

Lecture Notes in Computer Science 3372
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Christoph Bussler Val Tannen
Irini Fundulaki (Eds.)

Semantic Web
and Databases

Second International Workshop, SWDB 2004
Toronto, Canada, August 29-30, 2004
Revised Selected Papers

13

Volume Editors

Christoph Bussler
National University of Ireland
Digital Enterprise Research Institute (DERI)
Galway, Ireland
E-mail: Chris.Bussler@DERI.org

Val Tannen
University of Pennsylvania
Department of Computer and Information Science
200 South 33rd Street, Philadelphia, Pennsylvania 19104-6389, USA
E-mail: val@cis.upenn.edu

Irini Fundulaki
Bell Labs Research, Lucent Technologies
600 Mountain Avenue, Murray Hill, NJ 07974, USA
E-mail: fundulaki@research.bell-labs.com

Library of Congress Control Number: 2005920538

CR Subject Classification (1998): H.2, H.3, H.4, H.5, I.2, C.2.4

ISSN 0302-9743
ISBN 3-540-24576-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11390060 06/3142 5 4 3 2 1 0

SWDB 2004 Co-chairs’ Message

We would like to welcome you to the Proceedings of the 2nd International Workshop
on Semantic Web and Databases (SWDB 2004) that was held in conjunction with the
30th International Conference on Very Large Data Bases in Toronto, Canada.
 The Semantic Web is a key initiative being promoted by the World Wide Web
Consortium (W3C) as the next generation of the current Web. The objective of this
workshop series is to gain insight into the evolution of Semantic Web technologies
and their applications to databases and information management. Early commercial
applications that make use of machine-understandable metadata range from informa-
tion retrieval to Web-enabling of old-tech IBM 3270 sessions. Current developments
include metadata-based Enterprise Application Integration (EAI) systems, data mod-
elling solutions, and wireless applications. All these different areas utilize databases
and therefore the combination of Semantic Web and database technologies is
essential.
 In total, we received 47 submissions, out of which the program committee selected
14 as full papers for presentation and publication.
 SWDB 2004 shared its two very interesting and stimulating keynotes with another
one of the VLDB 2004 satellite events, the 5th Workshop on Technologies for E-
Services (TES 2004). The first keynote was given by Boualem Benatallah with the
title “Service-Oriented Computing: Opportunities and Challenges.” The second key-
note was given jointly by Alex Borgida and John Mylopoulos with the title “Data
Semantics Revisited.” The keynote speakers agreed to contribute to these proceedings
by providing articles detailing their keynote talks.
 We would like to thank all authors who submitted and presented papers at the
workshop for their hard work and the keynote speakers for their excellent contribu-
tions. We would like to thank the Program Committee members for providing (al-
most) all reviews in time, and for the quality of their reviews, as it directly reflects the
quality of the workshop and of these proceedings. Michal Zaremba did a great job
setting up and maintaining the paper management system, we owe him many thanks
for making the whole process very smooth. Finally, we would also like to thank all
workshop attendees for their active participation, which added the final ingredient to
what we believe was a very successful event.

October 2004 Christoph Bussler

Val Tannen

Workshop Organization

Program Chairs
Chris Bussler (Digital Enterprise Research Institute, Ireland)
Val Tannen (University of Pennsylvania, USA)

Steering Committee
Isabel Cruz (University of Illinois at Chicago, USA)
Vipul Kashyap (National Library of Medicine, USA)
Stefan Decker (Digital Enterprise Research Institute, Ireland)

Program Committee
Karl Aberer (EPFL, Switzerland)
Sibel Adali (Rensselaer Polytechnic Institute, USA)
Gustavo Alonso (ETH Zurich, Switzerland)
Bernd Amann (CNAM and INRIA, France)
Boualem Benatallah (University of New South Wales, Australia)
Sonia Bergamaschi (Università di Modena e Reggio Emilia, Italy)
Alex Borgida (Rutgers University, USA)
Stephane Bressan (National University of Singapore, Singapore)
Fabio Casati (HP Laboratories, USA)
Vassilis Christophides (ICS-FORTH and University of Crete, Greece)
Isabel Cruz (University of Illinois at Chicago, USA)
Umeshwar Dayal (HP Laboratories, USA)
Tim Finin (University of Maryland, Baltimore County, USA)
Irini Fundulaki (Bell Labs, USA)
Zack Ives (University of Pennsylvania, USA)
Vipul Kashyap (National Library of Medicine, USA)
Christoph Koch (Technische Universitaet Wien, Austria)
Harumi Kuno (HP Laboratories, USA)
Maurizio Lenzerini (Università di Roma “La Sapienza,” Italy)
Ling Liu (Georgia Tech, USA)
Dennis McLeod (University of Southern California, USA)
Alex Poulovassilis (Birkbeck College, UK)
William Regli (Drexel University, USA)
Jérome Siméôn (IBM T.J. Watson Research Center, USA)
Rudi Studer (Universitaet Karlsruhe, Germany)
Kevin Wilkinson (HP Laboratories, USA)

Publicity and Publications Chair
Irini Fundulaki (Bell Labs, USA)

VIII Organization

RoboCup Rescue Robot League
Adam Jacoff, National Institute of Standards and Technology, Intelligent

Systems Divition, USA
RoboCup Rescue Simulation League
Tomoichi Takahashi, Meijo University, Japan
RoboCup Junior
Luis Almeida, University of Aveiro, Portugal
Jeffrey Johnson, Open University, UK
RoboCup Websites
Ansgar Bredenfeld, AIS, Germany

Table of Contents

Service Oriented Computing: Opportunities and Challenges
Boualem Benatallah, H.R. Motahari Nezhad . 1

Data Semantics Revisited
Alexander Borgida, John Mylopoulos . 9

Dynamic Agent Composition from Semantic Web Services
Michael Czajkowski, Anna L. Buczak, Martin O. Hofman 27

Ontology-Extended Component-Based Workflows: A Framework for
Constructing Complex Workflows from Semantically Heterogeneous
Software Components

Jyotishman Pathak, Doina Caragea, Vasant G. Honavar 41

Data Procurement for Enabling Scientific Workflows: On Exploring
Inter-ant Parasitism

Shawn Bowers, David Thau, Rich Williams, Bertram Ludäscher 57

XSDL: Making XML Semantics Explicit
Shengping Liu, Jing Mei, Anbu Yue, Zuoquan Lin 64

Refining Semantic Mappings from Relational Tables to Ontologies
Yuan An, Alexander Borgida, John Mylopoulos . 84

Triadic Relations: An Algebra for the Semantic Web
Edward L. Robertson . 91

Semantically Unlocking Database Content Through Ontology-Based
Mediation

Pieter Verheyden, Jan De Bo, Robert Meersman 109

Representation and Reasoning About Changing Semantics in
Heterogeneous Data Sources

Hongwei Zhu, Stuart E. Madnick, Michael D. Siegel 127

Context Mediation in the Semantic Web: Handling OWL Ontology and
Disparity Through Context Interchange

Philip Tan, Stuart Madnick, Kian-Lee Tan . 140

X Table of Contents

HCOME: A Tool-Supported Methodology for Engineering Living
Ontologies

Konstantinos Kotis, George A. Vouros, Jerónimo Padilla Alonso 155

Query Answering by Rewriting in GLAV Data Integration Systems
Under Constraints

Andrea Cal̀ı . 167

Utilizing Resource Importance for Ranking Semantic Web Query Results
Bhuvan Bamba, Sougata Mukherjea . 185

Querying Faceted Databases
Kenneth A. Ross, Angel Janevski . 199

Constructing and Querying Peer-to-Peer Warehouses of XML Resources
Serge Abiteboul, Ioana Manolescu, Nicoleta Preda 219

Author Index . 227

Service Oriented Computing: Opportunities
and Challenges

Boualem Benatallah and H.R. Motahari Nezhad

School of Computer Science and Engineering,
The University of New South Wales,

Sydney, NSW 2052, Australia
{boualem, hamidm}@cse.unsw.edu.au

Abstract. Service oriented architectures (SOAs) are emerging as the
technologies and architectures of choice for implementing distributed sys-
tems. Recent advances and standardization efforts in SOAs provide nec-
essary building blocks for supporting the automated development and
interoperability of services. Although, standardization is crucial by no
means is sufficient. Wide spread adoption of service technologies requires
high level framework and methodology and identification of appropriate
abstractions and notations for specifying service requirements and char-
acteristics to support automated development and interoperability. In
this paper, we identify interoperability layers of SOAs, review major ap-
proaches for service development and highlight some research directions.

1 Introduction

Service-oriented architectures (SOAs) are emerging as the technologies and ar-
chitectures of choice for implementing distributed systems and performing appli-
cation integration within and across companies’ boundaries [6][7][8]. The vision
of SOAs is to allow autonomous partners to advertise their terms and capabili-
ties, and engage in peer-to-peer interactions with any other partners and enable
on demand computing through composition and outsourcing. The foundation
of SOAs lies in the modularization and visualization of system functions and
exposing them as services that: (i) can be described, advertised, and discovered
using (XML-based) standard languages and (ii) interoperate through standard
Internet protocols. SOAs are characterized by two trends that were not part
of conventional (e.g., CORBA-like) middleware. The first is that, from a tech-
nology perspective, all interacting entities are considered to be (Web) services,
even when they are in fact requesting and not providing services. This allows
uniformity in the specification language and interaction protocols (e.g., the in-
terface of both requestor and providers will be described using the Web Services
Description Language -WSDL).

The second trend, that is gathering momentum, is that of including, as part
of the service description, not only the service interface but also the business pro-
tocol supported by the service, i.e., the specification of which message exchange

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 B. Benatallah and H.R.M. Nezhad

sequences are supported by the service. The interactions between clients and
services are always structured in terms of a set of operation invocations, whose
order typically has to obey certain constraints for clients to be able to obtain
the service they need. In addition to the business protocol, a service may be
characterized by other abstractions such as security (e.g., trust negotiation) or
transaction policies that also need to be exposed as part of the service description
so that clients know how to interact with a service.

While standardization is crucial in making SOA a reality, the effective use
and widespread adoption of service technologies and standards requires: (i) high-
level frameworks and methodologies for supporting automated development and
interoperability (e.g., code generation, protocol compatibility and conformance),
and (ii) identification of appropriate abstractions and notations for specifying
service requirements and characteristics. These abstractions form the basis of
service development frameworks and methodologies.

In this paper, we identify interoperability layers of SOAs and review major
approaches for developing service-oriented applications. We also briefly outline
some directions.

2 Service Oriented Architectures: Overview and
Interoperability Layers

When services are described and interact in a standardized manner, the task of
developing complex services by composing other (basic or composite) services
is considerably simplified. Indeed, as SOA-related technologies mature, service
composition is expected to play a bigger and bigger role in service development.
Since Web services will be sought during assembly of composite services, their
functionality need to be described such that clients can discover them and eval-
uate their appropriateness and compositions. The above observations emphasize
both opportunities and needs in service development. In fact, they raise the issue
of how to support the protocol specification lifecycle, and of how to guide the
implementation (especially in the case of composite services) by starting from
protocol specifications. Business protocols and compositions are not the only
aspects presented in this paper. In addition, one of the major concerns of SOA
that is interoperability at various abstraction layers is discussed.

Let us consider a motivating example of B2B integration (B2Bi) where Com-
pany A wants to purchase a product from company B. Companies A and B after
discovering their match for business (e.g., using a public or private registry), need
to agree on the joint business process, i.e., activities, message exchange sequence
and interaction contracts, e.g., security, privacy and QoS policies. Companies A
and B also need to know and understand the content of exchanged messages. For
example, company A needs to know how to send a purchase order to B in terms
of product description, order and message structure. Finally, there might be a
way to communicate the messages that contain requests and business documents
between A and B. In the remainder of this section, we discuss interoperability
issues at the following layers: messaging, content, business protocol and policy.

Service Oriented Computing: Opportunities and Challenges 3

2.1 The Messaging Layer

This layer provides protocols and adapters for interoperable message exchange
among business partners over the network in a reliable and secure manner. A
communication protocol consists of a set of rules, which determine message for-
mat, transmission and processing for the purpose of exchanging information
between two or more services. Software applications usually have a close tie to
the syntax of protocol. In addition, it is very often the case that business part-
ners use different platforms, communication protocols or different versions of the
same protocol. For example, company A may support SOAP 1.2, while company
B supports SOAP 1.1; however, changes in SOAP 1.2 are minor and almost ex-
clusive to additions rather than modifications, e.g., adding HTTP GET method,
while SOAP 1.1 only supports HTTP POST method. These are changes in the
syntax of the protocol but affect the compatibility of communication protocols
of partners so an adapter is required to allow both systems to interoperate suc-
cessfully.

2.2 The Content Layer

This layer provides protocols, languages and mediators for interoperable and
consistent interpretation of the content of exchanged messages by hiding en-
coding, structure and semantic heterogeneities. Encoding differences arise when
two services provide the same functionality using different operation signatures,
i.e., different operation names and input/output schemas [11]. Structure hetero-
geneity happens due to presence of structure differences between the interfaces
of two or more partner services, e.g., missing/extra operations or input/output
messages in operations of one of the services. Semantic heterogeneity means that
services provide overlapping but not the same functionality or when they have
different interpretations of the same concept in exchanged business documents.
For example, the data item “Price” in an invoice document may mean inclusion
or exclusion of tax.

2.3 The Business Protocol Layer

This layer deals with the semantic of interactions between partners. The seman-
tic of interactions must be well defined such that there is no ambiguity as to
what a message may mean, what actions are allowed, what responses are ex-
pected and in what order messages should be sent. For example, if the protocol
of a client requires explicit acknowledgement when sending a purchase order
message, the protocol of the provider should support that. Interoperability at
this layer is a challenging task since it requires understanding the semantics
of external business protocols of partner services. In traditional EAI middle-
ware, e.g., CORBA-based solutions, components interface describes very little
semantics and collaborative business processes are usually agreed upon offline.
In SOAs, richer descriptions are needed, since services should be self-describing.
Automation requires rich description models but a balance between expression
power and simplicity is important for the success of the technology.

4 B. Benatallah and H.R.M. Nezhad

2.4 The Policy Layer

This layer is concerned with the matching and compliance checking of service
policies (e.g, QoS, privacy policies). Policies play a vital role in B2Bi by making
the implicit information, as in closed environments, explicit, which is essential in
autonomous environments. Policies compatibility checking is essential to find a
composition of policy assertions that allow autonomous services to interoperate.

3 State of the Art

In this section we discuss three major approaches in service-oriented architec-
tures: Web services, ebXML, and Semantic Web Services.

3.1 Web Services

Web services are self-described and autonomous software entities that can be
published, discovered, and invoked over the Internet (using XML-based stan-
dard languages and protocols). The basic technological infrastructure for Web
services is today structured around two major standards: SOAP and WSDL
(Web Services Description Language). These standards provide the building
blocks for service API description and service interoperation, the two basic el-
ements of any programmatic interaction. Web service technologies are evolving
toward being able to support more advanced functionalities including discovery,
security, transactions, reliability, and collaborative processes management. Sev-
eral (sometimes overlapping and competing) proposals have been made in this
direction, including for example UDDI (Universal Description, Discovery and
Integration), WS-Security, WS-Transaction, WS-ReliableMessaging, BPEL4WS
(Business Process Execution Language for Web Services), and WSCI (Web Ser-
vice Choreography Interface). These standards, once they mature and become
accepted, will constitute the basis on top of which developers can develop reliable
and secure communications among Web services.

At the messaging layer, Web services use SOAP for document exchange and
encapsulation of RPC-like interactions. However, the extensibility points pro-
vided in the specification are the source of interoperability issues. In addition,
incorporation of security and reliability features are still evolving. At the content
layer, WSDL describes Web services as collections of endpoints (port types). Port
types described the structure of messages the endpoint support. Port types are
not enough to define business protocols. Several efforts that recognize the need
for extending existing service description languages to cater for constraints such
as the valid sequence of service invocations exist [1]. These include work done
in standardization efforts such as WSCL (Web Services Conversation Language)
and WSCI. However, these protocol languages offer only limited primitives to
describe important abstractions such as temporal constraints (e.g., a maximum
interval between the invocation of two operations) or the implications and the
effects of service invocations from requester perspective (e.g., whether requesters
can cancel an operation and what is the cancellation fee) [3].

Service Oriented Computing: Opportunities and Challenges 5

At the business protocol layer, while proposals like BPEL4WS and WSCI
feature some support for defining the conversations that a Web service supports,
they are not entirely adequate for specifying business protocols. The conversation
functionality provided by BPEL4WS is essentially driven from its composition
nature: in other words, BPEL4WS has been primarily designed as a composition
language, in which the same formalism used for composition (a process) can also
be used for defining conversations. WS-Transaction and the OASIS Business
Transaction Protocol (BTP) also deal with conversations and in particular with
transactional conversations. However, their goal is that of providing a framework
through which services can be coordinated to enforce transactional protocols,
rather than providing conversation abstractions and high-level modeling [1].

At the policy layer, WS-Policy defines a base set of extensible constructs for
Web services to describe their policies. WS-PolicyAssertions provides an initial
set of general message-related assertions such as preferred text encoding. How-
ever, neither a high level framework and abstractions for modeling various polices
nor a methodology for analyzing relationships between policies (e.g., matching,
refinement) is provided.

To summarize, current efforts in Web services area focus on identifying dif-
ferent aspect of services such as interface descriptions, business protocols and
policies and propose specifications to cater for such requirements. However, there
is no high-level modeling framework and notation for identifying and describing
important abstractions such as transactional implications and trust negotiation.
Nor is there any framework for helping developers on where and how to apply
such abstractions, e.g., security, privacy policies in Web service environment. In
addition, the description of policies is mainly characterized by ad-hoc methods
that can be time consuming and error prone. Hence, there is a need for high-level
frameworks and tools to guide developers on how to use Web service infrastruc-
tures (e,g., standards) and provide support for automating the development,
enforcement, and evolution of protocols and polices of services.

3.2 ebXML

ebXML (Electronic Business XML) [4] presents a set of specifications and stan-
dards for collaborative B2B integration. It takes a top-down approach by al-
lowing partners to define mutually negotiated agreement at a higher level, i.e.,
business protocols and contracts, and then working down towards all the details
of how to exchange concrete messages.

At the messaging layer, partners exchange messages through the messaging
service (ebMS). ebMS extends SOAP for secure and reliable payload exchange
using existing security infrastructure (e.g., SSL, digital signatures). However, it
does not support advanced security features such as federated access control,
identity management and trust negotiation. At the content layer, ebXML uses
business documents, which consist of a set of fine-grained information items
that are interchanged as a part of business process. It allows the use of domain
vocabularies derived from standardized core components. However, the shared
documents are agreed upon collaboratively.

6 B. Benatallah and H.R.M. Nezhad

At the business protocol layer, ebXML defines collaboration protocol agree-
ments (CPAs) using informal descriptions. At the policy layer, ebXML does not
explicitly support expression of policies. However, collaboration protocol profiles
(CPPs) can be used for this purpose. A CPP defines capabilities of a party to
engage in business and so policies can be listed as the capabilities of a company
in its CPPs. In addition to the fact that ebXML does not provide for the frag-
mentation of different policies, the lacks of high level modeling and reasoning
about protocols and policies hinders the specification of relevant properties in a
way that is useful for activities such as formal analysis, consistency checking of
system functionalities, refinement and code generation, etc.

3.3 Semantic Web Services

Semantic Web aims at improving the technology to organise, search, integrate,
and evolve Web-accessible resources by using rich and machine-understandable
abstractions for the representation of resources semantics. Ontologies are pro-
posed as means to address semantic heterogeneity among Web-accessible in-
formation sources and services. Efforts in this area include the development of
ontology languages such as RDF, DAML+OIL, and OWL. In the context of Web
services, ontologies promise to take interoperability a step further by providing
rich description and modelling of services properties, capabilities, and behaviour.
OWL-S (formerly called DAML-S) [5] is an ontology for describing Web services.

OWL-S consists of three interrelated subontologies, known as the profile, pro-
cess model, and grounding. The profile describes the capabilities and parameters
of the service. The process model details both the control structure and dataflow
structure of the service required to execute a service. The grounding specifies the
details of how to access the service, via messages (e.g., communication protocol,
message formats, addressing, etc).

At the messaging layer, semantic Web services rely on the efforts in Web
services approach. At the content layer, OWL-S uses the profile. At the business
protocol layer, OWL-S uses the process model. Although, it does not cater for
important abstraction such as transactional implications, temporal constraints.

At the policy layer, OWL-S does not explicitly formalize and specify policies.
However, the profile of OWL-S can be used to express policies such as security
and privacy as a part of unbounded list of service parameters of the profile. But,
there is no consideration for fragmentation of different policie and identification
and representation of important service abstractions such as transactional im-
plications and trust negotiation. Although, it should be noted that ontologies
provide the basis for defining vocabularies to represent policies (e.g, [10] uses an
ontology-based approach for representing security policies).

4 Directions

Recent advances in Web service technologies provide necessary building blocks
for supporting the development of integrated applications within and across or-
ganizations. A number of XML-based standard languages and protocols exist

Service Oriented Computing: Opportunities and Challenges 7

today (e.g., SOAP, WSDL, BPEL). Service development tools (e.g., BPEL4WJ,
Collaxa) that support emerging standards and protocols also started to appear.
However, the effective use and widespread adoption of Web service technolo-
gies and standards requires: (i) high-level frameworks and methodologies for
supporting automated development and interoperability (e.g., code generation,
compatibility), and (ii) identification of appropriate abstractions and notations
for specifying service requirements and characteristics. These abstractions form
the basis of service development frameworks and methodologies [2].

We argue that abstracting Web services protocols will benefit several au-
tomation activities in Web services lifecycle. We believe that once the research
and development work on the aspects identified above has been completed, this
approach will result in a comprehensive methodology and platform that can
facilitate large-scale interoperation of Web services and substantially reduce ser-
vice development effort. This will foster the widespread adoption of Web service
technology and of the service-oriented computing paradigm by providing pil-
lars abstractions and mechanisms to effectively discover, integrate, and manage
services in large, autonomous, and possibly dynamic environment. It should be
noted that model driven development of applications is a well-established prac-
tice [9]. However, in terms of managing the Web service development lifecycle
and model-driven Web service development, technology is still in the early stages.
In particular, with regard to model driven approaches to Web service protocols
prior work are either [1]:

– too low-level and consequently not suitable for automating activities such
as compatibility checking, code generation, and protocol specification refine-
ment and conformance, or

– do not explicitly take important service abstractions into account, and are
consequently ineffective for automating services discovery, interoperation,
development, and evolution.

It is worth mentioning that several ongoing efforts in the area of Web ser-
vices recognize the need for the high-level specification of conversation protocols.
These efforts focus on conversation protocols compatibility and composition.
Similar approaches for protocols compatibility exist in the area of component-
based systems. These efforts provide models (e.g., pi-calculus -based languages
for component interface specifications) and algorithms (e.g., compatibility check-
ing) that can be generalized for use in Web service protocol specifications and
management. Also, in the area of business process modeling, several approaches
based on formal formalisms such as Petri nets, labeled transition graphs, and
state charts exist. However, the conversation protocol specification languages
used in these approaches do not consider important abstractions such as tempo-
ral constraints (e.g., when an operation should occur), the implications and the
effects of service invocations from requester perspective (e.g., whether requesters
can cancel an operation and what is the cancellation fee).

To summarize, effective abstracting of service protocols and policies can form
the basis of the building blocks of a scalable and agile service oriented infras-
tructure. For example, richer conversation models enable a more effective static

8 B. Benatallah and H.R.M. Nezhad

and dynamic binding, as clients can be more selective on the behavior prop-
erties of the services they bind to. Clients for instance may require that the
selected service allow the cancellation of a given operation within a certain time
interval from its completion. Other automation that will benefit from service
protocols abstraction are compatibility of protocols, validation of service com-
position models, generation of service composition skeletons, and joint analysis
of compositions and protocol specifications [1].

Acknowledgement. Authors would like to thank Fabio Casati, Farouk Toumani
and Halvard Skogsrud for their valuable contributions to this work.

References

1. Benatallah, B., Casati, F., Skogsrud, H., and Toumani, F.: Abstracting and En-
forcing Web Service Protocols. Int’l Journal of Cooperative Information Systems
(IJCIS). World Scientific, December (2004) (To appear).

2. Benatallah, B., Casati, F., Toumani, F.: Analysis and Management of Web Ser-
vice Protocols. Proceedings of the 23rd International Conference on Conceptual
Modeling (ER). Springer-Verlag, Shanghai, China, November 2004 (To appear).

3. Benatallah, B., Casati, F., Toumani, F.: Web Service Conversation Modeling: A
Cornerstone for e-Business Automation. IEEE Internet Computing, vol. 8, no. 1,
Jan/Feb (2004) 46-54.

4. ebXML: www.ebxml.org.
5. OWL-S: Semantic Markup for Web Services. www.daml.org/services/owl-s/.
6. Alonso, G., Casati, F., Kanu, H., Machiraju. V., Web Services: Concepts, Archi-

tectures, and Applications. Springer Verlag, (2004).
7. Papazoglou, M.P., and Georgakopoulos, D.: Special Issue on Service-Oriented Com-

puting. Communiocation of ACM, vol. 46, no. 10, (2003) 24-28.
8. Chung, J.Y., Lin, K.J., Mathieu, R.G.: Special Section on Web Services Comput-

ing. IEEE Computer, vol. 36, no. 10, (2003) 35-71.
9. Mellor, S., Clark, A. N., and Futagami, T.: Special issue on Model-Driven Devel-

opment. IEEE Software, vol. 20, no. 5, (2003).
10. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Autho-

rization and Privacy inSemantic Web Services. IEEE Intelligent Systems, vol. 19,
no. 4, July-Aug (2004) 50-56.

11. Ponnekanti, S., Fox, A., Interoperability Among Independently Evolving Web Ser-
vices, 5th International Middleware Conference, October, 2004.

Data Semantics Revisited

Alexander Borgida and John Mylopoulos

1 Dept. of Computer Science, Rutgers University, NJ, USA
borgida@cs.rutgers.edu

2 Dept. of Computer Science, University of Toronto, Toronto, Canada
jm@cs.toronto.edu

“ . . . It struck me that it would be good to take one thing in life and regard it
from many viewpoints, as a focus for my being, and perhaps as a penance for
alternatives missed. . . . ”
R. Zelazny: 24 Views of Mount Fuji (1985) [1]

Abstract. The problem of data semantics is establishing and maintaining the
correspondence between a data source and its intended subject matter. We review
the long history of the problem in Databases, and contrast it with recent research
on the Semantic Web. We then propose two new directions for research on the
problem and sketch some open research questions.

1 Introduction

Two panels, held at SIGMOD’98 (Seattle, June 4) and CAiSE’98 (Pisa, June 11), dis-
cussed the topic of data semantics and its place in Databases research in the next mil-
lennium. The first, titled “Next Generation Database Systems Won’t Work Without Se-
mantics” included as panelists Philip Bernstein, Umesh Dayal, John Mylopoulos (chair),
Sham Navathe and Marek Rusinkiewicz. The second one, titled “Data Semantics Can’t
Fail This Time!” included as panelists Michael Brodie, Stefano Ceri, John Mylopoulos
(chair), and Arne Solvberg.

Atypically for panels, participants to both discussions generally agreed that data
semantics will be the problem for Databases researchers to tackle in the near future.
Stefano Ceri summed up well the sentiments of the discussions by declaring that

“. . . The three most important research problems in Databases used to be ‘Per-
formance’, ‘Performance’, and ‘Performance’; in years to come, the three most
important and challenging problems will be ‘Semantics’, ‘Semantics’, and ‘Se-
mantics’ . . . ”

What is the data semantic problem? In what sense did it “fail” in the past? . . . “And why
did the experts agree – unanimously – that the situation was about to change?

We review the data semantics problem and its long history in Databases research,
noting the reasons why solutions of the past won’t work in the future. We then consider
recent work on the Semantic Web and the directions it is taking. Finally, we sketch two
new directions for research on data semantics.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 9–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

10 A. Borgida and J. Mylopoulos

2 The Problem and Its History

A data source is useful because it models some part of the real world, its subject (or
application, or domain of discourse). The problem of data semantics is establishing
and maintaining the correspondence between a data source, hereafter a model, and its
intended subject. The model may be a database storing data about employees in a com-
pany, a database schema describing parts, projects and suppliers, a website presenting
information about a university, or a plain text file describing the battle of Waterloo.

2.1 Semantic Data Models

The problem has been with us since the very early days of the Relational Model. Indeed,
within four years of the publication of Ted Codd’s classic paper [2], there were proposals
for semantic data models that were more expressive than the Relational Model and were
– therefore – capable of capturing more “world knowledge”. Specifically, in 1974 Jean-
Raymond Abrial proposed a semantic model that was, in fact, an early object-oriented
data model [3]. At the very first Very Large Data Bases conference in 1975, there was
a whole session on semantic data models, including Peter Chen’s presentation of the
Entity-Relationship (hereafter ER) model [4]. Dozens of other proposals followed, and
the race was on for ever-more expressive semantic data models that would slay the data
semantics dragon.

But how was database practice to be influenced by these proposals? Three basic
options were considered:

– Offer semantic data models through DBMS technology; this option implies building
DBMSs based on a semantic data model, e.g., an Entity-Relationship DBMS.

– Use semantic data models only during design-time – i.e., while the database is being
designed – and factor them out completely during run-time.

– Use semantic models as part of the user interface to make the contents of a database
more understandable to the end user.

For performance reasons, option two prevailed. This means that the semantics of
the data in a database were factored out from the running database system and were
distributed to its operational environment, i.e., its database administrator and its applica-
tions programs. If you wanted to know what the data really meant, you’ld have to talk to
the administrator of these data and/or check out carefully the applications that accessed
and updated these data.

Data Semantics Solution 1 Data semantics is managed by the operational environment
of a database system, i.e., its database administrator(s) and applications programs.

This is a practical solution that has worked well as long as the operational environment
of a database remains closed and relatively stable. In such a setting, the meaning of the
data can indeed be factored out from the database proper, and entrusted to the small
group of regular users and/or application programs.

Unfortunately, there is a well-known drawback to this solution: legacy data. After
years of use, organizations have found themselves time after time in a situation where

Data Semantics Revisited 11

no one knows any more what a particular database and its applications really mean. It
has been estimated that legacy data cost organizations around the world billions of euros
to maintain and reengineer.

When it comes to building database technology, Solution 1 leaves semantic issues
and semantic data models out in the cold. In this respect, research on data semantics has
largely been sidelined in database conferences since the early ’80s. Instead, semantic
data models found a place in database design methodologies. They also influenced in
a substantial way software modeling languages proposed more than a decade later,
including UML.

As noted, Solution 1 assumes that the environment of a database system remains
closed and stable. Throughout the ’90s, there was steady progress in making software
systems ever-more distributed, open, and dynamically reconfigurable. With the advent of
web technologies and standards, e-Business, peer-to-peer systems, Grid computing and
more, that trend promised to usher in a new era of computing where computer systems
were universally connected, open, dynamic and autonomic. That was the change panelists
at SIGMOD’98 and CAiSE’98 saw forthcoming. And that was the reason for predicting
renewed interest in and growing importance for the problem of data semantics.

2.2 The Semantic Web

Unlike database-resident data, Web data have until recently only been intended for
human consumption. Rightly so, Tim Berners-Lee realized that Web data can’t be made
machine-processable unless they come with a formal account of their meaning. Hence
his call for the Semantic Web, which has enjoyed considerable interest since it was made
in the Spring of 1999 [5].

This call, amplified in [6], and then taken up by many others, envisions technologies
and methodologies for attaching semantic annotations to web data, so that they can
be interpreted and reasoned about by applications. These annotations can be based on
formal ontologies of concepts and relationships that provide a formal – and hopefully
widely accepted – vocabulary for a particular domain, be it general (e.g., social actions
and interactions), or specific (e.g., manufacturing, genomic biology, or cardiology).

Although there are no generally-accepted detailed proposals of how specifically data
semantics should be represented on the semantic web, one approach might be to have
an XML document, with annotations to ontologies, as in the following example text,
where the word “seminar” is disambiguated by pointing to the concept Course in
some ontology, which is further qualified to be offered at UniTN.

“. . . The<concept subClassOf = x:Course, hasValue = [x:offeredAt
, UniTN], ...> seminar </concept> covers a lot of material about
the Greek philosophers in a short time . . . ”

Note that this makes it clear that “seminar” does not refer in this case to a one-time
lecture presented by a visitor, which is one of its other possible meanings.

There has been considerable effort and progress on formal languages for describing
metadata/ontologies. For example, the specification of the Course concept might look
as follows in the OWL ontology language [7].

12 A. Borgida and J. Mylopoulos

<owl:Class rdf:ID="Course"> ...
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#offeredAt" />
<owl:allValuesFrom rdf:resource="#School" />

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource=" #Student"/>

...
</owl:Class>

The above then provides a second vision of what constitutes a data semantics solution:

Data Semantics Solution 2 Annotate data with terms defined in a formal ontology.

There has been much less effort on the use of ontologies, and serious questions remain
concerning the scalability of the approach, i.e., can we build scalable technologies for it?
Equally questionable are our technologies/methodologies for aligning and interoperat-
ing data sources in the presence of multiple ontologies. As well, it remains an open issue
whether “mere mortals” (i.e., your average practitioner) can use expressive formal lan-
guages. Indeed, experience with formal, logic-based languages such as SQL, Datalog
and Z in other areas of Computer Science suggests otherwise. Making Semantic Web
languages widely usable will definitely require tools far beyond the state-of-the-art.

We propose to look next at a more precise variant of Solution 2, taking a careful look
at the notions of model and modeling.

3 Models and Mappings

What happens if we take to heart the notion that the data we have is a model of some
application domain? To do so, let us first take a more general look at the notion of model.
In an insightful philosophical analysis, Ladkin [8] argues, among others, that

“ . . . ‘model of’ is a ternary relationship, relating the subject S, the model M ,
and the purpose P for which the model is built . . . ”

Consider, for example, the case of a geopolitical globe as a model of the Earth. Such
a globe shows countries, borders, cities, major rivers and mountains, but not climatic
regions. In turn, a model of the Earth for the purpose of studying the motion of planets
in the solar system, would likely not be a globe, but instead would reduce our world to
a single point, corresponding to its center of gravity.

In the large majority of cases, the purpose of a model is to answer certain kinds of
questions about the subject. This means that in some ways it is possible to answer these
questions more easily/quickly/precisely in the model than in the subject itself. In such
cases, in order to describe a modeling situation we need at least the following:

– A set QS of questions about the subject world that we would like to have answered
using the model.

– The model, which is an information source, capable of answering certain questions
QM , after it has been built/evolved.

Data Semantics Revisited 13

– A mapping from questions in QS to one (or more) questions in QM , and an inverse
mapping from the answers in M to answers about the subject S.

In the example above, concerning the globe, the (informal) questions to be asked
have to do with the existence and (relative) position of features on the Earth’s surface,
but not its interior composition. The questions about the model are answered by direct
observation of the model by a human, aided perhaps by a string/ruler/compass (something
which is not possible for the life-size subject). The mapping of questions and answers
is based on the scale reduction of the Earth’s spherical surface to that of the globe.

We can apply the above framework to information systems, such as databases. Sup-
pose we have a relational database with a table indicating when courses meet. This can
be viewed as a model of the (real-world) university, for purposes of answering (natural
language) questions such as “When does a course meet?”, “When is a room free?”, but
not “Is there a projector in the room?”. The questions for the model are likely expressed
in SQL, and the answers are tables of tuples. The mapping between subject questions
and model questions is informal, in the mind of the programmer or database user. On
the other hand, if there is a natural language interface to the database, then the mapping
is in fact computed (heuristically) by the natural language processing system.

Looking at information systems, one recognizes the additional need for explicit
operators that construct and update the model itself, as the subject evolves or more
information is discovered about it. For example, in the case of the above database,
these are SQL DDL statements for defining the database schema, as well as SQL DML
statements for inserting/updating appropriate tuples. Of course, the usefulness of the
answers depends on the accuracy of this model-building activity.

To summarize, we have identified the need for the following in the case of information
models:

– a subject world, for which a set of questions QS is of interest, with answers of the
form AS .

– a model, equipped with (i) Declare operations for describing generic/schema-like
aspects of the model; (ii) Tell operations for providing detailed information about the
current state of the model; (iii) Ask operations which take queries in language(s) QM

and provide answers in language(s) AM ; (iv) a specification of how query answer-
ing depends on the told information, and for practical systems, an implementation
thereof1.

– a mapping f from a question in QS to one ore more questions in QM ;
– a mapping ∂ from answers in AM to AS .

Data Semantics Solution 3 The semantics of the data in a model resides in its abil-
ity to answer questions about the subject, and is hence captured by Declare/Tell/Ask
operations, associated languages, and mappings.

In order to better understand this approach, let us take a brief look at each of the
above components.

1 The core of such a functional view of information sources was first offered by Hector
Levesque [9].

14 A. Borgida and J. Mylopoulos

3.1 Models

We have found it useful to categorize models according to the way in which query
answering is specified. In this paper we consider intensional models, consisting of col-
lections of sentences in some formal language L. L is assumed to be equipped with an
entailment relationship |=, on which question-answering is based: the answer to a query
q is True if the collection of told sentences KB entails q. Information models based on
logical theories, such as Description Logics [10], and Ray Reiter’s reconstruction of the
Relational Data Model in First Order Logic [11] are examples of such models.

Models can also be categorized in regards to their support of partial information
(nulls, disjunction, closed/open world assumption), inconsistency, inaccuracy (errors
and bounds). Moreover, information models can be distinguished on the basis of efficacy
of query answering (formal complexity as well as practical implementation), and how
this varies depending on the languages supported by the Tell and Ask operators. These
have been key concerns of Databases and Knowledge Representation research over the
past decades.

3.2 Subjects

To begin with, the subject domain is often partitioned into (i) generic, usually time-
invariant aspects (so-called definitional or terminological component) dealing with hu-
man conceptualizations of the domain, and (ii) specific facts, describing individuals
and their inter-relationships in the current state of the world (assertional component).
These often give rise to distinct components of information models (schemas vs. tu-
ples/documents/...).

When discussing data semantics, one often hears talk about the information system
modeling “the real world”. Although in some situations data may be obtained from
sensors, in most cases the view of the world is mediated by some human being(s), so
that the subject is more appropriately viewed as human beliefs about the world. Finally,
recent developments in information processing have made not uncommon situations
such as an XML document representing data from a database, or conversely, a database
storing an XML document. In this case, the subject is itself a formal system, which
allows us to describe the mapping in a formal fashion.

For example, in a database schema designed from an ER diagram, we can think
of the entities as unary predicates, relationships as n-ary predicates, and attributes as
binary relations, and then express the mapping between the ER and relational model
using predicate logic:

db:enrolment(sname, crsId, ...) ↔ ∃X, Y.er:Students(X) ∧ er:Course(Y)∧
er:hasName(X, sname) ∧ er:hasId(X, crsId) ∧ er:EnrolledIn(X, Y) ∧ . . .

3.3 Mappings

The sets of questions QS and QM are usually infinite, and we require some finite means
for specifying the mapping from the former to the latter. This can be achieved by making
both query languages compositional, and then reducing the problem of mapping from
QS to QM to the problem of (i) relating the primitive (non-logical) terms of the two

Data Semantics Revisited 15

languages, such as their predicate symbols/schemas and constants; and (ii) providing
some kind of a homomorphic extension of this mapping to composite formulas.

There are several ways of expressing the base relationships. One approach is a rela-
tively simple specification of correspondences between components of schemas, as used
for input in the Clio system [12] or in model management [13].

A more elaborate approach, based on logic, is illustrated in the above example in-
volving the student database and ER schema, where each predicate in the model had
associated with it an expression over the subject predicates. This can be seen as an ana-
logue of the Local-as-View (LAV) approach to information integration [14, 15], where
the so-called mediated schema is the subject domain. An advantage of this approach is
that it provides a way to obtain simple atomic facts that can be told to the system in
order to build up the model. Alternatively, in analogy with the Global-as-View (GAV)
approach, each predicate of QS can be associated with an expression in QM e.g.,

er:Students(X) ↔ ∃sname.db:enrolment(sname, . . .) ∧ X = f(sname)
er:hasName(Y, N) ↔ ∃sname.db:enrolment(sname, . . .) ∧ Y = f(sname)

∧N = sname

where f is some injective function, guaranteed to return a different value for each ar-
gument, thereby ensuring a different student individual for each student name in the
enrolment database relation. An advantage of this approach is that it facilitates transla-
tion of queries from the ER subject world to the database model, in marked contrast to
the LAV approach discussed above. The – more general – GLAV approach introduced
in [16] and used, among others, in [12, 17], provides for collections of arbitrary query
pairs qS(x) and qM (y), each of which returns sets of (tuples of) substitutions, and these
can then be related in quite general ways (e.g., by set theoretic containment, membership,
or numeric comparison). In fact, [18] suggest that a mapping is an arbitrary formula in
some logical language, involving elements of the two models.

Note that in view of such options, the directionality implied by the expression “map-
ping from model M to subject S” is somewhat misleading since there are different ways
of expressing the mapping, some of which seem to be from S to M . Moreover, the
mapping from M to S is used to translate queries from S to M . Note also that in cases
other than the GAV approach, there may be no precise query translation, and one may
be reduced to approximations, as with query answering using views.

The formal (query) languages used in specifying mappings can be based on standard
First Order Logic, or subsets thereof (e.g., Datalog, SQL, Description Logics) or more
complex variants involving structure (e.g., XQuery) or higher-order aspects (e.g., Hylog,
Infinitary or Second Order Logics).

For example, suppose that part of the contents of relational tables

db:class(cId,cTitle,term)
db:enrolment(cId,sname)

concerning course enrolments, is to be published in an XML document with schema
described by the DTD2

2 We omit PCDATA elements, for brevity.

16 A. Borgida and J. Mylopoulos

<!ELEMENT catalog (course*) >
<!ELEMENT course (title, students) >
<!ELEMENT students (student*) >

A standard two-step approach is to first map the relations to simple XML trees, where
the first level corresponds to relation names, and the second level to tuples

<!ELEMENT class (ctuple*)>
<!ELEMENT ctuple (cId,cTitle)>
<!ELEMENT enrolment (etuple*)>
<!ELEMENT etuple (cId,sname)>

and then use XQuery to describe the construction of the final desired document:

<catalog>
{for $c in $db/class/ctuple
return <course>

<title> $c/cTitle </title>
<students>

{for $e in $db/enrolment/etuple where $e/cId = $c/cId
return $e/sname }

</students>
</course>

}
</catalog>

This XML document is a model of the relational database for purposes of answering
certain questions. Hence the meaning of the XML model is (should be) defined in terms
of the meaning of its predecessor, the relational database, using the mapping and the
queries to be supported. This is in line with our third take on data semantics, based on
the notion of model introduced at the beginning of this section.

A final note concerning mappings: while normally these are concerned with the inten-
sional/schema aspects of the models, it is useful to also look at the extensional/individual
aspects. In particular, mappings between ontologies, for example, tend to assume that
the individuals in the subject and model world are identical. However, we have seen that
this is more complex in the case of mappings between object-centered models such as
ER, and “flat” data models – such as relational databases – where we have to introduce
Skolem functions. In general, things can be even more complex, as in the case of a cen-
sus database about households that is used as a model for information about individuals.
Here, we need to keep a binary relation between each household and the individuals
living in it, as envisioned in [19, 20], for example.

Of course, the above framework for data semantics, based on the notions of model
and mapping, is just a recasting of voluminous previous work in databases and knowl-
edge representation. In particular, research on data integration (e.g., [14, 15, 21]) has
developed a rich framework where a mediated schema is inserted between users and
the heterogeneous information sources they are trying to access, with the users issuing
queries against the mediated schema. These are translated into queries about the original
data sources, using mappings.

Data Semantics Revisited 17

Fig. 1. The mapping continuum

4 The Mapping Continuum

Consider the following examples of modeling:

– A photograph of a landscape is a model of the landscape (its subject matter).
– A photocopy of the photograph is a model of a model of the landscape.
– A digitization of the photocopy is a model of the model of the model of the landscape
– etc.

This kind of situation, first considered by Brian Cantwell Smith [22], shows that
meaning is rarely a simple mapping from symbol to object; instead, it often involves
a continuum of (semantic) correspondences from symbol to (symbol to)* object. Suc-
ceeding sections discuss how this paradigm can be applied to information systems. This
paradigm constitutes our first attempt at a novel approach to data semantics.

4.1 The Mapping Continuum Hypothesis

Consider the chain of information models illustrated in Figure 1. In this case we have a
series of models and mappings supporting the modeling relationship:

– The ER schema is a (conceptual) model of the university domain, or at least the
part of it dealing with students. (There can be no formal mapping between the ER
schema and the (informal) domain of discourse.)

– RelationalSchema1 is a model of the ER conceptual schema, for the purpose of
queries concerning electrical and computer engineering students. (We have illus-
trated its associated in Section 3.2.)

– RelationalSchema2 is a model of the conceptual schema, for the purpose of queries
concerning computer science students.

– XML DTD1 supports queries about either CS or ECE students, and is hence a
model of both the previous relational schemas. Therefore we show arrows to both,
representing the existence of mappings. (We have given an example of the associated
mapping at the end of Section 3.3.)

18 A. Borgida and J. Mylopoulos

– RelationalSchema3 is a restricted model, dealing with graduate students in computer
science.

– XMLSchema2 is an XML version of RelationalSchema3, but it can also be used to
answer some questions directed to XML DTD1 (those relating to graduate students).
This means that there are mappings relating XMLSchema2 to both of them.

Some mappings are lineal, connecting a schema to the predecessor subject for which it
is intended to be a model. All mappings in Figure 1, except the one from XML Schema2
to XML DTD1, are lineal. Lineal mappings capture the semantics of the schema in the
third sense of data semantics, introduced in Section 3 above, and will therefore be called
semantic mappings. Note that both of the mappings for XML DTD1 are lineal, as would
be the case for data warehouses in general, and hence the semantics of such models is
more complex.

A situation described by a mapping continuum can be represented by a graph, whose
nodes are models/schemas, and whose edges are mappings. In order to avoid circularity,
the semantic mappings must form an acyclic subgraph, ending at so-called ground nodes.
Ground nodes will likely be closer to a conceptual/ontological view of the domain of
discourse, and in some sense anchor the semantics of other models. Ideally, there would
in fact be a single ground node, corresponding to an ontology of the application domain.
However, as with the semantic web, we acknowledge that agreeing on a single, universal
ontology is likely to be infeasible. We are now in position to offer a fourth version of a
solution to the data semantics problem:

Data Semantics Solution 4 Every (non-leaf) model in the semantic continuum comes
with an explicit semantic mapping to some other model, and its meaning is the compo-
sition of the mappings relating it to the ground node(s) reachable from it.

This solution leads to a research program that includes issues such as:

Mapping Composition. Since we are proposing to define the meaning of an information
source in terms of the composition of the semantic mappings emanating from it, we
must of course clarify the notion of “composition” itself. Fagin et al [18] point to at least
two possible interpretations: their own, which is query-independent, and that of [17],
which is parameterized by a query language. In our case, this parameter would naturally
be determined by the set of queries that the model is intended to answer. Additional
questions to be settled include the choice of language to express the composition of
two mappings (it may be some variant of infinitary or second order logic), and the
computability of the mapping itself, if we are trying to use it to “populate” one model
using instance data from another model.

Consistency of Semantics. In the case of graphs where nodes have multiple predecessors,
we need to consider the problem of how meaning is defined in the case when there are
multiple lineal predecessors. For example, do we want all paths to ground models or just
the individual mappings? And in general, we need to consider the issue of consistency
when there are multiple paths from a model to some other node in the continuum. In
such cases, it isn’t clear how consistency is to be defined.

Although we started from an analysis of the notion of modeling, and the correspon-
dence continuum, others have proposed similar frameworks. Research on peer-to-peer

Data Semantics Revisited 19

data management [23, 19, 20] has proposed a framework where queries to each peer
may be translated, using mappings, into queries of neighboring peers (“acquaintances”),
and this process may be repeated. The connection of peers to each other corresponds
to the mapping graph of our mapping continuum, although without a requirement for
acyclicity.

Likewise, research on data provenance [24] considers the situation where one data
source is partially populated with information from one or more antecedents, but there
are updates that need to be propagated (both backwards and forwards). Moreover, for an
answer to a given query, one wants to know the source(s) of each element of the answer.
There is an obvious mapping from a data source to its antecedents, although it is not
clear that this mapping is semantic – i.e., to what extent the latest information source’s
semantics are captured entirely by that of its antecedents.

The above areas have tended to study the problem at the same level of “semantic
abstraction” (e.g., connecting multiple relational databases). Our research program is
distinguished primarily by an emphasis on (directed) semantic mappings, and their path
to ground nodes.

4.2 A Detour on Mapping Discovery

The above framework can be interpreted as suggesting that rather than having to re-
construct the semantics of a data source every time it is needed, it might be better to
maintain/discover mappings between that data source and others. To make this scenario
work, we need some evidence that mapping discovery might be easier than semantic
reconstruction (e.g., ontology building and alignment), which we have argued is hard.

As intimated above, we believe that lineal mappings ought to be codified and pre-
served during the development of a new information source. So the ER conceptual model,
and the mapping from the relational schema designed from it, ought to be formalized
and maintained, so that it can support later data warehousing, for example (e.g., [25]).
But what if this did not happen, or if we want to find non-lineal mappings? Experience
indicates that most end-users have problems with logical formalisms, even ones as sim-
ple as Datalog. To address this problem, we need tools that help derive such mappings.
A recent successful tool of this sort is Clio [12, 26], which takes as input correspon-
dences (graphical pairings) between elements (usually columns/tags) of relational or
XML schemas, and produces a GLAV-style mapping between the two schemas that can
be used to transfer data from one information source to the other. To understand better
the mapping, examples involving specific data values might also be used as devices for
eliciting information from Clio users.

For example, in trying to transfercs:Teach information, about who teaches whom,
from source db, the user might indicate that cs:Teach.student corresponds to
db:Enroll.sname, and that cs:Teach.prof corresponds to db:Course.
instructor (since db:Enroll does not explicitly list the course instructor). In
Figure 2, this is indicated by two correspondence arrows, vc1 and vc2. Although cor-
respondences indicate connections between different schemas, it is also necessary to find
logical/semantic connections between attributes in a single schema. Clio assumes that
these are suggested by co-occurrence of attributes in a single relation, and by foreign
keys. So the db schema is augmented by foreign key information, as indicated by the

20 A. Borgida and J. Mylopoulos

Fig. 2. Schemas and their correspondences

dashed arrows in Figure 2. As a result of these foreign keys, and a chase-like process,
the right-hand side of the mapping will be

db:enroll(pname,ctitle),db:course(ctitle,instructor),
db:pupil(pname,...), db:educator(instructor,...)

while the left-hand side will be

cs:teach(prof,studntId)

and these will be connected using the equalities

instructor=prof, pname=studntId

which represent the correspondences, yielding the Horn rule

cs:teach(prof,studntId) :-
instructor=prof, pname=studntId,
db:enroll(pname,ctitle), db:course(ctitle,instructor),
db:pupil(pname,...), db:educator(instructor,...).

To summarize, the hypothesis underlying Clio is that users will find it is easier to specify
simple correspondences, and that the actual mappings desired will be among the ones
generated by the tool.

We have recently developed a tool, Maponto [27], for uncovering mappings between
relational schemas and ontologies. The tool can be used not just in cases when lineal
mappings were not preserved, but also when the ontology was independently developed
(e.g., a data warehouse or semantic web scenario). Inspired by Clio, this tool also starts
from correspondences of table columns to datatype properties in the ontology. It then
finds connections between the concepts bearing these attributes in the ontology, viewed
as a graph, and orders these connections according to total length, while keeping in mind
semantic information available in the relational schema as foreign keys. One aim of this
heuristic algorithm is to derive the “natural” mapping induced by the classical relational
schema design process from ER diagrams, in the case when the ontology is exactly the
ER schema, and the relational schema has not been de-normalized.

Data Semantics Revisited 21

5 Intentional Semantics

Traditionally, the semantics of data deals with the “what/when” aspects of a subject: what
are the objects, their inter-relationships, their groupings into concepts, and constraints
thereof. To achieve a more nuanced understanding of the semantics, it makes sense to
consider “how” aspects: distinguish (conceptual) objects that represent activities and
processes in the domain. In fact, some conceptual modeling languages proposed several
decades ago followed this approach, applying the same paradigm to describe both static
and dynamic aspects of a domain. For example, Taxis transactions [28] were classified
into taxonomies with inheritance; Taxis scripts [29] extended this to workflows, which
were Petri nets that used message passing for communication; and RML [30] used class
hierarchies to organize objects, events and assertions while specifying requirements for
a software system.

To motivate the need for more, consider a university, where an information system
maintains, among others, relations

Student(st#,nm,addr,advisor,dept,degree)
Course(crs#,crsname,instr,dept,yr,term,size)

Suppose that the enrolment process at this university requires students to sign-up for
courses at the end of one term (say, May), and pay for each course at the beginning of
the next term (say, September), once the official “add/drop” period is over. Consider now
a query such as “Find the total size of courses in a specific semester”. The meaning, and
proper use, of the answer depends on the meaning of size in table Course. If the size
was incremented every time a student signed up for a course, then the sum of the sizes
may not be an accurate reflection of the total enrolment in courses for that term, since
some students may change their mind, not pay for the course, and therefore fail to be
officially enrolled. So the sum of sizes is likely to be an overestimate of enrolments. This
may be satisfactory from the point of view of the university central administration, which
would like high enrolment figures to support its request for more Government funding.
However, this may be less than satisfactory for the university planning department, which
needs the most accurate answer possible.

Such considerations should be part of the data semantics solution because they bring
in the dimension of trust in the data we are trying to interpret. This naturally leads to
the question of how such information is to be obtained and represented. For this, it
is helpful to recall that information systems are software systems, hence subject to the
much the same development processes as other kinds of software. Now, the development
of software can be viewed as being split into several stages, including:

– Early requirements, when analysts are trying to understand an organizational setting;
this results in an organizational model.

– Late requirements, when analysts formulate (software-based) solutions needed by
the organization, resulting in contractual requirements.

– Design and development of the software system itself.

The organizational model is concerned mostly with the actors/stakeholders, their goals,
and how these are currently met/dependent. Presumably the requirements describe a
(software) actor that helps further the goals of (some) organizational stakeholders. We

22 A. Borgida and J. Mylopoulos

Fig. 3. Actors and their goals

shall use the above university setting to introduce briefly the notions of the i* notation
for capturing early requirements [31], and how this can be applied to capture design
decisions during software development, as suggested by the Tropos project [32]. The
aim of the presentation – however sketchy and speculative – is to argue for the need to
link intentions to data semantics.

To begin with, we model in Figure 3 actors (e.g., Administration) represented by
circles. Actor goals (ovals), include determining income for the forthcoming year (for
Administration). This goal can be decomposed into a number of subgoals (indicated
by edges connected by an arc), such as determining income from the government, and
income from grants. In turn, determining government income relies on estimating sizes
for courses.

Now we are ready to consider one of the novel features of i*/Tropos: in addition to
standard goals, it is possible to also model so-called softgoals, which capture general
intentions of actors, but which usually don’t lead to functional requirements for the new
system. Instead, softgoals are used to make choices between alternatives (architectures,
designs, implementations).

In the above case, one of the softgoal of the Administration actor (represented as
a cloud-like shape) is to maximize income, which in this case results in wanting to
maximize various subgoals, including course sizes. As shown in Figure 3, the Planning
department is also an actor in this setting, and it happens to also have among its subgoals
the determination of course sizes. However, its softgoals associated with its wish to know
course sizes are different in that it wants information that is as accurate as possible.
(Imagine maximize and accurate as being among a list of possible qualities, for which
a “logic” has been established.)

Before we turn to realizing these goals, we need to introduce one more bit of notation,
concerning the activities and data that are used in the implementation. Consider, in
Figure 4, the student goal of accumulating course credits. Analyzing it, we realize that
it concerns several objects – a student and some courses, so that these must become
“resources” (data objects) in the implementation. (Further implementation decisions
will represent these as relational tables such as those diagramed above in rectangles.)
At the same time, the hexagonal box, labeled take[st,crs], with an arrow pointing
to the goal, shows an activity that can be used to achieve that goal. (There may be

Data Semantics Revisited 23

Fig. 4. Goals, tasks and objects

other ways of achieving the goal, such as working or being a teaching assistant.) The
diamonds underneath, linked by crossed edges, indicate subactivities, which may be
related by double arrows marking temporal precedence. So take[st,crs], involves
among others enrol[st,crs], which in turn requires first signup[st,crs] and
then payFee[st,crs].

Consider now alternative ways of fulfilling the size[course] goal. One would
be to count how many students have signed up for the course – represented as the
activity count signups, in the hexagonal box in Figure 5. A different alternative is
to count payments. The effect of these alternatives on the two softgoals, Maximize
and Accurate, are represented by arrows labeled with + and -, indicating positive
and negative contributions towards them. From this representation it is possible to read
off that counting signups will tend to maximize course size but decrease accuracy, in
contrast to counting payments.

We also have alternative implementations for the count signups process: we
can either issue a select count(*) type of query over the enrolment relation, or
we can essentially “cache” the size of each course, by incrementing it as part of the
signup[st,crs] activity carried out by each student, as diagrammed in Figure 4.
The second approach might be more efficient from the point of view of time, and hence
contribute positively to the overall non-functional requirement of fast response time.

Data Semantics Solution 5 Data semantics involves not just the schema and operations
but also the intentions behind their design.

Note that Solution 4 dealt with data semantics by answering the question “Where did the
schema of the data come from?” Solution 5, on the other hand, focuses on intentions and
accounts for data semantics by offering a framework for answering the question “Why
is the design of the schema the way it is? What were the alternatives? Why was it chosen
among the alternatives?” This is a radical solution, to be sure. But trust is a major issue for
data that are created and used in an open, distributed environment such as the Web. And
questions of trust can’t be accounted for without bringing into the picture somehow the

24 A. Borgida and J. Mylopoulos

Fig. 5. Different activities for determining course size

intentions of the designers and the managers of an information source. Radical solutions
lead to radical research agendas. Here are some issues worth exploring:

– From goals to schemas. Traditionally, database design amounts to a series of steps
that first construct a conceptual (e.g., ER) schema, and then transform this into
a relational one through well-defined transformations. This process needs to be
augmented, so that the designer starts with stakeholder goals and softgoals and
through goal analysis generates a set of possible schema designs. The output of the
design process is now a set of schemas, along with their evaluation with respect to
a set of softgoals. Among these schemas, one is chosen for further refinement using
existing techniques. The KAOS project [33] offers a glimpse of what this design
process might look like, but focuses on the design of software rather than databases.

– Trusted query processing. Suppose that along with a query, we also specify de-
sired qualities (e.g., maximum/accurate course size numbers). Given a database
and its schema design, we’ld like to be able to tell (i) if the data in the database
“match” the desired qualities; (ii) (if not) develop techniques for populating ex-
actly/approximately alternative schema designs with the data that exist. For example,
if the Government wants accurate course size counts but is getting instead optimistic
ones from University administration, perhaps data from previous years can be used
to derive approximate, but more accurate course size counts. Such “data correction”
mechanisms are bread-and-butter for economists, journalists and political scientists.
In the era of the Semantic Web, such mechanisms can form the basis for dealing
with issues of intent and trust.

6 Conclusions

We have briefly reviewed the history of the problem of data semantics, as well as recent
research trends towards the vision of the Semantic Web, pointing out solutions that

Data Semantics Revisited 25

worked in the past, or might work in the future. We conclude from this review that
the problem of data semantics would have been with us even without the Web and its
semantic extensions. The problem arises from general trends towards open, distributed
computing, where it is no longer possible to assume that the operational environment
of an information source is closed and stable. Accordingly, we should be looking for
solutions that are general, i.e., not Web technology-specific.

We expressed concerns about current research towards ever-more expressive mod-
eling languages, both from the point of view of scalability for relevant technologies,
and usability for emerging tools. As an alternative to prevailing research directions, we
proposed a framework where the meaning of data is determined by its origin(s) through
(design-time) lineal mappings. This solution places an emphasis on schema mappings
and traceability techniques. As another alternative, we suggested concepts and design
techniques adopted from (software) Requirements Engineering for analyzing stakeholder
goals and softgoals to generate and select designs. This – admittedly radical – solution
focuses on the intentions behind a database design, as a means for understanding the data
in the database. We believe that issues of trust (in the data one is trying to understand)
will ultimately have to be dealt with in terms of intentions and stakeholders.

Acknowledgements

We are grateful toYannis Velegrakis for helpful feedback on an earlier draft of this paper,
and to Yijun Yu for his generous efforts in reformatting the presentation.

References

1. Zelazny, R.: 24 views of Mount Fuji. Isaac Asimov’s Science Fiction Magazine 7 (1985)
2. Codd, E.: A relational model for large shared data banks. Communications of the ACM 13

(1970) 377–387
3. Abrial, J.R.: Data semantics. In Klimbie, Koffeman, eds.: Data Management Systems, North-

Holland (1974)
4. Chen, P.: The entity-relationship model: Towards a unified view of data. In: Proc. International

Conference on Very Large Databases (VLDB’75). (1975)
5. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ultimate Destiny

of the World Wide Web by Its Inventor. Harper, San Francisco (1999)
6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
7. W3C: Web ontology language (owl) version 1.0, http://www.w3.org/tr/2003/wd-owl-ref-

20030331 (2003)
8. Ladkin, P.: Abstraction and modeling, research report RVS-Occ-97-04, University of Biele-

feld, 1997; http://www.rvs.uni-bielefeld.de/publications/abstracts.html#AbsMod. Technical
report (1997)

9. Levesque, H.: Foundations of a functional approach to knowledge representation. Artificial
Intelligence 23 (1984)

10. Borgida, A.: Description logics in data management. IEEE Transactions on Knowledge and
Data Engineering 7 (1995) 671–682

11. Reiter, R.: Towards a logical reconstruction of relational database theory. In M. Brodie,
J. Mylopoulos, J.S., ed.: On Conceptual Modelling, Springer-Verlag (1984) 191–233

26 A. Borgida and J. Mylopoulos

12. Miller, R., Haas, L., Hernadez, M.: Schema mapping as query discovery. In: Proc. International
Conference on Very Large Databases (VLDB’00), Cairo. (2000)

13. Pottinger, R., Bernstein, P.: Merging models based on given correspondences. In: Proc.
International Conference on Very Large Databases (VLDB’03), Berlin. (2003) 826–873

14. Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous information sources using
source descriptions. In: Proc. International Conference on Very Large Databases (VLDB’96),
Mumbay,. (1996) 251–262

15. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. International Conference
on Principles of Database Systems (PODS’02). (2002) 233–246

16. Friedman, M., Levy, A., Millstein, T.: Navigational plans for data integration. In: Proc.
National Conference on Artificial Intelligence (AAAI’99). (1999) 67–73

17. Madhavan, J., Halevy, A.: Composing mappings among data sources. In: Proc. International
Conference on Very Large Databases (VLDB’03), Berlin. (2003) 572–583

18. Fagin, R., Kolaitis, P., Popa, L., Tan, W.C.: Composing schema mappings: Second-order
dependencies to the rescue. In: Proc. International Conference on Principles of Database
Systems (PODS’04). (2004) 83–94

19. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., Zaihrayeu,
I.: Data management for peer-to-peer computing: A vision. In: Proc. SIGMOD WebDB
Workshop. (2002) 89–94

20. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. Journal of Data Semantics (2003) 153–184

21. Proceeding of semantic integration workshop, at ISWC’03, Sanibel Island, October 2003.
http://ceur-ws.org/vol-82 (2003)

22. Smith, B.C.: The correspondence continuum, TR CSLI-87-71, Stanford University. Technical
report (1987)

23. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data management
systems. In: Proc. International Conference on Data Engineering (ICDE’03). (2003)

24. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data provenance.
In: Proc. International Conference on Database Theory (ICDT’01). (2001) 316–330

25. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integration in data
warehouses. Journal of Cooperative Information Systems 10 (2001) 237–271

26. Velegrakis, Y., Miller, R., Mylopoulos, J.: Representing and querying data transformations.
In: Proc. International Conference on Data Engineering (ICDE’05), to appear. (2005)

27. An, Y., Borgida, A., Mylopoulos, J.: Refining mappings from relational tables to ontologies.
In: Proc. VLDB Workshop on the Semantic Web and Databases (SWDB’04), Toronto, August
2004. (2004)

28. Mylopoulos, J., Bernstein, P., Wong, H.: A language facility for designing database-intensive
applications. ACM Transactions on Database Systems 5 (1980) 185–207

29. Barron, J.: Dialogue and process design for interactive information systems using Taxis. In:
Proc. ACM SIGOA Conference on Office Information Systems, Philadelphia. (1982) 12–20

30. Greenspan, S., Mylopoulos, J., Borgida, A.: Capturing more world knowledge in the require-
ments specification. In: Proc. International Conference on Software Engineering, (ICSE’82),
Kyoto. (1982) 225–235

31. Yu, E.: Modeling organizations for information systems requirements engineering. In: Proc.
IEEE International Symposium on Requirements Engineering (RE’93), San Diego, IEEE
Computer Society Press. (1993) 34–41

32. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven software development
methodology: The tropos project. Information Systems 27 (2002) 365–389

33. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming 20 (1993) 3–50

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 27 – 40, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dynamic Agent Composition from Semantic
Web Services

Michael Czajkowski, Anna L. Buczak, and Martin O. Hofmann

Lockheed Martin Advanced Technology Laboratories
3 Executive Campus, 6th Floor
Cherry Hill, NJ, USA 08002

{mczajkow, abuczak, mhofmann}@atl.lmco.com
http://www.atl.lmco.com

Abstract. The shift from Web pages to Web services enables programmatic ac-
cess to the near limitless information on the World Wide Web. Autonomous
agents should generate concise answers to complex questions by invoking the
right services with the right data. However, traditional methods of programming
automated query processing capabilities are inadequate for two reasons: as Web
services become more abundant, it becomes difficult to manually formulate the
query process; and, services may be temporarily unavailable – typically just
when they are needed. We have created a tool called Meta-Planning for Agent
Composition (MPAC) that dynamically builds agents to solve a user-defined
goal using a select, currently available set of services. MPAC relies on a plan-
ning algorithm and semantic descriptions of services in the Web Ontology Lan-
guage/Resource Description Framework (OWL/RDF) and the Web Ontology
Language-Services (OWL-S) frameworks. Our novel approach for building
these agents is domain independent. It assumes that semantic descriptions of
services and a registry of currently available services will be available, as envi-
sioned by the Semantic Web community. Once an information goal is expressed
through the ontology of the Web service descriptions, MPAC determines the
right sequence of service invocations. To illustrate our approach, we describe a
proof-of-concept application in a maritime navigation domain.

1 Introduction

The semantic web is an ever growing repository of information and web services,
providing access to the Web’s near limitless amounts of data. Today, resources
accessible by Resource Description Framework (RDF) [1] and Universal Descrip-
tion Discovery & Integration (UDDI) [2] are quite abundant [3-5]. Complex queries
that involve multiple data sources can be formed by combining services together.
The required inputs of some services might be the outputs of others. As the evolu-
tion of the semantic web continues, specific services come and go. What is consid-
ered a good data source today may be an improper source tomorrow. Determining
which services to use in a given situation based on quality, reliability, and availabil-
ity is becoming an important technical challenge. Emergent technologies [6-8] are
able to perform semantic composition of services, but few can adapt to the ever-
changing sources of information found throughout the Web.

28 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

To address these challenges, Lockheed Martin’s Advanced Technology Laborato-
ries (ATL) has developed an agent-based approach to semantic service composition.
Meta-Planning for Agent Composition (MPAC) is our new approach to building com-
posite web services through meta-planning. We compose agents that locate web ser-
vices, access databases, gather information, etc. to satisfy the informational needs of
our clients with the resources currently available on the semantic web. In order to do
this, the agent composition tool must have certain elements of self-awareness (i.e.
situation assessment), and planning. While building agents, our approach takes into
account that the semantic web is ever changing, service availability is dynamic, and
our clients may suddenly have new information gathering constraints.

The paper is organized in seven sections. Section 2 discusses related approaches to
performing semantic web service composition. Section 3 defines the terms and tech-
nology on which our method is based. Section 4 describes in detail our meta-planning
approach to dynamic composition of service-based agents. Section 5 describes an
application of MPAC: gathering information pertinent to collision avoidance of mari-
time vessels and selecting actions based on information found. In Sections 6 and 7,
we conclude and describe topics of future work.

2 Related Work

Semantic composition of web services has been addressed by several researchers.
We will briefly describe the most promising approaches by Narayanan and McIlraith
[6], Sycara et al. [7], and Wu et al. [8].

The work of Srini Narayanan and Shiela A. McIlraith [6] focuses on simulating,
validating, and composing composite web services. Their approach is to take the
DARPA Agent Markup Language-Services (DAML-S) [9] description of composite
semantic web services and represent them as Petri nets. Using a simulation tool, a
human user composes atomic services together to form larger composite services that
achieve desired goals. Through encoding situational-logic, the Petri net-based ap-
proach ensues that any composed set of web services is a valid one.

Katia Sycara et al. at Carnegie Mellon University (CMU) approach the problem
of automated composition of semantic web services in [7]. They create a DAML-S
Virtual Machine (DS-VM) which relies upon the Java™ Expert System Shell
(JESS) [10] inferencing engine. The DS-VM follows the workflow of a composite
DAML-S service, invoking its atomic services through a series of control con-
structs: if-then-else, sequence, iteration, choice, and split+join. By relying upon
JESS, the DS-VM keeps track of the necessary preconditions and side effects of
invoking DAML-S services.

The work done by Wu et al. [8], in James Hendler’s MindLab at the University of
Maryland involves using semantic markup and the Simple Hierarchical Ordered Plan-
ner 2 (SHOP2) [11], a hierarchical task network (HTN) planner for agent composi-
tion. They maintain a repository of currently available services with their semantic
descriptions. Wu et al. developed a general method that translates DAML-S descrip-
tions of individual services into SHOP2. The method involves translating composite

 Dynamic Agent Composition from Semantic Web Services 29

and simple DAML-S processes into SHOP2 methods, and atomic processes into
SHOP2 operators. Then, SHOP2 is used to determine which services to invoke given
the service that we want to achieve and the current data instances. The semantic ser-
vice description acts like a template that can be executed based on current situation
and availability; planning is performed with current data at run time. According to
MindLab [8], “The goal of automatic web service composition is to develop software
to manipulate DAML-S definitions, find a sequence of web service invocations thus
to achieve the task automatically.”

3 Background

Dynamic agent composition is the just-in-time building of agents from semantic web
services to achieve the desired goals. Dynamically composed agents can be tailored to
solve new problems (i.e. achieve new goals or assist other entities in the system). Our
approach to dynamic composition of agents is based two technologies: the Web On-
tology Language-Services (OWL-S) [12] and the Extensible Mobile Agent Architec-
ture (EMAA) [13].

3.1 OWL and OWL-S

The Web Ontology Language (OWL) [14] has been created from the DARPA Agent
Markup Language (DAML) and the Ontology Interface Layer (OIL) [15]. OWL pro-
vides an ontology framework for the web using RDF [1] technology. OWL ontologies
use RDF to locate similar definitions of terminology with definite Uniform Resource
Indicators (URIs). For example, the semantic term “database query” is important to
agree upon. Using RDF, we agree that at http://www.database.com/query.owl#query
the semantic description of a “database query” is forever bound. Thus, when two
semantic applications discuss the act of querying a database, by pointing to this defi-
nite location, they know they are talking about the same concept.

OWL is a fundamental language for describing semantic web terminology. The
OWL Services Coalition of semantic web researchers has used OWL as a basis for
creating Web Ontology Language-Services (OWL-S), a popular semantic language
describing web services. OWL-S is a collection of OWL ontologies that describe web
services based upon DAML-S [9]. An OWL-S service provides three important char-
acteristics that enable our agents to perform dynamic composition of informational
services:

 A breakdown of a web service’s description into a profile document (describing
what the service does), a process model document (describing how the service
does it), and a grounding document (describing how to invoke the service).

 A complete semantic description of a service including its inputs, outputs, pre-
conditions, and effects (IOPEs).

 The ability to bind the IOPEs of one service with another forming composite
services executed by following control constructs.

30 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

3.2 EMAA

ATL developed the Extensible Mobile Agent Architecture (EMAA) and applied it in
about two dozen projects covering a full range of intelligent systems, including in-
formation management for time-sensitive strike [16], situation awareness for small
military units, and executing user requests entered via spoken language dialogue.
Starting with the Domain Adaptive Information System (DAIS) [17] in 1996, experi-
mentation with prototypes in military exercises has guided our research and develop-
ment towards the adaptable EMAA agent architecture. EMAA was used in the US
Navy Fleet Battle Experiment series as a human aiding tool.

EMAA agents are designed with a composable workflow model for agent con-
struction. The EMAA workflow architecture enables a new approach to agent devel-
opment called agent composition, characterized by choosing, configuring, and assem-
bling elementary agent tasks into workflows. System programmers typically generate
agent workflows that consist of agent components arranged in conditional (Boolean)
and unconditional (open) execution paths as in Figure 1. If a path is open, tasks on
that path are always executed; tasks on a Boolean path are only executed when the
argument is true. In EMAA, tasks are the atomic components representing the lowest
building block of an agent’s process flow. Typical agent tasks include queries to rela-
tional databases, retrieval of content from Web pages, reading and sending e-mail,
waiting and testing for conditions, and invoking processing services external to the
agent. The ovals in Figure 1 depict agent tasks. Figure 1 is an example of a composed
agent workflow that persistently queries a database until results have been found.

Query

Start

Wait

Open

Open

Boolean:
Results
Found? = No

(wait five seconds)

Report

Open

Boolean:
Results Found? =
Yes

Finish

Fig. 1. An example workflow of a database query agent

4 Technical Approach

MPAC is a methodology we developed for dynamic, on-the-fly agent composition of
composite semantic web-services. Our approach allows an almost arbitrary agent to
be composed at run-time without user intervention. The main steps of our technical
approach to agent composition are as follows:

 Dynamic Agent Composition from Semantic Web Services 31

1. Semantically describe individual components/services in OWL-S. We assume
services on the Semantic Web will provide semantic descriptions, but it is possible
to manually add mark-up for Web services where none exists.

2. Maintain a registry of currently available services or access an existing registry,
such as the registry on the Network-Centric Enterprise Services (NCES) being de-
veloped by the Defense Information Systems Agency (DISA) [18].

3. Translate semantic descriptions of services into a domain description usable by a
planner.

4. Give the planner the goal (desired output) to be achieved. We make the assumption
that the ontologies of the service input, output, and query goal descriptions are
compatible or that services exist that translate data between incompatible ontolo-
gies. The planner inserts these translator services as needed in the normal planning
process.

5. Find the “best” sequence of components to invoke (the “best” plan) given the de-
sired goal, using the planner. “Best” is application dependent and is defined by an
evaluation function. OWL-S has no default measurement of service quality or cost.
However, the translator (step 3) can provide this information to the planner if an
application dependant value is present.

6. “Best” plan results take the form of an agent workflow where each task executes a
service.

7. Compose the agent from components specified in the plan.
8. Execute the agent.

Steps 1-2 are performed by the service locator (see Figure 2), steps 3-5 are performed
by the meta-planner, and steps 6-8 are executed by the agent composer.

Relevant
Services
and Agent
Components

Agent
Blueprint

Service
Database

Service
Locator

Meta-Planner
Service

Service

Service

Task

Task

Task

Agent
Composer

Fig. 2. The components of the MPAC system

4.1 Service Locator

The service locator uses the information contained in the service profile, i.e. it knows
the inputs, outputs, pre-conditions, and effects of all services registered. It also con-
tains information about their present availability. A query to the service locator is
formulated to describe inputs and/or outputs of interest. The service locator deter-
mines which services match the request, and lists all services that have the desired

32 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

terms in their inputs or outputs. In order to maintain an accurate list of available ser-
vices, MPAC requires that as new services become available, they are added to the
service locator as potential data sources. Services that become unavailable are re-
moved. Our service locator is a conceptually simplified version of the MatchMaker in
[7] and we discuss its limitations in Section 7.

To illustrate the operation of MPAC’s components we query cargo information
of merchant ships throughout Section 4. Imagine that we have a service locator
containing information about services that provide cargo ship content data. These
services are located at different places on the internet, but each has its own OWL-S
service description. In Figure 3, a user/client asks MPAC to compose an agent that
can get information about European ships from databases located within North
America. The client sends a description of the goal (desired output of ‘Ship Report
Data’) using terms from an OWL ontology to the service locator. All available web
services registered with service locator, gather information on European cargo ships
and return with ‘Ship Report Data’ output. Relevant services can include the Global
Transport Analysis™ (GTA) [19], and PIERS™ [20] that both return the type ’Ship
Report Data’. Furthermore, the service locator identifies agent tasks related to data-
bases that could be of use, such as the, ‘Generate Database Connection Task’ and
the ‘Report Results Task’.

Service
Database

Client

I want Ship Report
Data of European

ships from databases
in North America

OWL
Ontologies

Relevant Services Found

PIERS in
New Jersey

GTA in New
Jersey

Report
Results
Task

Generate
Database
Connection
Task

ServiceService

ServiceService

Task

Task

Service
Locator

Fig. 3. Locating cargo ship information using the service locator

4.2 Meta- lanning

A planner is invoked once the service locator has provided a list of all services that
could be useful to achieve a given goal. The planner creates a plan, i.e. a sequential
list of web-services and tasks that need to be invoked in order to achieve a given goal.
As mentioned previously the goal to achieve is the desired type of output (e.g. ’Report
Data’). The planner has also the list of existing inputs. The planner needs to make
sure it is possible to achieve the desired output(s) with the input services in the order
defined in the plan. We call this plan the blueprint of an agent.

p

 Dynamic Agent Composition from Semantic Web Services 33

The possible building blocks for the planner are provided by the service locator.
The planner uses backward chaining to build the agent’s blueprint. Using backward
chaining means the end-goal is asserted as the desired goal first. In Figure 4, this is the
’Report Data’ goal. The planner looks at all possible services returned by the service
locator that produce ‘Report Data’ as their output. In our example, only the ‘Report
Data Task’ produces ‘Report Data’ meaning that ’Report Data Task’ is the last step of
the plan. The input to component ’Report Data’, i.e. ’Query Result Set’, is asserted as
the desired goal. The planner finds two components, ‘GTA Database Service’ and
’PIERS Database Service’ that produce the ’Query Result Set’. It tries both of them.
When the planner tries ’GTA Database Service’, its input ‘GTA Password’ is asserted
as the desired goal. Since there is no component (including the client’s information)
that produces ‘GTA Password’ as output, the planner backtracks, and chooses compo-
nent ‘PIERS Database Service’, and asserts ‘Database Connection’ as desired goal.
Continuing, the planner looks for services that produce a ‘Database Connection’. It
finds that there is only one component, ‘Generate Database Connection Task’ that
produces a ‘Database Connection’ as output. The planner chooses ‘Generate Database
Connection Task’ and asserts its inputs ‘Username’ and ‘SQL’ as desired goals. Since
both a ‘Username’ and ‘SQL’ are given by the client, these goals are satisfied. The
planner generates an agent blueprint that invokes in order: Generate Database Connec-
tion Task PIERS Database Service Report Results Task.

Meta-Planner

Inputs
Database
Connection

Outputs
Query
Result Set

PIERS Database Service

Inputs
GTA
Password

Outputs
Query
Result Set

GTA Database Service

Inputs
Query
Result Set

Report Results Task

Inputs
Username,
SQL

Outputs
Database
Connection

I can give
Username, SQL

My desired goal
Report Data

Service

Task Task

Service

Generate Database Connection Task

Outputs
Report
Data

Meta-Planner

Inputs
Database
Connection

Outputs
Query
Result Set

PIERS Database Service

Inputs
GTA
Password

Outputs
Query
Result Set

GTA Database Service

Inputs
Query
Result Set

Report Results Task

Inputs
Username,
SQL

Outputs
Database
Connection

I can give
Username, SQL

My desired goal
Report Data

ServiceService

TaskTask TaskTask

ServiceService

Generate Database Connection Task

Outputs
Report
Data

Fig. 4. Building an agent blueprint to find Report Data

When several plans (blueprints) are found, a heuristic is used to choose the best
blueprint. The heuristics are problem dependent: some heuristics select plans based on
the fewest service tasks that are to be invoked, while others might exclude services
that exist on certain web servers due to network latency or security.

34 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

Our service-composition approach uses certain elements from the method devel-
oped at MindLab [8]. The chief difference between the two methods is that while
UMD is performing planning, we are performing meta-planning. Planning (standard
service composition) implies using an existing service to achieve a certain task auto-
matically. In planning, the service is described semantically and acts like a template
that an agent can execute based on the current situation, availability, and the current
data instances. We are performing meta-planning; our system builds the template (the
agent blueprint) that produces the desired output type (goals), and reasons over the
input and output types of the services contained within. In contrast, the planner in
MindLab’s method reasons over the current data instances.

4.3 Agent Composition

MPAC takes the blueprint of the agent generated by the planner and composes it into
an EMAA agent. During this step, the agent tasks are realized into activities and put
into an EMAA agent workflow. Web services are contacted through the grounding
instructions provided by their OWL-S descriptions. Usually this involves sending
Simple Object Access Protocol (SOAP) [21] messages over Web Service Description
Language (WSDL) [22].

As an option, the MPAC’s agent composer checks the existence of all of the ser-
vices before composing them into an agent. This may be necessary because the blue-
prints generated by the planner may not have been created recently. Planning is com-
putationally expensive, so there are advantages to saving successfully created blue-
prints. The drawback is that the semantic web may have changed since the planner
created the blueprint and the services within may no longer exist. If the blueprint is
decidedly broken or obsolete, the agent composer can request that the entire planning
process begin again.

Once the agent is composed, it must be determined who will provide the com-
posed agent’s initial inputs (if any) and who will be interested in the agent’s output. In
our example, the database agent that gathers information about European cargo ships
requires the client's 'Username’ and a ‘SQL’ statement. These are configuration pa-
rameters, and they are provided by the MPAC client at agent invocation time. The
output of the example agent is the result set from the queries posed to the two data-
bases. Since database reports can be presented in numerous ways, the Report Results
Task may ask the client which method is preferred.

Finally, MPAC allows the user to choose if newly composed agents should be
deployed immediately into an agent system. If the user desires, the newly composed
agent will begin running immediately. If not, the output of the agent composition,
an EMAA workflow, can be saved for later instantiation. There are some advan-
tages to saving the workflow at this point rather than after the planning phase. The
workflow out of the Agent composer is concrete, existing as a set of objects ready
to be invoked. However, if the agent workflow is saved there is no guarantee that
the informational web services will be available to execute later; the semantic web
may have changed.

 Dynamic Agent Composition from Semantic Web Services 35

4.4 Novelty of MPAC

MPAC composes agents that invoke semantic web services to gather information and
EMAA tasks to perform actions on that information. The EMAA tasks make a num-
ber of useful information processing tasks available across a number of applications,
but are typically too narrowly defined to be provided on the Web. The addition of
these tasks greatly enhances the variety of agents that MPAC can create. Each task
used by our agents has its own semantic description as a web service in OWL-S. Thus
MPAC can only distinguish between informational resources and acting agent tasks
through their semantic descriptions. The term ‘service’ applies to any web service and
any EMAA task described in OWL-S.

The main difference between the MPAC and the MindLab method is that UMD is
performing planning and we are performing meta-planning. Planning requires that a
composite service template already exist. Through some method an agent can locate
and invoke services based on the current situation, availability, and the current data
instances. In the UMD method, the template is described in DAML-S, and realized
through hierarchical task decomposition. We are performing meta-planning; MPAC
has no knowledge of the template upon construction time. We build the template that
reasons over individual semantic input and output types. In contrast, the planner in
MindLab’s method reasons over the current data instances.

The advantages to our approach are twofold. First, we effectively merge the capa-
bilities of our agent technology with the massively distributed databases across the
internet. Since ATL has proven the viability of EMAA agent technology [16-17], we
believe the semantic web and agent technology complement one another. The other
advantage is a new sense of agent robustness. If a certain service becomes unavailable
for any reason, other similar services (either agent component or informational) could
serve as substitutes. Whenever new web services become available, they can be used
to compose the next generation agent through dynamic agent composition. Services
that use a semantic description in OWL-S could provide useful information about
their service quality and costs, all of which can be decided when composing the agent
dynamically.

5 Example Application

We have created a proof-of-concept implementation of MPAC geared towards a mari-
time navigation domain where dynamic agent composition has been determined as
very valuable by the dynamic nature of the problems solved. We have been working
with Lockheed Martin Marine Systems in Baltimore to create dynamically composed
agents that help a ship navigate safely through a harbor. The goal of the composed
agent is to correct a ship’s voyage plan, a series of turn points and waypoints that a
ship must follow as it navigates. Because of the dynamic nature of maritime naviga-
tion, an initial voyage plan often becomes invalid and may lead the ship aground or
too close to other vessels (ultimately leading to collisions with other vessels). The
scenario is complicated by the changing availability of ship sensors and navigation

36 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

services. Additionally, the own ship must also adhere to maritime law governing safe
distance passing, obvious turning, giving ‘right of way’, etc. [23].

MPAC agent composition for Collision Avoidance works over a domain of three
types of services as shown on the left side of Figure 5. The service types are land
collision detection, route crossing detection¸ and voyage planning. The land colli-
sion services represent the instruments that a ship has to help it determine where
static obstacles are. Some examples of land collision services are infra-red cameras,
fathometers, and vector based charts. The land collision services require as input the
current Voyage Plan (VP), and they produce informational reports if the instrument
determines there are static obstacles in the VP of own ship such as shorelines, shal-
lows, minefields, etc. The route crossing services are instruments a ship uses to
determine if it will collide with another ship. Some examples of route crossing ser-
vices are radars, and the Automated Information System (AIS). The route crossing
services require the knowledge of the own ship’s speed and location. The route
crossing service produces a ship crossing report detailing potential areas where the
vessel may collide with another vessel. Finally, the voyage planning services take
the potential land and ship collision reports, as well as the broken voyage plan, and
generate new voyage plans for the own ship to follow. These services use the mari-
time Rules of the Road [23] which dictate how ships should avoid one another ac-
cording to maritime law. When combined, an agent invoking a sequence of colli-
sion, route crossing, and voyage plan adjustment services provides us with new
voyage plans to follow when the current voyage plan would have caused the ship to
collide into land or another ship.

Our demonstration tool operates on a simulated environment of the “Demo-Ship”
and its journey through a New York harbor. Our informational services (land colli-
sion, and route crossing) present data based on the simulated environment. We wrote
EMAA tasks to handle simple implementations of the voyage planning services. Be-
cause we have separated the implementation of the service from its semantic descrip-
tion, it is easy to write new implementations of the ship services for the same seman-
tic descriptions. This allows transition from our demonstration to real ships services in
a live demonstration.

The first step in dynamic agent composition for maritime scenario was developing
the semantic mark up of services that a ship can have. Since OWL-S was not created
when we built the prototype, the MPAC demonstration tool used the OWL-S prede-
cessor DAML-S. For our proof-of-concept demo for each ship service, a DAML-S
service description was developed. MPAC takes the semantic descriptions of the
ship’s services and registers them with our service locator. We simulated the avail-
ability/unavailability of ship sensor services through the checkboxes as shown on the
left side of Figure 5.

The planner that MPAC uses is called JSHOP, a Java™ variant of SHOP2 in [11].
We use UMD’s translation algorithms [8] to translate the DAML-S descriptions of
services into JSHOP processes. Along the bottom of Figure 5 is the current voyage
plan agent composed of the currently available services. The current agent invokes the
services: Fathometer Channel Follower Laser Range Finder AIS Complex
Turning. Five out of seven existing services are used to compose the agent.

 Dynamic Agent Composition from Semantic Web Services 37

Fig. 5. The MPAC Collision Avoidance demonstration tool

Fig. 6. The result of creating a new voyage plan agent and invoking it

As seen in the center of Figure 5, the Demo-Ship is about to have a direct collision
with another ship, “Tokyo Express”. The ship uses its current VP agent to build a new
voyage plan that won’t collide with any obstacles. The new VP is determined by the

38 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

agent. As the situation changes in the environment, new services become available
(Infra-Red Camera, X-Band Radar) and some of the old services become unavailable
(Laser Range Finder, S-Band Radar). This causes MPAC to prepare a new agent
blueprint by performing meta-planning with the currently available services. The
JSHOP planner took the list of available services as denoted on the left side of Figure
6, and created a new voyage plan agent’s blueprints. Figure 6 shows the result of
running MPAC to solve the collision avoidance problem of Figure 5. The new agent
in Figure 6 uses a different set of services: X-Band Radar Fathometer Channel
Follower Infra-Red Camera AIS Simple Turning.

This new voyage plan agent was immediately composed by the agent composer of
MPAC. The agent composer took this blueprint of services and created a new EMAA
agent with the informational land collision, and route crossing services as well as the
EMAA tasks that performed voyage planning. The new agent was instructed to begin
executing immediately. The result of executing the new agent can be shown in the
center of Figure 6; the Demo-Ship has successfully plotted a new course around the
oncoming threat of the ship, “Tokyo Express”.

6 Conclusions

We have developed a novel method (named MPAC) for agent composition from se-
mantically described web-services and tasks. MPAC performs dynamic, on-the-fly
agent composition from available services semantically described and registered in
our service registry. MPAC is becoming increasingly important as the semantic web’s
data sources evolve. The agent’s blueprint is built by a planner that performs meta-
planning using backward chaining over the input and output types of the services.
Agents built by MPAC are flexible, easy to rebuild and reconfigure should their com-
ponents change. Additionally, if the user requires new agents that perform other goals
in the same domain, MPAC can easily create these dynamic agents to solve goals
based on the client’s requirements. The semantic web ushers in a whole new era of
service use. Massively distributed services across the internet can connect through
agent architectures using MPAC.

7 Future Work

MPAC has a number of limitations, mentioned below, that need to be addressed in
future research:

 Our approach assumes only one service locator, but multiple service locators can
exist all across the semantic web. Each could be queried whenever MPAC is
looking for candidate services.

 When domains become too large, it is difficult for a service locator to discover
services that are of use to the meta-planner. Simply looking for services that have
something to do with “cargo ships” and “databases” might yield hundreds if not
thousands of services. Even though OWL-based taxonomies that describe “cargo
ships” and “databases” might exist, hundreds of services might be doing things

 Dynamic Agent Composition from Semantic Web Services 39

that the meta-planner should not be interested in. To address this problem a
MatchMaker is needed similar to the one developed by Sycara et al. at CMU [7].

 Our service locator works primarily off of a service’s inputs and outputs, and
neglects the important preconditions and effects. The approaches discussed in
Section 2 all work with preconditions and effects through reasoning systems.

 A backward-chaining meta-planner only creates agent blueprints that are sequen-
tial. The OWL-S process model allows for more complicated agent blueprints
that involve control constructs such as if-then-else, iterate, and split+join. As a
result, MPAC could benefit from more powerful planning techniques to dynami-
cally compose semantic agents with arbitrary control constructs.

 The blueprints generated by the meta-planner could be made into their own
OWL-S services. Blueprints have no specific ties to EMAA until they are given
to the agent composer. MPAC could create an OWL-S service description of an
agent and publish it to the internet as another available semantic web service.

Acknowledgements

We thank Vera Zaychik from ATL for the initial work on the meta-planner for our
MPAC prototype. We would like to acknowledge the use of the DAML-S to J-SHOP
translator provided to us by Professor James Hendler from the University of Maryland
and the several fruitful discussions that we had with him and his MindLab team. Our
sincere thanks go also to Mike Orlovsky from LM MS2 for his help in definition of
the maritime domain scenario.

References

1. Beckett, D., McBride, B.: W3C: Resource Description Framework (RDF) syntax specifi-
cation. http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/ (2004)

2. Bellwood, T., Clément, L., Ehnebuske, D., Hately A., Hondo, M., Husband, Y. L.,
Januszewski, K, Lee, S., McKee, B., Munter, J., von Riegen, C.: OASIS: Universal De-
scription Discovery & Integration version 3.0. http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm (2002)

3. Microsoft Universal Description Discovery & Integration (UDDI) Business Registry
(UBR) node. http://uddi.microsoft.com/ (2004)

4. IBM Universal Description Discovery & Integration (UDDI) Registry v2: Overview.
https://uddi.ibm.com/ubr/registry.html (2004)

5. SAP Universal Description Discovery & Integration (UDDI) Registry.
http://uddi.sap.com/ (2004)

6. Narayanan, S., McIlraith S. A.: Simulation, Verification and Automated Composition of
Web Services. In: Proceedings of the Eleventh International World Wide Web Conference
(WWW-11) (2002)

7. Sycara, K., Paolucci, M., Ankolekar, A. Srinivasan, N.: Automated Discovery, Interaction
and Composition of Semantic Web services. In: Journal of Web Semantics, Vol. 1, Iss. 1,
September (2003) 27-46

40 M. Czajkowski, A.L. Buczak, and M.O. Hofmann

8. Wu, D., Sirin, E., Hendler, J., Sirin, E., Parsia, D.: Automatic Web Services Composition
Using SHOP2. In: Proceedings of 2nd International Semantic Web Conference
(ISWC2003), (2003)

9. DARPA Agent Markup Language services (DAML-S): Semantic Markup for Web Ser-
vices v0.9. http://www.daml.org/services/daml-s/0.9/daml-s.html (2003)

10. Java™ Expert System Shell (JESS) Rule Engine for the Java™ Platform.
http://herzberg.ca.sandia.gov/jess/index.shtml (2004)

11. Nau, D. Munoz-Avila, H., Cao, Y., Lotem, A., and Mitchell, S.: Total-order planning with
partially ordered subtasks. In: Proceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence (2001)

12. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.html (2004)

13. Lentini., R., Rao, G., Thies, J., and Kay, J.: EMAA: An Extensible Mobile Agent Archi-
tecture. In: Fifteenth National Conference on Artificial Intelligence (AAAI98), Technical
Report WS-98-10:Software Tools For Developing Agents, ISBN 1-57735-063-4 (1997)

14. OWL Web Ontology Language Overview. http://www.w3.org/TR/2004/REC-owl-
features-20040210/ (2004)

15. Horroks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D., Con-
noly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila, O.,
McGuinness, D., Stein, L.A.: DAML+OIL. http://www.daml.org/2001/03/daml+oil-
index.html (2001)

16. Hofmann, M.O., Chacón, D., Mayer, G., Whitebread, K.R., Hendler, J.: CAST Agents:
Network-Centric Fires Unleashed. In: Proceedings of the 2001 National Fire Control
Symposium (2001) 12-30

17. Hofmann M.O., McGovern, A., Whitebread, K.R.: Mobile Agents on the Digital Battle-
field. In: Proceedings of the Second International Conference on Autonomous Agents
(Agents '98) (1998) 219-225

18. DSIA Fact Sheets Net-Centric Enterprise Services (NCES).
http://www.disa.mil/pao/fs/nces3.html (2004)

19. Journal of Commerce, Commonwealth Business Media: Global Transport Analyzer
(GTA). http://www.joc.com/gta/pointsearch.html (2004)

20. Commonwealth Business Media: Port Import Export Reporting Service (PIERS).
http://www.piers.com (2004)

21. Mitra, N.: Simple Object Access Protocol (SOAP) version 1.2 Part 0: Primer.
http://www.w3.org/TR/soap12-part0/ (2003)

22. Chinnichi, R., Gudgin, M., Moreau, J., Weerawarana, S.: Web Service Description Lan-
guage (WSDL) version 1.2. http://www.w3.org/TR/2003/WD-wsdl12-20030303/ (2003)

23. Rules of the Road, Public Law 95-75, 91 Stat. 308 (33 U.S.C. 1601-1608).
http://www.navcen.uscg.gov/mwv/navrules/international.html (2003)

Ontology-Extended Component-Based
Workflows: A Framework for Constructing

Complex Workflows from Semantically
Heterogeneous Software Components

Jyotishman Pathak, Doina Caragea, and Vasant G. Honavar

Artificial Intelligence Research Laboratory,
Department of Computer Science,

Iowa State University,
Ames, IA 50011-1040, USA

{jpathak, dcaragea, honavar}@cs.iastate.edu

Abstract. Virtually all areas of human endeavor involve workflows -
that is, coordinated execution of multiple tasks. In practice, this requires
the assembly of complex workflows from semantically heterogeneous
components. In this paper, we develop ontology-extended workflow
components and semantically consistent methods for assembling such
components into complex ontology-extended component-based work-
flows. The result is a sound theoretical framework for assembly of
semantically well-formed workflows from semantically heterogeneous
components.

Keywords: Workflows, Ontologies, Components.

1 Introduction

Almost all areas of human activity - education, business, health care, science,
engineering, entertainment, defense - involve use of computers to store, access,
process, and use information. The term workflow typically refers to coordinated
execution of multiple tasks or activities [16, 1, 12]. Processing of an invoice, the
protocol for data acquisition and analysis in experimental science, responding to
a natural disaster, could all be viewed as workflows.

Examination of workflows in specific domains reveals that many activities
(e.g., the task of credit evaluation in financial services workflows) are common
to several workflows. Encapsulation of such activities in the form of reusable
modules or workflow components, which can be assembled to create complex
workflows, can greatly reduce the cost of developing, validating, and maintaining
such workflows [21]. Hence, component-based approaches to designing workflows
has begun to receive considerable attention in the literature [6, 8, 15,21].

A component [10, 19] is a piece of software that can be independently de-
veloped and delivered as a unit. Well-defined interfaces allow a component to
be connected with other components to form a larger system. Component-based

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 41–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 J. Pathak, D. Caragea, and V.G. Honavar

software development [9] provides a flexible and cost-effective framework for
reuse of software components. Compositionality ensures that global properties of
the resulting system can be verified by verifying the properties of the constituent
components. By analogy with software components, a workflow component can
be viewed as a workflow module (i.e., an executable piece of software) which can
be connected to other workflow modules through well-defined interfaces.

A simple workflow consisting of two simple components: F-Sensor and
Weather Description is shown in Figure 1. The function of this workflow is to

F-Sensor Weather
Description

Input Signals / Bit
Streams

Temperature
(in F)

Temperature
(in F)

Hot

Warm

Cold

If (temperature > 80) then Hot
if (50 < temperature < 80) then Warm

if (temperature < 50) then cold

Fig. 1. Weather Description with F-Sensor

determine whether the day is hot, or warm or cold based upon the tempera-
ture. The input to the F-Sensor component consists of signals from one or more
sensors and its output is the current temperature (in degree F) and the input
to the Weather Description component is the current temperature (in degree F
from the output of F-Sensor component) and its output is a description of the
day (hot or warm or cold). Note that in this example, the output produced by
the F-Sensor component has the same semantics as the input of the Weather
Description component; furthermore, the name Temperature used in the vocab-
ulary associated with the F-Sensor component has the same meaning as the term
Temperature in the vocabulary associated with the Weather Description compo-
nent. In the absence of syntactic or semantic mismatches between components,
their composition is straightforward.

However, it is unrealistic to expect such syntactic and semantic consistency
across independently developed workflow components libraries. Each such work-
flow component library is typically based on an implicit ontology. The workflow
component ontology reflects assumptions concerning the objects that exist in
the world, the properties or attributes of the objects, the possible values of at-
tributes, and their intended meaning from the point of view of the creators of
the components in question. Because workflow components that are created for
use in one context often find use in other contexts or applications, syntactic and
semantic differences between independently developed workflow components are
unavoidable. For example, consider a scenario where we replace the F-Sensor
component with a new component: C-Sensor. Suppose C-Sensor behaves very
much like F-Sensor except that it outputs the temperature, denoted by Temp,
and measured in degrees Centigrade instead of degrees Fahrenheit. Now we can
no longer compose C-Sensor and Weather-Description components into a sim-
ple workflow, because of the syntactic and semantic differences between the two

Ontology-Extended Component-Based Workflows 43

components. Effective use of independently developed components in a given con-
text requires reconciliation of such syntactic and semantic differences between
the components. Because of the need to define workflows in different application
contexts in terms of vocabulary familiar to users of the workflow, there is no
single privileged ontology that will serve all users, or for that matter, even a
single user, in all context.

Recent advances in networks, information and computation grids, and WWW
have made it possible, in principle, to assemble complex workflows using a diver-
sity of autonomous, semantically heterogeneous, networked information sources
and software components or services. Existing workflow management systems
(WfMS) allow users to specify, create, and manage the execution of complex
workflows. The use of standard languages for defining workflows [1] provides for
some level of portability of workflows across different WfMS. A major hurdle
in the reuse of independently developed workflow components in new applica-
tions arise from the semantic differences between the independently developed
workflow components. Hence, realizing the vision of the Semantic Web [2], i.e.,
supporting seamless access and use of information sources and services on the
web, in practice calls for principled approaches to the problem of assembly of
complex workflows from semantically heterogeneous components - the workflow
integration problem.

The workflow integration problem can be viewed as a generalization of the
Information Integration problem [14]. Hence, we build on recent developments
in component-based workflow design [6,8,15,21] to extend ontology-based solu-
tions of the information integration problem [7, 18] to develop principled solu-
tions to the workflow integration problem. Specifically, in this paper, we develop
ontology-extended workflow components and mappings between ontologies to fa-
cilitate assembly of ontology-extended component-based workflows using seman-
tically heterogeneous workflow components. The proposed ontology-extended
component-based workflows provide a sound theoretical framework for assembly
of semantically well-formed workflows from semantically heterogeneous informa-
tion sources and software components.

2 Ontology Extended Component Based Workflows

2.1 Ontologies and Mappings

An ontology is a specification of objects, categories, properties and relationships
used to conceptualize some domain of interest. In what follows, we introduce a
precise definition of ontologies.

Definition (Hierarchy) [4]: Let S be a partially ordered set under ordering
≤. We say that an ordering � defines a hierarchy for S if the following three
conditions are satisfied:
(1) x � y → x ≤ y ; ∀ x, y ∈ S. We say (S, �) is better than (S, ≤)),
(2) (S, ≤) is the reflexive, transitive closure of (S, �),
(3) No other ordering
 satisfies (1) and (2).

44 J. Pathak, D. Caragea, and V.G. Honavar

Example: Let S = {Weather, Wind, WindSpeed}. We can define the partial
ordering ≤ on S according to the part of relationship. For example, Wind is part
of the Weather characteristics, WindSpeed is part of the Weather characteristics,
and WindSpeed is also part of Wind characteristics. Besides, everything is part
of itself. Thus, (S, ≤) = {(Weather, Weather), (Wind, Wind), (WindSpeed,
WindSpeed), (Wind, Weather), (WindSpeed, Weather), (WindSpeed, Wind)}.
The reflexive, transitive closure of ≤ is the set: (S, �) = {(Wind, Weather),
(WindSpeed, Wind)}, which is the only hierarchy associated with (S, ≤).

Definition (Ontologies) [4]: Let Δ be a finite set of strings that can be used
to define hierarchies for a set of terms S. For example, Δ may contain strings
like isa, part-of corresponding to isa or part-of relationships, respectively. An
Ontology O over the terms in S with respect to the partial orderings contained in
Δ is a mapping Θ from Δ to hierarchies in S defined according to the orderings
in Δ. In other words, an ontology associates orderings to their corresponding
hierarchies. Thus, if part-of ∈ Δ, then Θ(part-of) will be the part-of hierarchy
associated with the set of terms in S.

Example: Suppose a company K1 records information about weather in some
region of interest (see Figure 2). From K1’s viewpoint, weather is described by
the attributes Temperature, Wind, Humidity and Outlook which are related to
weather by part-of relationship. For example, Wind is described by WindSpeed.
The values Cloudy, Sunny, Rainy are related to Outlook by the is-a relation-
ship. In the case of a measurement (e.g., Temperature, WindSpeed) a unit of
measurement is also specified by the ontology. In K1’s ontology, O1, Tempera-
ture is measured in degrees Fahrenheit and the WindSpeed is measured in miles
per hour. For contrast, an alternative ontology of weather O2 from the viewpoint
of a company K2 is shown in Figure 3.

Weather

Temperature Wind Humidity Outlook

WindSpeed Cloudy Sunny Rainy

Ontology O 1

Fig. 2. Weather Ontology of Company K1

Suppose O1,...,On are ontologies associated with components C1,...,Cn, re-
spectively. In order to compose workflow using those semantically heterogeneous
components, the user needs to specify the mappings between these ontologies of
the various components. For example, a company K3, with ontology O3 uses me-
teorology workflow components supplied by K1 and K2. Suppose in O3, Weather

Ontology-Extended Component-Based Workflows 45

Weather

Temp Wind Humidity Prec

WindSpeed

HeavyRain LightRain

Ontology O 2

WindDir
Rain

NoPrec
Snow

LightSnowHeavySnow

Fig. 3. Weather Ontology of Company K2

is described by Temperature (measured in degrees Fahrenheit), WindSpeed (mea-
sured in mph), Humidity and Outlook. Then, K3 will have to specify a suitable
mapping MO1 �→O3 from K1 to K3 and a mapping MO2 �→O3 from K2 to K3. For
example, Temperature in O1 and Temp in O2 may be mapped by MO1 �→O3 and
MO2 �→O3 respectively to Temperature in O3. In addition, conversion functions to
perform unit conversions (e.g. Temp values in O2 from degrees Centigrade to de-
grees Fahrenheit) can also be specified. Suppose K3 considers Precipitation in O2
is equivalent to Outlook in O3 and maps Rain in O2 to Rainy in O3. This would
implicitly map both LightRain and HeavyRain in O2 to Rainy in O3. These
mappings between ontologies are specified through interoperation constraints.

Definition (Interoperation Constraints) [7, 4]: Let (H1, �1) and (H2, �2), be
any two hierarchies. We call the set of Interoperation Constraints (IC) the set of
relationships that exists between elements from two different hierarchies. For two
elements, x ∈ H1 and y ∈ H2, we can have one of the following Interoperation
Constraints:

– x : H1 = y : H2
– x : H1 �= y : H2
– x : H1 ≤ y : H2
– x : H1 �≤ y : H2

Example: For the weather domain, if we consider part-of hierarchies associated
with the companies K1 and K2, we have the following interoperation constraints,
among others- Temperature : 1 = Temp : 2, Outlook : 1 = Prec : 2, Humidity :
1 �= Wind : 2, WindDir : 2 �≤ Wind : 1, and so on.

Definition (Type, Domain, Values) [7,4]: We define T = {τ | τ is a string} to
be a set of types. For each type τ , D(τ) = {v|v is a value of type τ} is called the
domain of τ . The members of D(τ) are called values of type τ .

Example: A type τ could be a predefined type, e.g. int or string or it can be a
type like USD (US Dollars) or kmph (kilometers per hour).

Definition (Type Conversion Function) [7, 4]: We say that a total function
f(τ1, τ2): D(τ1) �→ D(τ2) that maps the values of τ1 to values of τ2 is a type

46 J. Pathak, D. Caragea, and V.G. Honavar

conversion function from τ1 to τ2. The set of all type conversion functions satisfy
the following constraints:

– For every two types τ i, τ j ∈ T, there exists at most one conversion function
f(τi, τj).

– For every type τ ∈ T, f(τ, τ) exits. This is the identity function.
– If f(τi, τj) and f(τj , τk) exist, then f(τi, τk) exists and f(τi, τk) = f(τi, τj)

◦ f(τj , τk) is called a composition function.

In the next few sections, we incorporate these definitions into our framework.

2.2 Component-Based Workflows

Definition (Primitive Component): A primitive component is a coherent pack-
age of software, that can be independently developed and delivered as a unit,
and that offers interfaces by which it can be connected, unchanged, with other
components.

Definition (Component): A component can be recursively defined as follows:

– A primitive component is a component.
– The composition of two or more components is a component.

Definition (Component-Based Workflow): A component-based workflow can be
recursively defined as follows:

– A component is a workflow.
– The composition of two or more workflows is a workflow.

We can see that components are the building blocks upon which a workflow
can be designed and composed.

Workflow Languages [1] facilitate precise formal specification of workflows.
Graph-Based Workflow Language (GBWL) [20] allows us to model various as-
pects of traditional workflows which are relevant to our work. A GBWL specifica-
tion of a workflow, known as workflow schema (WFS), describes the components
of the workflow and the characteristics of the environment in which the workflow
will be executed. The workflow schemas are connected to yield directed graphs
of workflow schemas, called workflow schema graphs (WSG). The nodes of a
WSG correspond to the workflow components and edges specify the constraints
between the components. Figure 4 shows a WSG consisting of three components.
Note that each workflow component trivially has a WSG description. When a
workflow is to be executed, a WFS is instantiated resulting in the creation of a
workflow instance (WFI). Each WFI created from a well-formed WFS is guar-
anteed to conform to the conditions specified by the WFS. The functional aspect
of a workflow schema specifies the task to be performed by the corresponding
workflow instances. The information aspect of a WSG specifies the data flow
between the individual components. Associated with each component is a set of
typed inputs and outputs. At the initiation of a workflow, the inputs are read,
while on termination the results of the workflow are written to the outputs. The

Ontology-Extended Component-Based Workflows 47

a

b

c q y

p x

Input to Workflow

Output of Workflow

1 2 3

d

e s

r w

z

Data Flow Link

Control Flow Link

Fig. 4. Workflow Schema Graph

data flow which is defined in terms of the inputs and outputs, models the transfer
of information through the workflow. For example, in Figure 4, component 1 has
inputs a and b and an output c, and component 2 has an input p and an output
q. Note that the data flow between components 1 & 2 is represented by the data
flow link (c, p). The behavioral aspect of a WFS specifies the conditions under
which an instance of the component will be executed. The behavior of a workflow
is determined by two types of conditions: Control conditions and Instantiation
conditions. The relation between the components is determined by the control
conditions, which are expressed by the control flow links. These control flow links
specify the execution constraints. For example, Figure 4 shows control flow links
(e, r) specifying that the execution of component 1 has to precede the execution
of component 2. In order for a workflow component to be executed, its instanti-
ation conditions have to be set to T rue. Specifically, the existence of a control
flow link from 1 to 2 does not imply that 2 will necessarily be executed as soon
as 1 is executed (unless the instantiation conditions are satisfied). In general, it
is possible to have cyclic data and control flow links. However, in the interest of
simplicity, we limit the discussion in this paper to acyclic WSG.

2.3 Ontology-Extended Workflow Components

From the preceding discussion it follows that a workflow can be encapsulated
as a component in a more complex workflow. Thus, to define ontology-extended
component-based workflows, it suffices to show how components can be extended
with ontologies and how the resulting ontology-extended components can be
composed to yield more complex components (or equivalently, workflows).

Recall that a component has associated with it, input, output and control flow
attributes. The control flow attributes take values from the domain D(CtrlType)
= {true, false, φ}, where the value of φ corresponds to the initial value of a control
flow attribute indicating that the control flow link is yet to be signaled.

Definition (Ontology-Extended Workflow Component): An ontology-extended
workflow component, s, consists of (see Figure 5):

48 J. Pathak, D. Caragea, and V.G. Honavar

Weather Description

component S with

ontology Os

cout s

Control Input

 Attribute Input Attributes

Output Attributes
Control Output Attribute

Temperature

Day

cins

Fig. 5. Ontology-Extended Workflow Component

– An associated ontology Os.
– A set of data types τ1, τ2,..., τn, such that τ i ∈ Os, for 1 ≤ i ≤ n.
– A set of input attributes inputs represented as an r -tuple (A1s

:τ i1 ,...,Ars
:τ ir

)
(e.g., Temp:C is an input attribute of type Centigrade).

– A set of output attributes outputs represented as a p-tuple
(B1s :τ j1 ,...,Bps

:τ jp
) (e.g., Day:DayType is an output attribute of type

DayType whose enumerated domain is {Hot, Warm, Cold}).
– A control input attribute, cins, such that τ(cins) ∈ CtrlType. A true value

for cins indicates that the component s is ready to start its execution.
– A control output attribute, couts, such that τ(couts) ∈ CtrlType. A true

value for couts indicates the termination of the execution of component s.

The composition of two components specifies the data flow and the control flow
links between the two components. In order for the meaningful composition of
ontology-extended workflow components to be possible, it is necessary to resolve
the semantic and syntactic mismatches between such components.
Definition (Ontology-Extended Workflow Component Composition): Two
components s (source) (with an associated ontology Os) and t (target) (with
an associated ontology Ot) are composable if some (or all) outputs of s are used
as inputs for t. This requires that there exists:

– A directed edge, called control flow link, Clink(s, t), that connects the source
component s to the target component t. This link determines the flow of
execution between the components. We have:

Clink(s, t) ∈ couts × cint,

which means that there exists x ∈ couts and y ∈ cint such that τ(x) ∈
CtrlType and τ(y) ∈ CtrlType. For example, in Figure 4, (e, r) is a control
flow link between the components 1 and 2.

– A set of data flow links, Dlink(s, t) from the source component s to the
target component t. These links determine the flow of information between
the components. We have:

Dlink(s, t) ⊆ outputs × inputt,

Ontology-Extended Component-Based Workflows 49

which means that there exist attributes x ∈ outputs and y ∈ inputt, such
that τ(x) = τ i ∈ Os and τ(y) = τ j ∈ Ot. For example, in Figure 4, (c, p) is
a data flow link between the components 1 and 2.

– A set of (user defined) interoperation constraints, IC(s, t), that define a
mappings set MS(s, t) between outputs of s in the context of the ontology
Os and inputs of t in the context of the ontology Ot. Thus, if x : Os = y : Ot

is an interoperation constraint, then x will be mapped to y, and we write x
�→ y.

– A set of (user defined) conversion functions CF (s, t), where any element
in CF (s, t) corresponds to one and only one mapping x �→ y ∈ IC(s, t).
The identity conversion functions may not be explicitly specified. Thus,
|IC(s, t)| ≤ |CF (s, t)|.
Note that, in general, a component may be connected to more than one source

and/or target component(s). The mappings set MS(s, t) and the conversion
functions CF (s, t) together specify a mapping component, which performs the
mappings from elements in Os to elements in Ot.

Definition (Mapping Component): A mapping component, MAP (s, t), which
maps the output and the control output attributes of the source s to the input
and the control input attributes of the target t respectively, consists of:

– Two ontologies, Os and Ot, where Os is associated with the inputs of
MAP (s, t), and Ot is associated with its outputs.

– A set of mappings MS(s, t) and their corresponding conversion functions
CF (s, t) that perform the actual mappings and conversions between inputs
and outputs.

– A set of data inputs inputmap=(A1M
: τs1 , · · · , ApM

: τsp
), which correspond

to the output attributes of component s, that is, inputmap ≡ outputs. Also,
τ s1 ,..., τ sp is a set of data types such that τ si ∈ Os, ∀ 1 ≤ i ≤ p.

– A set of data outputs outputmap=(B1M
: τ t1 ,...,BrM

: τ tr
), which correspond

to the input attributes of component t, that is, outputmap ≡ inputt. Also,
τ t1 ,...,τ tr

is a set of data types such that τ ti
∈ Ot, ∀ 1 ≤ i ≤ r.

– A control input cinmap, which corresponds to the control output attribute,
couts of component s. Also, τ(cinmap) = CtrlType.

– A control output coutmap, which corresponds to the control input attribute,
cint of component t. Also, τ(coutmap) = CtrlType.

Ontology-extended workflow component instances (see Figure 6) are obtained
by instantiating the ontology-extended workflow components at execution time.
This entails assigning values to each of the component attributes. These values
need to be of the type specified in the component schema. If a component in-
stance ins is based on a component schema sch of the component s, we say that
hasSchema(ins) = sch. We also say that for a given attribute, p, v(p) ∈ D(t)
refers to its value, if τ(p) = t ∈ Os.

Definition (Ontology-Extended Workflow Component Instance): The instance
corresponding to an ontology-extended workflow component s has to satisfy the
following constraints:

50 J. Pathak, D. Caragea, and V.G. Honavar

Weather Description

Instance Component i

true

true

87

Hot

Fig. 6. Ontology-Extended Workflow Component Instance

– For every input attribute x ∈ inputs, v(x) ∈ D(t), if τ(x) = t ∈ Os (e.g.,
Temperature = 87).

– For every output attribute y ∈ outputs, v(y) ∈ D(t), if τ(y) = t ∈ Os (e.g.,
DayType = Hot).

– For the control input attribute, cins ∈ {true, false, φ}, a true value indicates
that the component s is ready for execution.

– For the control output attribute, couts ∈ {true, false, φ}, a true value indi-
cates that the component s has finished its execution.

– For an instantiation condition, inscs ∈ {true, false}. If the evaluation of
this condition returns true, then the execution of the component begins.
This condition is defined as:

inscs ≡ {(cins) Λ (∀ x ∈ inputs, ∃ v(x))},

such that τ(x) = t and t ∈ Os.

Semantic Consistency of composition of ontology extended workflow compo-
nents is necessary to ensure the soundness of component-based workflow assembly.
Definition (Consistent Workflow Component Composition): The composition
of any two ontology-extended workflow components s (source) and t (target) is
said to be consistent, if the following conditions are satisfied:

– The data & control flow between s and t must be consistent, i.e., control
flow should follow data flow.

– The data and control flow links must be syntactically consistent i.e., there
should be no syntactic mismatches for data flow links.

– The data and control flow links must be semantically consistent, i.e., there
should be no unresolved semantic mismatches along the data & control flow
links. (Semantic mismatches between workflow components are resolved by
mapping components)

– Data & control flow links should be acyclic (free of cycles).

Definition (Ontology-extended Workflow Consistency): An ontology-extended
workflow W is semantically consistent if the composition of each and every pair
of source and target components is consistent.

Recall that the composition of two components s and t is consistent if it
ensures data and control flow, syntactic, semantic and acyclic consistencies.

Ontology-Extended Component-Based Workflows 51

– Data and Control Flow Consistency : By the definition of the ontology-
extended component composition, for any composition there exists a set
of data flow links ∈ Dlink(s, t) and there exists a control link ∈ Clink(s, t).
According to the definition of the ontology-extended component instance,
the instantiation conditions insct for t have to be satisfied, which means
that all the inputs ∈ inputt are instantiated when cint becomes true (it also
means that couts = true). Thus, the control flow follows the data flow.

– Syntactic and Semantic Consistency : For every data flow link (x, y) ∈
Dlink(s, t), there exists a conversion function corresponding to a mapping
introduced by an interoperation constraint (if such a function is not defined,
it is assumed to be the identity). Thus, all the syntactic and semantic mis-
matches are resolved by the mapping component corresponding to the com-
ponents s and t, and the syntactical and semantical consistency is ensured.
Note that, for Clink(s, t) there exists no syntactic differences.

– Acyclic Consistency : Our framework does not allow any cycles for data or
control flow links.

3 Weather Description Workflow Example

In this section we illustrate ontology-extended component-based workflows using
a sample workflow whose goal is to determine whether the day is hot, or warm or
cold based upon the temperature (see Figure 7). This workflow is composed of
two main components: C-Sensor component which calculates the current temper-
ature upon the reception of the signals/bit streams from some external sensors
and Weather Description component which determines the type of day (hot,
warm, cold) based on the temperature. The two components are semantically
heterogeneous and we show how they can be composed into a workflow using
our framework.

Ontology-Extended Workflow Components: The components used in the sam-
ple workflow are described as follows:

– For the source component, C,
• OC is the associated ontology, which describes a Sensor by Signals and

Temp, where τ(Signals) = Bits and τ(Temp) = Centigrade.
• Bits, Centigrade ∈ OC are the data types.
• inputC = (Signals : Bits).
• outputC = (Temp : Centigrade).
• c1 and c2 are the control input and control output attributes, respec-

tively.
– For the target component, W,

• OW is the associated ontology, which describes the Weather by Tem-
perature and Day, where τ(Temperature) = Fahrenheit and τ(Day) =
DayType and D(DayType) = {Hot, Warm, Cold}.

• Fahrenheit, DayType ∈ OW are the data types.
• inputW = (Temperature : Fahrenheit).

52 J. Pathak, D. Caragea, and V.G. Honavar

Signal/Bit
Streams

Temp
(in C)

Temperature
(in F)

Temperature
(in F)

Day

C-Sensor
Component

Mapping
Component

Weather
Description
Component

Temp
(in C)

c1

Actual Workflow with two
components

c5

c6

 Virtual Control Flow Link

Virtual Data Flow Link
c2

c3

c4

Actual Data Flow Link

 Actual Control Flow Link

Fig. 7. Sample Workflow for Weather Description

• outputW = (Day : DayType).
• c5 and c6 are the control input and control output attributes, respec-

tively.

Composition of Ontology-Extended Workflow Components: The composition
of the components C and W is defined as follows:

– Ontologies OC and OW (defined above).
– The control flow link, (c2, c5) ∈ Clink(C, W), where c2 ∈ coutC and c5 ∈

cinW .
– The data flow link, (Temp, Temperature) ∈ Dlink(C, W), where Temp ∈

outputC and Temperature ∈ inputW .
– The interoperation constraint, Temp:OC = Temperature:OW . Thus, there

also exist a mapping from Temp to Temperature, denoted as, (Temp �→
Temperature) ∈ MS (C, W).

– The conversion function, f (Temp, Temperature) ∈ CF (C, W) , which
converts a value in Centigrade (Temp) to Fahrenheit (Temperature).

Mapping Component : Based on the interoperation constraints mentioned above,
the mapping component, MAP (C, W), can be defined as follows:

Ontology-Extended Component-Based Workflows 53

– Ontologies OC and OW are associated with its inputs and outputs, respec-
tively.

– (Temp �→ Temperature) ∈ MS (C, W) and f (Temp, Temperature) ∈ CF (C,
W) are the mapping and conversion function.

– inputmap = (Temp : Centigrade).
– outputmap = (Temperature : Fahrenheit).
– Attribute c3 ∈ cinmap is the control input attribute.
– Attribute c4 ∈ coutmap is the control output attribute.

Instances of Ontology-Extended Workflow Components : The instantiation con-
dition for each of the component are shown below:

– C-Sensor component : The instantiation condition of the C-Sensor component
is given by:

inscC ≡ {(c1) Λ (∃ v(signals))} = true

The value of c1 is considered to be true whenever the C-Sensor receives
signal/bit streams from some external sensor(s). That is, the instantiation
condition of the component instance is evaluated when the component re-
ceives signals, and if it evaluates to true, the execution of the instance begins.
The component does some internal processing with its input signal streams
and outputs the current temperature Temp. Also, a true value at c2 indicates
the termination of execution of the component instance.

– Mapping component : The instantiation condition of the Mapping component
is given by:

inscmap ≡ {(c3) Λ (∃ v(Temp))} = true

The presence of a true value at c2 (when C-Sensor component terminates
its execution), results in a true value at c3, of the mapping component.
Upon successful evaluation of the instantiation condition of the component
instance, the execution is initiated. On the termination of the component
instance, it writes its output attribute Temperature (in degree F). Also, a
true value at c4, indicates the termination of execution of the component
instance.

– Weather Description component : The instantiation condition for the
Weather Description component is given by:

inscW ≡ {(c5) Λ (∃ v(Temperature))} = true

The termination of the execution of the mapping component places a true
value in c5 at an instance of the workflow component. A true evaluation of
the instantiation condition of the component instance, initiates its execution.
The input attribute of this component, Temperature, corresponds to the
output attribute of the mapping component. Note that both these attributes
are syntactically and semantically identical. On termination of instance, it
writes its output attribute Day. Finally, a true value at c6 indicates the
termination of execution of the component instance and also the termination
of the workflow.

54 J. Pathak, D. Caragea, and V.G. Honavar

From the definitions above, the workflow is consistent because:

– The instantiation conditions ascertain that the control flow follows data flow.
– The mapping component guarantees that there are no syntactic and semantic

mismatches.
– There are no cycles between data or control flow links.

4 Summary and Discussion

4.1 Summary

Recent advances in networks, information and computation grids, and WWW
have made it possible, in principle, to access and use multiple, autonomous,
semantically heterogeneous, networked information sources and software com-
ponents or services. Development of tools that can contribute to substantial
gains in productivity in specific application domains such as scientific discovery
(e.g., bioinformatics), national defense (e.g., security informatics), business (e.g.,
e-commerce), manufacturing (e.g., virtual enterprises) and government calls for
theoretically sound approaches for assembly of complex networks of coordinated
activities or workflows from independently developed, semantically heteroge-
neous information sources and software components. Against this background,
the framework of ontology-extended component-based workflows developed in
this paper builds on recent advances in ontology-driven information integra-
tion [7,4,18,17] and component-based workflows [6,8,15,21] to address the need
for a theoretically sound basis for composition of semantically heterogeneous
workflow components into semantically consistent workflows.

4.2 Related Work

Benatallah et al. [3] introduce the Self-Serv framework for Web services compo-
sition. Their approach is based on two main concepts, namely, composite service
and service container. The function of a composite service is to bring together
various other services that collaborate to implement a set of operations, whereas,
a service container facilitates the composition of a potentially large and chang-
ing set of services. However, the emphasis in this work has been more on the
dynamic and scalable aspects of web service composition, and less on resolving
semantic heterogeneity among the Web services, which remains as a major chal-
lenge in realizing the vision of the Semantic Web [2]. Cardoso et al. [8] provide
metrics to select web services for composition into complex workflows. These
metrics take into account various aspects like purpose of the services, quality of
service (QOS) attributes, and the resolution of structural and semantic conflicts.
Fileto [11] designed the POESIA framework for Web service composition using
an ontological workflow approach. POESIA uses domain specific ontologies for
ensuring semantic consistency in the composition process.

Our approach is similar to the approach in [11], where ontologies are used for
component (or Web service) composition, and hence, for bridging the semantic

Ontology-Extended Component-Based Workflows 55

gap between them. However, we allow users to specify the interoperation con-
straints and define the type conversion functions between attributes in different
domains, thereby supporting flexible resolution of semantic mismatches between
the distributed, heterogeneous and autonomous components.

4.3 Future Work

Some directions for future work include:

– Design and implementation of an environment for workflow assembly and
execution from semantically heterogeneous software components, ontologies,
and user-supplied mappings between ontologies.

– Development of an approach to verification of consistency of user-specified
interoperation constraints using Distributed Description Logics [13,5].

– Development of workflows for specific data-driven knowledge acquisition
from autonomous, distributed information sources in computational molec-
ular biology applications (e.g., discovery of protein sequence-structure-
function relationships).

– Analyzing the dynamics and behavioral aspects of workflow execution.

Acknowledgment. This research was supported in part by grants from the
National Science Foundation (0219699) and the National Institutes of Health
(GM066387) to Vasant Honavar.

References

[1] The Workflow Reference Model: (http://www.wfmc.org/)
[2] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American

(2001)
[3] Benatallah, B., Sheng, Q., Dumas, M.: The self-serv environment for web services

composition. IEEE Internet Computing 7 (2003) 40–48
[4] Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational alge-

bra. In: Proc. IEEE International Conference of Information Reuse and Integra-
tion. (2003)

[5] Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics (2003) 153–184

[6] Bowers, S., Ludascher, B.: An ontology-driven framework for data transformation
in scientific workflows. In: Intl. Workshop on Data Integration in the Life Sciences.
(2004)

[7] Caragea, D., Pathak, J., Honavar, V.: Learning from Semantically Heterogeneous
Data. In: 3rd International Conference on Ontologies, Databases, and Applica-
tions of Semantics for Large Scale Information Systems (2004)

[8] Cardoso, J., Sheth, A.: Semantic e-workflow composition. Journal of Intelligent
Information Systems 21 (2003) 191–225

[9] Cox, P., Song, B.: A formal model for component-based software. In: Proc. IEEE
Symposia on Human Centric Computing Languages and Environments. (2001)

[10] D’Souza, D., Wills, A.: Object, Components and Frameworks with UML - The
Catalysis Approach. Addison-Wesley, Reading, MA (1997)

56 J. Pathak, D. Caragea, and V.G. Honavar

[11] Fileto, R.: POESIA: An Ontological approach for Data And Services Integration
on the Web. PhD thesis, Institute of Computing, University of Campinas, Brazil
(2003)

[12] Fischer, L.: Workflow Handbook. Future Strategeis Inc., Lighthouse Point, FL
(2004)

[13] Ghidini, C., Serafini, L.: Distributed first order logics. In: Frontiers of Combining
Systems 2. Volume 7. (2000) 121–139

[14] Levy, A.: Logic-Based Techniques in Data Integration. Kluwer Academic Pub-
lishers, Norwell, MA (2000)

[15] Ludascher, B., Altintas, I., Gupta, A.: A modeling and execution environment
for distributed scientific workflows. In: 15th Intl. Conference on Scientific and
Statistical Database Management. (2003)

[16] Marinescu, D.: Internet-Based Workflow Management: Toward a Semantic Web.
Wiley, New York (2002)

[17] Reinoso-Castillo, J.: Ontology driven information extraction and integration from
autonomous, hetergoneous, distributed data sources - a federated query centric
approach. MS. thesis, Department of Computer Science, Iowa State University,
USA (2002)

[18] Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J., Honavar, V.: Informa-
tion extraction and integration from heterogeneous, distributed and autonomous
sources: A federated ontology-driven query-centric approach. In: Proc. IEEE In-
ternational Conference of Information Reuse and Integration. (2003)

[19] Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman, Reading, MA (1998)

[20] Weske, M.: Workflow Management Systems: Formal Foundation, Conceptual
Design, Implementation Aspects (Habilitationsschrift). PhD thesis, Fachbereich
Mathematik und Informatik, Universitt Mnster, Germany (2000)

[21] Zhuge, H.: Component-based workflow systems development. Decision Support
Systems 35 (2003) 517–536

Data Procurement for Enabling Scientific Workflows:
On Exploring Inter-ant Parasitism�

Shawn Bowers1, David Thau2, Rich Williams3, and Bertram Ludäscher1

1 San Diego Supercomputer Center, UCSD, La Jolla, CA, USA
2 University of Kansas, Lawrence, KS, USA

3 National Center for Ecological Analysis and Synthesis,
UCSB, Santa Barbara, CA, USA

1 Introduction

Similar to content on the web, scientific data is highly heterogeneous and can benefit from
rich semantic descriptions. We are particularly interested in developing an infrastruc-
ture for expressing explicit semantic descriptions of ecological data (and life-sciences
data in general), and exploiting these descriptions to provide support for automated data
integration and transformation within scientific workflows [2]. Using semantic descrip-
tions, our goal is to provide scientists with: (1) tools to easily search for and retrieve
datasets relevant to their study (i.e., data procurement), (2) the ability to select a subset
of returned datasets as input to a scientific workflow, and (3) automated integration and
restructuring of the selected datasets for seamless workflow execution.

As part of this effort, we are developing the Semantic Mediation System (SMS) within
the SEEK project1, which aims at combining knowledge representation and semantic-
web technologies (e.g., OWL and RDF) with traditional data-integration techniques
[3, 8, 9]. We observe that along with these traditional approaches, mediation of ecological
data also requires external, special-purpose services for accessing information not easily
or conveniently expressed using conceptual modeling languages, such as description
logics.The following are two specific examples of ecologically relevant, external services
that can be exploited for scientific-data integration and transformation.

Taxonomic Classification and Mapping. There is an extensive body of knowledge
on species (both extinct and existing) represented in a variety of different taxonomic
classifications, and new species are still being discovered [7]. The same species can be
denoted in many ways across different classifications, and resolving names of species
requires mappings across multiple classification hierarchies [6]. Within SMS we want
to leverage operations that exploit these existing mappings, e.g., to obtain synonyms of
species names, without explicitly representing the mappings or simulating the associated
operations within the mediator.

Semantics-Based Data Conversion. We are interested in applying operations during
mediation that can transform and integrate data based on their implied meaning. How-

� This work supported in part by NSF grant ITR 0225674 (SEEK).
1 Science Environment for Ecological Knowledge, http://seek.ecoinformatics.org

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 57–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

58 S. Bowers et al.

ever, for scientific data, the nature of these conversions are often difficult to express
explicitly within a conceptual model. A large number of ecological datasets represent
real-world observations (like measuring the abundance of a particular species), and
therefore often have slightly different spatial and temporal contexts, use different mea-
surement protocols, and measure similar information in disparate ways (e.g., area and
count in one dataset, and density, which is a function of area and count, in a second
dataset). As with taxonomic classification, we want the mediator to exploit existing
conversion operations when possible.

This short paper describes an initial logic-based SMS prototype that leverages ontolo-
gies, semantic descriptions, and simple external services (primarily taxonomic) to help
researchers find relevant datasets for ecological modeling. In Section 2 we describe our
motivating scenario. In Section 3 we discuss details of the prototype through examples.
And in Section 4 we conclude with future work.

2 Motivation: Ant Parasitism and Niche Modeling

A diverse and much studied group of organisms in ecology is the family Formicidae,
commonly known as ants. Ants account for a significant portion of the animal biomass
on earth and churn much of the earth’s soil. Ants are also social animals that provide
insights into the evolution of social behaviors. One such complex social behavior is
parasitism between ant species [4].

The environment in which parasitism is likely to occur provides important data on
how parasitism arises. For example, one theory states that inter-ant parasitism is more
likely to arise in colder climates than in warmer ones. Thus, an ecological researcher
may be interested in the question: In California, what environmental properties play a
role in determining the ranges of ants involved in inter-ant parasitism?

Answering this question requires access to a wide array of data: (1) the types of
parasitic relationships that exist between ants, (2) the names of species of ants taking
part in these parasitic relationships, (3) georeferenced observations of these species of
ants, and (4) the climate and other environmental data within the desired locations.

Today, these datasets are typically sought out by the researcher, retrieved, and inte-
grated manually. The researcher analyzes the data by running it through an appropriate
ecological model, the result of which is used to help test a hypothesis. In our example,
an ecological niche model [10] can be used, which takes data about the presence of a
species and the environmental conditions of the area in question, and produces a set of
rules that define a “niche” (i.e., the conditions necessary for the species to exist) relative
to the given environmental conditions and presence data. The rest of this paper describes
a first step towards helping a researcher to collect the datasets needed to test inter-ant
parasitism, and similar high-level questions.

3 The Prototype

Our dataset-discovery architecture is shown in Figure 1. A set of repositories store on-
tological information, datasets, and semantic descriptions (of the datasets). A semantic

Data Procurement for Enabling Scientific Workflows 59

Fig. 1. The initial SMS architecture for ecological data mediation

Fig. 2. Four heterogeneous datasets d1 through d4

description logically annotates a dataset using concepts and roles in the ontology reposi-
tory. Semantic descriptions are expressed as sound local-as-view mappings [3, 8], which
can succinctly represent mappings from information within a dataset to corresponding
ontological information. We also consider external services in the architecture, which
currently consist of synonym and unit-conversion operations. The SMS engine accepts
a user query and returns the set of relevant datasets that satisfy the given query.

Figure 2 shows example portions of four datasets that can be used to help answer
ant and inter-ant parasitism queries. Dataset d1 in Figure 2 contains georeferenced ant
data from AntWeb2 and consists of approximately 1,700 observations, each of which
consist of a genus and species scientific name, an abundance count, and the location
of the observation. Dataset d2 in Figure 2 contains similar georeferenced ant data from
the Iziko South African Museum (ISAM),3 consisting of about 12,000 observations.
Dataset d3 in Figure 2 is a typical representation used for georeferenced co-occurrence
data, where species are encoded within the schema of the table. This dataset contains only
five tuples. Dataset d4 in Figure 2 describes specific ants that participate in inquilinism
inter-ant parasitism. The first two columns denote the parasite and the last two columns
denote the host. Over two-hundred pairs of ants are described using four distinct datasets,
each representing a particular parasitic relationship (all data were derived from Table
12-1 of [4]). Finally, Figure 3 shows a simplified fragment of the measurement and
parasitism ontologies currently being developed within SEEK.

The following conjunctive queries define semantic descriptions of datasets d1, d3,
and d4 (the semantic description of d2 is identical to d1).

2 See www.antweb.org
3 Provided by Hamish Robertson, Iziko Museums of Cape Town

SMS
Dataset Discovery

Dataset

Repository

Dataset Query
Expression

Semantic

Descriptions
External Services

Semantic

Conversions

Ontology

Repository

Relevant
Datasets

Conversion

Rules

genus species count lat lon
d1

Manica parasitica 2 37.85 -119.57

genus species cnt lt ln

Camponotus fornasinii 1 -29.65 26.18

man-para-cnt aph-cald-cnt lt ln

3 6 37.56 -120.03

genus1 species1 genus2 species2

Manica parasitica Aphaenogaster calderoni

Manica bradelyi 1 38.32 -119.67

d2

d3 d4

60 S. Bowers et al.

prop

Observation

SpatialContext

GeoSpatialRegion

GeoCoordPoint

LatLonPoint UTMPoint

context

location

xsd:float xsd:float

latDeg lonDeg

xsd:float xsd:float

UTMx

UTMy

xsd:int xsd:int

zone

region

xsd:string

value

ObservableItem

item

EcoProperty

property

TaxonID

EcoEntity

Abundance

SciName

xsd:string xsd:string

genus species

property

SciName

Parasite Host

InquilinismHostInquilinismParasite

parasiteOf

inquilinismOf

parasiteOf

inquilinismOf

isa

role

Host concept

Fig. 3. Simplified ontologies for measurement observations and inter-ant parasitism

d1(Ge,Sp,Co,Lt,Ln) :-
Observation(O), value(O,Co), context(O,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O,A), Abundance(A), property(A,N), SciName(N),
genus(N,Ge), species(N,Se).

d3(Mp, Cf, Lt, Ln) :-
Observation(O1), value(O1,Mp), context(O1,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O1,A1), Abundance(A1), property(A1,N1),
SciName(N1), genus(N1,‘Manica’), species(N1,‘parasitica’), Observation(O2),
value(O2,Cf), context(O2,S), item(O2,A2), Abundance(A2), property(A2,N2),
SciName(N2), genus(N2,‘Aphaenogaster’), species(N2,‘calderoni’).

d4(G1,S1,G2,S2) :-
InquilinismParasite(P), SciName(P), genus(P,G1), species(P,S1), InquilinismHost(H),
genus(H,G2), species(H,S2), inquilinismOf(P,H).

The following example is a dataset-discovery query defined in terms of the ontology
that asks for all datasets containing georeferenced abundance measurements of Manica
bradleyi ants observed within California (as defined by the given bounding box). Dataset-
discovery queries allow predicates to be annotated with dataset variables, given as D
below. Each semantic description is also implicitly annotated with its dataset identifier,
e.g., every predicate in the body of the first description above would be annotated with
d1. A dataset handle is returned by the query below if each formula annotated with D
is satisfied by the dataset, assuming the given inequality (i.e., the latitude-longitude)
conditions also hold.

q1(D) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,‘Manica’)D, species(N,‘bradleyi’)D, Lt ≥ 33, Lt ≤ 42,
Ln ≥ -124.3, Ln ≤ -115.

Using a standard data-integration query-answering algorithm [8], the query above is
answered by (1) finding relevant information sources, i.e., sources whose view mappings
overlap with the given query, and (2) using the relevant sources, rewriting the user query,
producing a sound query expressed only against the underlying data sources, possibly
containing additional conditions. We extend this approach by also considering dataset

Data Procurement for Enabling Scientific Workflows 61

annotations on query formulas. In our example, d1 and d2 are the only relevant datasets
for the above query, giving the following query rewritings. Note that after executing the
queries below, only d1 is returned; the ISAM dataset does not contain the given species.

q1(d1) :- d1(‘Manica’,‘bradleyi’,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115.
q1(d2) :- d2(‘Manica’,‘bradleyi’,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115.

The following query is similar to q1, but uses an external service (prefixed with ‘ext:’)
for computing synonymy of species names.

q2(D) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,Ge)D, species(N,Sp)D, Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3,
Ln ≤ -115, ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

The synonymy operation, encapsulated as a logical formula above, draws from descrip-
tions in the Hymenoptera Name Server [5], and supports over 2,500 taxa of ants and their
synonymy mappings. In the operation, a given genus-species pair is always a synonym of
itself. In the prototype, we equate synonyms between taxa as equivalence relations. This
assumption is often an oversimplification [1] and in future work we intend to explore
different synonymy relations between taxa.

The following rewritings are obtained from the above query. After execution, the
rewritten q2 query will return dataset d1 as well as dataset d3; the latter because
Aphaenogaster calderoni is a synonym of Manica bradleyi. Note that we could have
discarded the third rewriting below since all arguments of the synonym operation are
ground, and for the particular binding, the species’ are not valid synonyms.

q2(d1) :- d1(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

q2(d2) :- d2(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

q2(d3) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,‘Manica’,‘parasitica’).

q2(d3) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,‘Aphaenogaster,‘calderoni’).

Finally, the following query finds datasets containing georeferenced measurements
of parasites of Manica bradleyi within California. Thus, the query finds the relevant
ant presence data needed for our original parasitism question, for a single host species.
The query uses the external synonym operation and projects the latitude, longitude, and
genus and species names of the relevant observations so that the result (with additional
pre-processing) can be fed into a scientific workflow, such as a niche model.

q3(D,Lt,Ln,Ge,Sp) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,Ge)D, species(N,Sp)D, Lt ≥ 32, Lt ≤ 42, Ln ≥ -124.3,
Ln ≤ -115, Host(Ho), genus(Ho,Ge1), species(Ho,Sp1),
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), Parasite(Pa), genus(Pa,Ge2),
species(Pa,Sp2), parasiteOf(Pa,Ho), ext:synonym(Ge2,Sp2,Ge,Sp).

The rewritings of q3 are shown below. The result includes the tuples (d1,37.85,-
119.57,‘Manica’,‘parasitica’) and (d3,37.56,-120.03,‘Manica’,‘parasitica’), where only

62 S. Bowers et al.

datasets d1 and d3 contain possible answers. In particular, Manica parasitica are in-
quilinism parasites of Manica bradleyi, which is derived from dataset d4 by computing
Manica bradleyi synonyms.

q3(d1,Lt,Ln,Ge,Sp) :- d1(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,Ge,Sp).

q3(d1,Lt,Ln,Ge,Sp) :- d2(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,Ge,Sp).

q3(d1,Lt,Ln,Ge,Sp) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,‘Manica’,‘parasitica’).

q3(d1,Lt,Ln,Ge,Sp) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,‘Aphaenogaster,‘calderoni).

4 Summary and Future Work

We have described an initial prototype that enables semantic-based dataset-discovery
queries and supports mixing external services with traditional query-answering tech-
niques. The prototype is written in Prolog and has an accompanying web interface for
queries over geographic region, species, and parasitic relationship. We are extending
the prototype by adding additional ontology-based query answering techniques includ-
ing support for external services that perform transformation operations. To illustrate,
the semantic description below is for a dataset similar to d1, but uses an external ser-
vice UTM2LatLon(Ux,Uy,Re,Zo,Lt,Ln) that converts UTM to latitude-longitude degree
coordinates.

d5(Ge,Sp,Co,Ux,Uy,Re,Zo) :-
Observation(O), value(O,Co), context(O,S), location(S,P), UTMPoint(P),
UTMx(P,Ux), UTMy(P,Uy), region(P,Re), zone(P,Zo), item(O,A), Abundance(A),
property(A,N), SciName(N), genus(N,Ge), species(N,Se).

To answer query q1, we want to (1) return d5 as a relevant source, since UTM points
can be converted to latitude-longitude points using UTM2LatLon, and (2) correctly insert
a call to UTM2LatLon into the resulting query as part of the query rewriting. We are
currently exploring parameter dependency specifications for this purpose, in which the
domain and range of an external service are semantically described. In general, we
believe incorporating external services into mediator architectures provides a powerful
framework to support complex integration and transformation of scientific data.

References

1. W. Berensohn. The concept of “Potential Taxa” in databases. Taxon, vol. 44, 1995.
2. S. Bowers and B. Ludäscher. An ontology-driven framework for data transformation in sci-

entific workflows. In Proc. of Data Integration in the Life Sciences, LNCS, vol. 2994, 2004.

Data Procurement for Enabling Scientific Workflows 63

3. A. Y. Halevy. Answering queries using views: A survey. In VLDB Journal, 10(4), 2001.
4. B. Hölldobler and E. O. Wilson. The Ants. Harvard University Press, 1990.
5. N. F. Johnson. The Hymenoptera Name Server. http://atbi.biosci.ohio-state.edu:210/

hymenoptera/nomenclator.home page
6. T. Paterson and J. Kennedy. Approaches to storing and querying structural information in

botanical specimen descriptions. To appear in Proc. of BNCOD, LNCS, July, 2004.
7. A. Purvis and A. Hector. Getting the measure of biodiversity. Nature, vol. 405, 2000.
8. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-answering algorithms for information

agents. In Proc. of AAAI, 1996.
9. B. Ludäscher, A. Gupta, and M. E. Martone. Model-based mediation with domain maps. In

Proc. of ICDE, IEEE Computer Society, 2001.
10. D. R. B. Stockwell and D. P. Peters. The GARP modelling system: Problems and solutions

to automated spatial prediction. Intl. J. of Geographic Information Systems, vol. 13, 1999.

XSDL: Making XML Semantics Explicit�

Shengping Liu, Jing Mei, Anbu Yue, and Zuoquan Lin

Department of Information Science, Peking University,
Beijing 100871, China

{lsp, mayyam, yueanbu, lz}@is.pku.edu.cn

Abstract. The problem that “XML formally governs syntax only - not
semantics” has been a serious barrier for XML-based data integration
and the extension of current Web to Semantic Web. To address this prob-
lem, we propose the XML Semantics Definition Language(XSDL) to ex-
press XML author’s intended meaning and propose a model-theoretic se-
mantics for XML. Consequently, XML becomes a sub-language of RDF in
expressiveness and XML data can be semantics-preserving transformed
into RDF data. We further discuss the semantic entailment and validity
of the XML documents.

1 Introduction

XML[1] has achieved great success as standard document format for writing and
exchanging information on the Web. However, one of the limitations of XML has
been well recognized: “XML formally governs syntax only - not semantics”[2].
The tags in an XML document are only meaningful to human, but meaning-
less to machine. For example, humans can predict the information underlying
between the tags in the case of <price></price>, but for any generic XML
processor, the tag <price> is equal to the HTML tag <H1>, because nowhere
in an XML document, or DTD and XML Schema, does it say what these tags
mean. Therefore, XML cannot express formal semantics by itself. Nonetheless,
there are implicitly semantic information lied in the tags and structure of an
XML document. For example1,

Example 1. An XML fragment with implicit semantics

<wineMerchant name="Bristol Bottlers" >
<wine id="w100">

<name>Vielles Bottes</name>
<color>black</color>

</wine>
</wineMerchant>

� This work was supported by the National Natural Science Foundation of China under
grant numbers 60373002 and 60496323.

1 This XML fragment is modified from examples in SWAD-Europe Deliverable 5.1:
http://www.w3.org/2001/sw/Europe/reports/xml schema tools techniques report.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 64–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XSDL: Making XML Semantics Explicit 65

The above XML fragment expresses rich semantic information: there is a wine
merchant called “Bristol Bottlers” who sells a kind of wine whose name is “Vielles
Bottes” and the color is black. The facts and relationship represented by the
XML document is called XML Semantics[3].

In fact, the XML semantics is implicitly expressed in the XML documents.
The semantics is conveyed on the basis of a shared understanding derived from
human consensus. If there is an implicitly shared consensus about what the tags
mean, then people can hardcode this implicit semantics into applications. The
disadvantage of implicit semantics is that they are rife with ambiguity[4]. People
often disagree with the meaning of a term. For example, prices come in different
currencies and they may or may not include various taxes. The hardcoding of
the XML semantics into applications make the interoperation and integration
difficult.

Moreover, due to the implicit XML semantics, XML is not suitable to repre-
sent the content in the next generation of Web, Semantic Web[5]. The metadata
language RDF[6] with a formal semantics was proposed as the standard to ful-
fil the task[7], and the techniques from knowledge representation field, such as
the Web ontology language OWL[8], was introduced to represent the domain
knowledge. Consequently, the semantic discontinuity between XML and RDF is
formed; most XML data on the current Web cannot be smoothly transformed
to the Semantic Web. This is a serious barrier for one of the statements by Se-
mantic Web: being an extension of the current Web, and is also a barrier for the
wide acceptance of Semantic Web in industry.

Therefore, for broad applications of XML and developments of Semantic
Web, the XML semantics is required to be formally and explicitly specified. To
this end, P. Patel-Schneider and J. Siméon proposed the XML model-theoretic
semantics[9] and later the Yin/Yang Web[10], in which the data model of XML
and RDF are unified and the XML document is given a direct RDF-compatible
meaning. However, because there is no specification for expressing the XML se-
mantics, hence the author of XML document can express the same meaning in
almost arbitrary ways and the intended meaning of author is hidden in the tags
and structure of the XML document without any formal description. Therefore,
without the author’s intervention, the direct interpretation for XML is difficult
to capture the author’s intended meaning and thus decrease the Yin/Yang Web’s
value in practical applications. For example, in the interpretation of XML in the
Yin/Yang Web, an element node is mapped to an individual of the class with the
same name. But, in fact, an element node in XML may represent an individual,
a property and even a literal. Sometimes even worse, a node can have different
meaning under different conditions. Thus, it is nearly impossible to capture the
author’s intended meaning by only syntactic analysis and a language to specify
XML semantics by author is required. MDL(Meaning Definition Language,[11])
is such a language that defines the XML semantics in terms of UML class model
and defines how to extract the meaning in terms of XPath[12]. The main disad-
vantage of MDL is that it has no formal semantics and thus provides no much
help to bridge the gap between XML and Semantic Web.

66 S. Liu et al.

Motivated by the Yin/Yang Web and MDL, we propose a novel approach.
First, we propose the XML Semantics Definition Language (XSDL)2, in which
the XML semantics is defined in terms of OWL DL ontology and is extracted in
terms of XPath (namely XPath 2.0) path expression. The XML authors can use
XSDL to define the intended meaning of an XML document. Second, we propose
the XML model-theoretic semantics that gives XML meaning by two steps: we
firstly define the XML’s simple interpretation that gives a rough meaning of an
XML document, for example, an element node is interpreted as an individual
in the universe; then we define the XML’s XSDL-interpretation that gives the
exact meaning of the XML document by taking the XML’s XSDL definition into
account, for example, the individual is further interpreted as an instance of some
class according to the XSDL definition.

After XML document having XSDL to define the semantics, XML can ex-
press OWL DL’s fact assertions, i.e., the statement about a particular individual
in the form of classes that the individual belongs to plus properties and values of
that individual[17]. Therefore, XML can be viewed as a knowledge representa-
tion language which is less expressive than RDF. Furthermore, we introduce the
semantic validity of XML document to check whether the document satisfies the
semantic integrity constraints and show that this problem is equivalent to the sat-
isfiability of the knowledge base in the description logic language SHOIN (D).
In addition, we discuss one important reasoning task about XML: the semantic
entailment between XML documents, and show that the entailment problem can
be reduced to the same satisfiability problem of SHOIN (D) [13].

The paper is organized as follows. We describe the syntax of XSDL with
some examples in Section 2. The XML model-theoretic semantics that give XML
meaning by simple interpretation and XSDL-interpretation is presented in Sec-
tion 3. In Section 4, we discuss some related works. Finally, we conclude this
paper in the concluding section.

2 XML Semantics Definition Language(XSDL)

The XML semantics is implicitly expressed in almost arbitrary ways, so it is diffi-
cult to extract the semantic information in a purely syntactic way. A language is
required to define the semantics by human. The language should at least include
two parts: a formal language to represent the semantic information in XML and
a mapping language to specify the mapping from XML constructs to the formal
language. In XSDL, OWL DL is selected as the formal language because it is
the standard Web ontology language and have a formal logic foundation; the
mapping language is based on Schema Adjuncts Framework(SAF, [14]), which
extends the XML’s structural model given by XML schema with additional in-
formation about the meaning of XML instances. In SAF, information items are
selected by means of XPath path expressions; the additional information is given

2 In the XML Schema specification, a term “XML Schema definition language” is
used, but “XSDL” is not proposed as the term’s acronym by W3C.

XSDL: Making XML Semantics Explicit 67

by reference to an external schema. XSDL is the SAF implementation with the
external schema as OWL DL ontology’s XML presentation syntax[15].

Now we briefly introduce the XML syntax and abstract syntax of XSDL. For
more detailed information about XSDL, refer to XSDL specification[25].

The XSDL document structure is as follows:

<schema-adjunct target="http://foo.org/myschema.xsd"
xmlns:owlx="http://www.w3.org/2003/05/owl-xml">

<document>
<!-- global ontology definition: any legal syntax of OWL DL-->
<owlx:Ontology owlx:name="http://foo.org/wine">
...
</owlx:Ontology>

</document>
<!-- mapping rules definitions: mapping XML constructs to

the global ontology -->
<element context ="/wineMerchant">
<owlx:Class owlx:name="WineMerchant" />

<!--or:DataValue,Individual,ObjectProperty,DatatypeProperty-->
</element>
...
<attribute context ="/wineMerchant/wine/name">
<owlx:DatatypeProperty owlx:name="name" />
<!--or:ObjectProperty-->

</attribute>
...

</schema-adjunct>

where the ”target” attribute value is the XML Schema for which XSDL defines
the semantics. Semantic information are given at all levels: document, element
and attribute: the “document” node includes a global ontology definition; in
“element” and “attribute” nodes, the “context” attribute selects the instance
data by XPath 2.0 path expression, the child elements can be references to the
individuals, classes, datatype properties and object properties defined in the
global ontology. The global ontology is sometimes called the ontology in XSDL.

XSDL is defined at schema level and the XSDL definition can be applied to
all XML documents conforming to the schema. But to be intuitive, the following
examples are XML fragments when introducing the XSDL definitions.

2.1 Class Definition

In XML, individual is always denoted by XML element node, and then class is
denoted by a set of element nodes. To define class in XSDL, we need an XPath
path expression to select the set of nodes, and a reference to the class name in the
global ontology. In addition, because URI reference is used to identify resources
in Semantic Web, so we need a URI constructor to assign URI references to the
resources mapped from XML nodes.

68 S. Liu et al.

In Example 1, the set of wine nodes represent a Wine Class, every instance in
the class have an URIref like “http://foo.org/wine#w100”, this can be defined
in XSDL as:

<element context="/wineMerchant/wine">
<URIFunction>concat("http://foo.org/wine#",

string("/wineMerchant/wine[$i]/@id"))</URIFunction>
<owlx:Class owlx:name="Wine"/>

</element>

where the “context” attribute select the “wine” nodes; the “URIFunction” ele-
ment is an XPath 2.0 function for URI construction, the parameter $i denote the
ith node in the set selected by XPath expression, string, concat are both XPath
built-in functions, other functions, such as document-uri, namespace-uri, can
also be used to construct the URI; the “owlx:Class” node refers to a class that
has been already defined in the global ontology.

Note that the use of URI function partially solves one of the limitations
of OWL DL: datatype property cannot be inverseFunctional, so if ID-typed
attribute is mapped to datatype property, it cannot identify the individual. Now
we can construct URIref through the ID-typed attribute, and use URIref to
identify individual. If the URI function is not given, the nodes will be interpreted
as anonymous individuals.

The abstract syntax for class definition is:
<CtxPathˆˆelement, urifn, cnˆˆClass>,

where “CtxPath” is the context path, “ˆˆelement” means the type of nodes
return by context path are element nodes, “urifn” is the URI constructor function
and “cn” is the class name. “ˆˆClass” means that “cn” is a name of class.

2.2 Individual Definition

Sometimes we need to make assertions about individual or define enumerated
class in the global ontology. Then we need to define individual in XSDL. In
Example 1, one specific wine node represents an individual of class Wine, the
syntax is:

<element context ="/wineMerchant/wine[@id=’w100’]">
<owlx:Individual owlx:name="w100" />

</element>

Note that all nodes selected by context path are interpreted as the same individ-
ual, whereas every node is interpreted as different individual of the same class
in above class definition.

The abstract syntax for individual definition is:
<CtxPathˆˆelement, uriˆˆIndividual>,

where “uri” is the individual’s name or URIref.

XSDL: Making XML Semantics Explicit 69

2.3 Literal Definition

In XSDL, the values of attribute and text nodes are predefined as literal values.
However, sometimes element node that has no attribute may also represent a
literal. For example:

Example 2. An XML fragment about literal definition

<Mathematics>
<student name="John" grade="87" id="100" />

</Mathematics>

where the “Mathematics” node can be viewed as a literal “maths” and be the
value of “courseName” attribute of student, the equivalent XML fragment is:

<student name="John" grade="87" id="100" courseName="maths"/>

This can be defined in XSDL as:

<element context="/Mathematics">
<owlx:DataValue owlx:datatype="&xsd;string">
maths</owlx:DataValue>

</element>

The asbtract syntax for literal definition is:
<CtxPathˆˆelement, literalˆˆddd>,

where “ddd” is literal’s data type.

2.4 Datatype Property Definition

In XML, attribute nodes and some element nodes with PCDATA type always
represent datatype properties. To define this in XSDL, we need to further define
the path attribute of “domainContext” and “rangeContext”, which are the rel-
ative paths related to context path and define the way to extract the node pairs
of the property.

In Example 1, node “id” and “name” represent datatype properties of class
Wine, the syntax in XSDL is

<attribute context ="/wineMerchant/wine/@id">
<domainContext path=".." />
<rangeContext path="." />
<owlx:DatatypeProperty owlx:name="wineID" />

</attribute>
<element context ="/wineMerchant/wine/name">

<domainContext path=".." />
<rangeContext path="text()" />
<owlx:DatatypeProperty owlx:name="wineName" />

</element>

70 S. Liu et al.

Note that the property wineID and wineName should have been defined
in the global ontology. Because the range of datatype property must be literal
values, so the node in the path of range context should be attribute node, text
node or element node defined as literal. In addition, the context path is just
a convenient way to locate the nodes that interpreted as individuals or literal
values in the domain and range of the property. For the wineName definition,
the context path can also be “/wineMerchant/wine”, then the path of domain
context should be “.” and the path of range context should be “name/text()”.

In the Yin/Yang Web, there must be a property between element node and its
child attribute nodes, by contrast, XSDL provides a way to define the datatype
property on any node pairs not limited by the document order. For example, in
Example 2, we can relate the “student” node to its parent “Mathematics” node
by a courseName property, the syntax is:

<element context ="/Mathematics/student">
<domainContext path="." />
<rangeContext path=".." />
<owlx:DatatypeProperty owlx:name="courseName" />

</element>

Sometimes the document order in XML has significant meaning, for example, in
the individual normal form for XML representations of structured data3,

Example 3. An XML fragment extracted from the individual normal form

<Address>
<string>US</string>
<string>Alice Smith</string>
<string>123 Maple Street</string>

</Address>

The “string” nodes have different meaning at different positions. Fortunately,
XPath expressions can select nodes by position, for example, the first “string”
node represents a country property, this can be defined in XSDL as:

<element context ="/Address/string[position()=1]">
<domainContext path=".." />
<rangeContext path="text()" />
<owlx:DatatypeProperty owlx:name="country" />

</element>

As can be seen from the above example, XPath expression bridges the gap be-
tween ordered XML document and unordered semantic representation.

The abstract syntax for datatype property definition is:
<CtxPathˆˆnodeType, DPath, RPath,dpnˆˆDatatypeProperty >,

where ”nodeType” can be “element” and “attribute” ,“DPath”,“RPath” are the
“path” attribute of “domainContext” and “rangeContext” respectively, “dpn”
is the name of datatype property.

3 Henry S. Thompson, http://www.ltg.ed.ac.uk/˜ht/normalForms.html

XSDL: Making XML Semantics Explicit 71

2.5 Object Property Definition

In XML, the nesting of elements always represent object property. In Example
1, the nesting of “wineMerchant” and “wine” nodes represent a “sell” object
property. The definition is similar to datatype property definition, the syntax is:

<element context ="/wineMerchant">
<domainContext path="." />
<rangeContext path="wine" />
<owlx:ObjectProperty owlx:name="sell" />

</element>

In addition, object property may be represented by reference in XML. The
explicit referencing mechanism uses the ID/IDREF attribute combination, for
example,

Example 4. An XML fragment with explicit reference by ID/IDREF

<wine id="w1001" name="Vielles Bottes" color="black" />
<wineMerchant name="Bristol Bottlers" wineID="w1001" />

where “wineID” node is an IDREF-typed attribute node and refers to an ID-
typed “id” attribute in a wine node. This ID/IDREF combination establishes a
relationship between the “wine” individual and the “wineMerchant” individual,
although XML does not say what is the relationship.

However, there are also implicit references by shared value in XML, for ex-
ample4,

Example 5. An XML fragment with implicit reference by shared value

<student name = "James Smith">
<course>101</course>

</student>
<department name = "Mathematical Sciences">
<courses>

<course code = "101" name = "basic algebra"/>
</courses>

</department>

The “attend” relationship between student and course is represented by the
sharing of a value (the course code 101) between node < course>101</course>
and node <course code=”101” />.

To define object property by reference, we need further define the “IDPath”
that is always the path of ID-typed nodes or the nodes implicitly referred outside
and the “IDREFPath” that is always the path of IDREF-typed nodes or the
nodes implicitly referring to other nodes by shared value. For implementation
convenience, the “IDREFPath” should be relative XPath expression with respect

4 This example is modified from an example in SWAD-Europe Deliverable WP5.2 :
http://www.w3.org/2001/sw/Europe/reports/xslt schematron tool/”.

72 S. Liu et al.

to the context path, the “IDPath” should be absolute XPath expression and the
“path” attribute of “rangeContext” should be relative XPath expression with
respect to the “IDPath”. The syntax for Example 4 is:

<attribute context="/wineMerchant/@wineID">
<domainContext path=".." />
<rangeContext path=".." IDPath="/wine/@id" IDREFPath="."/>
<owlx:ObjectProperty owlx:name="sell" />

</attribute>

where the path attribute in domain context selects the “wineMerchant” nodes
and the path attribute in range context selects the corresponding “wine” nodes.

The syntax for Example 5 is similar:

<element context="/student/course/text()">
<domainContext path="../.." />
<rangeContext path=".."
IDPath="/department/courses/course/@code" IDREFPath="."/>

<owlx:ObjectProperty owlx:name="attend" />
</element>

The abstract syntax for object property definition is:
<CtxPathˆˆnodeType, DPath, RPath, IDPath, IDREFPath,

opnˆˆObjectProperty>,
where “opn” is the name of object property.

3 XML Model-Theoretic Semantics

After XML document having XSDL to specify the semantics, XML documents
not only carry the data, but also the data semantics. To make the seman-
tics machine understandable, we now define XML’s model-theoretic semantics.
First, we define XML’s simple interpretation; second, we define XML’s XSDL-
interpretation that is an extension on simple interpretation; third, we introduce
the semantic validity of XML document; finally, we discuss entailment problem
for XML.

3.1 Simple Interpretation of XML

After parsing, XML document is validated against DTD or XML Schema and
an XML XQuery 1.0 and XPath 2.0 Data Model[16] can be constructed. The
data model serves as the vocabulary for XML’s simple interpretation. Because
the data model contains information about data type, we first introduce the
interpretation of datatype.

Definition 1 (Datatype). A datatype d is characterized by a lexical space,
L(d), which is a set of Unicode strings; a value space, V(d); and a total mapping
L2V(d) from the lexical space to the value space. A datatype map D is a partial
mapping from URI references to datatypes.

XSDL: Making XML Semantics Explicit 73

Definition 2 (XML Vocabulary). An XML vocabulary V is the data model
of XML that consists of:

1. N : the node set of XML document, N = Ne ∪Na ∪Nt, where Ne, Na and Nt

denote the set of element nodes, attribute nodes and text nodes, respectively,
other kinds of nodes are ignored by the interpretation;

2. NP : the set of node pairs, NP = N × N .

Definition 3 (Simple Interpretation). A simple interpretation I of an XML
vocabulary V is defined by:

1. R: a non-empty set of resources, called the universe of I;
2. LV : the literal values of I, is a subset of R that contains the set of Unicode

strings, the set of pairs of Unicode strings and language tags, and the value
spaces for each datatype in D;

3. O: a subset of R, is disjoint with LV and contains the individuals of I;
4. S : VI0 → O: a total mapping from URIrefs in XML, denoted as VI0 , into O;
5. Mc : Ne → O ∪ LV : a partial mapping from element nodes into individuals

and literal values;
6. Mc : Na ∪Nt → O∪LV : a total mapping from attribute nodes and text nodes

into individuals or literal values. For each node m ∈ Na ∪ Nt:
(a) if the type of m is xsd:anyURI, then Mc(m) ∈ O and Mc(m) = S(dm :

typed-value(m)), where the “dm”-prefixed functions are the XML Data
Model’s accessor functions and the set of all URIrefs here is VI0 ;

(b) if the type of m is supported by OWL(except xsd:anyURI), then Mc(m) ∈
LV and Mc(m) = dm : typed-value(m);

(c) if the type of m is not supported by OWL, then Mc(m) ∈ V (D(xsd :
string)) and Mc(m) = dm : string-value(m);

7. Mo : NP → R×R: a partial mapping from node pairs into pairs of resources,
i.e., every node pair < m, n >∈ NP is interpreted as a resource pair
< Mc(m), Mc(n) > within an unknown relationship.

The simple interpretation of XML has given a primary meaning to nodes
and document order in XML Document, for example, an element node may
represent an individual, but it cannot tell which class the individual belongs to.
This information is further provided by XSDL interpretation.

3.2 XSDL-Interpretation of XML

XSDL provides further information about the author’s intended meaning of XML
document. The interpretation of XSDL is considered as extensions on XML’s
simple interpretation.

Definition 4 (XSDL Vocabulary). An XSDL vocabulary VX consists of:

1. V0: the vocabulary of global OWL DL ontology, V0 = (VL, VC , VD, VI , VDP , VIP ,
VAP , VO), for the detailed meaning of OWL vocabulary items, refer to OWL
Direct Model-Theoretic Semantics[17];

74 S. Liu et al.

2. XP : an XPath path expressions set, XP = AXP ∪ RXP , where AXP and
RXP denote the set of absolute path expressions and relative path expres-
sions, respectively;

3. FN : the set of URI construction functions in XSDL class definitions.

Definition 5 (XSDL-Interpretation). An XSDL-Interpretation I of XML
vocabulary V extends XML’s simple interpretation with:

1. Map : AXP → 2N : a mapping from absolute XPath path expression into a
node set5 that must be obtained according to W3C specification[26];

2. Mrp : N ×RXP → 2N : a mapping from relative XPath path expression with
respect to node n into a node set that must be obtained according to W3C
specification[26];

3. Mfn : N × FN → VIX : a mapping from URI function, with respect to node
n, into an URIref. This set of URIrefs is denoted as VIX ;

4. S : VI0∪V0∪VIX → R: S is extended to map all URIrefs in the global ontology
and URIrefs constructed by URI functions into R, and S(VIX ∪ VI0) ⊆ O;

5. I0: the global ontology’s interpretation, I0 = (R0, LV, O0, S, L, EC, ER),where
O0 = S(VI), R0 = S(V0), L, EC and ER are OWL’s interpretations of typed
literals, classes and properties, respectively;

The meaning of XPath path expression is provided by mapping into a node set,
and then the nodes are mapped into the universe of interpretation by Mc in the
simple interpretation. For simplification, we avoid analyzing the detailed syntax
of XPath expressions and providing a model-theoretic semantics for them.

The XSDL definitions, such as class definitions, are interpreted as semantic
conditions on XML’s XSDL-Interpretation:

Definition 6 (Semantic Conditions). The semantic conditions on XML’s
XSDL-Interpretation are:

1. if there is literal definition: <CtxPathˆˆelement, literalˆˆddd>, then:

literal ∈ VL, Map(CtxPath) ⊆ Ne,

for each n ∈ Map(CtxPath), such that

Mc(n) = L2V (D(ddd))(literal);

2. if there is individual definition:<CtxPathˆˆelement, uriˆˆIndividual>, then:

uri ∈ VI , Map(CtxPath) ⊆ Ne,

for each n ∈ Map(CtxPath), such that

Mc(n) = S(uri);

5 In XPath 2.0, the value of an expression is always a sequence. For path expression,
the value is a sequences of nodes by eliminating duplicate nodes and sorting in
document order. so the node sequence can be viewed as a node set.

XSDL: Making XML Semantics Explicit 75

3. if there is class definition:<CtxPathˆˆelement, urifn, cnˆˆClass>, then:

cn ∈ VC , Map(CtxPath) ⊆ Ne,

for each n ∈ Map(CtxPath), such that

Mc(n) = S(Mfn(n, urifn)) if urifn is given,

Mc(n) ∈ EC(cn);

4. if there is datatype property definition:<CtxPathˆˆnodeType, DPath, RPath,
dpnˆˆDatatypeProperty>, then:

dpn ∈ VDP , Map(CtxPath) ⊆ N(nodeType),

where N(nodeType) =

{
Ne, if nodeType=”element”;
Na, if nodeType=”attribute”;

for each n ∈ Map(CtxPath),

|Mrp(n, DPath)| = 1 or |Mrp(n, RPath)| = 1,

i.e., for any context node n, there cannot be both more than one node in
domain and range path; let the property’s range is datatype d, for each m ∈
Mrp(n, DPath), and for each t ∈ Mrp(n, RPath), such that

Mc(t) ∈ V (d), Mc(t) = L2V (d)(dm : string-value(t))
Mo(< m, t >) =< Mc(m), Mc(t) >∈ ER(dpn);

5. if there is object property definition without reference: <CtxPathˆˆnodeType,
DPath, RPath, opnˆˆObjectProperty>, then:

opn ∈ VIP , Map(CtxPath) ⊆ N(nodeType),

for each n ∈ Map(CtxPath),

|Mrp(n, DPath)| = 1 or |Mrp(n, RPath)| = 1,

for each m ∈ Mrp(n, DPath), and for each p ∈ Mrp(n, RPath), such that

Mo(< m, p >) =< Mc(m), Mc(p) >∈ ER(opn);

6. if there is object property definition with reference:<CtxPathˆˆnodeType,
DPath, RPath, IDPath, IDREFPath), opnˆˆObjectProperty>, then:

opn ∈ VIP , Map(CtxPath) ⊆ N(nodeType),

for each n ∈ Map(CtxPath),

|Mrp(n, DPath)| = 1 or |Mrp(n, IDREFPath)| = 1,

for each m ∈ Mrp(n, DPath), and for each p ∈ Mrp(n, IDREFPath),
there is one q ∈ Map(IDPath) with Mc(p) = Mc(q), then there is one
k ∈ Mrp(q, RPath), such that

Mo(< m, k >) =< Mc(m), Mc(k) >∈ ER(opn).

76 S. Liu et al.

According to the semantic conditions, XSDL further make assertions in the form
of: Mc(n) ∈ EC(cn), Mc(t) ∈ V (d) and Mo(< m, n >) =< Mc(m), Mc(n) >∈
ER(pn), then, XML document is interpreted as a set of fact assertions with
respect to the ontology in XSDL. we call this assertion set XML Facts. From a
view of description logic, the ontology in XSDL is a TBox6, an XML document
conforming to the XSDL definition is an ABox with respect to the TBox.

The XML Facts should be consistent with the ontology in XSDL, otherwise,
from the viewpoint of logic, one could draw arbitrary conclusions from it. In
terms of our model-theoretic semantics we can easily give a formal definition of
consistency.

Definition 7 (Model). An XML document’s XSDL-Interpretation I is the
XML’s model, if I satisfies both the semantic conditions and the ontology in
XSDL.

Therefore, if an XML’s XSDL-Interpretation I is the XML document’s model,
the XML Facts represented by the document is consistent with the ontology in
XSDL. Note that XML model is only meaningful with respect to the XML’s
XSDL definition.

3.3 Semantic Validity of XML Documents

The XML’s model satisfies both the XML Facts and ontology in XSDL. If the
XML document has no model, there must be inconsistent between the XML
document and the ontology, so having a model is an important property of XML
document, this property is called semantic validity7.

Definition 8 (Semantic Validity). An XML document is semantically vali-
dated with respect to its XSDL definition, if there is a model of the XML docu-
ment.

As well-formness and syntactic validity enable XML’s syntax checking, semantic
validity further enable checking XML’s semantic integrity constraints.

To check the semantic validity of XML documents, we first introduce the
notion of “corresponding ontology”. Because the XML Facts are fact assertions
with respect to the global ontology, so we can merge the XML Facts and the
global ontology in XSDL to form a new ontology.

Definition 9 (Corresponding Ontology). For an XML document D, let O0
denote the global ontology in D’s XSDL definition, the corresponding ontology
of D is the ontology merged by O0 with the XML Facts represented by D.

Second, we introduce the notion of extension and expansion[18]. The first-
order language L′ is an extension of language L if every nonlogical symbol of L

6 Strictly speaking, the counterpoint of OWL DL ontology in description logic is knowl-
edge base, because the ontology includes fact assertions.

7 The “semantic validity” is comparable to the (syntactic) validity of XML document
and the meaning of “validity” is not in logical sense.

XSDL: Making XML Semantics Explicit 77

is an nonlogical symbol of L′. A theory T ′ is an extension of theory T if L(T ′)
is an extension of L(T) and every theorem of T is a theorem of T ′. Let I ′ be
the interpretation of L′, by omitting some interpretation of nonlogical symbol
we obtain a interpretation for I. We call I the restriction of I ′ on L and I ′ an
expansion of I to L′. We have the following lemma:

Lemma 1 (J. Shoenfield[18]). If theory T ′ is an extension of T , M ′ is a
model of T ′, then the restriction of M ′ on language L(T) is a model of T .

Applied this notion to our problem, XML plus XSDL is our language and an
XML document plus the XSDL definition is a theory of our language. Obviously,
our language is an extension of OWL DL language and the theory of our language
is also an extension of the theory of OWL DL language.

Third, we introduce a lemma about the relation between XML’s model and
the corresponding ontology’s model.

Lemma 2. The restriction of an XML’s model on OWL DL language is a model
of the XML’s corresponding ontology; a model of XML’s corresponding ontology
can be expanded to the XML’s model.

Proof. 1)By Lemma 1,the restriction of an XML’s model on OWL DL language
is a model of the XML’s corresponding ontology. 2) Denote the corresponding
ontology’s model as M , then M includes an OWL DL interpretation I0 whilst the
interpretation functions are Mc and Mo. Because M satisfies XML facts, there
must be some Map, Mrp, Mfn and S satisfy the semantics condition (about
Mc and Mo). Trivially (Mc, Mo, Map, Mrp, Mfn, S, I0) is a model of the XML
Document. ��

Finally, we have the following theorem to decide the semantic validity of XML
document.

Theorem 1. An XML document is semantically validated with respect to its
XSDL definition iff the corresponding ontology of XML document is satisfiable.

The theorem is an obvious consequence of Lemma 2.
According to Theorem 1, if the corresponding ontology of XML document

is not satisfiable, then the XML document is semantically invalid. There are
two problems resulting in semantic invalidity: first, the ontology in XSDL is not
satisfiable; second, there are inconsistences between XML Facts and the ontology
in XSDL. Below are some examples to illustrate the inconsistence.

Example 6. A semantically invalid XML fragment

<book>
<author>Jerry</author>
<author>Tom</author>
<price>illegal price</price>

</book>

If the property author is defined as functional property in the global ontology
and the XSDL definition for author is:

78 S. Liu et al.

<element context = "/book/author" >
<domainContext path=".." />
<rangeContext path="text()" />
<owlx:DatatypeProperty owlx:name="author"/>

</element>

then for each XSDL-interpretation I of the XML document, denote the book
node as n, if I satisfy the semantic conditions:

< Mc(n), ”Jerry” >∈ ER(author)
< Mc(n), ”Tom” >∈ ER(author)

then I cannot satisfy the global ontology because this is contrary to the ontol-
ogy definition of “author” property as functional property. Therefore, this XML
document is semantically invalid.

In addition, the ill-typed literal will lead to semantic inconsistence too. In
example 6, if the price node is defined as a datatype property with range as
float in XSDL, then for each XSDL-interpreation I, if I satisfy:

Mc(“illegal price”) ∈ V (D(xsd : float))

I cannot satisfy the global ontology because “illegal price” cannot in the value
space of data type float, so I is not the model of XML document.

Sometimes, semantic invalidity can be avoided by enforcing syntactic check-
ing, such as define the price node type as float in XML Schema, then (syntacti-
cally) validated XML document will also be semantically validated. But semantic
validity checking can further decide whether XML instance satisfy the integrity
constraints that cannot expressed by DTD and XML Schema. For example,

Example 7. Another semantically invalid XML fragment about pedigree:

<person id="s1" gender="male" name="John"/>
<person id="s2" gender="female" name="Jane"/>
<person id="s3" gender="male" name="Tom" father="s2" mother="s1"/>

where “id” is an ID-typed attribute, “father” and “mother” are IDREF-typed
attributes, this XML document is semantically invalid, because the value of
“father” attribute in the third “person” node is referred to a female person.
But both DTD and XML Schema cannot invalidate this kind of error reference,
because they cannot assert that the “father” attribute must refer to an “id”
attribute accompanied with a “gender” attribute whose value is “male”.

However, this constraint can be expressed in XSDL as follows:

(1) <"/person[@gender=’male’]"^^element, urifn1, "Man"^^Class>
(2) <"/person[@gender=’female’]"^^element, urifn2, "Woman"^^Class>
(3) <"/person/@father"^^attribute, "..","..", "/person/@id", ".",

"hasFather"^^ObjectProperty>,

XSDL: Making XML Semantics Explicit 79

The “person” nodes with gender’s value as male are defined as instances of
class Man and the “person” nodes with gender’s value as female are defined as
instances of class Woman, attribute node “father” represent an object property
hasFather with reference. In addition, in the global ontology, we define:

(4) <hasFather, rdfs:range, Man>,
(5) <Man, owl:disjointWith, Woman>,

Denote the person with “id” equals to “s2” as p2, and the person with “id” equals
to “s3” as p3, then according to the semantic conditions of XSDL-Interpretation,
one part of the XML Facts is:

by (2): p2 ∈ EC(Woman),
by (3): < p3, p2 >∈ ER(hasFather),

Combined with the global ontology, we can easily infer that:
p2 ∈ EC(Man),
p2 ∈ EC(Man) ∩ EC(Woman).

This is contrary to the disjointness between class Man and Woman. By Theo-
rem 1, the pedigree.xml is semantically invalid with respect to the above XSDL
definition.

3.4 Reasoning About XML

After XML has a formal semantics, we can define entailment of XML documents.
However, the definition is somehow different from classical logic. If XML docu-
ment D2 have different nodes from document D1, then any D1’s model cannot
be a model of D2, because D1’s interpretation do not give meaning to the dif-
ferent nodes in D2. So we need extend D1’s vocabulary to some one(eg. D′)
that contains D2’s vocabulary. D1’s model M is simultaneously expanded to an
interpretation M ′ defined on D′ by keeping the universe and the interpretation
of individuals unchanged.

Definition 10 (Entailment). Assumed that XML document D1 and D2 have
the same XSDL definition, D1 entails D2, if for every D1’s model, there exists
an expansion that is a model of D2. Denoted as D1 |= D2.

Definition 11 (Equivalence). Assumed that XML document D1 and D2 have
same XSDL definition, D1 is equivalent with D2, if D1 |= D2 and D2 |= D1.
Denoted as D1 ≡ D2.

To reduce the XML entailment problem to ontology entailment problem, we
have the following theorem:

Theorem 2. Let the corresponding ontology of XML document D1 and D2 are
O1 and O2, respectively, then D1 |= D2 iff O1 |= O2.

Proof. ⇒Let M ′
1 be an arbitrary model of O1, by Lemma 2, M ′

1 can be expanded
to D1’s model, denoted as M1. Since D1 |= D2, we have M1’s expansion M2,
which is a model of D2. By Lemma 1, the restriction of M2 to OWL language

80 S. Liu et al.

is a model of O2. On the other hand, M2 is an expansion of M1 and then is an
expansion of M ′

1, hence the restriction of M2 to OWL language is M ′
1, so M ′

1 is
also a model of O2. That is, O1 |= O2.

⇐: Let M1 be an arbitrary model of D1, by Lemma 1, the restriction of M1
to OWL language is a model of O1, denoted as M ′

0, since O1 |= O2, so M ′
0 is also

a model of O2. By Lemma 2, M ′
0 can be expanded to a model of D2, denoted

as M2, in addition, M2 can be further expanded to model M ′
2 by adding the

interpretation of nodes in D1, obviously, M ′
2 is an expansion of M1 and is the

model of D2, that is, D1 |= D2. ��

Theorem 3 (I. Horrocks and P. Patel-Schneider[13]). OWL DL ontology
entailment problem can be reduced to knowledge base satisfiability in description
logic language SHOIN (D) in polynomial time.

Corollary 1. The XML entailment problem can be reduced to knowledge base
satisfiability in SHOIN (D) in polynomial time.

Example 8. Assume XML document D1 simply is:

<man id="p1234" />

and XML document D2 is :

<person id="p1234" />

If the XSDL definition is:

<"/man"^^element,"concat(’http://foo.org/person#’,
string(’/man[$i]/@id’))", "Man"^^Class>

<"/person"^^element,"concat(’http://foo.org/person#’,
string(’/person[$i]/@id’))", "Person"^^Class>

<Man, rdfs:subClassOf, Person>

Proposition 1. D1 |= D2 with respect to the above XSDL definition.

Proof. The corresponding ontology O1 of D1 is:

<Man, rdfs:subClassOf, Person>
<"http://foo.org/person#p1234",rdf:type, Man>

The corresponding ontology O2 of D2 is:

<Man, rdfs:subClassOf, Person>
<"http://foo.org/person#p1234", rdf:type, Person>

Obviously, O1 |= O2, by Theorem 2, XML document D1 entails D2. ��
Unfortunately, the complexity for the satisfiability problem is in NEXPTIME

and there are yet no known optimized inference algorithms or implemented
systems for SHOIN (D). However, if the ontology language is restricted to
OWL Lite, then the problem can be reduced to knowledge base satisfiability
in SHIF(D), whose complexity is in EXPTIME[13]. The highly optimized rea-
soner RACER[19] can provide efficient reasoning services for SHIF(D).

XSDL: Making XML Semantics Explicit 81

4 Related Works

The “semantics” of XML have different understanding. The analogy between a
document tagged by XML and a source string generated by a BNF grammar is
noticed and thus enable adding semantic attributes and functions to XML[20].
From the SGML field, the BECHAMEL project[3] are trying to apply knowl-
edge representation technologies to the modelling of meaning and relationship
expressed by XML markup. The prototype formalization language and imple-
mentation environment is based on Prolog[21]. The formalization is complex and
difficult to fulfill the requirement of Semantic Web.

Recently, P. Patel-Schneider and J. Siméon propose the idea of Yin/Yang
Web [10], in which XML XQuery 1.0 and XPath 2.0 Data Model is regarded
as a unified model for both XML and RDF, and a RDF-compatible semantics
is developed based on this data model. However, because XML author can ex-
press semantics by almost arbitrary ways, the direct interpretation for XML in
Yin/Yang Web is difficult to capture the author’s intended meaning. We intro-
duce XSDL to specify XML’s semantics and gives XML meaning by two steps:
the simple interpretation and the XSDL-interpretation. The two-step semantics
is of more clarity and closer to XML author’s intended meaning.

XSDL is similar to MDL[11] in adoption of Schema Adjuncts Framework and
definition of XML semantics by conceptual model. However, MDL has propri-
etary syntax and takes UML as modelling language, in contrast, XSDL’s syntax
are mostly the standard XPath and OWL’s XML syntax, hence XSDL is simple,
easy to learn and implement; XSDL takes OWL DL as modelling language, thus
XSDL has formal semantics, enables reasoning about XML and helps to bridge
the gap between XML and Semantic Web.

XSDL defines XML semantics by mapping XML to ontology. There are other
efforts: M. Erdmann and R. Studer[22] present a tool to generate DTD from on-
tology, then the tags of XML instances conforming to this DTD can be mapped
to concepts and properties in the ontology; B. Amann, et al. [23]propose a rule-
based language to map XML fragments into general ontology and later I. Fundu-
laki1 and M. Marx[24] provide a formal semantics by interpreting XML sources
into ER models. The rule language does not support literal, individual definition
and object property definition by reference in XSDL, and the ontology path in
mapping rule is not supported by OWL. Besides, their work is intended for the
querying of heterogeneous XML resources using an ontology-based mediator.
In contrast, our work is intended to bridge the gap between XML and Seman-
tic Web and is believed to be more tightly integrated with the Semantic Web
architecture.

5 Conclusion and Future Works

In this paper, to address the problem that XML have no formal semantics, we
propose XML Semantics Definition Language(XSDL) and a model-theoretic se-
mantics for XML. XSDL is a simple language with which syntax mainly come

82 S. Liu et al.

from XPath, OWL XML syntax and SAF. There are only three additional con-
structs in XSDL: URI constructor, domain context and range context. The more
significant work is the formal semantics for XML, which gives XML meaning by
simple interpretation and XSDL-interpretation and is close to XML author’s in-
tended meaning. The semantics is compatible with a subset of RDF supported
by OWL DL, hence, XML becomes a sub-language of RDF in expressive power
and XML data can be semantics-preserving transformed to RDF data.

The expressive power of XML is the same as ABox in description logic lan-
guage, thus is limited compared to general formal language. Therefore, XSDL is
suitable to represent the semantics of data-centric XML document.

One limitation of our work is that XSDL document for XML need to be
defined manually and the authoring is a laborious, time-consuming task. Note
that XML Schema also has rich implicit semantic information, such as datatypes,
cardinality constraints. The solution is to generate XSDL definition from XML
Schema for author’s further reviews and to develop user-friendly XSDL editor.

As Yin/Yang Web, our work can also be applied to semantic query of XML
data, XML data integration and Semantic Web Services. In addition, XSDL is
more natural and powerful to represent XML data integrity constraints than in
a syntactic way, such as XML Schema. We will explore these application areas
in future works.

Acknowledgement. We are grateful to Wei Song and the anonymous reviewers
for their helpful suggestions for the improvements of this paper.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible Markup Lan-
guage (XML) 1.0 (second edition) W3C recommendation (2000)

2. Cover, R.: XML and semantic transparency (1998)
3. Allen, R., Dubin, D., Sperberg-McQueen, C.M., Huitfeldt, C.: Towards a semantics

for XML markup. In: the 2002 ACM Symposium on Document Engineering, 119–
126

4. Uschold, M.: Where are the semantics in the Semantic Web? AI Magazine 24
(2003) 25–36

5. Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web. Scientific American
184 (2001) 34–43

6. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF):concepts and
abstract syntax,W3C recommendation 10 february 2004 (2004)

7. Berners-Lee, T.: Why RDF is more than XML (1998)
8. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web ontology language refer-

ence, W3C recommendation 10 february 2004 (2004)
9. Patel-Schneider, P.F., Simeon, J.: Building the Semantic Web on XML. In: the

Twelfth International World Wide Web Conference, ACM Press (2003)
10. Patel-Schneider, P.F., Simeon, J.: The Yin/Yang Web: A unified model for XML

syntax and RDF semantics. IEEE Transactions on Knowledge and Data Engineer-
ing 15 (2003) 797–812

11. Worden, R.: MDL: A Meaning Definition Language, version 2.06 (2002)

XSDL: Making XML Semantics Explicit 83

12. Berglund, A., Boag, S., Chamberlin, D., et al.: XML Path Language (XPath) 2.0
W3C working draft 12 november 2003 (2003)

13. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: the 2003 International Semantic Web Conference. 17–29

14. Vorthmann, S., Buck, L.: Schema Adjunct Framework draft specification 24 febru-
ary 2000 (2000)

15. Hori, M., Euzenat, J., Patel-Schneider, P.F.: OWL Web ontology language XML
presentation syntax . W3C note 11 june 2003 (2003)

16. Fernandez, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and
XPath 2.0 data model, W3C working draft. (2003)

17. Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL Web ontology language semantics
and abstract syntax, W3C recommendation 10 february 2004 (2004)

18. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Publisher (1967)
19. Haarslev, V., Moller, R.: Racer system description. In: International Joint Con-

ference on Automated Reasoning (IJCAR’2001), Siena, Italy (2001) 18–23
20. Psaila, G., Crespi-Reghizzi, S.: Adding semantics to XML. In: Second Workshop

on Attribute Grammars and their Applications, (1999) 113–132
21. Dubin, D., Sperberg-McQueen, C.M., Renear, A., Huitfeldt, C.: A logic program-

ming environment for document semantics and inference. Literary and Linguistic
Computing 18 (2003) 225–233

22. Erdmann, M., Studer, R.: How to structure and access XML documents with
ontologies. Data and Knowledge Engineering 36 (2001) 317–335

23. Amann, B., Fundulaki, I., Scholl, M., Beeri, C., Vercoustre, A.: Ontology-Based
Integration of XML Web Resources. In: International Semantic Web Conference
2002. (2002) 117–131

24. Fundulaki, I., Marx, M.: Mediation of XML Data through Entity Relationship
Models. In: First International Workshop on Semantic Web and Databases. (2003)
357–380

25. Liu S.P., Mei J., Lin Z.Q.: XML Semantics Definition Language(XSDL) draft
specification(In Chinese). PKU-TCL lab techonology report. (2004)

26. Draper D., Fankhauser P., Fernedez M., et al.: XQuery 1.0 and XPath 2.0 Formal
Semantics, W3C Working Draft 20 February 2004 (2004)

Refining Semantic Mappings from Relational
Tables to Ontologies

Yuan An1, Borgida2, and John Mylopoulos1

1 Department of Computer Science, University of Toronto, Canada
{yuana, jm}@cs.toronto.edu

2 Department of Computer Science, Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. To support the Semantic Web, it will be necessary to con-
struct mappings between legacy database schemas and ontologies. We
have developed a prototype tool which starts from a simple set of corre-
spondences from table columns to ontology components, and then helps
derive algorithmically candidate logical mappings between complete ta-
bles and the ontology. We report here some refinements of this algorithm
inspired by an analysis of the ways in which relational schemas are stan-
dardly derived from Extended Entity Relationship diagrams, and relate
this to the main heuristic used by the Clio system [6], which maps be-
tween relational database schemas.

1 Introduction

In order to make the vision of the Semantic Web a reality, it will be necessary
to find semantic mappings between existing databases (the “deep web”) and
existing ontologies. Building such connections is nontrivial task because: (i) the
ontologies and schemas will have been derived independently; (ii) the ontologies
(and schemas) could be very large; (iii) there will be relatively few people who
will be thoroughly familiar with any one of them; (iv) the construction would
have to be repeated when encountering new ontologies. For this reason, it would
be desirable to have computer tools to help find the logical mappings between
database schemas and ontologies.

Specifically, we assume a framework where we are given

1. An ontology, expressed in some language, such as OWL or UML, which has a
semantics that can be captured by First Order Predicate Logic through the
use of unary and binary predicates, representing concepts and properties.
The ontology language should support domain, range and cardinality re-
strictions on properties and their inverses, and differentiate datatype valued
properties (“attributes” in UML).

2. A relational schema, where for each table we have standard information
available in SQL DDL declarations, including constraints concerning the
primary key, foreign keys, and absence of null values.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 84–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Alexander

Refining Semantic Mappings from Relational Tables to Ontologies 85

-hasSsn
-hasName
-hasAddress
-hasAge

Employee

-hasNumber
-hasName
-
-

Department

-hasNumber
-hasName
-
-

Worksite(4,N) (1,1)

works_for

(1,1) (0,1)

manages (1,1) (0,N)

controls

Fig. 1. Company Ontology

Our general objective is to find a mapping relating predicates in the ontology and
relational tables [5]. Currently, we are obtaining for each table T (A1, . . . , An) a
formula φ that is a (disjunction of) conjunction of ontology atoms. For example,
given the ontology in Figure 1, and relational table schema Emp(ssn, name, dept,
proj), we may expect an answer of the form

T :Emp(ssn, name, dept, proj):-
O : Employee(x),O : hasSsn(x, ssn),O : hasName(x, name),
O : Department(y),O : works for(x, y),O : hasNumber(y, dept).
O : Worksite(z),O : controls(y, z),O : hasName(z, proj).

where, for clarity, we use prefixes T and O to distinguish predicates in the
relational schema and the ontology.

2 The maponto Approach

To achieve the above objective, we envision a 2-step process, where (a) the
columns Ai of each table are linked to elements in the ontology (mostly datatype-
valued properties); then (b) a formula of the kind described above is proposed by
the tool on the basis of heuristics. Since considerable effort has been devoted to
step (a) in the database and ontology integration literature, we have concentrated
on step (b). Because the answers produced are inherently heuristic, our tool
offers a partially ordered list of formulae, where more highly ranked proposals
are assumed to be more likely.

The basic idea underlying our current tool (detailed in [1]) is to represent the
ontology as a graph consisting of nodes (corresponding to concepts) connected
by edges (corresponding to properties). Semantic connections in the ontology,
expressed in the formula φ, are then based on paths in this graph, and we
hypothesize a version of Occam’s razor: fewer connections are better. This has
lead us to look for minimal-cost spanning trees connecting the concepts which
have one or more properties corresponding to table columns — called Steiner
trees. Such a tree is then translated to a logical formula by “joining” the concepts
and properties encountered in it. For example, if concepts C and D are connected
by the tree consisting of edges p and q, traversing intermediate node G, the
formula produced is C(x), p(x, y), G(y), q(y, z), D(z).1

1 The algorithm in [1] is considerably more elaborate; among others, sometimes copies
are made of certain nodes in the graph, so that more than one variable can range
over a concept.

86 Y. An, A. Borgida, and J. Mylopoulos

This paper presents some refinements to this algorithm, their motivation
based on techniques for mapping from Extended ER diagrams to relational
database schemas, and their relationship to other previous research.

2.1 Related Work

The framework of our approach is clearly inspired by the Clio system [6, 8],
which attempts to find mappings between two relational schemas. In fact, in
Section 4.2, we will relate the key heuristic underlying Clio to our work.

The general framework for connecting ontologies and relational schemas us-
ing logical formulas has a long history [2, 5], although in all previous cases the
specification is done entirely by the designer.

Data reverse engineering is the process of taking an existing database schema
(and instances), and recovering some corresponding conceptual schema. Various
approaches have been proposed (e.g., [7]), with a comprehensive introduction
provided by Hainaut [4]. Our problem differs in two ways: we are given an existing
ontology, which needs to be connected to the database; and the ontology will
likely contain much superfluous information that will not appear in the schema.
(For example, a City might be locatedIn a Province, and a Province locatedIn
a Country, yet the relational table may only have columns for cityName and
countryName.) Conversely, we have to face the fact that some aspects of the
database (e.g., aritificial identifiers), may not appear in the ontology.

3 From Extended ER to Relational Schema

Our new proposal is based on the methodology of relational schema design
from Extended Entity-Relationship (EER) diagrams.2 The principles behind this
widely-understood and practiced technique are to create a small number of ta-
bles that are in Boyce-Codd Normal Form (assuming that the only dependencies
are those due to keys in the EER diagram), preferring schemas where columns
do not have null values, which might waste space. The basic methodology can
be summarized as follows:

– For each regular entity type E create an “entity table” whose columns are
the attributes of E, and whose primary key is the key of E.

– For each weak entity type E, create an “entity table” whose columns are
the attributes of E, together with the key of the owner entity type O, and
any attributes of the “identifying relationship”. The primary key of the table
consists of the concatenation of the key for O and the identifying attribute(s)
of E.

– For each relationship type R create a “relationship table” whose columns are
the primary keys of the participating entity types, together with attributes
of R. The key of the table is determined by the cardinality of relationship:
if R connects entities A and B, with keys KA and KB respectively then

2 We assume the reader is familiar with standard EER terminology, e.g., [3].

Refining Semantic Mappings from Relational Tables to Ontologies 87

• if R is an N:M relationship, then the key is the union of KA and KB ;
• if R is a N:1 relationship, then the key is just KA, while for 1:N rela-

tionships the key is KB ;
• if R is 1:1, the key should be that of the entity whose participation in

the relationship is total (i.e., has cardinality lower bound 1); otherwise
the choice of key is arbitrary.

– Repeatedly merge any pair of tables that have the same key by unioning the
set of attributes and eliminating the duplicate key attributes. In some cases
(e.g., merging a N:1 relationship which is not “total”), the result may have
columns that could now be null. Such merges are less desirable.

Finally, an important aspect of the relational schema design is imposing appro-
priate foreign key and non-null constraints during the above construction.

The above mapping results in a schema that is very natural for humans to un-
derstand, and may well be the one encountered in practice, unless denormalized
in order to improve query processing.

4 New Heuristics for Finding Mappings

The search for a low-cost Steiner tree3 may return a number of results, some
of which may be intuitively better than others, especially if the table is not
“denormalized”. For example, in the semantic mapping for the T : Emp ex-
ample earlier, the tool should prefer works for, rather than manages, as the
connection between Employee and Department. On the other hand, for a ta-
ble T : Project(name, supervisor, ...), the connection of O : Worksite with
O : Employee would more likely involve the composition of controls−1 with
manages−1 rather than with works for−1.

To achieve this, we propose that the spanning sub-trees be ranked according
to the following rules:
1. In growing a tree, edges with cardinality upper-bound 1 should be preferred.

Edges which also have cardinality lower-bound 1 are given even higher pref-
erence.

2. If the relational table has a key that is the composite of foreign keys kA,
kB ,..., and there are single anchor nodes4 for each of the keys kA,..., then
those trees are preferred in which every pair of anchor nodes is connected by
a path on which some edge has cardinality upper bound higher than 1. (The
simplest case of this is an edge for a property p such that the cardinality
upper bound of p and its inverse are larger than 1.)

3. If the relational table has a key K = KC + A1 + ..., where KC is a foreign
key, and the Ai are not part of a foreign key appearing in K, then the real

3 From our motivation, minimality is not strictly necessary, and it may be hard to
ensure, since the problem is NP-hard.

4 An anchor node is a concept which has datatype properties corresponding to columns
in the table key

88 Y. An, A. Borgida, and J. Mylopoulos

anchor node is not the node (call it C ′) which has properties matching KC ;
instead, it is some other node D, which has a 1-upper bound path to C ′,
such that D has some attributes for Aj .

4.1 Motivating the New Heuristics

Suppose the ontology corresponds exactly to the conceptual model used for
database design, and the relational schema is obtained according to Section 3.
Furthermore, let us restrict ourselves to the case when the EER diagrams that
can be represented directly in ontologies, by mapping entity types into concepts,
and binary relationship types and attributes into properties.

An analysis of the algorithm in Section 3 shows that every table produced by
it will have key K of the form (i) KE for an entity table, possibly merged with
some N:1 or 1:1 relationship tables involving that entity; (ii) same as (i), but
corresponding to N:1/1:1 relationships that were not merged in with the entity
because the participation was not total; (iii) KA + KB , where entities A and B
are in an N:M relationship; (iv) KE + A1 + ..., for a weak entity table, where
A1... do not form a key; (v) the analogue of (ii) for weak entities.

Columns in tables of category (i) and (ii) correspond to datatype properties
of a concept CE (possibly a subclass), as well as properties of entities related
to it by N:1/1:1 relationships. All of these appear as properties of CE with
upper bound 1 in the ontology. Moreover, the preference for total participation
corresponds to lower-bound 1. Hence case 1 of our heuristic.

Tables in category (iii), which can be recognized from their key structure,
and which have columns corresponding to N:M relationships between properties
of anchor entities, would be miss-treated by the algorithm, which would prefer
N:1/1:1 linking properties. Hence case 2 of our heuristic.

Tables corresponding to weak entities are another source of problems, since
weak entities are an artifact of the EER data model, and are not specially marked
in standard ontologies. Once again, we recognize weak entities from the table
key structure, and then try to find the concept corresponding to the weak entity,
and the (chain of) relationships/properties to the strong entity identifying it.

Our algorithm generalizes all these cases to the situation when a relationship
in the EER model might be the composition of several properties in the ontology,
by permitting the Steiner tree to traverse additional edges, if necessary, as long
as their upper bound is 1.

4.2 Relationship to Clio Heuristics

Recall that Clio tries to find a logical mapping from a source to a target relational
(or XML) schema, starting from correspondences between columns of tables in
them. The core of Clio is the generation, in both the source and target schema,
of “logical relations” [8] — maximal sets of logically related schema elements,
particularly table columns. This is accomplished as follows: if table R has a

Refining Semantic Mappings from Relational Tables to Ontologies 89

foreign key to table T , then (a) R and T are joined over this foreign key to yield
a larger table, R′, and (b) the process is repeated on R′5.

First, as we noted, in maponto ontology subtrees give rise to formulas rep-
resenting joins similar to Clio’s logical relations.

Now suppose ontology properties p(x, y) and q(y, z) meet at concept G(y).
If these were relational tables, columns y of p and q would be foreign keys for
G. Clio would only suggest p(x, y) �� G(y) or G(y) �� q(y, z) as joins building
alternative logical relations. The reason for avoiding p(x, y) �� G(y) �� q(y, z), is
that from practical experience, this could lead to too many alternatives6. Step
1 of the new heuristics will make maponto also downgrade such joins if the
relationship corresponding to q is M:N. Moreover, if q represented a N:1/1:1
relationship then according to Section 3, table q could have been merged with
E to yield E′(y, z) ⇐⇒ G(y) �� q(y, z). In this schema, Clio would in fact join
p and E′, as would our algorithm, since q has cardinality upper bound 1.

The iterative nature of Clio’s algorithm is also captured by our tree growing
algorithm.

5 Conclusions and Future Work

Establishing manually semantic mappings between database schemas and on-
tologies is time-consuming and error-prone, especially, when the mappers are
not fully cognizant of the ontology, which could be very large. We are devel-
oping a tool, maponto, to support creating such mappings, and have carried
out several experiments using it [1]. In this paper, we have presented certain
refinements of the algorithm intended to deal with several problems we have
encountered, together with explanations tying the heuristics to the well-known
mapping of EER diagrams to relational schemas, and the heuristics used in Clio.

We defer to a later paper the treatment of n-ary relationships, the less stan-
dard tabular representations of semantic relationships (such as the representation
of subclass hierarchies using concept names as values in columns), denormalized
relations, and more complex mappings.

References

1. Y. An, A. Borgida, and J. Mylopoulos. Building Semantic Mappings between
Database Schemas and Ontologies. Submitted for publication.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. “Data inte-
gration in data warehousing”, J. Cooperative Information Systems. 10(3), 2001.

3. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley.
2000.

4. J.-L. Hainaut. Database reverse engineering. http://citeseer.ist.psu.edu/article/
hainaut98database.html. 1998.

5 This is related to the notion of “chase” in relational databases.
6 Y.Velegrakis, personal communication, 2004.

90 Y. An, A. Borgida, and J. Mylopoulos

5. J. Madhavan, P.A. Bernstein, P. Domingos, A.Y. Halevy. “Representing and Rea-
soning about Mappings between Domain Models”, AAAI 2002: 80-86

6. R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema mapping as query discovery.
In 26th VLDB. 2000.

7. V. M. Markowitz and J. A. Makowsky. Identifying Extended Entity-Relationship
Object Structures in Relational Schemas. IEEE Transactions on Software Engineer-
ing 16(8). 1990.

8. L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, R. Fagin. ”Translating web
data”, VLDB 2002.

Triadic Relations:
An Algebra for the Semantic Web

Edward L. Robertson

Computer Science Dept. and School of Informatics,
Indiana University, Bloomington IN 47405

Supported by NSF grant ISS-82407

Abstract. This paper introduces and develops an algebra over triadic
relations (relations whose contents are only triples). In essence, the al-
gebra is a severely restricted variation of relational algebra (RA) that
is defined over relations with exactly three attributes and is closed for
the same set of relations. In particular, arbitrary joins and Cartesian
products are replaced by a single three-way join. Ternary relations are
important because they provide the minimal, and thus most uniform,
way to encode semantics wherein metadata may be treated uniformly
with regular data; this fact has been recognized in the choice of triples
to formalize the Semantic Web via RDF. Indeed, algebraic definitions
corresponding to certain of these formalisms will be shown as examples.

An important aspect of this algebra is an encoding of triples, imple-
menting a kind of reification. The algebra is shown to be equivalent, over
non-reified values, to a restriction of Datalog and hence to a fragment
of first order logic. Furthermore, the algebra requires only two opera-
tors if certain fixed infinitary constants (similar to Tarski’s identity) are
present. In this case, all structure is represented only in the data, that
is, in the encodings that these infinitary constants represent.

1 Introduction and Motivation

Relations are the minimal, and thus the most uniform, way to encode semantics
wherein metadata may be treated uniformly with regular data, a fact recognized
by C. S. Peirce in 1885.[6] Binary relations are sufficient to represent information
in a fixed schema, but the names of these relations are inaccessible from the
relation contents. Both a benefit and a disadvantage of binary relations is that
they are inherently closed in the algebra of unary and binary operators defined
by Tarski.[8] Join operations on triadic relations, on the other hand, must be
carefully defined, lest the results increase in arity (joining two triadic relations
on a single attribute results in a quintary relation).

As the World Wide Web has grown from presentation of information into
management and manipulation of that information, there has been a recognition
of the need for description of not only structure but also content of web artifacts.
This description is to be achieved via the Semantic Web. Central to the Semantic
Web is a simple, uniform representation mechanism RDF and central to RDF
is a formalization in terms of triples.[12]

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 91–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 E.L. Robertson

The following paragraphs move to a somewhat older perspective in order to
introduce the notion of reification. Reification plays a central role in the following
algebra, where it is “nonymous”, as opposed to the anonymous reification of
RDF; such reification is alluded to in [11], where it is called “Skolemization.”

A natural use of triples, or “triangles”, is in semantic nets, which are used
to express the semantics of natural language. Semantic nets are represented by
labeled graphs (often called Conceptual Graphs[7]) or, equivalently, families of
binary relationships. Adapting an example from W3C efforts to address these
same issues[11], “Chris is diagnosed with cancer” is represented relationally as
diagnosis(Chris, cancer) and graphically as in Fig. 1.

Chris cancer
diagnosis

The relational representation follows Tarski; other linear (textual) representa-
tions include the F-logic convention[4] “Chris(diagnosis→cancer)”, observing
one component as a dominant object and placing that first, and an RDF triple
“Chris diagnosis cancer . RDF tends to write triples with no punctuation
other than spaces and a period to indicate the end of a triples. We will hence-
forward use a form with parentheses and commas, writing the preceeding RDF
triple as “(Chris, diagnosis, cancer)”.

This notation is brittle, however, in that it cannot distinguish between
different occurrences of “diagnosis” and does not allow statements about
statements, such as observations about the reliability of Chris’s diagnosis. This
problem is addressed in two subtly different ways. The first is anonymous
reification – equivalently object-id creation. The second is “nonymous” reifi-
cation, which lifts the triple (Chris, diagnosis, cancer) to the single value
Chris�diagnosis�cancer, allowing the representation of “Chris has cancer
with high probability” as (Chris�diagnosis�cancer, likelihood, high).

Figure 2 shows three different variations of the “statements about state-
ments” phenomenon. On the left is a semantic net, promoting an edge label to
an item of discussion. In the center is reification as practiced in other Semantic
Web discussions (a similar diagram appears in [11]). In this case the relationship
between Chris and cancer is abstracted to a blank, or anonymous, node. On
the right is reification as used in this paper, wherein the entire triad relating
Chris, diagnosis, and cancer is represented by a single value. Intuitively, the
construction in the center reifies the arrow and the right reifies the triangle.

Fig. 2

Fig. 1

”

Triadic Relations: An Algebra for the Semantic Web 93

While the representation of information by triples, as discussed above, is well-
established, there has been no formal mechanism for manipulating information
in exactly this format. Of course any query mechanism will extract informa-
tion, but the result of this extraction may not be triples. That is, there is no
natural way to restrict output of these mechanisms to triples, except by fiat.
F-logic[4] has a triadic format at its outset, but it is used to define higher arity
predicates; nonymous reification is integrated with F-logic in [13] as in the $
operator of F lora [14]. Further from a triadic-to-triadic language is relational
algebra (RA), although the algebra defined below is essentially a variation of
RA which is naturally closed on triadic relations. Closest to a natural triadic-
to-triadic query language is a variation of (nonrecursive) Datalog[9], which we
call “Trilog”; Trilog is defined in the following section and is used later in this
paper as a standard of comparison.

The rest of this paper therefore develops an algebra specifically defined over
triadic relations. The next section presents some basic notation. Section 3 defines
the algebra in its purest form, including operators for reification. The next section
removes reification from the base algebra, replacing the reification operation with
an encoding in a constant relation, and explores the impact of such constants by
reducing the algebra to two operations. Section 5 proves the equivalence of the
algebra to a fragment of first order logic (written as Datalog). Section 6 then
returns to RDF, showing how a typical RDF rule is expressed in the algebra.

2 Notation

We assume that all values come from a countable fixed domain D. It is, of
course, possible to partition D into types and index the algebraic operators with
respect to types, but this leads to unnecessarily cumbersome notation. Hence we
globally assume a single domain D. Toward the end of the paper, input values in
D are distinguished from internal values, but all the operators are always over
the single domain D.

Lower case letters (a, b, c, . . . , x, y, z) are used as variables over D. Where
possible, letters from the beginning of the alphabet are used for manifest values,
appearing in the final result, while letters from the end of the alphabet are used
for intermediate values. Finally, i, j, and sometimes k are indices for relation
coordinates, always with values restricted to {0, 1, 2}.Forexample,∗i, defined
below, actually refers to three operators ∗0, ∗1, and ∗2, which are the same
except that they operate on columns 0, 1, and 2 respectively.

The basic structures are sets of triples over D. We refer to these as triadic
relations. It often aids perspicuity to view these triples in a triangular form. On
these occasions (Chris,diagnosis,cancer) is written as diagnosis

Chris cancer , or more
generally (x0, x1, x2) as x1

x0 x2
. Occasionally, d3 will be used to indicate the triple

(d, d, d), for d ∈ D.
Note the indexing of components in the triple above and its triangular pre-

sentation. By convention, indices are interpreted modulo 3, so that position i+1
is always one step clockwise from position i. The benefit of this notation is dis-

94 E.L. Robertson

cussed in the context of � and ρ below. The numbering (forgiving the “off by
one” quirk) is suggestive of Peirce’s firstness, secondness, and thirdness[6].

Set notations serve two purposes in this paper. Occasionally they are used
to give definitions of formal constructs; such occasions are always marked
with

“def”
= .

More often, sets are used for exposition, particularly to provide intuition on
the results of evaluating algebraic expressions. When used expositionally, set
notation is somewhat informal, without explicit binding of variables (they are
all over D) and even using “∗” as a placeholder for unique variables, emphasizing
purpose (the traditional “don’t care”) rather than syntax.

We now return to Trilog, a restriction of (nonrecursive) Datalog[9] to triadic
relations. The notions of extensional database (EDB) and intensional database
(IDB) are borrowed from the discussion of Datalog in [9]. EDB relations are
those given as input to the program (or later, algebra). The sets of EDB and
IDB relations are disjoint.

Definition 1. The language positive Trilog is the fragment of Datalog subject
to the following restrictions:

i: rule bodies are either (a) conjuncts of triadic relations, where each
variable in the head must also occur in the body, or (b) disjuncts of
triadic relations, where each variable in the head must also occur in every
disjunct,

ii: rule heads are single triadic relations and may not be EDB relations,
iii: definitions may not be recursive,
iv: the reserved word “result” designates the result of the computation.

Parameters to relation occurrences, either in the head or body of a rule, may be
constants or variables with the usual semantics.

The constraints on occurrences of variables force Trilog to be safe; that is,
Trilog programs run on finite EDB always produce finite results.

Example 2. If the single table Fact contains the net information in the left of
Fig. 2, then the query “What procedures have been performed?” is expressed by:
result(pr,sb,rst) :- Fact("procedure","oftype",pr)&Fact(sb,pr,rst)

Definition 3. Full Trilog is Trilog where negation is allowed in rule bodies. That
is, restriction i(a) is changed to “conjuncts of triadic relations and negations of
triadic relations, where each variable in the head occurs in at least one (positive)
relation in the body.”

Trilog is of course equivalent to the use of fragment of first order logic to define
ternary predicates, a fragment which has less convenient syntax and safety rules.

3 Definition of Trirel

The algebra begins with named variables (the EDB of an expression) and explic-
itly enumerated sets of triples. Its expressions are built inductively with certain
unary and ternary operations.

Triadic Relations: An Algebra for the Semantic Web 95

The fundamental operation on triadic relations is a particular three-way join
which takes explicit advantage of the triadic structure of its operands. This join
of three triadic relations results in another triadic relation, thus providing the
closure required of an algebra.

Definition 4. Let R, S, and T be triadic relations. The tri-join of R, S, and
T, is defined

trijoin(R,S,T)
def
= { b

a c : ∃x, y, z[x
a z ∈ R & b

x y ∈ S &
y

z c ∈ T]}

An equivalent notation for trijoin(R,S,T) is

Sometimes the three equality conditions implied in trijoin are too strong, so
there are also three joins with only two equalities. That is, trijoin∗

i “breaks the
bond” across from corner i.

Definition 5. (Definitions for subscripts 1 and 2 are symmetric.)

An equivalent notation for trijoin∗
0(R,S,T) is

Definition 6.

I(R)
def
= { x

x x : x occurs in the active domain ofR}

Notation. If we wish to emphasize the coincidence of values that occurs in a
tri-join, we will often use a notation which collapses pairs of values forced to be
equal by the join conditions and makes explicit the structure of the relational
operands. Example 7 illustrates this convention and motivates the definition of
I(R).

Example 7. Consider B to encoded labeled binary relationships, so that a triple
of the form (x, 	, z) in B to indicates binary relationship (x, z) labeled 	 holds.
To compute one transitive step of all these relationships, it is necessary to to
join B with itself, preserving the relationship label (component):

96 E.L. Robertson

Note that transitive closure, with its arbitrary iteration of Trans, is as im-
possible in Trirel as it is in RA, and for the very same reasons.

Example 8.

Definition 9. The (clockwise) rotation operator ρ is defined over triadic rela-

tions in the expected way: ρ(R)
def
= { a

a b : b
a c ∈ R}

The conventional numbering of components of a triple, interpreting index
expressions modulo 3, is matched by the fact that ρi = ρi+3 for any i. For
example, if y1

y0 y2
= ρj(x1

x0 x2
), then we can state yi+j = xi for i ∈ {0, 1, 2}.

The following definition also illustrates this convention.

Definition 10. The flip operators �i fix the ith component of the elements of a
triadic relation and interchange the other two. �i(R)

def
=

{ y1
y0 y2

: ∃x0, x1, x2[
x1

x0 x2
∈ R & yi = xi & yi+1 = xi+2 & yi+2 = xi+1]}

The final base operations of the algebra are the usual set operations ∩,∪,
and − (relative complement). Relative complement is the only non-monotone
operator in Trirel. Thus the fragment of Trirel that excludes only “−” is termed
positive Trirel.

All the above are easily definable in RA (or relational calculus). For example,
using R[i] to denote the ith component of R, trijoin(R,S,T) is simply the RA
expression

∏
R0,S1,T2

(σR1=S0&R2=T0&S2=T1(R �� S �� T)).

On the other hand, the triadic algebra thus-far defined obviously omits op-
erators of standard relational algebra: projection, selection, join, and Cartesian
product. Join and Cartesian product have obviously been specialized to trijoin.
Projection is of course not allowed, since it would break the fact that the al-
gebra is closed on triadic relations. Selection – at least equality selection – is

Triadic Relations: An Algebra for the Semantic Web 97

Fig. 3

unnecessary because of the equality test implicit in trijoin. Using the tradi-
tional notation of σ for selection and assuming that d ∈ D and that the at-
tributes of R are named x0, x1, and x2, Example 8 implements σx1=x2(R) and
trijoin∗

1({ (d, d, d) },R, I) implements σx0=d(R).
Inequality selection can of course be derived from relative complement, but it

is unseemly to require a non-monotone operator for such an obviously monotone
construction. An alternative is to extend Trirel with the operators Nj (for Not
equal), similar to I, such that Nj(R) has the jth component different from
the other two. Inequality selection is then easily expressed, as in σx0 �=x2(R) =
trijoin(N1(R),R, I).

The language thus far is too restrictive. Expressions with varieties of trijoin,
�, and ρ, are relentlessly planar. Thus it is not possible for these operators to
simulate

result(x, y, z) :− R(x, y, z) & S(xx, yy, zz) &
Link(x, “L1”, xx) & Link(x, “L2”, yy) & Link(x, “L3”, zz) &
Link(y, “L1”, yy) & Link(y, “L2”, zz) & Link(y, “L3”, xx) &
Link(z, “L1”, zz) & Link(z, “L2”, xx) & Link(z, “L3”, yy)

This program essentially encodes the Kuratowski graph K3,3 [3, Thm. 11.13],
which is known to be non-planar. Figure 3 shows the connections required in the
body of this program, with heavy lines representing L1 Links, dashed lines L2
Links, and dotted lines L3 Links.
Intersections, the other means to require equality, are of no help because inter-
sections are limited to triads and expressing the above with intersection would
require equality across coordinates of both R and S.

The solution to this problem requires encoding triads in R and S as single
values – the same encoding that supports reification. The term “tag” is used
to name this encoding because it has an implementation flavor suitable for the
algebra, avoiding semantic and philosophical concerns that accompany “reify”.
Tagging has been extensively studied in the context of binary relations in [10],
which provided the seed of this paper.

Definition 11. The function τ is a tagging function, satisfying τ : D×D×D 1−1→
D and π0, π1, and π2 are three projection functions, such that πi : D → D. These
functions correspond so that, for arbitrary x ∈ D, x = τ(π0(x), π1(x), π2(x)).
Consistent with the usage described above, we will interpret subscripts to πi

mod 3.

98 E.L. Robertson

Definition 12. The tagging operator T maps triadic relations into their fully
tagged versions. That is,

T (R)
def
= { τ(a, b, c)

τ(a, b, c) τ(a, b, c)
:

b

a c
∈ R}

It is of course necessary to be able to access the values of the components of
a tag. The untag (or unpack) operator U provides this capability. Note that U
cannot unpack a tuple either if that tuple does not have the same values in each
component or if that value is not in the range of τ .

Definition 13. For i, j ∈ {0, 1, 2}, Ui,j(S)
def
=

{ x1

x0 x2
: ∃y0, y1, y2[τ(y0, y1, y2)3 ∈ S &τ(y0, y1, y2) = xi+1 = xi+2 &xi = yj]}

Definition 14. Overloading T and U , Ti,j(R)
def
= Ui,j(T (R)) and

Obviously, U(T (R)) = R (but T (U(R)) � R unless R is already symmetric).
This completes the definition of Trirel. Because none of the above operators

introduces new values, the following is immediate (the definition of “safe” is that
all output values come from the input).

Proposition 15. Trirel is safe.

The set of operators introduced above is obviously not minimal. We agree
with Peirce that “superfluity here, as in many other cases in algebra, brings with
it great facility in working.”[6, p. 191]. The one occasion where this superfluity
is more an aesthetic issue than a notational convenience is in having distinct tag
and untag operations (instead of having the Ti,j , from 14, as primitive). Thus
reification is a single primitive step rather than a construction, as is done in the
binary case in [10].

4 Constants and Operators

The goal of this section is to support the claim that the trijoin operator is
indeed “more fundamental” than the other operators. Although trijoin cannot

Triadic Relations: An Algebra for the Semantic Web 99

alone express all other operators, it can express all those operators, except −,
when used in conjunction with a few constant relations. These constants are
infinite, but only finite subsets are required in the evaluation of any expression
based on Trirel operators. The idea of such constants dates back to Tarski[8],
who introduced four binary relations: empty, universality (all pairs), identity (all
equal pairs), and diversity (all unequal pairs). He considered these four akin, even
though three were infinite and the fourth is as small as a set can be.

This section first defines primitive constants τ�i,j and A. Then it defines a
few additional constants in terms of the τ�i,j and A, only using trijoin. Then it
proves the major result of this section alluded to above. Finally, it briefly returns
to the issue of inequality selection.

Definition 16. For i, j ∈ {0, 1, 2},

τ�i,j
def
= { x1

x0 x2
: x0, x1, x2 ∈ D & xj = πi(xj+1) & xj+1 = xj+2}

The effect of τ�i,j is to match up domain values in the jth position of a
triangle and in the ith position of the tags. For example, τ�1,0 is τx,a,z

a τx,a,z =
{(a, t, t)|∃x, z[t = τ(x, a, z)]}. In a sense, the three tagging sets τ�i,i are more
natural, in that they have the untagged value in the “right place.” The sets
τ�i,i+1 and τ�i,i+2 are merely rotations of τ�i,i. However, since rotation will
subsequently be expressed in terms of the τ�i,j , all these constraints must be
considered primitive.

Definition 17. The alternative set A explicitly expresses two-fold choices:

A def
= { y

a c : y = a ∨ y = c}

The notation Trirel∞ is used for the algebra with only trijoin, relative com-
plement, and the constants τ�i,j and A. Of course, positive Trirel∞ excludes
“−”. Observe that Trirel∞ is inherently unsafe.

There are a few other infinitary relations that are important. While these
could be postulated as primitive, they can equally well be defined in terms of
the various τ� constants. So that this definition is not circular, ρ is expressed
below only in terms of τ�i,j and trijoin. The notation τ� is overloaded to τ�i,i′,j .
Note that only j and not a corresponding j′ is required in this extension because
the i and i′ components go into the j and j + 1 positions of the result. I is the
triadic identity relation (and is more properly written ID, the first and only time
we shall explicitly indicate domain). D3 is the “universal” relation: all triples of
values in D. The following gives the Trirel definition of these constants, followed
by an explication in set notation.

100 E.L. Robertson

τ�i,i′,j
def
= trijoin(X0, X1, X2), where Xj = τ�i,j& Xj+1 = τ�i′,j+1& Xj+2 = I

In addition, borrowing the “star” notation, the ∗i operator puts don’t-cares
at i coordinates; ∗i(R) is defined as

trijoin(X0, X1, X2), where Xi = D3 , Xi+1 = R and Xi+2 = I

The ∗i operators obviously help in defining the “don’t care” variants of trijoin.

Theorem 19. Let E be an expression in positive Trirel. Then there is an equiv-
alent E� in positive Trirel∞.

Proof. The following lemmas cover all the cases for the operators in Trirel. The
theorem follows by simple induction using these lemmas.

Lemma 20.

Proof.

Definition 18.

I def
= { a

a a : a ∈ D}, D3 def
= { b

a c : a, b, c ∈ D }

Triadic Relations: An Algebra for the Semantic Web 101

Lemma 21.

The use of �0 in the definition of U above guarantees, with the properties of τ�0,0,
that only triples in S that have the same value in each coordinates are unpacked.

Lemma 22.

This completes the proof of Theorem 19. Extension to relative complement/
negation is immediate. Note that these constants are tightly linked to operators
that generate finite sub-instances of the respective constants, as illustrated by I
and I(R). Uses of τ�i,j , I, etc. can be replaced by the corresponding operators;
using the constants makes the expressions somewhat more readable.

Finally, Trirel∞ may be extended with an infinite diversity relation N , that
is N = D3 − I, in order to support inequality selection in extended positive
Trirel∞. Note that N cannot be defined in positive Trirel∞. The addition of N
accounts for all four constants considered essential by Tarski (empty is a constant
defined trivially by explicit enumeration).

5 Equivalence of Trilog and Trirel

Two formalisms dealing with triadic relations have been discussed thus far: the
operational Trirel in detail and the declarative Trirel more cursorily. It would be
nice to have a result paralleling Codd’s equivalence of relational algebra and re-
lational calculus, but the presence of tagging makes an exact parallel impossible.
However, a restricted equivalence does hold. The first step of this equivalence is
to show that Trirel can simulate Trilog.

102 E.L. Robertson

Theorem 23. For every positive Trilog program prog, there exists a positive
Trirel expression E that computes result of prog when given the same EDB.

Proof. Because Trilog programs are not recursive, the rules may be ordered
such that the relation in the head of each rule does not occur in the body of any
preceeding rule. This is equivalent to the dependency graph technique of [9]. If
a relation r occurs in the head of more than one rule, give these occurrences
new, unique names and add a new rule defining r as the union of all these just
introduced relations. Then this ordered, renamed program is translated a rule
at a time according to lemmas 25 and 26, which deal with the two cases of rule
formation.

Lemma 24. The expression L, defined below, is such that

L(Q) = {τ(τ(x, y, v), u, z) : (τ(x, y, z), u, v) ∈ Q}

Proof. The construction of L is given in a sequence of steps, each step showing
first the desired set and then an expression yielding that set, with variable bind-
ings implicitly global until Q is introduced in step L4. The value τ(τ(x, y, z), u, v)
occurs frequently and is abbreviated by T . The expression for L1 is showing is
graphic form as well as typical algebraic notation as partial explication of the
transformations implemented here.

Lemma 25. Let R(p0, p1, p2) :- S 1(q1,0, q1,1, q1,2) & · · · & S k(qk,0, qk,1, qk,2)
be a Trilog statement defined over a set of variables V = {qj,i : 1 ≤ j ≤ k&1 ≤
i ≤ 3} ∪{pi : 1 ≤ i ≤ 3}. Then there is an equivalent Trirel expression E that
computes the value of R given instances of the Sj.

Proof. It is sufficient to give Ei, i ∈ {0, 1, 2}, respectively containing triples of
the form (s, s, eurm p), where s encodes an assignment satisfying the rule body
and p is an assignment to pi is consistent with s. With these Ei,

Triadic Relations: An Algebra for the Semantic Web 103

Without loss of generality, we assume that each variable occurs at most once
as a parameter to any one Sj . If that is not the case, then some v occurs more
than once as a parameter to some Sj , replace all but one of these v’s by new,
unique variables (in essence, don’t cares) and, in the algebraic expression, inter-
sect Sj with an expression forcing equality at the respected components.

The first step is to build a structure that encodes the contents of the S’s. In
the following the notation (xj , yj , zj) is always restricted to tuples in Sj . Define

Svect1
def
= ∗0(∗2(TAG(S1))) = {(∗, τ(x1, y1, z1), ∗)}

Svectj
def
= trijoin(∗1(∗2(Svectj−1)), TAG(Sj),D3)
= {(s, τ(xj , yj , zj), ∗) : s ∈ Svectj−1} , for j > 1.

Thus Svectk encodes all structures of the form (“ ” indicates a distinct place-
holder variable)

((· · · ((, (x1, y1, z1),), (x2, y2, z2),), · · ·), (xk, yk, zk),).

Similarly, we want to construct comparable structures that enforce agreement
among the appropriate positions for each distinct variable v ∈ V. Note that,
in the following, v as a superscript to M is the variable name while v in the
expository set expressions ranges over the possible values of the variable so
named. This possibility is resolved to certainty in Mv

k . Also, x̂j is v if pj,0 is
v and is ∗ otherwise. Similar usage holds for ŷ and ẑ. Parallel to the above
definition of Svect, define

Mv
1

def
= ∗0(τ�i,2) if v = pj,i, D3 otherwise

Mv
j

def
= L(∗2(Mv

j−1)) ∩ Mv
1

Thus Mv
1 = {(∗, (x̂1, ŷ1, ẑ1), v)} and, for j > 1, Mv

j = {(s, (x̂j , ŷj , ẑj), v) : s ∈
∗2(Mv

j−1)}. Mv
1 appears to do double duty in the above construction. In reality,

it is the inductive step which is simply applied to a vacuous starting condition
for the base step.

Thus Mv
k encodes the set of all structures which agree on the positions where

v occurs and

Ei = T2,2(Svectk ∩
⋂
v∈V
v �=pi

∗2(Mv
k) ∩ Mpi

k)

104 E.L. Robertson

Lemma 26. Let R(p0, p1, p2) :- S1(q1,0, q1,1, q1,2)∨ · · · ∨ Sk(qk,0, qk,1, qk,2) be
a Trilog statement where qj,i ∈ {p0, p1, p2}. Then there is an equivalent Trirel
expression E that computes the value of R given instances of the Sj.

Proof. A union of the Sj , with relevant flips and rotations, suffices. Recall that
p0, p1, and p2 must occur within every Sj of the union.

This lemma completes the proof of Theorem 23. Now let us consider the other
side of the equivalence issue: the degree to which Trilog can implement Trirel.

Because Trilog is inherently conservative, in that it does not introduce new
values, it cannot implement tagging. One might consider restricting the output
of Trirel expressions to triples over the active domain of the EDB. However,
because all values in Trilog are atomic, it cannot implement any “higher order”
algebraic operation, even something as simple as T (R) ∩ S. Thus the domain
restriction must apply to inputs as well as outputs.

To this end, D is partitioned into Db and Dt, for “base domain” and “tagging
domain”. In particular, Dt

def
= range(τ) and Db

def
= D − Dt. This partition

induces a unique tree structure on any element of D. That is, an element x of Dt

is expanded into a node with three subtrees π0(x), π1(x), and π2(x), which are
recursively expanded until element of Db are reached for the leaves. For the next
theorem, the EDB is assumed to contain only values from Db and any values
containing elements of Dt are deleted from the output.

Proposition 27. Given a Triler expression E, it is possible to tell whether E
produces no, some, or only values in Db.

Proof. The proof follows from constructions in the next theorem.

Theorem 28. For each positive Triler expression E, there exists a positive Trilog
program progE such that result of prog is the value of E when given the same
input instances.

Proof. Let S1, · · · ,Sk be the occurrences of relations in E ; note that one relation
may occur as multiple Sj ’s. Because unions are handled separately in Trilog, it
is necessary to separate the cases whether or not unions occur in E .

Case: E is a “simple expression” without ∪
The tree structure on elements of D carries over to E . This and the exclusion

of ∪ imply that, for each coordinate of the result of an expression, values are
constructed in one and only one way. Each subexpression F of E is associated
with three sets of labels. At the leaves, these sets are singletons, but they merge
moving up the tree. This merging occurs, in programming jargon, by reference
and not by value. That is, when sets associated with two positions are merged,
the result is not two sets (one for each position) but one set associated with
both positions. Consequently, any subsequent merges propagate directly to all
positions associated with a set. To be precise, this set association is defined on
the recursive structure of subexpressions F of E , with the following cases:

Triadic Relations: An Algebra for the Semantic Web 105

F is a leaf, that is Sj for some j: associate with each parameter position i of F
the set {〈j, i〉}.

F = F̂ ∩ F̌ : If the tree structures for F̂ and F̃ do not match exactly, then F̂ ∩ F̃
is empty. Otherwise, for each matching leaf in the trees of F̂ and F̃ , merge
the two sets associated with those leaves.

F is defined using trijoin or I: handled similarly in three cases corresponding
to the three sides.

F is defined using � or ρ: just reshape the tree structure.
F is defined using T or U : these obviously affect the tree structure but do not
change the associated sets.

Finally, the results of expression E are associated with sets. In particular, for
each coordinate i of E , examine its tree structure. If that tree is just a base value,
it has an associated set and 〈0, i〉 is added to that set. If the tree structure is
not a base value, then E will always produce values in Dt, which will be deleted.
This observation is also the heart of the proof of Proposition 27.

The associated sets index relation coordinates that are joined, since these
sets are merged whenever they overlap. Now construct the body of a Trilog rule
as a conjunction of the Sj ’s. Assign a unique variable to each set and place that
variable in each location in that set. That is, if v is assigned to a set containing
〈j, i〉, the ith parameter of Sj in the conjunction is v. The head of the rule is
either result, if the expression stands by itself, or is a new, unique name if the
expression is a subexpression of a union, as discussed below. In either case, the
ith parameter of the head is the variable assigned to the set containing 〈0, i〉.

Case: E contains ∪
Each expression will now correspond to a finite union of trees relating to sim-

ple expressions. Most algebra operations are accomplished by simply distributing
across ∪. For example, if E is Ê ∩ Ẽ , and Ê and Ẽ correspond to t̂ree1 · · · t̂reek

and t̃ree1 · · · t̃ree� respectively, then E corresponds to⋃
1≤i≤k
1≤j≤�

t̂reei ∩ t̃reej

When a simple subexpression evaluates empty, it is dropped from the union.

6 Application to RDF

This section briefly considers the application of Triler to RDF, first to the model
theory[12] and then to approaches for querying RDF.

RDF model theory contains variety of closure rules, rules that are applied to
close any piece of RDF syntax E. For example, rule rdfs2 states that if E contains
(xxx,aaa,yyy) and it contains (aaa,[rdfs:domain],zzz), then (uuu,[rdf:type],
zzz) should be added to E. While the algebra itself does not provide a mechanism
for doing updates, it is easy to use the algebra to define the increment to E.

106 E.L. Robertson

In particular, let C be {(∗, [rdfs : range], [rdf : type])} (i.e. C is defined by
applying ∗0 to an explicitly enumerated constant). Then rule rdfs2 adds to E

Triler is not sufficient for RDF model theory since the latter includes a tran-
sitive closure (rule rdfs5). Any solution that augments Triler with transitive
closure will handle this problem. The fixed arity of Triler is beneficial here; with
relations of arbitrary arity, the question is which pair attributes encodes the
binary relationship to be closed. With ternary relations, there is only one “ex-
tra” attribute and that in fact is actually useful to label the relationships to be
closed, as was seen in Trans of example 7. Thus we define an operator TC (or
the three rotations thereof) that computes the full closure of the operation of
that example.

Definition 29. Let R be a triadic relation. Then

TC1
def
=

{
	

x0 xk
|∃x1, · · · , xk−1[&k

i=1
	

xi−1 xi
∈ R]

}
TC0 and TC2 are defined analogously or as rotations of TC1.

Note that the above definition has an implicit existential for k or equivalently
an unbounded union over sets parameterized by that k. The other common defi-
nition of transitive closure, as the fixed point of Trans, has a similar unbounded
union nature.

Triler may be used to express the core of SquishQL[5], a proposed language
for querying RDF (with variants such as RDQL). In SquishQL queries, the WHERE
clause is a collection of triplets, forming a template for the specified retrieval;
this template immediately maps to a Datalog body. SquishQL not closed on
triadic relations, however, in that SquishQL query may return tuples over an
arbitrary list of attributes. Thus, similar to the construction of L (Lemma 24),
such arbitrary lists of values may be returned in encoded form. Theorem 28 may
be used to translate arbitrary SquishQL queries to Triler.

7 Conclusion

This paper has introduced an algebra, Triler, over triadic relations. An essential
characteristic of an algebra is closure – that is, all algebraic operations produce
results from the same set as the inputs. Other interesting models of RDF queries
are not algebras in this strict sense, even when query results are projected down

Triadic Relations: An Algebra for the Semantic Web 107

to exactly three-element tuples. This is because all these models require inter-
mediate constructions with more than three active elements1 for certain queries.
Hence their primitive operations do not collectively specify an algebra.

Triler surmounts this problem with a mechanism for encoding triples of values
in a single value. This mechanism thus supports a kind of reification. However, if
the reified values are treated only as internal values (that is, reified values are not
allowed in input or output), the encoding provides no additional query capability
beyond other formalisms (RA, Datalog, FOL) suitably restricted to triples. This
suggests that reification can be introduced where semantic considerations require
it, without concern that this introduction would seriously impact the formalism
in other ways.

Triler is fully symmetric, unlike other approaches from databases [5, 2] or
logic [6, 1]. Thus interpretation (e.g. mapping to labeled graphs) is entirely by
convention, rather than being imposed by the algebra and its operators.

This work also illustrates the well-known tradeoff between complexities of
representation and manipulation. That is, given suitable constant relations, the
only operators necessary are join and relative complement.

Of course most of this work can be replicated in higher degrees. A suitable
join operation is

njoin(R1, · · · ,Rk)
def
= {(x1, · · · , xk) : ∃y1, · · · , yk[&k

j=1Rj(v1,j , · · · , vk,j)]}

where vi,j = xj if i = j and yi otherwise.

Acknowledgments. Thanks for valuable comments and suggestions by Richard
Martin and Dirk Van Gucht.

References

1. J. Micheael Dunn. A representation of relation algebras using Routly-Meyer frames.
In C. Anthony Anderson and M. Zelëny, editors, Logic, Meaning, and Computation,
pages 77-108. Kluwer Academic Publishers, 2001.

2. Claudion Gutierrez, Carlos Hurtaddo, and Alberto Mendelzon. Foundations of se-
mantic web databases. In ACM Principles of Database System, 2004.

3. Frank Harary. Graph Theory. Addison-Wesley, 1969.
4. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-

oriented and frame-based languages, J. of ACM, 42(4):741-843, 1995.
5. Libby Miller, Andy Seaborne, and Alberto eggiori. Three implementations of

squishql, a simple rdf query language, In International Semantic Web Conference
(ISWC), 2002.

6. Charles Sanders Peirce. On the algebra of logic. Amer. J. of Math., pages 180-202,
1885.

1 The notion of “active element” is merely intuitive, roughly corresponding to the
minimum number of variables in relational calculus or Datalog.

108 E.L. Robertson

7. John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks Cole, 2000.

8. Alfred Tarski. On the calculus of relations, J. of Symbolic Logic, 6(3):73-89, 1941.
9. Jeffry D.Ullman, Princ. of Database abd KnowledgeBase Systems, volume I-

Fundamental Concepts, Computer Science Press, New York, 1988.
10. Dirk Van Gucht, Lawrence V. Saxton, and Marc Gyssens. Tagging as an alterna-

tive to object creation, In Hohann Chirstoph Freytag, David Maier, and Gottfried
Vossen, editors, Query Processing for Advanced Database Systems, pages 201-242.
Morgan Kaufmann, 1994.

11. W3C. Defining n-ary relations on the semantic web: Use with individuals, 1999.
http://www.w3.org/TR/swbp-n-aryRelations.

12. W3C. RDF Model Theory, 2002. www.w3.org/TR/rdf-mt/.
13. Guizhen Yang and Michael Kifer, On the sematntics of anonmous identity and

reification. In DBLP 2002, volume 2519 of Lecture Notes in Computer Scinces,
pages 1047-1066. Springer, 2002.

14. Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: User’s manual, June 2002.
http://flora.sourceforge.net.

Semantically Unlocking Database Content
Through Ontology-Based Mediation

Pieter Verheyden, Jan De Bo, and Robert Meersman

Vrije Universiteit Brussel - STARLab
Pleinlaan 2, Gebouw G-10, B-1050 Brussels, Belgium

{pverheyd, jdebo, meersman}@vub.ac.be
http://www.starlab.vub.ac.be

Abstract. To make database content available via the internet, its in-
tended shared meaning, i.e. an interpretation is required of the database
(schema) symbols in terms of a so-called ontology. Such an ontology
specifies not only concepts and their relationships in some language, but
also includes the manner in which an application or service is permitted
to make use of these concepts. Ontologies therefore also play a key role
in making databases interoperate. The DOGMA approach to ontology
engineering is specifically adapted to the classical model-theoretic view
of (relational) databases. Noteably, it rigorously separates an ontology
base of elementary lexical fact types called lexons, from the rules and
constraints governing the concepts referred to by the lexons in the ontol-
ogy base. These rules are reified in so-called ontological commitments of
applications to the ontology base. In this paper we formalise and make
precise the structure of this commitment layer by defining Ω-RIDL, a
new type of so-called commitment language. Examples derived from its
use in a non-trivial case study are provided. We illustrate how some of
its key constructs, designed to specify mediators by mapping databases
to an ontology base, can conveniently be reused in a conceptual query
language, and report on its ongoing implementation.

1 Introduction

Suppose we want to make certain database content meaningfully available for
applications on the World Wide Web. In such an open environment applications
and application types in general are unknown a priori, including the manner
in which they will want to refer to the data, or more precisely, to the con-
cepts and attributes that take their values from the database. Therefore, ele-
ments of meaning for the database’s underlying domain have to be agreed, and
represented explicitly. They will need to be stored, accessed, and maintained
externally to the database schema as well as to the intended applications. Com-
puter resources that formally represent a domain’s semantics in this external,
application-independent way are called (domain-)ontologies. In a nutshell, an
application system and in particular its database schema can be assigned a for-
mal semantics, also known as (first order) interpretation. Such semantics in our

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 109–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 P. Verheyden, J. De Bo, and R. Meersman

approach has two separate components, (a) a mapping from the schema’s sym-
bols and relationships to a suitable ontology base expressed in lexical terms, and
(b) expressions, separate and “ontological”, of how database constraints restrict
the use of, or precisely commit to, the concepts referred by the terms in this
ontology base.

In this paper we discuss how elements of a relational database are mapped
on elements of an existing domain ontology. We investigate possible difficulties
that can be encountered during this non-trivial task. Further, we describe how to
translate domain constraints on the database level to semantic constraints on the
ontology level. In order to impose these semantic constraints on the terms and
relations of the ontology, we developed a new ontological commitment language
called Ω-RIDL. The above mentioned principles are illustrated and clarified
by a practical case study. In this case study we investigate how the relational
database of the National Drug Code (NDC) Directory relates to the medical
ontology LinKBase�.

wrapper wrapper

mediator

merge merge

Ω1 Ωn

Ωmerged

· · ·

· · ·

Fig. 1. Mediator approach for data integration

The research in this paper fits in the broader context of data integration
because it will be very unlikely that a user’s information needs will be satisfied
by accessing the data repositories accessible through mappings associated with
a single ontology. To support this, ontologies are aligned with each other. The
OBSERVER framework [20] proposes an approach to use the inter ontology re-
lationships to translate the original query from terms of the source ontology into
terms of another component, also referred to as a target ontology. This kind of
query rewriting does not always occur without loss of information. The Interon-
tology Relationship Manager (IRM) in the OBSERVER system serves as a pool

Semantically Unlocking Database Content 111

where all interontology relationships between the different ontologies are made
available. For n ontologies involved one has to compute n(n−1)

2 sets of interontol-
ogy relationships. To minimise this effort we have chosen for a mediator inspired
framework. It is our goal to develop a framework for data integration that is
easy to maintain and to extend. Therefore the source ontologies are merged into
one global ontology. In a binary merging strategy this requires only n − 1 align-
ments [2]. The only additional steps to be performed are to check for conflicts
and to integrate the separate ontologies into a global ontology. The mediator
then decomposes the global query into a union of queries on the underlying
source ontologies and unifies all resultsets into a global result. The framework is
depicted in Figure 1. Each time our framework is extended with a new ontology
we only have to merge this ontology with the global ontology and adjust the
mediator accordingly. It is obvious that this is less time consuming than having
to perform alignments with all present ontologies.

The focus of this paper is to present a new ontological commitment language
called Ω-RIDL, and not to elaborate further on the mediator framework here
proposed. The syntax of the language and its principles are introduced in section
4, and its usage is explained by means of a case study which we describe in
section 3. In section 5 we illustrate how ontological commitments are deployed
in the mediator framework. We finalise this paper with sections on related work
(section 6) and future work (section 7), and present a conclusion in section 8. In
section 2 we briefly discuss our DOGMA approach to ontology engineering.

2 The DOGMA Ontology Model

DOGMA1 is a research initiative of VUB STARLab where various theories,
methods, and tools for ontologies are studied and developed. A DOGMA in-
spired ontology is based on the classical model-theoretic perspective [21] and
decomposes an ontology into an ontology base and a layer of ontological commit-
ments [17, 18]. This is called the principle of double articulation [22].

An ontology base holds (multiple) intuitive conceptualisation(s) of a particu-
lar domain. Each conceptualisation is simplified to a “representation-less” set of
context-specific binary fact types called lexons. A lexon is formally described as a
5-tuple < γ term1 role co − role term2 >, where γ is an abstract context
identifier, lexically described by a string in some natural language, and is used to
group lexons that are logically related to each other in the conceptualisation of
the domain. Intuitively, a lexon may be read as: within the context γ, the term1
(also denoted as the header term) may have a relation with term2 (also denoted
as the tail term) in which it plays a role, and conversely, in which term2 plays a
corresponding co-role. Each (context,term)-pair then lexically identifies a unique
concept. An ontology base can hence be described as a set of plausible elementary
fact types that are considered as being true. Any specific (application-dependent)
interpretation is moved to a separate layer, i.e. the commitment layer.

1 Developing Ontology-Guided Mediation for Agents

112 P. Verheyden, J. De Bo, and R. Meersman

MEDICINE

MEDICINE

MEDICINE

MEDICINE

MEDICINE

Context

DENTAL DRUG

MEDICINAL PRODUCT

PER VAGINA

MEDICINAL PRODUCT

MEDICINE

MEDICINE

MEDICINE

CANADA

ENTERPRISE

MEDICINAL PRODUCT

MEDICINE

MEDICINAL PRODUCT

LOTION

HAS−PATH

HAS−INGREDIENT

HAS_ASSOC

HAS_ASSOC

HAS_ASSOC

IS−INGREDIENT−OF

Role Co−role

INGREDIENT OF MEDICINAL SUBSTANCE

ROUTE OF ADMINISTRATION

ROUTE OF ADMINISTRATION

MEDICINAL PRODUCT

MATERIAL ENTITY BY PRESENTATION SHAPE

MATERIAL ENTITY BY PRESENTATION SHAPE

ENTERPRISE

COUNTRY − STATE

COUNTRY − STATE

Ontology Base

IS_A

IS_A

IS_A

IS_A

Tail TermHeader Term

Fig. 2. A small extract of the ontology base represented by a simple table format

The commitment layer mediates between the ontology base and its applica-
tions. Each such ontological commitment defines a partial semantic account of
an intended conceptualisation [13]. It consists of a finite set of axioms that spec-
ify which lexons of the ontology base are interpreted and how they are visible in
the committing application, and (domain) rules that semantically constrain this
interpretation. Experience shows that it is much harder to reach an agreement
on domain rules than one on conceptualisation [19]. E.g., the rule stating that
each patient is a person who suffers from at least one disease may hold in the
Universe of Discourse (UoD) of some application, but may be too strong in the
UoD of another application.

3 A Motivating Case Study

In the health care sector, access to correct and precise information in an efficient
time frame is a necessity. A Hospital Information System (HIS) is a real-life
example of an Information System consisting of several dispersed data sources
containing specific information, though interrelated in some way. These data
sources can vary from highly structured repositories (e.g., relational databases),
structured documents (e.g., electronic patient records), or even free text (e.g.,
patient discharge notes written in some natural language). VUB STARLab joins
hands with Language and Computing (L&C) N.V. 2 in the IWT R&D project
SCOP3 with the aim of finding a suitable solution to integrate such medical
data sources through “semantic couplings” to an existing medical ontology. The
initial focus was set on medical relational databases.

Throughout the years, L&C has built up, and still maintains, an extensive
medical ontology called LinKBase� [12]. Further, The National Drug Code

2 URL: http://www.landcglobal.com
3 Semantic Connection of Ontologies to Patient data

Semantically Unlocking Database Content 113

(NDC) Directory of the U.S. Food And Drug Administration (FDA) was used as
a case study. The ontological commitment to a DOGMA ontology base contain-
ing ontological knowledge from (a relevant part of) LinKBase� 4 was defined
for the NDC Directory. Figure 2 presents a small extract of the ontology base
represented by a simple table format.

In the following subsection we give some relevant background information on
the NDC Directory and its relational database. Parts of its ontological commit-
ment definition will be used for illustration purposes in section 4.

3.1 The NDC Directory

The National Drug Code (NDC) Directory was originally established as an es-
sential part of an out-of-hospital drug reimbursement program under Medicare,
and serves as a universal product identifier for human drugs. The current edition
of the NDC is limited to prescription drugs and a few selected over-the-counter
(OTC) drug products. The following information about the listed drug prod-
ucts are available: product trade name or catalogue name, National Drug Code
(NDC), related firms, dosage form, routes of administration, active ingredient(s),
strength, unit, package size and type, and the major drug class.

By federal regulation, NDCs are 10-digit numbers that identify the labeller/
vendor, product, and trade package size. NDCs follow one of three different for-
mats: 4-4-2, 5-4-1, or 5-3-2. The first set of digits, the labeller code assigned
by the FDA, identifies the labeller (i.e. any firm that manufactures, repacks,
or distributes a drug product). The second set of digits, the product code as-
signed by the firm, identifies a specific strength, dosage form, and formulation
for that particular firm. The third set of digits, the package code assigned by
the firm, identifies package sizes. Because of the variability of the length of the
subcodes within an NDC, almost all governmental and commercial organisations
other than the FDA use 11-digit NDCs. In particular, the Centers for Medicare
& Medicaid Services (CMS)5 uses and distributes 11-digit NDCs. These non-
standard 11-digit NDCs are created by a system of zero-filling so that each NDC
follows a 5-4-2 format (e.g., 00006-4677-00). NDCs may be reused and reassigned
to different drugs. So, a given NDC cannot be assumed to be constant over time.
If a manufacturer is acquired by another firm, or if a manufacturer sells the pro-
duction rights of a drug to another entity, there is a good chance that the new
manufacturer or re-distributor will change all the NDCs assigned to a particular
drug (even though the drug product remains exactly the same in terms of its
formulation, preparation, packaging, etc.).

The relational database schema of the NDC Directory is presented by Figure
3. The freely available ASCII data files from which this relational database has

4 Due to some significant differences between both ontology approaches, the exchange
of ontological knowledge was not so straightforward. We will not elaborate on this
issue because it is less relevant here, but, we can mention that this exchange could be
done semi-automatically by using RDFS as communication language between both
ontology frameworks.

5 URL: http://www.cms.hhs.gov

114 P. Verheyden, J. De Bo, and R. Meersman

Fig. 3. The relational database schema of the NDC Directory

been constructed, together with detailled descriptions, can be found on the of-
ficial website of the NDC Directory 6. We mention following issues that clearly
indicate a poor design of the relational database regarding its provided schema
and population:

– Referential Integrity. We had to manually update the population of some
relations to enable a correct linking with other relations (e.g., the linking of
the relation “ROUTES” with “TBLROUTE”).

– Normalisation. Some attributes of the relation “LISTINGS” allow multiple
entries as one value. As a result, the relational database schema is not in
first normal form (1NF).

– Data Redundancy. Some attributes appear in more than one relation,
which causes update anomalies (e.g., the attribute “LBLCODE” can be
found in the relation “LISTINGS” as well as in the relation “FIRMS”).

4 Defining Ontological Commitments in Ω-RIDL

4.1 Historical Background

The main syntactic principles of Ω-RIDL are adopted from RIDL7, an old con-
ceptual language developed in 1979 by R. Meersman at the Database Manage-
ment Research Lab (Brussels) of Control Data. It was developed as an integrated
formal syntactic support for information and process analysis, semantic specifi-
cation, constraint definition, and a query/update language at a conceptual level
rather than at the logical “flat data” level. The conceptual support for RIDL

6 URL: http://www.fda.gov/cder/ndc/
7 Reference and IDea Language.

Semantically Unlocking Database Content 115

was provided by (the “binary subset” of) the so-called idea/bridge model for
conceptual schemata developed by Falkenberg and Nijssen. Problem specifica-
tions in this model were obtained through a methodology commonly known as
NIAM8 [24], which is the predecessor of ORM9 [14]. A result of this analysis
methodology was (partially) represented by a conceptual data schema graphi-
cally depicted by a dedicated diagram notation. In the idea/bridge philosophy,
such a conceptual data schema was also denoted as an idea/bridge view of a
world (i.e. the UoD on which the analysis is done). A fundamental characteristic
was the strict separation between non-lexical object types (NOLOTs; “things”
that cannot be uttered or written down, e.g., “patient”) and lexical object types
(LOTs; “things” that can be uttered, written down, or otherwise represented,
e.g., “date of birth”) [25]. A relation (consisting of a role and co-role) between
two NOLOTs was called an idea; a relation between a NOLOT and a LOT
was called a bridge. Such relationships are commonly called fact types. Further,
subtype relations between NOLOTs were also supported. This strict separation
between NOLOTs and LOTs was also explicitly respected by RIDL. Since the
idea/bridge philosophy was very close the user’s understanding of a problem,
RIDL also had to be close to a natural formulation of the information descrip-
tion and manipulation [16].

RIDL can be roughly divided into two parts: the constraint definition part
(RIDL\cns) and the query/update part (RIDL\qu). These two parts were used
by two, in general disjunctive, kind of users: database engineers and end-users.
Database engineers used RIDL\cns to formally and naturally express a con-
ceptual data schema and its constraints. At compile time, such a conceptual
data schema was (semi-)automatically transformed into a relational database
schema, satisfying some normal form which was controlled by the database en-
gineer 10. The end-user used RIDL\qu, after the generated relational database
was populated, to retrieve/update data at runtime through (possibly interactive)
conceptual queries on the conceptual data schema, instead of constructing SQL
queries on the underlying relational database [16]. During the eighties, dedicated
tools were developed and enhanced for the transformation of a conceptual data
schema into a relational database schema (RIDL* graphical workbench [10, 11]),
and the translation of RIDL queries/updates into correct SQL queries/updates
(RIDL Shell).

RIDL was developed at the same time when the first SQL systems appeared
on the market and was therefore far ahead of its time. Although none of the
commercial RIDL* prototypes found their way to the market, the RIDL* fun-

8 aN/Natural/Nijssen’s Information Analysis Method.
9 Object-Role Modeling (URL: http://www.orm.net)

10 This control included the choice of how a subtype relation from the conceptual data
schema should be translated in the relational database schema to be generated. This
can be done by, e.g., an “indicator” attribute (e.g., a relation “Person” having an
attribute “Sex” only allowing the values “M” or “F”), or by a foreign key (resulting
in a decomposition, e.g., the relations “Male” and “Female” with foreign keys to the
relation “Person”).

116 P. Verheyden, J. De Bo, and R. Meersman

damentals still live in today’s ORM-based modelling and database design CASE
tools. RIDL’s conceptual querying part got the attention of Halpin and resulted
in ConQuer11[4], and a successor ConQuer-II [5], a language for building con-
ceptual queries within the ORM context.

Although RIDL was intended for data(base) modelling, its main syntactic
principles have been reconsidered to be adopted for the development of an on-
tological commitment language, simply called Ω-RIDL (“Ω” refers to “ontology
base”).

4.2 Defining an Ontological Commitment

An ontological commitment defined in Ω-RIDL consists of four distinct parts:

1. a commitment declaration,
2. a lexical interpretation layer,
3. a lexical association layer,
4. a semantic constraint layer.

In the following subsections we will focus on each part separately. It will also be
clear that these four parts together define an ontological commitment; they are
closely linked with each other and therefore are not to be seen as independent
of each other.

To give the reader already an idea of how an ontological commitment defini-
tion looks like, a highly trimmed version of the ontological commitment definition
corresponding to our case study is therefore given below:

define commitment in context MEDICINE with subsumption IS_A/[]
lexical interpretations
map FIRMS.COUNTRY_NAME=CANADA
on CANADA IS_A "COUNTRY - STATE" [] [HAS_ASSOC] ENTERPRISE

lexical associations
assoc FIRMS.COUNTRY_NAME=CHINA with "COUNTRY - STATE"

semantic constraints
each ENTERPRISE HAS_ASSOC exactly one "COUNTRY - STATE"

end

In this example, words in upper case are elements of either the committing re-
lational database, either the committed ontology base; words in lower case are
keywords of Ω-RIDL. Double quotes are used in the language to denote a ter-
minal consisting of more than one string which are separated from each other
by blank spaces. Note how the language aims at defining an ontological com-
mitment close to its natural formulation. As a result, most syntactic expressions
can be naturally read and understood by humans.

4.3 Commitment Declaration

The commitment declaration states the context in which the commitment will be
defined, referenced by its name from the ontology base, and the ontological rela-

11 CONceptual QUERy.

Semantically Unlocking Database Content 117

tion(s) that will be interpreted in the commitment as subsumption relation(s).
Such an ontological relation, referenced by resp. its role and co-role labels, must
be described by at least one lexon within the declared context. As a result, the
specialisation of a “super”-term will play a declared role (e.g., “is a”) in the
commitment, and the generalisation of a “sub”-term will play a corresponding
declared co-role (e.g., “subsumes”).

A commitment declaration is syntactically simplified to one sentence, e.g.:

define commitment in context MEDICINE with subsumption IS A/[]

Note that this example introduces a so-called syntactic placeholder, expressed
with “[]”, which denotes a non-existing co-role in the ontology base. Such place-
holders were introduced in the language because most co-roles are not modelled
in LinKBase� 12. They serve as null values which can be replaced if a corre-
sponding co-role is eventually modelled in the ontology base by an authorised
ontology engineer.

4.4 Lexical Interpretation Layer

The lexical interpretation layer contains lexical mappings. A lexical mapping
defines a mapping of a formula expressing a path of the relational database
(e.g., the attribute expressed by the formula “FIRMS.CITY”) on a path in the
ontology base.

An ontological path is recursively defined as an ordered sequence of lexons
from the ontology base, within the declared context. A minimal ontological path
is constructed from one lexon, e.g.:

"MEDICINAL PRODUCT" HAS-INGREDIENT "INGREDIENT OF MEDICINAL SUBSTANCE"

For reading convenience we do not include the corresponding co-role here. How-
ever, in some cases the co-role must be explicitly specified to disambiguate which
lexon is interpreted. Let us clarify this with an example. Imagine following lexons
being modelled in the ontology base 13:

<MEDICINE,PHYSICIAN,HAS ASSOC,XXX,PATIENT>
<MEDICINE,PHYSICIAN,HAS ASSOC,YYY,PATIENT>

If the first lexon has to be interpreted, we have to express a (minimal) ontological
path as follows:

PHYSICIAN HAS ASSOC [XXX] PATIENT

where the co-role of the lexon to be interpreted is explicitly specified between
square brackets. In the case of a non-existing co-role, we use the same syntactic
placeholder we already introduced earlier, e.g.:

12 An ontology engineer is not allowed to model a relation between a conceptx and a
concepty in LinKBase�, if, according to the real world, that relation does not hold
for each possible instance of conceptx.

13 Note that these lexons cannot be modelled in LinKBase�.

118 P. Verheyden, J. De Bo, and R. Meersman

"COUNTRY - STATE" [] [HAS ASSOC] ENTERPRISE

For understanding convenience we explicitly specify the corresponding role be-
tween square brackets.

The next step is then to add a lexon with a common term to a minimal
ontological path, e.g.:

CANADA IS A "COUNTRY - STATE" [] [HAS ASSOC] ENTERPRISE

is constructed from the following two lexons:

<MEDICINE,CANADA,IS A, ,COUNTRY - STATE>
<MEDICINE,ENTERPRISE,HAS ASSOC, ,COUNTRY - STATE>

We distinguish two kinds of lexical mappings: reference mappings and rela-
tion mappings. A reference mapping expresses a mapping involving a reference
path from the committing relational database. Such a reference path is an at-
tribute or an attribute value, and is expressed by an intuitive formula, e.g.,
“FIRMS.CITY”. The following reference mapping involves an attribute being
mapped:

map LISTINGS.DOSAGE_FORM
on "MATERIAL ENTITY BY PRESENTATION SHAPE" [][HAS_ASSOC] "MEDICINAL PRODUCT"

and must be read and interpreted as follows: the relation “LISTINGS” contains
an attribute “DOSAGE FORM” that semantically corresponds with “MATE-
RIAL ENTITY BY PRESENTATION SHAPE” that has a relation with role
“HAS ASSOC” with “MEDICINAL PRODUCT” to which “LISTINGS” se-
mantically corresponds. In other words, “LISTINGS” is mapped on “MEDICI-
NAL PRODUCT”, the “.” is mapped on the relation with role “HAS ASSOC”,
and “DOSAGE FORM” is mapped on “MATERIAL ENTITY BY PRESEN-
TATION SHAPE”. Attribute values can reflect ontological knowledge as well,
and therefore it is sometimes necessary to define reference mappings at the level
of attribute values, e.g:

map FIRMS.COUNTRY_NAME=CANADA
on CANADA IS_A "COUNTRY - STATE" [] [HAS_ASSOC] ENTERPRISE

In this example, the subsumption relation is to be found between the attribute
“COUNTRY NAME” and its values (e.g., “CANADA”).

Some attributes are merely added to the relational database schema as unique
tuple identifiers, and therefore reflect no semantics in the application’s UoD.
Next to that, they are often the result of a decomposition during normalisation,
and function as foreign keys. However, a foreign key often semantically corre-
sponds with a (direct or indirect) relation between two terms in the ontology
base. Let us clarify this with some examples. In the following relation mapping,
a foreign key (expressed by a formula) is mapped on the direct relation between
two terms:

Semantically Unlocking Database Content 119

map (LISTINGS.FIRM_SEQ_NO = FIRMS.FIRM_SEQ_NO)
on "MEDICINAL PRODUCT" (HAS_ASSOC) ENTERPRISE

For understanding convenience we use parenthesis to delimite which element is
mapped on which element. In some cases, a combination of foreign keys needs
to be mapped. In the following example, the combination of two foreign keys is
mapped on the direct relation between two terms:

map (LISTINGS.LISTING_SEQ_NO = ROUTES.LISTING_SEQ_NO,
ROUTES.ROUTE_CODE = TBLROUTE.ROUTE_CODE)

on "MEDICINAL PRODUCT" (HAS-PATH) "ROUTE OF ADMINISTRATION"

4.5 Lexical Association Layer

The lexical association layer contains (possible) lexical associations. A lexical
association defines an association between a reference path of the relational
database, which is meaningful in the considered UoD, with a term of the ontology
base. A reference path is a formula expressing an attribute or attribute value
which has not already been mapped by a reference mapping defined in the lexical
interpretation layer.

Lexical associations are also to be seen as syntactic placeholders. Let us clarify
this by following example:

lexical interpretations
map FIRMS.COUNTRY_NAME=CANADA
on CANADA IS_A "COUNTRY - STATE" [] [HAS_ASSOC] ENTERPRISE

lexical associations
assoc FIRMS.COUNTRY_NAME=CHINA with "COUNTRY - STATE"

The attribute value “FIRMS.COUNTRY NAME=CHINA” could not be mapped
because the ontology base does not contain a semantically corresponding term,
e.g., “CHINA”. Therefore, it is lexically associated with the term “COUNTRY
- STATE” in expectation from a corresponding lexon involving the associated
term, e.g., the lexon <MEDICINE,CHINA,IS A, ,COUNTRY - STATE>. If this
lexon is eventually modelled in the ontology base by an authorised ontology en-
gineer, the above association can be transformed to a reference mapping, i.e.:

map FIRMS.COUNTRY_NAME=CHINA
on CHINA IS_A "COUNTRY - STATE" [] [HAS_ASSOC] ENTERPRISE

4.6 Semantic Constraint Layer

The semantic constraint layer accounts for the intended meaning of the con-
ceptualisation by defining one or more constraint rules on interpreted lexons.
These rules reflect (as good as possible) the rules intended by the UoD of the
application, e.g., the integrity constraints of the committing relational database.
The syntax in which these constraint rules are expressed is adopted from the old
RIDL, e.g.:

120 P. Verheyden, J. De Bo, and R. Meersman

each ENTERPRISE HAS ASSOC exactly one "COUNTRY - STATE"

expresses the rule that each application instance of “ENTERPRISE” must play
the role “HAS ASSOC” with “COUNTRY - STATE” exactly once. This rule
constrains a lexon interpreted through a following reference mapping:

map FIRMS.COUNTRY_NAME=CANADA
on CANADA IS_A "COUNTRY - STATE" [] [HAS_ASSOC] ENTERPRISE

and reflects the attribute “COUNTRY NAME” not allowing null values, i.e.
each particular firm is located in exactly one country or state (according to the
considered UoD).

5 Deploying Ontological Commitments for Mediation

Defining ontological commitments for relational databases (or applications in
general) must aim for some practical use. In this section we demonstrate how
an ontological commitment (defined in Ω-RIDL) can be deployed for mediation,
i.e. the translation of a conceptual query (query on ontology level) into a correct
logical query (query on database level).

By adopting the ORM diagram notation we graphically represent an ontologi-
cal commitment by a tree. Figure 4 presents a part of the ontological commitment
of the NDC Directory represented by such a tree. An ontological commitment
tree is constructed by connecting the ontological paths from the the lexical in-
terpretation layer of the ontological commitment definition. A dashed ellipse (a
LOT in the original NIAM context) represents the start term of an ontological
path. Terms other than the start term involved in an ontological path are repre-
sented by solid ellipses (NOLOTs in the original NIAM context). Subsumption
relations are represented by arrows; other ontological relations are represented by
boxes. Boxes highlightened in bold indicate that relation mappings are involved.
The combination of the dot and box arrow graphically represents the constraint
rule: each ENTERPRISE HAS ASSOC exactly one “COUNTRY - STATE”.

A conceptual query can now be formulated by constructing a subtree of our
ontological commitment tree. Let us demonstrate this with an example. A natu-
rally formulated query can be: list all cities in Germany in which enterprises are
located that are related to medicinal products having a nasal route of administra-
tion. By adopting RIDL\qu (the query/update part of the old RIDL) and the
syntactic placeholder mechanism of Ω-RIDL, this query can be formally written
down as:

list CITY [] [HAS_ASSOC] ENTERPRISE
(HAS_ASSOC GERMANY
and
[] [HAS_ASSOC] "MEDICINAL PRODUCT"

HAS-PATH "ORAL ROUTE")

Semantically Unlocking Database Content 121

ADMINISTRATION
ROUTE OF

MEDICINAL
PRODUCT

VERPAKKINGINGREDIENT OF
MEDICINAL
SUBSTANCE

ORAL ROUTE

CANADA

ACE−INHIBITOR

HAS_ASSOC HAS_ASSOC HAS_ASSOC

TRAFFIC ROAD CITYPOSTBUS

HAS_ASSOC

COUNTRY − STATE

HAS−PATH

ENTERPRISE

HAS_ASSOC HAS_ASSOCHAS−INGREDIENT

IS−INGREDIENT−OF

HAS_ASSOC

MATERIAL ENTITY
BY PRESENTATION

SHAPE

Fig. 4. Part of the ontological commitment of the NDC Directory represented by a
tree graphically depicted by adopting the ORM notation

Figure 5 presents the graphical representation of this query as a subtree of
the ontological commitment tree of Figure 4. The translation of this conceptual
query into a correct logical query is done by a tree traversal:
– the left “selection” branch is traversed buttom-up;
– the middle and right “condition” branches are traversed top-down, connect-

ing them with the logical “and”-operator (as specified by our formulated
conceptual query).

During this traversal we deploy the reference and relation mappings defined in
the corresponding ontological commitment to decide whether (part of) a branch of
the conceptual query tree is visible in the committed relational database and, if so,
in what we have to translate it. Figure 6 presents the resulting SQL query. Boxes
denote elements from reference mappings; boxes highlightened in bold denote ele-
ments from relation mappings. The execution of this SQL query on the relational
database of the NDC Directory finally returns us the desired instance data.

Apart from their use in mediation, conceptual queries are also important,
as argued in [23], as a convenient way to formally define and specify end-user
profiles, intended to customise an individual’s interaction with the system. Intu-
itively, the result of an ontology query, or user profile, is a set of (concept) terms,
together with the query formulation itself that implies the intended relationships
between the concepts as seen and expected by the end-user.

122 P. Verheyden, J. De Bo, and R. Meersman

GERMANY

HAS_ASSOC

CITY

HAS_ASSOC

ENTERPRISE

ADMINISTRATION
ROUTE OF

ORAL ROUTE

COUNTRY − STATE

HAS−PATH

MEDICINAL
PRODUCT

HAS_ASSOC

Fig. 5. Example of a conceptual query represented as a subtree of an ontological com-
mitment tree

SELECT FIRMS.CITY
FROM FIRMS, LISTINGS, ROUTES, TBLROUTE
WHERE (FIRMS.COUNTRY_NAME = "GERMANY"
 AND
 (FIRMS.FIRM_SEQ_NO = LISTINGS.FIRM_SEQ_NO
 AND
 LISTINGS.LISTING_SEQ_NO = ROUTES.LISTING_SEQ_NO
 AND

 AND
 TBLROUTE.ROUTE_NAME = "ORAL")

left selection branch

middle condition branch

right condition branch

 ROUTES.ROUTE_CODE = TBLROUTE.ROUTE_CODE

Fig. 6. The SQL query as a result of the conceptual query translation

6 Related Work

Efforts on integration of heterogeneous datasources can be divided into two
main categories. A first category of approaches have in common that they build
a global conceptual datamodel from different datasources. The second category

Semantically Unlocking Database Content 123

follows a fundamental different approach in that datasources are mapped to
existing domain ontologies. The methodology for data integration proposed in
this paper is classified under the second category. We will now give a classification
of various approaches in the first category.

1. Schema integration: In this case, the input of the integration process is a set
of source schemata, and the output is a single (target) schema representing
the reconciled intentional representation of all input schemata (i.e. a global
conceptual schema). The output includes also the specification of how to
map source data schemata into portions of the target schema. This kind of
schema integration is often referred to as view integration in the database
research community. View integration is considered as an essential step in
database design. A stepwise methodology for schema integration is given
in [2].

2. Virtual data integration: The input is a set of source data sets, and the
output is a specification of how to provide a global and unified access to
the sources in order to satisfy certain information needs. The data are kept
only in the sources. These sources also remain autonomous throughout the
whole process and are queried using views. Database integration [2] appears
in distributed databases environments and has as main goal the design of an
integrated global schema (often called a virtual view) from local schemata.
Virtual data integration is not only restricted to databases but may as well be
extended to other kinds of datasources (structured, semi-structured, or not
structured at all). In [3] Bergamaschi illustrates how the MOMIS system
is built. Briefly summarised, wrappers are responsible for translating the
original description languages of any particular source into a common data
language and to add all information needed by the mediator, such as the
source name and the type. Above the wrappers there is the mediator, which
is a software module that has as most important task to build a global
conceptual schema. Queries are then formulated against the global schema
and are translated into local queries. The query result is then combined
by the mediator and presented to the user. The TSIMMIS project [7] is
primarily focused on the semi-automatic generation of wrappers, translators,
and mediators.

3. Materialised data integration: As in the previous case, the input is a set of
source data sets, but here the output is a data set representing a reconciled
view of the input sources, both at the intentional and the extensional level.
The field of data integration with materialised views is the one most closely
related to data warehousing.

4. Data Warehousing: With the aid of wrappers and mediators a datawarehouse
schema is formed of the local source schemata. The datawarehouse itself is
responsible for storing the data of the local sources. Source integration in
data warehousing identifies three perspectives: a conceptual perspective, a
logical perspective and a physical perspective [15].

The OBSERVER system [20], which belongs to the second category, has
already been discussed in section 1. We have argued the differences between

124 P. Verheyden, J. De Bo, and R. Meersman

our framework and that of OBSERVER. Another important difference which
has been described in this paper is the ability we provide to impose seman-
tic domain constraints at the ontology level. This aspect is completely absent
in the OBSERVER project. Another project, comparable with OBSERVER, is
SIMS [1]. In this system the different information sources are accessed using
a system based on Description Logics, Loom. The CARNOT project [8] used
the global upper ontology Cyc to describe the whole information system. A key
shortcoming with this approach is the difficulty and complexity of managing a
large global ontology (more than 50.000 entities and relationships). For this rea-
son we have focused on an approach that involves the use of multiple ontologies
as stated in the introduction.

7 Future Work

A prototype of a compiler, called omegaridlc, is developed to support the lan-
guage in the current DOGMA ontology framework. It enables an automatic
verification of an ontological commitment definition on syntax and semantics,
and the translation to a more machine processable form. This form is currently
a markup version of the language, expressed in the popular XML, which enables
a more convenient adaptation by existing ontology-based mediation technology,
e.g., the MaDBoks14 system [9] developed by L&C N.V. as an extension to their
LinKFactory� Ontology Management System [6]. This adaptation and its im-
plementation is currently being investigated as part of the SCOP project.

8 Conclusion

In this paper we have focused on a new ontological commitment language called
Ω-RIDL. This language is developed to naturally describe how elements of a
relational database semantically correspond to a (given) domain ontology. One
of the novel aspects of this language is the support of imposing semantic domain
constraints at the ontology level.

By means of a real-life case study we have explained the principles of the lan-
guage, and demonstrated how a syntactic placeholder mechanism was introduced
to overcome assumed incompleteness of the given domain ontology. Further, we
have illustrated how some of its key constructs can conveniently be reused in
a conceptual query language. We demonstrated this with an example of how
an ontological commitment defined in Ω-RIDL can be deployed for mediation,
i.e. the process of translating a conceptual query (query on ontology level) to a
correct logical query (query on database level).

Acknowledgments. This work has been funded by the IWT (Institute for
the Promotion of Innovation by Science and Technology in Flanders): Pieter

14 MApping DataBases Onto Knowledge Systems

Semantically Unlocking Database Content 125

Verheyden is supported in the context of the SCOP project (“Semantische Con-
nectie van Ontologieën aan Patiëntgegevens”; IWT O&O #020020/L&C), while
Jan De Bo has received an IWT PhD grant (IWT SB 2002 #21304). We also
like to thank Carlo Wouters (La Trobe University; VUB STARLab) and Tom
Deray (L&C N.V.) for their valuable comments on earlier drafts of this paper.

References

1. Arens, Y., Knoblock, C. and Shen, W. (1996) Query Reformulation for Dynamic
Information Integration. In Journal of Intelligent Information Systems, 1996 6(2-
3), pp. 99-130.

2. Batini, C., Lenzerini, M. and Navathe, S. (1986) A Comparative Analysis of
Methodologies for Database Schema Integration. In ACM Computing Surveys,
1986 18(4) Dec, pp. 323-364.

3. Bergamaschi, S., Castano, S., De Capitani di Vimercati, S., Montanari, S. and
Vincini, M. (1998) An Intelligent Approach to Information Integration. In Guar-
ino, N. (ed.), Formal Ontology in Information Systems, Proceedings of the First
International Conference (FOIS’98), IOS Press, pp. 253-267.

4. Bloesch, A., and Halpin, T. (1996) ConQuer: a Conceptual Query Language. In
Proc. ER’96: 15th International Conference on Conceptual Modeling, Springer
LNCS, no. 1157, pp. 121-33.

5. Bloesch, A., and Halpin, T. (1997) Conceptual Queries using ConQuer-II. In Proc.
ER’97: 16th International Conference on Conceptual Modeling, Springer LNCS,
no. 1331, pp. 113-26.

6. Ceusters, W., Martens, P., Dhaen, C. and Terzic, B. (2001) LinKFactory� : an
Advanced Formal Ontology Management System. K-CAP 2001, Victoria, Canada,
October 2001.

7. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J. and Widom, J. (1994) The TSIMMIS project: Integration of heteroge-
neous information sources. In Proceedings of the 10th Anniversary Meeting of the
Information Processing Society of Japan, pp. 7-18.

8. Collet, C., Huhns, M. and Shen W. (1991) Resource Integration Using a Large
Knowledge Base in CARNOT. In IEEE Computer, 24(12), pp. 55-62.

9. Deray, T. and Verheyden, P. (2003) Towards a Semantic Integration of Medical
Relational Databases by Using Ontologies: a Case Study. In Meersman, R., Tari,
Z. et al. (eds.), On the Move to Meaningful Internet Systems 2003 (OTM 2003)
Workshops, LNCS 2889, Springer-Verlag, pp. 137-150.

10. De Troyer, O., Meersman, R. and Verlinden, P. (1988) RIDL* on the CRIS Case:
a Workbench for NIAM. In Olle, T.W., Verrijn-Stuart, A.A., Bhabuta, L. (eds.),
Computerized Assistance during the Information Systems Life Cyle, Elsevier Sci-
ence Publishers B.V. (North-Holland), pp. 375-459.

11. De Troyer, O. (1989) RIDL*: A tool for the Computer-Assisted Engineering of
Large Databases in the Presence of Integrity Constraints. In Clifford, J., Lindsay,
B., Maier, D. (eds.), Proceedings of the ACM-SIGMOD International Conference
on Management of Data, ACM Press, pp. 418-430.

12. Flett, A., Casella dos Santos, M. and Ceusters, W. (2002) Some Ontology Engi-
neering Processes and Their Supporting Technologies. In Gómez-Pérez, A., Richard
Benjamins, V. (eds.), Knowledge Engineering and Knowledge Management. On-
tologies and the Semantic Web, EKAW 2002, LNCS, Springer-Verlag, pp. 154-165.

126 P. Verheyden, J. De Bo, and R. Meersman

13. Guarino, N., and Giaretta, P. (1995) Ontologies and Knowledge Bases: Towards
a Terminological Clarification. In Mars, N. (ed.), Towards Very Large Knowledge
Bases: Knowledge Building and Knowledge Sharing, IOS Press, Amsterdam, pp.
25-32.

14. Halpin, T. (2001) Information Modeling and Relational Databases (From Concep-
tual Analysis to Logical Design). Morgan Kauffman, 2001.

15. Jarke M., Lenzerini, M., Vassiliou, Y. and Vassiliadis, Y. (1999) Fundamentals of
Data Warehouses. Springer-Verlag, 1999.

16. Meersman, R. (1982) The High Level End User. In Data Base: The 2nd Generation,
Infotech State of the Art Report (vol. 10, no. 7), Pergamonn Press, U.K., 1982.

17. Meersman, R. (1999) The Use of Lexicons and Other Computer-Linguistic Tools
in Semantics, Design and Cooperation of Database Systems. In Zhang, Y.,
Rusinkiewicz, M., Kambayashi, Y. (eds.), Proceedings of the Conference on Co-
operative Database Systems (CODAS 99), Springer-Verlag, pp. 1-14.

18. Meersman, R. (2001) Ontologies and Databases: More than a Fleeting Resem-
blance. In d’Atri, A., Missikoff, M. (eds.), OES/SEO 2001 Rome Workshop, Luiss
Publications.

19. Meersman, R. (2002) Semantic Web and Ontologies: Playtime or Business at the
Last Frontier in Computing? In NSF-EU Workshop on Database and Information
Systems Research for Semantic Web and Enterprises, pp. 61-67.

20. Mena, E., Kashyap, V., Illaramendi, A. and Sheth, A. (1998) Domain Specific On-
tologies for Semantic Information Brokering on the Global Information Infrastruc-
ture. In Guarino, N. (ed.), Formal Ontology in Information Systems, Proceedings
of the First International Conference (FOIS’98), IOS Press, pp. 269-283.

21. Reiter, R. (1984) Towards a Logical Reconstruction of Relational Database The-
ory. In Brodie, M., Mylopoulos, J., Schmidt, J. (eds.), On Conceptual Modelling,
Springer-Verlag, pp. 191-233.

22. Spyns, P., Meersman, R. and Jarrar, M. (2002) Data Modelling versus Ontology
Engineering. SIGMOD Record: Special Issue on Semantic Web and Data Manage-
ment, 2002, 31(4), pp. 12-17.

23. Stuer, P., Meersman, R. and De Bruyne, S. (2001) The HyperMuseum Theme
Generator System: Ontology-based Internet support for the active use of digital
museum data for teaching and presentation. In Bearman, D., Trant, J. (eds.),
Museums and the web 2001: Selected Papers, pp. 127-137. Archives & Museum
Informatics, Pittsburgh, PA, 2001.
Available at: http://www.archimuse.com/mw2001/papers/stuer/stuer.html

24. Verheijen, G. and Van Bekkum, J. (1982) NIAM, aN Information Analysis Method.
In Olle, T., Sol, H., Verrijn-Stuart, A. (eds.), IFIP TC-8 Conference on Compar-
ative Review of Information System Methodologies (CRIS-1), North-Holland.

25. Wintraecken, J.J.V.R. (1985) Informatie-analyse Volgens NIAM. Academic Ser-
vice, 1985. (English version published by Kluwer Academic Publishers, 1990).

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 127 – 139, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Representation and Reasoning About Changing
Semantics in Heterogeneous Data Sources

Hongwei Zhu, Stuart E. Madnick, and Michael D. Siegel

MIT Sloan School of Management,
30 Wadsworth Street, MA, 02142, USA

{mrzhu, smadnick, msiegel}@mit.edu
http://interchange.mit.edu/coin

Abstract. Changes of semantics in data sources further complicate the semantic
heterogeneity problem. We identify four types of semantic heterogeneities re-
lated to changing semantics and present a solution based on an extension to the
Context Interchange (COIN) framework. Changing semantics is represented as
multi-valued contextual attributes in a shared ontology; however, only a single
value is valid over a certain time interval. A mediator, implemented in abduc-
tive constraint logic programming, processes the semantics by solving temporal
constraints for single-valued time intervals and automatically applying conver-
sions to resolve semantic differences over these intervals. We also discuss the
scalability of the approach and its applicability to the Semantic Web.

1 Introduction

The Web has become a large database, from which obtaining meaningful data is be-
coming increasingly difficult. As a simple example, try querying historic stock prices
for Daimler-Benz from Yahoo. Figure 1 shows what Yahoo returned for the prices at
stock exchanges in New York and Frankfurt.

Fig. 1. Stock prices for Daimler-Chrysler from Yahoo. Top: New York; Bottom: Frankfurt

128 H. Zhu, S.E. Madnick, and M.D. Siegel

What conclusions will you draw from the retrieved data? Perhaps you regret that
you were not arbitraging the substantial price differences between the exchanges, or
feel lucky that you sold the stock in your Frankfurt account at the end of 1998? Both
conclusions are wrong. Here, not only are the currencies for stock prices different at
the two exchanges, but the currency at Frankfurt exchange also changed from German
Marks to Euros at the beginning of 1999 (the New York exchange remained as US
dollars). Once the data is transformed into a uniform context, e.g., all prices in US
dollars, it can be seen that there is neither significant arbitraging opportunity nor
abrupt price plunge for this stock.

The example illustrates the kinds of problems that the Semantic Web aims to solve.
We need not wait until the full implementation of the Semantic Web for meaningful
data retrieval. Context Interchange (COIN) framework [7, 10, 11], originated from the
semantic data integration research tradition, shares this goal with the Semantic Web
research. With the recent temporal extension that processes heterogeneous and chang-
ing semantics, described in this paper, COIN provides an extensible and scalable
solution to the problem of identifying and resolving semantic heterogeneities. COIN
is a web-based mediation approach with several distinguishing characteristics:

− Detection and reconciliation of semantic differences are system services and are
transparent to users. Thus with COIN, the historic stock prices in the simple exam-
ple are automatically transformed before they are returned to the user;

− Mediation does not require that semantic differences between each source-receiver
pair to be specified a priori, rather, it only needs a declarative description of each
source’s data semantics and the methods of reconciling possible differences. Se-
mantic differences are detected and automatically reconciled at the time of query.
Scalability is achieved by the use of ontology, context inheritance, and parameteri-
zation of conversion functions;

− Mediation is implemented in abductive constraint logic programming. As a result,
it allows for knowledge level query and can generate intensional answers as well
as extensional answers. Efficient reasoning is achieved by combining abduction
with concurrent constraint solving.

 In this paper, we will focus on the representation and reasoning of changing se-
mantics in COIN. Since it is an extension to early implementations, it is capable of
mediating static semantic heterogeneities as well as those that change over time.

2 Temporal Semantic Heterogeneities

Temporal semantic heterogeneities refer to the situation where the semantics in data
sources and/or receivers changes over time. We categorize them into four types,
which are described below, then followed by an illustrative example.

2.1 Categories of Temporal Semantic Heterogeneities

Representational heterogeneity. The same concept can be represented differently in
different sources and during different time periods. In the stock price example, the
same concept of stock price is represented in different currencies, and for the Frank-

 Representation and Reasoning About Changing Semantics 129

furt exchange, the currency also changed in the beginning of 1999. This introduces
representational temporal heterogeneity when the receiver needs price data in US
dollars. Representational heterogeneity often results from the differences in unit of
measures, scale factors, and other syntactic characteristics.

Ontological heterogeneity. The same term is often used to refer to slightly different
concepts; in the same source the concepts referred to by a term may shift over time,
which introduces ontological temporal heterogeneities. For example, profit can refer
to gross profit that includes all taxes collected on behalf of government, or net profit
that excludes those taxes. The referred concept may shift from one type of profit to
another because of change of reporting rules.

Aggregational heterogeneity. When the data of interest is an attribute of an entity that
can consist of other entities, aggregational heterogeneity arises if the component enti-
ties vary in different situations. A detailed example is presented in [17], where de-
pending on regulatory requirements and purposes, the financial data of corporations
may or may not include those from certain branches, subsidiaries, and majority owned
foreign joint ventures. These rules and purposes may change over time, which intro-
duces aggregational temporal heterogeneities. We will give a more detailed example
of this category later in this section.

There are certain connections between ontological and aggregational heterogenei-
ties. For example, the question “does profit include taxes” concerns ontological het-
erogeneity; while the question “does profit for corporation x include that of its sub-
sidiaries” concerns aggregational heterogeneity. The latter can be seen as a more
complicated version of the former in that the heterogeneity results from the entity that
the data is about, not the data itself. In addition, data aggregation rules are often more
complicated than ontological concept definitions. We will use this connection in
COIN to encode and process aggregational heterogeneity.

Heterogeneity in temporal entity. The representation and operations for the domain of
time vary across systems. As a result, there exist heterogeneities that include, for
example, location dependencies such as time zones, differences in representation
conventions, calendars, and granularities. Although it is a type of representational
heterogeneity, we treat it as a special category because of the complexity of the do-
main of temporal entity.

2.2 An Illustrative Example

We use the following example to illustrate representational and aggregational hetero-
geneities. Readers are referred to [17] for a more complicated aggregational example
and to [21] for an example of representational and ontological heterogeneities.

The example involves two sources and one receiver1. The receiver is interested in
the longitudinal economic and environmental changes in the Balkans area, before and
after the war in Yugoslavia. As shown in Figure 2, the sources organize the data by
sovereign country, while the receiver is interested in data for the region covered by

1 This example has been simplified in this paper to reduce space while maintaining the key

details. The actual situation involves many more sources as well as multiple users, each with
a potentially different context.

130 H. Zhu, S.E. Madnick, and M.D. Siegel

the former Yugoslavia. The sources also make other implicit assumptions for data in
terms of currencies and scale factors. We call these assumptions for interpreting the
data contexts and identify them using context labels, c_srs and c_target, in Figure 2.

As the web and traditional databases are often used today, the receiver knows what
data is available in the sources and wants to query them directly using query Q – but
the user may not know about (nor want to deal with) the differences in contexts. Thus,
a direct execution of query Q over the sources would bring back wrong answers be-
cause the query does not consider context differences, such as those in currency and
scale factor. Additionally, in 1992 former Yugoslavia was divided into five sovereign
countries, each with its own distinctive currency (See Table 1). Therefore, the results
for data after 1992 are also wrong because of unresolved aggregational differences,
i.e., the data represents only a sub-area of the entire region expected by the receiver.

Context c_src
1. Monetary values are in official currency of the country,

with a scale factor of 1M;
2. Mass is a rate of tons/year with a scale factor of 1000;
3. All other numbers have a scale factor of 1;
4. All values are aggregated by sovereign country.

Schema of source 1:
 Statistics(Country, Year, GDP, Population)

Schema of source 2:
 Emissions(Country, Year, CO2)

Context c_target
1. Monetary values are always in USD,

with a scale factor of 1M;
2. Mass is in tons/year;
3. Other numbers have a scale factor of 1;
4. Value for country denoted by ‘YUG’ is

aggregated to the geographic area of
former Yugoslavia.

Query Q
2
:

Select S.Country,S.Year,GDP,CO2
From Statistics S, Emissions E
Where S.Country=E.Country and
S.Year=E.Year and S.Country=’YUG’;

Fig. 2. Temporal Context Example, with Subtle Changes in Data Semantics

Table 1. Five Countries Resulting from the Division of the Former Yugoslavia

Country Code Currency Currency Code
Yugoslavia3 YUG New Yugoslavian Dinar YUM
Bosnia and Herzegovia BIH Marka BAM
Croatia HRV Kuna HRK
Macedonia MKD Denar MKD
Slovenia SVN Tolar SIT

Compared to the stock quote example, the semantic changes in this example are
more subtle in that there seem to be no semantic changes in the verbal context de-
scriptions in Figure 2, it is the meaning of the country code ‘YUG’ that changes over
time. To account for this change, we need to make it explicit either in the source
context or in the receiver context. We choose the latter in the following discussions.

2 For this example and demonstration to follow, the Query Q is expressed in the Structured

Query Language (SQL). The basic COIN approach can be applied to any query language.
3 The Federal Republic of Yugoslavia was renamed Serbia and Montenegro in 2003. We will

not encode this change in the example to simplify illustration.

 Representation and Reasoning About Changing Semantics 131

In addition, the aggregational heterogeneity also dynamically introduces new repre-
sentational heterogeneities, e.g., currency differences will be encountered in aggregat-
ing data for each component country. Another interesting characteristic is that in this
simple example the two sources share the same context (in reality, there are likely
many context differences amongst the diverse sources).

3 COIN Framework and Architecture

The COIN framework consists of a deductive object-oriented data model for knowl-
edge representation and a general purpose mediation service module that detects and
resolves semantic conflicts in user queries at run-time (see Figure 3).

COIN
Mediator

Executioner

Optimizer

Receivers/
User Apps

Conversion
Libraries

Mediated query/
explication

User query

Data in user context

Data sources

Knowledge Representation - F-Logic based data model

Ontology – define types and relationships
Context theories – define source and receiver contexts by

specifying modifier historic values
Mappings – assigning correspondence between data elements

and the types in ontology

Mediation service

Graphic/Web-based
modeling tool

Fig. 3. Architecture of the COIN System

Knowledge representation in COIN consists of three components:

− Ontology – to define the semantic domain using a collection of semantic types and
their relationships. A type corresponds to a concept in the problem domain and can
be related to another in three ways: 1) as a subtype or super-type (e.g., profit is a
subtype of monetary value; 2) as a named attribute (e.g., temporal entity such as
year is a temporal attribute of GDP); and 3) as a modifier or contextual attribute,
whose value is specified in context axioms and can functionally determine the in-
terpretation of instances of the type that has this modifier (e.g., monetary value
type has a scale factor modifier). There is a distinguished type basic in the ontol-
ogy that serves as the super type of all the other types and represents all primitive
data types. Objects are instances of the defined types;

− Context theories – to specify the values of modifiers for each source or receiver
and the conversions for transforming an object in one context to another. The con-
text of each source or receiver is uniquely identified with a context label, e.g.,
c_src and c_target in the example. The value specification for modifiers can be a

132 H. Zhu, S.E. Madnick, and M.D. Siegel

simple value assignment or a set of rules that specify how to obtain the value. Con-
ceptually a context can be thought to be a set of <modifier, object> pairs, where
object is a singleton in most non-temporal cases; and

− Semantic mappings – to establish correspondences between data elements in
sources and the types in the ontology, e.g., GDP in the example in Figure 2 corre-
sponds to monetary value in the ontology.

These components can be expressed in OWL or F-Logic [15]. Since COIN pre-
dates OWL, F-Logic was the language of choice with its rich constructs for describing
types and their relationships and has formal semantics for inheritance and overriding.
In practice, we translate the F-Logic expressions into a Horn logic program and im-
plement the semantics of inheritance and overriding in the context mediator compo-
nent described next. For succinctness, we continue to use the F-Logic syntax in the
rest of the paper. Attributes and modifiers are represented as functions or methods of
the defined types; since modifier values vary by context, methods for modifiers are
parameterized with a context label. Comparison between objects is only meaningful
when performed in the same context, i.e., suppose x and y are objects,

.])([])([vuvcvalueyucvaluexyx
c

∧→∧→⇔
where is one of the comparison operators for primitives in { …,,,,,, ≥>≤<≠= },

and the value method is a parameterized function that returns the primitive value of an
object. A value method call invokes the comparison of modifier values in source
context and receiver context c, if difference is detected, conversion functions are
invoked.

The core component in the mediation service module is the COIN mediator im-
plemented in abductive constraint logic programming. It takes a user query and pro-
duces a set of mediated queries (MQs) that resolve semantic differences. This happens
by first translating the user query into a Datalog query and using the encoded knowl-
edge to derive the MQs that incorporate necessary conversions from source contexts
to receiver context. The query optimizer and processor [2] optimize the MQs using a
simple cost model and the information on source capabilities, obtain the data, perform
the conversions, and return final datasets to the user.

We also developed web-based [16] and graphical [13] tools for data administrators
to design ontologies and input context knowledge. As part of ongoing effort of con-
necting COIN with the Semantic Web, we are also developing OWL and RuleML
based representations for the COIN ontology and context knowledge; a prototype is
described in [19]. These prototypes also translate the captured knowledge into Prolog
syntax required by the current implementation of the mediation service.

4 Representation of Changing Semantics

Like many existing ontologies, previously the ontologies in COIN were based on a
snapshot view of the world and lacked the capability of capturing changing semantics.
To overcome this limitation, we incorporate in COIN ontologies explicit time con-
cepts such as the ones defined in DAML Time Ontology [12]. Temporal entity is the
most general concept and can be further specialized into instant and interval. There is

 Representation and Reasoning About Changing Semantics 133

emerging research that aims to systematically temporalize static ontologies [18]; for
simple ones, we can manually create a temporal ontology by relating concepts whose
value or semantics changes over time to temporal concepts via named attributes.
Figure 4 shows a graphical representation of the ontology for the example.

temporalEntity

country

mass

population

monetaryValue

basic

currency

scaleFactor

additiveValue

aggregationType

officialCurrency
scaleFactor

tempAttr

country

Sub-/super- type

Attribute
Modifier

Legend
Semantic type

Sub-/super- type

Attribute
Modifier

Legend
Semantic type

Fig. 4. A graphical representation of the example ontology

We should note that, like other types of conceptual modeling, there could be multi-
ple variants of the example ontology that convey the same ideas in the problem
domain, some of which may be even better. We use this one for illustration purposes.

The type basic represents system primitives and is the parent of all the other types;
this relationship is omitted in the graph to eliminate clutter. The context regarding
data aggregation is captured by the modifier aggregationType of the semantic type
additiveValue, which serves as the parent all other types that can be aggregated. At-
tributes are also added to this parent type to relate to types country and temporalEn-
tity. Through inheritance and overriding the child types obtain and specialize, if nec-
essary, these relationships and context specifications.

In the following discussion, we assume certain familiarity with the syntax and the
semantics of F-Logic. Following Gulog [5], a sub-language of F-Logic, we use −| to

separate variable type declarations from the rest of a formula. For succinctness we
also use non-clausal forms, which eventually will be rewritten in clausal form and
translated into equivalent Horn logic clauses.

We represent a named attribute in the ontology as a function and a modifier as a
multi-valued method parameterized with context label. For example, the following
formula declares that additiveValue has tempAttr with a return type of temporalEntity:

].[titytemporalEntempAttrlueadditiveVa

Similarly, the following declares modifier aggregationType for additiveValue:

].)([basicctxtnTypeaggregatiolueadditiveVa

The changing semantics is represented by context axioms that specify the entire
history of multi-valued modifiers. In the example we have decided to make the
semantic change explicit in the receiver context, which means that before the balkani-
zation in 1991, the receiver aggregates data at the country level for Yugoslavia, and

134 H. Zhu, S.E. Madnick, and M.D. Siegel

for data after 1992, the receiver wants to aggregate at the level of geo-region covered
by former Yugoslavia. This is expressed using the following context axiom:

).][]'')_([(

)][]'')_([(

''][])_([

|::

1992

_
1991

_

_

≤

≤

∈∧→←→
∧∈∧→←→

∧=∧→∧→
−∃∀

ITTtempAttrXgeoregiontargetcvalueY

ITTtempAttrXcountrytargetcvalueY

YUGCCcountryXYtargetcnTypeaggregatioX

basicYlueadditiveVaX

targetc

t

targetc

t

targetc

 (1)

where 1991≤I represents the time interval up to year 1991, similarly ≤1992I is the interval

since year 1992, and t∈ is a temporal inclusion relation, which can be translated into a

set of comparisons between time points by introducing functions that return the be-
ginning and ending points of an interval:

)).()(())()((

|:,:

IendTendTbeginIbeginIT

titytemporalEnItitytemporalEnT
ccc

t ≤∧≤⇔∈

−∀

Conceptually, we can think of temporal context as a set of <modifier, history> pairs
with history being a set of <object, time_interval> pairs or a set of time-stamped ob-
jects. By abusing syntax, we say the temporal context pertaining to aggregation for
the receiver is >><><< ≤≤ },'',,''{, 19921991 IgeoregionIcountrynTypeaggregatio .

A multi-valued modifier is still single-valued over a certain time interval. Thus,
there exist overlapping intervals over which all involved modifiers are single-valued
in each context. Within these intervals, the determination and the resolution of context
differences are identical to those in a snapshot model. Therefore conversion functions
for processing changing semantics are identical to those in snapshot COIN. For the
interval after 1992, semantic differences exist between the sources and the receiver in
terms of aggregation because the value of aggregationType modifier in the sources is
‘country’, while it is ‘georegion’ in the receiver context. Conversions are needed to
resolve this difference. Conversion functions are defined for the subtypes of addi-
tiveValue, e.g., for moentaryValue we have:

.])([
])([])([

])([

''''''''

),,,(),,_(
),,,(),,,_(][

],_@)_,([
|:

432144

3322

11432

14321

444333

222111

mmmmuvmc_targetvalueM
mc_targetvalueMmc_targetvalueM

mc_targetvalueMTTTTTT

TTSVNCMKDCHIVCBIHC

MTCstatisticsMTCstatistics
MTCstatisticsMTCstatisticsTtempAttrX

vusrcctargetcnTypeaggregatiocvtX
luemonetaryVaX

target_ctarget_ctarget_c

target_ctarget_ctarget_ctarget_ctarget_c

++++=∧→
∧→∧→

∧→∧=∧=∧=
∧=∧=∧=∧=∧=

∧∧
∧∧∧→

←→
−

 (2)

The function essentially states that to process aggregationType semantic difference
of a monetaryValue object, its value u in c_src context is converted to a value v in
c_target context by finding the other monetaryValue objects that correspond to the
four other countries as indicated by the codes at the same year, convert them into
primitive values in c_target, and make v the sum of these primitives. The function for
mass subtype is similarly defined. Before calling this function, functions that convert

 Representation and Reasoning About Changing Semantics 135

for currency and scaleFactor should have been called to arrive at this interim value u;
in calling value functions for the four objects C1-C4 in the body of the function, con-
versions for currency and scaleFactor are dynamically called to ensure that they are
summed in the same context. Thus, it is necessary to specify the precedence of modi-
fiers, i.e., the order in which the modifiers should be processed.

This function is not general because of the use of constants in places of context pa-
rameters and the references to a semantic relation corresponding to a relation in data
source. Using COIN for aggregational heterogeneities is a new research area that we
are currently investigating to produce general methodology. For most other types of
heterogeneities, though, more general conversions exist and can be utilized in multi-
ple problem domains by collecting them into the conversion library. Generalization
is achieved by parameterizing the function with variables for context labels. For
example, the following currency conversion function can be used to convert monetary
values from any arbitrary context C1 to any other arbitrary context C2:

.*])([
),,,_(

][])([])([
],@),([

|:

2

21

12

222

ruvrCvalueR
DTBCACDRBAolsen

TtempAttrXCCcurrencyXCCcurrencyX
vuCCcurrencycvtX

luemonetaryVaX

CC

t

C

f

tf

=∧→
∧=∧=∧=∧

∧→∧→∧→
←→

−

 (3)

where olsen_ corresponds to an external relation that gives exchange rate between
two currencies on any specified date.

A recent effort [8] introduced automatic conversion composition based on equa-
tional relationships between contexts, e.g., given conversions 1) between base price
and tax-included price; and 2) between tax-included price and final price, the conver-
sion between base price and final price can be composed using symbolic equation
solvers.

5 Reasoning About Changing Semantics in COIN Mediation

The mediator is to translate a user query that assumes everything is in user context to
a set of MQs that reconcile context differences between each involved source and the
user. The following pseudo code sketches the intuition of the procedure:

For each source attribute appearing in user query
Instantiate into object of type in ontology according to mappings
Find the direct and inherited modifiers
Order modifiers according to precedence
For each modifier

Choose a value and put corresponding temporal constraint in store
If constraints are consistent
 Compare values in source and receiver
 If different, call conversion function and put abducibls in store

Construct MQ using abducibles

We implement this procedure using abductive constraint logic programming
(ACLP) [14]. Briefly, ACLP is a triple <P, A, IC>, where P is a constraint logic pro-
gram, A is a set of abducible predicates different from the constraint predicates, and
IC is a set of integrity constraints over the domains of P. Query answering in ACLP is

136 H. Zhu, S.E. Madnick, and M.D. Siegel

that given a query)(Xq , generate a set of abductive hypothesis Δ and a substitution
θ so that ΔP entails θ)(Xq and is consistent; Δ consists of abducible predicates
and simplified constraints.

The COIN framework can be straightforwardly mapped to ACLP. Knowledge rep-
resentation in COIN can be translated into an equivalent normal Horn program [1]; or
alternatively, the knowledge representation can be directly expressed in first order
Horn clauses. This corresponds to P. Predicates and arithmetic operators allowed by
the query languages of sources and other callable external functions constitute A. IC
consists of integrity constraints in data sources and any constraints introduced in the
user query. The user query corresponds to query)(Xq in ACLP; the MQs are con-
structed from the set Δ and the substitution θ .

Abductive inference in COIN is a modified SLD-resolution [6] in that literals cor-
responding to predicates in data sources are abducted without evaluation; constraints
are abducted and subsequently propagated/simplified. The constraints include basic
arithmetic comparisons, equational relationships among arithmetic operators for con-
version composition [8], and temporal relations for processing changing semantics.
The mediator is implemented using constraint logic programming environment
ECLiPSe [20] with the extension of Constraint Handling Rules (CHR) [9]. Naturally,
we use the constraint store to collect the abucibles. At the end of a successful deriva-
tion, an MQ is constructed using the predicates and constraints collected in the con-
straint store.

As shown earlier, context axioms for multi-valued modifiers contain temporal in-
clusion comparison, which can be transformed to a conjunction of comparisons of the
end points using comparison relation ≤ . We implement temporal relations as a con-
straint tle, with tle(X, Y) meaning temporal entity X is before (inclusive) Y. Here X and
Y are variables of primitive temporal entities in the same context. Similar to semantic
relations, we use tle_ for constraint over semantic objects.

In the process of mediation, temporal constraints appearing in a context axiom are
abducted into the constraint store after the head of the axiom clause is unified with the
goal atom. Applicable CHR rules are triggered immediately after abduction to simply
or propagate the constraints. Inconsistency of the constraint store signifies a failure
and causes backtracking. The temporal constraints in the consistent store after a suc-
cessful derivation determine the common interval over which all involved modifiers
are single-valued. Suppose the query language in source accepts ≤ for temporal entity
comparison, the tle constraint in the store is translated back to ≤ to construct the MQs.

The context axiom (2) corresponds to two clauses after it is rewritten in the clausal
form; each clause contains temporal constraints corresponding to the interval for
pre- or post-balkanization of former Yugoslavia. When the user query in Figure 2 is
mediated, each clause posts a temporal constraint into the store and produces a
successful derivation. No inconsistency is produced in the example; refer to [21, 22]
for an example where inconsistencies occur when multiple modifiers change values at
different times. The MQs in Datalog syntax are a disjunction of two sub-queries; each
deals with a time interval in context axiom (2):

 Representation and Reasoning About Changing Semantics 137

answer('V8', 'V7', 'V6', 'V5') :-
 'V5' is 'V4' * 1000.0,
 olsen("YUM", "USD", 'V3', 'V7'),
 'Statistics'("YUG", 'V7', 'V2', 'V1'),
 'Emissions'("YUG", 'V7', 'V4'),
 'V7' =< 1991,
 'V6' is 'V2' * 'V3'.
answer('V96', 'V95', 'V94', 'V93') :-
 'V92' is 'V91' * 1000.0, 'V90' is 'V89' * 1000.0,
 'V88' is 'V87' * 1000.0, 'V86' is 'V85' * 1000.0,
 'V84' is 'V83' * 1000.0, 'V82' is 'V90' + 'V92',
 'V81' is 'V88' + 'V82', 'V80' is 'V86' + 'V81',
 'V93' is 'V84' + 'V80', 'V79' is 'V78' * 'V77',
 'V76' is 'V75' * 'V74', 'V73' is 'V72' * 'V71',
 'V70' is 'V69' * 'V68', olsen("SIT", "USD", 'V67', 'V95'),
 Statistics'("SVN", 'V95', 'V66', 'V65'),
 olsen("MKD", "USD", 'V68', 'V95'),
 'Statistics'("MKD", 'V95', 'V69', 'V64'),
 olsen("HRK", "USD", 'V71', 'V95'),
 'Statistics'("HRV", 'V95', 'V72', 'V63'),
 olsen("BAM", "USD", 'V74', 'V95'),
 'Statistics'("BIH", 'V95', 'V75', 'V62'),
 olsen("YUM", "USD", 'V77', 'V95'),
 'Emissions'("SVN", 'V95', 'V83'),
 'Emissions'("MKD", 'V95', 'V85'),
 'Emissions'("HRV", 'V95', 'V87'),
 'Emissions'("BIH", 'V95', 'V89'),
 'Statistics'("YUG", 'V95', 'V78', 'V61'),
 'Emissions'("YUG", 'V95', 'V91'),
 1992 =< 'V95', 'V60' is 'V66' * 'V67',
 'V59' is 'V76' + 'V79', 'V58' is 'V73' + 'V59',
 'V57' is 'V70' + 'V58', 'V94' is 'V60' + 'V57'.

The first sub-query corresponds to the pre-balkanization period, when there is no
aggregational difference between the sources and the receiver; only representational
differences for GDP and CO2 emissions exist. The second sub-query corresponds to
the post-balkanization period, when both aggregational differences for GDP and CO2
emissions and representational differences exist. Note the currency conversions
dynamically introduced in the conversion for aggregational difference have been
properly incorporated.

These MQs are returned to the user as an intensional answer to the original query.
With all conversions declaratively defined, these MQs in fact convey a great deal
of useful information to the user. The MQs are then passed to the optimizer and
executioner components that access actual data sources to return final data to the user.

6 Discussion

It is common that data semantics in sources and receivers changes over time. One can
draw wrong conclusions when these changes are not adequately represented and
properly processed. In this paper, we identified four categories of semantic heteroge-
neities related to changing semantics. We also presented recent results that extend the
COIN framework for representing and processing changing semantics, with a focus
on the treatment of aggregational temporal heterogeneities.

138 H. Zhu, S.E. Madnick, and M.D. Siegel

As we explained in [21], the COIN framework is applicable to the Semantic Web
for several reasons. The use of SQL in the example should not be construed as a limi-
tation. In fact, the data model, the representation language, and the ACLP implemen-
tation of COIN mediator are all logic based. Thus, the framework can be applied
broadly. To adapt to another query language, we can simply include the logic form of
the language constructs as abducibles. More importantly, semantic differences are
automatically detected and resolved using declarative descriptions of semantics. This
approach is very well in line with the Semantic Web, where each source furnishes a
description of its semantics for agents from other contexts to process. In addition, a
recent extension to the basic COIN system added an ontology merging capability to
allow large applications to be built by merging separate ontologies [7]. This is very
similar to how agents work with distributed ontologies on the Semantic Web. Lastly,
we are also experimenting with OWL and RuleML based languages for ontology and
conversion function representation. These formalisms will allow the COIN mediation
service to process other autonomously created ontologies on the Semantic Web.

The COIN framework is also scalable. The number of required conversion func-
tions does not depend on the number of sources/receivers involved; rather, it depends
on the variety of contexts, i.e., number of modifiers and their unique values. With
context inheritance (e.g., the two sources in the example share the same context, but
partial sharing is also possible), parameterization of conversions functions (e.g., the
conversion function for currency differences is applicable to any pair of contexts
having different currencies), and conversion composition, the number of conversion
functions required grows only when the addition of sources introduces new contexts
and the existing conversion functions do not handle the conversions for the new con-
texts. In the illustrative example, suppose we add another two hundred additional
sources that have semantic differences with the receiver only in terms of currency and
scale factor, the number of conversion functions remains unchanged because the
existing conversion functions can process these new contexts. Adding these new
sources only involves adding context declarations and semantic mappings, which are
declaratively defined.

We acknowledge that the conversion functions for processing aggregational het-
erogeneities in the illustrative example are not as general. As future research, we plan
to investigate ontology modeling techniques and other representational constructs that
may help generalize conversion functions of this type. We also note that the heteroge-
neities in temporal entities are not currently processed in the prototype. As another
future research area, we plan to introduce the full Time ontology into knowledge
representation and implement conversions as external function calls to web services
that specifically handle time zones, calendars, and granularities [3, 4].

Acknowledgements

The work reported herein was supported, in part, by the Singapore-MIT Alliance
(SMA) and the Malaysia University of Science and Technology (MUST)-MIT
collaboration.

 Representation and Reasoning About Changing Semantics 139

References

1. S. Abiteboul, G. Lausen, H. Uphoff, E. Waller, "Methods and Rules", SIGMOD Rec.,
22(2), pp. 32-41, 1993.

2. T. Alatovic, "Capabilities Aware Planner/Optimizer/Executioner for COntext INterchange
Project", MS Thesis, MIT, 2002.

3. C. Bettini, "Web services for time granularity reasoning," TIME-ICTL'03, 2003.
4. C. Bettini, S. Jajodia, and X. S. Wang, Time Granularities in Databases, Data Mining, and

Temporal Reasoning: Springer, 2000.
5. Dobbie, G., and Topor, R. "On the Declarative and Procedural Semantics of Deductive Ob-

ject-Oriented Systems," Journal of Intelligent Information Systems (4), 1995, pp 193-219.
6. K. Eshgi, Kowalski, R. "Abduction Compared with Negation as Failure", Proceedings of

6th Intl Conf. on Logic Programming, 1989.
7. Firat, "Information Integration using Contextual Knowledge and Ontology Merging," PhD

Thesis, MIT, 2003.
8. A. Firat, S. Madnick, B. Grosof, "Financial information integration in the presence of

equational ontological conflicts", WITS, 2002.
9. T. Frühwirth, "Theory and Practice of Constraint Handling Rules," Journal of Logic

Programming, 37, pp. 95-138, 1998.
10. C.Goh, "Representing and Reasoning about Semantic Conflicts in Heterogeneous Infor-

mation Systems", PhD Thesis, MIT, 1997
11. C. Goh, S. Bressan, S. Madnick, and M. Siegel, "Context Interchange: New Features and

Formalisms for the Intelligent Integration of Information," ACM TOIS, vol. 17, pp. 270-
293, 1999.

12. J. R. Hobbs, "A DAML Ontology of Time," LREC, 2002.
13. S. Jayasena, "Context Mediation Approach to Improved Interoperability amongst Disparate

Financial Information Services", MS Thesis, Singapore-MIT Alliance CS Program, 2004.
14. A.C. Kakas, A. Michael, and C. Mourlas, "ACLP: Integrating Abduction and Constraint

Solving," Journal of Logic Programming, 44, pp. 129-177, 2000.
15. M. Kiffer, G. Laussen, J. Wu, "Logic Foundations of Object-Oriented and Frame-based

Languages", J. ACM, 42(4), pp. 741-843, 1995.
16. P.W. Lee, "Metadata Representation and Management for Context Mediation", MS

Thesis, MIT, 2003.
17. S. Madnick, R. Wang, X. Xian, "The Design and Implementation of a Corporate House-

holding Knowledge Processor to Improve Data Quality", JMIS, 20(3), pp. 41-69, 2004.
18. J. Santos, S. Staab, "FONTE: Factorizing Ontology Engineering Complexity," Interna-

tional Conference On Knowledge Capture, ACM Press, Sanibel Island, FL, USA, 2003,
pp. 146-153.

19. P.E.K. Tang, S. Madnick, K.L. Tan "Context Mediation in the Semantic Web: Handling
OWL Ontology and Data Disparity through Context Interchange", Second International
Workshop on Semantic Web and Databases (in this volume), Toronto, Canada, 2004.

20. M. Wallace, S. Novello, J. Schimpf, " ECLiPSe: A Platform for Constraint Logic
Programming", IC-Parc, Imperial College, London, August 1997.

21. H. Zhu, S.E. Madnick, M.D. Siegel, "Reasoning about Temporal Context using Ontology
and Abductive Contraint Logic Programming", to appear in Proceedings of Practice and
Principles of Semantic Web Reasoning (PPSWR’04), St. Malo, France, September 2004.

22. H. Zhu, S.E. Madnick, M.D. Siegel, "Effective Data Integration in the Presence of Tem-
poral Semantic Conflicts", Proceedings of 11th International Symposium on Temporal
Representation and Reasoning (TIME 2004), pp109-114, Normandie, France, July 1-3, 2004.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 140 – 154, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Context Mediation in the Semantic Web:
Handling OWL Ontology and Data Disparity Through

Context Interchange

Philip Tan1, Stuart Madnick2, and Kian-Lee Tan3

1 Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576
philipt@mit.edu

2 MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA
smadnick@mit.edu

3 Department of Computer Science, National University of Singapore,
3 Science Drive 2, Singapore 117543
tankl@comp.nus.edu.sg

Abstract. The COntext INterchange (COIN) strategy is an approach to solving
the problem of interoperability of semantically heterogeneous data sources
through context mediation. COIN has used its own notation and syntax for rep-
resenting ontologies. More recently, the OWL Web Ontology Language is be-
coming established as the W3C recommended ontology language. We propose
the use of the COIN strategy to solve context disparity and ontology interopera-
bility problems in the emerging Semantic Web – both at the ontology level and
at the data level. In conjunction with this, we propose a version of the COIN on-
tology model that uses OWL and the emerging rules interchange language,
RuleML.

1 Introduction

The COntext INterchange (COIN) strategy [10] is a mediator-based approach for
achieving semantic interoperability among heterogeneous data sources and receiv-
ers. As realizations of the strategy, COIN [7] and eCOIN, a recent extension, [6] are
two working prototypes that implement the Context Interchange strategy. eCOIN
uses FOL/Prolog as the representation and implementation language for the applica-
tion ontology in the context mediation process. Various sample applications have
since been implemented to illustrate its ability to solve semantic interoperability
problems in areas such as financial services, weather information, and airfare ag-
gregation and comparison.

One of the core ideas of the Semantic Web is the ability to associate machine un-
derstandable meanings to information. A taxonomy, or ontology, is used to enhance
the quality of data and information available on the Web, subsequently enhance the
functioning of the Web in improving Web searches, relating information by inference
rules and complicated query answering [1].

With various active independent ontology development activities around the world,
the age-old problem of heterogeneous data interoperability also manifests itself in the

 Context Mediation in the Semantic Web 141

ontology area. One way to minimize the extent of ontology heterogeneity and dispar-
ity is to create a controlled and centralized ontology collection, with the goal to mini-
mize duplication and incompatibility of ontology. However, with decentralized
knowledge engineering and ontology development widely implemented in the indus-
try and academic, the problem of ontology disparity is unavoidable. The full potential
of ontology and language standardization using OWL will only be realized if they are
used in combination with other ontologies in the future to enable data sharing [8].

In fact, W3C recognizes the existence of such problem – “We want simple asser-
tions about class membership to have broad and useful implications. …It will be chal-
lenging to merge a collection of ontologies.” [11].

OWL provides a number of standard languages construct that aims at solving a
subset of this problem. Ontology mapping constructs such as equivalentClass,
equivalentProperty, sameAs, differentFrom and AllDifferent only allows ontology
context consolidation at a very limited level. These language constructs are only
useful if the consolidation effort requires only disambiguation between ontology. In
other words, we can use these facilities to tell that a human in ontology A is the
same as person in ontology B, but if they are different, we will not be able to tell
how different these two classes are; needless to say that limits interoperability be-
tween the two ontologies.

1.1 Our Contribution

Our goal in this paper is to illustrate the novel features of the Context Interchange
mediation strategy in solving ontology disparity problem in Semantic Web. Even
though this research originated from a long-standing research in the data integration
area, the use of this strategy in handling ontology interoperability presented in this
paper is new with respect to our previous works and other relevant work in this area.
In conjunction with this, we present a new COIN ontology representation model using
OWL and RuleML, in alignment to the new and emerging W3C standards.

The rest of the paper is organized as follows. After this introduction, we present a
motivational example to highlight the Context Interchange strategy in handling ontol-
ogy disparity problem. Section 3 describes the building blocks of the Context Inter-
change strategy. Section 4 details the COIN-OWL ontology model design, design
considerations and limitation. The final section presents a summary of our contribu-
tions and describes some ongoing research and future research directions.

1.2 Related Work

One relevant effort in the Semantic Web/OWL space is Context OWL (C-OWL) [3],
a language whose syntax and semantics have been obtained by extending the OWL
syntax and semantics to allow for the representation of contextual ontologies. How-
ever, the extension focused on limited context mapping using a set of bridge rules that
specify the relationship between contexts as one of the following: equivalent, onto
(superset), into (subset), compatible, incompatible. The limited expressiveness of the
language fails to address the contextual differences such as those possible with COIN.

142 P. Tan, S. Madnick, and K.-L. Tan

On standardization of the COIN ontology representation, Lee [9] has presented a
XML-based metadata representation for the COIN framework. The essence of that
work lies in modeling and storing of the metadata in RDF format as the base format.
A number of intermediate representations of were proposed: RDF, RuleML, RFML
and the native Prolog representation used in COIN. The core ontological model of
COIN in RDF format is transformed into the aforementioned intermediate representa-
tion by applying Extensible Stylesheet Language Transformation (XSLT) on the fly.
Context mediation for heterogeneous data is then executed using the ontological
model encoded in the COIN language. It is worth noting that the approach proposed
in this work primarily deals with a single representation at a time. The intermediate
ontological model is represented in RDF, RuleML or RFML individually, but not as a
combination of the different formats, which is the approach taken in our approach.

2 Context Interchange in Action

One of the easiest ways to understand the Context Interchange framework is via a
concrete example. Consider two financial data sources: Worldscope (worldscope) and
Disclosure Corporate Snapshot (disclosure) as shown in Figure 1.

Worldscope provides basic financial information on public companies worldwide,
while Disclosure is an information directory on companies publicly traded on U.S.
exchanges. Worldscope reports all the financial data information in US dollars, and
on the scale factor of 1000, while disclosure reports the financial data information in
the local currency of the companies, and on the scale factor of 1.

. Company_Name

DAIMLER-BENZ AG

TotalAssets

5659478

Company_Name

DAIMLER BENZ CORP 615000000

 NetIncome

DAIMLER BENZ

Name

97736992

TotalSales

Worldscope

Disclosure

Datastream

Fig. 1. Multiple databases with similar data, but differing contexts

Using these financial data sources, users are able to post queries on the public
companies of interest. For example, to retrieve the asset data of Daimler-Benz AG
from the worldscope database, the user may issue the following SQL query:

 Context Mediation in the Semantic Web 143

select Worldscope.TotalAssets
from Worldscope
where Worldscope.Company_Name = "DAIMLER-BENZ AG";

On the other hand, to retrieve net income data from disclosure, the following SQL
query can be used:

select Disclosure.Date,Disclosure.NetIncome
from Disclosure
where Disclosure.Company_Name = "DAIMLER BENZ CORP"
and Disclosure.Date = “12/31/93”;

Although the data can be retrieved from both sources, there are important discrep-
ancies in the data due to the difference in context of the data sources, both in the cur-
rencies and the scale factors used (as well as company naming conventions and date
formats). Thus, if one wanted to retrieve the TotalAssets from Worldscope and the
NetIncome from Disclosure, the results could be confusing since the results would be
provided with these context differences.

In a conventional database system, to perform a join table query between World-
scope and Disclosure, these context disparities would have to be resolved manually
and encoded in the SQL query. Using COIN, these context discrepancies (different
company name format, date format, financial data currency type and scale factor) are
mediated automatically and queries such as the following can be used without the user
having to know anything about the actual contexts of the sources (the results will be
returned to the user in the context defined for the user, independent of the contexts of
the sources):

select Disclosure.Date, Worldscope.TotalAssets,
Disclosure.NetIncome
from Disclosure, Worldscope
where Disclosure.Company_Name = "DAIMLER BENZ CORP"
and Disclosure.Company_name = Worldscope.Company_Name
and Disclosure.Date = “12/31/93”;

This automated context reasoning and mediation capability is the essence of the
Context Interchange strategy. Using the same context reasoning and mediation en-
gine, ontology interoperability is achieved by defining meta-ontology that describes
the disparate ontologies. This is discussed in the subsequent section.

3 Context Interchange Strategy Essentials

The Context Interchange framework employs a hybrid of the loosely- and tightly-
coupled approaches in data integration in heterogeneous data environment. The COIN
framework was first formalized by Goh et. al in [7] and further realized by Firat [6].
The Framework comprises three major components:

− The domain model, which is a collection of rich types, called semantic types. The
domain model provides a lexicon of types, attributes and modifiers to each seman-
tic type. These semantic types together define the application domain correspond-
ing to the data sources which are to be integrated.

144 P. Tan, S. Madnick, and K.-L. Tan

− The elevation theory, made up of elevation axioms which define the mapping be-
tween the data types of the data source and the semantic types in the domain
model. Essentially, this maps the primitive types from the data source to the rich
semantic types in the application domain.

− The context theory comprising declarative statements which either provide for the
assignment of a value to a context modifier, or identify a conversion function
which can be used as the basis for converting the values of objects across different
contexts.

These three components form the complete description of the application domain,
required for the context mediation procedure as described in [5].

Due to space constraints, we limit the details of the COIN strategy. For detailed
theoretic formalism and implementation details, the readers are referred to the litera-
tures [4, 5, 6, 7, 10].

3.1 Context Interchange and Ontology Interoperability

One major perspective the Context Interchange strategy employs is the relational view
of the data. Semi-structured data, including information from HTML and XML web
pages can be used in the prototype via the Cameleon web wrapper engine [6]. This
aspect of the strategy is one distinct area that sets itself apart from the common usage
of OWL, where ontology and data are often maintained together in the semi-
structured format of OWL.

Intuitively, the use of OWL in COIN can be viewed as the meta-ontology layer on
top of OWL, providing an extension to OWL to support context-aware ontology to
the current context-oblivious ontology in OWL.

Our approach in solving the ontology interoperability problem is by applying the
COntext Interchange strategy at the ontology level, treating disparate ontologies as
the subjects to be mediated. This can be done by creating an application meta-
ontology describing the contexts of the ontologies. Using this application meta-
ontology, the contextual difference can be solved in the same way that the semantic
interoperability problem of heterogeneous databases is solved using COIN. With this,
we can integrate and interoperate among the disparate ontologies, and subsequently
integrate the underlying data represented by these ontologies.

Additionally, the same approach can be used to mediate not only data sources in the
Semantic Web, but also traditional relational databases. This is important since it is ex-
pected that relational databases will co-exist with the new Semantic Web paradigm.
This extension of the Context Interchange strategy will be capable of handling data in-
teroperability within Semantic Web data sources, traditional database sources, as well
as interoperability between the Semantic Web data sources and traditional databases.

4 COIN-OWL Ontology Model

Prior to describing the COIN-OWL ontology model design, we explain in brief the
OWL Web Ontology Language and Rule Markup Language (RuleML)

 Context Mediation in the Semantic Web 145

4.1 OWL Web Ontology Language

The OWL Web Ontology Language is designed for use by applications that need to
process the content of information instead of just presenting information to humans.
OWL facilitates greater machine interpretability of Web content than that supported
by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along
with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL
Lite, OWL DL, and OWL Full:

− OWL Lite supports those users primarily needing a classification hierarchy and
simple constraints. It should be simpler to provide tool support for OWL Lite than
its more expressive relatives, and OWL Lite provides a quick migration path for
thesauri and other taxonomies.

− OWL DL supports those users who want the maximum expressiveness while re-
taining computational completeness (all conclusions are guaranteed to be comput-
able) and decidability (all computations will finish in finite time). OWL DL in-
cludes all OWL language constructs, but they can be used only under certain
restrictions (for example, while a class may be a subclass of many classes, a class
cannot be an instance of another class). OWL DL is so named due to its correspon-
dence with the field of Description Logic.

− OWL Full is meant for users who want maximum expressiveness and the syntactic
freedom of RDF with no computational guarantees. OWL Full allows an ontology
to augment the meaning of the pre-defined (RDF or OWL) vocabulary. It would be
difficult for reasoning software to support complete reasoning for every feature of
OWL Full.

A more detailed comparison of the sublanguages is available from [11].

4.2 Rule Markup Language (RuleML)

The RuleML Initiative is a collaboration with the objective of providing a basis for an
integrated rule-markup approach. This is achieved by having all participants collabo-
rate in establishing translations between existing tag sets and in converging on a
shared rule-markup language. The main goal for the RuleML kernel language is to be
utilized as a specification for immediate rule interchange.

Rules can be stated (1) in natural language, (2) in some formal notation, or (3) in a
combination of both. Being in the third, 'semiformal' category, the RuleML Initiative
is working towards an XML-based markup language that permits Web-based rule
storage, interchange, retrieval, and firing/application.

The XML schema definition of RuleML can be viewed as syntactically characteriz-
ing certain semantic expressiveness subclasses of the language. As eCOIN represents
the ontological model in Prolog, which is in the horn-logic family, our use of RuleML
is focused on the datalog and hornlog sublanguage. These two sublanguages provide a
comprehensive language facility in describing rules encoded in Prolog. As the appli-
cation ontologies in COIN may involve complex rules, our design and implementa-
tion uses both the datalog and hornlog sublanguages.

146 P. Tan, S. Madnick, and K.-L. Tan

4.3 Context Interchange Ontology Model in OWL (COIN-OWL)

Approach. In eCOIN, the FOL/Prolog program formed by the collection of domain
model definitions, elevation theories and context theories is used to detect and medi-
ate context disparity and heterogeneity in a query using an abductive procedure
defined in [12]. One important principle of our work is to preserve this constraint
programming engine in the COIN framework.

We adopt a layered architecture, as shown in Figure 2, in the use of OWL in con-
text interchange framework: (1) the domain ontology will be modeled in OWL (and
its extension or relevant technology), (2) the ontology will be transformed to eCOIN
FOL/Prolog as the native representation of the domain, and finally, (3) the native
program will be taken as input to the abductive engine for context mediation.

ECOIN
Context Mediation

System

Ontology
Administrator

COIN-
OWL

Ontology

ECOIN
Prolog

Program

Ontology Development and Editing

Automated
Ontology

ConversionContext Mediation and Query Processing

(1)(2)(3)

Fig. 2. Three-tier approach for Context Interchange ontology modeling using OWL

The OWL ontology model can be viewed as the front-end of the system, where it is
the main interfacing layer to the ontology administrator of the eCOIN system. In the
intermediate layer, the transformation from OWL to the native FOL/Prolog program
will be transparent and automatic. The transformation process is detailed in the later
section of the thesis. With the derived program in its native FOL/Prolog format, the
existing mediation engine can be reused in its entirety.

The big win of this approach is that it minimizes re-work: there is little value in re-
inventing the wheel, especially when the current functionality of the system provides
the total capability currently required. At the same time, the abstraction provided by
the middle tier of the architecture shields the ontology administrator from the actual
implementation of the COIN context mediator. This componentization fulfills our aim
of adoption of OWL in the framework, yet ensuring minimal impact to the existing
COIN system.

The conversion from the OWL version of a COIN domain model to its Prolog ver-
sion is done using Protégé OWL API, while conversion from RuleML to Prolog is
done by using XSL Transformation technology, through the use of eXtensible
Stylesheet.

 Context Mediation in the Semantic Web 147

OWL and Rule-Based Ontology. One major challenge of the adoption of OWL in
the ontology model is that the COIN ontology model encompasses a number of
constructs that are not directly available in OWL. Constructs such as Domain
Model and Elevation Axioms can be represented in OWL rather easily –
conceptually, these constructs describes the relationship among the data types, and
can be modeled accordingly using corresponding constructs in OWL that express
relationships among classes.

The problem, however, lies in the modeling of context theory, which is the pivotal
component in the COIN framework. The collection of context axioms in a context
theory is used either to provide for the assignment of a value to a modifier, or identify
a conversion function, which can be used as the basis for converting the values of ob-
jects across different contexts. Often, the expressiveness of rules is required to define
the conversion of a semantic type in the source context to a different context.

In our proposed design, axioms requiring such flexibility are encoded in
RuleML. RuleML allows rule-based facts and queries to be expressed in the manner
similar to conventional rule language such as Prolog. The concrete representation of
RuleML is XML, which fits seamlessly in our effort to standardize the ontology
representation in eCOIN.

We chose to use RuleML because it has received significant support and participa-
tion from academia and industry in the RuleML working group and it is likely that
RuleML may eventually be accepted as part of the W3C standard for Rule-based on-
tology in Semantic Web. The early adoption of such emerging W3C standard pro-
motes standardization of our effort and allows our work to be re-used by other inter-
ested parties in the Semantic Web and data/context integration space.

4.4 COIN-OWL Ontology Model Design

In this section, we examine the modeling of the COIN ontology in OWL with respect
to domain model, elevation theory and context theory. The COIN ontology (expressed
in OWL) can be used as a base OWL ontology to model disparate data sources for the
purpose of data integration by means of context mediation. Where appropriate, the
concrete XML presentation of the model is presented to illustrate the proposed im-
plementation of the model.

Domain Model. By definition, the domain model defines the taxonomy of the domain
in terms of the available semantic types and modifiers to each semantic types. In
addition, the notion of primitive type is used to represent the data types that are native
to the source or receiver context.

OWL uses the facilities of XML Schema Datatypes and a subset of the XML
Schema datatypes as its standard datatypes (or equivalently, its primitive datatypes).
On the other hand, the primitive types in the COIN language consist of string and
number. Trivially, the COIN datatypes can be represented using its counterparts in
OWL, namely xsd:string and xsd:int, xsd:float or xsd:double.

148 P. Tan, S. Madnick, and K.-L. Tan

Source Sets. This COIN concept, the intensional description of the data sources, is
not directly available in OWL, as OWL is used as the descriptive language only for
semi-structured data on the Web. COIN, on the other hand, is designed to deal with a
wide range of data sources, which makes the declarative description of the data
sources indispensable for data integration and context mediation.

Context Axioms. A core concept in COIN is the notion of context differences and the
ability to interoperate among contexts through context mediation. The fundamental
component to context axioms is the definition of context itself.

Context definition: The interpretation of a semantic object value that is decorated by
modifiers may vary according to the values taken by the modifier (e.g., the semantic
object “TotalAssets” – or the more generic “monetary unit” - might be in US dollars
or Euros). The value of the modifier is determined by prior domain knowledge, de-
pendent on the context of the domain. This value can either be static (e.g., monetary
units are always US dollar in Worldscope context), or dynamically obtained from
other attributes (e.g., monetary units are in the currency of their country). This hierar-
chical structure translates to the need of modeling a parent ModifierValue class, with
two subclasses ModifierStaticValue and ModifierDynamicValue.

Conversion function: A more complex construct available in COIN is the conversion
function. In essence, conversion functions enable interoperability of semantic objects
across different contexts. This is achieved by defining generic conversion rules for
each semantic type that may yield different value under different contexts.

This requirement calls for a language facility that is both flexible and supports
rule-based data. However, OWL lacks the ability to model rules in an extensible man-
ner. Therefore, we used RuleML for conversion function modeling. As an example,
consider the simple conversion function in eCOIN’s Prolog representation, that con-
verts the month expressed as a 3-letter abbreviation into its corresponding numeric
value (and vice versa):

rule(month("Jan", 01), (true)).

This rule can be represented using RuleML as follows:
 <fact>
 <_head>
 <atom>
 <cterm>
 <_opc><ctor>rule</ctor></_opc>
 <cterm>
 <_opc><ctor>month</ctor></_opc>
 <ind>Jan</ind>
 <ind>01</ind>
 </cterm>
 <ind>true</ind>
 </cterm>
 </atom>
 </_head>
 </fact>

 Context Mediation in the Semantic Web 149

Elevation Axioms. Elevation axioms are used to describe the functional relationship
between data sources and domain model. Intuitively, the elevation axioms can be
viewed as the mapping of the primitive relation to its semantic relation. At the lower
level, each column and data cell are mapped to their semantic counter part via
skolemization.

Complete Ontology Model. Combining the previous individual elements of the
ontology model, we present the complete COIN-OWL ontology model in the form of
the UML class diagram in Figure 3. Each of the major ontology elements are shaded
in gray grouping for clarity.

4.5 Design Considerations

One of the objectives of our design is to adopt emerging W3C standards as the data
exchange standard in the Context Interchange project while reusing the established
context mediation strategy and implementation in the project. This means that the
proposed COIN model in OWL must be able to be translated to FOL/Prolog for actual
context mediation and query execution process. This guiding principal is crucial in
ensuring the practicality of the proposed model.

Choice of OWL Sublanguage. As introduced in the earlier section, OWL is
classified into three language family: OWL Lite, OWL DL and OWL Full. The OWL
sub-language used in our design is OWL Lite, as this family of language is
sufficiently expressive to represent the COIN ontology model.

With our three-tier architecture, the actual reasoning and context mediation is per-
formed at the backend (see Figure 2). This essentially means that the computation
guarantee of OWL Lite and OWL DL is not required. In other words, we have the lib-
erty to use any of these three classes of OWL sublanguages.

However, OWL Lite contains the language constructs that are rich enough for this
purpose. One reason for not pushing to use the upper language family of OWL DL
and OWL Full is to preserve the computability of the ontology for future. This allows
the reasoning and context mediation, should there be a need in the future, to be per-
formed directly at the OWL level without having to first translate the OWL ontology
to the native ECOIN Prolog application.

OWL Ontology and Data. As part of the design and operation of COIN, we have a
slightly different usage adoption of OWL. In the standard usage of OWL for ontology
modeling, the ontology and data are both stored in OWL. Depending on the generality
of the taxonomy definition, the ontology and data may co-exist on the same OWL
document. In other cases, the ontology is defined and stored in a central OWL ontol-
ogy library, and referenced in the OWL data document using external namespace ref-
erence. An example of such usage is the OWL Wine ontology (at
http://www.w3.org/TR/2002/WD-owl-guide-20021104/wine.owl), where both the on-
tology definition and the individual instantiation (i.e. actual data) are stored in the
same OWL document. On the other hand, COIN utilizes the application ontology in a

150 P. Tan, S. Madnick, and K.-L. Tan

different manner. The COIN-OWL ontology model describes the context semantics of
the data sources. Modeled in OWL, this ontology is then used by the context media-
tion engine to resolve context disparities among the data sources.

D
o

m
ai

n
M

od
e

l

C
on

te
xt

 A
xi

om
s

E
le

va
tio

n
A

xi
om

s

S
ou

rc
e

S
et

s

-A
ttr

ib
ut

es
 :

A
ttr

ib
ut

e
-M

od
ifi

er
s

: M
od

ifi
er

S
em

an
tic

T
yp

e

-A
ttr

ib
ut

eN
am

e
-A

ttr
ib

ut
eF

ro
m

 :
S

em
an

tic
Ty

pe
-A

ttr
ib

ut
eT

o
:

S
em

an
tic

T
yp

e

A
tt

ri
b

ut
e

-M
od

ifi
er

N
am

e
-M

od
ifi

er
Fr

om
 :

S
em

an
tic

T
yp

e
-M

od
ifi

er
To

 :
S

em
an

tic
Ty

pe
-M

od
ifi

er
V

al
ue

s

M
o

di
fi

er

0.
.1

*

0.
.1

*

-D
at

aS
ou

rc
e

-R
el

at
io

nN
am

e
-T

yp
e

-B
in

di
ng

s
-O

pe
ra

to
rs

-C
ol

um
ns

R
el

at
io

n

-C
ol

um
nN

am
e

-D
at

aT
yp

e
-C

ol
um

nI
nd

ex
-A

ss
oc

ia
te

dR
el

at
io

n

C
o

lu
m

n

1
1.

.*

-C
on

te
xt

N
am

e

C
o

nt
ex

t

-M
od

ifi
er

C
on

te
xt

 :
C

on
te

xt
-M

od
ifi

er
O

bj
ec

t :
 M

od
ifi

er
-M

od
ifi

er
S

em
an

tic
Ty

pe
 :

S
em

an
tic

Ty
pe

M
od

ifi
er

V
al

ue

-M
od

ifi
er

S
tri

ng
V

al
ue

-M
od

ifi
er

N
um

er
ic

V
al

ue

M
o

di
fie

rS
ta

tic
V

al
ue

-M
od

ifi
er

D
yn

am
ic

V
al

ue
s

: A
ttr

ib
ut

e

M
o

di
fie

rD
yn

am
ic

V
al

u
e

-E
le

va
tio

nC
on

te
xt

 :
C

on
te

xt
-S

ou
rc

eR
el

at
io

n
: R

el
at

io
n

-S
em

an
tic

C
ol

um
ns

 :
S

em
an

tic
C

ol
um

n

S
em

an
tic

R
el

at
io

n

-S
ou

rc
eC

ol
um

n
: C

ol
um

n
-T

ar
ge

tS
em

an
tic

T
yp

e
: S

em
an

tic
Ty

pe
-A

ss
oc

ia
te

dS
em

an
tic

R
el

at
io

n
 :

S
em

an
tic

R
el

at
io

n

S
em

an
ti

cC
o

lu
m

n

-J
oi

nS
ou

rc
eS

em
an

tic
C

ol
um

n
: S

em
an

tic
C

ol
um

n
-J

oi
nV

al
ue

C
on

te
xt

 :
C

on
te

xt

Jo
in

V
al

u
e

-J
oi

nT
ar

ge
tS

em
an

tic
C

ol
um

n
: S

em
an

tic
C

ol
um

n

Jo
in

V
al

ue
C

ol
um

n
-J

oi
nT

ar
ge

tS
tri

ng

Jo
in

V
al

u
eL

it
er

al

-S
ou

rc
eS

em
an

tic
C

ol
um

n
: S

em
an

tic
C

ol
um

n
-T

ar
ge

tS
em

an
tic

C
ol

um
n

: S
em

an
tic

C
ol

um
n

-S
ou

rc
eA

ttr
ib

ut
e

: A
ttr

ib
ut

e

S
em

an
tic

A
tt

ri
bu

te

-J
oi

nV
al

ue
s

: J
o

in
V

al
ue

C
om

p
le

xS
em

a
nt

ic
A

tt
ri

b
ut

e

1
*

1

*

Fig. 3. UML class diagram of the complete COIN-OWL model

 Context Mediation in the Semantic Web 151

While the COIN ontology is modeled in OWL, the actual data may not necessarily
be stored in OWL. This is because by design, COIN is architected to solve the hetero-
geneous data source interoperability problem. This means that the data to be recon-
ciled by COIN will be from disparate data sources, comprising traditional relational
databases or traditional semi-structured data sources on the World Wide Web (in
XML or HMTL) or even OWL.

Static Type Checking. One of the biggest differences between modeling the ontol-
ogy in eCOIN and COIN-OWL is the strongly enforced typing facility in OWL. In
OWL, all ObjectProperty and DataProperty requires the formal definition of the range
of the property, i.e. the type of object that can be specified in property.

As an example, in eCOIN, we model semantic types and modifiers using the
following constructs:

rule(semanticType(companyName), (true)).
rule(semanticType(companyFinancials), (true)).
rule(modifiers(companyFinancials, [scaleFactor, cur-
rency]), (true)).

Here, it is possible for someone to accidentally put companyName as the modifier
for companyFinancials:

rule(semanticType(companyName), (true)).
rule(semanticType(companyFinancials), (true)).
rule(modifiers(companyFinancials, [companyName]),
(true)).

However, as all classes are strongly typed in OWL, the following ontology will
yield an error when validated against the COIN ontology:

<coin:SemanticType rdf:ID="companyName" />
<coin:SemanticType rdf:ID="companyFinancials">
 <coin:Modifiers rdf:resource=”#companyName”>
</coin:SemanticType>

Functional Property. In all flavors of OWL (OWL Lite, OWL DL and OWL Full), a
property P of object X can be tagged as functional such that for objects Y and Z,
X.P=Y and X.P=Z implies Y=Z. property P of object X is denoted as X.P.

In other words, object X can functionally determine Y in X.P=Y. Using this lan-
guage feature, we can enforce a many-to-one relationship between classes. Given the
wide array of language features in OWL, this is particularly useful in enforcing syn-
tactically and semantically correct COIN ontology.

As an additional note, such requirements can also be enforced using the
owl:cardinality construct. However, it is worth noting that the use of this construct
depends on the sublanguage family of OWL. Cardinality expressions with values lim-
ited to 0 or 1 are part of OWL Lite. This permits the user to indicate 'at least one', 'no
more than one', and 'exactly one'. Positive integer values other than 0 and 1 are per-
mitted in OWL DL. owl:maxCardinality can be used to specify an upper bound.
owl:minCardinality can be used to specify a lower bound. In combination, the two can
be used to limit the property's cardinality to a numeric interval.

152 P. Tan, S. Madnick, and K.-L. Tan

RuleML for Rules Modeling. In the previous work in [9], RDF was used to model
the COIN ontology model. However, the work was unable to address the need for a
more extensible framework in rules representation. In particular, conversion rules
were encoded as raw string in the RDF document:

<coin:Ont_ModifierConversionFunction>

convfunc|rule(cvt(companyFinancials, O, currency, Ctxt,
Mvs, Vs, Mvt, Vt), (attr(O, fyEnding, FyDate),
value(FyDate, Ctxt, DateValue), olsen_p(Fc, Tc, Rate,
TxnDate), value(Fc, Ctxt, Mvs), value(Tc, Ctxt, Mvt),
value(TxnDate, Ctxt, DateValue), value(Rate, Ctxt, Rv),
Vt is Vs * Rv)).

 ...

 rule(month("Oct", 10), (true)).

 rule(month("Dec", 12), true)).
|companyFinancials|currency

</coin:Ont_ModifierConversionFunction>

These rules were then extracted programmatically from the RDF document and used in
context mediation. In comparison, the adoption of RuleML for rules modeling provided a
cleaner method for this purpose. In COIN-OWL, these rules are stored as RuleML:

<rulebase>
 <!-- rule(month("Apr", 04), (true)). -->
 <fact>
 <_head>
 <atom>
 <cterm>
 <_opc><ctor>rule</ctor></_opc>
 <cterm>
 <_opc><ctor>month</ctor></_opc>
 <ind>Apr</ind>
 <ind>04</ind>
 </cterm>
 <ind>true</ind>
 </cterm>
 </atom>
 </_head>
 </fact>
</rulebase>

While this format may look lengthier, this mode of representation adheres to the
publicly accepted RuleML language constructs, and thus allow re-use and interchange
of rules easily.

Semantic Web Rule Language (SWRL). During the course of our work, a number
of relevant emerging standards have branched from RuleML, including RuleML Lite
and Semantic Web Rule Language (SWRL). RuleML Lite adopts an integrated con-
crete syntax of XML and RDF, expanding the language construct available in model-

 Context Mediation in the Semantic Web 153

ing rules. This opens up the possibility of a tighter integration between the conversion
rules in RuleML and the core ontology in OWL. One possibility is to refer to the enti-
ties modeled in the OWL ontology using rdf:resource or href attributes, instead of
treating the same entity in both documents as individual and disjoint entities in each
of the document.

SWRL has been considered but not implemented in this project as the modeling
language is still in its very early stage. SWRL is the result of an effort to integrate
RuleML into OWL, and hence holds a more holistic view of rules and ontology in the
Semantic Web, compared to the use of OWL and RuleML separately.

From the following example, we note that the OWL ontology and RuleML rules
are all modeled in one cohesive SWRL document. The rules fragment that expresses
x3 hasSex male refers to the OWL class male seamlessly using the
owlx:Individual construct:

<swrlx:individualPropertyAtom swrlx:property="hasSex">
 <ruleml:var>x3</ruleml:var>
 <owlx:Individual owlx:name="#male" />
</swrlx:individualPropertyAtom>

In RuleML 0.8, the RuleML version used in the current COIN-OWL ontology
model, such language facility is not available. To refer to an individual defined in the
OWL ontology, there are no other ways but to initialize a new individual in the
RuleML rules document, hence creating a slight gap between the OWL ontology and
RuleML rules.

5 Conclusion

In summary, we have presented an ontology interoperability framework based on the
Context Interchange strategy. In conjunction with that, we proposed an ontology
modeling approach using OWL and RuleML in conjunction with the Context Inter-
change strategy. The COIN-OWL ontology model design is built on the building
blocks of the OWL Lite sublanguage family and the Rule Markup Language, which
are used to model the core ontology and the rule-based metadata in COIN, respec-
tively. In relation to the ontology model, we have highlighted the design considera-
tions, strengths and some of the limitations of the design.

With the growing adoption of OWL and the gradual realization of the Semantic
Web vision, this work is instrumental in bridging the gap between COIN and Seman-
tic Web. With this COIN-OWL model, it is hopeful that COIN will be able to reach a
larger spectrum of audiences, and hence bringing even more contribution to the data-
base/Semantic Web community in the area of heterogeneous data interoperability and
ontology interoperability.

As part of the conclusion of our work, we would like to highlight some of the in-
teresting and promising research areas. The use of the Context Interchange strategy in
ontology interoperability and data sharing is an ongoing research work of our group.
We are currently working on creating a fully working prototype of the OWL ontology
interoperability framework discussed in the paper.

154 P. Tan, S. Madnick, and K.-L. Tan

We also noted that in parallel with the development of RuleML, a number of relevant
emerging standards have been proposed in the rules interchange community, including
RuleML Lite and Semantic Web Rule Language (SWRL). As these standards mature,
in particular SWRL, which combines OWL and RuleML, we see that such standards
promise a more cohesive rule-based ontology model. One reservation on SWRL, how-
ever, is that it is based on the RuleML datalog sublanguage, where as the minimum re-
quirement for our current implementation requires the hornlog sublanguage family for
total compatibility with Prolog. These are issues that need further study.

Acknowledgements

The authors acknowledge the help of Aykut Firat and Hongwei Zhu in reviewing
drafts of this paper. The research reported herein has been supported, in part, by the
Singapore-MIT Alliance (SMA).

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," in Scientific American,
vol. 5, 2001, pp. 34-43.

[2] H. Boley, "The Rule Markup Language: RDF-XML Data Model, XML Schema Hierar-
chy, and XSL Transformations," In Proceedings of the 14th International Conference of
Applications of Prolog, 2001.

[3] P. Bouquet, F. Giunchiglia, F. v. Harmelen, L. Serafini, and H. Stuckenschmidt, "C-
OWL: Contextualizing Ontologies," In Proceedings of the Second International Semantic
Web Conference, 2003.

[4] S. Bressan, K. Fynn, C. H. Goh, S. E. Madnick, T. Pena, and M. D. Siegel, "Overview of a
Prolog Implementation of the COntext INterchange Mediator," In Proceedings of the 5th
International Conference and Exhibition on The Practical Applications of Prolog., 1997.

[5] S. Bressan, C. H. Goh, T. Lee, S. E. Madnick, and M. Siegel, "A Procedure for Media-
tion of Queries to Sources in Disparate Contexts," In Proceedings of the International
Logic Programming Symposium, Port Jefferson, N.Y., 1997.

[6] A. Firat, "Information Integration Using Contextual Knowledge and Ontology Merging,"
Ph.D. Thesis, Massachusetts Institute of Technology, Sloan School of Management, 2003.

[7] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel, "Context Interchange: New Features
and Formalisms for the Intelligent Integration of Information," ACM Transactions on In-
formation Systems, vol. 17, pp. 270-293, 1999.

[8] H. Kim, "Predicting How Ontologies for the semantic Web Will Evolve," Communica-
tions of the ACM, vol. 45, pp. 48-54, 2002.

[9] P. W. Lee, "Metadata Representation and Management for Context Mediation," Master
Thesis, Massachusetts Institute of Technology, Sloan School of Management, 2003.

[10] M. Siegel and S. Madnick, "A Metadata Approach to Resolving Semantic Conflicts," In
Proceedings of the 17th Conference on Very Large Data Bases, 1991.

[11] M. K. Smith, C. Welty, and D. L. McGuinness, "OWL Web Ontology Language Guide,"
2003. http://www.w3.org/TR/2003/PR-owl-guide-20031215.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 155 – 166, 2005.
© Springer-Verlag Berlin Heidelberg 2005

HCOME: A Tool-Supported Methodology for
Engineering Living Ontologies

Konstantinos Kotis, George A. Vouros, and Jerónimo Padilla Alonso

Dept. of Information & Communications Systems Engineering,
University of the Aegean, Karlovassi, Samos, 83100, Greece

{kkot, georgev, pgeron}@aegean.gr

Abstract. The fast emergent areas of the Semantic Web and knowledge man-
agement push researchers to new efforts concerning ontology engineering. The
development of ontologies must be seen as a dynamic process that in most of
the cases starts with an initial rough ontology that is later revised, refined,
enriched, populated and filled in with details. Ontology evolution has to be sup-
ported through the entire ontology lifecycle, resulting to a living ontology. The
aim of this paper is to present the Human-Centered Ontology Engineering
Methodology (HCOME) for the development and evaluation of living ontolo-
gies in the context of communities of knowledge workers. The methodology
aims to empower knowledge workers to continuously manage their formal con-
ceptualizations in their day-to-day tasks. We conjecture that this methodology
can only be effectively supported by eclectic human-centered ontology man-
agement environments, such as the HCONE and SharedHCONE.

1 Introduction

Ontologies have been realized as the key technology to shaping and exploiting infor-
mation for the effective management of knowledge and for the evolution of the Se-
mantic Web and its applications. We consider communities of knowledge workers
that are involved in knowledge-intensive tasks within an organization, or World Wide
Web users with common interests. Knowledge workers are unfamiliar with knowl-
edge engineering principles and methods, and most of the times have little or no train-
ing on using ontology specification tools. In such a distributed setting ontologies
establish a common vocabulary for community members to interlink, combine, and
communicate knowledge shaped through practice and interaction, binding the knowl-
edge processes of creating, importing, capturing, retrieving, and using knowledge.
However, it seems that there will always be the case that community members devise
more than one ontologies for the same domain. For community members to explicate,
maintain and evaluate the changing conceptualization of a domain, they must get
powerful tools that will allow them to edit, review, update and maintain formal on-
tologies, on their own as well as in collaboration with colleagues [1].

Several methodologies have been proposed for the engineering of ontologies
within a knowledge management setting. From the identification of goals and

156 K. Kotis, G.A. Vouros, J.P. Alonso

requirements’ specification, to the implementation, evaluation and maintenance of
the conceptualisations, the ontology life cycle must be clearly defined and further
supported by ontology development tools [2]. From the methodologies described in
[3], [4], [5] and [6], the OnToKnowledge methodology supported by the OntoEdit
ontology development tool, being the most well known one, starts from the initial
stages of knowledge management projects (feasibility and requirements) and pro-
ceeds to the deployment and maintenance of an ontology-based knowledge man-
agement system [4], [5]. The OnToKnowledge methodological approach focuses on
the application-driven development of ontologies, supporting the introduction of
ontology based knowledge management systems [4], [5]. According to this ap-
proach, the maintenance of ontologies is primarily an organizational process driven
by the knowledge engineer who gathers updates to the ontology and initiates the
switchover to a new version of the ontology after thoroughly testing possible effects
to the application [4],[5].

In contrast to the methodologies that are centered to the knowledge engineers, we
propose the use of a human-centered approach to ontologies management [7], where
the active participation of knowledge workers in the ontology life cycle is accentu-
ated. Doing so, ontologies are developed and managed according to knowledge work-
ers’ abilities, are developed individually as well as conversationally, and put in the
context of workers’ experiences and working settings, as an integrated part of knowl-
edge workers’ “knowing” process [1], [8]. To leverage the role of knowledge workers
by empowering them to participate actively in the ontology lifecycle, the human-
centered approach entails the development of tools that provide greater opportunities
for workers to manage and interact with their conceptualisations in a direct and con-
tinuous mode [7]. Although the final ontology is the product of knowledge worker’s
collaboration, knowledge engineers must join the discussion in order to further vali-
date the final formal representation of the conceptualizations.

To further support our conjecture for the need of human-centered methodological
approaches, let us consider the following ontology management scenarios in a living
organization setting:

Scenario No 1: Involved in a knowledge retrieval process, a worker is searching for a
specific piece of information about best practices concerning the design of a product
type. The retrieval tool exploits the ontology concerning product designs, but the
worker can neither find the terms that she thinks to be appropriate for querying the
system, nor can she get the needed information by any combination of existing terms.
She soon finds out that the definitions of some terms must be changed to reflect the
information related to the new case at hand. The information is there, but cannot be
reached, since the ontology does not reflect the up-to-date practice of the organiza-
tion. Imagine now the same case happening for five workers per day in a fast chang-
ing domain. We suggest that workers must be empowered to shape their information
space, working in collaboration with colleagues and knowledge engineers.

Scenario No 2: In a knowledge use process, a worker browses, recalls existing knowl-
edge items, and process them for further use. During this process the worker may
produce derivations that should be captured as new knowledge, indexed by new

 HCOME: A Tool-Supported Methodology for Engineering Living Ontologies 157

terms, or by combinations of existing terms. Capturing derived knowledge is very
important. Empowering this worker with the proper tools for describing her concep-
tions formally, incorporating them in organization’s information repository, submit-
ting and sharing this information with co-workers readily, accelerates much the
knowledge processes.

Scenario No 3: In the day-to-day information creation and import tasks, workers are
devising business documents, proposals, product reports, best practices, prob-
lem/fault reports, etc. Indexing such information using formal ontological commit-
ments should be done in a seamless way by knowledge workers themselves, during
authoring, allowing them to devise, expand and update their shared conceptualiza-
tions at the same time.

This paper emphasizes on the methodological implications to ontology engineer-
ing of the HCONE and SharedHCONE ontology engineering environments [7] that
are oriented to the way people interact and shape their conceptualizations and to the
way conceptualizations are formed as part of knowledge workers’ day-to-day activi-
ties [1].

2 Management of Ontologies

As it is widely argued and shown in the above scenarios, ontologies explicate
conceptualizations that are shaped and exploited by humans during practice. Being
part of knowledge that people possess, ontologies evolve in communities as part of
knowing [8].

Therefore, ontology management in the context of communities of knowledge
workers involves the development, evaluation and exploitation of conceptualizations
that emerge as part of practicing in their working contexts. In particular it involves:

• The development of individual ontologies. People develop their own conceptuali-
zations that may either explicate (e.g. by formalizing concepts, by taking notes
about their meaning or just by naming them) or not (by storing them in the back-
ground of their minds). In their day-to-day activities people develop their concep-
tualizations, either by improvising, by specializing/generalizing/aggregating exist-
ing concepts based on their experiences and on interaction with other community
members, or by synthesizing existing conceptualizations.

• The development of commonly agreed group ontologies. Developing commonly
agreed and understandable ontologies is a very difficult and resource-demanding task
that requires members of the communities to work synergistically towards shaping the
information they exploit. Working synergistically, workers map others’ conceptualiza-
tions to their own and put them in the context of their own experiences. This leads to a
conversation whose back-and-forth, as it is pointed in [8], not only results in exchang-
ing knowledge but also in generating new knowledge.

• The evaluation and exploitation of ontologies. Exploitation and evaluation of
ontologies as part of the day-to-day practice of communities can be considered
only as part of knowing. Conceptualizations are put in practice or in the criticism

158 K. Kotis, G.A. Vouros, J.P. Alonso

SharedHCONE

Shared Space

Agreed Space

Personal Space

HCONE personal

-Improvise Ontologies
-Merge Ontologies
-Control Ontologies’

Versions
Libraries

-Map terms’ meanings to
word senses

-Consult Top Ontology

Personal Space

HCONE personal

-Improvise Ontologies
-Merge Ontologies
-Control Ontologies’

Versions
Libraries

-Map terms’ meanings to word
senses

-Consult Top Ontology

Argumenta-
tion Dialogue

of community members who, as already pointed, have to compare them with their
own conceptualizations and put them in the context of their own experiences.
Evaluation can result in new meanings since concepts are seen under the light on
new experiences and evolving contexts.

To empower knowledge workers to participate actively in the ontology engi-
neering process in collaboration with colleagues and knowledge engineers, tools
must enable them to improvise, to synthesize ontologies, to produce map-
pings/alignments between existing ontologies, and to collaboratively develop on-
tologies with their co-workers, in ways that are natural (according to their cognitive
abilities, skills, knowledge, education, context of work and so on) for them, and so
that the semantic validity of specifications is assured. Ultimately, this must happen
in the background of the day-to-day knowledge intensive activities of workers,
seamlessly to their working practices.

Fig. 1. HCONE decentralized model to ontology engineering

3 HCONE and SharedHCONE

In [7] we extensively describe HCONE and SharedHCONE tools that have been de-
veloped to support the above requirements.

 HCOME: A Tool-Supported Methodology for Engineering Living Ontologies 159

HCONE (Human Centered ONtology Environment) follows a decentralized model
to ontology engineering that is shown in Fig. 1. According to this model people can
create their own ontologies stored in a personal space. Ontologies can be later publi-
cized and shared among groups of workers that jointly contribute to ontologies devel-
opment, with the aim to reach an agreement in conceptualizing their domain. During
this process, workers may evolve ontologies by improvising in their personal space,
map and synthesize their conceptualizations with the conceptualizations of their co-
workers and discuss their arguments, objections and positions within the group. Dur-
ing collaboration, workers follow a structured argumentation process in which they
may raise issues, propose solutions via stating positions, provide arguments for or
against a position etc. Agreed ontologies are stored in a virtual space and can be fur-
ther shared, evolved in workers’ personal space and so on.

HCONE (Fig. 2.) is a modular environment, providing access to any integrated
tool in any HCONE point. Doing so, workers are free to combine their own method
for using the environment, following an eclectic way to ontology engineering. For
instance, a worker may construct an ontology in her personal space while receiving
comments on a previous version of the same ontology that has shared with co-
workers. In the meantime, she is trying to comply with generic ontological commit-
ments that the group has agreed to comply with, while in another slice of her work she
is trying to merge her ontology with an ontology issued by a co-worker.

Fig. 2. HCONE support for the specification of the concept "Product": 1) natural language, 2)
formal, 3) graphical representation

1

3

2

160 K. Kotis, G.A. Vouros, J.P. Alonso

SharedHCONE (Fig. 4.) supports sharing ontologies to group members and sup-
ports group members’ participation in structured conversations about conceptualiza-
tions. This is a built-in, rather than a patched-on facility, since it has been designed in
order to support people to discuss ontological aspects and incorporate their sugges-
tions / positions to specifications, rather than being a generic argumentation or discus-
sion facility. The aim of the system is to support users to discuss upon an ontology
and its versions, agree or disagree with a version, post new versions or get others’
versions to their private space (HCONE), evaluate and exploit them, and so on. The
users are able to post issues, arguments and positions (i.e. ontology versions) follow-
ing a variation of the IBIS model (Issue-Based Information System), proposed by
Kunz and Rittel [10]. Performing dialogue acts, users construct a discourse graph that
is presented in the form of a threaded discussion. The discussion is based on three
main abstractions, namely issue, position and argument. An issue represents a deci-
sion problem, the position is the statement that resolves the issue, and the argument
either supports or objects position. These abstractions are related by predefined rela-
tionships, as it is shown in Fig. 3.

Fig. 3. The SharedHCONE discussion model

For a better understanding, we have replaced the term position of the IBIS model
by the term version: Thus, making a position it is the same as posting a new version
of an ontology. We have also limited the IBIS model to seven relationships between
the abstractions mentioned: zero or more versions of an ontology may provide a solu-
tion for an issue raised. Each such version can be supported or objected by zero or
more arguments. Also an issue can suggest a new version, or an issue can be the gen-
eralization or specialization of another issue. Furthermore, an argument can raise an
issue. It is important to notice that an argument can be posted without having to sup-
port or reject an ontology version, and a version does not have to be an answer to an
issue. These relationships support the modeling of the discussion in a more natural
way. The user can compare any two versions of the same ontology using HCONE’s
version management functionality that is integrated to the system.

ISSUE

POSITION ARGUMENT

REPLACESGENERALIZES
/ SPECIALIZES

RESPONDS TO
IS SUGGESTED BY

SUPPORTS

OBJECTS - TO

IS SUGGESTED BY

 HCOME: A Tool-Supported Methodology for Engineering Living Ontologies 161

The SharedHCONE functionality:

 Enables criticism, identifying possible opportunities for members’ collaboration
Encourages feedback among community members

 Overcomes deadlocks within problematic situations that arise in ontology
specification

 Supports evaluation of developed ontologies
 Provides an additional ontology versioning mechanism that records motiva-

tion behind changes (Fig. 4.)

Fig. 4. Structured discussion upon ontology versions

162 K. Kotis, G.A. Vouros, J.P. Alonso

Concluding the above, HCONE and SharedHCONE provides facilities for (a) us-
ers to improvise their conceptualizations, (b) consult generic ontologies that provide
important semantic distinctions, (c) manage different versions of their ontologies,
tracking the differences between the versions, (e) track the generalization/ specializa-
tion of an ontology during ontology development, (d) get proper consultation from
machine exploitable/ readable lexicons by mapping concepts’ meaning to word
senses, (e) merge ontologies and further manipulate merged conceptualizations, and
(f) share their ontologies with groups of co-workers, following a structured conversa-
tion towards agreeing in domain conceptualization.

4 HCOME: A Human-Centered Methodology to Ontology
Development

As already pointed, the ultimate goal in ontology engineering is the development of
commonly agreed and understandable ontologies for the effective management of
knowledge in a community of knowledge workers. In order to reach this point of
agreement in a community of people that share the same information needs, ontology
management tasks must be integrated within the loop of information design and in-
formation exploitation [1].

Table 1. HCOME methodology phases to ontology development

Ontology
life-cycle phases

Processes Tasks

Specification

Define goals and scope,
find knowledge sources

 discuss requirements (S)
 produce documents (S)
 identify collaborators,
 specify the scope, aim of the ontology (S)

Acquire knowledge

 import from ontology libraries (P)
 consult generic top ontology (P)
 consult domain experts by discussion (S)

Conceptualization

Develop
&
Maintain
Ontology

 improvise (P)
 manage conceptualizations (P)
 merge versions(P)
 compare own versions (P)
 generalize/specialize versions (P)
 add documentation (P)

Use ontology

 browse ontology (P)
 exploit in applications

Exploitation

Evaluate ontology
 initiate arguments and criticism collabora-

tively (S)
 compare others’ versions (S)
 browse/exploit agreed ontologies (S)
 manage the recorded discussions upon an

ontology (S)

 HCOME: A Tool-Supported Methodology for Engineering Living Ontologies 163

Table 1 summarizes the phases and tasks that knowledge workers perform in the
HCOME methodology. These tasks are performed in a loop, until a consensus has
been reached between knowledge workers. These tasks are either performed in
worker’s personal space (marked in Table 1 with a P), or they are performed in the
shared space provided by a collaborative ontology engineering environment such as
SharedHCONE (marked in Table 1 with an S). A worker can initiate any task in his
personal or shared space, or take part to a shared task that has been initiated by other
members of the community.

The initiating tasks of the methodology are included in the “Specification” phase of
the ontology lifecycle, and they can be performed within the shared space in collabo-
ration to other community members. The most important tasks are performed in the
“Conceptualization” phase. The worker can choose any of the tasks supported by
HCONE, or a combination of them, in order to develop an ontology. In the exploita-
tion phase ontologies can be exploited and collaboratively evaluated: Users may raise
new issues, form arguments for/against an issue or for/against a specific version of the
ontology (i.e. a position) and form new positions (i.e. new ontology versions), feed-
ing again the ontology development loop.

The following paragraphs discuss the major tasks of the HCOME methodological
approach to ontology development, starting from the early stages of the ontology life-
cycle. It must be strongly emphasized that the approach is iterative and continuous.
To devise and maintain living ontologies in evolving domains and open environ-
ments, such as the Semantic Web, this iteration is rather necessary to keep on “for
ever” until the aim for the development of ontologies is obsolete, i.e. until there is not
reason for their existence [9].

As it is known, effectiveness and efficiency during the application of methodolo-
gies increase significantly through tool support [4]. HCOME is supported by the use
of HCONE and SharedHCONE. Specifically, all the tasks of the HCOME phases in
both, the personal and shared spaces are supported by the HCONE and the
SharedHCONE tools.

4.1 Building Personal Ontologies

During the HCOME specification phase, a team of collaborators can agree on the aim
and the scope of a new ontology following an argumentation dialogue in
SharedHCONE. Having agreed on that, HCONE supports them to specify their con-
ceptualizations (in their personal spaces), hiding low-level implementation details,
enabling them to express subtle ontological distinctions, complying at the same time
with formal constraints of specifications [7].

Specifically, HCONE, following the What-You-See-Is-What-You-Meant [11][7]
knowledge editing paradigm, supports workers to specify their conceptualizations
using the full expressive power of a description logic language, without dealing with
low-level implementation details. While users specify the definition of a concept, they
get feedback that reflects the definition of the corresponding concept in natural lan-
guage. Typical tasks that workers may perform when defining a concept include con-
cept and roles mapping to word senses through lexicon consultation, and checking for
concepts’ definition consistency.

164 K. Kotis, G.A. Vouros, J.P. Alonso

Collaborators can store/manage different versions of their personal ontology, com-
pare any ontology to other ontologies that are considered to be similar and merge
relevant/similar ontologies. To support them to perform these tasks, HCONE provides
seamless access to advanced services supported by description logics. These services
include concepts’ mapping to word senses, automatic concepts’ classification, con-
cepts’ definitions consistency checks (e.g. between a concept and its subsumers) and
detection of concepts’ definitions differences. Feedback from these reasoning services
is constantly provided during ontology development/ management and is of high
significance.

Collaborators may also follow a deductive approach to concepts’ specifications
by elaborating a generic top ontology. In this case, concepts’ definitions can be
checked for their semantic validity against generic conceptualizations by means of
the consistency checking mechanisms provided by the representation and reasoning
system. In doing so, the construction of domain specific ontologies is speed-up and
guided by the semantic distinctions and ontological principles of the generic on-
tologies consulted.

Critical to the ontology development process is the lexicons consultation task.
Through lexicon consultation, collaborators are guided to the consensual defini-
tion of terms, guided to follow well-established norms and practices in the com-
munity they are exercising their practice (e.g. by consulting a terminological lexi-
con or a thesaurus) or in the wider context (e.g. by mapping their conceptions to
the appropriate word senses in a lexical database). Lexicon consultation can be
supported in any of the following three ways: (a) by mapping concepts definitions
to word senses in a machine readable/exploitable lexicon through the concept’s
meaning mapping process, (b) by formally complying with generic ontological
commitments of top level ontologies or (c) by simply consulting lexicons and
other ontologies.

4.2 Exploiting and Sharing Ontologies

Having developed their personal ontologies, collaborators may use them within their
work setting, and/or share them with colleagues in order to be further discussed, ex-
ploited and evaluated. In this context the exploitation of an ontology version that has
been developed by a colleague is seen as part of the ontology development life-cycle
since this process provides feedback for the conceptualizations developed. The need
to achieve a common understanding about the working domain, push inevitably on-
tologies to the shared space [1].

The shared space supports people to devise ontologies conversationally, reaching a
consensus on a domain conceptualisation, discuss ontological aspects and incorporate
their suggestions into positions about concepts’ specifications. The shared space tasks
support contextualization of the built ontologies in communities’ working practices
and experiences, criticism and evaluation of the built artifacts, identification of possi-
ble opportunities for community members’ collaboration, as well as overcoming
deadlocks within problematic situations that arise in ontologies specification.

 HCOME: A Tool-Supported Methodology for Engineering Living Ontologies 165

A shared space contains those ontologies that are conversationally constructed and
for which the corresponding group has not reached an agreement. An agreed space is
part of this shared space and contains those ontologies for which a group has reached
an agreement. Any community member can post a new ontology to the shared space,
specifying the subject, scope and aim for building this new shared ontology. At the
same time, any collaborator can download to her personal space an ontology version
developed by other community members, re-specify, change, enrich, compare, merge
it with her own, exploit it, and send it back to the shared space, posting new issues,
arguments and so forth.

To support the above, the typical process in SharedHCONE goes as follows: Hav-
ing publicized an ontology, all community members receive a notification by e-mail.
The body of this e-mail message provides details about this new ontology and points
to the community members that they can become part of the discussion group within a
number of days. Being members of the group, it is assumed that community members
have already agreed on the importance of the shared ontology, and commit to take
part in the upcoming discussion. Any group member can raise issues and arguments
concerning the new ontology through an argumentation dialogue. Having all group
members agreed on a specific version of the ontology, the ontology “moves” to the
agreed space. For the seamless notification of community members about the dis-
course status, an e-mail notification manager sends each new discourse object to all
community members via e-mail.

Users can intervene at any point in the discussion by performing any legal dis-
course act and can also inspect any ontology version. Inspecting an ontology, users
may browse the ontology tree and get the natural language description of any concept.
Furthermore, they can inspect the differences between two ontology versions through
a formal comparison service. Following the threaded discussion and being able to
inspect the differences between the different versions of the same ontology, people
can track the rationale behind each version.

5 Conclusion

This paper presents the HCOME decentralized methodology for ontology engineer-
ing, which is supported by HCONE and SharedHCONE prototype systems. These
systems support the personal and shared tasks of the HCOME ontology engineering
methodology, respectively. Tools’ key features, functionalities, technical details and
screenshots can be found at http://www.samos.aegean.gr/icsd/kkot/HCONEweb and
in [7]. Evaluation of the HCONE methodology has been carried out using these proto-
types, in comparison to OntoEdit (http://www.ontoprise.de/products/ontoedit) and
Protégé-2000 (protege.stanford.edu) supported methodology. The community for
performing this evaluation was comprised by graduate students of our department.
Their feedback was encouraging to continue our efforts. However, further evaluation
of the methodology is needed in different working settings.

166 K. Kotis, G.A. Vouros, J.P. Alonso

References

1. Vouros A. G.: Technological Issues towards Knowledge Powered Organizations. Knowl-
edge Management Journal, Vol 7, No. 1 (2003)

2. Giboin A., Gandon F., Corby O., and Dieng R.: Assessment of Ontology-based Tools:
Systemizing the Scenario Approach. In Proceedings of OntoWeb-SIG3 Workshop at the
13th International Conference on Knowledge Engineering and Knowledge Management
EKAW 2002, pages 63-73. Siguenza, Spain, 30th September (2002)

3. Fernandez-Lopez M.: Overview of methodologies for building ontologies. Proceedings of
the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (1999)

4. Sure Y.: A Tool-supported Methodology for Ontology-based Knowledge Management.
ISMIS 2002, Methodologies for Intelligent Systems (2002)

5. Staab S, Studer R., Schnurr H., and Sure Y.: Knowledge Processes and Ontologies. IEEE
Intelligent Systems, pages 26-34, January/February (2001)

6. Fernandez-Lopez M.: A survey on methodologies for developing, maintaining, evaluating
and reengineering ontologies. ONTOWEB Consortium for Ontology-based information
exchange for knowledge management and electronic commerce. IST-2000-29243, Deliv-
erable 1.4 (2002)

7. Kotis K., Vouros G.: Human Centered Ontology Management with HCONE. Proceedings
of the IJCAI-03 Workshop on Ontologies and Distributed Systems (2003)

8. Cook S. D. N., and Brown, J. S.: Bridging epistemologies: The generative dance between
organizational knowledge and organizational knowing. Organizational Science, 10:381-
400 (1999)

9. Stojanovic L. and Motik B.: Ontology Evolution within Ontology Editors. In Proceedings
of OntoWeb-SIG3 Workshop at the 13th International Conference on Knowledge Engi-
neering and Knowledge Management EKAW 2002, pages 53-62. Siguenza, Spain, 30th
September (2002)

10. Kunz W. and Rittel H. W. J.: Issues as elements of information systems. Technical Report
S-78-2, Institut fur Gundlagen Der Planung I.A, Universitat Stuttgart (1970)

11. Power R., Scott D., and Evans R.: What You See Is What You Meant: direct knowledge
editing with natural language feedback. ITRI Technical Report No. 97-03, University of
Brighton (1997)

Query Answering by Rewriting in GLAV Data
Integration Systems Under Constraints

Andrea Cal̀ı

Faculty of Computer Science,
Free University of Bolzano/Bozen,

piazza Domenicani 3 – I-39100 Bolzano, Italy
ac@andreacali.com

Abstract. In the Semantic Web, the goal is offering access to infor-
mation that is distributed over the Internet. Data integration is highly
relevant in this context, since it consists in providing a uniform access to
a set of data sources, through a unified representation of the data called
global schema. Integrity constraints (ICs) are expressed on the global
schema in order to better represent the domain of interest, yet such con-
straints may not be satisfied by the data at the sources. In this paper
we address the problem of answering queries posed to a data integration
system where the mapping is specified in the so-called GLAV approach,
and when tuple-generating dependencies (TGDs) and functional depen-
dencies (FDs) are expressed over the global schema. We extend previous
results by first showing that, in the case of TGDs without FDs, known
query rewriting techniques can be applied in a more general case, and
can take into account also the GLAV mapping in a single rewriting step.
Then we introduce FDs with TGDs, identifying a novel class of ICs for
which query answering is decidable, and providing a query answering
algorithm based on query rewriting also in this case.

1 Introduction

In the Semantic Web [15, 8] the goal is to enrich data accessible on the Web
in order to provide semantic knowledge that facilitates users in retrieving and
accessing information that is relevant for them. Ideally, the aim is to allow users
to pose queries to the Web as if they were querying a single, local knowledge
base. Hence, one of the fundamental issues of the Semantic Web is that of inte-
grating the information present in the various sources, and therefore data inte-
gration techniques prove to be higly useful for this task. Conceptual modelling
formalisms, such as the Entity-Relationship model, have proved to be highly ef-
fective for representing intensional information about data, and are now widely
accepted means of enriching data with semantic knowledge about the domain
of interest. When the data are represented in the relation model, as in the case
of this paper, integrity constraints (ICs), like key and foreign key constraints,
are able to capture most of the information expressed by conceptual modelling
formalisms.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 167–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 A. Cal̀ı

A data integration system has the goal of providing a uniform access to
a set of heterogeneous data sources, through a unified view of all underlying
data, called global schema. Once the user issues a query over the global schema,
the system carries out the task of suitably accessing the different sources and
assemble the retrieved data into the final answer to the query.

In data integration, the specification of the relationship between the global
schema and the sources, which is called mapping [18], is a significant issue.
There are two basic approaches for specifying a mapping in a data integration
system [14, 18]. The first one, called global-as-view (GAV), requires that to each
element of the global schema a view over the sources is associated. The second
approach, called local-as-view (LAV), requires that to each source a view over
the global schema is associated. Besides GAV and LAV, a mixed approach, called
GLAV [11, 10], consists in associating views over the global schema to views over
the sources.

In a data integration system, the global schema is a representation of the
domain of interest of the system, therefore there is the need of having a global
schema that fits the fragment of real world that is modelled by the system. To
this aim, integrity constraints are expressed on the global schema.

It is important to notice that integrity constraints are used to enhance the
expressiveness of the global schema, and their presence is not due to constraints
on the sources, which in our approach are supposed to be enforced by the systems
that manage the local data. Therefore, in general, the data at the sources may not
satisfy the constraints on the global schema; in this case a common assumption
(which is the one adopted in this paper) is to to consider the sources as sound,
i.e., they provide a subset of the data that satisfy the global schema. Answering
queries posed over the global schema in this setting requires to consider a set
of databases for the global schema, and in particular all those that contain the
data provided by the sources through the mapping, and that satisfy the ICs on
the global schema. Therefore, query answering requires reasoning on incomplete
information.

In this paper we address the problem of query answering in data integration
in the relational context, where the mapping is GLAV, and in the presence of
tuple-generating dependencies (TGDs) and functional dependencies (FDs) on
the global schema; TGDs and FDs are an extension of two important classes
of dependencies in relational database schemata, namely inclusion dependencies
and key dependencies respectively [1, 16].

First we consider TGDs alone: since the query answering under general TGDs
is undecidable [17], we solve the problem for a restricted class of TGDs, that we
call cycle-harmless TGDs, that extends a decidable class known in the litera-
ture. Our approach is purely intensional here: we do query answering by query
rewriting, i.e. by reformulating the query into a new one, which encodes the in-
formation about the integrity constraints, and then proceeding as if there were
no integrity constraints. The rewriting algorithm used here is the same as in [3].
The form of the TGDs we consider is general enough to consider the GLAV map-
ping assertion as TGDs over a unified schema constituted by the union of the

Query Answering by Rewriting in GLAV Data Integration Systems 169

global schema and the source schema; therefore, we are able to apply the rewrit-
ing technique in a single step, taking into account the TGDs and the mapping
at the same time.

Then, we address the problem of query answering when also FDs are ex-
pressed on the global schema. Even if we consider cycle-harmless TGDs, the
presence of FDs causes an interaction that makes query answering again unde-
cidable. We need to consider a new, more restricted class of TGDs, which we call
non-functional-conflicting TGDs, that do not interact with FDs, and again we
present a technique for query answering. In this case, however, we cannot take
into account the mapping in an intensional fashion, because it is not realistic to
assume that the mapping assertions are non-functional-conflicting TGDs. There-
fore, in order to answer queries, we need to construct the retrieved global database
(RGD) [4], that is the minimum global database that satisfies the mapping. If
the RGD satisfies the FDs, we can proceed with the same rewriting technique
used for TGDs, simply disregarding the presence of FDs.

The rest of the paper is organised as follows. In Section 2 we present a formal
framework for data integration; in Section 3 we address the query answering
problem for TGDs alone; in Section 4 we introduce FDs together with TGDs,
showing a decidable class of constraints for this case and providing a query
answering technique. Section 5 concludes the paper.

2 Framework

In this section we define a logical framework for data integration, based on the
relational model with integrity constraints.

2.1 Syntax

We consider to have an infinite, fixed alphabet Γ of constants representing real
world objects, and will take into account only databases having Γ as domain.

A relational schema R is a set of first-order predicates, called relation sym-
bols, each with an associated arity; a relation symbol R of arity n is denoted
by R/n. A relational database instance of a schema R is a set of facts of the
form R(c1, . . . , cn) ←, where R/n ∈ R and c1, . . . , cn ∈ Γ . In the following, for
the sake of conciseness, we will use the term “database” instead of “database
instance”.

Formally, a data integration system I is a triple 〈G,S,M〉, where:

1. G is the global schema expressed in the relational model with integrity con-
straints. In particular:
(a) G is constituted by a set of relations, each with an associated arity that

indicates the number of its attributes. A relation R of arity n is denoted
by R/n.

(b) A set ΣT of tuple-generating dependencies (TGDs) is expressed over G.
A TGD [1, 10] is a first-order formula of the form

∀X(∃Y χ(X,Y) → ∃Z ψ(X,Z))

170 A. Cal̀ı

where X,Y ,Z are sets of variables or constants of Γ , and χ and ψ are
conjunctions of atoms whose predicate symbols are in G. Henceforth, for
the sake of conciseness, we will omit the quantifiers in TGDs.

(c) A set ΣF of functional dependencies (FDs) is expressed over G. A FD [1]
is written in the form

R : A → B

where R is a relation symbol, A is a set of attributes of R, and B is an
attribute of R.

2. S is the source schema, constituted by the schemata of the different sources.
We assume that the sources are relational, and in particular that each source
is represented by a single relation. Assuming sources to be relational is not
a restriction, since we may assume that sources that are not relational are
suitably accessible in relational form by means of software modules called
wrappers. Furthermore, we assume that no integrity constraint is expressed
on the source schema. This because integrity constraints on the sources are
local to the data source, and they are enforced by the source itself.

3. M is the mapping between G and S, specifying the relationship between the
global schema and the source schema. The mapping M is a set of first-order
formulae, which we call mapping assertions, of the form

∀X(∃Y ϕS(X,Y) → ∃ZϕG(X,Z))

where X,Y ,Z are sets of variables or constants, and ϕS and ϕG are con-
junctions of atoms whose predicate symbols are in S and G respectively.
Henceforth, we will omit quantifiers in mapping formulae. Note that this
kind of mapping assertions is a generalisation of both LAV and GAV asser-
tions; in particular, in a LAV assertion a view (conjunction of atoms) over
the global schema is associated to a source relation, while in a GAV asser-
tion a view over the source schema is associated to a relation symbol in G.
Henceforth, consistently with [11], we will call GLAV (global-local-as-view)
this approach.

Example 1 ([19]). Consider a data integration system I = 〈G,S,M〉, where
the global schema G consists of the following relations (names of relations and
attributes are self-explanatory):

work(Person,Project)
area(Project ,Field)
employed(Person, Institution)
runsProject(Institution,Project)

The source schema S contains the following relations:

hasjob(Person,Field)
teaches(Professor ,Course)
infield(Course,Field)
getgrant(Researcher ,Grant)
grantfor(Grant ,Project)

Query Answering by Rewriting in GLAV Data Integration Systems 171

The GLAV mapping M is as follows:

hasjob(R, F) → work(R, P) ∧ area(P, F)
getgrant(R, G) ∧ grantfor(G, P) → work(R, P)
teaches(R, C) ∧ infield(C, F) → work(R, P) ∧ area(P, F)

Note that the first assertion is in fact a LAV assertion, the second one is a GAV
one, while the third assertion is a general GLAV assertion.

The set ΣT of TGDs is constituted by the following TGD:

work(R, P) → employed(R, I) ∧ runsProject(I, P)

This TGD imposes that, if a person R works on a project P , he/she needs to be
employed in some institution I that is running the project P . �

Example 2. Consider a data integration system I = 〈G,S,M〉, where the global
schema G is constituted by the relations R1/2 and R2/2, the source schema by re-
lations S1/2, S2/1. The set of TGDs ΣT contains the single TGD θ : R1(X, Y) →
R1(Y, W) ∧ R2(Y, X). Note that θ introduces a cycle in the dependencies. The
mapping M consists of the assertions S1(X, c) → R1(X, Y) ∧ R2(Y, Z) and
S2(X) → R2(X, Y). �

Now we come to queries expressed over the global schema; a n-ary relational
query (relational query of arity n) is a formula that is intended to specify a
set of n-tuples of constants in Γ , that constitute the answer to the query. In
our setting, we assume that queries over the global schema are expressed in the
language of union of conjunctive queries (UCQs). A conjunctive query (CQ) of
arity n is a formula of the form q(X) ← ω(X,Y) where X is a set of variables
called distinguished variables, Y is a set of symbols that are either variables
(called non-distinguished) or constants, q is a predicate symbol not appearing
in G or S, and ω is a conjunction of atoms whose predicate symbols are in G.
The atom q(X) is called head of the query (denoted head(q)), while ω(X,Y) is
called body (denoted body(q)). A UCQ of arity n is a set of conjunctive queries Q
such that each q ∈ Q has the same arity n and uses the same predicate symbol
in the head.

2.2 Semantics

A database instance (or simply database) C for a relational schema R is a set of
facts of the form R(t) where R is a relation of arity n in R and t is an n-tuple
of constants of the alphabet Γ . We denote as RC the set of tuples of the form
{t | R(t) ∈ C}.

In the following, we shall often make use of the notion of substitution. A
substitution of variables σ is a partial function that associates to a variable
either a constant or a variable, and to each constant the constant itself. In the
following, given a first-order formula F , we will denote with σ(F) the formula
obtained by replacing in F each variable (or constant) x with σ(x). Given an

172 A. Cal̀ı

atomic formula R(x1, . . . , xn), where R is a n-ary predicate and x1, . . . , xn are
variables or constants, we say that a substitution σ sends R(x1, . . . , xn) to the
fact σ(R(x1, . . . , xn)), that we denote with R(σ(x1), . . . , σ(xn)) ←. Moreover,
given a conjunction C = A1 ∧ . . . ∧ am of atomic formulae, we will say that a
substitution σ sends C to the set of facts {σ(A1), . . . , σ(Am)}.

Given a CQ q of arity n and a database instance C, we denote as qC the
evaluation of q over C, i.e., the set of n-tuples t of constants of Γ such that there
exists a substitution that sends the atoms of q to facts of C and the head to q(t).
Moreover, given a UCQ Q, we define the evaluation of Q over C as QC =

⋃
q∈Q qC

Now we come to the semantics of a data integration system I = 〈G,S,M〉.
Such a semantics is defined by first considering a source database for I, i.e., a
database D for the source schema S. We call global database for I any database
for G. Given a source database D for I = 〈G,S,M〉, the semantics sem(I,D) of
I w.r.t. D is the set of global databases B for I such that:

1. B satisfies the ICs ΣT and ΣF (TGDs and FDs) in G. In particular:
– B satisfies a TGD χ(X,Y) → ψ(X,Z) when, if there exists a substi-

tution σ that sends χ(X,Y) to a set of facts of B, then there exists
another substitution σ′ that sends ψ(X,Z) to σ(χ(X,Y)) and those of
χ(X,Y) to sets of facts of B. In other words, σ′ is an extension of σ that
sends the atoms of ψ(X,Z) to sets of facts of B.

– B satisfies a FD R : A → B if there are no two tuples t1, t2 ∈ RB such
that t1[A] = t2[A] and t1[B] �= t2[B].

2. B satisfies M w.r.t. D. In particular, B satisfies a GLAV mapping M w.r.t.
D if for each mapping formula ϕS(X,Y) → ϕG(X,Z) we have that, if there
exists a substitution σ that sends ϕS(X,Y) to a set of facts of D, then
there exists an extension σ′ of σ that sends ϕG(X,Z) to a set of facts of B.
Note that the above definition amounts to consider the mapping as sound
but not necessarily complete; intuitively, for each mapping formula, the data
retrievable at the sources by means of the conjunctive query in the left-hand
side are a subset of the global data that satisfy the conjunctive query on the
right-hand side.

We now give the semantics of queries. Formally, given a source database D for
I we call certain answers to a query q of arity n w.r.t. I and D, the set

cert(Q, I,D) = {t | t ∈ QB for each B ∈ sem(I,D)}

or, equivalently, cert(Q, I,D) =
⋂

B∈sem(I,D) QB.

3 Query Rewriting Under Tuple-Generating
Dependencies Alone

In this section we present a technique for query answering based on query rewrit-
ing, in the case of a GLAV data integration system where only TGDs are ex-
pressed over the global schema. We show that such technique, first presented

Query Answering by Rewriting in GLAV Data Integration Systems 173

in [3], is applicable to a more general class of constraints, so that it can take
into account the GLAV mapping together with the dependencies on the global
schema.

We first introduce the concept of retrieved global database (RGD). Given
a source database D for a data integration system 〈G,S,M〉, the RGD is the
“minimum” global database that satisfies the mapping. Intuitively, the RGD is
obtained by “filtering” the data from the sources through the mapping, thus
populating the global schema.

Definition 1 ([3]). Let I = 〈G,S,M〉 be a GLAV data integration system, and
D a source database for I. The retrieved global database ret(I,D) is defined
constructively as follows. For every mapping assertion ϕS(X,Y) → ϕG(X,Z),
and for each set H of facts of D such that there exists a substitution σ that
sends the atoms of ϕS(X,Y) to H: (i) we first define a substitution σ′ such that
σ′(Xi) = σ(Xi) for each Xi in X, and σ′(Zj) = zj for each Zj in Z, where zj

is a fresh constant, not introduced before and not appearing in D; (ii) we add to
ret(I,D) the set of facts that are in σ′(ϕG(X,Z)).

Note that, given a a data integration system and a source database D, the
RGD is unique, since it is constructed by evaluating the left-hand side of every
mapping assertion on D, and by adding suitable tuples according to the right-
hand side of the mapping assertion, regardless of the already added tuples and
of the other mapping assertions. However, differently from the case of GAV
mappings, the RGD is not strictly minimal, since in some cases it is possible to
have redundant tuples that can be eliminated while preserving all the properties
of the RGD. Minimisation of the RGD is not a significant issue, therefore we
will not consider it in the following.

When no constraints are expressed over the global schema, the RGD is a
representative of all global databases that satisfy the mapping (and therefore of
all databases in sem(I,D)): in fact in this case it can be proved that, for every
query Q posed over the global schema, Qret(I,D) = cert(Q, I,D).

Now we come to integrity constraints. Given a data integration system I =
〈G,S,M〉 and a source database D, since sources are autonomous and in general
do not know each other, the retrieved global database ret(I,D) does not satisfy
the integrity constraints (TGDs in this case) on the global schema. In this case
we may think of repairing the RGD so as to make it satisfy ΣT ; intuitively,
the adoption of the sound semantics for the mapping M allows us to repair
the violations of TGDs by adding suitable tuples to the RGD. This is done
by building the chase [4, 10, 3] of ret(I,D), a database that we denote with
chaseΣT

(ret(I,D)), and that is built by repeatedly applying, as long as it is
applicable, the TGD chase rule.

TGD Chase Rule [3]. Consider a database B for a schema Ψ , and a
TGD θ of the form χ(X,Y) → ψ(X,Z). The TGD θ is applicable to B
if there is a substitution σ that sends the atoms of χ(X,Y) to tuples
of B, and there does not exist a substitution σ̄ that sends the atoms of
χ(X,Y) to σ(χ(X,Y)), and the atoms of ψ(X,Z) to tuples of B. In this

174 A. Cal̀ı

case: (i) we define a substitution σ′ such that σ′(Xi) = σ(Xi) for each
Xi in X, and σ′(Zj) = zj for each Zj in Z, where zj is a fresh constant
of Γ , not already introduced in the construction and not appearing in
B; (ii) we add to B the facts of σ′(ϕG(X,Z)) that are not already in B.

Note that in the case of cyclic TGDs, the chase may be infinite.

Example 3. Consider Example 2, and let B be a RGD constituted by a single
fact R1(a, b). Let us construct chaseΣT

(B): at the first step we add the facts
R1(b, z1), R2(b, a); at the second step the facts R1(z1, z2), R2(z1, b), and so on;
note that in this case the construction process is infinite. �

In [3] it is proved that the chase of the RGD, constructed according to the
TGDs, is a representative of all databases in sem(I,D): in particular, for every
global query Q we have that QchaseΣT

(ret(I,D)) = cert(Q, I,D). Unfortunately
the chase of the RGD may be of infinite size, and therefore building it is not
only impractical, but sometimes even impossible. In [3], along the lines of [6],
the problem is solved in an intensional fashion: query answering is done by query
rewriting, i.e., the global query Q is reformulated into another query QR that,
evaluated over the RGD, returns the certain answers to Q. The function that
reformulates Q is denoted as TGDrewrite, and takes as input G, the set of TGDs
ΣT and Q. Formally, we have that

TGDrewrite(G, ΣT , Q)ret(I,D) = QchaseΣT
(ret(I,D)) = cert(Q, I,D)

Such technique avoids the construction of the RGD. The technique is applica-
ble for a restricted class of TGDs, namely the weakly-joined TGDs (WJTGDs);
in fact, it is known that query answering under general TGDs is undecidable [17].
WJTGDs are defined as follows.

Definition 2 ([3]). A TGD of the form χ(X,Y) → ψ(X,Z) is a weakly-
joined TGD (WJTGD) if each Yi ∈ Y appears at most once in it.

We give a description of how the algorithm TGDrewrite works. The idea is
that the algorithm repeatedly executes a basic rewriting step (together with a
minimisation step that we will not see in detail), until there are no more CQs to
be added to the rewritten query. In the basic rewriting step, TGDrewrite verifies
(besides some other conditions) whether there is a substitution σ that sends a
subset of the atoms of the right-hand side of some TGD θ to a subset G of the
atoms of the body of some CQ q in Q. If this happens, a new CQ is added to Q,
obtained by replacing in q the set of atoms G with the left-hand side of θ, where
substitution σ has been applied.

Example 4. Consider Example 2 and a CQ q(X1) ← R1(X1, X2), R2(X1, X3),
represented as q(X1) ← R1(X1, �), R2(X1, �), where (similarly to the Logic
Programming notation, where the symbol “ ” is used) we indicate with � the
variables appearing only once in the query. The WJTGD θ is applicable to
G = {R1(X1, �), R2(X1, �)}, because the substitution σ = {X → X3, Y →

Query Answering by Rewriting in GLAV Data Integration Systems 175

X1, W → X2} sends the right-hand side of θ to G. Therefore, we apply the basic
rewriting step by replacing G with the left-hand side of θ and by applying σ
to the obtained query. The result is the CQ q(X1) ← R1(X3, X1), which we
represent as q(X1) ← R1(�, X1).

Suppose there is another WJTGD θ1 on G, of the form R2(Y, W) → R1(X, Y).
Though there is a substitution sending the right-hand side of θ to G1 =
{R1(X1, X2)}, the basic rewriting step cannot be executed because the vari-
able X1 would “disappear”, and this is not allowed since X1 appears outside G1
(in particular, both in the head(q) and in another atom of body(q)). �

In [3] the mapping M is taken into account in a separate step, by first trans-
forming the GLAV system into a GAV system; query answering in GAV systems
is then done by a traditional rewriting technique called unfolding [18]. However,
the form of the GLAV mapping assertions, similar to TGDs, suggests that the
algorithm TGDrewrite can be used for the mapping as well.

Now we introduce a more general class of constraints that will allow us to deal
with the mapping assertions together with the constraints on the global schema.
First, we consider the global schema G and the source schema S as a single
database schema, on which are expressed the TGDs in ΣT , plus the assertions
in M, that now we can see as TGDs on G∪S, and that we denote with ΣM. The
TGDs in ΣM are in general not WJTGDs, but the following results, extending
those of [3], allows us to deal with a more general class of constraints. We give
some preliminary definitions.

Definition 3. Given a set ΣT of TGDs expressed over a global schema G, the
TGD-graph GΣT

associated to it is defined as follows:

– the set of nodes is the set of relation symbols in G;
– an arc (R1, R2) exists if R1 and R2 appear respectively in the left-hand and

right-hand side of some TGD in ΣT .

Definition 4. Given a set ΣT of TGDs expressed over a global schema G, and
the corresponding TGD-graph GΣT

, a TGD θ is said to be cycle-harmless w.r.t.
ΣT if at least one of the following conditions holds:

1. for any two relation symbols R1, R2 appearing in the body and in the head of
θ respectively, the arc (R1, R2) is not part of any cycle in GΣT

, or
2. θ is a WJTGD.

Now we come to the results.

Lemma 1. Let B be a relational database for a schema R, and ΣT a set of
cycle-harmless TGDs expressed over R. Then for every query Q on R, expressed
in UCQs, we have that TGDrewrite(R, ΣT , Q)B = QchaseΣT

(B).

Proof (sketch). We want to prove that, being n the arity of Q, for any n-tuple
t of constants of Γ , we have

t ∈ TGDrewrite(R, ΣT , Q)B iff t ∈ QchaseΣT
(B)

176 A. Cal̀ı

“⇐”The proof is by induction on the number of applications of the TGD
chase rule. By hypothesis, there is a CQ q in Q such that there exists a query
homomorphism ψ (see [16]) that sends the body of q to tuples of chaseΣT

(B)
and the head of q to t. At the base step, ψ sends the body of q to tuples of
B, and since q is part of TGDrewrite(R, ΣT , Q), the thesis follows. As for the
inductive step, suppose that the result holds when ψ sends the body of q to
tuples of the chase (that we briefly denote as ψ(q)) that are generated after k
applications of the chase rule. It is possible to show that, denoting by H the set
of tuples from which ψ(q) is generated (and that are therefore generated from B
with k − 1 applications of the chase rule), there exists a query homomorphism
ψ1 that sends the body of q1 to tuples in H and the head of q1 to t, where q1 is
obtained from q by application of the basic rewriting step of TGDrewrite.

“⇒”The proof is analogous to the previous one, by induction on the number
of applications of the basic rewriting rule of TGDrewrite.

Lemma 2. Let I = 〈G,S,M〉 be a data integration system; let ΣT be a set of
TGDs expressed over G. If for every TGD θ in ΣT it holds that θ is a cycle-
harmless TGD w.r.t. ΣT , then for every source database D and for every global
query Q we have

QchaseΣT
(ret(I,D)) = cert(Q, I,D)

Proof (sketch). Analogously to what is done in [4] for the chase in the
presence of inclusion dependencies, it is possible to prove that, for every global
database B that is in sem(I,D), there exists a homomorphism λ that sends
tuples of chaseΣT

(ret(I,D)) to those of B.
We now prove that, being n the arity of Q, for every n-tuple of constants of

Γ ,
t ∈ QchaseΣT

(ret(I,D)) iff t ∈ cert(Q, I,D)

“⇐”If t �∈ QchaseΣT
(ret(I,D)), since the chase is a database in sem(I,D)

because it satisfies both the mapping and the ICs, we immediately deduce that
t ∈ cert(Q, I,D).

“⇒”By hypothesis, there exists a query homomorphism μ that sends the
body of some CQ q in Q to tuples of chaseΣT

(ret(I,D)). Recalling the ex-
istence of the homomorphism λ for any global database B in sem(I,D), we
consider the composition μ ◦ λ. The existence of such homomorphism for any
B in sem(I,D) guarantees that t ∈ QB for every B ∈ sem(I,D), and therefore
t ∈ cert(Q, I,D). �

Theorem 1. Let I = 〈G,S,M〉 be a data integration system; let ΣT be a set of
TGDs expressed over G . If for every TGD θ in ΣT it holds that θ is a cycle-
harmless TGD w.r.t. ΣT , then for every source database D and for every global
query Q we have

TGDrewrite(G, ΣT , Q)ret(I,D) = cert(Q, I,D)

Proof. By Lemma 2 we have TGDrewrite(G, ΣT , Q)ret(I,D) = QchaseΣT
(ret(I,D)).

The thesis follows immediately from Lemma 2. �

Query Answering by Rewriting in GLAV Data Integration Systems 177

The following theorem, directly derived from Theorem 1, allows us to take
the mapping into account in a single step with the algorithm TGDrewrite.

Theorem 2. Let I = 〈G,S,M〉 be a data integration system; let ΣT be a set
of TGDs expressed over G and ΣM the TGDs that constitute M. If for every
TGD θ in ΣT it holds that θ is cycle-harmless w.r.t. ΣT , then for every source
database D and for every global query Q we have

TGDrewrite(G, ΣT ∪ ΣM, Q)D = cert(Q, I,D)

Proof. The proof is done by observing that chaseΣM(D) = ret(I,D), and that
chaseΣT

(ret(I,D)) = chaseΣT ∪ΣM(D). Note that all TGDs in ΣM are cycle-
harmless by construction. By Lemma 1 we have

TGDrewrite(G, ΣT ∪ ΣM, Q)D = QchaseΣT ∪ΣM (D)

and therefore

TGDrewrite(G, ΣT ∪ ΣM, Q)D = QchaseΣT
(chaseΣM (D)) = QchaseΣT

(ret(I,D))

The thesis follows immediately from Lemma 2. �

Note that we have in some way abused the notation in the statement of
the previous theorem; in fact we are evaluating TGDrewrite, which in general
is formulated over G ∪ S, over a source database D that is a database for S.
However, we can consider D as a database for G ∪ S where for each g ∈ G we
have gD = ∅. Indeed, this observation leads us to the obvious conclusion that,
once TGDrewrite(G, ΣT ∪ ΣM, Q) is computed, in its evaluation over D we can
omit to consider all the CQs in which at least one atom with a relation symbol
of G appears. This can save computation time in the query rewriting phase.

Example 5. Recall Example 1. Suppose the source database D contains a single
fact hasjob(anne,maths) ←. Consider the global query

Q(X) ← employed(X, Y) ∧ runsProject(Y, Z)

asking for persons employed in institutions that run some project. A rewriting
step, according to the single TGD expressed on G, will produce the CQ

Q1(X) ← work(X, Z)

Applying the mapping assertions as rewriting rules, we obtain the following CQs:

Q2(X) ← hasjob(X, W1)
Q3(X) ← getgrant(X, W2) ∧ grantfor(W2, Z)
Q4(X) ← teaches(X, W3) ∧ infield(W3, W4)

The final rewriting is QR = Q ∨ Q1 ∨ Q2 ∨ Q3 ∨ Q4 (however, Q and Q1
will not be considered since they contain relation names not appearing in S).
The evaluation of the rewriting over the source database D returns the answer
QD

R = {(anne)}. �

178 A. Cal̀ı

4 Query Rewriting Under Tuple-Generating
Dependencies and Functional Dependencies

In this section we address the problem of query answering in GLAV systems
where two sets of TGDs and FDs, that we will denote with ΣT and ΣF respec-
tively, are expressed over the global schema. In this case, even if we restrict to
TGDs that are either cycle-harmless w.r.t. ΣT , the problem of query answering
is undecidable.

Theorem 3. Let I = 〈G,S,M〉 be a data integration system, where two sets
of TGDs and FDs, ΣT and ΣF respectively, are expressed over G; let ΣT be a
set of cycle-harmless TGDs w.r.t. ΣT itself. We have that the problem of query
answering is undecidable.

Proof. The proof is derived from the undecidability result for query answering in
the presence of inclusion dependencies and key dependencies [5], which is clearly
a particular case of the one considered here. Note that inclusion dependencies
are cycle-harmless TGDs, since they cannot have joins in the left-hand side. In
turn, the result of [5] is derived from the undecidability result about implication
of functional and inclusion dependencies [7]. �

Here we consider a slightly restricted class of TGDs and FDs: in particular,
similarly to what is done in [5], we consider a class of TGDs that “does not con-
flict” with the FDs, and for which query answering is decidable. In the following
we will make use of the notion of freezing a formula; given a conjunction C of
atomic formulae, freezing C consists in defining a substitution σ that sends each
distinct variable to a distinct constant; the frozen formula σ(C) is a set of facts.

Definition 5. Given a set of FDs ΣF over a relational schema R, a TGD θ of
the form

χ(X,Y) → ψ(X,Z)

is a non-functional-conflicting TGD (NFCTGD) w.r.t. ΣF if the following con-
ditions hold:

1. the database constructed by “freezing” the variables of ψ(X,Z) and consid-
ering the the obtained facts satisfies ΣF ;

2. for each atom R(X,Z) in ψ, and for every FD of the form R : A → B
in ΣF defined on R, the symbols that are either constants or are in X (we
recall that the symbols in X appear both sides of the TGD) are placed in a
set of attributes of R that is not a superset of A.

Example 6. Consider a relational schema R = {R1/3, R2/1, R3/2}, let ΣF a
set of FDs over R, constituted by a single FD φ of the form R1 : 1 → 2
(we have indicated the attributes of R1 with integer numbers). The TGD
θ : R3(X, Y) → R1(X, Y, Z), R2(Y) is not a NFCTGD w.r.t. ΣF because in
the first two attributes of the atom R1(X, Y, Z) are covering a superset of the

Query Answering by Rewriting in GLAV Data Integration Systems 179

left-hand-side of φ, and X and Y appear in the left-hand side of θ. Moreover,
the TGD θ1 : R3(Z, Y) → R1(X, Y, Z), R1(X, b, W) (where b is a constant) is
not a NFCTGD w.r.t. ΣF because if we freeze its right-hand side we obtain two
facts R1(cX , cY , cZ) ← and R1(cX , b, cW) ← that violate φ.

Non-functional-conflicting TGDs are a generalisation of non-key-conflicting
inclusion dependencies (NKCIDs) [5]; similarly to NKCIDs, the NFCTGDs enjoy
the following property.

Proposition 1. Consider a relational database B on which a set ΣF of FDs and
a set ΣT of NFCTGDs w.r.t. ΣF are defined. If B |= ΣF then chaseΣT

(B) |= ΣF .

Proof. The proof is by induction on the structure of chaseΣT
(B). At the base

step, B satisfies ΣF , that is true by hypothesis. As for the inductive step, consider
the addition of a set of facts f1, . . . , fn, due to the application of the TGD chase
rule. By Condition 1 of Definition 5, it is straightforward to see that the facts
f1, . . . , fn are such that no two facts fi, fj (1 ≤ i, j ≤ n) that violate a FD in
ΣF . Moreover, none of the facts in f1, . . . , fn will violate a FD φ in ΣF together
with another fact f1 already present in the segment of chaseΣT

(B) until the
insertion of f1, . . . , fn. In fact, let f and f1 be of the form R(c1, . . . , cm) ← and
R(d1, . . . , dm) ← respectively; by Condition 2 of Definition 5, for any FD φ in
ΣF of the form R : A → B, f and f1 will never have the same values in the
attributes of A. This ends the proof of the claim.

Intuitively, from the previous property follows that, if a global database sat-
isfies the set ΣF FDs, and the TGDs are all non-functional-conflicting, we can
ignore ΣF w.r.t. to query answering, since the chase is indifferent to the presence
of FDs.

At this point, we come to the problem of query answering in a data integration
system I = 〈G,S,M〉. Recalling Theorem 2 and assuming that both ΣT and
ΣM contain only NFCTGDs that are also cycle-harmless, we have that the
source database D satisfies ΣF by construction, since the FDs are defined only
on G. Therefore, given a global query Q, we may think of applying the algorithm
TGDrewrite to Q under the set of TGDs ΣT ∪ ΣM, thus solving immediately
the problem of query answering by means of rewriting. Unfortunately, while
assuming that the TGDs in ΣT are NFCTGDs is reasonable in practical cases,
assuming the same for the dependencies in ΣM is not. Nevertheless, the TGDs
in ΣM are the only ones having source relations appearing in them (in the left-
hand side); such property ensures that we are still in luck when they are not non-
functional conflicting. In fact, the problem of query answering is still decidable
when TGDs in ΣT are cycle-harmless and NFCTGDs, and those in ΣM are cycle-
harmless (this is by construction) but in general not non-functional-conflicting.
The query answering technique, in this case, requires the construction of the
RGD; in particular the algorithm for query answering, given a data integration
system I = 〈G,S,M〉, a source database D and a global query Q, consists of
the following steps:

180 A. Cal̀ı

1. We build the RGD ret(I,D).
2. We check whether ret(I,D) |= ΣF ; if ret(I,D) �|= ΣF we are done: in this

case there is no global database satisfying both the constraints and the map-
ping, so sem(I,D) = ∅ (see e.g. [18]); therefore, query answering is trivial,
since every tuple of the same arity of Q is in cert(Q, I,D). If, on the contrary,
ret(I,D) |= ΣF , we proceed with the following steps.

3. We calculate TGDrewrite(G, ΣT , Q).
4. We evaluate TGDrewrite(G, ΣT , Q) over ret(I,D): the result is cert(Q, I,D).

In the presence of FDs on the global schema, the construction of the retrieved
global database cannot be done independently of the FDs; in fact, some of the
violations of the FDs that occur during the construction of the RGD are not
“real” violations; instead, they lead to the inference of equalities among newly
introduced constants and constants already present in the part of the RGD
constructed in previous steps. The following example illustrates this issue.

Example 7. Consider again Example 1, and suppose that the following FD is
expressed over G:

work : 1 → 2

Such FD imposes that a person can work at most on one project. Now, suppose
to have a source database D with the following facts:

hasjob(anne,maths) ←
teaches(anne, databases) ←
infield(databases, compScience) ←

According to M, The RGD will contain the following facts:

work(anne, p1) ←
area(p1,maths) ←
work(anne, p2) ←
area(p2, compScience) ←

where p1 and p2 are fresh constants introduced in the construction. Note that
the facts work(anne, p1) ← and work(anne, p2) ← violate the above FD. In this
case, however, the violation is due to the two fresh constants p1 and p2: therefore,
instead of concluding that sem(I,D) = ∅, we instead infer p1 = p2. Now suppose
that also the following facts are in D:

getgrant(anne, eu123) ←
grantfor(eu123 , venus) ←

Now the RGD will have the additional fact

work(anne, venus) ←

asserting that anne works on project venus; here we have another violation,
but again we do not conclude that sem(I,D) = ∅: instead, the new facts make
us infer that the project on which Anne is working is venus. Therefore, we
have p1 = p2 = venus. All occurrencies of p1 and p2 in the part of ret(I,D)
constructed so far need to be replaced by venus. �

Query Answering by Rewriting in GLAV Data Integration Systems 181

Now we present a technique for constructing the RGD in the case of GLAV
mapping, in the presence of FDs on the global schema.

Definition 6. Let I = 〈G,S,M〉 be a GLAV data integration system, where a
set ΣF of FDs is defined on G, and D a source database for I. The retrieved
global database ret(I,D) is defined constructively as follows. Consider a map-
ping assertion ϕS(X,Y) → ϕG(X,Z). For each set H of facts of D such that
there exists a substitution σ that sends the atoms of ϕS(X,Y) to H: (i) we
first define a substitution σ′ such that σ′(Xi) = σ(Xi) for each Xi in X, and
σ′(Zj) = zj for each Zj in Z, where zj is a fresh constant, not introduced before
and not appearing in D; (ii) we add to ret(I,D) the set of facts that are in
σ′(ϕG(X,Z)). Now, suppose that one of the added facts, say R(t) ←, violates a
FD φ because of the presence of another fact R(t0) ← in the part of the RGD
that has been constructed in the previous steps (t and t0 are tuples of constants).
Formally, being φ of the form

R : A → B

we have t[A] = t0[A] and t[B] �= t0[B]. Let t[B] = c and t0[B] = c0; there are
different cases, that we enumerate as follows:

1. c is a fresh constant, not appearing in D: in this case we substitute c with c0
(which can be either a fresh constant or a constant of D) and proceed;

2. c is a constant of D and c0 is a fresh constant: in this case we replace c0
with c in all the part of the RGD that has been constructed in the previous
steps and proceed.

3. c and c0 are both constants appearing in D: in this case we have sem(I,D) =
∅ and we stop the construction.

Note that the construction of the RGD in this case can be done in time
polynomial in the size of the source database D: in fact, though the replacement
can involve all the data in the RGD retrieved at a certain point, we have that
the replacement of case 2 can be performed at most once on each constant.

The following theorem states the correctness and completeness of the above
technique.

Theorem 4. Let I = 〈G,S,M〉 be a data integration system; let ΣT and ΣF

two sets of TGDs and FDs defined on G respectively, where all TGDs in ΣT are
cycle-harmless w.r.t. ΣT and NFCTFDs w.r.t. ΣF . If ret(I,D) |= ΣF , then we
have that TGDrewrite(G, ΣT , Q)ret(I,D) = cert(Q, I,D).

Proof (sketch). The result follows straightforwardly from Proposition 1; since
ret(I,D) |= ΣF , we can proceed by applying Theorem 1 as if ΣF = ∅. �‘

182 A. Cal̀ı

5 Discussion

In this paper we have addressed the problem of query answering in GLAV data
integration systems, in the presence of tuple-generating dependencies and func-
tional dependencies.

Several works in the literature address the problem of query answering un-
der integrity constraints, both in a single database context [5, 2, 12] and in data
integration [9, 20, 13, 17, 10, 6, 4]. In particular, [17] presents a technique, well
supported by experimental results and theoretical foundations, for query rewrit-
ing under conjunctive inclusion dependencies (CINDs); CINDs are analogous to
TGDs, but in [17] a syntactic restriction on CINDs imposes that CINDs are
acyclic, so that the problem of having a chase of infinite size (and therefore
the problem of the termination of the rewriting algorithm) is not relevant. An-
other interesting paper about repair of database dependencies is [10]; this paper
addresses the problem of integrity constraints in data exchange, so in this case
data are to be materialised in a target schema, as well as their chase, and not ac-
cessed on-the-fly as in our virtual data integration approach. Due to the need of
materialising the target schema, the class of ICs considered, namely the weakly-
acyclic TGDs together with equality-generating dependencies, though certainly
quite general, is such that the chase is always finite. Therefore, such class of
constraints is not comparable with the one considered in our paper.

In this paper we have first addressed the problem of query answering in the
presence of TGDs alone; we have recalled the algorithm TGDrewrite, introduced
in [3], showing that it can be applied to a more general class of TGDs, namely
the cycle-harmless TGDs. The result about the introduced class of TGDs al-
lowed us to use TGDrewrite for rewriting global queries according not only to
the TGDs, but also according to the mapping, that can be seen as a set of TGDs
over a unified schema including both the global schema and the source schema.
The rewriting algorithm can be used, of course, also in particular cases, e.g.,
when there are no constraints; in such a case, when the mapping is LAV instead
of GLAV, our technique is similar to the algorithm MiniCon [21], which incor-
porates effective optimisation techniques not present in TGDrewrite; however,
TGDrewrite is more general, being able to deal with GLAV mappings.

Then, we have introduced functional dependencies together with TGDs,
defining a class of ICs for which the query answering problem is decidable, and
providing a query answering technique based on the algorithm TGDrewrite. In
this case the mapping cannot be dealt with at once, together with the ICs on
the global schema; instead, the construction of the retrieved global database is
required. After that, if the RGD satisfies the FDs, the form of the constraints is
such that we can proceed as if there were no FDs.

As for the computational complexity, we focus our attention on the data com-
plexity, i.e. the complexity w.r.t. the size of the data residing at the sources. This
is the usual way of considering complexity in a database context, since the size
of schemata and constraints is usually negligible with respect to the size of the
data. In our case, since we solve the problem of query answering in an inten-
sional fashion, the only phases where the data are involved are the evaluation

Query Answering by Rewriting in GLAV Data Integration Systems 183

of the reformulated query over the source database, and the construction of the
RGD (only in the presence of FDs). Both such operations can be done in time
polynomial w.r.t. the size of the data.

Acknowledgements. This work was partially supported by the project MAIS,
funded by the Italian Ministry of Education, University and Research. The au-
thor wishes to thank Diego Calvanese, Maurizio Lenzerini, Riccardo Rosati and
Domenico Lembo for their insightful comments about this material.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-
dison Wesley Publ. Co., Reading, Massachussetts, 1995.

2. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query an-
swers in inconsistent databases. In Proc. of the 18th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’99), pages 68–79.

3. Andrea Cal̀ı. Reasoning in data integration systems: why LAV and GAV are
siblings. In Proc. of the 14th Int. Symp. on Methodologies for Intelligent Systems
(ISMIS 2003), pages 562–571, 2003.

4. Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Data integration under integrity constraints. Information Systems, 29:147–163,
2004.

5. Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. On the decidability and
complexity of query answering over inconsistent and incomplete databases. In Proc.
of the 22nd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2003), pages 260–271, 2003.

6. Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. Query rewriting and answer-
ing under constraints in data integration systems. In Proc. of the 18th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2003), pages 16–21, 2003.

7. Ashok K. Chandra and Moshe Y. Vardi. The implication problem for functional
and inclusion dependencies is undecidable. SIAM J. on Computing, 14(3):671–677,
1985.

8. Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Deborah McGuinness, editors.
The Emerging Semantic Web — Selected Papers from the First Semantic Web
Working Symposium. IOS Press, 2002.

9. Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’97), pages 109–116.

10. Ronald Fagin, Phokion Kolaitis, Renee J. Miller, and Lucian Popa. Data exchange:
Semantics and query answering. In Proc. of the 9th Int. Conf. on Database Theory
(ICDT 2003), pages 207–224.

11. Marc Friedman, Alon Levy, and Todd Millstein. Navigational plans for data in-
tegration. In Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99),
pages 67–73, 1999.

12. Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logic programming approach
to the integration, repairing and querying of inconsistent databases. In Proc. of the
17th Int. Conf. on Logic Programming (ICLP’01), volume 2237 of Lecture Notes
in Artificial Intelligence, pages 348–364. Springer.

184 A. Cal̀ı

13. Jarek Gryz. Query rewriting using views in the presence of functional and inclusion
dependencies. Information Systems, 24(7):597–612, 1999.

14. Alon Y. Halevy. Answering queries using views: A survey. Very Large Database
J., 10(4):270–294, 2001.

15. Jeff Heflin and James Hendler. A portrait of the semantic web in action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

16. David S. Johnson and Anthony C. Klug. Testing containment of conjunctive queries
under functional and inclusion dependencies. J. of Computer and System Sciences,
28(1):167–189, 1984.

17. Christoph Koch. Query rewriting with symmetric constraints. In Proc. of the 2nd
Int. Symp. on Foundations of Information and Knowledge Systems (FoIKS 2002),
volume 2284 of Lecture Notes in Computer Science, pages 130–147. Springer, 2002.

18. Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

19. Maurizio Lenzerini, 2004. Personal communication.
20. Jinxin Lin and Alberto O. Mendelzon. Merging databases under constraints. Int.

J. of Cooperative Information Systems, 7(1):55–76, 1998.
21. Rachel Pottinger and Alon Y. Levy. A scalable algorithm for answering queries us-

ing views. In Proc. of the 26th Int. Conf. on Very Large Data Bases (VLDB 2000),
pages 484–495, 2000.

Utilizing Resource Importance for Ranking
Semantic Web Query Results

Bhuvan Bamba and Sougata Mukherjea

IBM India Research Lab,
New Delhi, India

{bhubamba, smukherj}@in.ibm.com

Abstract. To realize the vision of the Semantic Web, effective tech-
niques of Information Retrieval need to be developed. Ranking the re-
sults of a search is one of the main challenges of an Information Retrieval
system. In this paper we present a technique for ranking the results of a
Semantic Web query. The ranking is based on various factors including
the Semantic Web resource importance. We have modified a World-wide
Web link analysis technique that has been effectively used to identify
important Web pages to calculate the importance of Semantic Web re-
sources. Our ranking technique has been utilized for ranking the query
results of a Biomedical Patent Semantic Web.

1 Introduction

The Semantic Web [1] is a vision of the next generation World-wide Web in
which data is described with rich semantics thereby enabling software agents to
understand the data and perform complex tasks on behalf of humans. To achieve
this vision, researchers have developed languages for specifying the meaning
of concepts, relating them with custom ontologies for different domains and
reasoning about the concepts. The most well-known languages are Resource
Description Format (RDF) [2] and RDF Schema (RDFS) [3] which together
provide a unique format for the description and exchange of the semantics of Web
content. To realize the full potential of the Semantic Web, effective techniques
for information retrieval need to be developed.

Generally, to answer queries linking the properties specified by one or more
RDF triples, SQL-type declarative query languages are utilized. In a real world
Semantic Web, for many queries a large number of results will be retrieved.
Since users tend to consider only the first few results, effective techniques for
ranking the results are required. In traditional Information Retrieval the ranking
is mainly dependent on the number of query keywords that are present in the
result documents. On the other hand, for World-wide Web search engines, the
ranking is also dependent on the importance of the retrieved Web pages which
is determined by the number of pages linking to it and the importance of the
linking pages. In the Semantic Web the information space is complex since it
contains resources, the relations between them as well as ontologies. Therefore,

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 185–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 B. Bamba and S. Mukherjea

the ranking should be dependent on several factors including the number of
triples related to the results as well as the importance of the Semantic Web
resources corresponding to the results.

We have developed a technique to determine the importance of the Semantic
Web resources based on a WWW link-analysis algorithm to identify important
Web pages. In [4] we discuss how the importance score can be used to rank the
results of a keyword search in a Semantic Web. However, for RDF queries, the
ranking should be dependent not only on the Semantic Web resource importance
but other factors also. In this paper we explain our technique for ranking the
results of a Semantic Web query. The paper is organized as follows. Section
2 cites related work. Section 3 explains our method for determining Semantic
Web resource importance and Section 4 discusses our technique for ranking RDF
query results. Finally, section 5 concludes the paper.

1.1 Example Semantic Web

Our technique has been implemented in the BioPatentMiner system [4]. The
system provides several techniques for querying a Semantic Web of Biomedical
patents. In this Semantic Web there are resources for the patents, the inventors
and assignees of the patents as well as the biological terms present in the patents.
Moreover, there are 4 properties connecting the resources:

– <patentA refers to patentB> (patentA refers to patentB)
– <inventorC invented patentD> (inventorC has invented patentD)
– <assigneeE assigned patentF> (patentF is assigned to assigneeE)
– <patentG has term bioTermH> (patentG has the biological concept

bioTermH)

The property has term links the patents to the biological concepts they refer to.
These concepts are derived from the Unified Medical Language System (UMLS)
[5]. UMLS is a consolidated repository of medical terms and their relationships,
spread across multiple languages and disciplines (chemistry, biology, etc). An
essential section of UMLS is a Semantic Network which has 135 biomedical
semantic classes like Gene or Genome and Amino Acid, Peptide, or Protein. The
semantic classes are linked by a set of 54 semantic relationships (like prevents,
causes). The UMLS biological concepts are associated with one or more semantic
classes. For example, the concept blood cancer has the semantic class Neoplastic
Process. We created RDFS classes for all the Semantic Network classes and RDF
Properties for all Semantic Network relationships except isa. A RDF statement
is created to represent each relationship among the classes. The isa relation-
ship is represented by RDFS:subClassOf relationship if it is between classes and
RDFS:subPropertyOf relationship if it is between properties. The biological con-
cepts are represented as RDF resources. They are named by their UMLS concept
ids and the various names associated with a concept are stored as RDFS labels.

Utilizing Resource Importance for Ranking Semantic Web Query Results 187

2 Related Work

2.1 Building and Querying the Semantic Web

In recent times tools like Jena [6] have been developed that facilitate the de-
velopment and representation of Semantic Webs. The development of effective
information retrieval techniques for the Semantic Web has become an important
research problem. There are a number of proposed techniques for querying RDF
data including RQL [7], TRIPLE [8] and RDQL [9]. Most of these query lan-
guages use a SQL-like declarative syntax to query a Semantic Web as a set of
RDF triples. They also incorporate inference as part of query answering. How-
ever, none of these systems propose any strategy to rank the query results.

2.2 Determining WWW Page Importance

In this paper we introduce a technique to determine the importance of resources
in a Semantic Web. This has been influenced by the extensive research in recent
years to determine the importance of World-wide Web pages. The most well-
known technique is Page Rank [10] which calculates the importance of Web
pages based on the pages that point to them.

Another technique for finding the important pages in a WWW collection has
been developed by Kleinberg [11] who defined two types of scores for Web pages
which pertain to a certain topic: authority and hub scores. Documents with high
authority scores are authorities on a topic and therefore have many links pointing
to them. On the other hand, documents with high hub scores are resource lists
- they do not directly contain information about the topic, but rather point to
many authoritative sites. Transitively, a document that points to many good
authorities is an even better hub, and similarly a document pointed to by many
good hubs is an even better authority. Kleinberg’s algorithm has been refined
in CLEVER [12] and Topic Distillation [13]. Both of these algorithms augment
Kleinberg’s link analysis with textual analysis. A slightly different approach to
find hubs and authorities is SALSA [14]. A good overview of various link analysis
techniques to find hubs and authorities and suggestions for improvements are
presented in [15].

2.3 Ranking Search Results

Ranking of search result is an important research area in Information Retrieval
[16]. Since a WWW search returns a large number of results for most queries,
effective ranking of the results is critical for the success of a Web search engine.
The popularity of the Google Web search engine is mainly because it has used
Page Rank very effectively for ranking. [17] presents a technique to rank keyword
search over XML documents using a technique derived from Page Rank. Since
RDF queries are different, the previous approaches may not be appropriate for
the Semantic Web.

188 B. Bamba and S. Mukherjea

[18] is the only previous research on ranking the results of Semantic Web queries.
The system defines two metrics:

– Ambiguity of a Term in a Relation Instance: This is determined by the
number of triples with the same term and property. So for example, suppose
there is a triple (I1 invented P1). If I1 has 3 patents and P1 has 2 inventors,
Ambiguity of I1 with respect to the invented property is 3 and the Ambiguity
of P1 with respect to the invented property is 2.

– Specificity of a Relation Instance: This is the reciprocal of Ambiguity of each
term. Thus the Specificity of the above relation instance will be 1

3 ∗ 1
2 = 1

6 .

Overall, the relevance is based on Specificity of all the relation instances and is
determined from a AND-OR tree.

There are two main limitations of this approach. Firstly, the a-priori im-
portance of a resource based on the overall information space is not considered
during the ranking. Thus, the importance of an inventor or a patent will not be
considered when ranking these resources. As Google has shown, the ranking of
the search results should not be determined just by the specific query but by the
importance of the results in the overall information space. Secondly, according
to the above ranking based on the Specificity, an inventor with more patents will
have a lower rank!

An interesting Semantic Web querying technique is Semantic Associations
between Semantic Web resources [19] which can be utilized to identify com-
plex relationships between two resources. [20] discusses strategies to rank these
complex relationships. Some of these strategies can also be applied for RDF
querying.

3 Semantic Web Resource Importance

In this section we will discuss how we can customize the link analysis algorithms
for the World-wide Web to determine the importance of Semantic Web resources.

3.1 Graphical Representation of the Information Space

To fully capture the richness of a Semantic Web, a graphical representation of
the information space is required. Let us define a Semantic Web as (C, P, NC)
where C are the classes, P are the properties and NC are the normal resources
(neither classes nor properties) that are defined for the Semantic Web. For creat-
ing the graphs we ignore classes and properties that are not defined in the local
namespace (for example RDF:Resource, RDFS:subClassOf, etc.) We represent
the information space using two graphs: isaGraph and propertyGraph.

IsaGraph. The isaGraph is a directed graph whose vertices represent C, the
classes of the Semantic Web. For all triples (c1 RDFS:subClassOf c2) defined
in the Semantic Web, an edge (c2, c1) is created in the isaGraph. Thus, the
isaGraph represents the class hierarchy (subClassOf relation) of the Semantic

Utilizing Resource Importance for Ranking Semantic Web Query Results 189

Web. We ignore triples formed by inference while creating this graph. Note that
the subClassOf relation cannot be represented as a tree, since a class can have
more than one parent.

PropertyGraph. Let Pr be a subset of P , containing only properties whose
objects are resources; (that is we ignore properties whose objects are literals).
Let R be a subset of (C ∪ NC) satisfying the condition:
∀(r ∈ R)∃(pr ∈ Pr) such that r is a subject or object of a triple whose predicate
is pr or r is the domain or range of pr.
The propertyGraph is a directed graph representing the properties defined in
the local namespace. Its vertex set is R, the resources that are related to other
resources by local properties. An edge from r1 to r2 exists in the propertyGraph
if any one of the conditions hold:

– A triple (r1, pr, r2) exists in the Semantic Web for any (pr ∈ Pr). In other
words, an edge is created between two resources in the propertyGraph if
they are the subject and object of a triple.

– (pr,RDFS:domain, r1) and (pr, RDFS:range, r2) exist in the Semantic Web
for any (pr ∈ Pr). In other words, an edge is created between two resources
(classes) in the property graph if they are the domain and range of a local
property (and are thus related).

Note that we ignore triples formed by inference while creating this graph.

3.2 Subjectivity and Objectivity Scores

A resource that has relationships with many other resources in the Semantic Web
can be considered to be important since it is an important aspect of the overall
semantics; the meaning of many other resources of the Semantic Web have to
be defined with respect to that resource. In the context of the propertyGraph,
vertices that have a high in-degree or out-degree should be considered important.

Kleinberg’s hub and authority scores give a good indication about the con-
nectivity of nodes in the WWW graph. It not only considers the number of
links to and from a node but also the importance of the linked nodes. If a node
is pointed to by a node with high hub score, its authority score is increased.
Similarly, if a node points to a node with high authority score, its hub score is
increased. Therefore, we calculate scores similar to the hub and authority scores
of the propertyGraph to get an estimate of the importance of the resources
in the Semantic Web. These scores are called Subjectivity and Objectivity
scores corresponding to hub and authority scores. A node with high subjectiv-
ity/objectivity score is the subject/object of many RDF triples.

In the WWW all links are similar and can be considered to be equally im-
portant while calculating the hub and authority scores. On the other hand in a
Semantic Web links in the propertyGraph represent properties which may not
be equally important. For example, consider the property refers to in the exam-
ple Patent Semantic Web which links a patent to the patents it refers to. The
importance of the patent should not be dependent on the number of patents it

190 B. Bamba and S. Mukherjea

refers to. However, the importance should increase if it is referred to by many
patents. On the other hand, consider the property invented in the Semantic
Web which links an inventor to a patent. The importance of a patent should
not increase if it has many inventors. However, the importance of an inventor is
obviously dependent on her patents. Therefore for each property we have pre-
defined subjectivity and objectivity weights which determine the importance of
the subject/object of the property. By default these scores are 1.0. Properties
like refers to will have a lower subjectivity weight while properties like invented
will have a lower objectivity weight.

We have modified Kleinberg’s algorithm to calculate the Subjectivity and
Objectivity scores of Semantic Web resources as follows:

1. Let N be the set of nodes and E be the set of edges in the propertyGraph.
2. For every resource n in N , let S[n] be its subjectivity score and O[n] be its

objectivity score
3. Initialize S[n] and O[n] to 1 for all r in R.
4. While the vectors S and O have not converged:

(a) For all n in N , O[n] =
∑

(n1,n)∈E S[n1] ∗ objWt(e) where objWt is the
objectivity weight of the property representing the edge

(b) For all n in N , S[n] =
∑

(n,n1)∈E O[n1] ∗ subWt(e) where subWt is the
subjectivity weight of the property representing the edge

(c) Normalize the S and O vectors

Our modification is that while determining the subjectivity and objectivity
scores of a vertex we multiply the scores of the adjacent vertex by the sub-
jectivity/objectivity weights of the corresponding link. This will ensure that the
scores of the resources are not influenced by unimportant properties. For ex-
ample, a low objectivity weight for the invented property will ensure that the
objectivity scores of patents are not increased by the number of inventors for
that patent. Note that Kleinberg had proved that the algorithm will terminate,
that is the vectors will converge, for the WWW graph. It can be also proved
that our modified algorithm will converge for any Semantic Web graph.

An important observation is that there is no “preferred direction” for a prop-
erty. For example instead of the invented property we can have the invented by
property for which a patent is the subject and the inventor is the object. Thus,
depending on the schema, a resource could equally well be a subject or an object.
That is, the Subjectivity and Objectivity scores will be affected by the schema.
However, the combined Subjectivity and Objectivity scores will be independent
of the schema.

3.3 Determining Class Importance

The importance of a Semantic Web class is determined by how well it is con-
nected to other classes. Obviously, this will be dependent on its subjectivity and
objectivity scores. If c1 is a subclass of c2, all the properties of c2 should be inher-
ited by c1. Therefore, the importance of a class should also be influenced by its

Utilizing Resource Importance for Ranking Semantic Web Query Results 191

parents. Because of the transitive property of the subClassOf relation, the impor-
tance of a class should actually be dependent on all its ancestors. However, we
believe that a class should only marginally influence a distant descendent much
lower in the isa hierarchy. Based on these beliefs, we calculate the importance
of a class as:

1. Let parentWt, subWt, objWt be predefined constants that determine the
importance attached to the parents, subjectivity and objectivity scores while
calculating the importance.
parentWt + subWt + objWt = 1.0

2. If there are no links between class and non-class resources, filter the prop-
ertyGraph to include only the classes and the links between them. (In other
words, we remove all data resources and their related properties from the
propertyGraph). If there are links between the schema and data resources
the filtering is not necessary.

3. Calculate the Subjectivity and Objectivity scores of the classes from this
graph.

4. Let C be the set of nodes and E be the set of edges in the isaGraph. (Obvi-
ously C contains the classes of the Semantic Web).

5. For every class c in C, let S[c], O[c], PI[c] and I[c] be its subjectivity,
objectivity, parent importance and importance scores respectively.

6. PI[c] =
∑

(c1,c)∈E
I[c1]

indegree(c)
7. I[c] = PI[c] ∗ parentWt + S[c] ∗ subjWt + O[c] ∗ objWt

Thus, the importance of a class is determined by its subjectivity and objectiv-
ity scores and the importance of its parents. If (c1, subClassOf , c2) and (c2,
subClassOf , c3), then I(c2) will be influenced by I(c3). Since I(c1) is influenced
by I(c2), it is also influenced by I(c3). However, the influence of an ancestor on
a node is inversely proportional to its distance from the node. It should be noted
that we ignore RDF and RDFS vocabulary elements like RDF:Resource while
calculating the Class Importance because we are only interested in the classes
defined in the local namespace.

In many Semantic Webs, there will be no links connecting the schema (Class)
and non-class (Data) resources. Thus there will be two separate subgraphs. If one
of these subgraphs is more densely connected compared to the other subgraph,
the importance scores of the vertices in the sparsely connected subgraph will be
insignificant. To prevent this scenario, if there are no links between class and
non-class resources, we filter non-class resources from the propertyGraph while
calculating the Subjectivity and Objectivity scores of classes.

3.4 Determining Resource Importance

We believe that the importance of a Semantic Web non-class resource should be
determined by how well it is connected to other resources. We also believe that
it should be influenced by the importance of the classes it belongs to. Therefore
we calculate the importance of a non-class resource as follows:

192 B. Bamba and S. Mukherjea

1. Let classWt, subWt, objWt be predefined constants that determine the
importance attached to the classes, subjectivity and objectivity scores while
calculating the importance.
classWt + subWt + objWt = 1.0

2. If there are no links between class and non-class resources, filter the prop-
ertyGraph to only include the non-class resources in the Semantic Web and
the links between them. (In other words, we remove all schema resources
and their related properties from the propertyGraph).

3. Calculate the Subjectivity and Objectivity scores from this graph.
4. Let NC be the non-class resources in the Semantic Web. For every resource

n in NC, let S[n], O[n], CI[n] and I[n] be its subjectivity, objectivity, class
importance and importance scores respectively.

5. Let noClass[n] be the number of triples in the Semantic Web where n is the
subject and RDF:type is the predicate.

6. CI[n] =
∑

(n,RDF :type,c)∈SemanticW eb
I[c]

noClass[n]
7. I[n] = CI[n] ∗ classWt + S[n] ∗ subWt + O[n] ∗ objWt

Thus the importance of a resource r is determined by its subjectivity and ob-
jectivity scores as well as the importance of all classes for which the triple (r,
RDF : type, c) is defined explicitly in the Semantic Web. Note that the subWt
and objWt constants for calculating the Class and Resource importance are
different.

4 Ranking RDF Query Results

Let us now discuss our technique to rank the results retrieved by querying the
RDF triples of a Semantic Web. We assume that we are using RDQL [9] as
the Semantic Web query language. It should be noted our ranking technique is
applicable to other RDF query languages like RQL [7] and TRIPLE [8] also.

As an example, let us assume that for the BioMedical Patent Semantic Web
we want to find inventor and assignee pairs who have a patent which has a term
belonging to the UMLS class Molecular Function. The RDQL query will be:

SELECT ?inventor, ?assignee,
WHERE (?inventor,invented,?patent),

(?assignee,assigned,?patent),
(?patent,has_term,?bioTerm),
(?bioTerm,rdf:type,Molecular_Function)

RDQL returns sets of variable bindings matching the query parameters. Each
unique set of values for the parameters in the SELECT clause will form a result.
Graphs are formed from the triples matching the query criteria for each result.
Thus, for our example query, each unique pair of inventors and assignees will be
a result and graphs are formed from the triples matching the 4 query criteria
for these results. For example, if inventor I1 and assignee A1 match the query

Utilizing Resource Importance for Ranking Semantic Web Query Results 193

Fig. 1. An example graph for the triples corresponding to one of the results of the
example RDF query

criteria, we will form a graph for I1, A1 as well as the patents invented/assigned
to them that have biological terms of type Molecular Function. The Semantic
Web resources for the biological terms as well as the Semantic Web Class for
Molecular Function will also be included in the graph. Let us assume that Figure
1 is the resultant graph. It shows that the inventor and the assignee pair of I1
and A1 has invented 3 patents which have terms which belong to the required
class. Note that in most cases the graphs will not be very large since users gen-
erally specify queries with a few criteria.

We believe that the relevance of the result to the query is dependent on the
following factors:

– Importance of the nodes: If an inventor or assignee has a high importance in
the overall Semantic graph their ranking should be higher. In fact the rank-
ing should be dependent on the importance of all the nodes of the graph.
However, if the user is interested in inventors (as determined from the SE-
LECT clause of the query) their importance should be given more weight.
We believe that as the distance of a node from the node of interest increases,
it should be given less weight.

– Size of the graph: If the inventor, assignee pair has more patents the number
of nodes and edges in the graph will increase as well as its relevance. So the
size of the graph is important to determine relevance.

– Inverse Property Frequency: We believe that if a property is very common
in the Semantic Web, its corresponding edge should be given less weight.
This is similar to the notion of Inverse Document Frequency in traditional
Information Retrieval which ensures that keywords that are very common in
the document collection are given less weight. Therefore for each property
we calculate its Inverse Property Frequency as:
log(N

n) where N is the total number of triples in the Semantic Web and n
is the number of triples with that property.

Based on these beliefs, for each result r we calculate two scores scoreNode(r)
and scoreEdge(r) from the graph consisting of the triples corresponding to the
result as follows:

194 B. Bamba and S. Mukherjea

– Let decay = 1.0, scoreEdge(r) = 0.0, scoreNode(r) = 0.0
– Let Adj be a set initially consisting of the nodes of interest to the user as

determined from the SELECT clause of the query.
– While Adj is not Empty

• Let Edges be the set of edges from the nodes in Adj.
• scoreNode(r)+ =

∑
n∈Adj Imp[n] ∗ decay where Imp[n] is the impor-

tance of the node n. (It should be noted that if a node is not a resource,
for example a literal like the label of a resource, its importance will be
0).

• scoreEdge(r)+ =
∑

e∈Edges IPF [e] ∗ decay where IPF [e] is the Inverse
Property Frequency of the edge e in the Edges set.

• decay∗ = decayFactor where decayFactor is a constant less than 1.0.
• Reinitialize Adj to all the nodes that have not yet been visited and are

adjacent to the previous nodes in the set.

Thus for the graph in Figure 1:

scoreNode(r) = Imp(I1) + Imp(A1) +
[Imp(P1) + Imp(P2) + Imp(P3)] ∗ decayFactor +
[Imp(t1) + Imp(t2) + Imp(t3)] ∗ decayFactor2 + . . .

scoreEdge(r) = IPF (invented) ∗ 3 + IPF (has term) ∗ 6 ∗ decayFactor + . . .

After the scores of all the results are determined, they are normalized and the
ranking is dependent on a final score which is calculated as:
NormalizedScoreNode(r) ∗ nodeWt + NormalizedScoreEdge(r) ∗ edgeWt
where nodeWt and edgeWt are constants determining the importance attached
to the Node score and Edge score and nodeWt + edgeWt = 1.

4.1 Effect of Inference

Although RDQL is data-oriented and does not support inference, triples can be
created during querying using inference. For example, if the triples
(Genetic Function RDFS:subClassOf Molecular Function) and (r1 RDF:type Ge-
netic Function) are present, it can be automatically inferred that (r1 RDF:type
Molecular Function) also exists. Now consider a simple query:

SELECT ?bioTerm
WHERE (?bioTerm,rdf:type,Molecular_Function)

Various UMLS concepts will be retrieved including C0017952 (glycolysis) and
C0040669 (transfection). One can argue that the first term is more relevant be-
cause the triple (C0017952,rdf:type,Molecular Function) exists in the Semantic
Web and no inference is required to retrieve this term during query answering.
One can also argue that the second term is more relevant because it is of type
Genetic Function which is a subclass of Molecular Function and thus has a more
specific meaning.

Utilizing Resource Importance for Ranking Semantic Web Query Results 195

Fig. 2. Results of a search using RDQL ranked by our technique in the BioPatentMiner
system

We believe that the effect of inference on the ranking should be determined
by the knowledge administrator of the Semantic Web or the user of the system.
Our technique allows the inference factor to be rewarded, penalized or ignored.
By default the inference factor is penalized and the importance of the node is di-
vided by a constant inferenceWt (> 1). Thus for the result C0017952, scoreNode
will be:

Imp(C0017952) + Imp(Molecular Function) ∗ decayFactor
while for C0040669 it will be:
Imp(C0040669) + Imp(Molecular Function)∗decayFactor

inferenceWt∗inferenceLevel

where inferenceLevel is the number of inferences required to form the relevant
triple. For C0040669, inferenceLevel is 1 since Genetic Function is a direct sub-
class of Molecular Function. However, if the query was to determine all terms
of type Biologic Function, inferenceLevel for C0040669 will be 2, since Bio-
logic Function is the parent of Molecular Function.

4.2 Implementation

Our ranking strategy has been implemented in the BioPatentMiner system [4].
For example, Figure 2 shows the results retrieved by our first example query on a
collection of United States patents related to glycolysis. The resultant inventors
and patents that have a patent with terms of class Molecular Function are ranked
based on our technique. The user can see the details for any result. For example
Figure 3 shows the triples associated with one of the results. It shows that the
inventor and assignee pair has two patents which has a term C0017952 of class
Molecular Function.

196 B. Bamba and S. Mukherjea

Fig. 3. Details of an inventor and assignee who has patents with a term of the class
Molecular Function

4.3 Complexity Analysis

The Resource Importance and the Inverse Property Frequency is independent
of the query and can be pre-computed. At run-time one needs to determine the
scores of each result. The values for scoreNode and scoreEdge for a result can be
calculated by traversing the corresponding graph of related triples in O(n + e)
where n and e is the number of nodes and edges in the graph respectively.
Therefore the overall complexity is O(n + e)R where R is the total number of
results. Since for most graphs n and e will be small, the overall running time
would not be significant. In fact for the BioPatentMiner system, our ranking
technique added insignificant overhead to the overall performance of querying
using RDQL.

4.4 Example from Another Domain

Let us now determine whether our technique is applicable to a University Se-
mantic Web (similar to the Motivating Example of [18]). Suppose that in this
Semantic Web there are classes for Researcher, Professor, PhdStudent, Project
and Topic. Professor and PhdStudent are subclasses of Researcher. Moreover,
there are 4 properties connecting the resources:

– <projectA hasTopic topicB>
– <topicC subTopicOf topicD>
– <researcherE researchIn topicF>
– <researcherG worksIn projectH>

Let us also assume that there are the following rules (in addition to RDFS rules):

– ∀r, p1, t2 (r, worksIn, p1) ∧ (p1, hasTopic, t2) => (r, researchIn, t2)
– ∀r, t1, t2 (r, researchIn, t1) ∧ (t1, subTopicOf, t2) => (r, researchIn, t2)

Now suppose the user is interested in finding all researchers who researchIn
Knowledge Management (KM). Let us discuss the relevance of several possible
researchers who match the query condition (as discusses in [18]):

– If ysu works on just one project in KM and rst works in 3 projects all in
KM, the graph for rst will be larger and thus rst most probably will have a
higher relevance. (The relevance will also depend on their importance).

Utilizing Resource Importance for Ranking Semantic Web Query Results 197

– If gst is a Professor and nst is a PhD student who both work in KM, most
probably gst will have more relevance since her overall importance may be
higher in the Semantic Web (the connectivity of a Professor will generally
be higher than a PhDStudent).

– If nst works on one project on KM and meh works on one project in TextMin-
ing which is a subTopicOf KM, nst will have more relevance based on our
inference factor.

– Now suppose ysu works on just one project in KM and gst works on 3 projects
of which only one is in KM. In our technique most probably gst will have a
higher relevance since her overall importance may be higher in the Semantic
Web (since she works on 3 projects). [18] argues that ysu should be ranked
higher since she dedicates herself only to KM. Actually, it is very difficult to
determine which result should be ranked higher.

Overall, our ranking technique seems to be appropriate for this domain also.

5 Conclusions

In this paper we have introduced a technique to rank the results of a Seman-
tic Web query. The ranking is dependent on a number of parameters like the
number of triples relevant to the result, the importance of the Semantic Web
resources in the triples, the Inverse Property Frequency of the properties in the
triples as well as the effect of inference. Our system has been implemented in the
BioPatentMiner system which includes a Semantic Web of Biomedical Patents.

A formal evaluation of the ranking techniques is difficult since there is no
standard corpus available for testing. Therefore, we plan to conduct user studies
with domain experts to validate the effectiveness of the various techniques to
facilitate information retrieval for biomedical patents that are available in the
BioPatentMiner. We are collaborating with a Pharmaceutical company for this
purpose. We also plan to apply and evaluate our ranking technique to Semantic
Webs in other domains.

References

1. Berners-Lee, T., Hendler, H., Lasilla, O.: The Semantic Web. Scientific American
(2001)

2. Resource Description Format: http://www.w3.org/1999/02/22-rdf-syntax-ns.
3. Resource Description Format Schema: http://www.w3.org/2000/01/rdf-schema.
4. Mukherjea, S., Bamba, B.: BioPatentMiner: An Information Retrieval System for

BioMedical Patents. In the Proceedings of the Very Large Databases (VLDB)
Conference, Toronto, Canada (2004)

5. UMLS: http://umlsks.nlm.nih.gov.
6. JENA: http://www.hpl.hp.com/semweb/jena2.htm.
7. Karvounarakis, S., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:

RQL: A Declarative Query Language for RDF. In Proceedings of the Eleventh
International World-Wide Web Conference, Honolulu, Hawaii (2002)

198 B. Bamba and S. Mukherjea

8. Sintek, M., Decker, S.: TRIPLE A Query, Inference and Transformation Language
for the Semantic Web. In the Proceedings of the 1st Semantic Web Conference,
Sardinia, Italy (2002)

9. Seaborne, A.: RDQL: A Data Oriented Query Language for RDF Models
http://www.hpl.hp.com/semweb/rdql-grammar.html.

10. Brin, S., Page, L.: The Anatomy of a Large-scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems. Special Issue on the Seventh International
World-Wide Web Conference, Brisbane, Australia 30 (1998) 107–117

11. Kleinberg, J.: Authorative Sources in a Hyperlinked Environment. In Proceedings
of the 9th ACM-SIAM Symposium on Discrete Algorithms. (1998)

12. Chakrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Raghavan, P., Rajagopalan,
S.: Automatic Resource Compilation by Analyzing Hyperlink Structure and Asso-
ciated Text. Computer Networks and ISDN Systems. Special Issue on the Seventh
International World-Wide Web Conference, Brisbane, Australia 30 (1998) 65–74

13. Bharat, K., Henzinger, M.: Improved Algorithms for Topic Distillation in a Hy-
perlinked Environment. In Proceedings of the ACM SIGIR ’98 Conference on
Research and Development in Information Retrieval, Melbourne, Australia (1998)
104–111

14. Lempel, R., Moran, S.: The Stochastic Approach for Link-structure Analysis
(SALSA) and the TKC effect. In Proceedings of the Ninth International World-
Wide Web Conference, Amsterdam, Netherlands (2000) 387–401

15. Borodin, A., Roberts, G., Rosenthal, J., Tsaparas, P.: Finding Authorities and
Hubs from Link Structures on the World Wide Web. In Proceedings of the Tenth
International World-Wide Web Conference, Hong Kong (2001) 415–429

16. Van-Rijsbergen, C.: Information Retrieval. Butterworths (1979)
17. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword

Search over XML Documents. In the Proceedings of the ACM SIGMOD Confer-
ence, San Diego, Ca (2003)

18. Stojanovic, N., Studer, R., Stojanovic, L.: An Approach for the Ranking of Query
Results in the Semantic Web. In the Proceedings of the Second International
Semantic Web Conference, Sanibel Island, Florida (2003)

19. Anyanwu, K., Sheth, A.: ρ-Queries: Enabling Querying for Semantic Associations
on the Semantic Web. In Proceedings of the Twelfth International World-Wide
Web Conference, Budapest, Hungary (2003)

20. Aleman-Meza, B., Halaschek, C., Arpinar, L., Sheth, A.: Context-Aware Seman-
tic Association Ranking. In Proceedings of the Workshop on Semantic Web and
Databases, Berlin, Germany (2003)

Querying Faceted Databases

Kenneth A. Ross� and Angel Janevski

Columbia University
{kar, aj311}@cs.columbia.edu

Abstract. Faceted classification allows one to model applications with
complex classification hierarchies using orthogonal dimensions. Recent
work has examined the use of faceted classification for browsing and
search. In this paper, we go further by developing a general query lan-
guage, called the entity algebra, for hierarchically classified data. The
entity algebra is compositional, with query inputs and outputs being sets
of entities. Our language has linear data complexity in terms of space
and quadratic data complexity in terms of time. We compare the expres-
sive power of the entity algebra with relational algebra. We also describe
an end-to-end query system based on the language in the context of an
archeological database.

1 Introduction

A number of application domains require the modeling of complex entities within
classification hierarchies. For many of these domains, the hierarchy is where
the main complexity of the domain is concentrated, with other features of the
domain, such as relationships between entities, being relatively simple. We aim
to develop a data model and a query language appropriate for such domains.

A monolithic concept hierarchy is one in which a single large classification tree
is used to represent the application domain. Monolithic hierarchies have been
criticized for “rigid hierarchical and excessively enumerative subdivision that
resulted in the assignment of fixed ‘pigeonholes’ for subjects that happened to
be known or were foreseen when a system was designed but often left no room
for future developments and made no provision for the expression of complex
relationships and their subsequent retrieval.” [21]

A faceted classification, on the other hand, “does not assign fixed slots to
subjects in sequence, but uses clearly defined, mutually exclusive, and collectively
exhaustive aspects, properties, or characteristics of a class or specific subject.
Such aspects, properties, or characteristics are called facets of a class or subject,
a term introduced into classification theory and given this new meaning by the
Indian librarian and classificationist S.R. Ranganathan and first used in his
Colon Classification in the early 1930s.” [21]

Computers can make faceted classifications work for search [7, 8]. Once a
domain has been classified into a number of orthogonal facets, users can select

� This research was supported by NSF grant IIS-0121239.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 199–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 K.A. Ross and A. Janevski

values for one of more facets independently. As the search progresses, the can-
didate set of answers shrinks. The computer can give feedback to the user on
the current size of the candidate answer set, and can update the search so that
categories with no answer candidates in them are not displayed. The user is re-
lieved of knowing the exact classification system used, and can find an object by
describing its properties. Systems implementing document search for such data
models include Flamenco [4] and FacetMap [3]. A user study of Flamenco is
presented in [23]. The use of faceted hierarchies is common among e-commerce
sites on the World Wide Web [6]. Faceted classification is a good match for the
Semantic Web because it allows access to data using multiple orthogonal dimen-
sions, and because it allows the incremental construction of new facets after the
initial schema design, something much more difficult to achieve with monolithic
hierarchies.

Our aim is to go beyond a simple search facility for faceted hierarchies, and
to provide a query language for the formulation of more sophisticated queries.

Relational query languages do not provide built-in facilities for manipulating
hierarchies. Hierarchies must be simulated, in ways that are often cumbersome.
In a sense, the relational model uses one construct, i.e., the relation, to represent
both relationships of entities to one another, as well as the structure of the
entities themselves. In domains where the entity structure is the dominant source
of complexity, it is natural to make a different design choice, namely to make
the “set of entities” the basic data structure. Related formalisms that also focus
on sets of entities are described in Section 2.10.

Our Approach

We start with faceted classification as our basis. A domain expert provides the
schema, i.e., a collection of orthogonal classifications of the application domain
into moderately-sized hierarchies. Our fundamental notion is the “entity set,” a
collection of (possibly heterogeneous) entities from various classes in the hierar-
chy.

A query in our “entity algebra” takes entity-sets as input, and produces an
entity-set as output. We thus achieve compositionality, meaning that the inputs
to a query and the output from a query are of the same type, so that complex
queries can be build by composing simpler pieces. Since entities of different
classes may coexist in such an entity set, the system must determine, from a
query expression and from the schema (but not from the data; see Section 2.10),
which attributes are available in all entities in the result of a query expression.

We are aiming for a language that, while allowing most queries typical of
our target domain, possesses low data complexity. A benefit of our approach is
that we guarantee linear space complexity and quadratic time complexity for
all expressible queries. In contrast, the relational model admits queries that can
take polynomial time and space, where the exponent of the polynomial can be
proportional to the number of operators in the query.

The capacity of our system to write queries whose answers represent general
relationships is limited. This is a deliberate choice. Our primary goal is to make

Querying Faceted Databases 201

the data model and query language conceptually simple and understandable to
users. Being able to represent complex relationships as well as complex entity
hierarchies would create a much higher conceptual burden on users, as well as a
higher data complexity.

The system informs the user of all attributes that are available for querying.
This can require some calculation in a faceted hierarchy, because (a) attributes
are inherited from multiple sources, and (b) constraints may imply membership
in a more specific class whose attributes then become available. From the user’s
point of view, this process is transparent: the user is presented with the set of
available attributes for each query or subquery.

We compare the expressive power of the entity algebra with the relational
algebra. In general, the expressiveness of the two algebras is incomparable. If
we focus on “flat” schemas and relational queries that return just entity-IDs, we
can quantify exactly what kinds of relational queries we are forgoing in order
to get our complexity results. The answer (projections, and joins with cyclic
hypergraphs) is reassuring, since such constructs are typically not crucial for
queries on complex hierarchies.

Our design has been implemented in two prototype systems. One system
supports an archeological database of finds that are organized into a variety
of categories. A second system supports a database of human anatomy, that is
classified into hierarchies in various ways. Both systems share a common infras-
tructure corresponding to the model described here. They differ in the definition
of the hierarchies (i.e., the schema) and in the actual data stored. Additional
domains could easily be incorporated given a schema and the corresponding
data.

In Section 2, we describe our framework, introduce the entity algebra, and
assess its complexity and expressiveness. In Section 3 we describe an implemen-
tation of our framework. We conclude in Section 4.

2 Framework

2.1 Domain Model

The units of operation for our query language are sets of entities. Each query
operates on one or more sets of entities and always returns a set of entities.
In the archaeology domain, for example, all excavation finds are entities in the
database. Each find has many attributes and one of the attributes is the entity
type, which can be object, i.e., an artifact, or context, i.e., a characteristic region
of the excavation site.

Entity sets that have explicitly stored entities in them are called classes. A
schema defines a finite set of classes. Classes have attributes associated with
them. An attribute has a name and a data type. Each entity in a class must
have a value of the appropriate type for each attribute. An entity may belong
to multiple classes. For example, an object can belong to the class “Pots” and
the class “My-Favorite-Objects” simultaneously. Such an object provides values
for all attributes of all classes it belongs to. Note that we do not require the

202 K.A. Ross and A. Janevski

entity
[ID]

Context(type=context)

has-type
[type]

Pot (category=pot)
[capacity] Kiln (category=kiln)

[temperature]

Object (type=object)
[category, location]

has-culture

...

...

...

Roman
[emperor-style]

Greek ...

S (capacity=small)

M (capacity=medium)

L (capacity=large)

Fig. 1. A Partial Archeology Schema

creation of a subclass “My-Favorite-Pots” to store favorite objects that happen
to be pots. This modeling style is what makes faceted classification different from
traditional object-oriented models of hierarchies. If we did require such classes,
there would be too many of them, as each class could be intersected with an
arbitrary set of other classes. Figure 1 shows a class hierarchy based on our
archeology application. Attributes are shown in square brackets.

Classes may also have constraints attached to them. For example, the class
“Big-Pots” might have a constraint on the capacity attribute of the pots which
can belong to that class. Note that these are integrity constraints in the tradi-
tional sense, and not view definitions. There may be large pots in the database
that, for some reason, do not belong to the “Big-Pots” class. Additional examples
of constraints appear in round brackets in Figure 1. The constraints imply that
Pots and Kilns are disjoint, while an entity may have both Greek and Roman
culture.

Classes are organized into a hierarchy. We write C1 < C2 to mean that C1 is
a subclass of C2. This is graphically represented by drawing a line with C2 above
C1. The transitive closure � of the subclass relationship is a partial order with
a single maximal element E, which denotes the class of all entities. If C1 � C2
then all attributes of C2 are also attributes of C1. Similarly, all constraints on
entities in C2 also apply to entities in C1. The maximal class E has a single
attribute called “ID”. All values of the ID attribute are unique. If an entity in
class “Pots” has ID 123, and an entity in class “Roman objects” has ID 123,
then they refer to the same real-world artifact, namely a Roman pot.

Querying Faceted Databases 203

Since different classes may use the same name for semantically different at-
tributes, we disambiguate attributes by providing as a prefix the name of the
class in the hierarchy from which a class inherited the attribute. So, if both C1
and C2 have an attribute style, and C3 � C1 and C3 � C2, then C3 has two
attributes C1::style and C2::style. In principle, C3 could also define its own dis-
tinct attribute C3::style. There is no over-riding of attributes. Also, an attribute
that is inherited from a single class on multiple paths is not replicated.

While we have not explicitly represented relationships, we note that general
relationships can be simulated by thinking of tuples as entities. This is the dual
of the relational model, in which entities are modeled as relations.

2.2 Constraints

We assume that a constraint language CL is given. A typical constraint language
may allow equalities and inequalities over integers, reals, and strings. Formulas
in CL may use as free variables expressions of the form S.A where S is an entity
set, and A is an attribute of S. The domain of S.A corresponds to the type of A
in S. We assume that CL includes logical conjunction “∧” and disjunction “∨”.

Integrity constraints from CL may be placed on classes. We use the same
constraint language to define operators such as selection; see Section 2.3.

We will say that a constraint language CL is decidable if the satisfiability of
sentences in CL is decidable. Constraint language implementations may benefit
from the use of a constraint solving system [15].

2.3 Operators and Queries

A query is formed by applying operators to entity sets to form new entity sets.
The user starts with a collection of entity sets defined by the classes in the
schema. During a query session, the user can refer to a previously defined entity
set as a subexpression. The language defined by the operators below is called
the entity algebra.

If C is a class, then the query expression C denotes all entities that are
members of a class C ′ where C ′ � C. We allow the following operators where E
and E′ are entity sets, θ is a constraint with free variables ranging over attributes
of E, and θ′ is a constraint from CL with free variables ranging over attributes
of E and E′.

– σθ(E) returns all entities from E that satisfy the condition θ.
– E�<θ′E′ returns all entities e from E for which there is some entity e′ in E′

such that (e, e′) satisfies θ′.
– E ∪E′ returns all entities that are in either E or E′; duplicates are omitted.
– E ∩ E′ returns all entities that are in both E and E′.
– E − E′ returns all entities that are in E but not in E′.

This definition of our operators is not quite complete. If E is a class, then it is
clear which attributes are available for the conditions θ and θ′ above. However,
if E is itself an expression, we have not yet explained how to determine the

204 K.A. Ross and A. Janevski

attributes available from E. For example, we need to know how to determine
which attributes are available from the expression C1 ∪C2 which admits entities
belonging to two different classes. This issue is addressed in Section 2.4.

We remark that having entities from different classes poses no structural
problem in our model. A set of entities can contain entities from many classes,
and each entity can have its own set of defined attributes. When one wants to
display the entities in the result of a query, each entity can be displayed in a
way that is appropriate to its attributes and their type(s). For our application
domains, this kind of result structure is much more convenient than a relation.
In order to show all attributes of all result entities, a relation would need to have
an attribute for each possible attribute of any entity in the result set, with most
attribute values being null.

2.4 Attributes of Expressions

The determination of which attributes are available from query expressions is
not trivial. We can state a semantic correctness criterion informally as follows:
An attribute A is correct for a query expression E if and only if, for every
possible database instance, every entity in the result of E possesses attribute
A. This criterion needs to be slightly refined to allow for the possibility that a
query expression is not well-formed. As a result, we formulate a recursive formal
definition.

Definition 1. If an entity set E is a class, then the correct set of attributes for
E is the set of attributes defined for that class in the schema.

Let F be an operator on entity-sets E1, . . . , En, and suppose that the cor-
rect set of attributes for E1, . . . , En has been determined. Suppose that F is
well-formed, i.e., that conditions in F refer only to attributes that are cor-
rect for E1, . . . , En. Then an attribute A is correct for the query expression
F (E1, . . . , En) if and only if, for every possible database instance, every entity
in the result of the query possesses attribute A.

Given this semantic correctness criterion, we wish to determine syntactic
methods for obtaining the correct set of attributes. We emphasize that it is up
to the system, and not the user, to determine the correct set of attributes. As the
user incrementally formulates each subquery, the system gives the user feedback
about which attributes are available. We illustrate some of the subtleties of
determining the correct set of attributes in the examples below.

Example 1. If E is an expression such as C − C or σfalse(C) that is guaranteed
to be empty, then all attributes are correct for E. Thus, in order to determine the
correct attributes for σθ(C) we need to know whether θ is satisfiable. Similarly,
to determine the correct attributes for C − σθ(C) we need to know whether θ is
a tautology. If class C has an integrity constraint φ, then the above statements
apply to θ ∧ φ rather than just θ.

Example 2. If C1 and C2 are classes, then C1 ∩ C2 should include all attributes
from both C1 and C2. On the other hand, C1 ∪C2 should include only attributes

Querying Faceted Databases 205

that are common to both C1 and C2, i.e., attributes that are inherited from a
common ancestor in the hierarchy. Note that there may be more than one “least”
ancestor, because the hierarchy is not necessarily a tree. A common ancestor is
guaranteed by the presence of the class E.

Example 3. In this example we show that correct attribute sets cannot be com-
puted for each subexpression separately, and unioned or intersected incremen-
tally.

Consider three classes S, M , and L representing “small,” “medium” and
“large” pots, respectively. Suppose that each such class is a subclass of the
class Pot, which has an attribute “capacity”. Each subclass has a constraint on
capacity. For example, class S would have the constraint capacity=small. For
the sake of argument, suppose that each of S, M , and L has its own additional
attributes.

Consider the expression (S ∪M)∩ (M ∪L). The correct attributes of (S ∪M)
would be the attributes of class Pot. The same reasoning applies to (M ∪ L). So
it would seem that the attributes of Pot are precisely the correct attributes of
the whole expression. This reasoning is fallacious. To see why, let us rewrite the
original expression as the equivalent expression (S ∩ M) ∪ (S ∩ L) ∪ (M ∩ M) ∪
(M ∩ L). The constraints on each subclass mean that the only nonempty term
in the union is (M ∩ M) = M . Thus, the correct set of attributes are those of
M , which is a strict superset of those belonging to class Pot.

Example 3 shows that we cannot compute the complete attribute sets via a
function g with g(X ∩ Y) = g(X) ∪ g(Y).

We now describe our initial typing algorithm for queries involving selections,
unions and intersections.

Algorithm 1. We are given an entity algebra query Q, using just selections,
intersections and unions. Compute an equivalent query T by (a) pushing the
selection conditions down to classes, using the fact that selections distribute over
unions and intersections, and then (b) rewriting the result in disjunctive normal
form so that T is a union of conjunctive queries. Replace instances of σθ(σφ(E))
by σθ∧φ(E). Suppose that T = T1∪ . . .∪Tn, where each Ti is a conjunctive query.

For each Ti, do the following. Suppose that Ti = σθ1C1 ∧ . . . ∧ σθmCm, where
each Cj is a class and each θj is a (possibly trivial) condition. If the constraints
on the respective classes are φ1, . . . , φm, then determine whether φ1 ∧ . . .∧φm ∧
θ1 ∧ . . . ∧ θm is satisfiable. If so, compute the attribute set Ai as the union of all
attributes in C1, . . . , Cm.

Return the intersection of all computed attribute sets Ai. If there were no
such sets computed, return the universal set of all attributes.

Lemma 1. Suppose that the constraint language is decidable. Then Algorithm 1
terminates, and computes exactly the correct set of attributes for query Q.

Proof. Given the decidability of the constraint language, all steps of the al-
gorithm terminate. To show that the algorithm is sound, suppose that attribute
A is output by the algorithm. Then attribute A is possessed by some class in

206 K.A. Ross and A. Janevski

each term Ti that is satisfiable. Thus, every entity satisfying Q has attribute A.
To show completeness, suppose that some correct attribute A was not output by
the algorithm. Then for some satisfiable term Ti, no class in Ti has attribute A.
Since Ti is satisfiable, there exists a database instance in which there is an entity
belonging to all classes in Ti and satisfying the selection conditions of Ti, thus
satisfying Q. However, this entity does not possess attribute A, contradicting the
assumption that A was correct for Q.

We can extend the algorithm to queries with semijoins.

Definition 2. Consider a query E1�<θE2 where E1 and E2 contain just selec-
tions, unions and intersections. Using the construction of Algorithm 1, we can
obtain a query Q2 equivalent to E2 in disjunctive normal form. We abstract Q2
into a logical formula by forming a logical disjunction of terms, one per conjunc-
tive term in Q2. Each term consists of the conjunction of the θ and φ expressions
described in the construction. Let us call the complete formula F2. We can then
“abstract” the semijoin, treating it as if it were a selection σθ′(E1), where θ′

is defined as θ ∧ F2. In this formula, free variables from E2 are assumed to be
existentially quantified.

The abstracted semijoin removes the requirement that matching tuples actu-
ally exist in E2, and replaces it with the broader criterion of whether matching
tuples could possibly exist in E2. The transformation may introduce extra con-
junctions, disjunctions, and free variables, but the decidability of satisfiability
in the constraint language is not compromised.

Example 4. Let class C1 have an attribute X, and suppose classes C2 and C3
both have attributes Y and Z. Suppose that C2 has an integrity constraint
stating that Y = Z. Then

C1�<X=Y (C2 ∩ σZ<3(C3))

can be abstracted as σθ(C1), where θ is

∃Y, Z : (X = Y) ∧ (Y = Z) ∧ (Z < 3)

which can be simplified to X < 3.

Lemma 2. A semijoin query is satisfiable only if its abstracted semijoin query
is satisfiable.

Proof. Suppose the semijoin query E1�<θE2 is satisfied by tuples e1 and e2 in
E1 and E2 respectively in some database instance. Then e1 satisfies the abstracted
query, with e2 providing the satisfying values for the existentially quantified vari-
ables.

The converse of Lemma 2 does not hold. To see this, consider the query
(S ∪ M)�<ID=IDM , where S and M represent classes of small and medium-
sized pots respectively. The query is equivalent to M , since S and M are disjoint.

Querying Faceted Databases 207

All attributes of M are correct. However, the abstracted query does not “notice”
that the existence of a tuple in M excludes that tuple from S.

Algorithm 1 is extended by first applying the transformation of Definition 2
to each semijoin in the query in a bottom-up order. The transformed query
contains only unions, intersections and selections, and can be processed through
Algorithm 1 as before. The soundness argument is a simple extension of Lemma 1
using Lemma 2. Because of examples like those mentioned above, the extended
algorithm is no longer complete.

Subtraction seems intrinsically harder than the other operations, due to its
nonmonotonicity. A corresponding abstraction process requires a constraint lan-
guage CL that is closed under negation and universal quantification. Further, we
cannot analyze subexpressions of a query independently, because one subexpres-
sion might require the absence of a certain tuple for satisfiability, while another
might require its presence.

For subtraction we use a sound, but not necessarily complete method for
determining the attribute set. For a query Q that includes subtraction, we form
a query Q′ by eliminating all subtractions from Q. Every subexpression of the
form E1−E2 in Q is replaced simply by E1 in Q′. We then compute the attributes
of Q′ as above.

The worst-case query complexity of Algorithm 1 is at least exponential in
the size of the query, since it has to perform a transformation into disjunctive
normal form. The complexity of satisfiability checking in CL also has obvious
implications for the complexity of Algorithm 1.1 Nevertheless, we expect queries
to be short, and Algorithm 1 to be useful in practice. In Section 2.5 we show
that the language has low data complexity.

Example 5. Consider the schema of Figure 1 and suppose we wish to find all
kilns located within a certain distance t of any medium-sized Roman pot. This
kind of query cannot be answered by using a conventional search facility; a query
language is required. In the entity algebra, we could express this query as

Kiln �<θ

(
σcapacity=medium(Pot ∩ Roman)

)
where θ is “d(Kiln.location,Pot.location) < t.” All attributes of both Pot and
Roman are available for use in the selection and semijoin conditions.

The use of a sound but not necessarily complete algorithm for determining
the correct set of attributes (for queries with semijoins and/or difference) is de-
liberate. Our choice allows us to reason solely in the constraint language, without
having to perform more elaborate reasoning about the entity algebra itself. This
is a more practical short-term goal, given our intention to implement this rea-
soning mechanism in a functional query interpreter, described later. When the
algorithm is not complete, entities in a query result Q may share an attribute A

1 In the event that CL is not decidable, then we are forced to settle for sound but
incomplete satisfiability testing in Algorithm 1.

208 K.A. Ross and A. Janevski

that the system does not perceive is shared. There is a simple way for users to
make this attribute available for other queries, namely to intersect Q with the
class defining A. Thus, in practice, users are not prevented from writing certain
queries.

On the other hand, reasoning solely within the constraint language does not
allow the attribute-determining algorithm to take into account constraints (such
as foreign key constraints for relationships) that can be expressed only within
the entity algebra. Developing algorithms that allow complete reasoning about
entity algebra expressions is an interesting direction for future work.

2.5 Data Complexity

One of our initial goals was to choose a language with low data complexity. In
this section we demonstrate that all entity algebra queries can be answered in
linear space complexity (with constant of proportionality 1), and quadratic time
complexity.

Lemma 3. Entity algebra queries generate output that is no larger than the total
size of the union of the input classes.

Proof. By induction, the output must be a subset of the union of all inputs.

Lemma 4. Union-free entity-algebra queries generate output that is a subset of
at least one of the input classes.

Proof. By induction; this is a property of all operators other than union.

Lemma 5. All entity algebra queries can be computed in time at most quadratic
in the total size of the input.

Proof. Selection can be computed in linear time. Union, intersection and dif-
ference can be computed in O(n log n) time, where n is the total size of the inputs.
Semijoins can be computed in O(n2) time by simply comparing all pairs of tuples.
Given that the size of the output of a subexpression is bounded by the size of its
inputs (Lemma 3), the whole query takes at most quadratic time.

2.6 Language Extensions

Because one of our initial goals was to obtain low data complexity, we do not con-
sider desirable language extensions that increase the data complexity. Similarly,
our model is centered around the notion of always returning a set of entities in
response to a query. An extension that broadened the types of results, such as to
return pairs of entities, would weaken the model. We believe that the uniformity
and simplicity of input and outputs makes the conceptualization task easier for
the user.

We discuss two language extensions that retain the spirit of the entity algebra.
The first is the capacity to define new attributes as views. For example, suppose
that each member of class object has a recorded (x, y, z) position at which it
was discovered, in a local coordinate system. We could define new global posi-
tion attributes (gx, gy, gz) derived from (x, y, z) and the reference point entity

Querying Faceted Databases 209

coordinates. (Formally, this feature would entail a generalization of the semi-
join operator.) These new attributes would be available for all members of class
object, including members of its subclasses. If the view was registered in the
database schema, then the set of available attributes for entities in each class
would be extended appropriately.

The second extension is a form of aggregation. The idea is to allow a limited
form of aggregation that corresponds (in relational terms) to grouping by the
entity-ID. Thus we could define, for each person working on the site, the number
of discoveries made by that person. The result would be represented as a view
attribute on class person. To achieve this functionality, we again extend the
semijoin operation to allow an optional aggregate computation over the records
of the second entity set matching each entity in the first entity set. Neither of
these extensions change the asymptotic space or time complexity of the language.
They also preserve the central theme of inputs and outputs being entity sets.

2.7 Expressive Power

The expressive power of the entity algebra is incomparable with relational al-
gebra. Relational algebra is capable of expressing queries that return tuples of
entities, which the entity algebra cannot. Its space complexity and time complex-
ity are polynomial, as opposed to the linear space and quadratic time complexity
of the entity algebra. On the other hand, relational algebra (without nulls) is not
capable of expressing a query analogous to Example 3 in which the attributes of
class M are available in the result.

Nevertheless, we can compare the expressive power of the two languages in
the context of a flat hierarchy. Imagine each class as a relation, and consider a
query expressed in relational algebra over those flat relations. For comparability,
suppose we limit ourselves to relational queries that return a single column of
entity-IDs. Under what circumstances can such a query be expressed in our
language? The answer to this question will give us a sense of what kinds of
relational queries we are giving up in order to obtain our more limited language.

Lemma 6. Let S be a relational schema in which every relation has a column
named ID that is known to be a key. Let Q be a relational algebra query that
involves only joins, and suppose R.ID is a column of the output of Q, where R
is a relation in S. Then πR.ID(Q) is expressible in the entity algebra if the join
hypergraph [20] for Q is acyclic.

Proof. This result uses a result of Yannakakis [22] (see also [20]). The joins
can be ordered so that “ears” [20] of the join hypergraph are removed one by one,
ending with R. Because of the special form of the projection (one attribute from
relation R), no attributes from an inner subexpression are needed in an outer
subexpression, and joins can be replaced with semijoins.

Lemma 6 suggests that the entity algebra cannot express cyclic joins. The
intuition is given in Example 6. Since queries with cyclic hypergraphs are rare,
this loss of power does not seem like a major sacrifice.

210 K.A. Ross and A. Janevski

Example 6. Consider the relational query

πR.ID(R ��(R.A=S.B)∧(R.C>T.D) (S ��S.F=T.G T)).

The join hypergraph is cyclic. There is no way to express this query using only
semijoins, because no matter which pair of relations we semijoin first, we need
attributes from both in the remainder of the query. If we include two semijoins,
(e.g., S�<T and T�<S) then we lose the association between the S and T tuples.

Theorem 1. The entity algebra can express any relational query that can be
written as a combination, via the set operations union, intersection, and differ-
ence, and via local selections, of queries satisfying the conditions of Lemma 6.

Proof. Local selections can be pushed down to base relations. Each component
query can then be expressed via semijoins as shown in Lemma 6. The set opera-
tions operate on just IDs, and can be simulated by corresponding set operations
in the entity algebra.

Since set operations distribute over joins, the class of queries that can be
written as described in Theorem 1 is fairly broad. Conspicuously absent from
Theorem 1 is the projection operator. Example 7 shows an example where the
entity algebra cannot express a relational query involving projection.

Example 7. Consider the relational query

πR.ID(R ��(R.C>F) (πF S − πF T))

where attribute F (belonging to S and T) is distinct from ID. The entity algebra
does not provide facilities for projection, and difference can only be applied to
entity sets including an ID attribute. Thus we cannot write a subexpression
corresponding to (πF S − πF T). Such an expression would not even be an entity
set. Further, since R�<θ(S − T) is not, in general, equivalent to (R�<θS) −
(R�<θT), we cannot write this expression as the difference of expressions that
include an ID attribute.

The lack of a projection operator means that all operations apply to entities
“as a whole” and not to arbitrary subsets of attributes. This is a reasonable
choice in our context, in which entities are the central concept, and manipulations
of attributes without reference to their corresponding entities is unlikely to be
common.

2.8 Virtual Classes

Consider Example 3, and suppose that we wish to insist that a pot must be clas-
sified as either small, medium, or large. If we could represent such information,
then we should be able to infer that the expression

σcapacity=medium(Pot)

Querying Faceted Databases 211

has type M . Without the extra information, there may be a pot with medium
capacity in class Pot (and not in its subclasses), meaning that the type of the
expression above would be Pot rather than M .

The intuitive way to specify this extra information would be to formulate a
sentence in the constraint language CL stating that any member of class Pot
must be in S ∪ M ∪ L. Because such a constraint relates more than one class,
it places additional requirements on CL beyond those we have assumed so far.
Further, an explicit constraint relating Pot with S ∪ M ∪ L is vulnerable to
schema changes. If another category “extra-large pots” was to be added as a
subclass of Pot, then the constraint on Pot would also need to be changed.

Rather than requiring an extended constraint language, we propose a simpler
solution to represent the kind of constraint mentioned above. A non-leaf class
may be declared as virtual, which means that it has no explicit members beyond
those of its subclasses. In order to achieve the correct type for a query expression
Q, we rewrite Q. A virtual class C mentioned in Q is replaced by the expression
C1∪. . .∪Ck, where the Ci are the subclasses of C. Subclasses that are themselves
virtual are recursively rewritten. The resulting query Q′ is equivalent to the
original query Q on instances in which virtual classes contain no members beyond
those of their subclasses. We then type Q′ as described in Section 2.4.

Example 8. Consider the query Q given by

σcapacity=medium(Pot)

on the schema of Example 3, but in which we declare class Pot as virtual. We
rewrite Q as Q′, i.e.,

σcapacity=medium(S ∪ M ∪ L).

According to Algorithm 1, the type of Q′ is M .

2.9 Presentation Layer

While writing queries using the entity algebra allows one to define entity sets in a
compositional way, users may like to display an answer set using a more elaborate
language. Entities should be viewed in ways appropriate to their types. For ex-
ample, entities with image attributes could have those images displayed. Entities
with foreign keys to other entities may have the referenced entity displayed as
a component of the original entity. Entities belonging to multiple classes should
have the individual displays concatenated in some meaningful way. Entities in
an entity set may be heterogeneous; each entity in the set may be displayed
differently.

In principle, the presentation language may be more expressive (and have
higher complexity) than the entity algebra. We are willing to accept this di-
chotomy because (a) the presentation language does not have to be composi-
tional, (b) the purpose of the presentation language is different from the query
language, and (c) the fundamental constructs of the language may be different.

212 K.A. Ross and A. Janevski

A familiar example of such separation is the “order by” clause in SQL, which
can only be applied at the top-level of a query. A relation is fundamentally an
unordered structure. Yet, for the purposes of presentation, users benefit from
getting their answers in a particular order. Geographical Information Systems
provide another example, where the rendering of the query results is (largely)
independent of the definition of the query.

The presentation layer can be developed separately from the query language.
Custom presentations of entity sets can be applied at each point in a sequence of
intermediate queries, but they will not affect the outcome of subsequent query
operations applied to these intermediate queries.

In Section 3 we describe an implementation that makes particular choices
about how entities are presented. However, alternative presentation language
designs are possible.

2.10 Related Work

Our work is orthogonal to work that looks at how to model domain hierarchies
using XML, RDF [2], OWL [5], or some other standard interchange format.
Entity identifiers could be URIs. In principle, our query system could use any
kind of hierarchy or identifier representation, although it is likely to work best
for a hierarchy representation that has an explicitly faceted organization, such
as XFML [1].

In systems like Flamenco, there is no formal schema. Entities are tagged with
metadata describing their attributes. After a partial search that results in some
entity set S, each attribute mentioned by some entity in S is available for further
querying. (When a user uses such an attribute, he or she is implicitly limiting
the result set to entities having that attribute.) This kind of approach is typical
of Information Retrieval applications in which one does not have control over
the underlying data. It is also typical of semistructured data models and query
languages, although see [17, 18] for ways to infer an approximate schema from
semistructured data.

In contrast, we take an approach more typical of conventional structured
databases, in which there is a formal schema, and the integrity of the data
with respect to the schema can be ensured. For us, an attribute cannot be
accessed unless we know that all entities in the underlying entity set possess the
attribute. Advantages of our approach include: (a) The correctness of a query
statement can be ensured at compile-time, without running intermediate queries.
A single overall plan for the final query can be generated, rather than forcing a
subexpression-by-subexpression evaluation. (b) The structure of the output of a
query does not change in response to data updates. This is particularly important
for the correctness of view definitions. (c) Schema conflicts can be resolved. For
example, a schema-less system would have difficulty disambiguating metadata
tags that happened to share the same attribute name.

Note that we could simulate the Flamenco-style approach by showing all at-
tributes of all entities as part of the presentation language; to process a selection

Querying Faceted Databases 213

on an attribute A present in just some members of an entity set S, the system
can first intersect S with the class defining attribute A.

Tzitzikas et al. describe techniques for identifying meaningful compound
terms (i.e., intersections of classes) in a faceted taxonomy [19].

Object-oriented models [16] organize the data hierarchically, and make “ob-
jects” the central concept. Like our proposal, every object has a unique identifier.
However, object-oriented models are usually extensions of object-oriented pro-
gramming languages, in which an object has a single type. The only way to
obtain objects with the characteristics of multiple types is to define new classes
that inherit from multiple parent classes (multiple inheritance). In general, such
an approach requires a combinatorial number of classes, corresponding to all
semantically possible combinations of classes. More sophisticated approaches to
multiple inheritance, such as mixins [11], could be used to simulate the entity
algebra, but at the cost of significant conceptual complexity.

Our work can be viewed as an algebraic formulation of a limited description
logic [9, 10, 12], with roles being representable by the constraint language. The
algebraic formulation allows us to explicitly compare the entity algebra with the
relational algebra, and to directly use database engines that implement relational
operations. Our representation of hierarchies is similar to that of description
logics and conventional semantic data models [14]. An interesting direction for
future work is to clarify the expressive power of the entity algebra relative to
various limited description logics.

3 Implementation

We now give a brief overview of our implementation to demonstrate how it sup-
ports the entity algebra. We have implemented two applications, one based on
human anatomy and one based on an archeological excavation. For brevity, we
describe just the archeology application, which is being used for a real archeo-
logical excavation [13].

Our system stores its underlying information in a special format using a com-
mercial relational database system. A query engine interacts with the underlying
database to implement the entity algebra operations. A lightweight client, im-
plemented using Java Servlets, provides a user interface that interacts with the
query engine over the Internet through a browser. Data cannot be directly up-
dated; it may be periodically refreshed from the external source database(s).

The query engine takes a query formulated in the entity algebra, expands all
subexpressions, and converts the entire query into an SQL query over the stored
data. The results of the query are returned to the user interface. The current
implementation uses a very simple constraint language: a basic constraint is an
equality between an attribute value and a constant. Distinct constants are not
equal. Basic constraints can be combined using conjunction and disjunction.

The user interface uses text to express query operations rather than explic-
itly presenting the algebra, so that users familiar with the application domain
(but not with the algebra) can use the system effectively. The interface is de-

214 K.A. Ross and A. Janevski

Fig. 2. User interface screenshot

signed so that complex queries can be assembled from simpler pieces, where
each piece corresponds to a subexpression in an entity algebra query. Users have
access to past query results when formulating subsequent queries. The user in-
terface supports shortcuts, so that frequently accessed classes or subexpressions
are pre-loaded into the list of past query results. Commonly used relationships
are directly expressed. For example, if selecting objects based on the distance
between the object’s location and some other location is common, the distance
function on points is made available for use within semijoin operations.

The presentation layer is implemented through code plug-ins. As the client
application is implemented using Java servlets, the details and style of the pre-
sentation can include formatted text, images, audio, and video.

Querying Faceted Databases 215

Figure 2 shows a screenshot of the client user interface for the query system.
It is a Web-based interface that can be accessed from any conventional Web
browser. There are three frames, A, B, and C. The query manipulation area
(Frame A) lists the classes as well as the entity sets generated from the user
interaction. The content of this frame depends on the number and type of entity
sets, and on the stage of completion of a formulated query. The Tools bar con-
tains the currently available actions. The entity sets listed in this frame can be:
classes (dark grey background), temporary queries (light grey background), or
saved queries (medium-level grey background). This frame is also used to specify
operators and attributes while building a new query. For each class or individual
entity set, the user interface provides type information in form of a sequence of
visual icons. Each type is associated with a number of possible actions either for
building a new query, or obtaining additional information.

After executing a query, the resulting entity set is displayed in the output
frame (Frame B). This frame also provides tools to select the mode of presen-
tation of the entity set. Any entity set can be viewed in this frame by clicking
on the list action icon () in Frame A or Frame B. Frame C contains a simple
browser with which the user can navigate through the parts of the hierarchy
that were used to arrive at a particular entity set.

3.1 Walk-Through Example

In this section, we will demonstrate the workings of the system by example. We
use domain data based on the class hierarchy in Figure 1. We show how the
user can find all Kilns found near medium-sized Roman Pots, i.e., Example 5.
An operation entity set1 near entity set2 is available for all Objects based on the
location attribute and a distance parameter. Knowing this, we can find Kilns
that are near some object in an entity set with a single query. But we must first
build a query that will give us all medium-sized Roman Pots. Capacity is an
attribute of Pots. We can either first find all medium-sized Pots then select only
those that are also Roman, or first find all Roman Pots then select only those
that are medium sized. For this demonstration, we choose the second option.

The interface would start in a state like that of Figure 2, except that only
the first ten classes would appear in Frame A. We use the Combine tool (with
the AND option) to effectively intersect the classes “Pots” and “Roman”. The
Combine tool allows ANDs and ORs of an arbitrary number of entity sets. The
interface at this point is shown Figure 3.

As shown in Figure 3, Frame A now contains an additional entity set, and
Frame B describes the set in terms of entity count, and a textual description
of the query that built the set. The newly created entity set also demonstrates
the automatic typing, which is evident from the icons in each entity set entry in
Frame A. Each icon corresponds to one node in the type hierarchy, and the icons
displayed are the union of all icons found on all paths from the entity set to the
root of the type hierarchy. For example, the Object type is visualized with the
icons , the type Pots has icons , and the Roman entity set contains

216 K.A. Ross and A. Janevski

Fig. 3. Intermediate Query: Roman Pots

icons . The new entity set is of type Pots AND Roman, and therefore is
represented by a collection of all icons for the two classes: .

We can select on the attributes of our intermediate entity set by clicking
on the find action button () for the last row of Frame A in Figure 3. The
attributes displayed are precisely those corresponding to the composite type
of the entity set, and therefore include the capacity attribute. We choose the
condition “capacity=medium”, which appends another entity set to Frame A
corresponding to medium-sized Roman Pots.

To complete the query, we click on the find action button () for the Kiln
class. The options include “Find all Kilns in the same location as . . . ”, which is
chosen. The system then displays all entity sets that could be used correctly to
complete this sentence, i.e., all entity sets having a location attribute. There are
six of these, including the entity set just constructed for medium-sized Roman
Pots, which we select. Figure 4 shows the final result after we have chosen to
save the query (so that it will appear in the user’s subsequent sessions) using
the name “Kilns near medium-sized Roman Pots”.

Querying Faceted Databases 217

Fig. 4. Final Query Result: Kilns near medium-sized Roman Pots

Our system resolves types as discussed in Section 2.4. The intersection of
“Pots OR Kilns” and “Pots OR Jewelry” is determined to have the attributes of
Pot, based on a constraint that Pots, Kilns, and Jewelry are mutually exclusive.

4 Conclusions

We have described the entity algebra, a query language designed for posing
queries over complex faceted hierarchies. We have examined its complexity and
expressive power. It achieves linear space and quadratic time data complexity.
Yet it retains most of the expressive power of the relational algebra for queries
returning sets of entities; only projections and joins with cyclic hypergraphs are
“excluded.” An implementation of the language is described, with particular
focus on an application in archeology.

218 K.A. Ross and A. Janevski

References

1. eXchangeable Faceted Metadata Language. http://www.xfml.org/.
2. Resource description framework (rdf):concepts and abstract syntax.

http://www.w3.org/TR/rdf-concepts/.
3. The FacetMap project. http://facetmap.com.
4. The Flamenco project. http://bailando.sims.berkeley.edu/flamenco.html.
5. Web ontology language. http://www.w3.org/TR/owl-features/.
6. H. P. Adkisson. Use of faceted classification, 2004.

http://www.webdesignpractices.com/navigation/facets.html.
7. M. J. Bates. How to use controlled vocabularies more effectively in online searching.

Online, 12(6):45–56, 1988.
8. M. J. Bates. Indexing and access for digital libraries and the internet: Human,

database, and domain factors. Journal of the American Society for Information
Science, 49(13):1185–1205, 1998.

9. A. Borgida. Description logics in data management. IEEE Transactions on Knowl-
edge and Data Engineering, 7(5):671–682, 1995.

10. A. Borgida, M. Lenzerini, and R. Rosati. Description logics for databases. In The
Description Logic Handbook, pages 472–494. Cambridge University Press, 2002.

11. G. Bracha and W. Cook. Mixin-based inheritance. In Proc. OOPSLA/ECOOP,
ACM SIGPLAN Notices 25(10), pages 303–311, 1990.

12. D. Calvanese, G. De Giacomo, and M. Lenzerini. Description logics: Foundations
for class-based knowledge representation. In Proc. of the 17th IEEE Sym. on Logic
in Computer Science, pages 359–370, 2002.

13. L. Giddy. The Survey of Memphis II. Kom Rabi’a: The New Kingdom and Post-
New Kingdom Objects. Egypt Exploration Society, London, 1999.

14. R. Hull and R. King. Semantic database modeling: Survey, applications, and re-
search issues. ACM Computing Surveys, 19(3):201–260, 1987.

15. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language and
system. ACM Transactions on Programming Languages and Systems (TOPLAS),
14(3):339–395, 1992.

16. A. Kemper and G. Moerkotte. Object-Oriented Database Management. Prentice
Hall, 1994.

17. S. Nestorov, S. Abiteboul, and R. Motwani. Infering structure in semistructured
data. SIGMOD Record, 26(4):39–43, 1997.

18. S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured
data. In Proceedings of the ACM SIGMOD conference, pages 295–306, 1998.

19. Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An algebraic ap-
proach for specifying compound terms in faceted taxonomies. In 13th European-
Japanese Conference on Information Modelling and Knowledge Bases, pages 67–87,
2003.

20. J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer
Science Press, Rockville, MD, 1989. (Two volumes).

21. B. S. Wynar. Introduction to Cataloging and Classification. Libraries Unlimited,
Inc., 8th edition, 1992.

22. M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the
VLDB conference, pages 82–94, 1984.

23. K. P. Yee et al. Faceted metadata for image search and browsing. In ACM CHI,
2003.

Constructing and Querying Peer-to-Peer
Warehouses of XML Resources

Serge Abiteboul1, Ioana Manolescu1, and Nicoleta Preda1,2

1 INRIA Futurs & LRI, PCRI, France
firstname.lastname@inria.fr

2 Université de Paris-Sud, France

Abstract. We present KadoP, a distributed infrastructure for ware-
housing XML resources in a peer-to-peer framework. KadoP allows users
to build a shared, distributed repository of resources such as XML doc-
uments, semantic information about such documents, Web services, and
collections of such items. KadoP2P builds on distributed hash tables as
a peer communication layer, and ActiveXML as a model for constructing
and querying the resources in the peer network. We describe KadoP’s
data model, query language, and query processing paradigm.

1 Introduction

The increasing popularity of P2P architectures and Web services as a data ex-
change mechanism open up new possibilities for building very large-scale data
management applications. We describe KadoP12, a system for constructing and
maintaining, in a decentralized, P2P style, a warehouse of resources. By resource,
we mean: data items, such as XML or text documents, document fragments, Web
services, or collections; semantic items, such as simple hierarchies of concepts;
and relationships between the data and semantic items. KadoP allows a user
to perform the following tasks:

– publish XML resources, making them available to all peers in the P2P net-
work and in particular maintain indexing up to date;

– search for resources meeting certain criteria (based on content, structure as
well as semantics of the data);

– declaratively build thematic portals from resources of the system.

KadoP leverages several existing technologies and models. First, it relies on
a state-of-the art Distributed Hash Table (DHT) implementation [6] to keep the
peer network connected. Second, it uses the power of ActiveXML (AXML) [1],
which allows specifying parts of a document as intensional (obtainable by ac-
tivating or finding service calls). In this context, Active XML is used (i) for

1 KadoP stands for: Knowledge and data on a P2P network.
2 This work is partially funded by the French government research grant ACI MDP2P.

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 219–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

220 S. Abiteboul, I. Manolescu, and N. Preda

intensional indexing; and (ii) for supporting a tool to declaratively specify a the-
matic portal, which can be thought of as a partially materialized view over the
XML resources of the P2P network. Finally, KadoP employs sophisticate XML
indexing and optimization techniques [3] (not covered here).

This document is structured as follows. Section 2 describes the KadoP’s
data model, and Section 3 its query laguage. We present the system architecture
in Section 4, and discuss related work and perspectives in Section 5.

2 KadoP Data Model for Distributed Data and
Knowledge

KadoP’s data model can be declined in two levels. The internal data model
is generic, application-independent, and focused on simple resource types. The
application-level data model can be built as a customized view on top of the
internal data model, including e.g. more complex semantic relationships.

The Internal Data Model. The KadoP internal data model, depicted in
Figure 1, supports the types of resources that can be published and searched for
in our system. We distinguish two kinds of resources: data items, and semantic
items. Data items (at left in Figure 1) correspond to various resource types:

– A page is an XML document. Pages may have associated DTDs or XML
schemas describing their type; we treat DTDs as sources of semantic items
(see further). Other formats such as PDF can be used; we ignore them here.

– We consider data with various granularities. A page fragment is a subtree
of a page and a collection is a user-defined set of data items. Inside pages,
we also consider element labels, attribute names, and (composed) words. We
will ignore here issues such as stemming and detecting composed words.

PID

Page

name
contents

1:1

1:N

PID
1:N 1:1 name

Page Fragment

query

1:N

1:N

XML Web Service

PID
name

Collection

PID
name

Tag Word

1:1

1:N

1:1 1:1

1:N

1:M

1:N

1:M

partOf

1:N 1:N 1:N

1:M 1:M

partOf partOf

partOf partOfpartOf

partOf partOf partOf

partOf

Concept

PID
name

narrowerThan

relatedTo

relatedTo

relatedTo

1:M

1:M

1:M
1:M

1:M

relatedTo

1:M

relatedTo

relatedTo

1:N

1:N

1:N

1:N

1:N

1:N

Fig. 1. E-R representation of the internal KadoP data model

Constructing and Querying Peer-to-Peer Warehouses of XML Resources 221

papers

paper

author author

"Titi"

paper

"Toto"
title

"All about databases"

(DBLP, "papers.xml")

...

publications

relatedTo LRI:Publications(DBLP,"papers.xml")//paper
(Gemo, "structure.xml")//projects/AXML
Atlas:DatabasePeopleCollection

relatedTo LRI:Projects
relatedTo LRI:People

...

(LRIGroup,"group.xml")//people/* partOf Atlas:DatabasePeopleCollection

Peer DBLP

members

GemoGroup

projects

AXML

MDP2P XIME−Pmember

"Titi"

(Gemo, "structure.xml")

member

"Toto"

Peer Gemo

"Julie" "Jules"

people papers teaching

group

(LRI, "group.xml")

Peer LRI

LRI:People
LRI:Publications
LRI:Projects

Gemo:Student
Gemo:Person

Gemo:Student narrowerThan Gemo:Person

members

AtlasGroup

projects publications

MDP2P

(Atlas, "group.xml")

Peer Atlas

Atlas:DatabasePeopleCollection

(Atlas,"group.xml")//members/*

Atlas:DatabasePeopleCollection relatedTo Gemo:Person

partOf Atlas:DatabasePeopleCollection

Atlas:collab

narrowerThan Atlas:collab

Atlas:collab partOf1
Atlas:collab 2 partOf

Gemo:Person narrowerThan Atlas:collab

LRI:People narrowerThan Atlas:collab
1

2

Atlas:collab

Atlas:collab

Atlas:collab

1

1

1

Fig. 2. Sample KadoP instance of the internal data model, over four peers

– Finally, a web service is a function taking as input types XML fragments,
and returning a typed XML fragment.

Any data item is uniquely identified by an PID (peer ID) and a name. The
PID provides the unique name (logical identifier) of the peer that has published
the data item, and where the item resides; names allow distinguishing between
data items within the peer. Data items are connected by partOf relationships, in
the natural sense: thus, a word is part of a fragment, a fragment part of a page
etc. Furthermore, any type of data items can be part of collections. A data item
residing on one peer may be part of a collection defined on another peer.

Semantic items, depicted at right in Figure 1, consist of concepts, connected
by two types of relationships: partOf, and narrowerThan. A graph of concepts,
structured with narrowerThan links, is called a (concept) hierarchy. A graph of
concepts connected through partOf edges is called a (concept) schema.

Particular knowledge items are derived by an implicit conversion of DTDs
associated to pages. From each element type τ in the DTD, we create a concept
cτ ; similarly, for every parent-child relationship between DTD types τ1 and τ2,
we create a partOf relationship between cτ1 and cτ2 . This implicit conversion
reflects the fact that DTD types may correspond to interesting concepts, and
parent-child relationships in DTDs typically reflect complex object nesting.

A data item may be connected to a concept via an relatedTo relationship, re-
flecting the fact that the data item is pertinent to the concept. Such relationships
may be produced in three ways. First, they may be specified by a user. Second,
they may be inferred automatically between fragments matching a DTD type τ ,
and the corresponding concept cτ . Third, they can be derived automatically e.g.
by a document classifier, or using relevance functions: above a given threshold
of relevance of a data item to a concept, a relatedTo relationship is created.We
focus on the exploitation of relatedTo links.

Application-Level Data Model. For a specific application, it may be in-
teresting to define semantically rich relationships between concepts. Let Pr:rel

222 S. Abiteboul, I. Manolescu, and N. Preda

defined by peer Pr, be a specialized binary relationship between concepts. To
record this relationship, KadoP creates a new concept Pr:crel. Each time an
application defines an instance of Pr:rel relationship, three new concepts are
created: Pr:c

p
rel which stands for that instance of Pr:rel (p represents instance’s

identifier), and Pr:crelk, k ∈ 1, 2, which stand for the roles (two in this case) of
concepts involved in rel. To connect P1:c1 to P2:c2 under Pr:crel, KadoP creates
the following relationships: narrowerThan(Pr:crel, Pr:c

p
rel), narrowerThan(Pk:ck,

Pr:crelk), partOf(Pk:ck, Pr:c
p
rel) where k ∈ 1, 2.

Example. Figure 2 shows a sample instance of the KadoP internal data model,
over four peers corresponding to French database labs. A page is depicted as a
tree; next to the root, we show the PID and the page name. Rounded boxes
contain concepts and relationships between them, published on each peer. Col-
lections, and collection memberships, are listed in italic font, and relatedTo
statements appear in diamond-shaped boxes. Now assume on the Atlas peer
we declare the binary relationship collaborates (collab). The instance collabo-
rates(Gemo:Person, LRI:People) of this relationship yields the concepts shown
in (Figure 2, Atlas peer).

3 KadoP Query Language

The KadoP query language allows retrieving data items, based on constraints on
the data item and on their relationship with various concepts. A KadoP query
Q is a tree pattern, whose nodes represent data items, and whose edges represent
containment relationships among the nodes. Each node may be annotated with:
(i) a data item name (tag, document, or collection name) n, or with a ∗ name;
(ii) semantic constraints of the form relatedTo c, where c denotes a concept,
using a name, and either a PID or a ∗; (iii) textual constraints of the form
contains w, where w is a word. We distinguish a single return node NR of Q.

Let G be the instance of the internal data model, consisting of data items,
semantic items, and relationships from the whole KadoP network. A embedding
of Q in G is a function φ from Q to G, under the following conditions. First,
φ must preserve partOf relationships among data items: if q1 is a child of q2 in

Q2

MDP2P

projects

*

members

relatedTo(*:project)

*

*

relatedTo(*:publications)

contains("Toto")title

Q1

C
om

m
un

ic
at

io
n

 s

er
vi

ce
s

Q
ue

ry
 s

er
vi

ce

User interface

publish(data/semantic item)

query processor
DistributedPublisher

DHT module

Resource store Index services

query

interconnection (DHT)
Peer

Fig. 3. KadoP queries (left); sketch of KadoP system architecture (right)

Constructing and Querying Peer-to-Peer Warehouses of XML Resources 223

Q, then there is a chain of partOf relationships going from φ(q1) to φ(q2) in G.
Second, φ must preserve the node constraints specified by the query: for a query
node q, φ(q) respects all the tag, text, or semantic constraints associated to q.

We now define the exact and extended semantics of Q. With exact semantics,
for each embedding φ, Q returns the node obtained associated to NR by φ. The
extended semantics of Q is obtained by relaxing the definition of embeddings, to
take into consideration also narrowerThan relationships. Let q ∈ Q be a query
node, annotated with the constraint relatedTo c. With extended semantics, φ
can associate a node n ∈ G to q if n is an instance of a concept c′, such that a
chain of narrowerThan relationships connects c and c′.

Example. Figure 3 (left) shows sample KadoP queries; query nodes are la-
belled by their names, and the returned node is shown in a dashed-line box. Q1
returns the title of all papers containing “Toto”. Note that we refer to papers
as instances of the concept “publications”. On the configuration in Figure 2,
this concept is defined on the LRI peer; thus, Q1 returns the titles of DBLP pa-
pers containing “Toto”, since they are instances of LRI:publications. Q2 returns
all project members, from labs that are members of MDP2P. In Figure 2, this
denotes members of the AXML, MDP2P, and XIME-P projects of Gemo.

4 System Architecture and Functionalities

A KadoP peer consists of several modules, depicted at right in Figure 3.
The DHT is in charge of providing the indexing of resources at the physical

level. This is achieved by supporting a hash table, in which key-value pairs can
be registered using put(k,v), while key lookup can be performed using get(k),
with guaranteed bounds on the number of messages exchanged.

Users’ requests of publishing a resource are processed by the Publisher. First,
the resource is serialized in a standard XML form and written in the local Re-
source Store. Resource storage remains thus under the control of the publishing
peer. However, the resource index must be distributed over the DHT, to enable
all peers to look up resources. To that purpose, the Publisher extracts from the
resource a set of key-value pairs describing the resource and its location on the
peer, and calls the put service of the DHT layer. The publisher is implemented
as a set of AXML documents [1]; it maintains the P2P index up to date using
periodic calls to the put service.

To answer a user query, search keys are extracted from the query, and a set of
corresponding calls to the get DHT service are issued. The calls return locations
of resources in the KadoP network, which may contribute to the query result.
The Distributed Query Processor then calls the Communication Services, asking
for the transfer of the relevant resources to the query peer, and combines them in
the final query result. Every peer provides a Query Web Service, which takes as
input a KadoP query, evaluates it as above, and returns its (XML-ized) result.
A portal on a given topic can be easily built as an intensional AXML document:
an XML document including calls to the Query Service [1].

224 S. Abiteboul, I. Manolescu, and N. Preda

Key-Value Indexing of Graph-Structured Resources. The crux of this
architecture lies in the choice of the key-value pairs to be inserted in the DHT
P2P index. The idea is that search criteria (such as category or tag names, precise
words etc.) make up keys, while resource location (PID and precise location of
a resource in the peer) make up the associated values. The complete instance G
of the internal data model over all peers is a graph, with 7 types of nodes and
3 types of edges (corresponding to the entities, resp. relationships in Figure 1).
Key-value pairs are extracted from G as follows:

– For each node n ∈ G identified by PID:name, we compute the key con-
cat(nType,PID,name), where nType is a 3-bit prefix specifying the node type.
This key can be used for a precise lookup, when both PID and name are
known. We also compute the key concat(nType,∗,name), to be used for lookups
by name only. With both keys, we associate the value concat(PID,location).

– For each edge e ∈ G, connecting the nodes n1 (identified by PID1: name1)
and n2 (identified by PID2: name2), we compute the keys concat(eType, PID1,
name1), and concat(eType, ∗, name1), where eType is a 2-bit prefix specifying
the edge type. To each of those keys we associate the value concat(PID2,
location2); these key-value pairs allow to search for n2, if n1 is known (to
traverse the relationship from n1 to n2). Finally, we create two symmetric
key-value pairs, swapping the roles of n1 and n2.

Intensional Indexing. KadoP takes advantage of the intensional aspect of
ActiveXML (parts of a document are specified by service calls) to intensionally
index resources. The key of an intensional index entry is obtained just as above.
However, the value associated to the key is not the location of a resource, but
of a Web service that, when called, will return pertinent resources. Intensional
indexing is much more concise: a single intensional index entry replaces several
extensional (regular) entries, at the expense of one extra service call.

5 Related Works and Perspectives

We are currently implementing the system described here using Pastry [6] and
AXML [1]. Our system is related to XML-based P2P frameworks [1, 7, 13] and
semantic P2P networks [8, 10]. KadoP improves over [1, 13] by using a DHT
layer allowing each peer to search for resources anywhere in the P2P network.
Differently from [1, 13, 7], we set data and knowledge items on equal levels as first-
class citizens. The SPIN project [12] addressed building a semantic warehouse
of Web resources; in contrast, KadoP focuses on a decentralized P2P context.
More motivations for the work presented here may be found in [2].

Semantic data management in P2P has been addressed in [5, 8, 10]; KadoP
is different since it relies on a DHT symmetric network, providing each peer
direct resource lookup. In contrast, the work described in [10] considers a two-
layer hierarchical peer organization. Another difference is that KadoP’s query
language simultaneously exploits structure, contents, and semantic information.

The conceptual part of our internal data model can be seen as a subset of
models such as RDF [11] or description logics [8]; many languages and platforms

Constructing and Querying Peer-to-Peer Warehouses of XML Resources 225

for querying such resources exist [4, 9]. More restricted in this aspect, our query
language does not directly support e.g. navigation along customized semantic
relationships (although our P2P index does). We plan to explore the tradeoff
between P2P efficient evaluation, and semantic expressivity, in the near future.

References

1. ActiveXML home page. http://purl.org/net/axml.
2. S. Abiteboul. Managing an XML warehouse in a P2P context. In Int’l Conference

on Advanced Information Systems Engineering, 2003.
3. Vincent Aguilera, Frédéric Boiscuvier, and Sophie Cluet. Pattern tree queries in

Xyleme. Gemo report no. 200, osage.inria.fr/gemo/Gemo/PUBLI, 2001.
4. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Querying XML sources using an

ontology-based mediator. In Proc. of CoopIS, pages 429–448, 2002.
5. A. Crespo and H. Garcia-Molina. Routing indices for Peer-to-Peer systems. In

Int’l Conf. on Distributed Computing Systems, pages 23–34, 2002.
6. The FreePastry system. www.cs.rice.edu/CS/Systems/Pastry/FreePastry/.
7. L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating data sources in large

distributed systems. In Proc. of the VLDB Conf., 2003.
8. F. Goasdoué and M-C. Rousset. Answering queries using views: a KRDB perspec-

tive for the Semantic Web. ACM TOIT, 2003.
9. G. Karvounaraki, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.

RQL: a declarative query language for RDF. In Proc. of WWW Conf., 2002.
10. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and

A. Loser. Super-peer-based routing and clustering strategies for RDF-based peer-
to-peer networks. In WWW Conference, pages 536–543, 2003.

11. The resource description framework. www.w3.org/RDF.
12. B. Nguyen S. Abiteboul, G. Cobéna and A. Poggi. Construction of sets of pages

of interest. In Bases de Donnees Avancees, Evry, 2002.
13. I. Tatarinov and A. Halevy. Efficient query reformulation in peer-data management

systems. In Proc. of the ACM SIGMOD Conf., 2004.

Author Index

Abiteboul, Serge 219
An, Yuan 84

Bamba, Bhuvan 185
Benatallah, Boualem 1
Borgida, Alexander 9, 84
Bowers, Shawn 57
Buczak, Anna L. 27

Cal̀ı, Andrea 167
Caragea, Doina 41
Czajkowski, Michael 27

De Bo, Jan 109

Hofmann, Martin O. 27
Honavar, Vasant G. 41

Janevski, Angel 199

Kotis, Konstantinos 155

Lin, Zuoquan 64
Liu, Shengping 64
Ludäscher, Bertram 57

Madnick, Stuart E. 127, 140
Manolescu, Ioana 219

Meersman, Robert 109
Mei, Jing 64
Mukherjea, Sougata 185
Mylopoulos, John 9, 84

Nezhad, H.R. Motahari 1

Padilla Alonso, Jerónimo 155
Pathak, Jyotishman 41
Preda, Nicoleta 219

Robertson, Edward L. 91
Ross, Kenneth A. 199

Siegel, Michael D. 127

Tan, Kian-Lee 140
Tan, Philip 140
Thau, David 57

Verheyden, Pieter 109
Vouros, George 155

Williams, Rich 57

Yue, Anbu 64

Zhu Hongwei 127

	Frontmatter
	Service Oriented Computing: Opportunities and Challenges
	Data Semantics Revisited
	Dynamic Agent Composition from Semantic Web Services
	Ontology-Extended Component-Based Workflows : A Framework for Constructing Complex Workflows from Semantically Heterogeneous Software Components
	Data Procurement for Enabling Scientific Workflows: On Exploring Inter-ant Parasitism
	XSDL: Making XML Semantics Explicit
	Refining Semantic Mappings from Relational Tables to Ontologies
	Triadic Relations: An Algebra for the Semantic Web
	Semantically Unlocking Database Content Through Ontology-Based Mediation
	Representation and Reasoning About Changing Semantics in Heterogeneous Data Sources
	Context Mediation in the Semantic Web: Handling OWL Ontology and Data Disparity Through Context Interchange
	HCOME: A Tool-Supported Methodology for Engineering Living Ontologies
	Query Answering by Rewriting in GLAV Data Integration Systems Under Constraints
	Utilizing Resource Importance for Ranking Semantic Web Query Results
	Querying Faceted Databases
	Constructing and Querying Peer-to-Peer Warehouses of XML Resources
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

