←PF

[∑
s∈S

Pf(Z)(s)2[ρ|f(Z) = s]2
]
=
∑

z,z′∈Z
PZ(z)PZ(z′)ρzρz′ Pr

f←PF

[f(z) = f(z′)] .

Similarly, we obtain

[ρ]2 =
∑

z,z′∈Z
PZ(z)PZ(z′)ρzρz′ .

Inserting this into (7), we get

E
f←PF

[D(f(Z)|ρ)] =
∑

z,z′∈Z
PZ(z)PZ(z′)

(
Pr

f←PF

[f(z) = f(z′)]− 1
|S|

)
tr(ρzρz′) .

As we assumed that F is two-universal, all summands with z �= z′ are not
larger than zero and we are left with

E
f←PF

[D(f(Z)|ρ)] ≤
∑
z∈Z

PZ(z)2tr(ρ2
z) = tr

(
[{Z} ⊗ ρ]2

)
from which the assertion follows by the definition of the Rényi entropy S2. ��
Proof (Theorem 1). Using Lemma 4 and Lemma 6, we get

d(F (Z)|{F} ⊗ ρ) = E
f←PF

[d(f(Z)|ρ)]

≤ 1
2
2

s+S0([ρ])
2 E

f←PF

[
√
D(f(Z)|ρ)]

≤ 1
2
2

s+S0([ρ])
2

√
E

f←PF

[D(f(Z)|ρ)] ,

418 R. Renner and R. König

where the last inequality follows from Jensen’s inequality and the convexity of
the square root. Applying Lemma 8 concludes the proof. ��

4.2 A Bound in Terms of Smooth Rényi Entropy

The goal of this section is to reformulate Theorem 1 in terms of smooth Rényi en-
tropy (cf. Corollary 1 below). Since, e.g., S0([ρ]) is generally larger than Sε

0([ρ]),
this gives a better bound on the length of the extractable key. Indeed, for the
situation where Z and ρ are obtained from many repetitions of the same ran-
dom experiment, the bound in terms of smooth Rényi entropy is asymptotically
optimal (cf. Section 4.4), which is not true if conventional Rényi entropy is used
instead.

The following derivation is based on the idea that, for any normalized density
operator ρ with smooth Rényi entropy Sε

α(ρ), there exists a (not necessarily
normalized) density operator ρ′ which is ε-close to ρ such that the (conventional)
Rényi entropy of ρ′, Sα(ρ′), is equal to Sε

α(ρ).8

Lemma 9. Let X be a random variable and let ρ be a normalized random state.
Then, for any ε ≥ 0, there exists a random variable X ′ and a random state ρ′

with δ([{X ′} ⊗ ρ′], [{X} ⊗ ρ]) ≤ 2
√

ε such that, for any α > 1,

Sα([{X ′} ⊗ ρ′])− S0([ρ′]) ≥ Sε
α([{X} ⊗ ρ])− Sε

0([ρ]) .

Proof. Let P be the projector onto the minimum subspace which corresponds
to eigenvalues of [ρ] with total weight (at least) 1− ε, i.e.,

tr(P [ρ]P †) ≥ 1− ε . (8)

It is easy to verify that log
(
rank(P)

)
= Sε

0([ρ]). Similarly, there exists a
random variable X ′ and a random state σ with tr([σ]) ≤ tr([ρ]) = 1 such that

Sα([{X ′} ⊗ σ]) = Sε
α([{X} ⊗ ρ])

and
δ([{X ′} ⊗ σ], [{X} ⊗ ρ]) ≤ ε

2
. (9)

Let ρ′ be the random state defined by ρ′ := PσP †. Then,

S0([ρ′]) ≤ log
(
rank(P)

)
= Sε

0([ρ])

and by Lemma 14 (see Appendix B), since [{X ′} ⊗ ρ′] is the projection of
[{X ′} ⊗ σ] (with respect to the projection operation (id⊗ P)),

Sα([{X ′} ⊗ ρ′]) ≥ Sα([{X ′} ⊗ σ]) = Sε
α([{X} ⊗ ρ]) .

It thus remains to be shown that

δ([{X ′} ⊗ ρ′], [{X} ⊗ ρ]) ≤ 2
√

ε . (10)

8 Note that Sα(ρ′) is also defined for density operators ρ′ with tr(ρ′) < 1.

Universally Composable Privacy Amplification 419

Since the trace distance cannot increase when applying the projection P
(cf. (4)), we obtain from (9)

tr
(∣∣P [σ]P † − P [ρ]P †∣∣) = 2δ(P [σ]P †,P [ρ]P †) ≤ 2δ([σ], [ρ]) ≤ ε .

Hence, with (8),

tr([ρ′]) = tr([PσP †]) ≥ tr([PρP †])− tr
(∣∣P [ρ]P † − P [σ]P †∣∣) ≥ 1− 2ε

and thus, from Lemma 12 (cf. Appendix A),

δ([{X ′}⊗ρ′], [{X ′}⊗σ]) ≤
√

tr([σ])(tr([σ])− tr([ρ′])) ≤
√

1− tr([ρ′]) ≤
√

2ε .

Using once again (9) and applying the triangle inequality for the trace dis-
tance implies (10) and thus concludes the proof. ��

Using Lemma 9, the following corollary of Theorem 1 follows directly from
the triangle inequality for the trace distance.

Corollary 1. Let Z be a random variable with range Z, let ρ be a normalized
random state, let F be a two-universal function from Z to S = {0, 1}s which is
independent of Z and ρ, and let ε ≥ 0. Then

d(F (Z)|{F} ⊗ ρ) ≤ 1
2
2− 1

2 (Sε
2([{Z}⊗ρ])−Sε

0([ρ])−s) + 4
√

ε .

Note that the smooth Rényi entropies occurring in the bound of Corollary 1
can easily be computed from the eigenvalues of the density operators [{Z} ⊗ ρ] =∑

z PZ(z)P|z〉⊗ρz and [ρ] =
∑

z PZ(z)ρz, where ρz = [ρ|Z = z] (cf. Section 2.4).

4.3 Privacy Amplification Against Quantum Adversaries

We now apply the results of the previous section to show that privacy amplifi-
cation by two-universal hashing is secure (with respect to the universally com-
posable security definition of Section 3) against an adversary holding quantum
information. Consider two distant parties which are connected by an authentic,
but otherwise fully insecure classical communication channel. Additionally, they
have access to a common random string Z about which an adversary has some
partial information represented by the state ρ of a quantum system. The two
legitimate parties can apply the following simple privacy amplification protocol
to obtain a secure key S of length s. Let F be a two-universal random func-
tion from the range of Z to {0, 1}s. First, one of the parties randomly chooses
an instance of F and announces his choice to the other party using the public
communication channel. Then, both parties compute S = F (Z).

Note that, during the execution of this protocol, the adversary might learn
F . The final key S must thus be secure with respect to both {F} and ρ. It is an
immediate consequence of Corollary 1 that, for any ε ≥ 0, the key S generated by
the described privacy amplification protocol is ε-secure with respect to ρ⊗ {F}
if its length s is not larger than

sε = S ε̄
2([{Z} ⊗ ρ])− S ε̄

0([ρ])− 2 log(1/ε) , (11)

where ε̄ = (ε/8)2.

420 R. Renner and R. König

4.4 Asymptotic Optimality

We now show that the bound (11) is asymptotically optimal, i.e., that the right
hand side of (11) is (in an asymptotic sense) also an upper bound for the number
of key bits that can be extracted by any protocol. Consider a setting where both
the initial information Z(n) as well as the adversary’s state ρ(n) consist of n
independent pieces, for n ∈ N. Formally, let Z(n) = (Z1, . . . , Zn) and ρ(n) =
ρ1⊗· · ·⊗ρn where the pairs (Zi,ρi) are independent and identically distributed.
Let s(n) be the length of the key S(n) that can be extracted from Z(n) by an
optimal privacy amplification protocol. Using Lemma 3, we conclude from (11)
that

s(n) ≥ H(Z(n)|ρ(n)) + o(n) (12)

where, for any Z and ρ, H(Z|ρ) is defined in terms the von Neumann en-
tropy S(·) by

H(Z|ρ) := S([{Z} ⊗ ρ])− S([ρ]) .

To derive an upper bound for s(n), consider an arbitrary privacy amplifi-
cation protocol for generating a key S(n) from Z(n). Let C(n) be the whole
communication exchanged over the public channel during the execution of the
protocol, and let fC(n) be the function depending on C(n) which describes how
the final key S(n) is computed from Z(n), that is, S(n) = fC(n)(Z(n)).

It is a direct consequence of Definition 3 that the von Neumann entropy of
an ε-secure key S(n) virtually cannot be smaller than its length s(n), i.e.,

s(n) ≤ H(fC(n)(Z(n))|ρ(n) ⊗ {C(n)}) + o(n) . (13)

Using some well-known properties of the von Neumann entropy, it is easy to
see that the quantity H(Z|ρ) can only decrease when applying any function f
to its first argument or when introducing an additional random variable in the
second argument. We thus have

H(fC(n)(Z(n))|ρ(n) ⊗ {C(n)}) ≤ H(Z(n)|ρ(n) ⊗ {C(n)}) ≤ H(Z(n)|ρ(n)) . (14)

Hence, combining (12), (13), and (14), we obtain an expression for the max-
imum number s(n) of extractable key bits,

s(n) = H(Z(n)|ρ(n)) + o(n) .

In particular, the maximum rate R := limn→∞
s(n)

n at which secret key bits
can be generated—from independent realizations of Z about which the adversary
has information given by ρ—is

R = S([{Z} ⊗ ρ])− S([ρ]) = H(Z|ρ) . (15)

This exactly corresponds to the expression for the secret key rate obtained
by Devetak and Winter [15].

In the purely classical case, i.e., if the adversary’s information is given by a
classical random variable W , expression (15) reduces to

Universally Composable Privacy Amplification 421

R = H(ZW)−H(W) = H(Z|W) ,

which is a well known result of Csiszár and Körner [14] (see also [24]).9

4.5 Applications to QKD

Theorem 1 has interesting implications for quantum key distribution (QKD).
Recently, a generic protocol for QKD has been presented and proven secure
against general attacks [13] (see also [23]). Moreover, it has been shown that
many of the known protocols, such as BB84 or B92, are special instances of
this generic protocol, i.e., their security directly follows from the security of the
generic QKD protocol. Since the result in [13] is based on the security of privacy
amplification, the strong type of security implied by Theorem 1 immediately
carries over to this generic QKD protocol. In particular, the secret keys generated
by the BB84 and the B92 protocol satisfy Definition 3 and thus provide universal
composability.

Acknowledgment

The authors would like to thank Ueli Maurer for many inspiring discussions,
and Dominic Mayers as well as anonymous referees for very useful comments.
This project was partially supported by the Swiss National Science Foundation,
project No. 200020-103847/1.

A Some Useful Identities

Lemma 10 (Schur’s inequality). Let A be a linear operator on a d-
dimensional Hilbert space H and let λ1, . . . , λd be its eigenvalues. Then

d∑
i=1

|λi|2 ≤ tr(AA†) ,

with equality if and only if A is normal (i.e., AA† = A†A).

Proof. See, e.g., [20].

Lemma 11. Let A be a normal operator with rank r. Then

tr|A| ≤
√
r
√

tr(AA†) .

9 In the setting of [14], the two parties are connected by a channel which leaks partial
information to an adversary. As shown in [24], the result of [14] also applies if the two
parties are connected by a completely public channel, but start with some common
information Z about which an adversary has partial knowledge W .

422 R. Renner and R. König

Proof. Let λ1, . . . , λr be the r nonzero eigenvalues of A. Since the square root is
concave, we can apply Jensen’s inequality leading to

tr|A| =
r∑

i=1

|λi| =
r∑

i=1

√
|λi|2 ≤

√
r

√√√√ r∑
i=1

|λi|2 .

The assertion then follows from Schur’s inequality (Lemma 10). ��

Lemma 12. Let ρ ∈ P(H) and let P be a projection on H, i.e., P ◦ P = P .
Then, for ρ′ := PρP †,

δ(ρ, ρ′) ≤
√

tr(ρ)(tr(ρ)− tr(ρ′)) .

Proof. We first show that the assertion holds for normalized pure states ρ = P|φ〉.
Since P is a projection, there exist a, b ∈ R with a2 + b2 = 1 and two orthogonal
vectors |α〉, |β〉 with P |α〉 = |α〉 and P |β〉 = 0 such that |φ〉 = a|α〉 + b|β〉. In
particular, ρ′ = a2P|α〉. It then follows by a straightforward calculation that

δ(ρ, ρ′) = δ(Pa|α〉+b|β〉, a
2P|α〉) ≤ b =

√
1− tr(ρ′) .

To prove the assertion for general density operators ρ ∈ P(H), let

ρ =
∑
i∈I

piρi

where, for any i ∈ I, pi ≥ 0 and ρi is a normalized pure state. In particular,∑
i∈I pi = tr(ρ). By linearity, we have

ρ′ =
∑
i∈I

piρ
′
i ,

where ρ′
i := PρiP

†. Hence, using the convexity of the trace distance,

δ(ρ, ρ′) ≤
∑
i∈I

piδ(ρi, ρ
′
i) ≤

∑
i∈I

pi

√
1− tr(ρ′

i) .

The assertion then follows from Jensen’s inequality. ��

B Rényi Entropy and Quantum Operations

The following lemma states that the Rényi entropy of a density operator ρ can
only increase when applying a quantum operation E on ρ.

Lemma 13. Let E : ρ)→
∑

i EiρE
†
i be a doubly stochastic quantum operation on

H, i.e., Ei are linear operators on H satisfying
∑

i E
†
i Ei = id and

∑
i EiE

†
i = id.

Then, for any ρ ∈ P(H) and α ∈ [0,∞],

Sα(E(ρ)) ≥ Sα(ρ) .

Universally Composable Privacy Amplification 423

Proof. See, e.g., [25] (Theorem 5.1 together with Theorem 4.2, applied to the
function Sα).

Lemma 13 can be used to show that, for α > 1, the Rényi entropy of a density
operator ρ can only increase when applying a projector P to ρ.

Lemma 14. Let ρ ∈ P(H) and let P be a projection on H, i.e., P ◦ P = P .
Then, for α > 1,

Sα(PρP †) ≥ Sα(ρ) .

Proof. Consider the quantum operation E defined by

E : ρ)−→ PρP † + (id− P)ρ(id− P)† .

It is easy to verify that E is doubly stochastic. Hence, from Lemma 13,

Sα(ρ′ + ρ′′) ≥ Sα(ρ) ,

where ρ′ := PρP † and ρ′′ := (id−P)ρ(id−P)†. The assertion then follows from
the fact that, because ρ′ and ρ′′ are orthogonal,

tr
(
(ρ′ + ρ′′)α

)
≥ tr

(
(ρ′)α) ,

and the definition of Sα.

C Smooth Rényi Entropy of Classical Distributions

Smooth Rényi entropy has been introduced in [28] as a generalization of Rényi
entropy. For any set Z, let P̄(Z) be the set of non-negative functions P on Z
such that

∑
z∈Z P (z) ≤ 1, i.e., P̄(Z) contains all (not necessarily normalized)

probability distributions on Z. For any P ∈ P̄(Z), let Bε(P) be the set of
functions Q ∈ P̄(Z) such that δ(P, Q) := 1

2

∑
z |P (z)−Q(z)| ≤ ε.

Definition 4. Let P ∈ P̄(Z) and let ε ≥ 0. The ε-smooth Rényi entropy Hε
α(P)

of order α of P is defined by

Hε
α(P) :=

1
1− α

log
(

inf
Q∈Bε/2(P)

(∑
z∈Z

Q(z)α
))

,

for α ∈ (0, 1) ∪ (1,∞), and Hε
α(P) := limβ→α Hε

β(P), for α ∈ {0,∞}.
For a random variable Z with probability distribution PZ , we also write

Hε
α(Z) instead of Hε

α(PZ).

It turns out that, for α < 1, the logarithm on the right hand side of this
definition takes its minimum for the function Q ∈ Bε/2(P) which is obtained
from P by setting the smallest probabilities to zero. Similarly, for α > 1, the
minimum is taken for the function Q obtained by cutting the largest probabilities

424 R. Renner and R. König

of P . The smooth Rényi entropy Hε
α(P) can thus easily be computed from the

probabilities P (z), for z ∈ Z.
Smooth Rényi entropy has many natural properties which are similar to the

properties of Shannon entropy. In particular, the smooth Rényi entropy of many
independent and uniformly distributed random variables is close to the Shannon
entropy.

Lemma 15. Let Z1, . . . , Zn be independent random variables distributed accord-
ing to PZ . Then, for any α �= 1,

lim
ε→0

lim
n→∞

1
n
Hε

α(Z1 · · ·Zn) = H(Z) .

For a discussion of further properties and applications of smooth Rényi en-
tropy, see [28].

References

1. A. Ambainis, L. J. Schulman, A. Ta-Shma, U. Vazirani, and A. Wigderson. The
quantum communication complexity of sampling. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, pages 342–351, 1998.

2. M. Ben-Or. Security of BB84 QKD Protocol. Slides available at http://
www.msri.org/publications/ln/msri/2002/quantumintro/ben-or/2/, 2002.

3. M. Ben-Or, M. Horodecki, D. Leung, D. Mayers, and J. Oppenheim.
Composability of QKD. Slides available at http://www.msri.org/
publications/ln/msri/2002/qip/mayers/1/ (Part II), 2002.

4. M. Ben-Or, M. Horodecki, D. Leung, D. Mayers, and J. Oppenheim. The universal
composable security of quantum key distribution. In Proceedings of TCC 2005,
2005.

5. M. Ben-Or and D. Mayers. Quantum universal composability. Slides available
at http://www.msri.org/publications/ln/msri/2002/quantumcrypto/mayers/
1/banner/01.html, 2002.

6. M. Ben-Or and D. Mayers. General security definition and
composability for quantum & classical protocols. Available at
http://arxiv.org/abs/quant-ph/0409062, 2004.

7. C. H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys-
ical Review Letters, 68(21):3121–3124, 1992.

8. C. H. Bennett and G. Brassard. Quantum cryptography: Public-key distribution
and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, pages 175–179, 1984.

9. C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy
amplification. IEEE Transaction on Information Theory, 41(6):1915–1923, 1995.

10. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

11. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pages 136–145, 2001.

12. J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18:143–154, 1979.

Universally Composable Privacy Amplification 425

13. M. Christandl, R. Renner, and A. Ekert. A generic security proof for quantum key
distribution. Available at http://arxiv.org/abs/quant-ph/0402131, February
2004.

14. I. Csiszár and J. Körner. Broadcast channels with confidential messages. IEEE
Transactions on Information Theory, 24:339–348, 1978.

15. I. Devetak and A. Winter. Distillation of secret key and entanglement from quan-
tum states. Available at http://arxiv.org/abs/quant-ph/0306078, June 2003.

16. D. DiVincenzo, M. Horodecki, D. Leung, J. Smolin, and B. Terhal. Locking classical
correlation in quantum states. Physical Review Letters, 92, 067902, 2004.

17. S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the bounded-
storage model. Journal of Cryptology, 17(1):5–26, 2004. Conference version ap-
peared in Proc. of STOC ’02.

18. D. Gottesman and H.-K. Lo. Proof of security of quantum key distribution with
two-way classical communications. IEEE Transactions on Information Theory,
49(2):457–475, 2003.

19. P. Hayden, D. Leung, P. W. Shor, and A. Winter. Randomizing quantum
states: Constructions and applications Communications in Mathematical Physics,
250(2):371–391, 2004.

20. R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
1985.

21. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-
way functions (extended abstract). In Proceedings of the Twenty-First Annual
ACM Symposium on Theory of Computing, pages 12–24, 1989.

22. R. König, U. Maurer, and R. Renner. On the power of quantum memory. Available
at http://arxiv.org/abs/quant-ph/0305154, May 2003.

23. B. Kraus, N. Gisin, and R. Renner. Lower and upper bounds on the secret
key rate for QKD protocols using one-way classical communication. Available
at http://arxiv.org/abs/quant-ph/0410215, 2004.

24. U. M. Maurer. Secret key agreement by public discussion from common informa-
tion. IEEE Transactions on Information Theory, 39(3):733–742, 1993.

25. M. A. Nielsen. Majorization and its applications to quantum information theory.
Available at http://www.qinfo.org/talks/1999/06-maj/maj.pdf, June 1999.

26. M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information.
Cambridge University Press, 2000.

27. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In 7th ACM Conference on Computer and Communications
Security, pages 245–254. ACM Press, 2000.

28. R. Renner and S. Wolf. Smooth Rényi entropy and applications. In Proceedings of
the 2004 IEEE International Symposium on Information Theory, page 233, 2004.

29. A. Rényi. On measures of entropy and information. In Proceedings of the 4th
Berkeley Symp. on Math. Statistics and Prob., volume 1, pages 547–561. Univ. of
Calif. Press, 1961.

30. D. Unruh. Simulatable security for quantum protocols. Available at
http://arxiv.org/abs/quant-ph/0409125, 2004.

31. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265–279, 1981.

A Universally Composable Secure Channel
Based on the KEM-DEM Framework

Waka Nagao1, Yoshifumi Manabe1,2, and Tatsuaki Okamoto1,2

1 Graduate School of Informatics, Kyoto University,
Yoshida-honmachi, Kyoto, 606-8501 Japan

2 NTT Labs, Nippon Telegraph and Telephone Corporation,
1-1 Hikari-no-oka Yokosuka, 239-0847 Japan

Abstract. For ISO standards on public-key encryption, Shoup introduced the
framework of KEM (Key Encapsulation Mechanism), and DEM (Data Encapsu-
lation Mechanism), for formalizing and realizing one-directional hybrid encryp-
tion; KEM is a formalization of asymmetric encryption specified for key distri-
bution, and DEM is a formalization of symmetric encryption. This paper inves-
tigates a more general hybrid protocol, secure channel, using KEM and DEM,
such that KEM is used for distribution of a session key and DEM, along with
the session key, is used for multiple bi-directional encrypted transactions in a
session. This paper shows that KEM semantically secure against adaptively cho-
sen ciphertext attacks (IND-CCA2) and DEM semantically secure against adap-
tively chosen plaintext/ciphertext attacks (IND-P2-C2) along with secure signa-
tures and ideal certification authority are sufficient to realize a universally com-
posable (UC) secure channel. To obtain the main result, this paper also shows
several equivalence results: UC KEM, IND-CCA2 KEM and NM-CCA2 (non-
malleable against CCA2) KEM are equivalent, and UC DEM, IND-P2-C2 DEM
and NM-P2-C2 DEM are equivalent.

1 Introduction

1.1 Background

Key Encapsulation Mechanism (KEM) is a key distribution mechanism in public-key
cryptosystems, that was proposed by Shoup for ISO standards on public-key encryp-
tion [11].

The difference between KEM and public-key encryption (PKE) is as follows: PKE’s
encryption procedure, on input plaintext M and receiver R’s public-key PKR, out-
puts ciphertext C, while KEM’s encryption procedure, on input receiver R’s public-key
PKR, outputs ciphertext C and key K, where C is sent to R, and K is kept secret inside
the sender, and employed in the subsequent process of data encryption. PKE’s decryp-
tion procedure, on input C and secret-key SKR, outputs plaintext M , while KEM’s
decryption procedure, on input C and secret-key SKR, outputs key K. Although KEM
is a mechanism for key distribution and the applications of KEM are not specified,
the most typical application is hybrid encryption, where a key shared via a KEM is
employed for symmetric-key encryption. Shoup also formulated the symmetric-key en-
cryption as the Data Encapsulation Mechanism (DEM)[11].

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 426–444, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Universally Composable Secure Channel Based on the KEM-DEM Framework 427

Shoup defined the security, “indistinguishable (semantically secure) against adap-
tively chosen-ciphertext attacks,” for KEM and DEM, respectively, (we call them IND-
CCA2-KEM and IND-CCA2-DEM, respectively), and showed that hybrid encryption
(HPKE) implemented by combining KEM with IND-CCA2-KEM and DEM with IND-
CCA2-DEM is a PKE with IND-CCA2-PKE [8, 11]. 1

Since the KEM-DEM hybrid encryption specified by Shoup is one-directional (or
equivalent to public-key encryption in functionality), it is applicable for secure email
and single direction transactions. However, in many secure protocols (e.g., SSL, IPSec,
SSH), asymmetric and symmetric encryption schemes are employed in a different man-
ner as a secure channel such that an asymmetric encryption scheme is used for distribu-
tion of a session key while a symmetric encryption scheme with the session key is used
for many bi-directional encrypted transactions in a session.

The KEM-DEM framework can be modified for such a hybrid usage, secure chan-
nel; KEM can be used for key distribution of a session key and DEM with the ses-
sion key is used for secure communications in a session. Since the KEM-DEM frame-
work will be standardized in a near future, it is a promising way to employ the above-
mentioned modified KEM-DEM framework to realize a secure channel. However, no
research has been done on the security requirements of KEM and DEM such that a se-
cure channel based on the modified KEM-DEM framework can guarantee a sufficient
level of security, although KEM with IND-CCA2-KEM and DEM with IND-CCA2-
DEM have been shown to be sufficient for an IND-CCA2-PKE single-directional KEM-
DEM-hybrid scheme [8, 11]. That is, we have the following problems:

– What are the security requirements of KEM and DEM to construct a secure chan-
nel?

– How to define the satisfactory level of security of a secure channel? (since it cannot
be characterized by just public-key encryption, but should require more compli-
cated security definition.)

1.2 Our Results

This paper answers the above-mentioned problems:

– This paper shows that KEM with IND-CCA2-KEM and DEM with IND-P2-C2-
DEM along with secure signatures and ideal certification authority are sufficient to
realize a universally composable secure channel.

– We follow the definition of a universally composable secure channel by Canetti
and Krawczyk [6]. There are two major merits in using the universal composability
paradigm. Firstly, the paradigm provides a clear and unified (or standard) approach
to defining the security of any cryptographic functionality including a secure chan-
nel. Second, our concrete construction of a secure channel based on the KEM-DEM

1 Originally, the notion of IND-CCA2 was defined for PKE. The way to provide analogous def-
initions and to use the same name, “indistinguishable (semantically secure) against adaptively
chosen-ciphertext attacks”, for KEM and DEM follows that of [8]. In this paper, however,
we explicitly distinguish them by the terms, IND-CCA2-PKE, IND-CCA2-KEM, and IND-
CCA2-DEM.

428 W. Nagao, Y. Manabe, and T. Okamoto

framework guarantees not only stand-alone security but also universal composable
security. Since a secure protocol like SSL, IPSec and SSH is often employed as an
element of a large-scale security system, the universal composability of a secure
protocol is especially important.

In order to obtain the above-mentioned main result, we firstly show that UC KEM,
IND-CCA2 KEM and NM-CCA2 KEM are equivalent, and that UC DEM, IND-P2-
C2 DEM and NM-P2-C2 DEM are equivalent. We then present that UC KEM and
UC KEM as well as UC signatures and ideal certification authority are sufficient for
realizing a UC secure channel.

Although in this paper we consider only protocols for a single session, the same
result for the multi-session case is obtained automatically via the UC with joint state
(JUC) [7].

1.3 Related Works

Canetti and Krawczyk [6] showed a UC secure channel protocol consisting of an au-
thenticated Diffie-Hellman key exchange scheme, message authentication code, and
pseudorandom generator. Accordingly, their results are specific to their construction,
which uses an authenticated Diffie-Hellman key exchange scheme, message authenti-
cation code and pseudorandom generator. Our result is based on the general notions of
KEM, DEM and signatures, but not on any specific scheme.

The equivalence of UC PKE and IND-CCA2 PKE has been suggested by Canetti
[3], and the equivalence of NM-CCA2 PKE and IND-CCA2 PKE has been shown by
Bellare et.al. [1, 2]. The relationship among several security notions of symmetric en-
cryptions has been investigated by Katz and Yung [10]. However, no results have been
reported on the equivalence among UC KEM, IND-CCA2 KEM and NM-CCA2 KEM,
and that among UC DEM, IND-CCA2 DEM and NM-CCA2 DEM.

2 The KEM-DEM Framework

We describe probabilistic algorithms and experiments with standard notations and con-
ventions. For probabilistic algorithm A, A(x1,x2, · · · ; r) is the result of running A that
takes as inputs x1,x2, · · · and coins r. We let y ← A(x1,x2, · · ·) denote the experi-
ment of picking r at random and letting y equal the output of A(x1,x2, · · · ; r). If S is
a finite set, then x ← S denotes the experiment of assigning to x an element uniformly
chosen from S. If α is neither an algorithm nor a set, then x ← α indicates that we
assign α to x. We say that y can be output by A(x1,x2, · · ·) if there is some r such that
A(x1,x2, · · · ; r) = y.

2.1 Key Encapsulation Mechanism

Formally, a key encapsulation mechanism KEM is given by the triple of algorithms
KEM.KeyGen(), KEM.Encrypt(pk, options) and KEM.Decrypt(sk,C0), where:

A Universally Composable Secure Channel Based on the KEM-DEM Framework 429

1. KEM.KeyGen(), the key generation algorithm, is a polynomial time and prob-
abilistic algorithm that takes a security parameter k ∈ N (provided in unary) and
returns a pair (pk, sk) of matching public and secret keys.

2. KEM.Encrypt(pk, options), the encryption algorithm, is a polynomial time and
probabilistic algorithm that takes as input a public key pk, along with an optional
options argument, and outputs a key/ciphertext pair (K, C0). The role of options
is analogous to that in public-key encryption.

3. KEM.Decrypt(sk,C0), the decryption algorithm, is a polynomial time and deter-
ministic algorithm that takes as input secret key sk and ciphertext C0, and outputs
key K or special symbol ⊥ (⊥ implies that the ciphertext was invalid).

We require that for all (pk, sk) output by KEM.KeyGen(1k), and for all C0
output by KEM.Encrypt(pk, options), KEM.Decrypt(sk,C0) = K (|K| is de-
noted KEM.OutputKeyLen — the length of the key output by KEM.Encrypt and
KEM.Decrypt). A function ε : N → R is negligible if for every constant c ≥ 0 there
exists an integer kc such that ε(k) ≤ k−c for all z ≥ kc. We write vectors in boldface,
as in x. We also denote the number of components in x by |x|, and the i-th component
by x[i], so that x = (x[1],· · · ,x[|x|]). Additionally, we denote a component of a vector
as x ∈ x or x �∈ x, which mean, respectively, mean that x is in or is not in the set {
x[i] : 1 ≤ i ≤ |x|}. Such notions provide convenient descriptions. For example, we
can simply write x ← KEM.Decrypt(y) as the shorthand form of 1 ≤ i ≤ | y | do
x[i] ← KEM.Decrypt(y[i]). We will consider relations of amity t where t is polyno-
mial in the security parameter k. Rather than writing R(x1, · · · ,xt) we write R(x,x),
meaning the first argument is special and the rest are bunched into vector x with |x| =
t− 1.

Attack Types of KEM. We state following three attack types of KEM. First, we state
CPA (Chosen Plaintext Attack). CPA is an attack type that an adversary is allowed to
access to only encryption oracle but not decryption oracle. Secondly, we state CCA1
(Chosen Ciphertext Attack). CCA1 is an attack type that an adversary is allowed to
access to both encryption and decryption oracle. However the adversary cannot access
to decryption oracle after getting target ciphertext. Thirdly, we state CCA2 (Adaptive
Chosen Ciphertext Attack). CCA2 is an attack type that an adversary is allowed to
access to both encryption and decryption oracle even if after the adversary gets target
ciphertext.

Indistinguishability of KEM. We use IND-ATK-KEM to describe the security no-
tion of indistinguishability for KEM against ATK ∈ {CPA, CCA1, CCA2}[11]. We
redescribe the security notion of IND-CCA2-KEM by considering following attack sce-
nario. First, the key generation algorithm is run to generate the public and private key
for the protocol. The adversary can get the public key, but not the private key. Secondly,
the adversary generates some queries of plaintexts/ciphertexts and sends the queries to
encryption/decryption oracle. Each oracle encrypts/decrypts the queries and returns the
results of ciphertexts/plaintexts to the adversary. If the algorithm fails, this information
is informed to the adversary, and the attack continues. Thirdly, encryption oracle does
the following:

430 W. Nagao, Y. Manabe, and T. Okamoto

1. Runs the encryption algorithm, generating pair (K∗, C∗
0).

2. Generates a random string K̃ of length KEM.OutputKeyLen.
3. Chooses b ∈ {0, 1} at random.
4. If b = 0, outputs (K∗, C∗

0), otherwise outputs (K̃, C∗
0).

Fourth, the adversary generates plaintexts/ciphertexts to get information from each
oracle on the condition of the ciphertext C0 �= C∗

0 . Finally, the adversary outputs
b̂ ∈ {0, 1}.

Let ΠKEM = (KEM.KeyGen, KEM.Encrypt, KEM.Decrypt) be an encryp-
tion protocol and let A be an adversary. The advantage of ΠKEM for adversary A,
AdvIND-ATK

A,ΠKEM
is defined as follows:

AdvIND-ATK
A,ΠKEM

(k) = |Pr[b̂ = b]− 1
2 |.

ΠKEM is secure in the sense of IND-ATK if AdvIND-ATK
A,ΠKEM

(k) is negligible for any
PPT adversary A.

Non-malleability of KEM. We state formal definition of non-malleability for KEM in
Fig.1 following [1], which we call NM-KEM. We also use NM-ATK-KEM to describe
the security notion of non-malleability for KEM against ATK ∈ {CPA, CCA1, CCA2}.
Let A = (A1,A2) be an adversary. (We state two more definitions in the full paper
version.)

AdvNM-ATK
A,ΠKEM (k) ≡ Pr[ExptNM-ATK

A,ΠKEM (k) = 1] − Pr[Ẽxpt
NM-ATK

A,ΠKEM
(k) = 1]

where
ExptNM-ATK

A,ΠKEM
(k) Ẽxpt

NM-ATK

A,ΠKEM
(k)

(pk, sk)←KEM.KeyGen(1k) (pk, sk)←KEM.KeyGen(1k)
(K, s)←AO1

1 (pk) (K, s)←AO1
1 (pk)

(K∗, C∗
0)←KEM.Encrypt(pk) ∧ K∗∈K K∗←K

(R, C0)←AO2
2 (s, C∗

0) (K̃, C̃0)←KEM.Encrypt(pk) ∧ K̃∈K
K←KEM.Decrypt(sk, C0) (R, C̃0)←AO2

2 (s, C̃0)
return 1 iff (C∗

0 �∈ C0) ∧ R(K∗, K) K̃←KEM.Decrypt(sk, C̃0)
return 1 iff (C̃0 �∈ C̃0) ∧ R(K∗, K̃)

and
If ATK = CPA then O1 = ε and O2 = ε.
If ATK = CCA1 then O1 = KEM.Decrypt(sk, ·) and O2 = ε.
If ATK = CCA2 then O1 = KEM.Decrypt(sk, ·) and O2 = KEM.Decrypt(sk, ·).

Fig. 1. NM-KEM Definition

ΠKEM is secure in the sense of NM-ATK-KEM, where ATK∈ {CPA, CCA1, CCA2},
if for every polynomial p(k), A runs in p(k), outputs a valid key space K in p(k), and
outputs relation R computable in p(k), and AdvNM-ATK

A,ΠKEM
(k) is negligible. We insist that

the adversary is unsuccessful if some ciphertext C0[i] does not have a valid decryption
(that is, ⊥ ∈K).

A Universally Composable Secure Channel Based on the KEM-DEM Framework 431

Equivalence Results. We can obtain the equivalence of all three formal definitions and
a following Theorem 1 between IND-CCA2-KEM and NM-CCA2-KEM. (See more
details and proofs in the full paper version.)

Theorem 1. (IND-CCA2-KEM ⇔ NM-CCA2-KEM)
If encryption scheme ΠKEM is secure in the sense of IND-CCA2-KEM, then ΠKEM
is secure in the sense of NM-CCA2-KEM.

2.2 Data Encapsulation Mechanism

Formally, a data encapsulation mechanism DEM is given by a pair of algorithms DEM.
Encrypt(K,M) and DEM.Decrypt(K, C), where:

1. The encryption algorithm DEM.Encrypt(K, M) takes as input a secret key K,
and a plaintext M . It outputs a ciphertext C. Here, K, M and C are byte strings,
and M may have arbitrary length, and K’s length is DEM.KeyLen.

2. The decryption algorithm DEM.Decrypt(K, C) takes as input secret key K and
ciphertext C. It outputs plaintext M .

DEM must satisfy the soundness, DEM.Decrypt(K, DEM.Encrypt(K, M))
= M .

Attack Types of DEM. We state following six attack types of DEM. In the first, we
consider the first three attack types, these are for access to encryption oracle. First,
we state P0, that is an attack type with no access to encryption oracle by adversary.
Secondly, we state P1 (Chosen Plaintext Attack). P1 is an attack type with access to
encryption oracle. However the adversary cannot access to encryption oracle after get-
ting target ciphertext. Thirdly, we state P2 (Adaptive Chosen Plaintext Attack). In this
type, an adversary can access to encryption oracle even if after the adversary gets target
ciphertext. Moreover, we consider the last three attack types, these are for access to
decryption oracle. First, we state C0, that is an attack type with no access to decryp-
tion oracle by adversary. Secondly, we state C1 (Chosen Ciphertext Attack). C1 is an
attack type with access to decryption oracle. However the adversary cannot access to
decryption oracle after getting target ciphertext. Thirdly, we state C2 (Adaptive Chosen
Ciphertext Attack). In this type, an adversary can access to decryption oracle even if
after the adversary gets target ciphertext.

Indistinguishability of DEM. We state formal definition of indistinguishability for
DEM in Fig.2 following [10], which we call IND-DEM. We also use IND-PX-CY-
DEM to describe the security notion of indistinguishability for DEM against ATK ∈
{CPA, CCA1, CCA2}.

Let ΠDEM = (DEM.Encrypt,DEM.Decrypt) be an encryption scheme over
message space M and let A = (A1, A2) be an adversary. We insist that A1(1k) out-
puts {x0, x1} ∈M with |x0| = |x1|, where k is security parameter. Furthermore, when
Y = 2, we insist that A2 does not ask for the decryption of challenge ciphertext y.

ΠDEM is secure in the sense of IND-PX-CY for {X, Y} ∈ {0, 1, 2} ifAdvIND-PX-CY
A,ΠDEM

(·) is negligible for any PPT adversary A.

432 W. Nagao, Y. Manabe, and T. Okamoto

AdvIND-PX-CY
A,ΠDEM (k) ≡ 2 · Pr[ExptIND-PX-CY

A,ΠDEM (k)] − 1

where ExptIND-PX-CY
A,ΠDEM

(k)

K←{0, 1}k; (x0, x1, s)←A
O1,O′

1
1 (1k); b ← {0, 1}; y←DEM.Encrypt(K, xb);

g←A
O2,O′

2
2 (1k, s, y); return 1 iff g = b

and
If X = 0 then O1(·) = ε and O2(·) = ε.
If X = 1 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = ε.
If X = 2 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = DEM.Encrypt(K, ·).
If Y = 0 then O′

1(·) = ε and O′
2(·) = ε.

If Y = 1 then O′
1(·) = DEM.Decrypt(K, ·) and O′

2(·) = ε.
If Y = 2 then O′

1(·) = DEM.Decrypt(K, ·) and O′
2(·) = DEM.Decrypt(K, ·).

Fig. 2. IND-DEM Definition

Non-malleability of DEM. We state formal definition of non-malleability for DEM in
Fig.3 following Bellare[2] and Katz[10], which we call NM-DEM. We also use NM-

AdvNM-PX-CY
A,ΠDEM (k) ≡ Pr[ExptNM-PX-CY

A,ΠDEM (k) = 1] − Pr[Ẽxpt
NM-PX-CY

A,ΠDEM
(k) = 1]

where
ExptNM-PX-CY

A,ΠDEM
(k) Ẽxpt

NM-PX-CY

A,ΠDEM
(k)

K←{0, 1}k K←{0, 1}k

(M, s)←A
O1,O′

1
1 (1k) (M, s)←A

O1,O′
1

1
x←M (x, x̃)←M
y←DEM.Encrypt(K, x) ỹ←DEM.Encrypt(K, x̃)
(R, y)←A

O2,O′
2

2 (s, y) (R, ỹ)←A
O2,O′

2
2 (s, ỹ)

x←DEM.Decrypt(K, y) x̃←DEM.Decrypt(K, ỹ)
return 1 iff (y �∈ y) ∧ R(x, x) return 1 iff (ỹ �∈ ỹ) ∧ R(x, x̃)

and
If X = 0 then O1(·) = ε and O2(·) = ε.
If X = 1 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = ε.
If X = 2 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = DEM.Encrypt(K, ·).
If Y = 0 then O′

1(·) = ε and O′
2(·) = ε.

If Y = 1 then O′
1(·) = DEM.Decrypt(K, ·) and O′

2(·) = ε.
If Y = 2 then O′

1(·) = DEM.Decrypt(K, ·) and O′
2(·) = DEM.Decrypt(K, ·).

Fig. 3. NM-DEM Definition

A Universally Composable Secure Channel Based on the KEM-DEM Framework 433

PX-CY-DEM to describe the security notion of non-malleability for DEM for {X, Y}
∈ {0, 1, 2}.

In Fig.3, M is a distribution over messages and R is some relation and k is security
parameter. We require that |x| = |x′| for all x, x′ in the support of M . We also require
that the vector of ciphertexts y output by A2 should be non-empty. Furthermore, when
Y = 2, we insist that A2 does not ask for the decryption of y.

ΠDEM is secure in the sense of NM-PX-CY for {X, Y} ∈ {0, 1, 2} ifAdvNM-PX-CY
A,ΠDEM

(k)
is negligible for any PPT adversary A.

We obtain that the two above security notions of DEM yield the following Theorem
2. (Proof is in the full paper version.)

Theorem 2. (NM-P2-C2-DEM ⇔ IND-P2-C2-DEM)
Encryption scheme ΠDEM is secure in the sense of NM-P2-C2 if and only if ΠDEM
is secure in the sense of IND-P2-C2.

3 Universally Composable KEM Is Equivalent to IND-CCA2
KEM

3.1 The Key Encryption Mechanithm Functionality FKEM

We define key encapsulation mechanism (KEM) functionality FKEM in Fig.4. FKEM is
a functionality of KEM-key-generation, KEM-encryption and KEM-decryption. Here
note that there is no functionality of data transmission between parties in FKEM.

3.2 UC KEM Is Equivalent to IND-CCA2 KEM

Let KEM= (KEM.KeyGen,KEM.Encrypt,KEM.Decrypt) be a key encapsula-
tion mechanism. Consider the following transformation from KEM to protocol πKEM
that is constructed for realizing FKEM :

1. Upon input (KEM.KeyGen, sid) within some party Pj , Pj obtains the public key
pk and secret key sk by running the algorithm KEM.KeyGen(), then outputs
(KEM Key, sid, pk).

2. Upon input (KEM.Encrypt, sid, pk′) within some partyPi,Pi obtains pair (K∗, C0
∗)

of a key and a ciphertext by running the algorithm KEM.Encrypt(pk′) and out-
puts (Encrypted Shared Key, sid, pk′, K∗, C0

∗). (Note that it does not necessarily
hold that pk′= pk).

3. Upon input (KEM.Decrypt, sid, C0
∗) within Pj , Pj obtains K∗ = KEM.Decrypt

(sk, C0
∗) and output (Shared Key, sid, K∗).

Theorem 3. πKEM securely realizes FKEM with respect to non-adaptive adversaries if
and only if KEM is indistinguishable against adaptive chosen ciphertext attacks (IND-
CCA2 KEM).

Proof. (“only if” part) Because NM-CCA2-KEM equals to IND-CCA2-KEM by The-
orem 1, we prove that if πKEM is not NM-CCA2-KEM secure, then πKEM does not

434 W. Nagao, Y. Manabe, and T. Okamoto

Functionality FKEM

FKEM proceed as follows, running with parties P1, . . . , Pn and an adversary S.

KEM.KeyGen
In the first activation, expect to receive (KEM.KeyGen, sid) from some party Pj . Then,

1. Send (KEM.KeyGen, sid) to S.
2. Upon receiving (KEM Key, sid, pk) from S, send (KEM Key, sid, pk) to Pj .
3. If this is the first activation then record the pair (Pj , pk), otherwise pk is discarded.

KEM.Encrypt
Upon receiving (KEM.Encrypt, sid, pk′) from some party Pi, proceed as follows:

– Check the memory, if pk′ = pk, and if Pj is not corrupted, then proceeds as follows:
1. Send (KEM.Encrypt, sid, pk′) to S.
2. Receive (Encrypted Shared Key, sid, pk′, C0) from S.
3. If C0 is stored in memory then halt.

4. Choose Shared Key K
R←− {0, 1}∗ randomly.

5. Send (Encrypted Shared Key, sid, pk′, K, C0) to Pi.
6. Store the pair (K, C0) in memory.

– Otherwise (includes pk′ �= pk or pk is not yet recorded, or Pj is corrupted),
1. Send (KEM.Encrypt with Key, sid, pk′) to S.
2. Receive (Encrypted Shared Key, sid, pk′, K, C0) from S.
3. Send (Encrypted Shared Key, sid, pk′, K, C0) to Pi.

KEM.Decrypt
Upon receiving (KEM.Decrypt, sid, C′

0) from Pj (and Pj only), hand (KEM.Decrypt, sid,
C′

0) to S. Upon receiving (Shared Key, sid, K′) from S, proceed as follows:

1. If a pair (K, C′
0) exists in memory, send (Shared Key, sid, K) to Pj .

2. Otherwise, send (Shared Key, sid, K′) to Pj .

Fig. 4. The Key Encapsulation Mechanism Functionality

securely realize FKEM. More details, we prove that we can construct an environment
Z and a real life adversary A such that for any ideal process adversary (simulator) S,
Z can tell whether it is interacting with A and πKEM or with S in the ideal process for
FKEM by using the adversary G that breaks NM-CCA2-KEM.

Z proceeds as follows:

1. Activates key receiver Pj with (KEM.KeyGen, sid), and obtains pk.
2. Activates Pi with (KEM.Encrypt, sid, pk), and obtains (K∗, C0

∗).
3. Activates G with pk and C0

∗, obtains (R, C0), where R is some relation.
4. Activates Pj with (KEM.Decrypt, sid, C0[i]) for each i, and obtains K′[i].
5. Return 1 iff R(K∗,K′).

When Z interacts with A and πKEM, Z obtains corresponding pair (K∗, C0
∗) in

Step 2. In this case, Z returns 1 in Step 5. On the other hand, Z interacts with S in the

A Universally Composable Secure Channel Based on the KEM-DEM Framework 435

ideal process for FKEM, Z obtains non-corresponding pair (K�, C0
∗) in Step 2, where

K� R←− {0, 1}∗ by FKEM and C0
∗ is generated by S. For C0

∗, G successfully obtains
(R, C0). However Z cannot output 1 in Step 5 because there is no relation R(K�,K′).

(“if” part) We show that if πKEM does not securely realize FKEM, then πKEM is
not IND-CCA2-KEM. More details, we assume that for any simulator S there is an
adversary and an environment Z that can distinguish with non-negligible probability
whether it interacts with S in the ideal process for FKEM or with parties running πKEM
and the adversary A in the real-life world. Then we prove that πKEM is not IND-CCA2-
secure by using the distinguishable environment Z.

We will show that Z can distinguish only when receiver Pj is not corrupted. We
discuss all the cases as follows.

(Case 1: Receiver Pj is corrupted.) In this case, we can make simulator S such that
the environment Z cannot distinguish the real life world from the ideal process world.
Once A corrupts Pj , simulator S corrupts dummy party P̃j . However receiver Pi is not
corrupted, that is, Pi is honest. Simulator S proceeds as follows:

1. When S receives (KEM.KeyGen, sid), it obtains (pk, sk) by running KEM.KeyGen(),
and returns pk to FKEM.

2. When S receives (KEM.Encrypt with Key, sid, pk), then S generates a correspond-
ing pair (K, C0) and returns C0 to FKEM.

3. When S receives (KEM.Decrypt, sid, C0), S generates key K and returns K to
FKEM.

In this case Z cannot distinguish the real world from the ideal world because S can
reconstruct by using the simulated copy of A. Note that, A can do stopping the protocol
πKEM . Even if this situation happens, Z cannot distinguish the real world from the
ideal world, because S can also stop the protocol.

(Case 2: Pj is not corrupted.) We look at the generated key and ciphertext by Pi in
each world.

– In the real life world, πKEM runs among the honest parties, Pi generates corre-
sponding pair (K∗, C∗

0) by running the algorithm KEM.Encrypt(pk).
– In the ideal process world, when P̃i sends (KEM.Encrypt, sid, pk) to FKEM ,

FKEM obtains C0 from S, and FKEM chooses shared key K
R←− {0, 1}∗ at ran-

dom. Then sends (Encrypted Shared Key, sid, pk, K, C0) to Pi.

It is easily seen that C0 is not concerned to the key K (because FKEM randomly
generates the key K). In the real world, Z obtains the corresponding pair (K∗, C0

∗).
However, in the ideal world, Z obtains the non-corresponding pair (K, C0). Conse-
quently, we can construct environment Z that can distinguish the real world from the
ideal world.

Recall the formal settings, there are three types of messages between Z and A. That
is, Z sends A a message either to corrupt parties, or to report on messages sending, or
to deliver some message. In this protocol, no party corruption occurs during execution
since we consider non-adaptive adversaries. Furthermore, parties don’t send messages
each other. Therefore, there are no request to report on or deliver messages. So, the
way that S affects the output of Z is only the communication via FKEM. As a result, S
proceeds as follows:

436 W. Nagao, Y. Manabe, and T. Okamoto

1. When S receives a message (KEM.KeyGen, sid) from FKEM, it runs the key gen-
eration algorithms KEM.KeyGen(), obtains the public key pk and the secret key
sk, and returns pk to FKEM.

2. When S receives a message (KEM.Encrypt, sid, pk) from FKEM, then it generates
C0 from the output of the algorithm KEM.Encrypt(pk), and returns C0 toFKEM.

3. When S receives a message (KEM.Encrypt with Key, sid, pk) from FKEM, then it
generates key (K, C0) = KEM.Encrypt(pk), and returns (K, C0) to FKEM.

4. When S receives a message (KEM.Decrypt, sid, C0) from FKEM, it obtains K =
KEM.Decrypt(sk,C0) and returns K to FKEM.

We assume that there is an environment Z that can distinguish the interaction in the
real life world from that in the ideal process world. We prove that we can construct an
adversary F that breaks IND-CCA2-KEM by using the distinguishable environment Z.
Precisely, for some value of the security parameter z for Z, we assume that there is
an environment Z such that IDEALF,S,Z(z) - REALπKEM,A,Z(z) > σ, then we show
that F correctly guesses the bit b with probability 1

2 + σ
2l in the CCA2 game, where l is

the total number of times invoking encryption oracle.
F is given a public key pk, and is allowed to query to decryption oracle and en-

cryption oracle. First, F chooses a number h
R←− {1, . . . , l} at random. Secondly, F

simulates Z on the following simulated interaction with a system running πKEM. Let
Ki and C0i denote the i-th key and ciphertext that Z asks to encrypt in this simulation,
respectively.

1. When Z activates some party Pj with (KEM.KeyGen, sid), F lets Pj output the
value pk from F ′s input.

2. For the first h − 1 times that Z asks some party Pi to generate shared key Ki, F
lets Pi return (Ki, C0i) by using algorithm (Ki, C0i) = KEM.Encrypt(pk).

3. The h-th time that Z asks to generate key Kh, F queries its encryption oracle with
pk, then obtains corresponding pair X= (Kh, C0h) or non-corresponding pair X =
(K ′

h, C0h) from encryption oracle. Accordingly, F hands X to Z as the test pair.
4. For the remaining l − h times that Z asks Pi to generate shared key Ki, F lets

Pi return (Ki, C0i), where Ki
R←− {0, 1}∗ randomly and C0 from the output of

algorithm KEM.Encrypt(pk).
5. Whenever Z activates decryptor Pj with (KEM.Decrypt, sid, C0), where C0 = C0i

for some i, F lets Pi return the corresponding key Ki for any i. If C0 is different
from all the C0i’s, then F queries C0 to its decryption oracle, obtains value v, and
lets Pj return v to Z.

6. When Z halts, F outputs whatever Z outputs and halts.

We apply a standard hybrid argument for analyzing the success probability of F . Let
the random variable Di denote the output of Z from an interaction that is identical to
an interaction with S in the ideal process, except that the first i pairs are computed with
correctly generation, and the last pair are computed with non-corresponding generation.
We can see that D0 is identical to the output of Z in the ideal process world, and
Dl is identical to the output of Z in the real life world. (This follows from the fact
that the mechanism KEM guarantees that KEM.Decrypt(sk, C0) = K, where C0 =

A Universally Composable Secure Channel Based on the KEM-DEM Framework 437

KEM.Encrypt(pk), this is called “soundness”.) Furthermore, in the simulation of F , if
the value C0h that F obtains from its encryption oracle is an encryption of Kh then
the output of the simulated Z has the distribution of Dh−1. If C0h does not correspond
to the encryption of the key then the output of the simulated Z has the distribution
of Dh. As discussed above, we can construct attacker F by using the distinguishable
environment Z. We can conclude that if πKEM does not securely realize FKEM, then
πKEM is not IND-CCA2-KEM. ��

4 Universally Composable DEM Is Equivalent to IND-P2-C2
DEM

4.1 The KEM-DEM Functionality FKEM-DEM

We define KEM-DEM functionality FKEM-DEM in Fig.5 and Fig.6. FKEM-DEM is a
functionality of hybrid usage of KEM and DEM, KEM-key-generation, KEM-encryption,
KEM-decryption, DEM-encryption and DEM-decryption. Information obtained in KEM-
encryption and KEM-decryption is transfered to DEM-encryption and DEM-decryption
insideFKEM-DEM. Here note that there is no functionality of data transmission between
parties in FKEM-DEM.

4.2 UC DEM Is Equivalent to IND-P2-C2 DEM

First, we define a protocol πKEM-DEM in Fig.7 that is constructed on an algorithm DEM
= (DEM.Encrypt,DEM.Decrypt) in the FKEM-hybrid model. We say that the un-
derlying DEM is UC secure if and only if πKEM-DEM securely realizes FKEM-DEM in
the FKEM-hybrid model.

Therefore, the following theorem implies that UC DEM is equivalent to IND-P2-C2
DEM.

Theorem 4. Protocol πKEM-DEM securely realizes FKEM-DEM with respect to non-
adaptive adversaries in theFKEM-hybrid model if and only if DEM is indistinguishable
against adaptive chosen plaintext/ciphertext attacks(IND-P2-C2 DEM).

Proof. (sketch) (“only if” part) Because NM-P2-C2-DEM equals to IND-P2-C2-DEM
by Theorem 2, we prove that if πDEM is not NM-P2-C2-DEM secure, then πKEM-DEM
does not securely realize FKEM-DEM in the FKEM - hybrid model. More details, we
prove that we can construct an environment Z and a real life adversary A such that for
any ideal process adversary (simulator) S, Z can tell whether it is interacting with A
and πKEM-DEM or with S in the ideal process for FKEM-DEM by using the adversary
which breaks NM-P2-C2-DEM. Note that A corrupts no party and Z sends no messages
to A. We assume that there exists a successful attacker G for πDEM in the sense of NM-
P2-C2-DEM. Environment Z proceeds as usual, except that Z runs a copy of G.

Z proceeds as above, except that Z runs a simulated copy of G. For more details:

1. Activates key receiver Pj with (KEM.KeyGen, sid), then obtains pk.
2. Activates key encrypter Pi with (KEM.Encrypt, sid, pk), then obtains C0

∗.
3. Activates Pj with (KEM.Decrypt, sid, C0).

438 W. Nagao, Y. Manabe, and T. Okamoto

Functionality FKEM-DEM

FKEM-DEM proceeds as follows, running with parties P1, . . . , Pn and an adversary S.

KEM.KeyGen
In the first activation, expect to receive (KEM.KeyGen, sid) from some party Pj . Then,

1. Send (KEM.KeyGen, sid) to S.
2. Upon receiving (KEM Key, sid, pk) from S, send (KEM Key, sid, pk) to Pj .

KEM.Encrypt
Upon receiving (KEM.Encrypt, sid, pk′) from some party Pi, proceed as follows:

– If an entry (Pi, C, active) is not in memory for any C,
1. Send (KEM.Encrypt, sid, pk′) to S, and receive (Encrypted Shared Key, sid, pk′,

C0) from S.
2. Send (Encrypted Shared Key, sid, pk′, C0) to Pi, and store the pair (pk′, C0) and (Pi,

C0, active) in memory.
– Otherwise, do nothing.

KEM.Decrypt
Upon receiving (KEM.Decrypt, sid, C′

0) from Pj (and Pj only), hand (KEM.Decrypt, sid,
C′

0) to S. Upon receiving ok from S, proceed as follows:

– If an entry (Pj , C, active) is not in memory for any C, send ok to Pj and store the pair
(Pj , C′

0, active) in memory.
– Otherwise, do nothing.

DEM.Encrypt
Upon receiving (DEM.Encrypt, sid, m) from party Pe (e ∈ {i, j} only), proceed as fol-

lows:

– If (Pe, C0, active) is stored in memory.

• If both Pe are uncorrupted, then proceeds as follows:
1. Send (DEM.Encrypt, sid, |m|) to S, where |m| denotes the length of m and

receive (DEM.Ciphertext, sid, c′) from S.
2. Send (DEM.Ciphertext, sid, c′) to Pe, and store the entry (m, c′, C0) in memory.

• Otherwise, proceeds as follows:
1. Send(DEM.Encrypt, sid, m) to S, and receive (DEM.Ciphertext, sid, c′) from

S.
2. Send (DEM.Ciphertext, sid, c′) to Pe, and store the entry (m, c′, C0) in memory.

– Otherwise, do nothing.

Fig. 5. The KEM-DEM Functionality

4. Activates message encrypter Pi with (DEM.Encrypt, sid, m), then obtains c.
5. Activates G on c, obtains (R, c), where R is some relation.
6. Activates Pj with (DEM.Decrypt, sid, c[i]) for each i, and obtains m′[i].
7. Return 1 iff R(m,m′).

A Universally Composable Secure Channel Based on the KEM-DEM Framework 439

Functionality FKEM-DEM (continued)

DEM.Decrypt
Upon receiving (DEM.Decrypt, sid, c′) from Pe (e ∈ {i, j} only), hand (DEM.Decrypt,

sid, c′) to S. Upon receiving (DEM.Plaintext, sid, φ) from S, proceed as follows:

– If an entry (Pe, C, active) exists in memory for some C:
1. If the entry (m, c′, C) is stored in the memory, then send (DEM.Plaintext, sid, m) to

Pj .
2. Else, if Pi and Pj is not corrupted, and if (m, c′, C) doesn’t recorded in the memory,

then store the entry (⊥, c′, C) and send (DEM.Plaintext, sid, ⊥) to Pe.
3. Else, if an entry (⊥, c′, C) is recorded, then send (DEM.Plaintext, sid, ⊥) to Pe.
4. Otherwise, send (DEM.Plaintext, sid, φ) to Pe, and record the entry (φ, c′, C) in

memory.
– Otherwise, do nothing.

Fig. 6. The KEM-DEM Functionality

When Z interacts with A and πKEM-DEM, Z obtains ciphertext c in Step 4. In this
case, Z return 1 in Step 7. Therefore when Z interacts with A and πKEM-DEM , Z
outputs 1 with non-negligible probability. On the other hand, Z interacts with S in
the ideal process for FKEM, Z also obtains ciphertext c in Step 4. For ciphertext c, G
successfully obtains (R, c). However Z cannot output 1 in Step 7 because there is no
relation R(m,m′).

(“if” part) We prove that if πKEM-DEM does not securely realize FKEM-DEM, then
πDEM is not IND-P2-C2-DEM. More details, we assume that there is an adversary A
such that for any simulator S, there is an environment Z can tell with non-negligible
probability whether it is interacting with FKEM-DEM and S in the ideal process world
or with parties running πKEM-DEM and the adversary A in the real life world. Then,
we prove that there is adversary F breaks IND-P2-C2-DEM by using distinguishable
Z. Note that there are three cases of party corruption since we take account of non-
adaptive adversaries.

Recall the formal settings, there are three types of messages between Z and A. That
is, Z sends A a message either to corrupt parties, or to report on messages sending, or
to deliver some message. In this protocol, no party corruption occurs during execution
since we consider non-adaptive adversaries. Furthermore, parties don’t send messages
each other. Therefore, there are no request to report on or deliver messages. In fact,
there is no communication between Z and A at all. So, the way that S affects the output
of Z is only the communication via FKEM-DEM.

We will show that Z can distinguish is only when both sender Pi and receiver Pj

are not corrupted. We discuss all the cases for the following simulator S as follows:

1. When S receives (KEM.KeyGen, sid), S obtains (pk, sk) by running KEM.KeyGen(),
and returns (KEM Key, sid, pk) to FKEM-DEM.

2. When S receives (KEM.Encrypt, sid, pk), S generates a corresponding pair (K,
C0), and returns (Encrypted Shared Key, sid, pk, C0) to FKEM-DEM.

440 W. Nagao, Y. Manabe, and T. Okamoto

Protocol πKEM-DEM

Key Encapsulation Mechanithm KEM

KEM.KeyGen

1. Upon input (KEM.KeyGen, sid), Pj sends (KEM.KeyGen, sid1) to FKEM.
2. Upon receiving (KEM Key, sid1, pk) from FKEM, Pj outputs pk.

KEM.Encrypt
Upon input (KEM.Encrypt, sid, pk) within party Pi,

– If boolean variable active is not set,
1. Pi sends (KEM.Encrypt, sid1, pk) to FKEM.
2. Upon receiving (Encrypted Shared key, sid1, pk, K, C0) from FKEM, then Pi outputs

C0 and stores the key K in memory and sets a boolean variable active in memory.
– Otherwise, do nothing.

KEM.Decrypt
Upon input (KEM.Decrypt, sid, C0) within Pj ,

– If boolean variable active is not set,
1. Pj sends (KEM.Decrypt, sid1, C0) to FKEM.
2. Upon receiving (Shared Key sid1, K), Pj stores K in memory and outputs ok and

sets a boolean variable active in memory.
– Otherwise, do nothing.

Data Encapsulation Mechanithm DEM

DEM.Encrypt
Upon input (DEM.Encrypt, sid, m) from Pe (e ∈ {i, j}), proceeds as follows:

– If the boolean variable is active in Pe’s memory, Pe obtains ciphertext c =
DEM.Encrypt(K, m) and outputs (DEM Ciphertext, sid, c).

– Otherwise do nothing.

DEM.Decrypt
Upon input (DEM.Decrypt, sid, c) from Pe (e ∈ {i, j}), proceeds as follows:

– If the boolean variable is active in Pe’s memory, Pe obtains m = DEM.Decrypt (K, c)
and outputs (DEM Plaintext, sid, m).

– Otherwise do nothing.

Fig. 7. The KEM-DEM Protocol

3. When S receives (KEM.Decrypt, sid, C0), S obtains key K by KEM.Decrypt(sk,
C0), and returns ok to FKEM-DEM.

4. When S receives (DEM.Encrypt, sid, |m|), S generates c′ by output of DEM.Encry
pt(K, 0|m|), and returns (DEM.Ciphertext, sid, c′) to FKEM-DEM.

A Universally Composable Secure Channel Based on the KEM-DEM Framework 441

5. When S receives (DEM.Encrypt, sid, m), S generates c′ by the output of DEM.Enc
rypt(K, m) and returns (DEM.Ciphertext, sid, c′) to FKEM-DEM.

6. When S receives (DEM.Decrypt, sid, c′), S generates φ by DEM.Decrypt(K, c′),
and sends (DEM.Plaintext, sid, φ).

(Case 1: Sender Pi is corrupted.) In this case, once A corrupts Pi, simulator S
corrupts dummy party P̃i. However receiver Pj is not corrupted, that is, Pj is honest.
Environment Z cannot distinguish the real life world from the ideal process world for
the above simulator S because S can reconstruct by using the simulated copy of A. Note
that, A can do stopping the protocol πKEM-DEM. Even if this situation is happened, Z
cannot distinguish the real world from the ideal world, because S can also stop the
protocol.

(Case 2: Receiver Pj is corrupted.) In this case, once A corrupts Pj , simulator S

corrupts dummy party P̃j . However sender Pi is not corrupted, that is, Pi is honest.
Environment Z cannot distinguish the real life world from the ideal process world by
the above simulator S because simulator S can reconstruct by using the simulated copy
of A.

(Case 3: No party is corrupted.) In this case, sender Pi and receiver Pj are not
corrupted i.e., they are honest parties. We look at the generated key and ciphertext by
Pi in each world.

– In the real life world, πKEM-DEM runs among the honest parties, Pi generates c by
running the algorithm DEM.Encrypt(K,m). Note that c is corresponding to m.

– In the ideal process world, FKEM-DEM send (DEM.Encrypt, sid, |m|) to S. Pi

obtains c′ from S via FKEM-DEM. Note that c is non-corresponding to m because
S sees only the length of m.

By applying a hybrid argument similar to the one in the proof of Theorem 3, we can
obtain adversary F that attacks IND-P2-C2-DEM by using the environment Z that can
distinguish the real world from the ideal world. ��

5 A Universally Composable Secure Channel Based on the
KEM-DEM Framework

To realize secure channel functionality, FSC, defined in [4], we define a secure channel
protocol πSC in Fig.8 in the (FKEM-DEM, FSIG, FCA)-hybrid model, where FSIG is a
signature functionality [4], and FCA is certification authority functionality [4]. (Due to
the page limitation, we omit the description of FSIG and FCA. See [4] for the defini-
tions.)

Combining with the previous theorems, the following theorem implies that IND-
CCA2 KEM, IND-P2-C2 DEM, secure signatures and ideal CA are sufficient to se-
curely realize FSC.

Theorem 5. Protocol πSC securely realizes FSC in the (FKEM-DEM, FSIG, FCA)-
hybrid model.

442 W. Nagao, Y. Manabe, and T. Okamoto

Protocol πSC

Session Set-up

1. Upon input (Establish-session, sid, Pj , initiator), Pi sends (KEM.KeyGen, sid1) to
FKEM-DEM, and stores (sid, Pj).

2. Upon receiving (KEM Key, sid1, PKi) from FKEM-DEM, Pi sends (Register, Pi, PKi)
to FCA.

3. Upon input (Establish-session, sid, Pi, responder), Pj sends (Retrieve, Pi) to FCA.
4. Upon receiving (Retrieve, Pi, PKi) from FCA, Pj sends (KEM.Encrypt, sid1, PKi) to

FKEM-DEM, and receives (Encrypted Shared key, sid1, PKi, C0) from FKEM-DEM.
5. Pj sends (KeyGen, (Pj , sid

′)) to FSIG, receives (Verification Key, (Pj , sid
′), PKj).

6. Pj sends (Register, Pj , PKj) to FCA, then sends (Sign, Pj , C0) to FSIG, receives (Sig-
nature, (Pj , sid

′), C0, σ) from FSIG.
7. Pj sends (sid, C0, σ, Pj) to Pi, and set a boolean variable active.
8. Upon receiving (sid, C0, σ, Pj), Pi checks whether (sid, Pj) is stored. If it is not stored,

discard the message. Otherwise, Pi sends (Retrieve, Pj) to FCA and receives (Retrieve,
Pj , PKj), then sends (Verify, (Pj , sid

′), C0, σ, PKj) to FSIG and receives (Verified,
(Pj , sid

′), C0, f). If f is 1 then Pi goes to next step. Else finish the protocol.
9. Pi sends (KEM.Decrypt, sid1, C0) to FKEM-DEM. If ok is returned from FKEM-DEM, set

a boolean variable active.

Data Exchange

1. Upon input (Send, sid, m), to Pe, if Pe is active (i.e., e ∈ {i, j}), Pe sends the message
(DEM.Encrypt, sid1, m) to FKEM-DEM.

2. Upon receiving (DEM.Ciphertext, c) from FKEM-DEM, Pe sends c to Pē.
3. Upon receiving c, if Pē is active (i.e., ē ∈ {i, j}), Pē sends (DEM.Decrypt, sid1, c) to

FKEM-DEM.
4. Pē receives (DEM.Plaintext, m) from FKEM-DEM and outputs m.

Session Ending

1. Upon input (Expire-session, sid), Pe sends (Expire-session, sid) to Pē and erases the
session state (including all keys and local values) and terminates this protocol.

2. Upon receiving (Expire-session, sid), Pē erases the session state (including all keys and
local values) and terminates this protocol.

Fig. 8. The Secure Channel Protocol πSC

Proof. (sketch) Let A be an adversary that interacts with parties running πSC in the
(FKEM-DEM, FSIG, FCA)-hybrid model, and S be an ideal process adversary (simula-
tor) that interacts with the ideal process for FSC. We construct S such that any environ-
ment Z cannot tell whether it is interacting with A in πSC or with S in the ideal process
for FSC. S invokes a simulated copy of A, and proceeds as follows:

1. Inputs from Z are forwarded to A and outputs from A are forwarded to Z.
2. (Simulating the interaction of A in the session set-up) Upon receiving a mes-

sage (sid, Pi, Pj) from FSC (which means that Pi and Pj have set-up a session),

A Universally Composable Secure Channel Based on the KEM-DEM Framework 443

simulates for A the process of exchanging shared key between Pi and Pj . That
is, play functionalities, FCA, FKEM-DEM, FSIG, for A as follows: send to A (in
the name of FKEM-DEM) the message (KEM.KeyGen, sid1,PKi), obtain the re-
sponse (KEM Key, sid1, PKi) fromA; send toA (in the name ofFCA) the message
(Registered, Pi,PKi), obtain the response ok from A; send to A (in the name of
FCA) the message (Retrieve, Pi,Pj), obtain the response ok from A; send to A
(in the name of FKEM-DEM) the message (KEM.Encrypt, sid1,PKi), obtain the
response (Encrypted Shared key, sid1, PKi, C0) from A; send to A (in the name
of FSIG) the message (KeyGen, (Pj , sid

′)), obtain the response (Verification Key,
(Pj , sid

′),PKj) from A; send to A (in the name of FCA) the message (Registered,
Pj ,PKj), obtain the response ok from A; send to A (in the name ofFSIG) the mes-
sage (Sign, (Pj , sid

′), C0), obtain the response (Signature, (Pj , sid
′), C0, σ) from

A; send to A (in the name of FCA) the message (Retrieve, Pj ,Pi), obtain the re-
sponse ok from A; send to A (in the name of FSIG) the message (Verify, (Pj , sid

′),
C0, σ, PKj), obtain the response (Verified, (Pj , sid

′), C0, φ) from A; send to A
(in the name of FKEM-DEM) the message (KEM.Decrypt, sid1, C0,PKi), obtain
the response ok from A.

3. (Simulating the interaction of A in the data exchange) Upon receiving a mes-
sage (sid, Pe, u) (e ∈ {i, j}) from FSC (which means that Pe sent a message of
length u to Pē), simulates for A the process of exchanging shared key between Pi

and Pj . That is, play functionality FKEM-DEM for A as follows: send to A (in the
name of FKEM-DEM) the message (DEM.Encrypt, sid1, |m|), obtain the response
(DEM.Ciphertext, c) from A; send to A (in the name of FKEM-DEM) the message
(DEM.Decrypt, sid1, c), obtain the response (DEM.Plaintext, ψ) from A.

4. (Simulating the interaction of a corrupted party) Simulating the interaction of
a corrupted party can be done by simulating the functionalities and transmissions
in the natural way. So, we omit the precise description here.

5. (Simulating party corruption) When A corrupts a party, S corrupts that party
in the ideal process, and forwards the obtained information to A. This poses no
problem since none of the parties maintains any secret information.

It is straightforward to verify that the simulation is perfect. That is, for any environ-
ment Z and A, it holds that the view of Z interacting with S and FSC is distributed
identically to the view of Z interacting with A and parties running protocol πSC in the
(FKEM-DEM, FSIG, FCA)-hybrid model. ��

6 Conclusion

The KEM-DEM framework is a promising formulation for hybrid encryption based
on symmetric and asymmetric encryption, and will be standardized in ISO in the near
future. This paper studied the possibility of constructing a UC secure channel using
the KEM-DEM framework. We presented that IND-CCA2 KEM and IND-P2-C2 DEM
along with secure signatures and ideal certification authority are sufficient to realize a
UC secure channel. This paper also shows several equivalence results: UC KEM, IND-
CCA2 KEM and NM-CCA2 KEM are equivalent, and UC DEM, IND-P2-C2 DEM and
NM-P2-C2 DEM are equivalent.

444 W. Nagao, Y. Manabe, and T. Okamoto

References

1. M.Bellare, A.Desai, D.Pointcheval, and P.Rogaway, “Relations Among Notions of Security
for Public-Key Encryption Schemes, Crypto’98 LNCS 1462.

2. M.Bellare and A.Sahai, “Non-Malleable Encryption: Equivalence between Two Notions, and
an Indistinguishability-Based Characterisation, Crypto’99 LNCS 1666.

3. R. Canetti, “Universally Composable Security: A New paradigm for Cryptographic Proto-
cols, 42nd FOCS, 2001. Full version available at http://eprint.iacr.org/2000/067.

4. R. Canetti, “Universally Composable Signature, Certification, and Authentication, August,
2004. http://eprint.iacr.org/2003/239/.

5. R. Canetti and H. Krawczyk, “Analysis of Key-Exchange Protocols and Their Use for Build-
ing Secure Channels, Eurocrypt 01, 2001. Full version at http://eprint.iacr.org/2001.

6. R. Canetti and H. Krawczyk, “Universally Composable Notions of Key Exchange and Secure
Channels, Eurocrypt 02, LNCS, Springer, 2002. http://eprint.iacr.org/2002.

7. R. Canetti and T. Rabin, “Universal Composition with Joint State,” Proceedings of Crypto
03, LNCS, Springer, 2003. available at http://eprint.iacr.org/2002.

8. R.Cramer and V.Shoup, “Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack, http://shoup.net/papers/, 2001 Dec.

9. D.Dolev, C.Dwork, and M.Naor, “Non-Malleable Cryptography, 23rd STOC, 1991. Also
Technical Report CS95-27, Weizmann Institute of Science, 1995.

10. J. Katz and M.Yung, “Characterization of Security Notions for Probabilistic Private-Key
Encryption,” to appear. Full version available at http://www.cs.umd.edu/̃ jkatz/.

11. V.Shoup, “A Proposal for an ISO Standard for Public Key Encryption (version 2.1), ISO/IEC
JTC1/SC27, N2563, http://shoup.net/papers/, 2001 Dec.

Sufficient Conditions for
Collision-Resistant Hashing

Yuval Ishai1,�, Eyal Kushilevitz1,��, and Rafail Ostrovsky2,� � �

1 Computer Science Department, Technion, Haifa 32000, Israel
{yuvali, eyalk}@cs.technion.ac.il

2 Computer Science Department, UCLA
rafail@cs.ucla.edu

Abstract. We present several new constructions of collision-resistant
hash-functions (CRHFs) from general assumptions. We start with a sim-
ple construction of CRHF from any homomorphic encryption. Then, we
strengthen this result by presenting constructions of CRHF from two
other primitives that are implied by homomorphic-encryption: one-round
private information retrieval (PIR) protocols and homomorphic one-way
commitments.

Keywords: Collision-resistant hash functions, homomorphic encryption,
private information-retrieval.

1 Introduction

Collision resistant hash-functions (CRHFs)are an important cryptographic prim-
itive. Their applications range from classic ones such as the “hash-and-sign”
paradigm for signatures, via efficient (zero-knowledge) arguments [14, 17, 2], to
more recent applications such as ones relying on the non-black-box techniques
of [1].

In light of the importance of the CRHF primitive, it is natural to study its
relations with other primitives and try to construct it from the most general
assumptions possible. It is known that CRHFs can be constructed from claw-
free pairs of permutations [5] (which in turn can be based on the intractability of
discrete logarithms or factoring) and under lattice-based assumptions [10]. On
the other hand, Simon [20] rules out a black-box construction of CRHF from
one-way permutations; thus, there is not much hope to base CRHF on very
general assumptions involving one-wayness alone.

In practice, when people are in need for CRHFs in various cryptographic
protocols, they often use constructions such as SHA1, MD5 and others. However,

� Partially supported by Israel Science Foundation grant 36/03.
�� Partially supported by BSF grant 2002-354 and by Israel Science Foundation grant

36/03.
� � � Partially supported by BSF grant 2002-354 and by a gift from Teradata, Intel

equipment grant, OKAWA research award and NSF Cybertrust grant.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 445–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

446 Y. Ishai, E. Kushilevitz, and R. Ostrovsky

recent weaknesses found in some of these constructions (such as MD5) [22] only
provide further evidence for the value of theoretically sound constructions.

Our Results. In this paper, we present several new constructions of CRHFs
from general assumptions. We start by describing a simple construction of CRHF
from any homomorphic encryption (HE) scheme. A homomorphic encryption is
a semantically secure encryption in which the plaintexts are taken from a group,
and given encryptions of two group elements it is possible to efficiently compute
an encryption of their sum. For instance, the Goldwasser-Micali scheme [11] is
homomorphic over the group Z2. We note that this notion does not impose
any algebraic structure on the space of ciphertexts, but only on the space of
plaintexts.

We then weaken the above assumption in two incomparable ways. First, we
show how to construct CRHF from any (single-server, sublinear-communication)
one-round PIR protocol [15]. Since PIR is implied by homomorphic encryp-
tion [15, 21, 16], this is indeed a weaker assumption. This result strengthens the
result of [3], that constructs unconditionally hiding commitment (UHC) from
PIR, as it is known that CRHF imply UHC [6, 12].

Second, we obtain a construction of CRHFs from homomorphic one-way com-
mitments (HOWC). Such a commitment does not provide semantic security for
the committed value x but only “one-way” security, guaranteeing that x is hard
to find. For instance, a simple deterministic HOWC is defined by C(x) = gx,
where g is a generator of a group in which finding discrete logarithms is hard.

The relation between the different primitives discussed above is summarized
in Figure 1.

One way to think of our results is the following. It is known how to build
CRHFs from all major (specific) assumptions used in public-key cryptography.
These (specific) assumptions also have an algebraic structure that usually im-
plies homomorphic properties. The results of this work suggest that this is not
a coincidence, establishing a rather general link between “homomorphic” prop-

HE

HOWCPIR

CRHFUHC

Fig. 1. Solid arrows stand for implications shown in this paper. Dashed arrows stand
for implications that were shown in other papers (or that follow directly from the
definition).

Sufficient Conditions for Collision-Resistant Hashing 447

erties and collision resistance. First results in this direction were given in [18];
see below.

Related Work. As mentioned, Damg̊ard [5] shows how to construct CRHFs
based on any claw-free pair of permutations (and based on specific assumptions
such as the hardness of factoring or discrete-log). Russell [19] shows that this
is essentially the best one can do, as the existence of CRHFs is equivalent to
the existence of a related primitive that he terms “claw-free pair of pseudo-
permutations”; this characterization is not satisfactory in the sense that this
primitive is not a well-studied one and its relations with other primitives are not
known. Hsiao and Reyzin [13] consider two variants of the definition of CRHF
(that differ in whether or not the security of the CRHF depends on the secrecy of
the random coins used by the key-generation algorithm) and show some relations
between the two variants. Simon [20] shows, by demonstrating an appropriate
separation oracle, that one-way permutations are unlikely to imply CRHFs (see
[7] for some stronger versions of this result). In contrast with [20], Ogata and
Kurosawa [18] show that a stronger version of one-way permutations, i.e. homo-
morphic one-way permutations, can be used to construct claw-free permutations
and hence also CRHFs. While this result gives an indication for the usefulness
of homomorphic properties for constructing CRHFs, their construction heavily
relies on the function being a permutation; our results, on the other hand, do
not impose such structural constraints on the underlying primitives. To illus-
trate the significance of the extra generality, consider the question of basing
CRHF on lattice-related intractability assumptions. Combining our results with
the lattice-based PIR scheme from [16], we can obtain CRHFs whose security is
based on a standard lattice-related assumption (providing an alternative to [10]).
In contrast, there are no known constructions of one-way permutations (let alone
homomorphic ones) from such assumptions.

Organization. In Section 2, we provide some necessary definitions (in partic-
ular that of CRHF). The first construction of CRHF, presented in Section 3,
is based on the existence of homomorphic encryption. In Sections 4 and 5, we
strengthen this result by describing constructions that are based on (computa-
tional) PIR and on homomorphic one-way commitment (respectively).

2 Preliminaries

We start with a formal definition of collision-resistant hash-functions (CRHFs).
In fact, the definition applies to a family of functions,1 and uses the terminology
of secret-coin CRHFs from [13].

Definition 1. Let �, �′ : IN → IN be such that �(n) > �′(n) and let I ⊆ {0, 1}∗.
A collection of functions {Hs}s∈I is called (secret-coin) collision-resistant hash
family (with index-set I) if the following holds:

1 Speaking of a single collision-resistant is meaningless if one allows the adversary
to be non-uniform.

448 Y. Ishai, E. Kushilevitz, and R. Ostrovsky

1. There exists a probabilistic polynomial-time key-generation algorithm, Gen,
that on input 1k outputs an index s ∈ I (of a function Hs). The function
Hs maps strings of length �(k) to strings of length �′(k).

2. There exists a probabilistic polynomial-time evaluation algorithm that on in-
put s ∈ I, x ∈ {0, 1}�(k) computes Hs(x).

3. Collisions are hard to find. Formally, a pair x, x′ is called a collision for
a function Hs if x �= x′ but Hs(x) = Hs(x′). The collision-resistance re-
quirement states that every probabilistic polynomial-time algorithm B, that
is given input s = Gen(1k), succeeds in finding a collision for the function
Hs with a negligible probability (where the probability is taken over the coin
tosses of both Gen and B).

Remark 1. Various variants of the above definition are possible. For example, one
can consider hash-functions that can be applied to strings of arbitrary length
(and not just to strings of the specified length �(k)); such functions can be
obtained from the more restricted functions, defined above, by using standard
techniques such as block-chaining or hash-trees (where the restricted function is
applied repeatedly); cf. [9–Sec. 6.2.3].

Example 1. Let p be a prime and q be a “large” divisor of p−1. Let h1, h2 ∈ Z∗
p be

two elements of order q. Let Hp,h1,h2(x) = hxL
1 · hxR

2 mod p, where x = (xL, xR)
∈ Zq×Zq, and consider the family of all these functions. Each such function maps
strings of length 2 log q to strings of length log p. An algorithm that can find a
collision for such a function (i.e., x, x′ such that Hp,h1,h2(x) = Hp,h1,h2(x

′)) can
be used to compute the discrete-log DLOGh1(h2) mod p.

3 CRHF from Homomorphic Encryption

In this section, we present the simplest of our constructions. This construction
is based on a stronger assumption than what we use in subsequent sections;
namely, the existence of homomorphic encryption schemes. In fact, we never
use the standard requirement from encryption schemes that decryption can also
be performed in polynomial-time (but just the fact that decryption is possible).
Therefore, we actually work with the weaker assumption that homomorphic com-
mitment exists. Informally speaking, a homomorphic commitment scheme is a
(semantically-secure, perfectly binding, non-interactive) commitment scheme C
(cf., [8–Sec. 4.1.1]) that has the additional property that from commitments
C(x), C(x′) it is possible to compute efficiently a commitment to x + x′, where
+ is the operation of some group G.

Below, we formally define the notion of “homomorphic commitment scheme”.
We stress that this definition is not necessarily the most general definition that
is possible here; instead, it is aimed at the simplicity of the presentation. Later
in the paper, these results are strengthened in various ways.

Definition 2. A (semantically secure) homomorphic commitment scheme con-
sists of a (group-size) function L(k) : IN → IN and a triplet of algorithms
(Gen,Commit,Add) as follows.

Sufficient Conditions for Collision-Resistant Hashing 449

1. Gen is a probabilistic polynomial-time key-generation algorithm; on input
1k it outputs a public-key pk.

2. The commitment algorithm Commit is a probabilistic polynomial-time algo-
rithm that takes input 1k, the public-key pk and a string x which is an
element of the group ZL(k) (where L(k) is a prime); it outputs a string
Commitpk(x) of some length p(k). On one hand, this string hides the
value x; i.e., given Commitpk(x), the value x is semantically secure. (Note
that the notation Commitpk(x) hides the fact that the algorithm Commit
is probabilistic. When we wish to emphasize this fact, we sometimes use
the notation Commitpk(x, ·). In other cases, we may wish to obtain a de-
terministic value by fixing some randomness r to the algorithm Commit;
in such a case we use the notation Commitpk(x, r).) On the other hand,
the commitment is perfectly binding; i.e., given pk, the commitment string
Commitpk(x) uniquely determines x.2

3. The composition algorithm Add is a probabilistic polynomial-time algorithm
that takes input 1k, the public-key pk and two commitments Commitpk(x),
Commitpk(x′) and computes a commitment to x+x′; i.e., Commitpk(x+
x′, r), where + refers to addition operation in the group ZL(k) and r is any
possible randomness for the commitment algorithm, Commit. Finally, we
require that commitments can be re-randomized.3 That is, there is a prob-
abilistic polynomial-time algorithm ReRand that, given any commitment
Commitpk(x, r), outputs a re-randomized commitment distributed accord-
ing to Commitpk(x, ·) (of the same string x).

Example 2. A simple example is the quadratic-residuosity based probabilistic
encryption of [11]; in this case the group that is used is Z2. For an additional
example, consider the ElGamal commitment: Let p be a prime, and let g be
a generator of a subgroup G ⊆ Z∗

p of prime order q in which the discrete-log
problem is “hard”. Let pk = (p, q, g, ga), for some a. The commitment is defined
by Commitpk(x, b) = (gb, gx · gab). Note that by taking the product of two
commitments, i.e. Commitpk(x, b)+Commitpk(x′, b′), we get

(gb, gx ·gab)+(gb′
, gx′ ·gab′

) = (gb+b′
, gx+x′ ·ga(b+b′)) = Commitpk(x+x′, b+b′).

Also note that if we work directly with ElGamal encryption (i.e., with x
instead of gx) then this allows decryption, but the product gives a value that
corresponds to x · x′ rather than to x + x′.

Remark 2. Observe that the definition guarantees also that, for any integer
c ≥ 0, a commitment to cx (i.e., a value Commitpk(cx, r) for some r) can be

2 i.e., for all (x, r), (x′, r′) such that x �= x′, we have Commitpk(x, r) �=
Commitpk(x′, r′); this is the analogue of the (perfect) correctness property in
the terminology of encryption.

3 This requirement, which is standard for most applications of homomorphic en-
cryption, is actually not used in this section but will be needed in Section 5.

450 Y. Ishai, E. Kushilevitz, and R. Ostrovsky

efficiently computed (using repeated doubling) from Commitpk(x) by applying
the algorithm Add O(log2 c) times.

Construction: Given an arbitrary homomorphic commitment scheme, i.e. a
triplet (Gen,Commit,Add), we construct a CRHF family as follows. The key-
generation algorithm of the hash-family Gen′, on input 1k, works by first apply-
ing Gen(1k) to obtain a public-key pk and then choosing at random an n1×n2
matrix M (where n1, n2 are specified below) whose elements are in ZL(k). The
index for the hash-function that Gen′ outputs is s = (pk,Commitpk(M)),
where Commitpk(M) consists of commitments to each of the n1 · n2 elements
of the matrix M . The function Hs, on input x = (x1, . . . , xn2) (where each xi is
l(k)-bit string and l(k) = !log2 L(k)"), is defined as follows:

Hpk,Commitpk(M)(x) def= Commitpk(M · x, r),

where the commitment to M · x can be efficiently computed from s and x using
Add and Remark 2 above. (Here r is the randomness implicitly defined by
this computation.) It remains to prove that collisions are hard to find. Assume
towards a contradiction, that there exists an algorithm B that, given s, finds
(with high probability) a pair x, x′ that forms a collision for Hs; i.e., Hs(x) =
Hs(x′) or alternatively Commitpk(M ·x, r) = Commitpk(M ·x′, r′). It follows,
by the perfect binding property, that M · x = M · x′ or that M(x − x′) = 0.
This contradicts the semantic security of Commit, as we found a vector y in
the kernel of the committed matrix M . According to the semantic security, this
should have been possible only with probability which is very close to the a-priori
probability; if we choose n1 = �k/l(k) then this a-priori probability is at most
1/2k. 4 Finally, the parameter n2 is chosen such that the output of Hs (whose
length is n1 · p(k)) is shorter than its input (whose length is n2 · log2 L(k)).

We summarize the above discussion with the following theorem:

Theorem 1. If there exists a homomorphic commitment scheme then there ex-
ists a family of CRHFs.

To conclude this section, we would like to offer (in an informal manner)
a slightly more general view of the above construction. Assume that we are
given homomorphic commitment scheme, as above, and in addition a linear
MAC. We construct a family of CRHFs as follows. The index of each function
s consists of a public-key for the commitment, pk, and an “encryption” (by
applying Commitpk) of a MAC-key sk. The function Hs(x) is defined by

Hs(x) def= Commitpk(mac(x), r).

As before, computing the commitment to mac(x) can be done (without
knowing the secret-keys) based on the linearity of the MAC and the homo-
morphic properties of the commitment. Now, assume that an adversary can

4 Note that if the group-size is sufficiently large then n1 might be as small as 1.

Sufficient Conditions for Collision-Resistant Hashing 451

efficiently come up with a collision x, x′ such that Commitpk(mac(x), r) =
Commitpk(mac(x′), r′) (for some r, r′). Again, by the perfect binding, it fol-
lows that mac(x) = mac(x′) which contradicts the security of the MAC. Hence,
if the MAC is secure then the only other possibility is that the adversary,
by examining s, could obtain information about the MAC secret-key; this, in
turn, contradicts the security of Commit (which is used to “encrypt” this
key).

4 CRHF from PIR

In this section, we show a construction of CRHFs based on (computationally)
private information retrieval (PIR) schemes. (In fact, our construction can also
use PIR schemes where the user’s reconstruction is unbounded.) Since PIR is
implied by homomorphic encryption [15, 21, 16] (and unbounded PIR by homo-
morphic commitment), this result is stronger than the result presented in Sec-
tion 3. The nature of the construction presented in this section is combinatorial,
as opposed to the algebraic nature of the constructions presented in Section 3
and Section 5.

Definition 3. A (computational, 1-round) PIR scheme is a protocol for two
parties: a user, U , and a server, S. The server holds a database x ∈ {0, 1}n and
the user holds an input i ∈ [n]. The goal of a PIR scheme is for the user to
learn the value of the bit xi while keeping the value of i hidden from the server.
The protocol uses only one round of interaction: U sends to the server a query,
q = query(1n, i, ρ), where ρ is the user’s random input, and it gets in return
an answer a = ans(x, q). The user then applies a reconstruction algorithm rec
to compute xi = rec(a, i, ρ). The 3 algorithms (query(·),ans(·),rec(·)) that
define the PIR scheme are polynomial-time algorithms that should satisfy the
following two requirements:

1. (Correctness) The user always retrieve xi correctly (where the probability is
over the choice of the user’s random input ρ).

2. (Privacy) For every two indices i, j ∈ [n] the corresponding distributions
of queries, query(1n, i, ·) and query(1n, j, ·), are indistinguishable. (Alter-
natively, it will be useful to talk about semantic security of the query rather
than about indistinguishability; namely, no adversary can gain a significant
advantage in guessing a predicate of i given q = query(1n, i, ·).)
The main complexity measure for PIR schemes is their communication com-

plexity. Specifically, we denote by α(n) the (worst-case) query length (over all
x ∈ {0, 1}n and all possible choices of ρ) and by β(n) the (worst-case) answer
length.

Our construction will use, in addition to the PIR scheme, the standard
(non-cryptographic) primitive of error correcting code. Specifically, we will use
any error correcting code ecc(·) that expands x ∈ {0, 1}k to y ∈ {0, 1}n,

452 Y. Ishai, E. Kushilevitz, and R. Ostrovsky

where n = c · k (for a constant c) and that can correct up-to λ · n errors (for a
constant λ).5

Construction: Given a PIR scheme (query,ans,rec) and an error correct-
ing code ecc, we construct a CRHF family as follows. The key-generation al-
gorithm of the hash-family, Gen, on input 1k, works by choosing t = ω(log k)
queries q1, . . . , qt (this is done by choosing t random strings ρ1, . . . , ρt and t
random indices i1, . . . , it ∈R [n], where as above n = c · k, and computing
qj = query(1n, ij , ρj)). The hash-index is s = (q1, . . . , qt). The function Hs, on
input x ∈ {0, 1}k, is defined as

Hs(x) = (ans(y, q1), . . . ,ans(y, qt)) ,

where y = ecc(x). Clearly, Hs is computable in polynomial time. It maps
strings of length k to strings of length t ·β(n) (a possible choice of parameters is
t =polylog(k) and β(n) = nε = (ck)ε; in such a case Hs indeed shrinks its input).
Next, we argue that the resulting family is indeed collision-resistant. Suppose
that an adversary can find a collision for Hs; i.e., it can find different strings x, x′

such that Hs(x) = Hs(x′) or, equivalently, such that (ans(y, q1), . . . ,ans(y, qt))=
(ans(y′, q1), . . . ,ans(y′, qt)), where y = ecc(x) and y′ = ecc(x′). This implies
(by the correctness of the PIR) that yij = y′

ij
, for 1 ≤ j ≤ t. However, since y, y′

are distinct codewords of the error-correcting code then the distance between
y, y′ is at least 2λn; since each ij is random, the probability that for a certain ij
we have yij

= y′
ij

is constant (specifically, 2λ) and the probability that yij
= y′

ij

for all j is (by the choice of t) negligible. By the semantic security of query,
finding such y, y′ given q should be possible only with a negligible probability.
This gives the desired contradiction.

Thus, we have:

Theorem 2. If there exists a 1-round (single-server) PIR scheme with commu-
nication complexity O(nc) for some c < 1 then there exists a family of CRHFs.

Remark 3. Fischlin [7] shows the impossibility of a black-box transformation
from one-way trapdoor permutations to (one-round, computational) PIR. Our
transformation from PIR to CRHF, together with the results of [20], yields a
completely different way to obtain the same result.

5 CRHF from Homomorphic One-Way Commitment

The construction of CRHF from homomorphic encryption (or even from ho-
momorphic commitment), presented in Section 3, seem to rely heavily on the
semantic-security of the underlying commitment. In this section, we show that

5 It suffices for us that the encoding algorithm ecc(·) will work in polynomial time.
It is not needed for us that the error correction will be efficient; we will only rely
on the “large” distance between codewords.

Sufficient Conditions for Collision-Resistant Hashing 453

this is not really essential. Namely, we consider a primitive that we term homo-
morphic one-way commitment. In this case, the security of the committed value
Commit(x) does not guarantee that no information about x is leaked but only
that it is hard (for a randomly chosen x) to “invert” the commitment and find
x. Note however that it does not suffice to require that Commitpk(x, r) is a
one-way function, as we not only require that finding a pre-image (x, r) is hard
but that even finding x alone is hard.

Definition 4. A one-way homomorphic commitment is defined as homomor-
phic commitment (Definition 2), except for the security requirement:

– (One-Wayness) Every probabilistic polynomial-time algorithm I that is given
Commitpk(x, r) has a negligible probability of finding x, where the probabil-
ity is over a random choice of x ∈ ZL(k), the choice of r by Commit, and
the internal random choices of I. (Note that, by the binding property, for
every value Commitpk(x, r), there is a unique pre-image x.)

Remark 4. The one-wayness requirement in particular implies that the size of
the group from which x is taken, i.e. L(k), needs to be “large”. This is in con-
trast with the definition of “standard” homomorphic commitment where the
group might be as small as Z2. On the other hand, any (standard) homomorphic
commitment where L(k) = kω(1) is immediately also a one-way homomorphic
commitment. We can turn any standard homomorphic commitment (over an
arbitrarily small group) into a one-way homomorphic commitment by concate-
nating “sufficiently many” copies of the original scheme (where ω(log k) copies
are always enough). Such a concatenation yields a group which is a product
group, and in particular is not a cyclic group. It is possible to extend our results
to such groups as well.

Construction: Given an arbitrary one-way homomorphic commitment scheme
(Gen,Commit,Add), we construct aCRHF family as follows.Thekey-generation
algorithm of the hash-family Gen′, on input 1k, works by first applying Gen(1k)
to obtain a public-key pk. Then, it chooses m random elements x1, . . . , xm ∈R

ZL(k) (where m, as before, is chosen so that the output length is shorter than the
input length) and m random strings r1, . . . , rm to be used by the commitment
algorithm. It finally computes m values yi = Commitpk(xi, ri). The index of
the hash function that Gen′ outputs is s = (pk, y1, . . . , ym). The function Hs,
on input a = (a1, . . . , am) (where each ai is an l(k)-bit integer and, as before,
l(k) = !log2 L(k)"), is defined as follows:

Hpk,y1,...,ym
(a) def= Commitpk(

m∑
i=1

aixi, r),

where, as in the construction of Section 3, we observe that by using algorithm
Add (and Remark 2) this commitment can be efficiently computed (without
knowledge of x1, . . . , xm) from s and a (and r is the corresponding random-
ness). It remains to prove that collisions are hard to find. Assume towards a

454 Y. Ishai, E. Kushilevitz, and R. Ostrovsky

contradiction, that there exists an algorithm B that, given s, finds (with high
probability) a pair a,a′ that forms a collision for Hs; i.e., Hs(a) = Hs(a′).
This means that Commitpk(

∑m
i=1 aixi, r) = Commitpk(

∑m
i=1 a

′
ixi, r

′) which,
by the perfect binding of the commitment, implies that

∑m
i=1 aixi =

∑m
i=1 a

′
ixi.

Therefore, the vector d = a−a′ (which is easily computable from the collision)
is such that d · x = 0. We want to use the procedure that finds such vectors d
in order to construct an inverter I for the commitment (i.e., an algorithm that
finds x from Commit(x), for a uniformly random x) in contradiction to the
one-wayness. While each such d gives some information about x, applying the
procedure repeatedly should be done with some care to avoid getting vectors
d which are linearly dependent and are therefore useless. Next, we describe an
inverter that uses the above ideas in a more careful way.

The inverter: The algorithm I (the inverter) that we construct gets as in-
put a public-key pk and a vector z of m commitments (where pk, z and the
randomness are all chosen at random with the appropriate distributions) and it
finds, with non-negligible probability, the vector x of m committed values.6 The
inverter I repeats the following at most M times (where M = O(m · q(k)) and
q(k) is the polynomial such that B succeeds with probability at least 1/q(k)) or
until I collects m linearly independent equations about x. In the jth iteration, I
picks at random an m×m matrix Cj and a length m vector bj . The elements of
both Cj and bj are taken from ZL(k) (and recall that we assume here that L(k)
is a prime number). Denote xj = Cj · x + bj (of course the inverter does not
compute this value as x is not available to it; we use xj to simplify notation).
The inverter computes wj = Commitpk(xj) = Commitpk(Cj · x + bj) (that
can be computed from z using the algorithm Add) and finally it re-randomizes
this vector of commitments (using the algorithm ReRand); i.e., it computes
yj = ReRandpk(wj). The inverter provides sj = (pk,yj) to algorithm B
and in return it gets a collision aj ,a

′
j for the hash function Hsj (note that

it is easy to check whether this pair is indeed a collision, simply by apply-
ing the function Hsj

; we can therefore assume that B itself either outputs a
collision or the value “fail”). If B returns “fail” the current iteration is termi-
nated and I proceeds to the next iteration; otherwise, I sets dj = aj − a′

j

(and, as above, the vector dj satisfies dj · xj = 0). The iteration ends by
computing the vector uj = dj · Cj and the scalar λj = dj · bj . Note that
uj · x + λj = dj · Cj · x + dj · bj = dj(Cj · x + bj) = dj · xj = 0. Hence, if all
goes well, the inverter ends the jth iteration with a new linear constraint about
x. Moreover, we will argue that after M iterations I is likely to have m linearly
independent constraints; this allows solving the system of equations and to find
x; i.e., to invert the commitment.

It remains to prove that I succeeds in inverting the commitment z with
non-negligible probability (assuming that B succeeds in finding collisions with
non-negligible probability). For this, we make several simple observations. First,

6 Note that this is slightly stronger than what we need, since we “invert” m com-
mitments at once; however we get this feature “for free”.

Sufficient Conditions for Collision-Resistant Hashing 455

note that I invokes B several times, all with the same pk (which is part of
all the indices sj). We call a public-key pk good if B, when given a randomly
chosen index of a hash function that includes this public-key (i.e., s = (pk,y) for
a randomly chosen y) succeeds with non-negligible probability. Since B finds a
collision with non-negligible probability over a randomly chosen s, it follows that
a non-negligible fraction of the public-keys are good. Therefore, the probability
that pk that is given to the inverter is good is non-negligible. From now on,
we will assume that this is indeed the case. Fix any z (and hence also x).
Next, we note that, for every j, the vector xj (whose choice is determined by
the random choice of Cj , bj) is totally random and, moreover, these vectors
are all independent. Hence, when B is given sj (that includes pk and yj –
a rerandomized commitment to xj), by the assumption that pk is good, B
succeeds in finding a collision with non-negligible probability. Finally, we argue
that the vector uj obtained from this collision is random; if this is true then
indeed O(m) successful iterations suffice (with high probability) and therefore
total of M iterations are enough. This is so because xj (and hence also the
input for B; i.e., yj) is independent of Cj (because no matter what x, Cj are,
the choice of bj yields a uniformly random xj). Therefore dj (the output of B)
is also independent of the matrix Cj ; hence, computing uj = dj · Cj (where
dj �= 0) yields a random vector.

To summarize, we state the following theorem:

Theorem 3. If there exists a homomorphic one-way commitment scheme then
there exists a family of CRHFs.

Acknowledgements. We thank the anonymous referees for helpful comments
and pointers.

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. Proc. of 42nd
FOCS, pp. 106–115, 2001.

2. B. Barak, and O. Goldreich. Universal Arguments and their Applications. Proc.
of 17th Conference on Computational Complexity, pp. 194-203, 2002.

3. A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-Way Functions Are Es-
sential for Single-Server Private Information Retrieval. Proc. of 31st STOC, pp.
89–98, 1999.

4. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. Proc. of IACR EUROCRYPT, LNCS 1592,
pp. 402–414, 1999.

5. I. Damg̊ard: Collision Free Hash Functions and Public Key Signature Schemes. In
Proc. of EUROCRYPT, pages 203-216, 1987.

6. I. Damgard, T. P. Pedersen and B. Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In Proc. of IACR Crypto,
LNCS 773, pp. 250–265, 1993.

7. M. Fischlin. On the Impossibility of Constructing Non-interactive Statistically-
Secret Protocols from Any Trapdoor One-Way Function. Proc. of CT-RSA, pp.
79-95, 2002.

456 Y. Ishai, E. Kushilevitz, and R. Ostrovsky

8. O. Goldreich. Foundations of Cryptography. Volume I: Basic Tools. Cambridge
University Press, 2001.

9. O. Goldreich. Foundations of Cryptography. Volume II: Basic Applications. Cam-
bridge University Press, 2004.

10. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing from Lattice
Problems. ECCC TR-42, 1996.

11. S. Goldwasser, and S. Micali. Probabilistic Encryption. Journal of Computer and
systems sciences 28, 270-299, 1984.

12. S. Halevi, and S. Micali, Practical and Provably-Secure Commitment Schemes
from Collision-Free Hashing. In Proc. of IACR Crypto, LNCS 1109, pp. 201-215,
1996.

13. C.Y. Hsiao and L. Reyzin. Finding Collisions on a Public Road, or Do Secure Hash
Functions Need Secret Coins? In Proc. of IACR Crypto, 2004.

14. J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. Proc. of
24th STOC, pp. 723–732, 1992.

15. E. Kushilevitz and R. Ostrovsky. Replication is Not Needed: Single Database,
Computationally-Private Information Retrieval. In Proc. of 38th FOCS, pages
364–373, 1997.

16. E. Mann. Private access to distributed information. Master’s thesis, Technion –
Israel Institute of Technology, Haifa, 1998.

17. S. Micali. CS Proofs. SIAM J. Computing, Vol. 30(4), pp. 1253-1298, 2000. (Early
version appeared in FOCS 1994.)

18. W. Ogata, and K. Kurosawa. On Claw Free Families. IEICE Trans., Vol.E77-A(1),
pp. 72-80, 1994. (Early version appeared in AsiaCrypt’91.)

19. A. Russell. Necessary and Sufficient Conditions for Collision-Free Hashing. J.
Cryptology, Vol. 8(2), pages 87-100, 1995. (Early version in CRYPTO92).

20. D. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions Be
Based on General Assumptions? In Proc. of EUROCRYPT, pages 334-345, 1998.

21. J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Advances in Cryptology – ASIACRYPT ’98, volume 1514 of Lecture Notes in Com-
puter Science, pages 357–371. Springer, 1998.

22. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive TR-199, 2004.

The Relationship Between
Password-Authenticated Key Exchange and

Other Cryptographic Primitives

Minh-Huyen Nguyen�

Harvard University, Cambridge, MA
mnguyen@eecs.harvard.edu

Abstract. We consider the problem of password-authenticated key ex-
change (PAK) also known as session-key generation using passwords:
constructing session-key generation protocols that are secure against ac-
tive adversaries (person-in-the-middle) and only require the legitimate
parties to share a low-entropy password (e.g. coming from a dictionary
of size poly(n)).

We study the relationship between PAK and other cryptographic
primitives. The main result of this paper is that password-authenticated
key exchange and public-key encryption are incomparable under black-
box reductions. In addition, we strengthen previous results by Halevi and
Krawczyk [14] and Boyarsky [5] and show how to build key agreement
and semi-honest oblivious transfer from any PAK protocol that is secure
for the Goldreich-Lindell (GL) definition [11].

We highlight the difference between two existing definitions of PAK,
namely the indistinguishability-based definition of Bellare, Pointcheval
and Rogaway (BPR) [1] and the simulation-based definition of Goldreich
and Lindell [11] by showing that there exists a PAK protocol that is
secure for the BPR definition and only assumes the existence of one-way
functions in the case of exponential-sized dictionaries. Hence, unlike the
GL definition, the BPR definition does not imply semi-honest oblivious
transfer for exponental-sized dictionaries under black-box reductions.

1 Introduction

The problem of password-authenticated key exchange (PAK), also known as
session-key generation using passwords, is to enable private communication be-
tween two legitimate parties over an insecure channel in the setting where the
legitimate parties have only a small amount of shared information, i.e. a low-
entropy key such as an ATM pin or a human-chosen password. In addition to
its practical implications, the problem of session-key generation using passwords
is quite natural as it focuses on the minimal amount of information that two

� Supported by NSF grants CCR-0205423, CNS-0430336, and ONR grant N00014-04-
1-0478.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 457–475, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

458 M.-H. Nguyen

parties must share in order to perform non-trivial cryptography. A recent se-
ries of works [1, 6, 11, 17, 8, 20, 7] has focused on our theoretical understanding of
this PAK problem by proposing several definitions of security as well as secure
protocols. Bellare, Pointcheval and Rogaway [1] proposed a definition based on
the indistinguishability of the session key. Following the simulation paradigm for
secure multi-party computation, Boyko, MacKenzie and Patel [6] and Goldreich
and Lindell [11] gave their own simulation-based definitions. However, it is not
clear how these existing definitions of security for PAK relate to one another.

The first protocols for the password-authenticated key exchange problem were
proposed in the security literature, based on informal definitions and heuristic
arguments (e.g. [4, 24]). The first rigorous proofs of security were given in the
random oracle model by [1, 6]. Only recently were rigorous solutions without
random oracles given, in independent works by Goldreich and Lindell [11] (under
the assumption that trapdoor permutations exist) and Katz, Ostrovsky, and
Yung [17] (under number-theoretic assumptions). Subsequently, the protocol of
[11] was simplified in [20] and the protocol of [17] was generalized in [8, 7].

What is the minimal assumption needed to solve PAK? How does this problem
relate to other basic cryptographic primitives such as key agreement and oblivi-
ous transfer? These are natural questions to ask when considering the problem of
password-authenticated key exchange. The goal of this paper is to study the rela-
tionship between PAK and other cryptographic primitives as well as try to explain
how the existing definitions of security for PAK relate to one another. Next, we
informally describe the problem of password-authenticated key exchange.

Password-Authenticated Key Exchange. The problem of session-key generation
using passwords suggested by Bellovin and Merritt [3] considers the situation
where Alice and Bob share a password, i.e. an element chosen uniformly at
random from a small dictionary D ⊆ {0, 1}n. This dictionary can be very small,
e.g. |D| = poly(n), and in particular it may be feasible for an adversary to
exhaustively search it. The aim is to construct a protocol enabling Alice and Bob
to generate a “random” session key K ∈ {0, 1}n which they can subsequently
use for standard private-key cryptography. We consider an active adversary that
completely controls the communication channel between Alice and Bob and in
particular can attempt to impersonate either party through a person-in-the-
middle attack.

The goal of a PAK protocol is that, even after the adversary mounts such
an attack, Alice and Bob will generate a session key that is indistinguishable
from uniform even given the adversary’s view. However, our ability to achieve
this goal is limited by two unpreventable attacks. First, the adversary can block
all communication, so it can prevent one or both of the parties from completing
the protocol and obtaining a session key. Second, the adversary can choose a
password w̃ uniformly at random from D and attempt to impersonate one of
the parties. With probability 1/|D|, the guess equals the real password (i.e.,
w̃ = w), and the adversary will succeed in the impersonation and therefore learn
the session key. Thus, we revise the goal to effectively limit the adversary to
these two attacks.

The Relationship Between Password-Authenticated Key Exchange 459

Our Results. Our goal in this paper is to understand the relationship between
session-key generation using passwords and other well-known cryptographic prim-
itives. Doing so will help us characterize the complexity of PAK and place this
problem within our current view of cryptography. In this work we study the re-
lationship of PAK to public-key encryption (PKE), oblivious transfer (OT) and
key agreement (KA). We provide positive results, e.g. exhibit a reduction of KA
to PAK, as well as negative results, e.g. prove that PAK does not imply PKE
under black-box reductions.

Following the oracle separation paradigm of [15], we first separate PAK and
PKE by constructing an oracle Γ relative to which PAK exists but PKE does
not.

Theorem 1. There is no “black-box” construction of PKE from PAK for the
Goldreich-Lindell (GL) definition [11].

Loosely speaking, a black-box construction of the primitive Q from the prim-
itive P is a construction of Q out of P which does not use the code of the
implementation of P 1. We note that similarly to most separation results, The-
orem 1 and our other separation results only apply to uniform adversaries. We
actually prove Theorem 1 using a definition of PAK which is stronger than the
GL definition in order to strengthen the result. This separation result can also
be seen in a positive way since it provides a direction for proving implications. In
order to prove that PAK implies PKE, one must use non-black-box techniques,
for example by using the code of an adversary for the PKE protocol.

We then exhibit a reduction of semi-honest OT2 to PAK for the GL definition.

Theorem 2. The existence of a PAK-protocol that is secure for the GL defini-
tion implies semi-honest OT (via a black-box reduction). Moreover, this reduction
does not depend on the size of the dictionary D and holds even for dictionaries
of exponential size such as D = {0, 1}n.

The proof of Theorem 2 actually uses only the weaker definition of [20] where
the security holds for a specific dictionary D and the probability of breaking is
bounded by 1

ω(log n) instead of O
(

1
|D|

)
, which strengthens the result.

Combining Theorem 2 and the result of Gertner et al. [9] that there is no
black-box construction of semi-honest OT from PKE, we obtain the following
corollary:

Corollary 1. There is no black-box construction of GL-secure PAK from PKE.

Putting Theorem 1 and Corollary 1 together, we obtain that PAK and PKE are
incomparable under black-box reductions. This is similar to the result of [9] that

1 We refer the reader to Section 2.3 and [22] for a more formal definition of black-box
reductions. In the taxonomy of [22], we are considering semi black-box reductions.

2 In the honest (but curious) or semi-honest model, the parties Alice and Bob are
guaranteed to follow the protocol but might use their views of the interaction in
order to compute some additional information.

460 M.-H. Nguyen

OT and PKE are incomparable under black-box reductions, and thus provides
an additional motivation to try and establish the equivalence of PAK and OT,
as conjectured in [5]. Indeed, the protocol proposed by Goldreich and Lindell is
actually based on the existence of oblivious transfer and one-way permutations.
Theorem 2 shows that if one can bypass the use of one-way permutations (for
example by using one-way functions instead of one-way permutations) and build
a secure PAK protocol from oblivious transfer only, then PAK and OT are
equivalent3.

The question of the relationship between PAK to KA is particularly inter-
esting as the PAK and KA problems are very similar in essence: both problems
consider honest parties A and B who wish to generate a common random session
key K. In the case of PAK, the honest parties have to withstand an active ad-
versary and share a low-entropy password whereas in the case of KA, the honest
parties have to withstand a passive adversary and share no prior information.
Combining Theorem 2 and the previous result by Gertner et al. [9] that semi-
honest OT is strictly stronger than KA under black-box reductions, we obtain
the following corollary:

Corollary 2. The existence of a PAK protocol that is secure for the GL def-
inition implies KA (via a black-box reduction). Moreover, this reduction does
not depend on the size of the dictionary D and holds even for dictionaries
of exponential size such as D = {0, 1}n.

Combining Corollary 1 and the previous result by Gertner et al. [9] that PKE
implies KA (via a black-box reduction), we obtain the following corollary:

Corollary 3. There is no black-box construction of GL-secure PAK from KA.

Again, Corollary 3 can be seen in a positive way: to prove that KA implies
PAK, one must use non-black-box techniques.

Theorem 2 also enables us to understand the relationship between existing
definitions of security and in particular to highlight a difference between the
simulation-based definition of [11] and the indistinguishability-based definition
of [1]. Indeed, we have the following result:

Theorem 3. If one-way functions exist, there exists a PAK protocol that is se-
cure for the Bellare-Pointcheval-Rogaway (BPR) definition [1] for the dictionary
D = {0, 1}n.

Hence, unlike the GL definition, the BPR definition does not imply honest OT
in the case of exponential-sized dictionaries under black-box reductions. However
we conjecture that any PAK protocol that is secure for the BPR definition for
polynomial-sized dictionaries implies semi-honest OT.

3 This equivalence would be non-black-box as the known construction of OT from
honest OT is non-black-box since it uses the zero-knowledge proofs of [12] (see [9]).

The Relationship Between Password-Authenticated Key Exchange 461

Related Work. Although the relationship between PAK and other cryptographic
primitives has not been explicitly studied before, some results are known for the
related problem of password-based authentication, where the legitimate parties
only want to be convinced that they are talking to one another (but not gener-
ate a common session key). Assuming the existence of one-way functions, it is
known that one can transform a PAK protocol into a protocol for password-based
authentication using two additional messages [2, 1, 16, 11, 17].

Halevi and Krawczyk [14] showed that a secure protocol for password-based
authentication4 can be used to implement KA. We see Corollary 2 as a strength-
ening of their result, since our result holds even for dictionaries of exponential
size whereas their reduction only holds for polynomial-sized dictionaries.

Boyarsky [5] states without proof that password-based authentication5 im-
plies OT, which is similar to Theorem 2 . However, [5] does not provide a formal
definition of PAK for which this implication holds, and indeed, our results show
that the relationship between PAK and OT is sensitive to the choice of defi-
nition. Moreover, our black-box construction of semi-honest OT from a secure
PAK protocol holds even if we relax the security of the PAK protocol in two
respects. First, it holds even if the PAK protocol is secure only for a fixed dic-
tionary of exponential size, e.g. D = {0, 1}n. Second, we only require that the
probability of breaking the PAK protocol be bounded by 1

ω(log n) (on security

parameter 1n) instead of O
(

1
|D|

)
.

2 Preliminaries

We denote by n the security parameter, by Un the uniform distribution over
strings of length n, by neg(n) a negligible function and write x

R← S when x is
chosen uniformly from the set S. We use the abbreviation “PPT” for probabilistic
polynomial-time algorithms.

Since we will prove our results for uniform adversaries, our definitions are for
the uniform model of computation. An ensemble X = {Xn}n∈IN is (polynomial-
time) samplable if there exists a PPT algorithm M such that for every n, the
random variables M(1n) and Xn are identically distributed.

Let S be a set of strings. For a function γ : IN→ [0, 1], we say that the prob-
ability ensembles {Xw}w∈S and {Yw}w∈S are (1− γ)-indistinguishable (denoted
by {Xw}

γ≡ {Yw}) if for every PPT algorithm D, for all sufficiently large n, for
every w ∈ {0, 1}n ∩ S,

|Pr [D(Xw,w) = 1]− Pr [D(Yw,w) = 1] | < γ(n) + neg(n)

4 Their result is for password-based one-way authentication where one clients tries to
authenticate itself to a server.

5 This result is for password-based mutual authentication where two honest parties
try to authenticate each other.

462 M.-H. Nguyen

In the proofs, we will slightly abuse notation when talking about a distribu-
tion’s index w by writing “for every w ∈ S” and omitting the index w as an
input to the distinguisher D. We say that {Xw} and {Yw} are computationally
indistinguishable, which we denote by Xw

c≡ Yw, if they are 1-indistinguishable.

2.1 Cryptographic Primitives

Two-Party Protocols. The following is an informal presentation of two-party
computation which will suffice for our purposes. Recall that we are interested in
protocols for semi-honest oblivious transfer and key-agreement for which we are
guaranteed that the two parties follow the protocol. We refer the reader to [10]
for more details.

A two-party protocol problem is defined by specifying a (possibly probabilis-
tic) functionality f : {0, 1}� × {0, 1}� → {0, 1}� × {0, 1}�, (x, y) → (f1(x, y),
f2(x, y)) which maps pairs of inputs to pairs of outputs. A two-party protocol
is a pair of probabilistic polynomial-time algorithms (A,B) which represent the
strategies of the two parties, i.e. functions that map a party’s input, private
randomness and the sequence of messages received so far to the next message to
be sent. The view of a party consists of its input, its random-tape and the se-
quence of messages received. We measure the amount of interaction in a protocol
by its number of rounds, where a round consists of a single message sent from
one party to another. Whenever we consider a protocol for securely comput-
ing a functionality f , we assume that the protocol correctly computes f when
both parties follow the protocol, i.e. the joint output distribution of the pro-
tocol played by parties following the protocol on input pair (x, y) equals the
distribution of f(x, y).

Semi-Honest Oblivious Transfer. In the semi-honest model, the two parties
A and B are guaranteed to follow the protocol but might use their views of the
interaction in order to learn some additional information. As noted in [9], in
the semi-honest model, one can transform an OT protocol for bits into an OT
protocol for strings without increasing the number of rounds. We will therefore
focus on the version of OT where s0 and s1 are bits rather than strings. 1-out-of-2
oblivious transfer (OT) is the following two-party functionality:

– Inputs: A has the security parameter 1n and two secret bits s0 and s1. B
has the security parameter 1n and a selection bit c.

– Outputs: A outputs nothing, B outputs sc.

A protocol (A,B) for semi-honest OT is secure if there exists a pair of PPT
(Ã, B̃) such that:

– Receiver’s privacy: for every s0, s1, c, Ã(1n, s0, s1) is computationally indis-
tinguishable from A’s view of the interaction (A(1n, s0, s1),B(1n, c))

– Sender’s privacy: for every s0, s1, c, B̃(1n, b, sb) is computationally indistin-
guishable from B’s view of the interaction (A(1n, s0, s1),B(1n, c))

The Relationship Between Password-Authenticated Key Exchange 463

Key Agreement. Key agreement (KA) is the following two-party functionality:

– Inputs: A and B have the security parameter 1n.
– Outputs: A and B output the same string K of length n

A KA protocol is secure if we have (T,K)
c≡ (T, Un) where T is the transcript

of the interaction (A(1n),B(1n)) and K is the common output of A and B
in the interaction (A(1n),B(1n)). In other words, the session key K will be
computationally indistinguishable from a truly random string given the view of
a passive adversary.

2.2 Password-Authenticated Key Exchange

Password-authenticated key exchange (PAK) or session-key generation using
passwords is similar to key agreement in that two honest parties A and B want
to generate a session key K of length n that is indistinguishable from uniform
even given the adversary’s view. However, PAK differs from KA in two impor-
tant respects. First, A and B have as input a shared password w which is chosen
at random from a dictionary D ⊆ {0, 1}n. Second, the adversary is not passive
but completely controls the communication channel between A and B.

The Goldreich-Lindell Definition and Its Variants. The definition of PAK
in [11] follows the standard paradigm for secure computation: define an ideal
functionality (using a trusted third party) and require that every adversary at-
tacking the real protocol can be simulated by an ideal adversary attacking the
ideal functionality. In the real protocol, an active adversary can prevent one
or both of the parties from completing the protocol. Thus, in the ideal model,
we will allow Cideal to specify an input bit decB , which determines whether
B obtains a session key or not6. We can therefore cast PAK as a three-party
functionality which is described in the ideal model as follows.

Ideal Model.

– Inputs: A and B receive a security parameter 1n and a joint password w
R←D.

– A and B both send w to the trusted party. Cideal sends a decision bit decB

to the trusted party to indicate whether B’s execution is successful or not.
– Outputs: The trusted party chooses K R←{0, 1}n and sends it to A. If decB =

1, then the trusted party sends K to B; otherwise it sends ⊥ to B.

The ideal distribution of inputs and outputs is defined by:

IDEALCideal(D) = (w, output(A), output(B), output(Cideal))

Real Model. Let A,B be the honest parties and let C be any PPT real adversary.
In an initialization stage, A and B receive w

R←D. The real protocol is executed
by A and B communicating via C. We will augment C’s view of the protocol
with B’s decision bit, denoted by decB , where decB = reject if output(B) = ⊥,

6 We will adopt the convention that A always completes the protocol and accepts.

464 M.-H. Nguyen

and decB = accept otherwise (indeed in typical applications, the decision of B
will be learned by the real adversary C: if B obtains a session key, then it will
use it afterwards; otherwise, B will stop communication or try to re-initiate an
execution of the protocol). C’s augmented view is denoted by view(CA(w),B(w)).

The real distribution of inputs and outputs is defined by:

REALC(D) = (w, output(A), output(B), view(CA(w),B(w)))

One might want to say that a PAK protocol is secure if the above ideal
and real distributions are computationally indistinguishable. Unfortunately as
mentioned above, an active adversary can guess the password and successfully
impersonate one of the parties with probability 1

|D| . This implies that the real
and ideal distributions are always distinguishable with probability at least 1

|D|
so we will only require that the distributions be distinguishable with probability
at most O

(
1

|D|

)
. In the case of a passive adversary, we require that the real

and ideal distributions be computationally indistinguishable (for all subsequent
definitions, this requirement will be implicit):

Definition 1. [11] A protocol for password-based session-key generation is se-
cure if for every samplable dictionary D ⊆ {0, 1}n, for every real adversary C,
there exists an ideal adversary Cideal such that the ideal and real distributions
are

(
1−O

(
1

|D|

))
-indistinguishable7.

Although standard definitions of security for PAK protocols require that the
security hold for every dictionary, we will consider two variants of the standard
GL definition (Definition 1) where we change the security to hold for a specific
dictionary D instead of every dictionary. Moreover, we will only require that the
distributions be distinguishable with probability at most γ, where γ is a function
of the dictionary size |D| and the security parameter n, and not necessarily
O
(

1
|D|

)
.

Although these variants of Definition 1 are weaker, a PAK protocol which
is secure for a specific dictionary is still interesting since it corresponds to the
setting where the honest parties are restricted to choose their passwords from a
specific dictionary, such as in the case of ATM pin numbers8. Moreover, as noted
in [20], such a PAK protocol can be converted into one for arbitrary dictionaries
in the common reference string model (using the common reference string as the
seed of a randomness extractor [21]).

7 As pointed out by Rackoff, this basic definition is actually not completely satisfactory
and needs to be augmented to take into account any use of the key K by one party
while the other party has not completed the protocol. Our results will hold for
the augmented definition as well but we will not handle the augmented definition
explicitly.

8 By restricting our attention to a specific dictionary, it may be possible to obtain a
more efficient protocol, such as the [20] simplification of [11].

The Relationship Between Password-Authenticated Key Exchange 465

Definition 2. [20] Let D ⊆ {0, 1}n be a samplable dictionary. A protocol for
password-based session-key generation is (1− γ)-GL-secure for the dictionary D
(where γ is a function of the dictionary size |D| and n) if for every real adversary
C, there exists an ideal adversary Cideal such that the ideal and real distributions
are (1− γ)-indistinguishable.

Our goal is to make γ as small as possible. Ideally, we would like γ = O
(

1
|D|

)
.

Note that Definition 2 guarantees that the password w is (1−γ) indistinguishable
from a random password w̃

R←D since Cideal learns nothing about the password
w which is explicitly in the ideal distribution.

Security with Respect to Password Guesses. A stronger definition of se-
curity can be obtained by allowing the ideal adversary some number of password
guesses but requiring that the ideal and real distributions be computationally in-
distinguishable. We will therefore modify the ideal model by adding the following
steps after A and B receive their inputs:

– Cideal sends its (possibly adaptive) guesses for the password w1, · · · ,wα to
the trusted party. The trusted party answers whether the guesses are correct
or not.

– If the adversary Cideal guesses the password correctly, Cideal can force the
outputs of A and B to be whatever it wants.

The modified ideal distribution for α password guesses is defined by:

IDEALGuess
Cideal

(D) = (w, output(A), output(B), output(Cideal))

Definition 3 (Security with respect to α password guesses). Let D ⊆
{0, 1}n be a samplable dictionary. A protocol for password-based session-key gen-
eration is secure with respect to α password guesses for the dictionary D if for
every real adversary C, there exists an ideal adversary Cideal making at most α
password guesses such that the ideal and real distributions are computationally
indistinguishable.

Note that the ideal model in the definition of security with respect to password
guesses can be simulated by the ideal model in Definition 2 with probability(
1− α

|D|

)
. Hence we obtain that the definition of security with respect to pass-

word guesses is stronger than Definition 2:

Proposition 1. Security with respect to α password guesses implies GL-security
with γ = α

|D| .

In Section 3, we will show that even the stronger definition of security with
respect to password guesses does not imply PKE under black-box reductions.
In Section 4, we will show that the weaker GL definition (Definition 2) implies
semi-honest OT.

466 M.-H. Nguyen

Other Definitions. Bellare, Pointcheval and Rogaway [1] introduced a defi-
nition based on the indistinguishability of the session key. In this model, there
are not just two honest parties as in the previous definitions but rather a set of
honest parties (called principals) that are either a client or a server. Each client
has some password w

R←D and each server has the passwords of the clients.
The interaction of the adversary with the principals is modeled using oracle

queries. Each principal is modeled by a collection of oracles that represent all
possible actions, such as passive eavesdropping (the adversary sees the transcript
of a protocol execution between a client and a server), corruption of a party
(the adversary obtains the client’s password), loss of session keys (the adversary
learns the session key generated by a protocol execution) and person-in-the-
middle attack (the adversary sends messages of its choosing to a principal). The
adversary is allowed to make these oracle queries to any principal and there might
be several instances of the same principal U that model concurrent executions.

The adversary chooses a test concerning the instance i of an uncorrupted
principal U : a bit b is chosen uniformly from {0, 1}. If b = 0, then the adversary
is given the session key output by the instance i of the principal U . If b = 1,
the adversary is given a truly random key. A PAK protocol is secure for the
dictionary D according to the BPR definition if after mounting at most q person-
in-the-middle attacks, the adversary has advantage at most O

(
q

|D|

)
+neg(n) in

distinguishing the true session key from a random key in this test.
Boyko, MacKenzie and Patel [6] proposed a simulation-based definition which

allows the ideal adversary to make a constant number of password guesses to the
trusted party. The BMP definition is similar to the definition of security with
respect to password guesses (in fact, the definition of security with respect to
password guesses was inspired by the BMP definition) but their model differs
from ours in two important respects. First, there are not just two honest parties
executing the protocol but rather a set of honest users. Each user may have
several instances that model concurrent executions of the protocol. Second, the
ideal and real distributions in this model do not include the passwords. Loosely
speaking, a PAK protocol is secure according to the BMP definition if for ev-
ery real adversary, there exists an ideal adversary such that the ideal and real
distributions are computationally indistinguishable.

Both the BPR and BMP definitions present some advantages over the GL
definition because they handle concurrent executions easily. However, unlike the
GL definition, these definitions do not explicitly guarantee that the password
w remain pseudorandom after an execution. For example, the first bit of the
password w could be revealed during an execution. This distinction is important
as we will show that unlike the GL definition, the BPR definition does not
imply semi-honest OT for exponential-sized dictionaries. Indeed, in Section 5 we
exhibit a PAK protocol that is secure according to the BPR definition for the
dictionary D = {0, 1}n but only assumes the existence of one-way functions. In
particular, the password w does not remain pseudorandom after an execution of
this protocol.

The Relationship Between Password-Authenticated Key Exchange 467

2.3 Black-Box Reductions

We give an informal presentation of black-box reductions that will suffice for
our purposes. For more details, we refer the reader to [22]. The function (or
algorithm) f : {0, 1}� → {0, 1}� is an implementation of a primitive P if it
satisfies the structural requirements of the primitive (for example, in the case of
one-way permutations, we require that f be a length-preserving permutation).
We do not require that the implementation f satisfy some security requirements.

A black-box reduction of Q to P is the construction of two PPT oracle
machines G and S such that:

– If f is an implementation of P (not necessarily efficient), then Gf is an
implementation of Q.

– For every adversary A (not necessarily efficient) that breaks the implemen-
tation Gf , SA,f breaks the implementation f .

A black-box reduction relativizes, hence to show that there are no black-box
reductions of Q to P , it suffices to construct an oracle relative to which P exists
but Q does not.

3 There Is no Black-Box Construction of PKE from
PAK

3.1 Overview of the Result

Theorem 4. There exists an oracle Γ relative to which PAK exists but PKE
does not.

The oracle Γ we will use is composed of the following parts:

– f1, f2 and f3 are three uniformly distributed length-tripling injective func-
tions.

– The function R is defined to satisfy R(w, s,α) = K whenever
α = f3(w,K, r, f2(w, s, f1(w,K, r))) for some |K| = |r| = |s| = |w|, ⊥
otherwise (R is well-defined since the fi’s are injective).

– a PSPACE-complete oracle

We now describe a PAK protocol using Γ :

Protocol 1. 1. Inputs: A and B have a security parameter 1n and a joint
password w ∈ D ⊆ {0, 1}n, where D is samplable.

2. A chooses two n-bit strings KA, rA
R←{0, 1}n and sends α1

def= f1(w,KA, rA).
B receives β1.

3. B chooses rB
R←{0, 1}n and sends β2

def= f2(w, rB ,β1). A receives α2.
4. A sends α3

def= f3(w,KA, rA,α2). B receives β3.
5. Outputs: A outputs KA. B outputs R(w, rB ,β3).

Note that in this protocol A always accepts and B accepts iff R(w, rB ,β3) �=⊥.
We prove Theorem 4 via the following two lemmas. The first lemma estab-

lishes that relative to Γ , PAK exists.

468 M.-H. Nguyen

Lemma 1. Protocol 1 is secure with respect to 2 password guesses for the dic-
tionary D, i.e. for every real adversary C, there exists an ideal adversary Cideal

with 2 password guesses such that REALC(D)
c≡IDEALGuess

Cideal
(D), where the prob-

abilities are also taken over the random choice of Γ .

The proof of Lemma 1 is quite involved and can be found in the full version
of the paper [19]. We try to give the main idea of the proof in the section below.

It is known that PKE and 2-round KA are equivalent [9]. Thus, to prove
Theorem 4, it suffices to prove that relative to Γ , there is no secure 2-round KA
protocol.

Lemma 2. For every 2-round KA protocol (A,B), for every polynomial p, there
exists a passive adversary E such that the probability over Γ and the random
tapes of A,B and E that E outputs the session key is at least 1− 1

n2p(n) .

In other words, with overwhelming probability, any 2-round KA protocol is not
secure since there exists a passive adversary E that is able to distinguish the
session key from a truly random string. The proof of Lemma 2 is very similar
to that of [15, 23] and can be found in the full version of the paper [19]. Using
Lemmas 1 and 2, we show that with probability 1 over the random choice of
Γ , Protocol 1 is secure with respect to 2 password guesses and there exists no
secure 2-round KA protocol. This establishes Theorem 4.

3.2 Relative to Γ, PAK Exists

We give some intuition on how to prove that Protocol 1 is secure with respect
to 2 password guesses. For every real adversary C, we need to exhibit an ideal
adversary with 2 password guesses which simulates C’s view. We will follow the
paradigm of [6] and show how to transform some of the real adversary’s queries
to the oracle Γ into password guesses for the ideal adversary.

The ideal adversary Cideal will run the real adversary C and simulate the
honest parties A and B. Using the queries made by C to the oracle Γ and the
messages sent by C, Cideal will determine if password guesses need to be made
and if so, forward these password guesses to the trusted party. The output of
Cideal will be C’s view of this simulated execution and we show that C’s view
of this execution simulated by Cideal produces a view which is computationally
indistinguishable from C’s view of a real execution with A and B.

– As long as no password guess has been successful, Cideal will simulate the
honest parties by sending random strings of appropriate length. Intuitively,
in this case, the messages sent by the honest parties A and B in a real
execution are computationally indistinguishable from random strings with
respect to the real adversary’s view.

– If a password guess has been successful, Cideal will have the password w and
intuitively C will simulate the honest parties A and B perfectly.

We now show how to transform some of the real adversary’s queries to Γ into
password guesses for the ideal adversary. When C makes a query to the oracle

The Relationship Between Password-Authenticated Key Exchange 469

Γ , Cideal makes this query to Γ and records the query/answer pair. Recall that
an active adversary C can mount a person-in-the-middle attack that effectively
gives two concurrent executions of the PAK protocol, one between A and C and
one between C and B. We denote by αi the ith message in the (A, C) interaction
and by βi the ith message in the (C,B) interaction. We define password guesses
in a real interaction of C with A and B as follows.

– Password guess in the (C,B) interaction: C impersonates A on input w′ ∈ D
by sending to B the messages β1 = f1(w′,KC , rC) for some pair (KC , rC) ∈
{0, 1}n×{0, 1}n and β3 = f3(w′,KC , rC ,β2). C’s guess w′ is correct if decB =
1.

– Password guess in the (A, C) interaction: C impersonates B on input w′′ ∈ D
by sending to A the message α2 = f2(w′′, rC ,α1) for some string rC ∈
{0, 1}n. C’s guess w′′ is correct if R(w′′, rC ,α3) �= ⊥

We can turn these cases in the real model into password guesses in the ideal
model:

– Password guess in the simulated (C,B) interaction:
If C sends β1 = f1(w′,KC , rC) for some previous query (w′,K ′

C , rC) made
by C to f1, Cideal sends its guess w′ to the trusted party.

– Password guess in the simulated (A, C) interaction:
If C sends α2 = f2(w′′, rC ,α1) for some previous query (w′′, rC ,α1) made
by C to f2, Cideal sends its guess w′′ to the trusted party.

4 GL-Security for PAK Implies Semi-honest OT

Theorem 5. Let D = {Dn}n∈IN be a samplable ensemble such that Dn ⊆
{0, 1}poly(n). The existence of a (1 − γ)-GL-secure PAK protocol for the dic-
tionary Dn on security parameter 1n such that γ ≤ 1

5f(n)

(
1− 1

t(n)

)
for some

function f(n) = ω(logn) and some polynomial t implies semi-honest OT (via a
black-box reduction).

Note that we do not require many dictionaries for a single security parameter
1n, but rather a single fixed dictionary Dn for a given security parameter 1n.

In order to prove Theorem 5, we consider a protocol for “Weak OR” (WOR).
A WOR protocol (A,B) computes the functionality of the standard OR but its
security is weak. More formally, a protocol (A,B) for weak OR is (1−η)-secure if

– B’s privacy: A’s view of (A(1n, 1),B(1n, 0)) is (1−η)-indistinguishable from
(A(1n, 1),B(1n, 1)).

– A’s privacy: B’s view of (A(1n, 0),B(1n, 1)) is (1−η) indistinguishable from
(A(1n, 1),B(1n, 1)).

As suggested by Boyarsky [5], we establish Theorem 5 in two steps:

1. We first prove that a PAK protocol that is (1− γ)-GL-secure can be used to
build a WOR protocol that is (1− 5γ)-secure.

470 M.-H. Nguyen

2. We then show that a WOR protocol that is (1 − η)-secure for η ≤ 1
f(n)(

1− 1
t(n)

)
can be used to build a secure protocol for semi-honest OT. Our

proof that WOR implies semi-honest OT is similar to the proof of Kilian [18]
that OR implies OT but the two results are incomparable since we restrict
our focus to the semi-honest setting but are given a weaker OR primitive.

4.1 GL-Security for PAK Implies Weak OR

Given a (1− γ)-GL-secure PAK protocol (AP ,BP) for the samplable dictionary
D ⊆ {0, 1}n, we build the following WOR protocol.

Protocol 2. 1. Inputs: A has a bit a, B has a bit b.
2. A chooses w,w′ R←D and sends w to B. B chooses w′′ R←D. (This is where

we use the assumption that D is samplable.)
3. A and B run the PAK protocol (AP ,BP) on inputs wA and wB respectively,

where wA and wB are defined as follows:
– If a = 0, AP sets its password wA to be w. Otherwise wA = w′.
– If b = 0, BP sets its password wB to be w. Otherwise wB = w′′.

At the end of the PAK protocol, B sends its decision bit decB to A.
4. Outputs: If a = 1 and decB = 1, then A sends a message to B to set the

output to be 1. Similarly, if b = 1 and decB = 1, then B sends a message to
A to set the output to be 1. Otherwise, the common output of the execution
is set to be (1− decB).

Analysis Sketch. Note that Protocol 2 computes the OR functionality correctly.
If a = b = 0, then the passwords wA and wB are both equal to w and by
definition of the PAK protocol, B will accept and the common output of A and
B will be 1 − decB = 0. If a = 1 or b = 1, we know that either B rejects (and
the common output will be 1 − decB = 1) or one of the parties will send an
additional message and set the output to be 1.

If a = 1, then OR(a, b) = 1 regardless of the value of b so A should not learn
B’s input. Indeed, we will show that A’s view of the interaction (A(1),B(0))
is (1 − 5γ)-indistinguishable from A’s view of the interaction (A(1),B(1)) (the
reasoning for B is similar).

We first consider A’s view of the interaction (A(1),B(b)) when the possible
additional message sent by B in Step 4 is not included. This possibly truncated
view of A of the interaction (A(1),B(b)) is (w,AP (w′)BP (wB)) where the second
component refers to AP ’s view of the PAK protocol and wB is either w or w′′.
Because w′ is independent of wB , we can think of AP (w′) as a real adversary
C for the PAK protocol that interacts with the honest party BP (wB). Since
the PAK protocol is (1− γ)-GL-secure, we can show that even if the adversary
C is given w, C cannot distinguish the case wB = w from the case wB = w′′

with probability greater than 2γ. This is because in the ideal model, an ideal
adversary learns nothing about the password wB .

If B sends an additional message after the execution of the PAK protocol,
then we know that B’s input is b = 1, which makes A’s views of (A(1),B(0))

The Relationship Between Password-Authenticated Key Exchange 471

and (A(1),B(1)) distinguishable. Recall that B sends an additional message iff
BP accepts in an execution of the PAK protocol where AP has input w′ R←D
and BP has input w′′ R←D. Because w′ is independent of w′′, we can think of
AP (w′) as a real adversary C for the PAK protocol that interacts with the honest
party BP (w′′). Since the PAK protocol is (1− γ)-GL-secure, we can show that
an adversary C makes B accept (and B sends an additional message after the
execution of the PAK protocol) with probability at most 3γ.

4.2 Weak OR Implies Semi-honest OT

Lemma 3. The existence of a WOR protocol that is (1 − η)-secure for η ≤
1

f(n)

(
1− 1

t(n)

)
for some function f(n) = ω(logn) and some polynomial t (where

1n is the security parameter) implies honest OT (via a black-box reduction).

In order to prove Lemma 3, we introduce a two-party functionality called
“Weak OT” (WOT). A protocol (A,B) for weak OT is similar to a protocol for
OT except that

– B does not choose which secret bit it will obtain. That is, B has no input
except for the security parameter 1n and when interacting with A(1n, s0, s1),
B’s output is (c, sc) for a random bit c.

– For every s0, s1 and a random bit c, B̃(1n, c, sc) is (1− ε) indistinguishable
from B’s view of the interaction (A(1n, s0, s1),B(1n)), where ε ≤ 1 − 1

t(n)
for some polynomial t. In other words, the sender’s privacy only holds with
probability (1− ε).

Kilian [18] showed how to build a protocol for OT from a secure protocol for
OR in two steps:

1. Using a secure protocol for OR, we first build a protocol for weak OT
2. Using a protocol for weak OT, we then build a protocol for OT

To prove Lemma 3, we adapt these two steps to our weak OR primitive. We
strengthen the first step of [18] and show how to build a protocol for weak OT
given a weak OR protocol that is (1 − η)-secure. More precisely, we first show
how to use a weak OR protocol to build a protocol for a functionality called
“very weak OT” and then we show how use a protocol for very weak OT to
implement weak OT. For the second step, we can use Kilian’s result:

Lemma 4. [18] The existence of a protocol for weak OT implies (honest) OT9.

9 This lemma uses the reduction of OT to weak OT given in [18], Section 2.4. The
analysis is slightly different from the original analysis: we use the uniform version
of Yao’s XOR lemma to guarantee the sender’s privacy and a hybrid argument to
guarantee the receiver’s privacy.

472 M.-H. Nguyen

Weak OR Implies Very Weak OT. A protocol (A,B) for very weak OT
is similar to a protocol for OT except that both the sender’s privacy and the
receiver’s privacy hold with low probability. More formally, a protocol for very
weak OT is (1− η)-secure if the following conditions hold:

– Receiver’s privacy: If s0 = s1 = 1, A’s view of (A(1n, s0, s1),B(1n, 0)) is
(1− 2η)-indistinguishable from A’s view of (A(1n, s0, s1),B(1n, 1)).

– Sender’s privacy: For every s0, s1, c, B’s view of (A(1n, sc, sc̄),B(1n, c)) is
(1− η)-indistinguishable from B’s view of (A(1n, sc, sc̄),B(1n, c))

Given a WOR protocol that is (1−η)-secure, we build the following protocol
for very weak OT.

Protocol 3. 1. Inputs: A has the security parameter 1n and two secret bits s0
and s1. B has the security parameter 1n and a selection bit c.

2. A sets a0 = s0 and a1 = s1. B sets bc = 0 and bc̄ = 1.
3. A and B run the WOR protocol to obtain cj = OR(aj , bj) for j ∈ {0, 1}.10
4. Outputs: B computes the secret bit sc = OR(ac, bc), A outputs nothing.

Analysis Sketch. Note that Protocol 3 computes the OT functionality correctly:
B obtains the secret bit ac because ac = OR(ac, bc) = OR(ac, 0).

Since bc̄ = 1, the security of the WOR protocol implies that B has advantage
at most η in distinguishing the case ac̄ = 0 from the case ac̄ = 1.

If s0 = s1 = 1, i.e. ac = ac̄ = 1, the security of the WOR protocol implies
that A has advantage at most 2η in distinguishing the case c = 0 from the case
c = 1 (by the security of the WOR protocol). Note that in Protocol 3 if a0 = 0
or a1 = 0, then A learns B’s selection bit c.

Very Weak OT Implies Weak OT. Given a (1− η)-secure protocol for very
weak OT, where η ≤ 1

f(n)

(
1− 1

t(n)

)
, f(n) = ω(logn) and t is a polynomial,

we build a protocol for weak OT. In order to amplify the receiver’s privacy, we
will repeat the protocol for very weak OT f(n) times and apply a secret sharing
scheme to B’s selection bit.

Protocol 4. 1. Inputs: A has the security parameter 1n and two secret bits s0
and s1. B has 1n.

2. For 1 ≤ i ≤ f(n), A uniformly chooses ai
0, a

i
1 ∈ {0, 1} and B uniformly

chooses ci ∈ {0, 1}.
3. For 1 ≤ i ≤ f(n), A and B execute the protocol for very weak OT on

(ai
0, a

i
1, c

i).
4. A uniformly chooses z1, · · · , zf(n) ∈ {0, 1} and sends to B the following

values

10 The executions of the WOR protocol can be done in parallel. Indeed, the executions
of the WOR protocol are independent because the parties are assumed to be honest.
Hence the privacy condition still holds with probability 1 − η for each execution of
the WOR protocol (otherwise an adversary could violate the privacy condition for a
single execution of the protocol by simulating an independent execution on its own).

The Relationship Between Password-Authenticated Key Exchange 473

– for 1 ≤ i ≤ f(n), qi
0 = zi ⊕ ai

0
– for 1 ≤ i ≤ f(n), qi

1 = zi ⊕ ai
1 ⊕ (s0 ⊕ s1)

– Q = s0 ⊕ (⊕f(n)
i=1 zi)

5. B computes for every i ∈ [f(n)], vi = qi
ci ⊕ ai

ci , c = ⊕f(n)
i=1 ci and outputs

sc = Q
⊕(
⊕f(n)

i=1 vi
)
.

Analysis Sketch. By the correctness of the protocol for very weak OT, we know
that for every i, B learns the value of ai

ci . Thus we can show that B computes
the secret sc correctly in Protocol 4.

Intuitively, in order to know c, A needs to know the values of all the ci’s.
By the security of the protocol for very weak OT, we know that for every i, the
probability that A distinguishes the case ci = 1 from the case ci = 0 is at most
3/4 + 2η. Using the uniform version of Yao’s XOR Lemma [13], we can show
that the probability that A distinguishes the case c = 0 from the case c = 1 is
negligible.

Intuitively, in order to know sc̄, B needs to know the value of one of the ai
c̄i .

Using a hybrid argument, we can show that the probability that B distinguishes
the case sc̄ = 0 from the case sc̄ = 1 is at most η · f(n) ≤ 1 − 1

t(n) for some
polynomial t.

5 On the Different Definitions of PAK

We highlight the difference between the indistinguishability-based definition of
[1] with the simulation-based definition of [11] by showing that unlike the GL
definition, the BPR definition does not imply semi-honest OT in the case of
exponential-sized dictionaries. Bellare, Pointcheval and Rogaway started with
the model and definition of [2] for authenticated key exchange and modified
them appropriately to take into account passwords instead of high-entropy keys.
In particular, the definition of security of [1] for password-authenticated key
exchange for the dictionary D = {0, 1}n (when we do not guarantee forward
secrecy) is exactly the original definition of [2] for plain (=non-password-based)
authenticated key exchange.

Consider the following protocol that was proposed in [2]. The legitimate par-
ties share a password w

R←D = {0, 1}n that we can see as two n/2-bit strings
(w1,w2). The first part is taken as the key to a pseudorandom function family
F = {fw1 : {0, 1}2n → {0, 1}n}w1∈{0,1}n/2 . The second part is taken as the key to
a pseudorandom permutation family G = {gw2 : {0, 1}n → {0, 1}n}w2∈{0,1}n/2 .

Protocol 5. 1. Inputs: A and B have a security parameter 1n and a joint
password w = (w1,w2) ∈ D = {0, 1}n.

2. A chooses rA
R←{0, 1}n and sends α1 = rA to B. B receives β1.

3. B chooses rB
R←{0, 1}n and sends β2

def= (rA, rB , fw1(rA, rB)) to A. A receives
α2.

474 M.-H. Nguyen

4. If α2 �= (rA, rB , fw1(rA, rB)) (which A can check using its password), then
A chooses KA

R← {0, 1}n. Otherwise, A sends α3
def= (rB , fw1(rB)) to B. B

receives β3.
5. Outputs: If α2 was of the form (rA, rB , fw1(rA, rB)), A outputs gw2(rB);

otherwise, it outputs KA. If β3 �= (rB , fw1(rB)), B rejects. Otherwise, B
outputs gw2(rB).

Lemma 5. [2] If one-way functions exist, Protocol 5 is a secure authenticated
key exchange protocol for the definition of [2]. In other words, Protocol 5 is a
secure PAK protocol for the dictionary D = {0, 1}n for the BPR definition.

Hence, unlike the GL definition, the BPR definition does not imply semi-honest
OT for dictionaries of exponential size under black-box reductions ([15, 9]). In-
tuitively, the difference is that the BPR definition does not guarantee that the
password w remain pseudorandom after an execution of a secure PAK protocol.
Indeed, we can see that the password w will not remain pseudorandom even with
respect to a passive adversary’s view of an execution of Protocol 5 since the adver-
sary learns the pair (rB , fw1(rB)). The pseudorandomness property required by
the GL definition makes a secure PAK protocol a strong enough primitive to imply
semi-honest OT, even in the case of dictionaries of exponential size (which corre-
sponds to plain authenticated key exchange). The guarantee that the password w
remain pseudorandom after an execution of a PAK protocol is indeed important
if one intends to also use the password in a protocol other than the PAK protocol.

This does not necessarily mean a PAK protocol that is secure for the BPR
definition is not a “strong” primitive. Indeed, we conjecture that one can imple-
ment semi-honest OT using a PAK protocol that is secure for the BPR definition
for all dictionaries (including poly-sized dictionaries which is the case of most in-
terest). Another open question is the relationship between the simulation-based
definition of Boyko, MacKenzie and Patel [6] and the BPR and GL definitions.

As noted in [7], “settling on a “good” definition of security for password-based
authentication has been difficult and remains a challenging problem”. However, a
study of the relationship between each definition of security for PAK and other
cryptographic primitives provides a better understanding of the tradeoffs and
advantages offered by one definition of security over another.

Acknowledgments. We thank Salil Vadhan for suggesting this problem and for
many helpful discussions and detailed comments. Many thanks to Yehuda Lindell
for his help in reconstructing [5]. We are grateful to Alex Healy and Omer Rein-
gold for helpful conversations on this subject and to the anonymous reviewers
for their insightful comments.

References

1. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. Lecture Notes in Computer Science 1807 (2000) 139–
155

The Relationship Between Password-Authenticated Key Exchange 475

2. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. Lecture
Notes in Computer Science 773 (1994) 232–249

3. Bellovin, S., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Se-
cure Against Dictionary Attacks. ACM/IEEE Symposium on Research in Security
and Privacy (1992) 72–84

4. Bellovin, S., Merritt, M.: Augmented Encrypted Key Exchange: A Password-Based
Protocol Secure against Dictionary Attacks and Password File Compromise. ACM
Conference on Computer and Communications Security (1993) 244–250

5. Boyarsky, M.: Public-Key Cryptography and Password Protocols: The Multi-User
Case. ACM Conference on Computer and Communications Security (1999) 63–72

6. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password-Authenticated Key
Exchange Using Diffie-Hellman. Lecture Notes in Computer Science 1807 (2000)
156–171

7. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally Compos-
able Password-Based Key Exchange. Unpublished manuscript (2004)

8. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key
Exchange. Lecture Notes in Computer Science 2656 (2003) 524–543

9. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The Relation-
ship between Public-Key Encryption and Oblivious Transfer. IEEE Symposium on
the Foundations of Computer Science (2001) 325–335

10. Goldreich, O.: Foundations of Cryptography, Volume 2. Cambridge University
Press (2004)

11. Goldreich, O., Lindell, Y.: Session-Key Generation Using Human Passwords Only.
Lecture Notes in Computer Science 2139 (2001) 408–432

12. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proofs. Journal of the ACM 38:3 (1991)
691–729

13. Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR Lemma. Electronic Col-
loquium on Computational Complexity (1995) TR95-050

14. Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols. ACM
Conference on Computer and Communications Security (1998) 122–131

15. Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-way
Permutations. ACM Symposium on Theory of Computing (1989) 44–61

16. Katz, J.: Efficient Cryptographic Protocols Preventing ‘Man-in-the-Middle’ At-
tacks. Ph.D. Thesis. Columbia University (2002)

17. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. Lecture Notes in Computer Science 2045
(2001) 475–494

18. Kilian, J.: A General Completeness Theorem for Two-Party Games. ACM Sympo-
sium on Theory of Computing (1991) 553–560

19. Full version of this paper at http://www.people.fas.harvard.edu/˜ mnguyen
20. Nguyen, M.-H., Vadhan, S.: Simpler Session-Key Generation from Short Random

Passwords. Lecture Notes in Computer Science 2951 (2004) 428–445
21. Nisan, N., Zuckerman, D.: Randomness is Linear in Space. Journal of Computer

and System Sciences 52:1 (1996) 43–52
22. Reingold, O., Trevisan, L., Vadhan, S.: Notions of Reducibility between Crypto-

graphic Primitives. Lecture Notes in Computer Science 2951 (2004) 1–20
23. Rudich, S.: The Use of Interaction in Public Cryptosystems. Lecture Notes in

Computer Science 576 (1992) 242–251
24. Steiner, M., Tsudik, G., Waidner, M.: Refinement and Extension of Encrypted Key

Exchange. Operating Systems Review 29:3 (1995) 22–30

On the Relationships Between
Notions of Simulation-Based Security�

Anupam Datta1, Ralf Küsters2, John C. Mitchell1, and Ajith Ramanathan1

1 Computer Science Department, Stanford University,
Stanford CA 94305-9045, USA

{danupam, jcm, ajith}@cs.stanford.edu
2 Institut für Informatik,

Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
kuesters@ti.informatik.uni-kiel.de

Abstract. Several compositional forms of simulation-based security
have been proposed in the literature, including universal composability,
black-box simulatability, and variants thereof. These relations between
a protocol and an ideal functionality are similar enough that they can
be ordered from strongest to weakest according to the logical form of
their definitions. However, determining whether two relations are in fact
identical depends on some subtle features that have not been brought
out in previous studies. We identify the position of a “master process” in
the distributed system, and some limitations on transparent message for-
warding within computational complexity bounds, as two main factors.
Using a general computational framework, we clarify the relationships
between the simulation-based security conditions.

1 Introduction

Several current projects use ideal functionality and indistinguishability to state
and prove compositional security properties of protocols and related mecha-
nisms. The main projects include work by Canetti and collaborators on an
approach called universal composabiliity [8, 10, 11, 12, 13] and work by Backes,
Pfitzmann, and Waidner on a related approach that also uses black-box simulata-
bility [22, 7, 4, 5]. Other projects have used the notion of equivalence in process
calculus [16, 18, 19], a well-established formal model of concurrent systems. While
some process-calculus-based security studies [2, 3, 1] abstract away probability

� This work was partially supported by the DoD University Research Initiative (URI)
program administered by the Office of Naval Research under Grant N00014-01-1-
0795, by OSD/ONR CIP/SW URI ”Trustworthy Infrastructure, Mechanisms, and
Experimentation for Diffuse Computing” through ONR Grant N00014-04-1-0725, by
NSF CCR-0121403, Computational Logic Tools for Research and Education, and by
NSF CyberTrust Grant 0430594, Collaborative research: High-fidelity methods for
security protocols. Part of this work was carried out while the second author was at
Stanford University supported by the “Deutsche Forschungsgemeinschaft (DFG)”.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 476–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Relationships Between Notions of Simulation-Based Security 477

and computational complexity, at least one project [20, 17, 21, 23] has developed
a probabilistic polynomial-time process calculus for security purposes. The com-
mon theme in each of these approaches is that the security of a real protocol is
expressed by comparison with an ideal functionality or ideal protocol. However,
there are two main differences between the various approaches: the precise rela-
tion between protocol and functionality that is required, and the computational
modeling of the entities (protocol, adversary, simulator, and environment). All
of the computational models use probabilistic polynomial-time processes, but
the ways that processes are combined to model a distributed system vary. We
identify two main ways that these computational models vary: one involving the
way the next entity to execute is chosen, and the other involving the capacity
and computational cost of communication. We then show exactly when the main
security notions differ or coincide.

In [8], Canetti introduced universal composability (UC), based on proba-
bilistic polynomial-time interacting Turing machines (PITMs). The UC relation
involves a real protocol and ideal functionality to be compared, a real and ideal
adversary, and an environment. The real protocol realizes the ideal functionality
if, for every attack by a real adversary on the real protocol, there exists an attack
by an ideal adversary on the ideal functionality, such that the observable behav-
ior of the real protocol under attack is the same as the observable behavior of the
ideal functionality under attack. Each set of observations is performed by the
same environment. In other words, the system consisting of the environment, the
real adversary, and the real protocol must be indistinguishable from the system
consisting of the environment, the ideal adversary, and the ideal functionality.
The scheduling of a system of processes (or ITMs) is sequential in that only
one process is active at a time, completing its computation before another is
activated. The default process to be activated, if none is designated by process
communication, is the environment. In the present work, we use the term master
process for the default process in a system that runs when no other process has
been activated by explicit communication.

In [22], Pfitzmann and Waidner use a variant of UC and a notion of black-
box simulatability (BB) based on probabilistic polynomial-time IO automata
(PIOA). In the BB relation between a protocol and ideal functionality, the UC
ideal adversary is replaced by the combination of the real adversary and a simu-
lator that must be chosen independently of the real adversary. Communication
and scheduling in the PIOA computational model are sequential as in the PITM
model. While the environment is the master process in the PITM studies, the
adversary is chosen to be the master process in the Pfitzmann-Waidner version
of UC. In the Pfitzmann-Waidner version of BB the master process is the ad-
versary or the simulator [22]. In a later version of the PIOA model (see, e.g.,
[4]), the environment is also allowed to serve as the master process, subject to
the restriction that in any given system it is not possible to designate both the
adversary/simulator and the environment as the master process. In proofs in
cryptography, another variant of BB is often considered in which the simulator

478 A. Datta et al.

SS-SBB

Strong Simulatability [15]
≡

Strong Blackbox [4, 22]

(No restriction on who is master)

UC-WBBsim

Universal Composability [22]
≡

Weak Blackbox

(Simulator and adversary may
be master, but not environment)

UC-WBBenv

Universal Composability [8, 4]
≡

Weak Blackbox

(Environment may be master)

iff FORWARDER property holds

WBBadv

Weak Blackbox

(Only adversary may be master)

Fig. 1. Equivalences and implications between the security notions in SPPC

may depend on the real adversary or its complexity. We call this variant Weak
BB (WBB) and the previous one Strong BB (SBB).

In [17, 21, 23, 24], Mitchell et al. have used a form of process equivalence,
where an environment directly interacts with the real and ideal protocol. The
computational model in this work is a probabilistic polynomial-time processes
calculus (PPC) that allows concurrent (non-sequential) execution of independent
processes. The process equivalence relation gives rise to a relation between pro-
tocols and ideal functionalities by allowing a simulator to interact with the ideal
functionality, resulting in a relation that we call strong simulatability, SS [15].
The difference between SS and SBB is that in SBB, the environment and the
adversary are separated while the SS environment also serves as the adversary.

Contribution of the Paper. In this paper, we clarify the relationships between
UC, SBB, WBB, SS under different placements of the master process and an
additional issue involving the ability to define a “forwarding” process that for-
wards communication from one process to another. While it seems intuitively
reasonable that such a forwarder can be placed between two processes without
changing the overall behavior of the system, this may violate complexity bounds
if a polynomial-time forwarder must be chosen before the sending or receiving
process. If the time bound of the sender, for example, exceeds the time bound
of the forwarder, then some sent messages may be lost because the time bound
of the forwarder has been exhausted. This is relevant to our study because some
equivalence proofs require the existence of forwarders that cannot be exhausted.

Our main results are summarized in Figure 1. Each of the four boxes in
this figure stands for a class of equivalent security notions. Specifically, if a real

On the Relationships Between Notions of Simulation-Based Security 479

and ideal protocol are related by one notion in this class, then they are also
related by all other notions in this class. A solid arrow from one class to another
indicates that relations in the first class imply relations in the second class.
The implication indicated by the dashed arrow is contingent on whether the
aforementioned forwarding property holds for the processes in question.

The proofs of equivalence and implication between security notions are ax-
iomatic, using a relatively small set of clearly stated equivalence principles in-
volving processes and distributed systems. This approach gives us results that
carry over to a variety of computational models. Our axiomatic system is proved
sound for a specific computational model, a sequential probabilistic polynomial-
time process calculus (SPPC), developed for the purpose of this study. SPPC
is a sequential model, allowing only one process to run at a time. When one
process completes, it sends an output indicating which process will run next.
This calculus is close to PIOA and PITM in expressiveness and spirit, while
(1) providing a syntax for writing equations between systems of communicating
machines and (2) being flexible enough to capture different variants of security
notions, including all variants of SS, SBB, WBB, and UC discussed in this paper.
Our results about these security notions formulated over SPPC are:

1. Equivalences between security notions.
(a) The different forms of Strong Simulatability and Strong Blackbox ob-

tained by varying the entity that is the master process are all equivalent.
This equivalence class, denoted SS-SBB, is depicted in the top-left box
in Figure 1 and includes placements of the master process as considered
for Strong Blackbox in [4, 22]

(b) All variants of Universal Composability and Weak Blackbox in which the
environment may be the master process are equivalent. This equivalence
class, denoted UC-WBBenv, is depicted in the bottom-left box in Figure 1
and includes placements of the master process as considered for Universal
Composability in [8, 4].

(c) All variants of Universal Composability and Weak Blackbox in which
the simulator and the adversary may be the master process, but not the
environment are equivalent. This equivalence class, denoted UC-WBBsim,
is depicted in the top-right box in Figure 1 and includes placements of
the master process as considered for Universal Composability in [22].

(d) All variants of Weak Blackbox where the adversary may be the master
process, but neither the environment nor the simulator may play this
role are equivalent. This equivalence class, denoted WBBadv, is depicted
in the bottom-right box in Figure 1.

2. Implications between the classes.
(a) SS-SBB implies UC-WBBenv. In particular, Strong Blackbox with place-

ments of the master process as considered in [4, 22] implies Univer-
sal Composability with placements of the master process as considered
in [8, 4].

(b) UC-WBBenv implies WBBadv.

480 A. Datta et al.

(c) WBBadv implies UC-WBBsim. In particular, Strong Blackbox with place-
ments of the master process as considered in [4, 22] and Universal Com-
posability with placements of the master process as considered in [8, 4]
implies Universal Composability with placements of the master process
as considered in [22].

3. Separations between the classes.
(a) The security notions in UC-WBBenv are strictly weaker than those in

SS-SBB in any computational model where the forwarding property (ex-
pressed precisely by the FORWARDER axiom) fails. Since this property
fails in the PITM model [8] and the buffered PIOA model [4], it follows
that UC-WBBenv does not imply SS-SBB in these models. This contra-
dicts a theorem claimed in [4]. However, the forwarding property holds
in SPPC and the buffer-free PIOA model for most protocols of interest.
In these cases, UC-WBBenv implies SS-SBB.

(b) The security notions in UC-WBBsim are strictly weaker than the no-
tions in WBBadv, and hence, the notions in UC-WBBenv and SS-SBB.
In particular, the Universal Composability relation with placements of
the master process as considered in [22] does neither imply the Strong
Blackbox relations with placements of the master process as considered
in [4, 22] nor Universal Composability relations with placements of the
master process as considered in [8, 4].

These results all show that the relationship between universal composability
and black-box simulatability is more subtle than previously described. One con-
sequence is that when proving compositional security properties by a black-box
reduction, care must be taken to make sure that the computational model gives
appropriate power to the environment. In particular, the composability theorem
of Canetti [8] does not imply that blackbox simulatability is a composable se-
curity notion, over any computational model in which the forwarding property
(expressed by the FORWARDER axiom) is not satisfied.

Outline of the Paper. Section 2 defines the sequential polynomial-time process
calculus SPPC, with security relations defined precisely in Section 3. The main
results are given in Section 4, with consequences for PIOA and PITM models
developed in Section 5. In Section 6, we briefly consider a less prominent security
notion, called reactive simulatability in [5] and security with respect to specialized
simulators in [9], and relate it to the other notions.

Full definitions, proofs, and further explanations are provided in a technical
report [14]. This technical report also proves a composition theorem for SPPC
that is similar to the composition theorem for ITMs established by Canetti [8].

2 Sequential Probabilistic Process Calculus

In this section, we introduce Sequential Probabilistic Process Calculus (SPPC) as
a language-based computational model for studying security notions (see [14] for
a detailed technical presentation and further explanation). We start by discussing

On the Relationships Between Notions of Simulation-Based Security 481

Guard

Guard

Guard

Guard

steps
overall

computation

≤ p(n)

PPT

x1 xk· · ·

in
pu

t
ch

an
ne

ls

ou
tp

ut
ch

an
ne

ls

Fig. 2. Probabilistic polynomial-time machines in SPPC

how individual probabilistic polynomial-time machines are modelled in SPPC
and then explain how to build and execute systems of interacting machines. Our
exposition parallels that of related models [8, 22, 5].

Single Probabilistic Polynomial-Time Machines. In SPPC, single machines are
of the form as depicted in Figure 2. For the time being, let us ignore the “guards”
and the variables x1, . . . ,xk. Conceptually, a single machine is a black-box with
internal state that receives inputs, performs polynomially-bounded computation
and then produces outputs. Inputs are received on input channels and outputs
are written on output channels. More precisely, single machines are restricted to
receiving one input and producing at most one output at a time. While this at
first might appear to be a restriction, it is not really a problem since any machine
that sends multiple messages can be converted to a machine that stores internally
(possibly using internal buffers) the messages it wants to send, and then sends
the messages one at a time on request. In fact, this style of communication
corresponds exactly to the manner in which communication is defined in other
sequential models, notably the PIOA and PITM models [8, 22]. Also, just as in
these models, the overall runtime of a machine is bounded by a polynomial in
the security parameter and does not depend on the number or length of inputs
sent to the machine.

The channels of a single machine in SPPC correspond to ports in the PIOA
model and to tapes in the PITM model. However, while messages on channels
(and ports) are removed when read, this is not the case for tapes. Nevertheless,
tapes can be modelled by adding machines, one for each input channel, which
simulate the tapes in the obvious way. The “main machine” will then receive its
input from the “tape machines”. In the PIOA model, buffer machines serve a
similar purpose. Note that while in SPPC and the PIOA model, the number of
input and output channels/ports is not restricted, in Canetti’s PITM model only
one pair of input/output and input/output communication tapes is considered.

In SPPC, machines can preprocess their input using guards (see Figure 2)
which are deterministic polynomial-time machines that are placed on input chan-
nels. Given an input on the channel, a guard may accept or reject the input. If

482 A. Datta et al.

rejected, the process does no computation. If accepted, the process receives the
output of the guard. This may be different from the input, e.g., a guard can elim-
inate unnecessary information or transform data. The computation performed
by the guard may depend on the current internal state of the process. Its run-
time is polynomially-bounded in the security parameter per invocation and is
not factored into the overall runtime of the process using the guard. In particu-
lar, a guard can be invoked an unbounded number of times. Since guards allow
a process to discard messages without incurring a computation cost, attempts
to “exhaust” a process by sending many useless messages to the process can
be defeated. Additionally, using guards we can simulate an unbounded number
of “virtual” channel names by prefixing each message with a session id and/or
party name and then stipulating that the guards accept only those messages
with the right header information. Such an ability is required for systems with
a polynomial number of machines, e.g., multiparty protocols, or with multiple
instances of the same protocol. While mechanisms analogous to guards are ab-
sent in other models, notably [22, 8], a newer version of PIOA [6] has a length
function that, when set to zero, prevents messages from being received by the
machine. This corresponds to a guard which rejects all inputs and so can be used
to help avoid exhaustion attacks. However, it does not help in the creation of a
mechanism analogous to virtual channels.

As mentioned above, guards can be invoked an unbounded number of times
without being exhausted and in every invocation their runtime is bounded by
a polynomial in the security parameter—the runtime could even depend on the
length of the input. Hence, the runtime of a single machine including the guards
is polynomially bounded in the security parameter and the number of invoca-
tions. However, the overall runtime of a single machine excluding the guards is
polynomially bounded in the security parameter alone, and hence, such a ma-
chine can produce at most polynomially many output messages overall in the
security parameter. Now, since guards can only be triggered by messages sent
by single machines, it follows that in a system of polynomially many machines
guards are only invoked a polynomial number of times in the security parameter.
As shown in [14], from this we can conclude that such systems can be simulated
by a probabilistic polynomial time Turing machine.

In SPPC, a machine may have auxiliary input, just like auxiliary input can
be given to the interacting Turing machines in Canetti’s model. This input is
written on specific tapes before a (system of) machines is run. If such auxiliary
input is used, it results in a non-uniform computational model. The tapes are
represented by x1, . . . ,xk (see Figure 2). Just like in Canetti’s model, we only
allow the environment machine to use auxiliary input. However, whether the
environment machine is uniform or not does not affect the results presented in
this paper.

Formally, in SPPC a single machine is defined by a process expression P.
Such an expression corresponds to a description of an interacting Turing ma-
chine in the PITM model or an I/O automaton in the PIOA model. A process
expression is always parameterized by the security parameter n and possibly

On the Relationships Between Notions of Simulation-Based Security 483

so-called free variables x1, . . . ,xk, which represent the tapes for the auxiliary
input mentioned above. Therefore, we sometimes write P(x1, . . . ,xk) instead of
P. A process expression with value i chosen for the security parameter and val-
ues

→
a (the auxiliary inputs) substituted for its free variables

→
x yields a process

P(
→
a)n←i. A process corresponds to an interacting Turing machine where the

security parameter is written on the security parameter tape and the auxiliary
input is written on the input tape. Hence, a process can perform computations
as soon as it receives input on the input channels. As an expositional conve-
nience, we will use the terms ‘process expression’ and ‘process’ interchangeably.
A process expression is called open if it has free variables, and closed otherwise.
Hence, open process expressions correspond to non-uniform machines and closed
expressions to uniform ones.

Systems of Interacting Machines. In SPPC, a system of interacting machines is
simply a multiset of single machines where an output channel of one machine
connects directly to an identically-named input channel of another machine.
The manner in which these machines are wired together is uniquely determined
by the channel names since we stipulate that no two machines have the same
input and output channel names respectively. After a machine M1 has sent a
message on an output channel, the machine waits to receive input on an in-
put channel. The message sent on the output channel is immediately received
by the machine M2 that has an identically-named input channel. If the guards
on the input channel of this machine accepts the message, then M2 may per-
form some computation and produce one output message. While M2 now waits
for new input on its input channels, the output message (if any) is processed
by the next receiving machine, and so on. If there is no receiving machine, or
the guard of the receiving machine rejects the message, or no output message
is produced, computation would halt since no machine is triggered. To avoid
this, in a system of machines, one machine is always declared to be a master
machine, also called master process, and this machine is triggered if no other
machine is.

In SPPC, given process expressions P1, . . . ,Pn, each representing a single
machine, the combined system of machines is denoted by the process expression
P1 � · · · � Pn. Instead of interpreting P1 � · · · � Pn as a system of n single
machines, one can consider this system as a single machine (consisting of n sub-
machines). This corresponds to the transformation, in the PIOA model, of a
system of fixed, finite number of machines into a single machine. However, in
SPPC we can apply such transformations to systems containing a polynomial
number of machines as well.

With the bounded replication operator !q(n) P, where q(n) is some polynomial
in the security parameter and P is a process expression (representing a single
machine or a system of machines), systems containing a polynomial number of
machines can be described. The process expression !q(n) P stands for a q(n)-fold
parallel composition P � · · · � P. Note that in such a system, different copies
of P have the same input and output channels. However, as discussed earlier,
guards allow us to send messages to (virtual) channels of particular copies of

484 A. Datta et al.

a protocol. Bounded replication can be combined with parallel composition to
build bigger systems such as !q1(n) (P1 � P2 � !q3(n) P3).

We note that the details of the communication model, such as a specific
activation order of entities, the communication primitives available (such as in-
secure, authenticated, or secure channels), and specific forms of buffering, are
not explicitly modelled in SPPC. The driving philosophy behind the design of
SPPC is to move such details into the specification of the protocol rather than
explicitly encoding them into the model. This makes SPPC simple and flexible,
thereby allowing easy formulation of a variety of security notions.

As described earlier, since our execution model is sequential, computation
may not proceed if currently executing machine produces no output, or a re-
ceiving machine rejects an input. In order to ensure that computation proceeds
even in this case, we identify a master process by using a special input channel
start. In case no output is produced by a machine, a fixed value is written on
start thereby triggering the master process. The master process is also the first
machine to be activated when execution starts.

Additionally, in studying security notions, it will be useful to define the out-
put of a system. We do so by writing a bit, the output, onto an output channel
named decision. The machine containing this channel is called the decision
process. Given a process expression R(

→
x) with free variables

→
x , we denote by

Prob[R(
→
a)n←i � 1] the probability that R with security parameter i and sub-

stitution of values
→
a for its variables

→
x outputs a 1 on decision. Recall that

R(
→
a)n←i denotes the process obtained from the process expression R by replac-

ing the security parameter n by a value i and replacing the variables
→
x by values

→
a . Two process expressions P(

→
x) and Q(

→
x) are called equivalent or indistin-

guishable, written P(
→
x) ≡ Q(

→
x), iff for every polynomial p(n) there exists i0

such that |Prob[P(
→
a)n←i � 1]−Prob[Q(

→
a)n←i � 1]| ≤ 1/p(i) for every i ≥ i0

and every tuple
→
a of bit strings.

We call machines which are neither master nor decision processes regular. A
machine which is both master and decision is called a master decision process.
In what follows, by R, M, D, and MD we denote the set of all closed regular
processes, closed master processes, open or closed decision processes, and open
or closed master decision processes, respectively.

3 The Security Notions and Their Variants

In this section, we formulate the security notions and their variants. In order
to do so, we must first define which SPPC expressions constitute well-formed
systems of interacting machines. We will do so by specifying how machines are
connected together.

We start by defining the communication interfaces of individual processes. A
process uses directional external channels—input and output external channels—
to communicate with other machines. These channels are partitioned into two
types: network channels and IO channels. The channels start and decision are

On the Relationships Between Notions of Simulation-Based Security 485

respectively defined to be input and output IO channels. Input channels connect
to identically-named output channels of the same type.

If P represents a protocol, then an adversary A connects to the network
channels of P while an environment E connects to the IO channels of P and
A. Formally, two processes, P and Q, are compatible if they have the same set
of external channels. We say that two processes are IO-compatible if they have
the same set of IO channels and disjoint sets of network channels. A process
expression Q is connectible for P if each common external channel of P and Q
has the same type in both and complementary directions. A process expression
A is adversarially connectible for P if A is connectible for P and the set of
external channels of A is disjoint from the set of IO channels of P. Thus an
adversary can only connect on the network channels of a protocol. Similarly, E
is environmentally connectible for P if it can only connect on the IO channels
of P.

We can now define what it means for a process to be an adversary, environ-
ment, or simulator. We do so in a parametric fashion so that we can succinctly
represent the variants of a security notion. Given a set of processes C we de-
fine: a) EnvC(P) to be the set of all processes in C that are environmentally
connectible for P, b) AdvC(P) to be the set of all processes in C that are adver-
sarially connectible for P, c) SimC(P,F) to be the set of all processes S in C
that are adversarially connectible for F and such that S � F is compatible with
P, d) ConC(P) to be the set of all processes in C that are connectible for P.

Definition 1. Let A (real adversaries), I (ideal adversaries), E (environments),
and S (simulators) be sets of process expressions, and P (the real protocol) and
F (the ideal functionality/protocol) be IO-compatible process expressions.

Strong Simulatability (SS): SS(S,E)(P,F) iff ∃S ∈ SimS(P,F)∀E ∈ ConE(P) :
E � P ≡ E � S � F , i.e., there exists a simulator such that no environment
can distinguish whether it is interacting with the real protocol or the ideal
functionality-simulator combination.

Strong Blackbox Simulatability (SBB): SBB(A,S,E)(P,F) iff ∃S ∈ SimS(P,F)
∀A ∈ AdvA(P)∀E ∈ EnvE(A � P) : E � A � P ≡ E � A � S � F , i.e., there
exists a simulator such that for all adversaries, no environment can distin-
guish whether it is interacting with the real protocol-adversary combination
or the ideal functionality-simulator-adversary combination.

Weak Blackbox Simulatability (WBB): WBB(A,S,E)(P,F) iff ∀A ∈ AdvA(P)∃S ∈
SimS(P,F)∀E ∈ EnvE(A � P) : E � A � P ≡ E � A � S � F , i.e., for each
adversary there exists a simulator such that no environment can distinguish
whether it is interacting with the real protocol-adversary combination or the
ideal functionality-simulator-adversary combination.

Universal Composability (UC): UC(A,I,E)(P,F) iff ∀A∈AdvA(P) ∃I ∈SimI(A �
P,F) ∀E ∈ EnvE(A�P) : E � A � P ≡ E � I � F , i.e., for each real adver-
sary there exists an ideal adversary such that no environment can distinguish
whether it is interacting with the real protocol-real adversary combination or
the ideal functionality-ideal adversary combination.

486 A. Datta et al.

4 Relationships Between the Security Notions

In this section, we examine the relationships between the security notions intro-
duced in the previous section. The instances of each security notion are obtained
by assigning roles (decision, master, regular) to the various entities (environment,
real and ideal adversary, simulator, real and ideal protocol). The environment is
always the decision process, and the real and ideal protocols are always regular
processes. So, the variants of each security notion differ only wrt the entity that
assumes the role of the master process. Formally, the variants are obtained by
defining the sets A, I, S, and E to be one of the sets R, M, D, and MD. For
example, the security notion considered in [8] is UC(R,R,MD)(P,F). Here, P and
F are UC with the environment as the master decision process and the real and
ideal adversary as regular processes. Another variant of UC considered in [4] is
UC(M,M,MD)(P,F). Here, the environment is the master decision process and
the real and ideal adversaries are the master processes. Notice that although
both the environment E and the real/ideal adversary A/I may play the role of
the master process, in any specific setting, according to our definitions, exactly
one of E or A/I will actually be the master process. If the real adversary is the
master process, then the ideal adversary must be master as well; furthermore,
the environment cannot be master (as it would not be environmentally valid
if it also had the start channel). Conversely, if the adversary is not the mas-
ter (i.e., does not have the start channel), then the environment may be the
master. Note that combinations without a master process or a decision process
do not make sense since no computation can take place in their absence or no
decision can be generated, i.e., no process can write on the channel decision.
Henceforth, we omit such combinations. We will consider combinations where
we require a certain entity to play the role of the master by saying that this
entity is a process expression in M \R. In variants of these notions where the
simulator S plays the role of the master process, we allow the simulator to hand
over control to A or E via a channel start′, which replaces start in A and
E . Additionally, we also consider a variant of WBB where the simulator S only
depends on the complexity of A rather than on A in its entirety. We can easily
show that these two variants are equivalent [14], and so we will not distinguish
between them in what follows.

In the following theorems, the security notions are considered to be binary
relations over the set of regular processes R.

Theorem 1. All variants of Strong Simulatability and Strong Blackbox obtained
by varying the entity that is the master process are equivalent, i.e., the following
identities hold:

SS(R,MD) = SS(M,MD) = SBB(R,R,MD) = SBB(M,R,MD) =
SBB(M,R,D) = SBB(M\R,R,D) = SBB(M\R,R,MD) = SBB(M,M,MD) =
SBB(R,M,MD) = SBB(M,M,D).

We call this class of security notions SS-SBB. It includes placements of the
master process as considered for Strong Blackbox in [4] and [22]. In [4], the

On the Relationships Between Notions of Simulation-Based Security 487

environment, the adversary, and the simulator may play the role of the master
process, and hence, this corresponds to the notion SBB(M,M,MD). In [22], only the
adversary and the simulator may be the master process, but not the environment,
and hence, this corresponds to the notion SBB(M,M,D).

Recall that the difference between SS and SBB is that, in the latter notion,
the environment and the adversary are separate entities, while in the former they
are combined into one. Since the adversary and the environment can commu-
nicate freely, it is perhaps expected that the two notions should be equivalent.
Theorem 1 bears out this intuition, and shows that the equivalences among the
notions are independent of which entity plays the role of the master process.
Consequently, there appears to be no technical benefit from treating the adver-
sary and environment as two separate entities as in the SBB setting. We point
out that in order to prove Theorem 1, it is important that situations in which the
simulator is a master process do not differentiate between SS and SBB. This is
true because such situations yield degenerate relations; for instance, SS(M\R,MD)
is an empty relation. The reason is that the environment can exhaust a mas-
ter simulator since whenever execution defaults to the simulator, it triggers the
environment immediately. Hence the environment can repeatedly “ping” the
simulator until its time-bound is exhausted. In a model in which the runtime
of the simulator may depend on how often it is invoked by the environment,
such exhaustion attacks would not be viable. In such a model, the notions SS
and SBB may differ depending on whether or not the simulator plays the role of
the master. Since such extensions are not studied in published work, we defer a
detailed study to future work.

Theorem 2. All variants of Universal Composability and Weak Blackbox in
which the environment may be the master process are equivalent, i.e., the follow-
ing identities hold:

UC(R,R,MD) = UC(M,M,MD) = WBB(R,R,MD) =
WBB(M,R,MD) = WBB(M,M,MD) = WBB(R,M,MD).

We call this class of security notions UC-WBBenv. It includes placements
of the master process as considered for Universal Composability in [8] and [4].
While in [8] only the environment may play the role of the master process,
corresponding to the notion UC(R,R,MD), in [4] the adversary may play this role
as well, corresponding to UC(M,M,MD).

The fact that WBB implies UC follows simply by combining the simulator
and real adversary to produce an ideal adversary. To go in the reverse direction,
we consider what happens when instantiating the real adversary with a pro-
cess that simply forwards messages between the protocol and the environment.
The corresponding ideal adversary then serves as the simulator in the defini-
tion of WBB. We note that it is important that the runtime of the simulator
be allowed to depend on the complexity of the real adversary. Note that as in
the class SS-SBB, equivalence among the security notions in UC-WBBenv holds
independently of whether or not the simulator may be the master process.

488 A. Datta et al.

Theorem 3. All variants of Universal Composability and Weak Blackbox in
which the simulator and the adversary may be the master process and the en-
vironment is not the master process are equivalent, i.e., the following identities
hold:

UC(M,M,D) = UC(M\R,M\R,D) = UC(M\R,M\R,MD) =
WBB(M,M,D) = WBB(M\R,M,D).

We call this class of security notions UC-WBBsim. It includes the placements
of the master process as considered for Universal Composability in [22], which
corresponds to the notion UC(M,M,D).

Equivalence among the notions in UC-WBBsim is established similarly to the
class UC-WBBenv. Note that UC-WBBsim does not contain a version of WBB
where the simulator is restricted to be regular. As we will see, restricting the
simulator in this way, yields a strictly stronger notion.

Theorem 4. All variants of Weak Blackbox where the adversary is the master
process and neither the environment nor the simulator is the master process are
equivalent, i.e., the following identities hold: WBB(M,R,D) = WBB(M\R,R,D).

We call this class of security notions WBBadv. We now study the relationships
between the four classes. We say that a class of equivalent security notions C
implies another class C′ of equivalent security notions (C ⇒ C′), if a notion in C
(and hence, every notion in C) implies a notion in C′ (and hence, every notion
in C′).

Theorem 5. SS-SBB ⇒ UC-WBBenv ⇒ WBBadv ⇒ UC-WBBsim, but the class
UC-WBBsim does not imply the other classes, i.e., UC-WBBsim � WBBadv, and
hence, UC-WBBsim � UC-WBBenv and UC-WBBsim � SS-SBB

In particular, we have that the Strong Blackbox relation with the placements
of the master process as considered in [22, 4] implies the Universal Composability
relation with the placements of the master process as considered in [8, 22, 4]. Also,
the Universal Composability relation with the placement of the master process
as considered in [22] is strictly weaker than the Universal Composability relation
with the placements of the master process as considered in [8] and [4].

The argument from SS-SBB to UC-WBBenv relies on the order of quantifi-
cation over the entities. The fact that UC-WBBenv implies WBBadv relies on
the observation that making the environment the master intuitively gives the
environment more discriminatory power. The final implication follows from the
fact that the set of simulators considered in WBBadv is a subset of the set of
simulators considered in UC-WBBsim.

To show that UC-WBBsim �⇒ WBBadv we provide a concrete example. Con-
sider a protocol P that receives a bit on an IO channel and forwards it on a
network channel. The ideal functionality F does the same but only forwards the
bit if it is 1. We can show that UC(M,M,D)(P,F) but not WBB(M,R,D)(P,F). It
is open whether WBBadv implies UC-WBBenv.

The following theorem identifies a necessary and sufficient condition—the for-
warder axiom (defined below)—for the equivalence of UC-WBBenv and SS-SBB.

On the Relationships Between Notions of Simulation-Based Security 489

As a consequence, we can see that the strongest variant of UC (where the en-
vironment is the master process) implies SBB just when the forwarder axiom
holds.

Theorem 6. Let C be a class of regular processes closed under channel-re-
naming. Then, restricting the relations to C, we obtain that

(UC-WBBenv =⇒ SS-SBB) iff (FORWARDER holds for all processes in C).

In particular, the Universal Composability relations with the placements of
the master process as considered in [8] and [4] are strictly weaker than the Strong
Blackbox relations with the placements of the master process as considered in
[4] and [22] in any computational model in which the forwarding property given
by the FORWARDER axiom does not hold. The axiom FORWARDER(C) for
a class of regular processes C is stated as follows:

FORWARDER(C). Given any process P ∈ C with network channels net, there
exists a process D with network channels net ∪ (net′ = {c′| c ∈ net}) such that
for all E whose only shared channels with P are external channels of P:

E � P ≡ E � D � [net′/net]P

where [net′/net]P denotes the process obtained from P by replacing the channels
in net by those in net′.

Intuitively, this axiom allows us to invisibly plug a communication medium
D between two entities connected over network channels.

While the forwarder property appears believable, it turns out that for arbi-
trary protocols, the forwarder property does not hold. The problem lies in the
fact that the forwarder is chosen independently of the environment E . As a re-
sult its runtime is fixed a priori and the environment can exhaust the forwarder
by sending it many useless messages. Then, the presence of the forwarder can
be easily detected by the environment. All is not lost. For a class of protocols
including those commonly studied in the literature (c.f., [22, 8, 5]) the forwarder
property holds in SPPC. We shall refer to these protocols as standard protocols.
The specific way in which the exhaustion problem is avoided for standard pro-
tocols involves using guards to reject the spurious messages. We cannot do this
for every protocol because it is important that the forwarder knows the commu-
nication structure of the protocol (see [14] for details). The following corollary
to Theorem 6 is now immediate.

Corollary 1. SS-SBB ⇔ UC-WBBenv for the class of standard protocols.

In particular, the Strong Blackbox relation with the placement of the master
process as considered in [22, 4] and the Universal Composability relation with
the placement of the master process as considered in [8, 4] are equivalent for
standard protocols in SPPC (see also Section 5.1).

Although in this extended abstract, we have only given intuitions behind
some of the proofs, we emphasize that the actual proofs are carried out using

490 A. Datta et al.

P � Q ≡ Q � P COM
P � (Q � R) ≡ (P � Q) � R ASC
P ≡ Q, Q ≡ R =⇒ P ≡ R TRN
P ≡ Q =⇒ Q ≡ P SYM
P ≡ [d/c]P where c, d �∈ {start, decision}, d �∈ Channels(P) RENAME

Fig. 3. A representative fragment of SPPC’s reasoning system

an equational reasoning system for SPPC. A small representative fragment of
the axiom system is given below. These axioms capture simple structural prop-
erties like commutativity, associativity, transitivity, and symmetry of process
equivalence. It also allows structural operations such as channel-renaming.

These axioms can also serve as an abstract specification of a “reasonable”
computational model for simulation-based security.

5 Implications for Other Models

We now study the relationships of the security notions for the PIOA model [22, 5,
4] and the PITM model [8, 9]. The simplicity of SPPC’s axiom system enables us
to carry over our results to these other computational models. Furthermore, the
counter-examples used to demonstrate that certain notions are strictly stronger
than others are quite simple and easily translate into the related models.

5.1 The PIOA Model

Most of the axioms used to prove the relationships among the security notions
also hold in the different versions of the PIOA model. Therefore, the relationships
given in the previous section mostly carry over to PIOA. In particular, we obtain
that all the security notions in SS-SBB, UC-WBBsim, and WBBadv are equivalent,
respectively, and their relationships are as depicted in Figure 1.

However, an axiom used to prove that the security notions in UC-WBBenv

are equivalent does not hold in PIOA. This axiom captures a property similar to
the forwarder property discussed in Section 4. This axiom essentially states that
there exists a forwarder D that is allowed to depend on the complexity of the
protocol P and the adversary A such that E � A � P ≡ E � A′ � D � P (where A′

is A with some renamed network channels). The axiom fails in PIOA because
machines always have to communicate through buffers and buffers are triggered
by machines other than the one writing into the buffer. In fact, we show that
UC does not imply WBB in PIOA when the environment is master. This failure
of equivalence seems counterintuitive. The problem vanishes if the PIOA model
is modified so that machines always trigger their own buffers. In effect, this is
equivalent to not having buffers at all, which is why we call this fragment of the
PIOA model the buffer-free PIOA model (BFPIOA). This fragment is essentially
as expressive as PIOA and this fragment can be embedded into SPPC (see [14]).
In particular, all axioms (except the forwarder property of the previous section)
are satisfied in BFPIOA and the examples used to prove separation results can

On the Relationships Between Notions of Simulation-Based Security 491

also be expressed in BFPIOA. As mentioned in Section 2, starting from the
work [6] PIOA (and thus, BFPIOA) has a restricted form of guards. Similar
to SPPC, this mechanism suffices to satisfy the forwarder property for standard
protocols, but just as in SPPC, there are protocols expressible in BFPIOA which
do not satisfy this property. In summary, we obtain for BFPIOA exactly the same
relationships as for SPPC (see Figure 1).

In [22], the security notions UC(M,M,D)(P,F) and SBB(M,M,D)(P,F) were
introduced for the PIOA model, while in [4] the notions UC(M,M,MD)(P,F) and
SBB(M,M,MD)(P,F) were considered. Our results clarify the relationships be-
tween these security notions: while the two variants of SBB are equivalent (they
both belong to the class SS-SBB), these notions are different from the two vari-
ants of UC. Also, the two variants of UC are not equivalent. Our results con-
tradict the claim in [4] that SBB(M,M,MD)(P,F) and UC(M,M,MD)(P,F) are
equivalent.

5.2 The PITM model

The PITM model [8] is tailored towards defining UC where the environment is a
master process and the adversaries are regular processes i.e., UC(R,R,MD)(P,F).
Depending on which entities are involved, different computational models are
defined: the real model (involving the environment, the real adversary, and the
real protocol), the ideal model (involving the environment, the ideal adversary,
and the ideal functionality together with dummy parties), and the hybrid model
which is a combination of the previous two models.

Therefore, it is not immediately clear how the security notions SS, SBB, and
WBB, which involve a simulator, would be defined in PITM. Different variants
are possible, and as we have seen, differences in the definitions may affect the
relationships between the security notions. It is out of the scope of this paper,
to extend PITM in order to define SS, SBB, and WBB. However, some general
points can be made. The version of PITM in [8] does not have a mechanism,
like the guards of SPPC, that will enable the forwarder property to be satisfied.
Without this property, UC is a strictly weaker notion than SBB. In ongoing
work [9], Canetti allows PITMs to depend on the number of invocations as well
as the length of messages on the IO tapes. This mechanism could enable PITM
to satisfy the forwarder property whence UC would imply SBB. However, this
is speculative since the details of the model are still being developed.

We finally note that in [8], Canetti introduces a special case of UC where the
adversary merely forwards messages between the environment and the parties.
Canetti proves UC and this notion equivalent. This notion can easily be formu-
lated in SPPC and proved equivalent to UC along the lines of the proof which
shows that UC(R,R,MD)(P,F) implies WBB(M,R,MD)(P,F).

6 Reactive Simulatability and Extensions of SPPC

In this section, we consider another security notion, called reactive simulatability
in [5] and security with respect to specialized simulators in [9]. This notion has not

492 A. Datta et al.

drawn as much attention as the others studied in the present work because, to
our best knowledge, a general composition theorem along the lines of [22, 4, 8, 14],
has not been proved for reactive simulatability (see, however, [9]). Therefore, in
the previous sections, we have concentrated on the other security notions and
only very briefly cover reactive simulatability here. In our terminology, reactive
simulatability is defined as follows:

Reactive Simulatability : RS(A,I,E)(P,F) iff ∀A ∈ AdvA(P)∀E ∈ EnvE(A � P)
∃I ∈ AdvI(F) : E � A � P ≡ E � I � F .

The only difference between reactive simulatability and universal compos-
ability (UC) is that in the former the ideal adversary is allowed to depend on
the environment. It has been pointed out by Canetti [9] that reactive simulata-
bility is equivalent to UC if the runtime of the environment may depend on the
length of the message on its input tape.3 In such a model, the notion of indis-
tinguishability has to be slightly modified. The idea of the proof of equivalence
is that one can define a universal environment which interprets part of its in-
put as an encoding of another environment. The ideal adversary corresponding
to this environment, in effect, works for all environments. It is straightforward
to extend SPPC in a way that the runtime of open processes (recall that the
environment is modeled as an open process), may depend on the length of the
messages substituted for the free variables. Thus, the same proof also works in
SPPC. We note that the argument goes through regardless of whether the envi-
ronment may or may not play the role of the master process. In the former case,
reactive simulatability is equivalent to the notions in the class UC-WBBenv, and
in the latter case, it is equivalent to the notions in UC-WBBsim. This result also
carries over to an appropriate extension of BFPIOA.

7 Conclusion

We have carried out a thorough study of the relationships among various notions
of simulation-based security, identifying two properties of the computational
model that determine equivalence between these notions. Our main results are
that all variants of SS (strong simulatability) and SBB (strong black box simu-
latability) are equivalent, regardless of the selection of the master process, and
they imply UC (universal composability) and WBB (weak black box simulatabil-
ity). Conditions UC and WBB are equivalent as long as the role (master process
or not) of the environment is the same in both. However, the variant of UC in
which the environment may be a master process (as in [8, 4]) is strictly stronger
than the variants in which the environment must not assume this role (as in
[22]). In addition, the weaker forms of WBB do not imply SS/SBB. Finally,

3 In his new model, Canetti allows every interacting Turing machine to depend on the
number of invocations on input tapes and the length of the messages on input tapes.
However, to prove the equivalence, it suffices to require this only for the environment.

On the Relationships Between Notions of Simulation-Based Security 493

we prove a necessary and sufficient condition for UC/WBB to be equivalent to
SS/SBB, based on the ability to define forwarders. These results all show that
the relationship between universal composability and black-box simulatability
is more subtle than previously described. In particular, the composability the-
orem of Canetti [8] does not necessarily imply that blackbox simulatability is
a composable security notion over any computational model in which the for-
warding property is not satisfied. Another technical observation is that making
the environment the master process typically yields a stronger security notion.
Hence, we recommend that in subsequent developments of the various models,
the environment is always assigned the role of the master process.

Since our proofs are carried out axiomatically using the equational reasoning
system developed for SPPC, we are able to apply the same arguments to suit-
ably modified versions of the alternative computational models. We emphasize
that the our suggested modifications to the other systems are motivated by the
failure, in those systems, of simple equational principles. In particular, it seems
reasonable to adopt a buffer-free variant of PIOA.

While our study concentrates on models where the runtime of processes is
bounded by a polynomial in the security parameter, it would be interesting to
consider those models where the runtime may depend on the number of invo-
cations and the length of inputs (e.g., [9]). We believe that most of our results
carry over also to these models as they seem to satisfy the axioms that we use
in our proofs. However, the issue remains open since the details of these models
have not yet been fixed.

Acknowledgments. We thank Michael Backes, Ran Canetti, Birgit Pfitzmann,
Andre Scedrov and Vitaly Shmatikov for helpful discussions.

References

1. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In POPL 2001, pages 104–115, 2001.

2. Mart́ın Abadi and Andrew D. Gordon. A bisimulation method for cryptographic
protocol. In Proc. ESOP 98, Lecture notes in Computer Science. Springer, 1998.

3. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
the spi calculus. Information and Computation, 143:1–70, 1999. Expanded version
available as SRC Research Report 149 (January 1998).

4. M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theorem for
Secure Reactive Systems. In TCC 2004, volume 2951 of LNCS, pages 336–354.
Springer, 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems.
Technical Report 082, Eprint, 2004.

6. Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polyno-
mial fairness and liveness. In CSFW-15 2002, pages 160–174, 2002.

7. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Reactively secure signa-
ture schemes. In Proceedings of 6th Information Security Conference, volume 2851
of LNCS, pages 84–95. Springer, 2003.

494 A. Datta et al.

8. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS 2001. IEEE, 2001. Full version available at
http://eprint.iacr.org/2000/067/.

9. Ran Canetti. Personal communication, 2004.
10. Ran Canetti and Marc Fischlin. Universally composable commitments. In Proc.

CRYPTO 2001, volume 2139 of LNCS, pages 19–40, 2001. Springer.
11. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange

and secure channels. In EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351.
Springer, 2002.

12. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of univer-
sally composable two-party computation without set-up assumptions. In EURO-
CRYPT 2003, volume 2656 of LNCS, pages 68–86. Springer, 2003.

13. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In STOC 2002, pages
494–503, 2002.

14. Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan.
Sequential probabilisitic process calculus and simulation-based secu-
rity. 2004. An extended version is available as a technical report at
http://www.ti.informatik.uni-kiel.de/~kuesters/publications html/
DattaKuestersMitchellRamanathan-TR-SPPC-2004.ps.gz.

15. Anupam Datta, Ralf Küsters, John C. Mitchell, Ajith Ramanathan, and Vitaly
Shmatikov. Unifying equivalence-based definitions of protocol security. In ACM
SIGPLAN and IFIP WG 1.7, 4th Workshop on Issues in the Theory of Security,
2004.

16. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
17. Patrick D. Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. Prob-

abilistic polynomial-time equivalence and security protocols. In Formal Methods
World Congress, vol. I, number 1708 in LNCS, pages 776–793, 1999. Springer.

18. Robin Milner. A Calculus of Communicating Systems. Springer, 1980.
19. Robin Milner. Communication and Concurrency. International Series in Computer

Science. Prentice Hall, 1989.
20. John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization

of bounded oracle computation and probabilistic polynomial time. In FOCS 1998,
pages 725–733, 1998. IEEE.

21. John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A
probabilistic polynomial-time calculus for the analysis of cryptographic protocols
(preliminary report). In 17th Annual Conference on the Mathematical Foundations
of Programming Semantics, 2001, volume 45. ENTCS, 2001.

22. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and
its Application to Secure Message Transmission. In IEEE Symposium on Security
and Privacy, pages 184–200. IEEE Computer Society Press, 2001.

23. Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Prob-
abilistic bisimulation and equivalence for security analysis of network protocols.
Unpublished, see http://www-cs-students.stanford.edu/~ajith/, 2004.

24. Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Prob-
abilistic bisimulation and equivalence for security analysis of network protocols. In
FOSSACS 2004, 2004. Summarizes results in [23].

A New Cramer-Shoup Like Methodology for
Group Based Provably Secure Encryption

Schemes

Maŕıa Isabel González Vasco1, Consuelo Mart́ınez2, Rainer Steinwandt3,
and Jorge L. Villar4

1 Área de Matemática Aplicada, Universidad Rey Juan Carlos,
c/Tulipán, s/n, 28933 Madrid, Spain

migonzalez@escet.urjc.es
2 Departamento de Matemáticas, Universidad de Oviedo,

c/Calvo Sotelo, s/n, 33007 Oviedo, Spain
chelo@pinon.ccu.uninovi.es

3 IAKS, Arbeitsgruppe Systemsicherheit Prof. Beth, Fakultät für Informatik,
Universität Karlsruhe,

76128 Karlsruhe, Germany
steinwan@ira.uka.de

4 Departamento de Matemática Aplicada IV,
Universitat Politécnica de Catalunya, Campus Nord,

c/Jordi Girona, 1–3, 08034 Barcelona, Spain
jvillar@mat.upc.es

Abstract. A theoretical framework for the design of—in the sense of
IND-CCA—provably secure public key cryptosystems taking non-abelian
groups as a base is given. Our construction is inspired by Cramer and
Shoup’s general framework for developing secure encryption schemes
from certain language membership problems; thus all our proofs are in
the standard model, without any idealization assumptions. The skeleton
we present is conceived as a guiding tool towards the construction of
secure concrete schemes from finite non-abelian groups (although it is
possible to use it also in conjunction with finite abelian groups).

1 Introduction

In the last few years, the outrageous development of cryptanalytic techniques has
encouraged the search for theoretical models allowing for mathematical proofs of
security. Ideally, a security model should take into account all possible attacks,
including those performed on the physical device where the scheme is imple-
mented (such as timing attacks, differential power analysis or attacks relying on
the induction of faults) or those that could be carried out with non-standard
computing resources like a quantum computer.

One step behind such an ideal model, the nowadays standard notion of secu-
rity for public key encryption schemes (IND-CCA) abstracts the implementation-

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 495–509, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

496 M.I. González Vasco et al.

dependent characteristics and models the attacker in terms of probabilistic po-
lynomial-time (ppt) algorithms. Building on ideas of Naor and Yung [19], IND-
CCA security was introduced by Rackoff and Simon [20], who also presented
a scheme secure in this sense. A scheme with similar properties was afterwards
designed by Dolev, Dwork, and Naor [9]. Note that, equivalently, instead of IND-
CCA sometimes the term IND-CCA2 or the notion of semantic security against
adaptive chosen ciphertext attacks is used. As a standard reference for further
details on formal security notions like IND-CCA1, NM-CPA, etc. we mention
the paper of Bellare et al. [3].

Unfortunately, developing practical cryptosystems which can be proven to be
IND-CCA secure is a highly non-trivial task, and therefore, idealized models of
computation have been introduced in order to obtain simpler proofs yet reason-
able security guarantees [10, 4]. The first ‘realistic’ (that is, practical) proposal
without idealization hypothesis was that of Cramer and Shoup [7, 8], which uses
the Decision Diffie-Hellman assumption as a base. The same authors gave later
a very general construction which in particular led to the design of IND-CCA
group theoretic schemes constructed from certain group based primitives called
group systems. Essentially, such primitives are derived from hard subgroup mem-
bership problems of suitable abelian groups.

On the other hand, group theory has lately attracted a lot of attention as a
potential source of cryptographic primitives. Having in mind the existing quan-
tum algorithms for factoring integers and computing discrete logarithms, it is
indeed worthwhile to explore different areas of mathematics in search of hard
problems. Several proposals to use hard problems in non-abelian groups for
public key encryption have been made, some based on word or factorization
problems [22, 11, 18] and others on variants of the conjugacy problem in braid
groups [2, 1, 15, 16]. Unfortunately, almost all of these have been proven insecure
in some sense [13, 5, 14, 6]. In [12] common properties of some of these schemes
have been exploited to identify a security flaw according to one of the standard
security notions (malleability). A sound design framework could be very helpful
to prevent this kind of flaws when developing new schemes based on non-abelian
groups.

With this purpose in mind, below a theoretical framework for constructing
IND-CCA secure public key schemes using finite not necessarily abelian groups is
described. Our design is inspired by that of Cramer and Shoup [8, 7], but it is not
a generalization of it. It is our aim to provide precise guidelines for developing
group-based schemes with a sound theoretical basis, and we hope that the design
presented here leads to practical and secure constructions as soon as reasonable
hardness assumptions for certain group-based problems are identified.

2 Main Tools of Cramer and Shoup’s Construction

The main building blocks of the public key cryptosystem introduced by Cramer
and Shoup are so-called projective hash families, subset membership problems

A New Cramer-Shoup Like Methodology 497

and universal hash proof systems. We include an informal summary of these
notions and refer to [7, 8] for the corresponding definitions.

2.1 Projective Hash Families

Let X, Π be finite non-empty sets, and K some finite index set. Consider a family
H = {Hk : X −→ Π}k∈K of mappings from X into Π, and let α : K −→ S be
a map from K into some finite non-empty set S.

With this notation, for a given subset L ⊂ X, we refer to the tuple H =
(H,K,X,L,Π, S,α), as projective hash family (PHF) for (X,L) if for all k ∈ K
the restriction of Hk to L is determined by α(k), i. e., for all x ∈ L and k1, k2 ∈ K
the equality α(k1) = α(k2) implies Hk1(x) = Hk2(x).

Next, we consider three concepts to limit the amount of information about
the behavior of a map Hk on X \ L, given by α(k):

– We say that H is ε-universal if for any x ∈ X \ L and for a uniformly at
random chosen k ∈ K, the probability of correctly guessing Hk(x) from x
and α(k) is at most ε. In other words, α(k) determines Hk |L completely,
but gives (almost) no information about Hk |X\L.

– We say H is ε-universal2 if even knowing (besides Hk |L) the value of Hk

in some x∗ ∈ X \ L, for any x ∈ X \ (L ∪ {x∗}) the value of Hk(x) can be
guessed correctly with probability at most ε.

– Finally, we say that H is ε-smooth if the probability distributions of (x, s,
Hk(x)) and (x, s, π), where k, x and π are chosen uniformly at random in
K, X \ L and Π, respectively, and s = α(k), are ε-close.

2.2 Subset Membership Problems

Many cryptosystems base their semantic security on a decisional assumption
such as the Decision Diffie-Hellman (DDH) assumption or the Quadratic Resid-
uosity (QR) assumption. Most of these assumptions can be formulated in terms
of indistinguishability of two probability distributions. Namely, the uniform dis-
tribution on a set X and the uniform distribution on a subset L ⊂ X. For
instance, if G is a cyclic group of prime order p and g1 and g2 are two randomly
selected generators of G, the DDH assumption on G is formalized by setting
X = G×G and L = 〈(g1, g2)〉.

Since computational assumptions are in nature complexity theoretical state-
ments, a complexity parameter l ∈ N0, (as the binary length of p in DDH)
must be taken into account. Also, for each value of l, there are some possible
instances of the same problem. The (random) choice of a particular instance for
complexity parameter l is modelled by a samplable probability distribution Il

on the set of instance descriptions. In addition to a set X along with a subset
L ⊂ X, an instance description Λ specifies a binary relation R ⊆ L×W , where
W is a so-called witness test whose elements provide ‘proofs of belonging’ to the
elements in L, that is, given x ∈ L, there is always a w ∈ W that can be used
to prove that x belongs to L.

498 M.I. González Vasco et al.

Now, a subset membership problem M specifies a collection of distributions
(Il)l∈N0 on the set of instance descriptions along with several sampling and
verifying algorithms:

– a ppt algorithm called the instance generator that on input 1l, outputs a
description Λ = Λ[X,L,W,R] as just described;

– a ppt algorithm which, upon input of 1l and a certain instance Λ = Λ[X,L,W,
R], outputs a random x ∈ L and a witness w ∈ W for x (subset sampling
algorithm);

– a deterministic polynomial time algorithm that takes as input 1l, an instance
Λ = Λ[X,L,W,R] and a binary string ζ, and checks whether ζ is a valid
encoding of an element x ∈ X.

Moreover, M is hard if the probability distributions (Λ, x) and (Λ, x′), where
Λ = Λ[X,L,W,R] is the output of the instance generator and x, x′ are uniformly
distributed on L and X \ L respectively, are polynomially indistinguishable.

2.3 Universal Hash Proof Systems

A hash proof system (HPS) P is a rule which for a subset membership problem
M associates to each instance Λ = Λ[X,L,W,R] ofM a projective hash family
(H,K,X,L,Π, S,α) for (X,L). In addition, P provides the following sampling
and verifying algorithms which are polynomial in the complexity parameter l:

– a probabilistic algorithm that on input 1l and Λ (with non-zero probabil-
ity according to the corresponding distribution Il) outputs k ∈ K chosen
uniformly at random;

– a deterministic algorithm that on input 1l, Λ and k as above, outputs α(k) ∈
S;

– a deterministic private evaluation algorithm that on input l, Λ, k as above,
and x ∈ X outputs Hk(x) ∈ Π;

– a deterministic public evaluation algorithm that on input 1l, Λ as above, s ∈
α(K) and x ∈ L together with a witness w ∈ W for x, outputs Hk(x) ∈ Π
(where α(k) = s);

– a deterministic algorithm that on input 1l, Λ as above and a bitstring ζ
determines if ζ is a valid encoding of an element of Π.

A hash proof system P is referred to as ε-universal, if the PHFs it associates
to the instances of a subset membership problem M are ‘almost’ ε-universal.
Namely, consider ε : N0 −→ R>0, a function of the complexity parameter l.
Then we call P ε-universal (resp. universal2, smooth) if there exists a negligible
function δ(l) such that for all l ∈ N0 and all instances Λ of M, the PHF H
associated to Λ by P is δ(l)-close to an ε(l)-universal (resp. universal2, smooth)
PHF. Moreover, if this is the case, and ε(l) is a negligible function, then we say
that P is strongly universal (resp. universal2, smooth). Finally, it is convenient to
provide an extended notion of hash proof systems obtained by simply replacing
the sets X and L by X×E and L×E for a a suitable finite set E. Also, in these

A New Cramer-Shoup Like Methodology 499

extended hash proof systems a value e ∈ E is passed as an additional input to
both the private and the public evaluation algorithm.

It is worth noticing that if a HPS is strongly universal and the underlying
subset membership problem is hard, then the problem of evaluating Hk(x) for
random k ∈ K and arbitrary x ∈ X given only x and α(k) is also hard. Thus,
the role of the witness in the public evaluation algorithm becomes clear: without
w there is no way to efficiently compute Hk(x).

2.4 Cramer and Shoup’s IND-CCA Secure Public Key Encryption
Scheme

Roughly speaking, in the scheme proposed by Cramer and Shoup [7, 8] a message
m ∈ Π is encrypted by using Hk(x) as a one time pad; while the value of k is
kept secret, x and α(k) are made public. More precisely, given a strongly smooth
HPS for a hard subset membership problem, the secret key of the encryption
scheme is k ∈ K, and the public key consists of s = α(k) along with the instance
description. The message space is Π. To encrypt a message m ∈ Π, first a random
pair (x,w) ∈ L ×W is generated, so that w is a witness for x. Next, by means
of the public evaluation algorithm, the value Hk(x) is computed; the ciphertext
is the pair (x,m · Hk(x)), where · is a suitable group operation. Implicitly, it
is assumed that Π is a group where elements can be efficiently inverted and
multiplied.

Clearly, the holder of k can retrieve Hk(x) by using the private evaluation
algorithm, and therewith the message. On the other hand, since the subset mem-
bership problem is hard, there is no way for a polynomially bounded adversary
to distinguish between a well-formed ciphertext and a fake ciphertext obtained
by choosing x ∈ X \ L instead of x ∈ L. However, due to the smoothness of
the HPS, since k is unknown, Hk(x) is close to be uniformly distributed on Π,
so the message is nearly perfectly hidden. Therefore, no information about the
plaintext can be obtained in polynomial time by a passive adversary.

IND-CCA security is achieved by appending to the ciphertext a ‘proof of
integrity’ obtained from a strong universal2 extended HPS. The set E in the
definition of this extended HPS is just the message space Π. More formally:
Let M be a hard subset membership problem and P, P̂ be two HPSs for M,
strongly smooth and strongly universal2 extended respectively. An instance of
these objects is described by an instance Λ[X,L,W,R] ofM and two instances
H = (H,K,X,L,Π, S,α) and Ĥ = (Ĥ, K̂,X × Π,L × Π, Π̂, Ŝ, α̂) of P and
P̂, respectively. Note that the instances of P and P̂ must share the sets X, L
and W and the sampling algorithm. Once the above parameters are fixed, the
algorithms of the encryption scheme can be described as follows:

Key Generation Choose k ∈ K and k̂ ∈ K̂ uniformly at random, compute
s = α(k) ∈ S, ŝ = α̂(k̂) ∈ Ŝ and output two pairs (s, ŝ)—the public key—and
(k, k̂)—the private key.

Encryption To encrypt a plaintext m ∈ Π, first generate x ∈ L and a corre-
sponding witness w ∈W by means of the subset sampling algorithm provided
byM. Then compute

500 M.I. González Vasco et al.

– π = Hk(x) (from x, s and w, by using the public evaluation algorithm
provided by P)

– e = m · π ∈ Π and π̂ = Ĥk̂(x, e) (from ŝ, x, e and w, by using the public
evaluation algorithm provided by P̂).

The output ciphertext is the tuple (x, e, π̂).
Decryption Algorithm To decrypt the received ciphertext (x, e, π̂),

– compute π̂′ = Ĥk̂(x, e) ∈ Π̂ (by means of the private evaluation algo-
rithm of P̂),

– check whether π̂ = π̂′ and, if not, output reject and halt. Otherwise,
compute π = Hk(x) ∈ Π (by means of the private evaluation algorithm
of P) as well as the plaintext m = e · π−1 ∈ Π.

This algorithm is also supposed to recognize and reject bitstrings that do
not correspond to properly formed ciphertexts, i. e., bitstrings that do not
encode an element of X ×Π × Π̂.

3 Main Tools of a Non-abelian Construction Based on
Group Automorphisms

In [8], Cramer and Shoup give a group-theoretic construction for deriving uni-
versal projective hash families from so-called group systems. Their construction
is based on the use of finite abelian groups, and they prove that, if the group
system has certain properties, then the corresponding PHF is ε-universal2. We
establish the same result for a different group-based primitive, which we call
automorphism group system.

3.1 Automorphism Group Systems

Let X be a (not necessarily abelian) group. Multiplicative notation will be used
for all groups, thus the unit element will be denoted by 1. Let H be a finite sub-
group of Aut(X), S some finite group and χ : H −→ S a group homomorphism.
Note that for any φ ∈ H, χ(φ) gives some (limited) information about φ.

Definition 1. Let X, H, S and χ be defined as above. Then the tuple (X,H, χ, S)
is called an automorphism group system.

For any φ ∈ H, let [φ] = χ−1(χ(φ)) denote the class of φ in H/ kerχ. Obviously,
|[φ]| = | kerχ|, and for any x ∈ X and φ ∈ H we have

[φ](x) = {ψ(x) | ψ ∈ [φ]} = φ((kerχ)(x)).

Denoting the orbit of x under the action of kerχ by [x], we have |[φ](x)| =
|φ([x])| = |[x]|, as φ is a bijection. Clearly, x ∈ [x] and hence |[x]| ≥ 1; denote
by L the set {x ∈ X | |[x]| = 1}, that is {x ∈ X | [x] = {x}}. Then it is trivial
to check that L is a subgroup of X. Note also that, if x, y ∈ X are in the same
class modulo L, i.e., if xL = yL, then |[x]| = |[y]|.

Observe that the restriction of φ to L only depends on χ(φ) and that kerχ ⊆
Stab(L) although they are not necessarily equal.

A New Cramer-Shoup Like Methodology 501

As the systems above will be useful for us if χ gives little information about
the action of H on X \L, we will be particularly interested in those systems for
which the (kerχ)-orbits of elements in X \ L are large.

Definition 2. Let p > 1 be a positive integer. The automorphism group system
(X,H, χ, S) is p-diverse if |[x]| ≥ p for all x ∈ X \ L.

Lemma 1. Let (X,H, χ, S) be an automorphism group system, and let p be the
smallest prime dividing | kerχ|. Then (X,H, χ, S) is p-diverse.

Proof. Note that kerχ acts on X, and thus |[x]| divides | kerχ|, so if x ∈ X \ L
(i.e., if |[x]| �= 1) then |[x]| is at least p. ��

To get a better intuition of the notion of automorphism group system, we con-
clude this section with a simple (abelian) example in a setting analogue to [7–
Section 7.4.2 Example 2]:

Example 1. Denote by X some cyclic group of composite order a = b · b′ with
b < b′ being different prime numbers, and let L be the (unique) subgroup of X
of order b. Then X is isomorphic to Z/bZ×Z/b′

Z, and the automorphism group
H := Aut(X) can be identified with Z/(b− 1)Z× Z/(b′ − 1)Z.

Thus, using this identification, define χ as the corresponding natural projec-
tion

χ : H −→ S := Z/(b− 1)Z
(h1, h2))−→ h1

.

Thus, the kernel of χ is isomorphic to Z/(b′−1)Z , and obviously each element of
L is stabilized by kerχ. Moreover, one easily checks that any element having only
a single image under kerχ is already contained in L. In other words (X,H, χ, S)
is an automorphism group system in the sense of Definition 2, and L = {x ∈
X | |[x]| = 1}. It is also easy to check that this automorphism group system is
(b′ − 1)-diverse.

Remark 1. Note that Example 1 can easily be generalized to the case X = A×B
for some not necessarily abelian finite groups A and B, H = Aut(A)×Aut(B),
S = Aut(A) and χ the corresponding projection. Actually, in Example 1 we have
gcd(|A|, |B|) = 1, and therefore H = Aut(A)×Aut(B) = Aut(X).

3.2 Automorphism Group Projective Hash Families

As it was the case for abelian group systems [7, 8], a projective hash family
can be built from an automorphism group system by providing some additional
elements:

Let us consider an automorphism group system (X,H, χ, S), and denote by
� : K → H a bijection from a suitable index set K (which will later serve as
the private key space). Noting that χ(�(k)) determines the action of �(k) on L
completely, it is easy to see that the tuple (H,K,X,L,X, S, χ◦�) is a projective
hash family.

502 M.I. González Vasco et al.

Definition 3. Any PHF constructed from an automorphism group system as
described above is called automorphism group projective hash family (APHF).

An automorphism group projective hash family is made explicit by the tuple
(X,H,K, S, χ, �).

It is our aim to prove that, if the automorphism group projective hash family has
certain nice properties, the resulting APHF will be ε-universal for some ε > 0.
We start by demonstrating that for any x ∈ X, choosing k ∈ K uniformly at
random (that is, choosing uniformly at random a homomorphism in H), given
χ(�(k)), there are exactly |[x]| equally probable candidates for (�(k))(x).

Lemma 2. Let (X,H, χ, S) be an automorphism group system and let x ∈ X.
If φ ∈ H is chosen uniformly at random, once s = χ(φ) is given then φ is
uniformly distributed on the coset χ−1(s) and φ(x) is uniformly distributed on
the set {ψ(x) |ψ ∈ χ−1(s)}, that is, on a set of cardinality equal to |[x]|.
Proof. Clearly, as φ is chosen uniformly at random, once we fix s = χ(φ), the
resulting distribution is uniform on χ−1(s). Moreover, for any x ∈ X, φ(x) is
uniformly distributed on

{ψ(x) |ψ ∈ χ−1(s)}
provided that the sets

Sy = {ψ ∈ χ−1(s) | ψ(x) = y}

for all y ∈ {ψ(x), ψ ∈ χ−1(s)} are of the same size. But this is straightforward
to see, as all Sy are left cosets modulo kerχ ∩ Stab({x}). ��

Proposition 1. Let H = (X,H,K, S, χ, �) be an automorphism group projec-
tive hash family.

If the underlying automorphism group system (X,H, χ, S) is p-diverse then
H is 1/p-universal.

Proof. From Lemma 2, for any x ∈ X \ L, the probability of guessing the right
value of (�(k))(x) for a random choice of k ∈ K given χ(�(k)) is 1/|[x]|, that is
at most 1/p. ��

In [8] a generic method to obtain a smooth projective hash family from any
universal projective hash family, taking advantage of the Leftover Hash Lemma,
is described. Nevertheless, in some special cases, the smoothness can be guaran-
teed directly.

Proposition 2. Let H = (X,H,K, S, χ, �) be an automorphism group projec-
tive hash family. If the whole set X \L is a single orbit under the action of kerχ
then H is |L|/|X|-smooth.

Proof. Let x ∈ X \ L. From Lemma 2, (�(k))(x) is uniformly distributed on a
set of size |[x]| = |X \ L|. Then, the statistical distance between (�(k))(x) and
the uniform distribution on X is

1
2

∑
x∈X\L

∣∣∣∣ 1
|X| − |L| −

1
|X|

∣∣∣∣+ 1
2

∑
x∈L

1
|X| =

|L|
|X| ,

A New Cramer-Shoup Like Methodology 503

thus the probability distribution of (�(k))(x) is |L|/|X|-close to the uniform
distribution on X ��

3.3 Universal2 Extended Projective Hash Families

In [8], the authors outline a generic transformation from any ε-universal projec-
tive hash family to an ε-universal2 extended projective hash family. But in the
case of automorphism group projective hash families there is a more efficient
way to achieve this goal.

Let H = (X,H,K, S, χ, �) be an automorphism group projective hash family
such that the underlying automorphism group system (X,H, χ, S) is p-diverse.
Let q be the smallest prime factor of |H|. Further on, denote by n a positive
integer and by E a finite set. Let us define a new extended projective hash
family Ĥ by means of n + 1 independent copies of H and a “gluing” function
gH

γ : Hn+1 → H defined by:

gH
γ (φ0, . . . , φn) := φ0 ◦ φγ1

1 ◦ · · · ◦ φγn
n

where γ = (γ1, . . . , γn) ∈ Z
n and φγi

i (x) := φi ◦ · · · ◦ φi︸ ︷︷ ︸
γi

(x).

Similarly, we define gS
γ : Sn+1 → S by

gS
γ (s0, . . . , sn) := χ(gH

γ (φ0, . . . , φn)) = s0s
γ1
1 · · · sγn

n ,

where φj ∈ χ−1(sj) for all j = 0, . . . , n.
Now, K̂ = Kn+1, Ŝ = Sn+1 and the natural extensions χ̂ of χ and �̂ of �

are used. The set X is extended to X̂ = X × E. Further on, given k̂, we define
Φk̂ : X × E −→ X by

Φk̂(x, e) := gH
Γ (x,e)(�̂(k̂))(x),

where Γ : (x, e))→ (Γ1(x, e), . . . , Γn(x, e)) is an injective map from X × E into
{0, . . . , q − 1}n. Let us denote by Ĥ the set {Φk̂ | k̂ ∈ K̂}.

The soundness of our construction will rely on the commutativity of the
following diagram:

Hn+1 H

Ŝ S

�
gH

γ

�

χ̂

�

χ

�
gS

γ

It can be shown that

Ĥ = (Ĥ, K̂,X × E,L× E,X, Ŝ, χ̂ ◦ �̂)

is a 1/p-universal2 projective hash family. Recall that this actually means that
for any x ∈ X \L and e ∈ E if k̂ ∈ K̂ is chosen uniformly at random and χ̂(�̂(k̂)),

504 M.I. González Vasco et al.

Φk̂(x∗, e∗) are known (for some x∗ ∈ X \ (L∪ {x}) and e∗ ∈ E), the probability
of guessing Φk̂(x, e) correctly is smaller than 1/p.

We start by obtaining an analogue of Lemma 2.

Lemma 3. Let Ĥ be as above, x ∈ X and e ∈ E. Then, if φ̂ ∈ Hn+1 is chosen
uniformly at random, once ŝ = χ̂(φ̂) is fixed, then φ = gH

Γ (x,e)(φ̂) is uniformly
distributed on the coset χ−1(s), where s = gS

Γ (x,e)(ŝ). Moreover, φ(x) is uniformly
distributed on the set {ψ(x) |ψ ∈ χ−1(s)}, that is, on a set of cardinality equal
to |[x]|.

Proof. It is clear that in the conditional probability space, φ is uniformly dis-
tributed on the set gH

Γ (x,e)(χ̂
−1(ŝ)). Let us show that this set is just the coset

χ−1(s). It is clear that gH
Γ (x,e)(χ̂

−1(ŝ)) ⊆ χ−1(s) since χ(gH
Γ (x,e)(χ̂

−1(ŝ))) =
gS

Γ (x,e)(χ̂
−1(χ̂(ŝ))) = s. Conversely, gH

Γ (x,e)(χ̂
−1(ŝ)) contains a whole coset mod-

ulo kerχ. To see this, pick an element ψ ∈ gH
Γ (x,e)(χ̂

−1(ŝ)). Then, there exists

ψ̂ = (ψ0, ψ1, . . . , ψn) ∈ χ̂−1(ŝ) such that ψ = gH
Γ (x,e)(ψ̂). For each η ∈ kerχ,

η ◦ ψ = gH
Γ (x,e)(η ◦ ψ0, ψ1, . . . , ψn) that is also in χ̂−1(ŝ). From this point, the

proof proceeds exactly as in Lemma 2. ��

Proposition 3. If (X,H, χ, S) is p-diverse then Ĥ is a 1/p-universal projective
hash family.

Proof. From Lemma 3, for any x ∈ X \L and e ∈ E, the probability of guessing
the right value of Φk̂(x, e) = gH

Γ (x,e)(�̂(k̂))(x) for a random choice of k̂ ∈ K̂ given

χ̂(�̂(k̂)) is 1/|[x]|, that is at most 1/p. ��

The next proposition shows that Ĥ is also universal2 (see Appendix A for a
proof):

Proposition 4. If (X,H, χ, S) is p-diverse then Ĥ is a 1/p-universal2 projective
hash family.

Equipped with these results, we can now mimic Cramer and Shoup’s (abelian)
construction. Given a hard subset membership problem M and suitable auto-
morphism group systems, we can construct, analogously as it is done in [7, 8],
two HPSs forM, P and P̂, strongly smooth and strongly universal2 extended re-
spectively. Then, with the same arguments as in the security proof of the general
Cramer and Shoup construction, we obtain:

Proposition 5. LetM be a hard subset membership problem, P and P̂ strongly
smooth resp. strongly universal2 extended HPSs for M constructed from auto-
morphism group systems.

Then the public key encryption scheme described in Section 2.4 is secure in
the sense of IND-CCA.

A New Cramer-Shoup Like Methodology 505

4 Deriving Examples of Provably Secure Public Key
Encryption Schemes

As pointed out, e.g., by Shpilrain in [21], some investigation should still be de-
voted to the construction of group theoretical schemes with satisfactory security
guarantees. At the moment we cannot provide a practical new provably secure
public key scheme based on non-abelian groups and the above framework. In the
following, we restrict to outlining a possible methodology for designing a cryp-
tosystem fitting our framework. One plausible approach to deriving examples is
as follows:

Find a Suitable Decisional Problem. Take, e. g., the decisional Diffie-
Hellman problem in a cyclic group G = 〈g〉 of prime order q.

Represent it as a Subset Membership Problem. For instance: X = G×G
and L = 〈(g, gc)〉, for some secret c ∈ {1, . . . , q − 1}. Thus, L can be seen as
a line in GF (q)2 generated by the vector (1, c).

Study a Related Automorphism Group Which Would Fix the Subset
Elements. Take, for the case above, the subgroup of GL(2, q) that fixes L.
That is, the group formed by the matrices that fix the vector (1, c). This will
act as the kernel of the homomorphism χ. As this subgroup is not necessarily
normal, we take as H its normalizer in GL(2, q), which has order q(q − 1)2.

Construct χ Accordingly.

Of course, all these steps have to be done in such a way that the final construc-
tion is computationally feasible, so that the required sampling and evaluation
algorithms for the encryption scheme can be provided.

The above automorphism group system can be used directly to derive a pro-
jective hash family which would however be neither universal nor smooth, but
some slight modifications allow to achieve these two properties. Nevertheless, we
do not encourage the construction of a hash proof system from it due to the lack
of efficiency of some of the required algorithms.

Also, the example above is in some sense ‘close’ to the abelian case (which, in
the end, inspires this construction). However, based on the above methodology
one can also think of similar constructions that are genuinely non-abelian. To
this aim, we recall the definition of a logarithmic signature, first given by [17]:

Definition 4. Let L be a finite group. Next, denote by ξ = [ξ1, . . . , ξs] a se-
quence of length s ∈ N0 such that each ξi (1 ≤ i ≤ s) is itself a sequence
ξi = [ξi0, . . . , ξiri−1] with ξij ∈ L (0 ≤ j < ri) and ri ∈ N0.
Then we call ξ a logarithmic signature for L if each g ∈ L is represented uniquely
as a product

g = ξ1j1 · · · ξsjs
(1)

with ξiji
∈ ξi (1 ≤ i ≤ s).

Example 2. Suppose we have at hand a hard subset membership problem M
which for each input l ∈ N0 selects an instance constructed as follows: Let X be

506 M.I. González Vasco et al.

a non-abelian group, H ≤ Aut(X) and ξ = [ξ1, . . . , ξs] a logarithmic signature
for a subgroup L of X, H-invariant (i.e., φ(L) = L ∀φ ∈ H). Suppose that
factoring elements according to ξ is a hard computational problem.

Moreover, let W := Ar1 × · · · ×Ars where |ξi| = ri and Ar stands for the set
{0, . . . , r − 1}. Define the bijection

β : W −→ L
(w1, . . . ,ws))−→ ξ1w1 · · · ξsws

.

The sampling algorithm just chooses a random w ∈W and computes x = β(w).
Now let us describe an automorphism group system for X and L: Assume H is
such that that given φ ∈ H the images φ(ξij), j = 0, . . . , ri − 1, i = 1, . . . , s give
no information about the action of φ on X \ L. Suppose also that φ(ξ) induces
a polynomial time factorization of φ(L) for all φ ∈ H1. Let � be an efficiently
computable bijection defined between some index set K and H.

Moreover, take S := H|L and χ : H −→ S the natural projection, i.e. χ(φ) :=
φ|L. Note that the image χ(φ)(x) can be efficiently computed for any x ∈ L given
a witness (w1, . . . ,ws) for x and the images φ(ξiwi

) for i = 1, . . . , s. Thus, in
practice, χ(φ) may be specified by φ(ξ). Clearly, (X,H, χ, S) is an automorphism
group system (see Section 3.1).

Now, from a good enough automorphism group system (i. e., p-diverse for
some large prime p), two PHFs, H and Ĥ, can be constructed as in Sections 3.2
and 3.3. Then, if there exist efficient algorithms for sampling, public and private
evaluation, the resulting encryption scheme will be secure in the sense of IND-
CCA.

As a final remark on this example, let us suppose the group H is a subgroup
of Inn(X), that is, for each φ ∈ H there exists a certain a ∈ X so that φ(x) =
axa−1. For the scheme to be secure, a special kind of simultaneous conjugacy
problem must be hard to solve in L. Also, it must be possible to produce hard
logarithmic signatures of L which could be used as parts of the public keys.

Examples of schemes already proposed relying on similar assumptions are
the MST2 scheme [18] and the key exchange proposed by Anshel et al. in [2].
However, even if the underlying mathematical problems used as a base could be
considered hard, such constructions would not be provably secure in the sense
of IND-CCA.

5 Conclusions

We have given a theoretical framework which, if sound hardness assumptions
are identified, may lead to the construction of IND-CCA public key encryption
schemes based on non-abelian groups. The main tool we introduced are auto-
morphism group systems for deriving projective hash families from non-abelian

1 This last condition could be avoided using the generic transformation from [8].

A New Cramer-Shoup Like Methodology 507

groups. The idea used here parallels Cramer and Shoup’s abelian construction
based on group systems. As in their framework, we give criteria for choosing
suitable automorphism group systems in order to obtain useful (i.e. universal)
projective hash families. In principle, our model may also help in developing new
examples of IND-CCA secure schemes based on abelian groups; it is however es-
pecially interesting as a design guide for developing new tools in non-abelian
cryptography. Up until now, cryptosystems based on non-abelian groups often
turned out to have security flaws which are independent of the soundness of the
underlying mathematical assumptions; it is our aim that this design supplies
a useful tool to overcome such problems. Unfortunately, so far we cannot offer
a practical example of a new public key encryption scheme derived from non-
abelian groups in our framework. Having in mind the goal of identifying new
mathematical primitives offering provably secure encryption schemes, however,
we think it is certainly worthwhile to explore the existence of automorphism
group systems and hard subset membership problems based on non-abelian
groups fitting our framework.

References

1. I. Anshel, M. Anshel, B. Fisher, and D. Goldfeld. New Key Agreement Protocols
in Braid Group Cryptography. In CT-RSA 2001, volume 2020 of Lecture Notes in
Computer Science, pages 13–27, Berlin, Heidelberg, 2001. Springer.

2. I. Anshel, M. Anshel, and D. Goldfeld. An algebraic method for public-key cryp-
tography. Mathematical Research Letters, 6:1–5, 1999.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In Advances in Cryptology, Proceed-
ings of CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages
26–45. Springer, 1998.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

5. J.-M. Bohli, M.I. González Vasco, C. Mart́ınez, and R. Steinwandt. Weak Keys in
MST1. Designs, Codes and Cryptography, to appear.

6. J.H. Cheon and B. Jun. Diffie-Hellman Conjugacy Problem on Braids. Cryp-
tology ePrint Archive: Report 2003/019, 2003. Electronically available at
http://eprint.iacr.org/2003/019/.

7. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Cho-
sen Ciphertext Secure Public-Key Encryption. Cryptology ePrint Archive: Report
2001/085, 2001. Electronically available at http://eprint.iacr.org/2001/085/.

8. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. In Lars Knudsen, editor, Ad-
vances in Cryptology — EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 45–64. Springer, 2002.

9. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal
on Computing, 30:391–437, 2000.

10. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Advances in cryptology—CRYPTO ’86, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1987.

508 M.I. González Vasco et al.

11. M. Garzon and Y. Zalcstein. The Complexity of Grigorchuk groups with applica-
tion to cryptography. Theoretical Computer Science, 88:83–98, 1991.

12. M.I. González Vasco, C. Mart́ınez, and R. Steinwandt. Towards a Uniform De-
scription of Several Group Based Cryptographic Primitives. Designs, Codes and
Cryptography, 33:215–226, 2004.

13. M.I. González Vasco and R. Steinwandt. Reaction Attacks on Public Key Cryp-
tosystems Based on the Word Problem. Applicable Algebra in Engineering, Com-
munication and Computing, 14:335–340, 2004.

14. D. Hofheinz and R. Steinwandt. A Practical Attack on Some Braid Group Based
Cryptographic Primitives. In Public Key Cryptography, 6th International Work-
shop on Practice and Theory in Public Key Cryptosystems, PKC 2003 Proceedings,
volume 2567 of Lecture Notes in Computer Science, pages 187–198. Springer, 2003.

15. K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J. Kang, and C. Park. New Public-
Key Cryptosystem using Braid Groups. In Advances in Cryptology. Proceedings of
CRYPTO 2000, volume 576 of Lecture Notes in Computer Science, pages 166–183.
Springer, 2000.

16. H.K. Lee, H.S. Lee, and Y.R. Lee. An Authenticated Group Key Agreement
Protocol on Braid Groups. Cryptology ePrint Archive: Report 2003/018, 2003.
Electronically available at http://eprint.iacr.org/2003/018/.

17. S.S. Magliveras and N.D. Memon. Algebraic properties of cryptosystem PGM.
Journal of Cryptology, 5:167–183, 1992.

18. S.S. Magliveras, D.R. Stinson, and T. Trung. New approaches to designing public
key cryptosystems using one-way functions and trap-doors in finite groups. Journal
of Cryptology, 15:285–297, 2002.

19. M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 427–437. ACM Press, 1990.

20. C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Advances in Cryptology — CRYPTO’91, volume
576 of Lecture Notes in Computer Science, pages 433–444. Springer, 1992.

21. V. Shpilrain. Assessing security of some group based cryptosystems. Cryp-
tology ePrint Archive: Report 2003/123, 2003. Electronically available at
http://eprint.iacr.org/2003/123/.

22. N.R. Wagner and M.R. Magyarik. A Public Key Cryptosystem Based on the Word
Problem. In Advances in Cryptology: Proceedings of CRYPTO 84, volume 196 of
Lecture Notes in Computer Science, pages 19–36. Springer, 1985.

A Proof of Proposition 4

Proof. Let us suppose as above that k̂ ∈ K̂ is selected uniformly at random
and ŝ = (s0, . . . , sn) = χ̂(�̂(k̂)) is given. Then φ̂ = �̂(k̂) = (φ0, . . . , φn) is also
uniformly distributed on χ̂−1(ŝ).

In order to guarantee that Ĥ is 1/p-universal2, it suffices to show the inde-
pendence of the two random variables φ = gH

Γ (x,e)(φ̂) and φ∗ = gH
Γ (x∗,e∗)(φ̂), for

any e, e∗ ∈ E, x ∈ X \ L and x∗ ∈ X \ {x}.
From Lemma 3, φ and φ∗ are uniformly distributed on χ−1(s) and χ−1(s∗),

respectively, where s := gS
Γ (x,e)(ŝ) and s∗ := gS

Γ (x∗,e∗)(ŝ). Now let i be the
smallest integer such that Γi(x, e) �= Γi(x∗, e∗), that surely exists since Γ is

A New Cramer-Shoup Like Methodology 509

injective. Now, for any fixed values φj ∈ χ−1(sj) for j = 1, . . . , i− 1, i+ 1, . . . , n
let us consider the map

,i : χ−1(s0)× χ−1(si) −→ χ−1(s)× χ−1(s∗)
(φ0, φi) −→ (φ, φ∗),

where, as above, φ = gH
Γ (x,e)(φ̂) and φ∗ = gH

Γ (x∗,e∗)(φ̂). By defining

ψL = φ
Γ1(x,e)
1 ◦ · · · ◦ φΓi−1(x,e)

i−1 = φ
Γ1(x∗,e∗)
1 ◦ · · · ◦ φΓi−1(x∗,e∗)

i−1 ,

ψR = φ
Γi+1(x,e)
i+1 ◦ · · · ◦ φΓn(x,e)

n and
ψ∗

R = φ
Γi+1(x∗,e∗)
i+1 ◦ · · · ◦ φΓn(x∗,e∗)

n

we can write

,i(φ0, φi) = (φ0 ◦ ψL ◦ φΓi(x,e)
i ◦ ψR, φ0 ◦ ψL ◦ φΓi(x∗,e∗)

i ◦ ψ∗
R).

The map ,i is injective. Indeed, consider two pairs (φ0, φi) and (φ̄0, φ̄i) in
χ−1(s0)× χ−1(si) such that ,i(φ0, φi) = ,i(φ̄0, φ̄i). Then, φ0 ◦ ψL ◦ φΓi(x,e)

i =
φ̄0 ◦ψL ◦ φ̄Γi(x,e)

i and φ0 ◦ψL ◦ φΓi(x∗,e∗)
i = φ̄0 ◦ψL ◦ φ̄Γi(x∗,e∗)

i . Combining these
two equalities, we obtain

φ
Γi(x∗,e∗)−Γi(x,e)
i = φ̄

Γi(x∗,e∗)−Γi(x,e)
i ,

that leads to φi = φ̄i and then to φ0 = φ̄0.2 Thus, ,i is injective.
Then, as χ−1(s0) × χ−1(si) and χ−1(s) × χ−1(s∗) have the same (finite)

cardinality, ,i is a bijection. So, if (φ0, φi) is chosen uniformly at random in
χ−1(s0)×χ−1(si) then (φ, φ∗) is uniformly distributed on χ−1(s)×χ−1(s∗), for
any choice of φj , j = 1, . . . , i − 1, i + 1, . . . , n. Then, the same occurs when the
whole tuple φ̂ is chosen uniformly at random in χ̂−1(ŝ). Consequently, φ and
φ∗ are independent uniformly distributed random variables. In particular, this
independence implies that the knowledge of Φk̂(x∗, e∗) = φ∗(x∗) does not affect
the probability distribution of Φk̂(x, e) = φ(x). Thus, by Lemma 3, Φk̂(x, e) is
uniformly distributed on a set of size |[x]|. Then, Ĥ is 1/p-universal2. ��

2 Note that, as |Γi(x∗, e∗) − Γi(x, e)| < q, we have gcd(Γi(x∗, e∗) − Γi(x, e), |H|) = 1.
So there are a, b ∈ {0, . . . , |H|−1} such that a(Γi(x∗, e∗)−Γi(x, e)) = 1+ b|H|, and,
consequently, φ

a(Γi(x
∗,e∗)−Γi(x,e))

i = φ
1+b|H|
i = φi.

Further Simplifications in Proactive RSA
Signatures

Stanis�law Jarecki and Nitesh Saxena

School of Information and Computer Science,
UC Irvine, Irvine, CA 92697, USA
{stasio, nitesh}@ics.uci.edu

Abstract. We present a new robust proactive (and threshold) RSA sig-
nature scheme secure with the optimal threshold of t < n/2 corruptions.
The new scheme offers a simpler alternative to the best previously known
(static) proactive RSA scheme given by Tal Rabin [36], itself a simpli-
fication over the previous schemes given by Frankel et al. [18, 17]. The
new scheme is conceptually simple because all the sharing and proac-
tive re-sharing of the RSA secret key is done modulo a prime, while the
reconstruction of the RSA signature employs an observation that the
secret can be recovered from such sharing using a simple equation over
the integers. This equation was first observed and utilized by Luo and
Lu in a design of a simple and efficient proactive RSA scheme [31] which
was not proven secure and which, alas, turned out to be completely in-
secure [29] due to the fact that the aforementioned equation leaks some
partial information about the shared secret. Interestingly, this partial
information leakage can be proven harmless once the polynomial sharing
used by [31] is replaced by top-level additive sharing with second-level
polynomial sharing for back-up.

Apart of conceptual simplicity and of new techniques of independent
interests, efficiency-wise the new scheme gives a factor of 2 improvement
in speed and share size in the general case, and almost a factor of 4 im-
provement for the common RSA public exponents 3, 17, or 65537, over
the scheme of [36] as analyzed in [36]. However, we also present an im-
proved security analysis and a generalization of the [36] scheme, which
shows that this scheme remains secure for smaller share sizes, leading to
the same factor of 2 or 4 improvements for that scheme as well.

1 Introduction

The idea of distributing a cryptosystem so that to secure it against corruption
of some threshold, e.g. a minority, of participating players is known as threshold
cryptography. It was introduced in the works of Desmedt [13], Boyd [4], Croft
and Harris [9], and Desmedt and Frankel [14], which built on the polynomial
secret-sharing technique of Shamir [39]. A threshold signature scheme [14] is an
example of this idea. It allows a group of n players to share the private signature
key in such a way that the signature key remains secret, and the signature
scheme remains secure, as long as no more than t of the players are corrupt.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 510–528, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Further Simplifications in Proactive RSA Signatures 511

Simultaneously, as long as at least n − t players are honest, these players can
efficiently produce correct signatures on any message even if the other t players
act in an arbitrarily malicious way.

Proactive signature schemes [28, 27] are threshold signature schemes which
offer an improved resistance against player corruptions. Time is divided into up-
date rounds, and the proactive signature scheme offers the same combination of
security and robustness even in the presence of so-called mobile faults [34], where
a potentially new group of up to t players becomes corrupted in each update
round. Technically, this is done by the players randomly re-sharing the shared
private key at the beginning of each update round. A proactive signature scheme
offers stronger security guarantee then a threshold scheme, especially in an appli-
cation which might come under repeated attacks, like a certification authority or
a timestamping service. Moreover, a proactive scheme offers more secure man-
agement of a system whose size and make-up need to change throughout its
lifetime. Efficiency of the distributed signature protocol involved in a proactive
signature scheme is very important in some applications, like in a timestamping
service, or in the decentralized control of peer-to-peer groups, ad-hoc groups,
or sensor networks [30, 37]. An efficient proactive scheme for RSA signatures is
especially important because RSA signatures are widely used in practice, and
because verification of RSA signatures is several orders of magnitude faster than
verification of other signatures.

Prior Work on Threshold and Proactive RSA. While the work of Herzberg et
al. [28, 27] and Gennaro et al. [25, 26] quickly yielded efficient secure proactive
signature schemes for discrete-log based schemes like Schnorr [38] or DSS [33] sig-
natures, the work on secure proactive RSA schemes progressed more slowly, and
the initial threshold RSA scheme of Desmedt and Frankel [14] was robust only
against crashes and not malicious faults, and had only heuristic security. The
difficulty in adopting Shamir’s polynomial secret-sharing technique to threshold
RSA was caused by the fact that the RSA private key d is an element of a group
Zφ(N), where φ(N) needs to remain hidden from all players because it allows im-
mediate computation of the private key d from the RSA public exponent e. This
difficulty was overcome by the schemes of Frankel et al. [16, 12] which provided
a proof of security but used secret shares which were elements of a polynomial
extension field of Zn, which increased the cost of the signature operation by a
factor of at least t. These schemes were then extended to provide robustness
against malicious faults by [19, 24]. Subsequently, Victor Shoup [40] presented a
threshold RSA signature scheme which was robust and provably secure with op-
timal adversarial threshold t < n/2, and which did away with the extension field
representation of the shares, thus making the cost of the signature operation for
each participating player comparable to the standard RSA signature generation.

Proactive RSA scheme is a harder problem because it requires the players to
re-share the private key d in each update round even if no single player is allowed
to know the secret modulus φ(N). The first proactive RSA scheme of Frankel
et al. [18] solved this problem using additive secret sharing over integers in
conjunction with combinatorial techniques which divide the group of n players

512 S. Jarecki and N. Saxena

into two levels of families and sub-families. However, the resulting proactive
protocol did not achieve optimal adversarial threshold t < n/2 and did not
scale well with the group size n. These shortcomings were later overcome by the
same authors [17], who showed that the RSA private key d can be shared over
integers using polynomials with specially chosen large integer coefficients that
simultaneously allowed interpolation without knowing φ(N) and unpredictability
of the value d given any t polynomial shares. In this solution, even though the
underlying secret sharing was polynomial, the players need to create a one-time
additive sharing for every group of players participating in threshold signature
generation. A simpler and more efficient proactive RSA scheme was then given by
Tal Rabin [36]. Her solution also used sharing of the private key over integers, and
employed shares of size about twice the length of the private key. The new idea
was that the secret d was shared additively among the players, every share was
backed-up by a secondary level of polynomial secret sharing, and the proactive
update consisted of shuffling and re-sharing of the additive shares.

Limitations and Open Problems in Proactive RSA. The proactive RSA schemes
of [18, 17, 36] leave at least two important problems unaddressed. While the new
proactive RSA scheme we present in this paper does not solve these problems
either, the techniques we present might help solve these problems in the future.
The first problem is that of handling adaptive rather than static adversaries.
The static adversary model assumes that the adversary decides which player to
corrupt obliviously to the execution of the protocol, while the adaptive model
allows the adversary to decide which player to corrupt based on his view of the
protocol execution. This difference in the adversarial model is not known to be
crucial for the security of the above protocols in practice. However, the above
protocols are not known to be adaptively secure, while the known adaptively
secure RSA schemes [20, 7, 21, 22] are significantly less efficient.

The second problem is that of requiring some form of additive rather than
polynomial secret-sharing. The additive sharing implies that the shares of all
temporarily unavailable players need to be reconstructed by the active players
that participate in the signature generation protocol. This hurts both the effi-
ciency and the resilience of a scheme in applications where one player might be
temporarily unavailable to another without an actual corruption by the adver-
sary. Since the threshold (but not proactive) RSA signature schemes discussed
above do not resort to additive sharing, this is a disadvantage of the currently
known proactive RSA schemes.

This somewhat unsatisfactory state of the known proactive RSA schemes led
a group of network security researchers to design a proactive RSA scheme [30]
which attempted to solve these problems by using polynomial secret sharing.
The technique they employed was very simple. It relied on an observation that
the secret sharing of the private key d modulo any modulus which has only large
prime factors enables efficient reconstruction of d over integers. Consequently,
by the homomorphic properties of exponentiation, it also enables reconstruction
of the RSA signature md mod N . This scheme, however, did not come with a
security proof, and indeed upon a closer examination [29], the proposed inter-

Further Simplifications in Proactive RSA Signatures 513

polation over the integers leaks a few most significant bits of the shared private
key d, which together with the adversarial ability to manipulate the choice of
shares in the proactive update protocol allows the threshold attacker to stage
a binary search for d. Nevertheless, the above technique, which was utilized by
the insecure scheme of [30], can be corrected, resulting in the provably secure
proactive RSA scheme we present here.

Our Contribution: Further Simplification and Efficiency Improvements in Proac-
tive RSA. Based on the corrected use of a technique discovered by Lu and Luo
[31], we present a new robust and provably secure optimal-threshold proactive
RSA scheme. Our scheme is known to be secure only in the static model, and it
employs top-level additive sharing similarly as the Rabin’s scheme [36], but it is
interesting for the following reasons: (1) It is simpler than the previous schemes;
(2) It offers factor of 2 improvement in share size and signature protocol effi-
ciency for general RSA public keys, and factor of 4 improvement for the common
case of public exponents like 3, 17, or 65537, over the most efficient previously
known proactive RSA scheme [36] as originally analyzed by [36]; (3) The new
scheme led us to a tighter security analysis of the [36] scheme, which resulted in
similar, up to a logarithmic factor, efficiency improvements for the [36] scheme;
(4) The new scheme offers an interesting case of a technique, invented by Lu and
Luo [31], which makes a distributed protocol run faster but leaks some partial
information about the shared secret. This partial information leakage led to an
efficient key-recovery attack [29] on the original scheme of [31]. Yet, with some
fixes, this partial information leakage can be provably neutralized and the same
technique results in a provably secure scheme presented here; (5) Finally, our
scheme offers new techniques which could aid in overcoming the two problems
that still haunt proactive RSA solutions, namely achieving efficient adaptive
security and the removal of additive sharing.

Paper Organization. Section 2 describes our adversarial model; section 3 presents
the new scheme; section 4 contains the security proof; and section 5 shows an
efficiency improvement for the proactive RSA scheme of [36].

2 Our Computation Model and the Adversarial Model

We work in the standard model of threshold cryptography and distributed al-
gorithms known as synchronous, secure links, reliable broadcast, trusted dealer,
static, and proactive adversary model. This is the same model as employed for
example in [28, 27, 18, 17, 36] discussed in the introduction, with the exception
that the first two did not need a trusted dealer (but did not handle RSA).

This model involves n players M1, ...,Mn equipped with synchronized clocks
and an ability to erase information. The players are connected by weakly syn-
chronous communication network offering secure point-to-point channels and a
reliable broadcast. The time is apriori divided into evenly spaced update rounds,
say of length of one day. We assume the presence of the so-called “mobile” adver-
sary, modeled by a probabilistic polynomial time algorithm, who can statically,

514 S. Jarecki and N. Saxena

i.e., at the beginning of the life time of the scheme, schedule up to t < n/2 arbi-
trarily malicious faults among these n players, independently for every update
round. We also assume a trusted dealer who initializes the distributed scheme
by picking an RSA key and securely sharing the private key among the players.
Since the adversary attacks a proactive signature scheme, the adversary can also
stage a chosen-message attack [CMA], i.e. it can ask any of the n players to run
a signature protocol on any message it chooses. The adversary’s goal is to either
(1) forge a signature on a message he did not request a signature on, exactly as
in the CMA attack against a standard (non-threshold) signature scheme, or (2)
to prevent the efficient generation of signatures on messages which at least t+ 1
uncorrupted players want to sign.

3 The New Proactive RSA Signature Scheme

3.1 Overview of the Proposed Scheme

The sharing of the private RSA key d is done additively modulo a prime q
s.t. q ≥ r2|N |+τ , where r is the maximal number of rounds in the lifetime of
the system, |N | is the bit length of the RSA modulus N , and τ is a security
parameter, e.g. τ = 80. Namely each player Mi holds a share di which is a
random number in Zq s.t. d1 + ... + dn = d mod q. Each of these top-level
additive shares is also polynomially shared for backup reconstruction of di in
case Mi is corrupted, using the information-theoretically secret verifiable secret
sharing (VSS) of Pedersen [35], similarly as in the proactive RSA scheme of
Rabin [36]. In order to handle the common case of a small public RSA exponent
e more efficiently, the most significant l = |N |

2 bits of the private key d can be
publicly revealed as dpub, and only the remaining portion of the private key d,
namely d− 2|N |−ldpub, is shared as above modulo q, for any q ≥ r2|N |−l+τ .

The proactive update is very easy in this setting, adopting the original proac-
tive secret sharing of [28] to additive sharing. Such method was used before e.g.
in [7]. To re-randomize the the sharing, each Mi picks random partial shares dij

in Zq s.t. di = di1 + ... + din mod q, and sends dij to Mj . Each Mj computes
then his new share as d′

j = d1j + ... + dnj mod q, and shares it polynomially for
backup again. All this can be easily verified using Pedersen’s VSS, and the new
shares sum to the same secret d modulo q.

For the threshold signature protocol, we use the observation of [31] that if∑n
j=1 dj = d (mod q) and 0 ≤ dj ≤ q − 1 for all j’s, then

d =
n∑

j=1

dj − αq (over the integers) (1)

for some integer α ∈ {0, ..., n− 1}. Consequently, if ∀j , sj = mdj mod N then

md = (
n∏

j=1

sj)m−αq (mod N)

Further Simplifications in Proactive RSA Signatures 515

Therefore the signature md mod N can be reconstructed if players submit
their partial signatures as sj = mdj (mod N), and the correct value of α is
publicly reconstructed by cycling over the possible n choices of α, which adds
at most 2n modular exponentiations to the cost of the signature generation
protocol. (Note that in most applications n < 100.) In the (rare) case of a
malicious fault causing a failure in this procedure, each player has to prove
in zero-knowledge that it used a correct value di in its partial signature, i.e.
the value committed in the Pedersen VSS that shares this di. Efficient zero-
knowledge proofs to handle such statement were given by Camenisch and Michels
[5], and Boudot [2], and while not blazing fast, they have constant number of
exponentiations, and they are practical. This procedure is more expensive than
the robustness procedure in [36], but we believe that this efficiency difference
does not matter since active corruptions of this type should be unlikely, as active
faults are rare in general and the adversary would not gain much by using his
corrupted player in this way.

In the attack [29] on a similar scheme involving polynomial rather than ad-
ditive top-level sharing, the adversary uses the fact that the above procedure
reveals whether d is greater or smaller than some value in the [0, q] interval
which the adversary can easily compute from his shares. Since the adversary can
perfectly control his shares in the proactive update protocol for this (top-level)
polynomial secret sharing scheme, the adversary can use this partial information
leakage to stage a binary search for the shared secret d.

However, the scheme we present fixes the above problem. Assume that the
adversary corrupts players M1, ...,Mt. Giving the adversary the extra knowledge
of shares dt+1, ..., dn−1, the only information about the secret key revealed by
value α is, by equation (1), whether or not the secret d is smaller or larger than
R = (D mod q) where D = d1 + ... + dn−1. Since the adversary does not have
enough control over the shares created by our “additive” proactive update pro-
tocol, shares dt+1, ..., dn−1 are random in Zq, and hence so is value R. Therefore,
if q is significantly larger than the maximal value of d, then the α value almost
never reveals anything about d, because d is almost always smaller than R. For
this reason, if q ≥ r2|N |+τ then the modified scheme keeps d indistinguishable
from a value uniform in Zn, with the statistical difference of 2−τ . The additional
factor r in the bound on q appears because of the linear increase in the statisti-
cal difference with every update round. This captures the security proof of our
scheme in a nutshell.

We now give the detailed description of our scheme.

3.2 Setup Procedure

We require a trusted dealer to securely set up the system. The dealer generates
RSA private/public key pair, i.e. an RSA modulus N , public exponent e, and
private key d = e−1 mod φ(N). Optionally, l ≤ |N |

2 most significant bits of d
can be publicly revealed as dpub (otherwise dpub = 0 and l = 0). The dealer also
chooses an instance of Pedersen commitment [35], i.e. primes p and q s.t. q|(p−1),
and two random elements g, h of order q in Z

∗
p, for |q| = log2 r+ |N | − l + τ + 1,

516 S. Jarecki and N. Saxena

where τ is a security parameter (τ ≥ 80) and r is the number of rounds the
system is expected to run. The dealer then runs the sharing protocol of Figure 1.

Input: private key d ∈ Zφ(n), public value dpub corresponding to l MSBs of d, public
RSA modulus N , Pedersen commitment instance (p, q, g, h).

1. Select shares dj ∈ Zq uniformly at random for j = 1, . . . , n − 1 and set dn =
d − 2|N|−ldpub − ∑n−1

j=1 dj (mod q).
2. Share each dj using Pedersen’s VSS protocol [35]. Namely, select random poly-

nomials fj(z) = dj + fj1z + · · · + fjtz
t and f ′

j(z) = d′
j + f ′

j1z + · · · + f ′
jtz

t over
Zq of degree t s.t. fj(0) = dj . Compute and publish the witnesses wj0 = gdj hd′

j

(mod p) and wjk = gfjkhf ′
jk (mod p) for k = 1, . . . , t.

3. Compute the secret shares ssij and ss′ij as ssij = fj(i) (mod q) and ss′ij = f ′
j(i),

deliver di, d
′
i, ssij and ss′ij (∀j) to each Mi over a secure channel.

Fig. 1. Trusted Dealer’s Protocol: Sharing of the Private Key d

3.3 Threshold Signature Protocol

The goal of the threshold RSA signature protocol is to generate in a distributed
manner an RSA signature s = md (mod N) under the secret-shared key d,
where m ∈ Z

∗
n is some hashed/padded function of the signed message, e.g.

m = H(M) for the Full Domain Hash RSA [1]. Our protocol consists of two
parts. First each player Mj creates its partial signature on the intended message
sj = mdj mod N , and sends it to the signature recipient. The recipient then
locally reconstructs the RSA signature from these partial signatures using the
n-bounded reconstruction algorithm of [31]. The threshold signature generation
and reconstruction protocol is summarized in Figure 2, and we explain the details
of the reconstruction algorithm below.

Input: (hashed) message m ∈ Z
∗
n, outputs of the Setup procedure

1. Player Mi broadcasts its partial signature si = mdi (mod N).
2. If Mi fails to provide its partial signature, all players reconstruct di and compute

si = mdi (mod N).
3. Reconstruct RSA signature using the n-bounded offsetting algorithm (see below).
4. If signature reconstruction fails, trace the faulty signer(s) by executing the pro-

tocol ZKPK(di : wi0 = gdihd′
i (mod p) ∧ si = mdi (mod N)) ∧ di ∈ [0, q−1]))

with each Mi (see Appendix).
5. If Mi fails this proof, any set of t + 1 players reconstruct di and compute and

broadcast si = mdi (mod N).

Fig. 2. Signature Generation and Reconstruction

Further Simplifications in Proactive RSA Signatures 517

Signature Reconstruction with n-Bounded Offsetting. On receiving n partial sig-
natures sj from the n players, the signature recipient reconstructs the RSA
signature s using the n-bounded-offsetting algorithm [30] which works as follows.
Since

∑n
j=1 dj = d− 2|N |−ldpub (mod q) and 0 ≤ dj ≤ q− 1 for all j’s, therefore

d = 2|N |−ldpub +
n∑

j=1

dj − αq (over the integers) (2)

for some integer α ∈ {0, . . . , n− 1}, which implies that

s = md = m2|N|−ldpub(
n∏

j=1

sj)m−αq (mod N)

Since there can be at most n possible values of α, the signature recipient can
recover s = md (mod N) by trying each of the n possible values Yα = Y (m−q)α

(mod N) for Y = m2|N|−ldpub(
∏n

j=1 sj) and α = 0, ..., n−1, and returning s = Yα

if (Yα)e = m (mod N). The decisive factor in the cost of this procedure is the
cost of the full exponentiation mq mod N , where q can be e.g. 613-bit long for
N = 1024, e = 3, l = |N |/2, τ = 80, and r ≤ 220.

As discussed in the overview subsection above, this procedure reveals value
α which contains some partial information on the shared secret d. Namely,
granting to the adversary some extra knowledge and assuming he knows shares
d1, ..., dn−1, the α value reveals whether d ∈ Zφ(n) lies in the interval [0, R[or in
[R,N], where R = (D mod q) and D = d1 + . . .+ dn−1, if l = 0. More generally,
α reveals if d is smaller or larger than R + 2|N |−ldpub.

Robustness Mechanisms. In case some player Mu does not issue a partial sig-
nature, share du of Mu needs to be reconstructed to recover partial signature
su = mdu (mod N). In reconstruct du, every player Mi broadcasts its shares
ssiu, ss

′
iu of du. The validity of these shares can be ascertained by checking

gssiuhss′
iu =

t∏
k=0

(wuk)ik

(mod p).

Share du can then be recovered using the interpolation

du =
∑
j∈G

ssjulj(u) (mod q)

where G is a subgroup of t + 1 players who broadcast valid shares and lj(u) =∏
j∈G,j
=i

(u−j)
i−j mod q is the Lagrange interpolation polynomial computed at u.

If all the partial signatures are present but the above n-bounded signature
reconstruction algorithm fails, then at least one out of n players did not issue
a correct partial signature. The signature recipient must then trace the faulty
players(s) by verifying the correctness of each partial signature. Once a player

518 S. Jarecki and N. Saxena

is detected as faulty, the share(s) of the faulty player(s) can be reconstructed
as above. To prove correctness of its partial signature, each Mi proves in zero-
knowledge that there is a pair of integers (di, d

′
i) s.t.

wi0 = gdihd′
i mod p , si = mdi mod N , 0 ≤ di < q

It is crucial that the range of di is checked because otherwise player Mi can
submit its partial signature as md′

i mod N where d′
i = di + kq for some k.

An efficient zero-knowledge proof system for the proof of equality of discrete
logarithms (and representations) in two different groups was given in [3, 6], and
the efficient proof that a committed number lies in a given range appeared in [2].
The resulting ZKPK proof system is in the appendix. It is non-interactive in the
random oracle model and involves a (small) constant amount of exponentiations.

3.4 Proactive Update Protocol

At the beginning of every update round, the players perform the share update
protocol of Figure 3 to re-randomize the sharing of d.

Input: Outputs of the Setup procedure or the previous Update protocol.
Let r ≥ 1 be the round number. Denote current values d

(r−1)
i , d

′(r−1)
i , w

(r−1)
ij , etc.

1. Each player Mi selects (sub)shares dij and d′
ij ∈ Zq, uniformly at random for

j = 1, . . . , n − 1, and sets din = d
(r−1)
i − ∑n−1

k=1 dik (mod q) and d′
in = d

′(r−1)
i −

∑n−1
k=1 d′

ik (mod q). Mi broadcasts witness values w
(r)
ij = gdij hd′

ij (mod p), and
hands (dij , d

′
ij) to Mj (∀j) over a secure channel.

2. Mj verifies the validity of the received shares using witness values as w
(r)
ij =

gdij hd′
ij (mod p), and ascertains whether the sub-shares in fact sum up to the

previous share of Mi by checking that
∏n

j=1 w
(r)
ij = w

(r−1)
i0 (mod p).

3. Mj computes its new additive shares as d
(r)
j =

∑n
i=1 dij (mod q) and d

′(r)
j =

∑n
i=1 d′

ij (mod q). (Note that
∑n

j=1 d
(r)
j = d − 2|N|−ldpub (mod q).)

4. Mj shares its new additive shares d
(r)
j , d

′(r)
j using Pedersen’s VSS, as in the setup

phase described in Section 3.2. In order to check if Mj is indeed sharing its new
additive share, every player checks that the witness value in this VSS instance
corresponding to the shares d

(r)
j , d

′(r)
j equals to

∏n
i=1 w

(r)
ij (mod p).

Fig. 3. Proactive Share Update

4 Security Analysis of the New Proactive RSA Scheme

Theorem 1 (Security). If there is a t-threshold proactive adversary for t <
n/2, which in time T succeeds with probability β in a chosen-message attack
against our new proactive (full domain hash) RSA signature scheme running
for up to r rounds, for any l ≤ |N | and prime q ≥ r2|N |−l+τ , then there is
a CMA attack against the standard (full domain hash) RSA signature scheme,

Further Simplifications in Proactive RSA Signatures 519

which succeeds in time T +poly(n, |N |) with probability β−2−τ given the l most
significant bits of the secret key d as an additional public input.

Proof. We show that if the adversary succeeds in staging the CMA attack on
our (Full Domain Hash) proactive RSA signature scheme in time T with prob-
ability β, then there is also an efficient CMA attack against the standard (non-
threshold) FDH-RSA signature which given the l most significant bits of d suc-
ceeds in time comparable to T by an amount polynomial in |N | and n, with
probability no worse than β − 2−τ . We show it by exhibiting a very simple
simulator, which the adversary against the standard FDH-RSA scheme can run
to interact with the proactive adversary which (T,β)-succeeds in attacking the
proactive scheme. We will argue that the statistical difference between the view
presented by this simulator on input of the public RSA parameters, l MSBs of
d, and (message,signature) pairs acquired by the CMA attacker from the CMA
signature oracle, and the adversarial view of the run of the real protocol on these
parameters, for any value of the private key d with these l most significant bits,
is at most 2−τ , which will complete the proof.

The simulator SIM is described in Figure 4. The simulation procedure is
very simple. The simulator picks a random value d̂ in Zn with the given l most-
significant bits, and runs the secret-sharing protocol in the setup stage using
this d̂. Similarly in every update, the simulator just runs the actual protocol,
but on the simulated values which we denote d̂i, d̂ij , etc. The only deviation
from the protocol is that in the simulation of the threshold signature protocol,
assuming w.l.o.g. that the Mn is an uncorrupted player, the simulator runs the
actual protocol for all uncorrupted players except of Mn, i.e. it outputs ŝj = md̂j

for each uncorrupted Mj , j �= n. The simulator then determines the α̂ value,
which is an approximation to the actual value α the adversary would see in
the protocol, by computing D =

∑n−1
j=1 d̂j , and taking α̂ = !D/q" + 1. In this

way we have D = (α̂ − 1)q + R where R = (D mod q). Finally, the simulator
computes the missing partial signature ŝn corresponding to the player Mn as
ŝn = s ∗ mα̂q/(m2|N|−ldpub

∏n−1
j=1 ŝj) (mod N). In this way, partial signatures

ŝj add up to a valid RSA signature ŝ, and value α̂ the adversary sees in the
simulation of the signature reconstruction algorithm is equal to the above α
with an overwhelmingly high probability.

For ease of the argument, assumethat the adversary corrupts players M1, ...,Mt

throughout the lifetime of the scheme. We will argue that the adversarial views
of the protocol and the simulation are indistinguishable with the statistical
difference no more than 2−τ , even if the adversary additionally sees shares
dt+1, ..., dn−1 and the shared secret key d.

Setup Procedure: Since di and d′
i in the protocol and d̂i and d̂′

i in the simula-
tion are all picked uniformly from Zq for i = 1, . . . , n − 1, the two ensembles
(d, {di, d

′
i}i=1,...,n−1) and (d, {d̂i, d̂

′
i}i=1,...,n−1) have identical distributions.

By the information theoretic secrecy of Pedersen VSS, the second-layer shares
and the associated verification values visible to the adversary are also distributed
identically in the protocol and in the simulation.

520 S. Jarecki and N. Saxena

Input: Pedersen commitment instance (p, q, g, h), RSA public parameters (N, e),
optional values l > 0 and dpub < 2l (otherwise set l = dpub = 0).
Additionally, for every simulation of the threshold signature protocol, the simulator
gets pair (m, s) s.t. s = md mod N .

Setup Procedure
Pick random d̂ ∈ Zn and proceed as in the Setup of the actual protocol:

1. Select random shares d̂j , d̂
′
j ∈ Zq, for j = 1, . . . , n − 1, and set d̂n = d̂ −

2|N|−ldpub − ∑n−1
i=1 d̂j (mod q), as in step 1 of the Setup procedure.

2. Share each d̂j and d̂′
j using the Pedersen’s VSS: Choose random polynomials

f̂j(z) = d̂j + f̂j1z+ · · ·+ f̂jtz
t and f̂ ′

j(z) = d̂′
j + f̂ ′

j1z+ · · ·+ f̂ ′
jtz

t over Zq of degree
t; compute and publish the witnesses ŵj0 = gd̂j hd̂′

j (mod p) and ŵjk = gf̂jkhf̂ ′
jk

(mod p) for k = 1, . . . , t.
3. Compute the secret shares ŝsij and ŝs′ij as ŝsij = f̂j(i) (mod q) and ŝs′ij = f̂ ′

j(i)
and distribute d̂i, d̂

′
i, ŝsij and ŝs′ij (∀j) to each Mi over a secure channel.

Threshold Signature Protocol (on additional input (m, s)):

1. Generate partial signatures ŝi for i = 1, . . . , n − 1 as ŝi = md̂i (mod N).
Compute D = d̂1 + . . . + d̂n−1, and α̂ = �D/q� + 1. Compute ŝn = s ∗
mα̂q/(m2|N|−ldpub

∏n−1
j=1 ŝj) (mod N).

2. Output values ŝi on behalf of the uncorrupted players Mi.
3. If needed, execute the ZKPK proof for Mi �= Mn, and simulate it for Mn.

Proactive Update
Proceed in exactly the same manner as the Proactive Update protocol:

1. At the beginning of round r, for all uncorrupted players Mi, select (sub)shares
d̂ij and d̂′

ij uniformly in Zq for j = 1, . . . , n − 1, and set d̂in = d̂
(r−1)
i − ∑n−1

k=1 d̂ik

(mod q) and d̂′
in = d̂

′(r−1)
i −∑n−1

k=1 d̂′
ik (mod q). Broadcast witness values ŵ

(r)
ij =

gd̂ij hd̂′
ij (mod p), and hand (d̂ij , d̂

′
ij) to Mj (∀j) over a secure channel.

2. Compute Mj ’s new secret shares d̂
(r)
j =

∑n
i=1 d̂ij (mod q) and d̂

′(r)
j =

∑n
i=1 d̂′

ij

(mod q), as in the Proactive Update protocol.
3. Re-share the new additive share d̂

(r)
j , d̂

′(r)
j using Pedersen’s VSS, as in the Proac-

tive Update protocol.

Fig. 4. Simulator Construction (SIM)

Threshold Signature Protocol: Since di and d̂i, for i = 1, . . . , n − 1, have the
identical distributions, therefore distributions of the corresponding partial sig-
natures si and ŝi, are also identical. However, values sn and ŝn are the same
only in the event that value α in the protocol and value α̂ in the simulation are
the same. Recall that α̂ in the simulation is computed as α̂ = !D/q"+ 1 where
D =

∑n−1
j=1 d̂j . Note that D = (α̂− 1)q + R where R = (D mod q). By equation

(2), value α computed by the protocol would satisfy equation

Further Simplifications in Proactive RSA Signatures 521

d = 2|N |−ldpub + D + dn − αq = 2|N |−ldpub + R + dn + (α̂− α− 1)q

because d1, ..., dn−1 are distributed identically to d̂1, ..., d̂n−1.
Since dn and R are elements in Zq for q ≥ 2|N |−l+τ+log r, and since d ∈

[2|N |−ldpub, 2|N |−ldpub + 2|N |−l], the above equation implies that there are only
two possible cases: α = α̂ − 1 and α = α̂. The first case happens if d ≥
2|N |−ldpub + R and the second if d < 2|N |−ldpub + R. However, the probabil-
ity that d < 2|N |−ldpub + R, and hence that α = α̂, is at least 1 − 2−(τ+log r)

because the probability of the other case is at most the probability that R is less
than 2|N |−l, which, given that R is a uniformly distributed element in [0, q], is
at most 2−(τ+log r).

Note that value α stays the same in all instances of the threshold signature
protocol in any given update round. Since the same holds for the α̂ value in
the simulation, the probability that the adversary’s view of all these protocol
instances is different from the view of all the simulation instances remains at
most 2−(τ+log r). In other words, the statistical difference between the adversary’s
view of the real execution and the simulation in any update round, is at most
(1/r)2−τ .

Proactive Update Protocol: Since values {di}i=1..n−1 and {d̂i}i=1..n−1 are dis-
tributed identically, the only difference in the execution and the simulation of
the update protocol can come from sharing of the dn value in the protocol and
d̂n in the simulation. However, since this sharing is a “additive” equivalent of
Pedersen VSS, and the second-layer sharing of the shares of the dn or d̂n value is
done with Pedersen VSS too, the whole protocol hides the shared value dn per-
fectly, and hence the adversarial view in the simulation of the update protocol
is identical to the adversarial view of the actual protocol.

Since the statistical difference between the protocol and the simulation is zero
in the setup stage and in any proactive update stage, and at most (1/r)2−τ in any
single update round, given r rounds the overall difference between adversarial
view of the protocol execution and its simulation is at most 2−τ , which completes
our argument.

Theorem 2 (Robustness). Under the Discrete Logarithm and Strong RSA as-
sumptions, our proactive signature scheme is robust against a t-threshold proac-
tive adversary for t < n/2.

Proof. Note that the only way robustness can be broken is if some malicious
player Mi cheats either in the proactive update protocol, by re-sharing a value
different than its proper current share di committed in Pedersen commitment
wi = gdihdi mod p, or Mi cheats in the signature protocol, by proving correct
the wrong partial signature si �= mdi mod N . Since the first type of cheating
is infeasible under the discrete logarithm assumption and the second type is
infeasible under the strong RSA assumption, the claim follows.

522 S. Jarecki and N. Saxena

4.1 Security Implications

Taking l = 0, Theorem 1 implies that the new proactive signature scheme is as
secure as the standard RSA:

Corollary 1. Under the RSA assumption in the Random Oracle Model, our
scheme is a secure t-threshold proactive signature, for l = 0 and q ≥ r2|N |+80.

On the other hand, note that the RSA adversary can always correctly guess
the most significant half of the bits of d with probability 1/(e − 1).1 Together
with theorem 1, this implies the following corollary:

Corollary 2. Under the RSA assumption (in the Random Oracle Model), the
time TPRSA to break the new proactive signature scheme for e = 2i+1, l = |N |/2
and q ≥ r2|N |/2+80, is at least TPRSA ≥ 2−iTRSA, where TRSA is the time
required to break the CMA security of the standard (FDH) RSA signature scheme
for modulus of length |N |.

For the most popular value of e = 3, this implies that if the 1024-bit modulus
RSA has a 280 security then our proactive RSA scheme running on the same
modulus for l = 512 and q ≥ r2512+80 would have at least 279 security. For e = 17
the provable security would be 276. Of course, our scheme could be executed with
slightly larger N to compensate for the 2i factor in security degradation, but with
key shares sizes still limited by q < r2|N |/2+80. The efficiency of the resulting
schemes resulting from Corollary 2 should be compared with the straightforward
settings implied by Corollary 1, where same 280 security is given by 1024 bit N
but with larger bound of r2|N |+80 on the share size q.

However, since there are no known attacks against RSA which speed up the
factorization of N when half of the most significant bits of d are revealed for
small values of e, it can be plausibly hypothesized that for small e’s, the proposed
proactive RSA scheme remains as secure as standard RSA for the same modulus
size even with half of the most significant bits of d are revealed.

Finally we remark that the security analysis of our scheme given in Theorem
1 grants the adversary the knowledge of n − 1 shares instead of just t shares
he can see in the protocol, which suggests that our security analysis can be
improved and that our scheme is possibly secure using smaller share sizes than
our analysis recommends.

5 Improved Security Analysis of Rabin’s Proactive RSA

Overview of Proactive RSA Scheme of [36]. During the setup, a trusted dealer
generates the RSA public (N, e) and private (d, p̂, q̂) key pairs. The signature

1 Note that ed = 1 (mod φ(N)) implies that d = 1/e(1 + kφ(N)) for some integer
k = 1, ..., e − 1. Therefore, since N − φ(N) <

√
N , it follows that 0 ≤ d̂k − d <

√
N

for d̂k = �1/e(1+kN)� for one of the e−1 choices of k. Thus any adversary facing the
RSA cryptosystem can with probability 1/(e − 1) guess the |N |/2 most significant
bits of d by picking the right k and computing d̂k as above.

Further Simplifications in Proactive RSA Signatures 523

key d is shared additively among the players. Each Mi gets a share di, chosen
uniformly in [−R,R] where R = nN2, and the dealer publishes public value
dpublic such that

dpublic = d−
n∑

i=1

di (over Z) (3)

This can be easily extended, so that like our new scheme, l most significant bits
of d are publicly revealed and added to the dpub value, and only the remaining
(|N | − l)-bit value d− 2|N |−ldpub is shared as above. The witness value wi = gdi

(mod N) corresponding to each di is published, where g is an element of high
order in Z

∗
n. Each share di is then itself shared using the Feldman VSS [15] over

Zn. To sign a message m, each player Mi, generates a partial signature si = mdi

(mod N). Since the signature key d is shared over integers, the RSA signature
can be easily reconstructed by simply multiplying n partial signatures, i.e.,

s = mdpublic

n∏
i=1

si (mod N)

The detection of faults during the signing process can be performed using the
protocols of [24, 19]. The secret share of the faulty player is then reconstructed by
pooling in the shares of any t + 1 players using a special variant of polynomial
interpolation (refer to [36] for details). In the share update protocol each Mi

additively re-shares its secret share di with (sub)shares dij ∈ [−R/n,R/n] and

di,public = di −
n∑

j=1

dij (over Z)

is made a public value. The new secret share for d(r)
i of Mi is then computed as

d
(r)
i =

∑n
j=1 dji, and Mi shares it using Feldman VSS over Zn.

Improved Security Analysis and Improved Performance. First, we note that the
simulator for the setup phase presented in [36] has a small error. That simulator
for the key distribution protocol picks random shares d̂i ∈ [−R,R], for i =
1, . . . , n−1, and it picks d̂public uniformly at random in [−nR, nR+N]. However,
values generated in this way are not statistically indistinguishable from the values
in the protocol, because if the di values are chosen uniformly in [−R,R], then
by equation (3), value dpublic has a normal probability distribution, which is
immediately distinguishable from the uniform distribution of d̂public.

The corrected simulation of the key distribution (and the subsequent update
protocols) works exactly in the same manner as the actual protocol. The simula-
tor should choose some secret value d̂ ∈ [0,N−1] at random, and share this new
value in exactly the same manner as in the protocol. After r update rounds, the
overall statistical difference between the view of the adversary interacting with
the protocol and the view of the adversary interacting with the (new) simulator
is at most rN/R. This difference is negligible if R = rN2τ , where τ ≥ 80, instead
of the R = nN2 value recommended in [36].

524 S. Jarecki and N. Saxena

This shows that secret shares can be picked from range [−rN2τ , rN2τ], in-
stead of range [−nN2, nN2] of the original scheme, which means an almost factor
of 2 improvement in the share size. Since the computational cost of this scheme
is driven by cost of the exponentiation si = mdi mod N done by each player,
factor of 2 improvement in the size of di speeds the signature generation by the
same factor.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

2. F. Boudot. Efficient proofs that a committed number lies in an interval. In EU-
ROCRYPT’00, volume 1807 of LNCS, pages 431–444, 2000.

3. F. Boudot and J. Traor. Efficient Publicly Verifiable Secret Sharing Schemes with
Fast or Delayed Recovery. In Second International Conference on Information and
Communication Security (ICICS), pages 87–102, November 1999.

4. C. Boyd. Digital multisignatures. In Cryptography and Coding, pages 241–246.
Claredon Press, May 1989.

5. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In EUROCRYPT’99, volume 1592 of LNCS, pages
107–122, 1999.

6. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In CRYPTO’99, volume 1666 of LNCS, pages 106–121, 1999.

7. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security
for threshold cryptosystems. In CRYPTO’99, volume 1666 of LNCS, pages 98–115,
1999.

8. A. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. In
EUROCRYPT’98, volume 1403 of LNCS, pages 561–575, 1998.

9. R. Croft and S. Harris. Public-key cryptography and re-usable shared secrets. In
Cryptography and Coding, pages 189–201. Claredon Press, May 1989.

10. I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In EUROCRYPT’00, volume 1807 of LNCS, pages 418–430, 2000.

11. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In ASIACRYPT’02, volume 2501 of LNCS,
pages 125–142. Springer, 2002.

12. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proc. 26th ACM Symp. on Theory of Computing, pages 522–533,
Montreal, Canada, 1994.

13. Y. Desmedt. Society and Group Oriented Cryptosystems. In CRYPTO ’87, number
293 in LNCS, pages 120–127, 1987.

14. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO ’89, number
435 in LNCS, pages 307–315, 1990.

15. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Symposium on Foundations of Computer Science (FOCS), pages 427–437,
1987.

16. Y. Frankel and Y. Desmedt. Parallel reliable threshold multisignature. Technical
Report TR-92-04-02, Dept. of EE and CS, U. of Winsconsin, April 1992.

Further Simplifications in Proactive RSA Signatures 525

17. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal-resilience proac-
tive public-key cryptosystems. In 38th Symposium on Foundations of Computer
Science (FOCS), pages 384–393, 1997.

18. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In
Crypto’97, volume 1294 of LNCS, pages 440–454, 1997.

19. Y. Frankel, P. Gemmell, and M. Yung. Witness-based cryptographic program
checking and robust function sharing. In Proc. 28th ACM Symp. on Theory of
Computing, pages 499–508, Philadelphia, 1996.

20. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure distributed threshold
public key systems. In Proceedings of ESA 99, 1999.

21. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure optimal-resilience
proactive RSA. In ASIACRYPT’99, volume 1716 of LNCS, 1999.

22. Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptive security for the additive-
sharing based proactive rsa. In Public Key Cryptography 2001, volume 1992 of
LNCS, pages 240–263, 2001.

23. E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Mod-
ular Polynomial Relations. In CRYPTO ’97, volume 1294 of LNCS, pages 16–30,
1997.

24. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and Efficient Sharing
of RSA Functions. In CRYPTO ’96, volume 1109 of LNCS, pages 157–172, 1996.

25. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Sig-
natures. In EUROCRYPT ’96, number 1070 in LNCS, pages 354–371, 1996.

26. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-
eration for discrete log based cryptosystems. In EUROCRYPT’99, volume 1592 of
LNCS, pages 295–310, 1999.

27. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In ACM Conference on Computers and Com-
munication Security, pages 100–110, 1997.

28. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing, or
how to cope with perpetual leakage. In CRYPTO ’95, volume 963 of LNCS, pages
339–352, 1995.

29. S. Jarecki, N. Saxena, and J. H. Yi. An Attack on the Proactive RSA Signature
Scheme in the URSA Ad Hoc Network Access Control Protocol. In ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN), pages 1–9, October 2004.

30. J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing Robust and Ubiquitous
Security Support for MANET. In IEEE 9th International Conference on Network
Protocols (ICNP), pages 251–260, 2001.

31. H. Luo and S. Lu. Ubiquitous and Robust Authentication Services for Ad Hoc
Wireless Networks. Technical Report TR-200030, Dept. of Computer Science,
UCLA, 2000. Available online at http://citeseer.ist.psu.edu/luo00ubiquitous.html.

32. D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent
Zero-Knowledge. In EUROCRYPT’03, volume 2656 of LNCS, pages 140–159, 2003.

33. NIST. Digital signature standard (DSS). Technical Report 169. National Institute
for Standards and Technology, August 30, 1991.

34. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In 10th ACM
Symp. on the Princ. of Distr. Comp., pages 51–61, 1991.

35. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Crypto 91, volume 576 of LNCS, pages 129–140, 1991.

36. T. Rabin. A Simplified Approach to Threshold and Proactive RSA. In CRYPTO
’98, volume 1462 of LNCS, pages 89 – 104, 1998.

526 S. Jarecki and N. Saxena

37. N. Saxena, G. Tsudik, and J. H. Yi. Admission Control in Peer-to-Peer: Design
and Performance Evaluation. In ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN), pages 104–114, October 2003.

38. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

39. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov. 1979.
40. V. Shoup. Practical Threshold Signatures. In EUROCRYPT’00, volume 1807 of

LNCS, pages 207–220, 2000.

A Zero Knowledge Proof of Partial Signature
Correctness

For the purpose of proving the correctness of partial signatures in the proposed proac-
tive RSA scheme, we apply the zero knowledge proofs for the equality of committed
numbers in two different groups and for the range of a committed number. All these
proofs are honest verifier zero-knowledge and can be converted either into standard
zero-knowledge proof either at the expense of 1-2 extra rounds using techniques of
[10, 11, 32], or into a non-interactive proof in the random oracle model using the Fiat-
Shamir heuristic. We adopt the notation of [5] for representing zero-knowledge proof
of knowledge protocols. For example, ZKPK{x : R(x)} represents a ZKPK protocol
for proving possession of a secret x which satisfies statement R(x). In the protocols to
follow, u (≥ 80) and v (≥ 40) are security parameters.

Protocol for proving the correctness of a partial signature:

ZKPK{di, d
′
i : wi0 = gdihd′

i (mod p) ∧ si = mdi (mod N) ∧ di ∈ [0, q − 1]}
The signer (or prover) Mi proves to the verifier the possession of its correct secret

share di by using the following zero-knowledge proof system. The verifier can either be
one of the players or an outsider who has inputs wi0, g, h, p, si, m, N, q. All the protocols
run in parallel, and failure of these protocols at any stage implies the failure of the
whole proof.

1. The verifier follows the setup procedure of the Damgard-Fujisaki-Okamoto com-
mitment scheme [23, 11], e.g. it picks a safe RSA modulus n and two elements G, H
in Z

∗
n whose orders are greater than 2. (We refer to [11] for the details of this com-

mitment scheme.) If N is a safe RSA modulus then set n = N , G = (G′)2 mod N ,
H = (H ′)2 mod N for random G′, H ′ ∈ Z

∗
n.

2. The prover computes the commitment C = GdiHR (mod n), where R is picked
randomly from [0, 2v(q − 1)] and uses Protocol (1) (see below), by substituting
(x, x′

1, x
′
2, g1, h1, g2, h2, n1, n2, w1, w2, b, b

′) with (di, R, d′
i, G, H, g, h, n, p, C, wi0, q−

1, 2v(q − 1)), respectively, to execute:
ZKPK{di, R, d′

i : C = GdiHR (mod n) ∧ wi0 = gdihd′
i (mod p)}.

3. The prover then uses Protocol (1) (see below), by substituting (x, x′
1, x

′
2, g1, h1, g2,

h2, n1, n2w1, w2, b, b
′) with (di, R, 0, G, H, m, m, n, N, C, si, q−1, 2v(q−1)), respec-

tively, to execute:
ZKPK{di, R : C = GdiHR (mod n) ∧ si = mdi (mod N)}.

4. The prover uses Protocol (2) (see below), by substituting (x, x′, b) with (di, R, q−
1), respectively, to execute:
ZKPK{di, R : C = GdiHR (mod n) ∧ di ∈ [0, q − 1]}

Further Simplifications in Proactive RSA Signatures 527

Protocol (1). ZKPK{x, x′
1, x

′
2 : w1 = gx

1h
x′
1

1 (mod n1) ∧ w2 = gx
2h

x′
2

2 (mod n2)}

Assumption: x, x′
2 ∈ [0, b] and x′

1 ∈ [0, b′].
This protocol is from [5], [2], and is perfectly complete, honest verifier statistical

zero-knowledge and sound under the strong RSA assumption [23] with the soundness
error 2−u+1, given than (g1, h1, n1) is an instance of the Damgard-Fujisaki-Okamoto
commitment scheme [23, 11].

1. The prover picks random r ∈ [1, . . . , 2u+vb − 1] , η1 ∈ [1, . . . , 2u+vb′ − 1], η2 ∈
[1, . . . , 2u+vb−1] and computes W1 = gr

1hη1
1 (mod n1) and W2 = gr

2hη2 (mod n2).
It then sends W1 and W2 to the verifier V .

2. The verifier selects a random c ∈ [0, . . . , 2u − 1] and sends it back to the prover.
3. The prover responds with s = r + cx (in Z), s1 = η1 + cx′

1 (in Z) and s2 = η2 + cx′
2

(in Z)
4. The verifier verifies as gs

1h
s1
1 = W1w1

c (mod n1) and gs
2h

s2
2 = W2w2

c (mod n2).

Protocol (2). ZKPK{x, x′ : C = GxHx′
(mod n) ∧ x ∈ [0, b]}

Assumption: x ∈ [0, b] and x′ ∈ [0, 2vb].
This protocol (from [2]) is an exact range proof, honest verifier statistical zero-

knowledge, complete with a probability greater than 1 − 2−v, and sound under the
strong RSA assumption given that (G, H, n) is an instance of the Damgard-Fujisaki-
Okamoto commitment scheme, similarly as in protocol (1).

1. The prover sets T = 2(u + v + 1) + |b|, X = 2T x, X ′ = 2T x′, β = 2u+v+1
√

b and
CT = GXHX′

(mod n).
2. The prover uses Protocol (3) (see below), by substituting (x, x′, com, B, γ) with

(X, X ′, CT , 2T b, 2T/2β), respectively, to execute the following (note that X ∈
[0, 2T b]):
ZKPK{X, X ′ : CT = GXHX′

(mod n) ∧ X ∈ [−2T/2β, 2T b + 2T/2β]}
Proving that X ∈ [−2T/2β, 2T b + 2T/2β] implies that x ∈ [0, b], since 2T/2β < 2T .

Protocol (3). ZKPK{x, x′ : com = GxHx′
(mod n) ∧ x ∈ [−γ, B + γ]}

Here γ = 2u+v+1
√

B.

Assumption: x ∈ [0, B] and x′ ∈ [0, 2vB].
This proof was proposed in [2] and is honest verifier statistical zero-knowledge,

complete with a probability greater than 1 − 2−v, and sound under the strong RSA
assumption just like protocol (2).

1. The prover executes ZKPK{x, x′ : com = GxHx′
(mod n)}

2. The prover sets x1 = �√x�, x2 = x − x2
1, x̂1 = �√B − x�, x̂2 = B − x − x̂2

1, and
chooses randomly r1, r2, r̂1, r̂2 in [0, 2vB], such that r1 +r2 = x′ and r̂1 + r̂2 = −x′.

3. The prover computes new commitments e1 = Gx2
1Hr1 (mod n), ê1 = Gx̂2

1H r̂1

(mod n), e2 = Gx2Hr2 (mod n), ê2 = Gx̂2H r̂2 (mod n), and sends e1 and ê1 to
the verifier.

4. The verifier computes e2 = com/e1 (mod n) and ê2 = GB/(com ∗ ê1) (mod n).

528 S. Jarecki and N. Saxena

5. The prover uses Protocol (4) (see below), by substituting (x, x′, comsq) with
(x1, r1, e1) and then with (x̂1, r̂1, ê1), to execute the following:
ZKPK{x1 : e1 = Gx2

1Hr1 (mod n)}
ZKPK{x̂1 : ê1 = Gx̂2

1H r̂1 (mod n)}
This proves that e1 and ê1 hide a square.

6. The prover uses Protocol (5) (see below), by substituting (x, x′, com2, B1) with
(x2, r2, e2, 2

√
B), respectively and then with (x̂2, r̂2, ê2, 2

√
B), respectively, to ex-

ecute the following (note that x2 and x̂2 ∈ [0, 2
√

B]):
ZKPK{x2 : e2 = Gx2Hr2 (mod n) ∧ x2 ∈ [−γ, γ]}
ZKPK{x̂2 : ê2 = Gx̂2H r̂2 (mod n) ∧ x̂2 ∈ [−γ, γ]}
This proves that e2 and ê2 hide numbers belonging to [−γ, γ].

Steps 2, 5 and 6 above, imply that x ∈ [−γ, B + γ].

Protocol (4). ZKPK{x, x′ : comsq = Gx2
Hx′

(mod n)}
This protocol first appeared in [23], generalized (and corrected) in [11] and proves

that a committed number is a square. The protocol is honest verifier statistical zero-
knowledge, perfectly complete, and sound under the strong RSA assumption just like
protocol (2).

Protocol (5). ZKPK{x, x′ : com2 = GxHx′
(mod n) ∧ x ∈ [−2u+vB1, 2u+vB1]}

Assumption: x ∈ [0, B1], and x′ ∈ [0, 2vB1].

This proof was proposed in [8], allows a prover to prove the possession of a discrete
logarithm x lying in the range [−2u+vB1, 2u+vB1] given x which belongs to a smaller
interval [0, B1]. Using the commitment scheme of [23, 11], this proof is honest verifier
statistical zero-knowledge, complete with a probability greater than 1−2−v, and sound
under the strong RSA assumption with soundness error 2−u+1.

Proof of Plaintext Knowledge for the
Ajtai-Dwork Cryptosystem

Shafi Goldwasser1,2 and Dmitriy Kharchenko2

1 CSAIL, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

Abstract. Ajtai and Dwork proposed a public-key encryption scheme
in 1996 which they proved secure under the assumption that the unique
shortest vector problem is hard in the worst case. This cryptosystem and
its extension by Regev are the only one known for which security can be
proved under a worst case assumption, and as such present a particularly
interesting case to study.

In this paper, we show statistical zero-knowledge protocols for state-
ments of the form “plaintext m corresponds to ciphertext c” and “ci-
phertext c and c’ decrypt to the same value” for the Ajtai-Dwork cryp-
tosystem. We then show a interactive zero-knowledge proof of plaintext
knowledge (PPK) for the Ajtai-Dwork cryptosystem, based directly on
the security of the cryptosystem rather than resorting to general inter-
active zero-knowledge constructions. The witness for these proofs is the
randomness used in the encryption.

Keywords: Lattices, Verifiable Encryption, Ajtai-Dwork Cryptosystem,
Worst Case Complexity Assumption, Proof of Plaintext Knowledge.

1 Introduction

There is much to celebrate in the progress made by cryptography on many fronts:
rigorous definitions of security of natural cryptographic tasks, constructions of
schemes achieving security based on general assumptions, new and seemingly
contradictory possibilities such as zero-knowledge proofs and secure multi-party
computations.

Still, during all this time, the implementations of this progress or rather the
assumptions that underly all implementations, remain almost exclusively the
intractability of factoring integers and of computing discrete logarithms which
go back to the original papers of [9, 25] (often even stronger versions of these
assumptions are utilized to gain better efficiency, such as higher quadratic resid-
uosity, DDH, Strong-RSA). There are a couple of exceptions: computational
problems over Elliptic Curves and computational problems over Integer Lat-
tices. Whereas the computational problems over Elliptic curves do not seem to
be inherintely harder than the analogous problems over finite fields, the use of

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 529–555, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

530 S. Goldwasser and D. Kharchenko

computational problems over lattices seem to present a new frontier. Due to the
pioneering work of Ajtai[], these problems certainly show the greatest promise
from a theoretical treatment point of view.

In particular, in 1996, Ajtai and Dwork proposed [1] a public-key cryptosys-
tem which is secure under the assumption that the unique shortest vector prob-
lem in integer lattices is hard in the worst case. The Ajtai-Dwork cryptosystem
(and its extension by Regev [24]) are the only known public-key cryptosystems
with the property that breaking a random instance of it is as hard as solving the
worst-case instance of problem on which the system security is based. As such it
present a particularly interesting and unique system to study from a complexity
theoretic point of view.

Much study has been dedicated to the number theory based encryption sys-
tems (e.g. Cramer-Shoup, Paillier, RSA), showing how to incorporate them effi-
ciently into larger protocols (e.g. designated confirmer signatures, e-cash proto-
cols), extending their basic functionality (e.g. threshold decryption, verifiable en-
cryption, group encryption, key-escrow versions), and extending them to achieve
stronger security definitions (e.g. chosen cipher-text security, interactive encryp-
tion with efficient proofs of plaintext knowledge).

In contrast, the work on AD cryptosystems has been restricted to attempting
cryptanalysis of the original scheme([23], showing chosen cipher text attacks [19],
and proofs tightening the worst case versus average security reductions [24]. To
date, there has been no protocol work involving the usage of AD encryption.

We can only speculate why this study is missing. Possibly, since the math-
ematics underlying the AD systems seemingly does not lend itself to simple
treatment as in the case of the number theoretic schemes. Possibly, because AD
is viewed largely of interest as a theoretical case study rather than one envi-
sioned useful within other application. Or, perhaps, because it is a secondary
order concern which naturally will follows the basic study of security. In any
case, as by enlarge all existing number theoretic cryptosystems stand and fall
together whereas the security of AD seems unrelated and could hold even if the
former does not, we feel it is time to begin such treatment. Certainly, we will
only be able develop intuition about the usability of this system, by attempting
to do so. We initiate this study in this paper.

We begin with investigating very simple questions, which seem fundamental
to many applications of public-key encryption schemes.

– First, we show how AD can be augmented to be a verifiable encryption
scheme, by providing statistical zero knowledge proofs for basic statements
about the plaintext of AD ciphertexts, such as ‘ciphertexts c and c’ decrypt
to the same plaintext’ and ‘ciphertext c decrypts to plaintext m’. The witness
for these proofs is the randomness used in the encryption.

– Second, we show a zero-knowledge interactive proof of plaintext knowledge
for AD ciphertexts. Again the witness for this proof is the randomness used
in the encryption. The construction is simple and direct, and does not uti-
lize general ZK interactive proof constructions or general tools such as the
existence of one-way functions. Rather it exploits the statistical zero knowl-

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 531

edge protocols constructed above to prove statements which arise within the
interactive proof of plaintext knowledge. The computational zero knowledge
property is proved assuming the security of the AD cryptosystem itself. The
existence of a zero-knowledge interactive proof of plaintext knowledge, es-
tablishes in turn an interactive encryption variant of AD cryptosystem which
is CCA1 secure ([13, 16]) costing reasonable overhead beyond the complex-
ity of AD encryption itself. In contrast Hall, Goldberg, Schneier [19] showed
that the secret key of the AD cryptosystem can be recovered using a CCA1
attack.

Previously, computational zero knowledge protocols for all the statements we
prove were only known by utilizing general ZK interactive proofs for NP [17].

Throughout our work, instead of using the original Ajtai-Dwork construction
which has non-zero decryption error probability, we use the decryption-error-free
variant of Goldreich, Goldwasser and Halevi [15]. The semantic security of the
modified cryptosystem holds under under the same assumption as the original
cryptosystem. We refer to it as the AD cryptosystem throughout.

We make technical use of two prior works. The work of Micciancio and
Vadhan[21] which shows a statistical zero-knowledge protocol with efficient
provers for approximate versions of the SVP and CVP problems where the wit-
ness is a short vector in a lattice (or a point close to the target in the CVP
case). And the work of Nguyen and Stern [23] which show how to use a CVP
oracle to cryptanalyze the AD cryptosystem. Although Nguyen and Stern’s work
was aimed at cryptanalysis and showed that AD cryptosystem is no harder to
break than the CVP problem, we use it as a positive result, using it as a tool to
generate ‘good instances’ of an AD public key and ciphertexts for our verifiable
encryption protocols for which our protocols will work. This continues the tradi-
tional pattern of research on lattices in cryptography, where progress on lattice
research is used on one hand to cryptanalyze existing schemes and on the other
hand to provide security proofs for lattice based cryptographic schemes.

We proceed to elaborate on related work and concepts, and our results in
some detail.

1.1 Related Results and Conepts

Verifiable Encryption. Verifiable encryption was introduced by Stadler in
[26] in the context of publicly verifiable secret sharing, and in more general
form by Asokan, Shoup and Waidner in [2] for the purpose of fair exchange of
digital signatures. In the verifiable encryption setting, there are three parties. A
party who generates the secret/public key pair (PK,SK), an encryptor which
we refer to as the prover who creates a ciphertext of some plaintext, and a
verifier who on input a public-key and a ciphertext verifies some application-
driven properties of the plaintext. Verifiable encryption is defined with respect
to some binary relation R defined on plaintext messages. Informally, a verifiable
encryption with respect to relation R is a zero-knowledge protocol which, on
public inputs ciphertext c, δ, and PK allows a prover to convince a verifier
that the ciphertext c is an encryption of a message m with public key PK such

532 S. Goldwasser and D. Kharchenko

that (m, δ) ∈ R (as in [4]). The prover uses the randomness which was used to
generate the ciphertext c as auxilary input.

By using zero knowledge interactive proofs for NP [17], it is clearly possi-
ble to turn all known encryption schemes into verifiable encryption schemes for
any R ∈ NP . However, for specific relations R of interest we may be able to
get much more efficient protocols, with stronger security properties (e.g. sta-
tistical vs. computational zero-knowledge). For example, in recent work of Ca-
menisch and Shoup [5], they propose a modification of the Cramer-Shop cryp-
tosystem [7] based on the Paillier’s decision composite residuosity assumption,
for which they show an efficient verifiable encryption scheme for the relation
R = {(m, (δ, γ))|γm = δ}. Namely, they demonstrate efficient statistical ZK
proofs on input a public key, ciphertext c (of the modified encryption scheme),
and γ, δ pair, that c is the encryption of an m for which γm = δ.

Plaintext Proofs of Knowledge Given an instance of a public-key encryp-
tion scheme with public key pk, a proof of plaintext knowledge(PPK) allows an
encryptor (or prover) to prove knowledge of the plaintext m of some ciphertext
C ∈ Epk(m) to a receiver. A proof of plaintext knowledge should guarantee that
no additional knowledge about m is revealed to the receiver or an eavesdropper.
Customarily, this requirement is captured by requiring the plaintext proof of
knowledge to be a zero-knowledge proof.

For the Rabin, RSA, Goldwasser-Micali, Paillier, El-Gamal encryption
schemes, well known 3-round zero-knowledge public-coin proofs of knowledge
protocols (often referred to as Σ protocols) can be easily adapted to achieve
efficient PPKs.

When both the sender and the receiver are on-line, interactive public-key
encryption protocols may be used. Starting with an underlying semantically se-
cure public-key encryption scheme which has a zero-knowledge proof of plaintext
knowledge, the sender of the ciphertext c in addition engages in a proof of plain-
text knowledge with the receiver. The result is a CCA1 secure public-key encryp-
tion scheme [13, 16]. Utilizing efficient PPKs for specific number theoretic based
semantically secure public-key encryption schemes such as the Blum-Goldwasser,
Paillier, and El Gamal scheme, thus yields efficient CCA1 secure interactive
public-key encryption variants of these schemes. Better yet, Katz[20] shows how
design efficient interactive non-malleable proofs of plaintext knowledge for the
RSA, Rabin, Paillier, and El-Gamal encryption schemes. Using these, one obtains
efficient CCA2 secure interactive public-key encryption variants of the underly-
ing schemes.

Naturally, if one-way functions exist, PPKs can be achieved using complete-
ness results [17] for interactive zero-knowledge proofs for NP, proofs of knowl-
edge for NP[12], and non-malleable interactive zero knowledge PPK for NP[8].
However, these general constructions are prohibitively inefficient as they require
as a preliminary step polynomial time reductions to instances of NP-complete
problems.

For the Ajtai-Dwork cryptosystem, these general completeness constructions
of PPK were the only one knows prior to our work.

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 533

Finally, we note that in contrast to the interactive case, known constructions
of non-interactive zero-knowledge proofs (NIZK) [8] for NP languages (which are
a central tool in constructing CCA2 secure non-interactive public-key encryption
given semantically secure public-key encryption algorithms) require trapdoor
permutations. The intractability assumption on which the security of the Ajtai-
Dwork cryptosystem is based, however, is not known to imply the existence
of trapdoor permutations. It remains a central open problem to find a non-
interactive CCA2 secure public-key encryption algorithm (efficient or otherwise)
based on the AD-cryptosystem assumption.

Lattice Tools. Our work uses as tools the results of [21] and [23]. In [21]
Micciancio and Vadhan provide a zero-knowledge proof system for the GapCVPγ

problem for γ = Ω(
√

n
log(n)) where n is the dimension of the lattice. An instance

of the GapCVPγ is a triple consisting of a lattice L, a vector x and a value t. An
instance is a YES instance if the distance between the vector x and the lattice L
is less than t. If the distance is greater than γt the instance is a NO instance. In
the proof zero-knowledge system of Micciancio and Vadhan [21] a prover proves
to a verifier that an instance of the GapCVPγ is a YES instance. If the instance
is NO instance, the verifier rejects with high probability.

Nguyen and Stern showed in [23] how to use a CVP oracle to distinguish be-
tween ciphertexts of ‘0’ and ‘1’ of the Ajtai-Dwork cryptosystem (with decryption
errors). For a random public key and a random ciphertext of the Ajtai-Dwork
cryptosystem, Nguyen and Stern construct some lattice L and some vector x.
They show that for ciphertexts of ‘0’ the distance between the lattice L and the
vector x is likely to be small, whereas for ciphertexts of ‘1’ the distance is likely
to be large.

1.2 Our Results in Detail

Verifiable Encryption for the AD Cryptosystem. The first result of
this paper is the design of statistical zero-knowledge protocol for proving that
ciphertexts decrypt to given plaintexts for the AD public key cryptosystems.
Namely, on public inputs ciphertext c, δ, and public-key PK a verifiable encryp-
tion scheme for the equivalence relation R = {(m, δ)|m = δ}.

The encryption method of Ajtai and Dwork is bit-by-bit. Thus, to prove
statement of the form “c is the ciphertext corresponding to m” it suffices to
construct two zero-knowledge protocols: one to prove that a ciphertext decrypts
to ‘0’ and the other is to prove that a ciphertext decrypts to ‘1’. We construct
two separate but in principle similar protocols for these tasks.

Ciphertexts of the AD cryptosystem are vectors in some public key dependent
domain. The decryption algorithm decrypts every vector of the domain to ‘0’ or
‘1’, but not all vectors can be obtained by encrypting ‘0’ or ‘1’. We say that a
ciphertext is legal if it can be legally obtained by running encryption algorithm.
The protocol for proving that a ciphertext c decrypts to ’b’ (for b ∈ {0, 1}
respectively) has the following properties of completeness and soundness: if c is
a legal ciphertext of ’b’, then the verifier always accepts; if the decryption of c is

534 S. Goldwasser and D. Kharchenko

not ’b’ (regardless whether c is a legal encryption of ’b’ or not), then the verifier
rejects with high probability. Thus, completeness holds only for c’s which were
obtained legally by applying the encryption algorithm, whereas soundness of the
protocols holds for any input c from the prescribed domain.

We remark that the completeness of the protocols we present here requires
some technical condition to hold for the public-key and the input ciphertext on
which it is applied. Luckily, theorems proved in [23] show that with good prob-
ability, random public-keys produced by the AD key generation algorithm and
random ciphertexts produced by the AD encryption algorithm obey these tech-
nical conditions. Moreover, it is easy to check if these conditions hold for a given
public-key at key generation time, and for a given ciphertext at encryption time
(using the randomness used by the algorithm to generate the ciphertext). Thus,
we modify the AD key generation algorithm and encryption algorithm to ensure
that all legally generated public-keys and ciphertext obey the desired conditions.
We emphasize that the soundness of our protocols hold for all ciphertexts and
public keys, regardless of whether they obey the said conditions.

The idea behind the protocol for proving that a ciphertext decrypts to ‘0’
is as follows. We show a transformation of AD public-keys and ciphertexts to
instances of the GapCVPγ problem, such that (1) a legal AD public key and
legal AD ciphertext which decrypts to ‘0’, transforms to a YES instance of the
GapCVPγ ; and (2) any AD public key and any ciphertext which decrypts to
‘1’ transforms to a NO instance of the GapCVPγ . On common input, a public
key and a ciphertext, the prover and verifier transform it to the appropriate
instance of GapCVPγ and run the Micciancio and Vadhan [21] zero-knowledge
protocol for proving that the constructed instance is a YES instance. The value
of γ = Ω(

√
n

log(n)) where n is polynomially related to the value of the security

parameter. The same approach is used to design the protocol proving that a
ciphertext decrypts to ‘1’.

The second result of this paper is the design of a verifiable encryption scheme
on inputs PK and ciphertext c for the encrypted equivalence relation R1 =
{(m, c′)|c′ is a legal AD encryption with public key PK of m}. Again, as the AD
cryptosystem is bit-by-bit, it will suffice to construct a statistical zero-knowledge
protocol to prove that given two ciphertexts c and c′, encryped with public key
PK, decrypt to the same bit. The prover’s auxilary inputs are the random bits
used by the encryption algorithm to generate c and c′.

We take advantage of the observation that if c and c′ are legal AD ciphertexts
of the same bit under the same AD public-key PK, then with high probability
c = (c + c′) mod P (w1, . . . ,wn)) decrypts to ‘0’ (where P (w1, . . . ,wn) is the
parallelepiped spanned by the wi’s specified in the public key PK, see section
2.2). Thus, the prover need only prove is that c decrypts to ‘0’ , using the sta-
tistical zero-knowledge protocol above for proving that AD ciphertext decrypts
to ‘0’. If c is a legal ciphertext which decrypts to the same bit as c′ the prover
will succeed, whereas for any c which does not decrypt to the same bit as c′

the prover will fail with high probability. Due to lack of space in this extended
abstract further treatment of this result is omitted.

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 535

ZK Proofs of Plaintext Knowledge for AD Cryptosystem. We pro-
vide a direct (without using general results about NP in Zero-knowledge) zero-
knowledge interactive proof of knowledge of the plaintext(PPK) for the AD
cryptosystem.

As AD cryptosystem is a bit-by-bit encryption scheme, it suffices to describe
how to prove on input public key PK, and ciphertext c of a single-bit plaintext
b that the prover ‘knows’ b.

We prove that if c and c′ are legal encryptions of b and b′ respectively under
AD public key PK, then with high probability c+ c′ mod P (w1 . . .wn) decrypts
to b ⊕ b′. The proof of plaintext knowledge for the AD cryptosystem follows
naturally. On input (PK, c) where c is an encryption of b, the prover sends the
verifier a random encryption c′ of a random bit b′. The verifier then asks the
prover to either prove that it knows the decryption of c′ or to prove that it
knows a decryption of c + c′ mod P (w1 . . .wn). The former can be done simply
by revealing the randomness used to encrypt c′ and the latter can be done by
proving in statistical zero-knowledge that c + c′ decrypts to b ⊕ b′ using the
statistical zero knowledge protocols designed in the first part of this work.

We prove that the resulting protocol is computational zero-knowledge under
the same worst case intractability ISVP assumption of the AD cryptosystem.

Assumption ISVP: (Infeasibility of Shortest Vector Problem): There is no
polynomial time algorithm, which given an arbitrary basis for an n-dimensional
lattice which has a ”unique poly(n)-shortest” vector, finds the shortest non-zero
vector in the lattice. By ”unique poly(n)-shortest” vector we mean that any
vector in the lattice of length at most ”poly(n)” times bigger than the shortest
vector, is parallel to the shortest vector.

Combining the zero-knowledge PPK protocol with the AD cryptosystem,
where the sender/encryptor (along with sending the ciphertext) interactively
proves to the receiver that he knows the plaintext, yields automatically an in-
teractive encryption scheme which is CCA1 secure based on ISVP. Previousy,
Hall, Goldberg, Schneier [19] show how to completely recover the secret key of
AD cryptosystem under a CCA1 attack.1

We believe that addressing the smaller problem of zero-knowledge PPK for
AD cryptosystem as we have done here, is a promising first step in the pursuit
of an CCA2 secure lattice based public-key encryption scheme, possibly first in
an interactive setting by extending our protocol to be non-malleable.

2 Preliminaries
2.1 Notations

We let x ∈R S denote choosing x at random with uniform probability in set S.
Given a parallelepiped P = P (w1, . . . ,wn) and a vector v, we reduce v modulo

P by obtaining a vector v′ ∈ P so that v′ = v +
∑

i ciwi, where the ci are all
integers. We denote it by v′ = v mod P .

1 Their work explicitly addresses the [15] variant with eliminated decryption.

536 S. Goldwasser and D. Kharchenko

All distances in this paper, are the Euclidean distances in R
n. Let dist(v1, v2)

denote the distance between vectors v1 and v2 in R
n, and dist(v, S) denote the

distance between vector v and a set S in R
n.

Let v1, . . . , vm be linearly independent vectors in R
n. An m-dimensional lat-

tice with the basis {v1, . . . , vm} is the set of all integer linear combinations of
vi’s, {

∑m
i=1 aivi : ai ∈ Z} .

For linearly independent vectors w1, . . . ,wn in R
n the parallelepiped spanned

by wi’s is the set

P (w1, . . . ,wn) =

{
n∑

i=1

aiwi : ai ∈ [0, 1)

}
.

The width of the parallelepiped P (w1, . . . ,wn) is the maximum over i of distances
between wi and the subspace spanned by other wi’s.

For every v ∈ R
n there is only one v′ ∈ P (w1, . . . ,wn) such that v − v′ =∑n

i=1 aiwi for some integers a1, . . . , an. We denote this by v′ = v mod P (w1, . . . ,
wn). Note, that we can consider n to be dimension of the lattice L. We can always
consider a lattice to be enclosed in a subspace spanned by it’s basis vectors.

For interactive protocols involving two parties A (the prover) and B (the
verifier), we let the notation (A(a),B(b))(x) be the random variable denoting
whether B accepts or rejects common input x following an execution of the
protocol where B has private private input b and A has private input a.

2.2 The Ajtai-Dwork Cryptosystem with Eliminated Decryption
Errors

Let the security parameter be denoted by n.
In order to simplify the construction we present the scheme in terms of real

numbers, but we always mean numbers with some fixed finite precision. We
need to define several parameters which will be used throughout the paper. For
a security parameter n let m = n3, ρn = 2n log n. We denote by Bn the n-
dimensional cube of side-length ρn. We also denote by Sn the n-dimensional ball
of radius n−8.

The errorless Ajati-Dwork cryptosystem [15] consists of three algorithms
(K, E ,D), where K is a key generation algorithm, E is an encryption algorithm,
and D is a decryption.

The encryption algorithm encrypts strings in a bit-by-bit fashion and thus in
this paper we shall assume henceforth that all messages are single bits.

Key Generating algorithm K on input 1n:
The private key SK = vector u chosen at random from the n-dimensional

unit ball.
The public key PK = {w1, . . . ,wn, v1, . . . , vm, k}, where v1, . . . , vm,w1,. . . ,wn

are vectors in R
n generated as follows.

v’s: For i=1. . .n (1) Pick vector ai at random from the set {x∈Bn :〈x, u〉∈Z};
(2) For j = 1, . . . , n select δj at random in Sn; (3) Output vi = a +

∑n
j=1 δj .

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 537

w’s: The vectors w1, . . . ,wn are obtained according to the same procedure
as vectors v1, . . . , vm, subject to the additional constraint that the width of
the parallelepiped P (w1, . . . ,wn) is at least n−2ρn. Remark: It is shown in [1]
that the width of P (w1, . . . ,wn) will be large enough with probability at least
1− n−1/2.

k: Choose k at random from the set of {i : 〈ai, u〉 is an odd integer}. We note
that such an index exists with probability 1− 2−Ω(m).

We let (SK,PK) ∈ K(1n) denote picking a pair of keys according to generat-
ing algorithm K on input 1n, and call such pair an instance of AD cryptosystem.
In various definitions and theorems in this paper, given an instance (SK,PK)
of the AD cryptosystem, we often refer directly to components of PK and SK
as u,v1, . . . , vn etc.

At times our algorithms may take as input keys K = {w1,. . . ,wn, v1,. . . ,vm, k}
which may not have been generated by K, in which case we refer to them as AD
public-key’s.

Encryption algorithm E on input public key PK and message bit b:
Choose r = r1, . . . , rm, ri ∈R {0, 1}.
If b = ‘0′, set ciphertext c =

∑m
i=1 rivi mod P (w1, . . . ,wn).

If b = ‘1′, set ciphertext c = (vk

2 +
∑m

i=1 rivi) mod P (w1, . . . ,wn).
Denote ciphertext c obtained by encrypting b under public key PK using ran-
domness r, as c = Epk(b; r).
Decryption algorithm D on input ciphertext c and secret key u:

If dist (〈c, u〉 ,Z) < 1
4 , output ‘0’, otherwise output ‘1’.

We let DSK(c) = b, denote the event that c decrypts to b, under secret key SK.

Note that the cryptosystem (K, E ,D) is errorless. Namely, a legal encryption
of ‘0’ will always be decrypted as ‘0’ and analogously an encryption of ‘1’ is
always decrypted as ‘1’.

2.3 Generating Good Public-Keys and Ciphertexts

We note that completeness of the protocols we design in this paper, will only hold
for public-keys and ciphertexts which obey certain ‘good’ technical conditions
defined below.

By theorems proved by Nguyen and Stern in [23] (for the purposes of crypt-
analysis of AD cryptosystem), it follows that such good public-keys and cipher-
texts will come up with high probability in the natural course of running the
generating algorithm K and encryption algorithm E . Moreover, the parties who
run K and E can check that the outputs are good, and if not repeat the process
till a good output is computed.

We will thus modify the definition of algorithms K (for key generation) and
E (for encryption) to to ensure they always output public-keys and ciphertexts
which are good.

Formally,

538 S. Goldwasser and D. Kharchenko

Definition 21. Let ε ∈ (0, 1). We say that a public key PK = {w1, . . . ,wn, v1,
. . . , vm, k} where v1, . . . , vm,w1, . . . ,wn are vectors in R

n of AD is ε-good if

E

⎡⎣ n∑
j=1

〈
m∑

i=1

(bivi),w⊥
j

〉2
⎤⎦ ≤ n4ρ2

n

2ε
, (2.1)

where w⊥
j is a unit vector orthogonal to the hyperplane spanned by other wj’s.

Expectation is taken over independent uniform choices of b1, . . . , bm from {0, 1}.

Claim 22. [23] For sufficiently large n, for any ε ∈ (0, 1), a public key PK of
AD picked at random according to the key generating protocol of section (2.2) is
ε-good with probability at least 1− ε.

Definition 23. Let ε, ε1 ∈ (0, 1), and PK be an ε-good public key of AD.
We say that a ciphertext c of ‘0’ is (ε, ε1) − good if for ai, bi’s such that c =∑m

i=1 bivi +
∑n

i=1 aiwi

dist
((

n6√nc
0

)
,BPK(a1, . . . , an, b1, . . . , bm)t

)
≤
√

1 +
1

2εε1
n4 (2.2)

Claim 24. [23] For sufficiently large n, for any ε, ε1 ∈ (0, 1) and an ε-good
public key PK of AD the following holds: a random ciphertext c of ‘0’ is (ε, ε1)-
good with probability at least 1 − ε1. Probability is taken over random bits used
by the encryption algorithm E to encrypt c.

Definition 25. Let ε, ε1 ∈ (0, 1) and PK be an ε-good public key of AD. We say
that a ciphertext c of ‘1’ is (ε, ε1)−good if and only (c− vk

2) mod P (w1, . . . ,wn)
is a (ε, ε1)-good ciphertext of ‘0’.

Since, a random ciphertext c of ‘1’ (c− vk

2) mod P (w1, . . . ,wn) is distributed
as a random ciphertext of ‘0’, we automatically get an analogous claim for ran-
dom ciphertexts of ‘1’.

Claim 26. For sufficiently large n, for any ε, ε1 ∈ (0, 1) and for an ε-good public
key PK of AD the following holds: a random ciphertext c of ‘1’ is (ε, ε1)-good
with probability at least 1− ε1. Probability is taken over random bits used by the
encryption algorithm to encrypt c.

2.4 Modified AD Key Generation and Encryption Algorithms

We modify K and E to enforce the output of K to be ε-good and the output of
E to be (ε, ε1)-good.

For the protocols of section 3 we need ε, ε1 ∈ (0, 1) to satisfy√
1 +

1
2εε1

≤
(

1
4
− 2

n2

)
n
√

log(n + n3)
3
√

2
, (2.3)

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 539

For the protocol of section 4 we need ε, ε1 ∈ (0, 1) to satisfy√
1 +

1
2εε1

≤
(

1
4
− 2

n2

)
n
√

log(n + n3)
12
√

2
. (2.4)

Modified Key Generating algorithm K′ on input 1n:
Repeat
Let (SK,PK) ∈R K(1n)
Until E

[∑n
j=1

〈∑m
i=1(bivi),w⊥

j

〉2] ≤ n4ρ2
n

2ε (where PK = {w1, . . . ,wn, v1, . . . ,

vm, k})
Output (SK,PK)

We let (SK,PK) ∈ K′(1n) denote generating instance (SK,PK) according to
key generation algorithm K′(1n).

Modified Encryption algorithm E ′ on input public key PK and message
bit b:

Repeat
Pick r = r1, . . . , rm, ri ∈R {0, 1}.
Let c =

∑m
i=1 rivi mod P (w1, . . . ,wn).

Compute ai’s such that c =
∑m

i=1 rivi +
∑n

i=1 aiwi.

Until dist
((

n6√nc
0

)
,BPK(a1, . . . , an, b1, . . . , bm)t

)
≤
√

1 + 1
2εε1

n4

Output c + b vk

2 mod P (w1, . . . ,wn).

We let c ∈ E ′
PK(b) denote generating c by running algorithm E ′ on inputs

PK and b, let c ∈ E ′
PK(·) denote c being in the domain of E ′

PK , and let
c = E ′

PK(b, r) denote generating c by running algorithm E ′
PK on input b using

randomness r.

2.5 Zero-Knowledge Proof System for Approximate Closest Vector
Problem

The protocols presented in this paper, exploit heavily the recent zero-knowledge
protocol with for promise closest vector problem presented by Micciancio and
Vadhan in [21].

Definition 27. For γ > 1 instances of the promise closest vector problem
GapCVPγ are tuples (L, t, x) where L is a lattice in R

n specified by its basis,
t > 0, and vector x in R

n.

– (L, t, x) is a YES instance of the GapCVPγ if dist (L, x) ≤ t
– (L, t, x) is a NO instance of the GapCVPγ if dist (L, x) > γt

The promise is that an instance of the GapCVPγ is restricted to be YES or
NO instance, any other tuples are not instances of the GapCVPγ .

In the protocol described by Micciancio and Vadhan [21] the prover proves
to the verifier in zero-knowledge that a given instance of the GapCVPγ is a YES
instance.

540 S. Goldwasser and D. Kharchenko

The protocol is statistical zero-knowledge for γ = Ω(
√

n
log(n)), where n is the

dimension of the vector space containing the lattice L. Moreover, for such a γ
the prover runs in polynomial time.

3 Verifiable Encryption for AD Cryptosystem

The ultimate goal of this section is to present two zero-knowledge protocols
which form verifiable encryption schema for the equivalence relation. The first
protocol is for proving that a ciphertext of AD decrypts to ‘0’, and the second is
for proving that a ciphertext of AD decrypts to ‘1’. In both protocols a common
input to the prover and the verifier is a pair (PK, c) – public key of AD and a
ciphertext. In addition, the prover has access to an auxiliary input consisting of
random bits used to encrypt the ciphertext.

We will show a mapping from a pair (PK, c) to an instance (L, t, x) of
GapCVPγ such that for good public keys and ciphertexts of bit ‘0’ the pair
maps to a YES instance of GapCVPγ , whereas for any ciphertext which de-
scrypts to ‘1’ the pair maps to a NO instance of GapCVPγ . Then, to prove that
c decrypts to ‘0’, simply run the ZK protocol of [21] to prove that (L, t, x) is
a YES instance of GapCVPγ . The case of ciphertext which decrypts to ‘1’, is
similarly handled.

Throughout this section n denotes the security parameter, m = n3, and
γ =

√
n+m

log(n+m) .

3.1 Mapping AD Ciphertexts to GapCVP Instances

We define a mapping from pairs (PK, c) consisting of a public key and a cipher-
text of AD to instances of GapCVPγ .

Definition 31. Let PK = {w1, . . . ,wn, v1, . . . ,wm, k} be a public key of AD.
Let c be a vector from P ((w1, . . . ,wn). Define mapping F(PK, c) = (LPK , t, xc)
where

xc =
(
n6√nc

0

)
∈ R

n+2m, t = n4

√
1 +

1
2εε1

(3.1)

And LPK is an (n+m)-dimensional lattice in R
2n+m spanned by the columns

of the following matrix BPK ,

BPK =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n6√nw1 . . . n6√nwn n6√nv1 . . . n6√nvm

1 0 . . . 0

0
. . .

... 1
. . .

...
. . . n2√n

. . . 0
0 . . . 0 n2√n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.2)

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 541

3.2 Connection Between AD Ciphertexts of ‘0’ and the GapCVPγ

Problem

We next state the theorem which forms a theoretical basis for the protocol for
proving that a ciphertext decrypts to ‘0’. The theorem states that good public
keys and ciphertexts of ‘0’ map under F to a YES instance of GapCVPγ , whereas
any ciphertext which decrypts to ‘1’, will map under F to a NO instance of
GapCVPγ .

Theorem 32. For sufficiently large n,

1. For (SK,PK) ∈ K′(1n) and c ∈ E ′
PK(0), F(PK, c) is a YES instance of

GapCVPγ .
2. for any instance (SK,PK) of AD and c ∈ P (w1, . . . ,wn) such that DSK(c) =

‘1′, F(PK, c) is a NO instance of GapCVPγ .

Proof. (1) The first statement directly follows from the definition of an (ε, ε1)-
good ciphertext of ‘0’.

(2) Let c ∈ P (w1, . . . ,wn) be any vector which decrypts to ‘1’. Let T = tγ.
From (2.3) it follows that

3T

n6
√
n

= 3

√
1 + 1

2εε1

√
n + n3

n2
√
n
√

log(n + n3)
<

3
√

1 + 1
2εε1

√
2

n
√

log(n + n3)
≤ 1

4
− 2
n2 <

1
4
<dist (〈c, u〉 ,Z) .

By theorem 33 (proved below) dist
((

n6√nc
0

)
, LPK

)
≤ T can not hold.

Thus
(
LPK , t,

(
n6√nc

0

))
is a NO instance of the GapCVPγ .

Theorem 33. Let T > 0, PK be a public key of AD, and c ∈ P (w1, . . . ,wn) .
For sufficiently large n,

If dist
((

n6√nc
0

)
, LPK

)
≤ T then dist (〈u, c〉 ,Z) ≤ 3T

n6
√
n

(3.3)

Proof. Let c ∈ P (w1, . . . ,wn) be such that dist
((

n6√nc
0

)
, LPK

)
≤ T ,

hence there are integers a1, . . . , an, b1, . . . , bm such that∥∥∥∥(n6√nc
0

)
−BPK(a1, . . . , an, b1, . . . , bm)t

∥∥∥∥2

≤ T 2.

Observing the construction of the matrix BPK (3.2) we get that for the vector
e = n6√nc− n6√n (

∑n
i=1 aiwi +

∑m
i=1 bivi)

n∑
i=1

a2
i +

m∑
i=1

n5b2
i + ‖e‖2 ≤ T 2. (3.4)

‖e‖ ≤ T , thus | 〈u, e〉 | ≤ T . It follows that dist (〈u, e〉 ,Z) ≤ T .

542 S. Goldwasser and D. Kharchenko

Note that c =
∑n

i=1 aiwi +
∑m

i=1 bivi + e
n6

√
n
, hence

dist (〈u, c〉 ,Z) ≤
n∑

i=1

|ai|dist (〈u,wi〉 ,Z)+
m∑

i=1

|bi|dist (〈u, vi〉 ,Z)+
T

n6
√
n
. (3.5)

Let us upper bound the first term of (3.5). According to the construction of AD
for all i = 1, . . . , n dist (〈u,wi〉 ,Z) ≤ 1

n7 . From (3.4) it follows that
∑n

i=1 a
2
i ≤

T 2. Thus, by the Cauchy-Schwartz inequality we have that
∑n

i=1 |ai|
dist (〈u,wi〉 ,Z) ≤

√∑n
i=1 a

2
i×

√∑n
i=1 dist (〈u,wi〉 ,Z)2 ≤ T

√
n× n−14 = T

n6
√

n
.

Let us now upper bound the second term of (3.5). Similarly, for all i = 1, . . . ,m
dist (〈u, vi〉 ,Z) ≤ 1

n7 . From (3.4) we have that
∑m

i=1 b2
i ≤ T 2

n5 . Applying the
Cauchy-Schwartz inequality we get that

∑m
i=1 |bi|dist (〈u, vi〉 ,Z) ≤

√∑m
i=1 b2

i ×√∑m
i=1 dist (〈u, vi〉 ,Z)2 ≤ T

n2
√

n

√
n3 × n−14 = T

n8 ≤ T
n6

√
n
.

Combining all together we obtain that dist (〈c, u〉 ,Z) ≤ 3T
n6

√
n

We are ready to present the protocol which form verifiable encryption schema
for the equivalence relation when the claimed plaintext is ‘0’.

Protocol0 : proving that a ciphertext decrypts to ‘0’.
Let P0 and V0 denote the prover and the verifier. Let the common input to P0
and V0 be a pair (PK, c) where PK = {w1, . . . ,wn, v1, . . . , vm, k} is a public
key of AD and c is a vector from P (w1, . . . ,wn). The prover’s auxiliary input is
b1, . . . , bm ∈ {0, 1} such that c =

∑m
i=1 bivi mod P (w1, . . . ,wn).

– Prover P0 Calculates integers a1, . . . , an such that c=
∑m

i=1 bivi+
∑n

i=1 aiwi.
Invokes the [21] prover (with auxiliary input BPK(a1, . . . , an, b1, . . . , bm)t)
to prove that input F(PK, c) is a YES instance of GapCVPγ .

– Verifier V0 Invoke the [21] verifier to verify that input F(PK, c) is a YES
instance of GapCVPγ .

Claim 34. Protocol (P0,V0) satisfy the following completeness, soundness, and
zero-knowledge properties:

– Completeness: If (SK,PK) ∈ K′(1n) and c ∈ E ′
PK(0), then P rob((P0,V0)

(PK, c) = accepts) = 1.
– Soundness If (PK,SK) is an instance of AD and c ∈ P (w1, . . . ,wn)

such that DSK(c) = ‘1′, then for all prover P ′
0, P rob((P ′

0,V0)(PK, c) =
rejects) > 1

2 .
– Zero-Knowledge : statistical zero-knowledge.

Proof. The soundness condition relies on the part (2) of the theorem 32 and
the soundness condition of the proof system from [21]. The completeness condi-
tion follows from the part (1) of the theorem 32 and completeness condition of
the proof system from [21]. The lattice LPK is an (n + m)-dimensional lattice,
hence, the approximation factor γ =

√
n+m

log(n+m) is as required for statistical

zero-knowledge property of the proof system from [21].

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 543

3.3 Connection Between AD ‘1’ Ciphertexts and the GapCVPγ

Problem

In this subsection we construct a zero-knowledge protocol for proving that a ci-
phertext of AD decrypts to ‘1’. We use the nice observation that for a random ci-
phertext of AD of ‘1’ the distribution of vector (c− vk

2) mod P (w1, . . . ,wn) is the
same as distribution of a random ciphertext of ‘0’. Thus, to prove that a cipher-
text c decrypts to ‘1’, we will prove that (c− vk

2) mod P (w1, . . . ,wn) decrypts
to ‘0’, by running protocol0 on inputs PK and (c− vk

2) mod P (w1, . . . ,wn).
To prove soundness however, we must be careful, as we notice that for a

c which decrypts to ‘0’, (c − vk

2) mod P (w1, . . . ,wn) is not distributed as a
random ciphertext of ‘1’, however as shown by the the following theorem it is
quite close to it.

Theorem 35. For any (SK,PK) instance of AD, for any vector c ∈ P (w1, . . . ,
wn) such that DSK(c) = ‘0′, for sufficiently large n, the dist (〈y, u〉 ,Z) > 1

4 −
2

n2

for y = (c− vk

2) mod P (w1, . . . ,wn)

Proof. Let c ∈ P (w1, . . . ,wn) decrypts to ‘0’.
There is a representation (c− vk

2) mod P (w1, . . . ,wn) = c− vk

2 +
∑n

i=1 aiwi.

dist

(〈
c− vk

2
+

n∑
i=1

aiwi, u

〉
,Z

)
≥ dist

(〈vk

2
, u
〉
,Z
)
−

dist (〈c, u〉 ,Z)− dist

(〈
n∑

i=1

aiwi, u

〉
,Z

)
(3.6)

Let us bound the terms of (3.6).

dist

(〈
n∑

i=1

aiwi, u

〉
,Z

)
≤

n∑
i=1

|ai|dist (〈wi, u〉 ,Z) ≤ 1
n7

n∑
i=1

|ai|. (3.7)

Note, that ai = !θi" for θi defined as c− vk

2 =
∑n

i=1 θiwi. Since the width of
the parallelepiped P (w1, . . . ,wn) is greater than ρn

n2 , (3.7) can be bounded by

1
n7

n∑
i=1

|ai| ≤
1
n7

n∑
i=1

|θi| ≤
1

n5ρn

n∑
i=1

∣∣∣〈c− vk

2
,w⊥

i

〉∣∣∣ ≤ 1
n4ρn

∥∥∥c− vk

2

∥∥∥ ≤ 1
n2 .

dist (〈c, u〉 ,Z) ≤ 1
4 and dist

(〈
vk

2 , u
〉
,Z
)
≥ 1

2 −
1

n7 . Collecting all together we
get that (3.6) is greater than 1

2 −
1

n7 − 1
4 −

1
n2 which is greater than 1

4 −
2

n2 for
sufficiently large n.

The following theorem forms the theoretical basis for the protocol for proving
that a ciphertext decrypts to ‘1’

544 S. Goldwasser and D. Kharchenko

Theorem 36. For sufficiently large n,

– If (SK,PK) ∈ K′(1n) and c ∈ E ′
PK(1), then F(PK, y) is a YES instance

of the GapCVPγ for y = (c− vk

2) mod P (w1, . . . ,wn) .
– If (PK,SK) is an instance of AD cryptosystem and c ∈ P (w1, . . . ,wn) such

that DSK(c) = ‘0′, then F(PK, y) is a NO instance of the GapCVPγ for
y = (c− vk

2) mod P (w1, . . . ,wn) .

(1) The statement directly follows from the definition of an (ε, ε1) − good
ciphertext of ‘1’.

(2) Let c ∈ P (w1, . . . ,wn) be any vector which decrypts to ‘0’. Define y =
(c− vk

2) mod P (w1, . . . ,wn). From (2.3) it follows that

3tγ
n6
√
n

= 3

√
1 + 1

2εε1

√
n + n3

n2
√
n
√

log(n + n3)
<

3
√

1 + 1
2εε1

√
2

n
√

log(n + n3)
≤ 1

4
− 2

n2 <

[By the theorem 35]< dist (〈y, u〉 ,Z) .

Thus, by the theorem 33 dist
((

n6√ny
0

)
, LPK

)
≤ tγ can not hold, and(

LPK , t,

(
n6√ny

0

))
is a NO instance of the GapCVPγ .

We are ready to present the protocol for proving that a ciphertext decrypts
to ‘1’.

Protocol1 : proving that a ciphertext decrypts to ‘1’.
Let P1 and V1 denote the prover and the verifier. Let the common input to P1
and V1 be a pair (PK, c) where PK = {w1, . . . ,wn, v1, . . . , vm, k} is a public
key of AD and c is a vector from P (w1, . . . ,wn). Let P1 auxiliary input be
b1, . . . , bm ∈ {0, 1} such that c = (vk

2 +
∑m

i=1 bivi) mod P (w1, . . . ,wn).

– Prover P1: Calculate y = (c − vk

2) mod P (w1, . . . ,wn). Calculate integers
a1, . . . , an such that y =

∑m
i=1 bivi +

∑n
i=1 aiwi. Invoke the [21] prover (with

auxiliary input BPK(a1, . . . , an, b1, . . . , bn)) to prove that input F(PK, y) is
a YES instance of GapCVPγ .

– Verifier V1: Calculate y = (c − vk

2) mod P (w1, . . . ,wn). Invoke the [21]
verifier to verify that F(PK, y) is a YES instance of GapCVPγ .

It is evident that the soundness, completeness, and Zero-knowledge properties
of P rotocol1 are similar to the soundness and Zero-Knowledge properties of
P rotocol0.

4 Proof of AD Plaintext Knowledge

4.1 Definition of Proofs of Knowledge

We use the definition of a proof of knowledge from [18]

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 545

Definition 41. Let Q(·) be a polynomial, x the common input for the prover
P and verifier V , and r a uniformly selected random tape of prver P . Run the
protocol between P and V , Q(|x|) times, each time runniing prover P on the
same random tape r and the verifier V on a newly selected uniformly chosen
random tape. Let (P,V, x,Q) denote the sequence of the verifier’s views obtaind
from the above execution. We call the distribution over such sequences a valid
(P,V, x,Q) - distribution.

Definition 42. Let η ∈ {0, 1}, an interactive protocol (P,V) with prover P and
a verifier V is a proof of knowledge system with knowledge error η for a relation
R if the following holds:

Completeness: For every common input x for which there exists y such that
(x, y) ∈ R the verifier V always accepts interacting with the prover P .
Validity with error η: There exists a polynomial time interacting oracle Tur-
ing machine Sample and a polynomial time algorithm Extract, a constant
c > 0 and a polynomial Q(·) such that for every x ∈ {0, 1}∗ such that
R(x) �= ∅ and for every prover P ′ the following holds:
– SampleP ′

(x) outputs a valid (P ′,V, x,Q)- distribution of verifier’s view.
– Extract(SampleP ′

(x)) ∈ R(x) ∪ {”fail”}
– P r[Extract(SampleP ′

(x)) ∈ R(x)] ≥ (p − η)c, where p > η is a proba-
bility that V accepts while interacting with P ′ on common input x.

We call the pair (Sample, Extract) a knowledge extractor.

4.2 The Plaintext Knowledge Relation for AD Cryptosystem

Throughout the rest of section 4 we assume that n denotes the security param-
eter, and m, LPK , and γ, are as defined in section 3 whereas t = 4

√
1 + 1

2εε1
n4.

Define relation RAD corresponding to knowing a plaintext of an AD ciphertext
as follows.

Definition 43. Let PK = {w1, . . . ,wn, v1, . . . , vm, k} be a public key of AD, c
and c′ vectors from P (w1, . . . ,wn), b′ and b′′ ∈ {0, 1}, r′ ∈ {0, 1}m, and p be a
point from LPK . We say that input (PK, c) and witness (c′, b′, r′, b′′, p) are in
RAD if:

– c′ = EPK(b′; r′)

– dist
((

n6√n((c′ + c− b′′ vk

2) mod P (w1, . . . ,wn))
0

)
, p

)
≤ γt (i.e. (c + c′)

mod P (w1, . . . ,wn)) decrypts to b′′)

Intuitively, proving knowledge of a witness for (PK, c), implies knowledge of
plaintext of c under PK. This is formally captured by the following theorem.

Theorem 44. Let (PK,SK) be an instance of the AD cryptosystem. If ((PK, c),
w) ∈ RAD for w = (c′, b′, r′, b′′, p), then b′ ⊕ b′′ = DSK(c).

546 S. Goldwasser and D. Kharchenko

Proof. Let PK = {w1, . . . ,wn, v1, . . . , vm, k}.
Consider the case when b′′ = 0. In this case

dist
((

n6√n((c′ + c) mod P (w1, . . . ,wn))
0

)
, p

)
≤ γt,

By theorem 33, dist (〈(c + c′) mod P (w1, . . . ,wn), SK〉 ,Z) ≤ 3T
n6

√
n

=

12

√
1+ 1

2εε1

√
n+n3

n2
√

n
√

log(n+n3)
≤

√
n+n3

8n
√

2
√

n
≤ 1

8 .

Suppose b′ = 0. Since c′ is a legal ciphertext, dist (〈c′, SK〉 ,Z) ≤ 1
n which

implies that dist (〈c, SK〉 ,Z) < 1
4 and DSK(c) = ‘0′.

Suppose b′ = 1. Since c′ is a legal ciphertext, dist (〈c′, SK〉 ,Z) ≥ 1
2−

1
n which

implies that dist (〈c, SK〉 ,Z) > 1
4 and DSK(c) = ‘1′.

A similar case analysis follows when b′′ = 1.

Note, that one can easily check whether a pair (PK, c) and a particular
witness are in the relation RAD. Since AD is semantically secure, for a public
key PK of AD generated in random according to the key generating algorithm
and a random ciphertext c of a uniformly chosen bit encrypted under the public
key PK it is impossible to construct a witness for (PK, c) with non-negligible
probability.

4.3 Protocol for Proof of Plaintext Knowledge for AD

Let us first provide a sketch of the protocol. For public key PK = {w1, . . . ,wn, v1,
. . . , vm, k} and ciphertext c, we distill the following nice homomorphic properties
of AD:

– If c is an encryption of the bit b, then c+ vk

2 mod P (w1 . . .wn) is decrypted
to b̄

– If c, c′ are encryptions of b, b′ (respectively) then c + c′ mod P (w1 . . .wn) is
decrypted to b⊕ b′.

Using these properties, it is simple to design a proof of knowledge of bit b
encrypted by ciphertext c: the prover sends a random encryption c′ of a random
bit b′, and the verifier asks the prover to show either that it knows the decryption
of c′ or that it knows a decryption of c + c′. The former can be done simply
revealing the randomness used to encrypt c′ and the latter can be done by
proving in zero-knowledge that c + c′ decrypts to b ⊕ b′. This is achieved by
utilizing a variant of the protocols of section 3.2 to show that (c+c′) decrypts to
zero (in case of b⊕b′ = 0) or that (c+c′)+ vk

2 decrypts to zero (when b⊕b′ = ‘1′).

Protocol PPK
Let PPPK and VPPK denote the prover and the verifier respectively. The
common input to PPPK and VPPK is (PK, c) where
PK = {w1, . . . ,wn, v1, . . . , vm, k} is an AD public-key and c is a vector from
P (w1, . . . ,wn). The prover’s auxiliary input is plaintext b and randomness r
such that c = E ′

PK(b; r) .

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 547

– Step (P1): PPPK selects b′ ∈R {0, 1}, computes c′ ∈R E ′
PK(b′) and sends

c′ to VPPK .
– Step (V1): VPPK sends a random challenge bit δ ∈R {0, 1} to PPPK .
– Step (P2):
• If δ = 0, PPPK sends pair (b′, r′) where c′ = E ′

PK(b′; r′) to VPPK .
• If δ = 1, PPPK computes b′′ = b⊕ b′; sends b′′ to verifier; lets c = (c+c′)

mod P (w1, . . . ,wn)) and runs the prover of P rotocol′b′′ on input (PK, c)
– Step (V2):
• If δ = 0, then (c′, r′) has been received in step (P2). VPPK rejects if

c′ �= E(b′; r′), else it accepts.
• If δ = 1, let b′′ be bit received in step P2. VPPK set c = (c + c′)

mod P (w1, . . . ,wn)); run the verifier of Protocol’b′′ on input (PK, c).

The flow of message communication is presented in picture 1.
Protocol PPK (in steps P2,V2) makes calls to two zero-knowledge protocols

P rotocol′0 and P rotocol′1 which enable the prover to prove that a given sum of
two ciphertexts of AD decrypt to ‘0’ (or ‘1’ respectively). These protocols are
identical in structure to the protocols of section 3.2 and 3.3, except for a slight
difference in the YES instances of GapCVPγ constructed.

Define 2 mapping G(PK, c) = (LPK , t, xc) where t = 4
√

1 + 1
2εε1

n4 and xc,
LPK are as in section 3.1

P rotocol′0 on input (PK, c) is the statistical ZK protocol of [21] proving that
input G(PK, c) is a YES instance of GapCVPγ .

P rotocol′1 on input (PK, c) is the statistical ZK protocol of [21] proving that
input G(PK, (c− vk

2) mod P (w1, . . . ,wn)) is a YES instance of GapCVPγ .
The following properties of these protocols are needed for larger protocol

PPK. Note the similarity with theorem 32 and 36.

Claim 45. For sufficiently large n,

1. If (SK,PK) ∈ K′(1n), c = (c1+c2) mod P (w1, . . . ,wn) such that DSK(c) =
‘0′ and c1, c2 ∈ E ′

PK(·), G(PK, c) is a YES instance of GapCVPγ .
2. Let (SK,PK) be an instance of AD and c ∈ P (w1, . . . ,wn). If

dist (〈c, SK〉 ,Z) > 1
8 , then G(PK, c) is a NO instance of GapCVPγ .

Proof. We defer the proof to the end of the section.

Claim 46. For sufficiently large n, the following holds:

1. For any (SK,PK) ∈ K′(1n), for any c = (c1 + c2) mod P (w1, . . . ,wn) such
that DSK(c) = ‘1′ and where c1, c2 ∈ E ′

PK(·), G(PK, y) is a YES instance
of the GapCVPγ where y = (c− vk

2) mod P (w1, . . . ,wn).
2. For any instance (SK,PK) of AD, and for any c = P (w1, . . . ,wn) such

that dist (〈c, SK〉 ,Z) < 3
8 , G(PK, y) is a NO instance of GapCVPγ for

y = (c− vk

2) mod P (w1, . . . ,wn).

548 S. Goldwasser and D. Kharchenko

The proof is similar to the proof of theorem 45 and is omitted.
We are now ready to prove that protocol PPK forms a proof of knowledge

system with error 3
4 for binary relation RAD which is zero-knowledge.

Theorem 47 (Completeness and Soundness of PPK). Interactive protocol
(PPPK ,VPPK) is a proof of knowledge system with knowledge error 3

4 for RAD.

Proof. First lets argue completeness. Namely, if PK is an ε-good ciphertext and
c is an ε, ε1-good ciphertext under PK then the VPPK always accepts interacting
with the PPPK .

The completeness property becomes evident, due to the simple fact about
ciphertexts of AD: for two legal ciphertexts c1 and c2 of AD with plaintexts b1
and b2 the vector (c1 + c2) mod P (w1, . . . ,wn) decrypts to b1 ⊕ b2.

Second, lets argue validity with knowledge error 3
4 . We will present a knowl-

edge extractor consisting of two algorithms Sample and Extract which satisfy
the conditions of the definition of a proof of knowledge.

Let PK = {w1, . . . ,wn, v1, . . . , vm, k} be a public key of AD and c ∈ P (w1,
. . . ,wn). Let P ′ be an arbitrary prover making the VPPK accept with probability
3
4 + σ, for σ > 0 on common input (PK, c).

The algorithm Sample: The algorithm Sample is an interactive Turing ma-
chine with oracle access to P ′. The input of Sample is (PK, c). The algorithm

2 The only difference between G and F of section 3 is in the value of t used

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 549

outputs three strings distributed as verifier’s views at the end of the protocol
between P ′ and VPPK run on common input (PK, c) (i.e Sample outputs a
valid (P ′,VPPK , (PK, c), 3)-distribution of verifier’s view). Sample chooses
a random string r which will serve as a random tape for P ′. Smaple outputs
three verifiers views V1, V2, V3 independently according to the following pro-
cedure: Set the random tape of P ′ to r. Generate a random bit δ which will
be used for verifier’s challenge. If δ = 1 the prover and the verifier should be
involved in one of the subprotocols (P rotocol′0 or P rotocol′1). Each subproto-
col is a three-move interactive proof system with one-bit verifier’s challenge.
Generate a random bit δ1 for the second verifier’s challenge. Simulate the
protocol between P ′ an the VPPK on common input (PK, c) interacting with
P ′ as a verifier and sending challenge bits δ and δ1 (if needed). Output the
verifiers view which consists of common input (PK, c), simulated transcript
of the protocol and random bits δ and δ1 (if needed).

The algorithm Extract: Input of the algorithm Extract consists of three
verifier’s views V1, V2, V3 generated by Sample. Let transcripts of the protocol
involved in the views be denoted as T1, T2 and T3. If one of the transcript is
not accepting, Extract outputs ”fail” and halts. Since the probability that
P ′ makes VPPK accept is 3

4 +σ, Extarct continues with probability at least
σ. The algorithm checks the following conditions:

Verifier’s view V1 involves δ = 0.
Verifier’s view V2 involves δ = 1 and δ1 = 0.
Verifier’s view V3 involves δ = 1 and δ1 = 1.

If at least one of the conditions does not hold then Extract outputs ”fail”
and halts. If the algorithm continues, what happens with probability 1

32 , T1,
T2 and T3 has the following form:

T1 = (c′, 0, b′, r′)
T2 = (c′, 1, b′′,T ′

1)
T3 = (c′, 1, b′′,T ′

2)
Where T ′

1 and T ′
2 are transcripts of P rotocol′0 and P rotocol′1 respectively.

Note, that the subprotocols are based on the proof system of Micciancio and
Vadhan and actually are aimed to prove that(

LPK , t,

(
n6√n((c′ + c− b′′ vk

2) mod P (w1, . . . ,wn))
0

))
is not a NO instance of the GapCVPγ problem for LPK , γ and t as defined
in this section. Assume T ′

1 and T ′
2 are accepting transcripts with the same

prover’s random tape and different verifier’s challenges. Then, when b′′ = 0
it is possible to obtain from T ′

1 and T ′
2 a point p in LPK such that

dist
((

n6√n((c′ + c) mod P (w1, . . . ,wn))
0

)
, p

)
≤ γt.

When b′′ = 1 it is possible to obtain a point p such that

dist
((

n6√n((c′ + c− vk

2) mod P (w1, . . . ,wn))
0

)
, p

)
≤ γt.

550 S. Goldwasser and D. Kharchenko

Since T1 is an accepting transcript, ciphertext c′ and b′,r′ satisfy c′ =
E ′

PK(b′; r′). Extract outputs the witness (c′, b′, b′
1, . . . , b

′
m, b′′, p). The al-

gorithm succeeds with probability at least 1
32σ.

We prove that the PPK protocol is computational zero-knowledge under the
same intractability assumption of the AD cryptosystem.

Assumption ISVP:

(Infeasibility of Shortest Vector Problem): There is no polynomial time algo-
rithm, which given an arbitrary basis for an n-dimensional lattice, having a
”unique poly(n)-shortest” vector, finds the shortest non-zero vector in the lat-
tice. By having a ”unique poly(n)-shortest” vector we mean that any vector of
length at most ”poly(n)” times bigger than the shortest vector is parallel to the
shortest vector.

Theorem 48 (Zero-Knowledge of PPK). The protocol PPK is computa-
tional zero knowledge under the assumption ISVP.

Proof. For every verifier V ′ we construct an expected polynomial time simulator
S such that on input (PK, c) where PK an ε-good public key of AD and c is
an (ε, ε1)-good ciphertext encrypted under PK the output of the simulator is
computationally indistinguishable from a transcript of the protocol between the
PPPK and the verifier V ′ on common input (PK, c).

The simulator S proceeds as follows:
Simulate prover’s first step: Chose Δ uniformly from {0, 1}. If Δ = 0 uni-
formly select a random bit b′ and generate a random (ε, ε1)-good ciphertext
c′ of b′ under PK using uniformly generated random string r′ ∈ {0, 1}m.
If Δ = 1 uniformly select a bit b′′ and generate a random (ε, ε1)-good ci-
phertext c of b′′, set c′ = (c−c) mod P (w1, . . . ,wn). Pass c′ to the verifier V ′.

Simulate verifiers’s first step: Receive a challenge bit δ from V ′.
Simulate prover’s second step and output the transcript of the protocol:

If δ �= Δ go to the step ”Simulate prover’s first step”.
Let us show that the simulator repeats the step ”Simulate prover’s
first step” only an expected polynomial number of times. Let U be
the uniform distribution in P (w1, . . . ,wn). We assume that ISVP holds,
hence according to the security property of AD if Δ = 0 then c′ is
computationally indistinguishable from U ; if Δ = 1 then c′ = (c −
c) mod P (w1, . . . ,wn) is also indistinguishable from U . c′ generated for
Δ = 0 is computationally indistinguishable from c′ generated for Δ = 1.
δ equal to Δ with probability less than 1

2 + v(n) for some negligible
function v(n), otherwise verifier can distinguish between c′ generated
for Δ = 0 and c′ generated for Δ = 1. Thus the expected number of
repetitions of the step ”Simulate prover’s first step” is polynomial.

– If δ = 0 send bits b′ and r′ to V ′ and receive a verifier’s verdict v
on acceptance or rejectance. Output the transcript (c′, δ, b′, r′, v). Since

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 551

c′ is indeed an (ε, ε1)-good ciphertext of b′ with random bits r′, the
simulator perfectly simulates a real transcript between PPPK -prover and
the verifier V ′.

– Consider the case when δ = 1. Note, that c = (c+c′) mod P (w1, . . . ,wn),
hence, according to zero-knowledge property of P rotocol′0 and P rotocol′1,
there exist simulators S1 and S2 with the following properties: if b′′ = 0
then an output of S1 on input (PK, c) is computationally indistinguish-
able from the real transcript of P rotocol′0 run between the PPPK and the
verifier V ′. If b′′ = 1 then output of S2 on input (PK, c) is indistinguish-
able from the real transcript of P rotocol′1. If b′′ = 0 set T = S1(PK, c)
otherwise set T = S2(PK, c). Output the transcript (c′, δ, b′′,T). Since
the ISVP assumption holds, according to the security property of AD the
distribution of c is computationally indistinguishable from U , hence the
distribution of c′ = (c− c) mod P (w1, . . . ,wn) is also indistinguishable
from U which is indistinguishable from the distribution of c′ generated
by the PPPK . Therefore, the generated transcript is computationally in-
distinguishable from a real transcript of the protocol between the PPPK

and V ′.

missing proof of claim 46.
(1) The vector c can decrypts to ‘0’ in two cases: when both c1 and c2 are

ciphertexts of ‘0’ and when both c1 and c2 are ciphertexts of ‘1’.

– Let c1 and c2 be (ε, ε1)-good ciphertexts of ‘0’. For c1 and c2 equation (2.2)
holds. Thus for c = (c1 + c2) mod P (w1, . . . ,w2) by lemma 49 below

dist
((

n6√nc
0

)
, LPK

)
≤ 2

√
1 +

1
2εε1

n4 +
√
n

which is less then t for sufficiently large n. By the definition of a YES instance
of the GapCVPγ the statement of part (1) holds.

– Let c1 and c2 be (ε, ε1)-good ciphertexts of ‘1’. By the definition of an (ε, ε1)-
good ciphertext of ‘1’ the vectors c1 = (c1 − vk

2) mod P (w1, . . . ,wn) and
c2 = (c2 − vk

2) mod are (ε, ε1)-good ciphertexts of ‘0’, thus for c = (c1 +
c2) mod P (w1, . . . ,wn) the following statement holds:

dist
((

n6√nc
0

)
, LPK

)
≤ 2

√
1 +

1
2εε1

n4 +
√
n

The vector c = (c + vk) mod P (w1, . . . ,wn) thus by lemma 410 below for
sufficiently large n the following statement holds:

dist
((

n6√nc
0

)
, LPK

)
≤ 2

√
1 +

1
2εε1

n4 +
√
n + n4 (4.1)

Expression (4.1) is less than t for sufficiently large n.

552 S. Goldwasser and D. Kharchenko

(2) Let c ∈ P (w1, . . . ,wn) be any vector which decrypts to ‘1’. Let T = tγ.

From (2.4) it follows that 3T
n6

√
n

= 12

√
1+ 1

2εε1

√
n+n3

n2
√

n
√

log(n+n3)
≤ 12

√
2

√
1+ 1

2εε1

n
√

log(n+n3)
≤

1
4 −

2
n2 < dist (〈c, u〉 ,Z) .

Hence, by theorem 33 dist
((

n6√nc
0

)
, LPK

)
≤ T can not hold. Thus(

LPK , t,

(
n6√nc

0

))
is a NO instance of the GapCVPγ .

The following lemmas complete the proof.

Lemma 49. Let PK = {w1, . . . ,wn, v1, . . . , vm, k} be a public key of AD, p1
and p2 be points from LPK . If for c1, c2 ∈ P (w1, . . . ,wn)

dist
((

n6√nc1
0

)
, p1

)
= D1 and dist

((
n6√nc2

0

)
, p2

)
= D2 then

dist
((

n6√n((c1 + c2) mod P (w1, . . . ,wn))
0

)
, LPK

)
≤ D1 + D2 +

√
n.

Proof. We can represent n6√n((c1 + c2) mod P (w1, . . . ,wn)) = n6√n(c1 + c2 +∑n
i=1 aiwi). Since both vectors c1 and c2 belong to P (w1, . . . ,wn) we can bound

|ai| ≤ 1 for all i. Consider a vector p3 = BPK(a1, . . . , an, 0, . . . , 0)t where BPK

is the matrix defined in (3.2).

dist
((

n6√n
∑n

i=1 aiwi

0

)
, p3

)
=

√√√√ n∑
i=1

a2
i ≤
√
n.

The lemma follows.

Lemma 410. Let PK = {w1, . . . ,wn, v1, . . . , vm, k} be a public key of AD, and

p be a point from LPK . If for c ∈ P (w1, . . . ,wn) dist
((

n6√nc
0

)
, p

)
= D then

for sufficiently large n

dist
((

n6√n((c + vk) mod P (w1, . . . ,wn))
0

)
, LPK

)
≤ D + n4.

Proof. We can represent n6√n((c + vk) mod P (w1, . . . ,wn)) = n6√n(c + vk +∑n
i=1 aiwi). Consider a point p′ from LPK such that p′ = BPK(a1, . . . , an,

0, . . . , 0, 1, 0, . . . , 0)t (with ‘1’ at the (n + k)-th position). It is easy to see that

dist
((

n6√n(vk +
∑n

i=1 aiwi)
0

)
, p′

)
≤

√√√√n5 +
n∑

i=1

a2
i . (4.2)

Let us bound
∑n

i=1 a
2
i . Note, that ai = !θi" for θi defined as c + vk =∑n

i=1 θiwi. Since the width of the parallelepiped P (w1, . . . ,wn) is greater than
ρn

n2 , we can bound
∑n

i=1 a
2
i as follows:

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 553

n∑
i=1

a2
i ≤

n∑
i=1

θ2
i ≤

n4

ρ2
n

n∑
i=1

〈
c + vk,w

⊥
i

〉2 ≤ n5

ρ2
n

‖c + vk‖2 ≤
n5

ρ2
n

(‖c‖+‖vk‖)2 ≤ 4n7

Expression (4.2) is less than n4 for sufficiently large n. The lemma follows.

5 Open Problems

There are a great deal of open problems. We highlight a few here.

Verifiable Decryption for AD Cryptosystem. The AD cryptosystem is
a probabilistic scheme for which in the process of decryption, the legal decryp-
tor who knows the private key computes the plaintext without being able to
recover the randomness used by the encryptor. This latter task, requires the
ability to solve subset sum problem instances. A similar situation holds with
respect to the El-Gamal and Cramer-Shoup cryptosystems [10, 6] in which a le-
gal decryptor who knows the private key can decrypt, and yet cannot recover
the randomness used by an encryptor, as that would require solving discrete log
problem instances.

Such cryptosystems raise an interesting challenge: can a legal decryptor, who
knows the private-key of the cryptosystem but does not know the randomness
used in the computation of a given ciphertext, prove to a third party that a
given ciphertext corresponds to a cleartext without revealing his private key?3

A cryptosystem for which this can be done was named a verifiable decryption
scheme by Camenisch and Shoup in [5]. The the challenge is to do this efficiently
for the AD cryptosystem. In principle it is achievable based on the existence of
one-way functions (which is implied in the context of encryption in any case)
using general computational zero-knowledge proofs for NP statements [17].

Non Malleable Proofs of Plaintext Knowledge for the AD Cryp-
tosystem. Katz[20] shows efficient non-malleable PPKs for the Blum-Goldwasser
RSA and Rabin based encryption, Paillier and El-Gamal, and gets as an applica-
tion CCA2 secure efficient interactive encryption schems. A promising open prob-
lem (although far from obvious) is to design an efficient non-malleable PPK for
the AD cryptosysetm, and thus obtain a CCA2 secure efficient interactive encryp-
tion variant of the AD cryptosystem. One obstacle in tackling this problem is that
Katz’s protocol utilizes one-time signatures (which although exist in principle un-
der ISVP) for which there are no efficient constructions under ISVP.

Regev Crytosystem. In this paper we addressed the AD cryptoststem. Design
a PPK for the Regev cryptosystem, and address the above open problems for
the Regev cryptosystem.

Acknowledgment. This work was supported in part by NSF Cybertrust 043045,
a Minerva project grant 8495 and grant from Potters Wheel Foundation.
3 In other words, is there a verifiable encryption scheme for the equivalence relation

by a prover who does not know the randomness used to encrypt.

554 S. Goldwasser and D. Kharchenko

References

1. M. Ajtai and C. Dwork. A Public-Key Cryptosystem with Worst-Case/Average-
Case Equivalence. ECCC, TR96-065, Dec. 1996.

2. N. Asokan, V. Shoup, M. Waidner. Optimistic Fair Exchange of Digital Signatures
(Extended Abstract). EUROCRYPT 1998: 591-606

3. M. Bellare and M. Yung, Certifying Permutations: Noninteractive Zero-Knowledge
Based on Any Trapdoor Permutation J. Cryptology 9(3): 149-166 (1996)

4. J. Camenisch and I. Damgard Verifiable Encryption, Group Encryption, and Their
Applications to Separable Group Signatures and Signature Sharing Schemes. ASI-
ACRYPT 2000: 331-345

5. J. Camenisch and V. Shoup. Practical Verifiable Encryption and
Decryption of Discrete Logarithms. CRYPTO 2003: 126-144

6. R. Cramer, V. Shoup. A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. (1998)

7. R. Cramer, V. Shoup. Universal Hash Proofs and a paradigm for adaptive chosen
ciphertext secure public key encryption. Eurocrypt 2002.

8. D. Dolev, C. Dwork, M. Naor: Nonmalleable Cryptography. SIAM J. Comput.
30(2): 391-437 (2000)

9. W. Diffie, M. E. Hellman. New Directions in Cryptography . IEEE Transactions
on Information Theory 1976.

10. T. ElGamal. A Public Key cryptosystem and a signature scheme based on discrete
logarithm. Proceedings of Crypto 84.

11. U. Feige, D. Lapidot, A. Shamir: Multiple NonInteractive Zero Knowledge Proofs
Under General Assumptions. SIAM J. Comput. 29(1): 1-28 (1999)

12. U. Feige, A. Fiat, A. Shamir: Zero Knowledge Proofs of Identity. Journal of
Cryptology1(2):77-94 (1988).

13. Zvi Galil, Stuart Haber, Moti Yung. Symmetric Public-Key Encryption. CRYPTO
1985: 128-137

14. O. Goldreich, S. Goldwasser. On the Limits of Nonapproximability of Lattice Prob-
lems. JCSS 60(3): 540-563 (2000)

15. O. Goldreich, S. Goldwasser, and S. Halevi. Eliminating decryption errors in the
Ajtai-Dwork cryptosystem. In: Advances of Cryptology, Proc of Crypto’97 Lecture
Notes in Computer Science, 1997.

16. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001

17. O. Goldreich, S. Micali, and A. Wigderon. Proofs that Yield Nothing but their
Validity or NP in Zero Knowledge. JACM 91.

18. S. Halevi and S. Micali. More on Proofs of Knowledge. LCS Document Number:
MIT-LCS-TM-578

19. Chris Hall, Ian Goldberg, Bruce Schneier, Reaction Attacks Against Several Public-
Key Cryptosystems. Proceedings of Information and Communication Security,
ICICS’99

20. Jonathan Katz. Efficient and Non-Malleable Proofs of Plaintext Knowledge and
Applications. Eurocrypt 2003 .

21. D. Micciancio and S. Vadhan. Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. Advances in Cryptology - Crypto 2003. Santa
Barbara, CA, USA, August 2003. LNCS 2729, Springer.

Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem 555

22. M. Naor , M. Yung, Public-key cryptosystems provably secure against chosen ci-
phertext attacks, Proceedings of the twenty-second annual ACM symposium on
Theory of computing, p.427-437, May 13-17, 1990, Baltimore, Maryland, United
States

23. P. Nguyen and J. Stern. Cryptanalysis of the Ajtai-Dwork cryptosystem. In Ad-
vances in Cryptology: Proceedings of Crypto ’98, volume 1462 of Lecture Notes in
Computer Science, pages 223–242. Springer-Verlag, 1998.

24. O. Regev, New Lattice Based Cryptographic Constructions, STOC 2003.
25. R. L. Rivest, A. Shamir, L. Adleman Public key cryptography , CACM 21, 120-126,

1978.
26. M. Stadler. Publicly Verifiable Secret Sharing. EUROCRYPT 1996: 190-199

Entropic Security and the Encryption of High
Entropy Messages�

Yevgeniy Dodis1 and Adam Smith2

1 New York University
dodis@cs.nyu.edu

2 Weizmann Institute of Science
adam.smith@weizmann.ac.il

Abstract. We study entropic security, an information-theoretic notion
of security introduced by Russell and Wang [24] in the context of en-
cryption and by Canetti et al. [5, 6] in the context of hash functions.
Informally, a probabilitic map Y = E(X) (e.g., an encryption sheme or
a hash function) is entropically secure if knowledge of Y does not help
predicting any predicate of X, whenever X has high min-entropy from
the adversary’s point of view. On one hand, we strengthen the formula-
tion of [5, 6, 24] and show that entropic security in fact implies that Y
does not help predicting any function of X (as opposed to a predicate),
bringing this notion closer to the conventioonal notion of semantic se-
curity [10]. On the other hand, we also show that entropic security is
equivalent to indistinguishability on pairs of input distributions of suffi-
ciently high entropy, which is in turn related to randomness extraction
from non-uniform distributions [21].

We then use the equivalence above, and the connection to randomness
extraction, to prove several new results on entropically-secure encryption.
First, we give two general frameworks for constructing entropically secure
encryption schemes: one based on expander graphs and the other on
XOR-universal hash functions. These schemes generalize the schemes of
Russell and Wang, yielding simpler constructions and proofs, as well as
improved parameters. To encrypt an n-bit message of min-entropy t while
allowing at most ε-advantage to the adversary, our best schemes use a
shared secret key of length k = n− t+2 log

(1
ε

)
. Second, we obtain lower

bounds on the key length k for entropic security and indistinguishability.
In particular, we show near tightness of our constructions: k > n− t. For
a large class of schemes — including all the schemes we study — the
bound can be strengthened to k ≥ n − t + log

(1
ε

) − O(1).

1 Introduction

If X and Y are random variables, the statement “Y leaks no information about
X” is normally formalized by requiring that X and Y be almost statistically

� A more complete version of this paper may be found on IACR Cryptology ePrint
Archive, report 2004/219, at http://eprint.iacr.org/2004/219/ [9].

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 556–577, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Entropic Security and the Encryption of High Entropy Messages 557

independent. Equivalently, one can require that the Shannon mutual information
I(X,Y) be very small. In this work we study situations where information leakage
is unavoidable — that is, I(X,Y) is large — yet we still want a guarantee that no
useful information about X is leaked by Y , even to a computationally unbounded
adversary.

Consider an alternative notion of security, inspired by semantic security of
encryptions [10]. We say Y hides all functions of X if for every function f , it
is nearly as hard to predict f(X) given Y as it is without Y , regardless of the
adversary’s computing power. If Y = E(X) for some probabilistic map E() (for
example, an encryption scheme), then we say the map E is entropically secure if
E(X) hides all functions of X whenever X has sufficiently high entropy.

A seemingly weaker variant of this definition has produced surprising results
in at least two contexts so far: Canetti, Micciancio and Reingold [5, 6] constructed
hash functions whose outputs leak no partial information about the input. Rus-
sell and Wang [24] showed how one can construct entropically-secure symmetric
encryption schemes with keys much shorter than the length of the input, thus
circumventing Shannon’s famous lower bound on key length.

Our contributions can be divided into two areas.

• We elucidate the notion of entropic security. Our results apply to all
entropically-secure primitives, including encryption schemes and hash func-
tions. We provide two new variants on entropic security, one closer in spirit
to semantic security of encryptions [10], and the other along the lines of in-
distinguishability of encryptions. The proofs that these various notions are
equivalent give us new tools for handling entropic security and highlight a
relationship with “randomness extraction” from non-uniform distributions.
• We use the connection to randomness extraction to obtain new constructions

and lower bounds for encryption of high-entropy messages with a short key.
First, we give two general frameworks for constructing entropically secure
encryption schemes: one based on expander graphs and the other on XOR-
universal hash functions. These schemes generalize the schemes of Russell
and Wang, yielding simpler constructions and proofs, as well as improved
parameters. Second, we obtain nearly tight lower bounds on the key length k
for entropic security and indistinguishability.

1.1 Background

Although our general results apply to all entropically-secure primitives, we
present entropic security (and our results) in the context of symmetric-key one-
time encryption. Alice and Bob share a secret key K and Alice wants to securely
send some message X to Bob over a public channel. X is assumed to come from
some a-priori distribution on {0, 1}n (e.g., uniform), and the goal is to compute
a ciphertext Y which: (a) allows Bob to extract X from Y using K; (b) reveals
“no information” about X to the adversary Eve beyond what she already knew.
Below, we write Y ← E(X,K) and X = D(Y,K).

558 Y. Dodis and A. Smith

Perfect and Computational Security. The first formalization of this problem
came in a fundamental work of Shannon [25], who defined “no information” by
requiring that X and Y be independent as random variables: using information
theoretic notation, I(X;Y) = 0, where I is the mutual information. He showed
a lower bound on key length for his definition: encrypting messages of length
n requires at least n bits of shared key (more formally, the Shannon entropy
of the key must be at least that of message distribution: Hsh(K) ≥ Hsh(X)).
This bound is tight when the message is chosen uniformly from all strings of a
fixed length n, since one can use a one-time pad. The bound was extended to
the interactive setting by Maurer [19].

Goldwasser and Micali [10] relaxed the notion of perfect security to the com-
putational setting: namely, any efficient Eve can extract only negligible “infor-
mation” about X from Y . They had to properly redefine the notion of “informa-
tion”, since mutual information or conditional probabilities do not make much
sense in a computationally-bounded world. They suggested two now classical
definitions. Consider the following, equivalent version of Shannon’s definition:
for any two messages x0 and x1, the two corresponding distributions on cipher-
texts should be identical, that is E(x0) = E(x1) (as distributions). The first
definition of Goldwasser and Micali, called computational indistinguishability of
encryptions, generalizes this version of perfect security: they require that no ef-
ficient (polynomial-time adversary) can distinguish the encryptions of x0 and x1
with advantage more than ε over random guessing, where ε is some negligible
quantity. Their second notion is called semantic security : for any distribution on
messages X and any function f(), the adversary can predict f(X) given E(X)
with probability only negligibly better than she could without seeing E(X). The
first definition is easier to work with, but the second definition seems to capture
a stronger, more intuitive notion of security: for example, indistinguishability
is the special case of semantic security when the message distribution X is re-
stricted to uniform distributions over two points {x0, x1}. In fact, Goldwasser
and Micali showed that the two definitions are equivalent. Thus, distributions
with entropy 1 are in some sense the hardest to deal with for semantic security.

Statistical Security? A natural intermediate notion of security between perfect
and computational security would be some kind of statistical security: Eve is
computationally unbounded, as in the perfect setting, but can potentially recover
some negligible amount of “information”, as in the computational setting. At
first glance, it seems like there is no gain in this notion, no matter how we
interpret “information”. For example, following Shannon’s approach we could
require that I(X;Y) ≤ ε instead of being 0. Unfortunately, Shannon’s proof still
implies that Hsh(K) ≥ Hsh(X)− ε. Similarly for indistinguishability: since the
distribution E(x) should look almost the same for any fixed x, one can argue
that I(Y ;X) = Hsh(E(X))− Expx [Hsh(E(x))] still has to be negligible, and so
the key must again have entropy almost Hsh(X).

In his original work Shannon envisioned applications where Eve has a lot of
uncertainty about the message. To get a pessimistic bound that Hsh(K) ≥ n,
one only has to take X to be uniformly distributed in {0, 1}n. In fact, in the

Entropic Security and the Encryption of High Entropy Messages 559

perfect setting, security against the uniform distribution implies security against
any distribution on messages. On the other hand, the notions of indistinguisha-
bility and semantic security primarily deal with entropy 1 distributions, and the
straightforward extension of Shannon’s bound to the statistical versions of these
notions crucially uses this fact. Thus, it is natural to ask if we can meaningfully
define (statistical) semantic security and/or indistinguishability for high entropy
distributions (say, uniform), similar in spirit to the original work of Shannon.
And if yes,
1. How do these notions relate to Shannon’s (statistical) notion, I(X;Y) ≤ ε?

Most importantly, does the pessimistic bound on the key length still extend
to these notions?

2. How do these notions relate to each other? Are semantic security and indis-
tinguishability still equivalent when the message is guaranteed to have high
entropy?

1.2 Entropic Security

Russell and Wang [24] introduced the idea of statistical security for encryption of
high-entropy message spaces. They considered the first question above, though
they focused on a weakened version of semantic security. Their definition, en-
tropic security of encryptions for predicates, is natural: for any distribution X of
min-entropy1 at least t and any predicate g : {0, 1}n → {0, 1}, Eve can predict
g(X) using Y only negligibly better than she could without Y (here n is the
message length and t is a parameter). Russell and Wang showed that Shannon’s
lower bound does not extend to this new notion: they presented two schemes
beating Shannon’s bound on key length, which we describe further below. En-
tropic security also arose earlier in work of Canetti [5] and Canetti, Micciancio
and Reingold [6]. They constructed probabilistic hash functions whose output
reveals no partial information about their input as long as it had sufficiently
high entropy.

We discuss a stronger version of the definition of [5, 6, 24], which requires
that the adversary gain no significant advantage at predicting any function of
the input (as opposed to a predicate). One of our results is the equivalence of
their notion of security to the one described here.

Definition 1 (Entropic Security). The probabilistic map Y hides all func-
tions of X with leakage ε if for every adversary A, there exists some adversary
A′ such that for all functions f ,∣∣Pr[A(Y (X)) = f(X)]− Pr[A′() = f(X)]

∣∣ ≤ ε.

The map Y () is called (t, ε)-entropically secure if Y () hides all functions of X,
whenever the min-entropy of X is at least t.

1 The min-entropy of a random variable A is a measure of the uncertainty of its
outcome. It is the negative logarithm of the probability that one can predict A
ahead of time: H∞(A) = − log(maxa Pr(A = a)).

560 Y. Dodis and A. Smith

One gets some insight about this definition by thinking of it as an information-
theoretic reformulation of semantic security of encryptions [10], although re-
stricted to high-entropy message spaces. Alternatively, it might be instructive
to view this definition as saying that Y leaks no a-priori information about X.
Here “a-priori” refers to the fact that the function f has to be specified before
the pair (X,Y) is sampled. In other words, although f is arbitrary, it cannot
depend on the outcome of Y . This should be contrasted with a-posteriori in-
formation, where first the pair (X,Y) is sampled, then the adversary is given
the outcome y of Y , and can choose a function fy which is supposedly easier
to predict when given y. In this latter case it is not very hard to see that Y
leaks almost no a-posteriori information about X if and only if X and Y are
essentially independent, i.e. the quantity I(X;Y) is “low”. Thus, the results of
[24, 5, 6] could be interpreted by saying that leakage of no a-priori information —
although for the moment restricted to predicates rather than general functions
— can be achieved in situations where it is impossible to leak no a-posteriori
information.

1.3 Contributions of This Paper

This paper carefully studies and eludicates the notion of entropic security, obtain-
ing several new insights into this notions, as well as simplifying and improving
previous results of [24, 5, 6].

A Strong Definition of Security. As we mentioned, the definition we propose
(Definition 1) is seemingly stronger than previously studied formulations of en-
tropic security [5, 6, 24], which only considered the adversary’s ability to predict
predicates instead of all possible functions of the secret input. This definition
may not be quite satisfying from several points of view. First, it states only that
no predicate of the input is leaked, and provides no explicit guarantees about
other functions. In contrast, the original semantic security definition of Gold-
wasser and Micali held for all functions. Second, there is no guarantee that the
new adversary A′() is polynomial time, even in the case where, say, A runs poly-
nomial time and X is samplable in polynomial time. We show that (a) entropic
security for predicates does imply that for arbitrary functions (see Lemma 2),
and (b) in the definition of entropic security one can always set A′() to be A(Un),
where Un is the uniform distribution on n bits.

The equivalence between predicates and functions is not trivial. Consider,
for example, the special case where f is the identity function. One might hope
that a good predictor for X must imply a good predictor for some bit Xi of X.
However, this is false. As a counterexample, assume X is equal to Un and Y is
equal to X with probability 1/2, and to the bit-wise complement of X otherwise.
Clearly, Y reveals X with probability at least 1/2 (which is much larger than
2−n), although no physical bit of X can be predicted with probability better
than its natural probability 1/2. Of course, in this case one can predict any
even parity of the bits of X with probability 1, but this shows that a more
sophisticated approach is needed. As we show in Proposition 1, for this function

Entropic Security and the Encryption of High Entropy Messages 561

we can choose a “Goldreich-Levin” predicate at random, that is we can use the
predicate gr(x) = r + x where r is a random n-bit string and + is the binary
inner product r+x =

∑
i rixi mod 2. For general functions, a more complicated

construction is required (Lemma 2). This general equivalence between predicting
predicates and predicting arbitrary functions could be of independent interest,
as it provides an information-theoretic converse to the Goldreich-Levin hardcore
bit construction.

An Equivalence to Indistinguishability. We also define a new indistinguishabil-
ity notion, analogous to indistinguishability of (computationally secure) encryp-
tions [10]. Namely, we say that the map Y () is t-indistinguishable, if for any
distributions X1 and X2 of min-entropy at least t, the distribution Y (X1) is
statistically close to Y (X2). A bit more formally, indistinguishability is stated
in terms of the statistical difference SD (A,B) between a pair of random vari-
ables A,B. This is half the L1 distance between the distributions, SD (A,B) =
1
2

∑
z |Pr[A = z]−Pr[B = z]|. It also has an operational meaning: given a sam-

ple from either A or B (at random), the optimal adversary’s chance of correctly
guessing which distribution the sample came from is exactly 1

2 + 1
2SD (A,B).

This distance measure satisfies the triangle inequality, and so all the distribu-
tions Y (X) must actually be close to a single distribution G = Y (Un), where Un

is the uniform distribution. We arrive at the following:

Definition 2. A randomized map Y () is (t, ε)-indistinguishable if there is a
random variable G such that for every distribution on messages X over {0, 1}n
with min-entropy at least t, we have

SD (Y (X), G) ≤ ε.

As we can see, the notion of entropic security seems to be well motivated,
but hard to work with. On the other hand, indistinguishability seems to be a
much easier definition to work with, but might be less intuitively meaningful.
Our main result is that the definitions are in fact equivalent:

Theorem 1. Let Y be a randomized map with inputs of length n. Then

1. (t, ε)-entropic security for predicates implies (t− 1, 4ε)-indistinguishability.

2. (t− 2, ε)-indistinguishability implies (t, ε/8)-entropic security for all func-
tions when t ≥ 2 log

(1
ε

)
+ 1.

In particular, since entropic security with respect to predicates is trivially
implied by entropic security for all functions, Theorem 1 states that all three
notions of security discussed above are equivalent up to small changes in the
parameters. Although this result is inspired by a similar looking result of Gold-
wasser and Micali [10] (for computational encryption), our proof is considerably
different and does not seem to follow from the techniques in [10].

The equivalence not only reconciles two natural definitions, but has several
nice implications. First, in Definition 1 we can always take A′() to be A(Y (Un)),

562 Y. Dodis and A. Smith

where Un is the uniform distribution on {0, 1}n. Thus, the “simulated” adversary
is as efficient as the original.

Second, the equivalence provides a new application of randomness extrac-
tors [21] to cryptography. Recall that an extractor takes as input an arbitrary,
high entropy random source and a tiny random seed, and outputs uniformly
random bits. The output bits are guaranteed to be almost uniformly distributed
as long as the min-entropy of the input is above some threshold t. In other
words, an extractor Y is precisely a t-indistinguishable map — in the sense of
Definition 2 — with G being the uniform distribution. Thus, Theorem 1 implies
that an extractor for t-sources hides all a-priori information about sources of
min-entropy at least t + 2. From the constructive point of view, it also suggests
that to design an appropriate entropically secure scheme for a given task, such as
encryption, it is sufficient to design a “special purpose” randomness extractor.
In the case of encryption the extractor should be invertible when given the seed,
since the seed corresponds to the shared secret key.

Finally, and most importantly, our equivalence simplifies the design and anal-
ysis of entropically secure schemes, yielding improvements over known schemes,
new lower bounds, simpler proofs, and a stronger security guarantee. We illus-
trate these points for the case of entropically secure encryption.

Encryption of High-Entropy Messages. As we mentioned, Russell and Wang [24]
provided two constructions of entropically-secure encryption schemes which use
short keys. Let ε denote the leakage — that is, the advantage which we allow
the adversary. First, [24] give a deterministic scheme of the form E(X,K) =
X ⊕ p(K), which is secure only when X is uniformly distributed on {0, 1}n,
where K has length only k = 2 logn + 3 log

(1
ε

)
+ O(1) and p(K) is a random

point in a δ-biased spaces [20] (where [24] used δ = ε3/2). Thus, p(K) could
be viewed as a very sparse one-time pad which nevertheless hides any a-priori
specified function f(X). Second, for general min-entropy t, Russell and Wang
gave a randomized scheme of the form (ψ,ψ(X) + K) ← E(X,K), where ψ is
chosen at random from a family of 3-wise independent permutations (and the
addition is defined over some appropriate space). The analysis in [24] shows that
this second scheme needs key length n−t+3 log

(1
ε

)
+O(1). While less than n for

nontrivial settings of t, this key length again becomes Ω(n) when n− t = Ω(n).
[24] left it open whether such dependence on n− t is necessary.
We obtain the following new results:

1. Lower bounds on the key length k for entropic security and indistinguisha-
bility. In particular, we show near tightness of Russell-Wang constructions:
k > n− t. (In fact, for a large class of schemes k ≥ n− t + log

(1
ε

)
.)

2. Two general frameworks for designing entropically secure encryption schemes:
one based on expander graphs and the other on XOR-universal hash func-
tions. These schemes generalize the schemes of Russell and Wang, yielding
simpler constructions and proofs, as well as improved parameters. Namely,
both constructions can yield keys of size k = n− t + 2 log

(1
ε

)
.

Entropic Security and the Encryption of High Entropy Messages 563

Our Techniques. All our results critically use the equivalence between entropic
security and indistinguishability.

On one hand, we use it to show that the general construction of Russell and
Wang is nearly optimal: any entropically secure scheme must have k > n − t.
In fact, for a special case of public-coin schemes, where the ciphertext con-
tains the randomness used for encryption, we get an even stronger bound:
k ≥ n− t + log

(1
ε

)
−O(1). The latter result is proven by relating the notion of

indistinguishability to that of randomness extractors [21]: namely, any indistin-
guishable public-coin scheme almost immediately yields a corresponding extrac-
tor. Using the optimal lower bounds on extractors [23], we get our stronger bound
as well. In fact, if the ciphertext is statistically close to uniform (i.e., G = Un

meaning that the encryption is actually a randomness extractor), we get a lower
bound which exactly matches our upper bounds: k ≥ n−t+2 log

(1
ε

)
−O(1). The

schemes in [24] and this work are all public-coin and have random ciphertexts.
On the other hand, the indistinguishability view allows us to give a general

framework for constructing entropically secure encryption schemes. Specifically,
assume we have a d-regular expander G on 2n vertices V with the property that
for any subset T of 2t vertices, picking a random vertex v of T and taking a
random neighbor w, we obtain an almost uniform distribution on V . Then, we
almost immediately get an encryption scheme with key length k = log d which
is indistinguishable for message spaces of min-entropy t. Looking at this from
another perspective, the above encryption scheme corresponds to a randomness
extractor which takes a source X of length n and min-entropy t, invests log d
extra random bits K, and extracts n almost random bits Y (with the additional
property that the source X is recoverable from Y and K). From this description,
it is clear that the key length of this paradigm must be at least n− t (which we
show is required in any entropically secure encryption scheme). However, using
optimal expanders we can (essentially) achieve this bound, and in several ways.
First, using Ramanujan expanders [17], we get the best known construction
with key length k = n − t + 2 log

(1
ε

)
. Second, using δ-biased spaces [20] (for

appropriate δ = δ(ε, n, t) explained later), we get a general construction with
slightly larger but still nearly optimal key length k = n− t+ 2 logn+ 2 log

(1
ε

)
.

This last result generalizes (and slightly improves) to any value of t the special
case of the uniform message distribution (n − t = 0) obtained by Russell and
Wang [24]. Our approach also gives clearer insight as to why small-biased spaces
are actually useful for entropic security.

While the deterministic constructions above are nearly optimal and quite
efficient, we also observe that one can get simpler constructions by allowing
the encryption scheme to be probabilistic. In our approach, this corresponds to
having a family of “average case” expanders {Gi} with the property that for any
set T of size at least 2t, picking a random graph Gi, a random v in T and taking
a random neigbor w of v in Gi, we get that w is nearly uniform, even given the
graph index i. By using any family of pairwise independent hash functions hi

(resp. permutations ψi) and a new variant of the leftover hash lemma [15], we get
a probabilistic scheme of the form 〈i, X ⊕ hi(K)〉 (resp. 〈i, ψi(X)⊕K〉) with

564 Y. Dodis and A. Smith

a nearly optimal key length k = n− t+ 2 log
(1

ε

)
. As a concrete example of this

approach, we get the following simple construction: E(X,K; i) = (i,X + i ·K),
where the local randomness i is a random element in GF (2n), K ∈ {0, 1}k is
interpreted as belonging to GF (2k) ⊆ GF (2n), and addition and multiplication
are done in GF (2n).

Once again, the above result (with permutations ψi) improves and simplifies
the intuition behind the second scheme of Russell and Wang [24]. Indeed, the
latter work had to assume that the ψi’s come from a family of 3-wise indepen-
dent permutations — which are more compicated and less efficient than 2-wise
independent permutations (or functions) — and presented a significantly more
involved analysis of their scheme.

1.4 A Caveat: Composing Entropically-Secure Constructions

A desirable property of definitions of security of cryptographic primitives is
composability : once some protocol or algorithm has been proven secure, you
would like to be able to use it as a building block in other protocols with your
eyes closed—without having to worry about effects that violate the intuitive
notion of security, but which are not covered by the original definition.

Composability is difficult to guarantee, since it is not clear how to translate it
into a mathemetical property. There are various formalizations of composability,
most notably “Reactive Systems” [22], “Universal Composability” [7] and several
frameworks based on logic algebras for automated reasoning (see [14] and the
references therein). Finding protocols that are provably secure in these general
frameworks is difficult, and sometimes provably impossible. A more common
approach is to prove that a particular definition remains intact under a few
straightforward types of composition, say by proving that it is still secure to
encrypt the same message many times over.

The main weakness of entropic security, as defined above, is that it does not
ensure composability, even in this straightforward sense. If Y () and Y ′() are
independent versions of the same entropically-secure mapping, then the map
which outputs the pair Y (X), Y ′(X) may be insecure to the point of revealing
X completely. In the case of encryption, this means that encrypting the same
message twice may be problematic. (Given the first value Y (X), the entropy of
X may be too low for the security guarantee of Y ′() to hold).

For example, suppose that Y (x) consists of the pair 〈M,Mx〉, where M is
a random 3n

4 × n binary matrix M and x ∈ {0, 1}n. We will see later that Y ()
is entropically secure whenever the entropy of X is close to n. However, the
pair Y (x), Y ′(x) provides a set of 3n

2 randomly chosen linear constraints on x.
With high probability, these determine x completely, and so the pair Y (), Y ′()
is insecure under any reasonable definition.

Given these issues, entropically-secure primitives must be used with care: one
must ensure that the inputs truly have enough entropy for the security guarantee
to hold. Requiring entropy is natural in many situations (e.g. when the input
is a password), but the issue of composability nonetheless raises a number of
interesting open questions for future research.

Entropic Security and the Encryption of High Entropy Messages 565

The generality and intuitive appeal of entropic security, as well as the variety
of contexts in which it has arisen, make it an important concept to understand.
We hope that the present work provides a major step in this direction.

2 Entropic Security and Indistinguishability

In this section we sketch the proof of Theorem 1, that is of the equivalence
between entropic security for functions/predicates and indistinguishability.

First, some notation. Fix a distribution X on {0, 1}n. For a function f :
{0, 1}n → {0, 1}∗, let predf,X be the maximum probability of any particular
outcome, that is the maximum probability of predicting f(X) without having

any information about X: predf,X
def
= maxz Pr[f(X) = z].

(When X is clear from the context, we may simply write predf .) We may rephrase
entropic security as follows: for every function f and adversary A, the probability
of A predicting f(X) given Y (X) is at most predf + ε:

Pr[A(Y (X)) = f(X)] ≤ predf,X + ε.

2.1 From Entropic Security to Indistinguishability

The first statement of Theorem 1 is the easier of the two to prove, and we give
the intuition here: given two distributions X0, X1, we can define a predicate
g(x) which captures the question “is x more likely to have come from X0 or
X1?” If X is a equal mixture of X0 and X1, then the adversary which makes the
maximum likelihood guess at g(X) given Y (X) will have success probability 1

2 +
1
2SD (Y (X0), Y (X1)). On the other hand, with no access to Y (X), the adversary
can succeed with probability at most predP = 1

2 . Entropic security implies that
the advantage over random guessing, and hence the statistical distance, must be
small. The formal proof is more involved, and is given below.

Proof. It is sufficient to prove indistinguishability for all distributions which are
uniform on some set of 2t−1 points. To see why, recall that any distribution of
min-entropy at least t − 1 can be written as a convex combination of such flat
distributions. If X0 =

∑
λ0,iX0,i and X1 =

∑
j λ1,jX1,j , where the X0,i and

X1,j are all flat distributions, then the statistical distance SD (Y (X0), Y (X1))
is bounded above by

∑
i,j λ0,iλ1,jSD (Y (X0,i), Y (X1,j)) (by the triangle inequal-

ity). If each of the pairs Y (X0,i), Y (X1,j) has distance at most ε, then the entire
sum will be bounded by ε.

Now let X0, X1 be any two flat distributions over disjoint sets of 2t−1 points
each (we will deal with non-disjoint sets below), and let X be an equal mixture
of the two. That is, to sample from X, flip a fair coin B, and sample from XB .
Take g to be any predicate which is 0 for any sample from X0 and 1 for any
sample from X1. A good predictor for g will be the adversary A who, given a
string y as input, guesses as follows:

A(y) =
{

0 if y is more likely under the distribution Y (X0) than under Y (X1)
1 otherwise

566 Y. Dodis and A. Smith

By the definition of statistical difference, this adversary guesses the predicate
with probability exactly:

Pr
[
A(Y (X)) = B = g(X)

]
= 1

2 + 1
2SD (Y (X0), Y (X1)) . (1)

We can now apply the assumption that Y () is (t, ε)-entropically secure to
bound SD (Y (X0), Y (X1)). First, for any random variable G over {0, 1} which
is independent of X, the probability that G = g(X) is exactly 1

2 . The distribution
X has min-entropy t by construction, and so by entropic security the probability
that A(y) can guess g(X) is bounded:

Pr[A(Y (X)) = g(X)] ≤ maxG {Pr[G = g(X)]}+ ε = 1
2 + ε. (2)

Combining the last two equations, the statistical difference SD (Y(X0),Y(X1))
is at most 2ε. This takes care of the case where X0 and X1 have disjoint supports.

To get the general indistinguishability condition, fix any X̃0 as above (flat on
2t−1 points). For any other flat distribution X̃1, there is some third flat distribu-
tion X ′ which is disjoint from both X̃0 and X̃1. By the previous reasoning, both
SD

(
Y (X̃0), Y (X ′)

)
and SD

(
Y (X ′), Y (X̃1)

)
are less than 2ε. By the triangle

inequality SD (Y (X0), Y (X1)) ≤ 4ε. A more careful proof avoids the triangle
inequality and gives distance 2ε even when the supports of X0, X1 overlap. ��

2.2 From Indistinguishability to Entropic Security

Proving that indistinguishability implies entropic security is considerably more
delicate. We begin with an overview of the main ideas and notation.

The Case of Balanced Predicates. We say a function f is balanced (w.r.t. X) if it
takes on all its possible values with equal probability, i.e. there are 1

predf
possible

values and each occurs with probability predf . The reductions we consider are
much easier for balanced functions. In fact, we start with balanced predicates.

Namely, suppose that g() is a balanced predicate for distribution X, that is
Pr[g(X) = 0] = Pr[g(X) = 1] = 1

2 , and that that A is an adversary contradicting
entropic security for min-entropy t = H∞(X), that is Pr[A(Y (X)) = g(X)] =
1
2 + ε. For b ∈ {0, 1}, let Xb be the distribution of X conditioned on g(X) = b.
The adversary’s advantage over random guessing in distinguishing Y (X0) from
Y (X1) is ε. However, that same advantage is also a lower bound for the statistical
difference. We get:

1
2 + ε = Pr[A(Y (X)) = g(X)]

= Pr[b← {0, 1} : A(Y (Xb)) = b] ≤ 1
2 + 1

2SD (Y (X0), Y (X1)) ,

and so the distance between Y (X0) and Y (X1) is at least ε/2. To see that this
contradicts indistinguishability, note that since g(X) is balanced, we obtain X0
and X1 by conditioning on events of probability at least 1

2 . Probabilities are
at most doubled, and so the min-entropies of both X0 and X1 are at most
H∞(X)− 1.

Entropic Security and the Encryption of High Entropy Messages 567

Balancing Predicates. If the predicate g() is not balanced on X, then the pre-
vious strategy yields a poor reduction. For example, Pr[g(X) = 0] may be very
small (potentially as small as ε). The probabilities in the distribution X0 would
then be a factor of 1/ε bigger than their original values, leading to a loss of
min-entropy of log(1/ε). This argument therefore proves a weak version of The-
orem 1: (t, ε) indistinguishability implies (t + log

(1
ε

)
, 2ε) entropic security for

predicates.
This entropy loss is not necessary. We give a better reduction in Lemma 1

below. The idea is that to change the predicate g() into a balanced predicate by
flipping the value of the predicate on points on which the original adversary A
performed poorly. By greedily choosing a set of points in g−1(0) of the right size,
we show that there exists a balanced predicate g′() on which the same adversary
as before has advantage at least ε/2, if the adversary had advantage ε for the
original predicate.

Lemma 1. (t − 2, 2ε)-indistinguishability implies (t, ε)-entropic security for
predicates for t ≥ 2.

Proof. Suppose that the scheme is not (t, ε)-entropically secure. That is, there
is a message distribution X with min-entropy at least t, a predicate g and an
adversary A such that

Pr[A(Y (X)) = g(X)] > ε + max
i=0,1

{Pr[g(X) = i]} (3)

We wish to choose two distributions of min-entropy t− 2 and use the adver-
sary to distinguish them, thus contradicting indistinguishability. It’s tempting
to choose the sets g−1(0) and g−1(1), since we know the adversary can predict g
reasonably well. That attempt fails because one of the pre-images g−1(0), g−1(1)
might be quite small, leading to distributions of low min-entropy. Instead, we
partition the support of X into sets of (almost) equal measure, making sure that
the smaller of g−1(0) and g−1(1) is entirely contained in one partition.

Now let:

p = Pr[h(X) = 1]
q0 = Pr[A(Y (X)) = 1|g(X) = 0]
q1 = Pr[A(Y (X)) = 1|g(X) = 1]

Suppose without loss of generality that p ≥ 1/2, i.e. that g(X) = 1 is more likely
than, or as likely as, g(X) = 0 (if p < 1/2, we can just reverse the roles of 0 and
1). The violation of entropic security (Eq. 3) can be re-written:

pq1 + (1− p)(1− q0) > p + ε

In particular, p− pq1 > 0 so we get:

(1− p)(q1 − q0) > ε (4)

568 Y. Dodis and A. Smith

Now we wish to choose two distributions A,B, each of min-entropy t − 2.
For now, fix any set S ⊆ g−1(1), where g−1(1) = {x ∈ {0, 1}n|g(x) = 1}. We
make the choice of § more specific below. Let AS be the conditional distribution
of X conditioned on X ∈ S, and let BS be distributed as X conditioned on
X ∈ {0, 1}n \ S. That is, AS and BS have disjoint supports and the support of
BS covers g−1(0) entirely.

The first property we will need from S is that it split the mass of X some-
what evenly. If the probability mass p′ of S under X was exactly 1/2, then the
min-entropies of AS and BS would both be exactly t − 1. Depending on the
distribution X, it may not be possible to have such an even split. Nonetheless,
we can certainly get 1

2 ≤ p′ < 1
2 + 2−t, simply by adding points one at a time

to § until it gets just below 1/2. The order in which we add the points is not
important. For t > 2 (which is a hypothesis of this proof), we get 1

2 ≥ p′ ≥ 3
4 .

Hence, we can choose S so that the min-entropies of AS and BS are both at
least t− 2.

We will also need that S have other properties. For every point x in the
support of X, we define qx = Pr[A(Y (x)) = 1]. The average over x ← X,
restricted to g−1(1), of qx is exactly q1, that is

Expx←X [qx] = q1

If we now the choose the set S greedily, always adding points which maximize
qx, we are guaranteed that the average over X, conditioned on X ∈ S, is at least
q1. That is, there exists a choice of S with mass p′ ∈ [12 ,

3
4] such that

Pr[A(Y (AS)) = 1] = Expx←AS [qx] ≥ q1.

We can also now compute the probability that A(Y (BS)) is 1:

Pr[A(Y (BS)) = 1] =
1− p

1− p′ q0 +
p− p′

1− p′ Pr[A(Y (X)) = 1|X �∈ S and g(X) = 0]

Now Pr[A(Y (X)) = 1|X �∈ S and g(X) = 0] is at most q1 (since by the greedy
construction of S, this is the average over elements in g−1(1) with the lowest
values of qx). Using A as a distinguisher for the distributions Y (AS) and Y (BS),
we get:∣∣ Pr

[
A(Y (AS)) = 1

]
− Pr

[
A(Y (BS)) = 1

] ∣∣ ≥ q1 −
1− p

1− p′ · q0 −
p− p′

1− p′ · q1

=
1− p

1− p′ · (q1 − q0)

Since entropic security is violated (Eq. 4), we have (1 − p)(q1 − q0)/(1 − p′) >
ε/(1− p′). By construction, we have p′ > 1

2 so the advantage of the predictor is
at least 2ε, that is:

SD (Y (AS), Y (BS)) ≥
∣∣ Pr

[
A(Y (AS)) = 1

]
− Pr

[
A(Y (BS)) = 1

] ∣∣ ≥ 2ε

Since A and B each have min-entropy at least t−2, this contradicts (t−2, 2ε)-
indistinguishability, completing the proof. ��

Entropic Security and the Encryption of High Entropy Messages 569

From Predicates to Arbitary Functions. In order to complete the proof of The-
orem 1, we need to show that entropic security for predicates implies entropic
security for all functions. The reduction is captured by the following lemma,
which states that for every function with a good predictor (i.e. a predictor with
advantage at least ε), there exists a predicate for which nearly the same predictor
does equally well. This is the main technical result of this section.

The reduction uses the predictor A(Y (X)) as a black box, and so we will
simply use the random variable A = A(Y (X)).

Lemma 2 (Main Lemma). Let X be any distribution on {0, 1}n of min-
entropy t ≥ 3

2 log
(1

ε

)
, and let A be any random variable (possibly correlated

to X). Suppose there exists a function f : {0, 1}n → {0, 1}∗ such that Pr[A =
f(X)] ≥ predf + ε. Then there exists a predicate g : {0, 1}n → {0, 1} and an
algorithm B(·) such that

Pr[B(A) = g(X)] ≥ predg + ε/4.

Due to space limitations, the proof is only given in the full version [9]. We
mention only that there are two main steps to proving the lemma:

• If A is a good predictor for an (arbitrary) function f(·), then there is a (almost)
balanced function f ′(·) and a good predictor A′ of the form g(A).
• If f(·) is a balanced (or almost balanced) function and A is a good predictor

for f(X), then there is a predicate g(·) of the form g′(f(·)) such that g′(A) is
a good predictor for g(X).

A More Efficient Reduction. Lemma 2 completes the proof of Theorem 1. How-
ever, it says nothing about the running time of B(·)—in general, the reduction
may yield a large circuit. Nonetheless, we may indeed obtain a polynomial-time
reduction for certain functions f . If no value of f occurs with probability more
than ε2, then inner product with a random vector provides a good predicate.
The idea behind the following proof has appeared in other contexts, e.g. [11].

Proposition 1. Let X be any random variable distributed in {0, 1}n. Let f :
{0, 1}n → {0, 1}N be a function such that predf,X ≤ ε2/4, and let A be a random
variable with advantage ε at guessing f(X). For r ∈ {0, 1}N , let gr(x) = r+f(x).
If r is drawn uniformly from {0, 1}N , then

Expr

[
Pr[r +A = gr(X)]− predgr

]
≥ ε/4.

In particular, there exists a value r and a O(N)-time circuit B which satisfy
Pr[B(A) = gr(X)] ≥ predgr

+ ε/4.

Proof. We can calculate the expected advantage almost directly. Note that con-
ditioned on the event A = f(X), the predictor r +A always agrees with gr(X).
When A �= f(X), they agree with probability exactly 1

2 . Hence, we have

Expr [Pr[r +A = gr(X)]] =
1
2

+
1
2

Pr[A = f(X)] ≥ 1
2
(1 + predf + ε)

570 Y. Dodis and A. Smith

We must still bound the expected value of predgr
. Let rz = (−1)z�r. For any

particular, r, we can compute predgr
as 1

2 + 1
2 |
∑

z pzrz|. Using the fact Exp [|Z|] ≤√
Exp [Z2] for any random variable Z, we get:

Expr

[
predgr

]
=

1
2

+
1
2
Expr

[∣∣∣∣∣∑
z

pzrz

∣∣∣∣∣
]
≤ 1

2
+

1
2

√√√√√Expr

⎡⎣(∑
z

pzrz

)2
⎤⎦

By pairwise independence of the variables rz, we have Exp [rzra] is 1 if z = a
and 0 otherwise.

Expr

[
predgr

]
≤ 1

2
+

1
2

√∑
z

p2
z ≤

1
2

+
1
2

√
predf .

The last inequality holds since predf is the maximum of the values pz, and the
expression

∑
z p

2
z is maximized when pz = predf for all z (note that this sum is

the collision probability of f(X)). Combining the two calculations we have

Expr

[
Pr[r +A = gr(X)]− predgr

]
≥ 1

2

(
predf + ε−

√
predf

)
Using the hypothesis that predf ≤ ε2/4, we see that the expected advantage is
at least ε/4. ��

3 Encryption of High-Entropy Sources

In this section, we discuss the results on entropic security to the encryption
of mesages which are guaranteed to come from a high-entropy distribution.
Roughly: if the adversary has only a small chance of guessing the message ahead
of time, then one can design information-theoretically secure encryption (in the
sense of hiding all functions, Definition 1) using a much shorter key than is
usually possible—making up for the small entropy of the key using the entropy
inherent in the message.

3.1 Using Expander Graphs for Encryption

Formally, a symmetric encryption scheme is a pair of randomized maps (E ,D).
The encryption takes three inputs, an n-bit message x, a k-bit key κ and r
random bits i, and produces a N -bit ciphertext y = E(x, κ; i). Note that the key
and the random bits are expected to be uniform random bits, and when it is
not necessary to denote the random bits or key explicitly we use either E(x, κ)
or E(x). The decryption takes a key κ and ciphertext y ∈ {0, 1}N , and produces
the plaintext x′ = D(y, κ). The only condition we impose for (E ,D) to be called
an encryption scheme is completeness: for all keys κ, D(E(x, κ), κ) = x with
probability 1.

In this section, we discuss graph-based encryption schemes and show that
graph expansion corresponds to entropically secure encryption schemes.

Entropic Security and the Encryption of High Entropy Messages 571

Graph-Based Encryption Schemes. Let G = (V, E) be a d-regular graph, and let
N(v, j) denote the j-th neighbor of vertex v under some particular labeling of
the edges. We’ll say the labeling is invertible if there exists a map N ′ such that
N(v, j) = w implies N ′(w, j) = v.

By Hall’s theorem, every d-regular graph has an invertible labeling.2 However,
there is a large class of graphs for which this invertibility is much easier to see.
The Cayley graph G = (V, E) associated with a group G and a set of generators
{g1, ..., gd} consists of vertices labeled by elements of G which are connected when
they differ by a generator: E = {(u, u · gi)}u∈V,i∈[d]. When the set of generators
contains all its inverses, the graph is undirected. For such a graph, the natural
labeling is indeed invertible, since N(v, j) = v · j and N ′(w, j) = w · j−1. All the
graphs we discuss in this paper are in fact Cayley graphs, and hence invertibly
labeled.

Now suppose the vertex set is V = {0, 1}n and the degree is d = 2k, so
that the neighbor function N takes inputs in {0, 1}n × {0, 1}k. Consider the
encryption scheme:

E(x, κ) = N(x, κ). (5)

Notice, E is a proper encryption scheme if and only if the labeling is invertible.
In that case, D(y, κ) = N ′(y, κ) = x. For efficiency, we should be able to compute
N and N ′ in polynomial time. We will show that this encryption scheme is secure
when the graph G is a sufficiently good expander. The following definition is
standard:

Definition 3. A graph G = (V, E) is a (t, ε)-extractor if, for every set S of 2t

vertices, taking a random step in the graph from a random vertex of S leads to a
nearly uniform distribution on the whole graph. That is, let US be uniform on S,
J be uniform on {1, ..., d} and UV be uniform on the entire vertex set V . Then
for all sets S of size at least 2t, we require that:

SD (N(US , J) , UV) ≤ ε.

The usual way to obtain extractors as above is to use good expanders. This
is captured by the following fact.

Fact 1 (Expander smoothing lemma [12]). A graph G with second largest
(normalized) eigenvalue λ ≤ ε2−(n−t)/2 is a (t, ε)-extractor.

The equivalence between entropic security and indistinguishability (Theo-
rem 1) gives us the following result:

2 We thank Noga Alon for pointing out this fact. If G = (V, E) is a d-regular undirected
graph, consider the bipartite graph with |V | vertices on each side and where each
edge in E is replaced by the corresponding pair of edges in the bipartite graph. By
Hall’s theorem, there exist d disjoint matchings in the bipartite graph. These induce
an invertible labeling on the original graph.

572 Y. Dodis and A. Smith

Proposition 2. For a 2k-regular, invertible graph G as above, the encryption
scheme (E ,D) given by N,N ′ is (t, ε)-entropically secure if G is a (t − 2, 2ε)-
extractor (in particular, if G has second eigenvalue λ ≤ ε · 2−(n−t−2)/2).

Proof. By Theorem 1, it suffices to show that (t− 2, ε)-indistinguishability. And
this immediately follows from the lemma above and the fact that any min-
entropy (t− 2) distribution is a mixture of flat distributions. ��

We apply this in two ways. First, using optimal expanders (Ramanujan
graphs) we obtain the best known construction of entropically-secure encryption
schemes (Corollary 1). Second, we give a simpler and much stronger analysis of
the original scheme of Russell and Wang (Corollary 2).

Corollary 1. There exists an efficient deterministic (t, ε)-entropically secure
scheme with k = n− t + 2 log

(1
ε

)
+ 2.

Proof. We apply Proposition 2 to Ramanujan graphs. These graphs are optimal
for this particular construction: they achieve optimal eigenvalue λ = 2

√
d− 1

for degree d [17]. The bound on k now follows. ��

The main drawback of Ramanujan graphs is that explicit constructions are
not known for all sizes of graphs and degrees. However, large families exist (e.g.
graphs with q+ 1 vertices and degree p+ 1, where p and q are primes congruent
to 1 mod 4). Below we show why the construction from Russell and Wang [24]
using small-biased spaces is actually a special case of Proposition 2.

Using Small-Biased Sets. A set S in {0, 1}n is δ-biased if for all nonzero α ∈
{0, 1}n, the binary inner product α+ s is nearly balanced for s drawn uniformly
in S:

Pr
s←S

[α+s = 0] ∈
[
1− δ

2
,
1 + δ

2

]
or, equivalently,

∣∣Exps←S

[
(−1)α�S

]∣∣ ≤ δ. (6)

Alon et al. [1] gave explicit constructions of δ-biased sets in {0, 1}n with size
O(n2/δ2). Now suppose the δ-biased set is indexed

{
sκ|κ ∈ {0, 1}k

}
. Consider

the encryption scheme: E(x, κ) = x ⊕ sκ. Russell and Wang introduced this
scheme and showed that it is (n, ε)-entropically secure when δ = ε3/2, yielding
a key length of k = 2 logn + 3 log

(1
ε

)
. However, their analysis works only when

the message is drawn uniformly from {0, 1}n.
We propose a different analysis: consider the Cayley graph for ZZn

2 with
generators S, where S is δ-biased. This graph has second eigenvalue λ ≤ δ [20, 2].
Hence, by Proposition 2 the scheme above is (t, ε)-entropically secure as long as
δ ≤ ε2−(n−t−2)/2. This gives a version of the Vernam one-time pad for high-
entropy message spaces, with key length k = n − t + 2 logn + 2 log

(1
ε

)
+ O(1).

Unlike [24], this works for all settings of t, and also improves the parameters in
[24] for n = t.

Entropic Security and the Encryption of High Entropy Messages 573

Corollary 2. If
{
sκ|κ ∈ {0, 1}k

}
is a δ-biased set, then the encryption scheme

E(x, κ) = x ⊕ sκ is (t, ε) indistinguishable when ε = δ2(n−t−2)/2. Using the
costruction of [1], this yields a scheme with key length k = n − t + 2 log

(1
ε

)
+

2 log(n) + O(1) (for any value of t).

3.2 A Random Hashing Construction

This section presents a simpler construction of entropically secure encryption
based on pairwise independent hashing. Our result generalizes the construction
of Russell and Wang [24] for nonuniform sources, and introduces a new variant
of the leftover-hash/privacy-amplification lemma [3, 15].

The idea behind the construction is that indistinguishability is the same as
extraction from a weak source, except that the extractor must in some sense be
invertible: given the key, one must be able to recover the message.

Let {hi}i∈I be some family of functions hi : {0, 1}k → {0, 1}n, indexed over
the set I = {0, 1}r. We consider encryption schemes of the form

E(x, κ; i) = (i, x⊕ hi(κ)) (for general functions hi), or (7)
E ′(x, κ; i) = (i, hi(x)⊕ κ) (when the functions hi are permutations) (8)

These schemes can be thought of as low-entropy, probabilistic one-time pads.
Decryption is obviously possible, since the description of the function hi is public.
For the scheme to be (t, ε)-secure, we will see that it is enough to have k =
n−t+2 log

(1
ε

)
+2, and for the function family to be pairwise independent. (This

matches the result in Corollary 1.) In fact, a slightly weaker condition is sufficient:
The following definition was introduced in the context of authentication [16]:

Definition 4 (XOR-universal function families). A collection of functions
{hi}i∈I from n bits to n bits is XOR-universal if: ∀a, x, y ∈ {0, 1}n, x �= y :
Pri←I [hi(x)⊕ hi(y) = a] ≤ 1

2n−1 .

It is easy to construct XOR-universal families. Any (ordinary) pairwise in-
dependent hash family will do, or one can save some randomness by avoiding
the “offset” part of constructions of the form h(x) = ax + b. Specifically, view
{0, 1}n as F = GF (2n), and embed the key set {0, 1}k as a subset of F . For any
i ∈ F , let hi(κ) = iκ, with multiplication in F . This yields a family of linear
maps {hi} with 2n members. Now fix any a ∈ F , and any x, y ∈ F with x �= y.
When i is chosen uniformly from {0, 1}n, we have hi(x)⊕ hi(y) = i(x− y) = a
with probability exactly 2−n. If we restrict i to be nonzero, then we get a family
of permutations, and we get hi(x)⊕ hi(y) = a with probability at most 1

2n−1 .

Proposition 3. If the family {hi} is XOR-universal, then the encryption
schemes

E(x, κ; i) = (i, x⊕ hi(κ)) and E ′(x, κ; i) = (i, hi(x)⊕ κ)

are (t, ε)-entropically secure, for t = n − k + 2 log
(1

ε

)
+ 2. (However, E ′ is a

proper encryption scheme only when {hi} is a family of permutations.)

574 Y. Dodis and A. Smith

This proposition proves, as a special case, the security of the Russell-Wang
construction, with slightly better parameters (their argument gives a key length
of n− t+ 3 log

(1
ε

)
since they used 3-wise independent permutations, which are

also harder to construct). It also proves the security of the simple construction
E(x, κ; i) = (i, x + iκ), with operations in GF (2n).

Proposition 3 follows from the following lemma of independent interest, which
is closely related to the to the leftover hash lemma [13] (also called privacy
amplification; see, e.g. [3, 4]), and which conveniently handles both the E and
the E ′ variants.

Lemma 3. If A,B are independent random variables such that H∞(A)+H∞(B)
≥ n + 2 log

(1
ε

)
+ 1, and {hi} is a XOR-universal family, then

SD (〈i, hi(A)⊕B〉 , 〈 i, Un〉) ≤ ε,

where Un and i are uniform on {0, 1}n and I.
Proof. Consider the collision probability of (i, hi(A)⊕B). A collision only occurs
if the same function hi is chosen both times. Conditioned on that, one obtains
a collision only if hi(A) ⊕ hi(A′) = B ⊕ B′, for A′,B′ i.i.d. copies of A,B. We
can use the XOR-universality to bound this last term:

Pr[(i, hi(A)⊕B) = (i, hi(A′)⊕B′)]

= Pr[i = i′]
(

Pr[B = B′] · Pr[hi(A) = hi(A′)]

+
∑
a
=0

Pr[B ⊕B′ = a] · Pr[hi(A)⊕ hi(A′) = a]
) (9)

Now let ta = H2(A), tb = H2(B). For a �= 0, we have Pr[hi(A) ⊕ hi(A′) =
a] ≤ 1/(2n−1), by the conditions on {hi}. On the other hand, by a union bound
we have

Pr[hi(A) = hi(A′)] ≤ Pr[A = A′] +
1

2n − 1
≤ 2−ta +

1
2n − 1

Hence, Eqn. 9 reduces to

1
|I|

⎛⎝2−tb

(
2−ta +

1
2n − 1

)
+

1
2n − 1

⎛⎝∑
a
=0

Pr[B ⊕B′ = a]

⎞⎠⎞⎠
≤ 1
|I|2n

(
1 + 2n−ta−tb + 2−tb +

2
2n − 1

)
Now 2n−ta−tb ≤ ε2/2 by assumption, and we also have 2−n ≤ 2−tb ≤ ε2/2,

since ta, tb ≤ n and ta+tb ≥ n+2 log
(1

ε

)
(similarly, n ≥ 2 log

(1
ε

)
). Hence Eqn. 9

reduces to (1 + 2ε2)/|I|2n. Any distribution on a finite set S with collision
probability (1 + 2ε2)/|S| is at statistical distance at most ε from the uniform
distribution [15]. Thus, (i, hi(A)⊕B) is ε-far from uniform. ��

Note that the lemma gives a special “extractor by XOR” which works for
product distributions A×B with at least n bits of min-entropy between them.

Entropic Security and the Encryption of High Entropy Messages 575

3.3 Lower Bounds on the Key Length

Proposition 4. Any encryption scheme which is (t, ε)-entropically secure for
inputs of length n requires a key of length at least n− t.

Proof. We can reduce our entropic scheme to Shannon-secure encryption of
strings of length n − t + 1. Specifically, for every w ∈ {0, 1}n−t+1, let Xw be
the uniform over strings with w as a prefix, that is the set {w}×{0, 1}t−1. Since
Xw has min-entropy t− 1, any pair of distributions E(Xw), E(Xw′) are indistin-
guishable, and so we can use E() to encrypt strings of length n − t + 1. When
ε < 1/2, we must have key length at least (n − t + 1) − 1 = n − t by the usual
Shannon-style bound (the loss of 1 comes from a relaxation of Shannon’s bounds
to statistical security). ��

Bounds for Public-Coin Schemes via Extractors. In the constructions of Russell
and Wang and that of Section 3.1 and Section 3.2, the randomness used by the
encryption scheme (apart from the key) is sent in the clear as part of the ci-
phertext. That is, E(x, κ; i) = (i, E ′(x, κ; i)). For these types of schemes, called
public-coin schemes, the intuitive connection between entropic security and ex-
traction from weak sources is pretty clear: encryption implies extraction. As a
result, lower bounds on extractors [23] apply, and show that our construction is
close to optimal.

Proposition 5. Any public-coin, (t, ε)-entropically secure encryption has key
length k ≥ n− t + log

(1
ε

)
−O(1) (as long as t > 2 log

(1
ε

)
).

To prove the result, we first reduce to the existence of extractors:

Lemma 4. Assume (E ,D) is a public-coin, (t, ε)-entropically secure encryption
scheme with message length n, key length k and r bits of extra randomness. Then
there exists an extractor with seed length k+ r, input length n and output length
n + r − log

(1
ε

)
, such that for any input distribution of min-entropy t + 1, the

output is within distance 3ε of the uniform distribution.

Proof. We combine three observations. First, when U is uniform over all mes-
sages in {0, 1}n, the entropy of the distribution E(U) must be high. Specifically:
H∞(E(U)) = n + r. To see this, notice that there is a function (D) which can
produce R,K,U from K, E(U,K;R). Since the triple (R,K,U) is uniform on
{0, 1}r+k+n, it must be that (K, E(U,K)) also has min-entropy r + k + n, i.e.
that any pair (κ, c) appears with probability at most 2−(n−k−r). Summing over
all 2k values of κ, we see that any ciphertext value c appears with probability at
most

∑
κ 2−n−r−k = 2−n−r, as desired.

The second observation is that there is a deterministic function φ which maps
ciphertexts into {0, 1}n+r−log(1

ε) such that φ(E(U)) is within distance ε of the
uniform distribution. In general, any fixed distribution of min-entropy t can be
mapped into {0, 1}t−log(1/ε) so that the result is almost uniform (Simply assign
elements of the original distribution one by one to strings in {0, 1}t−log(1/ε), so
that at no time do two strings have difference of probability more than 2−t. The

576 Y. Dodis and A. Smith

total variation from uniform will be at most 2t−log(1/ε) · 2−t = ε.). Note that φ
need not be efficiently computable, even if both E and D are straightforward.
This doesn’t matter, since we are after a combinatorial contradiction.

Finally, by Theorem 1, for all distributions of min-entropy t − 1, we have
SD (E(U), E(X)) ≤ 2ε, and so SD (φ(E(U)), φ(E(X))) ≤ 2ε. By the triangle
inequality, φ(E(X)) is within 3ε of the uniform distribution on n + r − log

(1
ε

)
bits, proving the lemma. ��

We can now apply the lower bound of Radhakrishnan and Ta-Shma [23], who
showed that any extractor for distributions of min-entropy t with error parameter
δ and d extra random bits can extract at most t + d− 2 log(1/δ) + O(1) nearly
random bits. From Lemma 4, we get and extractor for min-entropy t+1, δ = 3ε,
k+r extra random bits, and output length n+r−log(1/ε). Thus, n+r−log(1/ε) is
at most t+1+k+r−2 log(1/ε)+O(1), which immediately gives us Proposition 5.

Remark 1. We do not lose log(1/ε) in the output length in Lemma 4 when
the encryption scheme in indistinguishable from the uniform distribution (i.e.,
ciphertexts look truly random). For such public-coin schemes, we get k ≥ n− t+
2 log

(1
ε

)
−O(1). Since all of our constructions are of this form, their parameters

cannot be improved at all. In fact, we conjecture that k ≥ n−t+2 log
(1

ε

)
−O(1)

for all entropically-secure schemes, public-coin or not.

Acknowledgements

We are grateful to many friends for helpful discussions on this work. We espe-
cially thank Noga Alon, Leonid Reyzin, Madhu Sudan, Salil Vadhan and Avi
Wigderson for their insights.

References

1. Noga Alon, Oded Goldreich, Johan H̊astad, René Peralta: Simple Constructions of
Almost k-Wise Independent Random Variables. FOCS 1990: 544-553

2. Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random
Structures & Algorithms 5 (1994), 271–284.

3. C. Bennett, G. Brassard, and J. Robert. Privacy Amplification by Public Discus-
sion. SIAM J. on Computing, 17(2), pp. 210–229, 1988.

4. C. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized Privacy Ampli-
fication. IEEE Transactions on Information Theory, 41(6), pp. 1915-1923, 1995.

5. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Crypto 1997.

6. R. Canetti, D. Micciancio, O. Reingold. Perfectly One-Way Probabilistic Hash
Functions. In Proc. 30th ACM Symp. on Theory of Computing, 1998, pp. 131–140.

7. Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. Proc. IEEE Symp. on Foundations of Computer Science, 2001,
pp. 136-145.

8. T. Cover, J. Thomas. Elements of Information Theory. Wiley series in telecommu-
nication, 1991, 542 pp.

Entropic Security and the Encryption of High Entropy Messages 577

9. Y. Dodis, and A. Smith. Entropic Security and the Encryption of High Entropy
Messages. Full version of this paper. Available at IACR Cryptology ePrint Archive,
report 2004/219, at http://eprint.iacr.org/2004/219/.

10. S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2), pp. 270–299,
April 1984.

11. Oded Goldreich, Salil Vadhan and Avi Wigderson. On Interactive Proofs with a
Laconic Prover. Computational Complexity, 11(1-2): 1-53 (2002).

12. Oded Goldreich, Avi Wigderson: Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Structures and Algorithms 11(4): 315-
343 (1997)

13. J. H̊astad, R. Impagliazzo, L. Levin, M. Luby. A Pseudorandom generator from
any one-way function. In Proc. 21st ACM Symp. on Theory of Computing, 1989.

14. Jonathan Herzog. Computational Soundness for Standard Assumptions of Formal
Cryptography. Ph.D. Thesis, Massachusetts Institute of Technology, May 2004.

15. R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In Proc. 30th
IEEE Symp. on Foundations of Computer Science, 1989.

16. H. Krawczyk. LFSR-Based Hashing and Authentication. In Proc. CRYPTO ’94,
p. 129–139, 1994.

17. A. Lubotzky, R. Phillips, P. Sarnak: Ramanujan graphs. Combinatorica 8(3): 261-
277 (1988).

18. U. Maurer. Conditionally-Perfect Secrecy and a Provably-Secure Randomized Ci-
pher. J. Cryptology, 5(1), pp. 53–66, 1992.

19. U. Maurer. Secret Key Agreement by Public Discussion. IEEE Trans. on Info.
Theory, 39(3):733–742, 1993.

20. J. Naor, M. Naor.Small-Bias Probability Spaces: Efficient Constructions and Ap-
plications. In SIAM J. Comput. 22(4): 838-856 (1993).

21. N. Nisan, D. Zuckerman. Randomness is Linear in Space. In JCSS, 52(1), pp.
43–52, 1996.

22. B. Pfitzmann, M. Waidner. A Model for Asynchronous Reactive Systems and its
Application to Secure Message Transmission. In Proc. IEEE Symp. on Security
and Privacy, 2001, 184–200.

23. J. Radhakrishnan and A. Ta-Shma. Tight bounds for depth-two superconcentra-
tors. In Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997, pp.
585–594.

24. A. Russell and Wang. How to Fool an Unbounded Adversary with a Short Key. In
Advances in Cryptology — EUROCRYPT 2002.

25. C. Shannon. Communication Theory of Secrecy systems. In Bell Systems Technical
J., 28:656–715, 1949. Note: The material in this paper appeared originally in a
confidential report ‘A Mathematical Theory of Cryptography’, dated Sept. 1, 1945,
which has now been declassified.

Error Correction in the Bounded Storage Model

Yan Zong Ding

College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta,
Georgia 30332-0280, USA
ding@cc.gatech.edu

Supported by NSF grant CCR-0205423

Abstract. We initiate a study of Maurer’s bounded storage model (JoC,
1992) in presence of transmission errors and perhaps other types of er-
rors that cause different parties to have inconsistent views of the public
random source. Such errors seem inevitable in any implementation of the
model. All previous schemes and protocols in the model assume a per-
fectly consistent view of the public source from all parties, and do not
function correctly in presence of errors, while the private-key encryption
scheme of Aumann, Ding and Rabin (IEEE IT, 2002) can be extended
to tolerate only a O(1/ log (1/ε)) fraction of errors, where ε is an upper
bound on the advantage of an adversary.

In this paper, we provide a general paradigm for constructing se-
cure and error-resilient private-key cryptosystems in the bounded storage
model that tolerate a constant fraction of errors, and attain the near op-
timal parameters achieved by Vadhan’s construction (JoC, 2004) in the
errorless case. In particular, we show that any local fuzzy extractor yields
a secure and error-resilient cryptosystem in the model, in analogy to the
result of Lu (JoC, 2004) that any local strong extractor yields a secure
cryptosystem in the errorless case, and construct efficient local fuzzy
extractors by extending Vadhan’s sample-then-extract paradigm. The
main ingredients of our constructions are averaging samplers (Bellare
and Rompel, FOCS ’94), randomness extractors (Nisan and Zuckerman,
JCSS, 1996), error correcting codes, and fuzzy extractors (Dodis, Reyzin
and Smith, EUROCRYPT ’04).

1 Introduction

The bounded storage model, introduced by Maurer [Mau92], has seen increas-
ing activities recently. In contrast to the standard complexity-based model for
cryptography, this model imposes a bound on the storage space of an adversary
rather than its running time. The model does not rely on complexity assump-
tions, and achieves information-theoretic security by employing a public source
emitting random strings whose length exceeds the known space bound of the
adversary. The security is guaranteed against a computationally unbounded ad-
versary who stores almost all information about a public random string, while a
legitimate user is only required to store a small number of public random bits. In

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 578–599, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Error Correction in the Bounded Storage Model 579

a practical implementation, a good candidate for the public source is a system
of high-speed satellites broadcasting random bits at a very high rate.

The bounded storage model has enjoyed success in private-key cryptogra-
phy [Mau92, CM97b, AR99, ADR02, DR02, DM04b, Lu04, Vad04]. In particular,
an important property known as everlasting security was observed in [ADR02,
DR02], namely the private key can be reused exponentially many times un-
der active attacks, and security is preserved even if after the execution of the
protocol, the key is revealed to the adversary and the adversary becomes un-
bounded in both time and space. Subsequent works [DM04b, Lu04, Vad04] suc-
ceeded in constructing highly efficient (in terms of key length and storage require-
ment) cryptosystems in the model that attain everlasting security, culminating in
the near optimal construction of Vadhan [Vad04]. Significant progress has also
been made in oblivious transfer [CCM98, Din01, DHRS04] and key agreement
[CM97b, DM04a] in the bounded storage model. More recently, it was shown
that a primitive known as non-interactive timestamping, which is impossible
in standard complexity-based cryptography, can be constructed in the bounded
storage model [MST04].

All the above-mentioned works are based an ideal assumption that all the
parties have a perfectly consistent view of the public random source. It seems,
however, that in any implementation of the bounded storage model, transmis-
sion errors and perhaps other types of errors that cause different parties to have
inconsistent views of the public source, are inevitable. The previous schemes and
protocols do not function correctly in presence of such errors. Error-correcting
the source might at the first glance appear as a natural solution, however this
approach has several disadvantages, and in certain circumstances is infeasible,
insufficient, or even impossible: (1) Error-correcting an entire string from the
source is infeasible due to its huge size. (2) Encoding the source blockwise does
not withstand worst-case adversarial errors that cause too many bits from a same
block to be corrupted or erased. Worst-case adversarial errors may at first seem
very unnatural. However, considering such errors is necessary, for instance in a
setting where a system of several sources is employed, and the adversary com-
promises a fraction of the sources. (3) The practicality of the bounded storage
model is based on the assumption that communications technology allows trans-
mission of data at a rate higher than the storage rate of the adversary. Encoding
the source by an error correcting code may significantly slow down the speed of
transmission, thereby giving the adversary an advantage in storing information.
(4) Error-correcting the source is impossible in implementations which use, for
instance, existing natural sources of randomness that cannot be modified. Thus,
the ability to cope with errors in the model itself, without an error-corrected
source, is natural and fundamental for the bounded storage model.

It was noted by Rabin [Rab02] that the cryptosystem of [ADR02] (the ADR
scheme for shorthand), which uses a long private key, can in fact be extended
to tolerate a O(1/ log (1/ε)) fraction of errors, where ε is an upper bound on
the advantage of an adversary. Throughout the paper, the error is measured by
the maximum relative Hamming distance between the original public source and

580 Y.Z. Ding

the source as perceived by a party. The ADR scheme extracts a one-time pad
from the source where each bit of the one-time pad is the parity of O(log (1/ε))
bits of the source at random positions. Thus, if the error in accessing the source
is O(1/ log (1/ε)), then with high probability the fraction of corrupted bits in
the one-time pad is a constant, and therefore correct decryption can be achieved
by error-correcting the message using an asymptotically good error correcting
code. It is also easy to see that O(1/ log (1/ε)) is an upper bound on the fraction
of errors that can be tolerated by the extended ADR scheme. We note that
by a slightly more careful analysis, it can be shown that a similar result also
holds for the schemes of Lu [Lu04], which can be viewed as being obtained by
derandomizing the ADR scheme.

In this paper, we provide a general paradigm for constructing secure and
error-resilient private-key cryptosystems in the bounded storage model that tol-
erate a constant fraction of worst-case errors, and simultaneously attain the near
optimal parameters achieved by Vadhan’s construction [Vad04] in the errorless
case. In particular, we show that any local fuzzy extractor yields a secure and
error-resilient cryptosystem in the bounded storage model, in analogy to the re-
sults of Lu [Lu04] that any local strong extractor yields a secure cryptosystem in
the errorless case, and construct efficient local fuzzy extractors by extending Vad-
han’s sample-then-extract paradigm [Vad04]. Further, for ensuring correct func-
tionality in presence of errors, our cryptosystems only incur a communication
overhead that can be made as small as any constant fraction. The main ingredi-
ents of our constructions are averaging samplers [BR94] and randomness extrac-
tors [NZ96], two powerful tools from the theory of pseudorandomness that are
now standard in bounded-storage cryptography (c.f., [Lu04, Vad04, DHRS04]),
as well as error correcting codes, and a new primitive known as fuzzy extractors
recently introduced by Dodis, Reyzin and Smith [DRS04].

Averaging samplers, introduced by Bellare and Rompel [BR94], are proce-
dures that approximate the average of a [0, 1]-function by taking the average
of the function evaluated at sampled points determined by a short random
seed. Randomness extractors, introduced by Nisan and Zuckerman [NZ96], are
functions that extract near perfect randomness from imperfect random sources
using a short random seed. An extractor is strong if its output remains near
uniform even if the seed is given. See the excellent surveys and tutorials of
[NT99, Sha02, Vad02, Gol97] and references therein for constructions, connec-
tions, and applications of extractors and samplers.

Recently extractors and averaging samplers have proven fundamental in
bounded-storage cryptography. Lu [Lu04] showed that any strong extractor yields
a secure private-key cryptosystem in the bounded storage model, however due
to the huge size of the source, the extractor is required to be locally computable,
or simply local, namely the output of the extractor depends on only a few bits of
the source. In [Vad04], Vadhan gave a general sample-then-extract paradigm for
constructing local extractors from any averaging sampler and randomness ex-
tractor: first sample a small number of bits from the source using an averaging
sampler, then apply an extractor to the sampled bits. By using strong extractors

Error Correction in the Bounded Storage Model 581

and samplers with near optimal parameters, the construction of [Vad04] yields
near optimal local strong extractors.

Fuzzy extractors were introduced by Dodis, Reyzin and Smith [DRS04] re-
cently, motivated by the problem of using biometrics for cryptography. The basic
underlying ideas and techniques for constructing such objects have however al-
ready been used in the rich literature on information reconciliation and privacy
amplification (c.f. [BBR88, BS93, BBCM95, CM97a]). The work of [DRS04] and
this work can be seen as revisiting these ideas, using modern terminologies and
techniques from the pseudorandomness literature. Informally speaking, a fuzzy
extractor is a function which on input x R← X where X is an imperfect random
source, extracts a near uniform string Y together with a “fingerprint” P using
a random seed K,1 such that: (1) Y is near uniform even when given (K,P),
and (2) there is a recovery algorithm that recovers Y from P , K, and any x′

“sufficiently close” to x. Fuzzy extractors that allow recovery from a constant
fraction of errors can be constructed using strong extractors and asymptotically
good error correcting codes. ([DRS04]. See also Section 4.4 of this paper.)

1.1 An Overview of Our Constructions

We show that any fuzzy extractor yields a secure and error-resilient cryptosystem
in the bounded storage model, and construct efficient local fuzzy extractors by
extending Vadhan’s sample-then-extract paradigm. Here the term local means
that both extraction and recovery depend on a small number of bits from the
input source, and further the positions of the bits read for both extraction and
recovery are completely determined by the seed K and do not depend on the
source X. Thus the positions of the bits read can be preprocessed using K by
a sampling algorithm. Therefore we assume that both the extraction algorithm
and the recovery algorithm proceed in two phases. In the first phase, both read
bits from the source whose positions are determined by the seed. In the second
phase, the actual extraction and recovery take place, on the bits read in the first
phase along with other inputs. As the local extraction and recovery procedures
do not access the entire source, we allow a small recovery error.

Construction of Local Fuzzy Extractors. A local fuzzy extractor LFE can be
constructed from any given averaging sampler Samp and fuzzy extractor FE
with recovery algorithm Rec, as follows. A seed for the resulting LFE is of form
(K1,K2), where K1 is a random seed for Samp, and K2 is a random seed for
FE. For local fuzzy extraction from X, one samples W = XSamp(K1) from X,
then computes and outputs (Y,P) = FE(W,K2). For local recovery of Y using
P , (K1,K2), and a string X ′ that is sufficiently close to X in Hamming distance,
one samples W ′ = X ′

Samp(K1) from X ′, and recovers Y = Rec(W ′,K2,P). The
security (or randomness) property of LFE follows from the fact that for almost

1 Our definition of a fuzzy extractor differs slightly from the original definition in
[DRS04] in that our fuzzy extractor explicitly uses a random seed, whereas that of
[DRS04] does not make the seed explicit yet makes it part of the fingerprint.

582 Y.Z. Ding

all seeds K1 of Samp, the sampler Samp essentially preserves the entropy rate of
the source X (see [NZ96, Vad04]), and the security property of FE that output
Y is near uniform even when K2 and P are given. The local recovery property of
LFE follows from the recovery property of FE, and the fact that for almost all
seeds K1 of Samp, the sampled substrings XSamp(K1) and X ′

Samp(K1) essentially
preserve the relative Hamming distance between X and X ′, i.e. the fraction of
positions at which X and X ′ differ. Details of our construction and analysis
will be give in Section 4.3. In Sections 4.4, 4.5 and 4.6, we show that by proper
choice of the underlying building blocks, our general paradigm yields a local
fuzzy extractor that attains the near optimal seed length and sample complexity
of Vadhan’s strong local extractor, and produces a very short fingerprint needed
for recovery from errors.

Private-Key Encryption from a Local Fuzzy Extractor. Given a local fuzzy ex-
tractor LFE together with a recovery algorithm REC that allows recovery from
a constant fraction of errors, as well as a sampling procedure Samp (see the dis-
cussion at the beginning of Section 1.1), a basic one-time private-key encryption
scheme in the bounded storage model that tolerates a constant fraction of errors
can be constructed as follows: The sender Alice and the receiver Bob share a
private-key K which is a random seed for LFE. While the public random string
X is transmitted, Alice computes (Y,P) = LFE(XA,K), and Bob samples
WB = XB

Samp(K) from XB required for the recovery of Y , where XA and XB

are the views of X as perceived by Alice and Bob respectively. To encrypt a mes-
sage M , Alice computes C = M ⊕ Y , and sends (C,P) to Bob. Upon receiving
(C,P), Bob decrypts by first recovering the one-time pad Y = REC(WB ,K,P),
then computing M = C ⊕ Y .

Correct decryption (with high probability) of the resulting basic scheme fol-
lows directly from the recovery property of a local fuzzy extractor, and its secu-
rity, in the case that the key K is used just once to encrypt one message, follows
immediately from the security property of a local fuzzy extractor. However, an
important question is whether the key can be used many times as in the errorless
case, under the attack of an active space-bounded adversary who at each time
step is also given the one-time pads and fingerprints from the past.2 Recall that
in the errorless case, the very general results of [Lu04] and [Vad04] show that
any strong local extractor yields a cryptosystem in which the key is reusable and
everlasting security is attained. In contrast, a moment’s thought shows that one
cannot hope to have such an analogous general result for an arbitrary local fuzzy
extractor in the case of errors! Consider for instance the following (contrived)
counter-example. Let LFE be a local fuzzy extractor constructed by the sample-
then-extract paradigm described above, which takes as input a source X and a
key K = (KS ,KE), and outputs (Y,P) = LFE(X,K) Δ= FE(XSamp(KS),KE),
where Samp and FE are the given sampler and fuzzy extractor. Let REC be its

2 The fingerprints are sent in the clear and are thus public to anyone, while the past
one-time pads can be obtained by a chosen plaintext or chosen ciphertext attack.

Error Correction in the Bounded Storage Model 583

recovery algorithm. Now let L̂FE be obtained by modifying LFE as follows: on
input (X,K), L̂FE computes (Y,P) = LFE(X,K), but outputs (Y,P ′) where
P ′ = P ◦ KS is the concatenation of P and KS . Let R̂EC be the same as
REC, except that R̂EC uses only |P | bits of the fingerprint P ′. It is not hard
to see that the resulting L̂FE is a local fuzzy extractor with recovery algorithm
R̂EC: As LFE is a local fuzzy extractor, by definition Y is near uniform even
when given (K,P), and thus is also near uniform when given (K,P ◦KS).3 The
security property of L̂FE follows. The recovery property, i.e. the correctness of
R̂EC is obvious. However, if L̂FE is employed in the above construction of a
private-key encryption scheme, then from a fingerprint P ′ from a past time pe-
riod the adversary gets KS , the part of the key used for sampling. If the same
key K = (KS ,KE) is reused, then from this point on, just as the sender and
receiver the adversary need only store a small number of bits from the source as
specified by KS , and when he obtains KE later he can simply decrypt just as the
receiver. In general, the fingerprint P and the seed K are dependent. The defi-
nition of a local fuzzy extractor only guarantees that its first output Y is nearly
uniform and independent of (K,P). The dependence between K and P renders
a generic local fuzzy extractor non-reusable in this context, as the fingerprint P ,
sent in the clear, could give information about the seed K.

Note that the above counter-example only shows that a generic local fuzzy
extractor does not yield a stateless cryptosystem with a reusable key, and does
not answer the question whether the sample-then-extract paradigm, with a gen-
eral averaging sampler and (non-local) fuzzy extractor, results in such a system.
We believe that the answer to the latter question is also negative, for the follow-
ing reason. First, it can be seen that if the sampled substring W = XSamp(KS)
were given, then an adversary who stores sufficient information about the source
X and has the capability to introduce sufficient errors to X, could obtain sub-
stantial information about the seed KS from W and his state. The fingerprint P
is a function of W and thus gives partial information about W , which together
with the adversary’s state, may give adequate information about KS .

However, we do note that a stateless encryption scheme under the sample-
then-extract paradigm with a reusable key would result from a stronger type of
fuzzy extractors, called entropically secure fuzzy extractors recently introduced
by Dodis and Smith (see [Smi04]), which would result in a local fuzzy extractor
where (K,Y) is essentially uniformly random even conditioned on the fingerprint
P . Yet, the current constructions of entropically secure fuzzy extractors are not
randomness-efficient enough to yield a desired value for key length.

Is there still any hope of using a generic local fuzzy extractor to construct
a full-fledged error-resilient encryption scheme, where many messages can be
encrypted? The answer is yes, if encryption and decryption are allowed to main-
tain a state. We circumvent the difficulty described above by refreshing the key,
instead of reusing it, as follows. Let LFE be an arbitrary local fuzzy extractor,

3 More generally, for any function f , Y is near uniform even when given (K, f(P, K)).

584 Y.Z. Ding

and let Alice and Bob share an initial key K1. At each time t, we use the given
local fuzzy extractor to extract a few more bits that will be used as the key for
time t+1. That is, at time t, Alice computes ((Y A

t ,KA
t+1),Pt) = LFE(XA,KA

t),
where KA

t is Alice’s key for time t, Y A
t is Alice’s one-time pad for encrypting a

(single) message at time t, and KA
t+1 is the new key Alice uses for time t+1. The

fingerprint Pt is used by Bob to recover (Y B
t ,KB

t+1), where Y B
t and KB

t+1 are
respectively Bob’s one-time pad for decrypting a ciphertext at time t, and Bob’s
new key for time t+ 1. Ideally we would like to have (Y A

t ,KA
t+1) = (Y B

t ,KB
t+1),

although a small recovery error is inevitable. Intuitively, the resulting encryp-
tion scheme is secure as the new key KA

t+1 is a part of the first output of LFE,
which by definition is near uniform given (KA

t ,Pt). Had there been no error from
the source, security would have followed from known results [Vad04, Lu04]. The
presence of error however does complicate the matter quite substantially, and a
careful analysis of security and error-resilience is necessary.

Thus unlike the previous schemes in which the same key is reused, this scheme
updates the key at each time step in a forward-secure manner (c.f. [And97]),
and is therefore stateful. Such state-dependence may be viewed as a drawback
in some cases. However, in communication settings where communication de-
vices do maintain much state information (e.g. session IDs and counters), such a
stateful encryption scheme is reasonable. On the other hand, it remains an inter-
esting problem to construct a stateless error-resilient scheme matching the near
optimal parameters achieved by the stateful construction. However, the general
negative result described above suggests that resolving this issue may require re-
sorting to and analyzing particular constructions of the building blocks, such as
the underlying error correcting code. One promising approach is to derandomize
the construction of entropically secure fuzzy extractors in [Smi04].

In Section 3 we carefully define the bounded storage model with errors, and
give a definition of security and error-resilience. In Section 4.2 (Theorem 1), we
will show that under the general forward-secure paradigm described above, any
local fuzzy extractor yields a secure encryption scheme that achieves desired
security and error correction properties simultaneously. More precisely, both the
adversary’s advantage and the probability of a single recovery error in the first
T time periods, grow only linearly with T , essentially the best one can hope.

2 Preliminaries

We use the following standard notations in this paper. For a random variable X,
the notation x

R← X denotes that x is chosen according to X. For a set S, x R← S
denotes that x is chosen uniformly from S. For an integer n, we denote by Un

a uniformly distributed random variable on the set {0, 1}n, and denote by [n]
the set {1, . . . , n}. For a string x ∈ {0, 1}n and a subset S = {i1, . . . , il} ⊆ [n],
xS

Δ= xi1 . . . xil
, where xi is the i-th bit of x. We denote by Supp(X) the support

of a random variable X.
For two strings x and y of the same length, we use Δ(x, y) to denote their

Hamming distance, i.e. the number of bit positions at which x and y differ.

Error Correction in the Bounded Storage Model 585

We say that a function (e.g. an extractor, a sampler, or an error correcting
code) is explicit if it can be computed by a polynomial-time algorithm.

In the remainder of this section, we give definitions of weak random sources
and statistical distance.

Definition 1 ([CG88, Zuc96]). For a random variable X on a finite set Ω,
the min-entropy of X is defined by: H∞(X) = minx∈Ω log(1/Pr[X = x]). We
say that X is a k-source if H∞(X) ≥ k. We say that a random variable X over
{0, 1}n has entropy rate α if X is an αn-source.

Definition 2. For random variables X and Y taking values in Ω, their sta-
tistical distance is defined as SD(X,Y) Δ= maxA⊆Ω |Pr [X ∈ A]− Pr [Y ∈ A]| =
1
2

∑
x∈Ω |Pr[X = x]−Pr[Y = x]|. We say X and Y are ε-close if SD(X,Y) ≤ ε.

3 The Model and Definition of Security

In this section we take a closer look at the bounded storage model with errors,
and define security in the model. In the presentation we use many terminologies
and notations from [Vad04].

The Public Random Source. The bounded storage model (BSM) employs a pub-
lic source of random strings, each of length exceeding the storage bound of the
adversary. Throughout the paper, we use N to denote the length of a public
random string. The public source is thus modeled as a sequence of random vari-
ables X1, X2, . . . , Xt, . . ., each distributed over {0, 1}N . We denote by βN the
storage bound, where β < 1 is constant fraction, and call β the storage rate of
the adversary.

The original work of Maurer [Mau92], as well as some early works (c.f., [AR99,
ADR02, DR02]) assume that the public source is perfectly random, that is, each
Xt is uniformly distributed and independent of the others. It was noted in [Lu04,
Vad04] that each Xt need not be uniform, and it is sufficient (and necessary)
that each Xt has entropy rate α > β. Moreover, it was pointed out in [Vad04]
that the Xt’s need not be independent, and it is sufficient (and necessary) that
the sequence of random variables X1, X2, . . . , Xt, . . . form a reverse block source,
which is the Chor-Goldreich [CG88] notion of a block source but backwards
in time. Namely, in a reverse block source, each Xt has sufficient min-entropy
conditioned on the future, whereas in a standard block source of [CG88] each
Xt has sufficient min-entropy conditioned on the past. For the model with errors
considered in this paper, we slightly strengthen the requirement on the public
source by postulating that it be blockwise both forward and backward, i.e. it
be both a standard block source and a reverse block source. The reason for
imposing this forward blockwise structure in addition to its reverse counterpart
is that the fingerprints P1, . . . ,Pt−1 required for recovery from errors in the
past time periods are exposed and depend on the X1, . . . , Xt−1. Therefore it is
necessary that Xt has sufficient min-entropy conditioned on P1, . . . ,Pt−1. This

586 Y.Z. Ding

would certainly be satisfied if the source is (forward) blockwise, that is Xt has
sufficient min-entropy conditioned on X1, . . . , Xt−1.

Definition 3. Let (Xt) = (X1, X2, . . .) be a sequence of random variables each
distributed over {0, 1}n. For each t ∈ N, denote X\t = (X1, . . . , Xt−1,Xt+1,Xt+2,
. . .). We say that (Xt) is a two-way block source of entropy rate α if for every
t ∈ N, and every x = (x1, . . . , xt−1, xt+1, xt+2, . . .) ∈ Supp(X\t), the random
variable Xt|X\t=x is an αn-source.

Intuitively, this means that Xt has αn bits of information that can not be pre-
dicted from the past and will be forgotten in the future. In the special case of
α = 1, X1, X2, . . . are uniform and independent.

BSM Randomness Extraction. An essential ingredient is a bounded storage model
randomness extraction scheme,4 or simply a BSM extraction scheme. In the er-
rorless case, such an extraction scheme is a function of the form EXT : {0, 1}N×
{0, 1}d → {0, 1}m. In a private-key setting, such an extraction scheme is typically
used as follows. A seed or a key K

R← {0, 1}d is chosen, and shared between two
parties. At time t, the parties extract a common string Yt = EXT(Xt,K), while
the adversary A updates and stores his state St = A(St−1, Y1, . . . , Yt−1, Xt),
where |St| = βN . The scheme EXT is secure if for every adversary A with stor-
age rate β, Yt is statistically close to uniform even when given the key K, all the
previous Y1, . . . , Yt−1, the adversary’s state St, and the future public random
strings Xt+1, Xt+2,

In order to be used as a BSM primitive, the extraction scheme needs to be
locally computable, that is EXT(X,K) depends only on a few bits of X whose
positions are completely determined by K. As in the discussion on local fuzzy
extractors in Section 1.1, here we also assume that a sampling procedure Samp
precomputes positions Samp(K), the bits W = XSamp(K) are read when X is
transmitted, and the extraction algorithm EXT actually takes W and K as
input, and computes EXT(W,K).

Incorporating Errors. We now incorporate errors into the model, and consider
the case where two parties Alice and Bob have inconsistent views of the source
as a result of errors. We consider error-resilient BSM randomness extraction
with forward security, as motivated in Section 1.1 of the Introduction. Such an
extraction scheme is a pair of algorithms (EXT,REC), where EXT : {0, 1}N ×
{0, 1}d → {0, 1}m+d×{0, 1}� is a local extraction function, and REC : {0, 1}N ×
{0, 1}d×{0, 1}� → {0, 1}m+d is a local recovery algorithm. The second output of
EXT is a fingerprint that enables recovery of its first output, and the last d bits
from the first output of EXT will be used as the key for the next time period.

4 In [Vad04], such a scheme is called a BSM pseudorandom generator. We choose to
call it a BSM randomness extraction scheme, because of the usual computational
connotations of “pseudorandom generators”.

Error Correction in the Bounded Storage Model 587

Alice and Bob initially share a common random key K1
R← {0, 1}d for EXT. Let

KA
1 = KB

1 = K1.
We model errors by having an unbounded adversary who at time t for each

t ∈ N, on input xt
R← Xt, computes xA

t and xB
t such that Δ(xt, x

A
t) ≤ δN and

Δ(xt, x
B
t) ≤ δN , where δ < 1 is a constant fraction, and sends xA

t and xB
t to

Alice and Bob respectively. We call δ the error rate.
On input the corrupted string xA

t and her key KA
t for time t, Alice computes

((Y A
t ,KA

t+1),Pt) = EXT(xA
t ,K

A
t), where Y A

t is Alice’s extracted “one-time pad”
for time t, KA

t+1 is Alice’s key for time t + 1, and Pt is a fingerprint needed by
Bob to recover (Y A

t ,KA
t+1). Meanwhile, on input xB

t , Bob reads the substring
w of xB

t at positions in Samp(xB
t ,K

B
t) needed to recover (Y A

t ,KA
t+1), where

Samp is the sampling procedure. Upon receiving Pt from Alice, Bob recovers
(Y B

t ,KB
t+1) = REC(w,KB

t ,Pt). Ideally we would like to have (Y B
t ,KB

t+1) =
(Y A

t ,KA
t+1), although we allow a small recovery error which is inevitable.

As in [Vad04], we use St ∈ {0, 1}βN to denote the state of the adversary at
time t. For a sequence Z1, Z2, . . ., we use the shorthand Z[a,b] = (Za,Za+1,. . . ,Zb),
and Z[a,∞) = (Za, Za+1, . . .). At time t, we allow the adversary access to the
current corrupted strings xA

t , x
B
t , all previous one-time pads Y A

[1,t−1], Y
B
[1,t−1] and

keys KA
[1,t−1],K

B
[1,t−1] of both Alice and Bob, as well as P[1,t−1]. With this infor-

mation the adversary computes

St = A(Y A
[1,t−1], Y

B
[1,t−1],K

A
[1,t−1],K

B
[1,t−1],P[1,t−1], St−1, x

A
t , x

B
t),

with |St| = βN .
We now define the security and error correction properties of an error-resilient

BSM randomness extraction scheme. In doing so, we use a real-vs-ideal paradigm
as [Vad04] does.

The real experiment is a real execution of a protocol. For T ∈ N, the output
of our real experiment is (Y A

[1,T], Y
B
[1,T],K

A
[1,T+1],K

B
[1,T+1],P[1,T], ST , X[T+1,∞)),

with each component defined above. The ideal experiment is a simulated execu-
tion of the protocol in an ideal setting that guarantees security.

In our ideal experiment, for each t ∈ [T], we choose a uniform one-time
pad Yt

R← {0, 1}m, and set Y A
t = Y B

t = Yt. Similarly, for each t ∈ [T + 1],
we choose a uniform key Kt

R← {0, 1}d, and set KA
t = KB

t = Kt. Thus, in
the output of the ideal experiment, each of Y[1,T] and Y[1,T+1] is uniformly and
independently chosen, and further each Yt and Kt are replicated twice to simulate
Y A

t , Y B
t and KA

t ,KB
t respectively, as if there is no recovery error. Hence proving

security amounts to proving that the outputs of the real and ideal experiments
are indistinguishable.

We now precisely define the real and ideal experiments. For both experiments,
let X1, X2, . . . be the public random source, let K1

R← {0, 1}d be the initial shared
key, let KA

1 = KB
1 = K1, S0 = 0βN , and let A be the adversary’s algorithm.

588 Y.Z. Ding

Real Experiment:

– For t = 1, . . . ,T : On xt
R← Xt:

Let (xA
t , x

B
t) = A(xt, Y

A
[1,t−1], Y

B
[1,t−1],K

A
[1,t−1],K

B
[1,t−1],P[1,t−1], St−1), where

Δ(xA
t , xt) ≤ δN and Δ(xB

t , xt) ≤ δN . In this step we allow A to be un-
bounded in both time and space.
Let ((Y A

t ,KA
t+1),Pt) = EXT(xA

t ,K
A
t), and (Y B

t ,KB
t+1) = REC(xB

t ,K
B
t ,Pt).

Let St=A(xA
t , x

B
t , Y

A
[1,t−1], Y

B
[1,t−1],K

A
[1,t−1],K

B
[1,t−1],P[1,t−1], St−1)∈{0, 1}βN .

– Output Zreal
T = (Y A

[1,T], Y
B
[1,T],K

A
[1,T+1],K

B
[1,T+1],P[1,T], ST , X[T+1,∞)).

Ideal Experiment:

– For t = 1, . . . ,T : On xt
R← Xt:

Let (xA
t , x

B
t) = A(xt, Y[1,t−1], Y[1,t−1],K[1,t−1],K[1,t−1],P[1,t−1], St−1), where

Δ(xA
t , xt) ≤ δN and Δ(xB

t , xt) ≤ δN .
Let ((Ỹt, K̃t+1),Pt) = EXT(XA

t ,Kt).
Choose uniformly and independently Yt

R← {0, 1}m and Kt+1
R← {0, 1}d.

Let St=A(xA
t , x

B
t , Y[1,t−1], Y[1,t−1],K[1,t−1],K[1,t−1],P[1,t−1], St−1)∈{0, 1}βN .

– Output Z ideal
T = (Y[1,T], Y[1,T],K[1,T+1],K[1,T+1],P[1,T], ST , X[T+1,∞)).

Notation: From now on, we denote by XA
t and XB

t the induced sources at time
t as perceived by Alice and Bob after errors are introduced to Xt.

Definition 4. A BSM randomness extraction scheme (EXT,REC) is ε-secure
for storage rate β, entropy rate α, and error rate δ if for every two-way block
source (Xt) of entropy rate α, every adversary A with storage rate β, every
means to introduce a δ-fraction of errors to the source (Xt), and every T ∈ N,
SD(Zreal

T , Z ideal
T) ≤ T · ε, where Zreal

T and Z ideal
T are the outputs of the Real and

Ideal Experiments respectively.

We say that (EXT,REC) is t-local if for every key K ∈ {0, 1}d, both the extrac-
tion scheme EXT(x,K) and its recovery algorithm REC(x′,K,P) depend on
only t-bits of x and x′ respectively, whose positions are completely determined
by the key K.

We refer readers to the remarks after Definition 3.2 of [Vad04] for a discussion
on the definition of everlasting security in the errorless model, which apply to
the model with errors as well. Below are some more remarks that are important.

Remarks:

– A reader may notice that we have not explicitly defined the error cor-
rection property of a BSM randomness extraction scheme. However, by a
careful inspection, it is not hard to see that the security property as de-
fined in Definition 4 implies error correction. That is, if (EXT,REC) is
ε-secure, then for every two-way block source (Xt) of entropy rate α, for

Error Correction in the Bounded Storage Model 589

error rate δ, and every T ∈ N, the probability of a single recovery er-
ror in the first T time periods in the Real Experiment, is at most Tε.
More precisely, with probability at least 1 − Tε (over the source (Xt) and
the initial common key K1

R← {0, 1}d), we have that for each t ∈ [T],
(Y A

t ,KA
t+1) = (Y B

t ,KB
t+1), where ((Y A

t ,KA
t+1),Pt) = EXT(XA

t ,KA
t), and

(Y B
t ,KB

t+1) = REC(XB
t ,KB

t ,Pt). This is because in the output Z ideal
T of the

Ideal Experiment, each Yt and Kt are replicated twice. Thus if the probabil-
ity of a recovery error in the first T time periods in the Real Experiment
is greater than Tε, then the distinguisher that simply compares the corre-
sponding components of the two inputs, and outputs 1 if and only if they are
the same, distinguishes between Zreal

T and Z ideal
T with an advantage greater

than Tε, contradicting the ε-security of (EXT,REC).
– From Definition 4, it is clear that the output Yt of an error-resilient BSM

extraction scheme can be used in place of a truly random string at time t
for general cryptographic purposes. In particular, using each Yt as a one-
time pad for time t, such an extraction scheme yields an error-resilient BSM
private-key encryption scheme secure against chosen plaintext attacks and
chosen ciphertext attacks (c.f. [NY90]), with a small decryption error.

4 Local Fuzzy Extractors and BSM Extraction

In this section, we construct local fuzzy extractors and error-resilient BSM ran-
domness extraction schemes.

4.1 Local Fuzzy Extractors

First we define fuzzy extractors, which were recently introduced by Dodis, Reyzin
and Smith [DRS04]. We slightly modify the original definition in [DRS04] to suit
our application.

Definition 5 ([DRS04] - modified). A (k, ε,δ,γ)-fuzzy extractor is a pair
FE = (EXT,REC) of algorithms, where EXT : {0, 1}n × {0, 1}d → {0, 1}m ×
{0, 1}� is an extraction algorithm and REC : {0, 1}n×{0, 1}d×{0, 1}� → {0, 1}m
is a recovery algorithm satisfying

– (Security) For every k-source X, (K,Y,P) is ε-close to (K,Um,P), where
(Y,P) = EXT(X,K), K R← {0, 1}d is a uniformly chosen seed independent
of X, and Um is independent of K and P .

– (Recovery) For every x, x′ ∈ {0, 1}n with Δ(x, x′) ≤ δn, Pr[REC(x′,K,P)=
Y] ≥ 1 − γ, where (Y,P) = EXT(x,K), and the probability is taken over
K

R← {0, 1}d.

A fuzzy extractor FE = (EXT,REC) is t-local if for every seed r ∈ {0, 1}d, both
the extraction algorithm EXT(x, r) and the recovery algorithm REC(x′, r, p)
depend on only t-bits of x and x′ respectively, whose positions are completely
determined by the seed r.

590 Y.Z. Ding

4.2 Error-Resilient BSM Extraction from Local Fuzzy Extractors

The following main theorem of this paper states that any t-local fuzzy extractor
yields a t-local error-resilient BSM randomness extraction scheme.

Theorem 1. For every t ∈ N, if LFE = (EXT,REC) is a t-local (k, ε, 2δ, γ)-
fuzzy extractor for γ < 1/2 and k = (α− β −H(δ))N − log (1/ε), where H(δ) Δ=
−δ log δ − (1 − δ) log (1− δ) is the binary entropy function, and EXT is of the
form EXT : {0, 1}N × {0, 1}d → {0, 1}m+d × {0, 1}�, then LFE is a t-local
4(ε + γ)-secure BSM randomness extraction scheme for storage rate β, entropy
rate α, and error rate δ.

Proof. (Sketch) Let LFE = (EXT,REC) be a (k, ε, 2δ, γ)-fuzzy extractor where
k = (α − β − H(δ))N − log (1/ε), γ < 1/2, and EXT is of the form EXT :
{0, 1}N × {0, 1}d → {0, 1}m+d × {0, 1}�. We prove the theorem by induction on
T . The proof builds on the framework developed in [Vad04, Lu04].

As in [Vad04], we use superscripts to distinguish between random variables in
the Real Experiment and the Ideal Experiment, e.g. Kreal

t vs. K ideal
t . We prove

by induction on T that for every T , the random variable

Zreal
T = (Y A

[1,T], Y
B
[1,T],K

A
[1,T+1],K

B
[1,T+1],P

real
[1,T], S

real
T , X[T+1,∞))

is T · 4(ε + γ)-close to

Z ideal
T = (Y ideal

[1,T] , Y
ideal
[1,T] ,K

ideal
[1,T+1],K

ideal
[1,T+1],P

ideal
[1,T] , S

ideal
T , X[T+1,∞)),

where Zreal
T and Z ideal

T are the output of the Real Experiment and the Ideal
Experiment respectively.

Recall that for each t, Y ideal
t ≡ U

(t)
m and K ideal

t ≡ U
(t)
d , where U

(t)
m (resp.

U
(t)
d) is an independent copy of Ud (resp. Um). Note again that each Y ideal

t and
K ideal

t are replicated twice in Z ideal
T .

As the induction hypothesis, suppose that Zreal
T−1 and Z ideal

T−1 are (T−1)·4(ε+γ)-
close. It follows from the definition of the Real Experiment that Zreal

T is obtained
from Zreal

T−1 by applying the function fT that:

– Computes
(XA

T , XB
T) = A(XT , Y

A
[1,T−1], Y

B
[1,T−1],K

A
[1,T−1],K

B
[1,T−1],P

real
[1,T−1], S

real
T−1),

where Δ(XA
T , XT) ≤ δN and Δ(XB

T , XT) ≤ δN .
– Computes ((Y A

T ,KA
T+1),P

real
T) = EXT(XA

T ,KA
T),

and (Y B
T ,KB

T+1) = REC(XB
T ,KB

T ,P real
T).

– Updates state
Sreal

T = A(XA
T , XB

T , Y A
[1,T−1], Y

B
[1,T−1],K

A
[1,T−1],K

B
[1,T−1],P

real
[1,T−1], S

real
T−1) ∈

{0, 1}βN
.

– Removes XT .
– Outputs Zreal

T = (Y A
[1,T], Y

B
[1,T],K

A
[1,T+1],K

B
[1,T+1],P

real
[1,T], S

real
T , X[T+1,∞)).

Applying the same function fT to Z ideal
T−1 , we get the random variable fT(Z ideal

T−1)
as follows:

Error Correction in the Bounded Storage Model 591

– Let (XA
T , XB

T) = A(XT , Y
ideal
[1,T−1], Y

ideal
[1,T−1],K

ideal
[1,T−1],K

ideal
[1,T−1],P

ideal
[1,T−1], S

ideal
T−1),

where Δ(XA
T , XT) ≤ δN and Δ(XB

T , XT) ≤ δN .
– Let ((Ỹ A

T , K̃A
T+1),P

ideal
T) = EXT(XA

T ,K ideal
T),

and (Ỹ B
T , K̃B

T+1) = REC(XB
T ,K ideal

T ,P ideal
T).

– Update state Sideal
T =

A(XA
T , XB

T , Y ideal
[1,T−1], Y

ideal
[1,T−1],K

ideal
[1,T−1],K

ideal
[1,T−1],P

ideal
[1,T−1], S

ideal
T−1) ∈ {0, 1}βN .

– Remove XT .
– Output f(Z ideal

T−1) =
(Y ideal

[1,T−1], Ỹ
A
T , Y ideal

[1,T−1], Ỹ
B
T ,K ideal

[1,T] , K̃
A
T+1,K

ideal
[1,T] , K̃

B
T+1,P

ideal
[1,T] , S

ideal
T , X[T+1,∞)).

Therefore the only places where f(Z ideal
T−1) and Z ideal

T differ are Y ideal
T vs. Ỹ A

T ,
Y ideal

T vs. Ỹ B
T , K ideal

T+1 vs. K̃A
T+1, and K ideal

T+1 vs. K̃B
T+1.

Since Zreal
T = fT (Zreal

T−1), and SD(Zreal
T−1, Z

ideal
T−1) ≤ (T − 1) · 4(ε + γ), by basic

properties of statistical distance, we have

SD(Zreal
T , Z ideal

T) = SD(fT (Zreal
T−1), Z

ideal
T)

≤ SD(fT (Zreal
T−1), fT (Z ideal

T−1)) + SD(fT (Z ideal
T−1), Z ideal

T)

≤ SD(Zreal
T−1, Z

ideal
T−1) + SD(fT (Z ideal

T−1), Z ideal
T)

≤ (T − 1) · 4(ε + γ) + SD(fT (Z ideal
T−1), Z ideal

T).

Thus to prove that SD(Zreal
T , Z ideal

T) ≤ T · 4(ε + γ), it suffices to show that
SD(fT (Z ideal

T−1), Z ideal
T) ≤ 4(ε + γ).

Let
Z ′

T
Δ= fT (Z ideal

T−1)\(Ỹ B
T , K̃B

T+1),

that is, obtained from fT (Z ideal
T−1) by removing Ỹ B

T and K̃B
T+1. Let

Z ′′
T

Δ= (Y ideal
[1,T] , Y

ideal
[1,T−1],K

ideal
[1,T+1],K

ideal
[1,T] ,P

ideal
[1,T] , S

ideal
T , X[T+1,∞])

be obtained from Z ideal
T by the same procedure, that is, by removing the second

Y ideal
T and the second K ideal

T+1 from Z ideal
T . Thus, Z ′

T and Z ′′
T are respectively

fT (Z ideal
T−1) and Z ideal

T without simulating Bob’s recovery of (Y B
T ,KB

T+1), and the
only places where Z ′

T and Z ′′
T differ are Y ideal

T vs. Ỹ A
T , and K ideal

T+1 vs. K̃A
T+1.

The next basic fact, which follows from simple counting, states that if a source
X has “sufficient” entropy, and if a source X ′ is obtained from X by changing
at most a δ fraction of bits in each x← X, then as long as δ is not too large, X ′

still has sufficient entropy.

Proposition 1. Let δ and α satisfy 0 ≤ δ < 1/2 and H(δ) < α ≤ 1, where H(·)
is the binary entropy function. If X is an αN -source taking values in {0, 1}N ,
and source X ′ is obtained from X by changing at most δN bits of each x← X,
then X ′ is a (α−H(δ))N -source.

By Proposition 1 and the two-way block structure of (Xt), we have

592 Y.Z. Ding

Corollary 1. For each t, the random variable XA
t , conditioned on all other Xt′

for t′ �= t, has entropy rate at least α−H(δ).

The following technical claims follow by manipulating statistical distance and
weak random sources.

Claim 1 SD(Z ′
T , Z

′′
T) ≤ 2ε.

The proof of Claim 1 is similar to the reasoning in the proof of Lemma 3.3 of
[Vad04]. Claim 1 follows from Corollary 1, the definition of the Ideal Experiment,
the security property of a local fuzzy extractor, and basic properties of statistical
distance and weak random sources.

Let ST denote the event that (Ỹ A
T , K̃A

T+1) = (Ỹ B
T , K̃B

T+1), i.e. the event of
correct recovery at time T in the Ideal Experiment.

Claim 2 Pr [ST] ≥ 1− γ.

Claim 2 follows from the definition of the Ideal Experiment, and the recovery
property of a local fuzzy extractor. The next claim follows from Claims 1 and 2,
as well as basic properties of statistical distance.

Claim 3 SD(fT (Z ideal
T−1)|ST

, Z ideal
T |ST

) < 4ε + 2γ.

Therefore by Claims 2 and 3, and basic properties of statistical distance,

SD(fT (Z ideal
T−1), Z ideal

T) < 4ε + 2γ + γ = 4ε + 3γ < 4 · (ε + γ),

and the theorem follows.

4.3 Construction of Local Fuzzy Extractors

In this section we construct a local fuzzy extractor from any given averaging
sampler and fuzzy extractor.

Averaging Samplers. Averaging samplers are procedures that approximate the
average of a [0, 1]-function by taking the average of the function evaluated at
sampled points determined by a random seed. We adopt the following variant of
definition in [Vad04] that makes the dependence on μ explicit.

Definition 6 ([BR94, Vad04]). A function Samp : {0, 1}r → [n]t is a (μ, θ, γ)-
averaging sampler if for every function f : [n] → [0, 1] with average value
μ = 1

n ·
∑n

i=1 f(i) ≥ μ,

Pr
(i1,...,it)←Samp(Ur)

⎡⎣1
t
·

t∑
j=1

f(ij) < μ− θ

⎤⎦ ≤ γ. (1)

Samp has distinct samples if for every x ∈ {0, 1}r, Samp(x) produces t distinct
samples.

Error Correction in the Bounded Storage Model 593

The following result, analogous to Theorem 6.3 of [Vad04], states that com-
bining an averaging sampler and a fuzzy extractor scheme yields a local fuzzy
extractor.

Theorem 2. Let α, τ, δ, θ > 0 be constants satisfying relations τ < α/3 and
θ = τ/ log (1/τ) < 1 − δ. Let Samp : {0, 1}r → [n]t be a (μ, θ, γ)-averaging
sampler with distinct samples with μ = min {(α− 2τ)/ log (1/τ), 1− δ}, and let
FE = (Ext,Rec) be a ((α − 3τ)t, ε, δ + θ, γ′)-fuzzy extractor, where Ext is of
the form Ext : {0, 1}t × {0, 1}d → {0, 1}m × {0, 1}�. Define EXT : {0, 1}n ×
{0, 1}r+d → {0, 1}m × {0, 1}� as

EXT(x, (k1, k2))
Δ= Ext(xSamp(k1), k2),

and define REC : {0, 1}n × {0, 1}r+d × {0, 1}� → {0, 1}m as

REC(x′, (k1, k2), p)
Δ= Rec(x′

Samp(k1), k2, p).

Then (EXT,REC) is a t-local (αn, ε+2 · (γ+2−Ω(τn)), δ, γ+γ′)-fuzzy extractor.

4.4 Construction of the Underlying Fuzzy Extractor

In this section, we describe a construction of (non-local) fuzzy extractors from
any given strong extractor and linear error correcting code with an efficient
syndrome decoding algorithm. The underlying ideas in the construction have
already been used in information reconciliation and privacy amplification (c.f.
[BBR88, BS93, BBCM95, CM97a]). This construction also appears in [DRS04].

Randomness Extractor. Randomness extractors are functions that extract near
perfect randomness from imperfect random sources using a short random seed.
An extractor is strong if its output remains near uniform even if the seed is given.

Definition 7 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
strong (k, ε)-extractor if for every k-source X, (Ud,Ext(X,Ud)) is ε-close to
(Ud, Um).

Syndrome Decoding. We quickly review syndrome decoding of a linear error
correcting code. Background and details on error correcting codes can be found
in standard texts (e.g. [vL99]). Let C : {0, 1}k → {0, 1}n be a linear code over
F2 with minimum distance at least 2d+1. Let H be the (n−k)×n parity check
matrix of C. For x ∈ {0, 1}n, the syndrome of x is defined as SynC(x) Δ= Hx. It
is clear that for any codeword y ∈ C and any e ∈ {0, 1}n, SynC(y⊕e) = SynC(e),
as H(y ⊕ e) = Hy ⊕ He = He. It is not hard to see that for any e ∈ {0, 1}n
with wt(e) ≤ d, for every r ∈ {0, 1}n such that SynC(r) = SynC(e), we have
wt(r) > d ≥ wt(e). Hence for any e ∈ {0, 1}n with wt(e) ≤ d, e is the unique
(minimum-weight) vector whose syndrome is SynC(e) and whose weight is at
most d. A syndrome decoder for C that decodes up to d errors is an algorithm

594 Y.Z. Ding

D that for every error pattern e ∈ {0, 1}n with wt(e) ≤ d, on input SynC(e),
outputs D(SynC(e)) = e. It is well known that any decoder for a linear code can
be converted to a syndrome decoder.

As an important application, syndrome decoding yields a communication
efficient protocol for recovering a string x held by a remote party, using a string
y that is sufficiently close to x in Hamming distance. Suppose Alice holds x ∈
{0, 1}n, Bob holds y ∈ {0, 1}n, and Δ(x, y) ≤ d. Let C : {0, 1}k → {0, 1}n be
a linear code over F2 with minimum distance at least 2d + 1, and an efficient
syndrome decoding algorithm D that decodes up to d errors. In order for Bob
to recover x,

1. Alice sends SynC(x) to Bob.
2. Bob computes s = SynC(x) ⊕ SynC(y) = SynC(x ⊕ y). Since Δ(x, y) ≤ d,

wt(x⊕ y) ≤ d.
3. Bob then decodes x⊕ y = D(s), and recovers x = x⊕ y ⊕ y.

Thus Alice sends only |SynC(x)| = n− k bits, as opposed to n bits, to Bob. The
correctness of the protocol follows from the correctness of the syndrome decoder
D: For any x, y ∈ {0, 1}n such that Δ(x, y) ≤ d, wt(x⊕ y) = Δ(x, y) ≤ d. Thus
D(SynC(x⊕ y)) = x⊕ y, and correct recovery follows.

We use Rep(D, p, y) to denote Bob’s algorithm in Steps 2 and 3 above, i.e. on
input s and y, Rep(D, p, y) computes s = p⊕ SynC(y), and outputs D(s)⊕ y.

Syndrome-Based Fuzzy Extractor. This communication efficient recovery pro-
tocol above suggests the following fuzzy extractor construction. We adopt an
unconventional terminology and say that a code C : {0, 1}ρn → {0, 1}n of rate
ρ is a (n, ρ, δ)-code if it has minimum distance at least 2δn + 1.

Lemma 1. Let C : {0, 1}ρn → {0, 1}n be a linear (n, ρ, δ)-code with an efficient
syndrome decoder D that decodes up to δn errors. Let Ext : {0, 1}n × {0, 1}d →
{0, 1}m be a strong (k′, ε)-extractor, where k′ = k− (1− ρ)n− log (1/ε′). Define
EXT : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}(1−ρ)n as

EXT(x,K) Δ= (Ext(x,K),SynC(x)),

and define

REC(x′,K, p) Δ= Ext(Rep(D, p, x′),K),

where Rep(., ., .) is defined above. Then FE = (EXT,REC) is a (k, ε + ε′, δ, 0)-
fuzzy extractor.

4.5 Choice of Ingredients

Averaging Sampler. We use the averaging sampler of Vadhan [Vad04] that is
near optimal in both randomness and sample complexity for constant μ and θ.

Error Correction in the Bounded Storage Model 595

Theorem 3 ([Vad04]). For every n ∈ N, 1 > μ > θ > 0, γ > 0, there is an
explicit (μ, θ, γ)-averaging sampler Samp : {0, 1}r → [n]t that uses

– t distinct samples for any t ∈
[
O(1

θ2 · log 1
γ), n

]
;

– r = log n
t + log 1

γ · poly(1
θ) random bits.

Strong Extractor. We use the near optimal extractor of Zuckerman [Zuc97] for
constant entropy rate.

Theorem 4 ([Zuc97]). For every constant α, ν > 0, for every n, and every ε >
exp

(
−n/2O(log∗ n)

)
, there is an explicit strong (αn, ε)-extractor Ext : {0, 1}n ×

{0, 1}d → {0, 1}m with d = O(logn + log 1
ε) and m = (1− ν) · αn.

Linear Code. We need an asymptotically good linear code with rate close to 1
and with an efficient syndrome decoder. Explicit constructions of such codes are
well known. In particular, it has been shown in [CRVW02] that the expander
codes of Sipser and Spielman [SS96], using a lossless expander of [CRVW02],
achieve a constant rate ρ that is arbitrarily close to 1, and a constant δ < 1.

Lemma 2 ([SS96, CRVW02]). For every constant ρ < 1 and every n ∈ N,
there is an explicit linear (n, ρ, δ(ρ))-code C : {0, 1}ρn → {0, 1}n, where δ = δ(ρ)
is a constant (depending on ρ). Further, C has a linear time syndrome decoder
that decodes up to δn errors.

4.6 Putting Pieces Together

In this section, we put all pieces together to yield our final local fuzzy extractor
and BSM randomness extraction scheme. First as a corollary of Lemmas 1 and
2, and Theorem 4, we have our final (non-local) fuzzy extractor.

Lemma 3. For every constant 1 ≥ α, γ, ν > 0, there is a constant δ > 0 such
that for every sufficiently large n ∈ N, and every ε > exp

(
−n/2O(log∗ n)

)
, there

is an explicit (αn, ε, δ, 0)-fuzzy extractor (EXT,REC), where EXT is of the form
EXT : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}�, with

– d = O(logn + log (1/ε)),
– m = (1− ν)αn, and
– � ≤ γm.

Next, plugging into Theorem 2 the averaging sampler of Theorem 3 and the
fuzzy extractor of Lemma 3, we have our final local fuzzy extractor.

Theorem 5. For every constant 1 ≥ α, γ, ν > 0, there is a constant δ such that
for every sufficiently large N ∈ N, ε > exp

(
−m/2O(log∗ m)

)
, and m ≤ (1−ν)αN ,

there is an explicit t-local (αN, ε, δ, ε)-fuzzy extractor FE = (EXT,REC), where
EXT is of the form EXT : {0, 1}N × {0, 1}d → {0, 1}m × {0, 1}�, with

596 Y.Z. Ding

– seed length d = log N + O(logm + log (1/ε)),
– sample size t = (1 + ν)m/α, and
– fingerprint length � ≤ γm.

Theorem 5 is the “fuzzy” analogue of Theorem 8.5 of [Vad04]. The seed length
and sample complexity (i.e. the value of t) of our local fuzzy extractor match
those of Vadhan’s (non-fuzzy) local extractor [Vad04], and thus are optimal up
to constant factors.

Finally as a corollary of Theorem 1 and Theorem 5, we have

Theorem 6. For every constant α > 0, β < α, γ > 0, and ν > 0, there
is a constant δ such that for every sufficiently large N ∈ N, sufficiently large
m ≤ (1− ν)(α− β −H(δ))N , and ε > exp

(
−m/2O(log∗ m)

)
, there is an explicit

ε-secure t-local BSM randomness extraction scheme (EXT,REC) for storage rate
β, entropy rate α, and error rate δ, where EXT is of the form EXT : {0, 1}N ×
{0, 1}d → {0, 1}m+d × {0, 1}�, with

– key length d = log N + O(logm + log (1/ε)),
– sample size t = (1 + ν)m/α′, where α′ = α− β −H(δ), and
– fingerprint length � ≤ γm.

5 Conclusion

We initiate a study of the bounded storage with errors from the public random
source that cause parties to have inconsistent view of the source. We provide a
general paradigm for constructing error-resilient BSM cryptosystems based on
averaging samplers and fuzzy extractors. By proper choice and construction of
the underlying building blocks, our general paradigm yields BSM cryptosystems
that tolerate a constant fraction of errors, attain near optimal key length and
sample complexity (i.e. the number of bits read from the source), and incur
a very small communication overhead. It is interesting to study whether the
communication overhead can be further reduced.

The recovery property of our local fuzzy extractor can be further improved
by taking advantage of the shared randomness between the extraction and the
recovery algorithms. By the method of [Lan04], a local fuzzy extractor can be
based on any explicit and list decodable (as opposed to uniquely decodable)
asymptotically good linear code with rate arbitrarily close to 1, while the seed
length increases by only O(log t + log 1/γ) bits, where t is the number of bits
read from the source, and γ is the recovery error.

Our general paradigm also yields efficient error-resilient message authentica-
tion codes (MAC) in the bounded storage model. By combining the BSM extrac-
tion scheme of Theorem 6 and an efficient information-theoretically secure MAC
(c.f. that of Krawczyk [Kra95]), we obtain an efficient error-resilient BSM MAC
that is secure against chosen message attacks [GMR89]. Our paradigm can also
be used to construct efficient error-resilient protocols for other cryptographic

Error Correction in the Bounded Storage Model 597

primitives, such as oblivious transfer and key agreement in the bounded storage
model. We leave details to the full version.

Our cryptosystems are stateful. That is, our cryptosystems do not reuse the
key, but instead update the key in a forward-secure manner. It is an interesting
open problem to construct a stateless error-resilient BSM cryptosystem with a
reusable key that matches the near optimal parameters achieved by the stateful
construction. One promising approach is to derandomize the construction of
entropically secure fuzzy extractors in [Smi04].

Another interesting open problem is to construct efficient local fuzzy extrac-
tors for other natural metrics, such as editing distance, where the sample-then-
extract paradigm fails.

Acknowledgment

I thank Michael Rabin and Salil Vadhan for numerous insightful discussions on
the bounded storage model, in particular the one that brought up the issue
of error correction. I thank Yevgeniy Dodis, Adam Smith, Salil Vadhan and
anonymous TCC referees for very helpful comments on this paper.

References

[ADR02] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting
security in the bounded storage model. IEEE Transactions on Information
Theory, 48(6):1668–1680, June 2002.

[And97] Ross Anderson. Two remarks on public key cryptology. Invited Lecture. In
4th ACM Conference on Computer and Communications Security, 1997.

[AR99] Yonatan Aumann and Michael O. Rabin. Information theoretically se-
cure communication in the limited storage space model. In Advances in
Cryptology - CRYPTO ’99, pages 65–79. Springer-Verlag, 1999.

[BBCM95] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy
amplification. IEEE Transactions on Information Theory, 41(6):1915 –
1923, 1995.

[BBR88] C. Bennett, G. Brassard, and J. Roberts. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling.
In 35th Annual IEEE Symposium on Foundations of Computer Science,
pages 276–287, November 1994.

[BS93] Gilles Brssard and Louis Salvail. Secret-key reconciliation by public dis-
cussion. In Advances in Cryptology - EUROCRYPT ’93, pages 410–423.
Springer-Verlag, 1993.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In 39th Annual IEEE Symposium on
Foundations of Computer Science, pages 493–502, November 1998.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak
randomness and probabilistic communication complexity. SIAM Journal
on Computing, 17(2):230–261, April 1988.

598 Y.Z. Ding

[CM97a] Christian Cachin and Ueli Maurer. Linking information reconciliation and
privacy amplification. Journal of Cryptology, 10(2):97–110, 1997.

[CM97b] Christian Cachin and Ueli Maurer. Unconditional security against mem-
ory bounded adversaries. In Advances in Cryptology - CRYPTO ’97, pages
292–306. Springer-Verlag, 1997.

[CRVW02] Michael R. Capalbo, Omer Reingold, Salil P. Vadhan, and Avi Wigderson.
Randomness conductors and constant-degree lossless expanders. In 34th
Annual ACM Symposium on the Theory of Computer Science, pages 659–
668, 2002.

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel.
Constant-round oblivious transfer in the bounded storage model. In 1st
Theory of Cryptography Conference – TCC ’04, pages 446–472, 2004.

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In
Advances in Cryptology – CRYPTO ’01, pages 155–170. Springer-Verlag,
August 2001.

[DM04a] Stefan Dziembowski and Ueli Maurer. On generating the initial key in
the bounded storage model. In Advances in Cryptology - EUROCRYPT
’04. Springer-Verlag, 2004.

[DM04b] Stefan Dziembowski and Ueli Maurer. Optimal randomizer efficiency in
the bounded-storage model. Journal of Cryptology, 17(1):5–26, 2004.

[DR02] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting
security (extended abstract). In 19th Annual Symposium on Theoretical
Aspects of Computer Science, pages 1–26. Springer-Verlag, March 2002.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors and
cryptography, or how to use your fingerprints. In Advances in Cryptology
- EUROCRYPT ’04. Springer-Verlag, 2004.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, February 1989.

[Gol97] Oded Goldreich. A sample of samplers: A computational perspective on
sampling. Technical Report TR97-020, Electronic Colloquium on Com-
putational Complexity, May 1997.

[Kra95] Hugo Krawczyk. New hash functions for message authentication. In Ad-
vances in Cryptology - EUROCRYPT ’95, pages 301–310. Springer-Verlag,
1995.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (al-
most) perfect. In 45th Annual Symposium on Foundations of Computer
Science, 2004.

[Lu04] Chi-Jen Lu. Encryption against space-bounded adversaries from on-line
strong extractors. Journal of Cryptology, 17(1):27–42, 2004.

[Mau92] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[MST04] Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma. Non-interactive times-
tamping in the bounded storage model. In Advances in Cryptology -
CRYPTO ’04, pages 460–476. Springer-Verlag, 2004.

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and
new constructions. Journal of Computer and System Sciences, 58(1):148–
173, 1999.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd Annual ACM Symposium on
the Theory of Computer Science, pages 427–437, 1990.

Error Correction in the Bounded Storage Model 599

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Jour-
nal of Computer and System Sciences, 52(1):43–52, 1996.

[Rab02] Michael O. Rabin. Personal communication, 2002.
[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extrac-

tors. Bulletin of the European Association for Theoretical Computer Sci-
ence, 77:67–95, 2002.

[Smi04] Adam Smith. Maintaining secrecy when information leakage is unavoid-
able. Ph.D. Thesis, MIT, 2004.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transac-
tions on Information Theory, 42(6):1710–1722, 1996.

[Vad02] Salil P. Vadhan. Randomness extractors and their many guises. In 43rd
Annual IEEE Symposium on Foundations of Computer Science, pages 9–,
November 2002. Presentation available at http://www.eecs.harvard.edu/˜
salil/extractor-focs.ppt.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryp-
tosystems in the bounded storage model. Journal of Cryptology, 17(1):43–
77, 2004.

[vL99] J.H. van Lint. Introduction to Coding Theory. Spring, 1999.
[Zuc96] David Zuckerman. Simulating BPP using a general weak random source.

Algorithmica, 16(4/5):367–391, 1996.
[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random

Structures & Algorithms, 11(4):345–367, 1997.

Characterizing Ideal Weighted Threshold Secret
Sharing

Amos Beimel1, Tamir Tassa1,2, and Enav Weinreb1

1 Dept. of Computer Science,
Ben-Gurion University, Beer Sheva, Israel

2 Division of Computer Science,
The Open University, Ra’anana, Israel

Abstract. Weighted threshold secret sharing was introduced by Shamir
in his seminal work on secret sharing. In such settings, there is a set
of users where each user is assigned a positive weight. A dealer wishes
to distribute a secret among those users so that a subset of users may
reconstruct the secret if and only if the sum of weights of its users exceeds
a certain threshold. A secret sharing scheme is ideal if the size of the
domain of shares of each user is the same as the size of the domain
of possible secrets (this is the smallest possible size for the domain of
shares). The family of subsets authorized to reconstruct the secret in a
secret sharing scheme is called an access structure. An access structure
is ideal if there exists an ideal secret sharing scheme that realizes it.

It is known that some weighted threshold access structures are not
ideal, while other nontrivial weighted threshold access structures do
have an ideal scheme that realizes them. In this work we characterize
all weighted threshold access structures that are ideal. We show that
a weighted threshold access structure is ideal if and only if it is a hi-
erarchical threshold access structure (as introduced by Simmons), or a
tripartite access structure (these structures, that we introduce here, gen-
eralize the concept of bipartite access structures due to Padró and Sáez),
or a composition of two ideal weighted threshold access structures that
are defined on smaller sets of users. We further show that in all those
cases the weighted threshold access structure may be realized by a lin-
ear ideal secret sharing scheme. The proof of our characterization relies
heavily on the strong connection between ideal secret sharing schemes
and matroids, as proved by Brickell and Davenport.

1 Introduction

A threshold secret sharing scheme enables a dealer to distribute a secret among
a set of users, by giving each user a piece of information called a share, such that
only large sets of users will be able to reconstruct the secret from the shares that
they got, while smaller sets gain no information on the secret. Threshold secret
sharing schemes were introduced and efficiently implemented, independently,
by Blakley [6] and Shamir [26]. Efficient threshold secret sharing schemes were

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 600–619, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Characterizing Ideal Weighted Threshold Secret Sharing 601

used in many cryptographic applications, e.g., Byzantine agreement [24], secure
multiparty computations [4, 11], and threshold cryptography [13].

In this paper we deal with weighted threshold secret sharing schemes. In these
schemes, considered already by Shamir [26], the users are not of the same status.
That is, each user is assigned a positive weight and a set can reconstruct the
secret if the sum of weights assigned to its users exceeds a certain threshold. As a
motivation, consider sharing a secret among the shareholders of some company,
each holding a different amount of shares. Such settings are closely related to
the concept of weighted threshold functions, which play an important role in
complexity theory and learning theory.

Ito, Saito, and Nishizeki [14] generalized the notion of secret sharing such
that there is an arbitrary monotone collection of authorized sets, called the
access structure. The requirements are that only sets in the access structure are
allowed to reconstruct the secret, while sets that are not in the access structure
should gain no information on the secret. A simple argument shows that in
every secret sharing scheme, the domain of possible shares for each user is at
least as large as the domain of possible secrets (see [17]). Shamir’s threshold
secret sharing scheme is ideal in the sense that the domain of shares of each user
coincides with the domain of possible secrets. Ideal secret sharing schemes are the
most space-efficient schemes. Some access structures do not have any ideal secret
sharing schemes that realizes them [5]. Namely, some access structures demand
share domains that are larger than the domain of secrets. Access structures that
may be realized by an ideal secret sharing scheme are called ideal. Ideal secret
sharing schemes and ideal access structures have been studied in, e.g., [1, 7,
8, 15, 18, 19, 21, 23, 25, 30, 33]. Ideal access structures are known to have certain
combinatorial properties. In particular, there is a strong relation between ideal
access structures and matroids [8].

While threshold access structures are ideal, weighted threshold access struc-
tures are not necessarily so. For example, the access structure on four users with
weights 1, 1, 1, and 2, and a threshold of 3, has no ideal secret sharing scheme
(see Example 1 for a proof). Namely, in any perfect secret sharing scheme that
realizes this access structure, the share domain of at least one user is larger than
the domain of secrets. On the other hand, there exist ideal weighted threshold
access structures, other than the trivial threshold ones. For example, consider
the access structure on nine users, where the weights are 16, 16, 17, 18, 19, 24
,24 ,24, and 24 and the threshold is 92. Even though this access structure seems
more complicated than the above access structure, it has an ideal secret shar-
ing scheme (see the full version of this paper [2]). Another example of an ideal
weighted threshold access structure is the one having weights 1, 1, 1, 1, 1, 3, 3,
and 3 and threshold 6 (see Example 2).

We give a combinatorial characterization of ideal weighted threshold access
structures. We show that a weighted threshold access structure is ideal if and only
if it is a hierarchical threshold access structure (as introduced by Simmons [27]),
or a tripartite access structure (these structures, that we introduce here, gener-
alize the bipartite access structures of Padró and Sáez [23]), or a composition of

602 A. Beimel, T. Tassa, and E. Weinreb

two ideal weighted threshold access structures that are defined on smaller sets
of users. We further show that in all those cases the weighted threshold access
structure may be realized by a linear ideal secret sharing scheme. The present
study generalizes the work of Morillo, Padró, Sáez, and Villar [21] who charac-
terized the ideal weighted threshold access structures in which all the minimal
authorized sets have at most two users. The proof of our characterization re-
lies heavily on the strong connection between ideal secret sharing schemes and
matroids, as presented in [8]. We utilize results regarding the structure of ma-
troids to understand and characterize the structure of ideal weighted threshold
access structures. An important tool in our analysis is composition of ideal access
structures, previously studied in, e.g., [1, 5, 9, 12, 20, 32].

Efficiency of Secret Sharing Schemes. Secret sharing schemes for general access
structures were defined by Ito, Saito, and Nishizeki in [14]. More efficient schemes
were presented in, e.g., [5, 7, 16, 29]. We refer the reader to [28, 31] for surveys
on secret sharing. However, for most access structures the known secret sharing
schemes are highly inefficient, that is, the size of the shares is exponential in
n, the number of users. It is not known if better schemes exist. For weighted
threshold access structures the situation is better. In a recent work [3], secret
sharing schemes were constructed for arbitrary weighted threshold access struc-
tures in which the shares are of size O(nlog n). Furthermore, under reasonable
computational assumptions, a secret sharing scheme with computational secu-
rity was constructed in [3] for every weighted threshold access structure with a
polynomial share size.

Organization. We begin in Section 2 by supplying the necessary definitions.
Then, in Section 3, we state our characterization theorem and outline its proof.
We proceed to describe in Section 4 the connection between matroids and ideal
secret sharing, and then prove, in Section 5, several properties of matroids that
are associated with weighted-threshold access structures. Thereafter, we discuss
the connection between ideal weighted threshold access structures and two fam-
ilies of access structures: hierarchical threshold access structures in Section 6,
and tripartite access structures in Section 7. Finally, in Section 8 we complete
the proof of the characterization theorem by proving that if an ideal weighted
threshold access structure is not hierarchical nor tripartite then it is a compo-
sition of two access structures on smaller sets of users. For lack of space, some
proofs are omitted. All proofs may be found in the full version of the paper [2].

2 Definitions and Notations

Definition 1 (Access Structure). Let U = {u1, . . . , un} be a set of users. A
collection Γ ⊆ 2U is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ . An access
structure is a monotone collection Γ ⊆ 2U of non-empty subsets of U . Sets in
Γ are called authorized, and sets not in Γ are called unauthorized. A set B is
called a minterm of Γ if B ∈ Γ , and for every C 	 B, the set C is unauthorized.

Characterizing Ideal Weighted Threshold Secret Sharing 603

A user u is called self-sufficient if {u} ∈ Γ . A user is called redundant if there
is no minterm that contains it. An access structure is called connected if it has
no redundant users.

Definition 2 (Secret-Sharing Scheme). Let S be a finite set of secrets, where
|S| ≥ 2. An n-user secret-sharing scheme Π with domain of secrets S is a
randomized mapping from S to a set of n-tuples

∏n
i=1 Si, where Si is called the

share-domain of ui. A dealer shares a secret s ∈ S among the n users of some
set U according to Π by first sampling a vector of shares Π(s) = (s1, . . . , sn) ∈∏n

i=1 Si, and then privately communicating each share si to the user ui. We say
that Π realizes an access structure Γ ⊆ 2U if the following requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of users.
That is, for any set B ∈ Γ (where B = {ui1 , . . . , ui|B|}), there exists a recon-
struction function ReconB : Si1 × . . . × Si|B| → S such that for every s ∈ S
and for every possible value of ΠB(s), the restriction of Π(s) to its B-entries,
ReconB(ΠB(s)) = s.

Privacy. Every unauthorized set can learn nothing about the secret (in the in-
formation theoretic sense) from their shares. Formally, for any set C �∈ Γ , for
every two secrets a, b ∈ S, and for every possible |C|-tuple of shares 〈si〉ui∈C ,

Pr[ΠC(a) = 〈si〉ui∈C] = Pr[ΠC(b) = 〈si〉ui∈C].

In every secret-sharing scheme, the size of the domain of shares of each user
is at least the size of the domain of the secrets [17], namely |Si| ≥ |S| for all
i ∈ [n]. This motivates the next definition.

Definition 3 (Ideal Access Structure). A secret-sharing scheme with do-
main of secrets S is ideal if the domain of shares of each user is S. An access
structure Γ is ideal if for some finite domain of secrets S there exists an ideal
secret sharing scheme realizing it.

Most previously known secret sharing schemes are linear. The concept of
linear secret sharing schemes was introduced by Brickell [7] in the ideal setting
and was latter generalized to non-ideal schemes. Linear schemes are equivalent
to monotone span programs [16]. In an ideal linear secret sharing scheme, the
secret is an element of a finite field, and each share is a linear combination of
the secret and some additional random field elements.

In this paper we concentrate on special access structures, so-called weighted
threshold access structures, that were already introduced in [26].

Definition 4 (Weighted Threshold Access Structure – WTAS). Let w :
U → N be a weight function on U and T ∈ N be a threshold. Define w(A) :=∑

u∈A w(u) and Γ = {A ⊆ U : w(A) ≥ T}. Then Γ is called a weighted thresh-
old access structure (WTAS) on U .

604 A. Beimel, T. Tassa, and E. Weinreb

Terminology and Notations. Throughout this paper we assume that the users
are ordered in a nondecreasing order according to their weights, i.e., w(u1) ≤
w(u2) ≤ · · · ≤ w(un). Let A = {uij

}1≤j≤k be an ordered subset of U , where
1 ≤ i1 < · · · < ik ≤ n. In order to avoid two-levelled indices, we will denote
the users in such a subset with the corresponding lower-case letter, namely,
A = {aj}1≤j≤k. We denote the first (lightest) and last (heaviest) users of A by
Amin = a1 and Amax = ak respectively. For an arbitrary ordered subset A we let
As,t = {aj}s≤j≤t denote a run-subset. If s > t then As,t = ∅. Two types of runs
that we shall meet frequently are prefixes and suffixes. A prefix of a subset A is a
run-subset of the form A1,�, while a suffix takes the form A�,k, 1 ≤ � ≤ k. A suffix
A�,k is a proper suffix of A1,k if � > 1. We conclude this section by introducing
the precedence relation ≺. When applied to users, ui ≺ uj indicates that i < j
(and, in particular, w(ui) ≤ w(uj)). This relation induces a lexicographic order
on subsets of U in the natural way.

3 Characterizing Ideal WTASs

The main result of this paper is a combinatorial characterization of ideal WTASs.
We define in Definitions 5–7 the building blocks that play an essential role in this
characterization. Using these definitions, we state Theorem 1, our main result,
that characterizes ideal WTASs. We also outline the proof of that theorem, where
the full proof is given in the subsequent sections.

3.1 Building Blocks

Definition 5 (Hierarchical Threshold Access Structure – HTAS). Let
m be an integer, U =

⋃m
i=1 Li be a partition of the set of users into a hierarchy

of m disjoint levels, and {ki}1≤i≤m be a sequence of decreasing thresholds, k1 >
k2 > · · · > km. These hierarchy and sequence of thresholds induce a hierarchical
threshold access structure (HTAS) on U :

ΓH =
{
A ⊆ U : There exists i ∈ [m] such that

∣∣A ∩ ∪m
j=iLj

∣∣ ≥ ki

}
.

That is, a set A ⊆ U is in ΓH if and only if it contains at least ki users from
the ith level and above, for some i ∈ [m]. The family of HTASs was introduced
by Simmons in [27] and further studied by Brickell who proved their ideality [7].
An explicit ideal scheme for these access structures was constructed in [33].

Remark 1. Without loss of generality, we assume that

|Li| > ki − ki+1 for every i ∈ [m− 1], and |Lm| ≥ km.

Indeed, if |Li| ≤ ki−ki+1 for some i ∈ [m−1], then the ith threshold condition in
the HTAS definition implies the (i+1)th threshold condition and, consequently,
the ith condition is redundant.

Characterizing Ideal Weighted Threshold Secret Sharing 605

Definition 6 (Tripartite Access Structure – TPAS). Let U be a set of n
users, such that U = A ∪B ∪ C, where A, B, and C are disjoint, and A and C
are nonempty. Let m, d, t be positive integers such that m > t. Then the following
is a tripartite access structure (TPAS) on U :

Δ1 = {X ⊆ U : (|X| ≥ m and |X ∩ (B ∪ C)| ≥ m− d) or |X ∩ C| ≥ t} ,

Namely, a set X is in Δ1 if either it has at least m users, (m − d) of which
are from B ∪ C, or it has at least t users from C. If |B| ≤ d + t −m, then the
following is also a tripartite access structure:

Δ2 = {X ⊆ U : (|X| ≥ m and |X ∩ C| ≥ m− d) or |X ∩ (B ∪ C)| ≥ t} .

That is, X ∈ Δ2 if either it has at least m users, (m− d) of which are from C,
or it has at least t users from B ∪ C.

TPASs, introduced herein, generalize the concept of bipartite access structure
that was presented in [23]. We show that TPASs are ideal by constructing a linear
ideal secret sharing scheme that realizes them. Our scheme is a generalization of
a scheme from [23] for bipartite access structures.

Definition 7 (Composition of Access Structures). Let U1 and U2 be dis-
joint sets of users and let Γ1 and Γ2 be access structures over U1 and U2 respec-
tively. Let u1 ∈ U1, and set U = U1 ∪U2\ {u1}. Then the composition of Γ1 and
Γ2 via u1 is

Γ = {X ⊆ U : X ∩ U1 ∈ Γ1 or (X ∩ U2 ∈ Γ2 and (X ∩ U1) ∪ {u1} ∈ Γ1)} .

3.2 The Characterization

Recall that the set U is viewed as a sequence which is ordered in a monotonic
non-decreasing order according to the weights. Let M be the lexicographically
minimal minterm of Γ (that is, M ∈ Γ is a minterm and M ≺ M ′ for all other
minterms M ′ ∈ Γ). It turns out that the form of M plays a significant role in
the characterization of Γ .

If M is a prefix of U , namely M = U1,k for some k ∈ [n], then, as we prove
in Section 6.1, the access structure is a HTAS of at most three levels. If M is
a lacunary prefix, in the sense that M = U1,k \ {u�} for 1 ≤ � < k ≤ n, then,
as we discuss in Section 7, the access structure is a TPAS. Otherwise, if M is
neither a prefix nor a lacunary prefix, the access structure is a composition of
two weighted threshold access structures over smaller sets. More specifically, we
identify a prefix U1,k, where 1 < k < n, that could be replaced by a single
substitute user u, and then show that Γ is a composition of a WTAS on U1,k

and another WTAS on Uk+1,n ∪ {u}. Since Γ is ideal, so are the two smaller
WTASs, as implied by Lemma 13. Hence, this result, which we prove in Section 8,
completes the characterization of ideal WTASs in a recursive manner. Our main
result in this paper is as follows.

606 A. Beimel, T. Tassa, and E. Weinreb

Theorem 1 (Characterization Theorem). Let U be a set of users, w be a
weight function, T be a threshold, and Γ be the corresponding WTAS. Then Γ
is ideal if and only if one of the following three conditions holds:

– The access structure Γ is a HTAS.
– The access structure Γ is a TPAS.
– The access structure Γ is a composition of Γ1 and Γ2, where Γ1 and Γ2 are

ideal WTASs defined over sets of users smaller than U .

In particular, if Γ is an ideal WTAS then there exists a linear ideal secret sharing
scheme that realizes it.

4 Matroids and Ideal Secret Sharing Schemes

Ideal secret sharing schemes and matroids are strongly related [8]. If an access
structure is ideal, there is a matroid that reflects its structure. On the other
hand, every matroid that is representable over some finite field is the reflection
of some ideal access structure. In this section we review some basic results from
the theory of matroids and describe their relation to ideal secret sharing schemes.
For more background on matroid theory the reader is referred to [22].

Matroids are a combinatorial structure that generalizes both linear spaces
and the set of circuits in an undirected graph. They are a useful tool in several
fields of theoretical computer science, e.g., optimization algorithms. A matroid
M = 〈V, I〉 is a finite set V and a collection I of subsets of V that satisfy the
following three axioms: (I1) ∅ ∈ I. (I2) If X ∈ I and Y ⊆ X then Y ∈ I. (I3)
If X and Y are members of I with |X| = |Y | + 1 then there exists an element
x ∈ X\Y such that Y ∪ {x} ∈ I. The elements of V are called the points of
the matroid and the sets in I are called the independent sets of the matroid. A
dependent set of the matroid is any subset of V that is not independent. The
minimal dependent sets are called circuits. A matroid is said to be connected if
for any two points there exists a circuit that contains both of them.

We now discuss the relations between ideal secret sharing schemes and ma-
troids. Let Γ be an access structure over a set of users U = {u1, . . . , un}. If Γ is
ideal, then, by the results of [8, 19], there exists a matroid M corresponding to
Γ . The points ofM are the users in U together with an additional point, denoted
u0, that could be thought of as representing the dealer. We denote hereinafter by
C0 = {X ∪ {u0} : X is a minterm of Γ} the set of all Γ -minterms, supplemented
by u0.

Theorem 2 ([8, 19]). Let Γ be a connected ideal access structure. Then there
exists a connected matroid M such that C0 is exactly the set of circuits of M
containing u0.

The next result implies the uniqueness of the matroid M that corresponds
to a given connected ideal access structure, as discussed in Theorem 2, and it
provides means to identify all the circuits of that matroid.

Characterizing Ideal Weighted Threshold Secret Sharing 607

Lemma 1 ([22–Theorem 4.3.2]). Let e be an element of a connected ma-
troid M and let Ce be the set of circuits of M that contain e. Then all of the
circuits of M that do not contain e are the minimal sets of the form (C1 ∪
C2)\

⋂
{C3 : C3 ∈ Ce, C3 ⊆ C1 ∪ C2} where C1 and C2 are distinct circuits in

Ce.

The unique matroid whose existence and uniqueness are guaranteed by Theo-
rem 2 and Lemma 1 is referred to as the matroid corresponding to Γ . The next
definition will enable us to explicitly define the matroid corresponding to Γ using
the authorized sets in Γ .

Definition 8 (Critical User). Let M1 and M2 be distinct minterms of Γ . A
user x ∈M1∪M2 is critical for M1∪M2 if the set M1∪M2\ {x} is unauthorized.
In addition, we define

D(M1,M2) = (M1 ∪M2)\ {x ∈M1 ∪M2 : x is critical for M1 ∪M2} .

Corollary 1. Let M1 and M2 be two distinct minterms of Γ . Then D(M1,M2)
is a dependent set of M.

Note that D(M1,M2) is a dependent set of M, but is not necessarily a circuit
ofM.

Lemma 2 ([22–Lemma 1.1.3]). Let C1 and C2 be two distinct circuits in a
matroid and e ∈ C1 ∩ C2. Then there exists a circuit C3 ⊆ (C1 ∪ C2)\ {e}.

Finally, the next lemma is applicable when adding an element to an indepen-
dent set results in a dependent set.

Lemma 3. Let I be an independent set in a matroidM and let e be an element
ofM such that I ∪{e} is dependent. ThenM has a unique circuit contained in
I ∪ {e} and that circuit contains e.

Example 1. This example shows how to use the above statements in order to
demonstrate that a given access structure is not ideal. Consider the WTAS
Γ on the set U = {u1, u2, u3, u4} with weights w(u1) = w(u2) = w(u3) =
1 and w(u4) = 2 and threshold T = 3. The minterms of Γ are {u1, u2, u3},
{u1, u4}, {u2, u4}, and {u3, u4}. It follows from Benaloh and Leichter [5] that
this access structure is not ideal.1 Assume that it is ideal and consider the
minterms M1 = {u1, u4} and M2 = {u2, u4}. The set {u1, u2} is unauthorized
and thus u4 is critical for M1∪M2. On the other hand, the users u1 and u2 are not
critical for M1 ∪M2. Therefore, by Corollary 1, the set D(M1,M2) = {u1, u2}
is a dependent set of M, the matroid corresponding to Γ . However, the set
{u1, u2, u3} is a minterm of Γ and, consequently, it is independent inM. Since
{u1, u2} ⊂ {u1, u2, u3}, we arrive at the absurd conclusion that a dependent set
is contained in an independent set.

1 In [10] it was shown that if the domain of secrets is S, the size of the domain of
shares of at least one user in that access structure must be at least |S|1.5. That result
improved upon previous bounds that were derived in [9].

608 A. Beimel, T. Tassa, and E. Weinreb

Definition 9 (Restriction). Let Y,X ⊆ U be two disjoint subsets of users.
The restriction of Γ that is induced by Y on X is defined as the following access
structure: ΓY,X = {Z ⊆ X : Z ∪ Y ∈ Γ} .

In other words, ΓY,X consists of all subsets of X that complete Y to an
authorized set in Γ . Since ΓY,X is defined over a smaller set of users, restrictions
can be helpful in recursively characterizing the structure of Γ . The following
known result assures us that if Γ is ideal, ΓY,X is ideal as well.

Lemma 4. Let Γ be an access structure over a set of users U . Let Y,X ⊆ U be
sets such that Y /∈ Γ and X ∩ Y = ∅. If Γ is ideal, then ΓY,X is ideal. Further-
more, if Y is independent in the matroid corresponding to Γ and if a set I ⊆ X
is independent in the matroid corresponding to ΓY,X , then I is independent in
the matroid corresponding to Γ .

Lemma 5. Let X,Y ∈ U such that X ∩ Y = ∅. If Γ is a WTAS, then ΓY,X is
a WTAS.

5 WTASs and Matroids

In this section we prove several properties of matroids that are associated with
ideal WTASs. These properties will serve us later in characterizing ideal WTASs.
Let Γ be an ideal WTAS on U = {u1, . . . , un} corresponding to a weight function
w : U → N and a threshold T . Let M be the matroid corresponding to Γ .

Lemma 6. If X = {x1, . . . , xk} ∈ Γ , it contains a suffix minterm, namely,
there exists i ∈ [k] such that Xi,k = {xi, . . . , xk} is a minterm.

Lemma 7. Let M be a minterm of Γ . Let y ∈ U\M be a user such that
w(Mmin) ≤ w(y). Then M ∪ {y} is a dependent set of M.

Proof. Let X = (M\ {Mmin}) ∪ {y} be the set that is obtained by replacing
the minimal user in M with y. Since w(X) ≥ w(M), the set X is authorized
and, thus, it contains a minterm M ′. Moreover, M �= M ′ since Mmin ∈M \M ′.
Therefore, by Corollary 1, the set M ∪M ′ = M ∪ {y} is dependent inM. ��

We show in the next lemma that whenever two minterms have the same
minimal member they must be of the same size.

Lemma 8. Let X and Y be minterms of the access structure Γ such that Xmin =
Ymin. Then |X| = |Y |.

Proof. As X and Y are minterms, they are independent sets of the matroidM.
Assume, w.l.o.g., that |X| < |Y |. Then, by Axiom (I3) of the matroid definition,
there exists y ∈ Y \X such that the set X ∪ {y} is independent. However, as
Xmin = Ymin is a user with the minimal weight in both X and Y , we have
that w(Xmin) ≤ w(y). Consequently, in view of Lemma 7, the set X ∪ {y} is
dependent. This contradiction implies that |X| = |Y |. ��

Characterizing Ideal Weighted Threshold Secret Sharing 609

It turns out that the lexicographic order on the minterms of Γ , with respect
to the relation ≺, is strongly related to dependence inM. This is demonstrated
through the following definition and lemmas.

Definition 10 (Canonical Complement). Let P be a prefix of some minterm
of Γ . Let Y ⊆ U be the lexicographically minimal set such that: (1) Pmax ≺ Ymin,
and (2) The set P ∪Y is a minterm of Γ . Then the set Y is called the canonical
complement of P .

The following lemma shows that replacing the canonical complement by a
user that precedes the first user of the canonical complement results in a depen-
dent set.

Lemma 9. Let P be a prefix of some minterm of Γ . Let Y = {y1, . . . , yt} be the
canonical complement of P , and b be a user such Pmax ≺ b ≺ y1. Then P ∪{b} is
dependent. Furthermore, the set P ∪{b} includes a unique circuit that contains b.

Proof. If P = ∅, then, since Γ is connected, there exists a minterm that starts
with u1, whence y1 = u1. Therefore, it cannot be that b ≺ y1 and thus the claim
is trivially true. Otherwise, if P �= ∅, denote by M1 the minterm M1 = P ∪ Y .
Let X2 = (M1\ {Pmax})∪{b} be the set resulting from replacing Pmax with b in
M1. Since w(Pmax) ≤ w(b), the set X2 is authorized (though not necessarily a
minterm). Let M2 be the suffix minterm contained in X2 (such a minterm exists
in view of Lemma 6). It must be that b ∈ M2, since otherwise M2 ⊆ Y , where
Y is a proper subset of a minterm and thus is unauthorized.

Let A = M1 ∪M2 = P ∪ {b} ∪ Y . We proceed to show that every user in Y
is critical for A. This will show that D(M1,M2) ⊆ (M1 ∪M2) \ Y = P ∪ {b}.
By Corollary 1, the set D(M1,M2) is dependent, thus, this will imply that also
P ∪ {b} is dependent. We also observe that it suffices to show that Ymin = y1 is
critical for A; this will imply that also all other members of Y , having weight
that is no smaller than w(y1), are also critical for A.

In view of the above, we show that y1 is critical for A. Suppose this is not
the case, namely, the set A\ {y1} is authorized. Since A\ {y1} results from M1
by replacing y1 by b where w(b) ≤ w(y1), and since M1 is a minterm, it must
be that A\ {y1} is also a minterm. But this is a contradiction to the choice of y1
as the first user in the canonical complement of P . Hence, all the elements of Y
are critical for A, and, consequently, P ∪ {b} is dependent. Since P is part of a
minterm, it must be that P is independent. Thus, by Lemma 3, the set P ∪ {b}
must contain a unique circuit that contains b. ��

The next lemma is a generalization of Lemma 9. Its proof, as well as the other
missing proofs in this paper, can be found in the full version of this paper [2].

Lemma 10. Let P be a prefix of some minterm of Γ . Let Y = {y1, . . . , yt} be the
canonical complement of P , and B = {b1, . . . , bj} be a set such that Pmax ≺ Bmin
and bj ≺ yj. Then, the set P ∪B is dependent.

610 A. Beimel, T. Tassa, and E. Weinreb

6 WTASs and HTASs

In this section we discuss the family of hierarchical threshold access structures
(HTASs), from Definition 5, and their relation to WTASs. We show that if an
ideal WTAS Γ has a minterm in the form of a prefix of U , then Γ is an HTAS.

When discussing a HTAS over some set U = {u1, . . . , un}, we shall assume
that the users in U are ordered according to their position in the hierarchy, from
the lowest level to the highest. Namely, that

Li = U�i,�i+1−1 = {u�i
, . . . , u�i+1−1} ∀i ∈ [m] (1)

for some sequence �1 = 1 < �2 < · · · < �m < �m+1 = n + 1. Given a nonempty
subset A ⊆ U , if Amin ∈ Li, then A is said to be of level i and it is denoted
by L(A) = i. Since any HTAS ΓH is ideal [7, 33], Theorem 2 implies that there
exists a matroid M that is associated with it.

Lemma 11. Let ΓH and M be an HTAS and its associated matroid. Then
U1,k1+1 is a circuit of M.

Let U be a set of users and let Γ be a monotone access structure over U that
is both a WTAS and a HTAS. Namely, on one hand, there exist a weight function
w : U → N and a threshold T ∈ N such that Γ is the corresponding WTAS,
and, on the other hand, there exists a hierarchy in U , where U =

⋃m
i=1 Li, and

thresholds k1 > k2 > · · · > km such that Γ is also the corresponding HTAS.

Lemma 12. Let Γ be both a WTAS and an HTAS. Then the HTAS-parameters
of Γ satisfy one of the following conditions: (1) m = 1. (2) m = 2 and k1 =
k2 +1. (3) m = 2 and |L1| = k1−k2 +1. (4) m ∈ {2, 3}, the level Lm is trivial,
and the restriction of ΓH to the first m− 1 levels is of the form that is described
in cases (1)-(3).

By constructing the appropriate weight function and threshold in each case,
it can be shown that any HTAS with parameters as described in Lemma 12 is
also a WTAS.

6.1 Ideal WTASs with a Prefix Minterm Are HTASs

In this section we make the first step towards proving Theorem 1. Let Γ be
an ideal WTAS over a set U of n users, corresponding to a weight function
w : U → N and a threshold T . Assume that U possesses a prefix minterm U1,k

for some k ∈ [n] (namely, there exists k ∈ [n] such that the k users of smallest
weights form a minterm). We claim that Γ is an HTAS. We first describe the
partition of U into levels and determine the corresponding thresholds. Denoting
the resulting HTAS by ΓH , we proceed to prove that Γ = ΓH .

The decomposition of U to levels will respect the order of users according to
their weights. Namely, each level will be a run of U and our goal is to determine
the transition points between one level and the subsequent one. Since U1,k is a
minterm, U1,i is authorized for every i ∈ {k, . . . , n}. By Lemma 6, for every such

Characterizing Ideal Weighted Threshold Secret Sharing 611

i there exists a run-minterm ending at ui. Let us denote the length of that run-
minterm by μi. By the non-decreasing monotonicity of the weights, we infer that
the sequence of lengths μ = (μi)k≤i≤n is monotonically non-increasing. Denote
by m the number of distinct values assumed by the sequence μ, and let us denote
those values by k1 > · · · > km. Then the HTAS ΓH is defined as follows: m is
the number of levels and ki is the ith threshold. As for the levels, we denote by
�i, where i ∈ [m], the index of the first user in the first run-minterm of length ki

(e.g., �1 = 1 since U1,k is the first run-minterm of length k = k1 and its first user
is u1); then the ith level in the hierarchy is Li = U�i,�i+1−1, where �m+1 = n+1.

We denote by Usi,ti the right-most run-minterm whose length is ki, where
i ∈ [m], and consider the set Ai = Usi+1,�i+1−1. As Usi,ti is the last minterm that
contains ki users and U�i+1,ti+1 is the first minterm that contains ki+1 users, the
set Ai consists of the last ki− ki+1 users in Li (where km+1 = 1). An important
observation is that given i ∈ [m] and uh ∈ Ai, there is no run-minterm of the
WTAS Γ that starts with uh; indeed, if Uh,j was a run-minterm then it would
be a proper subset of the minterm Usi,ti

if j ≤ ti, or a proper superset of the
minterm U�i+1,ti+1 if j ≥ ti + 1. An illustration of the construction of the levels
of the HTAS appears in Fig. 1. Next, we prove that the WTAS Γ coincides with
the HTAS ΓH described above.

6 65 5 6 6 6 30 306 6 305 5

L2 L3

A2

L1

s2

s1 t1
�2

t2
�3

�1

A1

Fig. 1. A WTAS that is also an HTAS. The example is of a WTAS with 14 users of
weights 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 30, 30, 30 and threshold T = 30. The vertical dashed
lines indicate the three levels in the corresponding HTAS (the third one being a trivial
one) and the horizontal lines indicate all of the run-minterms in that access structure

Theorem 3. Let Γ be an ideal WTAS over U that has a prefix minterm. Then
Γ is an HTAS.

Proof. Let ΓH be the HTAS as described above. We will prove that Γ = ΓH ,
thus showing that Γ is an HTAS. We start with proving that ΓH ⊆ Γ . Let
X ∈ ΓH . Then for some i ∈ [m] the set X has at least ki users from

⋃m
j=i Lj .

612 A. Beimel, T. Tassa, and E. Weinreb

Letting Bi = U�i,�i+ki−1 denote the set of the first ki users from
⋃m

j=i Lj , the
non-decreasing monotonicity of the weights implies that w(X) ≥ w(Bi). By the
construction of levels in ΓH , the set Bi is a minterm of Γ , whence w(Bi) ≥ T .
Therefore, w(X) ≥ T and, consequently, X ∈ Γ .

Conversely, assume that X /∈ ΓH . Then X has at most ki − 1 users from⋃m
j=i Lj , for every i ∈ [m]. Consider the set A =

⋃m
i=1 Ai. By the definition of

A, it has exactly ki− 1 users from
⋃m

j=i Lj , for every i ∈ [m]. Moreover, A is the
set with the maximal weight among the sets that are unauthorized in the HTAS
and thus w(X) ≤ w(A). Therefore, it suffices to show that A /∈ Γ in order to
conclude that X /∈ Γ and, thus, complete the proof.

To this end, assume that A ∈ Γ . Then A contains some minterm M ∈ Γ .
Assume that M is of level i, L(M) = i, namely, i is the lowest level for which
M ∩Li �= ∅. Then M ∩Ai is a prefix of M . In order to arrive at a contradiction,
we proceed to show that there can be no minterm that has a prefix which is a
non-empty subset of Ai.

Assume, by contradiction, that there are such minterms, and let M ′ be the
lexicographically minimal minterm of that sort. Let uh = M ′

min and let j be
the maximal index such that M ′ = Uh,j ∪ Z for some Z ⊂ U . Since uh ∈ Ai

and we observed earlier that no run-minterm starts in Ai, we conclude that
Z �= ∅ (and uj+1 ≺ Zmin because of the maximality of j). We claim that j < ti.
Indeed, if j ≥ ti, then M ′ is a proper superset of M̂ = U�i+1,ti

∪ {Zmin}. Since
w(M̂) ≥ w(U�i+1,ti+1) ≥ T , we get a contradiction since a minterm M ′ cannot
be a proper superset of an authorized set M̂ .

Next, define Q = M ′ ∪ {uj+1} \ {uj}. The set Q is authorized and, by
Lemma 6, it contains a suffix minterm M ′′ that must contain uj+1, for oth-
erwise it would be a proper subset of M ′. Therefore, M ′ ∪M ′′ = M ′ ∪{uj+1} =
Uh,j ∪ {uj+1} ∪ Z. We claim that all members of Z are critical for this union.
Assume, by contradiction, that M∗ = M ′ ∪ {uj+1} \ {z} is authorized, for some
z ∈ Z. Since w(uj+1) ≤ w(z) and M ′ was a minterm, also M∗ is a minterm. But
M∗ is a minterm that starts within Ai and M∗ ≺ M ′, thus contradicting our
choice of M ′. Hence, by Corollary 1, the set Uh,j+1 is dependent inM. However,
since si < h and j + 1 ≤ ti, this dependent set is properly contained in the
minterm Usi,ti

, leading to a contradiction. Hence, A /∈ Γ . ��

7 Ideal WTASs and TPASs

In the previous section we dealt with the case where the lexicographically min-
imal minterm of Γ is a prefix of U . Here, we handle the case where the lexico-
graphically minimal minterm of Γ is a lacunary prefix, namely, it takes the form
M = U1,d∪Ud+2,k for some 1 ≤ d ≤ k−2 and k ≤ n. We assume that there is at
least one minterm starting with the user u2, and that there are no self-sufficient
users. If this is not the case, then Γ is a simple composition of access structures
as shown in Lemma 14. We show that under these conditions, Γ is a tripartite
access structure, as defined in Definition 6. The idea of the proof is as follows:

Characterizing Ideal Weighted Threshold Secret Sharing 613

first we show that U2,k must be a minterm of Γ . Thus, the restriction of Γ to
U2,n has a prefix minterm, and consequently, by Theorem 3, it is an HTAS. This
fact enables us to deduce that Γ is a TPAS.

Theorem 4. Let Γ be an ideal WTAS with M = U1,d ∪Ud+2,k being its lexico-
graphical minimal minterm for some 1 ≤ d ≤ k − 2 and k ≤ n. If there exists
a minterm in Γ that has u2 as its minimal member and Γ has no self-sufficient
users, then Γ is a TPAS.

8 A Recursive Characterization of Ideal WTASs by
Means of Composition

8.1 WTASs and Composition of Access Structures

We begin with the following lemma that asserts that a composition of two access
structures is ideal if and only if those two access structures are ideal.

Lemma 13. Let U1 and U2 be disjoint sets. Let u1 ∈ U1, and define U = U1 ∪
U2\ {u1}. Suppose Γ1 and Γ2 are access structures over U1 and U2 respectively
such that u1 is not redundant in Γ1 and Γ2 �= ∅. Furthermore, let Γ be the
composition of Γ1 and Γ2 via u1. Then Γ is ideal if and only if both Γ1 and
Γ2 are ideal. Moreover, if both Γ1 and Γ2 have an ideal linear secret sharing
schemes, then Γ has an ideal linear secret sharing scheme.

The recursive characterization of ideal WTASs will be obtained by distin-
guishing between two types of users. Specifically, we shall identify a subset of
so-called strong users that takes the form of a suffix, S = Uk,n, where k ≥ 3,
and then the complement subset will be thought of as the subset of weak users,
W = U1,k−1. A subset of strong users will be called S-cooperative if it is unau-
thorized, but it may become authorized if we add to it some weak users.

Definition 11 (Cooperative Set). Given Y ⊆ S, if Y /∈ Γ but W ∪ Y ∈ Γ ,
then Y is called an S-cooperative set.

By Lemma 5, the access structure ΓY,W , the restriction of Γ induced by Y
on W , is a WTAS for any partition U = W ∪S and Y ⊆ S. We proceed to define
a condition on the set S, such that if it is satisfied for some suffix S = Uk,n,
where k ≥ 3, the access structure Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .

Definition 12 (Strong Set). If for any two S-cooperative sets Y1, Y2 ⊆ S, the
corresponding restrictions of Γ to W coincide, i.e. ΓY1,W = ΓY2,W , the set S is
called a strong set of users.

If S is a strong set of users, there exists an access structure on W , denoted
ΓW , such that ΓW = ΓY,W for all cooperative subsets Y ⊂ S. In that case, every
minterm M ∈ Γ is either contained in S or M ∩W ∈ ΓW . The following theorem
shows that if S is a strong set of users, Γ is a composition of two ideal WTASs.

614 A. Beimel, T. Tassa, and E. Weinreb

Theorem 5. Let Γ be an ideal WTAS over U . Suppose S = Uk,n, for some
k ≥ 3, is a strong set of users. Then Γ is a composition of two ideal WTASs,
where each access structure is defined on a set smaller than U .

Simple Compositions. We identify two simple cases where an ideal WTAS is a
composition of two ideal WTASs defined on sets smaller than U . If Γ has no
minterm that starts with u2 then every minterm that contains u1 must contain
also u2 (otherwise, we could have replaced u1 by u2 in order to get a minterm
that starts with u2). Hence, for every U3,n-cooperative set, Y ⊆ U3,n, the access
structure that Y induces on U1,2 is the same, ΓY,U1,2 = {U1,2}. Therefore, U3,n

is a strong set of users in this case. Hence, by Theorem 5, the access structure
Γ is a composition of two ideal WTASs that are defined on sets smaller than U .
If un is a self-sufficient user, it can be shown easily that Γ is a composition of
two ideal access structures, defined over smaller sets of users. To conclude, we
get the following lemma:

Lemma 14. Let Γ be an ideal WTAS over U . If Γ has self-sufficient users, or
u2 starts no minterm of Γ , then Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .

8.2 Identifying Composition Structures

In this section we show that if Γ is an ideal WTAS, but it is not one of the access
structures that were characterized in Sections 6.1 and 7, then it is a composition
of two ideal WTASs as described in Section 8.1. In view of Lemma 14, we assume
hereinafter that u2 is the minimal user in some minterm of Γ .

Let M1 be the lexicographically minimal minterm in Γ . Let ur be the maximal
user in M1. Then since Γ is neither an HTAS nor a TPAS, there must be at
least two users in U1,r−1 that are not in M1. Let u� be the minimal user in M1
such that at least two users in U1,�−1 are missing from M1, and let ud be the
maximal user in M1 such that U1,d ⊂M1. We denote the users in M1∩Ud+1,�−1,
if there are any, by Y = {y1, . . . , yt}. Note that if Y is not empty then Y is a
run of U , and y1 = ud+2. Next, if Y �= ∅ we denote the set of users of U\M1
between yt and u� (excluding those two users) by X = {x1, . . . , xs}. Otherwise,
we denote the set Ud+2,�−1 as X = {x1, . . . , xs}. Finally, we denote the users of
M1 ∩ U�,n by Z = {z1, . . . , zm}. Note that the sets X and Z are never empty,
and that z1 = u�. The above notations are depicted in Fig. 2.

We claim that either U�,n or Ud+2,n is a strong set of users. We start by parti-
tioning U into W = U1,�−1 and S = U�,n. We show that if all the S-cooperative
sets are of the same size, then ΓY1,W = ΓY2,W for every two cooperative sets
Y1, Y2 ⊆ S, namely, S is a set of strong users. If, however, that condition does
not hold, we shall show that Ud+2,n is a strong set.

Lemma 15. Every minterm of the access structure Γ that intersects W contains
at least m users from S.

Proof. Assume towards contradiction that M is a minterm that intersects W
such that |M ∩ S| < m. The minterm M1 is an independent set of size d+ t+m,

Characterizing Ideal Weighted Threshold Secret Sharing 615

u1 udu3u2 ud+1 zm xsy1. . . x1yt . . .

Y X Zu� ur
un

M1

z1

SW

U1,d

z2

Fig. 2. Notations for the composition

and thus, by Axiom (I3), every independent set of M that is smaller than
d + t + m can be expanded to an independent set of size d + t + m. Therefore,
if |M | < d + t + m, the minterm M can be expanded to an independent set I
of size d + t + m; otherwise, we set I = M . By Lemma 7, this expansion can
only be done by adding to M users that precede Mmin. As M intersects W , the
users in I\M are all from W . Hence, |I ∩ S| = |M ∩ S| ≤ m − 1. Therefore,
|I ∩W | = |I| − |I ∩ S| ≥ d + t + m− (m− 1) = d + t + 1. Next, we view M1 as
the canonical complement of the empty set (see Definition 10). Its (d+ t+ 1)th
element is z1. By Lemma 10 for P = ∅, Y = M1, and j = d + t + 1, any
d + t + 1 members of W form a dependent set. Hence I, which was assumed to
be independent, contains a dependent set, a contradiction. ��

When All S-Cooperative Sets are of the Same Size. Here we show that if all S-
cooperative sets are of the same size, namely |Z| = m, the set S is a strong set.
We accomplish this by showing that all the S-cooperative sets of size m induce
the same access structure on W , which is the access structure induced by the
S-cooperative set Z.

Lemma 16. Let V ⊆ S be an S-cooperative set. Then w(V) ≥ w(Z).

Proof. Assume towards contradiction that w(V) < w(Z) and consider the set
W ∪Z. Since Z is S-cooperative, the set W ∪Z is authorized. Thus, by Lemma 6,
it must contain a suffix minterm of the form B ∪ Z, where B is a suffix of W .
There are two possible cases: either B ∪ V is authorized, or not.

If B ∪V is authorized, then, since w(V) < w(Z), the set B ∪V is a minterm.
Hence, as B ∪ V and B ∪Z are two minterms that have the same minimal user,
Bmin, Lemma 8 implies that |V | = |Z| = m. The set B∪V is independent inM.
If |B ∪ V | < d + t + m, Axiom (I3) implies that B ∪ V can be expanded to an
independent set I of size d+ t+m; if |B ∪ V | ≥ d+ t+m, we set I = B ∪V . By
Lemma 7, all users in I\(B∪V) must be from W . Hence, I includes at least d+t
users from W . On the other hand, since |V | = |Z| = m and w(V) < w(Z), there
must be an index j such that vj ≺ zj . Since M1 is the canonical complement
of the empty set ∅, we get from Lemma 10, applied to P = ∅, Y = M1 and
B = I1,d+t+j , that the latter set is dependent. This is impossible since I is
independent. Therefore, B ∪ V cannot be authorized.

If B ∪ V is unauthorized, we let Q be the canonical complement of B. Using
Lemma 8, Lemma 15, and Lemma 10, we get that B ∪ V is dependent. On the

616 A. Beimel, T. Tassa, and E. Weinreb

other hand, since V is S-cooperative and B is a suffix of W , the set B ∪ V may
be expanded to an authorized superset by adding to it users that precede Bmin,
one by one, until the first time that we get an authorized set. This construction,
where in each stage we add a new user that is smaller than all current users in
the set, guarantees that we end up with a minterm. But a minterm of Γ cannot
contain a dependent set. Therefore, this case is not possible either. We conclude
that w(V) ≥ w(Z). ��

Lemma 17. Let V be an S-cooperative set of size m. Then ΓV,W = ΓZ,W .

Proof. By Lemma 16, w(V) ≥ w(Z). If w(V) = w(Z), the claim is trivial, since
Γ is a WTAS. Therefore, we assume that w(V) > w(Z). We first show that
U1,d ∪ Y ∪ V is a minterm of Γ . Since M1 = U1,d ∪ Y ∪ Z is authorized, the
set U1,d ∪ Y ∪ V is authorized as well. Assume it is not a minterm. Then, by
Lemma 6 it contains a suffix minterm of the form B ∪ V , where B is a suffix of
U2,d ∪Y . Let Q be the canonical complement of B. Using Lemma 8, Lemma 15,
and Lemma 10, we get that the set B ∪ Z is dependent. However, this set is
contained in U1,d ∪ Y ∪ Z, which is a minterm. This contradiction implies that
U1,d ∪ Y ∪ V is a minterm of Γ . Consequently, since U1,d ∪ Y ∪ Z is a minterm
and U2,d ∪Y ∪V is unauthorized (being a proper subset of a minterm), we infer
that w(Z) + w(u1) > w(V).

We are now ready to prove that ΓZ,W = ΓV,W . Since we deal with the case
where w(Z) < w(V), the inclusion ΓZ,W ⊆ ΓV,W is obvious. For the opposite
inclusion, it is sufficient to concentrate on minterms of ΓV,W . Let M be a minterm
of ΓV,W . Thus, M ∪ V ∈ Γ , and since M ∪ V \Mmin /∈ Γ , the set M ∪ V is a
minterm in Γ . There are two possible cases: If u1 ∈M , the minterm M ∪V must
be of the same size as M1 by Lemma 8. Since |M1| = d+ t+m and |V | = m, we
get that |M | = d+t. As M1 = U1,d∪Y ∪Z is the minimal minterm in Γ in terms
of the precedence order ≺, the weight of U1,d∪Y is minimal among all sets of size
d + t that are contained in a minterm. This implies that w(M) ≥ w(U1,d ∪ Y).
This, in turn, implies that M ∪ Z ∈ Γ and thus M ∈ ΓZ,W .

The second case is when u1 /∈ M . Assume, towards contradiction, that M ∪
Z /∈ Γ . Let Q be the canonical complement of M . Using Lemma 8, Lemma 15,
and Lemma 10, we get that the set M∪Z is dependent. However, since M∪V ∈ Γ
and w(Z) + w(u1) > w(V), we get that {u1} ∪M ∪ Z ∈ Γ . Moreover, it must
be a minterm since any proper subset of {u1} ∪M ∪ Z is of weight that does
not exceed that of the unauthorized set M ∪Z. Hence, the dependent set M ∪Z
is contained in a minterm. This contradiction implies that M ∪Z is authorized,
and thus M ∈ ΓZ,W . ��

Corollary 2. If there are no S-cooperative sets of size larger than m, then S is
a strong set.

Example 2. Consider the set U = {u1, . . . , u8}, and let Γ be a WTAS where the
weights are 1, 1, 1, 1, 1, 3 ,3 , 3 and the threshold is 6. The lexicographically

Characterizing Ideal Weighted Threshold Secret Sharing 617

minimal minterm is {u1, u2, u3, u6}, and so there is no prefix minterm and no
lacunary minterm. In this example W = U1,5 and S = U6,8 and the access
structure is a composition of a 3-out-of-5 threshold access structure on the week
side W and a 2-out-of-4 threshold access structure on S ∪ {u′}, where u′ is an
additional dummy user.

When Large S-Cooperative Sets Exist. The conclusion from Corollary 2 is that
whenever all S-cooperative sets for S = U�,n are of the same size (i.e., |Z| = m),
the set S is a strong set and, hence, by Theorem 5, the access structure Γ is
a composition of ideal WTASs that are defined over two smaller sets. Here, we
continue to deal with the case where there are S-cooperative sets of size larger
than m. In that case we identify another strong set. Specifically, we show that
Ud+2,n is a strong set of users. The analysis of the structure of Γ when large
S-cooperative sets exist is technically involved, and is omitted due to lack of
space. It appears in the full version of the paper [2].

The following lemma summarizes the results in this case.

Lemma 18. Suppose there is an S-cooperative set of size larger than m, and
there is a minterm of Γ that starts with u2. Then Ud+2,n is a strong set of users.

8.3 Proof of Theorem 1 – The Characterization Theorem

Let Γ be an ideal WTAS defined on a set of users U and let M1 be its lexico-
graphically minimal minterm. If either Γ has self-sufficient users or u2 starts no
minterm of Γ , then, by Lemma 14, the access structure Γ is a composition of
two ideal WTASs on smaller sets of users.

If M1 is a prefix then, by Theorem 3, the access structure Γ is an HTAS. If
M1 is a lacunary prefix, namely, M1 = U1,d ∪Ud+2,k for some 1 ≤ d ≤ k− 2 and
k ≤ n, then, by Theorem 4, the access structure Γ is a TPAS. Otherwise, by
Corollary 2 and Lemma 18, there exists within U a subset of strong users, and,
by Theorem 5, the access structure Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .

As for the other direction, HTASs are ideal and may be realized by linear
secret sharing schemes, as shown in [7, 33]. TPASs are also ideal and may be
realized by linear secret sharing schemes, as shown in the full version of this
paper [2]. Finally, given two ideal access structures, we showed in Lemma 13
how to construct an ideal secret sharing scheme for their composition. Hence,
the composition is also ideal. Furthermore, by Lemma 13, if the secret sharing
schemes for the two basic access structures are linear, so is the resulting scheme
for the composition of the two access structures. This completes the proof of the
characterization theorem. ��

References

1. A. Beimel and B. Chor. Universally ideal secret sharing schemes. IEEE Trans. on
Information Theory, 40(3):786–794, 1994.

618 A. Beimel, T. Tassa, and E. Weinreb

2. A. Beimel, T. Tassa, and E. Weinreb. Characterizing ideal weighted threshold
secret sharing. Technical Report 04-05, Dept. of Computer Science, Ben-Gurion
University, 2004. Available at: www.cs.bgu.ac.il/∼beimel/pub.html.

3. A. Beimel and E. Weinreb. Monotone circuits for weighted threshold functions,
2004. In preparation.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In 20th STOC, 1–10, 1988.

5. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.
In CRYPTO ’88, volume 403 of LNCS, pages 27–35. 1990.

6. G. R. Blakley. Safeguarding cryptographic keys. Proc. of the 1979 AFIPS National
Computer Conference, pages 313–317. 1979.

7. E. F. Brickell. Some ideal secret sharing schemes. Journal of Combin. Math. and
Combin. Comput., 6:105–113, 1989.

8. E. F. Brickell and D. M. Davenport. On the classification of ideal secret sharing
schemes. J. of Cryptology, 4(73):123–134, 1991.

9. E. F. Brickell and D. R. Stinson. Some improved bounds on the information rate
of perfect secret sharing schemes. J. of Cryptology, 5(3):153–166, 1992.

10. R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares
for secret sharing schemes. J. of Cryptology, 6(3):157–168, 1993.

11. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. of the 20th ACM STOC, pages 11–19, 1988.

12. R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In EUROCRYPT 2000, volume 1807 of
LNCS, pages 316–334. 2000.

13. Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In CRYPTO ’91, volume 576 of LNCS, pages 457–469. 1992.

14. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structure. In Proc. of Globecom 87, pages 99–102, 1987.

15. W. Jackson, K. M. Martin, and C. M. O’Keefe. Ideal secret sharing schemes with
multiple secrets. J. of Cryptology, 9(4):233–250, 1996.

16. M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE
Structure in Complexity Theory, pages 102–111, 1993.

17. E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems. IEEE
Trans. on Information Theory, 29(1):35–41, 1983.

18. J. Mart́i-Farré and C. Padró. Secret sharing schemes on access structures with
intersection number equal to one. 3rd SCN, vol. 2576 of LNCS, pp. 354–363. 2002.

19. K. M. Martin. Discrete Structures in the Theory of Secret Sharing. PhD thesis,
University of London, 1991.

20. K. M. Martin. New secret sharing schemes from old. J. Combin. Math. Combin.
Comput., 14:65–77, 1993.

21. P. Morillo, C. Padró, G. Sáez, and J. L. Villa. Weighted threshold secret sharing
schemes. Inform. Process. Lett., 70(5):211–216, 1999.

22. J. G. Oxley. Matroid Theory. Oxford University Press, 1992.
23. C. Padró and G. Sáez. Secret sharing schemes with bipartite access structure.

IEEE Trans. on Information Theory, 46:2596–2605, 2000.
24. M. O. Rabin. Randomized Byzantine generals. In Proc. of the 24th IEEE Symp.

on Foundations of Computer Science, pages 403–409, 1983.
25. P. D. Seymour. On secret-sharing matroids. J. of Combinatorial Theory, Series

B, 56:69–73, 1992.
26. A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

Characterizing Ideal Weighted Threshold Secret Sharing 619

27. G. J. Simmons. How to (really) share a secret. In CRYPTO ’88, volume 403 of
LNCS, pages 390–448. 1990.

28. G. J. Simmons. An introduction to shared secret and/or shared control and their
application. In Contemporary Cryptology, The Science of Information Integrity,
pages 441–497. IEEE Press, 1992.

29. G. J. Simmons, W. Jackson, and K. M. Martin. The geometry of shared secret
schemes. Bulletin of the ICA, 1:71–88, 1991.

30. J. Simonis and A. Ashikhmin. Almost affine codes. Designs, Codes and Cryptog-
raphy, 14(2):179–197, 1998.

31. D. R. Stinson. An explication of secret sharing schemes. Designs, Codes and
Cryptography, 2:357–390, 1992.

32. D. R. Stinson. New general lower bounds on the information rate of secret sharing
schemes. In CRYPTO ’92, volume 740 of LNCS, pages 168–182. 1993.

33. T. Tassa. Hierarchical threshold secret sharing. In M. Naor, editor, First Theory of
Cryptography Conference, TCC 2004, volume 2951 of LNCS, pages 473–490. 2004.

Author Index

Backes, Michael 210
Beimel, Amos 600
Ben-Or, Michael 386
Boneh, Dan 325

Cachin, Christian 210
Canetti, Ran 17, 150
Chawla, Shuchi 363
Cramer, Ronald 342

Damg̊ard, Ivan 342
Datta, Anupam 476
Dedić, Nenad 227
Ding, Yan Zong 578
Dodis, Yevgeniy 188, 556
Dwork, Cynthia 363

Freedman, Michael J. 303

Goh, Eu-Jin 325
Goldwasser, Shafi 529
González Vasco, Maŕıa Isabel 495
Groth, Jens 50

Halevi, Shai 17, 150
Hofheinz, Dennis 86
Hohenberger, Susan 264
Horodecki, Micha�l 386

Ishai, Yuval 303, 342, 445
Itkis, Gene 227

Jarecki, Stanis�law 510

Katz, Jonathan 128, 150, 188
Kharchenko, Dmitriy 529
Kiltz, Eike 283
König, Robert 407
Küsters, Ralf 476
Kushilevitz, Eyal 445

Leander, Gregor 283
Lepinski, Matt 245
Leung, Debbie W. 386
Lin, Henry 34
Lindell, Yehuda 128
Lysyanskaya, Anna 264

Malone-Lee, John 283
Manabe, Yoshifumi 426

Mart́ınez, Consuelo 495
Mayers, Dominic 386
McSherry, Frank 363
Micali, Silvio 1, 245
Micciancio, Daniele 169
Mitchell, John C. 476

Nagao, Waka 426
Naor, Moni 66
Nguyen, Minh-Huyen 457
Nissim, Kobbi 325
Nussboim, Asaf 66

Okamoto, Tatsuaki 426
Oppenheim, Jonathan 386
Ostrovsky, Rafail 445

Panjwani, Saurabh 169
Peikert, Chris 1
Pinkas, Benny 303
Prabhakaran, Manoj 104

Ramanathan, Ajith 476
Reingold, Omer 303
Renner, Renato 407
Reyzin, Leonid 227
Russell, Scott 227

Sahai, Amit 104
Saxena, Nitesh 510
Shelat, Abhi 245
Smith, Adam 363, 556
Steiner, Michael 17
Steinwandt, Rainer 495
Sudan, Madhu 1

Tassa, Tamir 600
Trevisan, Luca 34
Tromer, Eran 66

Unruh, Dominique 86

Villar, Jorge L. 495

Wee, Hoeteck 34, 363
Weinreb, Enav 600
Wilson A. David 1

	Frontmatter
	Hardness Amplification and Error Correction
	Optimal Error Correction Against Computationally Bounded Noise
	Hardness Amplification of Weakly Verifiable Puzzles
	On Hardness Amplification of One-Way Functions

	Graphs and Groups
	Cryptography in Subgroups of \mathbb{Z}_{n}^{*}
	Efficiently Constructible Huge Graphs That Preserve First Order Properties of Random Graphs

	Simulation and Secure Computation
	Comparing Two Notions of Simulatability
	Relaxing Environmental Security: Monitored Functionalities and Client-Server Computation
	Handling Expected Polynomial-Time Strategies in Simulation-Based Security Proofs

	Security of Encryption
	Adaptively-Secure, Non-interactive Public-Key Encryption
	Adaptive Security of Symbolic Encryption
	Chosen-Ciphertext Security of Multiple Encryption

	Steganography and Zero Knowledge
	Public-Key Steganography with Active Attacks
	Upper and Lower Bounds on Black-Box Steganography
	Fair-Zero Knowledge

	Secure Computation I
	How to Securely Outsource Cryptographic Computations
	Secure Computation of the Mean and Related Statistics
	Keyword Search and Oblivious Pseudorandom Functions

	Secure Computation II
	Evaluating 2-DNF Formulas on Ciphertexts
	Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation
	Toward Privacy in Public Databases

	Quantum Cryptography and Universal Composability
	The Universal Composable Security of Quantum Key Distribution
	Universally Composable Privacy Amplification Against Quantum Adversaries
	A Universally Composable Secure Channel Based on the KEM-DEM Framework

	Cryptographic Primitives and Security
	Sufficient Conditions for Collision-Resistant Hashing
	The Relationship Between Password-Authenticated Key Exchange and Other Cryptographic Primitives
	On the Relationships Between Notions of Simulation-Based Security

	Encryption and Signatures
	A New Cramer-Shoup Like Methodology for Group Based Provably Secure Encryption Schemes
	Further Simplifications in Proactive RSA Signatures
	Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem

	Information Theoretic Cryptography
	Entropic Security and the Encryption of High Entropy Messages
	Error Correction in the Bounded Storage Model
	Characterizing Ideal Weighted Threshold Secret Sharing

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

