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Preface

These are the proceedings of the 2nd International Workshop on Programming
Multi-agent Systems (ProMAS 2004), held in July 2004 in New York (USA) as an
associated event of AAMAS 2004, the main international conference dedicated
to autonomous agents and multi-agent systems.

The idea of organizing such an event was discussed during the Dagstuhl sem-
inar Programming Multi-agent Systems Based on Logic (see [2]), where the focus
was on logic-based approaches. It was felt that the scope should be broadened
beyond logic-based approaches, and thus ProMAS came into being (see [1] for
the proceedings of the first event, ProMAS 2003).

Meanwhile, a Steering Committee (Rafael Bordini, Mehdi Dastani, Jürgen
Dix, Amal El Fallah Seghrouchni) as well as an AgentLink III Technical Forum
Group on Programming Multi-agent Systems were established (the latter one was
founded on 30 June/1 July 2004 in Rome, Italy (see http://
www.cs.uu.nl/ mehdi/al3tf8.html). Moreover, a Kluwer book on the same topic
is underway (to appear early in 2005) and the third workshop ProMAS 2005
will be organized within AAMAS 2005 (see http://www.cs.uu.nl/ProMAS/ for
up-to-date information about ProMAS).

One of the driving motivations behind this workshop series is the observa-
tion that the area of autonomous agents and multi-agent systems (MAS) has
grown into a promising technology offering sensible alternatives for the design
of distributed, intelligent systems. Several efforts have been made by academic
researchers, by industrialists, and by several standardization consortia in order
to provide new tools, methods, and frameworks so as to establish the necessary
standards for a wide use of MAS as a technology on its own, not only as a new
paradigm.

However, until recently the main focus of the MAS community has been on
the development, sometimes by formal methods but often informally, of concepts
(concerning both mental and social attitudes), architectures, coordination tech-
niques, and general approaches to the analysis and specification of multi-agent
systems. In particular, this contribution has been quite fragmented, without
any clear way of “putting it all together,” and thus completely inaccessible to
practitioners.

We are convinced that the next step in furthering the achievement of the
MAS project is irrevocably associated with the development of programming
languages and tools that can effectively support MAS programming and the im-
plementation of key notions in multi-agent systems in a unified framework. The
success of agent-oriented system development can only be guaranteed if we can
bridge the gap between analysis and design on the one hand, and implementa-
tion on the other hand. This, in turn, requires the development of powerful and
general-purpose programming technology such that the concepts and techniques
of multi-agent systems can be easily and directly implemented.
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ProMAS 2004, as indeed ProMAS 2003, was an invaluable opportunity that
brought together leading researchers from both academia and industry to dis-
cuss the design of programming languages and tools for multi-agent systems. In
particular, the workshop promoted the discussion and exchange of ideas concern-
ing the concepts, properties, requirements, and principles that are important for
future programming technology for multi-agent systems.

This volume of the LNAI series constitutes the official (post-)proceedings of
ProMAS 2004. It presents the main contributions that featured in the latest
ProMAS event. Besides the final 10 high-quality accepted papers, we also in-
vited two leading researchers, Milind Tambe and David Kinny, in academia and
industry, respectively, to give invited talks at the workshop. Subsequently, they
wrote invited contributions which are featured in these proceedings.

The main topics addressed in this volume are:

Agent-Oriented Programming: The first paper in this part of the proceed-
ings, Goal Representation for BDI Agent Systems, by Lars Braubach, Alexan-
der Pokahr, and Daniel Moldt, describes a goal model that shows how an
agent achieves and manages his goals. It goes on to provide a generic life
cycle that models different types of goals in BDI agent systems.

The second paper, AF-APL – Bridging Principles & Practice in Agent
Oriented Languages, by Robert Ross, Rem Collier, and Gregory M.P. O’Hare,
presents an agent-oriented programming language called Agent-Factory. The
theoretical foundations of this language are based on principles from agent-
oriented design that are enriched with practical considerations of program-
ming real-world agents.

Agent Platforms and Tools: The first paper in this part is A Toolkit for the
Realization of Constraint-Based Multiagent Systems, by Federico Bergenti.
The paper has two main contributions: the first consists of an approach
for modelling and a language (called QPL) for programming multi-agent
systems where agents are seen as solvers of constraint satisfaction and opti-
mization problems; the second, more practical contribution is the QK toolkit
which provides a QPL compiler and a runtime platform for deploying such
(constraint-based) multi-agent systems.

The next paper, Debugging Agent Behavior in an Implemented Agent Sys-
tem, by Dung Lam and Suzanne Barber, introduces a working tool for de-
bugging BDI multi-agent systems (a research topic that should receive much
attention in the future). As the tool is aimed for use with any agent platforms,
users have to add their own code for logging run-time data on agents’ atti-
tudes; the approach also requires users to provide (usually domain-dependent)
rules that relate agent attitudes. Such rules are used by the system to gen-
erate interpretations of observed behavior, which can then be compared to
a given specification of expected behavior.

The final paper in this part is A Mobile Agents Platform: Architecture,
Mobility and Security Elements, by Alexandru Suna and Amal El Fallah
Seghrouchni. It presents the SyMPA platform for the execution of agents
implemented in a high-level declarative agent-oriented programming lan-
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guage called CLAIM, which supports also mobile agents. CLAIM is inspired
by ideas from both agent-oriented programming and the Ambient Calculus.
SyMPA provides mechanisms for both strong and weak mobility, various
aspects of security, and fault tolerance.

Agent Languages: In this part, two papers discussing the implementation of
communication models in multi-agent systems are included. The first paper,
Bridging the Gap Between AUML and Implementation Using IOM/T, by
Takuo Doi, Nobukazu Yoshioka, Yasuyuki Tahara, and Shinichi Honiden,
presents an interaction protocol description language called IOM/T. This
language has a clear correspondence with AUML diagrams and helps to
bridge the gap between design and implementation since IOM/T code can
be directly converted into Java.

The second paper, Inter-agent Communication in IMAGO Prolog, by Xin-
ing Li and Guillaume Autran, presents a communication model for a variant
of Prolog called IMAGO Prolog. In this model, agent communication is im-
plemented by mobile messengers, which are simple mobile agents that carry
messages between agents.

Multi-agent Systems Techniques: The first paper in this part, OMNI: In-
troducing Social Structure, Norms and Ontologies into Agent Organizations,
by Virginia Dignum, Javier Vazquez-Salceda, and Frank Dignum, describes
a framework for modelling Agent organizations. An important point is to
balance both global organizational requirements as well as autonomy of
individual agents. Several levels of abstraction are distinguished, each with
a formal logical semantics.

The second paper, A Dialogue Game to Offer an Agreement to Disagree,
by Henk-Jan Lebbink, Cilia Witteman, John-Jules Ch. Meyer, deals with the
problem of deciding whether several agents may reach an agreement or not.
A particular game is described that allows agents to come to an agreement
to disagree and thus to conclude an ongoing dialogue.

The last paper in this part, Coordination of Complex Systems Based
on Multi-agent planning: Application to the Aircraft Simulation Domain,
by Frederic Marc, Amal El Fallah Seghrouchni, and Irene Degirmenciyan-
Cartault, is concerned with multi-agent planning in the tactical aircraft sim-
ulation domain.

In addition to the peer-reviewed papers listed above, the proceedings contain
two invited papers related to the two invited talks given at ProMAS 2004:

– The first invited paper, Coordinating Teams in Uncertain Environments: A
Hybrid BDI-POMDP Approach, by Ranjit Nair and Milind Tambe, addresses
the issue of multi-agent team coordination in the context of multi-agent
planning under uncertainty. The paper overviews coordination approaches
based on POMDP (Partially Observable Markov Decision Processes) and
discusses the limits of POMDP-based approaches in terms of tractability.
Then, the authors introduce a hybrid approach to improve the tractability
of the POMDP technique. The proposed approach combines two paradigms
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to build multi-agent team plans: the BDI model (beliefs, desires and inten-
tions) and distributed POMDP. It shows how the use of BDI techniques can
improve distributed POMDP and how, reciprocally, distributed POMDP can
improve planning performance.

The contributions of the hybrid approach put forward by the authors are:
(i) it focuses on agents’ roles and on their allocation in teams while taking
into account future uncertainties in the studied domain; (ii) it provides a
new decomposition technique that exploits the structure of the BDI team
plans in order to prune the search space of combinatorial role allocations; and
(iii) it proposes a faster policy evaluation algorithm suited to the proposed
BDI-POMDP hybrid approach. The paper also presents experimental results
from two significant domains: mission rehearsal simulation and the RoboCup
Rescue disaster rescue simulation.

– The second invited paper, Agents – the Challenge of Relevance to the IT
Mainstream, by David Kinny, discusses and evaluates the state of the art in
multi-agent systems research by focusing on its relevance to enterprise com-
puting. In particular, it poses the question of whether the agent paradigm
and its various technologies are relevant to mainstream IT. To answer this
question, the author points out some reasons why other paradigms that
promised to transform software development have failed to be adopted by
mainstream IT, and explains why and in which ways the agent paradigm has
a better prospect of being adopted by the mainstream software industry. It
is argued that the agent paradigm will be adopted by mainstream IT if it
provides effective solutions to enterprise needs, and delivers substantial ben-
efits that cannot be achieved by other paradigms. The paper presents some
valuable aspects of agent technology for enterprise computing and indicates
agent techniques and technologies that are ready for mainstream use. To
conclude, some of the current research challenges in furthering the relevance
of agent technology to mainstream IT are discussed.

The workshop finished with a panel session, moderated by Andrea Omicini,
on Current Trends and Future Challenges in Programming Multi-agent Systems.
The panelists, including again researchers and developers from both academia
and industry, were: Monique Calisti, David Kinny, Michael Luck, Onn Shehory,
and Franco Zambonelli. Besides various important remarks about how to foster
the industrial take-up of MAS technology — such as the general indication that
industry seems to be only willing to take small, simple technological advances at
a time and in such a way that they can be integrated easily with their existing
practices, and the need for working tools (for testing and debugging as well
as programming) to support the activities of programmers in industry — a
considerable part of the panel session was dedicated to discussing an essential
mechanism for technological transfer which is often neglected: the point was that
we need to recognize, and exploit sensibly the immense power that academics
have in educating the next generations of programmers, who in turn shape the
actual practice of the software industry.
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We would like to thank all the authors, invited speakers, Programme Com-
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Coordinating Teams in Uncertain Environments:
A Hybrid BDI-POMDP Approach

Ranjit Nair and Milind Tambe

Computer Science Department,
University of Southern California,

Los Angeles, CA 90089
{nair, tambe}@usc.edu

Abstract. Distributed partially observable Markov decision problems
(POMDPs) have emerged as a popular decision-theoretic approach for
planning for multiagent teams, where it is imperative for the agents to be
able to reason about the rewards (and costs) for their actions in the pres-
ence of uncertainty. However, finding the optimal distributed POMDP
policy is computationally intractable (NEXP-Complete). This paper is
focussed on a principled way to combine the two dominant paradigms
for building multiagent team plans, namely the “belief-desire-intention”
(BDI) approach and distributed POMDPs. In this hybrid BDI-POMDP
approach, BDI team plans are exploited to improve distributed POMDP
tractability and distributed POMDP-based analysis improves BDI team
plan performance. Concretely, we focus on role allocation, a fundamental
problem in BDI teams – which agents to allocate to the different roles in
the team. The hybrid BDI-POMDP approach provides three key contri-
butions. First, unlike prior work in multiagent role allocation, we describe
a role allocation technique that takes into account future uncertainties
in the domain. The second contribution is a novel decomposition tech-
nique, which exploits the structure in the BDI team plans to significantly
prune the search space of combinatorially many role allocations. Our
third key contribution is a significantly faster policy evaluation algorithm
suited for our BDI-POMDP hybrid approach. Finally, we also present ex-
perimental results from two domains: mission rehearsal simulation and
RoboCupRescue disaster rescue simulation. In the RoboCupRescue do-
main, we show that the role allocation technique presented in this paper
is capable of performing at human expert levels by comparing with the
allocations chosen by humans in the actual RoboCupRescue simulation
environment.

1 Introduction

Teamwork, whether among software agents, or robots (and people) is a criti-
cal capability in a large number of multiagent domains ranging from mission
rehearsal simulations to RoboCup soccer and disaster rescue to personal as-
sistant teams. Already a large number of multiagent teams have been devel-
oped for a range of domains [31, 44, 36, 19, 13, 9, 38, 7]. These existing practical

R.H. Bordini et al. (Eds.): PROMAS 2004, LNAI 3346, pp. 1–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 R. Nair and M. Tambe

approaches can be characterized as situated within the general “belief-desire-
intention” (BDI) approach, a paradigm for designing multiagent systems, made
increasingly popular due to programming frameworks [38, 9, 39] that facilitate
the design of large-scale teams. Within this approach, inspired explicitly or im-
plicitly by BDI logics, agents explicitly represent and reason with their team
goals and plans [41].

This paper focuses on the the quantitative evaluation of multiagent team-
work, to provide feedback to aid human developers and possibly to agents par-
ticipating in a team, on how the team performance in complex domains can be
improved. Such quantitative evaluation is especially vital in domains like disaster
rescue [21] and mission rehearsal simulations [38], where the performance of the
team is linked to important metrics such as loss of human life and property. Both
these and other such complex domains exhibit uncertainty, which arises from
partial observability and non-determinism in the outcomes of actions. However,
tools for such quantitative evaluations of teamwork in the presence of uncer-
tainty are currently absent. Thus, given these uncertainties, we may be required
to experimentally recreate a large number of possible scenarios (in a real domain
or in simulations) in order to correctly evaluate team performance.

Fortunately, the emergence of distributed Partially Observable Markov
Decision Problems (POMDPs) provides models [3, 4, 30, 43] that are well-suited
for quantitative analysis of agent teams in uncertain domains. These models are
powerful enough to express the uncertainty in these dynamic domains and in
principle, can be used to generate and evaluate complete policies for the multi-
agent team. However, as shown by Bernstein et al. [3], the problem of deriving
the optimal policy is generally computationally intractable (the corresponding
decision problem is NEXP-complete).

This paper deals with this issue of intractability in distributed POMDPs by
combining in a principled way the two dominant paradigms for building multia-
gent teams, namely distributed POMDPs and the “belief-desire-intention” (BDI)
approach. While BDI frameworks facilitate human design of large scale teams,
their key shortcoming is their inability to quantitatively reason about team per-
formance, especially in the presence of uncertainty. This hybrid BDI-POMDP
approach combines the native strengths of the BDI and POMDP approaches,
i.e., the ability in BDI frameworks to encode large-scale team plans and the
POMDP ability to quantitatively evaluate such plans. This approach focuses on
the analysis of BDI team plans, to provide feedback to human developers on how
the team plans can be improved. In particular, it focuses on the critical challenge
of role allocation in building teams [40, 18], i.e. which agents to allocate to the
various roles in the team. For instance, in mission rehearsal simulations [38], we
need to select the numbers and types of helicopter agents to allocate to differ-
ent roles in the team. Similarly, in disaster rescue [21], role allocation refers to
allocating fire engines and ambulances to fires and it can greatly impact team
performance. In such domains, the role allocation chosen directly impacts the
team performance, which is linked to metrics like loss of human life and property;
and thus, it is critical to find the best role allocation.
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Fig. 1. Integration of BDI and POMDP

In order to analyze role allocations quantitatively, we derive RMTDP (Role-
based Multiagent Team Decision Problem), a distributed POMDP framework
for quantitatively analyzing role allocations. Using this framework, we show
that, in general, the problem of finding the optimal role allocation policy is
computationally intractable (the corresponding decision problem is still NEXP-
complete). This shows that improving the tractability of analysis techniques for
role allocation is a critically important issue.

The hybrid BDI-POMDP approach is based on three key interactions that
improve the tractability of RMTDP and the optimality of BDI agent teams.
The first interaction is shown in Figure 1. In particular, suppose we wish to
analyze a BDI agent team (each agent consisting of a BDI team plan and a
domain independent interpreter that helps coordinate such plans) acting in a
domain. Then as shown in Figure 1, we model the domain via an RMTDP, and
rely on the BDI team plan and interpreter for providing an incomplete policy
for this RMTDP. The RMTDP model evaluates different completions of this
incomplete policy and provides an optimally completed policy as feedback to the
BDI system. Thus, the RMTDP fills in the gaps in an incompletely specified BDI
team plan optimally. Here the gaps we concentrate on are the role allocations, but
the method can be applied to other key coordination decisions. By restricting
the optimization to only role allocation decisions and fixing the policy at all
other points, we are able to come up with a restricted policy space. We then use
RMTDPs to effectively search this restricted space in order to find the optimal
role allocation.

While the restricted policy search is one key positive interaction in our hybrid
approach, the second interaction consists of a more efficient policy representation
used for converting a BDI team plan and interpreter into a corresponding policy
(see Figure 1) and a new algorithm for policy evaluation. In general, each agent’s
policy in a distributed POMDP is indexed by its observation history [3, 30]. How-
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ever, in a BDI system, each agent performs its action selection based on its set
of privately held beliefs which is obtained from the agent’s observations after
applying a belief revision function. In order to evaluate the team’s performance,
it is sufficient in RMTDP to index the agents’ policies by their belief state (repre-
sented here by their privately held beliefs) instead of their observation histories.
This shift in representation results in considerable savings in the amount of space
and time needed to evaluate a policy.

The third key interaction in our hybrid approach further exploits BDI team
plan structure for increasing the efficiency of our RMTDP-based analysis. Even
though RMTDP policy space is restricted to filling in gaps in incomplete policies,
many policies may result given the large number of possible role allocations.
Thus enumerating and evaluating each possible policy for a given domain is
difficult. Instead, we provide a branch-and-bound algorithm that exploits task
decomposition among sub-teams of a team to significantly prune the search space
and provide a correctness proof and worst-case analysis of this algorithm.

In order to empirically validate our approach, we have applied RMTDP for al-
location in BDI teams in two concrete domains: mission rehearsal simulations [38]
and RoboCupRescue [21]. We first present the (significant) speed-up gained by
our three interactions mentioned above. Next, in both domains, we compared the
role allocations found by our approach with state-of-the-art techniques that allo-
cate roles without uncertainty reasoning. This comparison shows the importance
of reasoning about uncertainty when determining the role allocation for complex
multiagent domains. In the RoboCupRescue domain, we also compared the allo-
cations found with allocations chosen by humans in the actual RoboCupRescue
simulation environment. The results showed that the role allocation technique
presented in this paper is capable of performing at human expert levels in the
RoboCupRescue domain.

This paper is organized as follows: In Section 2, background and motiva-
tion are presented. In Section 3, we introduce the RMTDP model and present
key complexity results. Section 4 explains how a BDI team plan can be eval-
uated using RMTDP. Section 5 describes the analysis methodology for finding
the optimal role allocation, and also presents an empirical evaluation of this
methodology. Section 6 describes the JESP approach for finding locally optimal
distributed POMDP policies. In Section 7, we present related work, in Section 8,
we list our conclusions and in Section 9 we describe future work.

2 Background

This section first describes the two domains that we consider in this paper: an ab-
stract mission rehearsal domain [38] and the RoboCupRescue domain [21]. Each
domain requires us to allocate roles to agents in a team. Next, team-oriented
programming (TOP), a framework for describing team plans is described in the
context of these two domains. While we focus on TOP, as discussed further in
Section 7.1, our techniques would be applicable in other frameworks for tasking
teams [36, 9].
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2.1 Domains

The first domain that we consider is based on mission rehearsal simulations [38].
For expository purposes, this has been intentionally simplified. The scenario is
as follows: A helicopter team is executing a mission of transporting valuable
cargo from point X to point Y through enemy terrain (see Figure 2). There are
three paths from X to Y of different lengths and different risk due to enemy fire.
One or more scouting sub-teams must be sent out (one for each path from X to
Y), and the larger the size of a scouting sub-team the safer it is. When scouts
clear up any one path from X to Y, the transports can then move more safely
along that path. However, the scouts may fail along a path, and may need to be
replaced by a transport at the cost of not transporting cargo. Owing to partial
observability, the transports may not receive an observation that a scout has
failed or that a route has been cleared. We wish to transport the most amount
of cargo in the quickest possible manner within the mission deadline.

The key role allocation decision here is given a fixed number of helicopters,
how should they be allocated to scouting and transport roles? Allocating more
scouts means that the scouting task is more likely to succeed, but there will be
fewer helicopters left that can be used to transport the cargo and consequently
less reward. However, allocating too few scouts could result in the mission failing
altogether. Also, in allocating the scouts, which routes should the scouts be sent
on? The shortest route would be preferable but it is more risky. Sending all
the scouts on the same route decreases the likelihood of failure of an individual
scout; however, it might be more beneficial to send them on different routes, e.g.
some scouts on a risky but short route and others on a safe but longer route.

Thus there are many role allocations to consider. Evaluating each one is
difficult because role allocation must look-ahead to consider future implications
of uncertainty, e.g. scout helicopters can fail during scouting and may need to
be replaced by a transport. Furthermore, failure or success of a scout may not
be visible to the transport helicopters and hence a transport may not replace a
scout or transports may never fly to the destination.

The second example scenario (see Figure 3), set up in the RoboCupRescue
disaster simulation environment [21], consists of five fire engines at three different
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C1

F1

F2

F3

A

C2

Fig. 3. RoboCupRescue Scenario: C1 and C2 denote the two fire locations, F1, F2 and
F3 denote fire stations 1, 2 and 3 respectively and A denotes the ambulance center

fire stations (two each at stations 1 & 3 and the last one at station 2) and five
ambulances stationed at the ambulance center. Two fires (in the top left and
bottom right corners of the map) start that need to be extinguished by the fire
engines. After a fire is extinguished, ambulance agents need to save the surviving
civilians. The number of civilians at each location is not known ahead of time,
although the total number of civilians in known. As time passes, there is a
high likelihood that the health of civilians will deteriorate and fires will increase
in intensity. Yet the agents need to rescue as many civilians as possible with
minimal damage to the buildings. The first part of the goal in this scenario is
therefore to first determine which fire engines to assign to each fire. Once the
fire engines have gathered information about the number of civilians at each
fire, this is transmitted to the ambulances. The next part of the goal is then to
allocate the ambulances to a particular fire to rescue the civilians trapped there.
However, ambulances cannot rescue civilians until fires are fully extinguished.
Here, partial observability (each agent can only view objects within its visual
range), and uncertainty related to fire intensity, as well as location of civilians
and their health add significantly to the difficulty.

2.2 Team-Oriented Programming

The aim of the team-oriented programming (TOP) [31, 38, 39] framework is to
provide human developers (or automated symbolic planners) with a useful ab-
straction for tasking teams. For domains such as those described in Section 2.1,
it consists of three key aspects of a team: (i) a team organization hierarchy con-
sisting of roles; (ii) a team (reactive) plan hierarchy; and (iii) an assignment of
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roles to sub-plans in the plan hierarchy. The developer need not specify low-level
coordination details. Instead, the TOP interpreter (the underlying coordination
infrastructure) automatically enables agents to decide when and with whom to
communicate and how to reallocate roles upon failure. The TOP abstraction
enables humans to rapidly provide team plans for large-scale teams, but unfor-
tunately, only a qualitative assessment of team performance is feasible. Thus, a
key TOP weakness is the inability to quantitatively evaluate and optimize team
performance. For example, in allocating roles to agents only a qualitative match-
ing of capabilities may be feasible. As discussed later, our hybrid BDI-POMDP
model addresses this weakness by providing techniques for quantitative evalua-
tion.

As a concrete example, consider the TOP for the mission rehearsal domain.
We first specify the team organization hierarchy (see Figure 4(a)). Task Force is
the highest level team in this organization and consists of two roles Scouting and
Transport, where the Scouting sub-team has roles for each of the three scouting
sub-sub-teams. Next we specify a hierarchy of reactive team plans (Figure 4(b)).
Reactive team plans explicitly express joint activities of the relevant team and
consist of: (i) pre-conditions under which the plan is to be proposed; (ii) termina-
tion conditions under which the plan is to be ended; and (iii) team-level actions
to be executed as part of the plan (an example plan will be discussed shortly).
In Figure 4(b), the highest level plan Execute Mission has three sub-plans:
DoScouting to make one path from X to Y safe for the transports, DoTrans-
port to move the transports along a scouted path, and RemainingScouts for
the scouts which have not reached the destination yet to get there.

Figure 4(b) also shows coordination relationships: An AND relationship is
indicated with a solid arc, while an OR relationship is indicated with a dashed
arc. Thus, WaitAtBase and ScoutRoutes must both be done while at least one
of ScoutRoute1, ScoutRoute2 or ScoutRoute3 need be performed. There is
also a temporal dependence relationship among the sub-plans, which implies that
sub-teams assigned to perform DoTransport or RemainingScouts cannot
do so until the DoScouting plan has completed. However, DoTransport and

Task Force

Scouting Team Transport Team

SctTeamA SctTeamB SctTeamC

(a)

Execute Mission [Task Force]

DoScouting
[Task Force]

DoTransport
[Transport Team]

ScoutRoute1
[SctTeamA]

ScoutRoute2
[SctTeamB]

ScoutRoute3
[SctTeamC]

RemainingScouts
[Scouting Team]

WaitAtBase
[Transport Team]

ScoutRoutes
[Scouting Team]

(b)

Fig. 4. TOP for mission rehearsal domain. a) Organization hierarchy; b) Plan hierarchy
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ExecuteMission:
Context:∅
Pre-conditions: (MB <TaskForce> location(TaskForce) = START)
Achieved: (MB <TaskForce> (Achieved(DoScouting) ∧

Achieved(DoTransport))) ∧ (time > T ∨ (MB <TaskForce>
Achieved(RemainingScouts) ∨ (� helo ∈ ScoutingTeam,
alive(helo) ∧ location(helo) �= END)))

Unachievable: (MB <TaskForce> Unachievable(DoScouting)) ∨
(MB <TaskForce> Unachievable(DoTransport) ∧
(Achieved(RemainingScouts) ∨(� helo ∈ ScoutingTeam,
alive(helo) ∧ location(helo) �= END)))

Irrelevant: ∅
Body:

DoScouting
DoTransport
RemainingScouts

Constraints: DoScouting → DoTransport, DoScouting → RemainingScouts

Fig. 5. Example team plan. MB refers to mutual belief

RemainingScouts execute in parallel. Finally, we assign roles to plans – Figure
4(b) shows the assignment in brackets adjacent to the plans. For instance, Task
Force team is assigned to jointly perform Execute Mission while SctTeamA is
assigned to ScoutRoute1.

The team plan corresponding to Execute Mission is shown in Figure 5. As
can be seen, each team plan consists of a context, pre-conditions, post-conditions,
body and constraints. The context describes the conditions that must be fulfilled
in the parent plan while the pre-conditions are the particular conditions that will
cause this sub-plan to begin execution. Thus, for Execute Mission, the pre-
condition is that the team mutually believes (MB) that they are the “start”
location. The post-conditions are divided into Achieved, Unachievable and Irrel-
evant conditions under which this sub-plan will be terminated. The body consists
of sub-plans that exist within this team plan. Lastly, constraints describe any
temporal constraints that exist between sub-plans in the body.

During execution, each agent has a copy of the TOP. The agent also main-
tains a set of private beliefs, which are a set of propositions that the agent
believes to be true (see Figure 6). When an agent receives new beliefs, i.e. obser-
vations (including communication), the belief update function is used to update
its set of privately held beliefs. For instance, upon seeing the last scout crashed, a
transport may update its privately held beliefs to include the belief “CriticalFail-
ure(DoScouting)”. In practical BDI systems, such belief update computation is of
low complexity (e.g. constant or linear time). Once beliefs are updated, an agent
selects which plan to execute by matching its beliefs with the pre-conditions
in the plans. The basic execution cycle is similar to standard reactive planning
systems such as PRS [12].

During team plan execution, observations, in the form of communications,
often arise because of the coordination actions executed by the TOP interpreter.
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Belief Update
function

Private beliefs of
agent i

new observation for
agent i

Fig. 6. Mapping of observations to beliefs

Task Force

EngineTeamA AmbulanceTeam

AmbulanceTeamA |c AmbulanceTeamB |c

EngineTeamB

(a)

ExecuteMission
[Task Force]

ExtinguishFire1
[EngineTeamA]

RescueCivilians1
[AmbulanceTeamA]

ExtinguishFire2
[EngineTeamB]

RescueCivilians2
[AmbulanceTeamB]

(b)

Fig. 7. TOP for RoboCupRescue scenario. a) Organization hierarchy; b) Plan hierarchy

For instance, TOP interpreters have exploited BDI theories of teamwork, such
as Levesque et al.’s theory of joint intentions [22], which require that when an
agent comes to privately believe a fact that terminates the current team plan (i.e.
matches the achievement or unachievability conditions of a team plan), then it
communicates this fact to the rest of the team. By performing such coordination
actions automatically, the TOP interpreter enables coherence at the initiation
and termination of team plans within a TOP. Some further details and examples
of TOPs can be seen in [31, 38, 39].

Figure 7 shows the TOP for the RoboCupRescue scenario. As can be seen,
the plan hierarchy for this scenario consists of a pair of ExtinguishFire and
RescueCivilians plans done in parallel, each of which further decomposes into
individual plans. (These individual plans get the fire engines and ambulances
to move through the streets using specific search algorithms. However, these
individual plans are not relevant for our discussions in this paper; interested
readers should refer to the description of our RoboCupRescue team entered into
the RoboCup competitions of 2001 [25].) The organizational hierarchy consists
of Task Force comprising of two Engine sub-teams, one for each fire and an
Ambulance Team, where the engine teams are assigned to extinguishing the fires
while the ambulance team is assigned to rescuing civilians. In this particular
TOP, the assignment of ambulances to AmbulanceTeamA and AmbulanceTeamB
is conditioned on the communication “c”. For instance, “AmbulanceTeamA|c” is
the allocation of ambulances to AmbulanceTeamA on receiving communication
“c” from the fire engines that describes the number of civilians present at each
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fire. The problem is which engines to assign to each Engine Team and for each
possible value of “c”, which ambulances to assign to each Ambulance Team.
Note that engines have differing capabilities owing to differing distances from
fires while all the ambulances have identical capabilities.

3 Role-Based Multiagent Team Decision Problem

In order to do quantitative analysis of key coordination decisions in multiagent
teams, we extend Multiagent Team Decision Problem (MTDP) [30] for the anal-
ysis of the coordination actions of interest. For example, the COM-MTDP [30]
is an extension of MTDP for the analysis of communication. In this paper, we
illustrate a general methodology for analysis of other aspects of coordination
and present the RMTDP model for quantitative analysis of role allocation and
reallocation as a concrete example. In contrast to BDI systems introduced in the
previous section, RMTDP enables explicit quantitative optimization of team per-
formance. Note that, while we use MTDP, other possible distributed POMDP
models could potentially also serve as a basis [3, 43].

3.1 Multiagent Team Decision Problem

Given a team of n agents, an MTDP [30] is defined as a tuple: 〈S, A, P, Ω, O, R〉.
It consists of a finite set of states S = Ξ1 × · · · × Ξm where each Ξj , 1 ≤
j ≤ m, is a feature of the world state. Each agent i can perform an action
from its set of actions Ai, where ×1≤i≤nAi = A. P (s, < a1, . . . , an >, s′) gives
the probability of transitioning from state s to state s′ given that the agents
perform the actions < a1, . . . , an > jointly. Each agent i receives an observation
ωi ∈ Ωi (×1≤i≤nΩi = Ω) based on the function O(s, < a1, . . . , an >, ω1, . . . , ωn),
which gives the probability that the agents receive the observations, ω1, . . . , ωn

given that the world state is s and they perform < a1, . . . , an > jointly. The
agents receive a single joint reward R(s, < a1, . . . , an >) based on the state s
and their joint action < a1, . . . , an >. This joint reward is shared equally by all
members and there is no other private reward that individual agents receive for
their actions. Thus, the agents are motivated to behave as a team, taking the
actions that jointly yield the maximum expected reward.

Each agent i in an MTDP chooses its actions based on its local policy, πi,
which is a mapping of its observation history to actions. Thus, at time t, agent i
will perform action πi(ω0

i , . . . , ωt
i). This contrasts with a single-agent POMDP,

where we can index an agent’s policy by its belief state – a probability distribu-
tion over the world state [20], which is shown to be a sufficient statistic in order
to compute the optimal policy [35]. Unfortunately, we cannot directly use single-
agent POMDP techniques [20] for maintaining or updating belief states [20] in a
MTDP – unlike in a single agent POMDP, in MTDP, an agent’s observation de-
pends not only on its own actions, but also on unknown actions of other agents.
Thus, as with other distributed POMDP models [3, 43], in MTDP, local policies
πi are indexed by observation histories. π =< π1, . . . , πn > refers to the joint
policy of the team of agents.
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3.2 Extension for Explicit Coordination

Beginning with MTDP, the next step in our methodology is to make an ex-
plicit separation between domain-level actions and the coordination actions of
interest. Earlier work introduced the COM-MTDP model [30], where the coordi-
nation action was fixed to be the communication action, and got separated out.
However, other coordination actions could also be separated from domain-level
actions in order to investigate their impact. Thus, to investigate role allocation
and reallocations, actions for allocating agents to roles and to reallocate such
roles are separated out. To that end, we define RMTDP (Role-based Multiagent
Team Decision Problem) as a tuple 〈S, A, P, Ω, O, R,RL〉 with a new compo-
nent, RL. In particular, RL = {r1, . . . , rs} is a set of all roles that the agents
can undertake. Each instance of role rj may be assigned some agent i to fulfill
it. The actions of each agent are now distinguishable into two types:

Role-Taking actions: Υi = {υirj
} contains the role-taking actions for agent i.

υirj
∈ Υi means that agent i takes on the role rj ∈ RL.

Role-Execution Actions: Φi =
⋃

∀rj∈RL Φirj
contains the execution actions

for agent i where Φirj
is the set of agent i’s actions for executing role rj ∈ RL

In addition we define the set of states as S = Ξ1 × · · · × Ξm × Ξroles, where
the feature Ξroles (a vector) gives the current role that each agent has taken
on. The reason for introducing this new feature is to assist us in the mapping
from a BDI team plan to an RMTDP. Thus each time an agent performs a new
role-taking action successfully, the value of the feature Ξroles will be updated
to reflect this change. The key here is that we not only model an agent’s initial
role-taking action but also subsequent role reallocation. Modeling both allocation
and reallocation is important for an accurate analysis of BDI teams. Note that
an agent can observe the part of this feature pertaining to its own current role
but it may not observe the parts pertaining to other agents’ roles.

The introduction of roles allows us to represent the specialized behaviors as-
sociated with each role, e.g. a transport vs. a scout role. While filling a particular
role, rj , agent i can perform only role-execution actions, φ ∈ Φirj , which may be
different from the role-execution actions Φirl

for role rl. Thus, the feature Ξroles

is used to filter actions such that only those role-execution actions that corre-
spond to the agent’s current role are permitted. In the worst case, this filtering
does not affect the computational complexity but in practice, it can significantly
improve performance when trying to find the optimal policy for the team, since
the number of domain actions that each agent can choose from is restricted by
the role that the agent has taken on. Also, these different roles can produce
varied effects on the world state (modeled via transition probabilities, P ) and
the team’s reward. Thus, the policies must ensure that agents for each role have
the capabilities that benefit the team the most.

Just as in MTDP, each agent chooses which action to perform by indexing
its local policy πi by its observation history. In the same epoch some agents
could be doing role-taking actions while others are doing role-execution actions.
Thus, each agent’s local policy πi can be divided into local role-taking and
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role-execution policies such that for all observation histories, ω0
i , . . . , ωt

i , either
πiΥ (ω0

i , . . . , ωt
i) = null or πiΦ(ω0

i , . . . , ωt
i) = null. πΥ =< π1Υ , . . . , πnΥ > refers

to the joint role-taking policy of the team of agents while πΦ =< π1Φ, . . . , πnΦ >
refers to the joint role-execution policy. In this paper, we do not explicitly model
communicative actions as a special action. Thus communication is treated like
any other role-execution action and the communication received from other
agents are treated as observations.

Solving the RMTDP for the optimal role-taking policy, assuming that the
role-execution policy is fixed, is highly intractable [28]. In general the globally
optimal role-taking policy will be of doubly exponential complexity, and so we
may be left no choice but to run a brute-force policy search, i.e. to enumerate
all the role-taking policies and then evaluate them, which together determine
the run-time of finding the globally optimal policy. The number of policies is(

|Υ |
|Ω|T −1
|Ω|−1

)n

, i.e. doubly exponential in the number of observation histories

and the number of agents. Thus, while RMTDP enables quantitative evaluation
of team’s policies, computing optimal policies is intractable; furthermore, given
its low level of abstraction, in contrast to TOP, it is difficult for a human to
understand the optimal policy. This contrast between RMTDP and TOP is at
the root of our hybrid model described in the following section.

4 Hybrid BDI-POMDP Approach

Having explained TOP and RMTDP, we can now present a more detailed view
of our hybrid methodology to quantitatively evaluate a TOP with the help of
Figure 1. We first provide a more detailed interpretation of Figure 1. BDI team
plans are essentially TOP plans, while the BDI interpreter is the TOP coordina-
tion layer. As shown in Figure 1, an RMTDP model is constructed corresponding
to the domain and the TOP and its interpreter are converted into a correspond-
ing (incomplete) RMTDP policy. We can then analyze the TOP using analysis
techniques that rely on evaluating the RMTDP policy using the RMTDP model
of the domain.

Thus, our hybrid approach combines the strengths of the TOPs (enabling
humans to specify TOPs to coordinate large-scale teams) with the strengths of
RMTDP (enabling quantitative evaluation of different role allocations). On the
one hand, this synergistic interaction enable RMTDPs to improve the perfor-
mance of TOP-based BDI teams. On the other hand, we have identified at least
six specific ways in which TOPs make it easier to build RMTDPs and to effi-
ciently search RMTDP policies: two of which are discussed in this section, and
four in the next section. In particular, the six ways are:

1. TOPs are exploited in constructing RMTDP models of the domain (Sec-
tion 4.1);

2. TOPs are exploited to present incomplete policies to RMTDPs, thus restrict-
ing the RMTDP policy search (Section 5.1);
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3. TOP belief representation is exploited in enabling faster RMTDP policy
evaluation (Section 4.2);

4. TOP organization hierarchy is exploited in hierarchically grouping RMTDP
policies (Section 5.1);

5. TOP plan hierarchy is exploited in decomposing RMTDPs (Section 5.2);
6. TOP plan hierarchies are also exploited in cutting down the observation or

belief histories in RMTDPs (Section 5.2).

The end result of this efficient policy search is a completed RMTDP policy that
improves TOP performance. While we exploit the TOP framework, other frame-
works for tasking teams, e.g. Decker and Lesser [9] and Stone and Veloso [36]
could benefit from a similar synergistic interaction.

4.1 Guidelines for Constructing an RMTDP

As shown in Figure 1, our analysis approach uses as input an RMTDP model of
the domain, as well as an incomplete RMTDP policy. Fortunately, not only does
the TOP serve as a direct mapping to the RMTDP policy, but it can also be
utilized in actually constructing the RMTDP model of the domain. In particular,
the TOP can be used to determine which domain features are important to
model. In addition, the structure in the TOP can be exploited in decomposing
the construction of the RMTDP.

The elements of the RMTDP tuple, 〈S, A, P, Ω, O, R,RL〉, can be defined
using a procedure that relies on both the TOP as well as the underlying domain.
While this procedure is not automated, our key contribution is recognizing the
exploitation of TOP structures in constructing the RMTDP model. First, in
order to determine the set of states, S, it is critical to model the variables tested
in the pre-conditions, termination conditions and context of all the components
(i.e. sub-plans) in the TOP. Note that a state only needs to model the features
tested in the TOP; if a TOP pre-condition expresses a complex test on the
feature, that test is not modeled in the state, but instead gets used in defining
the incomplete policy input to RMTDP. Next we define the set of roles, RL,
as the leaf-level roles in the organization hierarchy of the TOP. Furthermore, as
specified in Section 3.2, we define a state feature Ξroles as a vector containing
the current role for each agent. Having defined RL and Ξroles, we now define
the actions, A as follows. For each role rj ∈ RL, we define a corresponding
role-taking action, υirj which will succeed or fail depending on the agent i that
performs the action and the state s that the action was performed in. The role-
execution actions, Φirj for agent i in role rj , are those allowed for that role
according to the TOP.

Thus, we have defined S, A and RL based on the TOP. To illustrate these
steps, consider the plans in Figure 4(b). The pre-conditions of the leaf-level
plan ScoutRoute1, for instance, tests start location of the helicopters to be
at start location X, while the termination conditions test that scouts are at
end location Y. Thus, the locations of the helicopters are modeled as features
in the set of states in the RMTDP. Using the organization hierarchy, we de-
fine the set of roles RL with a role corresponding to each of the four dif-
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ferent kinds of leaf-level roles, i.e. RL = {memberSctTeamA, memberSctT
eamB, memberSctTeamC, memberTransportTeam}. Using these roles, we can
define the role-taking and role-execution actions as follows:

– A role-taking action is defined corresponding to each of the four roles in
RL, i.e. becoming a member of one of the three scouting teams or of the
transport team. The domain specifies that only a transport can change to a
scout and thus the role-taking action, jointTransportTeam, will fail for agent
i, if the current role of agent i is a scout.

– Role-execution actions are obtained from the TOP plans corresponding to
the agent’s role. In the mission rehearsal scenario, an agent, fulfilling a scout
role (members of SctTeamA, SctTeamB or SctTeamC), always goes forward,
making the current position safe, until it reaches the destination and so the
only execution action we will consider is “move-making-safe”. An agent in
a transport role (members of Transport Team) waits at X until it obtains
observation of a signal that one scouting sub-team has reached Y and hence
the role-execution actions are “wait” and “move-forward”.

We must now define Ω, P, O, R. We obtain the set of observations Ωi for each
agent i directly from the domain. For instance, the transport helos may observe
the status of scout helos (normal or destroyed), as well as a signal that a path
is safe. Finally, determining the functions, P, O, R requires some combination of
human domain expertise and empirical data on the domain behavior. However,
as shown later in Section 6, even an approximate model of transitional and
observational uncertainty is sufficient to deliver significant benefits. Defining the
reward and transition function may sometimes require additional state variables
to be modeled, if they were only implicitly modeled in the TOP. In the mission
rehearsal domain, the time at which the scouting and transport mission were
completed determined the amount of reward. Thus, time was only implicitly
modeled in the TOP and needed to be explicitly modeled in the RMTDP.

Since we are interested in analyzing a particular TOP with respect to uncer-
tainty, the procedure for constructing an RMTDP model can be simplified by
exploiting the hierarchical decomposition of the TOP in order to decompose the
construction of the RMTDP model. The high-level components of a TOP often
represent plans executed by different sub-teams, which may only loosely interact
with each other. Within a component, the sub-team members may exhibit a tight
interaction, but our focus is on the “loose coupling” across components, where
only the end results of one component feed into another, or the components in-
dependently contribute to the team goal. Thus, our procedure for constructing
an RMTDP exploits this loose coupling between components of the plan hierar-
chy in order to build an RMTDP model represented as a combination of smaller
RMTDPs (factors). Note that if such decomposition is infeasible, our approach
still applies except that the benefits of the hierarchical decomposition will be
unavailable.

We classify sibling components as being either parallel or sequentially ex-
ecuted (contains a temporal constraint). Components executed in parallel
could be either independent or dependent. For independent components, we
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can define RMTDPs for each of these components such that the sub-team
executing one component cannot affect the transitions, observations and re-
ward obtained by the sub-teams executing the other components. The pro-
cedure for determining the elements of the RMTDP tuple for component k,
〈Sk, Ak, Pk, Ωk, Ok, Rk,RLk〉, is identical to the procedure described earlier for
constructing the overall RMTDP. However, each such component has a smaller
set of relevant variables and roles and hence specifying the elements of its cor-
responding RMTDP is easier.

We can now combine the RMTDPs of the independent components to ob-
tain the RMTDP corresponding to the higher-level component. For a higher
level component l, whose child components are independent, the set of states,
Sl = ×∀Ξx∈FSl

Ξx such that FSl
=

⋃
∀k s.t. Child(k,l)=true FSk

where FSl
and FSk

are the sets of features for the set of states Sl and set of states Sk. A state sl ∈ Sl

is said to correspond to the state sk ∈ Sk if ∀Ξx ∈ FSk
, sl[Ξx] = sk[Ξx], i.e. the

state sl has the same value as state sk for all features of state sk. The transition
function is defined as follows, Pl(s′

l, al, sl) =
∏

∀k s.t. Child(k,l)=true Pk(s′
k, ak, sk),

where sl and s′
l of component l corresponds to states sk and s′

k of com-
ponent k and ak is the joint action performed by the sub-team assigned
to component k corresponding to the joint action al performed by the sub-
team assigned to component l. The observation function is defined similarly
as Ol(sl, al, ωl) =

∏
∀k s.t. Child(k,l)=true Ok(sk, ak, ωk). The reward function is

defined as Rl(sl, al) =
∑

∀k s.t. Child(k,l)=true Rk(sk, ak).
In the case of sequentially executed components (those connected by a tem-

poral constraint), the components are loosely coupled since the end states of
the preceding component specify the start states of the succeeding component.
Thus, since only one component is active at a time, the transition function is
defined as follows, Pl(s′

l, al, sl) = Pk(s′
k, ak, sk), where component k is the only

active child component, sk and s′
k represent the states of component k corre-

sponding to states sl and s′
l of component l and ak is the joint action performed

by the sub-team assigned to component k corresponding to the joint action al

performed by the sub-team corresponding to component l. Similarly, we can de-
fine Ol(sl, al, ωl) = Ok(sk, ak, ωk) and Rl(sl, al) = Rk(sk, ak), where k is the
only active child component.

Consider the following example from the mission rehearsal domain where
components exhibit both sequential dependence and parallel independence. Con-
cretely, DoScouting is executed first followed by DoTransport and Remain-
ingScouts, which are parallel and independent and hence, either DoScouting
is active or DoTransport and RemainingScouts are active at any point in the
execution. Hence, the transition, observation and reward functions of their parent
Execute Mission is given by the corresponding functions of either DoScout-
ing or by the combination of the corresponding functions of DoTransport and
RemainingScouts.

We use a top-down approach in order to determine how to construct a fac-
tored RMTDP from the plan hierarchy, where we replace a particular sub-plan
by its constituent sub-plans if they are either independent or sequentially exe-
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cuted. If not, then the RMTDP is defined using that particular sub-plan. This
process is applied recursively starting at the root component of the plan hier-
archy. As a concrete example, consider again our mission rehearsal simulation
domain and the hierarchy illustrated in Figure 4(b). Given the temporal con-
straints between DoScouting and DoTransport, and DoScouting and Re-
mainingScouts, we exploited sequential decomposition, while DoTransport
and RemainingScouts were parallel and independent components. Hence, we
can replace ExecuteMission by DoScouting, DoTransport and Remain-
ingScouts. We then apply the same process to DoScouting. The constituent
components of DoScouting are neither independent nor sequentially executed
and thus DoScouting cannot be replaced by its constituent components. Thus,
RMTDP for the mission rehearsal domain is comprised of smaller RMTDPs for
DoScouting, DoTransport and RemainingScouts.

Thus, using the TOP to identify relevant variables and building a factored
RMTDP utilizing the structure of TOP to decompose the construction proce-
dure, reduce the load on the domain expert for model construction. Furthermore,
as shown in Section 5.2, this factored model greatly improves the performance
of the search for the best role allocation.

4.2 Evaluating RMTDP Policies by Exploiting TOP Beliefs

We now present a technique for exploiting TOPs in speeding up evaluation of
RMTDP policies. Before we explain our improvement, we first describe the orig-
inal algorithm for determining the expected reward of a joint policy, where the
local policies of each agent are indexed by its entire observation histories [30, 26].
Here, we obtain an RMTDP policy from a TOP as follows. We obtain πi(ωt

i), i.e.
the action performed by agent i for each observation history ωt

i, as the action a
performed by the agent i following the TOP when it has a set of privately held
beliefs corresponding to the observation history, ωt

i. We compute the expected
reward for the RMTDP policy by projecting the team’s execution over all pos-
sible branches on different world states and different observations. At each time
step, we can compute the expected value of a joint policy, π =< π1, . . . , πn >,
for a team starting in a given state, st, with a given set of past observations,
ωt

1, . . . ,ω
t
n, as follows:
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The expected reward of a joint policy π is given by V 0
π (s0, < null, . . . ,null >)

where s0 is the start state. At each time step t, the computation of V t
π performs

a summation over all possible world states and agent observations and so has a
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time complexity of O (|S| · |Ω|). This computation is repeated for all states and
all observation histories of length t, i.e. O (|S| · |Ω|t) times. Therefore, given a
time horizon T , the overall complexity of this algorithm is O

(
|S|2 · |Ω|T+1

)
.

As discussed in Section 2.2, in a team-oriented program, each agent’s action
selection is based on just its currently held private beliefs (note that mutual
beliefs are modeled as privately held beliefs about all agents as per footnote 2).
A similar technique can be exploited when mapping TOP to an RMTDP policy.
Indeed, the evaluation of a RMTDP policy that corresponds to a TOP can be
speeded up if each agent’s local policy is indexed by its private beliefs, ψ t

i . We
refer to ψ t

i , as the TOP-congruent belief state of agent i in the RMTDP. Note
that this belief state is not a probability distribution over the world states as
in a single agent POMDP, but rather the privately held beliefs (from the BDI
program) of agent i at time t.

Belief-based RMTDP policy evaluation leads to speedup because multiple
observation histories map to the same belief state, ψ t

i . This speedup is a key il-
lustration of exploitation of synergistic interactions of TOP and RMTDP. In this
instance, belief representation techniques used in TOP are reflected in RMTDP,
and the resulting faster policy evaluation can help us optimize TOP performance.
A detailed example of belief state is presented later after a brief explanation of
how such belief-based RMTDP policies can be evaluated.

Just as with evaluation using observation histories, we compute the ex-
pected reward of a belief-based policy by projecting the team’s execution over
all possible branches on different world states and different observations. At each
time step, we can compute the expected value of a joint policy, π =< π1, . . . ,
πn >, for a team starting in a given state, st, with a given team belief state,
< ψ t

1 , . . . , ψ t
n > as follows:
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where ψ t+1
i = BeliefUpdateFunction

(
ψ t

i , ωt+1
i

)

The complexity of computing this function (expression 2) is
O (|S| · |Ω|) ·O (Belief UpdateFunction). At each time step the computation
of the value function is done for every state and for all possible reachable belief
states. Let |Ψi| = max1≤t≤T (|ψt

i |) represent the maximum number of possible
belief states that agent i can be in at any point in time, where |ψt

i | is the number
of belief states that agent i can be in at t. Therefore the complexity of this algo-
rithm is given by O(|S|2 · |Ω| · (|Ψ1| · . . . · |Ψn|) ·T ) ·O (BeliefUpdateFunction).
Note that, in this algorithm T is not in the exponent unlike in the algorithm
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in expression 1. Thus, this evaluation method will give large time savings if:
(i) the quantity (|Ψ1| · . . . · |Ψn|) · T is much less than |Ω|T and (ii) the belief
update cost is low. In practical BDI systems, multiple observation histories map
often onto the same belief state, and thus usually, (|Ψ1| · . . . · |Ψn|) · T is much
less than |Ω|T . Furthermore, since the belief update function mirrors practical
BDI systems, its complexity is also a low polynomial or a constant. Indeed,
our experimental results show that significant speedups result from switching to
our TOP-congruent belief states ψ t

i . However, in the absolute worst case, the
belief update function may simply append the new observation to the history
of past observations (i.e., TOP-congruent beliefs will be equivalent to keeping
entire observation histories) and thus belief-based evaluation will have the same
complexity as the observation history-based evaluation.

We now turn to an example of belief-based policy evaluation from the mission
rehearsal domain. At each time step, the transport helicopters may receive an
observation about whether a scout has failed based on some observation function.
If we use the observation-history representation of the policy, then each trans-
port agent would maintain a complete history of the observations that it could
receive at each time step. For example, in a setting with two scout helicopters,
one on route 1 and the other on route 2, a particular transport helicopter may
have several different observation histories of length two. At every time step, the
transports may receive an observation about each scout being alive or having
failed. Thus, at time t = 2, a transport helicopter might have one of the follow-
ing observation histories of length two, 〈{sct1OnRoute1Alive, sct2OnRou

te2Alive}1
, {sct1OnRoute1Failed, sct2OnRoute2Failed}2

〉
,

〈{sct1OnRoute1A live, sct2OnRoute2Failed}1
, {sct1OnRoute1Failed}2

〉
,

〈{sct1OnRoute1Failed , sct2OnRoute2Alive}1
, {sct2OnRoute2Failed}2

〉
,

etc. However, the action selection of the transport helicopters depends on only
whether a critical failure (i.e. the last remaining scout has crashed) has taken
place to change its role. Whether a failure is critical can be determined by
passing each observation through a belief-update function. The exact order in
which the observations are received or the precise times at which the failure or
non-failure observations are received are not relevant to determining if a critical
failure has taken place and consequently whether a transport should change
its role to a scout. Thus, many observation histories map onto the same belief
states. For example, the above three observation histories all map to the same
belief CriticalFailure(DoScouting) i.e. a critical failure has taken place. This
results in significant speedups using belief-based evaluation, as Equation 2 needs
to be executed over a smaller number of belief states, linear in T in our domains,
as opposed to the observation history-based evaluation, where Equation 1 is
executed over an exponential number of observation histories (|Ω|T ). The actual
speedup obtained in the mission rehearsal domain is demonstrated empirically
in Section 6.
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5 Optimizing Role Allocation

While Section 4 focused on mapping a domain of interest onto RMTDP and
algorithms for policy evaluation, this section focuses on efficient techniques for
RMTDP policy search, in service of improving BDI/TOP team plans. The TOP
in essence provides an incomplete, fixed policy, and the policy search optimizes
decisions left open in the incomplete policy; the policy thus completed optimizes
the original TOP (see Figure 1). By enabling the RMTDP to focus its search on
incomplete policies, and by providing ready-made decompositions, TOPs assist
RMTDPs in quickly searching through the policy space, as illustrated in this sec-
tion. We focus, in particular, on the problem of role allocation [18, 24, 40, 11], a
critical problem in teams. While the TOP provides an incomplete policy, keeping
open the role allocation decision for each agent, the RMTDP policy search pro-
vides the optimal role-taking action at each of the role allocation decision points.
In contrast to previous role allocation approaches, our approach determines the
best role allocation, taking into consideration the uncertainty in the domain and
future costs. Although demonstrated for solving the role allocation problem, the
methodology is general enough to apply to other coordination decisions.

5.1 Hierarchical Grouping of RMTDP Policies

As mentioned earlier, to address role allocation, the TOP provides a policy that
is complete, except for the role allocation decisions. RMTDP policy search then
optimally fills in the role allocation decisions. To understand the RMTDP policy
search, it is useful to gain an understanding of the role allocation search space.
First, note that role allocation focuses on deciding how many and what types
of agents to allocate to different roles in the organization hierarchy. This role
allocation decision may be made at time t = 0 or it may be made at a later
time conditioned on available observations. Figure 8 shows a partially expanded
role allocation space defined by the TOP organization hierarchy in Figure 4(a)
for six helicopters. Each node of the role allocation space completely specifies
the allocation of agents to roles at the corresponding level of the organization
hierarchy (ignore for now, the number to the right of each node). For instance, the
root node of the role allocation space specifies that six helicopters are assigned
to the Task Force (level one) of the organization hierarchy while the leftmost
leaf node (at level three) in Figure 8 specifies that one helicopter is assigned to
SctTeamA, zero to SctTeamB, zero to SctTeamC and five helicopters to Transport
Team. Thus, as we can see, each leaf node in the role allocation space is a
complete, valid role allocation of agents to roles in the organization hierarchy.

In order to determine if one leaf node (role allocation) is superior to an-
other we evaluate each using the RMTDP by constructing an RMTDP pol-
icy for each. In this particular example, the role allocation specified by the
leaf node corresponds to the role-taking actions that each agent will execute
at time t = 0. For example, in the case of the leftmost leaf in Figure 8, at
time t = 0, one agent (recall from Section 2.2 that this is a homogeneous team
and hence which specific agent does not matter) will become a member of Sct-
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Fig. 8. Partially expanded role allocation space for mission rehearsal domain(six helos)

TeamA while all other agents will become members of Transport Team. Thus, for
one agent i, the role-taking policy will include πiΥ (null) = joinSctTeamA and
for all other agents, j, j �= i, it will include πjΥ (null) = joinTransportTeam.
In this case, we assume that the rest of the role-taking policy, i.e. how roles
will be reallocated if a scout fails, is obtained from the role reallocation algo-
rithm in the BDI/TOP interpreter, such as the STEAM algorithm [38]. Thus
for example, if the role reallocation is indeed performed by the STEAM algo-
rithm, then STEAM’s reallocation policy is included into the incomplete pol-
icy that the RMTDP is initially provided. Thus, the best role allocation is
computed keeping in mind STEAM’s reallocation policy. In STEAM, given
a failure of an agent playing RoleF , an agent playing RoleR will replace it
if:

Criticality (RoleF ) − Criticality (RoleR) > 0

Criticality (x) = 1 if x is critical; = 0 otherwise

Thus, if based on the agents’ observations, a critical failure has taken place,
then the replacing agent’s decision to replace or not will be computed using
the above expression and then included in the incomplete policy input to the
RMTDP. Since such an incomplete policy is completed by the role allocation
at each leaf node using the technique above, we have been able to construct a
policy for the RMTDP that corresponds to the role allocation.

We are thus able to exploit the TOP organization hierarchy to create a hierar-
chical grouping of RMTDP policies. In particular, while the leaf node represents
a complete RMTDP policy (with the role allocation as specified by the leaf
node), a parent node represents a group of policies. Evaluating a policy specified
by a leaf node is equivalent to evaluating a specific role allocation while taking
future uncertainties into account. We could do a brute force search through all
role allocations, evaluating each in order to determine the best role allocation.
However, the number of possible role allocations is exponential in the leaf roles
in the organization hierarchy. Thus, we must prune the search space.
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5.2 Pruning the Role Allocation Space

We prune the space of valid role allocations using upper bounds (MaxEstimates)
for the parents of the leaves of the role allocation space as admissible heuristics.
Each leaf in the role allocation space represents a completely specified policy
and the MaxEstimate is an upper bound of maximum value of all the policies
under the same parent node evaluated using the RMTDP. Once we obtain Max-
Estimates for all the parent nodes (shown in brackets to the right of each parent
node in Figure 8), we use branch-and-bound style pruning. The key novelty of
this branch-and-bound algorithm, which we discuss below, is how the we exploit
the structure of the TOP in order to compute upper bounds for parent nodes.
The other details of this algorithm can be found in [28].

We will now discuss how the upper bounds of parents, called MaxEstimates,
can be calculated for each parent. The MaxEstimate of a parent is defined as a
strict upper bound of the maximum of the expected reward of all the leaf nodes
under it. It is necessary that the MaxEstimate be an upper bound or else we
might end up pruning potentially useful role allocations. In order to calculate
the MaxEstimate of each parent we could evaluate each of the leaf nodes below it
using the RMTDP, but this would nullify the benefit of any subsequent pruning.
We, therefore, turn to the TOP plan hierarchy (see Figure 4(b)) to break up
this evaluation of the parent node into components, which can be evaluated
separately thus decomposing the problem. In other words, our approach exploits
the structure of the BDI program to construct small-scale RMTDPs unlike other
decomposition techniques which just assume decomposition or ultimately rely
on domain experts to identify interactions in the agents’ reward and transition
functions [8, 15].

For each parent in the role allocation space, we use these small-scale RMT-
DPs to evaluate the values for each TOP component. Fortunately, as discussed
in Section 4.1, we exploited small-scale RMTDPs corresponding to TOP compo-
nents in constructing larger scale RMTDPs. We put these small-scale RMTDPs
to use again, evaluating policies within each component to obtain upper bounds.
Note that just like in evaluation of leaf-level policies, the evaluation of compo-
nents for the parent node can be done using either the observation histories (see
Equation 1) or belief states (see Equation 2). We will describe this section using
the observation history-based evaluation method for computing the values of the
components of each parent, which can be summed up to obtain its MaxEstimate
(an upper bound on its children’s values). Thus, whereas a parent in the role
allocation space represents a group of policies, the TOP components (sub-plans)
allow a component-wise evaluation of such a group to obtain an upper bound on
the expected reward of any policy within this group.

Algorithm 1 exploits the smaller-scale RMTDP components, discussed in
Section 4.1, to obtain upper bounds of parents. First, in order to evaluate the
MaxEstimate for each parent node in the role allocation space, we identify the
start states for each component from which to evaluate the RMTDPs. We explain
this step using a parent node from Figure 8 – Scouting Team = two helos,
Transport Team = four helos (see Figure 9). For the very first component which
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does not have any preceding components, the start states corresponds to the
start states of the policy that the TOP was mapped onto. For each of the next
components – where the next component is one linked by a sequential dependence
– the start states are the end states of the preceding component. However, as
explained later in this section, we can significantly reduce this list of start states
from which each component can be evaluated.

Algorithm 1 MAXEXP method for calculating upper bounds for parents in
the role allocation space.
1: for all parent in search space do
2: MAXEXP[parent] ← 0
3: for all component i corresponding to factors in the RMTDP from Section 4.1

do
4: if component i has a preceding component j then
5: Obtain start states, states[i] ← endStates[j]
6: states[i] ← removeIrrelevantFeatures(states[i]) {discard features not

present in Si}
7: Obtain corresponding observation histories at start OHistories[i] ←

endOHistories[j]
8: OHistories[i] ← removeIrrelevantObservations(OHistories[i])
9: else

10: Obtain start states, states[i]
11: Observation histories at start OHistories[i] ← null
12: maxEval[i] ← 0
13: for all leaf-level policies π under parent do
14: maxEval[i] ← max(maxEval[i],maxsi∈states[i],ohi∈OHistories[i]

(Evaluate(RMTDPi, si, ohi, π)))
15: MAXEXP[parent] +← maxEval[i]

Similarly, the starting observation histories for a component are the obser-
vation histories on completing the preceding component (no observation history
for the very first component). BDI plans do not normally refer to entire obser-
vation histories but rely only on key beliefs which are typically referred to in
the pre-conditions of the component. Each starting observation history can be
shortened to include only these relevant observations, thus obtaining a reduced
list of starting observation sequences. Divergence of private observations is not
problematic, e.g. will not cause agents to trigger different team plans. This is be-
cause as indicated earlier in Section 2.2, TOP interpreters guarantee coherence
in key aspects of observation histories. For instance, as discussed earlier, TOP
interpreter ensures coherence in key beliefs when initiating and terminating team
plans in a TOP; thus avoiding such divergence of observation histories.

In order to compute the maximum value for a particular component, we eval-
uate all possible leaf-level policies within that component over all possible start
states and observation histories and obtain the maximum (Algorithm 1:steps 13-
14). During this evaluation, we store all the end states and ending observation
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histories so that they can be used in the evaluation of subsequent components. As
shown in Figure 9, for the evaluation of DoScouting component for the parent
node where there are two helicopters assigned to Scouting Team and four helos
to Transport Team, the leaf-level policies correspond to all possible ways these
helicopters could be assigned to the teams SctTeamA, SctTeamB, SctTeamC and
Transport Team, e.g. one helo to SctTeamB, one helo to SctTeamC and four he-
los to Transport Team, or two helos to SctTeamA and four helos to Transport
Team, etc. The role allocation tells the agents what role to take in the first
step. The remainder of the role-taking policy is specified by the role replacement
policy in the TOP infrastructure and role-execution policy is specified by the
DoScouting component of the TOP.

To obtain the MaxEstimate for a parent node of the role allocation space,
we simply sum up the maximum values obtained for each component (Al-
gorithm 1:steps 15), e.g. the maximum values of each component (see right
of each component in Figure 9) were summed to obtain the MaxEstimate
(84 + 3330 + 36 = 3420). As seen in Figure 8, third node from the left indeed
has an upper bound of 3420.

The calculation of the MaxEstimate for a parent nodes should be much
faster than evaluating the leaf nodes below it in most cases for two reasons.
Firstly, parent nodes are evaluated component-wise. Thus, if multiple leaf-level
policies within one component result in the same end state, we can remove
duplicates to get the start states of the next component. Since each compo-
nent only contains the state features relevant to it, the number of duplicates is
greatly increased. Such duplication of the evaluation effort cannot be avoided
for leaf nodes, where each policy is evaluated independently from start to
finish. For instance, in the DoScouting component, the role allocation, Sct-
TeamA=1, SctTeamB=1, SctTeamC=0, TransportTeam=4 and the role allo-
cation SctTeamA=1, SctTeamB=0, SctTeamC=1, TransportTeam=4 will have
end states in common after eliminating irrelevant features when the scout in
SctTeamB for the former allocation and the scout in SctTeamC for the latter
allocation fail. This is because through feature elimination (Algorithm 1:steps
6), the only state features retained for the DoTransport component are the
scouted route and number of transports (some transports may have replaced
failed scouts) as shown in Figure 9.

The second reason computation of MaxEstimates for parents is much faster
is that the number of starting observation sequences will be much less than the
number of ending observation histories of the preceding components. This is
because not all the observations in the observation histories of a component are
relevant to its succeeding components (Algorithm 1:steps 8). Thus, the function
removeIrrelevantObservations reduces the number of starting observation
histories from the observation histories of the preceding component.

We refer to this methodology of obtaining the MaxEstimates of each parent as
MAXEXP. A variation of this, the maximum expected reward with no failures
(NOFAIL), is obtained in a similar fashion except that we assume that the
probability of any agent failing is 0. We are able to make such an assumption in
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Fig. 9. Component-wise decomposition of a parent by exploiting TOP

evaluating the parent node, since we focus on obtaining upper bounds of parents,
and not on obtaining their exact value. This will result in less branching and
hence evaluation of each component will proceed much quicker. The NOFAIL
heuristic only works if the evaluation of any policy without failures occurring is
higher than the evaluation of the same policy with failures possible. This should
normally be the case in most domains. The evaluation of the NOFAIL heuristics
for the role allocation space for six helicopters is shown in square brackets in
Figure 8.

6 Experimental Results

This section presents four sets of results in the context of the two domains intro-
duced in Section 2.1, viz. mission rehearsal and RoboCupRescue [21]. First, we
investigated empirically the speedups that result from using the TOP-congruent
belief states ψi (belief-based evaluation) over observation history-based evalua-
tion and from using the algorithm from Section 5 over a brute-force search. Here
we focus on determining the best assignment of agents to roles; but assume a
fixed TOP and TOP infrastructure. Second, we conducted experiments to in-
vestigate the benefits of considering uncertainty in determining role allocations.
For this, we compared the allocations found by the RMTDP role allocation algo-
rithm with (i) allocations which do not consider any kind of uncertainty, and (ii)
allocations which do not consider observational uncertainty but consider action
uncertainty. Third, we conducted experiments in both domains to determine the
sensitivity of the results to changes in the model. Fourth, we compare the perfor-
mance of allocations found by the RMTDP role allocation algorithm with alloca-
tions of human subjects in the more complex of our domains – RoboCupRescue
simulations.

6.1 Results in Mission Rehearsal Domain

For the mission rehearsal domain, the TOP is the one discussed in Section 2.2.
As can be seen in Figure 4(a), the organization hierarchy requires determining
the number of agents to be allocated to the three scouting sub-teams and the
remaining helos must be allocated to the transport sub-team. Different numbers
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Fig. 10. Performance of role allocation space search in mission rehearsal domain, a)
Number of nodes evaluated, b) Run-time in seconds on a log scale

of initial helicopters were attempted, varying from three to ten. The probability
of failure of a scout at each time step on routes 1, 2 and 3 are 0.1, 0.15 and 0.2,
respectively. The probability of a transport observing an alive scout on routes 1,
2 and 3 are 0.95, 0.94 and 0.93, respectively. False positives are not possible, i.e.
a transport will not observe a scout as being alive if it has failed. The probability
of a transport observing a scout failure on routes 1, 2 and 3 are 0.98, 0.97 and
0.96, respectively. Here too, false positives are not possible and hence a transport
will not observe a failure unless it has actually taken place.

Figure 10 shows the results of comparing the different methods for searching
the role allocation space. We show four methods. Each method adds new speedup
techniques to the previous:

1. NOPRUNE-OBS: A brute force evaluation of every role allocation to deter-
mine the best. Here, each agent maintains its complete observation history
and the evaluation algorithm in Equation 1 is used. For ten agents, the
RMTDP is projected to have in the order of 10,000 reachable states and in
the order of 100,000 observation histories per role allocation evaluated (thus
the largest experiment in this category was limited to seven agents).

2. NOPRUNE-BEL: A brute force evaluation of every role allocation. The only
difference between this method and NOPRUNE-OBS is the use of the belief-
based evaluation algorithm (see Equation 2).

3. MAXEXP: The branch-and-bound search algorithm described in Section 5.2
that uses upper bounds of the evaluation of the parent nodes to find the best
allocation. Evaluation of the parent and leaf nodes uses the belief-based
evaluation.

4. NOFAIL: The modification to branch-and-bound heuristic mentioned in Sec-
tion 5.2. In essence it is same as MAXEXP, except that the upper bounds
are computed making the assumption that agents do not fail. This heuristic
is correct in those domains where the total expected reward with failures is
always less than if no failures were present and will give significant speedups
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if agent failures is one of the primary sources of stochasticity. In this method,
too, the evaluation of the parent and leaf nodes uses the belief-based eval-
uation. (Note that only upper bounds are computed using the no-failure
assumption – no changes are assumed in the actual domains.)

In Figure 10(a), the Y-axis is the number of nodes in the role allocation
space evaluated (includes leaf nodes as well as parent nodes), while in Figure
10(b) the Y-axis represents the runtime in seconds on a logarithmic scale. In
both figures, we vary the number of agents on the X-axis. Experimental results
in previous work using distributed POMDPs are often restricted to just two
agents; by exploiting hybrid models, we are able to vary the number of agents
from three to ten as shown in Figure 10(a). As clearly seen in Figure 10(a),
because of pruning, significant reductions are obtained by MAXEXP and NO-
FAIL over NOPRUNE-BEL in terms of the numbers of nodes evaluated. This
reduction grows quadratically to about 10-fold at ten agents.1 NOPRUNE-OBS
is identical to NOPRUNE-BEL in terms of number of nodes evaluated, since in
both methods all the leaf-level policies are evaluated, only the method of eval-
uation differs. It is important to note that although NOFAIL and MAXEXP
result in the same number of nodes being evaluated for this domains, this is not
necessarily true always. In general, NOFAIL will evaluate at least as many nodes
as MAXEXP since its estimate is at least as high as the MAXEXP estimate.
However, the upper bounds are computed quicker for NOFAIL.

Figure 10(b) shows that the NOPRUNE-BEL method provides a significant
speedup over NOPRUNE-OBS in actual run-time. For instance, there was a 12-
fold speedup using NOPRUNE-BEL instead of NOPRUNE-OBS for the seven
agent case (NOPRUNE-OBS could not be executed within a day for problem
settings with greater than seven agents). This empirically demonstrates the com-
putational savings possible using belief-based evaluation instead of observation
history-based evaluation (see Section 4). For this reason, we use only belief-
based evaluation for the MAXEXP and NOFAIL approaches and also for all
the remaining experiments in this paper. MAXEXP heuristic results in a 16-fold
speedup over NOPRUNE-BEL in the eight agent case.

The NOFAIL heuristic which is very quick to compute the upper bounds far
outperforms the MAXEXP heuristic (47-fold speedup over MAXEXP for ten
agents). Speedups of MAXEXP and NOFAIL continually increase with increas-
ing number of agents. The speedup of the NOFAIL method over MAXEXP is so
marked because, in this domain, ignoring failures results in much less branching.

Next, we conducted experiments illustrating the importance of RMTDP’s
reasoning about action and observation uncertainties on role allocations. For
this, we compared the allocations found by the RMTDP role allocation algorithm
with allocations found using two different methods (see Figure 11):

1 The number of nodes for NOPRUNE up to eight agents were obtained from experi-
ments, the rest can be calculated using the formula [m]n/n! = (m+n−1) · . . . ·m/n!,
where m represents the number of heterogeneous role types and n is the number of
homogeneous agents. [m]n = (m + n − 1) · . . . · m is referred to as a rising factorial.
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1. Role allocation via constraint optimization (COP [24, 23]) allocation ap-
proach: In the COP approach2, leaf-level sub-teams from the organization
hierarchy are treated as variables and the number of helicopters as the do-
main of each such variable (thus, the domain may be 1, 2, 3,..helicopters).
The reward for allocating agents to sub-teams is expressed in terms of con-
straints:
– Allocating a helicopter to scout a route was assigned a reward corre-

sponding to the route’s distance but ignoring the possibility of failure
(i.e. ignoring transition probability). Allocating more helicopters to this
subteam obtained proportionally higher reward.

– Allocating a helicopter a transport role was assigned a large reward for
transporting cargo to the destination. Allocating more helicopters to this
subteam obtained proportionally higher reward.

– Not allocating at least one scout role was assigned a reward of negative
infinity

– Exceeding the total number of agents was assigned a reward of negative
infinity

2. RMTDP with complete observability: In this approach, we consider the tran-
sition probability, but ignore partial observability; achieved by assuming
complete observability in the RMTDP. An MTDP with complete observ-
ability is equivalent to a Markov Decision Problem (MDP) [30] where the
actions are joint actions. We, thus, refer to this allocation method as the
MDP method.

Figure 11(a) shows a comparison of the RMTDP-based allocation with the
MDP allocation and the COP allocation for increasing number of helicopters
(X-axis). We compare using the expected number of transports that get to the
destination (Y-axis) as the metric for comparison since this was the primary
objective of this domain. As can be seen, considering both forms of uncertainty
(RMTDP) performs better than just considering transition uncertainty (MDP)
which in turn performs better than not considering uncertainty (COP). Fig-
ure 11(b) shows the actual allocations found by the three methods with four
helicopters and with six helicopters. In the case of four helicopters (first three
bars), RMTDP and MDP are identical, two helicopters scouting route 2 and
two helicopters taking on transport role. The COP allocation however consists
of one scout on route 3 and three transports. This allocation proves to be too
myopic and results in fewer transports getting to the destination safely. In the
case of six helicopters, COP chooses just one scout helicopter on route 3, the
shortest route. The MDP approach results in two scouts both on route 1, which
was longest route albeit the safest. The RMTDP approach, which also considers
observational uncertainty choose to allocate the two scouts to route 1 and route
2, in order to take care of the cases where failures of scouts go undetected by
the transports.

2 Modi et al.’s work [24] focused on decentralized COP, but in this investigation our
emphasis is on the resulting role allocation generated by the COP, and not on the
decentralization per se.
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Fig. 11. a) Comparison of performance of different allocation methods, b) Allocations
found using different allocation methods
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Fig. 12. Performance of role allocation space search in RoboCupRescue, a) Number of
nodes evaluated on a log scale, and b) Run-time in seconds on a log scale

6.2 Results in RoboCupRescue Domain

Speedups in RoboCupRescue Domain In our next set of experiments, we
highlight the computational savings obtained in the RoboCupRescue domain.
The scenario for this experiment consisted of two fires at different locations in
the city. Each of these fires has a different initially unknown number of civilians
in it, however the total number of civilians and the distribution from which the
locations of the civilians is chosen is known ahead of time. For this experiment,
we fix the number of civilians at five and set the distribution used to choose the
civilians’ locations to be uniform. The number of fire engines is set at five, located
in three different fire stations as described in Section 2.1 and vary the number of
ambulances, all co-located at an ambulance center, from two to seven. The reason
we chose to change only the number of ambulances is because small number of
fire engines are unable to extinguish fires, changing the problem completely.
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The goal is to determine which fire engines to allocate to which fire and once
information about civilians is transmitted, how many ambulances to send to
each fire location.

Figure 12 highlights the savings in terms of the number of nodes evaluated
and the actual runtime as we increase the number of agents. We show results
only from NOPRUNE-BEL and MAXEXP. NOPRUNE-OBS could not be run
because of slowness. Here the NOFAIL heuristic is identical to MAXEXP since
agents cannot fail in this scenario. The RMTDP in this case had about 30,000
reachable states.

In both Figures 12(a) and 12(b), we increase the number of ambulances along
the X-axis. In Figure 12(a), we show the number of nodes evaluated (parent
nodes + leaf nodes)3 on a logarithmic scale. As can be seen, the MAXEXP
method results in about a 89-fold decrease in the number of nodes evaluated
when compared to NOPRUNE-BEL for seven ambulances, and this decrease be-
comes more pronounced as the number of ambulances is increased. Figure 12(b)
shows the time in seconds on a logarithmic scale on the Y-axis and compares the
run-times of the MAXEXP and NOPRUNE-BEL methods for finding the best
role allocation. The NOPRUNE-BEL method could not find the best allocation
within a day when the number of ambulances was increased beyond four. For
four ambulances (and five fire engines), MAXEXP resulted in about a 29-fold
speedup over NOPRUNE-BEL.

Allocation in RoboCupRescue. Our next set of experiments shows the prac-
tical utility of our role allocation analysis in complex domains. We are able to
show significant performance improvements in the actual RoboCupRescue do-
main using the role allocations generated by our analysis. First, we construct an
RMTDP for the rescue scenario, described in Section 2.1, by taking guidance
from the TOP and the underlying domain (as described in Section 4.1). We
then use the MAXEXP heuristic to determine the best role allocation. We com-
pared the RMTDP allocation with the allocations chosen by human subjects.
Our goal in comparing RMTDP allocations with human subjects was mainly
to show that RMTDP is capable at performing at or near human expert levels
for this domain. In addition, in order to determine that reasoning about uncer-
tainty actually impacts the allocations, we compared the RMTDP allocations
with allocations determined by two additional allocation methods:

1. RescueISI: Allocations used by the our RoboCupRescue agents that were
entered in the RoboCupRescue competitions of 2001 [25] (RescueISI), where
they finished in third place. These agents used local reasoning for their de-
cision making, ignoring transitional as well and observational uncertainty.

3 The number of nodes evaluated using NOPRUNE-BEL can be computed as (f1 +1) ·
(f2 + 1) · (f3 + 1) · (a + 1)c+1, where f1, f2 and f3 are the number of fire engines are
station 1, 2 and 3, respectively, a is the number of ambulances and c is the number
of civilians. Each node provides a complete conditional role allocation, assuming
different numbers of civilians at each fire station.



30 R. Nair and M. Tambe

2. RMTDP with complete observability: As discussed earlier, complete observ-
ability in RMTDP leads to an MDP, and we refer to this method as the
MDP method.

Note that these comparisons were performed using the RoboCupRescue sim-
ulator with multiple runs to deal with stochasticity4. The scenario is as described
in Section 6.2. We fix the number of fire engines, ambulances and civilians at
five each. For this experiment, we consider two settings, where the location of
civilians is drawn from:

– Uniform distribution – 25% of the cases have four civilians at fire 1 and
one civilian at fire 2, 25% with three civilians at fire 1 and two at fire 2,
25% with two civilians at fire 1 and three at fire 2 and the remaining 25%
with one civilian at fire 1 and four civilians at fire 2. The speedup results of
Section 6.2 were obtained using this distribution.

– Skewed distribution – 80% of the cases have four civilians at fire 1 and one
civilian at fire 2 and the remaining 20% with one civilian at fire 1 and four
civilians at fire 2.

Note that we do not consider the case where all civilians are located at the same
fire as the optimal ambulance allocation is simply to assign all ambulances to
the fire where the civilians are located. A skewed distribution was chosen to
highlight the cases where it becomes difficult for humans to reason about what
allocation to choose.

The three human subjects used in this experiment were researchers at USC.
All three were familiar with RoboCupRescue. They were given time to study
the setup and were not given any time limit to provide their allocations. Each
subject was told that the allocations were going to be judged first on the basis
of the number of civilian lives lost and next on the damage sustained due to fire.
These are exactly the criteria used in RoboCupRescue [21].

We then compared “RMTDP” allocation with those of the human subjects
in the RoboCupRescue simulator and with RescueISI and MDP. In Figure 13,
we compared the performance of the allocations on the basis of the number of
civilians who died and the average damage to the two buildings (lower values
are better for both criteria). These two criteria are the main two criteria used in
RoboCupRescue [21]. The values shown in Figure 13 were obtained by averaging
forty simulator runs for the uniform distribution and twenty runs for the skewed
distribution for each allocation. The average values were plotted to account for
the stochasticity in the domain. Error bars are provided to show the standard
error for each allocation method.

As can be seen in Figure 13(a), the RMTDP allocation did better than the
other five allocations in terms of a lower number of civilians dead (although

4 For the mission rehearsal domain, we could not run on the actual mission rehearsal
simulator since that simulator is not public domain and no longer accessible, and
hence the difference in how we tested role allocations in the mission rehearsal and
the RoboCupRescue domains.



Coordinating Teams in Uncertain Environments 31

0

1

2

3

4

5

6

RM
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

Res
cu

eI
SI

M
DP

Civilians casualties
Building damage

(a)

0

1

2

3

4

5

6

RM
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

Res
cu

eI
SI

M
DP

Civilians casualties
Building damage

(b)

Fig. 13. Comparison of performance in RoboCupRescue, a) uniform, and b) skewed

human3 was quite close). For example, averaging forty runs, the RMTDP allo-
cation resulted in 1.95 civilian deaths while human2’s allocation resulted in 2.55
civilian deaths. In terms of the average building damage, the six allocations were
almost indifferentiable, with the humans actually performing marginally better.
Using the skewed distribution, the difference between the allocations was much
more perceptible (see Figure 13(b)). In particular, we notice how the RMTDP
allocation does much better than the humans in terms of the number of civilians
dead. Here, human3 did particularly badly because of a bad allocation for fire
engines. This resulted in more damage to the buildings and consequently to the
number of civilians dead.

Comparing RMTDP with RescueISI and the MDP approach showed that rea-
soning about transitional uncertainty (MDP) does better than a static reactive
allocation method (RescueISI) but not as well as reasoning about both transi-
tional and observational uncertainty. In the uniform distribution case, we found
that RMTDP does better than both MDP and RescueISI, with the MDP method
performing better than RescueISI. In the skewed distribution case, the improve-
ment in allocations using RMTDP is greater. Averaging twenty simulation runs,
RMTDP allocations resulted in 1.54 civilians deaths while MDP resulted in 1.98
and RescueISI in 3.52. The allocation method used by RescueISI often resulted
in one of the fires being allocated too few fire engines. The allocations determined
by the MDP approach turned out to be the same as human1.

A two-tailed t-test was performed in order to test the statistical significance
of the means for the allocations in Figure 13. The means of number of civilians
dead for the RMTDP allocation and the human allocations were found to be
statistically different (confidence > 96%) for both the uniform as well as the
skewed distributions. The difference in the fire damage was not statistically
significant in the uniform case, however, the difference between the RMTDP
allocation and human3 for fire damage was statistically significant (> 96%) in
the skewed case.

These experiments show that the allocations found by the RMTDP role allo-
cation algorithm performs significantly better than allocations chosen by human



32 R. Nair and M. Tambe

subjects and RescueISI and MDP in most cases (and does not do significantly
worse in any case). In particular when the distribution of civilians is not uni-
form, it is more difficult for humans to come up with an allocation and the
difference between human allocations and the RMTDP allocation becomes more
significant. From this we can conclude that the RMTDP allocation performs at
near-human expertise.

7 Related Work

There are three related areas of research that we wish to highlight. First, there
has been a considerable amount of work done in the field of multiagent team-
work (Section 7.1). The second related area of research is the use of decision
theoretic models, in particular distributed POMDPs (Section 7.2). Finally, in
Section 7.3, the related work in role allocation and reallocation in multiagent
teams is described.

7.1 BDI-Based Teamwork

Several formal teamwork theories such as Joint Intentions [6], SharedPlans [14]
were proposed that tried to capture the essence of multiagent teamwork in the
logic of Beliefs-Desires-Intentions. Next, practical models of teamwork such as
COLLAGEN [32], GRATE* [19], STEAM [37] built on these teamwork theo-
ries [6, 14] and attempted to capture the aspects of teamwork that were reusable
across domains. In addition, to complement the practical teamwork models, the
team-oriented programming approach [31, 39] was introduced to allow large num-
ber of agents to be programmed as teams. This approach was then expanded
on and applied to a variety of domains [31, 44, 7]. Other approaches for building
practical multiagent systems [36, 9], while not explicitly based on team-oriented
programming, could be considered in the same family.

The research reported in this paper complements this research on teamwork
by introducing hybrid BDI-POMDP models that exploit the synergy between
BDI and POMDP approaches. In particular, TOP and teamwork models have
traditionally not addressed uncertainty and cost. Our hybrid model provides
this capability, and we have illustrated the benefits of this reasoning via detailed
experiments.

While this paper uses team-oriented programming [38, 7, 39] as an example
BDI approach, it is relevant to other similar techniques of modeling and task-
ing collectives of agents, such as Decker and Lesser’s [9] TAEMS approach. In
particular, the TAEMS language provides an abstraction for tasking collabo-
rative groups of agents similar to TOP, while the GPGP infrastructure used in
executing TAEMS-based tasks is analogous to the “TOP interpreter” infrastruc-
ture shown in Figure 1. While Lesser et al. have explored the use of distributed
MDPs in analyses of GPGP coordination [42], they have not exploited the use of
TAEMS structures in decomposition or abstraction for searching optimal policies
in distributed MDPs, as suggested in this paper. Thus, this paper complements
Lesser et al.’s work in illustrating a significant avenue for further efficiency im-
provements in such analyses.
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7.2 Distributed POMDP Models

Three different approaches have been used to solve distributed POMDPs. One
approach that is typically taken is to make simplifying assumptions about the
domain. For instance, in Guestrin et al. [15], it is assumed that each agent can
completely observe the world state. In addition, it is assumed that the reward
function (and transition function) for the team can be expressed as the sum
(product) of the reward (transition) functions of the agents in the team. Becker et
al. [2] assume that the domain is factored such that each agent has a completely
observable local state and also that the domain is transition-independent (one
agent cannot affect another agent’s local state).

The second approach taken is to simplify the nature of the policies considered
for each of the agents. For example, Chadès et al. [5] restrict the agent policies
to be memoryless (reactive) policies, thereby simplifying the problem to solving
multiple MDPs. Peshkin et al. [29] take a different approach by using gradient
descent search to find local optimum finite-controllers with bounded memory.
Nair et al. [26, 27] present an algorithm for finding a locally optimal policy
from a space of unrestricted finite-horizon policies. The third approach, taken
by Hansen et al. [16], involves trying to determine the globally optimal solution
without making any simplifying assumptions about the domain. In this approach,
they attempt to prune the space of possible complete policies by eliminating
dominated policies. Although a brave frontal assault on the problem, this method
is expected to face significant difficulties in scaling up due to the fundamental
complexity of obtaining a globally optimal solution.

The key difference with our work is that our research is focused on hybrid
systems where we leverage the advantages of BDI team plans, which are used
in practical systems, and distributed POMDPs that quantitatively reason about
uncertainty and cost. In particular, we use TOPs to specify large-scale team
plans in complex domains and use RMTDPs for finding the best role allocation
for these teams.

7.3 Role Allocation and Reallocation

There are several different approaches to the problem of role allocation and re-
allocation. For example, Tidhar et al. [40] and Tambe et al. [38] performed role
allocation based on matching of capabilities, while Hunsberger and Grosz [18]
proposed the use of combinatorial auctions to decide on how roles should be
assigned. Modi et al. [24] showed how role allocation can be modeled as a dis-
tributed constraint optimization problem and applied it to the problem of track-
ing multiple moving targets using distributed sensors. Shehory and Kraus [34]
suggested the use of coalition formation algorithms for deciding quickly which
agent took on which role. Fatima and Wooldridge [11] use auctions to decide
on task allocation. It is important to note that these competing techniques are
not free of the problem of how to model the problem, even though they do not
have to model transition probabilities. Other approaches to reforming a team are
reconfiguration methods due to Dunin-Keplicz and Verbrugge [10], self-adapting
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organizations by Horling and Lesser [17] and dynamic re-organizing groups [1].
Scerri et al. [33] present a role (re)allocation algorithm that allows autonomy of
role reallocation to shift between a human supervisor and the agents.

The key difference with all this prior work is our use of stochastic models
(RMTDPs) to evaluate allocations: this enables us to compute the benefits of
role allocation, taking into account uncertainty and costs of reallocation upon
failure. For example, in the mission rehearsal domain, if uncertainties were not
considered, just one scout would have been allocated, leading to costly future
reallocations or even in mission failure. Instead, with lookahead, depending on
the probability of failure, multiple scouts were sent out on one or more routes,
resulting in fewer future reallocations and higher expected reward.

8 Conclusion

While the BDI [38, 9, 39] approach to agent teamwork has provided successful
applications, tools and techniques that provide quantitative analyses of team co-
ordination and other team behaviors under uncertainty are lacking. The emerg-
ing field of distributed POMDPs [3, 4, 30, 43, 29, 16] provides a rich framework
for modeling uncertainties and utilities in complex multiagent domains. How-
ever, as shown by Bernstein et al. [3], the problem of deriving the optimal policy
is computationally intractable.

In order to deal with this issue of intractability in distributed POMDPs, this
paper presented a principled way to combine the two dominant paradigms for
building multiagent teams, namely the BDI approach and distributed POMDPs.
In this hybrid BDI-POMDP approach, BDI team plans are exploited to improve
distributed POMDP tractability and distributed POMDP-based analysis im-
proves BDI team plan performance. Thus, this approach leverages the benefits
of both the BDI and POMDP approaches to analyze and improve key coordina-
tion decisions within BDI-based team plans using POMDP-based methods. In
order to demonstrate these analysis methods, we concentrated on role allocation
– a fundamental aspect of agent teamwork. First, we introduced RMTDP, a dis-
tributed POMDP based framework, for analysis of role allocation. Second, this
paper presented an RMTDP-based methodology for optimizing key coordina-
tion decisions within a BDI team plan for a given domain. Concretely, the paper
described a methodology for finding the best role allocation for a fixed team
plan. Given the combinatorially many role allocations, we introduced methods
to exploit task decompositions among sub-teams to significantly prune the search
space of role allocations.

We constructed RMTDPs for two domains – RoboCupRescue and mission
rehearsal simulation – and determined the best role allocation in these domains.
Furthermore, we illustrated significant speedups in RMTDP policy search due
to the techniques introduced in this paper. Detailed experiments revealed the
advantages of our approach over state-of-the-art role allocation approaches that
do not reason with uncertainty. In the RoboCupRescue domain, we showed that
the role allocation technique presented in this paper is capable of performing at
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human expert levels by comparing with the allocations chosen by humans in the
actual RoboCupRescue simulation environment.
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Abstract. In the 10 years since the first ATAL workshop was held,
Agent and Multi-Agent Systems have been a spectacular growth area of
research in Computer Science. The field has certainly developed in terms
of indicators such as number of publications, conferences and workshops.
A view now expressed by many in the agent research community, and
others, is that agents represent the ’next big thing’ in software develop-
ment and are poised to supplant object-oriented approaches. But is there
any realistic prospect of this happening? Is the state-of-the-art in agents
and the focus of agent research really relevant to enterprise computing?
What might enterprise-ready agent technology look like? What factors
would drive enterprises to invest in such solutions? This talk will attempt
to analyze underlying issues and offer some answers to these questions.

1 Introduction

In the last decade agent researchers have developed many agent specification and
programming languages, variously based on plans, rules, logics or constraints, or
by extending conventional OO languages such as Java. As well as new languages,
a handful of programming frameworks have been developed, typically in Java,
as have hundreds of approaches, architectures, logics, techniques & algorithms,
thousands of small-scale research applications, scores of methodologies, models
and diagrams, and even a few agent-specific standards.

Clearly the agent research community has developed momentum and grown
dramatically. The claim is now often made that agents are the most important
recent development in Computer Science, and are poised to supplant existing
ways to build software systems, i.e., objects. But the evidence to support this
claim does not yet seem to be there. Of the small number of agent programming
languages for which robust implementations have been developed, very few are
used commercially. The development of agents in conventional OO languages
predominates, even in research labs, and use of agents in commerce, industry,
administration and defence is still a very limited activity, conducted only by
specialists. There is enormous diversity within the agent community, to the point
that two agent approaches or technologies may have almost nothing in common.
So it seems reasonable to pose the question: are the agent paradigm and its
various technologies really relevant to mainstream IT, and ready for prime time?
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In considering this question it is instructive to look for possible parallels from
Computer Science history. There have certainly been many other paradigms that
promised to transform software development but weren’t ever adopted by the
IT mainstream. Examples include Lisp, logic programming languages such as
Prolog, Parlog and Mercury; expert and rule-based systems; active databases;
functional programming languages such as Scheme, ML, Miranda, and Haskell;
and multi-paradigm languages, such as Oz and its successor Mozart.

What lies behind their failure to impact mainstream software development?
The reasons are surely many and complex, but include that these languages and
their technologies

– were too great a paradigm shift,
– were insufficiently mature or complete,
– were over-hyped and came to be viewed as failing to deliver on their promises,
– were useful only for niche applications, and
– needed “rocket scientists” to exploit their power.

Perhaps most importantly, they

– didn’t really fit into the enterprise,
– were unable to integrate well with and leverage existing software assets, and
– didn’t address real enterprise needs or pain.

It is certainly not a question of the the “quality” of these software paradigms,
which have been eminently successful from a research and teaching perspective,
and have in some cases achieved a level of niche success in specialized enterprises.
So what does it take to make a real impact on enterprise computing, and do
agent approaches have any better prospect of mainstream adoption? If so, which
agent approaches? And how can they avoid repeating the failures of these other
paradigms?

Today’s enterprise IT standards are the outcome of the 30+ year maturation
of OO languages and transaction processing. Evolution rather than revolution is
the nature of the game, and lead times for the adoption of advanced technologies
can be substantial. To accelerate this process, new software paradigms must
adequately address enterprise needs and deliver substantial benefits that cannot
be achieved by conventional approaches.

Agentis believes that the agent paradigm has the potential to be widely
adopted, and to deliver significant benefits to enterprise computing. It is clear,
however, that most agent technologies do not yet meet the needs of the enterprise,
and that there is little understanding amongst agent practitioners as to what
these benefits are. The challenge for those in the agent community who focus on
bringing agents into the mainstream is to develop and refine agent technologies
that are an effective solution to enterprise needs, and to demonstrate clearly the
benefits of their adoption. This talk will addresses these issues in more detail,
proposing an approach that fuses the most valuable aspects of agent technology
with the state-of-the-art in enterprise computing.
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2 What Are Agents and MAS Really Good for?

Agent and MAS techniques have proven to be valuable for developing applica-
tions such as

– embedded and distributed monitoring and control systems,
– cooperative teams of robots or softbots,
– automated negotiation systems and marketplaces,
– simulation systems, animation systems, and games,
– certain types of optimisation systems, and
– intelligent assistant software.

So what benefits can agents offer the world of enterprise computing? To
answer this question adequately one must consider which agent techniques and
technologies are ready for mainstream use, how they might be used, what are
the real needs of enterprise IT, and what, the beyond technologies themselves,
are the prerequisites for their successful application?

There is certainly a real diversity of agent technologies, and of corresponding
notions of the essence of the agent paradigm. Historically, the notion of agents as
software with mental states and attitudes has been a key thread running through
agent research, but this idea has been less influential in shaping the actual agent
technologies in use today. To some, autonomy is a key aspect, leading to the
idea of agents as some sort of heavyweight software component with exclusive
access to computational resources. To others agents are active objects, perhaps
elements of a swarm, and agent systems are taken to produce useful behaviours
by emergence rather than top-down design. Perhaps the most widespread view
is that the key aspect of agency is sociality, manifest as asynchronous communi-
cation in an abstract communication language, and the possession of knowledge
about other agents, and perhaps also of social norms. Without dismissing the
value of these ideas, we subscribe to an alternative view: that the essence of
agency is the ability to reason about how to act in the pursuit of goals, i.e.,
agents as the embodiment of suitable representations of goals and behaviour,
and computational mechanisms for decision making.

A prerequisite for the widespread adoption of a new software development
paradigm is simplicity and accessibility of its core concepts and techniques. In
the case of agents, there is no real consensus within the community on what
these should be. Possibilities include the use of

– mentalistic concepts, e.g., beliefs, goals, intentions, norms, etc.,
– speech act based communication languages,
– specific component or system architectures,
– specific computational models for concurrency,
– algorithms and interaction mechanisms, e.g. auctions,
– graphical, process based programming languages,
– knowledge representation and reasoning techniques, and
– agent analysis and design methodologies, and their models.
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At one extreme, the agent paradigm could be seen as an entirely new and
dramatically different approach to software development, with new languages,
architectures, components, and techniques for representation, decision making
and interaction. The chances of mainstream adoption of such a large shift in
practices are slim indeed, and in any case, such a coherent and comprehensive
agent paradigm does not yet exist, and hence lacks experienced practitioners,
teachers, and students who can carry it forth into the world of enterprise IT.

At the other extreme, it could be little more than conceptual and method-
ological contributions that extend existing approaches to the analysis, design
and implementation of conventional OO systems: a few key patterns and tech-
niques, along with suitably extended models and supporting tools. If it took that
form its adoption might well be straightforward, if the benefits were apparent
to mainstream practitioners, but as a paradigm it would struggle to distinguish
itself and more than likely simply be absorbed into OO.

Agentis has identified and pursued a strategy for the development of agent
technology that tries to find a balance between these extremes. Its essence is
achieving a fusion of the most valuable aspects of agents and modern enterprise
technologies, streamlining core agent concepts to facilitate their understanding,
and developing a complete package of development environment, tools and plat-
forms, along with methodological support for the entire development cycle. This
approach can deliver the benefits of agent technology to the enterprise without
demanding a revolutionary change in its practices. To understand these benefits
we must focus on the needs and wants of the enterprise.

3 What Does the Typical Enterprise Want from IT

The driver for business investment in new software systems is to increase compet-
itive advantage or address nagging problems that negatively impact profitability.
Corporate objectives are to slash the total cost of ownership of IT systems and
improve return on investment. System reliability, availability, and scalability are
key requirements, as is the ability to easily and rapidly revise and extend func-
tionality. Current wisdom says this can only be achieved by being adaptive, which
means:

– achieving rapid application development and revision cycles,
– maintaining visibility of business process and logic in applications,
– continuous application evolution with minimal downtime, and
– the ability to change business logic post system deployment.

Enterprise IT managers seek to control project risk, employing commodity
software developers to produce easily maintained, future-proof systems that con-
form to industry standards and adopt best practices, such as use of Model-Driven
Architectures. A current trend is to trade heavyweight development processes
for agile development, building systems incrementally, designing as you go. This
approach demands first class support for team development.

Software developers expect to use an Integrated Development Environment
(IDE) that provides graphical views of application structure and content, and
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powerful tools to automate application generation, particularly Graphical User
Interface (GUI), data access and plumbing elements, which typically account
for about 60% of the overall application development effort. Support for easy
refactoring and continuous integration is essential, as are methodologies to guide
the entire development process, and tools to simplify testing and deployment
into the production environment. Resistance to approaches that are dramatically
different from what developers already know can be significant.

Typical enterprise application development starts with requirements that are
rarely complete or accurate. Business logic is subject to ongoing evolution dur-
ing and beyond development. Applications are layered upon databases and/or
transactional data services and message buses. GUI’s are typically browser based.
Applications must support a high volume of users, possibly globally distributed,
with significant sustained or peak transaction rates; to address these needs, they
must often be distributed over redundant servers.

These characteristics and requirements, and the need for adaptivity, lead
naturally to an enterprise application architecture stack consisting of four layers:

1. A technology layer providing operating systems, databases, message buses,
and application server technologies such as J2EE and .NET,

2. An application layer containing conventional packaged software applications
such as offerings by SAP, Seibel, and PeopleSoft,

3. A business service layer which exploits capabilities of the application layer
to provide services associated with different elements of the enterprise, such
as sales, production, delivery, employee and customer management,

4. A business process layer that orchestrates and controls the invocation of
business services, and delivers them to internal and external customers.

Within such a layered architecture, agents can serve as the ideal enabling
technology for the business service and process layers.

4 Delivering Real Benefits to the Enterprise

Enterprises don’t want agent (or other) technology, they want adaptive applica-
tions and solutions that deliver real business benefits. Our experience has been
that a fusion of agent and enterprise technologies can deliver four such benefits:

– significant increases in developer productivity and reduction in time, cost
and risk of application development projects,

– an adaptive development process that can deal effectively with change and
refinement of business requirements prior to application deployment,

– adaptive applications that are capable of operating robustly in the face of
unplanned exceptions and changes in the operating environment, and

– an ability for business users to change the application logic without a need
for IT involvement or redeployment of the application.

These are compelling advantages over conventional software development
approaches. Agentis delivers these advantages with a mature, enterprise-ready
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agent development environment and runtime agent server platform that aligns
with industry software standards. From an agent technology perspective, its key
features are as follows.

– The business model is the application, and business analysts can participate
directly in application development, refinement and maintenance.

– Business processes and logic are expressed as services, goals and plans defined
in an expressive but conceptually simple visual language.

– Agents and their services are assembled and defined in a graphical mod-
elling environment and automatically built and deployed, so that business
requirements and application functionality are kept in sync.

– By exploiting mature application server technologies such as J2EE, deployed
applications are highly reliable, scalable and performant.

– At runtime, agents deliver services by dynamically assembling appropriate
end-to-end processes, given the specific requirements and available resources,
and reasoning about how to deal with changing environments and exceptions.

– The entire application development process is supported by a comprehensive
methodology.

5 Research Challenges for the ProMAS Community

Agentis has pursued one particular approach to bringing agent technology into
the mainstream, based on simplifying and streamlining BDI agent technology
and fusing it with the state-of-the-art in enterprise computing. But this is only
a first step in bringing the full power of agents into the IT mainstream, and the
ProMAS community could contribute much to the process were it so inclined.
We conclude then with a list of research challenges for this community.

– To design an accessible general purpose agent programming language, based
on a simple conceptual model, that is not too great a leap from existing OO
languages such as Java, and which better supports agent structuring, code
reuse, integration, and commercial data manipulation.

– To develop corresponding AO models and a methodology that effectively
guides and supports the development of individual agents as well as MAS.

– To develop techniques for flexible structuring and control of the location,
granularity, and persistence of agent state, for effective management of agent
lifecycles, and for supporting very long-lived agent-based processes.

– To provide tool support for animation of agent logic and for unit testing.
– To develop well-founded service-oriented agent interaction protocols.
– To achieve an effective integration of agents with transaction processing.
– To provide better support for the entire agent application development cycle,

especially for runtime analysis and debugging.



Goal Representation for BDI Agent Systems

Lars Braubach1, Alexander Pokahr1, Daniel Moldt2, and Winfried Lamersdorf1

1 Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
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Abstract. Agent-oriented system development aims to simplify the con-
struction of complex systems by introducing a natural abstraction layer
on top of the object-oriented paradigm composed of autonomous inter-
acting actors. One main advantage of the agent metaphor is that an
agent can be described similar to the characteristics of the human mind
consisting of several interrelated concepts which constitute the internal
agent structure. General consensus exists that the Belief-Desire-Intention
(BDI) model is well suited for describing an agent’s mental state. The
desires (goals) of an agent represent its motivational stance and are the
main source for the agent’s actions. Therefore, the representation and
handling of goals play a central role in goal-oriented requirements analy-
sis and modelling techniques. Nevertheless, currently available BDI agent
platforms mostly abstract from goals and do not represent them explic-
itly. This leads to a gap between design and implementation with respect
to the available concepts. In this paper a generic representation of goal
types, properties, and lifecycles is developed in consideration of existing
goal-oriented requirements engineering and modelling techniques. The
objective of this proposal is to bridge the gap between agent specifica-
tion and implementation of goals and is backed by experiences gained
from developing a generic agent framework.

1 Introduction

When designing and building agent applications the developer is confronted with
several intricate issues, ranging from general aspects such as development pro-
cesses and tools to concrete design decisions like how agents should act and inter-
act to implement a certain application functionality. These issues are addressed
in the Jadex research project,1 which aims to provide technical and conceptual
support for the development of open multi-agent systems composed of rational

1 http://vsis-www.informatik.uni-hamburg.de/projects/jadex
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and social agents. One main topic of the project is reviewing and extending
concepts and software frameworks for developing goal-directed agents following
the BDI model. With respect to goals in agent systems the topic poses several
interesting questions, which can be categorised into representational, processing,
and deliberation related issues.2

Representation:
1. Which generic goal types and properties do exist?
2. Which goal states do exist during a goal’s lifetime?
3. Which structures can be used to represent goal relationships?

Processing:
4. How does an agent create new goals and when does it drop existing ones?
5. How does an agent reason and act to achieve its goals?
6. Which mechanisms do exist to delegate goals to other agents?

Deliberation:
7. What are the possible agent’s attitudes towards its goals?
8. How can an agent deliberate on its (possibly conflicting) goals to decide

which ones shall be pursued?

In the following themeaning of these questionswill be shortly sketched.Regard-
ing the representational aspect it is of interestwhichclassificationsof goals exist and
whichgenerictypesofgoalscanbededucedfromtheliteratureandfromimplemented
systems.Additionally, it isrelevantwhichpropertiesareexhibitedbygoalsingeneral
and specific goal types in particular. The second question refers to the goal lifecycle
regarding the fact that goals canbe indifferent states fromthe agent’s point of view.
Ontheonehandgoalsmaydiffer in theagent’s attitude towards them(seealsoques-
tion seven). This means that an agent e.g. sees some of its goals merely as possible
options, which are currently not pursued in favour of other goals, and sees others
as active goals, which it currently tries to achieve. On the other hand the goals may
expose different processing states with respect to their type and achievement state.
The third point focuses on the relationships between goals themselves, andbetween
goals and other concepts. Relationships between goals are used for goal refinement
purposes and for deliberation issues by making explicit how one goal (positively or
negatively) contributes to another goal. The relationships to other conceptsmainly
influence creation and processing of goals, as discussed by the next two questions.

The aspect of goal processing comprises all mechanisms for goal handling
during execution time. The initial question is how an agent comes to its goals and
in what situations it may drop existing goals [11, 19, 23]. Intimately connected
with this issue are deliberation aspects like the goal and intention commitment
strategies, which define the degree of reconsideration an agent exposes. Extensive
considerations about different intention commitment strategies can be found in
descriptions of the IRMA agent architecture [6, 27]. Secondly, it is of importance
which mechanisms an agent can use to try to achieve its goals. The process of

2 This paper focuses on the emphasised questions.
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plan selection and execution is a key element of BDI architectures and requires
addressing further questions: How can the applicable plans be determined? Shall
applicable plans be executed in parallel or one at a time? What mechanisms
shall be used for the meta-level reasoning to select a plan for execution from the
set of applicable plans? Partly, these questions are answered by proposed BDI
architectures [6, 29] and by implemented systems [15, 16]. A complete discussion
about the problems of this topic can be found in [8]. An important point of plan
execution is that the agent should be able to recover from plan failures and have
the possibility to try other means to achieve the goal it has itself committed
to. Hence, a declarative goal representation would help to decouple plan from
goal success resp. failure [37]. Another interesting point concerns goals in multi-
agent systems (MAS) e.g. how an agent can delegate tasks to other agents. Goal
delegation is one possibility of how this can be achieved. The topic has to address,
besides the semantic meaning of goal delegation, issues of commitment, trust,
and organisational structures [2, 20, 31].

Goal deliberation is part of the whole deliberation process, which comprises
all meta-operations on the agent’s attitudes such as belief revision and intention
reconsideration. It is concerned with the manipulation of the goal structure of an
agent, i.e. goal deliberation has the task to decide which goals an agent actively
pursues, which ones it delays, and which ones it abandons. Necessary requirement
for a goal deliberation mechanism to work is that the agent’s attitudes towards
its goals are clearly defined. Currently no general consensus exists how goal
deliberation can be carried out. Instead, several approaches exist that address
the topic with different strategies. The agent language 3APL introduces meta-
rules for all of the agent’s attitudes, which are executed during the interpreter
cycle [10]. In contrast to this rule-based approach KAOS and Tropos allow the
direct specification of contribution relationships between goals which form a
basis for the decision process [9, 14]. In [33, 34] a mechanism based on pre- and
post conditions for plans and goals is proposed and evaluated.

Considering these questions it is rather astonishing that available BDI multi-
agent platforms such as JACK [15], JAM [16], or Jason [4] do not use explicit
goal representations and therefore cannot address most of the aforementioned
topics. One reason for this shortcoming is that most actual systems are natural
successors of the first generation BDI systems (PRS [17, 13] derivates), which had
to concentrate on performance issues and do without computationally expensive
deliberation processes due to scarce computational resources. Additionally, the
actual systems are mostly based on formal agent languages like AgentSpeak(L)
[28] which focus on the procedural aspects of goals and treat them in an event-
based fashion.

Nevertheless, the need for explicit goal representation is expressed in several
recent publications [36, 37] and is additionally supported by the classic BDI
theory, which treats desires (possibly conflicting goals) as one core concept [5].
The importance of explicit and declarative goal representation in the modelling
area is underlined by BDI agent methodologies like Prometheus [24], Tropos
[14] and requirements engineering techniques like KAOS [9, 18]. Additionally,
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Winikoff et al. state in [37] ”[. . . ] by omitting the declarative aspect of goals the
ability to reason about goals is lost”, what means that the representation of goals
is a necessary precondition when one wants reasoning about goals to become
possible. Therefore, we claim that the usage of explicit goals should be extended
from analysis- and design- to the implementation-level. Additionally, we think
that this representation issue can be generalised and that one main objective
of agent-oriented software development should be to support the continuity of
concepts during the requirements, analysis, design, and implementation phase.
This allows preserving the original abstraction level as far as possible throughout
the development phases [21].

In this paper mainly generic goal representation issues for agent-oriented
programming will be discussed with respect to the existing approaches coming
from the requirements engineering and modelling area and from implemented
systems. In the next section an example scenario is presented. Thereafter a
generic model and lifecycle for goals is proposed and validated with respect to
the given scenario in section 3. The model is elaborated further on to derive
more specific goal types and representations. In section 4 the implementation of
the proposed goal concepts for the Jadex agent system is sketched and finally,
it is shown in section 5 that the concepts are well suited to be used in practical
implementations by demonstrating how the example scenario can be realised. A
summary and an outlook conclude the paper.

2 Example Scenario

In this section, a derivation of the so-called ”cleaner world” scenario is described.
It is based on the idea that an autonomous cleaning robot has the task to clean
up dirt in some environment. This basic idea can be refined with respect to
various aspects and already forms the foundation for several discussions about
different agent and artificial intelligence topics (e.g. in [3, 12, 28, 30]).

In our scenario of the cleaner world the main system objectives are to keep
clean a building at day, e.g. a museum, and to guard the building at night. To
be more concise we think of a group of cleaning robots that are located in the
building and try to accomplish the overall system goals by pursuing their own
goals in coordination with other individuals. Therefore, four key goals for an
individual cleaning robot were identified. First, it should clean its environment
at day by removing dirt whenever possible. The cleaning robot therefore has to
pick-up any garbage and carry it to a near waste bin. Secondly, it has to guard
the building at night by performing patrols that should be based on varying
routes. Any suspicious occurrences that it recognises during its patrols should be
reported to some superordinated authority. Thirdly, it should keep operational by
monitoring its internal states such as the charge state of its battery or recognised
malfunctions. Whenever its battery state is low it has to move to the charging
station. Fourthly, the robot should always be nice to other people that are close-
by. This means that it should not collide with others and greet when this is
appropriate.
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These top-level goals of a cleaner agent can be further decomposed to more
concrete subgoals. For example to clean up a piece of waste the robot first has
to move to the waste and pick it up. Then it has to find a waste bin, move to the
waste bin’s location, and drop the waste into it. Similar refinements also apply
to the other top-level goals.

3 Modelling Goals

The importance of goal representation is reflected through a variety of proposals
for goal descriptions during the requirements acquisition, analysis, and design
phases. In [35] three different kinds of goal criteria are stated that correspond
to the distinctive features one would naturally deduce when considering a goal
as a first class object; namely the object’s type, the object’s attributes, and the
object’s relations to other objects.

First characteristic is the goal type for which different taxonomies exist,
which emphasise miscellaneous aspects. System goals represent high-level goals
the software system needs to achieve to fulfil the system requirements and can
be opposed to individual goals of single actors in the setting [9]. Another goal
type distinction is made between so-called hard and soft goals [35]. Hard goals
describe services the system is expected to deliver whereas soft goals refer to non-
functional properties such as the expected system qualities like performance or
excellence issues.

A very important classification relates to the temporal behaviour of a goal and
additionally fits to the way in which humans tend to think and talk about goals.
This classification is especially important for the design and implementation of
agent based software, as it provides an abstraction for certain generic application
behaviour. For example, a so-called achievement goal represents the common
natural understanding of the word ’goal’ as something to be achieved [9, 37]. In
contrast, a maintenance goal is introduced to observe and maintain some world
state as long as the goal exists [9].

Second characteristic of goals are their attributes that consist of properties
relevant for all types of goals like name, description, priority, and other attributes
that are type specific such as the target state specification for an achievement
goal. Furthermore, goals can exhibit an arbitrary number of application specific
attributes that are directly related to the problem domain like the desired lo-
cation as part of a movement goal. Additionally, for implementing the Jadex
BDI system several general goal properties were identified that are important
for the interpretation of goals in the running system. Contrary to goals in natu-
ral language, which bear on a huge amount of implicit context and background
knowledge, the semantics of executable goals, like the exclusion or retry mode
for plan selection, has to be defined exactly [25].

Third characteristic of goals are their relationships to other objects, in first
consequence to other goals. Such relationships between goals are typically hi-
erarchical goal structures, which highlight refinement relationships with respect
to the used refinement strategy. A common strategy used in several modelling
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approaches are the AND/OR graphs [22]. An AND-refined goal demands that
all its subgoals become satisfied while an OR-refined goal is fulfilled when at
least one of the alternative subgoals is reached. An extensive discussion about
goal relationships can be found in [35].

When talking about goals as objects it becomes apparent that they do not
only exhibit these different characteristics, but additionally they need to be
created in a suitable moment in the context of some actor to whom they belong.
Only when new goal instances are generated during an agent’s lifetime the agent
will show rational behaviour in the sense that it proactively pursues its ideas [11].
And only when it exactly knows which goals actually exist and how the goals are
interrelated, some deliberation mechanism can guide the agent to decide which
goals should be pursued. We will now go on to discuss these issues with respect
to the example scenario, thereby developing an explicit goal model and lifecycle.

3.1 Lifecycle

In the cleaner world scenario different goals can be identified for a cleaning agent.
We will start our discussion with the cleanup-dirt goal, as it most closely matches
the goal concepts commonly found in the literature. The desired behaviour of the
agent is to pick up dirt whenever it sees it. This includes the statement of what
to do (pick up dirt) and when to do it (sees dirt). Once the agent has achieved
the goal, it can drop its intention towards it. To represent this goal in an agent
application the developer should be able to specify in addition to the state to
achieve, the condition (called production rule in [11]) when this goal should be
created, therefore giving an answer to the question how an agent derives new
goals.

When it notices some dirt in the environment and cannot clean-up the waste
at the moment, e.g. because it already carries waste to the waste bin, it should
be capable of memorising the new dirt positions to come back later and remove
the litter. Hence, it should be able to form new still inactive clean-up goals
(options) that should become active as soon as it is appropriate. Assuming that
the environment changes during a time the agent cannot observe this area the
agent might pursue a goal that is not appropriate any longer, e.g. some rubbish
is blown away by the wind and the agent heads towards the memorised but
outdated waste position. As soon as it can see the target position, it will notice
that the waste has vanished and should drop the clean-up goal. Therefore, in
addition to the conditions for goal creation, the representation of goals should
allow the specification of the conditions under which a goal should be dropped.

In contrast to the cleanup-dirt goal, which is created and later dropped for
each piece of waste, other goals (e.g. look for dirt, patrol) would be directly
given to the agent when it is born and should persist during the lifetime of the
agent. It can be noted that, although it is natural to say that the agent has
both of these goals, only one of these goals is actively pursued depending on
the daytime. Therefore, when representing such goals, the agent developer has
to specify the context in which the goal should be pursued (e.g. day or night).
Another thing that has to be captured by the goal representation is the fact that
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when the agent sees some dirt it will form a new cleanup goal, which should be
prioritised over the look-for-dirt goal. The agent should stop wandering around
searching for dirt and cleanup the dirt it has found immediately. Therefore, the
agent should be able to deliberate about its current goals to decide which one
should be actively pursued and which ones should be dropped or inactivated
(made to an option).

Fig. 1. Goal lifecycle

In Fig. 1 a proposal for a generic goal lifecycle that meets the requirements
mentioned above is depicted in a UML statechart like fashion. It is shown that a
goal can be in the states New, Adopted or Finished. The initial state of a newly
created goal is New, what means that the goal exists as an idea but is not yet
considered by the agent’s deliberation mechanism. Therefore, the agent has to
adopt the goal to pursue its new objective. By any means, the agent can always
decide not to pursue the goal any more and drop it. The transitions between
the different states can be either forced (not part of goal specification), e.g. a
plan could create a new goal or drop a subgoal, or can be monitored by so-called
conditions (specified as part of a goal). Conditions are annotated to several state
transitions in two different ways to express either that the condition is used as
a guard for the corresponding transition or that it represents the transition’s
trigger (see legend of Fig. 1). This means that a goal instance is created and
adopted every time when the creation condition of this goal fires. Accordingly,
it is dropped when its drop condition triggers.

Most interesting is the complex Adopted state which consists of the substates
Option, Active, and Suspended. Adopting a goal makes this goal desirable to
achieve for the agent and adds it to the agent’s desire structure. The goal can be
seen as an option that could possibly be pursued when the actual circumstances
allow this. To be actively pursued the agent’s deliberation mechanism has to
activate the goal and so initiate the goal processing. The deliberation mechanism
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can also deactivate the goal at any time by moving the goal to the option state
again. Whenever the goal is an option or is active it can be suspended when the
goal’s context becomes invalid which is indicated by the goal’s context condition.
Here, a negation sign at the connection between condition and state transition
indicates that the inverse of the condition is used as trigger for the transition.
The suspension holds as long as the context stays invalid. A suspended goal is
not actively pursued similar to an option, but in contrast to an option it cannot
be activated by the deliberation mechanism due to its invalid context. When the
context becomes valid again the goal is made an option to allow the deliberation
component to reactivate the goal whenever appropriate.3

3.2 Types of Goals

As already mentioned, an important classification can be made with respect
to the temporal behaviour of a goal. Unfortunately, there is no single exact
set of suitable types of goals that can be used. Rather a multitude of different
specifications and notions emerged from different sources such as methodologies
or implemented systems (see Table 1).

Table 1. Several Different Goal Types

KAOS Gaia JACK PRS JAM Jadex
achieve x x x x x x

maintain x x x x x
cease x
avoid x

optimise x
test x x

query x x
perform x x
preserve x x

The KAOS goal-oriented requirements engineering framework [9, 18] includes
the already mentioned achieve and maintain goals. Additionally, KAOS intro-
duces the negation of the aforementioned types called cease (as opposed to
achieve) and avoid (as opposed to maintain). These two types of goals ease
the description of goals in a natural way and semantically they can be traced
back to the original types [35]. Furthermore, optimise goals for maximising or

3 An interesting analogy to the goal lifecycle can be found in the operating systems
area. The substates (option, active, suspended) of the adopted state resemble the
states ready, running, blocked known from operating system processes [32]. Just like
a blocked process, a suspended goal cannot be directly reactivated. In both cases a
higher-level authority (the OS scheduler resp. the agent’s deliberation mechanism)
is responsible for selecting among the available options.
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minimising some target value are proposed. The well-known Gaia methodology
[38] does not introduce any goals at all, but uses liveness and safety properties for
roles. Liveness properties describe states the agent has to bring about, whereas
safety properties specify system invariants. In this way they are comparable with
the achieve and maintain goal semantics.

The JACK agent system [15] offers in addition to achieve goal semantics
the test and preserve4 goal types. A test goal can be used to find out if a
condition holds and a preserve goal is the passive version of a maintain goal in
the sense that the goal controls a state and vanishes when this state is violated.
In contrast to JACK, the C-PRS system [17] supports maintain goals at the
implementation level. Besides achieve and maintain goals, the JAM interpreter
[16] and the Jadex system [26] support query goals, which are similar to achieve
goals. Query goals allow for an easy information retrieval from the beliefbase
and when the result is not available the BDI mechanism will invoke plans for
retrieving the needed information. The fourth type of goal that JAM and Jadex
support is the perform goal, which is not related to some desired world state but
to an activity. It ensures that an activity will be done in some future state [16].

In the rest of this paper we will concentrate on the perform, achieve, query,
and maintain goal types. From Table1 one can see that the achieve and the
maintain goal types are especially important, because they are in widespread
use. Cease and avoid, on the other hand, exhibit the same execution semantics as
achieve resp. maintain. The optimise goal belongs to the class of soft goals, which
is outside the scope of this paper [35]. The perform goal is interesting, because it
does not refer to a world state being achieved or maintained but to activities that
should be performed. Test and query goals serve the same purpose to describe
information acquisition, therefore only one of them is considered. Finally, The
preserve construct is merely called a goal. In fact, it represents just a guarded
action [17].

The following sections take a closer look at those interesting types of goals and
their corresponding properties. Unlike the pure modelling approaches (KAOS,
Gaia) it will be made explicit how goals following these models are processed at
runtime using a BDI interpreter. One important aspect is therefore how their
execution semantics relates to the generic goal lifecycle presented above. This
is handled in a general way by the refinement of the active state, which reveals
special information about the type of goal for goal processing. The example
scenario is used as an evidence for the presented properties and behaviour, where
appropriate.

Perform Goal. A perform goal specifies some activities to be done, therefore
the outcome of the goal depends only on the fact if activities were performed
[16]. Naturally, when no activities could be performed, e.g. because no plan was
applicable in the actual context, the goal has Failed. Otherwise, when one or
more plans have been executed the goal can enter the Succeeded state.

4 It adds to the confusion about goal types that in JACK the preserve behaviour is
obtained using the @maintain keyword.
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Fig. 2. Perform goal states

The refined active state of a perform goal is shown in Fig. 2. After being acti-
vated, the In Process state is entered, which triggers the internal plan selection
and execution mechanism of the agent [26]. While plans are executing the goal
stays in the In Process state. When the plan execution is done, i.e. no more
plans are running or waiting for events, the In Process state is exited.

In the cleaner world example the two goals patrol and do-greeting should
be modelled as perform goals, as they do not directly refer to a desired target
state. While the do-greeting goal is finished once the greeting is performed,
the patrol goal should not end when a patrol round is finished. Instead, the
agent should continuously start new patrol rounds while the patrol goal is active.
The redo property is an extension of the original JAM perform goal [16] and
allows specifying that the activities of the goal should be performed iteratively.
Therefore, when leaving the In Process state two state transitions may occur
depending on the redo property. When redo is specified the goal re-enters the
In Process state to re-start plan execution. When redo is not specified the goal
enters one of the end states (Failed, Succeeded) causing the Active state to end.
Looking back at the generic goal lifecycle (Fig. 1) one can see that exiting the
Active state also causes the Adopted state to end (finished transition). Therefore,
once the processing of the perform goal has stopped the goal is no longer adopted
by the agent, because it is already reached or failed.

Achieve Goal. An achieve goal represents a goal in the classical sense by spec-
ifying what kind of world state an agent wants to bring about in the future.
This target state is represented by a target condition. When an agent obtains a
new achieve goal that shall be pursued (e.g. a cleanup goal) the agent starts ac-
tivities for achieving the target state (e.g. no waste at given location). When
the target state is already reached before anything has been done the goal
can be considered as succeeded. Otherwise, for a yet unachieved goal the BDI
mechanism is started and plans are selected for execution. Whenever during the
plan execution phase the target condition switches to success all running plans
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of that goal can be aborted and the goal is reached. In [37] the description of
an achieve goal is enriched with an additional failure condition, which helps to
terminate the goal when it is absolutely not achievable any more. The difference
to the drop condition introduced in the generic goal lifecycle is that the drop
condition does not determine the final state of the goal. In contrast, the failure
condition indicates that the agent is unable to achieve the goal and therefore the
goal has failed.

Fig. 3. Achieve / Query goal states

Fig. 3 shows the specific behaviour of an achieve goal. The main difference
to the perform goal type is the target condition that specifies the desired world
state to be achieved. An activated achieve goal will first check its target condition
for fulfilment and enter the succeeded state directly when nothing needs to be
done. Additionally, the failure condition will be checked to abort the goal when
the condition is true. When none of them has fired the goal will enter the In
Process state to start the execution of applicable plans. In contrast to the perform
goal, plan execution may be terminated at any time when the target or failure
condition become satisfied. In this case the goal is finished and moves to the
Succeeded resp. Failed state.

When there are no more plans to execute and none of the executed plans
could be completed successfully the goal moves to the Failed state. Another
final state Unknown is entered when the execution is finished, some plans have
been executed properly, but the agent cannot determine the truth-value of the
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target condition (e.g. due to insufficient knowledge). Any of the three final states
will cause the finished transition of the generic goal lifecycle (Fig. 1) to trigger.
For example, when the given location is clean a cleanup goal is succeeded and
can therefore be removed from agent’s goal structure.

Query Goal. A query goal is used to enquire information about a specified
issue. Therefore, the goal is used to retrieve a result for a query and does not
necessarily cause the agent to engage in actions. When the agent has sufficient
knowledge to answer the query the result is obtained instantly and the goal
succeeds (e.g. an agent wants to find a waste bin and already knows the loca-
tion). Otherwise, applicable plans will be tried to gather the needed information
(e.g. searching for a waste bin).

The underlying model of the query goal resembles to a high degree the achieve
goal [16]. The states of both goals are equal and are depicted in Fig. 3. Main
difference between both goal types is that the query goal requires an informa-
tional result, which is captured by an implicit target condition testing if a result
is available.

Maintain Goal. A maintain goal has the purpose to observe some desired
world state and the agent actively tries to re-establish this state when it is
violated. The perform, achieve, and query goal types represent goals that con-
tinuously cause the execution of plans while they are active. In contrast, an
activated maintain goal may not instantly cause any plan to be executed. Fig. 4
shows that the maintain goal stays in the Idle state until the maintain condi-
tion is violated. Another difference is that there is no final state. Even when
the maintain condition is currently satisfied the agent always has to monitor
the environment for changes that may violate the condition. The maintain goal
therefore always moves back to the Idle state when processing has been finished
successfully.

In case the processing fails but the agent has no more applicable plan to
execute, the Unmaintainable state is entered, which means that the agent knows
that the condition is violated, but there is nothing it can do about it. Similar
to the achieve goal, a maintain goal may be in the Unknown state when the
agent cannot determine if the plan execution leads to the desired results. From
the Unknown state a transition back to the In Process or Idle state may be
done when the agent can determine the state of the maintain condition. From
both the Unknown and the Unmaintainable state, the goal may periodically re-
enter the In Process state to try out if the goal can be maintained now. This
behaviour is obtained by specifying the recur flag. In contrast to the retry flag,
which manages the sequential execution of applicable plans, the recur flag leads
to a complete restart of goal processing, thereby again considering previously
excluded plans.

Using the maintain condition alone may sometimes lead to undesirable be-
haviour, because of the event driven nature of goal processing in BDI agents.
Consider the maintain-battery-loaded goal of the cleaner agent: When the con-
dition to be maintained is specified as ’chargestate 20%’ the agent will move to
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Fig. 4. Maintain goal states

the charge-station whenever the energy level drops below 20%. However, as soon
as the level is back at 20% the agent will stop loading its battery, because the
condition is satisfied again. Therefore, it is sometimes necessary to concretise the
condition to be established whenever the maintain condition is triggered. In our
model this can be specified by an optional target condition, which specifies when
the transition to the idle state is allowed. The semantics of this extended type
of maintain goal is therefore: Whenever the maintain condition is violated select
and execute plans in order to establish the (more specific) target condition. In
the example the maintain condition ’chargestate 20%’ canbe refined to the target
condition ’chargestate=100%’ to make sure that the cleaner agent will always do
a full recharge.

All of the specific types of goals (perform, achieve, query, maintain) inherit
the same generic lifecycle presented in section 3.1. Therefore, in addition to the
properties specific to a goal type (such as failure condition for achieve goals)
the specification of any goal can be enriched by the generic goal properties such
as creation, context, and drop condition. This makes it possible e.g. to easily
specify a maintain goal that should only be pursued in a given context.

4 Goal Realisation in Jadex

The last section presented a generic model for goals in BDI agents and identified
four goal types with distinct execution behaviour. In the following we will shortly
sketch how this execution behaviour is realised in the generic agent framework
Jadex. The next section will then show how applications like the cleaner example
scenario can be easily implemented when such an abstract goal representation
is available at the implementation level.

The Jadex agent framework [26, 7] is built on top of the JADE plattform
[1] and provides an execution environment and an API to develop agents using
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beliefs, goals, and plans as first class objects. Jadex adopts well established
application development technologies such as XML, Java, and OQL to facilitate
an easy transition from conventional object-oriented programming to BDI agent
programming.

To implement an agent the developer has to create two types of files: One
XML file is used to define the agent by declaratively specifying among other
things the beliefs, goals, and available plans. In addition to this agent definition
file (ADF), for each plan used by the agent the plan body has to be implemented
in a separate Java class. Plan implementations may use the Jadex API e.g. to
send messages, manipulate beliefs, or create subgoals (for details see [25]). An
expression language is used throughout the ADF to establish the connection
between the declarative elements in the ADF and the object-oriented plan im-
plementations. The language follows a Java syntax, but is extended to support
OQL constructs for querying the belief base.

The goal tags in the XML file are read by the interpreter to create instances
of the goals, which implement the state machines presented in section 3. The in-
statiated goal objects themselves take care of their lifecycle by throwing so called
goal-events (leading to the execution of plans) whenever they enter the In Pro-
cess state and by automatically performing the corresponding state transitions
when goal conditions are triggered or the execution of a plan has finished. The
goal conditions and parameters, which are evaluated at runtime, are specified
using the Java/OQL like expression language.

At runtime the system keeps track of the instantiated goals, which may be
created either as independent top-level goals or dispatched as subgoals inside of
a plan. Goal processing is initiated whenever the active state of a goal is entered.
Before a goal is reached, several plans may try to process the goal, even at once,
when specified so. Thereby, plans only have access to a copy of the original goal
object called process goal, to ensure a level of isolation between running plans and
their associated subgoal-hierarchies. When the active state of a goal is exited (e.g.
because the goal is suspended), all associated process goals are dropped leading
to a termination of the corresponding plans and subgoals created by those plans.
For each goal, a history of process goals is kept to remember the executed plans
together with the outcome. This information is used to determine plans which
should be excluded from the applicable plan list, when the goal needs to be
processed again.

5 Example Implementation

The cleaner world scenario is realised as a simulation setting using two different
kinds of agents. Besides the cleaner agents an environment agent acts as substi-
tute for the real surrounding. Using an agent as environmental representation
has the advantage that the setting can be easily distributed over a network of
computers having cleaner agents working in the same environment located on
different platforms.
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The cleaner agents use vision and movement plans that interact with the
environment agent following a domain dependent ontolology in which the rel-
evant concepts and actions like waste, waste bin and pick-up resp. drop waste
are defined. They update their internal beliefs with respect to the sensed envi-
ronmental changes and request actions in the environment that may fail under
certain conditions e.g. when two cleaners try to pick up the same piece of waste
simultaneously.

Fig. 5. Goal - plan overview

In Fig. 5 a brief overview of the relationships between the used goals and plans
is given. On the left hand side the agents’ top-level goals are shown whereas on
the right hand side the subgoals that are used from within plans are depicted.
For each goal at least one plan is defined that is responsible for pursuing the
goal. As introduced in section 2 a cleaner agent has top-level goals for perform-
ing patrols (performpatrol), cleaning-up waste (achievecleanup) and monitoring its
battery state (maintainbatteryloaded). To avoid the agent doing nothing when it
currently has no duty, a goal template for searching for waste is also defined
(performlookforwaste).

To handle the performpatrol goal a cleaner agent has a patrol plan that ac-
cesses a predefined route from the beliefbase and steers the agent to the actual
patrol points by using the achievmoveto subgoal. Somewhat more complex is
the CleanupWastePlan that is used in response to an active achievecleanup goal.
It employs three different subgoals for decomposing the goal into the sepa-
rate tasks of picking up a piece of waste (achievepickup), searching for a non-
full waste bin (querywastebin) and finally dropping the waste into the wastebin
(achievedropwaste). To be able to resume a suspended cleanup goal the plan also
tests if the agent is already carrying a piece of waste. In the case that the
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agent already possesses the waste the pickup procedure can be omitted. For re-
establishing a violated maintainbatteryloaded goal the LoadBatteryPlan tries to find
a charging station, heads towards it and consumes as many energy as needed. To
find a suitable station a query subgoal (querychargingstation) is used that immedi-
ately returns a result when the agent already knows a station. When this is not
the case, the ExploreMapPlan is used to systematically search for a yet unknown
charging station. This plan is also used in the context of the performlookforwaste
goal to discover new waste in the environment.

Fig. 6. Cleaner World Example Snapshot

A cleaner agent has three initial goal instances that drive its actions from
birth. An instance of the performlookforwaste resp. the performpatrol goal lets the
agent move around to search for waste or to observe the environment, depending
on the daytime. These two goals are only active, when the agent has no other im-
portant things to do. An instance of the maintainbatteryloaded has highest priority
and monitors the agent’s battery state during its lifetime. In addition, several goal
types are declared for goals that get instantiated and adopted under certain con-
ditions. In the following sections some example goal declarations are explained.
More implementation details can be found in the freely downloadable Jadex pack-
age, which includes a runnable implementation of the cleaner world example.5 In
Fig. 6 a snapshot of the running application is presented, which shows the global
environmental view as well as the local views of two cleaner agents.

5 available for download at http://vsis-www.informatik.uni-hamburg.de/projects
/jadex
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5.1 The Perform-Patrol Goal

Fig. 7 shows the perform-patrol goal as it is specified in the XML agent descriptor
of a cleaner agent. The goal is of type performgoal and is given the name perform-
patrol. The attribute redo was already introduced in the refined perform goal state
chart (see Fig. 2) and causes the goal to be continuously executed as long as appli-
cable plans are available. The exclude attribute is a special flag that in this case
tells the BDI plan selection mechanism that plans should not be excluded from
the applicable plans list once they have been executed. Therefore, the agent will
continue to patrol while the goal is active using any patrol plans it has.

Fig. 7. Peform-patrol goal

The example scenario demands that the agent should only be on patrol at
night. Our system does not yet capture the (positive or negative) contribution
between goals, but the agent has to be prevented somehow from continuing to
patrol while it tries to reload its battery. It is assumed that the agent knows if it is
day or night and if its battery state is low and has to be reloaded. Using these two
boolean beliefs (daytime, is loading) the developer can specify the contextcondition
of the goal, where $beliefbase refers to the belief base of the agent. The context
condition was introduced in the generic goal lifecycle (Fig. 1) and defines when
the goal can or cannot be active. The perform patrol goal may therefore only
be active when the agent is not loading its battery and it is not daytime. In a
similar way, a perform-look-for-waste goal is defined with a context condition
that is only valid at daytime.

5.2 The Achieve-Cleanup Goal

One purpose of the cleaner agent is to remove all pieces of waste it notices.
The achieve-cleanup goal (Fig. 8) is an achievegoal that is instantiated for every
single piece of waste to clean up. The goal contains a parameter waste specifying
which piece of waste to clean up. The given default value of the waste parameter
is specified by a select statement that always evaluates to the piece of waste that
is nearest to the agent when the goal is instantiated. The known pieces of waste
(belief wastes) are sorted by distance (order by clause) to the current location
(belief my location).

For the agent to keep cleaning up every piece of waste it notices, the creation-
condition as introduced in the generic goal lifecycle (Fig. 1) is used to trigger
creation of new goal instances whenever needed. A cleanup goal will be created
whenever the agent knows that there is some waste (belief wastes) and that it is
not currently cleaning (belief is cleaning). The reason for the second part of the
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Fig. 8. Achieve-cleanup goal

condition is that there is currently no deliberation mechanism telling the agent
which cleanup goal to achieve first when there is more than one present at the
same time. Therefore, the is cleaning belief is used to assure that only one cleanup
goal at a time is created. As with the perform-patrol goal a context condition is
used to constrain under which circumstances the goal may be active: The agent
should pursue cleanup goals only when it is not loading its battery and only at
daytime. The goal is achieved when the waste is contained in one of the known
waste bins as described in the target condition.

In our example implementation we also added a rather complex dropcondition
for the cleanup goal, which is not necessary for correct operation, but helps to
improve the performance of the cleaner agent. To allow opportunistic cleanup
of new pieces of waste and to avoid unnecessary movement of the cleaner, an
existing cleanup goal is dropped when the agent comes to know that the piece
of waste to be picked up is no longer there or another piece of waste is closer to
the agent.

5.3 The Query-Wastebin Goal

The query-wastebin goal shows how a goal to query for information can be
realised in Jadex (see Fig. 9). Assuming that the agent does not completely
know its environment, the objective of the goal is to find a waste bin that is not
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full and near to the agent. This goal is created by a plan as a subgoal of the
achieve-cleanup goal once the agent has picked up some dirt (cf. sect. 2).

Fig. 9. Query-wastebin goal

It is modelled as querygoal and has a parameter result. This parameter is
bound to the nearest not full waste bin, if any, and is evaluated on demand what
means that the select expression is evaluated whenever the parameter value is
accessed. The targetcondition of the query goal is not stated and therefore the
default target condition for query goals is used. Hence the goal succeeds when
a result is retrieved, i.e. a not full waste bin nearby was found. The implicit
target condition allows for opportunistic goal achievement (see Fig. 3), that is,
the goal succeeds without the execution of any plan if the agent already knows
the location of a not full waste bin.

Fig. 10. Maintain-battery-loaded goal

5.4 The Maintain-Battery-Loaded Goal

The cleaning agent has to stay operational; therefore it has to monitor its in-
ternal state and will occasionally move to the charging station to reload its bat-
tery. The specification of the maintain-battery-loaded goal is given in Fig. 10.
The goal is a maintaingoal and therefore includes a maintaincondition and a
targetcondition as present in the refined maintain goal state chart (see Fig. 4).
The maintain condition monitors the battery state (belief my chargestate) and
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triggers plan execution whenever the charge state drops below 20%. The refined
target condition causes the battery to be always reloaded to 100% before the
goal moves back to the idle state.

6 Conclusions and Outlook

This paper provides two main contributions. First, the way of how an agent
attains and manages its goals is analysed and a generic lifecycle is proposed
that models the different states of goals in BDI agent systems. Secondly, the
generic goal lifecycle is refined into different goal types which capture commonly
required agent behaviour. Both of these contributions are backed by the cleaner
world example at the conceptual as well as implementation level.

The example shows that the proposed goal model is well suited for a natural
description of an agent-based system. The continuous usage of abstract concepts
in the design and implementation phases considerably simplifies the development
of software agents compared to the current practice of using object-oriented
techniques. Additionally, it helps to preserve the abstraction level throughout
the whole development process. The system is easier to design, as the involved
goal concepts are closer to the way that humans think and act. The transition to
the implemented system is largely simplified, because only minor refinements of
design specifications are necessary to obtain an executable system. Moreover, the
development is less error-prone, as large portions of complex agent behaviour,
such as goal creation and processing, are already implemented in the underlying
agent architecture. Finally, the types of goals available in the agent language
have the additional effect that they may guide the agent developer in its analysis
and design decisions, because they represent a natural and abstract means for
describing the application domain.

This work is also the result of practical considerations when realising the
proposed goal model in an efficient and easy to use software framework. The
model includes those goal types and properties that frequently occured in the
researched systems and methodologies and that have practical relevance for agent
systems we have built so far.

The presented goal model does not cover all important aspects of goals as
they are presented in the introduction. One point that was not addressed by this
paper affects the relations between goals such as hierarchies for goal decomposi-
tion. In this field, especially concerning the requirements and modelling phases,
a lot of research has already been done and it has to be evaluated if these con-
cepts can be successfully transferred to the design and implementation phase of
MAS. Another important aspect of goals that was covered only marginally in
this paper is goal deliberation. With the help of deliberation mechanisms, the
agent is able to select between different goals, detect goal conflicts and handle
them appropriately. The precondition for goal deliberation is the explicit and
declarative representation of goals, which is not reflected in actual agent sys-
tems and agent languages. Therefore, the conceptualization of the introduced
goal model is the foundation for further explorations of different deliberation
mechanisms.
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Abstract. For AOP (Agent Oriented Programming) to become a ma-
ture discipline, lessons must be learned from practical language imple-
mentations. We present AF-APL (AgentFactory - Agent Programming
Language) as an Agent Oriented Programming Language that has ma-
tured with continued revisions and implementations, resulting in a lan-
guage - which, although based on the more theoretical aspects of AO
design - has incorporated many of the practical considerations of pro-
gramming real world agents. We describe AF-APL informally, focus-
ing on its experience driven features, such as commitment reasoning, a
rich plan operator set, and an inherent asynchronous design. We present
the default execution cycle for the AF-APL interpreter, looking in de-
tail at the Commitment Management model. This model provides an
agent with power to reason about its own actions, while maintaining ba-
sic constraints on computational tractability. In our development of the
language, we learned many lessons that are not covered in the purer AO
language definitions. Before concluding, we discuss a number of these
lessons.

1 Introduction

Agent-Oriented Programming (AOP) represents one approach to the fabrication
of agent-oriented applications. It is based upon the premise that complex agent
behaviours can be best represented in terms of a set of mental notions (e.g.
belief, goal, and commitment), and the interplay between them.

Research in this area has produced a number of agent programming lan-
guages, including Agent0 [1], 3APL [2], AgentSpeak(L) [3], and AF-APL [4].

� As of the date of publication, the name of the language presented in this paper has
changed from AF-APL to ALPHA (A Language for Programming Hybrid Agents).
This change reflects our wish to highlight differences between this language and its
ancestor, originally presented in [4]. This paper retains the name used during the
submission and review process, but any subsequent publications and documentation
shall use the name ‘ALPHA’.
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Many of these languages draw upon earlier work on logical agent theories that
use Possible Worlds semantics [5] [6] [7]. However, computation tractability issues
have led to a number of them being re-specified using more tractable approaches
such as formal methods (e.g. VDM and Z) and operational semantics.

While the use of formal semantics has resulted in AOP languages that are
conceptually well defined, many of them have not been applied to large scale
projects. These projects raise a number of practical issues regarding the use of
AOP languages, such as usability, scalability, and applicability.

It is these issues that have driven the work presented in this paper. Specif-
ically, we describe an extended version of AF-APL [4], an AOP language that
was originally derived from a logical model of commitment. These extensions,
are rooted in practical experiences gained during the last 3 years. Specifically,
AF-APL has been employed in the development of a number of large scale agent-
oriented applications in the robotics [8] and mobile computing [9] domains. These
experiences have driven a number of extensions to AF-APL that include: the in-
troduction of goals, additional plan operators, a new commitment management
system, support for commitment reasoning, and reactive rules.

The rest of the paper is structured as follows: Section 2 presents a review
of significant work to date in AO language development. This is followed in
Sections 3 and 4 with a description of AF-APL - the first of these sections details
AF-APL’s constructs, while Section 4 looks at the AF-APL execution model.
Although this paper focuses on the AF-APL language, we have presented a basic
overview of an AF-APL interpreter; That interpreter, based on the AgentFactory
Framework, is presented in Section 5. Section 6 then illustrates the use of the
language, with a toy example from the mobile robot domain. In our development
of the language, we learned many lessons that are not covered in the purer AO
language definitions; before concluding, Section 7 discusses a number of these
lessons.

2 Related Work

A number of deliberative agent languages and architectures are already present
in the literature. While some of these explore agent language theories, others
have focused on the provision of complete agent frameworks.

Inspried by Dennett’s Intentional Stance [10], Shoham’s AgentO [1] estab-
lished AOP as a programming paradigm on a par with OOP. Importantly,
AgentO provided a clean language that could allow designers to build programs
from mental attributes such as Beliefs and Commitments. Limitations of AgentO
included no explicit support for Declarative Goals, a lack of plan operators, and
little detail of how the high level programming language could interact with
lower level code.

Rao’s AgentSpeak(L) [3], based on the Procedural Reasoning System (PRS)
[11], offered a more powerful agent design; AgentSpeak(L) agents had a mental
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state including Beliefs, Plans, Goals, Actions, Events, and Intentions. Rao’s lan-
guage is notable first as an AOP language grounded in action, and second as an
AOP language that can be formally verified. However, the language intentionally
left open the question of what choice functions should be used in the selection
of intentions and plans. This, along with a limited set of plan operators, meant
that AgentSpeak(L) was not, by itself, a suitable candidate for a deployable AO
language.

A more recent AO language worthy of mention is Goal Directed 3APL [12].
That language, like its more abstract parent 3APL [13], strives for a separation
of mental attributes and the reasoning process. This separation, facilitated with
meta-language programming, leads to a well defined programming language, with
a clear Operation Semantics provided by Transition Systems. 3APL provides a
rich set of mental objects including Beliefs, Goals, Plans, and various Reasoning
Rules. However, 3APL does not provide a fixed deliberation process. Instead, it
is intended that designers be allowed to directly specify an agent’s deliberation
process, as well as its capabilites and base knowledge. Also, as with AgentO, there
is only a primitive relationship between a 3APL action and the manipulation or
sensing of an agent’s environment.

Other recent entrants into the deliberative agent development literature in-
clude Nuin [14] and Jadex [15]. Both of these are agent architectures that aim to
provide a practical framework for BDI style agents. Nuin’s underlying BDI model
builds on AgentSpeak(L), addressing issues like AgentSpeak(L)’s lack of choice
operators. However, like PRS and AgentSpeak(L), Nuin requires designers to de-
fine fitness functions for the selection of current attention (i.e. select-focus).
The Jadex BDI model is more basic, including Beliefs, Plans, and to-do Goals
(Commitments). Jadex lacks declarative goals and means-end reasoning, plus
there is an unclear relationship between object oriented and agent oriented design
in plan definitions. Both Nuin and Jadex directly address middleware concerns
such as message transportation, migration, and yellow pages support. Although
provision of such services is doubtlessly valuable, combining these middleware
issues directly with agent language or architecture design potentially precludes
the development of more powerful control algorithms.

We conclude that the literature includes rich, theoretical, languages with well
defined semantics (3APL), along with BDI frameworks for the development of
AO applications (Nuin). However, these approaches either lack explicit deliber-
ative process description, or they are unclear in how the language would work
in real world deployment. It is our belief, that for AOP to become a main-
stream programming methodology, AO languages must: (1) utilise a rich BDI
style feature-set; (2) have a clear deliberation process; and (3) be a core lan-
guage upon which other middleware and application specific aspects of agent
deployment can be built. In the rest of this paper we present AF-APL as a lan-
guage that has matured through application experience. In doing so, we hope
that some of some of our lessons learned can be valuable to others.
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3 AF-APL Constructs

The main constructs of any Agent Oriented Programming Language inevitably
centre around objects such as Beliefs, Goals, Commitments and Plans. We now
overview AF-APL’s collection of base objects and meta constructs.

3.1 Core Logical Constructs

From the object perspective, an AF-APL agent is defined as a tuple of mental
objects:

Agent = {B,G, C,A,P,BR,RR, CR,PR}

where B is the agent’s Belief Set, G is the agent’s Goal Set, C is the agent’s
Commitment Set, A is the agent’s Actuator Set, P is the agent’s Perceptor Set,
BR is the agent’s Belief Rule Set, RR is the agent’s Reactive Rule Set, CR is
the agent’s Commitment Rule Set, and PR is the agent’s set of Plan Rules, or
simply Plans. We now informally introduce each of the AF-APL constructs that
are used to create and manipulate these objects.

Beliefs. In AF-APL, a belief is represented with the BELIEF construct. By
default a belief only persists for one iteration of the agent’s execution cycle. This
behaviour can be changed through the use of the NEXT, UNTIL, or ALWAYS
constructs as required. To illustrate, we specify that an agent believes that Rem
always likes beer, as follows:

ALWAYS(BELIEF(likes(Rem, beer)))

Perceptors. An AF-APL agent contain a non-empty set of perceptors P, each
of which enable the agent to acquire beliefs about its environment. The PER-
CEPTOR construct is used to declare a perceptor with a particular identifier
and external code implementation. Each perceptor is fired in its own thread once
per agent execution cycle, and any resultant beliefs are then added to the agent’s
belief set B. For example, to define a Java based perceptor for receiving FIPA
messages, one might use this construction:

BEGIN_PERCEPTOR
IDENTIFIER ie.ucd.af.fipa.fipaReceive;
CODE ie.ucd.af.fipa.Receiver.class;

END_PERCEPTOR

Here, the IDENTIFIER of the perceptor is a unique perceptor identifier
within the AF-APL namespace. CODE defines a piece of external code that
is used to implement the perception task. Perceptor implementation can be pro-
vided as Java classes or C libraries that make use of a defined Perceptor interface.
Using these interfaces, Perceptors add new beliefs to the agent’s belief set. Multi-
ple CODE declarations can be defined, but only one piece of code is used on any
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platform. This can be useful when dealing with migrating agents over multiple
hardware platforms. Take for example a mobile agent which crosses between a
high performance PC, and a computationally limited handheld device. Conceiv-
ably, when the agent moves to the low-spec platform, it may need to switch to
a more basic form of perceptor.

Actuators. AF-APL agents contain a non-empty set of actuators A, each of
which constitutes the most basic action an agent can perform and reason about.
As with perceptors, actuators are defined in terms of a particular identifier, with
an implementation provided in an external programming language. In addition,
actuators have pre and post conditions defined; these conditions determining
what must be true for an actuator to be invoked, and what should be true when
an actuator has completed. Axioms of the language also state that if an actuator
succeeds or fails, then the agent directly adopts a belief to that effect; this
technique has been found to be extremely useful in allowing an agent to reason
about the success of its own actions. To avoid locking of the agent execution
cycle, actuators are fired asynchronously. An actuator for sending FIPA messages
might be defined as follows:

BEGIN_ACTUATOR
IDENTIFIER <BEHAVIOURAL>
ie.ucd.af.fipa.fipaSend(?fipa_msg);

PRE BELIEF(TRUE);
POST BELIEF(send_success(?fipa_msg))

| BELIEF(send_failure(?fipa_msg));
CODE ie.ucd.af.fipa.Sender.class;

END_ACTUATOR

The actuator identifier (like the perceptor and plan identifiers) uses a name-
spacing convention which is similar to (and compatible with) the Java names-
pace. The actuator identifier normally only refers to the shortened form of this
term (i.e. fipaSend(?fipa msg), but the long form can be used to distinguish
between two actuators with the same short form identifiers. Actuators are by
default assumed to be functional in nature (expected to self terminate); how-
ever, this interpretation can be overwritten by declaring the actuator to be be-
havioural by using the optional BEHAVIOUR keyword in the IDENTIFIER (See
the DO BEHAVIOUR UNTIL construct for more details).

Commitments. A commitment is a promise made by an AF-APL agent to
attempt an action. In other words, a commitment is the mental equivalent of a
contract. As such, it specifies the course of action that the agent has agreed to;
to whom this agreement has been made; when it must be fulfilled; and under
what conditions the agreed course of action becomes invalid (i.e. under what
conditions the contract can be breached). At any time the agent can contain any
number of commitments in its commitment set C. For example, we can represent
that Rem has committed himself to eat biscuits at 11am (as long as he believes
that he has no lunch plans) with the COMMIT construct as follows:
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COMMIT(Rem,
11:00,
!BELIEF(has(Rem,LunchPlans)),
eat(biscuits))

The first argument taken by a commitment construct is the name of the
Agent to whom this commitment has been made; this can be any literal term,
or the keyword ?Self, which is replaced at runtime with the name of the AF-
APL agent. The second argument is the earliest time at which the agent should
attempt to realize the commitment. The start time may be specified absolutely
in the standard international date format YYYY/MM/DD-hh:mm:ss, or relative
to the adoption time of the commitment by affixing a ’+’ character to the start of
a time (e.g. +01:00:00 means that the action should be started one hour after the
commitment was adopted. The key term ’?Now’ can also be used to specify that
the minimum start time for the action equals the commitment adoption time.
The third term is the commitment’s maintenence condition; if at any time after
adopting the commitment the term is no longer entailed by the agent’s belief
set, then the commitment is dropped immediately. The final term is the action
to be performed by the agent; The commitment holds a special place in the AF-
APL language, since it is through commitment management, and commitment
revision that an agent performs intentional action. Section 4.1 overviews of the
commitment management process.

Goals. A goal is a state of the world - or set of beliefs - that an agent wishes to
bring about. For example, the goal of causing the door to be closed is represented
as:

GOAL(door(closed))

Agents may adopt goals using either the ADOPT GOAL or
ACHIEVE GOAL plan operators, as described in section 3.1. Once adopted into
G, an agent will use means-end reasoning to attempt to determine a plan that
can achieve the goal. If such a plan can be determined, a secondary commitment
to that plan structure will form as a child of the original goal; fulfilling the plan
then causes the original commitment to be dropped. To guarantee continued
reactive behaviour of the agent, the means-end reasoning process is performed
asynchronously - this behaviour is discussed further in section 4.

Belief Rules. At any time the agent has a number of Belief Rules that allow
the agent to infer new beliefs from already existing beliefs. Therefore, the agent
can decide if a friend is allowed to drink beer with the following Belief Rule:

BELIEF(friend_age(?friend,?years))
& BELIEF(greaterThan(?years,18))
=> BELIEF(canDrinkAlcohol(?friend));

The left hand side of a belief rule is referred to as a belief query, and is a con-
junction of positive or negative current beliefs containing free or bound variables.
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Belief queries can reference the agent’s belief set directly, or make use of three
relational operations equals(?x,?y), greaterThan(?x,?y) and lessThan(?x,?y).

Commitment Rules. As well as belief rules, an AF-APL agent holds a set of
commitment rules, CR, that allow the agent to rationally decide on a course of
action based on its mental state. Take for example an agent who is hungry and
has a piece of fruit. Under these circumstances, a rational action for the agent
to take, would be to eat the fruit. We can specify this as a commitment rule in
AF-APL with the following:

BELIEF(hungry(?Self)) & BELIEF(haveFruite(?Self,?fruit))
=> COMMIT(?Self,

?now,
BELIEF(TRUE),
eat(?fruit));

The left hand side of a Commitment Rule is a Mental State Query. As well
as allowing querying of B, a mental state query can also query G and C. Thus,
an agent can adopt commitments based not only on its beliefs, but also on the
actions it has already committed to. It is often useful to make judgements based
on what the agent believes to be true in terms of commitment precedence and
timing. We therefore introduced two mental functions which allow an agent to
determine basic relationships between commitments; before allows an agent to
determine if the initial start time of one commitment precedes another; while
consequenceOf allows an agent to explicitly determine if one commitment is a
direct result of another commitment (e.g. is a descendent).

Reactive Rules. An AF-APL agent contains a set of Reactive Rules RR that
allow an agent to invoke an action directly based on what it believes to be true.
The reactive rule is simpler than a commitment rule, but is less robust and its
consequences cannot be reasoned about by the agent. A reactive rule can be
used to code basic reactive behaviours into the agent’s design. For example, a
reactive rule to dodge an obstacle blocking a robot’s progress could be encoded
with:

BELIEF(blocked(ahead)) & BELIEF(moving(forward))
=> EXEC(dodgeObstacle);

Reactive rules are different from their big brothers - the commitment rule - in
a number of ways, including: static binding, reactive rules are bound at runtime
to a specific plan implementation, whereas choices between plans and actuators
can be made by commitment management at runtime; no deliberation, the agent
cannot reason about reactive responses, nor can the reactive rule trigger contain
COMMIT or GOAL structures; priority execution, reactive rules take precedence
over commitment rules; more basic formulation, reactive rules may only contain
actuator identifiers or the SEQ, XOR, OR, PAR, and AND plan constructs.
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Plan Operators. In all the commitment rule and reactive rule examples above,
only single actions were to be performed. As would be expected, we explicitly
provide a number of plan operators for constructions of complex action from
primitives.

– SEQ - The Sequence Construct defines a set of steps that must be realized
in the order listed. For example, the actions required to boil a kettle can be
combined as:

SEQ(getKettle, fillKettle, boilKettle)

SEQ, along with PAR, AND, OR, and XOR are collectively known as the
arrangements operators. These operators can operate on any whole number
of arguments. The case of operating on one argument is not particularly
interesting; the operator is said to succeed if its one argument succeeds, and
fails otherwise.

– PAR - The Parallel Construct defines a set of steps that should be realized
simultaneously. We can express the parallel actions of stirring and adding
milk as:

PAR(stir,addMilk)

– AND - The Random Order Construct defines a set of steps which can be
realized in any order, parallel or sequential. All steps must be performed, but
it really does not matter what order the steps are performed in. Coming back
to the tea example: consider the actions of getting tea, getting a cup, and
getting the milk. There is no particular ordering necessary here; therefore
we can use the AND construct as follows:

AND(getTea, getCup, getMilk)

– OR - The Non-Deterministic Choice Construct defines a set of steps, one
of which must be realized. All steps are attempted in parallel. Once one of
these steps is realized, the construct is said to have succeeded; resulting in
all other steps being abandoned. If none of the steps return true, then the
construct is said to have failed. Using the tea example again, it is of course
possible to boil water in more than one way. In addition to using a kettle,
water may also be boiled in a pot. This results in two alternative ways to
get boiling water, which can be expressed in a plan body as:

OR(SEQ(getKettle, fillKettle, boilKettle),
SEQ(getPot, fillPot, boilPot)
)

The OR construct is useful when we wish to try out many different options
at the same time. However, in practice, it is not always useful to perform
all operations together. In our boiling water example, it is probably a bad
idea to both try to get boiling water from the pot and from the kettle at the
same time. Instead, we often try each option in turn; to do this we use the
XOR construct.
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– XOR - The Deterministic Choice Construct defines a set of steps, which
must be performed in the order presented, and which succeeds when one of
the steps is realized. Our boiling water example can be expressed with XOR:

XOR(SEQ(getKettle, fillKettle, boilKettle),
SEQ(getPot, fillPot, boilPot)
)

– FOREACH - The Universal Quantification Construct allows an agent
to check the contents of its mental state, and assign variables into plans
based on this mental state. FOREACH takes two arguments: a belief query
sentence, and a plan body with free variables (all of which must be potentially
scoped by the belief query sentence). To illustrate consider an agent that
wants to hold a party, and therefore wishes to invite all its friends to the
party; we can express this with the FOREACH construct as follows:

FOREACH(BELIEF(friend(?name)),AND(invite(?name)))

At runtime, if the agent’s belief set includes the beliefs that it has friends:
Anne, Jane and Freddy, then the above statement will be expanded to:

AND(invite(Anne), invite(Jane), invite(Freddy))

The plan body to be expanded must: (a) be based on an arrangement con-
struct e.g. XOR, OR, AND, PAR or SEQ; (b) contain only one argument. If
the belief query sentence fails - in this case, because the agent has no friends
- then the FOREACH construct is said to fail.

– TEST - The Belief Query Construct allows us to test if particular beliefs
are held by the agent. The construct takes one argument, a belief query
sentence, which may or may not contain free variables. If the agent’s mental
state entails the belief query sentence, then the construct is said to succeed.
We can use TEST to decide if we want to drink the tea that we have made:

SEQ(tasteTea,
XOR(SEQ(TEST(BELIEF(tea_tastes(good))), enjoyTea),

SEQ(TEST(BELIEF(tea_tastes(bad))), drinkItAnyway),
drinkCoke))

Using the TEST construct is equivalent to creating an actuator which explic-
itly checks the mental state of the agent; however, the construct is defined
as part of the language; meaning it is used more efficiently than an external
actuator.

– DO BEHAVIOUR UNTIL - The Behaviour Controller Construct is
used to handle actuators which have a behavioural rather than functional
nature. All of the examples above presumed actuators to have a functional
nature, in that they were expected to terminate eventually. Some actions,
particularly in robotics, have something closer to a behavioural nature in
that they do not have a natural termination point, and are only stopped
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once the agent believes something to be true. The DO BEHAVIOUR UNTIL
construct takes two arguments: (a) the identifier of a actuator which has been
declared BEHAVIOUR; (b) a belief query sentence, which can contain free
variables. The actuator is invoked and will be left to run until it returns
or the agent’s belief set entails the query; in which case, the actuator is
forcefully stopped. We can specify that a robot is to move along a wall until
a door is found with:

DO_BEHAVIOUR_UNTIL(followWall, BELIEF(found(Door)))

– TRY RECOVERY - The Error Recovery Construct is used to indicate
whether an action - or indeed a plan structure - should have error recovery
mechanisms associated. The construct takes two arguments: first, the action
or plan body to be monitored for failure; second, the plan which is to be used
for recovery. Unlike the try catch exception handling mechanisms in Java,
TRY RECOVER attempts to repair an erroneous situation and return the
agent to finish the original action. For example, a robotic agent that has to
perform a number of movement actions, can use a social recovery plan [16]
to guard against erroneous situations as follows:
TRY_RECOVER(SEQ(moveForward("5m"),turn("90d"),enterDoor),

social_recovery)

– CHILD COMMIT - The Commitment Adjustment construct is used
to override the default secondary commitment creation semantics of
the language. As with the COMMIT construct introduced above, the
CHILD COMMIT construct takes four arguments, explicitly overriding to
whom the secondary commitment is made; when the commitment is to be
first attempted; under what conditions the commitment is dropped; and the
action to be achieved. If only a subset of these parameters is to be over-
written, then the ?default key term can be used to indicate that the default
value is to be kept. For example, if within a complete plan, there are two
branches, one of which is to Jim, with another branch to Anna, then we can
express this as follows:

CHILD_COMMIT(SEQ(COMMIT(Jim,?default,
?default,doA),

COMMIT(Anna,?default,
?defualt,doB)))

This construct is discussed further in the context of commitment manage-
ment in section 4.1.

– ADOPT GOAL - The Goal Adoption Construct is a mental action which
adds a goal to the agent’s goal set, returning immediately. Let us consider a
robot which has been requested to close the door. The agent can adopt the
general goal of causing the door to be closed with the following commitment
rule:
ADOPT_GOAL(GOAL(closed(door)));

– ACHIEVE GOAL - The Goal Achievement Construct adds the goal to
the agent’s mental state, but does not return until the GOAL is achieved.
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Plans. All of the plan operators above allow a plan to be constructed out of
pre-defined actions. We refer to such constructions as Plan Bodies. To facilitate
code re-use, plan bodies can be wrapped in plan constructs. The plan construct
is similar to the actuator construct, but takes a plan body as activity, rather than
a piece of external application code. The plan operators introduced above can
operate on these plans as well as actuators, thus allowing the recursive definition
of plans. From our tea making scenario, a (naive) plan to make a cup of tea can
be represented as follows:

BEGIN_PLAN
IDENTIFIER ie.ucd.assitant.makeTea();
PRE BELIEF(TRUE);
POST BELIEF(made_tea);
BODY SEQ(AND(getTea,getCup,getMilk),

XOR(SEQ(getKettle, fillKettle, boilKettle),
SEQ(getPot, fillPot, boilPot)),

AND(addTea,pourWater),
PAR(stir,addMilk),
tasteTea);

END_PLAN

3.2 Meta Constructs

In addition to the base language concepts discussed above, we have found that
a number of extra constructs - that do not strictly from part of the underlying
logical language - can vastly improve the usefulness of AF-APL. We now look
at two of these meta constructs.

Modules. An AF-APL module provides a simple way of declaring an external
block of code (Java class or C object/library) which can be used to share func-
tionality and memory between different actuators and perceptors. The construct
takes one argument, the name of the module to be loaded by an agent. For ex-
ample, a Java library which implements a hash-map, might be declared with the
following:

MODULE myProject.mods.MyHashMap.class;

The module is instantiated and is agent specific, meaning all actuators and
perceptors within an agent can have direct access to a common data source,
which can be convenient when these actuators and perceptors need to share
data, which is large in volume and not suited to being reasoned about by the
agent.

Role Classes. AF-APL provides a form of inheritance in agent design through
the use of explicitly defined role classes. AF-APL Roles allow a collection of ac-
tuators, perceptors and other agent components to be grouped together into an
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agent prototype. These agent prototypes can then either be instantiated directly
into agents, or included in other agent designs. For example, the AgentFactory
runtime [17] provides a number of pre-defined roles, including one that imple-
ments basic functionality for FIPA compliant communication. This role can be
included into a new agent design with the USE ROLE construct:

USE_ROLE ie.ucd.core.fipa.role.FIPARole;

Macro Inclusions. To improve code reuse capabilites, Plans, Actuators, and
Perceptors can all be coded directly in their own files, and later included into an
agent with the AF-APL meta constructs PLAN, ACTUATOR, and PERCEP-
TOR. For example, we can include the actuator for sending FIPA compliant
messages as follows:

ACTUATOR ie.ucd.af.fipa.fipaSend(?fipa_msg);

4 The AF-APL Execution Model

The AF-APL programming constructs, overviewed in the last section, must be
related to each other and interpreted at runtime. We now discuss our execution
model and commitment management system that is used to rationally drive an
AF-APL agent. The agent’s Life Cycle is built out a of number of Execution
Cycles. AF-APL provides a well defined (but extensible) execution model which
reflects the basic needs of a hybrid agent. Unlike traditional Sense - Plan - Act
approaches, the model is asynchronous, guaranteeing the continued operation of
an agent - regardless of potential locking of 3rd party actuator and perceptor
code.

The AF-APL execution cycle is presented in pseudo-code in figure 1. The
first phase of the execution cycle concerns the update of the agent’s belief set,
B, based on the results of perception and temporal belief update. To guarantee
that the agent’s execution cycle is not perturbed by potentially poorly designed
3rd party code, the perceptor firing and reading mechanisms are asynchronous.
Actual perceptor code (e.g. C libraries) run outside of the agent’s thread of
execution; Instead, an interface to a perceptor is provided that includes a Belief
Queue and an Event Queue. At this first phase of the execution cycle, each
perceptor’s Belief Queue is emptied into B; followed by the sending of a triggered
event to advise the native perceptor code that it is time to re-fill its Belief Queue.
Handling of the perceptors is then followed by temporal belief update. For each
of the agent’s temporal beliefs, the agent’s beliefs are updated in accordance
with the semantics of the temporal operators used.

The second phase of the execution cycle then follows (line 7), causing reactive
actions to be run in their own threads, if the reactive rule condition is entailed
by the B.

The invocation of reactive rules is immediately followed by the deliberation
phase. Our design of this phase was influenced by our wish to provide our agents
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1 FOR_EACH p ∈ P{
2 B < p.queue;
3 trigger(p);
4 }FOR_EACH b ∈ BR{
5 IF b.condition {add(b,B);}
6 }FOR_EACH r ∈ RR{
7 IF r.condition {trigger.action;}
8 }FOR_EACH g ∈ G{
9 IF g.state == achieved {drop(g);

10 }ELSE_IF g.state == new {deliberate(g);
11 }ELSE_IF g.state == plan_found {adopt(g.plan);}}
12 FOR_EACH cr ∈ CR{
13 IF cr.condition {add(cr.Commit,C);}
14 }FOR_EACH c ∈ C{
15 process(c);
16 IF c.state == fulfilled || c.state == redundant {
17 drop(c);}
18 }

Fig. 1. AF-APL Execution Cycle

with goal directed reasoning, while guaranteeing the agent’s continued reactiv-
ity. These requirements immediately rule out direct means-end reasoning in the
agents execution thread. Two alternative approaches were investigated. The first
saw the execution of a number of means-end reasoning steps per execution cycle,
where the semantics of means-end reasoning were directly defined in AF-APL.
The second saw the use of an external planning algorithm which runs in an asyn-
chronous manner similar to actuator execution. Of these two choices, practical
considerations directed us towards the later option, since it allows more freedom
in the design and implementation of the planning algorithm. During this phase
of the agent execution cycle, each of the agent’s goals are analysed. If a goal has
been achieved, then it, along with any subsequent commitments, are immedi-
ately dropped from the G and C respectively. If a goal is new, then means-end
reasoning is triggered asynchronously; and, if a solution has been found through
means-end reasoning, then a commitment to the resultant plan is adopted. A
drawback to the use of an asynchronous planning model is that by the time the
planning process has returned, the plan may be invalidated by changes in the
real world or agent state. We argue that this is a problem that will be common
to any agent acting in the real world, and is not specific to an asynchronous
execution cycle.

Following deliberation, an AF-APL agent then addresses the questions of
which commitments are to be adopted, and how these commitments are to
be fulfilled. At a high level, this Commitment Management process involves
the adoption of new primary commitments based on the values entailed by the
agent’s mental state; followed by the partial achievement of these commitments
through the management of commitment structures, and execution of actuators.
Our approach to commitment management is detailed in the following section.
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4.1 A Model of Commitments and Commitment Management

In section 3.1 we briefly introduced our notion of a commitment as a promise
that is made by an agent, to perform an action, for some agent (possibly itself),
More precisely, an AF-APL commitment, c ε C, is a 6-tuple:

c = {α, θ, μ, π, ρ, ω, γ}

where α is the name of the agent to which the commitment has been made; θ
is the earliest time at which the agent will attempt to fulfil the commitment; μ
is the maintenence condition of the commitment; π is the activity that has been
committed to; ω is an ordered set of child commitments; ρ is the state of the
commitment; and γ is the commitment’s parent (potentially null). For brevity, α
and θ can be viewed from a common sense interpretation. μ is a belief sentence -
or conjunction of beliefs - which must be obeyed by the agent for as long as the
commitment is to be held by the agent; If at any point this belief is not entailed
by B, then the commitment is dropped.

π is the activity which has been committed to by the agent. In our model, π is
a placeholder for an actuator, plan, or plan operator; has its own state; and can
generate a number of child activities. The semantics of an activity are directly
dependent on the semantics for the plan operator, plan, or actuator object as
appropriate. The states of an activity are: NEW, an activity has been initialised;
ACTIVE, the actuator, plan, or plan operator is active; SUCCEEDED, the
activity has succeeded; FAILED, the activity has failed.

The state of a commitment ρ signifies at what stage of fulfilment the com-
mitment is at. The commitment’s state is important both from a conceptual
view, in that it represents whether we are actively achieving a commitment, or if
the commitment is planned to be achieved at a later time. It is also used in the
commitment management model presented in the next section. A commitment
can have five non-trivial states: DEPENDENT, a commitment that has been
adopted, but is not due to be actively fulfilled until some fruition constraint has
been achieved; PENDING, a commitment that the agent will begin to actively
fulfil by the agent in its next execution cycle; ACTIVE, a commitment that is be-
ing actively pursued by an agent; REDUNDANT, a commitment that has failed
- the maintenence condition for the commitment no longer holds; FULFILLED,
a commitment that has been fulfilled - the activity committed to has succeeded.

Each commitment can have a number of child commitments’ ω, where each
child is a commitment to some activity, which if achieved, can partially achieve
some part of the parent commitment. For example, a commitment to perform
two actions, can be refined to two commitments to more primitive actions. Thus,
a commitment structure can be formed, where a coarse grained commitment can
be broken down into sub-structures of finer grained commitments. We call the
topmost commitment in a commitment structure a primary commitment. The
agent’s commitment set C contains a number of these commitment structures,
where each structure was added through the initial adoption of a primary com-
mitment through the application of commitment rules or deliberation.
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Fig. 2. Commitment State Diagram

Commitment Management. Above, we gave a description of an AF-APL
commitment and showed the relationship between primary commitments, activ-
ities, and commitment structures. In this section, we look at AF-APL’s com-
mitment management algorithm. Once per execution cycle, each of the agent’s
commitment structures are refined, which involves the pruning and expansion
of the structure. A pseudo-code representation of our commitment management
algorithm is presented in figure 3.

During the first refinement phase, the algorithm descends to the leaves of the
commitment structure, and examines the state of each activity committed to.
If a commitment’s activity has succeeded, then the commitment’s state is set
to FULFILLED. Else, if the activity has failed, the commitment’s maintenence
condition is checked. If this is no longer entailed by B, then the commitment
enters the REDUNDANT state; otherwise, the activity is reset. If the activity
is still active, the maintenence condition is similarly checked - failure of the
maintenence condition results in the commitment becoming REDUNDANT. By
default, the leaf commitments, like all secondary commitments are created with
a weak minded maintenence condition, meaning that if the committed to action
fails, then the commitment enters the REDUNDANT state. The checking of
maintenence condition, and notification of parent commitment’s activities pec-
ulate up through the structure until all commitments have been checked. As
parent commitments are notified of the change of state of child commitments,
other previously DEPENDENT child commitments can become moved to the
PENDING state. Such transitions are dependent on the semantics of the activity
committed to. It should be noted that since AF-APL uses an open-minded com-
mitment model, a commitment fails if the commitment’s maintenence condition
no longer holds - not if the activity committed to fails. Thus, if a commitment’s
activity fails, but the maintenence condition still holds, then the commitment is
moved back to the PENDING state.

During the second refinement phase, all PENDING commitments are moved
to the ACTIVE state, with a subsequent transition of the commitment’s ac-
tivity from the NEW to the ACTIVE state. The consequence of moving the
commitment’s activity to the ACTIVE state, is to create any new secondary
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1 process_commitment(c){
2 prune(c);
3 expand(c);
4 }
5

6 prune(c){
7 IF c.ω.size == 0{
8 IF c.π.state == SUCCEEDED{
9 c.ρ = FULFILLED;}

10 ELSE IF c.π.state == FAILED{
11 IF c.μ THEN c.ρ = PENDING;
12 ELSE c.ρ = REDUNDANT;
13 }ELSE{
14 IF !c.μ THEN c.ρ = REDUNDANT;}}
15 ELSE{
16 FOR_EACH child ∈ c.ω{
17 prune(child);
18 IF c.π.state == UPDATED{
19 c.ω.update();}
20 ELSE IF c.π.state == SUCCEEDED{
21 c.ρ = FULFILLED;}
22 ELSE IF c.π.state == FAILED{
23 IF c.μ THEN c.ρ = PENDING;
24 ELSE c.ρ = REDUNDANT;}}}
25 }
26

27 expand(c){
28 IF c.ρ == ACTIVE{
29 FOR_EACH child ∈ c.ω{
30 expand(child);}}
31 ELSE IF c.ρ == PENDING{
32 IF c.θ {
33 Set c.ρ = ACTIVE;
34 Set c.π.state = ACTIVE;
35 FOR_EACH activity ∈ c.π.ω{
36 c_new = new c(activity);
37 add(c.ω,c_new);}}}
38 }

Fig. 3. AF-APL Commitment Management Algorithm

commitments, marking these new commitments as DEPENDENT, ACTIVE, or
PENDING as appropriate. The exact actions that are performed by during the
setting of an activity to ACTIVE are dependent on the semantics of AF-APL’s
planning operators, plan and actuator constructs. A detailing of these semantics
is considerably beyond the scope of this paper; but in summary, if the activity
resolves to an actuator, then activation involves the triggering of the actuator
in it’s own thread; If the activity corresponds to a plan identifier, then a child
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Fig. 4. Commitment Structure Management

commitment to the plan body is adopted; If the activity corresponds to a plan
operator (e.g. XOR, SEQ, TEST) then the creation of child commitments, is
very much dependent on the semantics of the operator in question.

Although secondary commitment creation is, in general, dependent on the
semantics of AF-APL’s activity types, the values for a secondary commitment’s
agent α, earliest start time θ, and maintenence condition μ are specified by the
basic commitment model; the default values for each secondary commitment’s
α and θ are directly inherited from their parents, while the default μ for each
agent is that the activity being committed to has not failed. These default sec-
ondary commitment creation values can be overwritten through the use of the
CHILD COMMIT construct introduced in Section 3.1. Figure 4 shows the first
three commitment management steps following the triggering of the following
commitment rule by Rem:
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BELIEF(request(doStuff)) => COMMIT(?Self,
?now,
BELIEF(TRUE),
SEQ(doA,doB));

In the first step, we see the initial adoption of the primary commitment to
the SEQ(doA,doB), followed by the expansion of the primary commitment to a
commitment structure. In the second step, doA is moved from the PENDING
to the ACTIVE state - consequently triggering the external actuator code for
doA (if we assume doA does in fact represent an actuator). In the third step, we
assume that the doA actuator has successfully returned, thus causing the com-
mitment to doA to be moved to the SUCCEEDED state, with the commitment
to doB hence moved from the DEPENDENT to the PENDING state. If shown,
this PENDING commitment would then be moved to ACTIVE in a subsequent
commitment management step.

Our commitment management model is motivated by the dual constraints
of allowing an agent to reason about its commitments, while guaranteeing the
reactivity of the agent. For example, with our model, when a plan becomes active,
then the commitment structure is fully expanded immediately, allowing an agent
to reason directly about the commitments in the commitment structure.

5 Interpreting AF-APL: AgentFactory

In this section we introduce the AgentFactory Development Framework - along
with its AF-APL compliant agent interpreter1. The focus of this paper is on
the AF-APL language rather than any one interperter design. Therefore, this
overview is brief and intended to elaborate on how an AF-APL interpreter might
be implemented.

The AgentFactory Framework [4, 17] is a complete agent prototyping environ-
ment for the fabrication of deliberative agents. As shown in figure 5, AgentFac-
tory can be conceptually split into two components: the AgentFactory Runtime
Environment (AF-RTE) and the AgentFactory Development Environment (AF-
DE). The AF-RTE includes an agent interperter; a library of standard actuators,
perceptors, and plans; a platform management suite, which can hold a number of
running agents at any time; and an optional graphical interface to view and ma-
nipulate agents and the platform. The AF-DE includes an agent/role compiler
along with an Integrated Development Environment.

The AgentFactory interperter uses factory instantiation to allow more than
just AF-APL agents to be run. This was achieved by designing the interpreter
around a number of interfaces - where each interface manages one of the most
common component types in agent designs. Figure 6 gives an abstraction of the
interpreter design. In our design, an AF-RTE platform can have any number

1 The AgentFactory Framework is available for download, along with full documenta-
tion on it and the AF-APL language, from http://www.agentfactory.com.
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Fig. 5. The AgentFactory Framework

Fig. 6. AgentFactory Interpreter Design

of agents running - each agent is processed directly by an interperter instance
that is accessed through an Agent Core object. During interpreter initialisation,
the Agent Core class uses a platform configuration file to instantiate the appro-
priate objects for a given agent type, thus allowing agents designed in different
languages to be instantiated on the same platform. In addition to providing
abstractions of mental attribute types, the interfaces (typefaced in italics) also
abstract the agent controller. Thus, although the interperter does not support
scripting of agent controller designs, new controller variants can easily be imple-
mented and tested.
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AF-APL, as described in this paper, is only one of a number of AO language
variants that can potentially be instantiated on the platform. We have found
that employing a flexible interperter design is extremely beneficial for testing
language variants, particularly when formal validation is not feasible.

6 Example Code

For illustration, we now present some code for a typical scenario that has in-
fluenced AF-APL’s current features. Figure 7 presents a program fragment for
an office assistant robotic agent. Starting from the top, we first see the use of
the USE ROLE macro to import AF-APL roles that provide domain specific
definitions for FIPA compliant communication, and control of an autonomous
wheelchair robot. The USE ACTUATOR macro is then used to import a pre-
defined actuator for vocalising utterances. This is followed by an in-line plan

1 USE_ROLE ie.ucd.core.fipa.role.FIPARole;
2 USE_ROLE de.tzi.RollandRole;
3 ACTUATOR de.tzi.MARY.speak(?utterance);
4

5 // Explicit Plan Definition
6 BEGIN_PLAN
7 IDENTIFIER de.tzi.safeDeliver();
8 PRE BELIEF(TRUE);
9 POST BELIEF(delivered(parcel));

10 BODY TRY_RECOVER(SEQ(DO_BEHAVIOUR_UNTIL(followWall,
11 BELIEF(found(Door))),
12 enterDoor),
13 social_recovery),
14 END_PLAN
15

16 // Commitment Rule
17 BELIEF(requested(?agent,deliver(?object,?destination)))
18 & BELIEF(isSuperior(?agent)) & !COMMIT(?a,?b,?c,?d)
19 => COMMIT(?agent,
20 ?Now,
21 BELIEF(TRUE),
22 SEQ(fipaSend(?agent,
23 inform(ack(deliver(?object,?dest)))),
24 safeDeliver,
25 speak("I have a parcel for collection")
26 )
27 );
28

29 // Reactive Rule
30 BELIEF(blocked(ahead)) & BELIEF(moving(forward))
31 => EXEC(dodgeObstacle);

Fig. 7. Sample AF-APL Program
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definition to deliver a parcel to a destination. The plan makes use of the
TRY RECOVER plan operator to initiate social help for recovery in the event
that the basic delivery plan fails. The basic delivery plan also makes use of the
DO BEHAVIOUR UNTIL operator which will cause the agent to follow the wall
until it believes that a door has been found.

A commitment rule used states that if the agent believes that it has been
asked to deliver a package, and if it believes that a superior made the request, and
that the agent is not already committed to some other task, then the agent should
immediately blindly commit to a simple plan. The plan uses an actuator inherited
from the FIPARole to send an acknowledgement message to the requesting agent,
before using deliver plan, to perform the delivery task. Upon arrived at the
destination, the agent will announce its presence. In addition to the commitment
rule, a reactive rule is also specified; this simple rule states that if the agent
believes there is an object blocking its active path, then it will initiate a reactive
action to dodge the obstacle.

7 Six Lessons Learned

Here, we list a number of lessons learned from our practical application of AOP -
particularly in the robotics domain - and show how AF-APL has been formulated
to benefit from these lessons.

– Provide an Extensible Core Language. An AO language should have
a minimal conceptual footprint, while supporting extensibility based on do-
main specific requirements. AF-APL’s actuator and perceptor interfaces act
as membranes to domain specific code and abilities. This allows us to pro-
vide useful middleware features such as communication, yellow pages sup-
port, and migration, without the need to define these features within the
semantics of the core language.

– Provide a Practical Set of Planning Operators. Real agents often need
to perform a number of tasks in complex arrangements that go beyond par-
allel and sequential constructions. AF-APL’s new plan operator set provides
an improved, but modest, set of constructs to facilitate the construction of
complex plans. We acknowledge that any set of operators is going to be
found incomplete in some way, but AF-APL has been designed such that we
can easily extend the semantics of the language through the addition of new
or updated planning operators.

– Support Reasoning on Goals & Commitments. It is often extremely
practical for an agent to reason about its own commitments, while deliber-
ating over which new commitments should be adopted. AF-APL provides
agents with these abilities through the well defined management of, and
reasoning on commitment structures.

– Support Robustness in Agent Operation. Agent programs must guar-
antee the continued reactive behaviour of an agent - despite the possibility
of bugs, crashes, or hanging in 3rd party actuator or perceptor code. All
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aspects of AF-APL’s execution cycle are asynchronous, insuring localised
degradation in the face of 3rd party code.

– Provide Multiple Levels of Reasoning. Agent programming should pro-
vide a spectrum of control levels, ranging from full goal oriented deliberation
through to reflective action. In addition to providing traditional Goal and
Commitment directed deliberation, AF-APL allows for reflective behaviour
within individual actuator or perceptor implementations; these are in addi-
tion to Reactive Rules that provide reactive abilities within the intentional
layer.

– Support Code Re-use. For AOP to become useful in the real world,
common software engineering practices will need to be supported by the
languages. AF-APL provides code re-use facilities through the use of Role
Inheritance and macro definitions and inclusions.

8 Conclusions and Future Work

We presented AF-APL as a language based on a formal agent treatment - but
forged through lessons learned in application experiences. A key feature of the
language is its asynchronous execution model that guarantees robust operation
of the agent, even in the face of potentially poorly designed 3rd party code. Also,
the language utilises a model of commitments that allow an agent to reason about
its own future actions and goals in the pursuit of rational action.

AF-APL was originally given a formalisation around Possible Worlds Seman-
tics. However, with the practically derived features presented here, we are cur-
rently in the process of re-formalising, based around an Operational Semantics.
From a practical standpoint, we must further investigate the uses of roles and
inheritance within AF-APL. We hope that such an effort will result in a greater
understanding of how rapid prototyping, inheritance, and code-reuse can help
to proliferate the AO paradigm.
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Abstract. Autonomy is largely accepted as a major distinctive charac-
teristic of agents with respect of other computation models. This is one of
the main reasons why the agent community has been investigating from
different perspectives constraints and the tight relationship between au-
tonomy and constraints. In this paper, we take the software engineering
standpoint and we exploit the results of the research on constraint pro-
gramming to provide the developer with a set of tools for the realization
of constraint-based multiagent systems. In detail, the purpose of this
paper is twofold. In the first part it presents a model that regards multi-
agent systems in terms of constraint programming concepts. This model
comprises an abstract picture of what a multiagent system is from the
point of view of constraint programming and a language for modeling
agents as solvers of constraint satisfaction and optimization problems.
The second part of this paper describes an implemented toolkit that ex-
ploits this model to support the developer in programming and deploying
constraint-based multiagent systems. This toolkit consists of a compiler
and a runtime platform.

1 Introduction and Motivation

Autonomy is largely considered a characteristic feature of agents that differenti-
ate them from other computation models [13]. Many researchers claim that au-
tonomy is the one and only distinctive features of agents [3] and the large amount
of work about goal-directed behavior [2] or, more generally, about rationality [9]
has the ultimate goal of providing a scientific understanding of autonomy. Along
these guidelines, the research that motivates the results described in this paper
has been devoted to study the opposite side of the coin: if we accept that agents
are inherently autonomous, then we need to face the engineering problem of
constraining this autonomy in a reasonable way. Even if some researcher have a
radically different opinion, see, e.g., [14], we believe that a major step we need
to undertake to regard agents as applicable abstractions in the engineering of
everyday software system is to find a reasonable way to constraint the autonomy
of agents.
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Rationality can be regarded as one way to achieve this purpose, but facts
have already proven extensively that the use of rationality in real system is still
remote. Nevertheless, we need some way to guarantee (at least) some very basic
properties of engineered systems, e.g., safety and liveness, and we cannot simply
accept that something, which is not under the control of the developer, might
emerge and damage the system.

In this paper we consider a method for constraining the autonomy of agents
that exploits the direct intervention of the developer in defining what are the
boundaries of an acceptable behavior for an agent. This method relies on the
results of the research on constraint programming because of two very basic rea-
sons. The first is that constraint programming treats constraints, and therefore
autonomy, as a first class metaphor. This allows the developer to manipulate
constraints directly. Moreover it offers the great advantage, over other forms
of management of the autonomy, of being independent of any grand principle,
like rationality. Such principles are elegant and they permit to treat a large
set of different problems homogeneously. Nevertheless, they often become subtle
and difficult to manage for the developer because of their inherent problem-
independence. Rather, constraint programming puts the focus on the problem
at hand and it uses only the constraints that are embedded in the problem itself,
and no other grand principle is required.

The second reason for choosing constraint programming for managing the
autonomy of agents is that it is sufficiently powerful to allow the description of
another very basic characteristic of agents: goal-directed behavior. The success
of constraint programming in problems like scheduling [10] and planning [12]
demonstrates that it can provide good results in supporting the desired goal-
directed behavior of agents.

This paper presents the results of the work that we have been doing during
last year, and that is based on the guidelines that we have just stated. The
aim of this project is to deliver a set of constraint-based tools that everyday
developers could adopt for the realization of their multiagent systems. We did
not choose any reference application domain for such tools because we intended
to provide an enabling technology capable of providing its benefits in many
cases. Actually, we believe in the position that Freuder stated in its celebrated
truism [4]: “Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming: the user states
the problem, the computer solves it.”

The description of our tools starts, in the following section, with an introduc-
tion to what constraint-based multiagent systems are for us. Then, in section 3
we present a programming language that exploits the model of constraint-based
multiagent systems to provide the developer with a direct means for implement-
ing agents as solvers of constraint satisfaction and optimization problems. This
language is the core of the development toolkit that we present in section 4. This
toolkit consists of a compiler and a runtime platform and it allows for a seamless
integration of constraint-based multiagent systems with everyday applications.
This work is summarized in section 5, where we outline some conclusions and
we present some future direction of research.
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2 Constraint-Based Multiagent Systems

The interplay between autonomy and constraints has been the subject of a large
work in various research communities and under various points of view, e.g.,
classic works about this are [6, 7, 8]. In our work we take the point of view
of software engineering and we see agent-oriented constraint programming as a
particular approach to realize multiagent systems, rather than, e.g., a distributed
approach to solve constraint satisfaction problems.

In order to give a more precise meaning to these words, and to show the
advantages of this approach, we start from the foundations of constraint pro-
gramming and we show how these can be used as guidelines for the realization
of multiagent systems. It is worth noting that even if some objectives are in
common, our approach differs significantly from concurrent constraint program-
ming [11] because we decided to start from a more operational, and more modern,
approach to constraint programming.

A constraint satisfaction problem (CSP) [1] is a tuple < X, d, C >, where X
is a set of n variable names, X = {x1, . . . , xn}, d : X → D ⊆ R is a mapping
between a variable name and the domain of its possible real values, and C is a
collection of m constraints C = {C1, . . . , Cm}. Each constraint is a proposition
over a subset of the available variable names S ⊆ X, called the scheme of the
constraint.

In this definition we consider only real variables because all other sets we
need to deal with, e.g., sets of strings enumerated extensively, can be mapped
bi-directionally to subsets of real numbers.

A solution to a CSP is an assignment of values that maps all variable names
in X with a value compatible with d that satisfies all constraints in C.

An interesting property of this definition of CSP is that it allows for an easy
definition of sub-problem. This feature is of singular importance in our agent-
oriented approach because we will exploit it in treating goal-delegation.

We say that CSP1 is a sub-problem of a CSP2 if X1 ⊆ X2, and all constraints
in CSP2 whose scheme is a subset of X2 are in CSP1.

For the sake of simplicity, in this paper we do not take into consideration the
serious problem of possible mismatches between the representations of different
problems. If two problems contain the same variable name, we assume that these
names are two appearances of the same variable, which is then shared between
the two problems.

In order to exploit these ideas in an agent-oriented fashion, we need to intro-
duce some notion supporting the embodied nature of agents and their inherent
goal-directed behavior. This is the reason why CSPs are not sufficient and we
need to rely on a well-known extension of them.

A constraint satisfaction and optimization problem (CSOP) [1] is a CSP with
an associated targets T , i.e., it is a tuple < X, d, C, T > where T : S ⊆ X → R.

A solution of a CSOP is a solution of the underlying CSP that maximizes
the target T .
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We say that CSOP1 is a sub-problem of CSOP2 if the CSP associated with
CSOP1 is a sub-problem of the CSP associated with CSOP2 and any solution
of CSOP1 is a partial solution of CSOP2 for the set of variables of CSOP1.

This definition of sub-problem relies on a very demanding condition and we
need to alleviate it with the introduction of the notion of weak sub-problem. We
say that a CSOP1 is a weak sub-problem of CSOP2 if the CSP associated with
CSOP1 is a sub-problem of the CSP associated with CSOP2, and nothing is
said on the two targets. This definition allows decomposing a problem into sub-
problems and to solve the various sub-problems independently, without requiring
the decomposition of the target of the original problem.

The approach that we propose to exploit these ideas for the realization of
multiagent systems is to state that an agent is nothing but a solver of a particular
CSOP and that each agent in a constraint-based multiagent system may have a
different CSOP to solve.

Agents acquire from their sensors:

1. Constraints, that are inserted or removed from the set of constraints of their
problems; and

2. Values for the variables of their problems, that can be asserted or retracted,
i.e., particular constraints of the form X = x.

Agents act in accordance of the solution, even partial, they find for their prob-
lems. Once an agent has definitely found a partial solution to its problem, i.e.,
once it comes to know that it will not backtrack the partial assignment of its
variables if nothing changes in its internal state, then it can act on the environ-
ment or it can perform communicative actions in the direction of other agents.
The selection of the action to perform depends only on the partial solution it
found.

The multiagent system as a whole is not associated with any CSOP, rather
its behavior emerges from the interactions of all agents. Such interactions can
occur through the environment, i.e., through shared variables, or though com-
munication.

Communication between agents is represented in our model using the stan-
dard approach of communicative acts. But, differently from many other ap-
proaches, we largely reduce the problems of communicative acts because we
take a minimalist approach to agent communication languages. We say that an
agent communicates with another agent only to ask to this agent to perform
some action, whether communicative or not, whose outcome would help it solv-
ing its problem. Basically, we say that an agent communicate with another agent
only to delegate a weak sub-problem of its CSOP to it.

Exploiting this simple model of communication we have the advantage of
decoupling the problem of actually choosing what to say and to who from the
CSOP the agent solves. If we work under the assumption that all agents provide
to a central repository the (true) list of problems they can solve, then an agent
A1 communicate with an agent A2 only if:
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1. The problem that A2 solves is a weak sub-problem of the problem of A1;
and

2. A1 cannot, or does not want, to solve this sub-problem on its own.
From a rather superficial point of view, this approach to communication seems
too poor with respect of the standard approaches that one may expect from
an agent model. This is only partially true, because this approach is a direct
implementation of goal-delegation, which is largely considered the ultimate ra-
tionale of communication between agents. Moreover, this model is not limited
to cooperative agents only, because agents are associated with different CSOPs
and optimal solutions to such problems may be conflicting. In particular, the
target of the CSOP of each agent can be assimilated to the utility function of
that agent, and each agent has potentially a different target for its problem.

The model that we have just outlined is obviously ideal for a number of
reasons. First, it does not include time as a first-class concept. Time can be
modeled as a variable in the CSOP of an agent, but the tight coupling between
such a variable and the resolution process, through the time spent for actually
solving the problem, can cause severe problems. Moreover, our model allows
actions only in result of a partial solution of the problem of an agent. This
implies that an agent cannot perform actions for a part of the duration of the
resolution process, which inherently depends on the problem the agent is facing.
This is a classic inconvenience found in many other agent models and it raised
crucial problems like belief and intention revision [5].

Such limitations of ourmodel are significant, but for themomentwe decided not
to take them into consideration because we adopted the standard approximation of
quasi-stationaryenvironments. If thetimeneededtosolvetheproblemissufficiently
small with respect of the expected time of reaction of the agent to a change in the
environment, then the agent would behave as expected. We decided to adopt this
assumption because our experience suggests that it is applicable in many realistic
situations, especially ifwe target commonsoftware systemswhere, if it is sufficiently
reactive for the user, then performances is not an issue.

Our model of agents as CSOP solvers has many resemblances with more tra-
ditional agent models, especially with rational agents. Anyway, we put a strong
focus on the internals of the agent, rather than on its behavior seen from the
outside, and therefore the ascription of a mental state to such agents seems a
difficult problem. This difficulty justifies the assumption that our agents are not
easily framed into other agent models and therefore we decided to find a new
nickname for them capable of capturing their nature of atomic computational
entities whose interaction animates the multiagent system as a whole. This is
the reason why we use to refer to this particular sort of agents as quarks.

3 A Language for Agent-Oriented Constraint
Programming

The model of quarks that we outlined in the previous section has a number of
interesting properties. Among them, it is worth noting that it does not depend



94 F. Bergenti

on any particular (and possibly implicit) restriction that a specific language
for constraint programming might impose. Therefore, it offers a good level of
generality and expressive power. Moreover, it is a good approach for studying
the algorithms capable of controlling the behavior of the quark.

Nevertheless, we cannot simply give to the developer the notions of variable,
domain and constraint. It is not a reasonable approach for a developer that is
already familiar with the sophisticated modeling techniques that object orien-
tation has promoted in the last twenty years. The basic problem is that the
effort required for mapping a reasonably complex application domain into a set
of variables, domains and constraints seems excessive. We definitely need to de-
fine a language supporting higher level abstractions and the rest of this section
addresses this problem.

The Quark Programming Language, or QPL (pronounced kju:pl), was designed
to provide the developer with a user-friendly approach to realizing quarks. We de-
fined an abstract model of it and then we mapped this model to a concrete syntax.
Exploiting this syntax we realized a compiler, with an associated runtime plat-
form, for a concrete use of QPL in running systems. The compiler and the runtime
platform are described in next section and what follows is an informal description
of QPL. It is worth noting that the semantics of QPL has already been formal-
ized with two different approaches. The first is an operational mapping between
a QPL program and a CSOP. This is a crucial step because it allows mapping
a quark written QPL with an algorithm for controlling its behavior. The second
approach is based on a description logic and it is useful for understanding the ex-
pressive power of the language. For the sake of brevity, none of these semantics
is presented here and the subject is left for a future paper.

The realization of a quark in QPL requires to define the class of quarks
it belongs to. This class defines the common characteristics of each quark it
comprises and it provides a means for the developer to instantiate quarks. A
class of quarks is composed of:

1. A name;
2. An import section;
3. A public problem description section;
4. A private problem description section;
5. A targets section; and
6. An actions section.

The name of the class is used to support the creation of new quarks: the developer
uses it when he/she wants to instantiate new quarks. The import section declares
the external components that the quark will use. Such components are non-
agentized, third-party software that a quark may need to exploit in its lifetime.

These two sections of the program of a quark provide a bi-directional link
between the quark and the rest of the non-agentized software of the system. This
is why they are (intentionally) described vaguely in the specification of QPL. Any
possible implementation of QPL has to deal with its own means for instantiating
quarks and with its interface with external components. In the implementation
of QPL that the following section describes, quarks can be instantiated by means
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of an API available through a .NET and a WSDL interface. Similarly, external
components are imported and accessed through a .NET and a WSDL interface.

After the import section, QPL requires the developer describing the problem
that the quark will solve. Such a description deals only with the CSP part of the
CSOP that the quark will solve. This description is split into a public section and
a private section. The public section provides a description of the problem that is
suitable for a publication in the central repository of the system. This description
can be used to tell other quarks what this quark is capable of doing, i.e., what
are the problems it can solve. This part of the description of the problem is used
to support communication and goal delegation. The private section refines what
the developer declared in the public section with an additional set of details that
he/she needs to introduce to make the quark fully functional. Such details are
not essential for other quarks to reason about the problem this quark solves, and
these can be assimilated to implementation details that the good old principle
of information hiding suggests to keep private.

Both the public and the private sections of the description of the problem
are then split into the following sections:

1. A structure section; and
2. A constraints section.

The structure section describes the domain of the problem the quark will solve.
This description is based on a classic process of classification that closely re-
sembles the one we commonly use in object-oriented modeling. This section of a
QPL program has the ultimate goal of defining a vocabulary for describing the
constraints and for naming the variables of the CSOP of the quark. The con-
straints section uses the vocabulary identified in the structure section to define
the constraints of the CSOP of the quark.

The structure section of a class of quarks is described in terms of:

1. A set of classes of objects of the domain of the problem;
2. A set of relations between such classes;
3. A set of catalog objects;
4. A set of enumerative types; and
5. A set of constrained predefined types.

A class of objects is composed of a set of attributes, each of which is described as a
name and a type. The type of an attribute is one of the types that the developer
defines when he/she declares its enumerative or constrained predefined types
(points 4 and 5 in the previous list). An enumerative type is a set of elements
expressed extensionally that belongs to one of the predefined types that QPL
provides, i.e., string, double, integer, and boolean. All elements of this list belong
to the same predefined type.

In cases where an extensive enumeration of values is not practical, the devel-
oper can define a subset of the values of a predefined type through a constrained
predefined type. This is a predefined type plus a constraint that restricts its pos-
sible values. For the moment, QPL allows constraining only doubles and integers
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and it provides only three constraints: one for setting a minimum value, one for
a maximum value and one for a step in the series of values.

A class of objects in QPL can be a:

1. Catalog class;
2. Configurable class; or
3. Abstract class.

A catalog class is a class of objects whose elements are extensively enumerated
in the program of the quark. These enumerated values are called catalog objects
and they are listed as point 3 of the features that the developer uses in the
structure section of a class of quarks. In the concrete implementation of QPL
that the following section describes, catalog objects can be enumerated directly
in the program of a quark, or they can be imported from the tables of a relational
database.

A configurable class is a class of objects whose elements are described in-
tensionally. These classes are modeled only in terms of their attributes: each
attribute has a set of valid values as it is associated with an enumerative type
or with a constrained predefined type. The characteristic feature of these classes
is that we do not provide any restriction on the values that various attributes
might take in a single instance. The constraints that we will introduce later, in
the constraint section of the class of quarks, will provide the conditions that the
values of the attributes of a single instance of a configurable class must respect.
This should make clear that the quark regards the attributes of configurable
classes as variables of its CSOP. The ultimate goal of the quark is to assign a
value to any attribute of any instance of any configurable class in its current
solution.

The third type of class we can define in the structure section of a quark is
that of abstract classes. An abstract class is a class that we use to collect a set
of attributes common to a set of catalog classes into one single container. An
abstract class is modeled only in terms of its attributes (just like a configurable
class) but we need to subclass it with another abstract class, or with a catalog
class, in order to give a meaning to it. Abstract classes are useful to provide an
abstract view of (a superset of) a set of catalog classes. Moreover, they allow
structuring the domain of the problem and expressing constraints on attributes
shared by a set of catalog classes.

QPL supports the assembly of classes of objects though relations. Such rela-
tions between classes can be of three types:

1. Generalization/specialization, that expresses a superset/subset relation be-
tween the objects of two classes;

2. Association, that expresses a shared composition of the objects belonging to
two different classes: each object of the container class is made of a number
of objects of the contained class, and such objects can be shared among a
number of relations; and

3. Containment, that expresses a private composition of the objects belonging
to two different classes: each object of the container class is made of a number
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of objects of the contained class, and such objects cannot be shared among
relations.

The latter two relations are qualified with a cardinality that models the number
of objects of the contained class that take part of the relation.

The structure section of a QPL program provides all features we need in
order to define the variables and the domains of the variables of the CSOP. Each
attribute of any instance of a configurable class is a variable of the CSOP. The
domains of such variables equal the domains of the corresponding attributes.
Such domains are specified using enumerative types of constrained predefined
types.

In order to complete the description of the CSOP of the quark, we need to
declare a set of constraints and a target. QPL provides two ways for describing
a constraint:

1. Compatibility/incompatibility tables; and
2. Rules.

A compatibility/incompatibility table is a list of tuples that enumerates the
possible values of a group of attributes. If the list contains permitted tuples, we
talk of a compatibility table, otherwise we talk of an incompatibility table. The
two representations are identical and the choice depends only on the number of
entries in the two possible lists.

Compatibility/incompatibility tables offer an extensional means for modeling
a constraint. On the other hand, rules provide an intensional form of describing
a constraint. A rule is a proposition that must hold for any possible solution to
the CSOP of the agent. QPL provide only one type of rule: if/then/else clauses.
The building blocks that the developer can use to compose the three expressions
of an if/then/else clause are:

1. The set of standard operators over integers, doubles, booleans and strings;
and

2. A set of attribute terms that are found in the vocabulary defined in the
structure part.

The attribute terms allow the developer to identify variables that the quark will
use to validate the rule. The general form of an attribute term in a rule is:

class[#id](.relation[#id])*.attribute

If we forget about #id for a moment, this form simply allows navigating classes
and relations to reach an attribute from an initial class called class. From
this class we can exploit association and composition relations to reach other
classes. Once we reached the class that comprises the attribute we are addressing,
we identify the attribute through its name.

The use of #ids allows narrowing the number of variables that this pattern
matches. If we do not use any #id, all instance of all classes met during the traver-
sal from class to attribute are used in the rule. For example, PC.type ad-
dresses the value of the attribute type of all instances of the class PC. The use of
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#id allows choosing a particular instance of a relation or of a class and restricting
the application of the rule only to such instance, e.g., PC#0.hardDrive#1.speed
matches the attribute speed of the second hard drive of the first PC only.

QPL allows using #ids in conjunction with two general purpose operators:
sum and product. These operators have the standard meaning of repeated sums
and products and they can contain expressions where #id is replaced with a
variable term.

The grammar that QPL provides for rules is completed with two shortcuts
for expressing common constraints:

1. always, meaning if true then; and
2. never, meaning if true then not.

As an example, the following is a very simple rule in QPL that states that if the
type of PCs is games, then any hard drive in the needs to be at least 20GB.

if PC.type = ‘Games’ then HardDrive.size > 20

Each rule in QPL can be relaxable and relaxable rules are assigned a priority
that drives the CSOP solver in deciding which rule to relax in order to find
a solution. In the standard semantics of QPL, rules are relaxed only to find
a solution and no rule is relaxed if a solution is already available, e.g., in the
attempt to find a better solution.

The definition of the CSOP of a quark is completed with the definition of
a target. This is done in QPL through a list of expressions that evaluate to a
number. Each one of these expressions is assigned a priority and a direction, that
can be maximize or minimize. The standard semantics is that the quark tries to
maximize/minimize the target expression with a given priority only if all other
target expressions with greater priority are already maximized/minimized.

The expressions used to indicate targets are composed with the same building
blocks that QPL allows for the expressions of an if/then/else clause, with the
sole restriction that they must evaluate to a number.

A quark can act on the outside world when it finds a partial solution to the
problem it is managing. QPL allows the developer to specify actions in terms
of a fire condition and a concrete act. The fire condition is an expression that
evaluates to a boolean value and that exploits the vocabulary and the grammar
used for rules and targets. When a fire condition holds, i.e., when a partial
solution that verify a condition is found, the quark performs the associated act.
Fire conditions are prioritized and the quark performs the act associated with
the fire condition with the topmost priority that currently holds.

The concrete description of acts is kept out of the language specification be-
cause it relies on the concrete implementation of QPL and on how quarks are
enabled to interact with non-agentized, third party software. In the implemen-
tation presented in the following section, acts can be invocations of methods
of .NET components (previously imported), or they can be invocations of Web
services (previously imported). In both cases, the partial solution found can be
used to supply the arguments to the invocation.
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The definition of actions closes the definition of a class of quarks in QPL. This
definition allows enumerating all building blocks that the quark needs to know
which problem to solve and what to do during the resolution process. Only two
aspects seems missing: some means to allow quarks sensing the environment, and
some other means to allow quarks communicating. The problem of sensing the
environment is intentionally left out of the specification of the language because
of the same reason we mentioned for concrete acts. Quarks does not sense the
environment actively, they come to know of any change in the environment
because of changes in their problem. How external software, e.g., the manager
of a sensor, can actually achieve this is part of the concrete implementation of
QPL. In the implementation presented in the following section, a QPL program
is compiled to a .NET class or to a WSDL interface and both provide an API
for pushing information directly in the problem of the quark.

The problem of communication is basically the same as the problem of sens-
ing. As we briefly mentioned in the previous section, our model uses a minimalist
approach to communication that allows hiding the process of information ex-
change from the developer. Each concrete implementation of QPL will have its
own way to exchange weak sub-problems between quarks. In the implementa-
tion presented in the following section, the runtime platform provides the central
repository for publicizing the capabilities of quarks, and it exploits .NET and
WSDL interfaces for concretely exchanging messages in the multiagent system.

4 A Toolkit for Agent-Oriented Constraint Programming

In this section we introduce the Quark Toolkit, or QK (pronounced kju:k), a
toolkit we realized to support the developer in implementing multiagent systems
based on the ideas we described in the previous sections. QK is made of two parts:

1. A compiler, that compiles the QPL program of quarks to executable modules;
and

2. A runtime platform, that provides all facilities we need to deploy a multiagent
systems.

The compiler of QK is a command-line tool that takes a set of QPL programs, one
file for each single class of quarks, and generates a set of .NET classes and a set
of WSDL interfaces. These classes and interfaces are dual and classes implement
the relative interfaces. This approach allows using quarks in two ways:

1. As .NET components exposing a fairly simple API for two-way communica-
tion with the rest of the .NET system;

2. As Web services that can be integrated in any system capable of exploiting
their WSDL interface.

Both approaches are equally valid from the point of view of the developer and
the pros and the cons of them have already been discussed largely after the
introduction of .NET.
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The QK compiler produces one .NET class for each single class of quarks. The
interface of these classes does not depend on the problem a quark is designed to
face, but it simply enables a bi-directional communication between the quark and
an external .NET object. In particular, this interface provides a set of methods
for informing the quark of new values for a variable or of new constraints in the
problem. Then, it exposes a listener interface, together with a set of management
methods, to allow an external component to observe the state of the reasoning
process. Finally, this interface provides a few management methods that the QK
runtime platform uses to manage the lifecycle of quarks and to interface a quark
with the central repository of the platform.

The compiler of QK produces a .NET Intermediate Language (IL) source
code, i.e., a source code of .NET IL mnemonics. This compilation is direct and
it does not need to pass through a higher level language, e.g., C# or Java. The
produced .NET IL is then translated into its executable form exploiting an IL
assembler. The system has been tested with the two most popular IL assemblers:

agents ShopAssistant {
uses webservice PriceManager = ‘http://...’;

...define what a PC is
via composition, aggregation and inheritance...

target minimize PC.delivery

rule SOLO9100SE
if PC.code = ‘SOLO9100SE’ then

// Constraint on processor
Processor.type = ‘Pentium’ and
Processor.clock => 300 and
Processor.clock <= 366 and
// Constraint on RAM memory
RAM.type = ‘SO-DIMM’ and
RAM.size >= 16 and RAM.size <= 384 and
...

action EstimatePrice
if PC.code = ‘SOLO9*’ then

PC.price = PriceManager.
EstimatePrice9XXX(PC, Customer);

}

Fig. 1. A simple QPL source code
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Fig. 2. The visual quark modeler

the one available in Mono (http://www.go-mono.org) and the one available in
the .NET Framework (http://www.microsoft.com/net).

The compilation process is straightforward because it is basically a simple
mapping between the QPL program and the equivalent IL source code that
exploits the reasoning engine that the runtime platform provides.

The runtime platform is a container capable of hosting a number of quarks
that can be loaded and started programmatically or from the command line.

The core of runtime platform is a reasoning engine we developed to efficiently
solve constraint satisfaction and optimization problems. The discussion of the
techniques we used to implement this engine is out of the scope of this paper, but
it is worth mentioning that it uses a mixture of standard constraint programming
algorithms, e.g., AC-2001.

The reasoning engine is multi-threaded and all quarks hosted in the same
container share the same engine. This is particularly useful because the engine
can handle a number of problems concurrently, with the possibility of sharing
many internal structures that are possibly common to many problems. This is
the reason why the CSOP solver that quarks exploit is not embedded in quarks
themselves, rather the runtime platform provides it.

Figure 1 shows selected pieces of a QPL source code that can be compiled
with QK compiler. The class of agents implements shop assistants for a Web-shop
that can manage the configuration of PCs for customers.
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QK has already been used in a number of experiments, mostly for research
purposes. It has been recently adopted as the basis of a product that the company
FRAMeTech S.R.L. (http://www.frame-tech.it) will deliver to their customer
later this year. Figure 2 shows a snapshot of this product. The purpose of this
product is to provide a user-friendly approach to fast developing product and
service configuration systems. Such systems are meant to provide final users
with a self-service mechanism for doing the configuration of complex product
and services. Examples of such systems are typically used by large hardware
shops to provide their customers with a Web application for configuring and
then buying personalized PCs and peripherals. Another typical example regards
travel agencies giving the possibility to their customers to have a fine-grained
configuration of their trips. This system is basically a graphical front-end for
realizing QPL programs. It allows modeling the domain of the problem using
an UML class-diagram editor. Then, it allows defining all features available in
a QPL program in terms of tables and expressions. Finally, it makes a GUI
designer available to provide quarks with simple GUIs that final users will exploit
for easily managing the problems of their quarks.

5 Conclusion

In this paper we described a set of tools that we realized to support the developer
in the realization of constraint-based multiagent systems. These systems are a
subset of ordinary multiagent systems because we require agents composing the
system to be ascribable to CSOP solvers. This requirement was the starting point
of defining a general-purpose programming language to realize agents as CSOP
solvers, and a toolkit supporting the deployment of such agents in running sys-
tems. This language concentrates on modeling the problem an agent is in charge
of and any other meta-level issues, e.g., governing the process of resolution, or
orchestrating interactions between agents, are intentionally left implicit.

This language is concretely supported by a toolkit that provides a compiler
and a runtime platform. Moreover, this toolkit supports a seamless integration
of such agents with legacy systems.

Interesting future research directions regards understanding the relationship
between the agent model that we propose and mentalistic agents. It is quite
obvious that constraints plays a crucial part also in mentalistic agents, but a
clear mapping between basic concepts of such models is still missing.

Another interesting development of this research is in the direction of under-
standing how inheritance of quarks can be exploited as a software engineering
tool.
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Abstract. As agent systems become more sophisticated, there is a grow-
ing need for agent-oriented debugging, maintenance, and testing methods
and tools. This paper presents the Tracing Method and accompanying
Tracer tool to help debug agents by explaining actual agent behavior in
the implemented system. The Tracing Method captures dynamic run-
time data by logging actual agent behavior, creates modeled interpre-
tations in terms of agent concepts (e.g. beliefs, goals, and intentions),
and analyzes those models to gain insight into both the design and the
implemented agent behavior. An implementation of the Tracing Method
is the Tracer tool, which is demonstrated in a target-monitoring domain.
The Tracer tool can help (1) determine if agent design specifications are
correctly implemented and guide debugging efforts and (2) discover and
examine motivations for agent behaviors such as beliefs, communications,
and intentions.

1 Introduction

There are several agent-oriented software design methodologies (e.g. GAIA [1],
MaSE [2], and OMNI [3]) and development environments (e.g., JADE [4], ZEUS
[5], and FIPA-OS [6]), but there are few agent-oriented methods and tools that
have been created for debugging, maintaining, or testing the resulting imple-
mented system. This paper presents the Tracing Method and accompanying
Tracer tool whose purpose is to help better comprehend actual agent behavior
in the implemented agent system in terms of familiar agent concepts. The objec-
tive is to ensure that an agent is performing actions for the right reasons and, if
an unexpected action occurred, to help explain why an agent decided to perform
the action. Due to the increasing sophistication of agent software (in particu-
lar, the autonomy, proactivity, and social features of agents) and the number
of factors to consider when understanding or explaining agent behavior, com-
paring the implementation’s actual behavior with expected behavior can be an
intensive task, requiring time and knowledge about the design, implementation,
and application domain. In more general terms, “concurrency, problem-domain
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uncertainty, and non-determinism in execution together conspire to make it dif-
ficult to comprehend the activity in a distributed intelligent system” [7]. Despite
its difficulty, the task of comprehending agent behavior in the implemented agent
system helps to identify undesired agent behaviors (bugs) and to gain insight on
how the agents can be improved (for maintenance and testing). In addition to
helping developers test and improve implementations produced by themselves
or by others (e.g., open-source agent systems), the Tracing Method can help the
end-user better understand the agents, and thus increase the end-user’s confi-
dence on agent decisions.

A motivation for applying agent-oriented techniques is to make the problem
and solution easier to understand (i.e., by localizing beliefs and goals into au-
tonomous agents), but after the agent system has been implemented as source
code, distinguishing agent concepts (e.g., beliefs, goals, and intentions) in the
implementation can become difficult as the complexity of the implementation
increases. The design is specified in terms of agent concepts; however, the imple-
mentation is often specified in terms of the programming language structures,
such as variables, classes, and flow-control statements. There are agent-oriented
tools to generate the implementation from the design (e.g., Doi et. al.’s work
on generating source code from AUML diagrams [8]), but there are few agent-
oriented tools to extract the design concepts (i.e., agent concepts) from the
implementation. This research aims to extract agent concepts from the imple-
mentation and to regain the advantages of conceptualizing the implementation
in terms of agent concepts. To complement the high-level agent concepts, low-
level details (e.g., belief values and communication message contents) related to
the agent concepts are required for debugging the implemented agent system.
Such details are made accessible by the Tracer tool, which aims to alleviate the
largely manual task of comprehension during software maintenance.

This paper describes the Tracing Method to observe and interpret actual
agent behaviors in terms of agent concepts, the same agent concepts that are
used to describe expected agent behaviors in the design. Because agent behaviors
in both the design and implementation are understood in terms of agent con-
cepts, establishing the set of agent concepts is central to this research. Section 2
presents the proposed set of agent concepts used for describing agent behaviors.
Section 3 outlines the Tracing Method for observing and extracting actual agent
behaviors from the implementation’s execution so that those actual behaviors
can be compared with expected (or designed) agent behaviors. Section 4 demon-
strates the Tracer tool in a UAV (Unmanned Aerial Vehicles) target-monitoring
domain, where the implemented agents use MDPs (Markov Decision Processes)
to decide their actions. The Tracer tool was found to be useful for quickly identi-
fying and understanding the reasons for agent actions in terms of agent concepts.
Section 5 describes how this research relates to existing work.

A demonstration of the Tracer tool applied to the UAV domain and to a
simple multiagent system (along with example Java source code) is available for
download at the website http://www.lips.utexas.edu/~dnlam/tracer.html.
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2 Agent Concepts

Agent concepts are used in software designs to describe expected agent structure
(e.g., an agent encapsulates localized beliefs, goals, and intentions) and behavior
(e.g., an agent performs an action when it believes the event occurred). During
and after development, agent concepts are used to abstract away from the details
of the implementation and to understand and explain actual agent behavior
(i.e., to answer the question “Why did agent a1 perform action α”). A desirable
explanation could be “Action α was performed by agent a1 because a1 believed
belief b1, which was due to the occurrence of event e in the environment, which
was an expected consequence of agent a1 performing intention i, which was
created based on belief b2 as communicated in a message from agent a2 about
a2’s goal g.” Other agent concepts that may be of interest include the roles the
agents played during the interactions. An objective of this research is to automate
some of the currently-manual tasks that a human must do to comprehend the
implemented agent system.

This section describes agent concepts, focusing on their relationship with
each other. The proposed set of agent concepts includes goal, belief, intention,
action, event, and message. These agent concepts have a general definition or
understanding in the agent community, but due to the variety of approaches and
applications, there is no definitive representation for the agent concepts. Figure
1 illustrates the relationships among these agent concepts, and Table 1 presents
the representation of agent concepts used in this research.

Table 1. Agent concept structure declarations

Agent Concept Constituent attributes
event name, preconditions, postconditions
action agent, name, preconditions, postconditions

message sender agent, receiver agent, subject, value
belief agent, subject, value
goal agent, name

intention agent, name, goal names, belief subjects, action names

Agents are distributed, goal-oriented entities situated in an environment and
encapsulate decision-making capabilities. Agents need their own goal(s) in order
to be proactive (i.e., take initiative to achieve some goal) and autonomous (i.e.,
make decisions on their own based on their goals). In addition to localized be-
liefs about itself, agents also maintain beliefs about the environment, including
objects situated in the environment. Beliefs are subjective representations of the
state of the agent or the system and can affect many other aspects of the agent,
including its goals. Using its current beliefs, an agent achieves a goal by gener-
ating an intention (or plan), which prescribes actions that the agent(s) intend
to perform. Actions performed by agents and other entities can cause events in
the environment, which agents may sense and use to update their beliefs. For

.
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Fig. 1. Agent concepts and their relationships

explaining agent behavior, an agent’s goals, beliefs, and intentions, in addition
to its actions, must be considered because agents may act as expected but for
undesirable reasons.

For multi-agent systems, communication is often an important factor to sys-
tem performance. An agent may send messages to others during belief main-
tenance (for knowledge-sharing), during planning (for collaboration), or during
schedule execution (for coordination). In terms of agent concepts, a communi-
cated message can (directly or indirectly) affect an agent’s goal, belief, intention,
and/or action. Thus, an explanation of an agent action should include commu-
nicated messages that contributed to that action.

This research declares general structures for each agent concept as shown in
Table 1. Unlike formal representations (e.g., goal representations for BDI agents
[9]), the agent concepts are generalized so that they can be used in any imple-
mentation and to minimize the amount of effort required to apply the Tracing
Method, (i.e., the effort in adding logging code). With the aim of generalizing
the agent concepts, the set of attributes composing each agent concept is min-
imal. The attributes declared for each agent concept in Table 1 are needed to
relate agent concepts with each other as illustrated in Fig. 1. For example, the
attributes of a goal are the agent that wants to achieve the goal and a name
for the goal. Other details about the goal (e.g., reward value) are not needed to
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relate the goal to the intention created to achieve that goal. Of course, the goal’s
name must be distinct from names of non-equivalent goals. Other constituent
attributes of an intention include references to the beliefs that were used in the
process of creating the intention and actions to be performed as prescribed by
the intention. Note that the values for the constituent attributes are set when
an agent concept is observed, or logged (this is further discussed in Section 3).

By comparing the values of the attributes constituting each agent concept,
relations between agent concepts during implementation execution can be au-
tomatically formed. For example, to relate an event to an action causing that
event, the action’s postconditions must be equivalent to the event’s precondi-
tions. Additionally, the name attribute of events, actions, goals, or intentions
can be compared to the subject attribute of messages or beliefs to denote that
a message or belief can be about an event, action, goal, or intentions. Section 4
demonstrates some application-specific relations in the UAV domain. For flexi-
bility in the Tracer tool, the structure of each agent concept can be appended for
application-specific relations that are not possible with the proposed structure
(i.e., there is an implicit user object attribute for each agent concept).

Agent concepts and their relationship with each other establish the foun-
dation for work in automated analysis of agent system implementations. For
example, in Section 4, the Tracer tool analyzes observations about an agent (in
terms of agent concepts) to explain agent actions.

3 Tracing Method and Tracer Tool

Due to the inherent unpredictability of autonomous agents in an uncertain en-
vironment and the possibility of emergent behavior, Jennings stresses a need
for a better understanding of how agent interaction affects an individual agent’s
behavior [10]. The idea of the Tracing Method is to capture uncertain, dynamic
run-time data (e.g., environmental events and communicated beliefs), to observe
each agent’s behavioral response, and to help explain this behavior. The Trac-
ing Method can be used repeatedly throughout the software life-cycle from the
first skeleton code to the final system. Using the Tracing Method shown in Fig.
2, interpretations (models or diagrams that represent the actual agent behav-
ior in terms of agent concepts) are created using observations resulting from
the implementation’s execution. These interpretations can be the same models
and diagrams that result from reverse engineering (e.g., flow control, compo-
nent dependence, and class inheritance models or state-chart and process-flow
diagrams), or the interpretations can be relational graphs linking observations
together (as is the case in this paper).

The Tracing Method and Tracer tool is being developed for agent systems
that are implemented in a procedural programming language (e.g., Java, C, and
C++), but they can also be used in declarative agent-oriented programming
languages (e.g., AF-APL [11] and Suna et. al.’s mobile agent language [12])
to visualize and clarify agent behavior in the system. Currently, the Tracer tool
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Fig. 2. Tracing Method process diagram

includes Tracing clients that allow Java and Lisp implementations to sends logs
to the Tracing server.

The Tracing Method involves logging agent behavior during execution, trans-
forming the log entries and run-time data into interpretations, and comparing
those interpretations with the models of expected agent behavior. As a result,
the agent concepts (e.g., beliefs about the current state of the environment)
are instantiated with actual run-time data. By comparing the interpretations
with the models of expected behavior, actual behavior can be verified against
expected behavior. Expected behavior may be formally specified as models in
design documents or informally understood and modeled by the developer(s).
In either case, if there are inconsistencies between the interpretations and the
expected behavior, the implementation or the expected behavior may need to
be corrected. Currently, comparisons are manually performed because a formal
specification for expected agent behavior has yet to be developed. However, ex-
planations of particular observations (i.e., the observations that are inconsistent
with expectations) can be generated upon user request. Details about the in-
consistencies are presented to the user so that the implementation or expected
behavior can be corrected. Since each observation can be traced back to a loca-
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Fig. 3. Components of the Tracer tool

tion in the source code where the log entry was created (using a stack trace),
correcting the inconsistency is facilitated.

Each step of the Tracing Method in Fig. 3 is described in the following sub-
sections, accompanied by examples from the Tracer tool. To clarify which tasks
in the Tracing Method have been automated and where additional features or
tools can be integrated, Fig. 3 illustrates each component of the Tracer tool. The
Tracer tool aims to automate the developer’s task of analyzing run-time data,
creating interpretations of actual agent behavior, and relating those interpreta-
tions to models of expected agent behavior. Essentially, the Tracer tool trans-
lates the procedural execution of the implementation (resulting in log entries)
into declarative statements about what and when the agent believes, intends,
and performs (called observations). To accommodate other analyses of the im-
plementation, additional interpreters and analyzers can be added to the Tracer
tool. The current products of the Tracer tool include behavioral and structural
models (representing interpretations of the logged data based on order, dura-
tion, and other run-time attributes) and explanations of particular observations
requested by the user. Since the interpretations are similar to design models,
the interpretations can be compared to the original design models to ensure im-
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portant aspects of the agent design have been traced. The comparison task can
be performed by other automated tools that can analyze the observations or
interpretations.

3.1 Step 1: Add Logging Code

The first step of the Tracing Method is to insert code that logs run-time data
about agent concepts into the source code. Unlike traditional reverse engineering
tools (e.g., Gen++ [13] and DESIRE [14]), this method does not analyze code in
detail, thus, it is not dependent on any specific language. Instead, run-time data
about the implementation’s execution is acquired by explicitly logging the data
that is desired. The logging code should be added at points in the source code
where an agent concept is updated or occurs, such as when an agent (1) changes
a belief that can affect decision-making, (2) decides about its intention (e.g.,
generates a plan of action), (3) modifies its goal, (4) performs an action, and
(5) sends and receives a communication message, as well as (6) when an event
occurs that can affect an agents behavior. To clarify this step, the demonstration
in Section 4 identifies every agent concept that is logged for the UAV domain.
Currently, this step is a manual process performed by the developer, tester, or
end-user, assuming the implementation is organized and structured enough so
that agent concepts can be identified in the source code.

Listing 1: Example logging code in Java for an agent

TraceLogger logger =
Tracer Client.getLogger("uav.Bot"+agentID);

public void handleNewScan(DetectedTarget target){
logger.logBelief("Target"+target.getID(), target);
// remaining implementation . . .

}

Listing 1 shows an example of logging code for a belief being updated in the
source code. From Table 1, the constituent attributes of a belief are the agent
holding the belief, the subject the belief is about, and the value of the subject.
In Listing 1, the constituent attributes of the belief are "uav.Bot"+agentID,
"Target"+target.getID(), and target, respectively.

In addition to inserting logging code for agent concepts, logging code can be
inserted at the beginning and end of code segments to denote the agent’s cur-
rent state or the current task (or activity) the agent is performing. Such logging
code denoting the agent’s tasks provides more information and context for the
logged agent concepts. For example, in the first five rows shown in Fig. 4, the
flyToTarget action and uavScan event occur within the internalHandleScans
task because they appear between its START TASK and STOP TASK. For more de-
tails about logging agent tasks, an earlier paper [15] describes how such con-
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Fig. 4. Log entries for agent Bot15 in the UAV domain

textual logging code can result in state-chart and process-flow diagrams (other
representations of software behavior), which are then verified.

Since only agent concepts are logged, this logging approach requires only
high-level functional and structural knowledge of the implementation. If there is
insufficient or erroneously-placed logging code, these errors will manifest them-
selves as specific inconsistencies between the interpretations and the models of
expected behavior in the fourth step in Fig. 2. The developer can use the iden-
tified inconsistency to determine if logging code should be added or modified.

3.2 Step 2: Run Agent System

The second step of the Tracing Method is to execute the agent system so that the
Tracer tool can collect run-time data, such as when and where the logging code
was executed. A logging mechanism based on the Java Logging Framework [16]
has been implemented. When the logging code executes, log entries are created
from run-time data (e.g., what the agents believe and intend, what actions are
being performed, and what events are occurring in their environment) and are
sent by the Tracing Client to the Tracing Server locally or across a network (see
Fig. 3).

Log entries for agent concepts and task activities are transformed into generic
log entries so that they can all be handled by the same tools. For example, Fig.
4 displays all types of log entries on a single display. Figure 4 shows log entries
as rows and the corresponding run-time data (e.g., timestamp and process id) as
columns for an agent in the UAV domain. Each column is described as follows:

Loggername : context of the log entry identifying an agent or the simula-
tor (e.g., uav.Bot15 or uav.Sim) or a subcomponent within an agent (e.g.,
uav.Bot15.planner);

ID : unique identifier for the log entry;
Time : simulation time at which log entry was created;
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Thread : execution thread id of the process in which the log entry occurred;
Class, Method : class and method in which the logging code executed (a full

stack trace with source code line numbers is also available but not shown in
the figure);

Message : additional free-form details about the log entry for human readabil-
ity;

Realtime : real time at which log entry was created;
Taskname : name for observation or task;
Type : type of observation (e.g., action, event, belief) or task.

Most of the data (e.g., time, thread, class, method, and realtime) are acquired
at run-time and appended to the log entry.

Due to the large amount of data, the log files need to be pre-processed and
organized before they are analyzed. Log file utilities within the Tracing Server
were created to sort, splice, and merge the log files so that log entries are orga-
nized correctly and interpretations accurately represent the implementation. To
organize the log files, the loggerName can refer to an entire agent or a component
within the agent. For each unique loggerName, there is a single log file. Thus, a
thread that operates across several agent components may write to several log
files. Since there may be several execution threads logging to a single file, the
log file needs to be spliced into separate log files for each execution thread. For
instance, in Fig. 4, the log entry with ID 94 was logged by thread 12, while most
of the other entries were logged by thread 13.

3.3 Step 3: Interpret Observations

The third step is to construct interpretations that can be compared with mod-
els of expected behavior. There are several ways to automatically interpret the
observations listed in Fig. 4, depending on what type of information is desired
and what is being analyzed. For example, using the timestamp of observations,
a state-transition diagram can be generated by one of the Tracer tool’s inter-
preters (see [15] for an example). Additional interpreters can be added to produce
other types of interpretations, including a time-plot of agent activities, data flow
graphs, and message sequence charts. Each type of interpretation can be used
to verify certain aspects of the agent system implementation as described in
the next step. Given the desired interpretation type (in this case, it is a rela-
tional graph), the Tracer tool can generate the interpretation by processing the
observations during run-time or after the execution has completed. Being able
to monitor the agents during run-time offers an additional visualization of the
running agent system.

To generate relational graphs used in the UAV demonstration, rules to relate
agent concepts to each other are applied to the observations. The purpose for the
rules is to form the relations illustrated in Fig. 1. For example, one rule states
that if a message m from agent a contains the same information as belief b, then
that message m is causally linked to that belief b. Another rule states that if
intention p has belief b’s subject in its list of belief subjects, then belief b affects
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p. The resulting directed graph of these two rules implies that intention p was
affected by belief b, which was a result of agent a sending message m.

To reduce the effort of applying the Tracing Method, the idea behind the
interpreter is to automatically generate informative representations of agent be-
haviors from simple, reusable rules. Essentially, the rules compare the constituent
attributes of agent concepts (e.g., name, subject, preconditions, and postcondi-
tions) in order to associate one agent concept with another. Because the agent
concept structures were designed to be general, the rules can be reused in other
agents with similar behaviors. Application-specific rules can be created by hand
or generated by a pattern discovery mechanism. Future work will consider au-
tomatically generating the rules based on patterns in the list of observations.

3.4 Step 4: Verify Interpretations

The fourth step is to verify the interpretations against the models of expected
agent behavior. There are several ways to verify the interpretations depending
on the interpretation type. For example, state-transition diagrams and mes-
sage sequence charts can be directly compared to expected behavior expressed
as state-chart diagrams and communication protocol diagrams in design doc-
uments. Currently, due to the lack of a formal specification of agent behavior,
verifying the interpretations is a manual step – a human must determine whether
the interpretations are consistent with expectations. However, the Tracer tool’s
Explainer can assist the user in identifying the causes of unexpected behavior.
Given the relational graph from Step 3, an explanation describing the observa-
tions relating to an agent action (or any observed agent concept) can be examined
to ensure that an agent is performing the action for the right reasons. Section 4
demonstrates how an explanation is created.

To allow for other analyses of different interpretation types, additional analy-
sis tools can be plugged into the Tracer tool (see Fig. 3). Possible analyses include
checking safety and liveness properties about the execution trace, verifying that
the agents are following communication protocols, and locating computational
bottlenecks.

If the interpretations are inconsistent or seem erroneous with respect to ex-
pectations, (1) logging code may need to be added or corrected due to missing or
misplaced observations, (2) the agent system may need to be executed multiple
times to verify interpretation variations due to nondeterminism, (3) an imple-
mentation bug may need to be corrected, and/or (4) expected agent behavior
may need to be updated. This is why there are arrows pointing from interpre-
tations to previous steps or objects in Fig. 2. Since each high-level observation
contains a low-level stack trace denoting where and in what context the logging
code was executed in the source code, correcting inconsistencies is facilitated.
The result of the Tracing Method is a set of verified interpretations of the imple-
mented agents’ behaviors in terms of agent concepts. As a side effect, the source
code is sparsely documented with logging code that identifies important points
in the code for understanding the implemented agents’ behaviors.
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4 Tracing the UAV Domain

To demonstrate the Tracing Method, the Tracer tool will be used to trace agents,
each controlling a UAV (Unmanned Aerial Vehicle), in an implemented agent
system for the UAV target-monitoring domain. The agents’ overall objective is to
ensure that all mobile targets are being scanned (by flying to the target’s believed
location and finding the target) with minimal time from when the target was last
scanned. Each agent shares with other agents its own preferences about which
targets it prefers to monitor. Each agent individually decides which targets it
intends to scan (referred to as its committed targets) so that all targets are being
scanned as frequently as possible using a Markov Decision Process (MDP) with a
value function that considers distances from targets, targets’ last scan times, and
other agents’ target preferences and commitments. Each agent’s MDP model is
updated as the agent receives new information about targets and other agents,
thus affecting the agent’s decision about which targets to monitor. Since there
are a lot of factors for each agent to consider and the decision-making process
occurs frequently, checking agent behavior would be facilitated by using the
Tracing Method and Tracer tool.

The first step is to add logging code to the source code for each agent concept.
To demonstrate that a low-level understanding of the implementation was not
necessary, the person adding the logging code was not intimately familiar with
the source code for the simulation or the agents and asked the developer only
high-level questions concerning the abstractions from code to agent concepts.
Note that the simulation was provided by Metron, Inc., as a contribution to the
DARPA TASK project, the agents were programmed by a developer in our lab,
and the logging code was added to the simulation and the agents by the author
of this paper. The following lists specific instances for each agent concept in the
UAV domain:

Message : messages about preferences, commitments, and scanned targets;
Belief : beliefs about an agent’s own preferences, commitments, and scanned

targets and, via communicated messages, beliefs about other agents’ prefer-
ences, commitments, and scanned targets;

Desire : (static) minimize time between scans for all targets;
Intention : ordered list of committed targets;
Action : fly to target, spiral (to search for target), and stop;
Event : a target is scanned (if the agent is within range as determined by the

simulation).

Once logging code was inserted for each of these agent concepts, the second
step is to execute the implementation. The simulation was executed with fifteen
targets (0 to 14) and three agents (Bot15, Bot16, and Bot17). During execution,
the Tracing Clients send log entries (see Fig. 4) to the Tracing Server, which
translates the log entries into observations. Table 2 partially lists the observations
for agent Bot15 in human readable format.

For each observation, the table shows the type of observation, the simulation
time the log occurred, a unique identifier for the observation, and run-time data
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Table 2. Partial list of observations for agent Bot15

Type Time ID Run-time data
Belief 0 18 initTargets ( 3 7 2 0 14 6 1 10 5 13 9 11 4 8 12 )

Belief 0 19 initTargetLocations ( (151.26 203.46)
(536.57 517.74) ... (55.01 77.03) )

Action 1 31 stop
Event 1 33 uavScan ( )
Belief 1 42 myPreferences ( 1 13 6 9 5 10 2 3 12 8 4 11 0 14 7 )

Intention 2 67 addCommitment (target 1), intention=( 1 )
Action 2 92 flyToTarget ( 1 )
Event 2 93 uavScan ( )
Belief 2 103 myPreferences ( 1 13 6 9 5 10 2 3 12 8 4 11 0 14 7 )

Intention 2 115 addCommitment (target 13), intention=( 1 13 )

Message 3 160 messageReceived from Bot16 sentAtTime 2
( about Bot16 preferences ( 10 1 6 5 8 ) )

Belief 3 166 otherPreferences Bot16 ( 10 1 6 5 8 )

Message 3 172 messageReceived from Bot17 sentAtTime 2
( about Bot17 preferences ( 1 6 5 10 9 ) )

Belief 3 174 otherPreferences Bot17 ( 1 6 5 10 9 )

Message 3 180 messageReceived from Bot16 sentAtTime 2
( about Bot16 commitments ( 10 ) )

Belief 3 183 otherCommitments Bot16 ( 10 )

Message 3 189 messageReceived from Bot17 sentAtTime 2
( about Bot17 commitments ( 1 ) )

Belief 3 192 otherCommitments Bot17 ( 1 )
Event 4 207 uavScan ( )
Event 4 228 uavScan ( )

Message 4 241 messageReceived from Bot17 sentAtTime 4
( about Bot17 preferences ( 9 3 6 2 5 ) )

Belief 4 244 otherPreferences Bot17 ( 9 3 6 2 5 )

Message 5 291 messageReceived from Bot16 sentAtTime 4
( about Bot16 preferences ( 8 10 11 3 2 ) )

Belief 5 293 otherPreferences Bot16 ( 8 10 11 3 2 )

Message 5 307 messageReceived from Bot17 sentAtTime 4
( about Bot17 commitments ( 1 9 ) )

Belief 5 309 otherCommitments Bot17 ( 1 9 )

Message 5 316 messageReceived from Bot16 sentAtTime 4
( about Bot16 commitments ( 10 8 ) )

Belief 5 318 otherCommitments Bot16 ( 10 8 )
Event 5 323 uavScan ( )
Event 7 353 uavScan ( )
Event 7 361 uavScan ( )
Event 8 393 uavScan ( )
Event 9 415 uavScan ( )
Event 10 440 uavScan ( )
Event 11 460 uavScan ( )
Event 12 484 uavScan ( 1 )
Belief 13 510 scannedTarget ( 1 )
Action 14 520 flyToTarget ( 13 )
Belief 15 566 myPreferences ( 13 10 5 12 4 0 1 7 14 3 2 )

Intention 15 594 addCommitment (target 10), intention=( 13 10 )
... ... ... ...

pertaining to the observation. The run-time data offers details such as what
was believed, what action occurred, or what commitments were made by agent
Bot15. Note that the observations are chronologically ordered by the simulation
time and that the ID coincides with this temporal ordering. In this agent im-
plementation, only messages received by Bot15 are listed for conciseness, since
messages sent by Bot15 do not directly affect its own decisions. Also, no goal
type observations are listed because all agents have a static goal of minimizing
the time between scans for each target.
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A glance through the table shows an unexpected (or at least undesired) be-
havior. The uavScan event, which signifies that an agent scans its current lo-
cation for targets, was found to occur more than once per simulation timestep
(e.g., observation 207 and 228 in timestep 4). Since the simulation only provides
new scans once per timestep, the duplicate event is unnecessary. After consult-
ing with the developer, this repetition occurs because the simulation’s execution
thread is running faster than the agent’s execution thread. As a result, to make
up for missed scans in previous timesteps, the agent performs multiple scans per
timestep. For example, in Table 2, the agent does not scan in timestep 6, so the
scan event is repeated in timestep 7. This undesired behavior does not adversely
affect the overall performance of the agents with respect to its goal. However,
this identified inefficiency may affect real-time performance as the number of
agents increase or as the agents become slower than the simulation.

The third step is to interpret the observations by generating relational graphs.
Rules, including the general rules mentioned in Section 3, were applied to the ob-
servations in order to create directed graphs. The general and application-specific
rules that were used are listed below. The algorithm applies the appropriate rules
to each new observation that appears and searches backward (temporally) to find
the latest previous observation that satisfies the rule antecedent.

General rules:
– If belief b occurs after message m and their subjects and values are equivalent,

then m affected b.
– If message m occurs after belief b and their subjects and values are equivalent,

then b’s occurrence caused m to be sent.
– If event e occurs after action a and e’s precondition is equivalent to a’s

postcondition, then a caused e.
– If belief b occurs after event e and b’s subject is equivalent to e’s name and

b’s value is equivalent to e’s postcondition, then e caused b.
– If an action a’s name is contained in a previously observed intention i’s action

names, then i prescribed a.
– If intention i occurs after belief b and i’s belief subjects includes b’s subject,

then belief b influenced the intention i.
– If message m occurs after an action, intention, or goal o whose name is

equivalent to m’s subject, then o influenced m.

Application-specific rules:
– If intention i2 occurs after intention i1, then i1 influenced i2.
– If a belief b2 occurs after the last myPreferences belief b1 and before a

myPreferences belief b3, then b2 affects myPreferences belief b3.
– If a flyToTarget action a occurs after a scannedTarget belief b for different

targets, then a is cause by b (i.e., the agent believes it has scanned its previous
target and is pursuing its next target as prescribed by its intention).

More complicated application-specific rules can be created to relate more than
two observations together, but for the general rules, straightforward rules are
preferred for better reuse. The rules represent the background knowledge used
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Fig. 5. Relational graph for agent Bot15

by the users to generate explanations. Such background knowledge needs to
be represented in the Tracer tool in order to automate explanation generation.
Currently, these rules are manually defined and given as input to the Tracer
tool. For future work, the tool will discover patterns in the observations and
suggest to the user rules that relate agent concepts to each other; thus, further
automating the comprehension tasks.

Figure 5 illustrates the relational graph generated from the observations in
Table 2. Each node in the graph is labeled with the first letter of the observation
type (i.e., B=belief, I=intention, A=action, E=event, and M=message) and the
unique id of the observation, so it can be referenced in Table 2. Each edge
represents a source node causing (or influencing) the destination node. The belief
nodes B:18 and B:19 show that agent Bot15 processes initial data about the
targets and their locations. Based on only those beliefs, Bot15 creates its initial
target preferences labeled B:42.

The shaded belief nodes represent myPreferences that have been calculated
using Bot15’s current beliefs about the targets and other agents’ target pref-
erences and commitments. For the target preferences in B:42 and B:103, only
the initial beliefs were used since the other agents have not yet communicated
their preferences or commitments. However, in B:566, Bot15 takes advantage
of several beliefs (about other agents’ preferences and commitments) that were
created from communicated messages (i.e., M:160, M:172, M:180, etc.) as shown
in Fig. 5 and detailed in Table 2.

The fourth step is to analyze actual agent behavior to insure agents are
behaving as expected. In doing so, an end-user can gain a better understanding
of what the agent is doing and why. A description of what the agent is doing is
described below, followed by a description of how explanations are generated by
the Tracer tool’s Explainer.

Based on preferences in B:42, the agent makes a commitment represented
by the intention node I:67 (i.e., Bot15 adds commitment to scan target 1).
Next, based on intention I:67, the agent performs an action A:92 (i.e., Bot15

D.N. Lam and K.S Barber.



Debugging Agent Behavior in an Implemented Agent System 119

 

Fig. 6. Relational graph from Tracer tool

flies to target 1’s believed location). This series of observations can be easily
followed in Table 2. Before event E:484 (i.e., Bot15 scans target 1) occurs at
timestep 12, the agent recalculates its preferences to create B:103 (i.e., Bot15’s
new preferences are ( 1 13 6 9 ... )) at timestep 2, which is not different
from B:42 (as seen in Table 2) because there were no new beliefs to consider
between B:42 and B:103. The reason the agent recalculates its preferences is to
add its next target, which is target 13 as shown by intention I:115 in the table.
Reasonably, the agent does not perform action A:520 (i.e., Bot15 flies to target
13’s believed location) until it believes B:510 (i.e., Bot15 has scanned target
1) as shown in the graph.

A relational graph can present important information that may not be as
obvious when presented as a list or table. The Tracer tool’s Explainer can assist
the user in analyzing the relational graph by generating explanations of speci-
fied observations. Given some observation to explain (e.g., an agent action), the
explanation is generated by following the incoming edges of the node that repre-
sents the given observation. For example, the graph in Fig. 5 clearly shows that
action A:520 is prescribed by the intention I:115, created before communication
with other agents. In the table, however, since A:520 chronologically occurs af-
ter the communications with other agents, the action A:520 can be misconstrued
to be influenced by those communications. Such information can save time and
effort in trying to debug the implemented system. Figure 6 and Figure 7 show
snapshots of the relational graph and an example explanation from the Tracer
tool.
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Fig. 7. Explanation of action A:4111 in Fig. 6

As demonstrated, the graph provides a quick way to understand (and ask
questions about) the operations of the agent without having to understand the
implementation in-depth. The graph can also help answer questions, such as
“Why did Bot15 intend I:594”, by narrowing down the set of beliefs that influ-
enced the agent to decide on I:594. Additionally, some patterns of behavior are
more easily discovered by the human user in graph form. For example, in Fig.
5, the nodes with dotted outline represent subsequent observations that relate
action A:520 and intention I:594 (namely, the post-conditions of A:520 must be
true before the next action A:1320 in I:594 can be performed), completing the
pattern of behavior. More high-level behavioral patterns can be seen in Fig. 8,
where there are clusters of belief and message nodes surrounding intention nodes
and the clusters are connected by action nodes. Not surprisingly, such a pattern
resembles the classical sense-reason-act cycle used in artificial intelligence.

Given patterns of behavior for an agent, anomalous behavior can be quickly
identified as subgraphs that are not similar to the pattern. For example, Fig. 9
shows anomalies (visualized as dangling nodes on the right side of the figure)
in behavior for an earlier version of the agent. Such anomalies can identify pos-
sible bugs in the system or unexpected changes in agent behavior. Given this
information, the user can investigate the cause of the bug at that anomalous
observation or add a new rule (to the background knowledge) to account for
the new behavior. A future feature in the Tracer tool will be automated graph
pattern discovery and anomalous behavior detection.
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Fig. 8. Patterns in relational graph

Fig. 9. Anomalies (on right-side) in relational graph for a different agent

5 Related Work

This section discusses the limitations of two popular approaches for verifying
software behavior (model-checking and reverse engineering) when applied to
agent-based implementations. This research addresses the limitations in using
these verification approaches.

Model-checking performs a thorough search through a high-level model of
an implementation to find undesired behaviors and to ensure desired behaviors
as specified by the user. To verify agent behaviors using model-checking, (1)
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observed agent behavior (as understood by the user) and properties to be verified
are translated into a format suitable for a model-checking tool, (2) the model is
checked by the tool (provided the state space size is manageable), and (3) results
from model-checking are interpreted and related back to the actual system (i.e.,
mapping a property violation back to the implementation).

For software developers who are not experts in model-checking, the trans-
lation and interpretation steps may be particularly challenging, and even for a
seemingly trivial system, the large state space may be unmanageable. To re-
duce the learning curve associated with model-checking, software engineering
researchers have focused on tools and methods to enable model-checking of high-
level models (e.g., Petri-nets [17], UML diagrams [18], and architecture repre-
sentations [19]). While these approaches have helped reduce the translation and
interpretation barriers, they do not leverage software models that incorporate
agent-related abstractions (i.e., agent concepts) and do not facilitate translating
actual agent behavior from the implementation to models to be checked.

Bordini et. al. applied model-checking to reactive-planning agents imple-
mented in the BDI logic programming language AgentSpeak by translating the
implementation into a finite-state model that can be verified using the Spin
model-checker [20]. Though promising for agent systems implemented in logic
or for applications requiring formal verification, the use of model-checking in
the numerous procedural (infinite-state) implementations requires effort in ab-
stracting and translating the source code into a checkable model and may not
be practical.

Edmunds points out the insufficiency of formal methods and the need for
an experimental approach for understanding multi-agent systems [21]. This re-
search offers the Tracing Method as an experimental approach to analyzing agent
behavior, unlike model-checking. First, to minimize translation errors due to mis-
understanding the implementation, agent behavior is constructed from the log
of actual agent beliefs, intentions, and actions. Additionally, the user is only
required to know where agent concepts are updated in the source code so that
logging code can be added. Second, to avoid the large state space representing
the aggregate behavior of an agent-based system, the Tracing Method analyzes
agent behavior scoped by the set of scenarios through which the implementation
is executed. The scope of scenarios for tracing can be iteratively modified as the
typical development effort is iterative. Third, relating the analysis results back
to the implementation is facilitated because each observation of agent behavior
can be traced to an exact location in the implementation. There are a number of
possible points of failure, but future work hopes to provide guidelines or (fully
or partially) automate some of the steps in the Tracing Method.

Traditional software reverse engineering tools (e.g., Gen++ [13] and DESIRE
[14]) analyze the implementation at the source code level and produce models
of the implementation (e.g., flow control, component dependence, and class in-
heritance models) that are detailed representations of what is happening in the
implementation. With the increase in complexity of agent systems, it becomes
very difficult to get a comprehensive system view of the implementation using
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traditional tools due to the number of software components and low-level inter-
actions involved. Without having to analyze the source code in detail, the Tracer
tool automates the analysis of what is happening and helps to explain why such
behavior is happening using high-level agent concepts (e.g., beliefs, goals, and
communication messages). Since an agent system is conceptualized and designed
using agent concepts, comprehension and verification of agent behaviors in the
implemented system for debugging, testing, and maintenance should also use
agent concepts.

6 Summary

As agent systems become more complex and sophisticated, there is a growing
need for agent-oriented methods and tools to debug, maintain, and test agent
software. This paper presents the Tracing Method and accompanying Tracer tool
to help (1) verify actual agent behavior in the implemented system against ex-
pected (or designed) agent behavior and (2) understand the implemented agent
system in terms of the same agent concepts used in the software design. Agent
concepts are used to describe agent structure (e.g., an agent encapsulates lo-
calized beliefs, goals, and intentions) and behavior (e.g., an agent performs an
action when it believes the event occurred). The Tracing Method captures dy-
namic run-time data during implementation execution, interprets the data as
observations of actual agent behavior, and analyzes those interpretations.

The Tracer tool facilitates the ability (1) to determine if agent design specifi-
cations are correctly implemented and guide debugging efforts and (2) to examine
and discover motivations, such as beliefs, intentions, and communicated messages,
for agent behaviors. As demonstrated in the target-monitoring UAV domain, the
Tracer tool assists in gaining insight into agent behavior by automating the process
of generating interpretations of the implementation execution and presenting ob-
served agent behavior in terms of agent concepts. In addition, the Tracing Method
establishes general structures for agent concepts that can be used in most agent
system implementations, thus, moving away from ad hoc debugging techniques.

This research proposes a method and tool to create models of agent behavior
that not only describe what is occurring in the implementation but also why a
respective agent behavior occurred (e.g., agent X took action a because of belief
b). To enable such explanations, the Tracing Method requires only a high-level
understanding of where agent concepts are modified in the implementation. In
this regard, the behavior of agents in unfamiliar agent systems can be quickly
understood. Overall, the Tracing Method and Tracer tool sheds light on how
agents actually behave and how agent behavior in the implementation can be
improved.
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Abstract. This paper presents a mobile agents platform called SyMPA,
compliant with the specifications of the MASIF standard from the OMG,
that supports both stationary and mobile agents implemented using
the high-level agent-oriented programming language CLAIM. Agents de-
signed thanks to CLAIM are endowed with cognitive capabilities, are able
to communicate with other agents and are mobile. The primitives of mo-
bility are inspired from the ambient calculus. The paper is focused on
SyMPA’s architecture, mobility, implementation and security elements.

Keywords: Agents, Mobility, Agent platform, Security.

1 Objectives

The emergence of autonomous agents and multi-agent systems (MAS) technol-
ogy is one of the most exciting and important event occurred in the computer
science and the artificial intelligence during the 1990s. In the last years, the mo-
bile agents paradigm became popular as a natural and flexible way to manage
latency and bandwidth in the distributed systems over the network [15].

Until now, the focus of MAS community has been on the development of in-
formal and formal tools (e.g. consortium such as FIPA and OMG have tended to
propose a wide range of standards to cover the main aspects of MAS engineer-
ing), concepts (e.g. concerning mental or social attitudes, communication, co-
operation, organization, planning, mobility) and techniques (e.g. AUML, modal
languages such as BDI[20]) in order to be able to analyze and specify MAS.
Unfortunately, less attention has been paid to the development of programming
languages and tools which can effectively support MAS implementation. Indeed,
for a larger use of MAS paradigm in real-world applications, specific program-
ming languages, agent oriented, are needed.

Our long time work is motivated by two main objectives:

1. Usually, when people are developing MAS applications, they are using agent
concepts for the design phase but they are using objects for the implementation.
Our first objective was to propose a declarative language (CLAIM) that helps the
MAS developer to reduce the gap between the design and the implementation
phases and frees the designer from the most implementation aspects, i.e. the
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designer should think and implement in the same paradigm (namely through
agents). Also, this language meets the requirements of mobile computation which
becomes popular due to the recent developments in the mobile code paradigm.
The language must have a well defined operational semantics in order to make
the verification of MAS possible.
2. The second objective is to offer a platform that supports MAS written in
CLAIM, called SyMPA, compliant with the specifications of the MASIF [18]
standard from the OMG. Such a platform must offer all the mechanisms needed
for the design and the secure execution of a distributed MAS. The originality and
the main difference between SyMPA and other mobile agents platforms is the
level of abstraction of the supported agents. Most other platforms (see section
7) offer Java APIs for designing mobile ”agents” and all the needed mechanisms
for management, deployment, communication, migration and security support.
So, the programmer is actually writing Java objects. SyMPA offers all these
mechanisms for intelligent and mobile agents described in a higher level language,
CLAIM, agents that can invoke Java methods.

The next section resumes the characteristics of CLAIM; the third section il-
lustrates its specifications, presenting a brief example of application implemented
in CLAIM.The fourth section presents SyMPA’s architecture and its three levels:
the Central System, the Agent System and the Agent level; the fifth section is
focused on the mobility in SyMPA, local and distant; the sixth section discuses
the security and the fault tolerant mechanisms used for SyMPA. A comparison
with the existing mobile agents platform, from the security point of view, is
presented in the seventh section, followed by a conclusion.

2 Overview of CLAIM

CLAIM (Computational Language for Autonomous, Intelligent and Mobile
agents) [5] is a declarative language situated at the intersection of two differ-
ent domains, intelligent agents and process algebra, and tries to combine in a
unified framework their main features and to compensate their disadvantages.

On one hand, the agent-oriented programming (AOP) languages, such as
Agent-0 [21], AgentSpeak[24] or 3APL [11] allow representing the mental state
of the agents, containing beliefs, goals, intentions or abilities, offer reasoning ca-
pabilities and communications primitives, but do not support agents’ mobility.
On the other hand, concurrent languages such as the ambient calculus [3], the
safe ambients [16] or Klaim [4] allow representing concurrent processes, that can
communicate and migrate in a distributed environment, some of them having
well defined operational semantics, but in none of these languages it is possible
to represent intelligent agents, with explicit believes, plans, goals or reasoning.
Telescript [25] and April [17] are focused on the agents’ mobility; nevertheless,
these languages do not have neither the expressiveness and the reasoning capa-
bilities of the agent oriented programming languages nor the formal solidity of
the processes algebras.
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CLAIM allows the design and the implementation of distributed MAS, lo-
cated on several connected sites. On each site there is a hierarchy of agents.
An agent in CLAIM is an autonomous, intelligent and mobile entity that has a
list of local processes concurrently executed and a list of sub-agents. An agent
has also an authority that is used for security reasons during the interactions
between sites. In addition, an agent has mental components such as knowledge,
capabilities and goals, that allow a reactive behavior (execute processes when
messages arrive) or a goal driven behavior (execute processes in order to achieve
goals). An agent can create new agents, can invoke methods implemented in
other programming languages (e.g. Java methods, in this version), can commu-
nicate with other agents and can migrate using the mobility primitives inspired
from the ambient calculus [3]. In CLAIM, agents and classes of agent can be
defined using:

defineAgent agentName {
authority=null; | agentName ;
parent=null; | agentName ;
knowledge=null; | { (knowledge;)+}
goals=null; | { (goal;)+}
messages=null; | { (queueMessage;)+}
capabilities=null; | { (capability;)+}
processes=null; | { (process |)* process }
agents=null; | { (agentName;)+}

}
defineAgentClass className ( (arg,)*) {...}
The knowledge component represents the agent’s information about the

other agents (i.e. about theirs capabilities or their classes) or about the world.
Each agent has a set of goals that he is trying to achieve using his capabili-

ties or asking capabilities’ execution from other agents.
Each agent has a queue for storing the arrived messages. An agent can send

asynchronous messages to itself or to another agent (unicast), to all the agents
in a class (multicast), or to all the agents in the system (broadcast), using the
primitive:

send(receiver,message)
In CLAIM there are three types of messages:
1. propositions, defined by users and used to activate agents’ capabilities;
2. the messages concerning the knowledge, used by agents to exchange
pieces of information about their knowledge base and capabilities;
3. the mobility messages, used by the system in the mobility operations for
asking, granting or not granting mobility permissions.

The capabilities component represents the actions an agent can do in order
to achieve his goals or that he can offer to other agents. A capability triggers a
process according to a message if a (optional) pre-condition is verified. It may
have possible effects (a sort of post-conditions):
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capability ::= capabilitySignature {
message=null; | message;
condition=null; | condition;
do { process }
effects=null; | { (effect;)+ }

}
A condition can be a Java function that returns a boolean, an achieved effect, a
condition about agent’s knowledge or sub-agents, or a logical formula.

Each agent can concurrently execute several process. A process can be a se-
quence of processes, an instruction (execute a process for all the agent’s knowl-
edge or sub-agents that satisfy a criteria), a variable’s instantiation, a function
defined in Java, the creation of a new agent, a mobility operation (detailed in
Section 5) or a message sending:
process ::= process.process

| forAllKnowledge(knowledge) { process }
| forAllAgents(agentName) { process }
| ?x=(value | Java(objName.function(args)))
| Java(objectName.function(args))
| newAgent agentName:className( (arg,)*)
| open (agentName)
| acid
| in (mobilityArgument,agentName)
| out (mobilityArgument,agentName)
| moveTo (mobilityArgument,agentName)
| send (receiver,message)

The previous elements allow two types of reasoning for the CLAIM agents,
concurrently executed:

– forward reasoning (or reactive behavior): an agent activates capabilities when
the corresponding messages arrive and the conditions are verified;

– backward reasoning (or goal-driven behavior): an agent executes capabilities
in order to achieve his own goals.

The next section illustrates these specifications on an example, showing why
we emphasize that SyMPA supports mobile agents rather than mobile code. At
the language level, we are currently working on the operational semantics of
CLAIM, that must take into account the mobility, the communication and the
specificity and complexity of cognitive agents.

3 A Digital Library Application

One of the most important properties of CLAIM is the expressiveness. In order
to compare it to other AOP languages, we easily translated in CLAIM several ap-
plications (without using mobile agents, not provided in these languages), such
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as: Airline Reservation from Shoham’s AGENT-0 [21], a ”bolts making” sce-
nario from AgentSpeak [24], and FIPA-ACL protocols1. We also utilized CLAIM
and SyMPA for programming an information research on the Web using mobile
agents application [5], an electronic commerce application [22], the modelling of
the coffee market in Verarcuz, Mexico and a load balancing and resource sharing
application using mobile agents [14].

As the goal of this paper is to present the platform, we describe next only
a brief part of a digital library application implemented in CLAIM using the
SyMPA platform. There are several actors in our application: The Clients, the
Searching Agents, created by Clients, the Librarians and the Section Librarians.
A Client searches books satisfying some criteria; he creates a Searching Agent
for each query and he migrates to a Library (with the created sub-agents). The
Searching Agents migrate to Sections, borrow the books corresponding to their
criteria, possibly asking for the Section Librarian’s opinion and return to the
Client. Finally, the Client leaves the Library. When there are to many clients on
a site and the local resources are over-loaded, a Librarian can make migrate some
of the sections to other computers less loaded. The figure 1 presents a sketch of
the application.

Fig. 1. Application’s Architecture

In order to make the example easier to understand, only a part of the ap-
plication’s code in CLAIM is presented above. Thus, we can see two of the
capabilities of a client, one for creating one Search agent for each document re-
quest and for migrating to the known library and the second for borrowing the
document advised by the Search agents. We also can see the Searcher’s capabil-
ity for migrating to the corresponding section and for choosing a document after
consulting the index and after asking the section librarian’s opinion.

1 www.fipa.org
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defineAgent C {
authority=Home;

parent=Home;

knowledge={search(SA1,Various,<>,<funny>);
search(SA2,Fantastic,<Asimov>,<SF>);}

goals=null;

messages=null;

capabilities={
createSA() {

capability for creating the Search Agents and for going to the Library

message=search();

condition=null;

do{forAllKnowledge(search(?ag,?s,?a,?w)){
newAgent ?ag:SA(?s,?a,?w) }.
moveTo(this,L).forAllAgents(?x:SA) {
send(?x,search()) }

}
effects=null; }

borrowBook() {
capability for borrowing the books found by the SA

message=borrow(?b);

condition=null;

do{ send(L,borrow(?b)). Java(C.borrow(this,?b)).

send(this, goHome()) }
effects=null; }

...

}
processes=null;

agents=null;

}
defineAgentClass SA(?s,?auth,?kw) {

authority=null;

parent=null;

knowledge={search(?s,?auth,?kw);}
goals=null;

messages=null;

capabilities={
goToSection() {

capability for migrating to the interesting section

message=search();

condition=null;

do{out(this,parent).in(this,?s).
Java(SA.evaluateIndex(?auth,?kw)).

Java(SA.askOpinion(?auth,?kw)).

?b=Java(SA.choose(?auth,?kw,this)).
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out(this,parent).in(this,authority).

send(authority,borrow(?b)).acid }
effects=null;

}
}
processes=null;

agents=null;

}

4 SyMPA’s Architecture

SyMPA (French: Systéme Multi-Plateforme d’Agents) is a mobile agents plat-
forms. The main advantage to other mobile agents platforms is that SyMPA
supports agents implemented in CLAIM, an agent-oriented programming lan-
guage while the other platforms (see section 7) support agents implemented
using mainly object-oriented languages (e.g. Java in most cases). Nevertheless, a
CLAIM agent deployed in SyMPA can use Java methods and our current work
tackles the interoperability with other platforms. However, there are several re-
quirements that must be satisfied by every solid mobile agents platform: support
for agents’ management, identification, communication, migration and security.

As mentioned before, SyMPA is compliant with the specifications of the
MASIF [18] standard from OMG. MASIF provides a set of interfaces and defi-
nitions for the agents’ management, identification, authentication, localization,
tracking, communication, mobility and security. The main components of the
MASIF architecture (figure 2) are:

Fig. 2. MASIF’s Architecture [18]



A Mobile Agents Platform: Architecture, Mobility and Security Elements 133

Fig. 3. SyMPA’s Architecture

the agents belonging to an authority,
the agent systems - platforms that can create, interpret, execute, transfer and

terminate agents,
the places - execution contexts and
the regions - sets of agent systems of the same authority that can be regarded

as security domains.

There are two important interfaces, MAFAgentSystem, corresponding to each
agent system and that provides the necessary services and MAFFinder, associ-
ated to a region and that offers functions for the localization of agent systems,
of places and of agents in a region.

SyMPA is implemented using the Java language [12] and offers all the mech-
anisms needed for the design and the secure execution of a distributed MAS.
SyMPA consists of a set of connected computers; on each computer there is an
agent system (AS). There is also a Central System (CS) that has management
functions. For a secure execution of a MAS designed in CLAIM, the platform also
provides mechanisms for management, authentication, authorization, resources
access control and fault tolerance. This architecture (fig. 3) has three levels that
will be presented bellow.

4.1 The Central System

The CS provides services for agents’ and ASs’ management and localization.
In MASIF, this corresponds to the MAFFinder interface. In SyMPA, the CS
administrates (in this version) all the agents. In the future versions of SyMPA,
the system administrator will be able to choose between different management
solutions, in accordance with the current application.
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Fig. 4. SyMPA’s features

4.2 The Agent System

An AS is deployed on each connected computer at the platform. It corresponds
to the MASIF MAFAgentSystem interface. It provides (see fig. 4):

– high level mechanisms: a graphical interface (fig. 7) for defining CLAIM
agents and classes, an interpret for verifying the definitions’ syntax and in-
terfaces for the running agents;

– low level mechanisms, for agents’ deployment, communication, migration;
– management, fault tolerance and security mechanisms, such as the agents’

authentication, authorization and resources access control;

Fig. 5. Running agents in SyMPA

An AS offers en editor where the agents’ designer can define the agents or the
classes of agents needed for the application, in a .adf (agents description) file.
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Fig. 6. A running agent’s components

Nevertheless, any other text editor can be used. The definitions are then inter-
preted, the CLAIM syntax is verified and the agents (.agd) and classes (.cld) files
are created in a format understandable by the Execution Engine (conf. figure
5). The compiler was implemented using JavaCC (Java Compiler Compiler) [13].
The running agents are charged in memory and executed. There is a correspond-
ing (optional) graphical interface for each running agent, where one can visualize
agent’s behavior, communication and migration. The AS is also in charge with
the communication with other ASs or the CS and with the mobility, taking into
account the security constraints, that will be presented in the section 6.

Fig. 7. SyMPA’s graphical interface
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4.3 The Agents

An agent in SyMPA is an autonomous, intelligent and mobile entity, defined
using the CLAIM language. Each agent is uniquely identified in the system.
Like the ambients in the ambient calculus, the agents form hierarchies. With
this representation, a MASIF place becomes just an agent that has several sub-
agents. For each agent there is a process called PAgent that provides methods
for the agent’s state management, represented in a shared-memory zone. Also,
PAgent launches several processes (fig. 6):

– a graphical interface, utilized to visualize the agent’s behavior, communica-
tion and mobility (fig. 7);

– a thread that concurrently executes the agent’s processes;
– a process that performs the agent’s forward reasoning, by listening the ar-

riving messages, selecting the corresponding capabilities, verifying their con-
ditions and updating the current processes;

– a process that performs the agent’s backward reasoning, by trying to execute
capabilities that allow to achieve his goals.

5 Mobility in SyMPA

As mentioned before, SyMPA is a set of connected computers. On each computer
(site) there is an AS on which there are deployed several hierarchies of agents.
With this representation, from the destination (during mobility) point of view,
we can distinguish two types of migration : local and remote migration.

5.1 The Local Migration

The local migration is the migration inside a hierarchy, using the primitives
inspired from the ambient calculus. These primitives can be classified in moving
primitives and inheritance primitives. Using the first type of primitives, an agent
moves with all his components in the local hierarchy. The local moving primitives
used in CLAIM (introduced in section 2 and represented graphically in fig. 8)
are:

– in(mobilityArgument,agentName) used by an agent to enter with all
his sub-agents and processes another agent that must be in the same neigh-
borhood (i.e. having the same parent) in order to successfully execute the
operation.

– out(mobilityArgument,agentName) used by an agent to exit with all
his components the current parent.

The inheritance primitives are also inspired from the ambient calculus, but
are adapted to the specificity of intelligent agents. They allow a dynamic gath-
ering of capabilities and enrichment of the knowledge bases. The two inheritance
primitives are:
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– open(agentName), used by an agent to open the boundaries of one of his
sub-agents. The running processes, the sub-agents, the capabilities and the
elements in the knowledge base of the later are inherited by the former.

– acid, used by an agent to open his own boundaries, his components being
inherited by his parent.

Even if we are using, in CLAIM, mobility primitives inspired from the ambient
calculus, there are some important differences. First, in the ambient calculus,
the only condition for the mobility operations is a structure condition (e.g. for
the enter operation, the involved ambients must be on the same level in the
hierarchy). In CLAIM, we kept this condition, but we added an asking / granting
permission mechanism, for an advanced security and control. Secondly, we are
using the mobilityArgument for specifying the mobility granularity. Unlike the
ambient calculus, in CLAIM it is possible the migration of the agent himself, of
a clone of the agent or of a process:

mobilityArgument = this | clone | process

5.2 The Distant Migration

The distant migration is the migration between hierarchies. Using the primitive
moveTo (mobilityArgument,agentName), an agent directly migrates to another
agent, without verifying a hierarchical condition. Nevertheless, the asking enter-
ing permission mechanism is used. The figure 8 presents a graphical representa-
tion of the local (in and out) and the distant (moveTo) migration in SyMPA.

In order to assure the efficiency and the security of all the interactions, we

Fig. 8. Local and distant migration

proposed several protocols corresponding to all the agents’ inter-site operations
(communication and especially mobility), doubled by authentication and encryp-
tion protocols.
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5.3 Weak Versus Strong Mobility

From the processes execution point of view, there are two kinds of mobility:

The Strong Mobility, where not only the code and the data is transferred
but also the current state, the program counter and the execution stack. The
running processes are resumed exactly where they were interrupted before the
migration.

The Weak Mobility, where only the code and the data is transferred. The
running processes are restarted at the destination. Java provides in the actual
version facilities for the weak migration, such as the object serialization and Java
RMI. There were approaches that modified the Java Virtual Machine (JVM) in
order to support the strong object migration.

The mobility in CLAIM and SyMPA can be regarded at two levels.
First, there is a strong migration at the CLAIM level, because, before the

migration, the state of an agent is saved and it is transferred to the destination.
The agent’s CLAIM processes are resumed from their interruption point. This
is possible thanks to the way the mobility is done in SyMPA. An agent can
be at any moment saved in a textual format, similar to the CLAIM definition,
containing the current state (e.g. knowledge, messages, running processes). This
representation is sent via network to the destination AS, in an encrypted format
and the agent’s execution is resumed from the saved state.

At the Java level, we use the Java Virtual Machine (JVM) migration facilities,
so there is a weak migration. A Java method begun before the migration will be
recalled after the arrival at the destination. Since the migration is achieved using
the CLAIM primitives, unlike in other platforms, where there are Java objects
that migrate during their execution, a solution can also be to let all the agent’s
running Java methods terminate before his migration.

5.4 The Implementation of the Mobility Operations

In this section we present intuitively how the mobility operations are imple-
mented in the SyMPA platform.
On each site we have seen that there is an Agent System that offers mechanisms
for agents’ creation, management, communication and mobility by launching a
process that we call PSystem. Also, for each agent, there is a corresponding pro-
cess (called PAgent) that executes the agent (both the reactive and the pro-active
behaviors) and offers a graphical interface. The operations that involve only the
current agent are treated by the PAgent process. However, all the reconfiguring
operations involve more than one agent and are managed by PSystem.

As we have already stated, all these operations can be classified in operations
having as result a dynamic change in the system’s structure and hierarchy (actu-
ally all the presented operations modify the hierarchies) and operations having
as result a dynamic gathering of cognitive elements (in this category we have
the inheritance operations: open and acid).
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For the hierarchy change, if it is an operation requiring a structure condition
(i.e. in, out, open) PSystem must verify first this condition. If the condition is
verified, for the operations requiring permissions (the same three) the protocol
for asking / giving permissions begins. Since the current structure cannot be
changed during the execution of an operation, the involved agents are not al-
lowed to treat other mobility messages. Thence PSystem updates the hierarchy
and the MAS goes on with its execution.

Here is a pseudo-code of the operation in(this, B) executed by an agent A:

Algorithm in {
if neighbors(A,B){ // verify the structure condition

A.blockMessagesTreatment(); // A blocks the mobility messages’

treatment

A.askInPermission(B); // A asks enter permission from B

if(A.receiveInPermission(B)) { // If B gives the permission,

B.blockMessagesTreatment();//B blocks the mobility messages’ treatment

A.parent ← B; // B becomes the parent of A

B.addAgent(A); // A is added in B’s list of sub-agents

A.resume();//the two agents unblock the mobility messages’ treatment

B.resume(); // and resume their execution

} else {A.postPoneProcess(in); A.resume(); } // If A does not receive

// the permission, he unblocks the mobility messages’ treatment,

// postpones the in operation and resumes the execution

} else {A.postPoneProcess(in);} // A postpones the in operation

}

For the inheritance operations there are both a change in the agents’ structure
and a change in the internal state of the agents. For open (in the pseudo-code
bellow, A is opening B), there is first a structure condition to be verified, fol-
lowed by a permission asking. If these requirements hold, PSystem updates the
hierarchy, the intelligent aspects are inherited by the parent agent and the MAS
resumes its execution.

Algorithm open {
if A.hasAgent(B){ // verify the structure condition

A.blockMessagesTreatment();//A blocks the mobility messages’ treatment

A.askOpenPermission(B); // A asks open permission from B

if(A.receiveOpenPermission(B)) {// If B gives the permission,

B.blockMessagesTreatment();//B blocks the mobility messages’ treatment

forAll(ag ∈ B.agents) {A.addAgent(ag)}
forAll(p ∈ B.processes) {A.addProcess(p)}
forAll(k ∈ B.knowledge) {A.addKnowledge(k)}
forAll(c ∈ B.capabilities) {A.addCapability(c)}
//the agents, processes, knowledge and capabilities are inherited by A

stop(B); // B stops his execution and disappears from the MMAS

A.removeAgent(B); // B is eliminated from the list of A’s sub-agents

A.resume();//A unblocks the messages’ treatment and resumes his execution
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} else {A.postPoneProcess(open); A.resume();} If A does not receive

// the permission, he unblocks the mobility messages’ treatment,

// postpones the open operation and resumes the execution

} else {A.postPoneProcess(open);} // A postpones the open operation

}

6 Security in SyMPA

6.1 Attacks and Solutions

The mobile agents are programs running in a distributed and insecure environ-
ment (e.g. the Internet) where there are possible two main types of attacks [9]
that are resumed bellow, together with some of the existing solutions:

1. Attacks against the host AS: a mobile agent can damage local resources,
configurations or files, can overload some host resources or services, can access
very important, private information, can have a annoying behavior for the users
of the host system, can execute actions for which he does not have the rights, in
the name of a higher authority or can, under an apparent inoffensive behavior,
start some damaging application triggered by a specific event. The main security
techniques used in order to prevent these kind of attacks are:
The Authentication: the utilization of digital signatures or certificates; never-
theless, this technique does not guarantee that the mobile agent will be harmless;
Resources Access Control: the management and the control of the agent’s
access to the system’s resources (e.g. the rights to access files, to use the net-
work, the memory, the CPU utilization, etc), in function to the authorization
level granted to the agent and of the security policies of the host system;
Code Verification: to find damaging, illegal or not allowed instruction in the
code of an agent; however, this does not guarantee a safe execution of the agent;
Limitation Techniques: the limitation of the execution time of an agent, of
the number of clones or of the number of destinations;
Audit: the record of all the agent’s activities in all its execution stages in order
to detect possible incorrect actions.

2. Attacks Against Mobile Agents, during the migration and during the ex-
ecution on a host system. The attacker can be, during the migration, a third
person that can monitor the network traffic and can access or even damage im-
portant private data of the agent, and during the execution, another agent or
the host. This last type of attack is the most difficult to prevent. A host can
destroy the agent, damage the agent’s data or access important and secret data,
can not be capable to assure or refuse the access to a resource (denial of service),
can delay his execution or can give to an agent misinformation (e.g. about the
next destination). Two important types of techniques are used for protecting the
agents:
Encryption Techniques: the encryption of the agents during the migration, of
the exchanged messages, the encryption of the agent’s code or of his private data
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during the execution, in order to not be accessed by malicious hosts. However,
the code encryption can be dangerous for the host systems. Two main types of
encryption are usually utilized, public key or secret key encryption;
Fault Tolerance Techniques: the replication of an agent, to ensure that a mo-
bile agent arrives at his destination, the persistence, to protect an agent against
a host failure and the redirection, to change the trajectory of an agent in order
to avoid damaged hosts.

6.2 SyMPA’s Security Elements

The security element in SyMPA takes into account the two types of attacks in
the mobile agents systems. There are also used fault tolerance techniques for the
platform. We are using existing common techniques, but as we will see, we are
covering all the important aspects.

Protecting Host Machines

1. Authentication: each agent is uniquely identified in the system. An agent
acts in the name of an authority that can be an organization, the agent that
created him or the authority of the agent that created him. When created, an
agent is registered to the CS, with his name, the name of the authority and the
agent’s public key.
2. Resource Access Control: Each AS has a set of permissions for agents
belonging to known authorities. It verifies the authority of an incoming agent,
at the CS. For agents belonging to unknown authorities, it will give minimum
permissions. The rights for a CLAIM agent can be analyzed at two levels:

– the CLAIM level: corresponds to the resources accessed by a CLAIM process.
These permissions include the number of sub agents an agent is allow to
create, the permission to communicate with other local or remote agents, the
mobility permissions, the time of execution and the permission to invoke Java
methods (and the number of threads he can create). When an AS detects
that an agent is trying to execute a CLAIM process for which he does not
have the rights, first it will send a CLAIM specific message, requesting the
immediate depart, message that will have a by-default treatment consisting
in a migration to the authority site, and if after a limited time the agent is
still on the local host, the AS will destroy him.

– the Java level: corresponds to the Java methods called by an agent and
is based on Java security mechanisms. The permissions concern the read-
ing/writing from/on the disk (and from/in what directory), and the network
access. Using the Java security mechanisms, an agent will not be capable to
execute forbidden actions; security exceptions will be thrown.

3. Audit: In SyMPA there are monitored only the critical activities, because of
the delays introduced by the monitoring. Therefore, the AS monitors the exter-
nal communication, the distant migration, the creation of an agent and the called
Java methods. However, the audit does not prevent an agent to do damaging
actions, but can be used after to identify the malicious agents, their authority and
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to change in accordance with this the future rights and treatment of the same
agent or of agents belonging to the same authority. In this version, the audit files
have a user-friendly format and are analyzed by system’s administrators. In a
future version, these files will be interpreted using some automated mechanisms.

Protecting Agents

1. Cryptography: The public and secret key cryptography is used at the three
SyMPA levels and for all the exchanged messages or mobile agents. Each plat-
form entity, including the CS, the ASs and the agents, has a public key registered
to the CS. A cryptographic protocol is added at each message exchange. When
an entity tries to communicate with another one, he will initiate the protocol
using the public key of the later, that will create a secret session key used during
the messages exchange. So all the messages, including the mobile agents on their
route, are encrypted.

For fault tolerance reasons, the agents are stored on the disk with all theirs
components. To protect a stored agent from other agents, the agent’s definition
on the disk is also encrypted by the AS.

However, we cannot prevent in SyMPA attacks from the host systems against
the running agents. In order to execute an agent, the platform must access the
agent’s CLAIM code and important data. Because a CLAIM agents can have
several behaviors in function of his knowledge, goals and capabilities, the SyMPA
execution engine must have full access at the agent’s components. Our SyMPA’s
implementation is a safe one and the agents are correctly and safely executed.
The only possibility to have attacks from a host against an agent is to eventually
modify the AS of the SyMPA implementation. But all the ASs must registry to
the CS, so a malicious AS will not be very difficult to detect.

Fault tolerance mechanisms are also utilized at the SyMPA’s three levels.
For the CS is used a replication technique. There are several running CSs, with
different priorities, from which only one is active. This one sends periodically
to the others the current configuration. When the inactive CSs do not receive
the configuration in time, they will try to contact the active CS. If it does not
respond, a message will circulate between them, where every CS will write its
priority. After visiting all the CSs, the message will go the CS with the best
priority, this one will become the active CS, resuming the execution from the
last received configuration. For the ASs, all its data is periodically saved on disk,
with the current state of all the running agents, in order to resume the systems
execution after a breakdown. The agents are also regularly stored on disk by the
AS, in an encrypted format. Before an agent’s migration, he is stored on the disk
and after the confirmation of the successful arrival at the destination, the agent
is erased from the disk. If the arrival confirmation is not received, the AS will
try again to send the stored agent. If the case of a breakdown of the destination
system the agent is either kept on the disk until the destination is recovered,
either sent to his authority.
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7 Related Work

In this section we will resume the characteristics and the security elements of
other platforms supporting mobile code. Let’s note that a state of art of the
existing agent oriented programming languages and of the concurrent languages
for programming mobile processes can be found in [6].
Aglets[1] are mobile and communicants Java objects, developed by IBM. The
main security elements provided are the authentication of the owner, the designer
and the sender of a mobile agent, the data encryption and the authorizations for
resources access, based on Java specifications.
Ara[19] is a platform that supports mobile agents implemented in Java, TCL
or C/C++. The security elements are reported at the three entities of Ara, the
designer of an agent, the owner of an agent and a host system, and include: the
authentication, a vector of resources access rights, some fault tolerance mecha-
nisms and the SSL protocol for secure data transmission.
Ajanata[8] is a Java based mobile agents platform, with a weak mobility imple-
mented using the Java’s serialization facilities. There are host protection mech-
anisms (agents’ credentials, a list of resources access rights, security manager,
authenticated communication, a mobility protocol similar with those of SyMPA)
and agent protection elements (cryptography, audit, agents’ credential protec-
tion, restrictive access to an agent’s registered data).
Concordia [23] is a Java platform developed by Mitsubishi. The mobility uses
the serialization facilities. Between the security elements we can note the users’
identification, the permissions for resources access, based on Java, the SSL pro-
tocol for data transmission, the data encryption, using Java cryptography and
fault tolerance mechanisms.
D’Agents [7] is a platform for mobile agents that can be implemented in the
Tcl, Java or Scheme languages. The main security elements are the authentica-
tion, the authorization, the resources access control (an agent does not directly
access a resource, but through resource management agents), the data encryp-
tion and digital signatures.
Grasshopper[10] is MASIF compliant and uses for guaranteeing the security
the authentication (X.590 certificates), the confidentiality (SSL protocol for data
encryption) the message integrity (MCA codes), the resources access control
(based on Java) and fault tolerance mechanisms.

Other mobile agents platforms have been developed, such as Bee-gent, Gypsy,
Hive, James, MARS, MOLE, Odyssey, SOMA, Voyager, most of them supporting
Java agents, but all of them trying to ensure a minimum level of security, a vital
aspect in the mobile agents applications. The table above presents a summary of
security features in the studied platforms (some aspects were not clear deduced
from the documentation) and in SyMPA. The agents’ ”after” protection against
hosts means that a malicious host will be detected after it attacked an agent.
The attack cannot be undone and the agent can be damaged, but the host will
not be trusted in the future.
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Host protection Agent protection
authentication resources audit against persistence encryption against

access agents hosts
Aglets Yes Yes ? ? No Yes No
Ara Yes Yes ? ? Yes Yes ?
Ajanta Yes Yes Yes Yes ? Yes No
Concordia Yes Yes ? Yes Yes Yes After
D’Agents Yes Yes ? ? ? Yes No
Grasshopper Yes Yes Yes Yes Yes Yes No
Gypsy Yes Yes ? ? ? ? No
Hive Yes Yes ? ? ? ? No
James ? Yes ? ? Yes ? No
Mole Yes Yes ? ? Yes No No
Odyssey Yes Yes No ? No No No
SOMA Yes Yes ? ? ? Yes After
Voyager Yes Yes ? ? ? Yes ?
SyMPA Yes Yes Yes Yes Yes Yes After

8 Conclusions and Future Work

We presented in this paper a mobile agents platform called SyMPA, that sup-
ports mobile agents implemented using a new agent oriented programming lan-
guage - CLAIM, that homogeneously combines elements form the agent oriented
programming languages (for representing agents’ intelligence and communica-
tion) with elements from the concurrent languages (e.g. the ambient calculus)
for representing agents’ mobility. SyMPA offers all the necessary mechanisms for
the design and secure execution of distributed MAS written in CLAIM. Even
if there are many mobile agents platforms, their impact and utilization in real
live application is not at the level it should be. It is a common opinion that
the mobile agents technology is very useful in the development of distributed
applications, but the main reasons for its reduced utilization are the security
problems, of vital importance in a distributed and unsafe environment like the
Internet and the interoperability between different platforms.

An important part of this paper was dedicated to the security aspects in
the mobile agents world. However, the reached security level is not as high at
it should be in order to have really safe distributed applications on the Internet
and more significant steps need to be done in this direction; a part of our current
work is focused on these aspects.

From the interoperability point of view, SyMPA is compliant with the spec-
ifications of the MASIF standard from OMG, a collection of interfaces and def-
initions that tries to standardize the aspects of a mobile agent platform. Never-
theless, this standard is used by few of the existing platforms (only Grasshopper
and SOMA from the studied platforms). In SyMPA we are working on having
interoperability with agents coming from different platforms and implemented
in other programming languages. For this purpose we are currently developing
a Web Services approach, where the agents publish their capabilities as Web
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Services that can be found and invoked by other agents (CLAIM or from other
platforms) or even by independent applications. Nevertheless, a real interop-
erability between heterogenous mobile agents is difficult and must take into
account interaction protocols, language and ontology problems.
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Abstract. Multi-agent systems are attractive means for developing complex soft-
ware systems. However, multi-agent systems themselves tend to be complex, and
certain difficulties exist in developing them. One of the difficulties is the gap be-
tween design and implementation especially for interaction protocols. In this paper,
we propose a new interaction protocol description language called IOM/T. Inter-
action protocols described using IOM/T have clear correspondence with AUML
sequence diagrams and the description can be consolidated into a single unit of
IOM/T code. Then, we show how the process of implementing Java-based agent-
platform code from AUML design can be carried out, and how IOM/T effectively
bridges the gap between design and implementation.

1 Introduction

Multi-agent systems are attractive means for developing complex software systems.
However, multi-agent systems themselves tend to be complex, and certain difficulties
exist in developing them. One of the difficulties is the gap between design and imple-
mentation [3], [1]. Especially the gap about interaction protocols is large. In Analysis
and Design phase, developers use an agent-oriented method such as Gaia[16]. In this
phase, interaction protocols are considered as important as agents themselves. In the
Implementation phase, however, developers use object oriented languages such as Java,
and implement interaction protocols as agent capabilities. As a result, the actual imple-
mentation of interaction protocols becomes dispersed, and the correspondence between
the messages transition and the message reception becomes unclear. Yet, interaction
protocols of multi-agent system are quite complex, thus leading to problems such as the
following:

1. Understanding the interaction protocols from code is difficult.
2. Maintenance of interaction protocols is difficult.

In this paper, we propose a new interaction protocol description language called
IOM/T(Interaction Oriented Model by Textural representation). Using this language, we
can separate interaction protocol code from agent code. Furthermore, we can implement
an interaction protocol in a single unit of code. We also describe the development process
using IOM/T and tools. During the process, we analyze and design multi-agent system

R.H. Bordini et al. (Eds.): PROMAS 2004, LNAI 3346, pp. 147–162, 2005.
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on the basis of the interaction protocols. Then, we use a tool to generate a skeleton
code of IOM/T for each interaction protocols. We refine the code by adding information
of the implementation. Finally, we use a preprocessor to convert the IOM/T codes and
the agents’ codes into the Java codes for a certain agent platform. IOM/T and this
development process will bridge the gap between the design and the implementation.

Below, this paper is structured as follows. In section 2, we propose IOM/T. Then,
in section 3, we show the interaction based development process of multi-agent system.
In section 4, we evaluate IOM/T by comparing it to an existing agent-platform. Related
work is discussed in section 5, and some conclusions are presented in section 6.

2 IOM/T: Interaction Oriented Model by Textural Representation

In this section we present IOM/T and describe its syntactic rules.

2.1 Concepts

We think one of the factors which make the development of multi-agent systems difficult
is that we can not deal with interactions in Implementation as same as in Design. We
need a representation which holds information about both design and implementation.
Furthermore interaction protocols are generic rules for communicating and do not depend
on agents mental states. In other words, we can separate interaction code from agent code.
This simplifies the representations of the interactions. Therefore we designed IOM/T on
the basis of the following concepts:

1. Code describing the interaction protocols should have clear correspondence with
the design.

2. Developers should be able to easily understand the interaction protocol flow.
3. Separation of Concerns should be achieved.
4. Interaction protocols should be allowed to be represented with a single unit of code.
5. Notation is based on Java.

2.2 Protocol Example

In the remainder of this paper, we will exploit a simple example to describe our language
and methodology. We define the Iterated Ping protocol using an AUML[7] sequence
diagram[8] as shown in Fig.1.Two roles, Sender and Receiver, participate in this protocol.
The Sender sends a “ping” message to the Receiver, and the Receiver replies to that
message. This sequence is repeated as long as the Sender wants to. The protocol is
described using IOM/T as shown in Fig.2. This paper also includes an example code
for the English Auction. A.1 includes the protocol representation in AUML sequence
diagrams and A.2 includes the corresponding IOM/T code.

2.3 Definition of Protocols

In IOM/T a protocol is represented as a structure using the keyword protocol. The
protocol structure has a unique identifier, and consists of definitions of roles and a
interaction flow. Fig.2 defines an interaction protocol named PingProtocol.
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Fig. 1. Iterated Ping protocol represented using AUML sequence diagram

Fig. 2. Iterated Ping protocol described in IOM/T
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The syntactic rule of protocol structures is as follows:

ProtocolDefinition ::= protocol Identifier ProtocolBody
ProtocolBody ::= { ProtocolBodyDefinition }
ProtocolBodyDefinition ::= PlayerDefinitions InteractionDefinition
P layerDefinitions ::= PlayerDefinition

| PlayerDefinitions P layerDefinition

2.4 Definitions of Roles

A role is defined as a structure using the keyword player. The symbol ∗ after the keyword
player represents the existence of several agents playing the role.A player structure has a
unique identifier, and consists of definitions of sub-protocol, definitions of role function-
ality, and definitions of role information. When we have to deal with a large interaction
protocol, we divide it into some sub-protocol and represent the whole interaction pro-
tocol by using them. Definition of sub-protocol specifies which sub-interaction the role
participates in and what role it plays in the sub-protocol using the keyword playing.
Definition of role functionality is specified using Java method definition notation. Defi-
nition of role information is specified using Java field definition notation. In Fig.2 the two
roles, Sender and Receiver, are defined on lines 2 - 9. The code shows that the Sender has
three functionalities and one variable for information. The functionality getTarget()
determines the target agent. The functionality isContinue() is used to determine the
end of loop. The functionality knowAsDead() notifies the Sender agent that the tar-
get agent did not reply to the message. The information sendT ime is used to hold the
time the Sender sent the message. On the other hand, the Receiver does not have any
functionality and information.

The syntactic rule of player structures is as follows:

PlayerDefinition ::= player ∗opt Identifier P layerBody
P layerBody ::= { PlayerBodyDefinitionsopt }
PlayerBodyDefinitions ::= PlayerBodyDefinition

| PlayerBodyDefinitions P layerBodyDefinition
P layerBodyDefinition ::= UseProtocolDefinition

| AgentFunctionDefinition
| InformationDefinition

UseProtocolDefinition ::= playing ProtocolName.P layerName;
AgentFunctionDefinition ::= ReturnType FunctionIdentifier(Argumentsopt);
InformationDefinition ::= InformationType InfomationIdentifier;

2.5 Definition of Interaction Protocol Flows

An interaction protocol flow is defined as an structure using the keyword interaction.
An interaction structure consists of a combination of sequential flow and repeated flow.
The sequence of the role actions represents the sequential flow, and “while” structure
represents the repeated flow as in Java notation. There are restrictions on this structure
because of the feasibility for parallel process. One is that the “while” condition predicate
must describe a single functionality of a single role. The other is that the role which
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Fig. 3. Outline of the ACLMessage class

determines the end of loop must send notification messages at the end of loop to other
roles. A role action is defined as a block labeled with the role identifier. This block
contains a role action defined using Java and some language enhancement, namely
expressions for using role functionalities and information, expressions for dealing with
FIPA-ACL message, and expressions for controlling protocols. In Fig.2 the Sender’s
action is described on lines 12 - 20, the Receiver’s action on lines 21 - 32 and the
Sender’s action on lines 33 - 49 represent a sequential flow, and this sequential flow is
structured as a repeated flow on lines 11 - 50. The Sender sends notification for the end
of loop in the Sender’s action on lines 52 - 58.

The syntactic rules for defining an interaction flow are as follows:

InteractionDefinition ::= interaction InteractionBody
InteractionBody ::= { InteractionBlocks }
InteractionBlocks ::= InteractionBlock

| InteractionBlocks InteractionBlock
| while( WhilePredicate ) { InteractionBlocks }

InteractionBlock ::= player PlayerIdentifier { ActionBlock }
WhilePredicate ::= PlayerIdentifier.FunctionIdentifier(Argsopt)

| (PlayerIdentifier must specify a single role)

Expressions for Using Role Functionalities and Information. The use of a role func-
tionality is represented as a method invocation in Java, and the use of a role information
is represented as a field access in Java. In Fig.2 the functionality of Sender is used on
line 11, 14 and 47. The information of Sender is used on line 18 and 45.

Expressions for Dealing with FIPA-ACL Message. In order to deal with FIPA-ACL
messages, the following classes and functions are used:

1. AID : This class represents the agent identifier.
2. ACLMessage : This class represents FIPA-ACL messages and its outline is laid out

on Fig3. It has getter/setter methods to handle the terms specified in the messages.
This class also has a method to create a reply message as an instance ofACLMessage
class.

3. send/receive functions : These functions are used to send or receive an instances of
ACLMessage class. sendSync function represents synchronous transmission, and
sendAsync function represents asynchronous transmission. recvBlock function
represents a blocking reception, and recvNonBlock function represents a non-
blocking reception.
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Fig. 4. Agent code example using the Iterated Ping protocol

Expressions for Controlling Protocols. The following functions are used to control
the protocols:

1. Begin sub-protocol : The function beginProtocol is used to begin a sub-protocol.
The next sentence means the beginning of a sub-protocol specified by the identifier
ProtocolIdentifier as the role specified by the identifier RoleIdentifier.

beginProtocol(ProtocolIdentifier.RoleIdentifier)

2. Terminate current protocol : The function terminateProtocol is used to terminate
the current protocol.

2.6 Using Interaction Protocols

Above, we show the description of interactions. We show the description of agents with
a focus on the use of interaction protocols. The description of the other aspects are out of
the scope of this paper. In order to use interaction protocols, functionality mappings are
defined in the agent code. A functionality mapping represents how methods of each role
functionality are implemented using the keyword playing. The function beginProtocol
is used to begin a sub-protocol. Fig.4 shows an example of using the Iterated Ping
protocol.

The syntactic rules for mapping functionality are as follows:

PlayingDefinition ::= playing ProtocolIdentifier.P layerIdentifier
| PlayingDefinitionBody

P layingDefinitionBody ::= {FunctionMappingsopt}
FunctionMappings ::= FunctionMapping

| FunctionMappings FunctionMapping
FunctionMapping ::= NormalFunctionMapping

| ProtocollFunctionMapping
NormalFunctionMapping ::= FunctionIdentifier = MethodIdentifier
ProtocolFunctionMapping ::= ProtocolSpecifiers.FunctionIdentifier

| = MethodIdentifier
ProtocolSpecifiers ::= ProtocolSpecifier

| ProtocolSpecifiers ProtocolSpecifier
ProtocolSpecifier ::= ProtocolIdentifier.P layerIdentifier
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2.7 AUML and IOM/T

The current version of IOM/T can not fully represent all the interactions that can be
described with AUML sequence diagrams. An AUML sequence diagram corresponds
to an protocol structure and a time-line corresponds to a role. However, IOM/T can
not represent every kind of CombinedFragment[8]. Only CombinedFragments whose
interaction operators are “Loop” can be represented by “while” structure. We have to
describe the meaning of the other interaction operators in role actions. Although we can
extend the language adding new structures to deal with these interaction operators, it is
hard to generate codes which them such as alternative, option, parallel and so forth. This
extension is included in our future work. In fact, we aim at providing the semantics and
proving the equivalence with AUML sequence diagrams.

3 Development Process

In this section we provide an overview of our development process based on interaction
protocols. The process is roughly divided into two phases. In the Analysis and Design
phase, developers extract requirements and functionalities, and design the interaction
protocols and agents in the system. Then, in the Implementation phase, developers im-
plement the interaction protocols and agents on the basis of on the design decisions in the
previous phase. This phase includes testing. We show the development process focusing
on the Implementation phase due to limitations of space.

3.1 Analysis and Design

The first phase is the Analysis and Design phase. In this phase we extract the system
requirements, and decide how these requirements are realized.

The products of this phase are the design of interaction protocols and agents in
the system. Each interaction protocol consists of roles and message sequence. A role
contains functionalities to fulfill the interaction.A message sequence is represented using
an AUML sequence diagram. Each agent is endowed with roles that it has to play.

3.2 Implementation

The second phase is the Implementation. We implement interactions using IOM/T and
agents using APIs that depend on the agent-platform. In this paper we concentrate on
the implementation of interactions.

Fig. 5. Overview of Implementation Process
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In the Analysis and Design phase, we acquired the interaction protocols and repre-
sented them using AUML sequence diagrams. Here, we show the process of implemen-
tation using AUML sequence diagrams. The overview of this process is as follows: First,
we use tools to automatically generate skeleton codes of IOM/T from AUML sequence
diagrams. Next, we add detail information of the implementation to the code. Then we
implement agents and add the mappings of the roles’ functionalities. Finally, we use a
preprocessor to generate Java code from these codes for the target agent-platform. The
overview of the Implementation phase is shown in Fig.5.

AUML to IOM/T. Interaction protocols described in IOM/T have clear correspondence
withAUML sequence diagrams. For example Fig.6 shows the correspondence in the Ping
protocol case. Thus, we can convert AUML sequence diagrams into skeleton codes of
IOM/T based on the following simple algorithms:

1. Each time-line is extracted as a role.
2. A single role action is extracted from a set of zero or more continuous message

reception and one or more continuous message transmission within the same time-
line.

3. Loop structures are extracted as “while” structures.

Fig. 6. Correspondence of AUML sequence diagrams to IOM/T

Implementation in IOM/T. The generated skeleton codes of the interaction protocol
do not have sufficient information for the implementation. For instance, constraints in
AUML sequence diagrams may not contain complete information for execution. Fur-
thermore, AUML sequence diagrams represent the order of messages, but they may not
represent the contents of messages. They also lack the information about how the con-
tents are prepared. We have to make a decision on the precise meaning of the constrains
and the contents of the messages. So, we add detailed information of the implementation
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in the code. We refine roles by adding roles’ functionalities and information. We refine
the flow of the interaction protocol by adding the conditions of “while” structure. Then,
we also refine the roles’ actions by using Java notation.

In the example of the Ping protocol, we add three functionalities and one variable
to the Sender role as shown on lines 3-6 in Fig.2. We add the condition of the “while”
structure on line 11. We refine the roles’ actions as shown on lines 24-30 and 43-48.

IOM/T to Agent-Platform Specific Java Codes While the interaction protocol is im-
plemented using IOM/T, role functionalities i.e. agent functionalities depend on the
specific agent-platform. Codes is merged and converted into target agent-platform Java
codes as follows:

1. Generating a FSM model
A FSM model is generated for each role assuming the role action as a state. State
transitions occur on the basis of the order of the role actions and the “while” struc-
tures. Furthermore, for roles that do not determine an end of loop, an action is added
for that purpose.

2. Implementing a FSM model on the target agent-platform.
The generated FSM model is converted into the agent-platform specific Java codes.

3. Implementing Role Actions
Portions implemented in Java are achieved directly. Only special extensions must be
converted into agent-platform specific forms. For each role, an interface for accessing
the role functionalities is generated. The using of role functionalities is converted
into the method invocation through the interface. For each agent, the preprocessor
generates helper class which implement interfaces rolls that it play. The helper
class delegates role functionalities to the agent class according to the functionality
mappings. The extension for FIPA ACL is converted into agent-platform specific
representations. The beginning of a protocol is also converted into agent-platform
specific representations.

Testing. We can apply unit test to the interaction protocols and the agents. The agent unit
test is similar to one for objects. We prepare the test cases for verifying the functionalities
of the roles that the agents play. We prepare the test case agents for the unit test for
interaction protocols. For each role, we implement test case agents who have the role
functionalities. Then, we prepare the test cases that contain the combination of the test
case agents and the corresponding result of the interaction. The traditional unit test can
check whether each agent is implemented as expected. However, it seems to be hard to
check whether the agents can communicate with each other as expected. The unit test
for interaction using IOM/T will support this verification. Furthermore, providing the
finite ranges of values of the role functionalities, we can generate all possible test case
agents. So we can verify the invariants of the interaction automatically.
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4 Evaluation

In this section, we evaluate the effectiveness of IOM/T comparing an interaction protocol
code described using IOM/T with the same protocol described using JADE[5], a Java
based agent-platform. In JADE, interaction protocols are described in the classes which
are inherited from the Behaviour class. Until the done() method returns true, the action()
method is executed repeatedly. Fig.7 shows the Ping protocol described using JADE.

Firstly, we compare the development where the skeleton code of JADE are directly
generated from AUML sequence diagrams to the development where we use IOM/T as
an intermediate language. As Huget described in [9], the skeleton code of JADE can be
generated directly. We think we have to modify the generated codes by hand in order to

Fig. 7. Iterated Ping protocol represented in JADE
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represent the information which is showed as notes or constraints in AUML sequence
diagrams in either case, although we tend to cause a mistake in this operation. For
example, in Fig.1, there is a constrain, “[Valid Response Received]“. In JADE code, this
constraint is represented on lines 27-30 in Fig. 7, where we check the content of ACL
message. The creation of this message is represented on lines 70-72. Although these
two parts have strong relationship, they completely exist in separate code. On the other
hand, in IOM/T, the constraint is represented on lines 37-39 in Fig. 2, and the creation of
message is represented on lines 25-26. In this case, these two parts exist in a single unit
of code. Furthermore, the role actions that include these parts are closed by. Therefore, it
seems to be better to modify the skeleton codes of IOM/T rather than the skeleton codes
of JADE.

Next, we consider the understandability . If we compare the IOM/T code with the
JADE code, there are two significant differences. One difference is the code scattering for
an interaction protocol. If we use JADE, we describe a code of the interaction protocol for
each role. The code contains the only own part. Then, the codes for interaction protocol
dispersed. If we use IOM/T to describe, the interaction protocol is described in a single
unit of code. As a result, the correspondence between the message transmission and the
message reception is clear. In Fig.7, the correspondence of line 17 to line 64 can easily be
confused. However, In Fig.2, the same correspondence is represented on line 17 and 22.
It is easy to understand this correspondence. The other difference is the representation
of the interaction protocol flow. In the JADE code, we have to realize state transitions by
assuming integers as states since Java has no notation for representing state transition.
We can describe complex state transitions with this method. However it is not easy to
understand the interaction protocol flow from the code, since we have to understand
each state and each transition. Especially, loops are not clear since they are represented
as recursive structures as shown on line 39. On the other hand, in the IOM/T code,
the flow of the interaction protocol is represented in natural manner. Each role action
corresponds to a state. The state transitions are represented on the basis of the order of the
occurrences of the role actions, and the loops are represented explicitly using “while”
structures. So we can intuitively understand the flow. Indeed we can represent more
complex state transitions with the former method, but we mostly do not need to describe
very complex state transitions. In this paper, we do not show the details of Analysis
and Design phase. We think we can get the designs of interactions that are relatively
simple through the phase. We can build up the system by using sub-interactions. So,
our current achievement is to represent interaction protocols based on relatively simple
AUML sequence diagrams.

IOM/T also improves the maintainability . IOM/T enhances the understandability
of the interaction protocol as mentioned above. So, when we have to commit some
changes, we can easily understand where and how we have to change. For example,
suppose there was a change such as the “alive” message is replaced with the “pong”
message in the Ping protocol. In Fig.7 the changes will be applied to line 30 in the
PingSenderBehaviour class and to line 72 in the PingReceiverBehaviour class.
These changes are not obvious. On the other hand, the same modification is easily
achieved in the IOM/T code. We will change the lines 25 and 39 in Fig.2. Since the role
actions that contain these lines are close by, the correspondence of the code is obvious.
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In other words, since our development process holds traceability , the maintenabilty is
improved. An AUML sequence diagram corresponds to a single unit of IOM/T code. A
message in the diagram corresponds to role actions which are closed by. Then, we can
found out the corresponding part of the code from the changes in the design model. So,
we can deal with the changes easily.

5 Related Work

So far, several interaction protocol description languages such as AgenTalk[12], Q[11],
COOL[2], COSY[4], micro-protocol[15] have been proposed. Each of these languages
has specific interesting features. Micro-protocol is a language designed to improve
reusability. This language is not considered here since we mainly consider languages
for implementation. AgenTalk, COOL, COSY and Q are languages for implementation.
However, with these languages, an interaction protocol is dispersed and represented
within the scenario of each agent. Our aim is to bridge the gap between the AUML
design and the implementation, by treating the interaction protocol as an independent
module in the implementation.

In the area of interaction protocols, several results have been achieved on the ba-
sis of the formal methods. Huget have provided the methods for verifying AUML se-
quence diagrams by using Spin[10]. Paurobally have proposed diagrams as counterpart
of formal methods in order to bridge the gap between formal specification and intuitive
development[13]. These endeavors have relationship with our research. However, in this
paper, we proposed a novel language and implementation process.

There are several methods for generating skeleton code from graphical representa-
tions. Huget shows some elements for generating code fromAUML sequence diagrams[9].
Tahara provides the IPEditor[14] which generates skeleton codes of agents from AUML
based graphical notation. Dinkloh has developed tools for generating skeleton codes of
Jade from AUML sequence diagrams[6]. These works provide methods for generating
object oriented programming code from design. Our approach deals with interaction
protocols as it is in the Implementation phase.

6 Conclusion

In this paper, we proposed a new interaction protocol description language, IOM/T.
We also showed how the implementations are conducted based on the AUML sequence
diagrams. By applying this approach, we will be able to bridge the gap between AUML
and implementation. Moreover, the representation in IOM/T allows easy understanding
of interaction protocol flows and improves maintainability.

This work is currently in progress. We are developing an Integrated Development
Environment for this approach, and verifying the validity of this approach through de-
velopment examples. We will also investigate the inclination of IOM/T thruogh the
development examples. In addition we are considering the needs for a formal seman-
tics of IOM/T. Finally we plan to extend IOM/T to make IOM/T equivalent to AUML
sequence diagrams.
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A English Auction

A.1 English Auction Protocol Represented in AUML Sequence Diagram

A.2 EnglishAuction rotocol escribed in IOM/T
protocol EnglishAuction {

player Initiator {
List getParticipants();
boolean isEndAuction();
String getCurrentPrice();
ACLMessage selectBids(List bids);
AID getWinner();
List participants;
Date cfpTime;

}

P D
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player * Participant {
void knowBeginAuction();
boolean isBid(String item, String current);
boolean
isUnderstandable(String item, String current);

String getBidPrice(String item, String current);
void knowPrice(String price);
void knowAccept();
void knowReject();
void knowRequest(String req);
boolean isBid;
boolean isAccept;

}

interaction {
player Initiator {
participants = getParticipants();
ACLMessage msg = new ACLMessage();
msg.setPerformative("INFORM");
msg.setContent("(inform-start-of-auction)");
msg.setReceiver(participants);
sendAsync(msg);

}

player Participant {
ACLMessage msg = recvBlock();
knowBeginAuction();

}

while (!Initiator.isEndAuction()) {

player Initiator {
ACLMessage msg = new ACLMessage();
msg.setPerformative("CFP");
msg.setContent(getItem() + ":" + getCurrentPrice());
msg.setReceiver(participants);
sendAsync(msg);
cfpTime = Calender.getInstance().getTime();

}

player Participant {
ACLMessage cfp = recvBlock();
String[] str = msg.getContent().split(":", 2);
String item = str[0];
String current = str[1];
isAccept = false;
if (isUnderstandable(item, current)) {
ACLMessage res = cfp.createResponse();
res.setPerformative("NOT_UNDERSTOOD");
res.setContent(cfp.getContent());
sendAsync(res);
terminateProtocol();

}
isBid = isBid(item, current);
if (isBid) {
String price = getBidPrice(item, current);
ACLMessage res = cfp.createResponse();
res.setPerformative("PROPOSE");
res.setContent(price);
sendAsync(res);

}
}

player Initiator {
List bids = new LinkedList();
Calender cal = Calender.getInstance();
while (cal.getTime().getTime() - cfpTime.getTime() < 10 * 1000) {
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ACLMessage bid = recvNonBlock();
if (bid.getPerformative().equals("NOT_UNDERSTOOD")) {
participants.remove(bid.getSender());

} else if (bid.getPerfromative().equals("PROPOSE")) {
bids.add(bid);

}
}
ACLMessage accept = selectBids(bids);
if (accept != null) {

Iterator itr = bids.iterator();
while (itr.hasNext()) {
ACLMessage bid = (ACLMessage)itr.next();
ACLMessage msg = bid.createResponse();
msg.setContent(bid.getContent());
if (accept == bid) {

msg.setPerformative("ACCEPT_PROPOSAL");
sendAsync(msg);

} else {
msg.setPerformative("REJECT_PROPOSAL");
sendAsync(msg);

}
}

}
}

player Participant {
if (isBid) {

ACLMessage msg = recvBlock();
if (msg.getPerformative().equals("ACCEPT_PROPOSAL")) {
knowAccept();
isAccept = true;

} else {
knowReject();

}
}

}

}

player Initiator {
ACLMessage msg = new ACLMessage();
msg.setPerformative("INFORM");
msg.setReceiver(participants);
msg.setContent(getCurrentPrice());
sendAsync(msg);
ACLMessage msg = new ACLMessage();
msg.setPerformative("REQUEST");
msg.setReceiver(getWinner);
msg.setContent(getCurrentPrice());
sendAsync(msg);

}

player Participants {
ACLMessage msg = recvBlock();
String price = msg.getContent();
knowPrice(price);
if (isAccept) {
ACLMessage req = recvBlock();
knowRequest(req.getContent);

}
}

}
}
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Abstract. A mobile agent application often involves a collection of
agents working together for a common task. For cooperation among
agents to succeed, an effective inter-agent communication framework is
required. This paper describes the design of the communication mecha-
nism in IMAGO Prolog. IMAGO Prolog is a variant of Prolog with an
extended API for intelligent mobile agent applications. It deploys mo-
bile messengers for inter-agent communication. Messengers are anony-
mous, thin agents dedicated to deliver messages. A messenger can move,
clone, and make decisions for its assigned task: track down the receiving
agent and reliably deliver messages in a dynamic, changing world. More-
over, agent communication language is purely declarative and consistent
with the syntax, semantics and pragmatics of Prolog. As a result, mobile
agents exchange information and achieve synchronization through first
order logic terms and unification.

1 Introduction

A mobile agent is a self-contained computing entity, roaming the internet to
access data and services, and carrying out its assigned decision-making and
problem-solving tasks on behalf of a user. A mobile agent application usually
consists of a collection of agents working together for a common task. Agents
are not working alone in most applications, instead, they need to communicate
with each other for exchanging information and achieving synchronization. For
cooperation between agents to succeed, an effective inter-agent communication
framework is required, which includes the design of a communication model, an
inter-agent communication language and protocol.

Generally speaking, communication models are concerned with conceptual
paradigms such as RPC/RMI, message-based, or event-based, whereas commu-
nication language and protocol deal with problems such as how to represent
information and knowledge, how to name mobile agents, how to establish com-
munication relationships, how to track moving agents, and how to guarantee
reliable message delivery.

We present in this paper a promising agent-based communication model ex-
plored in the design and implementation of IMAGO Prolog. The idea is to deploy
intelligent mobile messengers for inter-agent communication. Messengers are thin
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agents dedicated to deliver messages. Like normal agents, a messenger can move,
clone, and make decisions. Unlike normal agents, a messenger is anonymous and
its special task is to track down the receiving agent and reliably deliver messages
in a dynamic, changing environment. In addition, agent communication language
is purely based on the first order logic, i.e., consistent with the syntax, semantics
and pragmatics of Prolog. Communicating mobile agents simply use logic terms
and unification to exchange information and achieve synchronization.

This paper is organized as follows. Section 2 gives a briefly review of recent
works related to this research, focusing on the agent communication models and
agent communication languages. Section 3 presents the intelligent mobile mes-
senger model as well as feasible solutions for problems such as agent naming,
agent tracking, and communication predicates. In section 4, we show examples
of inter-agent communication patterns. IMAGO Prolog is currently being im-
plemented as an experimental prototype system. An evaluation release of the
IMAGO system is available at the IMAGO Web site 1. Finally, we present the
conclusion and outline of future work.

2 Related Work

Processes in a distributed system must interact with each other using some
kind of communication models to exchange data and coordinate their execution.
Several communication models have been widely used in distributed systems as
well as most mobile agent systems. Typical models are Message Passing, Remote
Procedure Call (RPC/RMI), and Distributed Event Handling.

Message passing is used to support peer-to-peer communication patterns and
is the most adopted model in mobile agent systems such as Aglet[1], Mole[2],
D’Agent[3], Voyager[4], SyMPA[5],etc. Aglet supports an object-based messag-
ing framework that is flexible, extensible, rich, and both synchronous and asyn-
chronous. Mole deploys the (global) exchange of messages through a session-
oriented mechanism. Agents that want to communicate with each other must
establish a session before the actual communication can start. D’Agent supports
text-based message passing. The location and identity of the receiver should be
known by the sender. There is no guarantee for reliable message delivery because
communication is lost as soon as one peer jumps to another location. Voyager
implements message passing through the concept of virtual objects. Agents are
a special type of object in a Voyager application. Communication with a remote
object is handled by its virtual object which hides the remote location and acts
as a reference of the remote object. When messages are being sent to the remote
agent, the virtual object forwards the message to the remote object and returns
messages back if necessary. SyMPA is a mobile agents platform supporting in-
telligent agents developed in CLAIM[6], a declarative agent-oriented program-
ming language. In this platform, each agent has a queue for storing incoming

1 http://draco.cis.uoguelph.ca/main.html
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messages. Message passing among agents can be unicast, multicast or broadcast
asynchronously.

RPC and RMI are commonly used paradigms in today’s distributed pro-
gramming. Since there is no distinction in syntax between an RPC and a local
procedure call, it provides access transparency to remote operations. Several
mobile agent systems support RPC/RMI paradigm such as Mole and Voyager.
An argument against this paradigm is that under the new paradigm where mo-
bile agents can move to any remote host for data and services, why we need
RPC/RMI at all. Agents for Remote Action (ARA)[7] attempts to minimize
the remote communication through a meeting oriented paradigm. ARA provides
client/server style interaction between agents. The core provides the concept of
a service point which is the meeting point with a well known name where agents
located at a specific place can interact as clients and servers through an RPC-like
invocation on a local host.

The concept of event based communication and synchronization can be viewed
as a sophisticated paradigm of meeting oriented agent coordination. Some mo-
bile agent systems have much in common with those event frameworks employed
in GUI toolkits supported by Java and Tcl/Tk. Mobile agent systems such as
Concordia[8], D’Agent, Mole, etc., extend the event-driven programming tech-
nique to coordinate groups of mobile agents. In this paradigm, agent synchro-
nization is achieved by the objects that are defined as active entities responsible
for the coordination of an entire application or parts of it. These synchronization
objects could be user defined objects or system implemented event managers.
It is their responsibility to accept event registration, listen and receive events,
and notify interested parties when an event arises. On the other hand, an agent
participating in such groups is responsible to register a list of event types it is
interested in as well as the location it wishes events to be sent. Certainly, this
model requires the static binding of agents with their registered locations, or
otherwise event notification becomes unreliable.

Nevertheless, no matter which inter-agent communication model is selected,
the model must be implemented through a stack of dedicated communication
protocols. Interprocess communication is dependent on the ability to locate the
communication entities. This is the role of the naming services which primarily
map each entity in its name space to a fixed location in traditional distributed
systems. Mobile agents are distributed processes. However, once they are invoked
they will autonomously decide the hosts they will visit and the tasks they have
to perform. Their behavior is either defined explicitly through the agent code
or alternatively defined by an itinerary which is usually modifiable at runtime.
As a result, the mobility of agents makes it much harder to provide such kind
of name resolution service because there is virtually no way to bind a moving
agent with a static (fixed) location. Thus, existing MA systems either do not
provide the ability of automatically tracking moving agents, or overly constraint
the mobility of agents. For example, Aglet API does not support agent tracking.
Instead, it leaves this problem to applications. To avoid tracking agents during
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communication, Mole prevents agents from moving if they are involved in a
session.

Briefly speaking, locating an agent is invoking a function of “where is(A)”
which should return the current address (or access point) of A. Researchers
have recently proposed many schemes for designing such a function. Various
approaches for storing, updating, and locating mobile agents are well addressed
in [9][10].

Some communication protocols use broadcasting or multicasting approaches
to locate mobile agents. In this paradigm, location queries are broadcast to the
entire network, or multicast to a specific group of hosts. Upon receiving such
a request, each machine must check the names of hosting agents and give a
response if the requested name is found. This paradigm is mainly applicable
to intranets. It becomes inefficient in a large-scale network. Furthermore, the
answer to “where is(A)” is not accurate if A moves to another host immediately
after the answer is returned, which makes message loss unavoidable. To solve
this problem, a snapshot broadcasting strategy [11] was proposed. However,
this scheme requires agent communication and migration through a strict FIFO
channel, inhibits the movement of the located agent during message passing, and
involves a considerable system overhead.

Another popular approach is to use a fixed location server, called home, to
keep track of locations of mobile agents. In this scheme, agents follow a triangular
routing to communicate with each other, that is, a message is sent to home first,
which looks up the destination address and then simply forward the message
to the receiving agent. Unfortunately, the same problem remains. The address
returned from the lookup function “where is(A)” is ambiguous: A might still
reside at that address, or A might have moved to another host and its location
updating packet is on the way to home, or A might even have started to move
at the same time a message is sent to its current location.

Forward pointers is a promising alternative for locating mobile agents. This
scheme does not depend on a “where is(A)” lookup function. Instead, each mo-
bile agent host keeps a reference (forward pointer) for each moving agent. For
example, in Voyager, a virtual object keeps track of the remote object by its
last known address. If the remote object moves from its last location, it will
leave a secretary object behind to forward messages to its new location. The
secretary object will be removed only if a returned message has been received
by the corresponding virtual object. The advantage of this approach is that it
could automatically track down moving agents. However, it could cause a lot
of overhead and delay if remote objects involve frequent movements. Further-
more, a theoretical flaw is that messages might forever chase a frequently moving
receiver, even though this hardly occurs in practice.

Mailbox-based scheme [12] is a set of mobile agent tracking protocols pro-
posed recently. In this approach, each mobile agent is assigned with a mailbox
to buffer incoming messages. A mailbox is a mobile object and could be de-
tached from its owner, but it is not an agent-like object in the sense that it
can not make any decisions. inter-agent communication follows the triangular
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manner such that the mailbox serves as the middle access point between sender
and receiver. This scheme offers a 3D design space which includes home proto-
col, forward pointer protocol and distributed registration protocol. It also allows
users to select a parameterized protocol ranging from unreliable communication
to reliable communication. However, protocols which guarantee reliable message
delivery require expensive synchronization and location registration.

Communication between agents takes place by means of an Agent Communi-
cation Language (ACL). The essence of an ACL is to make agents understanding
the purpose and meaning of their messages. In an ACL, a message consists of two
separate aspects, namely, performative and content. The performative shows the
purpose of a message while the content gives a concrete description for achieving
the purpose. Of course, the sending agent and the receiving agent must agree
not only on the ACL but also on the content language, so that they have at
least the same understanding of the purpose and the same interpretation of the
content of a message.

Typical research in this area are KQML [13] and FIPA ACL[14]. KQML
is both a message format and message handling protocol to support run-time
knowledge sharing among agents, it offers a standard ACL that intelligent agents
can use to communicate among themselves as well as with other information
servers and clients. The syntax of KQML is based on Common Lisp. As a result,
a message is represented as a balanced parenthesis list consisting of performative,
content, and a set of optional arguments. For example, a message representing
a query in standard Prolog about the set of all answers of IBM stock is encoded
as:

(ask-all
:content ”price(ibm, [Price, Time])”
:receiver stock-server
:language standard Prolog
:ontology nyse-ticks)

FIPA is a forum of 70+ international telecommunication companies and re-
search institutes which specifies open standards focusing on languages and proto-
cols for communication, coordination, and management of heterogeneous agents.
In other words, FIPA is more like an abstract architecture which makes all
FIPA-compliant systems to communicate and interact with each other through
a common ACL.

An ACL developed by FIPA has defined several performatives of messages,
such as INFORM, QUERY-IF, CFP, PROPOSE, and so on. For example, per-
formative INFORM indicates that the content of a message is a true proposition,
whereas QUERY-IF asks if the proposition given as the content of a message is
true. On the other hand, FIPA does not prescribe the language used to express
the message content. Instead, it specifies the ACL Protocol Data Unit(PDU) as
a data structure which contains a set of one or more message elements, such
as performative, sender, receiver, language, content, etc. Precisely which ele-
ments are needed for an ACL message is application dependent, except that the
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performative element is mandatory in all ACL messages. Certainly, most ACL
messages will also include sender, receiver, and content elements.

A FIPA ACL-like PDU is given in Table 1.

Table 1. An example of a FIPA ACL-like PDU

Element Value
Performative INFORM
Sender agent@some.server
Receiver database@some.db.server
Language Prolog
Ontology genealogy
Content female(mary), mother(mary, tom)

Although the RPC/RMI model offers access transparency, it turns out that
general purpose, high level message-based models are more convenient, and of-
ten adopted by most mobile agent systems. However, it can always be argued
whether agent communication should be remote or restricted to local, consider-
ing that the most attractive motivation of mobile agents is that they are able
to migrate between locations to locate data and services as well as their peers,
and therefore avoiding remote communication. Furthermore, a communication
model is usually implemented by a stack of communication protocols. It is also
questionable whether such a protocol is actually necessary if we already have
a simple, reliable agent migration protocol. In other words, can we utilize the
mobility of agents to achieve powerful, reliable and flexible inter-agent commu-
nication?

In the area of inter-agent communication, research looked at languages that
are suitable for mobile agent programming and languages for agent communica-
tion. The goal of separating agent communication language from agent program-
ming language is to allow agents developed in different programming languages
to share information and knowledge through a common ACL. However, it can
also be argued how common such an ACL could be. For example, both KQML
and FIPA ACL are based on the core concept of performatives, which determines
the kinds of interactions one can have with an agent. Unfortunately, the perfor-
mative alone can only identify the protocol to be used to deliver the message
and to indicate purpose of communication. Another language (usually a specific
programming language) must be used to specify the content which gives the con-
crete description for achieving the purpose. It is clear that an agent in Prolog
does not have the same interpretation of the content of a message as an agent in
Java, even though they may have the same understanding of the performative.
As a result, a common ACL works fine as long as agents in communication know-
ing how to interpret the symbols in a message. This leads to another question,
can we provide a high level programming abstraction which makes the ACL and
the agent programming language consistent with each other, or more precisely,
sharing a common syntax, semantics and pragmatics?
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In response to these questions, the following section will present the agent-
based communication model in IMAGO Prolog - Intelligent Mobile Messengers
which allow communicating agents to exchange messages through Prolog terms
and unification.

3 Naming and Locating Mobile Agents

The inter-agent communication model in IMAGO Prolog has focused on sim-
plicity and ease of use, and at the same time offering more expressive power. To
better understand how our model works, we shall first distinguish messengers
from normal mobile agents (and we shall call them as workers in the rest of this
paper). A worker is a normal mobile agent created by its owner for some specific
task, whereas a messenger is an anonymous thin agent dispatched by a worker to
deliver messages. Generally speaking, a worker is purposely separated from the
location of its owner, and best equipped with as much intelligence as possible
in order to autonomously carry out the assigned task on behalf of its owner.
Unfortunately, adding more intelligence to a worker will make some sacrifices
of mobility. Thus, to deploy these thick workers directly for inter-agent commu-
nication is neither economical nor practical. This is the reason for introducing
messengers - specialized thin agents - which not only provide an agent-based
solution for inter-agent communication but also make the solution efficient and
feasible.

Clearly, each worker must have a unique name so that its owner and other
workers can communicate with it over the network. Some systems, such as Voy-
ager, adopt location-transparent names at the application level. In contrast,
systems such as Aglets and D’Agent, assign location-dependent names. For ex-
ample, an agent in Aglets is associated with a unique identifier so that every
agent in the network can be uniquely addressed by combining its identifier with
its context URL.

Obviously, identifying an agent by the combination of its identifier and its
current location does not fit well to the mobility of agents. Since a worker may
move any time to an arbitrary remote server, its current location is uncertain.
For this reason, our model adopts a location-transparent, closed-world naming
scheme to identify workers. First, we assume that a user-friendly, symbolic name
is assigned to each worker. Such a name must be unique in the application
(a closed world) where the worker is created, and immutable throughout the
worker’s lifetime. This user-friendly symbolic name is used to unambiguously
refer to the worker inside the application which it belongs to.

Secondly, we assume that each application is bound to a home location which
always exists during the lifecycle of the application. Consequently, workers of an
application are all originated from the same home. If several applications are
concurrently running at the same home, we shall use different sequencing num-
bers to distinguish them. Therefore, by concatenating the user-friendly sym-
bolic name, the home URL and the application sequencing number, we have a
location-transparent, globally unique identifier for each worker. It is worthwhile
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to note that the home URL embedded in a worker’s identifier is independent
from the worker’s current location. By using such identifiers, it is sufficient to
unambiguously refer to a worker over the internet.

Our next assumption is that a stack of protocols exists to support efficient,
reliable and strong agent migration. There is no constraint on the freedom of
agent mobility. Both workers and messengers are allowed to move freely from
one host to another. That is, they may decide where to go based on their own
will or the information they have gathered.

In IMAGO Prolog, deployment of messengers is the only way to achieve
inter-agent communication. Since messengers are in fact mobile agents, they
can be designed to serve different purposes such as asynchronous messaging,
synchronous messaging, broadcasting or multicasting, etc. To accommodate in-
coming messengers, we assume that each worker is associated with a messenger
queue which holds all messengers destined to this worker and waiting for delivery
of messages. The assumptions we made in this section are reasonable because
they are already satisfied by our implementation as well as some other mobile
agent systems.

In order to locate a moving worker, agent servers should maintain enough
information to keep track of current location of every worker. However, we have
indicated that it is virtually impossible to have the precise information about
a changing environment, because an application may involve workers which are
creating, cloning or moving all the time. To cope with such a dynamic config-
uration, our model maintains heuristic location information through distributed
registration and local updating operations, and employs a variant of forward-
pointer-based approach plus a home-based mechanism as the backup.

As we explained before, identifiers of workers have an embedded static home
location, although these workers might spread and roam over the network. This
home is the default server for workers to send their registration. A new born
worker, either by creating or cloning and regardless of born at the home host or
a remote host, must register its birth place with the home automatically. Even
though registrations take a distributed manner, i.e., registration messages might
flow to the home from different remote hosts, it does not cause much network
traffic because each worker registers only once in its whole lifecycle.

A registration message is stored as a worker record in the local cache of the
home server. A worker record is a structure of the form

{worker id, timestamp, status}

where worker id is the globally unique identifier of the worker, timestamp gives
the time the record last been modified, and status indicates the current state of
the worker. For the sake of simplicity, we assume that a worker must be in one
of three possible states: ALIVE, DISPOSED, or MOVED TO(url).

Like the home server, a remote agent server also remembers a collection of
worker records per application basis. However, it maintains caching information
through the local updating operation. Such an operation is very efficient because
it is done completely in the local system layer. In general, a worker record is
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inserted into the local cache when the worker is created or cloned locally, or the
first time it moves into this server. To make the local caching more effective in
locating a worker, a remote server should also cache sender’s information carried
by a messenger. Obviously, caching sender’s information exploits locality. For
instance, a receiving worker is most likely to reply to its sender in the near
future, and the sender’s location can be found immediately from the local cache.

An updating operation is also applied to a worker record whenever the worker
changes its state. For example, when a worker moves from host X to host Y, its
cached record at X is modified with the new state MOVED TO(Y). This is
very similar to the forward pointer scheme which leaves behind a forwarding
reference whenever an entity moves to a new location. Likewise, if the worker
moves from Y back to X, its record at X will be simply changed back to the state
ALIVE. Furthermore, updating operations can be used to short-cut a forwarding
chain. For example, suppose that a worker moves from X to Y and then to
Z. From there, the worker dispatches a messenger to a receiver at X. When
the messenger arrives, the updating operation will change the worker(sender)’s
record from the old state MOVED TO(Y) to the new state MOVED TO(Z).
Therefore, subsequent communications to that worker will be dispatched to Z
directly.

In our model, we do not intend to have a network-wise “where is(A)” lookup
function for locating the current address of A. Instead, we use a local lookup
function which returns a possible location of A. The reason for saying possible is
that the information recorded in a server’s local cache is heuristic. For instance,
if the status of a worker is recorded as MOVED TO(Y), there is no guarantee
that the worker we are looking for is still working at Y, because a worker is never
bound to an absolute host address - it may very well have moved on to another
location. However, it is guaranteed that successive lookup’s at subsequently for-
warded heuristic hosts will eventually trap the worker if the worker really wants
to accept the messenger.

Now, let us consider the general lookup facility for remote servers. The prin-
ciple is very simple. We only search the local cache to find where the worker pos-
sibly resides in. This lookup function will never return something like WORKER
NOT FOUND. Instead, it either returns the value of the current status from
the located worker record, or a special status MOVED TO(home) if a cache
miss occurs. Since a remote server might host multiple concurrent agents (work-
ers and messengers), the lookup operation and the updating operation must be
mutual exclusive. That is, when a messenger has to locate a worker and deliver
message, it must lock the cached worker record (critical region) to achieve mu-
tual exclusion and ensure that the worker is not able to change its state at the
same time.

The lookup function on the home server is analogous to the above description.
In principle, there is no cache miss because the home should hold a complete
set of worker records. However, what possibly happens in practice is that a
messenger is dispatched to a worker who might have not been created yet or
whose registration message might be on the way home. To solve this problem,
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the lookup function simply blocks this messenger. A blocked messenger will be
resumed if a new registration with a matching receiver arrives.

A messenger is an agent. It has its own code to be executed. There are many
ways to design messengers for different purposes. To make it easier to understand,
we will start out by discussing a very important system primitive. Then we will
look at a simple messenger and discuss its behavior in some detail.

System primitives serve as the interface between agents and the underlying
system. In addition to the commonly used primitives such as create, move, clone,
etc., another primitive which plays a major role in between workers and mes-
sengers is attach. The following code segment shows the skeleton of the attach
primitive.

attach(receiver){
lock(local cache);
r = lookup(receiver);
if (r == ALIVE){

// insert this messenger into
// the receiver’s messenger queue
unlock(local cache);
// context switch to another ready agent

}
else {

unlock(local cache);
return r;

}
}

The basic idea behind a messenger is try to track down the receiver until its
message is accepted. To achieve such behavior, a messenger simply invokes the
following recursively defined deliver function.

deliver(receiver, message){
r = attach(receiver);
if (r == RECEIVED || r == DISPOSED)

dispose();
else { // r == MOVED TO(url)

move to(url);
deliver(receiver, message);

}
}

A messenger starts by invoking a call to attach which will issue a lookup mutual
exclusively. Only two possible cases make the attach return immediately: the
receiver has deceased locally, or the receiver has moved to another host. Recall
that MOVED TO(home) will be returned if a cache miss occurs in a lookup, so
that it seems as if the receiver has migrated to home. Therefore, the messenger
will either follow the receiver by calling move and then try to deliver at the new
host, or simply dispose itself if the receiver no longer exists.
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On the other hand, if the receiver is ALIVE at the current host, the attach
primitive will insert the caller into the receiver’s messenger queue and then make
it suspended. The underlying system is free to schedule another runnable agent
to execute. It is now the receiver’s responsibility to resume an attached mes-
senger based on different actions it is going to perform. Certainly, the receiver
might invoke an accept-like primitive. If this happens, the accepted messenger
is resumed as soon as its carried message has been transferred to the worker’s
working space. Unfortunately, whether attached messengers will be accepted by
its receiver is unknown, because the receiving worker might not be ready to ac-
cept any messenger yet. For instance, it is possible that the worker moves to
another host while there are pending messengers. It is possible that the worker
disposes itself without accepting messengers. It is also possible that the worker
clones itself while it has a non-empty messenger queue. Nevertheless, these pos-
sible cases are facing with the same problem, namely, how the receiver deals with
pending messengers.

From the well-known semantics of strong migration, a mobile agent should
take its code, data and execution state together when it moves to a new location.
Unfortunately, such semantics have a flaw of ignoring messages. In fact, messages
to an agent should also be a part of the agent. If they have been received, they
become a portion of data. If they have not been received (either buffered by
the underlying system or still in transmission), then they should go with the
agent together whenever the agent moves. Therefore, the highest degree of strong
migration is to take four parts of an agent, i.e., code, data, state and messages,
into consideration.

Although it sounds more difficult, the solution in our model is straightforward.
A worker simply resumes all attached messengers if it moves. Likewise, a worker
resumes all pending messengers if it disposes itself. Now consider what happens,
for example, when a messenger is resumed by the receiver it was attached to. At
this point, it seems as if the call to attach has just returned. However, the returned
value might be one of the three possible cases now: RECEIVED, DISPOSED or
MOVED TO(url). Therefore, the resumed messenger must be able to cope with
different cases and try to re-deliver themessage if themessage has not been received
yet and the receiver is still alive.

This is why a messenger will invoke attach each time it moves to a new place.
A messenger claims that “I can track the receiver down provided I have the trail
of the receiver”, whereas our lookup facility says that “the location I found is
where most likely the receiver resides at, or at least the receiver has lived”. In
other words, the heuristic location from the lookup facility provides the trail of
the receiving worker while leaves the tracking-down job to the messenger.

4 Inter-agent Communication

To be consistent with the standard Prolog, the IMAGO Prolog introduces system
directives for agent module declarations. For example, the following code segment
specifies that the Prolog text bracketed between the pair of directives worker(...)
and end worker(...) defines an agent prototype named as stock buyer.



174 X. Li and G. Autran

:- worker(stock buyer).
stock buyer(Arg) :-

worker body, ...
:- end worker(stock buyer).

Like other logic programming systems, IMAGO Prolog Application Program-
ming Interface(API) is presented as a set of builtin predicates. This set consists
of builtin predicates common to most Prolog-based systems and new builtin
predicates specially designed for mobile agent applications [15]. Typical pred-
icates include create which spawns an instance of mobile agent from a given
worker prototype, clone which forks a duplicate of the calling worker, and move
which allows an agent to migrate to a destined host.

At any stage of execution, a worker can dispatch a messenger to deliver a
message to another worker. Predicate dispatch takes three arguments: the name
of a messenger prototype, the name of receiver, and the message represented by
a Prolog term. A messenger has its own code to be executed, which includes
tracing and locating the receiving worker, and delivering message.

There are many ways to design messengers for different purposes. To make
messengers easy to use, the IMAGO Prolog provides a set of system messengers
as a part of its API. For example, the current release of IMAGO Prolog (version
1.0) supports the following list of system messengers.

$oneway messenger: delivers a message to the receiver;
$multicasting messenger: generates multiple clones to deliver a message to

a group of receivers in parallel;
$postman messenger: sequentially delivers a list of mails to a list of workers;
$paperboy messenger: sequentially delivers a copy of message (like a copy

of newspaper) to a list of subscribers;
$cod messenger: delivers a message to the receiver and carries the message

unification back to the sender (Cash On Delivery);
$collecting messenger: sequentially collects unification of a list of variables

from a list of workers and carries the unification results back to the sender.

The main advantages of system messengers lie in their reliability and effi-
ciency. System messengers are carefully designed and fully tested. The varieties
of system messengers are sufficient for most mobile agent applications. In addi-
tion, the code of system messengers are cached in every IMAGO server. As a
consequence, migration of a system messenger only involves moving its message
and run time stack. We call this technique as zero-code migration which greatly
reduces the overhead of agent migration. For the sake of flexibility, we also al-
low users to define their application-specific messengers. However, user designed
messengers can be dispatched from the home server only, because the IMAGO
system has to load the user messenger code from the local secondary storage
while file access is strictly forbidden on any remote server for security reason.

The dispatcher of a messenger only specifies who is the receiver and the
message to be delivered, it is the messenger’s responsibility to locate the receiving
agent. In general, the receiver may be a single worker name, or a non-empty list
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of worker names such as demonstrated by the $multicasting messenger and the
$postman messenger.

In IMAGO Prolog, messages are represented purely by Prolog itself. In other
words, the language element specifies that the message content is expressed as a
Prolog term which could be an atom, a variable, a list, or a compound structure.
Compare with other ACLs, performatives of messages are implicitly determined
by the messenger type. For example, a messenger created from $cod messenger or
$collecting messenger delivers a QUERY-IF message while a messenger created
from other messenger prototypes carries a message with a default performative
INFORM.

Obviously, the performative and content of a message often determine the
reaction of the receiver. In addition to the various types of system messengers
for sending agents, the IMAGO Prolog provides a set of builtin predicates for
receiving agents. The predicate which is similar to an unblocking receive is ac-
cept(Sender, Msg). An invocation to this predicate succeeds if a matching mes-
senger is found, or fails if either the caller’s messenger queue is empty or there is
no matching messenger in the queue. Likewise, the predicate which implements
blocking receive is wait accept(Sender, Msg). A call to this predicate succeeds
immediately if a matching messenger is found. However, it will cause its caller
to be blocked if either the caller’s messenger queue is empty, or no matching
messenger can be found. In this case, it will be automatically re-executed when
a new messenger attaches to the caller’s messenger queue.

Pragmatically, the semantics of matching messenger is implemented by Pro-
log unification. Let (S, M) be the sender and content element carried by a mes-
senger, and (Sender, Msg) be the arguments of an accept-like primitive, the
messenger is a matching messenger to the accept-like primitive if the general
unification of (S, M) and (Sender, Msg) succeeds. A messenger attached to an
imago is ready to be searched by accept/2 or wait accept/2. The behavior of an
accepting predicate is determined by Table 2: it succeeds if one of the cases in
the table is satisfied, or it fails/waits otherwise. A failed accepting predicate does
not cause any side effect and the messenger queue remains unchanged.

Table 2. Behavior of Accepting Predicates

Sender Msg Behavior
var var the 1st message
var nonvar the 1st message unifying with Msg
nonvar var the 1st message unifying with Sender
nonvar nonvar the 1st message unifying with both

Msg and Sender

For example, suppose worker alice executes the following code:

current host(H),
Msg = exchange(H, Y),
dispatch($cod messenger, white rabbit, Msg),
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wait accept(white rabbit, Msg),
show(Y),
...

and worker white rabbit evaluates:

current host(H),
Msg = exchange(X, H),
wait accept(alice, Msg),
show(X),
...

The behavior of the execution looks like a synchronous remote unification.
By dispatching one $cod messenger, both alice and white tabbit finally receive
the same Msg which make them to exchange their host addresses.

5 Communication Patterns

The concept of messengers offers flexibility to simulate different patterns of agent
communication. Users not only have choices to dispatch different messengers for
various purposes, but also have the freedom to accept messengers either selec-
tively or in some priority order (based on the binding of the sender’s name and
the message). In this section, we show a few possible communication patterns.

First-Come-First-Serve Receiving:

w(...) :-
wait accept(Who, Msg),
// processing Msg
w(...).

Selective Receiving:

w(...) :-
wait, // wait for a new message
w1(...).

w1(...) :-
accept(Who, selected(M)), !,
// process selected(M) from Who
w(...).

w1(...) :-
accept(my buddy, Msg), !,
// process Msg from my buddy
w(...).

w1(...) :-
accept(W, M), !,
// process any message M from any sender W
w(...).
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Ordered Receiving:

w(...) :-
wait accept(W, first(X)),
// process the message unifies with first(X)
wait accept(W, second(Y)),
// process the message unifies with second(Y)
other processing(...).

To illustrate how the IMAGO Prolog semantics is actually satisfied during
inter-agent communication, let us take a look at another example. Suppose that
three worker instances, namely, a producer, a consumer and an unbounded buffer
stack are created from the following agent prototypes respectively.

:- worker(ima producer).
ima producer(Stack)) :-

produce(X),
dispatch($oneway messenger, Stack, push(X)),
ima producer(Stack).

produce(X) :-
// code to produce X.

:- end worker(ima producer).

:- worker(ima consumer).
ima consumer(Stack) :-

dispatch($cod messenger, stack, pop(X)),
wait accept(stack, pop(X)),
consume(X),
ima consumer.

consume(X) :-
// code to consume X.

:- end worker(ima consumer).

:- worker(ima stack).
ima stack([]) :-

wait accept( , push(X)), !,
ima stack([X]).

ima stack([X|L]) :- accept( , pop(X)), !,
ima stack(L).

ima stack(L) :- accept( , push(X)), !,
ima stack([X|L]).

ima stack(L) :- wait,
ima stack(L).

:- end worker(stack).

Let us now take a closer look at the behavior of different agents in this
example. The producer agent repeatedly generates an item X and then dispatches
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an $oneway messenger to deliver a push(X) message to the stack agent. On the
other hand, the consumer agent repeatedly dispatches an $cod messenger to the
stack agent requesting a pop(X) operation, waits for the messenger coming back
with an instantiated X, and then consumes X.

To prevent stack underflow, the stack agent only accepts a messenger who
carries a push(X) message if the stack is empty. Otherwise, it tries to accept any
available messenger and takes the corresponding action. If there is no messenger
in its current messenger queue, the stack agent calls wait which blocks the caller
and resumes it as soon as a new messenger arrives. As we mentioned before, the
purpose of an $oneway messenger is to inform that the content of its message is
a true proposition. Thus the stack agent simply accepts this proposition, i.e., the
push(X). However, the purpose of an $cod messenger is to query if the content
of its message is a true proposition. It is the $cod messenger’s responsibility to
inform its sender when the query, i.e., the pop(X), is evaluated. In order to match
a query-type messenger, unification must be carried in both sides, namely, one
in stack’s working space and another in the messenger’s working space.

Even though IMAGO Prolog aims at mobile agent applications, the agent-
based communication model can be used to simulate remote procedure calls in
the client/server model as well. For example:

:- worker(server).
server :-

wait accept(W, Goal),
clone( , R),
R == clone →

call(Goal),
dispatch($oneway messenger, W, Goal),
dispose;
server.

// definitions of procedures
....

:- end worker(server).

In essence, the above code segment gives a concurrent server organization,
i.e., the server does not handle the RPC request itself, but passes the RPC to
a separate worker, after which it immediately waits for the next incoming RPC.
More precisely, when a server agent is started, it waits for an incoming mes-
senger and clones itself as soon as an RPC (represented by Goal) is received.
After cloning, the original worker loops back to wait and accept the next mes-
senger, whereas the cloned worker issues a call(Goal) to execute the procedure,
dispatches a messenger back to the caller to report execution result, and then
disposes itself. It is worthwhile to note that the clone predicate is implemented
in an efficient way in IMAGO Prolog, we only need to allocate an execution
stack to the cloned worker and let it share the same code segment as its cloner.

The advantage of our Prolog-based ACL is that inter-agent communication
fulfills the semantics defined by the language (Prolog) of the content expression.
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6 Conclusion

In this paper, we discussed different communication concepts for inter-agent
communication, and investigated these concepts with respect to existing mobile
agent systems. The major concern of our discussion has focused on the com-
munication models and agent communication languages. Based on the survey,
we presented an agent-based model which deploys intelligent mobile messengers
for inter-agent communication. We have successfully implemented the IMAGO
Prolog as well as its execution platform. An evaluation release of the IMAGO
system is available on the IMAGO Lab web site.

The advantage of our agent-based model is that a simple, reliable agent mi-
gration protocol is sufficient to support both agent migration and inter-agent
communication. Moreover, we provided a high level programming abstraction
which makes the ACL and the agent programming language integrated within
the same framework - the IMAGO Prolog. The advantage of our Prolog-based
ACL is that inter-agent communication fulfills the semantics defined by the lan-
guage (Prolog) of the content expression. However, besides this contribution,
our proposed Prolog-based ACL is more limited than existing ACLs (FIPA ACL
particularly). For example, it is not possible to define protocols and follow the
flow of a conversation. In addition, performatives in our ACL are implicit which
might limit the expressive power in inter-agent communication.

Although this study concentrates on the design of inter-agent communication
mechanism in mobile agent systems, results will be also useful in related disci-
plines of network/mobile computing and logic programming community. Finally,
we would like to express my appreciation to the Natural Science and Engineering
Council of Canada for supporting this research.
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Abstract. In this paper, we propose a framework for modelling agent
organizations, Omni, that allows the balance of global organizational re-
quirements with the autonomy of individual agents. It specifies global
goals of the system independently from those of the specific agents that
populate the system. Both the norms that regulate interaction between
agents, as well as the contextual meaning of those interactions are im-
portant aspects when specifying the organizational structure. Omni in-
tegrates all this aspects in one framework. In order to make design of the
multi-agent system manageable, we distinguish three levels of abstrac-
tion with increasing implementation detail. All dimensions of Omni have
a formal logical semantics, which ensures consistency and possibility of
verification of the different aspects of the system. Omni is therefore ut-
most suitable for the modelling of all types of MAS from open to closed
environments.

1 Introduction

In closed domains, the design of MAS can suffice with the idea that agents
are mere performers of organizational roles or functions, interacting according
to fixed protocols and unable to deviate from expected behavior [21]. As such,
agent autonomy is rather limited. In open domains, agents are self-governed
autonomous entities that pursue their own individual goals based only on their
own beliefs and capabilities [1].

Comprehensive models for MAS must, on the one hand, be able to specify
global goals and requirements of organizations but, on the other hand, cannot as-
sume that participating agents will act according to the needs and expectations
of the system design. Concepts as organizational rules [20], norms and insti-
tutions [6], [7], and social structures [13] arise from the idea that the effective
engineering of MAS needs high-level, agent-independent concepts and abstrac-
tions that explicitly define the organization in which agents live [21]. These are
the rules and global objectives that govern the activity of an enterprise, group,
organization or nation.

Given that agents might deviate from expected behavior, open societies need
mechanisms to systematize, defend and recommend right and wrong behavior,
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which can inspire trust into the agents that will join them. Norms are commonly
used means to describe such expected behavior. Finally, organizational models
must provide means to represent concepts and relationships in the domain that
are rich enough to cover the necessary contexts of agent interaction while keeping
in mind the relevance of those concepts for the global aims of the system.

In this paper we propose a framework for agent organizations, Omni(Organi-
zational Model for Normative Institutions) presenting a first attempt to cover
all the above mentioned aspects in a way that is usable for both open and closed
systems.

The paper is organized as follows: In §2 we present a generic description of
the Omni framework. In §3, we discuss the abstract level of an organization.
Then we will focus on the description of the Organizational dimension (§4), the
Normative dimension (§5) of the e-Organization and present an outline in §6 of
the kind of ontologies and communication languages needed in the Ontological
Dimension. In §7 we compare our framework with other well known models.
We end this document with our conclusions and outline future lines of research.
Throughout the paper the different components of a society are illustrated using
an organization that has as main global objective the realization of conferences.

2 The Omni Framework

Omni is an integrated framework for modelling a whole range of MAS, from
closed systems with fixed participants and interaction protocols, to open, flexible
systems that allow and adapt to the participation of heterogeneous agents with
different agendas. This approach is rather unique, as most existing frameworks
concentrate in a specific type of MAS. Omni is composed by three dimensions:
Normative, Organizational and Ontological that describe different charac-
terizations of the environment. The model is based on two recent MAS models,
OperA [5], and HarmonIA [18]. Figure 1 depicts the different modules that
compose our proposed framework organized into three levels of abstraction:

– the Abstract Level: where the statutes of the organization to be modelled
are defined in a high level of abstraction. This step is similar to a first step
in the requirement analysis. It also contains the definition of terms that are
generic for any organization (that is, that are incontextual) and the ontology
of the model itself.

– the Concrete Level: where all the analysis and design process is carried
on, starting from the abstract values defined in the previous level, refining
their meaning in terms of norms and rules, roles, landmarks and concrete
ontological concepts.

– the Implementation Level: where the design in the Normative and Or-
ganizational dimensions is implemented in a given multi-agent architecture,
including the mechanisms for role enactment and for norm enforcement.

The division of the system into these three levels aims to ease the transition
from the very abstract statutes, norms and regulations to the very concrete
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Fig. 1. The Omni framework

protocols and procedures implemented in the system. Different domains have
different requirements concerning normative, organizational and communicative
characteristics, which means that not always all three modules have the same
impact or are even needed: in those domains with none or small normative
components, design is mainly guided by the Organizational Dimension, while in
highly regulated domains the Normative Dimension is the most prominent.

3 The Abstract Level

Statutes indicate, at the most abstract level, the main objective of the organiza-
tion, the values that direct the fulfilling of this objective and they also point to
the context where the organization will have to perform its activities.

In the conference scenario, we can take as example a research consortium
such as the IFMAS (International Foundation for Multi-Agent Systems). The
statutes state: ”IFMAS is a non-profit corporation whose purpose is to promote
science and technology. In pursuit of its purposes, IFMAS will engage in activ-
ities including, but not limited to: (1) Coordinating and arranging seminars on
artificial intelligence and multi-agent systems; (2)...”. In this statement we can
find:

1. the objectives: the main objective of this organization is to promote science
and technology. Another objective is the organization of seminars.

2. the context : IFMAS states that it operates in the area of artificial intelligence
and multi-agent systems.

3. the values: The IFMAS is a non-profit organization. Implicit in the latter
part, it also says that sharing is also a value of the organization.

The objectives of the organization express the overall goals of the society. As
far as the organization has control over the actions of the agents acting within
that organization, it will try to ensure that they perform actions leading to the
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overall goal of the society. We will see in §4.1 and §4.2 how these objectives
influence the design process in the Organizational Dimension.

The values of the organization are beliefs that individuals have about what
is important, both to them and to the society as a whole. A value, therefore,
is a belief (right or wrong) about the way something should be. Values define
beliefs about, for instance, what is acceptable or unacceptable, good or bad. In
our framework, values are the basis of the Normative Dimension.

The environment, or context, of an organization can be seen as consisting
essentially of other societies or organizations that are interdependent and each
influence the other.

4 The Organizational Dimension

The design of agent organizations must capture on the one hand, the structure
and requirements of the society owners, and on the other hand, must assume that
participating agents must be available that are able and interested in enacting
society roles. In Omni, the Organizational Dimension consists of a 3-layered
model: based on the concerns identified in the Abstract Level, the Concrete
Level specifies the structure and objectives of a system as envisioned by the
organization, and the Implementation Level describes the activity of the system
as realized by the individual agents. This separation enables Omni models
to respect the autonomy of individual agents while ensuring conformance to
organizational aims.

4.1 The Organizational Abstract Level

The abstract level of the Organizational Dimension describes which are the aims
and concerns of the organization with respect to the social system. At the ab-
stract level, as we saw in §3, this is defined by means of a list of the organization’s
externally observable objectives, that is, the desired states of affairs in the life
of the society. These abstract objectives are translated into the specific objec-
tives of the society model. In the case of our example, the abstract objective
of ”coordinating and arranging seminars...” is translated into the objective of
organizing a specific conference.

A common way to express the objectives of an organization is in terms of
its expected functionality. The determination of the overall objectives of the
society follows a process of elicitation of functional (what) and interaction (how)
requirements. For example, how should a conference be organized, in terms of
program, location, co-located workshops, etc. To identify the objectives of an
organization, it is important to characterize the different stakeholders (who) of
the organization, their requirements, expectations, constraints and relationships
to each other. Stakeholders in the conference scenario are researchers, organizers,
etc. Stake holders are the basis for the identification of roles in the concrete level
of specification of an organization (see §4.2).
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4.2 The Organizational Concrete Level

The Concrete Level of the organizational dimension specifies the means to achieve
the objectives identified in the the abstract level as an Organizational Model
(OM). The OM describes the structure and global characteristics of a domain
from an organizational perspective. That is, from the premise that it is the
society goals that determine roles and interaction norms. Organizational charac-
teristics of an agent society are specified in the OM in terms of its Social (§4.2)
and Interaction Structures (§4.2).

The definition of these structures alone is not enough, as specification of a
society should include the description of concepts and relations holding in the
domain, and of those behaviours accepted as ’good’. Therefore, these structures
should be linked with the role norms, scene norms and transition norms, de-
fined in the concrete level of the Normative Dimension (see §5.2), and with the
ontologies and communication languages defined in the concrete level of the
Ontological Dimension (see §6).

The organization design is also guided by the coordination needs of the do-
main. These determine the type of roles and tasks necessary to facilitate the
tasks of the organization. We identify three basic coordination types: market,
hierarchy and network that are defined as Architectural Templates.

The Social Structure. The social structure of an organization describes the
roles holding in the organization. It consists of a list of role definitions, Roles
(including their objectives, rights and requirements), such as PC-member, pro-
gram chair, author, etc.; a list of role groups’ definitions, Groups; the relations
between roles by a Role Hierarchy graph, and a Role Dependencies graph.

Roles are the main element of the Social Structure. From the society per-
spective, role descriptions should identify the activities and services necessary
to achieve society objectives and enable to abstract from the individuals that
will eventually perform the role. From the agent perspective, roles specify the
expectations of the society with respect to the agent’s activity in the society. In
Omni, the definition of a role consists of an identifier, a set of role objectives,
possibly sets of sub-objectives per objective, a set of role rights, a set of norms
and the type of role. An example of role description is presented in table 1. The
meaning and relationships between the concepts used is formally specified in the
Ontological Dimension, and the formal specification of norms in the Normative
Dimension.

Groups provide means to collectively refer to a set of roles. Moreover, groups
are used to specify norms that hold for all roles in the group. Groups are defined
by means of an identifier, a non-empty set of roles, and the group norms. Norms
of a group must be consistent with the norms of the roles in the group. An
example of a group in the conference scenario is the organizing team consisting
of the roles program chair, local organizer, and general chair.

Abstract society objectives form the basis for the definition of the objectives
of roles. The distribution of objectives in roles is defined by means of the Role
Hierarchy. Different criteria can guide the definition of Role Hierarchy. In par-
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Table 1. PC member role description

Id PC member

Objectives paper reviewed(Paper,Report)

Sub-objectives {read(P), report written(P, Rep), review received(Org, P, Rep)}
Rights access-confmanager-program(me)

Norms & PC member is OBLIGED to understand English

Rules IF paper assigned THEN PC member is OBLIGED

to review paper BEFORE given deadline

IF author of paper assigned is colleague

THEN PC member is OBLIGED to refuse to review ASAP

Type external

Fig. 2. Role dependencies in a conference

ticular, a role can be refined by decomposing it in sub-roles that, together, fulfill
the objectives of the given role. This refinement of roles defines Role Dependen-
cies. A dependency graph represents the dependency relations between roles.
Nodes in the graph are roles in the society. Arcs are labelled with the objectives
of the parent role for whose realization the parent role depends on the child role.
Part of the dependency graph for the conference society is displayed in figure 2.
For example, the arc between nodes PC-Chair and PC-member represents the
dependency PC-Chair �paper−reviewed PC-member. The way the objective g in
a dependency relation r1 �g r2 is actually passed between r1 and r2 depends
on the coordination type of the society, defined in the Architectural Templates.
In Omni, we identify three types of role dependencies: bidding, request and del-
egation.
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Fig. 3. Landmarks pattern for review process

The Interaction Structure. Interaction is structured in a set of meaningful
scenes that follow pre-defined abstract scene scripts. Examples of scenes are the
registration of participants in a conference, which involves a representative of
the organization and a potential participant, or paper review, involving program
committee members and the PC chair. A scene script describes an scene by its
players (roles), its desired results and the norms regulating the interaction. In
the OM, scene scripts are specified according to the requirements of the society.
The results of an interaction scene are achieved by the joint activity of the
participating roles, through the realization of (sub-)objectives of those roles. A
scene script establishes also the desired interaction patterns between roles, that
is, a desired combination of the (sub-) objectives of the roles.

Table 2. Script for the Review Process scene

Scene Review Process

Roles Program-Chair (1), PC-member(2..Max)

Results r1 = ∀ P ∈ Papers: reviews done(P, review1, review2)

Interaction Patterns PATTERN(r1): see figure 3

Norms & Rules Program-Chair is PERMITTED to assign papers

PC-member is PERMITTED to review papers assigned

before deadline

In Omni, interaction description is declarative in nature, rather than describ-
ing the exact activities. Interaction objectives can be more or less restrictive,
giving the agent enacting the role more or less freedom to decide how to achieve
the role objectives and interpret its norms. Following the ideas of [15], we call
such expressions landmarks, that is, conjunctions of logical expressions that are
true in a state. Figure 3 shows the informal landmark pattern for the Review
Process.

Several different specific actions can bring about the same state, that is, land-
marks actually represent families of protocols. The use of landmarks to describe
activity enables the actors to choose the best applicable actions, according to
their own goals and capabilities.

The relation between scenes is represented by the Interaction Structure (see
figure 4). In this diagram, transitions describe a partial ordering of the scenes,
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Fig. 4. Interaction Structure in the Conference scenario

plus eventual synchronization constraints. Note that several scenes can be hap-
pening at the same time and one agent can participate in different scenes si-
multaneously. Transitions also describe the conditions for the creation of a new
instance of the scene, and specify the maximum number of scene instances that
are allowed simultaneously. Furthermore, the enactment of a role in a scene may
have consequences in following scenes. In these cases the evolution relations be-
tween roles describe the constraints that hold for the role-enacting agents as
they move from scene to scene.

4.3 The Organizational Implementation Level

Omni assumes that individual agents are designed independently from the so-
ciety to model goals and capabilities of a given entity. Individual agents will join
a society as enactors of organizational role(s), as a means to realize their own
goals [3].

Social Model. Agent populations of the organizational model are described
in the social model (SM) in terms of commitments regulating the enactment of
roles by individual agents. Depending of the specific agents that will join the
organization, several populations are possible for each organizational model.

When an agent applies, and is accepted, for a role, it will commit itself to the
realization of the role goals and to act within the society according to the role
constraints. The commitments are specified as social contracts. A social contract
describes the conditions and rules applying to an agent enacting role(s) in the
agent society. Given an agent society S, a social contract for agent s enacting
role r is defined as a tuple

social-contract = 〈a, r, CC〉

where a is an agent, r ∈ roles(S) is a role, and CC is a set of contract clauses
(including (1) the time period the contract holds -either from date to date,
or until certain states hold; (2) specific agreements and conditions governing
the role enactment, and (3) the sanctions to take when norms are violated).
In the conference scenario, when a researcher becomes PC member, her social
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contract will describe for example the agreements concerning number of papers
to review (which possibly may deviate from the standard number desired by the
conference).

Social contracts identify role enacting agents (reas) that compose the society.
For each agent, the rea reflects the agent’s own requirements and conditions con-
cerning its participation in the society. Making agreements explicit and formal,
allows the verification of whether the animated society behaves according to the
design specified in the OM. Social contracts in Omni are a two-sided agreement
between agents and roles instead of a one-sided API description of role enact-
ment, as have been proposed by other researchers [16, 12]. In the extreme, if all is
expressed in the role definition and no room is left for negotiation, Omni social
contracts can function as these API’s.

Interaction Model. Omni provides two levels of specification for interactions.
While the OM provides a script for interaction scenes according to the organiza-
tional aims and requirements, the IM, realized in the form of contracts, provides
the interaction scenes such as agreed upon by the agents. Due to the autonomous
behavior of agents, the interaction model must be able to accommodate other
interaction contracts describing new, emergent, interaction paths, to the extent
allowed by the organizational and social models.

An interaction scene results from the instantiation of a scene script, described
in the OM, to the reas actually enacting it and might include specializations or
restrictions of the script to the requirements of the reas. An interaction contract
describes the conditions and rules applying to interaction between agents in the
agent society. That is, the clauses in an interaction contract specify actual in-
stantiations of interaction scene scripts and must indicate the actors involved
and the specific agreements and sanctions concerning the scene to be played.
The contract must furthermore involve sufficient reas to cover all the needed
roles in the scene. Besides the refinement of the script to the desires and charac-
teristics of the agents participating in the scene instance, interaction contracts
must describe the protocol agreed by those agents to fulfil the script landmarks.
Interaction protocols are the concrete representation of the refinement of scene
script landmarks with the particularities imposed by the participants to the spe-
cific communicative capabilities of those participants. Given a society S and a
scene s ∈ scenes(S), an interaction contract is defined as a tuple

interaction-contract = 〈A, s, CC, P 〉
where the set of agents A = {a ∈ Agents : rea(a, r, s)|r ∈ roles(s)} represents
the set of all agents enacting reas participating in interaction scene s, CC is
a set of contract clauses, that is, possible conditions and deadlines concerning
the results and interaction patterns of scene s, and P is the protocol to be fol-
lowed. Protocols describe the actual interaction between reas. A rea interaction
protocol describes a communication pattern for reas that fulfills the scene script
landmarks. In the conference scenario, an interaction contract for the Review
Process scene can specify, for example, that actors will follow the ConfMaster
protocol.
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5 The Normative Dimension

In the same way as the Organizational Dimension, the Normative Dimension is
composed by the different levels of abstraction. The translation steps from one
level to the following are described in a formal way, as we aim to to be able
to verify if a given organization complies to all the norms that are specified in
the regulations. The connection between levels is very useful not only in its top-
down direction (guiding the design), but also from bottom up (agents can trace
the origin of a given protocol and reason in terms of the rules and norms the
protocol implements).

5.1 The Normative Abstract Level

The values and objectives of an organization described in the Abstract Level, can
be described as the desires of the society model. For example, for the Conference
Society :

– the information sharing value can be described as D(share(info)),
– the non-profit value can be described as D(non-profit(organization)),

However, besides a formal syntax, this does not provide any meaning to the
concept of value. That is, values do not specify how, when or in which conditions
individuals should behave appropriately in any given social setup. This will be
defined later by abstract norms, concrete norms and rules (see section 5.2). In
Omnithe meaning of the values is defined by the norms that contribute to this
value. In an intuitive way we can see this translation process as follows:


org D(ϕ) �→ Oorg(ϕ)

meaning that, if an organization org values situations where ϕ holds higher than
situation where ϕ does not hold, then such value can be translated in terms of
a norm (an obligation of the organization org) to fulfill ϕ. In our framework a
norm contributes to a value if fulfilling the norm always leads to states in which
the value is more fully accomplished. So, each value has attached a list of norms
that contribute to that value.


IFMAS D(share(info)) �→ OIFMAS(disseminate(research))

We define ANorms (the language for abstract norms) to be a deontic logic
that is temporal, relativized (in terms of roles and groups) and conditional, i.e.,
an obligation to perform an action or reach a state can be conditional on some
state of affairs to hold, it is also meant for a certain type (or role) of agents and
should be fulfilled before a certain point in time. For instance, the following norm
might hold: “The authors should submit their contributions before the deadline”,
which can be formalized as:

Oauthor(submit(paper) < Deadline)

The obligation is directed towards the author, assuming that she is respon-
sible for fulfilling it.
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5.2 The Normative Concrete Level

In order to check norms and act on possible violations of the norms by the agents
within an organization, the abstract norms have to be translated into actions and
concepts that can be handled within such organization. To do so, the definition
of the abstract norms are iteratively concretized into more concrete norms, and
then translated into the rules, violations and sanctions that implement them.

The Norm Level. The norms at this level are described in CNorms (the
language for concrete norms), which we assume for the moment to be equal
to ANorms, but which might use different predicates. In addition we define a
function I: ANorms → CNorms which is a mapping from the abstract norms
to the concrete ones. For each abstract norm I indicates how it can be fulfilled by
fulfilling concrete norms within the context of this organization. This function
is based on the counts-as operator as developed in [8].

There are several ways in which norms can be abstract and thus several
ways to make them more concrete [18]. As an illustration of this process, in the
following we describe two kinds of abstractness.

Abstract actions: Actions that can be implemented in many ways. For exam-
ple: “submitting a paper”. The translation in this case is a kind of definition of
the abstract action in terms of concrete ones:

send mail(organizer, files) ∪ send post(organizer, hard copies)
�IFMAS submit(paper)

Temporal abstractness: Often there is an implicit deadline for obligations.
E.g., the obligation of reviewing the paper occurs only if the paper is assigned,
and if so the review should be done before the deadline:

done(assign paper(P,me,Deadline)) →
OPC member(review paper(P, Rep) < do(pass(Deadline)))

The Rule Level. The translation from norms to rules in Omni marks a tran-
sition from a normative perspective to a more descriptive one. Such translation
also implies a change in the language, from deontic logic to a Propositional Dy-
namic Logic (a language more suitable to express actions and time constraints).
Each norm can be translated into:
a) a violation expression: by using the following reduction rule by Meyer [10]:

O(α) �→ [¬α] V

b) a precedence expression: in those cases where the norm expresses temporal
relations among actions, such relation can be also expressed through the [ ]
operator as follows:

O(α < do(β)) �→ [β] done(α)
O(α < do(β)) �→ ¬done(α) → [β] V
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The first reduction rule translates the temporal constraint of α being done before
β with an expression in Dynamic Logic that states: ”once action β is performed,
it should always be the case that action α has been done”. The second reduction
rule expresses the violation condition: ”if action α has not been done, once action
β is performed it always is the case that violation V occurs”.

Table 3. Formal specification of PC member role

Id PC member

Objectives paper reviewed(Paper,Report)

Sub-objectives {read(P), reported(P, Rep), review received(Org, P, Rep)}
Rights access-confman-program(me)

Norms OP C member(understand(English))

done(assign paper(P,me,Deadline)) →
OP C member(review paper(P, Rep) < do(pass(Deadline)))

done(assign paper(P,me, )) ∧ is a direct colleague(author(P)) →
OP C member(review refused(P) < pass(TOMORROW))

Rules done(assign paper(P,me,Deadline)) ∧ ¬done(review paper(P, Rep))

→ [pass(Deadline)] V4

done(assign paper(P,me, )) ∧ is a direct colleague(author(P)) ∧
¬done(review refused(P)) → [pass(TOMORROW)] V5

Type external

By means of this refinement process, the designer can obtain all the norms
and rules that apply in the system, and then include them in the organizational
model. An example of the formalization of the role norms introduced in table 1
is given in table 3.

In Omni, violations are the key concept in norm enforcement. We separate
the violations coming from the behavior of external entities (external violations)
from the ones related to the behavior of the internal agents (internal violations)

Internal violations describe states that the organization should always avoid.
As the designer has full control of the design of the organization’s own agents,
such internal agents will fully comply with the organizational objectives and
follow its norms and rules. In this case the aim is not to create an enforcement
mechanism but a continuous safety control of the system’s behavior (i.e., avoid
the system to enter in a non-desirable, illegal state because of a failure in one of
the agents).

In our framework, external violations are the ones where the designer should
pay more attention. As we cannot assume that agents entering into the organi-
zation will always follow the norms and rules imposed by its normative system,
an active enforcement should be made by the internal agents. In our framework,
internal agents do not have access to the internal beliefs, goals and intentions of
the other agents, they can only check the agents’ behavior, by detecting when
those agents enter in states considered illegal. The way of doing so is by means
of the list of definitions of external violations. Such list defines, for each viola-
tion, the condition that triggers it. This condition is extracted from the rule that
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defines the violation. As an example, let us take one of the rules identified for
the PC member role in table 3:

done(assign paper(P,me,Deadline))
∧ ¬done(review paper(P,Rep)) → [pass(Deadline)] V4

we can create the condition for violation V 4 by stating that the action inside
[ ] has been done while the other preconditions are true. Then we should also
add the sanction (the actions carried against the violator), the side-effects (the
actions to be done to counter-act the violation) and the enforcing roles (the role
or roles that have the responsibility to detect this type of violations):

Violation: IFMAS:V4

Pre-conditions: done(assign paper(P,me,Deadline))

∧ ¬ done(review paper(P, Rep)) ∧ done(pass(Deadline))

Sanction: delete from PC list(me))

Side-effects: { find new reviewer(P,r2); assign paper(P,r2,Deadline2) }
Enforcing roles: { organizer, session chair}

5.3 The Normative Implementation Level

There are two main approaches to implement the rules in the rule level: a) creat-
ing a rule interpreter that any agent entering the organization will incorporate,
and b) translating the rules into protocols to be included in the interaction con-
tracts

Note that in both cases it is not ensured that the agents will follow those
descriptions. The violations in the rule level should also be translated in some
detection mechanisms to check the behavior of the agents.

At Implementation Level, the organization model provides both the low-level
protocols and the related rules. Agents that are only able to follow protocols will
blindly follow them, while the ones that can also interpret the rules (Deliberative
Normative Agents [4]) can choose between following the protocol or reasoning
about the rules, or do both. With this approach the autonomy of the agents
entering the organization is adapted to their reasoning capabilities, which makes
Omni utmost adequate to model open environments. Norm Autonomous Agents
that are able to reason about norms, can switch from following low-level protocols
to higher level rules and norms, by using the links provided by Omni from
procedures to rules, and from rules to norms. An example is shown in figure 5.

6 The Ontological Dimension

The main challenge of coordination and collaboration in open environments is
that of mutual understanding. Communication mechanisms include both the rep-
resentation of domain knowledge (what are we talking about) and protocols for
communication (how are we talking). Both content and protocol have different
meanings at the different levels of abstraction (e.g. while at the abstract level
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Fig. 5. An example of the refinement process

one might talk of disseminate, such action will most probably not be available to
agents acting at the implementation level). Specification of communication con-
tent is usually realized using ontologies, which are shared conceptualizations of
the terms and predicates in a domain. Agent communication languages (ACLs)
are the usual means in MAS to describe communicative actions. ACLs are wrap-
per languages in the sense that they abstract from the content of communication.

In Omni, the Ontological Dimension describes both the content and the lan-
guage for communication, at three different levels of abstraction. At the Abstract
Level, the Model Ontology can be seen as a meta-ontology that defines all the
concepts of the framework itself, such as norms, rules, roles, groups, violations,
sanctions and landmarks.

The content aspects of communication, or domain knowledge, are specified
by Domain Ontologies. In Omni abstract concepts can be iteratively defined
and refined in terms of more concrete concepts. The Concrete Domain Ontology
includes all the predicates and elements that appear during the design of the
Organizational and Normative Structure, and the Procedural Domain Ontology,
with the terms from the domain that will be finally used in the implemented
system. Concepts or predicates at a lower abstraction level, count as, or imple-
ment, concepts at the higher levels. For instance, the actual realization of the
AAMAS’04 conference counts-as the IFMAS’s objective organize-conference de-
fined in the Organizational Model, which in turn counts-as the IFMAS’s value
of disseminate knowledge, described in its statutes.

Communication Acts define the language for communication, including the
performatives and the protocols. At the Concrete Level, Generic Communication
Acts define the interactions languages used in the Organizational Model, while
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the Specific Communication Acts covers the communication languages actually
used by the agents as they agree in the interaction contracts. As with the content
ontologies, communicative acts defined at a lower level of abstraction implement
those defined at a higher level.

7 Discussion: Omni Compared with Other Approaches

Development methods for multi-agent systems are currently a hot research topic
and several approaches have been proposed. Comprehensive methodologies to de-
sign agent societies must be able to describe the characteristics of organizational
environments. Such environments are best understood in terms of social con-
cepts such as organization structures, norms and domain language. Furthermore,
methodologies must support the development of open societies and the specifi-
cation of formal institutions. These are issues covered by the Omni framework.
In the remainder of this section, we briefly discuss how some well known models
support the social and normative concepts introduced by the Omni framework.

GAIA. Gaia [19] is one of the first agent-oriented software engineering method-
ologies that explicitly takes into account social concepts. Gaia models are situ-
ated in at the Concrete Level of Omni (cf. figure 1). While the Implementation
Level is explicitly and purposefully ignored, Gaia does not have any notion of an
Abstract Level. Gaia is only concerned with the society level and does not cap-
ture internal aspects of agent design. However, societies are only considered from
the perspective of the individual participants, and therefore Gaia does not deal
with communication or other collective issues. Furthermore, normative aspects
are reduced to static permissions, a sort of constraints or rules and behavior is
fixed in protocols. Moreover, Gaia is not suited to model open domains, and
cannot easily deal with self-interested agents, as it does not distinguish between
organizational and individual aspects, and does not provide capabilities for agent
interpretation of society objectives, norms or plans.

SODA. SODA [11], is actually an extension to Gaia that enables open societies
to be designed around suitably-designed coordination media, and social rules to
be designed and enforced in terms of coordination rules. As Gaia, SODA distin-
guishes between an analysis and a design phase. As an attempt to include an
higher abstraction level (cf. figure 1), SODA presents a notion of the context,
or environment, of the society, albeit not explicit. However, even though SODA
distinguishes between agent and collective spaces, it sees roles as the represen-
tation of the observable behavior of agents, and therefore cannot represent the
difference between the organizational perspective on the activity and aims of
individuals (represented by the concept of role in Omni ) from the agent per-
spective on its own activity and aims (represented by the concept of agent in
Omni and linked to the role by a social contract). Role enactment is fixed in
SODA as the agent model that maps roles to agent classes without any pos-
sibility to accommodate agent preferences or characteristics (agent classes are
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pure specifications of the role characteristics). There are no normative aspects
in SODA further than the notion of permission to access infrastructure services.
Communication primitives are limited to interaction protocols, and SODA pro-
vides no explicit representation for the domain ontology. Furthermore, SODA
also does not have a clear and formal semantics.

ISLANDER. The ISLANDER formalism [7] provides a formal framework for
institutions [14] and has proven to be well-suited to model practical applications
(e.g. electronic auction houses). This formalism views an agent-based institu-
tion as a dialogical system where all the interactions inside the institution are
a composition of multiple dialogic activities (message exchanges). Furthermore,
the e-INSTITUTOR platform and the ISLANDER API enable the animation
of models and the participation of external agents. The activity of these agents
is, however, constrained by governors that regulate agent actions, to the pre-
cise enactment of the roles specified in the institution model. In contrary to the
other frameworks discussed here, ISLANDER provides a sound model for the
domain ontology and has a formal semantics [14]. However, ISLANDER pro-
vides no primitives to model the Abstract Level of an organization and does not
consider the normative aspects of organizations, further than the specification
of constraints for scene transition and enactment (the only allowed interactions
are those explicitly represented by arcs in scenes).

TROPOS. TROPOS methodology [2] spans the overall development process.
It distinguishes between an early and a late requirements phase, and between ar-
chitectural design and detailed design. The models are implemented using Jack
Intelligent Agents [9], which is an agent-oriented extension of Java. Tropos is a
fairly complete methodology that considers all steps in system development, and
it treats both inter-agent and intra-agent perspectives. The early requirement
phase of Tropos, can be seen as a specification of the Abstract Level proposed by
Omni (cf. figure 1). The late requirements phase comes fairly close to the idea
of Concrete Level in Omni , except that it does not provide explicit concepts
to capture norms, and ontological aspects are only implicitly described. At the
Implementation Level, Tropos provides a detailed implementation of organiza-
tional models into JACK agents. The main two shortcomings of Tropos are that
a) it is not formal (although there is some ongoing work on providing a formal
semantics for Tropos), and b) it is too organizational-centered in the sense that
is does not consider that agents can have their own goals and plans, and not
just those coming from the organization. Furthermore, Tropos has no concept
representing the normative aspects of an organization.

8 Conclusions

In this paper we introduced Omni, a modelling framework for different types of
MAS, from closed systems to open, flexible environments. This approach is rather
unique, as most existing frameworks concentrate on a specific type of MAS.
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The modular structure of Omni facilitates the adaptation of the framework
to different types of domains. In those domains with none or small normative
components, design is guided by the Organizational Dimension, while in highly
regulated domains the Normative Dimension is more prominent and therefore
guides the design.

All dimensions of Omni have a formal logical semantics, which ensures con-
sistency and possibility of verification of the different aspects of the system. For
more information on the formalization aspects, we refer the reader to [5] for a
detailed specification of the formalization of the organizational and ontological
dimensions, and to [17] for the formal normative model.

Currently we are taking the first steps towards implementing tools to use
with the framework. We will be using ISLANDER as a basis for the support of
the implementation level and build the other levels on top of that.
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Abstract This paper proposes a dialogue game in which coherent con-
versational sequences at the speech act level are described of agents that
become aware they have an irresolvable disagreement and settle the dis-
pute by agreeing to disagree. A disagreement is irresolvable from an
agent’s perspective if the agent is aware that both parties have ran out
of options to resolve the dispute, and that both parties are aware of this.
A dialogue game is formulated in which agents can offer information
that may unintentionally result in irreconcilable, mutually inconsistent
belief states. Based on the agents’ cognitive states, dialogue rules and
cognitive rules are defined that allow agents to come to an agreement
to disagree. These rules are implemented in the programming language
Prolog, resulting in an intuitive design for multi-agent systems.

1 Introduction

If our goal is to understand human conversations, we may need to model care-
fully their underlying principles, but for generating communication in multi-
agent systems, we may be satisfied if we can build computational models that
generate efficient and useful conversations. In conversations in general, partic-
ipating agents have autonomy over their cognitive states, but they may also
have desires to change those of others. In trying to do so, these agents may find
themselves stuck in impasses over irreconcilable beliefs. This paper addresses the
questions how to cope with these impasses and how to devise a computational
model to identify irreconcilable beliefs from an agent’s local perspective. We will
use dialogue games to define reasoning and communication rules to overcome
such situations.

Dialogue games have recently received more attention in the field of computer
science, and, especially, in the community of multi-agent systems [1, 2]. In multi-
agent systems, autonomous software agents communicate and cooperate to reach
private and collective goals. We will not address issues related to cooperation,
but we will focus primarily on agents engaging in communication. A dialogue
typology by Walton and Krabbe [3] identifies four different categories of dialogues
by distinguishing the agents’ initial situations and goals. The categories are:
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Persuasion dialogues, in which agents seeks to convince other agents to believe
propositions [4, 5, 6]; Negotiation dialogues, in which participants seek to agree
on how to divide a resource [7, 8]; Deliberation dialogues, in which participants
make plans by discussing which actions to perform in which situations [9] or
which beliefs to accept to minimize uncertainty [10] and which result in collective
intentions [11] or group-plans and teams [5]; And information seeking dialogues,
in which agents seeks to find truth-values of propositions by asking others who
may have answers [12, 13, 14]. The current work contributes to the category of
persuasion dialogues, and, especially, when persuasion dialogues terminate.

Beun [13] and Lebbink et al. [14] describe communicative acts and communi-
cation rules that form dialogue games that agents play to balance their desires
and belief states. Such a dialogue game consists of pre-conditions for uttering
communicative acts to convey information to other agents, and post-conditions
that state the agents’ cognitive states after incoming and outgoing information
is processed. To describe inconsistent and biased information states, a multi-
valued logic [14] is used with which agent can have inconsistent belief states
without being forced to perform belief revision. We formulate a semantics for
communicative acts to offer information to agree to disagree in the same vein as
the FIPA work on agent communication languages [15, 16].

What is lacking in Beun [13] and Lebbink et al. [14] is the possibility for
agents to recognize irresolvable disagreements and, based on this recognition,
to utter an agreement to disagree, thereby making the disagreement common
belief. This common belief may motivate dialogues to redefine the meaning of
formulae that resulted in the disagreement.

Agents may be motivated to persuade others to decide to believe certain propo-
sitions, for example, when agents participate in group-plans that require coopera-
tion; they may need to agree on certain propositions for the plan to succeed. Con-
sequently, agents may need to offer propositions to others, and, in response, agree
to believe propositions, or, on the other hand, reject to believe these propositions
when accepting them would result in inconsistent belief states. Our objective is to
present a dialogue game in which cognitive agents become aware of irreconcilable
beliefs and show this awareness to others while preserving their private beliefs.

In Section 2, our agent architecture is presented in which agents can have
inconsistent beliefs and desires; in addition, a reasoning game is defined allowing
agents to decide to believe propositions. A dialogue game is presented in Sec-
tion 3 enabling agents to offer information. In Section 4, the reasoning game is
extended to allow agents to agree to disagree. The resulting formalism permits
embedded dialogues, verification of existing dialogues, and a straightforward im-
plementation due to its computational nature (Section 5).

2 Agent Architecture
2.1 Dialogue Games

Early approaches to the semantics of propositions in the philosophy of language
centred on the view that semantics are truth-conditional. Searle [17] and Austin
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[18] –and many others dating back to Aristotle– adhere to this view, explicitly
embracing the idea that truth consists in a relation to reality: a belief is true
when there is a corresponding fact, and false when there is no corresponding
fact. This is what is called the ‘correspondence theory of truth’: the truth of a
proposition is inseparable from reality [19].

However, demanding strict correspondence between truth and reality makes
it rather difficult –if not impossible– for agents to have true beliefs, for then they
need to know some segment of reality. A practical and obvious problem with this
semantics is that some propositions have an inherent uncertainty: most past and
future propositions are uncertain; not to mention the epistemological problem
how an agent is to know what reality really is. (See [20] on the question “do you
believe in reality?”)

The correspondence theory has been criticised by Dummett [21] and Wright
[22], among others, who advocate a verificationist semantics, lifting the burden
for agents from knowing reality to verifying evidence. Agents can derive knowl-
edge from a process of inquiry in which a chain of mental and physical interme-
diaries connect. However, agents can never be sure whether propositions can be
treated as knowledge or as possible false beliefs that need further investigation.
The underlying semantics of the correspondence theory, proposed by mathemati-
cians Frege and Tarski [23], has also been criticised by the later Wittgenstein.
However, Ellenbogen [24] shows that Dummett’s notion that certain proposi-
tions which we treat as uncertain also rests upon a realist conception of truth
and that “his argument ultimately rests on a refusal to recognize an alternative
account of what it is to determine the truth value of a sentence...” [24–p.26].
We will not use the verificationist semantics because it presumes that agents
have absolute knowledge of the world; what we will use is a semantics based on
“use”. In Philosophical Investigations [25], Wittgenstein proposes “use” as an
alternative to construct the semantics of propositions.

“According to the dictum “meaning is use”, what makes it correct to call
a statement “true” is not its correspondence with how things are, but
our criterion for determining its truth. What it means for us to call a
statement “true” is that we currently judge it true, knowing that we may
some day revise the criteria whereby we do so.” [24–cover page]

Wittgenstein proposes “language games” with several different however re-
lated uses. Our focus is not on how language games can be learned, nor how they
refer to a multiplicity of language practices in our ordinary languages. We use
its reference to models of primitive language that Wittgenstein has invented to
clarify the working of language in general. In his view, communicative acts only
have meaning within a particular language game: acts outside a game are just
meaningless and useless syntactic structures. Language games provide rules of
usage: they define when agents are allowed to pose and answer communicative
acts; and, additionally, language games provide rules how the agent’s cognitive
state changes due to communication. Instead of presupposing that agents need
to know reality or other agents’ cognitive states to verify factual statements,
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language games are formulated that describe inquiry with reality or agents. In
such inquiry games, currently, results obtained from, for example, microscopes
or lie detectors are considered truth-bearers; results obtained from witchcraft
are not. However, this may change as science progresses.

We propose two language games, one game that defines the meaning of com-
municative acts to handle information offers like in contemporary agent commu-
nication languages [15, 16], and one game that defines the meaning of decisions
to believe propositions [26]. The former will be called a dialogue game, the latter
a reasoning game. Remember that meaning set forward in games is understood
as rules of usage. The games provide sets of pre-conditions that define which
communicative acts or decisions agents may perform given their current cogni-
tive states. In addition, games provide sets of post-conditions that define the
contents of the agent’s cognitive state after communicative acts are uttered or
decision are made. Pre and post-conditions are combined to form dialogue or
reasoning rules.

We assume that information can only accumulate in the participants’ cog-
nitive states, and cannot be retracted. In these information-monotonic games,
additions may introduce inconsistent beliefs. The reasoning game for deciding
to believe propositions stipulates what it means to have inconsistent beliefs: the
agent is aware of at least two sources that have sufficient and equal persuasive
powers, thereby rendering her belief state inconsistent. To have an inconsistent
belief state does not mean there is a segment of reality that corresponds to
this belief, but that an agent is convinced by two equally persuasive sources.
Although we present a reasoning game that prevents agents from deciding to
believe propositions that would result in inconsistent belief states, agents use
the possibility of future inconsistencies in a look-ahead fashion in their decisions
to believe proposition.

Agents can only speak to one agent at a time via an ideal half-duplex commu-
nication channel, which means that no information is lost and that information
can only flow in one direction at a time. No restrictions are made on the number
of participants in the dialogue, agents are assumed to be omniscient, and aware
they use the same dialogue and reasoning games.

2.2 Example Dialogue

Consider the following fictitious dialogue between two Sesame Street puppets.
Tv wants to insure his Ferrari. To achieve this, he rings an insurance company
and explains the situation by stating his desire to an insurance agent (Ia for
short). The Ia wants to sell Tv an expensive insurance policy, because Sesame
Street puppets are notoriously prone to fast and dangerous driving, especially
in Ferraris. What the Ia wants is that Tv accepts that his car is not safe, which
justifies an expensive policy. The dialogue consists of offerings of propositions
that are either accepted or declined. For the sake of argument, both agents are
rather stubborn and will stick to their first beliefs, and do not accept to believe
information that would render their belief state inconsistent.
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Example 1 (Dialogue about car insurance in Sesame Street).

1. Tv to Ia ‘My car is a Ferrari.’
2. Ia to Tv ‘Ok.’
3. Tv to Ia ‘(and) My car is safe.’
4. Ia to Tv ‘I don’t believe that.’
5. Ia to Tv ‘(actually) I think your car is not safe.’
6. Tv to Ia ‘I don’t accept that my car is not safe.’
7. Ia to Tv ‘Do you accept that if a car is a Ferrari then it’s not a safe car?’
8. Tv to Ia ‘(no) I don’t want to accept that.’
9. Ia to Tv ‘Lets agree to disagree whether your car is safe or not.’
10. Tv to Ia ‘Ok.’

In the remainder of this paper, the example dialogue will be shown to be a
valid sequence in our dialogue game starting from initial cognitive states (from
Example 3). To achieve this result, the example dialogue is translated to a se-
quence of communicative acts (Section 3) with propositions taken from an on-
tology (from Example 2).

2.3 Multi-valued Logics

Whereas in classical logic propositions are assigned truth-values true or false,
later, in philosophy ‘deviant’ logics were developed that are capable of represent-
ing uncertain, non-determined states or epistemic attitudes [27]. More recently,
other truth-qualities were required by computer scientists for efficient software
implementations, for example, in the verification of circuit board design [28].
In the field of multi-agent systems, computer scientists use non-classical truth-
values and semantics, predominantly modal logics, to represent the agents’ cog-
nitive states [29]. Our approach is to model the agent’s cognitive state with
multi-valued logics (MVL). In these logics, propositions are primitive formulae
that are assigned multiple truth-values from a bilattice structure [30, 31].

Bilattice Structures. Different modalities are needed to represent the agent’s
cognitive state. In the MVL introduced in Lebbink et al. [14], propositions are
constructed in a fashion that is considered truth-value bearing, capable of being
the object of belief or ignorance. This MVL can represent a lack of information
(unknown) as well as over-informative states (inconsistent); the truth-values are
taken from a bilattice structure.

A bilattice is an algebraic structure that formalises a space of generalized
truth-values with two lattice orderings [30, 31]. The bilattice for a four-valued
logic, proposed by Belnap [32], is graphically depicted in Figure 1. Truth-values
t and f stand for the classical truth-values true and false respectively; non-
orthodox truth-values u and i represent a complete lack of information (unknown)
and the inconsistent information state (inconsistent). Truth-values are ordered
by the amount of truth ≤t and the amount of information ≤k; currently, only
the latter order is of interest. For instance, unknown has less information than
true and false, denoted by u ≤k t and u ≤k f. Truth-values true and false are
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Fig. 1. Smallest complete bilattice for a four-valued logic proposed by Belnap

unrelated to one another in the k-order, that is, t �k f and f �k t. Bilattices
with more truth-values and even a continuum of truth-values can be used to
represent biased information or probabilities [30]; we use only the truth-values
from Figure 1.

The greatest k-lower bound ⊗k can be thought of as the truth-value rep-
resenting the information that is shared by the two truth-values, that is, the
mutual information of the two truth-values, for example, f ⊗k t = u. Likewise,
the least k-upper bound ⊕k is thought of as the information that results after
combining the two truth-values, for example, f ⊕k t = i. See Ginsberg [30] and
Fitting [31] for a formal treatment of the bilattice operators.

Language of MVL. In MVL, atomic and non-atomic MVL propositions are
distinguished. The atomic MVL proposition p:θ is a formula p taken from an
ontology O with a truth-value θ from a bilattice structure B. The proposition
p:θ is read as “formula p has at least truth-value θ”. The formula is said to have
at least the information represented in the truth-value. In the sequel, we will
speak of propositions instead of MVL propositions. For our current purposes, an
ontology is a set of primitive formulae; for ontologies with more structure, see
for example Sowa [33].

The non-atomic proposition (ψ � ϕ):θ is an inference rule with truth-value
θ. Proposition ψ is the antecedent for proposition ϕ; ϕ is the consequent of the
inference rule. In case θ equals t, the inference rule is written as ψ � ϕ. Remark
that � is not a normal connective but a formula, part of the logical language
that codes an inference rule in the object language. Also remark that the truth-
values of antecedents and consequents are embedded in the rule. This nesting of
sub-sentences is non-standard in MVL, but blurring syntax and semantics will
not introduce problems. Other connectives are not defined.

A special purpose proposition a2d(x, y, ψ, ϕ) :θ states that agent x and y,
member of a set of agents A, agree to disagree on propositions ψ and ϕ, this is
further discussed in Section 4. The set of truth-values is denoted C.

Definition 1 (Language of MVL). Given bilattice B = 〈C,≤k,≤t〉, ontology
O, and agents A, the language of MVL LB is the smallest set satisfying:
1. if p ∈ O and θ ∈ C then p:θ ∈ LB,
2. if ψ, ϕ ∈ LB and θ ∈ C then (ψ � ϕ):θ ∈ LB,
3. if ψ, ϕ ∈ LB, x, y ∈ A and θ ∈ C then a2d(x, y, ψ, ϕ):θ ∈ LB.
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Theories of MVL. Five deduction rules are defined which will be used to
construct theories of MVL. Instead of theories of MVL, we will speak of theories.

The complete lack of information associated with truth-value unknown always
applies to all propositions present in a theory. Remember that p:θ reads that
p has at least truth-value θ; therefore, all propositions of the language of MVL
have a minimal and unique information state unknown in a theory.

p:θ ∈ LB =⇒ p:u ∈ T (R1)

The reading of propositions enforces that if a proposition is part of a theory,
then all propositions with less information are also part of the theory. If propo-
sition p:θ1 has at least truth-value θ1, and θ2 represents less information than
θ1, then formula p also has at least truth-value θ2. The information in p:θ2 is
said to be subsumed under p:θ1.

p:θ1 ∈ T & θ2 ≤k θ1 =⇒ p:θ2 ∈ T (R2)

Information is closed in a theory if the least k-upper bound of truth-values of
the same formula present in the theory is also present. Remember that the least
k-upper bound is thought of as the information that results from combining two
truth-values. For example, interpret the theory as an agent’s belief state. If the
agent believes that p is true, and, at the same time, that p is false, then the
agent also believes that p is inconsistent.

p:θ1 ∈ T & p:θ2 ∈ T =⇒ p:θ1 ⊕k θ2 ∈ T (R3)

Dual theories are theories with an ordering ≤δ
k with θ1 ≤δ

k θ2 = θ2 ≤k θ1.
Due to this reversed order, the least and unique information state from R1 is
reversed. All propositions part of the language of MVL have a unique minimal
state i in a dual theory.

p:θ ∈ LB =⇒ p:i ∈ T (R1d)

The reading of propositions also enforces subsumed information in dual the-
ories. If a proposition is part of a dual theory, then all propositions with more
information are also present in the dual theory.

p:θ1 ∈ T & θ2 ≤δ
k θ1 =⇒ p:θ2 ∈ T (R2d)

Theories of MVL are defined as sets of propositions closed under deduction
rules. We denote by Cnd(Ψ, R) the set of propositions that results from Ψ ⊆ LB

closed under the set of deduction rules R. If ambiguity is unlikely to occur we
write Cnd(Ψ) instead of Cnd(Ψ, R).

Definition 2 (MVL Theory). Given a language of MVL LB, three MVL the-
ories, T , T c, T ∂ ⊆ LB are defined by the closure under deduction rules.

– (Normal) theory T = Cnd(T , {R1,R2});
– Complete theory T c = Cnd(T c, {R1,R2,R3});
– Dual theory T ∂ = Cnd(T ∂ , {R1d,R2d}).
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Interpretation. An example of a closed theory is an agent’s belief state. An
agent has at least no information about a proposition, that is, it is not possible to
be less informed about a formula p than p:u (Rule R1). If an agent believes that
formula p has at least truth-value inconsistent then she also believes that p has
at least truth-value true and false (Rule R2). If an agent believes a proposition
p:t and she concludes to believe p:f, then she also believes p:i which means that
she has an inconsistent belief state with regard to formula p (Rule R3).

An example of a dual theory is that of an agent’s ignorance state. Consider
the situation in which an agent x keeps record of another agent y’s ignorance
state. If agent x believes that y is ignorant about p:t, that is, x believes that y
does not believe p:t, then x also believes that y is ignorant about p:i (Rule R2d).

2.4 The Agent’s Cognitive State

An agent’s cognitive state consists of a finite number of mental states, which
are theories of MVL. We will not present a full repertoire of all possible mental
states agents have regarding themselves and others; only those are identified that
are used in the present paper. Remember that set A denotes the set of agent
identifiers.

– Private belief Bx is a complete theory denoting agent x’s beliefs. For instance,
p:t ∈ Bx states that x believes that formula p has at least truth-value true.

– Private desire to believe DxBy is normal theory with y ∈ A and not x �= y,
denoting agent x’s desires that agent y is to believe. ψ ∈ DxBy states that
agent x desires that agent y is to believe ψ, and ψ ∈ DxBx denotes that x
desires to believe ψ.

– Manifested belief BxBy is a complete theory with y ∈ A and x �= y, denoting
the beliefs of y that x keeps record of. For instance, ψ ∈ BxBy states that x
is aware that y believes ψ.

– Manifested desires to believe BxDyBx is a normal theory with y ∈ A and
x �= y, denoting x’s awareness of y’s desire that x is to believe.

– Manifested ignorance state BxIy is a dual theory with y ∈ A and x �= y,
denoting the propositions that y does not believe that x is aware of. ψ ∈ BxIy

states that agent x is aware that agent y is ignorant of ψ.
– In addition, other higher-order manifested mental states are defined likewise.

BxByBx is a complete theory, BxByIx, BxIyBx and BxByIxBy are dual
theories, BxByDxBx and BxByBxDyBx are theories; other mental states
like BxIyIx and BxIyDxBx are not discussed and not used.

The above-mentioned mental states are part of a structure CS which repre-
sents the agent’s cognitive state: we mean by CSx |= Π the set of set-theoretical
propositions Π that hold for agent x’s cognitive state. For example, to state that
agent x does not believe that agent y believes ψ, and, at the same time does
desire that agent y believes ψ, is denoted CSx |= {(ψ �∈ BxBy), (ψ ∈ DxBy)}.
If Π is a singleton set, it is substituted with its element; for example, we write
CSx |= ψ ∈ Bx instead of CSx |= {ψ ∈ Bx}. We write {CSx, CSy} |= Π instead
of ∀π ∈ Π (CSx |= π ‘or’ CSy |= π).
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Example 2 (Ontology). To model the dialogue from Example 1, two primitive
formulae are needed: is a(this car, ferrari) and is a(this car, safe) which state that
the object this car is an instance of the class ferrari, and that it is of class safe,
we have: is a(this car, safe), is a(this car, ferrari) ∈ O.

The cognitive state of all participating agents will be called a collective cog-
nitive state.

Example 3 (Initial collective cognitive state). By default, Tv believes that his
car is a Ferrari and a safe one. Next to that, Tv desires that the Ia believes
that its car is a Ferrari and safe. On the other hand, the Ia desires by default,
that Tv believes its car is not safe; and, in addition, the Ia believes that if a
car is a Ferrari then the car is not safe. The agents do not have other desires or
beliefs. The superscript 1 denotes the initial cognitive state, consecutive numbers
denote cognitive states as the dialogue unfolds. Together with the ontology from
Example 2 we have:

CS1
ia |= { is a(this car, safe):f ∈ DiaBtv,

is a(this car, ferrari):t � is a(this car, safe):f ∈ Bia }
CS1

tv |= { is a(this car, ferrari):t ∈ DtvBia,

is a(this car, ferrari):t ∈ Btv,

is a(this car, safe):t ∈ DtvBia,

is a(this car, safe):t ∈ Btv }

2.5 A Reasoning Game to Decide to Believe Propositions

Different definitions when agents are to decide to believe propositions are possi-
ble: one could state that agents are allowed to decide to believe a proposition if
they themselves believe the criteria to deduce that proposition with an inference
rule. We add to this capability the situation in which agents conform to other
agents’ beliefs.

Cognitive processes are prescribed with reasoning rules that define when
agents are allowed to make decisions, and the effects these decisions have on the
agents’ cognitive state. This is done by specifying sets of pre and post-conditions.
Currently, only decisions to add propositions to belief and desire states are pos-
sible. Three cognitive processes for making a decision to believe proposition are
distinguished: (1) deducing consequences of private beliefs with inference rules;
(2) deciding to believe propositions based on other agents’ beliefs; and, (3) de-
ducing that one has an irresolvable disagreement with another agent. The latter
cognitive process is described in Section 4.

Reasoning Game. A reasoning game is a finite set of reasoning rules that allow
agents to make decisions according to the pre and post-conditions of specific
decisions. A decision’s pre and post-conditions are combined in a reasoning rule,
providing the semantics of the decision in a “meaning is use” fashion.
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A generic reasoning rule for an abstract decision λ(x, ψ, ms) is defined, which
can be instantiated with concrete reasoning rules. The decision λ(x, ψ, ms) re-
garding some proposition ψ and mental state ms is allowed for agent x if
the set of pre-conditions of λ(x, ψ, ms) holds in her cognitive state, that is,
CSx |= pre(λ(x, ψ, ms)). After the decision is made, the agent’s cognitive state
is updated, resulting in a new cognitive state in which the post-condition of
λ(x, ψ, ms) holds, that is, CS′

x |= post(λ(x, ψ, ms)). Note that the post-conditions
never require propositions not to be part of mental states; this holds for both
reasoning rules and dialogue rules (Section 3.2) both resulting in information
monotonic theory updates.

CSx |= pre(λ(x, ψ, ms)) =⇒ CS′
x |= post(λ(x, ψ, ms)) (RR)

We are interested in cognitive states closed under sets of reasoning rules. By
Cnr(CSx,R) we denote agent x’s cognitive state that results from the closure
under the set of reasoning rules R. If ambiguity is unlikely to occur, we write
Cnr(CSx) instead of Cnr(CSx,R), and if R is a singleton set, it is substituted
with its element. If the sets of pre and post-conditions are confined to propo-
sitions with regard to one mental state, for example, the agent x’s belief state,
one may want to write Cnr(Bx,R) instead of Cnr(CSx,R). Note that the set
Cnr(T ,R) yields a theory instead of an entire cognitive state.

Deducing Consequences. Agents may deduce new beliefs that are based on
their current beliefs. If an agent holds the belief that an inference rule linking two
propositions has a designated truth-value true, and she believes the antecedent
of the inference rule, then the agent may deduce the consequent and add this
inferred proposition to her belief state.

If agent x believes ψ and inference rule ψ � ϕ, then she may deduce ϕ.
That is, x may decide to believe ϕ. These two pre-conditions are part of the
reasoning action d2a1(x, ϕ, Bx) that denotes that x decides to add ϕ to its mental
state Bx. With Reasoning Rule D2A1 we mean the generic Reasoning Rule RR
instantiated for this decision to believe a proposition. Different decisions are
indexed to distinguish different sets of pre-conditions.

(ψ ∈ Bx), (ψ � ϕ ∈ Bx) ∈ pre(d2a1(x, ϕ, Bx))

Note that only inference rules with a truth-value true are used and that
the blurring of syntax and semantics due to nesting of sub-formulas is mini-
mal. Inference rules with truth-value θ �k t, for example false, do not have a
straightforward interpretation; true states that there is a relation between the
consequent and the antecedent, unknown states that there is no relation. How-
ever, what false could denote is not clear. (See Rescher [27] on the notion of
designated truth-values and consequence relations in MVLs.)

If the pre-conditions of the decision d2a1(x, ψ, Bx) hold, the agent is allowed
to perform the act of deciding to believe ψ, resulting in the state in which ψ is
contained in x’s belief state. The set of post-conditions is straightforward.

(ψ ∈ Bx) ∈ post(d2a(x, ψ, Bx))
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Example 4 (Ia decides to believe). Abbreviate ψ for is a(this car, ferrari):t, ϕ for
is a(this car, safe):f and assume CS2

ia |= ψ � ϕ ∈ Bia. If the Ia is persuaded to
believe ψ, then with Reasoning Rule D2A1 the Ia decides to believe ϕ. How-
ever, if CS2

ia |= is a(this car, safe):t ∈ Bia already holds, then so does CS2′
ia |=

is a(this car, safe):i ∈ Bia with Deduction Rule R3.

Next to agents’ deducing new beliefs for themselves, agents may also deduce
that other agents deduce new beliefs. An agent x may deduce that y should
decide to add proposition ψ to her belief state, if x believes that y believes ϕ
and ϕ � ψ. This decision is denoted d2a1(x, ψ, BxBy), which is read as “agent
x decides to add ψ to its belief about agent y’s beliefs”.

(ϕ ∈ BxBy), (ϕ � ψ ∈ BxBy) ∈ pre(d2a1(x, ψ, BxBy))

Agents may even deduce what other agents can deduce about their beliefs.

(ϕ ∈ BxByBx), (ϕ � ψ ∈ BxByBx) ∈ pre(d2a1(x, ψ, BxByBx))

Conformism. The second possibility for an agent to obtain new beliefs is by
conforming to other agents’ belief states. If an agent believes that another agent
believes a proposition, and the agent does not herself believe the proposition,
then she may decide to believe the proposition if the other agent is trustworthy.
It must be noted that agents have no choice but to decide to believe a proposi-
tion: if the pre-conditions of the decision are met, then the agent needs to act
accordingly, in effect deciding to perform the decision. The abstract Reasoning
Rule RR is instantiated to form the rule for decision d2a2(x, ψ, ms), this rule is
denoted D2A2.

Agent x may decide to believe proposition ψ if x is aware that another agent
y believes ψ and x does not already believe ψ. Agent x’s decision to believe ψ
in conformity to another agent’s belief state is denoted by d2a2(x, ψ, Bx).

(ψ ∈ BxBy), (ψ �∈ Bx) ∈ pre(d2a2(x, ψ, Bx))

An additional pre-condition to conforming to another agent’s belief state is
that agents may only decide to believe propositions if these do not introduce new
inconsistencies. Stated differently, for every inconsistent proposition present in
a belief state after addition of ψ, holds that this inconsistent proposition was
already present before ψ was added.(

∀p:i ∈ LB (p:i ∈ Cnr(Bx ∪ {ψ}, D2A1) ⇒ p:i ∈ Bx)
)

∈ pre(d2a2(x, ψ, Bx))

As a result of the previous pre-condition, agents decide to believe propositions
in a first-come-first-serve basis, making the order of uttering communicative acts
of importance for the outcome of the dialogue.

Example 5 (Ia decides to believe). Abbreviate ψ for is a(this car, ferrari):t. The
Ia may perform a d2a1(ia, ψ, Bx) if she does not believe ψ; however, she does
believe that Tv believes ψ, CS2

ia |= {ψ �∈ Bia, ψ ∈ BiaBtv}. In this cognitive
state, Reasoning Rule D2A2 is applicable resulting in state CS2′

ia |= ψ ∈ Bia.
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3 A Dialogue Game to Offer Information

3.1 Communicative Acts

The dialogue game to offer information provides semantics for three syntacti-
cally different communicative acts. A communicative act λ(x, y, ψ) is uttered by
speaker x directed to addressee y regarding proposition ψ.

With the communicative act oba(x, y, ψ) the addressee y is offered a propo-
sition ψ with the request to decide to believe it, the act is read as “Are you (y)
willing to decide to believe proposition ψ?”. The abbreviation oba is short for
offer a belief addition. The communicative act goba(x, y, ψ) is read as “I (x) am
willing to decide to believe ψ.” The addressee can interpret this act as an affir-
mative answer to an oba; the offer to decide to believe a proposition is granted,
hence the abbreviation goba. The communicative act doba(x, y, ψ) is read as “I
(x) am not willing to decide to believe ψ.” The addressee can interpret this act
as a negative answer to an oba; the offer to decide to believe a proposition is
denied, the abbreviation doba stands for denying an oba.

Example 6 (Dialogue about car insurance in Sesame Street). In the first line of
the dialogue in Example 1, Tv states that its car is a Ferrari. We consider this ex-
pression equal to “Are you, Ia, willing to decide to believe that it is true that my
car is a Ferrari?” allowing it to be translated to oba(tv, ia, is a(this car, ferrari):t).
In response, the Ia decides Tv’s offer in line 2. The Ia utters ‘Ok.’ which is in-
terpreted to be equal to expression “I am willing to decide to believe that your
car is a Ferrari.” In line 4, the Ia rejects Tv’s offer from line 3, the expression “I
don’t believe that.” is interpreted as “no, I am not willing to decide to believe
that it is true that your car is safe.” A rendition of the dialogue from Example 1
is presented next and used in the remainder of this paper.

1. oba(tv, ia, is a(this car, ferrari):t)
2. goba(ia, tv, is a(this car, ferrari):t)
3. oba(tv, ia, is a(this car, safe):t)
4. doba(ia, tv, is a(this car, safe):t)
5. oba(ia, tv, is a(this car, safe):f)
6. doba(tv, ia, is a(this car, safe):f)
7. oba(ia, tv, is a(this car, ferrari):t � is a(this car, safe):f)
8. doba(tv, ia, is a(this car, ferrari):t � is a(this car, safe):f)
9. oba(ia, tv, a2d(ia, tv, is a(this car, safe):f, is a(this car, safe):t):t)

10. goba(tv, ia, a2d(tv, ia, is a(this car, safe):f, is a(this car, safe):t):t)

3.2 Dialogue Game

A dialogue game is a finite set of dialogue rules that define when agents are
allowed to communicate and how their cognitive states are to be updated after-
wards. Similar to reasoning rules from Section 2.5, the pre and post-conditions
of communicative acts are combined in dialogue rules to provide the semantics
and the rules of usage of the communicative acts.
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A generic dialogue rule of a communicative act λ(x, y, ψ) states that if all
pre-conditions of λ(x, y, ψ) hold according to agent x’s cognitive state, then
λ(x, y, ψ) may be uttered to agent y. The post-conditions define the contents of
agent x and y’s cognitive state after a communicative act is uttered or received.

CSx |= pre(λ(x, y, ψ)) =⇒ {CS′
x, CS′

y} |= post(λ(x, y, ψ)) (DR)

3.3 Semantics of Communicative Acts

Information Offer. An agent’s motivation to utter a question can be defined
as balancing its belief and desire states [13]. Similarly, the motivation to offer
information can be defined as an agent balancing her desire regarding another
agent’s belief sate and her belief state regarding this other agent’s belief state.
The dialogue rule for the communicative act of offering information is denoted
OBA, which is an instantiation of the generic Dialogue Rule DR.

The motivation to offer information regarding proposition ψ is defined as the
situation in which agent x has the desire that y believes ψ, and x is not aware
that y already believes ψ. In addition, an agent is not allowed to put forward
propositions she does not believe. This motivation is part of the pre-conditions
to utter an offer.

(ψ ∈ DxBy), (ψ �∈ BxBy), (ψ ∈ Bx) ∈ pre(oba(x, y, ψ))

An information offer is allowed by a speaker x to an addressee y if x is
motivated to do so. Given these pre-conditions, addressee y may deduce the
following properties of speaker x’s cognitive state: x had the desire that y is to
believe ψ, x was not aware that y believed ψ, and that the speaker x believes
ψ. After the utterance of the offer, the cognitive state of the addressee y has
changed according to the following post-conditions.

(ψ ∈ ByDxBy), (ψ ∈ ByIxBy), (ψ ∈ ByBx) ∈ post(oba(x, y, ψ))

A speaker may assume the addressee derives the same post-condition as she
would have done if she had received the communicative act herself. Consequently,
after uttering an oba(x, y, ψ), speaker x is aware that y is aware that x desires
that y believes ψ. In addition, the speaker x is aware that y is aware that x was
not aware that y believed ψ, and that the speaker x is aware that the addressee
y is aware that x believes ψ. The cognitive state of the speaker x has changed
according to the following post-condition.

(ψ ∈ BxByDxBy), (ψ ∈ BxByIxBy), (ψ ∈ BxByBx) ∈ post(oba(x, y, ψ))

In addition to the motivations to communicate are the Gricean maxims that
specify principles of cooperative dialogue [34]. These maxims state that utter-
ances of communicative acts should be informative. For example, a speaker is
not allowed to ask anything she already believes. Analogously, a speaker is not
allowed to put forward information that the addressee already believes as seen
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from the speaker’s perspective. In addition, agents are not allowed to utter com-
municative acts more than once because of the ideal communication channel in
which no information is lost. To realize the restriction that an offer may not be
uttered more than once, at least one of the previous post-conditions must not
hold. This negated post-condition is added to the set of pre-conditions to restrict
the situations in which offers may be uttered. (See Figure 2 for an overview of
the pre and post-conditions.)

(ψ �∈ BxByDxBy) ∈ pre(oba(x, y, ψ))

Example 7 (Information offer). Abbreviate ψ for is a(this car, ferrari):t. The com-
municative act oba(tv, ia, ψ) is allowed in CS1 (Example 3) with OBA rule re-
sulting in CS2.

CS1
tv |= { ψ ∈ DtvBia, ψ �∈ BtvBia, ψ ∈ Btv, ψ �∈ BtvBiaDtvBia }

CS2
ia |= { ψ ∈ BiaDtvBia, ψ ∈ BiaItvBia, ψ ∈ BiaBtv }

CS2
tv |= { ψ ∈ BtvBiaDtvBia, ψ ∈ BtvBiaItvBia, ψ ∈ BtvBiaBtv }

Granting of an Offer. Next to giving restrictions, the Gricean maxims provide
motivations to answer questions and offers; in this case, offers should always be
answered by either granting or declining it. The dialogue rule for the commu-
nicative act of goba is denoted GOBA, which is an instantiation of the generic
Dialogue Rule DR.

An agent x is motivated to utter an accepting response goba(x, y, ψ) if x is
aware the addressee y has the desire to make x believe ψ, and, x believes ψ. This
results in the following pre-conditions.

(ψ ∈ BxDyBx), (ψ ∈ Bx) ∈ pre(goba(x, y, ψ))

Given these pre-conditions, addressee y may deduce the following properties
of speaker x’s cognitive state: x was aware that y desired that x believes ψ, and
that x believes ψ. The set of post-conditions for the addressee’s cognitive state
are the following.

(ψ ∈ ByBxDyBx), (ψ ∈ ByBx) ∈ post(goba(x, y, ψ))

After the speaker has uttered a goba(x, y, ψ), she may deduce the following
properties of the addressee’s cognitive state.

(ψ ∈ BxByBxDyBx), (ψ ∈ BxByBx) ∈ post(goba(x, y, ψ))

To prevent a superfluous goba from occurring, the speaker should not be
aware that she uttered the communicative act before. Agents can be sure about
this if at least on of the previous post-condition does not hold. The extra pre-
condition reads as “agent x does not believe that y believes that x believes ψ”.

(ψ �∈ BxByBx) ∈ pre(goba(x, y, ψ))
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Example 8 (Granting an oba). Abbreviate ψ for is a(this car, ferrari):t. The com-
municative act goba(tv, ia, ψ) is allowed in CS2 (from Example 7) with GOBA
rule resulting in CS3. Example 5 shows that the Ia decides to believe ψ.

CS2
ia |= { ψ ∈ BiaDtvBia, ψ ∈ Bia, ψ �∈ BiaBtvBia }

CS3
tv |= { ψ ∈ BtvBiaDtvBia, ψ ∈ BtvBia }

CS3
ia |= { ψ ∈ BiaBtvBiaDtvBia, ψ ∈ BiaBtvBia }

Declining an Offer. The motivation to utter a negative response doba(x, y, ψ)
to an information offer is similar to an affirmative response, with the main
difference that the speaker in case of the negative response does not believe
proposition ψ, while in the affirmative response she does. With Dialogue Rule
DOBA we mean the generic Dialogue Rule DR instantiated for communicative
act doba.

An agent x is motivated to utter a doba if the speaker x is aware the addressee
y has the desire to make x believe ψ, and, x does not believe ψ. The pre-
conditions are the following.

(ψ ∈ BxDyBx), (ψ �∈ Bx) ∈ pre(doba(x, y, ψ))

After the communicative act is uttered, the addressee of a doba may deduce
properties of the speaker’s cognitive state, and the speaker may deduce properties
of the addressee’s cognitive state. The set of post-conditions for speakers and
addressees is the following.

(ψ ∈ ByBxDyBx), (ψ ∈ ByIx),
(ψ ∈ BxByBxDyBx), (ψ ∈ BxByIx) ∈ post(doba(x, y, ψ))

To prevent a decline of an oba from being superfluous, at least one of the
previous post-conditions must not hold. This criteria reads as “agent x does not
believe that agent y believes that x is ignorant about ψ”, which is the case if x
has not informed y that she does not believe ψ.

(ψ �∈ BxByIx) ∈ pre(doba(x, y, ψ))

Example 9 (Decline an oba). Abbreviate ψ for is a(this car, safe):t. The commu-
nicative act oba(tv, ia, ψ) is allowed in CS3 (from Example 8) with OBA rule
resulting in CS4, from which doba(ia, tv, ψ) is allowed with DOBA rule resulting
in CS5.

CS4
ia |= { ψ ∈ BiaDtvBia, ψ �∈ Bia, ψ �∈ BiaBtvIia }

CS5
tv |= { ψ ∈ BtvBiaDtvBia, ψ ∈ BtvIia }

CS5
ia |= { ψ ∈ BiaBtvBiaDtvBia, ψ ∈ BiaBtvIia }
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Motivations to utter Update of addressee y Update of speaker x Restriction to utter
pre(oba(x, y, ψ)) post(oba(x, y, ψ)) post(oba(x, y, ψ)) pre(oba(x, y, ψ))

ψ ∈ DxBy ψ ∈ ByDxBy ψ ∈ BxByDxBy ψ �∈ BxByDxBy

ψ �∈ BxBy ψ ∈ ByIxBy ψ ∈ BxByIxBy

ψ ∈ Bx ψ ∈ ByBx ψ ∈ BxByBx

pre(goba(x, y, ψ)) post(goba(x, y, ψ)) post(goba(x, y, ψ)) pre(goba(x, y, ψ))
ψ ∈ BxDyBx ψ ∈ ByBxDyBx ψ ∈ BxByBxDyBx ψ �∈ BxByBx

ψ ∈ Bx ψ ∈ ByBx ψ ∈ BxByBx

pre(doba(x, y, ψ)) post(doba(x, y, ψ)) post(doba(x, y, ψ)) pre(doba(x, y, ψ))
ψ ∈ BxDyBx ψ ∈ ByBxDyBx ψ ∈ BxByBxDyBx ψ �∈ BxByIx

ψ �∈ Bx ψ ∈ ByIx ψ ∈ BxByIx

Fig. 2. Overview of the pre and post-conditions of the communicative acts

Auxiliary Offer. An auxiliary offer is an information offer that substantiates
some claim to believe another proposition. This offer is syntactically indistin-
guishable from the offer defined in Section 3.3. However, from a semantic per-
spective the auxiliary offer is a different communicative act, since it has different
pre-conditions. Nevertheless, the post-conditions derived from the pre-conditions
are not different from those of the ordinary offer. To distinguish between the two
offers, auxiliary offers are indexed 2. The dialogue rule is denoted OBA2.

An agent x may utter an auxiliary offer if she has the desire that another agent
y believes some proposition ϕ, and she is not aware that y already believes ϕ.
These pre-conditions are equal to the motivation of the ordinary offer; however,
a number of other pre-conditions are added. Agent x is motivated to utter an
auxiliary offer regarding another proposition ψ if according to x, agent y would
decide to believe ϕ if y decides to believe ψ. Agents use Reasoning Rule D2A1 to
deduce properties of other agent’s cognitive state, and based on these findings
justify auxiliary offers. Formally, if ψ is set-theoretically added to mental state
BxBy, and ϕ is an element of the closure under the agent y’s reasoning rules, then
the auxiliary offer is allowed, that is, ϕ ∈ Cnr(BxBy ∪ {ψ}, D2A1). In addition,
agent x should believe ψ, and she should not be aware that y believes ψ.

(ϕ ∈ DxBy), (ϕ �∈ BxBy), (ψ ∈ Bx),
(ψ �∈ BxBy), (ϕ ∈ Cnr(BxBy ∪ {ψ}, D2A1))

∈ pre(oba2(x, y, ψ))

Example 10 (Auxiliary offer). Abbreviate ψ for is a(this car, safe):f and ϕ for
is a(this car, ferrari):t � is a(this car, safe):f. The communicative act doba(ia, tv, ψ)
is allowed in CS5

ia (from Example 9) with DOBA rule resulting in CS6
tv, from

which oba(ia, tv, ϕ) is allowed with OBA2 rule resulting in CS7.

CS6
tv |= { ψ ∈ DtvBia, ψ �∈ BtvBia, ϕ ∈ Btv, ϕ �∈ BtvBia,

ψ ∈ Cn(BtvBia ∪ {ϕ}, D2A1) }
CS7

tv |= { ψ ∈ BtvDiaBtv, ψ ∈ BtvIiaBtv, ψ ∈ BtvBia }
CS7

ia |= { ψ ∈ BiaBtvDiaBtv, ψ ∈ BiaBtvIiaBtv, ψ ∈ BiaBtvBia }
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4 To Agree to Disagree

Agents in conversation may become aware of parts of their communication part-
ner’s cognitive states, and while they do, it may happen that they become aware
of irresolvable disagreements. If agents participate in some group-plan that re-
quires mutual agreement on certain proposition, agents have a direct incentive
to resolve disagreements regarding these propositions. Although we do not pro-
vide an explicit incentive, we do assume that agents have one, and, consequently,
they will act to resolve disagreements.

A disagreement can be resolved with four different dialogue games: (1) an
agent can convince the agent she disagrees with to believe a proposition that
resolves the disagreement. (2) An agent can ask others to help to convince her to
believe propositions that resolve the disagreement. (3) An agent can request the
agents she disagrees with to forget propositions that result in the disagreement,
and (4) an agent can ask others to help to convince her to forget propositions
that result in the disagreement. We only consider the first situation: agents can
resolve disagreements by convincing others to decide to believe propositions,
thereby resolving the disagreement.

If all options to resolve the situation have been exhausted, agents are to
conclude that they have an irresolvable disagreement about a specific proposi-
tion. If agents offer this awareness to the other agents, both can agree on their
disagreement and make the disagreement a manifested belief. This agreement
to disagree may trigger a new dialogue in which, for example, a coin flipping
method is proposed to resolve the situation, or the meaning of the formula in
the proposition is debated. A reasoning rule is defined in Section 4.3 to conclude
that an agreement to disagree is in order. This rule combined with the dialogue
game to offer information enables agents to agree to disagree.

4.1 Disagreements

Two pieces of information are conflicting when they are not subsumed under each
other in the information order. That is, truth-values are in conflict, denoted �,
when they are unrelated in ≤k. That is, θ1 � θ2 iff θ1 �k θ2 and θ2 �k θ1.

A disagreement between agents x and y about formula p exists if and only if x
believes p:θ1 and y believes p:θ2, and the truth-values are in conflict. Additionally,
it needs to be the case that both propositions are the most informative, that
is: for all truth-values θ3 part of the bilattice hold that θ3 ≤k θ1 and θ3 ≤k

θ2, for agents x and y respectively. Note that in a four-valued logic only one
disagreement exists: true disagrees with false because t �k f, and f �k t. If an
agent believes p:u and another believes p:t (and these propositions are the most
informative), then they do not disagree about p, the latter agent is just more
informed than the former näıve agent.

If a disagreement exists between two agents, both need not be aware of this.
An agent x is aware she has a disagreement with another agent y if and only
if she believes a proposition p:θ1 and she believes that y believes p:θ2 and the
truth-values θ1 and θ2 are in conflict. A second-order disagreement awareness
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exists when an agent x is aware that another agent y believes a proposition p:θ1
and x is aware that y is aware that x believes proposition p :θ2 and θ1 is in
conflict with θ2.

Example 11 (Disagreement awareness). Abbreviate p for is a(this car, safe). In
CS3

ia (from Example 8, or Example 6, line 3), the Ia believes that Tv believes
p:t. From this moment, the Ia is aware of a disagreement about p: CS3

ia |= {p:
f ∈ Bia, p:t ∈ BiaBtv}. In CS4

tv (from Example 9; or Example 6, line 4) that Tv
also becomes aware of the disagreement: CS4

tv |= {p:t ∈ Btv, p:f ∈ BtvBia}. In
Example 6, line 5, the Ia becomes aware of a second-order disagreement after
she stated p:f, because CS5

ia |= {p:f ∈ BiaBtvBia, p:t ∈ BiaBtv}. It is only after
line 6 that Tv also becomes aware of this disagreement.

4.2 Resolving Disagreements

Assume there is a disagreement between agent x and y about a formula p with
p:θ1 ∈ Bx and p:θ2 ∈ BxBy. Proposition p:ξ1 resolves the disagreement (viewed
from x’s perspective), if y would decide to believe p:ξ1, and, as a result, y would
decide to believe p:θ1 (viewed from x’s perspective) due to Reasoning Rule D2A1.
We have:

p:θ1 ∈ Cnr(BxBy ∪ {p:ξ1}, D2A1)

The previous proposition resolves the disagreement from x’s perspective if
y is to decide to believe the proposition. The following proposition resolves the
situation from x’s perspective if x herself decides to believe the proposition.
Proposition p :ξ2 resolves the disagreement, if x would decide to believe p :ξ2,
and, as a result, x would believe p:θ2 (due to Reasoning Rule D2A1), thereby
resolving the disagreement. Formally, we have:

p:θ2 ∈ Cnr(BxByBx ∪ {p:ξ2}, D2A1)

An agent is only interested in the least informative proposition to resolve the
situation, that is, the proposition with a truth-value that is the lower bound
with respect to ≤k. Remember that in the current dialogue game only additions
of information are possible; consequently, resolving a disagreement can only take
place by adding sufficient information to one of the two agents’ cognitive states,
rendering it inconsistent.

4.3 Reasoning Rule to Agree to Disagree

The pre-conditions are given next that state when agents are allowed to decide
to believe that they agree to disagree. The reasoning rule to become aware
of irresolvable disagreements is denoted D2A3 which is an instantiation of the
generic Reasoning Rule RR. The decision is denoted d2a3(x, a2d(x, y, p:θ1, p:θ2)),
we abbreviate proposition a2d(x, y, pθ1, p:θ2) with κ for convenience. κ denotes
that agent x and y agree to disagree on formula p. In the following paragraphs,
we call agent x ‘I’ and y ‘you’. The pre-conditions are the following.
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1. I am aware that I have a disagreement with you about formula p.

(p:θ1 ∈ Bx), (p:θ2 ∈ BxBy), (θ1 � θ2) ∈ pre(d2a3(x, κ))

2. I am aware that you are also aware of the disagreement.

(p:θ2 ∈ BxBy), (p:θ3 ∈ BxByBx), (θ3 � θ2) ∈ pre(d2a3(x, κ))

3. I do not believe a set of propositions Φ ⊆ Bx that I have not offered to you
before and that could have resolved the disagreement if you had decided to
believe them. Suppose p:ξ1 is a proposition that if you had added it to your
belief state, then the disagreement would have been resolved. For all sets
of beliefs Φ that if you had decided to believe them, then this would have
resolved the disagreement, that is, p:ξ1 ∈ Cnr(BxBy ∪ Φ,D2A1). However, I
have already offered Φ to you, that is, the post-conditions of an oba apply,
Φ ⊆ BxByDxBy. In this situation I have no methods left (sets of propositions
Φ) to persuade you.

(
∀Φ ⊆ Bx (p:ξ1 ∈ Cnr(BxBy ∪ Φ,D2A1) ⇒

Φ ⊆ BxByDxBy)
) ∈ pre(d2a3(x, κ))

4. I am aware that you do not believe a set of propositions Ψ ⊆ BxBy that
you have not offered to me before that could have resolved the disagreement
if I had decided to believe them. Suppose p:ξ2 is the proposition that if I
added it to my belief state, then the disagreement had been resolved. For
all sets of beliefs Ψ that if they had been accepted by me, then this would
have resolved the disagreement, ψ:ξ2 ∈ Cnr(BxByBx ∪ Ψ, D2A1). However
Ψ has already been offered to me, and I seem to have responded negative,
that is, the post-conditions of a doba apply, Ψ ⊆ BxByIx. In this situation
I think that you have no methods (sets of propositions Ψ) left to resolve the
situation.(

∀Ψ ⊆ BxBy (p:ξ2 ∈ Cnr(BxByBx ∪ Ψ, D2A1) ⇒
Ψ ⊆ BxByIx)

) ∈ pre(d2a3(x, κ))

These criteria are the pre-conditions for the reasoning rule to decide to add to
a belief state that an agent is stuck in an irresolvable disagreement. If the agent
has used the reasoning rule, the post-conditions hold that she actually believes
that she agrees to disagree, and that she desires that the agent she disagrees
with also believes this proposition.

(κ:t ∈ Bx), (κ:t ∈ DxBy) ∈ post(d2a3(x, κ), Bx)

The dialogue game to offer information takes care of the communication of
κ to y, and possibly reaching an actual agreement on this proposition, making
the agreement to disagree common belief.

Example 12 (the Ia and Tv agree to disagree). Abbreviate p for is a(this car, safe),
ψ for is a(this car, ferrari):t and κ for a2d(ia, tv, p:t, p:f). The communicative act
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doba(ia, tv, ψ � p : f) is allowed in CS8
ia (from Example 10) with DOBA rule

resulting in CS9
tv from which oba(ia, tv, κ) is allowed with OBA rule resulting in

CS10. In the latter state, Tv is allowed to utter goba(tv, ia, κ).

CS8
tv |= { ψ ∈ DtvBia, ψ �∈ BtvBia, ϕ ∈ Btv, ϕ �∈ BtvBia,

ψ ∈ Cnr(BtvBia ∪ {ϕ}, D2A1) }
CS9

tv |= { ψ ∈ BtvDiaBtv, ψ ∈ BtvIiaBtv, ψ ∈ BtvBia }
CS9

ia |= { ψ ∈ BiaBtvDiaBtv, ψ ∈ BiaBtvIiaBtv, ψ ∈ BiaBtvBia }

5 Multi-agent System Architecture

The agent’s mental states, reasoning and dialogue games are implemented in
SWI-Prolog [35], resulting in flexible multi-agent system architectures. Other
reasoning games specifying, for example, when agents are allowed to decide to
forget propositions, or dialogue games specifying the semantics of posing and
answering questions [14] can be added without the need to change the rules of
existing games.

In Section 5.1, the order of execution of the different rules and choices made
by agents are described in the agent’s deliberation cycle. In Section 5.2, im-
plementations are presented of mental states (MVL theories), reasoning and
dialogue rules, which, in Section 5.3, result in a reasoning and dialogue space.

5.1 The Agent’s Deliberation Cycle

The agent’s deliberation cycle consists of three choices and the execution of five
rules, see Figure 3 for a graphical depiction.

1. Check whether cognitive reasoning rules are applicable, select a rule and go
to step 2 to execute this rule. If there are no applicable rules, go to step 4
to see whether the agent has received communicative acts.

2. Execute the cognitive reasoning rule that has been found in step 1. The
executions of cognitive rules have no observable effects for other agents. Go
to step 3 to update the agent’s cognitive state accordingly.

3. Execute the appropriate update rule for reasoning rule from step 2. Go to
step 1 to check whether more reasoning needs to be done.

4. Check whether communicative acts are received, that is, acts that are di-
rected at the agent. Take the oldest act from the queue of received acts, and
go to step 5. If the queue of received acts is empty, go to step 6 to check
whether the agent is allowed to utter a communicative act.

5. Execute the appropriate update rule for the received communicative act from
step 4. Go to step 1 to check whether reasoning can be done.

6. Check whether dialogue rules are applicable, select a rule and go to step 7
to execute this rule. If there are no applicable rules, go to step 4 to check
whether communicative acts have been received.
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Fig. 3. The agent’s deliberation cycle

7. Execute the dialogue rule that has been selected in step 6. The executions
have the effect of uttering a communicative act directed at some other agent.
Go step 8 to update the agent’s cognitive state accordingly.

8. Execute the appropriate update rule for the uttered communicative act from
step 7. Go to step 1 to check whether reasoning needs to be done.

Cycle 1-2-3 enforce that an agent’s reasoning is done before she engages in
conversation; her cognitive state is closed under reasoning before she is to test
whether she received communicative acts, that is, CSx = Cnr(CSx,R). Cycle
1-4-5 enforces that all received communicative acts are processed and that the
agent’s cognitive state is updated accordingly before the agent is to test whether
she is can utter communicative acts.

5.2 Implementation in Prolog

Remember that an agent’s cognitive state consists of a number of mental states
and that these states are theories of MVL. The programming language Prolog,
and in particular SWI-Prolog [35], is used to implement the agent’s cognitive
states, the reasoning and dialogue rules.

A Prolog database is used to store the propositions part of the different
theories that compose an agent’s cognitive state; the Prolog inference engine is
used to enforce that theories are closed under deduction rules as set forward in
Definition 2. A Prolog term prop(T, F, Tv) states that formula F in theory T
has at least truth-value Tv, that is, F:Tv ∈ T. The test whether a proposition
is part of a theory is implemented as a Prolog call to the database with the
corresponding Prolog term for the proposition.
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The following Prolog clauses implement complete theories of MVL. Clause
leq(k,θ1, θ2) implements θ1 ≤k θ2, and oplus(k, θ1, θ2, θ3) implements θ3 =
θ1 ⊕k θ2. The implementation of the bilattice structure is not presented.

prop(T, F, u).
prop(T, F, Tv1) :- prop(T, F, Tv2), leq(k, Tv1, Tv2).
prop(T, F, Tv1) :- prop(T, F, Tv2), prop(T, F, Tv3), \+ Tv2 = Tv3,

oplus(k, Tv1, Tv2, Tv3).

Adding a proposition to the agent’s cognitive state can be done straightfor-
wardly by asserting the proposition. However, not all propositions need to be
asserted, only those that cannot be derived from already asserted propositions.

add(T, F, Tv) :- \+ prop(T, F, Tv) -> assert(prop(T, F, Tv)); true.

Reasoning and dialogue rules are implemented by taking the conjunction of
the pre-conditions of decisions and communicative acts as the body of a clause.
The agent’s reasoning capabilities are implemented with Prolog’s deduction re-
lation ‘:-’.

Example 13 (The Ia’s Initial cognitive state in Prolog). Let ms(b(ia)) denote
Bia, and ms(d(ia), b(tv)) denote DiaBtv. From Example 3 we have:

prop(ms(d(ia),b(tv)), is_a(this_car, safe), f).
prop(ms(b(ia)), is_a(this_car, safe), f) :-

prop(ms(b(ia)), is_a(this_car, ferrari), t).

The dialogue rule to offer information is implemented by taking the pre-
conditions of the communicative act as the body of a Prolog clause. The update
of the speaker and addressee’s cognitive state are implemented as a sequence of
actions of asserting propositions. Reasoning rules are implemented analogously.

dialogue_rule(oba(X, Y, F:Tv)) :-
prop(ms(d(X), b(Y)), F, Tv),

\+ prop(ms(b(X), b(Y)), F, Tv),
prop(ms(b(X)), F, Tv),

\+ prop(ms(b(X), b(Y), d(X), b(Y)), F, Tv).

update(oba(X, Y, F:Tv)) :-
add(ms(b(Y), d(X), b(Y)), F, Tv),
add(ms(b(Y), i(X), b(Y)), F, Tv),
add(ms(b(X), b(Y), d(X), b(Y)), F, Tv),
add(ms(b(X), b(Y), i(X), b(Y)), F, Tv).

5.3 Dialogue Space

The implementation of the reasoning and dialogue games provides a computa-
tional method to generate the space of all cognitive states reachable from an
initial collective cognitive state. Although this space tends to become large for
even a small number of agents, graphical depiction may give an intuitive feel
whether protocols generate sensible communication. This space can be used by
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trace checkers to prove formal properties, like, for example, whether dialogues
terminate in unique states (confluence property), or whether dialogues terminate
at all (normalizing property).

The dialogue from Example 6 is a valid sequence of communicative acts in the
dialogue game of offering information and reasoning game of deciding to believe
propositions. From collective cognitive state from Example 3, the communicative
acts of the dialogue are allowed, this is shown with Example 7, 8, 9, 10 and 12.

The complete space of valid dialogues in a dialogue game can be generated
with the aid of software tools from an initial collective cognitive state. From the
collective cognitive state in Example 3 the space of valid dialogues has been gen-
erated (not presented). The resulting graph has 37 nodes representing collective
states and 66 edges representing utterances of communicative acts. This space
comprises 177 different dialogues with three different final collective states. One
has to remember that agents decide to believe propositions if these are consistent
with their current belief state. This makes the timing of communicative acts of
crucial importance, resulting in the three different endings, that is, the dialogue
game does not have the confluent property. Resolving this non-confluence is part
of future work.

6 Conclusion

In this paper, a formal semantics for an agent’s cognitive state is given that
allows agents to believe and desire inconsistent propositions. A reasoning rule is
formulated enabling agents to decide to believe propositions if they are aware
another agent also believes these propositions. Another reasoning rule is given
in which agents decide to believe that they disagree with another agent and that
this disagreement is irresolvable from both their perspectives.

A dialogue game is proposed for offering propositions and in particular the
proposition that both agents agree to disagree. The semantics of the communica-
tive acts are defined by formulating the rules of usage, being the pre-conditions
that need to hold in the speaker’s cognitive state, and the post-conditions that
need to hold after the communicative act is uttered. With a dialogue game a for-
mal system emerges in which sequences of communicative acts can be checked to
be valid dialogues. In addition, dialogues spaces can be generated from dialogue
rules, providing the possibility to analyse dialogue games on useful properties.
One such property is whether unbalanced desire and belief states are resolved in
the terminating cognitive states.

The agent’s ability to become aware of irresolvable disagreements with some
other agent combined with the ability to communicate this information, enables
her to agree with the other that the disagreement is irresolvable. Both agents
can then settle the disagreement with an agreement to disagree. Note that the
agreement to disagree is based only on the cognitive state of the agents that
actually have the disagreement.

Dialogue and reasoning games not only define the semantics of decisions and
communicative acts, but also provide rules when to generate decisions and com-
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municative acts. This allows straightforward Prolog implementations with intu-
itive design. Future research will address agents that strategically select which
communicative acts to utter with the goal to arrive at a collective state in which
desirable properties hold. Other research will centres around communicative acts
for retracting information, that is: an offer to forget.
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Abstract. The design of complex systems needs sophisticated coordina-
tion mechanisms. This paper proposes an approach based on multi-agent
planning to coordinate such systems in the tactical aircraft simulation
domain. This paper presents an integral cycle, from modelling to valida-
tion, that enables the building of feasible multi-agent plans as developped
in a project named SCALA promoted at Dassault Aviation.

1 Motivations

Multi-agent systems (MAS) are a suitable paradigm to design and model com-
plex systems for well-known reasons like autonomy, reactivity, robustness, proac-
tivity, etc. However an important issue remains the coordination and the co-
operation of automomous agents in complex systems where these agents have
to reorganize themselves dynamically. To cope with this issue, searchers have
investigated several fields, especially multi-agent planning as a model for coordi-
nation and cooperation. Several approaches for multi-agent planning have been
proposed such as [1] where a taxonomy of the relations between the agents plans
and the development of a communication structure between autonomous agents
are defined. Other approaches developed in [2, 3] are based on the paradigm of
plan merging where each new agent entering in the system coordinates its plan
with the current multi-agent plan. The notion of partial order between tasks has
been exploited in [4]. The model allows the representation and the management
of plans thanks to an extension of the Petri Net formalism to the Recursive Petri
Nets [5].
Our application field concerns tactical aircraft simulation where the agents have
to reorganize themselves when new events occur. This type of system can be
seen as a complex system evolving in an open environment. In fact, we have to
tackle the following problems: given an electronic institution where agents have
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local goals and share global one’s (i.e. aircraft domain), governed by social laws
(described in a Graph of functionnal Dependencies), each agent of this institu-
tion has to plan autonomously its course of actions and coordinate its plan with
the other agents. Then, in such framework, the allocation of tasks must be dy-
namic and context-dependent for a more flexible system. That is why when the
agents of the institution reorganize themselves they have to take into account
all the parameters that evolve during the simulation. These parameters may be
the temporal objectives that the institution has to fulfil or the resources of the
agents (for example: altitude, kerosene, etc.). The complexity of our system is
basically inherent to the management of the resources and the dynamic aspect
of the aircraft framework.

To deal with this complexity, we proposed in [6, 7] to model the different
resources of the agents and the multi-agent plan starting from the well-used
formalism of the hybrid automata [8] that we extended and enriched to take
into account the flexibility of the agents’ behaviour. The main advantage of this
formalism is to model different clocks (a kind of variables) that evolve with
different speeds. Thanks to the hybrid automata, we showed that it was possible
to model a multi-agent plan as a network of hybrid automata where each hybrid
automaton is a representation of an individual plan.

From this modelling, we expected to have a powerful formalism enabling
to control the execution of the multi-agent plan and to validate it. Indeed, the
control of the execution and the validation of multi-agent plans seem to be a real
problematic now in this field of research. The most known work is realised in
CIRCA [9] that proposes a system to control the safety of the system. For that, it
develops ”control plans” and sets of TAPs (Test/Action Pairs). Once scheduled,
the verification of these TAPs ensure the system safety. The control plans are
modelled by means of timed automata [10]. Our approach concerns the validation
of the functionnal constraints of the mission more than the system safety. To
sum up, CIRCA ensures that the system is safe under conditions and we would
like to assure that the mission is feasible under conditions. To our knowledge,
CIRCA is the only work that treats the control of multi-agent systems, in the
aeronautical field, in the extension of the project named MASA-CIRCA [11].

However the flexibility offered by the designer makes the sets of constraints
complex to be managed and thereby the control of the multi-agent plan. In fact,
to enable flexible planning, the agents are not assumed to know a priori which
course of actions to follow. We propose a dynamic management, via the sets of
constraints, of the agents’ plans. Thus allowing more flexibility inside the multi-
agent plans. In addition, our approach provides the following mechanisms: to
decompose the individual plans of the agents into a set of possible sub-plans;
to extract the pertinent constraints to control the execution of the multi-agent
plan and to validate it.

This paper is organized as follows: section 2 presents our domain of applica-
tion namely Tactical Aircraft Simulation and the project SCALA (Co-operative
System of Software Autonomous Agents). Section 3 presents our framework for
the modelling of multi-agent plans as networks of synchronised hybrid automata
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from a Graph of Functionnal Dependencies (GFD). Section 4 introduces ver-
ification criteria in the multi-agent planning context. Section 5 describes the
building cycle of feasible multi-agent plans. It presents the definitions and the
computational mechanisms to control this cycle. Section 6 presents a distributed
algorithm for multi-agent plan validation. Section 7 concludes this paper and
introduces our future works.

2 SCALA and Tactical Aircraft Simulation

At Dassault-Aviation, we have been working on a project named SCALA which
aims at proving the interest of a multi-agent approach to design and model com-
plex systems, in particular in the framework of Tactical Aircraft Simulation.
The major objectives carried out by SCALA is to make easier the modelling
and the design of such systems. SCALA offers the designer a multi-agent based
methodology providing a high level of abstraction. Different tools have been de-
velopped to rapidly setting up simulations by monitoring the behaviour of the
system (individual and collective behaviour) and by using reusable mechanisms
of cooperation. The behaviour is described by means of a Graph of Functionnal
Dependencies (see section 3).

2.1 The Objectives of SCALA

This approach carries on several objectives to:

– Provide a tool to prototype multi-agent systems in proposing a methodology
of design based on the functionnal requirements;

– Make easier the modelling and the design of such systems thanks to a high
level description language;

– Simulate different types of organisation and communication protocols be-
tween agents;

– Constitute libraries of reusable mechanisms and protocols;
– Propose tools to support the design of the system and to monitor the be-

haviour oof the system.

2.2 The Methodology

The SCALA’s methodology is based on a functionnal approach enabling the
designers to elaborate and to model the whole behaviour of the multi-agent
system. This methodology is composed of 8 steps :

1. Definition of the Graph of Functionnal Dependencies;
2. Definition of the Sub-Graphs (and the associated goals);
3. Identification of the expected relevant events;
4. Description of the elementary behaviours (or tasks) to be achieved by the

agents;
5. Definition of the agents;
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Fig. 1. The SCALA map
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Fig. 2. The SCALA scheduler diagram

6. Definition of the groups of agents;
7. Choice of the social organisations;
8. Choice of the cooperation protocols.

To fulfill this methodology, we provide some tools in a first prototype of
SCALA.

2.3 A First Implementation

A first prototype of SCALA has been developed using the JACK Agent Oriented
Language software [12] based on Java. The following interception scenario of an
aircraft mission has been developped with SCALA. These SCALA tools include:

– editors to design the agents and the groups of agents (skills, resources, flight
plans of the planes, sensitivity to events...),

– a graph editor to easily design the GFDs (see section 3) which are associated
to events, and also build a library of reusable behaviours,
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– a map to situate the agents (figure 1),
– a scheduler diagram which represents the activities of the agents (figure 2).

3 Multi-agent Planning Based on Hybrid Automata

In our field of application, the designer expects a global coherent behaviour
from the simulation. For that, this behaviour is specified through a GFD giving
a decomposition of the global task into sub-tasks and their constraints.

3.1 The Graph of Functionnal Dependencies

The GFD helps the designer to model the global behaviour of the system at a
given level of abstraction. More details about the GFD can be found in [7]. For
a given task, the designer defines a graph of functionnal dependencies that is
a decomposition of the global task into sub-tasks and provides the constraints
between them. The graph of dependencies helps the designer to model the global
behavior of the system at a given level of abstraction. In this modeling, a graph
of functionnal dependencies (GFD) G is defined as a tuple G =< Ta, S, To >
where:

- Ta is a set of tasks t; Ta = Taelem

⊎
Taabs where Taelem denotes the set

of elementary tasks and Taabs denotes the set of abstract tasks (i.e. to be
refined before their execution);

- S is the set of relations between the tasks within the graph defined as follows:
S = {(ti, tj), ti, tj ∈ Ta/ ti r tj , r ∈ � || (r′)N ti / r′ ∈ �′ = � − {Ex}
|| (ti)N} where � = {Ex, Sstart, Send, Seq} and N∈N∗ with the following
semantics, we call these elements connectors in this paper:

• ti Ex tj , the two tasks are exclusive, ti inhibits tj for ever;
• ti Sstart tj , the two tasks start at the same time;
• ti Send tj , the two tasks end at the same time;
• ti Seq tj , ti precedes tj (used by default);
• (ti)N means that the task ti must be executed N times;
• (r′)N ti means that the task ti is linked N times by a connector:

- (Seq)N ti corresponds to N cycles on task ti: ti Seq ti Seq ... Seq ti;
- (Sstart)N ti means that N tasks ti start at the same time;
- (Send)N ti means that N tasks ti end at the same time.

- To is a temporal objective associated with the graph G. To can be defined
as a consistent conjunction of elementary temporal objectives. Let ti be a
task belonging to Ta and goali a temporal objective on ti: To = {(ti, goali)
/ τ (ti) = goali}. τ () is the function which associates a temporal objective
with a task.

3.2 An Example

This case study is introduced to show how a multi-agent graph can be mod-
eled thanks to hybrid automata and developed in SCALA. Figure 3, we present
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Fig. 3. Multi-agent Interception Graph

a graph of functionnal dependencies representing the expected behaviour of a
mission of Threat Interception for a four aircraft division on alert on a CAP
(Control Air Patrol). The mission of the aircraft is to protect the territory by
intercepting the threats. The threat, in this case, represents an enemy plane en-
tering in the friend area. The division begins the interception mission as soon as
the bandit is detected.

The interception mission consists in several steps :

– The Guided Flight task follows the CAP as soon as a ”Contact” on the radar
occurs.

– The cardinality of 2, associated to the Guided Flight task, means that two of
the four aicraft have to start the interception phase, and moreover simulta-
neously (connector Sstart). The temporal constraint [?t0, t1] on the Guided
Flight task means that the section starts this task only if it can reach the
threat before the date ”t1” (an approximation of the interception distance
is computed).

– If the threat leaves the friend area, before the section of two aircraft has
reached it at a distance ”d1”, the section returns to the base, else if the
localization and the identification are OK, the section starts the commit
(”Loc ident” label in the automaton).

– As soon as the shoot is possible by one of the two friends, the Shoot task is
performed (”Shoot OK” label).

– Finally, the section returns to the base. The n associated to the Return
task enables it to be performed by a varied number of aircraft at different
moments of the mission.
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3.3 Agent Plan Representation

In this part, we introduce the hybrid automata formalism. It is interesting since
it allows the designer to take into account the agents resources (kerosene level,
position, etc.) and the time as parameters of the simulation. In fact, the agents
must be able to adapt their behaviours to cope with the changes of their resources
and environment.

Motivation of Hybrid Automata. In order to model the different constraints,
we need a formalism that could take into account different parameters and allow
the representation of different properties of our system, such as :

– the reactivity : the system must be reactive in order to cope with the changes
of the environment,

– the adaptibility : the system must manage different possible behaviours ac-
cording to conditions of execution (i.e. the preconditions of a task),

– the dynamicity : the environment is dynamic and the variables of the system
(agents and environment) may evolve during the simulation. These variables
are, for example, the time and the different resources of the agents (kerosene,
altitude, etc.),

– the synchronization : in our model, the entities have to synchronize them-
selves in order to achieve certain tasks (functionnal constraints).

– the validation : we want to use tools to validate the generated plans.

Moreover, a determinist behaviour is expected from the agents. It means that
the agents have to execute certain task in a determinist way formalized by the
designer.

A good candidate is the formalism of Hybrid Automata [8] since they allow to
model different clocks that model the variables of the system even if they evolve
with different speeds. This advantage is particularly suitable with our model.
Furthermore, the hybrid automata keep all the properties of the automata.
These properties concerns the model-checking, as follows :

– reachability : check if a certain state is reachable,
– security : under a set of conditions, guarantee that a certain situation never

occurs,
– liveness : under a set of conditions, something will occur,
– deadlock absence : the automaton will never be in a situation in which it is

impossible to go ahead.

A number of model-checkers already exists and we do not focus on this aspect
in this paper; for example, HyTech [13].

Definition of the Hybrid Automata. The hybrid automata can be seen as
an extension of timed automata [10]. A hybrid automaton is composed of two
elements, a finite automaton and a set of clocks:

– A finite automaton A is a tuple:
A =< Q, E, Tr, q0, l > where Q is the set of finite states, E the set of labels,
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Tr the set of edges, q0 the initial locations, and l an application associating
the states of Q with elementary properties verified in this state.

– A set of clocks H, used to specify quantitative constraints associated with
the edges. In hybrid automata, the clocks may evolve with different speeds.

The set Tr is a set of edge t such as t ∈ Tr,
t =< s, ({g}, e, {r}), s′ >, where:

– s and s′ are elements of Q, they model respectively the source and the target
of the edge
t =< s, ({g}, e, {r}), s′ > such that:

• {g} the set of guards, it represents the conditions on the clocks;
• e the transition label, an element of E;
• {r} the set of actions on clocks.

The Reachable States. To represent a duration with an automaton, each task
requires a start state and an end state. The set Q of reachable states is defined
as follows. Let the graph G =< Ta, S, To > and ti ∈ Ta, for 1 ≤ i ≤ n, a task
of the graph G, tistart and tiend, respectively, the start and end states of the task:

Q =
n⋃

i=1

{tistart, t
i
end} (1)

From this definition, we define two subsets Qstart and Qend of Q, such as :

Qstart = {tistart},Qend = {tiend} (2)

for 1 ≤ i ≤ n. We obtain that Q = Qstart ∪ Qend. Let us note that the initial
state is noted q0 and q0 ⊂ Qstart.

The Labels of Transitions. The labels of transitions represent the conditions
to move between tasks or to achieve them, that’s why we introduce the notions
of internal and external conditions of transition, respectively Cin and Cext:

– The internal conditions enable to move from a start state to an end state of
a task. This shift may correspond to the task execution or its interruption,

– The external conditions enable to move from a task to another, in other
words from an end state to a start state of two tasks.

E = Cin ∪ Cext (3)

In our example, E is defined according to the predicates of the tasks composing
the graph.
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The Clocks. As said before, the hybrid automata enable the designer to model
different clocks (i.e.variables of the system) evolving with different speeds. The
term of ”clock” is used in the automata terminology but in our model,
they represent the variables of the system. In our case, two types of
variables are considered:

– The time, we assume that agents are synchronized on a global clock since
they act synchronously, represented by {clock}Ai

(internal clock of the agent
Ai) in the following equation. Hence, the only operations made on these local
clocks are the tests specified through guards conditions.

– The resources of the agents, needed by the agents to achieve their
plans, their evolution is managed through three operators: use, consume
and produce. They are modeled by {Res}Ai

: set of the resources owned by
the agent Ai.

We had to use different clocks for simple reasons. The evolution laws of the
variables are different so they cannot evolve with the same way. This cannot
be modeled by Timed Automata for the previous reasons. Then, we have tried
to model all the agents aspects and their resources because they are limiting
factors in the simulation. In fact, the agents behaviour is a direct consequence of
resources level. For example, an agent will shoot a target only if it owns at least
one missile. This condition on the number of missile will appear on the guards
of the task Shoot.

So, we can define H the set of clocks:

H =
⋃

{Res}Ai ∪ {clock}Ai , (4)

for each ti ∈ Ta. Let us remind our hypothesis of work, all the internal clocks
of the agents are synchronized in a global clock. To our knowledge, there’s no
work considering different clocks that are not synchronized on a global clock (see
[14]).

The Edges. The main advantage of the edges is to control the execution of the
different plans and in our case the multi-agent plan. This type of control is very
powerful because it enables to follow in real-time the evolutions of the variables
of the system. There is two types of edge:

– Edges that connect 2 states (tistart → tiend) of the same task, called inedge

(internal edges),
– Edges that connect 2 states (tiend → tjstart) of two different tasks, called

exedge (external edges).

The inedge edges model the interruption conditions of tasks, and the conditions
on clocks to be fulfilled. They are labeled as follows:
Considering tr ∈ inedge, s ∈ Qstart and s′ ∈ Qend, s and s′ respectively the
source and the target of tr:



Coordination of Complex Systems Based on Multi-agent Planning 233

– The guard is the set of interruption conditions of the task X: Xinterrupt,
– The label of transition lX ∈ Cin is the condition of achievement of the task

X,
– The set of actions on the clocks from the post-conditions of the task X:

Xpost.

tr =< s, (Xinterrupt, lX,Xpost), s′ > (5)

The exedge edges model the preconditions to be checked in order to execute a
task. They are labeled as follows:
Considering tr ∈ exedge, s ∈ Qend and s′ ∈ Qstart, s and s′ respectively the
source and the target of tr:

– The guard is the set of preconditions of X on the resources: Xpre,
– The label of transition lX ∈ Cext is the moving condition of X from s to s′,
– No actions on clocks.

tr =< s, (Xpre, lX,−), s′ > (6)

3.4 Multi-agent Planning

In this section, we present the modelling of the multi-agent plans as networks of
Synchronized Hybrid Automata [8].

The Synchronized Product. As we said before, we consider that each agent
owns a plan that is modeled by an hybrid automaton. Consequently, the multi-
agent plan is the synchronized product of each hybrid automaton. Let us define
the synchronized product :
Considering n hybrid automata Ai =< Qi, Ei, T ri, q0,i, li,
Hi >, for i = 1, ..., n.
The Cartesian product A1×...×An of these automata is A =< Q, E, Tr, q0, l, H >,
such as:

– Q = Q1 × ... × Qn;
– E =

∏n
1 (Ei ∪ {−});

– T = {((q1, ..., qn), (e1, ..., en), (q
′
1, ..., q

′
n)|,

ei =′ −′ and q
′
i = qi

or ei �=′ −′ and (qi, ei, q
′
i) ∈ Tri};

– q0 = (q0,1, q0,2, ..., q0,n);
– l((q1, ..., qn)) =

⋃n
1 li(qi);

– H = H1 × ... × Hn.

So, in this product, each automaton may do a local transition, or do nothing
(empty action modeled by ’-’) during a transition. It is not necessary to synchro-
nize all the transitions of all the automata. The synchronization consists of a set
of Synchronization that label the transitions to be synchronized. Consequently,
an execution of the synchronized product is an execution of the Cartesian prod-
uct restricted to the label of transitions. In our case, we only synchronize the
edges concerning the temporal connectors Sstart and Send.
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Indeed the synchronization of individual agent’s plans is done with respect to
functionnal constraints and classical synchronisation technics of the automata
formalism like ”send / reception” messages. In our modelling, we map the differ-
ent parameters of the synchronized automaton to the different notions of multi-
agent planning. Let us remind that the synchronized automaton is a represen-
tation of all the planned actions of the agents. So, if we consider a synchronized
automaton A, such as A =< Q, E, Tr, q0, l, H >:

– Q represents the local goals of all the agents, that is to say all the reachable
internal states of the agents;

– E models the high level label of transitions that are used in the GDF;
– Tr models the pre-, post- and interruption-conditions of the tasks. In fact,

the different conditions on clocks enables to control the multi-agent plan
execution and by the way, the agents behaviour. Furthermore, the Synchro-
nization is realised by means of this set;

– q0 is the set of initial states of all the agents acting for the same global goal;
– l(q1, ..., qn) is the association of the elementary functions that maps the

agents states to elementary properties verified in these states;
– H is the set of clocks of all the agents.

Two Levels of Synchronization. To guarantee the efficiency of our model,
two levels of synchronization are distinguished:

– A functionnal level: modeled by the connectors Sstart, Send and Ex in the
graph of dependencies. This level concerns the global behaviour of the system
(i.e. the functionnal dependencies).

– An internal level: modeled by the connector Seq. This connector controls the
evolution inside the graph of functionnal dependencies and implies important
issues in the multi-agent context.

The internal level models the evolution process of the executed tasks in the
graph. The evolution rule inside the graph may be the following:
”If two tasks X and Y are linked by the relation X Seq Y , Y should
be executed iff X has already been executed”.
This assumption may be generalized to a set of tasks where each task is linked
by the Seq connector to another task, such as:
”If a set of tasks TX and a task Y are linked such as ∀x ∈ TX / x
Seq Y , Y should be executed iff all the tasks of TX have already been
executed”.
To control this evolution, we use the ”shared variables” technics to synchronize
the internal level. For that, we add a variable (that will be shared by the agents)
to each task that controls the state of task (executed or not). It means that a task
will become feasible as soon as all the tasks in relation with a Seq connector
will have been executed. This internal synchronization has an impact on the
definition of the edges.
Considering a task X, and a set of tasks TX (as defined below), the modifications
are the following:
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– for the exedge whose X is the target, the guards must check that all the
tasks of TX have been executed by checking all the variables associated to
the tasks of the set TX .

– for the inedge, the value of the variable associated with X must become true
to model that X has been executed.

This technics enables us synchronizing the individual automata at a first level of
synchronization. We only propose, here, a first solution that should be improved
and better formalized.

An Example of Synchronization Connector: The Sstart Connector.
Considering the following constraint between three tasks (X, Y and Z) in the
graph of dependencies, S is defined as follows:

– SXY Z = {Z Seq X, X Sstart Y }

Let us assume that this part of the graph is executed by two agents A1 and A2
that have respectively two sets of tasks TaA1 composed by Z and X, and TaA2
composed by Y . The synchronization is carried out through three states Es,

Fig. 4. Sstart Connector for two automata

Sync1 and Sync2 added to the agents automata enabling a ”synchronization by
message sending”. In that case, we obtain :

– SXY Z,A1 = {Z Seq X, X Sstart Y ∗},
– SXY Z,A2 = {X∗ Sstart Y }.

An agent has to take into account some of other agent tasks (labeled with (*)),
as constraints when building its automaton [15]. The agent, responsible for the
synchronization, has its respSyn variable equals to true. This agent moves to
the Sync1 state and sends a message (!mess) to the selected agents that are
waiting for this message (?mess). As soon as the message has been sent and
received, the agents start to execute their tasks. This kind of synchronization
constitutes a sub-set of the synchronization set. For example, for two automata,
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the transition {(< ..., ?mess, ... >, < ..., !mess, ... >)} belongs to the set Tr of
the synchronized product. The use of this connector adds two new states to the
set of reachable states of the agent.
Let us start with the automaton of agent Ai. The formula 1 provides QAi as a
set of reachable states. After the synchronization of Ai with Aj , the new set of
reachable states QAi

Synchrostart
is:

QAi

Synchrostart
= QAi ∪ {EsAi , Sync1Ai , Sync2Ai} (7)

Incidence of the Operators on the Automata. We can sum up the modifi-
cations on the sets of reachable states Q and edges Tr of the agents Ai according
to the following algorithm:

The Connector / Synchronization algorithm
program Synchro(Automaton at, Connector Connect)
begin
{Considering an automaton at composed by a set
Q(at) of reachable states and a set of
transition Tr(at) and a synchronization
Connector between two tasks Z and X}
Switch(Connect)

case ’Sstart’:
Q(at) = Q(at) + {Es, Sync1, Sync2};
Tr(at) = (Tr(at) - <Z2,(preX),X1>) +
{<Z2, (-, respX, -), Es>,
<Es, (-, respSyn, -),Sync2>,
<Es, (-, ?mess, -), Sync1>,
<Sync2, (-, !mess, -), Sync1>,
<Sync1, (preX), X1>};

case ’Send’:
Q(at) = Q(at) + {Sync1end, Sync2end};
Tr(at) = (Tr(at) - <X1,(postX),X2>) +
{<X1, (postX), Sync2end>,
<X1, (-, ?mess, -), Sync1end>,
<Sync2end, (-, !mess, -), X2>,
<Sync1end, (postX), X2>};

case ’Ex’:
If(Z, X belong to Ai)
Q(at) = (Q(at) - {Z2}) + {Z21, Z22};
{The set Tr(at) is built according
to the conditions in the graph};

End If
end.

An Example of Representation in Automata. In our case study, all the
agents involved in the mission are able to perform all the tasks of the graph.
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Fig. 5. Interception Automaton

So, the actions of each agent are described in a generic automaton that models,
in this case, an individual version of the GFD. The branches of the automata
are covered according to the context (the current state of the agents resources,
the temporal and spatial constraints). An agent responsible of a task means
that it is designated to perform it. This dynamic allocation is the result of a
cooperation mechanism (ex: the choice of the two agents which leave the CAP)
or due to the context (ex: the best placed agent shoots the threat: see respS in
the automaton).

– Ta = {CAP, GuidedF lightp, Commitp,Shootp,
Return},

– S = {(CAP )4 Seq (Sstart)4GuidedF lightp,
(Sstart)4GuidedF lightp Seq (Sstart)2Commitp,
(Return)n Ex (Sstart)2Commitp,
(Sstart)2Commitp Seq Shootp, Shootp Seq (Return)n, (Return)n Ex Shootp,
(CAP 4), (Sstart)2Commitp, (Sstart)4GuidedF lightp, (Return)n},

– To = {τ (GuidedF lightp)=t1}.

In our case, we obtain for an agent Ai:
QAi = {CAP i

start, CAP i
end, GuidedF lightid,start, GuidedF lightid,end,

Commitid,start, Commitid,end, Shootid,start, Shootid,end, Returni
start, Returni

end}
∪{Esi,j , Sync1i,j , Sync2i,j} for j ∈ [1, 2], j corresponds to the number, in this
case, of start synchronization.
To make easier the writing of the automaton, we replace the previous states in
the same order QAi = {Ca1i, Ca2i, G1i

p, G2i
p, C1i

p, C2i
p, S1i

p, S2i
p, R1i, R2i}∪

{Esi,j , Sync1i,j , Sync2i,j}.

3.5 Propagation of the Constraints

As mentioned before, the formalism of hybrid automata enables to control the
plan execution. To finalize their automata, the agents have to propagate the con-
straints about time and resources along the different branches of their automa-
ton. There are two levels of propagation. Locally, the agents can propagate (by
induction) the constraints on the private resources (physical resources). Glob-
ally, they have to propagate the constraints about temporal objectives (shared
constraints) by synchronising themselves.
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Fig. 6. Two Levels of Constraints Propagation

Moreover, we expect from the dynamic control to have a preemptive approach.
We assume that is not necessary to carry on a plan if a temporal objective or
a condition on the resources is violated. The control enables to anticipate on
future problems that will inevitably occur. In that way, we can consider that we
have an adaptative system because it will automatically reorganize itself to cope
with these problems. The complexity is due to the part of flexibility introduced
when designing the GFD (for instance the number of agents to execute a task
is specified but not their allocation which is postponed). This flexibility implies
for the agents to manage dynamically their courses of actions, to adapt the
control to their environment (management of the constraints propagation) and
to validate their choices.

4 Verification Criteria in Dynamic Context

In a multi-agent context, the control and the agents’ choices should have some
impacts on the multi-agent plan (MAP). The control of the MAP execution has
an interest if it leads to a validation of the agents’ choices and a fortiori the
MAP. To validate the feasibility of the MAP, we have defined several criteria.

4.1 The Coverage

The coverage is an important point in the MAP validation. The agents have
to ensure that all the tasks are allocated to the good number of agents. This
approach is clearly related to the task-oriented approach. If the allocation is
wrong, it will create a deadlock in the MAP execution. A protocol of validation
deals with this problem when a reorganisation is needed.
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Definition: The MAP is C-compatible if all the tasks of the graph are allo-
cated to the sufficient number of agents.

Let P be a MAP; Remaining(P ) the set of remaining tasks (that have not
been executed) and So, for the current MAP P , the set of remaining tasks
Remaining(P ) (that have not been executed) and Resp(ti) the current number
of agents responsible (if a task belongs to the agent’s set of tasks) for the task
ti, we say that:

P is C-compatible
Iff ∀ti ∈ Remaining(P ), Resp(ti) ≥ card(ti)

To ensure a coherent allocation of the tasks, we developed an algorithm of
functionnal allocation that takes into account the functionnal constraints be-
tween the tasks in the GFD and the skills of the agents. By lack of place, in this
paper, we do not focus on this algorithm.

4.2 The Agents’ Resources

The resources of the agents are locally controled. At any time of the simulation,
the agents have to ensure that they have enough resources to execute their
partition of the MAP (R-compatible). We propose in this paper a mechanism
to control the MAP execution. We will come back to this mechanism on the
next section.

4.3 The MAP Feasibility

The last point is the feasibilty of the MAP. Actually, we have to ensure that
under the current allocation of tasks and the current set of plans of the agents,
the MAP execution is possible. We have to check that in our context the current
partitions of the agents enable to reach at least one objective of the MAP. Let
us remind that the MAP may own several objectives but the agents do not have
to reach all of them.

So, if we consider a global goal Goal of a MAP and Ta the set of tasks of the
GFD, this goal is a conjunction of some elementary tasks such as:

Goal = (ti ∧ tj ∨ ... ∨ tl) with ∀ti ∈ Goal, ti ∈ Ta

Definition: The current multi-agent plan is Goal-compatible if the agents
can at least reach one of the objectives.

Considering P , the current MAP, the reachability of an objective X in P is
noted: P ⇒ X. Let us note that an objective can be seen as an element of Goal.
The condition of feasibility can be noted :

If ∃X ∈ Goal / P ⇒ X Then P is Goal-compatible
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We see on the next section an algorithm to check the feasibility of the MAPs.
If the MAP does not recover these criteria, it is said to be in an unstable state.

Actually, a MAP is validated if it is compatible at these three levels. In the case
where the system cannot get to a safe state, it can reach a ”homestate” (i.e.
state in which the agents are able to reach again a safe state).

This type of states enables the system to go back on a stable situation. For
example, in the case of a tactical aircraft simulation, if the patrol is no more able
to treat a threat because the planes composing the patrol have no more missiles,
a possible ”homestate” can be reached trough the task ”go back to the base”.

5 Building Feasible Multi-agent Plans

We expect from this dynamic control to preempt future problems on the MAP
execution. For that, the agents should consider all the possibilities of evolution
according to their sets of tasks, and manage them at a local and global levels.
To avoid the combinatory explosion, we introduce a reduction mechanism 5.3.

5.1 Definitions

Definition: The Set of Possible Paths (SPP) corresponds to all the possible
paths the agents can plan according to their partially ordered set of tasks.

Definition: A Feasible Path (FP) is a path in the individual hybrid au-
tomata going from the initial state to the end state which satisfies all the initial
constraints on the nodes of its path.

A FP is a tuple as FP =< A, {cont}Q > with A a classical hybrid automaton
as defined in our formalism [7]; and {cont}Q the set of constraints on A on the
state Q.

Definition: A Set of Feasible Paths (SFP) corresponds to all the possi-
ble paths planned individually by an agent satisfiying all the constraints locally
propagated (private resources of the agents), SFP ⊂ SPP .

Definition: A Control Set (CS) is a set of pertinent constraints that enables
the agents to control the flexibility of the multi-agent plan execution. Each agent
computes its own CSs (as detailed in the next section).

Definition: Stable SFP For an agent A, if its control set CS is verified then
its SFP, noted SFPA is said to be stable, noted SFPA → stable.

Figure 7, the agent owns two possible FPs.

5.2 Computation of the Control Sets

To compute the control sets, we need the following features:

– the agent is in a state X
– the sub-set of possible FPs from the state X is noted: SFPX→
– the agent considers the sets of guards of all the FPs where it is able to evolve

from state X, noted: GX→ = ∪{cont}Xi
with i ∈ [1, card(SFPX→)]
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Representation in automaton
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Fig. 7. Example of decomposition

Under these assumptions, a CS in a state X is noted CSX and it is a set of
most pertinent constraints for each clock considering all the remaining FPs in
SFPX→:

CSX =
⋃

clock∈GX→

prep(
⋃
FPi

Ci,clock(GX→)) (8)

In fact, the agent considers all the future possible guards and merge the
constraints on clocks by considering the most critical ones. We define the notion
of preponderancy between constraints on a clock c such that:

– ”<” : Considering c<={∀ (t < c) ∈ Ci(GX→)},
prep(c<) = {t < c/∀t′ ∈ c<, t ≤ t′}

– ”>” : Considering c>={∀ (t > c) ∈ Ci(GX→)},
prep(c>) = {t > c/∀t′ ∈ c>, t ≥ t′}

In the example figure 7, a task i has a duration di and a kerosene consump-
tion keri. The clock ker represents the level of kerosene. The automaton has two
possible branches: 1 → 2 → 3 or 1 → 4 → 5. The execution of the task 3 is
constrained by a temporal objective t0.

If the agent in the state 1 wants to control its two possibilites of evolution
and not focus on only one branch (this solution is too restrictive), it has to
consider the two corresponding sets of constraints obtained on the first edge.
So, to manage its flexibility, an agent has to concurrently manage its possible
alternatives of evolution without favoring a priori one of them. This solution
seems to be very costly if the agent checks the sets of constraints independantly.
To simplify this process, we extract a single set of pertinent constraints. Let us
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note that we take into account the flexible behaviour of the agents and their
dynamic choices of evolution (reactive planning).

In this example, if we consider that ker5 +ker4 +ker1 is greater than ker3 +
ker2 + ker1, the most pertinent constraint is ker > ker5 + ker4 + ker1 since it
ensures that the agent in the state 1 can follow anyone of the two branches (i.
e. the two branches are feasible paths).

5.3 Reduction of SFP

During the simulation, the agents choose their courses of actions according to
the following three levels:

– functionnal: the agents evolve in the graph according to the functionnal
constraints related in the graph of functionnal dependencies (e.g. constraints
of synchronisation, exclusion, etc.),

– contextual: the agents may choose a course of actions according to the con-
text (e.g. knowledge of the agents about their environment),

– control: the agents detect a violation of constraints. This level is complex
to manage because the remaining tasks of the MAP have to be, in certain
circumstances, re-allocated to the others.

The violation of the control sets makes the SFP unstable. The reduction of the
SFP enables an agent to reach a stable SFP. To sum up, considering a set of
agents, noted Gp :

Definition: A multi-agent plan is R-compatible (resources compatible) if at
a date ”t” all the agents of the Gp own a stable SFP.

So for a MAP P , this condition is validated under the following assumption:

If ∀Ai ∈ Gp, SFPAi → stable
Then P is R-compatible

According to their choices with respect to the functionnal constraints of the
GFD, the result of the control and the context, the agents reduce their SFPs
to only consider the remaining possible automata. Hence, they eliminate from
their SFP the no more available automata as soon as they become impossible
to execute. Even if the control is made at a local level by the agents, all the
choices may have some impacts at the multi-agent behavioural level. We treat
an example of such evolution in [16].

5.4 The Cycle for Building the Feasible MAP

To build the feasible MAP, our approach is composed of three main steps as
shown in figure 8:

Step 1: The GFD is firstly allocated to the agents. So, they own a set of
partially ordered tasks.
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Step 2: The agents compose their SFP by planning all the possible paths
considering their set of partially ordered tasks. At this step, the
agents validate locally the feasibility of these paths by propagating
the constraints on their resources.

Step 3: The agents synchronise their FP to obtain a set of feasible MAPs
taking into account the temporal objectives. These MAPs
correspond to networks of synchronised automata.

Graph
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Fig. 8. The cycle for building the feasible MAP

The synchronisation of the flexible individual plans of the agents makes the
MAP flexible. The SFP is also a representation of the flexibility of the agents.
The more the agents own FPs in their SFP the more their plans are flexible.
Intuitively speaking, during the simulation the automata in the SFPs are pruned
because they no more correspond to possible states of evolution. So, at the end
of the simulation, each set is reduced to only one feasible path that corresponds
to the real path followed by the agents during the simulation.

6 Distributed Validation of MAP

The last step of MAP building concerns the synchronisation of the FPs. The
agents have to validate the possible combinations of their FPs and the propa-
gation of the temporal objective in these combinations. A combination is the
Cartesian product of hybrid automata as defined in [8], that is to say a MAP.
To validate the feasibility of the MAP, we propose an incremental algorithm of
MAP validation. In fact, a combination is validated if all the agents involved in
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this MAP reach their final state in their respective automata and if the temporal
constraints are respected. To reduce the complexity inherent to the plan flexi-
bility, we elaborate a mechanism to keep only the possible MAPs. Indeed, even
if a single agent’s plan is locally feasible, it may be impossible to synchronize
with the other’s plans.

1

753

642

3 Current allocation:
A1: 1, 2, 5
A2: 1, 4, 7
A3: 1, 3, 6

SFP:

A1

A2

A3

1 2 5
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1 3 6
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a

b

c

d

e

f

A1

A2
A3

Network of
Dependencies
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agents

Temporal Objective: t0 + 15
on task 7

Fig. 9. Example of SFPs

6.1 Distributed Algorithm of Validation

In figure 9, the agents have to synchronize their FPs with the others to obtain
feasible MAPs. These plans must validate the temporal constraints. These con-
straints can be checked only during the synchronisation step because they are a
shared resource of the system. The complexity comes from the possible permu-
tations of the tasks in the planning phase. Nevertheless, some combinations are
not valid and could be pruned.

To manage the synchronization, we developped a multi-agent algorithm based
on the network of dependencies between the agents. Each agent tries to validate
its FP taking into account the temporal constraints of the other agents. It is
incremental in the way that an agent tries to validate its path till meeting a
state it cannot validate. Then, it allows another agent to validate its own FP.
At each step of validation, the current agent informs via the network of depen-
dencies the concerned agent that this state is possible. Indeed, the agent unlock
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the others. So, at the next turn the locked agent can evolve and so on. A plan
becomes feasible if all the agents have reached their final state and validate the
temporal constraints. If all the agents are waiting because they are locked, the
MAP is not feasible and the combination is rejected.

Algorithm of Validation

program ValidatePath(FeasiblePath FP, Agent Ai)
begin
While(FP has next State to Validate)
Q = currentState (in the automaton,

it corresponds to a task)
TQ = currentTask
If(Precondition(TQ) == true)
state = active;
UpDateConstraints;
TellAgentsInRelationWith(Q, TQ, done, T);
currentState = Next(Q, FP);

Else
state = WaitForPrecond(TQ);
GiveHandOtherAgent(Aj);
Break;

EndIf
EndWhile
GiveHandOtherAgent(Aj);

end.

The method UpDateConstraints implements the temporal constraints and
checks them. It can be a break point for the algorithm in the case where the tem-
poral constraints are violated. The method TellAgentsInRelationWith(Q, TQ,
done, T ) informs the agents that are dependent of TQ execution that they can
evolve taking into account the interval of time T during which TQ is done. If all
the agents are in a waiting state, the plan is not feasible for functionnal reasons.

6.2 Example of Algorithm Use

In the figure 10, we have an example of the algorithm use. The first agent involved
is A1.

– Step 1, it first checks the possibility to realise task 1. It is possible, so it
informs all the agents of its possibility. Then it tries to validate task 2 exe-
cution. But to be executed, task 1 must have been executed three times. So
A1 allows A2 to validate its path and waits for task 2 preconditions.

– Step 2, for the same reasons, A2 only validates task 1 and informs all the
agents about its validation.

– Step 3, A3 can validate task 1 and task 6, it informs all the agents about
task 1 validation and the agent A2 about task 6 validation (there’s a link of
dependency between the tasks 6 and 7).
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Fig. 10. Example of Algorithm Use

– Step 4, task 2 became possible, so A1 informs A3 about task 2 validation.
But A1 cannot validate task 5.

– Step 5, A2 is now able to validate task 4. It informs A1 about it. And as 6 has
been validated by A3, A2 can validate task 7 and by constraint propagation
on the temporal objective, it validate the time parameter. A2 finishes its
validation.

– Step 6, A3 can now validate task 3 and finishes its validation.
– Finally, step 7, A1 validates task 5 execution anf finishes its validation.

As all the agents have validated their FPs in the MAPs. All the criteria of verifi-
cation are validated, so the MAP is feasible. At each step, the agent implements
the temporal constraints on their automata.

6.3 Results of Validation

If we consider the SFPs presented in figure 9, the number of possible combination
is 23 = 8. The validation consists in checking the possible MAPs. In figure 11,
we present some results of validation. In the first case (1.), the plan is feasible.
The agents can reach all the states of their FPs taking into account the temporal
objectives. In the second case (2.), the combination enables the agents to reach
all the states of their FPs but they cannot fulfill the temporal objectives so the
plan is unfeasible. In the last case (3.), the permutation engenders a break point.
So, the MAP becomes simply unfeasible. In this example, the agents only keep
4 possible combinations. Moreover, it enables to reduce the SFPs of the agents.
Indeed, during the synchronisation step: the FP (d) for agent A2 and the FP (e)
for A3 are never used. So, it is possible to reduce their SFPs to only one FP. To
sum up, this step of synchronisation enables to obtain a set of feasible MAPs,
to reduce the SFPs of the agents and so the complexity of the system.
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Fig. 11. Some results of validation

7 Conclusion and Future Work

In this paper, we present an approach for complex systems coordination based
on multi-agent planning. From modelling by means of Hybrid Automata to the
multi-agent plan validation, we show how it is possible to control all the feasible
paths taking into account the flexibility of the agents in this process. Our future
work aims to extend our approach with operators on the plans (e.g. merging,
concatenation, insertion, etc.) to deal with dynamic reallocation of tasks.
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