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Foreword 

GERAD celebrates this year its 25th anniversary. The Center was 
created in 1980 by a small group of professors and researchers of HEC 
Montrkal, McGill University and of the ~ c o l e  Polytechnique de Montrkal. 
GERAD's activities achieved sufficient scope to justify its conversi?n in 
June 1988 into a Joint Research Centre of HEC Montrkal, the Ecole 
Polytechnique de Montrkal and McGill University. In 1996, the Univer- 
sit6 du Qukbec k Montrkal joined these three institutions. GERAD has 
fifty members (professors), more than twenty research associates and 
post doctoral students and more than two hundreds master and Ph.D. 
students. 

GERAD is a multi-university center and a vital forum for the develop- 
ment of operations research. Its mission is defined around the following 
four complementarily objectives: 

rn The original and expert contribution to all research fields in 
GERAD's area of expertise; 

rn The dissemination of research results in the best scientific outlets 
as well as in the society in general; 

rn The training of graduate students and post doctoral researchers; 

rn The contribution to the economic community by solving important 
problems and providing transferable tools. 

GERAD's research thrusts and fields of expertise are as follows: 

rn Development of mathematical analysis tools and techniques to 
solve the complex problems that arise in management sciences and 
engineering; 

rn Development of algorithms to resolve such problems efficiently; 

rn Application of these techniques and tools to problems posed in 
relat,ed disciplines, such as statistics, financial engineering, game 
theory and artificial int,elligence; 

rn Application of advanced tools to optimization and planning of large 
technical and economic systems, such as energy systems, trans- 
portation/communication networks, and production systems; 

rn Integration of scientific findings into software, expert systems and 
decision-support systems that can be used by industry. 
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One of the marking events of the celebrations of the 25th anniver- 
sary of GERAD is the publication of ten volumes covering most of the 
Center's research areas of expertise. The list follows: Essays a n d  
Surveys in Global Optimization, edited by C. Audet, P. Hansen 
and G. Savard; G r a p h  Theory  a n d  Combinatorial  Optimization, 
edited by D. Avis, A. Hertz and 0 .  Marcotte; Numerical  Me thods  i n  
Finance, edited by H. Ben-Ameur and M. Breton; Analysis, Con- 
t ro l  a n d  Optimizat ion of Complex Dynamic Systems, edited 
by E.K. Boukas and R. Malhamk; Column Generat ion,  edited by 
G. Desaulniers, J. Desrosiers and h1.M. Solomon; Statistical Modeling 
a n d  Analysis for Complex D a t a  Problems,  edited by P. Duchesne 
and B. Rkmillard; Performance Evaluation a n d  Planning  Meth-  
o d s  for t h e  Next  Genera t ion  In te rne t ,  edited by A. Girard, B. Sansb 
and F. Vazquez-Abad; Dynamic Games: Theory  a n d  Applica- 
tions, edited by A. Haurie and G. Zaccour; Logistics Systems: De- 
sign a n d  Optimizat ion,  edited by A. Langevin and D. Riopel; Energy 
a n d  Environment ,  edited by R. Loulou, J.-P. Waaub and G. Zaccour. 

I would like to express my gratitude to the Editors of the ten volumes. 
to the authors who accepted with great enthusiasm to  submit their work 
and to the reviewers for their benevolent work and timely response. 
I would also like to thank Mrs. Nicole Paradis, Francine Benoit and 
Louise Letendre and Mr. Andre Montpetit for their excellent editing 
work. 

The GERAD group has earned its reputation as a worldwide leader 
in its field. This is certainly due to the enthusiasm and motivation of 
GER.4D's researchers and students, but also to the funding and the 
infrastructures available. I would like to seize the opportunity to thank 
the organizations that, from the beginning, believed in the potential 
and the value of GERAD and have supported it over the years. These 
are HEC Montrkal, ~ c o l e  Polytechnique de Montrkal, McGill University, 
Universitk du Qukbec B Montrkal and, of course, the Natural Sciences 
and Engineering Research Council of Canada (NSERC) and the Fonds 
qukbkcois de la recherche sur la nature et les technologies (FQRNT). 

Georges Zaccour 
Director of GERAD 



Le Groupe d'ktudes et de recherche en analyse des dkcisions (GERAD) 
fete cette annke son vingt-cinquikme anniversaire. Fondk en 1980 par une 
poignke de professeurs et chercheurs de HEC Montrkal engagks dans 
des recherches en kquipe avec des collitgues de 1'Universitk McGill et 
de ~ ' ~ c o l e  Polytechnique de Montrkal, le Centre comporte maintenant 
une cinquantaine de membres, plus d'une vingtaine de professionnels de 
recherche et stagiaires post-doctoraux et plus de 200 ktudiants des cycles 
supkrieurs. Les activitks du GERAD ont pris suffisamment d'ampleur 
pour justifier en juin 1988 sa transformation en un Centre de recherche 
conjoint de HEC Montreal, de 1 '~cole Polytechnique de Montrkal et de 
1'Universitk McGill. En 1996, l'universitk du Qukbec A Montrkal s'est 
jointe A ces institutions pour parrainer le GERAD. 

Le GERAD est un regroupement de chercheurs autour de la discipline 
de la recherche opkrationnelle. Sa mission s'articule autour des objectifs 
complkmentaires suivants : 

la contribution originale et experte dans tous les axes de recherche 
de ses champs de compktence; 
la diffusion des rksult'ats dans les plus grandes revues du domaine 
ainsi qu'auprks des diffkrents publics qui forment l'environnement 
du Centre; 

w la formation d'ktudiants des cycles supkrieurs et de stagiaires post- 
doctoraux; 
la contribution A la communautk kconomique & travers la rksolution 
de problkmes et le dkveloppement de coffres d'outils transfkrables. 

Les principaux axes de recherche du GERAD, en allant du plus thkori- 
que au plus appliquk, sont les suivants : 

le dkveloppement d'outils et de techniques d'analyse mathkmati- 
ques de la recherche opkrationnelle pour la rksolution de problkmes 
complexes qui se posent dans les sciences de la gestion et du gknie; 

w la confection d'algorithmes permettant la rksolution efficace de ces 
problkmes; 
l'application de ces outils A des problkmes posks dans des disci- 
plines connexes A la recherche op6rationnelle telles que la statis- 
tique, l'ingknierie financikre; la t~hkorie des jeux et l'intelligence 
artificielle; 
l'application de ces outils & l'optimisation et & la planification de 
grands systitmes technico-kconomiques comme les systitmes knergk- 
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tiques, les rkseaux de tklitcommunication et de transport, la logis- 
tique et la distributique dans les industries manufacturikres et de 
service; 

w l'intkgration des rksultats scientifiques dans des logiciels, des sys- 
tkmes experts et dans des systemes d'aide a la dkcision transfkrables 
& l'industrie. 

Le fait marquant des cklkbrations du 25e du GERAD est la publication 
de dix volumes couvrant les champs d'expertise du Centre. La liste suit : 
Essays a n d  Surveys i n  Global Optimization, kditk par C. Audet,, 
P. Hansen et G. Savard; G r a p h  Theory  a n d  Combinatorial  Op- 
timization, kditk par D. Avis, A. Hertz et 0. Marcotte; Numerical  
Me thods  i n  Finance, kditk par H. Ben-Ameur et M. Breton; Analy- 
sis, Control  a n d  Optimizat ion of Complex Dynamic  Systems,  
kditk par E.K. Boukas et R. Malhamit; Column Generat ion,  kditk par 
G. Desaulniers, J .  Desrosiers et M.M. Solomon; Statistical Modeling 
a n d  Analysis for Complex D a t a  Problems,  itditk par P. Duchesne 
et B. Rkmillard; Performance Evaluation a n d  Planning  Me thods  
for t h e  Nex t  Genera t ion  In te rne t ,  kdit6 par A. Girard, B. Sansb 
et F. Vtizquez-Abad: Dynamic Games: Theory  a n d  Applications, 
edit4 par A. Haurie et G. Zaccour; Logistics Systems: Design a n d  
Optimization, Bditk par A. Langevin et D. Riopel; Energy  a n d  En- 
vironment ,  kditk par R. Loulou, J.-P. Waaub et G. Zaccour. 

Je voudrais remercier trks sincerement les kditeurs de ces volumes, 
les nombreux auteurs qui ont trks volontiers rkpondu a l'invitation des 
itditeurs B. soumettre leurs travaux, et les kvaluateurs pour leur bknkvolat 
et ponctualitk. Je voudrais aussi remercier Mmes Nicole Paradis, Fran- 
cine Benoit et Louise Letendre ainsi que M. And& Montpetit pour leur 
travail expert d'kdition. 

La place de premier plan qu'occupe le GERAD sur l'kchiquier mondial 
est certes due a la passion qui anime ses chercheurs et ses ittudiants, 
mais aussi au financement et & l'infrastructure disponibles. Je voudrais 
profiter de cette occasion pour remercier les organisations qui ont cru 
dks le depart au potentiel et la valeur du GERAD et nous ont soutenus 
durant ces annkes. I1 s'agit de HEC Montrital, 1 '~cole Polytechnique 
de Montrkal, 17Universitit McGill, l'Universit8 du Qukbec k Montrkal et, 
hien sur, le Conseil de recherche en sciences naturelles et en gknie du 
Canada (CRSNG) et le Fonds qukbkcois de la recherche sur la nature et 
les technologies (FQRNT) . 

Georges Zaccour 
Directeur du GERAD 
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Preface 

This volume collects thirteen chapters dealing with a wide range of 
topics in (mainly) differential games. It is divided in two parts. Part I 
groups six contributions which deal essentially, but not exclusively, with 
theoretical or methodological issues arising in different dynamic games. 
Part I1 contains seven application-oriented chapters in economics and 
management science. 

Part I 
In Chapter 1, Aubin deals with cooperative games defined on net- 

works, which could be of different kinds (socio-economic, neural or ge- 
netic networks), and where he allows for coalitions to evolve over time. 
Aubin provides a class of control systems, coalitions and multilinear con- 
nectionist operators under which the architecture of the network remains 
viable. He next uses the viability/capturability approach to study the 
problem of characterizing the dynamic core of a dynamic cooperative 
game defined in charact,eristic function form. 

In Chapter 2, Carlson and Leitmann provide a direct method for open- 
loop dynamic games with dynamics affine with respect to controls. The 
direct method was first introduced by Leitmann in 1967 for problems 
of calculus of variations. It has been the topic of recent contributions 
with the aim to extend it to differential games setting. In particular, 
the method has been successfully adapted for differential games where 
each player has its own state. Carlson and Leitmann investigate here 
the utility of the direct method in the case where the state dynamics are 
described by a single equation which is affine in players' strategies. 

In Chapter 3, El Azouzi et al. consider the problem of routing in net- 
works in the context where a number of decision makers having theirown 
utility to maximize. If each decision maker wishes to find a minimal path 
for each routed object (e.g., a packet), then the solution concept is the 
Wardrop equilibrium. It is well known that equilibria may exhibit inef- 
ficiencies and paradoxical behavior, such as the famous Braess paradox 
(in which the addition of a link to a network results in worse performance 
to all users). The authors provide guidelines for the network administra- 
tor on how to modify the network so that it indeed results in improved 
performance. 

FlAm considers in Chapter 4 production or market games with trans- 
ferable utility. These games, which are actually of frequent occurrence 
and great importance in theory and practice, involve parties concerned 
wit,h the issue of finding a fair sharing of efficient production costs. Flbm 
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shows that, in many cases, explicit core solutions may be defined by 
shadow prices, and reached via quite natural dynamics. 

Jean-Marie and Tidball discuss in Chapter 5 the relationships between 
conjectures, conjectural equilibria, consistency and Nash equilibria in 
the classical theory of discrete-time dynamic games. They propose a 
theoretical framework in which they define conjectural equilibria with 
several degrees of consistency. In particular, they introduce feedback- 
consistency, and prove that the corresponding conjectural equilibria and 
Nash-feedback equilibria of the game coincide. Finally, they discuss 
the relationship between these results and previous studies based on 
differential games and supergames. 

In Chapter 6, Petrosjan defines on a game tree a cooperative game in 
characteristic function form with incomplete information. He next in- 
troduces the concept of imputation distribution procedure in connection 
with the definitions of time-consistency and strongly time-consistency. 
Petrosjan derives sufficient conditions for the existence of time-consistent 
solutions. He also develops a regularization procedure and constructs a 
new characteristic function for games where these conditions cannot be 
met. The author also defines the regularized core and proves that it 
is strongly time-consistent. Finally, he investigates the special case of 
st~chast~ic games. 

Part I1 
Bossy et al. consider in Chapter 7 a deregulated electricity market 

formed of few competitors. Each supplier announces the maximum 
quantity he is willing to sell at a certain fixed price. The market then 
decides the quantities to be delivered by the suppliers which satisfy de- 
mand at minimal cost. Bossy et al. characterize Nash equilibrium for 
the two scenarios where in turn the producers maximize their market 
shares and profits. A close analysis of the equilibrium results points out 
towards some difficulties in predicting players' behavior. 

Breton and Turki analyze in Chapter 8 a differentiated duopoly where 
firms engage in research and development (R&D) to reduce their produc- 
tion cost. The authors first derive and compare Bertrand and Cournot 
equilibria in terms of quantities, prices, investments in R&D, consumer's 
surplus and total welfare. The results are stated with reference to pro- 
ductivity of R&D and the degree of spillover in the industry. Breton 
and Turki also assess the robustness of their results and those obtained 
in the literature. Their conclusion is that the relative efficiencies of 
Bertrand and Cournot equilibria are sensitive t,o the specifications that 
are used, and hence the results are far from being robust. 
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In Chapter 9, Dawid et al. consider a dynamic model of environmental 
taxation where the firms are of two types: believers who take the tax 
announcement by the Regulator at face value and non-believers who 
perfectly anticipate the Regulator's decisions at a certain cost. The 
authors assume that the proportion of the two types evolve overtime 
depending on the relative profits of both groups. Dawid et al. show 
that the Regulator can use misleading tax announcements to steer the 
economy to an equilibrium which is Paret,o-improving compared with 
the solutions proposed in the literature. 

In Chapter 10, Haurie shows how a multi-timescale hierarchical non- 
cooperative game paradigm can contribute to the development of inte- 
grated assessment models of climate change policies. He exploits the 
fact that the climate and economic subsystems evolve at very different 
time scales. Haurie formulates the international negotiation at the level 
of climate control as a piecewise deterministic stochastic game played in 
the '!slown time scale, whereas the economic adjustments in the different 
nations take place in a "faster" time scale. He shows how the negotia- 
tions on emissions abatement can be represent,ed in the slow time scale 
whereas the economic adjustments are represent,ed in the fast time scale 
as solutions of general economic equilibrium models. He finally provides 
some indications on the integration of different classes of models that 
could be made, using an hierarchical game theoretic structure. 

In Chapter 11, Karray and Zaccour consider a differential game model 
for a marketing channel formed by one manufact,urer and one retailer. 
The latter sells the manufacturer's national brand and may also intro- 
duce a private label offered at a lower price. The authors first assess 
the impact of a private label introd~ct~ion on the players' payoffs. Next, 
in the event where it is beneficial for the retailer to propose his brand to 
consumers and detrimental to the manufacturer, they investigate if a co- 
operative advertising program could help the manufacturer to mitigate 
the negative impact of the private label. 

Martin-HerrBn and Taboubi (Chapter 12) aim at determining equilib- 
rium shelf-space allocation in a marketing channel with two competing 
manufacturers and one retailer. The formers control advertising expen- 
ditures in order to build a brand image. They also offer to  the retailer 
an incentive designed t,o increase their share of the shelf space. The 
problem is formulated as a Stackelberg infinite-horizon differential game 
with the manufacturers as leaders. Strationary feedback equilibria are 
characterized and numerical experiments are conducted to illustrate how 
the players set their marketing efforts. 

In Chapter 13, Yeung considers a duopoly in which the firms agree 
to form a cartel. In particular, one firm has absolute and marginal cost 
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advantage over the other forcing one of the firms to  become a dormant 
firm. The aut,hor derives a subgame consistent solution based on the 
Nash bargaining axioms. Subganle consistency is a fundamental element 
in the solution of cooperative stochastic differential games. In particular, 
it ensures that the extension of the solution policy to  a later starting time 
and any possible state brought about by prior optimal behavior of the 
players would remain optimal. Hence no players will have incentive to 
deviate from the initial plan. 

Acknowledgements 
The Editors would like to express their gratitude to  the authors for 

their contributions and timely responses to  our comments and sugges- 
tions. We wish also to thank Francine Benoi't and Nicole Paradis of 
GERAD for their expert editing of the volume. 



Chapter 1

DYNAMICAL CONNECTIONIST
NETWORK AND COOPERATIVE GAMES

Jean-Pierre Aubin

Abstract Socio-economic networks, neural networks and genetic networks de-
scribe collective phenomena through constraints relating actions of sev-
eral players, coalitions of these players and multilinear connectionist
operators acting on the set of actions of each coalition. Static and dy-
namical cooperative games also involve coalitions. Allowing “coalitions
to evolve” requires the embedding of the finite set of coalitions in the
compact convex subset of “fuzzy coalitions”. This survey present results
obtained through this strategy.

We provide first a class of control systems governing the evolution of
actions, coalitions and multilinear connectionist operators under which
the architecture of a network remains viable. The controls are the “vi-
ability multipliers” of the “resource space” in which the constraints are
defined. They are involved as “tensor products” of the actions of the
coalitions and the viability multiplier, allowing us to encapsulate in this
dynamical and multilinear framework the concept of Hebbian learning
rules in neural networks in the form of “multi-Hebbian” dynamics in
the evolution of connectionist operators. They are also involved in the
evolution of coalitions through the “cost” of the constraints under the
viability multiplier regarded as a price, describing a “nerd behavior”.

We use next the viability/capturability approach for studying the
problem of characterizing the dynamic core of a dynamic cooperative
game defined in a characteristic function form. We define the dynamic
core as a set-valued map associating with each fuzzy coalition and each
time the set of imputations such that their payoffs at that time to the
fuzzy coalition are larger than or equal to the one assigned by the char-
acteristic function of the game and study it.

1. Introduction
Collective phenomena deal with the coordination of actions by a fi-

nite number n of players labelled i = 1, . . . , n using the architecture of
a network of players, such as socio-economic networks (see for instance,
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Aubin (1997, 1998a), Aubin and Foray (1998), Bonneuil (2000, 2001)),
neural networks (see for instance, Aubin (1995, 1996, 1998b), Aubin and
Burnod (1998)) and genetic networks (see for instance, Bonneuil (1998b,
2005), Bonneuil and Saint-Pierre (2000)). This coordinated activity re-
quires a network of communications or connections of actions xi ∈ Xi

ranging over n finite dimensional vector spaces Xi as well as coalitions
of players.

The simplest general form of a coordination is the requirement that
a relation between actions of the form g(A(x1, . . . , xn)) ∈ M must be
satisfied. Here

1. A :
∏n

i=1 Xi �→ Y is a connectionist operator relating the individual
actions in a collective way,

2. M ⊂ Y is the subset of the resource space Y and g is a map,
regarded as a propagation map.

We shall study this coordination problem in a dynamic environment,
by allowing actions x(t) and connectionist operators A(t) to evolve ac-
cording to dynamical systems we shall construct later. In this case, the
coordination problem takes the form

∀ t ≥ 0, g(A(t)(x1(t), . . . , xn(t))) ∈ M

However, in the fields of motivation under investigation, the number n
of variables may be very large. Even though the connectionist operators
A(t) defining the “architecture” of the network are allowed to operate a
priori on all variables xi(t), they actually operate at each instant t on
a coalition S(t) ⊂ N := {1, . . . , n} of such variables, varying naturally
with time according to the nature of the coordination problem.

On the other hand, a recent line of research, dynamic cooperative
game theory has been opened by Leon Petrosjan (see for instance Petros-
jan (1996) and Petrosjan and Zenkevitch (1996)), Alain Haurie (Haurie
(1975)), Georges Zaccour, Jerzy Filar and others. We quote the first
lines of Filar and Petrosjan (2000): “Bulk of the literature dealing with
cooperative games (in characteristic function form) do not address issues
related to the evolution of a solution concept over time. However, most
conflict situations are not “one shot” games but continue over some time
horizon which may be limited a priori by the game rules, or terminate
when some specified conditions are attained.” We propose here a concept
of dynamic core of a dynamical fuzzy cooperative game as a set-valued
map associating with each fuzzy coalition and each time the set of im-
putations such that their payoffs at that time to the fuzzy coalition are
larger than or equal to the one assigned by the characteristic function
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of the game. We shall characterize this core through the (generalized)
derivatives of a valuation function associated with the game, provide its
explicit formula, characterize its epigraph as a viable-capture basin of
the epigraph of the characteristic function of the fuzzy dynamical co-
operative game, use the tangential properties of such basins for proving
that the valuation function is a solution to a Hamilton-Jacobi-Isaacs
partial differential equation and use this function and its derivatives for
characterizing the dynamic core.

In a nutshell, this survey deals with the evolution of fuzzy coalitions
for both regulate the viable architecture of a network and the evolutions
of imputations in the dynamical core of a dynamical fuzzy cooperative
game.

Outline
The survey is organized as follows:

1. We begin by recalling what are fuzzy coalitions in the framework
of convexification procedures,

2. we proceed by studying the evolution of networks regulated by
viability multipliers, showing how Hebbian rules emerge in this
context

3. and by introducing fuzzy coalitions of players in this network and
showing how a herd behavior emerge in this framework.

4. We next define dynamical cores of dynamical fuzzy cooperative
games (with side-payments)

5. and explain briefly why the viability/capturability approach is rel-
evant to answer the questions we have raised.

2. Fuzzy coalitions
The first definition of a coalition which comes to mind, being that of a

subset of players S ⊂ N , is not adequate for tackling dynamical models
of evolution of coalitions since the 2n coalitions range over a finite set,
preventing us from using analytical techniques.

One way to overcome this difficulty is to embed the family of subsets
of a (discrete) set N of n players to the space Rn:

This canonical embedding is more adapted to the nature of the power
set P(N) than to the universal embedding of a discrete set M of m
elements to Rm by the Dirac measure associating with any j ∈ M the
jth element of the canonical basis of Rm. The convex hull of the im-
age of M by this embedding is the probability simplex of Rm. Hence
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We embed the family of subsets
of a (discrete) set N of n play-
ers to the space Rn through the
map χ associating with any coali-
tion S ∈ P(N) its characteristic
function χS ∈ {0, 1}n ⊂ Rn, since
Rn can be regarded as the set of
functions from N to R.
By definition, the family of fuzzy sets
is the convex hull [0, 1]n of the power
set {0, 1}n in Rn.

fuzzy sets offer a “dedicated convexification” procedure of the discrete

power set M := P(N) instead of the universal convexification procedure

of frequencies, probabilities, mixed strategies derived from its embedding in

Rm = R2n
.

By definition, the family of fuzzy sets1 is the convex hull [0, 1]n of the
power set {0, 1}n in Rn. Therefore, we can write any fuzzy set in the
form

χ =
∑

S∈P(N)

mSχS where mS ≥ 0 &
∑

S∈P(N)

mS = 1

The memberships are then equal to

∀ i ∈ N, χi =
∑
S�i

mS

Consequently, if mS is regarded as the probability for the set S to
be formed, the membership of player i to the fuzzy set χ is the sum of
the probabilities of the coalitions to which player i belongs. Player i
participates fully in χ if χi = 1, does not participate at all if χi = 0
and participates in a fuzzy way if χi ∈]0, 1[. We associate with a fuzzy
coalition χ the set P (χ) := {i ∈ N |χi �= 0} ⊂ N of players i participating
in the fuzzy coalition χ.

We also introduce the membership

γS(χ) :=
∏
j∈S

χj

1This concept of fuzzy set was introduced in 1965 by L. A. Zadeh. Since then, it has been
wildly successful, even in many areas outside mathematics!. We found in “La lutte finale”,
Michel Lafon (1994), p.69 by A. Bercoff the following quotation of the late François Mitterand,
president of the French Republic (1981-1995): “Aujourd’hui, nous nageons dans la poésie
pure des sous ensembles flous” . . . (Today, we swim in the pure poetry of fuzzy subsets)!
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of a coalition S in the fuzzy coalition χ as the product of the member-
ships of players i in the coalition S. It vanishes whenever the mem-
bership of one player does and reduces to individual memberships for
one player coalitions. When two coalitions are disjoint (S ∩ T = ∅),
then γS∪T (χ) = γS(χ)γT (χ). In particular, for any player i ∈ S,
γS(χ) = χiγS\i(χ).

Actually, this idea of using fuzzy coalitions has already been used in
the framework of static cooperative games with and without side-payments

in Aubin (1979, 1981a,b), and Aubin (1998, 1993), Chapter 13. Further
developments can be found in Mares (2001) and Mishizaki and Sokawa
(2001), Basile (1993, 1994, 1995), Basile, De Simone and Graziano
(1996), Florenzano (1990)). Fuzzy coalitions have also been used in
dynamical models of cooperative games in Aubin and Cellina (1984),
Chapter 4 and of economic theory in Aubin (1997), Chapter 5.

This idea of fuzzy sets can be adapted to more general situations
relevant in game theory. We can, for instance, introduce negative mem-
berships when players enter a coalition with aggressive intents. This is
mandatory if one wants to be realistic ! A positive membership is in-
terpreted as a cooperative participation of the player i in the coalition,
while a negative membership is interpreted as a non-cooperative partici-
pation of the ith player in the generalized coalition. In what follows, one
can replace the cube [0, 1]n by any product

∏n
i=1[λi, μi] for describing

the cooperative or noncooperative behavior of the consumers.
We can still enrich the description of the players by representing each

player i by what psychologists call her ‘behavior profile’ as in Aubin,
Louis-Guerin and Zavalloni (1979). We consider q ‘behavioral qualities’
k = 1, . . . , q, each with a unit of measurement. We also suppose that
a behavioral quantity can be measured (evaluated) in terms of a real
number (positive or negative) of units. A behavior profile is a vector
a = (a1, . . . , aq) ∈ Rq which specifies the quantities ak of the q qualities
k attributed to the player. Thus, instead of representing each player
by a letter of the alphabet, she is described as an element of the vec-
tor space Rq. We then suppose that each player may implement all,
none, or only some of her behavioral qualities when she participates in
a social coalition. Consider n players represented by their behavior pro-
files in Rq. Any matrix χ = (χk

i ) describing the levels of participation
χk

i ∈ [−1, +1] of the behavioral qualities k for the n players i is called a
social coalition. Extension of the following results to social coalitions
is straightforward.

Technically, the choice of the scaling [0, 1] inherited from the tradition
built on integration and measure theory is not adequate for describing
convex sets. When dealing with convex sets, we have to replace the
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characteristic functions by indicators taking their values in [0, +∞] and
take their convex combinations to provide an alternative allowing us to
speak of “fuzzy” convex sets. Therefore, “toll-sets” are nonnegative cost
functions assigning to each element its cost of belonging, +∞ if it does
not belong to the toll set. The set of elements with finite positive cost
do form the “fuzzy boundary” of the toll set, the set of elements with
zero cost its “core”. This has been done to adapt viability theory to
“fuzzy viability theory”.

Actually, the Cramer transform

Cμ(p) := sup
χ∈Rn

(
〈p, χ〉 − log

(∫
Rn

e〈x,y〉dμ(y)
))

maps probability measures to toll sets. In particular, it transforms con-
volution products of density functions to inf-convolutions of extended
functions, Gaussian functions to squares of norms, etc. See Chapter 10
of Aubin (1991) and Aubin and Dordan (1996) for more details and
information on this topic.

The components of the state variable χ := (χ1, . . . , χn) ∈ [0, 1]n are
the rates of participation in the fuzzy coalition χ of player i = 1, . . . , n.

Hence convexification procedures and the need of using functional
analysis justifies the introduction of fuzzy sets and its extensions. In the
examples presented in this survey, we use only classical fuzzy sets.

3. Regulation of the evolution of a network

3.1 Definition of the architecture of a network
We introduce

1. n finite dimensional vector spaces Xi describing the action spaces
of the players

2. a finite dimensional vector space Y regarded as a resource space
and a subset M ⊂ Y of scarce resources2.

Definition 1.1 The architecture of dynamical network involves the evo-
lution

1. of actions x(t) := (x1(t), . . . , xn(t)) ∈∏n
i=1 Xi,

2For simplicity, the set M of scarce resources is assumed to be constant. But sets M(t) of
scarce resources could also evolve through mutational equations and the following results can
be adapted to this case. Curiously, the overall architecture is not changed when the set of
available resources evolves under a mutational equation. See Aubin (1999) for more details
on mutational equations.
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2. of connectionist operators AS(t)(t) :
∏n

i=1 Xi �→ Y ,

3. acting on coalitions S(t) ⊂ N := {1, . . . , n} of the n players

and requires that

∀ t ≥ 0, g
({AS(t)(x(t))}S⊂N

) ∈ M

where g :
∏

S⊂N YS �→ Y .

We associate with any coalition S ⊂ N the product XS :=
∏

i∈S Xi

and denote by AS ∈ LS(XS , Y ) the space of S-linear operators AS :
XS �→ Y , i.e., operators that are linear with respect to each variable xi,
(i ∈ S) when the other ones are fixed. Linear operators Ai ∈ L(Xi, Y )
are obtained when the coalition S := {i} is reduced to a singleton, and
we identify L∅(X∅, Y ) := Y with the vector space Y .

In order to tackle mathematically this problem, we shall
1. restrict the connectionist operators A :=

∑
S⊂N AS to be multi-

affine, i.e., the sum over all coalitions of S-linear operators3 AS ∈
LS(XS , Y ),

2. allow coalitions S to become fuzzy coalitions so that they can evolve
continuously.

So, a network is not only any kind of a relationship between vari-
ables, but involves both connectionist operators operating on coalitions
of players.

3.2 Constructing the dynamics
The question we raise is the following: Assume that we know the

intrinsic laws of evolution of the variables xi (independently of the con-
straints), of the connectionist operator AS(t) and of the coalitions S(t).
Is the above architecture viable under these dynamics, in the sense that
the collective constraints defining the architecture of the dynamical net-
work are satisfied at each instant.

There is no reason why let on his own, collective constraints defin-
ing the above architecture are viable under these dynamics. Then the
question arises how to reestablish the viability of the system.

One may
1. either delineate those states (actions, connectionist operators,

coalitions) from which begin viable evolutions,

3Also called (or regarded as) tensors.They are nothing other than matrices when the operators
are linear instead of multilinear. Tensors are the matrices of multilinear operators, so to speak,
and their “entries” depend upon several indexes instead of the two involved in matrices.
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2. or correct the dynamics of the system in order that the architecture
of the dynamical network is viable under the altered dynamical
system.

The first approach leads to take the viability kernel of the constrained
subset of K of states (xi, AS , S) satisfying the constraints defining the
architecture of the network. We refer to Aubin (1997, 1998a) for this
approach. We present in this section a class of methods for correcting
the dynamics without touching on the architecture of the network.

One may indeed be able, with a lot of ingeniousness and intimate
knowledge of a given problem, and for “simple constraints”, to derive
dynamics under which the constraints are viable.

However, we can investigate whether there is a kind of mathematical
factory providing classes of dynamics “correcting” the initial (intrinsic)
ones in such a way that the viability of the constraints is guaranteed.
One way to achieve this aim is to use the concept of “viability multi-
pliers” q(t) ranging over the dual Y ∗ of the resource space Y that can
be used as “controls” involved for modifying the initial dynamics. This
allows us to provide an explanation of the formation and the evolution of

the architecture of the network and of the active coalitions as well as the

evolution of the actions themselves.
A few words about viability multipliers are in order here: If a con-

strained set K is of the form

K := {x ∈ X such that h(x) ∈ M}

where h : X �→ Z := Rm is the constrained map form the state space X
to the resource space Z and M ⊂ Z is a subset of available resources,
we regard elements u ∈ Z� = Z in the dual of the resource space Z
(identified with Z) as viability multipliers, since they play a role analogous
to Lagrange multipliers in optimization under constraints.

Recall that the minimization of a function x �→ J(x) over a con-
strained set K is equivalent to the minimization without constraints of
the function

x �→ J(x) +
m∑

k=1

∂hk(x)
∂xj

uk

for an adequate Lagrange multiplier u ∈ Z� = Z in the dual of the
resource space Z (identified with Z). See for instance Aubin (1998,
1993), Rockafellar and Wets (1997) among many other references on
this topic.
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In an analogous way, but with unrelated methods, it has been proved
that a closed convex subset K is viable under the control system

x′
j(t) = fj(x(t)) +

m∑
k=1

∂hk(x(t))
∂xj

uk(t)

obtained by adding to the initial dynamics a term involving regulons
that belong to the dual of the same resource space Z. See for instance
Aubin and Cellina (1984) and Aubin (1991, 1997) below for more details.
Therefore, these viability multipliers used as regulons benefit from the same

economic interpretation of virtual prices as the ones provided for Lagrange

multipliers in optimization theory.
The viability multipliers q(t) ∈ Y ∗ can thus be regarded as regulons,

i.e., regulation controls or parameters, or virtual prices in the language
of economists. These are chosen at each instant in order that the viabil-
ity constraints describing the network can be satisfied at each instant.
The main theorem guarantees this possibility. Another theorem tells
us how to choose at each instant such regulons (the regulation law).
Even though viability multipliers do not provide all the dynamics under
which a constrained set is viable, they do provide important and notice-
able classes of dynamics exhibiting interesting structures that deserve to
be investigated and tested in concrete situations.

3.3 An economic interpretation
Although the theory applies to general networks, the problem we face

has an economic interpretation that may help the reader in interpreting
the main results that we summarize below.

Actors here are economic agents (producers) i = 1, . . . , n ranging over
the set N := {1, . . . , n}. Each coalition S ⊂ N of economic agents is
regarded as a production unit (a firm) using resources of their agents to
produce (or not produce) commodities. Each agent i ∈ N provides a
resource vector (capital, competencies, etc.) xi ∈ X in a resource space
Xi := R

mi used in production processes involving coalitions S ⊂ N of
economic agents (regarded as firms employing economic agents)

We describe the production process of a firm S ⊂ N by a S-linear oper-
ator AS :

∏n
i=1 Xi �→ Y associating with the resources x := (x1, . . . , xn)

provided by the economic agents a commodity AS(x). The supply con-
straints are described by a subset M ⊂ Y of the commodity space,
representing the set of commodities that must be produced by the firms:
Condition ∑

S⊂N

AS(t)(x(t)) ∈ M

express that at each instant, the total production must belong to M .
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The connectionist operators among economic agents are the input-
output production processes operating on the resources provided by the
economic agents to the production units described by coalitions of eco-
nomic agents. The architecture of the network is then described by the
supply constraints requiring that at each instant, agents supply adequate
resources to the firms in order that the production objectives are fulfilled.

When fuzzy coalitions χi of economic agents4 are involved, the supply
constraints are described by∑

S⊂N

(∏
j∈S

χj(t)
)

AS(t)(x(t)) ∈ M (1.1)

since the production operators are assumed to be multilinear.

3.4 Linear connectionist operators
We summarize the case in which there is only one player and the

operator A : X �→ Y is affine studied in Aubin (1997, 1998a,b):

∀ x ∈ X, A(x) := Wx + y where W ∈ L(X, Y ) & y ∈ Y

The coordination problem takes the form:

∀ t ≥ 0, W (t)x(t) + y(t) ∈ M

where both the state x, the resource y and the connectionist operator W
evolve. These constraints are not necessarily viable under an arbitrary
dynamic system of the form⎧⎨⎩ (i) x′(t) = c(x(t))

(ii) y′(t) = d(y(t))
(iii) W ′(t) = α(W (t))

(1.2)

We can reestablish viability by involving multipliers q ∈ Y ∗ ranging over
the dual Y ∗ := Y of the resource space Y to correct the initial dynamics.
We denote by W ∗ ∈ L(Y ∗, X∗) the transpose of W :

∀ q ∈ Y ∗, ∀ x ∈ X, 〈W ∗q, x〉 := 〈q, Wx〉
by x⊗ q ∈ L(X∗, Y ∗) the tensor product defined by

x⊗ q : p ∈ X∗ := X �→ (x⊗ q)(p) := 〈p, x〉q
the matrix of which is made of entries (x⊗ q)j

i = xiq
j .

4Whenever the resources involved in production processes are proportional to the intensity
of labor, one could interpret in such specific economic models the rate of participation χi of
economic agent i as (the rate of) labor he uses in the production activity.
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The contingent cone TM (x) to M ⊂ Y at y ∈ M is the set of directions
v ∈ Y such that there exist sequences hn > 0 converging to 0, and vn

converging to v satisfying y + hnvn ∈ M for every n. The (regular)
normal cone to M ⊂ Y at y ∈ M is defined by

NM (y) := {q ∈ Y ∗|∀ v ∈ TM (y), 〈q, v〉 ≤ 0}
(see Aubin and Frankowska (1990) and Rockafellar and Wets (1997) for
more details on these topics).

We proved that the viability of the constraints can be reestablished
when the initial system (1.2) is replaced by the control system⎧⎪⎪⎨⎪⎪⎩

(i) x′(t) = c(x(t))−W ∗(t)q(t)
(ii) y′(t) = d(y(t))− q(t)
(iii) W ′(t) = α(W (t))− x(t)⊗ q(t)

where q(t) ∈ NM (W (t)x(t) + y(t))

where NM (y) ⊂ Y ∗ denotes the normal cone to M at y ∈ M ⊂ Y and
x⊗ q ∈ L(X, Y ∗) denotes the tensor product defined by

x⊗ q : p ∈ X∗ := X �→ (x⊗ q)(x) := 〈p, x〉q
the matrix of which is made of entries (x⊗ q)j

i = xiq
j . In other words,

the correction of a dynamical system for reestablishing the viability of
constraints of the form W (t)x(t) + y(t) ∈ M involves the rule proposed
by Hebb in his classic book The organization of behavior in 1949 as the
basic learning process of synaptic weight and called the Hebbian rule:
Taking α(W ) = 0, the evolution of the synaptic matrix W := (wj

i ) obeys
the differential equation

d

dt
wj

i (t) = −xi(t)qj(t)

The Hebbian rule states that the velocity of the synaptic weight is the
product of pre-synaptic activity and post-synaptic activity. Such a learn-
ing rule “pops up” (or, more pedantically, emerges) whenever the synap-
tic matrices are involved in regulating the system in order to maintain
the “homeostatic” constraint W (t)x(t) + y(t) ∈ M . (See Aubin (1996)
for more details on the relations between Hebbian rules and tensor prod-
ucts in the framework of neural networks).

Viability multipliers q(t) ∈ Y � regulating viable evolutions satisfy the
regulation law

∀ t ≥ 0, q(t) ∈ RM (A(t), x(t))

where the regulation map RM is defined by

RM (A, x) = (AA� + ‖x‖2I)−1(Ac(x) + α(A)(x)− TM (A(x)))
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One can even require that on top of it, the viability multiplier satisfies

q(t) ∈ NM (A(t)x(t)) ∩RM (A(t), x(t)))

The norm ‖q(t)‖ of the viability multiplier q(t) measures the intensity

of the viability discrepancy of the dynamic since{
(i) ‖c(x(t))− x′(t)‖ ≤ ‖A∗(t)‖ ‖q(t)‖
(ii) ‖α(A(t))−A′(t)‖ = ‖x(t)‖ ‖q(t)‖

When α(A) ≡ 0, the viability multipliers with minimal norm in the
regulation map provide both the smallest error ‖c(x(t))− x′(t)‖ and the
smallest velocities of the connection matrix because ‖A′(t)‖ = ‖x(t)‖
‖q(t)‖. The inertia of the connection matrix, which can be regarded as
an index of dynamic connectionist complexity, is proportional to the norm
of the viability multiplier.

3.5 Hierarchical architecture and complexity
The constraints are of the form

AH−1
H

· · ·Ah−1
h . . . A1

2x1 ∈ MH

This describes for instance a production process associating with the
resource x1 the intermediate outputs x2 := A1

2x1, which itself pro-
duces an output x3 := A1

2x2, and so on, until the final output xH :=
AH−1

H
· · ·Ah−1

h . . . A1
2x1 which must belong to the production set MH .

The evolution without constraints of the commodities and the opera-
tors is governed by dynamical systems of the form⎧⎪⎨⎪⎩

(i) x′
h(t) = ch(xh(t))

(ii)
d

dt
Ah

h+1(t) = αh
h+1(Ah(t))

The constraints

∀ t ≥ 0, AH−1
H

(t) · · ·Ah−1
h (t) . . . A1

2(t)x1(t) ∈ MH

are viable under the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = c1(x1(t)) + A1

2(t)
�(t)p1(t) (h = 1)

x′
h(t) = ch(xh(t))− ph−1(t) + Ah

h+1(t)
�ph(t) (h = 1, . . . , H− 1)

x′
H
(t) = cH(xH(t))− pH−1(t) (h = H)

d

dt
Ah

h+1(t) = αh
h+1(Ah(t)) + xh(t)⊗ ph(t) (h = 1, . . . , H− 1)
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involving viability multipliers ph(t) (intermediate “shadow price”). The
input-output matrices Ah

h+1(t) obey dynamics involving the tensor prod-
uct of xh(t) and ph(t).

The viability multiplier ph(t) at level h(h = 1, . . . , H−1) both regulate
the evolution at level h and send a message at upper level h + 1.

We can tackle actually more complex hierarchical situations with non
ordered hierarchies. Assume that X :=

∏
H

h=1, Y :=
∏

K

k=1 and that
A := (Ak

h) where Ak
h ∈ L(Xk, Yh). We introduce a set-valued map

J : {1, . . . , H} � {1, . . . , K}.
The constraints are defined by

∀ h = 1, . . . , H,
∑

k∈J(h)

Ak
h(t)xk(t) ∈ Mh ⊂ Yh

We consider a system of differential equations⎧⎪⎨⎪⎩
(i) x′

h(t) = ch(xh(t)), h = 1, . . . , H

(ii)
d

dt
Ak

h(t) = αk
h(Ak

h(t))

Then the constraints

∀ h = 1, . . . , H, . . .
∑

k∈J(h)

Ak
h(t)xk(t) ∈ Mh ⊂ Yh

are viable under the corrected system⎧⎪⎪⎨⎪⎪⎩
(i) x′

h(t) = ch(xh(t))−∑k∈J−1(h) Ah
k(t)�pk,

h = 1, . . . , H, k = 1, . . . , K

(ii)
d

dt
Ak

h(t) = αk
h(Ak

h(t))− xk(t)⊗ ph(t), (h, k) ∈ Graph(J)

3.6 Connectionist tensors
In order to handle more explicit and tractable formulas and results,

we shall assume that the connectionist operator A : X :=
∏n

i=1 Xi � Y
is multiaffine.

For defining such a multiaffine operator, we associate with any coali-

tion S ⊂ N its characteristic function χS : N �→ R associating with any
i ∈ N

χS(i) :=
{

1 if i ∈ S
0 if i /∈ S
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It defines a linear operator χS◦ ∈ L (
∏n

i=1 Xi,
∏n

i=1 Xi) that associates
with any x = (x1, . . . , xn) ∈ ∏n

i=1 Xi the sequence χS ◦ x ∈ Rn defined
by

∀ i = 1, . . . , n, (χS ◦ x)i :=
{

xi if i ∈ S
0 if i /∈ S

We associate with any coalition S ⊂ N the subspace

XS := xS ◦
n∏

i=1

Xi =
{

x ∈
n∏

i=1

Xi such that∀ i /∈ S, xi = 0
}

since xS◦ is nothing other that the canonical projector from
∏n

i=1 Xi

onto XS . In particular, XN :=
∏n

i=1 Xi and X∅ := {0}.
Let Y be another finite dimensional vector space. We associate with

any coalition S ⊂ N the space LS(XS , Y ) of S-linear operators AS . We
extend such a S-linear operator AS to a n-linear operator (again denoted
by) AS ∈ Ln (

∏n
i=1 Xi, Y ) defined by:

∀ x ∈
n∏

i=1

Xi, AS(x) = AS(x1, . . . , xn) := AS(χS ◦ x)

A multiaffine operator A ∈ An (
∏n

i=1 Xi, Y ) is a sum of S-linear oper-
ators AS ∈ LS(XS , Y ) when S ranges over the family of coalitions:

A(x1, . . . , xn) :=
∑
S⊂N

AS(χS ◦ x) =
∑
S⊂N

AS(x)

We identify A∅ with a constant A∅ ∈ Y .
Hence the collective constraint linking multiaffine operators and ac-

tions can be written in the form

∀ t ≥ 0,
∑
S⊂N

AS(t)(x(t)) ∈ M

For any i ∈ S, we shall denote by (x−i, ui) ∈ XN the sequence y ∈ XN

where yj := xj when j �= i and yi = ui when j = i. The linear operator
AS (x−i) ∈ L(Xi, Y ) is defined by ui �→ AS(x−i)ui := AS(x−i, ui). We
shall use its transpose AS (x−i)

∗ ∈ L(Y ∗, X∗
i ) defined by

∀ q ∈ Y ∗, ∀ ui ∈ Xi, 〈AS (x−i)
∗ q, ui〉 = 〈q, AS (x−i)ui〉
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We associate with q ∈ Y ∗ and elements xi ∈ Xi the multilinear oper-
ator5

x1 ⊗ · · · ⊗ xn ⊗ q ∈ Ln

( n∏
i=1

X∗
i , Y ∗

)
associating with any

p := (p1, . . . , pn) ∈
n∏

i=1

X∗
i

the element
( n∏

i=1

〈pi, xi〉
)

q:

x1 ⊗ · · · ⊗ xn ⊗ q : p := (p1, . . . , pn) ∈
n∏

i=1

X∗
i

�→ (x1 ⊗ · · · ⊗ xn ⊗ q)(p) :=
( n∏

i=1

〈pi, xi〉
)

q ∈ Y ∗

This multilinear operator x1 ⊗ · · · ⊗ xn ⊗ q is called the tensor product

of the xi’s and q.
We recall that the duality product on

Ln

( n∏
i=1

X∗
i , Y ∗

)
× Ln

( n∏
i=1

Xi, Y

)
for pairs (x1 ⊗ · · · ⊗ xn ⊗ q, A) can be written in the form:

〈x1 ⊗ · · · ⊗ xn ⊗ q, A〉 := 〈q, A(x1, . . . , xn)〉

3.7 Multi-Hebbian learning process
Assume that we start with intrinsic dynamics of the actions xi, the

resources y, the connectionist matrices W and the fuzzy coalitions χ:{
(i) x′

i(t) = ci(x(t)), i = 1, . . . , n
(ii) A′

S(t) = αS(A(t)), S ⊂ N

Using viability multipliers, we can modify the above dynamics by intro-
ducing regulons that are elements q ∈ Y ∗ of the dual Y ∗ of the space Y :

5We recall that the space Ln
(∏n

i=1 Xi, Y
)

of n-linear operators from
∏n

i=1 Xi to Y is iso-

metric to the tensor product
n⊗

i=1

X∗
i ⊗ Y , the dual of which is

n⊗
i=1

Xi ⊗ Y ∗, that is isometric

with Ln
(∏n

i=1 X∗
i , Y ∗).
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Theorem 1.1 Assume that the functions ci, κi and αS are continuous
and that M ⊂ Y are closed. Then the constraints

∀ t ≥ 0,
∑
S⊂N

AS(t)(x(t)) ∈ M

are viable under the control system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(i) x′
i(t) = ci(xi(t))−

∑
S�i

AS(t)(x−i(t))∗q(t), i = 1, . . . , n

(ii) A′
S(t) = αS(A(t))−

(⊗
j∈S

xj(t)
)
⊗ q(t), S ⊂ N

where q(t) ∈ NM (
∑

S⊂N AS(t)(x(t)))

Remark: Multi-Hebbian Rule — When we regard the multilinear
operator AS as a tensor product of components Aj

SΠi∈Sik
, j = 1, . . . , p,

ik = 1, . . . , ni, i ∈ S, differential equation (ii) can be written in the form:
∀ i ∈ S, j = 1, . . . , p, k = 1, . . . , ni,

d

dt
Aj

SΠi∈Sik
= αSΠi∈Sik

(A(t))−
(∏

i∈S

xik(t)
)

qj(t)

The correction term of the component Aj
SΠi∈Sik

of the S-linear opera-
tor is the product of the components xik(t) actions xi in the coalition S
and of the component qj of the viability multiplier. This can be regarded
as a multi-Hebbian rule in neural network learning algorithms, since for
linear operators, we find the product of the component xk of the pre-
synaptic action and the component qj of the post-synaptic action. �

Indeed, when the vector spaces Xi := Rni are supplied with basis eik ,
k = 1, . . . , ni, when we denote by e∗ik their dual basis, and when Y := Rp

is supplied with a basis f j , and its dual supplied with the dual basis f∗
j ,

then the tensor products
(⊗

i∈S

eik
)
⊗ f∗

j (j = 1, . . . , p, k = 1, . . . , ni)

form a basis of LS

(
XS∗

, Y ∗).
Hence the components of the tensor product

(⊗
i∈S

xi

)
⊗ q in this basis

are the products
(∏

i∈S

xik

)
qj of the components qj of q and xik of the

xi’s, where qj := 〈q, f j〉 and xik := 〈e∗ik , xi〉. Indeed, we can write
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(⊗
i∈S

xi

)
⊗ q =

p∑
j=1

∑
i∈S

ni∑
k=1

(
〈q, f j〉

∏
i∈S

〈e∗ik , xi〉
)( n⊗

i=1

eik

)
⊗ f∗

j

4. Regulation involving fuzzy coalitions
Let A ∈ An (

∏n
i=1 Xi, Y ), a sum of S-linear operators AS ∈ LS

(XS , Y ) when S ranges over the family of coalitions, be a multiaffine

operator.
When χ is a fuzzy coalition, we observe that

A(χ ◦ x) =
∑

S⊂P (χ)

γS(χ)AS(x) =
∑

S⊂P (χ)

(∏
j∈S

χj

)
AS(x)

We wish to encapsulate the idea that at each instant, only a number
of fuzzy coalitions χ are active. Hence the collective constraint linking
multiaffine operators, fuzzy coalitions and actions can be written in the
form

∀ t ≥ 0,
∑

S⊂P (χ(t))

γS(χ(t))AS(t)(x(t))

=
∑

S⊂P (χ(t))

(∏
j∈S

χj(t)
)

AS(t)(x(t)) ∈ M

4.1 Constructing viable dynamics
Assume that we start with intrinsic dynamics of the actions xi, the

resources y, the connectionist matrices W and the fuzzy coalitions χ:⎧⎨⎩ (i) x′
i(t) = ci(x(t)), i = 1, . . . , n

(ii) χ′
i(t) = κi(χ(t)), i = 1, . . . , n

(iii) A′
S(t) = αS(A(t)), S ⊂ N

Using viability multipliers, we can modify the above dynamics by intro-
ducing regulons that are elements q ∈ Y ∗ of the dual Y ∗ of the space Y :

Theorem 1.2 Assume that the functions ci, κi and αS are continuous
and that M ⊂ Y are closed. Then the constraints

∀ t ≥ 0,
∑

S⊂P (χ(t))

AS(t)(χ(t) ◦ x(t))

=
∑

S⊂P (χ(t))

(∏
j∈S

χj(t)
)

AS(t)(x(t)) ∈ M
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are viable under the control system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) x′
i(t) = ci(xi(t))−

∑
S�i

(∏
j∈S

χj(t)
)

AS(t)(x−i(t))∗q(t),
i = 1, . . . , n

(ii) χ′
i(t) = κi(χ(t))−

∑
S�i

( ∏
j∈S\i

χj(t)
)
〈q(t), AS(t) (x(t))〉 ,

i = 1, . . . , n

(iii) A′
S(t) = αS(A(t))−

(∏
j∈S

χj(t)
)(⊗

j∈S

xj(t)
)
⊗ q(t), S ⊂ N

where q(t) ∈ NM

(∑
S⊂P (χ(t))

(∏
j∈S χj(t)

)
AS(t)

(
x(t)

))
Let us comment on these formulas. First, the viability multipliers

q(t) ∈ Y ∗ can be regarded as regulons, i.e., regulation controls or para-
meters, or virtual prices in the language of economists. They are chosen
adequately at each instant in order that the viability constraints describ-
ing the network can be satisfied at each instant, and the above theorem
guarantees this possibility. The next section tells us how to choose at
each instant such regulons (the regulation law).

For each player i, the velocities x′
i(t) of the state and the velocities

χ′
i(t) of its membership in the fuzzy coalition χ(t) are corrected by sub-

tracting

1. the sum over all coalitions S to which he belongs of the AS(t)
(x−i(t))∗q(t) weighted by the membership γS(χ(t)):

x′
i(t) = ci(xi(t))−

∑
S�i

γS(χ(t))AS(t)(x−i(t))∗q(t)

2. the sum over all coalitions S to which he belongs of the costs
〈q(t), AS(t) (x(t))〉 of the constraints associated with connectionist
tensor AS of the coalition S weighted by the membership γS\i(χ(t)):

χ′
i(t) = κi(χ(t))−

∑
S�i

γS\i(χ(t)) 〈q(t), AS(t) (x(t))〉

The (algebraic) increase of player i’s membership in the fuzzy coali-
tion aggregates over all coalitions to which he belongs the cost of
their constraints weighted by the products of memberships of the
other players in the coalition.

It can be interpreted as an incentive for economic agents to increase
or decrease his participation in the economy in terms of the cost of
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constraints and of the membership of other economic agents, en-
capsulating a mimetic — or “herd”, panurgean — behavior (from
a famous story by François Rabelais (1483-1553), where Panurge
sent overboard the head sheep, followed by the whole herd).

Panurge ... jette en pleine mer son mouton
criant et bellant. Tous les aultres mou-
tons, crians et bellans en pareille intona-
tion, commencerent soy jecter et saulter
en mer après, à la file ... comme vous
sçavez estre du mouton le naturel, tous
jours suyvre le premier, quelque part qu’il
aille. Aussi li dict Aristoteles, lib. 9, de
Histo. animal. estre le plus sot et inepte
animant du monde.

As for the correction of the velocities of the connectionist tensors AS ,
their correction is a weighted “multi-Hebbian” rule: for each component
Aj

SΠi∈Sik
of AS , the correction term is the product of the membership

γS(χ(t)) of the coalition S, of the components xik(t) and of the compo-
nent qj(t) of the regulon:

d

dt
Aj

SΠi∈Sik
= αSΠi∈Sik

(A(t))− γS(χ(t))
(∏

i∈S

xik(t)
)

qj(t)

4.2 The regulation map
Actually, the viability multipliers q(t) regulating viable evolutions of

the actions xi(t), the fuzzy coalitions χ(t) and the multiaffine operators
A(t) obey the regulation law (an “adjustment law”, in the vocabulary
of economists) of the form

∀ t ≥ 0, q(t) ∈ RM (x(t), χ(t), A(t))

where RM : XN ×Rn×An(XN , Y ) � Y ∗ is the regulation map RM that
we shall compute.

For this purpose, we introduce the operator h : XN×Rn×An(XN , Y )
defined by

h(x, χ, A) :=
∑
S⊂N

AS(χ ◦ x)
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and the linear operator H(x, χ, A) : Y ∗ := Y �→ Y defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H(x, χ, A) :=
∑
S⊂N

(∏
j∈S

χ2
j‖xj‖2

)
I

+
∑

R,S⊂N

∑
i∈R∩S

(
γR(χ)γS(χ)AR(x−i)AS(x−i)∗

+γR\i(χ)γS\i(χ)AR(x)⊗AS(x)
)

Then the regulation map is defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
RM (x, χ, A) := H(x, χ, A)−1( ∑

S⊂N

(
αS(A)(x) +

∑
i∈S

(
γS(χ)AS(x−i, ci(x))

+γS\i(χ)κi(χ)AS(x)
))− TM (h(x, χ, A))

)
Indeed, the regulation map RM associates with any (x, χ, A) the sub-

set RM (x, χ, A) of q ∈ Y ∗ such that

h′(x, χ, A)((c(x), κ(χ), α(A))− h′(x, χ, A)∗q) ∈ co (TM (h(x)))

We next observe that

h′(x, χ, A)h′(x, χ, A)∗ = H(x, χ, A)

and that⎧⎪⎨⎪⎩
h′(x, χ, A)(c(x), κ(χ), α(A))

=
∑
S⊂N

(
αS(A)(x)+

∑
i∈S

(
γS(χ)AS(x−i, ci(x))+γS\i(χ)κi(χ)AS(x)

))
Remark: Links between viability and Lagrange multipliers —

The point made in this paper is to show how the mathematical meth-
ods presented in a general way can be useful in designing other models,
as the Lagrange multiplier rule does in the static framework. By com-
parison, we see that if we minimize a collective utility function:

n∑
i=1

ui(xi) +
n∑

i=1

vi(χi) +
∑
S⊂N

wS(AS)

under constraints (1.1), then first-order optimality conditions at a opti-
mum ((xi)i, (χi)i, (AS)S⊂N ) imply the existence of Lagrange multipliers
p such that:
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∇ui(xi) =
∑
S�i

(∏
j∈S

χj

)
AS(x−i(t))∗p, i = 1, . . . , n

∇vi(χi) =
∑
S�i

( ∏
j∈S\i

χj

)
〈p, AS (x)〉 , i = 1, . . . , n

∇wS(AS) =
(∏

j∈S

χj

)(⊗
j∈S

xj

)
⊗ p, S ⊂ N

�

5. Dynamical fuzzy cooperative games under
tychastic uncertainty

5.1 Static fuzzy cooperative games
Definition 1.2 A Fuzzy game with side-payments is defined by a char-
acteristic function u : [0, 1]n �→ R+ of a fuzzy game assumed to be
positively homogenous.

When the characteristic function of the static cooperative game u
is concave, positively homogeneous and continuous on the interior of
Rn

+, one checks6 that the generalized gradient ∂u(χN ) is not empty and
coincides with the subset of imputations p := (p1, . . . , pn) ∈ Rn

+ accepted
by all fuzzy coalitions in the sense that

∀ χ ∈ [0, 1]n, 〈p, χ〉 =
n∑

i=1

piχi ≥ u(χ) (1.3)

and that, for the grand coalition χN := (1, . . . , 1),

〈p, χN 〉 =
n∑

i=1

pi = u(χN )

It has been shown that in the framework of static cooperative games

with side payments involving fuzzy coalitions, the concepts of Shapley
value and core coincide with the (generalized) gradient ∂u(χN ) of the
“characteristic function” u : [0, 1]n �→ R+ at the “grand coalition”
χN := (1, . . . , 1), the characteristic function of N := {1, 2, . . . , n}. The
differences between these concepts for usual games is explained by the
different ways one “fuzzyfies” a characteristic function defined on the set
of usual coalitions.

6See Aubin (1981a,b), Aubin (1979), Chapter 12 and Aubin (1998, 1993), Chapter 13.
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5.2 Three examples of game rules
In a dynamical context, (fuzzy) coalitions evolve, so that static condi-

tions (1.3) should be replaced by conditions7 stating that for any evolu-
tion t �→ x(t) of fuzzy coalitions, the payoff y(t) := 〈p(t), χ(t)〉 should be
larger than or equal to u(χ(t)) according (at least) to one of the three
following rules:

1. at a prescribed final time T of the end of the game:

y(T ) :=
n∑

i=1

pi(T )χi(T ) ≥ u(χ(T ))

2. during the whole time span of the game:

∀ t ∈ [0, T ], y(t) :=
n∑

i=1

pi(t)χi(t) ≥ u(χ(t))

3. at the first winning time t∗ ∈ [0, T ] when

y(t∗) :=
n∑

i=1

pi(t∗)χi(t∗) ≥ u(χ(t∗))

at which time the game stops.

Summarizing, the above conditions require to find — for each of the
above three rules of the game — an evolution of an imputation p(t) ∈ Rn

such that, for all evolutions of fuzzy coalitions χ(t) ∈ [0, 1]n starting at χ,
the corresponding rule of the game⎧⎨⎩ i)

∑n
i=1 pi(T )χi(T ) ≥ u(χ(T ))

ii) ∀ t ∈ [0, T ],
∑n

i=1 pi(t)χi(t) ≥ u(χ(t))
iii) ∃t∗ ∈ [0, T ] such that

∑n
i=1 pi(t∗)χi(t∗) ≥ u(χ(t∗))

(1.4)

must be satisfied.
Therefore, for each one of the above three rules of the game (1.4),

a concept of dynamical core should provide a set-valued map Γ : R+ ×
[0, 1]n � Rn associating with each time t and any fuzzy coalition χ a set
Γ(t, χ) of imputations p ∈ Rn

+ such that, taking p(t) ∈ Γ(T−t, χ(t)), and
in particular, p(0) ∈ Γ(T, χ(0)), the chosen above condition is satisfied.
This is the purpose of this study.

7Naturally, the privileged role played by the grand coalition in the static case must be aban-
doned, since the coalitions evolve, so that the grand coalition eventually loses its capital
status.
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5.3 A general class of game rules
Actually, in order to treat the three rules of the game (1.4) as partic-

ular cases of a more general framework, we introduce two nonnegative
extended functions b and c (characteristic functions of the cooperative
games) satisfying

∀ (t, χ) ∈ R+ ×Rn
+ ×Rn, 0 ≤ b(t, χ) ≤ c(t, χ) ≤ +∞

By associating with the initial characteristic function u of the game
adequate pairs (b, c) of extended functions, we shall replace the require-
ments (1.4) by the requirement

{
i) ∀ t ∈ [0, t∗], y(t)≥b(T − t, χ(t))(dynamical constraints)
ii) y(t∗)≥c(T − t∗, χ(t∗))(objective) (1.5)

We extend the functions b and c as functions from R×Rn ×Rn to
R+ ∪ {+∞} by setting

∀ t < 0, b(t, χ) = c(t, χ) = +∞
so that nonnegativity constraints on time are automatically taken into
account.

For instance, problems with prescribed final time are obtained with
objective functions satisfying the condition

∀ t > 0, c(t, χ) := +∞
In this case, t∗ = T and condition (1.5) boils down to{

i) ∀ t ∈ [0, T ], y(t) ≥ b(T − t, χ(t))
ii) y(T ) ≥ c(0, χ(T ))

Indeed, since y(t∗) is finite and since c(T − t∗, χ(t∗)) is infinite when-
ever T − t∗ > 0, we infer from inequality (1.5)ii) that T − t∗ must be
equal to 0. �

Allowing the characteristic functions to take infinite values (i.e., to be
extended), allows us to acclimate many examples.

For example, the three rules (1.4) associated with a same characteris-
tic function u : [0, 1]n �→ R ∪ {+∞} can be written in the form (1.5) by
adequate choices of pairs (b, c) of functions associated with u. Indeed,
denoting by u∞ the function defined by

u∞(t, χ) :=
{

u(χ) if t = 0
+∞ if t > 0
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and by 0 the function defined by

0(t, χ) =
{

0 if t ≥ 0,
+∞ if not

we can recover the three rules of the game

1. We take b(t, χ) := 0(t, χ) and c(t, χ) = u∞(t, χ), we obtain the
prescribed final time rule (1.4)i).

2. We take b(t, χ) := u(χ) and c(t, χ) := u∞(t, χ), we obtain the
span time rule (1.4)ii).

3. We take b(t, χ) := 0(t, χ) and c(t, χ) = u(χ), we obtain the first

winning time rule (1.4)iii).

5.4 Dynamics of fuzzy cooperative games
Naturally, games are played under uncertainty. In games arising so-

cial or biological sciences, uncertainty is rarely od a probabilistic and
stochastic nature (with statistical regularity), but of a tychastic nature,
according to a terminology borrowed to Charles Peirce.

State-dependent uncertainty can also be translated
mathematically by parameters on which actors,
agents, decision makers, etc. have no controls.
These parameters are often perturbations, dis-
turbances (as in “robust control” or “differential
games against nature”) or more generally, tyches
(meaning “chance” in classical Greek, from the
Goddess Tyche) ranging over a state-dependent
tychastic map. They could be called “random vari-
ables” if this vocabulary were not already confis-
cated by probabilists. This is why we borrow the
term of tychastic evolution to Charles Peirce who
introduced it in a paper published in 1893 under
the title evolutionary love. One can prove that
stochastic viability is a (very) particular case of
tychastic viability. The size of the tychastic map
captures mathematically the concept of “versatil-
ity (tychastic volatility)” — instead of “(stochastic)
volatility”: The larger the graph of the tychastic
map, the more “versatile” the system.

Next, we define the dynamics of the coalitions and of the imputations,
assumed to be given.
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1. the evolution of coalitions χ(t) ∈ Rn is governed by differential
inclusions

χ′(t) := f(χ(t), v(t))wherev(t) ∈ Q(χ(t))

where v(t) are tyches,

2. static constraints

∀ χ ∈ [0, 1]n, p ∈ P (χ) ⊂ Rn
+

and dynamic constraints on the velocities of the imputations p(t) ∈
Rn

+ of the form

〈p′(t), χ(t)〉 = −m(χ(t), p(t), v(t))〈p(t), χ(t)〉
stating that the cost 〈p′, χ〉 of the instantaneous change of im-
putation of a coalition is proportional to it by a discount factor
m(χ, p)

3. from which we deduce the velocity y′(t) = 〈p(t), f(χ(t), v(t))〉 −
m(χ(t), p(t))y(t) of the payoff y(t) := 〈p(t), χ(t)〉 of the fuzzy coali-
tion χ(t).

The evolution of the fuzzy coalitions is thus parameterized by impu-
tations and tyches, i.e., is governed by a dynamic game⎧⎨⎩ i) χ′(t) = f(χ(t), v(t))

ii) y′(t) = 〈p(t), f(χ(t), v(t))〉 −m(χ(t), p(t))y(t)
iii) where p(t) ∈ P (χ(t)) & v(t) ∈ Q(χ(t))

(1.6)

A feedback p̃ is a selection of the set-valued map P in the sense that
for any χ ∈ [0, 1]n, p̃(χ) ∈ P (χ). We thus associate with any feedback p̃
the set Cp̃(χ) of triples (χ(·), y(·), v(·)) solutions to⎧⎨⎩ i) χ′(t) = f(χ(t), v(t))

ii) y′(t) = 〈p̃(χ(t)), f(χ(t), v(t))〉 − y(t)m(χ(t), p̃(χ(t)), v(t))
where v(t) ∈ Q(χ(t))

(1.7)

5.5 Valuation of the dynamical game
We shall characterize the dynamical core of the fuzzy dynamical co-

operative game in terms of the derivatives of a valuation function that
we now define.

For each rule of the game (1.5), the set V� of initial conditions (T, χ, y)
such that there exists a feedback χ �→ p̃(χ) ∈ P (χ) such that, for all
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tyches t ∈ [0, T ] �→ v(t) ∈ Q(χ(t)), for all solutions to system (1.7) of
differential equations satisfying χ(0) = χ, y(0) = y, the corresponding
condition (1.5) is satisfied, is called the guaranteed valuation set8.

Knowing it, we deduce the valuation function

V �(T, χ) := inf{y|(T, χ, y) ∈ V�}
providing the cheapest initial payoff allowing to satisfy the viability/
capturability conditions (1.5). It satisfies the initial condition:

V �(0, χ) := u(χ)

In each of the three cases, we shall compute explicitly the valuation
functions as infsup of underlying criteria we shall uncover. For that
purpose, we associate with the characteristic function u : [0, 1]n �→ R ∪
{+∞} of the dynamical cooperative game the functional⎧⎪⎪⎨⎪⎪⎩

Ju(t; (χ(·), v(·)); p̃)(χ) := e
∫ t
0 m(χ(s),p̃(χ(s)),v(s))dsu(χ(t))

−
∫ t

0
e
∫ τ
0 m(χ(s),p̃(χ(s)),v(s))ds〈p̃(χ(τ)), f(χ(τ), v(τ))〉dτ

We shall associate with it and with each of the three rules of the game
(1.4) the three corresponding valuation functions:

1. prescribed end rule: We obtain

V �
(0,u∞)(T, χ) := inf

p̃(χ)∈P (χ)
sup

(χ(·),v(·))∈Cp̃(χ)
Ju(T ; (χ(·), v(·)); p̃)(χ)

(1.8)

2. time span rule: We obtain

V �
(u,u∞)(T, χ) := inf

p̃(χ)∈P (χ)
sup

(χ(·),v(·))∈Cp̃(χ)
sup

t∈[0,T ]
Ju(t; (χ(·), v(·)); p̃)(χ)

(1.9)

3. first winning time rule: We obtain

V �
(0,u)(T, χ) := inf

p̃(χ)∈P (χ)
sup

(χ(·),v(·))∈Cp̃(χ)
inf

t∈[0,T ]
Ju(t; (χ(·), v(·)); p̃)(χ)

(1.10)

A general formula for game rules 1.5 does exist, but is too involved to
be reproduced in this survey.

8One can also define the conditional valuation set V� of initial conditions (T, χ, y) such that for
all tyches v, there exists an evolution of the imputation p(·) such that viability/capturability
conditions (1.5) are satisfied. We omit this study for the sake of brevity, since it is parallel
to the one of guaranteed valuation sets.
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5.6 Hamilton-Jacobi equations and dynamical
core

Although these functions are only lower semicontinuous, one can de-
fine epiderivatives of lower semicontinuous functions (or generalized gra-
dients) in adequate ways and compute the core Γ: for instance, when
the valuation function is differentiable, we shall prove that Γ associates
with any (t, χ) ∈ R+ ×Rn the subset Γ(t, χ) of imputations p ∈ P (χ)
satisfying

sup
v∈Q(χ)

( n∑
i=1

(
∂V �(t, χ)

∂χi
− pi

)
fi(χ, v) + m(χ, p, v)V �(t, χ)

)
≤ ∂V �(t, χ)

∂t

The valuation function V � is actually a solution to the nonlinear
Hamilton-Jacobi-Isaacs partial differential equation

− ∂v(t, χ)
∂t

+ inf
p∈P (χ)

sup
v∈Q(χ)

( n∑
i=1

(
∂v(t, χ)

∂χi
− pi

)
fi(χ, v)

+ m(χ, p, v)v(t, χ)
)

= 0

satisfying the initial condition

v(0, χ) = u(χ)

on the subset

Ω(b,c)(v) := {(t, χ)|c(t, χ) > v(t, χ) ≥ v(t, χ)}
For each of the game rules (1.4), these subsets are written

1. prescribed end rule:

Ω(0,u∞)(v) := {(t, χ)|t > 0&v(t, χ) ≥ 0}

2. time span rule

Ω(u,u∞)(v) := {(t, χ)|t > 0&v(t, χ) ≥ u(χ)}

3. first winning time rule

Ω(0,u)(v) := {(t, χ)|t > 0&u(χ) > v(t, χ) ≥ 0}
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Actually, the solution of the above partial differential equation is taken
in the “contingent sense”, where the directional derivatives are the con-

tingent epiderivatives D↑v(t, χ) of v at (t, χ). They are defined by

D↑v(t, χ)(λ, v) := lim inf
h→0+,u→v

v(t + hλ, χ + hu)
h

(see for instance Aubin and Frankowska (1990) and Rockafellar and Wets
(1997)).

Definition 1.3 (Dynamical Core) Consider the dynamic fuzzy co-
operative game with game rules (1.5). The dynamical core Γ of the
corresponding fuzzy dynamical cooperative game is equal to⎧⎪⎪⎨⎪⎪⎩

Γ(t, χ) :=
{

p ∈ P (χ) such that
supv∈Q(χ)(D↑V �(t, χ)(−1, f(χ, v))− 〈p, f(χ, v)〉
+m(χ, p, v)V �(t, χ)) ≤ 0

}
where V � is the corresponding value function.

We can prove that for each feedback p̃(t, χ) ∈ Γ(t, χ) being a selection
of the dynamical core Γ, all evolutions (χ(·), v(·)) of the system⎧⎨⎩ i) χ′(t) = f(χ(t), v(t))

ii) y′(t) = 〈p̃(T − t, χ(t)), χ(t)〉 −m(χ(t), p̃(T − t, χ(t))y(t)
iii) v(t) ∈ Q(χ(t))

(1.11)
satisfy the corresponding condition (1.5).

5.7 The static case as infinite versatility
Let us consider the case when m(χ, p, v) = 0 (self-financing of fuzzy

coalitions) and when the evolution of coalitions is governed by f(χ, v) =
v and Q(χ) = rB. Then the dynamical core is the subset Γ(t, χ) of
imputations p ∈ P (χ) satisfying on Ω(V �) the equation9

r

∥∥∥∥∂V �(t, χ)
∂χ

− p

∥∥∥∥ =
∂V �(t, χ)

∂t

Now, assuming that the data and the solution are smooth we deduce
formally that letting the versatility r →∞, we obtain as a limiting case

9when p = 0, we find the eikonal equation.
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that p = ∂V �(t,χ)
∂χ and that ∂V �(t,χ)

∂t = 0. Since V �(0, χ) = u(χ), we infer

that in this case Γ(t, χ) = ∂u(χ)
∂χ , i.e., the Shapley value of the fuzzy static

cooperative game when the characteristic function u is differentiable and
positively homogenous, and the core of the fuzzy static cooperative game
when the characteristic function u is concave, continuous and positively
homogenous. �

6. The viability/capturability strategy

6.1 The epigraphical approach
The epigraph of an extended function v : X �→ R ∪ {+∞ is defined

by
Ep(v) := {(χ, λ) ∈ X ×R|v(χ) ≤ λ}

We recall that an extended function v is convex (resp. positively homo-
geneous) if and only if its epigraph is convex (resp. a cone) and that the
epigraph of v is closed if and only if v is lower semicontinuous:

∀ χ ∈ X, v(χ) = lim inf
y→x

v(y)

With these definitions, we can translate the viability/capturability
conditions (1.5) in the following geometric form:⎧⎪⎪⎨⎪⎪⎩

i) ∀ t ∈ [0, t∗], (T − t, χ(t), y(t)) ∈ Ep(b)
(viability constraint)

ii) (T − t∗, χ(t∗), y(t∗)) ∈ Ep(c)
(capturability of a target)

(1.12)

This “epigraphical approach” proposed by J.-J. Moreau and R.T.
Rockafellar in convex analysis in the early 60’s 10, has been used in opti-
mal control by H. Frankowska in a series of papers Frankowska (1989a,b,
1993) and Aubin and Frankowska (1996) for studying the value func-
tion of optimal control problems and characterize it as generalized solu-
tion (episolutions and/or viscosity solutions) of (first-order) Hamilton-
Jacobi-Bellman equations, in Aubin (1981c); Aubin and Cellina (1984)
Aubin (1986, 1991) for characterizing and constructing Lyapunov func-
tions, in Cardaliaguet (1994, 1996, 1997, 2000) for characterizing the
minimal time function, in Pujal (2000) and Aubin, Pujal and Saint-
Pierre (2001) in finance and other authors since. This is this approach
that we adopt and adapt here, since the concepts of “capturability of

10see for instance Aubin and Frankowska (1990) and Rockafellar and Wets (1997) among
many other references.
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a target” and of “viability” of a constrained set allows us to study this
problem under a new light (see for instance Aubin (1991, 1997) for eco-
nomic applications) for studying the evolution of the state of a tychastic
control system subjected to viability constraints in control theory and
in dynamical games against nature or robust control (see Quincampoix
(1992), Cardaliaguet (1994, 1996, 1997, 2000), Cardaliaguet, Quincam-
poix and Saint-Pierre (1999). Numerical algorithms for finding viability
kernels have been designed in Saint-Pierre (1994) and adapted to our
type of problems in Pujal (2000).

The properties and characterizations of the valuation function are thus
derived from the ones of guaranteed viable-capture basins, that are easier
to study — and that have been studied — in the framework of plain
constrained sets K and targets C ⊂ K (see Aubin (2001a, 2002) and
Aubin and Catté (2002) for recent results on that topic).

6.2 Introducing auxiliary dynamical games
We observe that the evolution of (T − t, χ(t), y(t)) made up of the

backward time τ(t) := T − t, of fuzzy coalitions χ(t) of the players, of
imputations and of the payoff y(t) is governed by the dynamical game⎧⎪⎪⎪⎨⎪⎪⎪⎩

i) τ ′(t) = −1
ii) ∀ i = 0, . . . , n, χ′

i(t) = fi(χ(t), v(t))
iii) y′(t) = −y(t)m(χ(t), p(t), v(t)) + 〈p(t), f(χ(t), v(t))〉

where p(t) ∈ P (χ(t)) & v(t) ∈ Q(χ(t))

(1.13)

starting at (T, χ, y). We summarize it in the form of the dynamical game{
i) z′(t) ∈ g(z(t), u(t), v(t))
ii) u(t) ∈ P (z(t)) & v(t) ∈ Q(z(t))

where z := (τ, χ, y) ∈ R ×Rn ×R, where the controls u := p are the
imputations, where the map g : R ×Rn ×R � R ×Rn ×Rn ×R is
defined by

g(z, v) = (−1, f(χ, v), u,−m(χ, u, v)y + 〈u, f(χ, v)〉)
where u ranges over P (z) := P (χ) and v over Q(z) := Q(χ).

We say that a selection z �→ p̃(z) ∈ P (z) is a feedback, regarded as
a strategy. One associates with such a feedback chosen by the decision
maker or the player the evolutions governed by the tychastic differential
equation

z′(t) = g(z(t), p̃(z(t)), v(t))

starting at time 0 at z.
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6.3 Introducing guaranteed capture basins
We now define the guaranteed viable-capture basin that are involved

in the definition of guaranteed valuation subsets.

Definition 1.4 Let K and C ⊂ K be two subsets of Z.
The guaranteed viable-capture basin of the target C viable in K is

the set of elements z ∈ K such that there exists a continuous feedback
p̃(z) ∈ P (z) such that for every v(·) ∈ Q(z(·)), for every solutions z(·) to
z′ = g(z, p̃(z), v), there exists t∗ ∈ R+ such that the viability/capturabi-
lity conditions {

i) ∀ t ∈ [0, t∗], z(t) ∈ K
ii) z(t∗) ∈ C

are satisfied.

6.4 The strategy
We thus observe that

Proposition 1.1 The guaranteed valuation subset V� is the guaranteed
viable-capture basin under the dynamical game (1.13) of the epigraph of
the function c viable in the epigraph of the function b.

Since we have related the guaranteed valuation problem to the much
simpler — although more abstract — study of guaranteed viable-capture
basin of a target and other guaranteed viability/capturability issues for
dynamical games,

1. we first “solve” these “viability/capturability problems” for dy-
namical games at this general level, and in particular, study the
tangential conditions enjoyed by the guaranteed viable-capture
basins,

2. and use set-valued analysis and nonsmooth analysis for translating
the general results of viability theory to the corresponding results
of the auxiliary dynamical game, in particular translating tangen-
tial conditions to give a meaning to the concept of a generalized
solution (Frankowska’s episolutions or, by duality, viscosity solu-
tions) to Hamilton-Jacobi-Isaacs variational inequalities.
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entre conduites sociales réelles dans les groupes et les représentations
symboliques de ces groupes : un essai de formalisation mathématique.
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Lecture Notes, Université Paris-Dauphine.
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Chapter 2

A DIRECT METHOD FOR OPEN-LOOP
DYNAMIC GAMES FOR AFFINE
CONTROL SYSTEMS

Dean A. Carlson
George Leitmann

Abstract Recently in Carlson and Leitmann (2004) some improvements on Leit-
mann’s direct method, first presented for problems in the calculus of
variations in Leitmann (1967), for open-loop dynamic games in Dock-
ner and Leitmann (2001) were given. In these papers each player has
its own state which it controls with its own control inputs. That is,
there is a state equation for each player. However, many applications
involve the players competing for a single resource (e.g., two countries
competing for a single species of fish). In this note we investigate the
utility of the direct method for a class of games whose dynamics are
described by a single equation for which the state dynamics are affine
in the players strategies. An illustrative example is also presented

1. The direct method
In Carlson and Leitmann (2004) a direct method for finding open-loop

Nash equilibria for a class of differential N -player games is presented. A
particular case included in this study concerns the situation in which the
j-th player’s dynamics at any time t ∈ [t0, tf ] is a vector-valued function
t → xj(t) ∈ R

nj that is described by an ordinary control system of the
form

ẋj(t) = fj(t,x(t)) + gj(t,x(t))uj(t) a.e. t0 ≤ t ≤ tf (2.1)
xj(t0) = xjt0 and xj(tf ) = xjtf (2.2)

with control constraints

uj(t) ∈ Uj(t) ⊂ R
mj a.e. t ∈ [t0, tf ], (2.3)
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and state constraints

x(t) ∈ X(t) ⊂ R
n for t ∈ [t0, tf ], (2.4)

in which for each j = 1, 2, . . . N the function fj(·, ·) : [t0, tf ]×R
n → R

nj

is continuous, gj(·, ·) : [t0, tf ]× R
mj×nj is a continuous mj × nj matrix-

valued function having a left inverse, and Uj(·) is set-valued mapping,
and X(t) is a given set in R

n for t ∈ [t0, tf ]. Here we use the notation
x = (x1, x2, . . . , xN ) ∈ R

n1 × R
n2 × R

nN = R
n, where n = n1 + n2 +

. . . + nN ; similarly u = (u1, u2 . . . , uN ) ∈ R
m, m = m1 + m2 . . . + mN .

Additionally we assume that the sets, Mj = {(t,x, uj) ∈ [t0, tf ]× R
n ×

R
mj : uj ∈ Uj(t)} are closed and nonempty. The objective of each

player is to minimize an objective function of the form,

Jj(x(·), uj(·)) =
∫ tf

t0

f0
j (t,x(t), uj(t)) dt, (2.5)

where we assume that for each j = 1, 2, . . . , N the function f0
j (·, ·, ·) :

Mj × R
n × R

mj is continuous.
With the above model description we now define the feasible set of

admissible trajectory-strategy pairs.

Definition 2.1 We say a pair of functions {x(·),u(·)} : [t0, tf ] → R
n×

R
m is an admissible trajectory-strategy pair iff t → x(t) is absolutely

continuous on [t0, tf ], t → u(t) is Lebesgue measurable on [t0, tf ], for
each j = 1, 2, . . . , N , the relations (2.1)–(2.3) are satisfied, and for each
j = 1, 2, . . . , N , the functionals (2.5) are finite Lebesgue integrals.

Remark 2.1 For brevity we will refer to an admissible trajectory-strat-
egy pair as an admissible pair. Also, for a given admissible pair, {x(·),
u(·)}, we will follow the traditional convention and refer to x(·) as an
admissible trajectory and u(·) as an admissible strategy.

For a fixed j = 1, 2, . . . , N , x ∈ R
n, and yj ∈ R

nj we use the notation
[xj , yj ] to denote a new vector in R

n in which xj ∈ R
nj is replaced by

yj ∈ R
nj . That is,

[xj , yj ]
.= (x1, x2, . . . , xj−1, yj , xj+1, . . . , xN ).

Analogously [uj , vj ]
.= (u1, u2, . . . , uj−1, vj , uj+1, . . . , uN ) for all u ∈ R

m,
vj ∈ R

mj , and j = 1, 2, . . . , N . With this notation we now have the
following two definitions.

Definition 2.2 Let j = 1, 2, . . . , N be fixed and let {x(·),u(·)} be an
admissible pair. We say that the pair of functions {yj(·), vj(·)} : [t0, tf ]
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→ R
nj×R

mj is an admissible trajectory-strategy pair for player j relative
to {x(·),u(·)} iff the pair

{[x(·)j , yj(·)], [u(·)j , vj(·)]}
is an admissible pair.

Definition 2.3 An admissible pair {x∗(·),u∗(·)} is a Nash equilibrium
iff for each j = 1, 2, . . . , N and each pair {yj(·), vj(·)} that is admissible
for player j relative to {x∗(·),u∗(·)}, it is the case that

Jj(x∗(·), u∗
j (·)) =

∫ tf

t0

f0
j (t,x∗(t), u∗

j (t)) dt

≤
∫ tf

t0

f0
j (t, [x∗(t)j , yj(t)], vj(t)) dt

= Jj([x∗(·)j , yj(·)], vj(·)).
Our goal in this paper is to provide a “direct method” which in some

cases will enable us to determine a Nash equilibrium. We point out that
relative to a fixed Nash equilibrium {x∗(·),u∗(·)} each of the players
in the above game solves an optimization problem taking the form of a
standard problem of optimal control. Thus, under suitable additional as-
sumptions, it is relatively easy to derive a set of necessary conditions (in
the form of a Pontryagin-type maximum principle) that must be satisfied
by all Nash equilibria. Unfortunately these conditions are only neces-
sary and not sufficient. Further, it is well known that non-uniqueness
is always a source of difficulty in dynamic games so that in general the
necessary conditions are not uniquely solvable (as is often the case in
optimal control theory, when sufficient convexity is imposed). Therefore
it is important to be able to find usable sufficient conditions for Nash
equilibria.

The associated variational game
We observe that, under our assumptions, the algebraic equations,

zj = fj(t,x) + gj(t,x)uj j = 1, 2, . . . N, (2.6)

can be solved for uj in terms of t, zj , and x to obtain

uj = gj(t,x)−1 (zj − fj(t,x)) , j = 1, 2, . . . N, (2.7)

where gj(t,x)−1 denotes the inverse of the matrix gj(t,x). As a con-
sequence we can define the extended real-valued functions Lj(·, ·, ·) :
[t0, tf ]× R

n × R
nj → R ∪+∞ as

Lj(t,x, zj) = f0
j (t,x, gj(t,x)−1(zj − fj(t,x))) (2.8)
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if gj(t,x)−1 (zj − fj(t,x)) ∈ Uj(t) with Lj(t,x, zj) = +∞ otherwise.
With these functions we can consider the N -player variational game

in which the objective functional for the jth player is defined by,

Ij(x(·)) =
∫ tf

t0

Lj(t,x(t), ẋj(t)) dt. (2.9)

With this notation we have the following additional definitions.

Definition 2.4 An absolutely continuous function x(·) : [t0, tf ] → R
n

is said to be admissible for the variational game iff it satisfies the bound-
ary conditions given in equation (2.2) and such that the map t →
Lj(t,x(t), ẋj(t)) is finitely Lebesgue integrable on [t0, tf ] for each j =
1, 2, . . . , N .

Definition 2.5 Let x(·) : [t0, tf ] → R
n be admissible for the variational

game and let j ∈ {1, 2, . . . , N} be fixed. We say that yj(·) : [t0, tf ] → R
nj

is admissible for player j relative to x(·) iff [xj(·), yj(·)] is admissible for
the variational game.

Definition 2.6 We say that x∗(·) : [t0, tf ] → R
n is a Nash equilibrium

for the variational game iff for each j = 1, 2, . . . , N ,

Ij(x∗(·)) ≤ Ij([x∗j(·), yj(·)])
for all functions yj(·) : [t0, tf ] → R

nj that are admissible for player j
relative to x∗(·).

Clearly the variational game and our original game are related. In
particular we have the following theorem given in Carlson and Leitmann
(2004).

Theorem 2.1 Let x∗(·) be a Nash equilibrium for the variational game
defined above. Then there exists a measurable function u∗(·) : [t0, tf ] →
R

m such that the pair {x∗(·),u∗(·)} is an admissible trajectory-strategy
pair for the original dynamic game. Moreover, it is a Nash equilibrium
for the original game as well.

Proof. See Carlson and Leitmann (2004), Theorem 7.1. �

Remark 2.2 The above result holds in a much more general setting
than indicated above. We chose the restricted setting since it is sufficient
for our needs in the analysis of the model we will consider in the next
section.
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With the above result we now focus our attention on the variational
game. In 1967, for the case of one player variational games (i.e., the
calculus of variations), Leitmann (1967) presented a technique (the “di-
rect method”) for determining solutions of these games by comparing
their solutions to that of an equivalent problem whose solution is more
easily determined than that of the original game. This equivalence was
obtained through a coordinate transformation. Since then this method
has been used successfully to solve a variety of problems. Recently,
Carlson (2002) presented an extension of this method that expands the
utility of the approach as well as made some useful comparisons with a
technique originally presented by Carathéodory in the early twentieth
century (see Carathéodory (1982)). Also, Dockner and Leitmann (2001)
extended the original direct method to include the case of open-loop
dynamic games. Finally, the extension of Carlson to the method was
also modified in Leitmann (2004) to the include the case of open-loop
differential games in Carlson and Leitmann (2004).

We begin by stating the following lemma found in Carlson and Leit-
mann (2004).

Lemma 2.1 Let xj = zj(t, x̃j) be a transformation of class C1 having
a unique inverse x̃j = z̃j(t, xj) for all t ∈ [t0, tf ] such that there is a
one-to-one correspondence x(t) ⇔ x̃(t), for all admissible trajectories
x(·) satisfying the boundary conditions (2.2) and for all x̃(·) satisfying

x̃j(t0) = z̃j(t0, x0j) and x̃j(tf ) = z̃j(tf , xtf j)

for all j =1, 2, . . . , N . Furthermore, for each j =1, 2, . . . , N let L̃j(·, ·, ·) :
[t0, tf ] × R

n × R
nj → R be a given integrand. For a given admissible

x∗(·) : [t0, tf ] → R
n suppose the transformations xj = zj(t, x̃j) are such

that there exists a C1 function Hj(·, ·) : [t0, tf ] × R
nj → R so that the

functional identity

Lj(t, [x∗j(t), xj(t)], ẋj(t)) − L̃j(t, [x∗j(t), x̃j(t)], ˙̃xj(t))

=
d

dt
Hj(t, x̃j(t)) (2.10)

holds on [t0, tf ]. If x̃∗
j (·) yields an extremum of Ĩj([x∗j(·), ·]) with x̃∗

j (·)
satisfying the transformed boundary conditions, then x∗

j (·) with x∗
j (t) =

zj(t, x̃∗(t)) yields an extremum for Ij([x∗j(·), ·]) with the boundary con-
ditions (2.2).

Moreover, the function x∗(·) is an open-loop Nash equilibrium for the
variational game.

Proof. See Carlson and Leitmann (2004), Lemma 5.1. �
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This lemma has three useful corollaries which we state below.

Corollary 2.1 The existence of Hj(·, ·) in (2.9) implies that the fol-
lowing identities hold for (t, x̃j) ∈ (t0, tf )× R

njand for j = 1, 2, . . . , N :

Lj(t, [x∗j(t), zj(t, x̃j)],
∂zj(t, x̃j))

∂t
+ 〈∇x̃jzj(t, x̃j), p̃j〉) (2.11)

−L̃j(t, [x∗j(t), x̃j ], p̃j) ≡ ∂Hj(t, x̃j)
∂t

+ 〈∇x̃jHj(t, x̃j), p̃j〉,
in which ∇x̃jHj(·, ·) denotes the gradient of Hj(·, ·) with respect to the
variables x̃j and 〈·, ·〉 denotes the usual scalar or inner product in R

nj .

Corollary 2.2 For each j = 1, 2, . . . , N the left-hand side of the iden-
tity, (2.11) is linear in p̃j, that is, it is of the form,

θj(t, x̃j) + 〈ψj(t, x̃j), p̃j〉
and,

∂Hj(t, x̃j)
∂t

= θj(t, x̃j) and ∇x̃jHj(t, x̃j) = ψ(t, x̃j)

on [t0, tf ]× R
nj .

Corollary 2.3 For integrands Lj(·, ·, ·) of the form,

Lj(t, [x∗j(t), xj(t)], ẋj(t)) = ẋ′
j(t)aj(t, [x∗j(t), xj(t)])ẋj(t)

+bj(t, [x∗j(t), xj(t)])′ẋj(t)

+cj(t, [x∗j(t), xj(t)]),

and

L̃j(t, [x∗j(t), xj(t)], ẋj(t)) = ẋ′
j(t)αj(t, [x∗j(t), xj(t)])ẋj(t)

+βj(t, [x∗j(t), xj(t)])′ẋj(t)

+γj(t, [x∗j(t), xj(t)]),

with aj(t, [x∗j(t), xj(t)]) �= 0 and αj(t, [x∗j(t), xj(t)]) �= 0, the class of
transformations that permit us to obtain (2.11) must satisfy,[

∂zj(t, x̃j)
∂x̃j

]′
aj(t, [x∗(t)j , zj(t, x̃j)])

[
∂zj(t, x̃j)

∂x̃j

]
= αj(t, [x∗(t)j , x̃j ])

for (t, xj) ∈ [t0, t1]× R
nj .

A class of dynamic games to which the above method has not been ap-
plied is that in which there is a single state equation which is controlled
by all of the players. A simple example of such a problem is the com-
petitive harvesting of a renewable resource (e.g., a single species fishery
model). In the next section we show how the direct method described
above can be applied to a class of these types of models.
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2. The model
Consider an N -player game where a single state x(t) ∈ R

n satisfies an
ordinary control system of the form

ẋ(t) = F (t, x(t)) +
N∑

i=1

Gi(t, x(t))ui(t) a.e. t0 ≤ t ≤ tf , (2.12)

with initial and terminal conditions

x(t0) = xt0 and x(tf ) = xtf , (2.13)

a fixed state constraint,

x(t) ∈ X(t) ⊂ R
n for t0 ≤ t ≤ tf , (2.14)

with X(t) a convex set for each t0 ≤ t ≤ tf , and control constraints,

ui(t) ∈ Ui(t) ⊂ R
mi a.e. t0 ≤ t ≤ tf i = 1, 2, . . . N. (2.15)

In this system each player has a strategy, ui(·), which influences the
state variable x(·) over time.

Definition 2.7 A set of functions

{x(·),u(·)} .= {x(·), u1(·), u2(·), . . . , uN (·)}
defined for t0 ≤ t ≤ tf is called an admissible trajectory-strategy pair iff
x(·) is absolutely continuous on its domain, u(·) is Lebesgue measurable
on its domain, and the equations (2.12)– (2.15) are satisfied.

We assume that F (·, ·) : [t0, +∞)×R
n → R

n and Gi(·, ·, ·) : [t0, +∞)×
R

n × R
mj → R

n is sufficiently smooth so that for each selection of
strategies u(·) (i.e., measurable functions) the initial value problem given
by (2.12)–(2.13) has a unique solution xu(·). These conditions can be
made more explicit for particular models and are not unduly restrictive.
For brevity we do not to indicate these explicitly.

Each of the players in the dynamic game wishes to minimize a per-
formance criterion given of the form,

Jj(x(·), uj(·)) =
∫ tf

t0

fj(t, x(t), uj(t)) dt, j = 1, 2, . . . , N, (2.16)

in which we assume that fj(·, ·, ·) : [t0, tf ]×R
n×R

mj → R is continuous.
To place the above dynamic game into a form amenable to the di-

rect method consider a set of strictly positive weights, say αi > 0,
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i = 1, 2, . . . N , which satisfy
∑N

i=1 αi = 1 and consider the related ordi-
nary control system

ẋi(t) = F

(
t,

N∑
i=1

αixi(t)

)
+

1
αi

G

(
t,

N∑
i=1

αixi(t)

)
ui(t) a.e. t ≥ t0,

(2.17)
i = 1, 2, . . . , N , with boundary conditions,

xi(t0) = xt0 and xi(tf ) = xtf , i = 1, 2, . . . N, (2.18)

and control constraints and state constraints,

ui(t) ∈ Ui(t) ⊂ R
mi a.e. t0 ≤ t ≤ tf i = 1, 2, . . . N, (2.19)

xi(t) ∈ Xi(t)
.= X(t) ⊂ R

n for t0 ≤ t ≤ tf i = 1, 2, . . . N. (2.20)

Definition 2.8 A set of functions

{x(·),u(·)} .= {x1(·), x2(·), . . . xN (·), u1(·), u2(·), . . . , uN (·)}
defined for t0 ≤ t ≤ tf is called an admissible trajectory-strategy pair
for the related system iff x(·) : [t0, +∞) → R

n, where n = nN , is
absolutely continuous on its domain, u(·) : [t0, +∞) → R

m, where m =
m1 + m2 + . . . + mN , is Lebesgue measurable on its domain, and the
equations (2.17)–(2.19) are satisfied.

For this related system it is easy to see that the conditions guarantee-
ing uniqueness for the original system would also insure the existence of
the solution x(·) for a fixed set of strategies ui(·).
Proposition 2.1 Let {x(·),u(·)} be an admissible trajectory-strategy
pair for the related control system. Then the pair, {x(·),u(·)}, with
x(t) .=

∑N
i=1 αixi(t) is an admissible trajectory-strategy pair for the origi-

nal control system. Conversely, if {x(·),u(·)} is an admissible trajectory-
strategy pair for the original control system, then there exists a function
x(·) = (x1(·), . . . , xN (·)) so that x(t) .=

∑N
i=1 αixi(t) for i = 1, 2, . . . N

and {x(·),u(·)} is an admissible trajectory-strategy pair for the related
control system.

Proof. We begin by first letting {x(·),u(·)} be an admissible trajectory-
strategy pair for the related control system. Then defining x(t) =∑N

i=1 αixi(t) for t0 ≤ t ≤ tf we observe that

ẋ(t) =
N∑

i=1

αiẋi(t)
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=
N∑

i=1

αi

(
F (t, x(t)) +

1
αi

Gi(t, x(t))ui(t)
)

=
N∑

i=1

αiF (t, x(t)) +
N∑

i=1

Gi(t, x(t))ui(t)

= F (t, x(t)) +
N∑

i=1

Gi(t, x(t))ui(t),

since
∑N

i=1 αi = 1. Further we also have that

x(t0) =
N∑

i=1

αixt0 = xt0 ,

uj(t) ∈ Uj(t) for almost all t0 ≤ t ≤ tf and j = 1, 2, . . . N,

xj(t) ∈ X(t) for t0 ≤ t ≤ tf and j = 1, 2, . . . N,

implying that {x(·),u(·)} is an admissible trajectory-strategy pair.
Now assume that {x(·),u(·)} is an admissible trajectory-strategy pair

for the original dynamical system (2.12–2.15) and consider the system of
differential equations given by (2.17) with the initial conditions (2.18).
By our hypotheses this system has a unique solution x(·) : [t0, +∞) →
R

N . Furthermore, from the above computation we know that the func-
tion, y(·) .=

∑N
i=1 αixi(·), along with the strategies, u(·) satisfy the dif-

ferential equation (2.12) as well as the initial condition (2.13). However,
this initial value problem has a unique solution, namely x(·), so that we
must have y(t) ≡ x(t) for all t0 ≤ t ≤ tf . Further, we also have the
constraints, (2.19) and (2.20), holding as well. Hence we have, {x(·),
u(·)} is an admissible trajectory-strategy pair for the related system as
desired. �

In light of the above theorem it is clear that to use the direct method
to solve the dynamic game described by (2.12)–(2.16) we consider the
game described by the dynamic equations (2.17)–(2.19) where now the
objective for player j, j = 1, 2, . . . N , is given as

Jj(x(·), uj(·)) =
∫ tf

t0

f0
j

(
t,

N∑
i=1

αix(t), uj(t)

)
dt. (2.21)

In the next section we demonstrate this process with an example from
mathematical economics.

Remark 2.3 In solving constrained optimization or dynamic games
problems one of the biggest difficulties is finding reasonable candidates
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for the solution that meet the constraints. Perhaps the most often used
method is to solve the unconstrained problem and hope that it satis-
fies the constraints. To understand why this technique works we observe
that either in a game or in an optimization problem the set of admissible
trajectory-strategy pairs that satisfy the constraints is a subset of the
set of all admissible for pairs for the problem without constraints. Con-
sequently, if you can find an admissible trajectory-strategy pair which
is an optimal (or Nash equilibrium) solution for the problem without
constraints (say via the direct method for the unconstrained problem)
and if additionally it actually satisfies the constraints you indeed have
a solution for the original problem with constraints. It is this technique
that is used in the next section to obtain the Nash equilibrium.

3. Example
We consider two firms which produce an identical product. The pro-

duction cost for each firm is given by the total cost function,

C(uj) =
1
2
u2

j , j = 1, 2,

in which uj refers to a jth firm’s production level. Each firm supplies
all that it produces to the market at all times. The amount supplied at
each time effects the price, P (t), and the total inventory of the market
determines the price according to the ordinary control system,

Ṗ (t) = s[a− u1(t)− u2(t)− P (t)] a.e. t ∈ [t0, tf ]. (2.22)

Here s > 0 refers to the speed at which the price adjusts to the price
corresponding to the total quantity (i.e., u1(t) + u2(t)). The model
assumes a linear demand rate given by Π = a−X where X denotes total
supply related to a price P . Thus the dynamics above says that the rate
of change of price at time t is proportional to the difference between
the actual price P (t) and the idealized price Π(t) = a − u1(t) − u2(t).
We assume that (through negotiation perhaps) the firms have agreed to
move from the price P0 at time t0 to a price Pf at time tf . This leads
to the boundary conditions,

P (t0) = P0 and P (tf ) = Pf . (2.23)

Additionally we also impose the constraints

uj(t) ≥ 0 for almost all t ∈ [t0, tf ]. (2.24)

and
P (t) ≥ 0 for t ∈ [t0, tf ]. (2.25)
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The goal of each firm is to maximize its accumulated profit, assuming
that it sells all that it produces, over the interval, [t0, tf ] given by the
integral functional,

Jj(P (·), uj(·)) =
∫ tf

t0

[
P (t)uj(t)− 1

2
u2

j (t)
]

dt. (2.26)

To put the above dynamic game into the framework to use the direct
method let α, β > 0 satisfy α + β = 1 and consider the ordinary 2-
dimensional control system,

ẋ(t) = −s(αx(t) + βy(t)− a)− s

α
u1(t), a.e. t0 ≤ t ≤ tf (2.27)

ẏ(t) = −s(αx(t) + βy(t)− a)− s

β
u2(t), a.e. t0 ≤ t ≤ tf (2.28)

with the boundary conditions,

x(t0) = y(t0) = P0 (2.29)
x(tf ) = y(tf ) = Pf , (2.30)

and of course the control constraints given by (2.24) and state constraints
(2.25). The payoffs for each of the player now become,

Jj(x(·), y(·), uj(·)) =
∫ tf

t0

[
(αx(t) + βy(t))uj(t)− 1

2
uj(t)2

]
dt (2.31)

for j = 1, 2. This gives a dynamic game for which the direct method can
be applied.

We now put the above game in the equivalent variational form by solv-
ing the dynamic equations (2.27) and (2.28) for the individual strategies.
That is we have,

u1 = α(a− (αx + βy)− 1
s
p) (2.32)

u2 = β(a− (αx + βy)− 1
s
q) (2.33)

which gives (after a number of elementary steps of algebra) the new
objectives (with negative sign to pose the variational problems as mini-
mization problems) to get

J1(x(·), y(·), ẋ(·)) =
∫ tf

t0

{
α2

2s2
ẋ(t)2 +

α2a2

2

+
(

α2

2
+ α

)
(αx(t) + βy(t))2
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+
[
α

s
(αx(t) + βy(t))− α2

s
(a− (αx(t) + βy(t)))

]
ẋ(t)

− a(α2 + α)(αx(t) + βy(t))
}

dt (2.34)

and

J2(x(·), y(·), ẏ(t)) =
∫ tf

t0

{
β2

2s2
ẏ(t)2 +

β2a2

2

+
(

β2

2
+ β

)
(αx(t) + βy(t))2

+
[
β

s
(αx(t) + βy(t))− β2

s
(a− (αx(t) + βy(t)))

]
ẏ(t)

− a(β2 + α)(αx(t) + βy(t))
}

dt. (2.35)

For the remainder of our discussion we focus on the first player as the
computation of the second player is the same. We begin by observing
that the integrand for player 1 is

L1(x, y, p) =
{

α2

2s2
p2 +

α2a2

2
+
(

α2

2
+ α

)
(αx + βy)2

+
[
α

s
(αx + βy)− α2

s
(a− (αx + βy))

]
p

−a(α2 + α)(αx + βy)
}

. (2.36)

Inspecting this integrand we choose L̃(·, ·, ·) to be,

L̃(x̃, ỹ, p̃) =
α2

2s2
p̃2 +

α2a2

2

from which we immediately deduce, applying Corollary 2.3, that the
appropriate transformation, z1(·, ·), must satisfy the partial differential
equation, (

∂z1

∂x̃

)2

= 1

giving us that z1(t, x̃) = f(t)± x̃ and that

∂z1

∂t
+

∂z1

∂x̃
p̃ = ḟ(t)± p̃.
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From this we now compute,

ΔL1 = L1(f(t)± x̃, y∗(t), ḟ(t)± p̃)− L̃1(x̃, y∗(t), p̃)

=
{

α2

2s2
(ḟ(t)± p̃)2 +

α2a2

2
+
(

α2

2
+ α

)
(α(f(t)± x̃) + βy∗(t))2

+
[
α

s
(α(f(t)± x̃) + βy∗(t))

− α2

s
(a− (α(f(t)± x̃) + βy∗(t)))

]
(ḟ(t)± p̃)− a(α2 + α)×

(α(f(t)± x̃) + βy∗(t))
}

−
{

α2

2s2
p̃2 +

α2a2

2

}
=

{
α2

2s2
ḟ(t)2 +

(
α2

2
+ α

)
[α(f(t)± x̃) + βy∗(t)]2 − (α2 + α

)×
[α(f(t)± x̃) + βy∗(t)]

+
[(

α2

s
+

α

s

)
[α(f(t)± x̃) +βy∗(t)]− α2a

s

]
ḟ(t)

}
±
{

α2

s2
ḟ(t) +

(
α2

s
+

α

s

)
× [α(f(t)± x̃) + βy∗(t)]− α2a

s

}
p̃

.=
∂H1(t, x̃)

∂t
+

∂H1(t, x̃)
∂x̃

p̃.

From this we compute the mixed partial derivatives to obtain,

∂2H1

∂x̃∂t
(t, x̃) = ±2

(
α2

2
+ α

)
[α(f(t)± x̃) + βy∗(t)] α

∓aα(α2 + α)± α

(
α2

s
+

α

s

)
ḟ(t)

= ±
{

α3(α + 2)(f(t)± x̃) + α2β(α + 2)y∗(t)

−α2(α + 1)a +
α2

s
(α + 1)ḟ(t)

}
and

∂2H1

∂t∂x̃
(t, x̃) = ±

{
α2

s2
f̈(t) +

(
α2

s
+

α

s

)[
αḟ(t) + βẏ∗(t)

]}
= ±

{
α2

s2
f̈(t) +

α2

s
(α + 1)ḟ(t) +

αβ

s
(α + 1)ẏ∗(t)

}
.
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Assuming sufficient smoothness and equating the mixed partial deriva-
tives we obtain the following equation:

f̈(t)− αs2(α + 2)f(t) = βs2(α + 2)y∗(t)− βs

α
(α + 1)ẏ∗(t)

±αs2(α + 2)x̃− as2(α + 1).

A similar analysis for player 2 yields:

L2(x, y, q) =
{

β2

2s2
q2 +

β2a2

2
+
(

β2

2
+ β

)
(αx + βy)2[

β

s
(αx + βy)− β2

s
(a− (αx + βy)

]
q (2.37)

− a(β2 + β)(αx + βy)
}

,

and so choosing

L̃2(x̃, ỹ, q̃) =
{

β2

2s2
q2 +

β2a2

2

}
gives us that the transformation z2(·, ·) is obtained by solving the partial
differential equation (

∂z2

∂ỹ

)2

= 1,

which of course gives us, z2(t, ỹ) = g(t) ± ỹ. Proceeding as above we
arrive at the following differential equation for g(·),

g̈(t)− βs2(β + 2)g(t) = αs2(β + 2)x∗(t)− αs

β
(1 + β)ẋ∗(t)

±βs2(β + 2)ỹ − as2(β + 1).

Now the auxiliary variational problem we must solve consists of mini-
mizing the two functionals,∫ tf

t0

(
α2

2s2
˙̃x2(t) +

αa2

2

)
dt and

∫ tf

t0

(
β2

2s2
˙̃y2(t) +

βa2

2

)
dt

over some appropriately chosen boundary conditions. We observe that
these two minimization problems are easily solved if these conditions
take the form,

x̃(t0) = x̃(tf ) = c1 and ỹ(t0) = ỹ(tf ) = c2

for arbitrary but fixed constants c1 and c2. The solutions are in fact,

x̃∗(t) ≡ c1 and ỹ∗(t) ≡ c2
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According to our theory we then have that the solution to our variational
game is,

x∗(t) = f(t)± c1 and y∗(t) = g(t)± c2.

In particular, using this information in the equations for f(·) and g(·)
with x̃ = c1 and with ỹ = c2 we obtain the following equations for x∗(·)
and y∗(·),

ẍ∗(t)− αs2(α + 2)x∗(t) = βs2(α + 2)y∗(t)

−βs

α
(α + 1)ẏ∗(t)− as2(α + 1)

ÿ∗(t)− βs2(β + 2)y∗(t) = αs2(β + 2)x∗(t)

−αs

β
(1 + β)ẋ∗(t)− as2(β + 1),

with the end conditions,

x∗(t0) = y∗(t0) = P0 and x∗(tf ) = y∗(tf ) = Pf .

These equations coincide exactly with the Euler-Lagrange equations, as
derived by the Maximum Principle for the open-loop variational game
without constraints. Additionally we note that as these equations are
derived here via the direct method we see that they become sufficient
conditions for a Nash equilibrium of the unconstrained system, and hence
for the constrained system for solutions which satisfy the constraints (see
the comments in Remark 2.3). Moreover, we also observe that we can
recover the functions Hj(·, ·), for j = 1, 2, since we can recover both f(·)
and g(·) by the formulas

f(t) = x∗(t)∓ c1 and g(t) = y∗(t)∓ c2.

The required functions are now recovered by integrating the partial
derivatives of H1(·, ·) and H2(·, ·) which can be computed. Consequently,
we see that in this instance the solution to our variational game is given
by the solutions of the above Euler-Lagrange system, provided the re-
sulting strategies and the price satisfy the requisite constraints. Finally,
we can obtain the solution to the original problem by taking,

P ∗(t) = αx∗(t) + βy∗(t),

u∗
1(t) = α

(
a− P ∗(t)− 1

s
ẋ∗(t)

)
,

and

u∗
2(t) = β

(
a− P ∗(t)− 1

s
ẏ∗(t)

)
.
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Of course, we still must check that these functions meet whatever con-
straints are required (i.e., ui(t) ≥ 0 and P (t) ≥ 0).

There is one special case of the above analysis in which the solution
can be obtained easily. This is the case when α = β = 1

2 . In this case
the above Euler-Lagrange system becomes,

ẍ∗(t)− 5
4
s2x∗(t) =

5
4
s2y∗(t)− 3

2
sẏ∗(t)− 3

2
as2

ÿ∗(t)− 5
4
s2y∗(t) =

5
4
s2x∗(t)− 3

2
sẋ∗(t)− 3

2
as2.

Using the fact that P ∗(t) = 1
2(x∗(t) + y∗(t)) for all t ∈ [t0, tf ] we can

multiply each of these equations by 1
2 and add them together to obtain

the following equation for P ∗(·),

P̈ ∗(t) +
3
2
sṖ ∗(t)− 5

2
s2P ∗(t) = −3

2
as2,

for t0 ≤ t ≤ tf . This equation is an elementary non-homogeneous second
order linear equation with constant coefficients whose general solution
is given by

P ∗(t) = Aer+(t−t0) + Ber−(t−t0) +
3
5
a

in which r± are the characteristics roots of the equation and A and B
are arbitrary constants. More specifically, the characteristic roots are
roots of the polynomial

r2 +
3
2
sr − 5

2
s2 = 0

and are given by

r+ = s and r− = −5
2
s.

Thus, to solve the dynamic game in this case we select A and B so that
P ∗(·) satisfies the fixed boundary conditions. Further we note that we
can also take

x∗(t) = y∗(t) =
1
2
P ∗(t)

and so obtain the optimal strategies as

u∗
1(t) = u∗

2(t) =
1
2

(
a− P ∗(t)− 1

s
Ṗ ∗(t)

)
.

It remains to verify that there exists some choice of parameters for
which the optimal price, P ∗(·), and the optimal strategies, u∗

1(·), u∗
2(·)
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remain nonnegative. To this end we observe that we impose the fixed
boundary conditions to obtain the following linear system of equations
for the unknowns, A and B:(

1 1
es(tf−t0) e−

5
2
s(tf−t0)

)(
A
B

)
=
(

P0 − 3
5a

Pf − 3
5a

)
.

Using Cramer’s rule we obtain the following formulas for A and B,

A =
1
D

[(
P0 − 3

5
a

)
e−

5
2
s(tf−t0) −

(
Pf − 3

5
a

)]
B =

1
D

[(
Pf − 3

5
a

)
−
(

P0 − 3
5
a

)
es(tf−t0)

]
in which D is the determinant of the coefficient matrix and is given by

D = e−
5
2
s(tf−t0) − es(tf−t0) = es(tf−t0)

(
e−

7
2
s(tf−t0) − 1

)
.

We observe that D is clearly negative since tf > t0. Also, to insure that
P ∗(t) is nonnegative for t ∈ [t0, tf ] it is sufficient to insure that A and
B are both positive. This means we must have,

0 >

[(
P0 − 3

5
a

)
e−

5
2
s(tf−t0) −

(
Pf − 3

5
a

)]
0 >

[(
Pf − 3

5
a

)
−
(

P0 − 3
5
a

)
es(tf−t0)

]
which can be equivalently expressed as,(

P0 − 3
5
a

)
e−

5
2
s(tf−t0) < Pf − 3

5
a <

(
P0 − 3

5
a

)
es(tf−t0). (2.38)

Observe that as long as P0 and Pf are chosen to be larger than 3
5a this

last inequality can be satisfied if we choose tf − t0 sufficiently large. In
this case we have explicitly given the optimal price, P ∗(·) in terms of
the model parameters P0, Pf , t0, tf , a, and s (all strictly positive). It
remains to check that the strategies are nonnegative. To this end we
notice that,

Ṗ ∗(t) = Ases(t−t0) − 5
2
Bse−

5
2
s(t−t0)

so that we have, the admissible strategies given by, for j = 1, 2,

u∗
j (t) =

1
2

[
a− P ∗(t)− 1

2s
Ṗ ∗(t)

]
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=
1
2

[
a−

(
Aes(t−t0) + Be−

5
2
s(t−t0)

)
− 1

2s

(
Ases(t−t0) − 5

2
Bse−

5
2
s(t−t0)

)]
=

1
2

[
a− 3

2
Aes(t−t0) +

1
4
Be−

5
2
(t−t0)

]
.

Taking the time derivative of u∗
j (·) we obtain

u̇∗
j (t) =

1
2

[
−3

2
Ases(t−t0) − 5

8
Bse−

5
2
(t−t0)

]
< 0,

since A and B are positive. This implies that u∗
j (t) ≥ u∗

j (tf ) for all
t ∈ [t0, tf ]. Thus to insure that u∗

j (·) is nonnegative it is sufficient to
insure u∗

j (tf ) ≥ 0 which holds if we have

a− 3
2
Aes(tf−t0) +

1
4
Be−

5
2
(tf−t0) ≥ 0.

To investigate this inequality we first observe that we have, from the
solution P ∗(·), that

Pf = Aes(tf−t0) + Be
−5
2

s(tf−t0) +
3
5
a.

This allows us to rewrite the last inequality in the form,

a− 7
4
Ae−s(tf−t0) +

1
4

(
Pf − 3

5
a

)
≥ 0

or equivalently (using the explicit expression for A),

Pf− 3
5
a ≥ 7

1

e−
7
2
s(tf−t0) − 1

[(
P0 − 3

5
a

)
e−

5
2
s(tf−t0) −

(
Pf − 3

5
a

)]
−4a.

Solving this inequality for Pf − 3
5a we obtain the inequality,

Pf − 3
5
a ≤ 7e−

5
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

(
P0 − 3

5
a

)
+ 4a

1− e−
7
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

. (2.39)

Thus to insure that the state and control constraints, P ∗(t) ≥ 0 and
ui(t) ≥ 0 for t ∈ [t0, tf ], hold, we must check that the parameters of the
system satisfy inequalities (2.38) and (2.39). We have already observed
that for P0, Pf ≥ 3

5a we can choose tf − t0 sufficiently large to insure
that (2.38) holds. Further, we observe that as tf − t0 → +∞ the right
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side of (2.39) tends 2
3a so that we can always find tf − t0 sufficiently

large so that we have

7e−
5
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

(
P0 − 3

5
a

)
+ 4a

1− e−
7
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

≤
(

P0 − 3
5
a

)
es(tf−t0)

Moreover, it is easy to see that

7e−
5
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

(
P0 − 3

5
a

)
+4a

1− e−
7
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

≥
(

P0 − 3
5
a

)
e−

5
2
s(tf−t0)

holds whenever tf−t0 is sufficiently large. Combining these observations
allows us to conclude that for tf−t0 sufficiently large {P ∗(·), u∗

1(·), u∗
2(·)}

is a Nash equilibrium for the original dynamic game.

4. Conclusion
In this paper we have presented means to utilize the direct method to

obtain open-loop Nash equilibria for differential games for which there
is a single state whose time evolution is determined by the competitive
strategies of several players appearing linearly in the equation. That is
a so called affine control system with “many inputs and one output.”
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Chapter 3

BRAESS PARADOX AND PROPERTIES
OF WARDROP EQUILIBRIUM IN SOME
MULTISERVICE NETWORKS

Rachid El Azouzi
Eitan Altman
Odile Pourtallier

Abstract In recent years there has been a growing interest in mathematical mod-
els for routing in networks in which the decisions are taken in a non-
cooperative way. Instead of a single decision maker (that may represent
the network) that chooses the paths so as to maximize a global utility,
one considers a number of decision makers having each its own util-
ity to maximize by routing its own flow. This gives rise to the use of
non-cooperative game theory and the Nash equilibrium concept for op-
timality. In the special case in which each decision maker wishes to find
a minimal path for each routed object (e.g. a packet) then the solution
concept is the Wardrop equilibrium. It is well known that equilibria
may exhibit inefficiencies and paradoxical behavior, such as the famous
Braess paradox (in which the addition of a link to a network results
in worse performance to all users). This raises the challenge for the
network administrator of how to upgrade the network so that it in-
deed results in improved performance. We present in this paper some
guidelines for that.

1. Introduction
In this paper, we consider the problem of routing, in which the per-

formance measure to be minimized is some general cost (which could
represent the expected delay). We assume that some objects, are routed
over shortest paths computed in terms of that cost. An object could
correspond to a whole session in case all packets of a connection are
assumed to follow the same path. It could correspond to a single packet
if each packet could have its own path. A routing approach in which
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each packet follows a shortest delay path has been advocated in Ad-hoc
networks (Gupta and Kumar (1998)), in which, the large amount of mo-
bility of both users as well as of the routers requires to update the routes
frequently; it has further been argued that by minimizing the delay of
each packet, we minimize re-sequencing delays, that may be harmful
in real time applications, but also in data communications (indeed, the
throughput of TCP/IP connections may quite deteriorate when packets
arrive out of sequence, since the latter is frequently interpreted wrongly
as a signal of a loss or of a congestion).

When the above type of routing approach is used then the expected
load at different links in the network can be predicted as an equilibrium
which can be computed in a way similar to equilibria that arise in road
traffic. The latter is known as a Wardrop equilibrium (Wardrop (1952))
(it is known to exist and to be unique under general assumptions on
the topology and on the cost; see, Patriksson (1994), p. 74–75). We
study in this paper some properties of the equilibrium. In particular, we
are interested in the impact of the demand of link capacities and of the
topology on the performance measures at equilibrium. This has a partic-
ular significance for the network administrator or designer when it comes
to upgrading the network. A frequently used heuristic approach for up-
grading a network is through Bottleneck Analysis. A system bottleneck
is defined as “a resource or service facility whose capacity seriously limits
the performance of the entire system” (Kobayashi (1978), p. 13). Bot-
tleneck analysis consists of adding capacity to identified bottlenecks until
they cease to be bottlenecks. In a non-cooperative framework, however,
this approach may have devastating effects; adding capacity to a link
(and in particular, to a bottleneck link) may cause delays of all users to
increase; in an economic context in which users pay the service provider,
this may further cause a decrease in the revenues of the provider. The
first problem has already been identified in the road-traffic context by
Braess (1968) (see also Dafermos and Nagurney (1984a); Smith (1979)),
and have further been studied in the context of queuing networks (Beans,
Kelly and Taylor (1997); Calvert, Solomon and Ziedins (1997); Cohen
and Jeffries (1997); Cohen and Kelly (1990)). In the latter references
both queuing delay as well as rejection probabilities have been consid-
ered as performance measure. The focus of Braess paradox on the bot-
tleneck link in a queuing context, as well as the paradoxical impact
on the service provider have been studied in Massuda (1999). In all the
above references, the paradoxical behavior occurs in models in which the
number of users is infinitely large, and the equilibrium concept is that of
Wardrop equilibrium (Wardrop (1952)). Yet the problem may occur also
in models involving finite number of players (e.g. service providers) for
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which the Nash equilibrium is the optimality concept. This has been
illustrated in Korilis, Lazar and Orda (1995); Korilis, Lazar and Orda
(1999). The Braess paradox has further been identified and studied in
the context of distributed computing (Kameda, Altman and Kozawa
(1999); Kameda et al. (2000)) where arrivals of jobs may be routed and
performed on different processors. Several papers that are scheduled to
appear in JACM identify the Braess paradox that occurs in the context
of non cooperative communication networks and of load balancing, see
Kameda and Pourtallier (2002) and Roughgarden and Tardos (2002).
Both papers illustrate how harmful the Braess paradox can be. These
papers reflect the interest in understanding the degradation that is due
to non-cooperative nature of networks, in which added capacity can re-
sult in degraded performance. In view of the interest in this identified
problem, it seems important to come up with engineering design tools
that can predict how to upgrade a network (by adding links or capacity)
so as to avoid the harmful paradox. This is what our paper proposes.

The Braess paradox illustrates that the network designer or service
providers, or more generally, whoever is responsible to the network topol-
ogy and link capacities, have to take into consideration the reaction of
non-cooperative users to his decisions. Some upgrading guidelines have
been proposed in Altman, El Azouzi and Pourtallier (2001); Kameda
and Pourtallier (2002); Korilis, Lazar and Orda (1999) so as to avoid
the Braess paradox or so as to obtain a better performance. They con-
sidered not only the framework of the Wardrop equilibrium, but also the
Nash-equilibrium concept in which a finite number of service providers
try to minimize the average delays (or cost) for all the flow generated
by its subscribers. The results obtained for the Wardrop equilibrium
were restricted to a particular cost representing the delay of a M/M/1
queue at each link. In this paper we extend the above results to general
costs. We further consider a more general routing structure (between
paths and not just between links) and allow for several classes of users
(so that the cost of a path or of a link may depend on the class in some
way). Some other guidelines for avoiding Braess paradox in the setting
of Nash equilibrium have been obtained in Altman, El Azouzi and Pour-
tallier (2001), yet in that setting the guidelines turn out to be much more
restrictive than those we obtain for the setting of Wardrop equilibrium.

The main objective of this present paper is to pursue that direction
and to provide new guidelines for avoiding the Braess paradox when
upgrading the network. The Braess paradox implies that there is no
monotonicity of performance measures with respect to link capacities.
Another objective of this paper is to check under what conditions are
delays as well as the marginal costs at equilibrium increasing in the
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demands. The answer to this question turns out to be useful for the
analysis of the Braess paradox. Some results on the monotonicity in the
demand are already available in Dafermos and Nagurney (1984b).

The paper is organized as follows: In the next section (Section 2),
we present the network model, we define the concept of Wardrop equi-
librium, and formulate the problem. In Section 3 we then present a
framework of that equilibrium that allows for different costs for different
classes of users (which may reflect, for example, that packets of different
users may have different priorities and thus have different delays due to
appropriate buffer management schemes). In Section 4 we then present a
sufficient condition for the monotonicity of performance measures when
the demands increase. This allows us then to study in Section 5 methods
for capacity addition. In Section 6, we demonstrate the efficiency of the
proposed capacity addition by means of a numerical example in BCMP
queuing network.

2. Problem formulation and notation
We consider an open network model that consists of a set IM contain-

ing M nodes, and a set IL containing L links. We call the unit that has
to be routed a “job”. It may stand for a packet (in a packet switched
network) or to a whole session (if indeed all packets of a session follow
the same path). The network is crossed through by infinitely many jobs
that have to choose their routing.

Jobs are classified into K different classes (we will denote IK the
set of classes). For example, in the context of road traffic a class may
represent the set of a given type of vehicles, such as busses, trucks, cars
or bicycles. In the context of telecommunications a class may represent
the jobs sent by all the users of a given service provider. We assume that
jobs do not change their class while passing through the network. We
suppose that the jobs of a given class k may arrive in the system at some
different possible points, and leave the system at some different possible
points. Nevertheless the origin and destination points of a given job
are determined when the job arrives in the network, and cannot change
while in the system. We call a pair of one origin and one destination
points an O-D pair.

A job with a given O-D pair (od) arrives in the system at node o and
leaves it at node d after visiting a series of nodes and links, which we
refer to as a path, then it leaves the system.

In many previous papers (Orda, Rom and Shimkin (1993); Korilis,
Lazar and Orda (1995)), routing could be done at each node. In this
paper we follow the approach in which a job of class k with O-D pair
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(od) has to choose one of a given finite set of paths (see also Kameda
and Zhang (1995); Patriksson (1994)).

In this paper we suppose that the routing decision scheme is com-
pletely decentralized: each single job has to decide among a set of pos-
sible paths that connect the O-D pair of that job. This choice will be
made in order to minimize the cost of that job. The solution concept we
are thus going to use is the Wardrop equilibrium (Wardrop (1952)).

Let l denote a link of the network connecting a pair of nodes and let p
denote a path, consisting of a sequence of links connecting an O-D pair
of nodes. Let W k denote the set of O-D pairs for the jobs of class k.
Denote also W the union W =

⋃
k W k. The set of paths connecting

the O-D pair w ∈ W k is denoted by Pk
w and the entire set of paths in

the network for the jobs of class k by Pk. There are nk
p paths in the

networks for jobs of class k and np paths of all jobs.
Let yk

l denote the flow of class k on link l and let xk
p denote the

nonnegative flow of class k on path p. The relationship between the link
loads by class and the path flows is:

yk
l =

∑
p∈Pk

xk
pδlp

where δlr = 1, if link l is contained in path p, and 0, otherwise. Let μk
l

the service rate of class k at link l. Hence, the utilization of link l for
class k is given by ρk

l = yk
l /μk

l and the total utilization on link l is:

ρl =
∑
k∈IK

ρk
l .

Let rk
w denote the demand of class k for O-D pair w, where the fol-

lowing conditions are satisfied:

rk
w =

∑
p∈Pk

w

xk
p, ∀ k, ∀ w,

In addition, let xp denote the total flow on path p, where

xp =
∑
k∈IK

xk
p, ∀ p ∈ P.

We group the class path flows into the nk
p-dimensional column vector X

with components: [x1
r1

, . . . , xK
r
nk

p

]T ; We refer to such a vector as a flow

configuration. We also group total path flow into a np-dimensional col-
umn vector x with components: [xr1 , . . . , xrnp

]T . We call this vector



62 DYNAMIC GAMES: THEORY AND APPLICATIONS

the total path flow vector. A flow configuration X is said feasible, if it
satisfies for each O-D pair w ∈ W k,∑

p∈Pk
w

xk
p = rk

w. (3.1)

We are now ready to describe the cost functions associated with the
paths. We consider a feasible flow configuration X. Let T k

p (X) denote
the travel cost incurred by a job of class k for using the path p if the
flow configuration resulting from the routing of each job is X.

3. Wardrop equilibrium for a multi-class
network

Each individual job of class k with O-D pair w, chooses its routing
through the system, by means of the choice of a path p ∈ Pk

w. A flow
configuration X follows from the choices of each of the infinitely many
jobs.

A flow configuration X will be said to be a Wardrop equilibrium or
individually optimal, if none of the jobs has any incentive to change
unilaterally its decision. This equilibrium concept was first introduced
by Wardrop (1952) in the field of transportation and can be defined
through the two principles:

Wardrop’s first principle: the cost for crossing the used paths
between a source and a destination are equal, the cost for any
unused path with same O-D pair is larger or equal that that of
used ones.

Wardrop’s second principle: the cost is minimum for each job.

Formally, in the context of multi-class this can be defined as,

Definition 3.1 A feasible flow configuration (i.e., satisfying equation
(3.1)) X, is a Wardrop equilibrium for the multi-class problem if for any
class k, any w ∈ W k and any path p ∈ Pk

w we have{
T k

p (X) ≥ λk
w if xk

p = 0,

T k
p (X) = λk

w if xk
p ≥ 0,

(3.2)

where λk
w = min

p∈Pk
w

T k
p (X). The minimal cost λk

w will be referred to as “the

travel cost” associated to class k and O-D pair w.

We need one of the following assumptions on the cost function:
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Assumption A

1. There exists a function Tp that depends only upon the total flow
vector x (and not on the flow sent by each class), such that the
average cost per flow unit, for jobs of class k, can be written as
T k

p (X) = ckTp(x), ∀ p ∈ Pk, where ck is some class dependent
positive constant.

2. Tp is positive, continuous and strictly increasing. We will denote
T′ = (Tp1 , Tp2 , . . . )

′ the vector of functions Tp.

Assumption B

1. The average cost per flow unit for jobs of class k that passes
through path p ∈ Pk is:

T k
p (X) =

∑
l∈IL

δlp

μk
l

Tl(ρl),

where Tl(ρl) is the weighted cost per unit flow in link l (the function
Tl does not depend on the class k).

2. Tl(.) is positive, continuous and strictly increasing.

3. μk
l can be represented as μl/ck where ck is some class dependent

positive constant, and 0 < μl is finite.

We denote vw =
∑

k∈IK ckrk
w the weighted total demand for O-D

pair w.
We make the following observation.

Lemma 3.1 Consider a cost vector T satisfying Assumption A or B.
Then the Wardrop equilibrium conditions (3.1) and (3.2) become: For
all k, all w ∈ W k and all p ∈ Pk

w,

T k
p (X) ≥ λk

w, if xp = 0,

T k
p (X) = λk

w, if xp > 0.
(3.3)

Moreover, the ratio λk
w/ck is independent of class k, so that we can define

λw by λw := λk
w/ck.

Proof. Consider first the case of a cost vector T that satisfies Assump-
tion A. Let w ∈ W and p ∈ Pk. If xp = 0 then xk

p = 0 ∀ k ∈ IK.
The first part of (3.3) follows from the first part of (3.2). Suppose that
xp > 0 and, by contradiction, that there exists k̄ ∈ IK such that

T k̄
p (X) = Tp(x)ck̄ > λk̄

w. (3.4)
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Since xp > 0, there exit k0 ∈ IK such that xk0
p > 0. From the second

part of (3.2), we have

T k0
p (X) = Tp(x)ck0 = λk0

w . (3.5)

Because rk̄
w > 0, there exists p′ ∈ P k̄

w such that xk̄
p′ > 0. Then, from

(3.2) we get
T k̄

p′(X) = Tp′(x)ck̄ = λk̄
w. (3.6)

It follows from (3.4) and (3.6) that

Tp(x) > Tp′(x). (3.7)

Since λk0
w ≤ Tp′(x)ck0 , from (3.5), we obtain Tp(x) ≤ Tp′(x), which

contradicts (3.7). This establishes (3.3).
For any w ∈ W , let p ∈ ⋃k Pk

w be a path such that xp > 0. From (3.3),

it comes that for any class k such that p ∈ Pk
w, Tp(x) = T k

p (X)

ck = λk
w

ck . The
second part of Lemma 3.1 follows, since the terms in the above equation
do not depend on k. The proof for a cost function vector satisfying
Assumption B follows along similar lines. �

4. Impact of throughput variation on the
equilibrium

In this section, we study the impact of a variation of the demands rk
w

of some class k on the cost vector T(X) at the (Wardrop) equilibrium
X. The results of this section extend those of Dafermos and Nagur-
ney (1984b), where a simpler cost structure was considered considered.
Namely, for any class k, the cost for using a path was the sum of link
costs along that path, and the link costs did not depend on k.

The following theorem, states that under Assumption A or B, an
increase in the demands associated to a particular O-D pair w always
leads to an increase of the cost associated to w for all classes k.

Theorem 3.1 Consider two throughput demand profiles (r̃k
w)(w,k) and

(r̂k
w)(w,k). Let X̃ and X̂ be the Wardrop equilibria associated to these

throughput demands, and let λ̃k
w and λ̂k

w be the class k’s travel cost as-
sociated to these two equilibria.

1. For a cost vector T satisfying Assumption A, if r̂w < r̃w, for some
w ∈ W and r̂w = r̃w for all w �= w, then λ̂k

w < λ̃k
w ∀ k ∈ IK.

2. For a cost vector T satisfying Assumption B, if v̂w < ṽw, for some
w ∈ W and v̂w = ṽw for all w �= w, then λ̂k

w < λ̃k
w ∀ k ∈ IK.
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Proof. Consider first the case of a cost vector that satisfies Assump-
tion A.

1. From (3.3) and Assumption A we have

λ̂w = Tp(x̂) if x̂p > 0,

λ̂w ≤ Tp(x̂), if x̂p = 0,

and
λ̃w = Tp(x̃), if x̃p > 0,

λ̃w ≤ Tp(x̃), if x̃p = 0.

Thus
x̂pλ̂w = Tp(x̂)x̂p,

x̃pλ̂w ≤ Tp(x̂)x̃p,
and x̃pλ̃w = Tp(x̃)x̃p,

x̂pλ̃w ≤ Tp(x̃)x̂p.

Now by summing up over p ∈ Pw, we obtain

r̂wλ̂w =
∑

p∈Pw

Tp(x̂)x̂p,

r̃wλ̂w ≤
∑

p∈Pw

Tp(x̂)x̃p,

and
r̃wλ̃w =

∑
p∈Pw

Tp(x̃)x̃p,

r̂wλ̃w ≤
∑

p∈Pw

Tp(x̃)x̂p.

By summing up over w ∈ W , it comes∑
w∈W

(r̃w − r̂w)(λ̃w − λ̂w) ≥ (T′(x̂)−T′(x̃))(x̂− x̃) > 0. (3.8)

The last inequality follows from assumption A. Since r̂w = r̃w for
w �= w, inequality (3.8) yields (r̃w − r̂w)(λ̃w − λ̂w) > 0, which
implies, since r̃w > r̂w, that λ̃w > λ̂w. It follows that λ̃k

w > λ̂k
w for

all k ∈ IK.

Consider now the case of a cost vector that satisfies Assumption B.

2. From (3.3) and Assumption B we have

λ̂w =
∑
l∈IL

δlp

μl
Tl(ρ̂l) if x̂p > 0,

λ̂w ≤
∑
l∈IL

δlp

μl
Tl(ρ̂l), if x̂p = 0,
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and
λ̃w =

∑
l∈IL

δlp

μl
Tl(ρ̃l), if x̃p > 0,

λ̃w ≤
∑
l∈IL

δlp

μl
Tl(ρ̃l), if x̃p = 0.

Let zp =
∑

k∈IKp
ckxk

p. The above equations become

ẑpλ̂w =
∑
l∈IL

δlp

μl
Tl(ρ̂l)ẑp,

z̃pλ̂w ≤
∑
l∈IL

δlp

μl
Tl(ρ̂l)z̃p,

and
z̃pλ̃w =

∑
l∈IL

δlp

μl
Tl(ρ̃l)z̃p,

ẑpλ̃w ≤
∑
l∈IL

δlp

μl
Tl(ρ̃l)ẑp.

By summing up over p ∈ Pw, and w ∈ W , we obtain∑
w∈W

v̂wλ̂w =
∑
l∈IL

ρ̂lTl(ρ̂l),∑
w∈W

ṽwλ̂w ≤
∑
l∈IL

ρ̂lTl(ρ̂l),

and ∑
w∈W

ṽwλ̃w =
∑
l∈IL

ρ̃lTl(ρ̃l),∑
w∈W

v̂wλ̃w ≤
∑
l∈IL

ρ̃lTl(ρ̃l).

Indeed, we have from (3.1), rk
w =

∑
p∈Pk

w
xk

p, multiplying by ck and
summing up over k ∈ IK, we obtain

vw =
∑
k∈IK

∑
p∈Pk

w

ckxk
p =

∑
p∈Pw

∑
k∈IKp

ckxk
p

=
∑

p∈Pw

zp.

It comes that∑
w∈W

(ṽw − v̂w)(λ̃w − λ̂w) ≥
∑
l∈IL

(ρ̃l − ρ̂l)(Tl(ρ̃)− Tl(ρ̂l)) > 0. (3.9)
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The last inequality follows from assumption B. Proceeding as in
the first part of the proof, we obtain λ̃k

w > λ̂k
w for all k ∈ IK. �

Remark 3.1 In the case where all classes ship flow from a common
source s to a common destination d i.e., Pk = {(sd)},∀ k, Theorem 3.1
establishes the monotonicity of performance (given by travel cost λk

(sd))
at Wardrop equilibrium for all k ∈ IK, when the demands of classes
increases.

5. Avoiding Braess paradox
The purpose of this section is to provide some methods for adding

resources to a general network, with one source s and one destination d,
that guarantee improvement in performance. This would guarantee in
particular that the well known Braess paradox (in which adding a link
results in deterioration of the performance for all users) does not occur.

For some given network with one source and one destination, the
designer problem is to distribute some additional capacity among the
links of the network so as to improve the performances at the (Wardrop)
equilibrium.

Adding capacity in the network can be done by several ways. Among
them,

(1) by adding a new direct path from the source s to the destination d,

(2) by improving an existing direct path,

(3) by improving all the paths connecting s to d.

We first consider (1), i.e. the addition of a direct path from s to d
that can be used by the jobs of all classes. That direct path could be in
fact a whole new network, provided that it is disjoint with the previous
network; it may also have new sources and destinations in addition to s
and d and new traffic from new classes that use these new sources and
destinations. The next theorem shows that this may lead to a decrease
of the costs of all paths used at equilibrium.

Theorem 3.2 Consider a cost vector T that satisfies Assumption A or
B. Let X̂ and X̃ be the Wardrop equilibria after and before the addition
of a direct path p̂ from s to d. Consider λ̃k

(sd) and λ̂k
(sd) the travel costs

for class k respectively at X̃ and X̂. Then, λ̂k
(sd) ≤ λ̃k

(sd), ∀ k ∈ IK.
Moreover the last inequality is strict if x̂p̂ > 0.

Proof. Consider the same network (IM, IL) with the initial service
rate configuration μ̃ and throughput demand (r̄k

(sd))k∈IK where r̄k
(sd) =
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rk
(sd)− x̂k

p̂ for all class k ∈ IK. Let X̄ represent the Wardrop equilibrium
associated to this new throughput demand and λ̄k

(sd) the travel cost for
class k at Wardrop equilibrium X̄. From Conditions (3.1) and (3.2) we
have λ̄k

(sd) = λ̂k
(sd), ∀ k ∈ IK. If xp̂ = 0, then λ̄k

(sd) = λ̃k
(sd), which implies

that λ̂k
(sd) = λ̃k

(sd).
Assume, then, that x̂p̂ > 0. We have r̄(sd) < r(sd) (which will be used

for Assumption A) and v̄(sd) < v(sd) (which will be used for Assump-
tion B), following Theorem 3.1, we conclude that λ̂k

(sd) = λ̄k
(sd) < λ̃k

(sd),
for all k ∈ IK and this completes the proof. �

We now examine the second way of adding capacity to the network,
namely, the improvement of an existing direct path. We consider a
network (IM, IL) that contains a direct path, p̂, from s to d that can
be used by the jobs of all classes. We derive sufficient conditions that
guarantee an improvement in the performance when we increase the
capacity of this direct path.

Theorem 3.3 Let T a cost vector satisfying Assumptions A. We con-
sider an improvement of the path p̂ so that the cost associated to this path
is smaller for all classes, i.e., T̂p̂(x) < T̃p̂(x). Let X̂ and X̃ the Wardrop
equilibria respectively after and before this improvement. Consider λ̃k

(sd)

and λ̂k
(sd) the travel cost of class k at equilibria. Then λ̂k

(sd) ≤ λ̃k
(sd),

∀ k ∈ IK. Moreover the inequality is strict if x̂p̂ > 0 or x̃p̂ > 0.

Proof. From Lemma 3.1 we have

λ(sd) = Tp(x), xp > 0,
λ(sd) ≤ Tp(x), xp = 0,∑

p∈∪kPk
(sd)

xp = r(sd), xp ≥ 0, p ∈ Pk.
(3.10)

We know from Theorems 3.2 and 3.14 in Patriksson (1994) that x̂ and
x̃ must satisfy the variational inequalities

T̂′(x̂)T (x− x̂) ≥ 0, ∀ x that satisfies (3.10), (3.11)

T̃′(x̂)T (x− x̃) ≥ 0, ∀ x that satisfies (3.10). (3.12)

By adding (3.11) with x = x̃ and (3.12) with x = x̂, we obtain [T̂′(x̂)−
T̃′(x̃)][x̂− x̃] ≤ 0, thus

[T̂′(x̂)− T̃′(x̂) + T̃′(x̂)− T̃′(x̃)][x̂− x̃] ≤ 0,
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and

[T̂′(x̂)− T̃′(x̂)][x̂− x̃] ≤ [T̃′(x̂)− T̃′(x̃)][x̂− x̃] < 0. (3.13)

Since the costs of other paths are unchanged, i.e., T̂p = T̃p for all p �= p̂,
Equation (3.13) becomes (T̂p̂(x̂) − T̃p̂(x̂)(x̂p̂ − x̃p̂) < 0 if x̂ �= x̃. Since
T̂p̂(x̂) < T̃p̂(x̂), we have

x̂p̂ > x̃p̂ if x̂ �= x̃. (3.14)

Now we have two cases:

– If x̂ = x̃ and since T̂p̂(x) �= T̃p̂(x) ∀ x, it follows that x̂p̂ = x̃p̂ = 0,
which implies that λ̂k

(sd) = λ̃k
(sd).

– If x̂ �= x̃, then from (3.14) we have x̂p̂ > x̃p̂. Consider now two
networks that differ only by the presence or absence of the direct
path p̂ from s to d. In both networks we have the same initial
capacity configuration and the same set IK of classes, with respec-
tively demands řk

(sd) = rk
(sd) − x̂k

p̂ and r̄k
(sd) = rk

(sd) − x̃k
p̂. Let λ̌k

(sd)

and λ̄k
(sd) the travel cost of class k associated to these throughput

demands. Since x̂p̂ > x̃p̂ then ř(sd) < r̄(sd), and from Theorem 3.1
we have

∀ k ∈ IK, λ̌k
(sd) < λ̄k

(sd). (3.15)

On the other hand, for the network with demands (řk
(sd))k∈K , it

is easy to see that the equilibria conditions (3.1) and (3.2) are
satisfied by the system flow configuration X̌, with λ̌k

(sd) = λ̂k
(sd).

Similarly we conclude that the network with demands (řk
(sd))k∈IK

has the system flow configuration X̄, with λ̄k
(sd) = λ̃k

(sd). Hence

from (3.15) we obtain λ̂k
(sd) < λ̃k

(sd). �

Theorem 3.4 Consider a cost function vector that satisfies Assump-
tions B. Let μ̂k

l and μ̃k
l , respectively, be the service rate configurations

after and before adding the capacity to the path p̂, i.e μ̂l > μ̃l for l ∈ p̂
and μ̂l = μ̃l for l �∈ p̂ . Let X̂ and X̃, respectively, the Wardrop equilibria
after and before this improvement. Consider λ̂k

(sd) and λ̃k
(sd) the travel

cost of class k at the equilibria. Then λ̂k
(sd) ≤ λ̃k

(sd), ∀ k ∈ IK. Moreover
the inequality is strict if x̂p̂ > 0 or x̃p̂ > 0.

Proof. Note that if there exists a link l1 that belongs to the path p̂,
such that ρ̂l1 < ρ̃l1 , then ρ̂l < ρ̃l for each link that belongs to the path p̂.
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Assume, then, that ρ̂l ≤ ρ̃l for l ∈ p̂. We have two possibilities. First, if
x̃p̂ = 0, then λ̂k

(sd) = λ̃k
(sd) for all k ∈ IK. Second, if x̃p̂ > 0, then we have

λ̃(sd) =
∑
l∈p̂

T̃l(ρ̃l)
μ̃l

and λ̂(sd) ≤
∑
l∈p̂

T̂l(ρ̂l)
μ̂l

.

Since Tl(.) is strictly increasing and μ̃l < μ̂l for all l ∈ p̂, we have

λ̂(sd) ≤
∑

l∈p̂
T̂l(ρ̂l)

μ̂l
<
∑

l∈p̂
T̃l(ρ̃l)

μ̃l
= λ̃(sd). It follows that λ̂k

(sd) < λ̃k
(sd) for

all k ∈ IK.
Now assume that ρ̂l > ρ̃l for l ∈ p̂. Let us consider the two networks

that differ only by the presence or absence of the direct path p̂ from s to
d. In both networks we have the same initial capacity configuration and
the same set IK of classes, with respective demands řk

(sd) = rk
(sd) − x̂k

p̂

and r̄k
(sd) = rk

(sd) − x̃k
p̂. Let λ̌k

(sd) and λ̄k
(sd) the travel costs of class k

associated to these throughput demands. Since ρ̂l > ρ̃l and μ̂l > μ̃l for
l ∈ p̂, we have

v̄(sd) − v̌(sd) >
∑
k∈IK

ckr̄k
(sd) − ckřk

(sd)

=
∑
k∈IK

ck(rk
(sd) − x̃k

p̂)− ck(rk
(sd) − x̂k

p̂)

=
∑
k∈IK

ck(x̂k
p̂)− ck(x̃k

p̂)

=
∑
l∈p̂

(μ̂lρ̂l̂ − μ̃lρ̃l) > 0.

From Theorem 3.1, we conclude that λ̌k
(sd) < λ̄k

(sd) for all k ∈ IK. Pro-

ceeding as in the proof of Theorem 3.3, we obtain λ̂k
(sd) < λ̃k

(sd) for all
k ∈ IK. �

We examine the last way of adding capacity to the network, i.e. the
addition of capacity on all the paths connecting s to d. Consider a
network (IM, IL) and a cost vector T that satisfies Assumption A or
B. We consider the improvement of the capacity of all path so that the
following holds:

T̂ k
p (X) =

1
α

T̃ k
p (

X
α

), with α > 1. (3.16)

We observe that for any α > 1, T̂ k
p (X) = 1

α T̃ k
p (X

α ) < T̃ k
p (X

α ) < T̃ k
p (X).

Theorem 3.5 Consider a cost vector T that satisfies Assumption A or
B. Let X̃ and X̂ be the Wardrop equilibria associated respectively to cost
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functions T̃ k
p and T̂ k

p . Consider λ̃k
(sd) and λ̂k

(sd) the travel cost of class

k at the respective Wardrop equilibria X̃ and X̂. Then λ̂k
(sd) < λ̃k

(sd),
∀ k ∈ IK.

Proof. We consider now the network (IM, IL), with travel costs T̃ k
p and

throughput demands r̄k
(sd) = rk

(sd)/α, k ∈ IK. Let λ̄k
(sd) the travel cost of

class k associated to these throughput demands. At equilibrium X̂, by
redefining the cost and path flows as αλ̂k

(sd) and (1/α)x̂k
p, respectively,

it is straightforward to show that changing the demands from rk
(sd) to

r̄k
(sd) using the cost functions T̂ k

p (X) is equivalent to changing the cost

functions from T̂ k
p (X) to T̃ k

p (X/α) using the demands rk
(sd). Hence the

corresponding travel costs are λ̄k
(sd) = αλ̂k

(sd). On the other hand, we
have r̄(sd) = r(sd)/α < r(sd) and v̄(sd) = v(sd)/α < v(sd) hence from
Theorem 3.1, λ̄k

(sd) < λ̃k
(sd), λ̂k

(sd) = λ̄k
(sd)/α < λ̄k

(sd) < λ̃k
(sd), which

concludes the proof. �

6. An open BCMP queuing network
In this section we study an example of such Braess paradox in net-

works consisting entirely of BCMP (Baskett et al. (1975)) queuing
networks (BCMP stand for the initial of the authors) (see also Kelly
(1979)).

6.1 BCMP queuing network
We consider an open BCMP queuing network model that consists of

L service links. Each service center contains either a single-server queue
with the processor-sharing (PS). We assume that the service rate of each
single server is state independent. Jobs are classified into K different
classes. The arrival process of jobs of each class forms a Poisson process
and is independent of the state of the system.

Let us denote the state of the network by n = (n1, n2, . . . , nL) where
nl = (n1

l ,n
2
l , . . . ,n

K
l ) and nl =

∑
l∈L nk

l where nk
l denotes the total

number of jobs of class k visiting link l. For an open queuing network
(Kelly (1979); Baskett et al. (1975)), the equilibrium probability of the
network state n is obtained as follows:

p(n) =
∏
l∈L

pl(nl)
Gl

,

where pl(nl) = nl!
∏

l∈L(ρk
l )/nk

l and Gl = 1/(1 − ρl). Let E[nk
l ] be the

average number of class k jobs at link l. We have E[nk
l ] = ρk

l /(1− ρl).
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By using Little’s formula, we have

T k
l =

E[nk
l ]

xk
l

=
1/μk

l

(1− ρl)
,

from which the average delay of a class k job that flows through path-
class p ∈ Pk is given by

T k
p =

∑
l∈L

δlpT
k
l =

∑
l∈L

δlp
1/μk

l

(1− ρl)
.

We assume that μk
l can be represented by μl/ck, hence the average delays

satisfy assumption B.
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Figure 3.1. Network

6.2 Braess paradox
Consider the networks shown in Figure 3.1. Packets are classified into

three different classes. Links (1,2) and (3,4) have each the following
service rates: μk

1 = μ1, μ2
1 = 2μ1 and μ3

1 = 3μ1 where μ1 = 2.7. Link
(1,3) represents a path of n tandem links, each with the service rates:
μ1

2 = μ2, μ2
2 = 2μ2 and μ3

2 = 3μ2 with μ2 = 27. Similarly link (2,4) is
a path made of n consecutive links, each with service rates: μ1

2 = 27,
μ2

2 = 54 and μ3
2 = 81. Link (2,3) is path of n consecutive links each with

service rate of each class μ1
3 = μ, μ2

3 = 2μ and μ2
3 = 3μ where μ varies
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from 0 (absence of the link) to infinity. We denote xk
p1

the left flow of
class k using links (1,2) and (2,4), xk

p2
the right flow of class k using links

(1,3) and (3,4), and xp3 the zigzag flow of class k using links (1,2), (2,3)
and (3,4). The total cost for each class is given by

Tk = xk
p1

T k
p1

+ xk
p2

T k
p2

+ xk
p3

T k
p3

,

where xk
p1

+ xk
p1

+ xk
p1

= rk.
We first consider the scenario where additional capacity μ is added to

path (2,3), for n = 54, r1 = 0.6, r2 = 1.6 and r3 = 1.8. In Figure 3.2
we observe that no traffic uses the zigzag path for 0 ≤ μ ≤ 36.28.
For 36.28 ≤ μ ≤ 96.49, all three paths are used. For μ > 96.49, all
traffic uses the zigzag path. For μ between 36.28 and 96.49, the delay
is, paradoxically, worse than it would be without the zigzag path. The
delay of class 1 (resp. 2,3) decreases to 2.85 (resp. 1.42, 0.95) as μ goes
to infinity.
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Figure 3.2. Delay of each class as a function of the added capacity in path (2,3)

6.3 Adding a direct path between source and
destination

Now we use the method proposed in Theorems 3.2 and 3.3, i.e., the
upgrade achieved by adding a direct path connecting source 1 and des-
tination 4.

The results in Theorems 3.2 and 3.3 suggest that yet another good
design practice is to focus the upgrades on direct connections between
source and destination; and Figure 3.4 illustrates that indeed this ap-
proach decreases the delay of each class.
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0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Capacity μ

D
el

ay

Delay of class 1
Delay of class 2
Delay of class 3

New path not used 

all paths used 

only zigzag path and new path  used 

only new path used 

Figure 3.4. Delay as a function of the added capacity in path (1,4)



3 Braess Paradox and Multiservice Networks 75

6.4 Multiplying the capacity of all links (l ∈ IL)
by a constant factor α > 1.

Now we use the method proposed in Theorem 3.5 for efficiently adding
resources to this network.

2

4

3
, n

, n

, n

1

μ μ

μ μ

μ

k k

k k

k

2

1 2

1

3

k=1,2,3

output

input

α α

α α

α

Figure 3.5. New network

Figure 3.6 shows the delay of each class as a function of the additional
capacity μ where μ = (α − 1)(2μ1 + 2μ2 + μ3) with μ1 = 2.7, μ2 = 27
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Figure 3.6. Delay of each class as a function of the added capacity in all links
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and μ3 = 40. Figure 3.6 indicates that the delay of each class decreases
when the additional capacity μ increases. Hence the Braess paradox is
indeed avoided.
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Chapter 4

PRODUCTION GAMES AND PRICE
DYNAMICS

Sjur Didrik Fl̊am

Abstract This note considers production (or market) games with transferable
utility. It brings out that, in many cases, explicit core solutions may be
defined by shadow prices — and reached via quite natural dynamics.

1. Introduction
Noncooperative game theory has, during recent decades, come to oc-

cupy central ground in economics. It now unifies diverse fields and links
many branches (Forgó, Szép and Szidarovszky (1999), Gintis (2000),
Verga-Redondo (2003)). Much progress came with circumventing the
strategic form, focusing instead on extensive games. Important in such
games are the rules that prescribe who can do what, when, and on the
basis of which information.

Cooperative game theory (Forgó, Szép and Szidarovszky (1999), Pey-
ton Young (1994)) has, however, in the same period, seen less of expan-
sion and new applications. This fact might mirror some dissatisfaction
with the plethora of solution concepts — or with applying only the
characteristic function. Notably, that function subsumes — and often
conceals — underlying activities, choices and data; all indispensable for
proper understanding of the situation at hand. By directing full atten-
tion to payoff (or costs) sharing, the said function presumes that each
relevant input already be processed.

Such predilection to work only with reduced, essential data may en-
tail several risks: One is to overlook prospective “devils hidden in the
details.” Others could come with ignoring particular features, crucial for
formation of viable coalitions. Also, the timing of players’ decisions, and
the associated information flow, might easily escape into the background
(Fl̊am (2002)).
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All these risks apply, in strong measure, to so-calledproduction (or
market) games, and they are best mitigated by keeping data pretty much
as is. The said games are of frequent occurrence and great importance.
Each instance involves parties concerned with equitable sharing of effi-
cient production costs. Given a nonempty finite player set I, coalition
S ⊆ I presumably incurs a stand-alone cost CS ∈ R∪{+∞} that results
from explicit planning and optimization.1 Along that line I consider here
the quite general format

CS := inf {fS(x) + hS(gS(x))} . (4.1)

In (4.1) the function fS takes a prescribed set XS into R∪{+∞} ; the
operator gS maps that same set XS into a real vector space E; and
finally, hS : E → R∪{+∞} is a sort of penalty function. Section 2
provides examples.

As customary, a cost profile c = (ci) ∈ R
I is declared in the core,

written c ∈ core, iff it embodies

full cost cover:
∑

i∈I ci ≥ CI and
coalitional stability:

∑
i∈S ci ≤ CS for each nonempty subset S ⊆ I.

Plainly, this solution concept makes good sense when core is neither
empty, nor too large, nor very sensitive to data.

Given the characteristic function S �→ CS , defined by (4.1), my ob-
jects below are three: first, to study duality without invoking integer
programming2; second, to display explicit core solutions, generated by
so-called shadow prices; and third, to elaborate how such entities might
be reached.

Motivation stems from several sources: There is the recurrent need
to reach beyond instances with convex preferences and production sets.
Notably, some room should be given to discrete activity (decision) sets
XS — as well as to non-convex objectives fS and constraint functions
gS . Besides, the well known bridge connecting competitive equilibrium
to core outcomes (Ellickson (1993)), while central in welfare economics,
deserves easier and more frequent crossings — in both directions. Also,
it merits emphasis that Lagrangian duality, the main vehicle here, often
invites more tractable computations than might commonly be expected.
And, not the least, like in microeconomic theory (Mas-Colell, Whinston

1References include Dubey and Shapley (1984), Evstigneev and Fl̊am (2001), Fl̊am (2002),
Fl̊am and Jourani (2003), Granot (1986), Kalai and Zemel (1982), Owen (1975), Samet and
Zemel (1994), Sandsmark (1999) and Shapley and Shubik (1969).
2Important issues concern indivisibilities and mathematical programming, but these will be
avoided here; see Gomory and Baumol (1960), Scarf (1990), Scarf (1994), Wolsey (1981).
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and Green (1995)), one wonders about the emergence and stability of
equilibrium prices.

What imports in the sequel is that key resources — seen as private
endowments, and construed as vectors in E — be perfectly divisible and
transferable. Resource scarcity generates common willingness to pay for
appropriation. Thus emerge endogenous shadow prices that equilibrate
intrinsic exchange markets. Regarding the grand coalition, Section 3
argues that — absent a duality gap, and granted attainment of optimal
dual values — these prices determine specific core imputations. Section 4
brings out that equilibrating prices can be reached via repeated play.

2. Production games
As said, coalition S, if it were to form, would attempt to solve prob-

lem (4.1). For interpretation construe fS : XS → R∪{+∞} as an
aggregate cost function. Further, let gS : XS → E govern — and ac-
count for — resource consumption or technological features. Finally,
hS : E → R∪{+∞} should be seen as a penalty mechanism meant to
enforce feasibility.

Coalition S has XS as activity (decision) space. In the sequel no linear
or topological structure will be imposed on the latter. Note though that
E, the vector space of “resource endowments”, is common to all agents
and coalitions. By tacit assumption hS(gS(x)) = +∞ when x /∈ XS .

To my knowledge TU production (or market) games have rarely been
defined in such generality. Format (PS) can accommodate a wide variety
of instances. To wit, consider

Example 4.1 (Nonlinear constrained, cooperative programming.) For
each i ∈ I there is a nonempty set Xi, two functions fi : Xi → R∪{+∞},
gi : Xi → E, and a constraint gi(xi) ∈ Ki ⊂ E. Let then XS := Πi∈SXi.
Further, posit fS(x) :=

∑
i∈S fi(xi) and gS(x) :=

∑
i∈S gi(xi). Finally,

define hS(e) = 0 if e ∈∑i∈S Ki, and let hS(e) = +∞ otherwise.

Example 4.2 (Inf-convolution.) Of particular importance is the special
case of the preceding example where Xi = E, gi(xi) = xi − ei, and Ki =
{0}. Coalition cost is then defined by the so-called infimal convolution

CS := inf

{∑
i∈S

fi(xi) :
∑
i∈S

xi =
∑
i∈S

ei

}
.

In Example 4.2 only convexity is needed to have a nonempty core.
This is brought out by the following
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Proposition 4.1 (Convex separable cost yields nonempty core.) Sup-
pose XS = Πi∈SXi with each Xi convex. Also suppose

CS ≥ inf

{∑
i∈S

fi(xi) :
∑
i∈S

Aixi = 0, xi ∈ Xi

}
∀S ⊂ I,

with each fi convex, each Ai : Xi → E affine, and equality when S = I.
Then the core is nonempty.

Proof. Let S �→ wS ≥ 0 be any balanced collection of weights. That is,
assume

∑
S:i∈S wS = 1 for all i. Pick any positive ε and for each coalition

S a profile xS = (xiS) ∈ XS such that
∑

i∈S fi(xiS) ≤ CS + ε and∑
i∈S AixiS = 0. Posit xi :=

∑
S:i∈S wSxiS . Then xi ∈ Xi,

∑
i∈I Aixi =

0, and

CI≤
∑
i∈I

fi

(∑
S:i∈S

wSxiS

)
≤
∑
i∈I

∑
S:i∈S

wSfi(xiS)=
∑
S

wS

∑
i∈S

fi(xiS)

≤
∑
S

wS [CS+ε] .

Since ε > 0 was arbitrary, it follows that CI ≤ ∑
S wSCS . The

Bondareva-Shapley Shapley (1967) result now certifies that the core is
nonempty. �

Proposition 4.1 indicates good prospects for finding nonempty cores,
but it provides less than full satisfaction: No explicit solution is listed.
“Too much” convexity is required in the activity sets Xi and cost func-
tions Fi. Resource aggregation is “too linear.” And the original data
do not enter explicitly. Together these drawbacks motivate next a closer
look at the grand coalition S = I.

3. Lagrange multipliers, subgradients and
min-max

This section contains auxiliary, quite useful material. It takes out
time and space to consider the problem and cost

(PI) CI := inf {fI(x) + hI(gI(x))}
of the grand coalition. For easier notations, write simply P , C, f , g, h,
X instead of PI , CI , fI , gI , hI , XI , respectively. Much analysis revolves
hereafter around the perturbed function

(x, e, y) ∈ X× E× Y �→ f(x) + h(g(x) + e)− 〈y, e〉 . (4.2)
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Here Y is a judiciously chosen, convex, nonempty set of linear functionals
y : E → R. The appropriate nature of Y is made precise later. This
means that additional properties of the functionals y (besides linearity)
will be invoked only when needed. As customary, the expression 〈y, e〉
stands for y(e). Objective (4.2) features a perturbation e available at
a premium 〈y, e〉. Thus (4.2) relaxes and imbeds problem (P ) into a
competitive market where any endowment e ∈ E is evaluated at constant
“unit price” y. To mirror this situation, associate the Fenchel conjugate

h∗(y) := sup {〈y, e〉 − h(e) : e ∈ E}
to h. If h(e) denotes the cost of an enterprise that produces output e
at revenues 〈y, e〉, then h∗(y) is the corresponding profit. In economic
jargon the firm at hand is a price-taker in the output market. Clearly,
h∗ : Y → R∪{±∞} is convex, and the biconjugate function

h∗∗(e) := sup {〈y, e〉 − h∗(y) : y ∈ Y}
satisfies h∗∗ ≤ h. Anyway, the relaxed objective (4.2) naturally generates
a Lagrangian

L(x, y) := inf {f(x) + h(g(x) + e)− 〈y, e〉 : e ∈ E}
= f(x) + 〈y, g(x)〉 − h∗(y),

defined on X×Y. Call now ȳ ∈ Y a Lagrange multiplier iff it belongs to
the set

M :=
{

ȳ ∈ Y : inf
x

L(x, ȳ) ≥ C =: inf(P )
}

.

Note that M is convex, but maybe empty. Intimately related to the
problem (P ) is also the marginal (optimal value) function

e ∈ E �→ V (e) := inf {f(x) + h(g(x) + e) : x ∈ X} .

Of prime interest are differential properties of V (·) at the distinguished
point e = 0. The functional ȳ ∈ Y is called a subgradient of V : E →
R∪{±∞} at 0, written ȳ ∈ ∂V (0), iff

V (e) ≥ V (0) + 〈ȳ, e〉 for all e.

And V is declared subdifferentiable at 0 iff ∂V (0) is nonempty. The
following two propositions are, at least in parts, well known. They are
included and proven here for completeness:

Proposition 4.2 (Subgradient = Lagrange Multiplier.) Suppose C =
inf(P ) = V (0) is finite. Then

∂V (0) = M.
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Proof. Letting ē := g(x) + e we get

ȳ ∈ ∂V (0) ⇔
f(x) + h(ē) = f(x) + h(g(x) + e) ≥ V (e) ≥ V (0) + 〈ȳ, e〉

∀(x, e) ∈ X× E ⇔
f(x) + 〈ȳ, g(x)〉+ h(ē)− 〈ȳ, ē〉 ≥ V (0) ∀(x, ē) ∈ X× E ⇔
f(x) + 〈ȳ, g(x)〉 − h∗(ȳ) ≥ V (0) ∀x ∈ X ⇔
inf
x

L(x, ȳ) ≥ inf(P ) ⇔ ȳ ∈ M.

�

Proposition 4.3 (Strong stability, min-max, biconjugacy and value at-
tainment.) The value function V is subdifferentiable at 0 — and problem
(P ) is then called strongly stable — iff inf(P ) is finite and equals the
saddle value

inf
x

L(x, ȳ) = inf
x

sup
y

L(x, y) for each Lagrange multiplier ȳ.

In that case V ∗∗(0) = V (0). Moreover, if problem (P ) is strongly stable,
then

for each optimal solution x̄ to (P ) and Lagrange multiplier ȳ it
holds that ȳ ∈ ∂h(g(x̄)) and

f(x̄) + 〈ȳ, g(x̄)〉 = min {f(x) + 〈ȳ, g(x)〉 : x ∈ X} ; (4.3)

for each pair (x̄, ȳ) ∈ X× Y that satisfies (4.3) with ȳ ∈ ∂h(g(x̄),
the point x̄ solves (P ) optimally.

Proof. By Proposition 4.2 ∂V (0) �= ∅ ⇔ M �= ∅ ⇔ ∃y ∈ Y such that
infx L(x, y) ≥ V (0). In this string, any ȳ ∈ ∂V (0) = M applies to yield

sup
y

inf
x

L(x, y) ≥ inf
x

L(x, ȳ) ≥ inf(P ).

In addition, the inequality

f(x) + h(g(x)) ≥ f(x) + 〈y, g(x)〉 − h∗(y)

is valid for all (x, y) ∈ X× Y. Consequently, inf(P ) ≥ infx supy L(x, y).
Thus the inequality infx L(x, ȳ) ≥ inf(P ) is squeezed in sandwich:

sup
y

inf
x

L(x, y) ≥ inf
x

L(x, ȳ) ≥ inf(P ) ≥ inf
x

sup
y

L(x, y). (4.4)
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Equalities hold in (4.4) because supy infx L(x, y) ≤ infx supy L(x, y).
From V ∗(y) = − infx L(x, y) it follows that V ∗∗(0) = supy infx L(x, y).

If (P ) is strongly stable, then — by the preceding argument — the last
entity equals inf(P ) = V (0).

Finally, given any minimizer x̄ of (P ), pick an arbitrary ȳ ∈ M =
∂V (0). It holds for each x ∈ X that

f(x̄) + h(g(x̄)) = inf(P ) ≤ L(x, ȳ) = f(x) + 〈ȳ, g(x)〉 − h∗(ȳ).

Insert x = x̄ on the right hand side to have h(g(x̄)) ≤ 〈ȳ, g(x̄)〉 − h∗(ȳ)
whence

h(g(x̄)) + h∗(ȳ) = 〈ȳ, g(x̄)〉 . (4.5)

This implies first, ȳ ∈ ∂h(g(x̄)) and second, (4.3). For the last bullet,
(4.3) and ȳ ∈ h(g(x̄)) (⇔ (4.5)) yield

f(x̄) + h(g(x̄)) = min
x
{f(x) + 〈ȳ, g(x)〉 − h∗(ȳ)} = min

x
L(x, ȳ).

This tells, in view of (4.4), that x̄ minimizes (P ) — and that ȳ ∈ M . �

So far, using only algebra and numerical ordering, Lagrange mul-
tipliers — or equivalently, subgradients — were proven expedient for
Lagrangian duality. It remains to be argued next that such multipliers
do indeed exist in common circumstances. For that purpose recall that
a point c in a subset C of real vector space is declared absorbing if for
each non-zero direction d in that space there exists a real r > 0 such that
c + ]0, r[ d ⊂ C. Also recall that convC denotes the convex hull of C,
and epiV := {(e, r) ∈ E× R : V (e) ≤ r} is short hand for the epigraph
of V .

Proposition 4.4 (Linear support of V at 0.) Suppose 0 is absorbing
in domV . Also suppose conv(epiV ) contains an absorbing point, but
that (0, V (0)) is not of such sort. Then, letting Y consist of all linear
y : E → R, the subdifferential ∂V (0) is nonempty.

Proof. By the Hahn-Banach separation theorem there is a hyperplane
that supports C := conv(epiV ) in the point (0, V (0)). That hyperplane
is defined in terms of a linear functional (e∗, r∗) �= 0 by

〈e∗, e〉+ r∗r ≥ r∗V (0) for all (e, r) ∈ C. (4.6)

Plainly, (e, r) ∈ C & r̄ > r ⇒ (e, r̄) ∈ C. Consequently, r∗ ≥ 0. If
r∗ = 0, then, since 0 is absorbing in domV , it holds that 〈e∗, e〉 ≥ 0 for
all e ∈ E, whence e∗ = 0, and the contradiction (e∗, r∗) = 0 obtains. So,
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divide through (4.6) with r∗ > 0, define y := −e∗/r∗, and put r = V (e)
to have

V (e) ≥ V (0) + 〈y, e〉 for all e ∈ E.

That is, y ∈ ∂V (0). �

Proposition 4.5 (Continuous linear support of V at 0.) Let E be a
topological, locally convex, separated, real vector space. Denote by V̌ the
largest convex function ≤ V . Suppose V is finite-valued, bounded above
on a neighborhood of 0 and V̌ (0) = V (0). Then, letting Y consist of
all continuous linear functionals y : E → R, the subdifferential ∂V (0) is
nonempty.

Propositions 4.4 and 4.5 emphasize the convenience of (0, V (0)) being
“non-interior” to conv(epiV ). In particular, it simplifies things to have
epiV — or equivalently, V itself — convex.

4. Saddle-points and core solutions
After so much preparation it is time to reconsider the production

game having coalition costs CS defined by (4.1). Quite reasonably,
suppose henceforth that a weak form of subadditivity holds, namely:
CI ≤

∑
i∈I Ci < +∞. As announced, the objective is to find explicit

cost allocations c = (ci) ∈ core. For that purpose, in view of Exam-
ple 4.2, recall that

LS(x, y) = fS(x) + 〈y, gS(x)〉 − h∗
S(y),

and introduce a standing

Hypothesis on additive estimates: Let henceforth XS := Πi∈SXi

and suppose there exist for each i, functions fi : Xi → R∪{+∞}, gi :
Xi → E; and hi : E → R∪{+∞} such that for all S ⊆ I and y ∈ Y,

inf
x

LS(x, y) ≥ inf

{∑
i∈S

[fi(xi) + 〈y, gi(xi)〉 − h∗
i (y)] : xi ∈ Xi

}
. (4.7)

Further, for the grand coalition S = I it should hold that

inf
x

LI(x, y) ≤ sup
y

inf

{∑
i∈I

[fi(xi) + 〈y, gi(xi)〉 − h∗
i (y)] : xi ∈ Xi

}
.

Proposition 4.6 The standing hypothesis holds if for all S ⊆ I, x ∈
XS, y ∈ Y

fS(x) + 〈y, gS(x)〉 ≥
∑
i∈S

{fi(xi) + 〈y, gi(xi)〉} , (4.8)



4 Production Games and Price Dynamics 87

and for all e ∈ E,

hS(e) ≥ inf

{∑
i∈S

hi(ei) :
∑
i∈S

ei = e

}
, (4.9)

with equalities when S = I.

Proof. (4.9) implies h∗
S(y) ≤∑i∈S h∗

i (y). �

Example 4.3 (Positive homogenous penalty.) Let h : E → R∪{+∞}
be positively homogeneous. For example, h could be the support func-
tion of some nonempty subset of a pre-dual to E. Then h∗, restricted
to Y, is the extended indicator δY of some convex set Y ⊆ Y. That is,
h∗(y) = 0 if y ∈ Y , +∞ otherwise. Suppose h∗ = h∗

S for all S ⊆ I. Then
(4.8) implies (4.7).

Example 4.4 (Cone constraints.) Of special notice is the instance
when h, as described in Example 4.3, equals the extended indicator δK

of a convex cone K ⊂ E. Then h∗ = δK∗ where K∗ := {y : 〈y, K〉 ≤ 0}
is the negative dual cone. In Example 4.1 let all Ki be the same con-
vex cone K ⊂ E and posit h∗

S := h∗ for all S ⊆ I. Then the standing
hypothesis is satisfied, and coalition S incurs cost

CS := inf

{∑
i∈S

fi(xi) :
∑
i∈S

gi(xi) ∈ K, xi ∈ Xi

}
.

Observe that costs and constraints are here pooled additively. However,
no activity set can be transferred from any agent to another.

Example 4.5 (Inf-convolution of penalties.) When

hS(e) := inf

{∑
i∈S

hi(xi) :
∑
i∈S

xi = e

}
,

we get h∗
S(y) =

∑
i∈S h∗

i (y).

Theorem 4.1 (Nonemptiness of the core and explicit allocations.)

Suppose V ∗∗
I (0) = VI(0). Then, under the standing hypothesis,

core �= ∅.
If moreover, VI(·) is subdifferentiable at 0 — that is, if (PI) is
strongly stable — then each Lagrange multiplier ȳ for problem (PI)
generates a cost allocation c = (ci) ∈ core by the formula

ci = ci(ȳ) := inf {fi(xi) + 〈ȳ, gi(xi)〉 − h∗
i (ȳ) : xi ∈ Xi} . (4.10)
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Proof. By the standing assumption it holds for any price y ∈ Y and
each coalition S that∑

i∈S

ci(y) ≤ inf
x

LS(x, y) ≤ sup
y

inf
x

LS(x, y) ≤ inf
x

sup
y

LS(x, y)

= inf
x
{fS(x) + h∗∗

S (gS(x))} ≤ inf
x
{fS(x) + hS(gS(x))} = CS .

So, no coalition ought reasonably block a payment scheme of the said
sort i �→ ci(y). In addition, if ȳ is a Lagrange multiplier, then∑

i∈I

ci(ȳ) = inf
x

LI(x, ȳ) ≥ CI .

In lack of strong stability, when merely V ∗∗
I (0) = VI(0), choose for each

integer n a “price” yn ∈ Y such that the numbers cn
i = ci(yn), i ∈ I,

satisfy ∑
i∈I

cn
i = inf

x
LI(x, yn) ≥ CI − 1/n.

As argued above,
∑

i∈S cn
i ≤ CS for all S ⊆ I. In particular, cn

i ≤ Ci <
+∞. From cn

i ≥ CI − 1/n−∑j �=i Cj it follows that the sequence (cn) is
bounded. Clearly, any accumulation point c belongs to core. �

Example 4.6 (Cooperative linear programming.) A special and impor-
tant version of Example 4.1 — and Example 4.2 — has Xi := R

ni
+ with

linear cost kT
i xi, ki ∈ R

ni , and linear constraints gi(xi) := Aixi − ei,
ei ∈ R

m, Ai being a m× ni matrix. Posit Ki := {0} for all i to get, for
coalition S, cost given by the standard linear program

(PS) CS := inf
{∑

i∈S

kT
i xi :

∑
i∈S

Aixi

=
∑
i∈S

ei with xi ≥ 0 for all i
}

Suppose that the primal problem (PI), as just defined, and its dual

(DI) sup
{

yT
∑
i∈I

ei : AT
i y ≤ ki for all i

}
are both feasible. Then inf(DI) attained and, by Theorem 4.1, for
any optimal solution ȳ to (DI), the payment scheme ci := ȳT ei yields
(ci) ∈ core. Thus, regarding ei as the production target of “factory” or
corporate division i, those targets are evaluated by a common price ȳ
generated endogenously.
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Example 4.7 (Inf-convolution continued.) Each Lagrange multiplier ȳ
that applies to Example 4.2, generates a cost allocation (ci) ∈ core via

ci := 〈ȳ, ei〉 − f∗
i (ȳ).

This formula is quite telling: each agent is charged for his “production
target” less the price-taking profit he can generate, both entities calcu-
lated at shadow prices.

5. Price dynamics
Suppose henceforth that there exists at least one Lagrange multiplier.

That is, suppose M �= ∅. Further, for simplicity, let the endowment space
E, and its topological dual Y, be real (finite-dimensional) Euclidean.3

Denote by D(y) := infx∈XI
LI(x, y) the so-called dual objective. Most

importantly, the function y ∈ Y �→ D(y) ∈ R∪{−∞} so defined, is
upper semicontinuous concave. And M , the optimal solution set of the
dual problem

sup {D(y) : y ∈ Y} ,

is nonempty closed convex. Consequently, each y ∈ Y has a unique,
orthogonal projection (closest approximation) ȳ = PMy in M . Let Y :=
domD and suppose Y is closed. Denote by Ty := clR+ {Y − y} the
tangent cone of Y at the point y ∈ Y and by Ny := {y∗ : 〈y∗, Ty〉 ≤ 0}
the associated negative dual or normal cone.

Proposition 4.7 (Continuous-time price convergence to Lagrange
multipliers.) For any initial point y(0) ∈ Y , at which D is superdif-
ferentiable, the two differential inclusions

ẏ ∈ PTy∂D(y) and ẏ ∈ ∂D(y)−Ny (4.11)

admit the same, unique, absolutely continuous, infinitely extendable tra-
jectory 0 ≤ t �→ y(t) ∈ Y . Moreover, ‖y(t)− PMy(t)‖ → 0.

Proof. Let Δ(y) := min {‖y − ȳ‖ : ȳ ∈ M} denote the Euclidean dis-
tance from y to the set M of optimal dual solutions. System ẏ ∈
∂D(y)−Ny has a unique, infinitely extendable solution y(·) along which

d

dt
Δ(y(t))2/2 = 〈y − PMy, ẏ〉 ∈ 〈y − PMy, ∂D(y)−Ny〉

≤ 〈y − PMy, ∂D(y)〉 ≤ D(y)−D(PMy).

3Real Hilbert spaces E can also be accommodated.
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Concavity explains the last inequality. Because D(y)−D(PMy) ≤ 0, it
follows that ‖y(t)− PMy(t)‖ → 0. System ẏ ∈ PTy∂D(y) also has an
infinitely extendable solution by Nagumo’s theorem Aubin (1991). Since
PTy∂D(y) ⊆ ∂D(y)−Ny that solution is unique as well. �

Proposition 4.8 (Discrete-time price convergence to Lagrange multi-
pliers) Suppose D is superdifferentiable on Y with ‖∂D(y)‖2 ≤ κ(1 +
‖y − PMy‖2) for some constant κ > 0. Select step sizes sk > 0 such that∑

sk = +∞ and
∑

s2
k < +∞. Then, for any initial point y0 ∈ Y , the

sequence {yk} generated iteratively by the difference inclusion

yk+1 ∈ PY [yk + sk∂D(yk)] , (4.12)

is bounded, and every accumulation point ȳ must be a Lagrange multi-
plier.

Proof. This result is well known, but its proof is outlined for complete-
ness. Let ȳk := PMyk and αk = ‖yk − ȳk‖2. Then (4.12) implies

αk+1 = ‖yk+1 − ȳk+1‖2≤ ‖yk+1 − ȳk‖2 ∈ ‖PY [yk + sk∂D(yk)]− PY ȳk‖2
≤ ‖yk + sk∂D(yk)− ȳk‖2
≤ ‖yk − ȳk‖2 + s2

k ‖∂D(yk)‖2
+ 2sk 〈yk − ȳk, ∂D(yk)〉

≤ αk(1 + βk) + γk − δk

with βk := s2
kκ, γk := s2

kκ, and δk := −2sk 〈yk − ȳk, ∂D(yk)〉. The
demonstration of Proposition 4.7 brought out that

‖y − PMy‖ > 0 ⇒ sup 〈y − PMy, ∂D(y)〉 < 0.

Thus δk ≥ 0. Since
∑

βk < +∞ and
∑

γk < +∞, it must be the
case that αk converges, and

∑
δk < +∞; see Benveniste, Métivier, and

Priouret (1990) Chapter 5, Lemma 2. If limαk > 0, the property
∑

sk =
+∞ would imply the contradiction

∑
δk = +∞. Thus αk → 0, and the

proof is complete. �

Acknowledgments. I thank INDAM for generous support, Univer-
sita degli Studi di Trento for great hospitality, and Gabriele H. Greco
for stimulating discussions.

References
Aubin, J-P. (1991). Viability Theory. Birkhäuser, Boston.
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Chapter 5

CONSISTENT CONJECTURES,
EQUILIBRIA AND DYNAMIC GAMES

Alain Jean-Marie
Mabel Tidball

Abstract We discuss in this paper the relationships between conjectures, conjec-
tural equilibria, consistency and Nash equilibria in the classical theory
of discrete-time dynamic games. We propose a theoretical framework
in which we define conjectural equilibria with several degrees of consis-
tency. In particular, we introduce feedback-consistency, and we prove
that the corresponding equilibria and Nash-feedback equilibria of the
game coincide. We discuss the relationship between these results and
previous studies based on differential games and supergames.

1. Introduction
This paper discusses the relationships between the concept of conjec-

tures and the classical theory of equilibria in dynamic games.
The idea of introducing conjectures in games has a long history, which

goes back to the work of Bowley (1924) and Frisch (1933). There are, at
least, two related reasons for this. One is the wish to capture the idea
that economic agents seem to have a tendency, in practice, to anticipate
the move of their opponents. The other one is the necessity to cope with
the lack or the imprecision of the information available to players.

The first notion of conjectures has been developed for static games
and has led to the theory of conjectural variations equilibria. The prin-
ciple is that each player i assumes that her opponent j will “respond” to
(infinitesimal) variations of her strategy δei by a proportional variation
δej = rijδei. Considering this, player i is faced with an optimization
problem in which her payoff Πi is perceived as depending only on her
strategy ei. A set of conjectural variations rij and a strategy profile
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(e1, . . . , en) is a conjectural variations equilibrium if it solves simultane-
ously all players’ optimization problems. The first order conditions for
those are:

∂

∂ei
Πi(e1, . . . , en) +

∑
j �=i

rij
∂

∂ej
Πi(e1, . . . , en) = 0. (5.1)

Conjectural variations equilibria generalize Nash equilibria, which cor-
responds to “zero conjectures” rij = 0.

The concept of conjectural variations equilibria has received numerous
criticisms. First, there is a problem of rationality. Under the assump-
tions of complete knowledge, and common knowledge of rationality, the
process of elimination of dominated strategies usually rules out anything
but the Nash equilibrium. Second, the choice of the conjectural varia-
tions rij is, a priori, arbitrary, and without a way to point out particu-
larly reasonable conjectures, the theory seems to be able to explain any
observed outcome. Bresnahan (1981) has proposed to select conjectures
that are consistent, in the sense that reaction functions and conjectured
actions mutually coincide. Yet, the principal criticisms persist.

These criticisms are based on the assumption of complete knowledge,
and on the fact that conjectural variation games are static. Yet, from
the onset, it was clear to the various authors discussing conjectural vari-
ations in static games, that the proper (but less tractable) way of model-
ing agents would be a dynamic setting. Only the presence of a dynamic
structure, with repeated interactions, and the observation of what ri-
vals have actually played, gives substance to the idea that players have
responses. In a dynamic game, the structure of information is clearly
made precise, specifying in particular what is the information observed
and available to agents, based on which they can choose their decisions.
This allows to state the principle of consistency as the coincidence of
prior assumptions and observed facts. Making precise how conjectures
and consistency can be defined is the main purpose of this paper.

Before turning to this point, let us note that there exists a second
approach linking conjectures and dynamic games. Several authors have
pointed out the fact that computing stationary Nash-feedback equilibria
in certain dynamic games, leads to steady-state solutions which are iden-
tifiable to the conjectural variations equilibria of the associated static
game. In that case, the value of the conjectural variation rij is precisely
defined from the parameters of the dynamic game. This correspon-
dence illustrates the idea that static conjectural variations equilibria are
worthwhile being studied, if not as a factual description of interactions
between players, but at least as a technical “shortcut” for studying more
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complex dynamic interactions. This principle has been applied in dy-
namic games, in particular by Driskill and McCafferty (1989), Wildasin
(1991), Dockner (1992), Cabral (1995), Itaya and Shimomura (2001),
Itaya and Okamura (2003) and Figuières (2002). These results are re-
ported in Figuières et al. (2004), Chapter 2.

The rest of this paper is organized as follows. In Section 2, we present
a model in which the notion of consistent conjecture is embedded in
the definition of the game. We show in this context that consistent
conjectures and feedback strategies are deeply related. In particular, we
prove that, in contrast with the static case, Nash equilibria can be seen
as consistent conjectural equilibria. This part is a development on ideas
sketched in Chapter 3 of Figuières et al. (2004).

These results are the discrete-time analogy of results of Fershtman
and Kamien (1985) who have first incorporated the notion of consistent
conjectural equilibria into the theory of differential games. Section 3
is devoted to this case, in which conjectural equilibria provide a new
interpretation of open-loop and closed-loop equilibria.

We finish with a description of the model of Friedman (1968), who
was the first to develop the idea of consistent conjectures, in the case of
supergames and with an infinite time horizon. We show how Friedman’s
proposal of reaction function equilibria fits in our general framework. We
also review existence results obtained for such equilibria, in particular
for Cournot’s duopoly in a linear-quadratic setting (Section 4).

We conclude the discussion in Section 5.

2. Conjectures for dynamic games, equilibria
and consistency

The purpose of this section is to present a theoretical framework for
defining consistent conjectures in discrete-time dynamic games, based
essentially on the ideas of Fershtman and Kamien (1985) and Friedman
(1968). The general principle is that i) players form conjectures on how
the other players react (or would react) to their actions, ii) they optimize
their payoff based on this assumption, and iii) conjectures should be
consistent with facts, in the sense that the evolution of the game should
be the same as what was believed before implementing the decisions.
The idea of individual optimization based on some assumed “reaction”
of other players is the heart of the conjectural principle, as we have seen
in the introduction when discussing conjectural variations equilibria.

We shall see however that differences appear in the way consistency
is enforced. This depends on the information which is assumed available
to players, in a way very similar to the definition of different equilibrium
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concepts in dynamic games. Among the possibilities, one postulates
that consistency exists if conjectures and best responses coincide. This
requirement is in the spirit of the definition of Bresnahan (1981) for
consistency in static conjectural variations games.

We review the general framework and different variants for the no-
tion of consistency in Section 2.1. The principal contribution of this
survey is a terminology distinguishing between the different variants of
conjectures and conjectural equilibria used so far in the literature. Next,
in Section 2.2, we establish the links which exist between a particular
concept of conjectural equilibria (“feedback-consistent” equilibria) and
Nash-feedback equilibria for discrete-time dynamic games.

2.1 Principle
Consider a dynamic game with n players and time horizon T , finite

or infinite. The state of the game at time t is described by a vector
x(t) ∈ S. Player i has an influence on the evolution of the state, through
a control variable. Let ei(t) be the control performed by player i in the
t-th period of the game, that is, between time t and t + 1. Let Ei be
the set in which player i chooses her control, E = E1 × · · · × En and
E
−i = E1 × · · · × Ei−1 × Ei+1 × · · · × En be the space of controls of

player i’s opponents. Let also e(t) = (e1(t), . . . , en(t)) ∈ E denote the
vector of controls applied by each player. An element of E

−i will be
denoted by e−i. The state of the game at time t + 1 results from the
combination of the controls e(t) and the state x(t). Formally, the state
evolves according to some dynamics

x(t + 1) = ft(x(t), e(t)), x(0) = x0, (5.2)

for some sequence of functions ft : S×E → S. The instantaneous payoff
of player i is a function Πi

t : S × E → R of the state and controls, and
her total payoff is given by:

V i(x0; e(0), e(1), e(2), . . . , e(T )) =
T∑

t=0

Πi
t(x(t), e(t)), (5.3)

for some sequence of payoff functions Πi
t. The definition of conjectural

equilibria involves the definition of conjectures, and the resolution of
individual optimization problems.

Conjectures. Each player has a belief on the behavior of the other
ones. More precisely player i thinks that player j chooses her control
by applying some function φij

t to observed quantities. Several degrees of



5. Consistent Conjectures and Dynamic Games 97

behavioral complexity are possible here. We identify some of those found
in the current literature in the following definition. In the sequel, we shall
use the superscript “i†” as a shorthand for “believed by player i”.

Definition 5.1 The conjecture of player i about player j is a sequence
of functions φij

t , t = 0, 1, . . . , T , which define the conjectured value of
player j’s control, ei†

j (t). Depending on the situation, we may have:

φij
t : S → Ej , with ei†

j (t) = φij
t (x(t)), (5.4)

(state-based conjectures) or

φij
t : S× E → Ej , with ei†

j (t) = φij
t (x(t), e(t− 1)), (5.5)

(state and control-based conjectures), or

φij
t : S× E

−i → Ej , with ei†
j (t) = φij

t (x(t), e−j(t)) (5.6)

(“complete” conjectures).

The first form (5.4) is the basic one, and is used by Fershtman and
Kamien (1985) with differential games. The second one (5.5) is inspired
by the supergame1 model of Friedman (1968), in which the conjecture
involves the last observed move of the opponents. We have generalized
the idea in the definition, and we come back to the specific situation of
supergames in the sequel. Conjectures that are based on the state and
the control need the specification of an initial control e−1, observed at
the beginning of the game, in addition to the initial state x0.

The third form was also introduced by Fershtman and Kamien (1985)
who termed it “complete”. In discrete time, endowing players with such
conjectures brings forth the problem of justifying how all players can si-
multaneously think that their opponents observe their moves and react,
as if they were all leaders in a Stackelberg game. Indeed, the conjecture
involves the quantity e−j(t), that is, the control that players i’s oppo-
nents are about to choose, and which is not a priori observable at the
moment player i’s decision is done. In that sense, this form is more in
the spirit of conjectural variations. We shall see indeed in Section 2.2
that the two first forms are related to Nash-feedback equilibria, while
the third is more related to static conjectural variations equilibria.

Laitner (1980) has proposed a related form in a discrete-time su-
pergame. He assumes a conjecture of the form ei†

j (t) = φij
t (e−j(t),

1We adopt here the terminology of Myerson (1991), according to which a supergame is a
dynamic game with a constant state and complete information.
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e(t−1)), which could be generalized to ei†
j (t) = φij

t (x(t), e−j(t), e(t−1))
in a game with a non-trivial state evolution.

Individual optimization. Consider first state-based conjectures, of
the form (5.4). Given her conjectures, player i is faced with a classical
dynamic control problem. Indeed, she is led to conclude by replacing
ej(t), for j �= i, by φij

t (.) in (5.2), that the state actually evolves according
to some dynamics depending only on her own control sequence ei(t),
t = 0, . . . , T . Likewise, her payoff depends only on her own control.
More precisely: the conjectured dynamics and payoff are:

xi†(t + 1) = ft

(
xi†(t), φi1

t (xi†(t)), . . . , φi,i−1
t (xi†(t)), ei(t),

φi,i+1
t (xi†(t)), . . . φin

t (xi†(t))
)
, (5.7)

Πi†
t (x, ei) = Πi

t

(
x, φi1

t (x), . . . , φi,i−1
t (x), ei, φ

i,i+1
t (x), . . . φin

t (x)
)
.

(5.8)

For player i, the system evolves therefore according to some dynamics
of the form:

xi†(t + 1) = f̃ i
t (x

i†(t), ei(t)), xi†(0) = x0. (5.9)

If conjectures are of the form (5.5), a difficulty arises. Replacing the
conjectures in the state dynamics (5.2), we obtain:

xi†(t + 1) = ft

(
xi†(t), φi1

t (xi†(t), e(t− 1)), . . . , φi,i−1
t (xi†(t), e(t− 1)),

ei(t), φ
i,i+1
t (xi†(t), e(t− 1)), . . . , φin

t (xi†(t), e(t− 1))
)
.

This equation involves the ej(t−1). Replacing them by their conjectured
values φij

t−1(x
i†(t−1), e(t−2)) makes appear the previous state xi†(t−1)

and still involves unresolved quantities ek(t − 2). Unless there are only
two players, this elimination process necessitates going backwards in
time until t = 0. The resulting formula for xi†(t + 1) will therefore
involve all previous states as well as all previous controls ei(s), s ≤ t.
Such an evolution is improper for setting up a classical control problem
with Markovian dynamics. In order to circumvent this difficulty, it is
possible to define a proper control problem for player i in an enlarged
state space. Indeed, define y(t) = e(t− 1). Then the previous equation
rewrites as:

xi†(t + 1) = ft

(
xi†(t), φi1

t (xi†(t),y(t)), . . . , φi,i−1
t (xi†(t),y(t)), ei(t),

φi,i+1
t (xi†(t),y(t)), . . . , φin

t (xi†(t),y(t))
)
, (5.10)

yj(t + 1) = φij
t (x(t),y(t)) j �= i (5.11)
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yi(t + 1) = ei(t). (5.12)

The initial conditions are x(0) = x0 and y(0) = e−1. Similarly, the
conjectured cost function can be written as:

Πi†
t (x,y, ei)

= Πi
t

(
x, φi1

t (x,y), . . . , φi,i−1
t (x,y), ei, φ

i,i+1
t (x,y), . . . , φin

t (x,y)
)
.

With this cost function and the state dynamics (5.10)–(5.12), player i
faces a well-defined control problem.

Consistency. In general terms, consistency of a conjectural mecha-
nism is the requirement that the outcome of each player’s individual
optimization problem corresponds to what has been conjectured about
her. But different interpretations of this general rule are possible, de-
pending on what kind of “outcome” is selected.

It is well-known that solving a deterministic dynamic control problem
can be done in an “open-loop” or in a “feedback” perspective. In the first
case, player i will obtain an optimal action profile {ei†

i (t), t = 0, . . . , T},
assumed unique. In the second case, player i will obtain an optimal
feedback {γi†

t (·), t = 0, . . . , T}, where each γi†
t is a function of the state

space into the action space Ei. Select first the open-loop point of view.
Starting from the computed optimal profile ei†

i (t), player i deduces the
conjectured actions of her opponents using her conjecture scheme φij

t .
She therefore obtains {ei†

j (t)}, j �= i. Replacing in turn these values in
the dynamics, she obtains a conjectured state path {xi†(t)}.

If all players j actually implements their decision rule ej†
j , the evolu-

tion of the state will follow the real dynamics (5.2), and result in some
actual trajectory {xa(t)}. Specifically, the actual evolution of the state
is:

xa(t + 1) = ft(xa(t), e1†
1 (t), . . . , en†

n (t)), xa(0) = x0. (5.13)

Players will observe a discrepancy with their beliefs unless the actual
path coincides with their conjectured path. If it does, no player will have
a reason to challenge their conjectures and deviate from the “optimal”
control they have computed. This leads to the following definition of
a state-consistent equilibrium. Denote by φi

t the vector of functions
(φi1

t , . . . , φi,i−1
t , φi,i+1

t , . . . , φin
t ).

Definition 5.2 (State-consistent conjectural equilibrium) The vector
of conjectures (φ1

t , . . . ,φ
n
t ) is a state-consistent conjectural equilibrium

if
xi†(t) = xa(t), (5.14)
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for all i and t, and for all initial state x0.

An alternative definition, proposed by Fershtman and Kamien (1985),
requires the coincidence of control paths, given the initial condition of
the state:

Definition 5.3 (Weak control-consistent conjectural equilibrium) The
vector of conjectures (φ1

t , . . . ,φ
n
t ) is a weak control-consistent conjectural

equilibrium if
ei†(t) = ej†(t), (5.15)

for all i �= j and t, given the initial state x0.

The stronger notion proposed by Fershtman and Kamien (1985)
(where it is termed the “perfect” equilibrium) requires the coincidence
for all possible initial states:

Definition 5.4 (Control-consistent conjectural equilibrium) The vec-
tor of conjectures (φ1

t , . . . ,φ
n
t ) is a control-consistent conjectural equi-

librium if the coincidence of controls (5.15) holds for all i �= j, all t and
all initial state x0.

Clearly, any control-consistent conjectural equilibrium is state-consi-
tent provided the dynamics (5.2) have a unique solution. It is of course
possible to define a weak state-consistent equilibrium, where coincidence
of trajectories is required only for some particular initial value. This
concept does not seem to be used in the existing literature.

Now, consider that the solution of the deterministic control problems
is expressed as a state feedback. Accordingly, when solving her (con-
jectured) optimization problem, player i concludes that there exists a
sequence of functions γi†

t : S → Ei such that:

ei†
i (t) = γi†(x(t)).

Consistency can then be defined as the requirement that optimal feed-
backs coincide with conjectures.

Definition 5.5 (Feedback-consistent conjectural equilibrium) The vec-
tor of state-based conjectures (φ1

t , . . . ,φ
n
t ) is a feedback-consistent con-

jectural equilibrium if γi†
t = φji

t for all i �= j and all t.

Obviously, consistency in this sense implies that the conjectures of
two different players about some third player i coincide:

φji
t = φki

t , ∀i �= j �= k, ∀t. (5.16)
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In addition, if the time horizon T is infinite, and if there exists a sta-
tionary feedback γi†∞, then a conjecture which is consistent with this
stationary feedback should coincide with it at any time. This implies
that the conjecture does not vary over time. For a simple equilibrium
in the sense of Definition 5.2, none of these requirements are necessary
a priori. It may happen that trajectories coincide in a “casual” way,
resulting from discrepant conjectures of the different players.

2.2 Feedback consistency and Nash-feedback
equilibria

We now turn to the principal result establishing the link between con-
jectural equilibria and the classical Nash-feedback equilibria of dynamic
games. We assume in this section that T is finite.

Theorem 5.1 Consider a game with state-based conjectures φji
t : S →

Ei. In such a game, Feedback-consistent equilibria and Nash-feedback
equilibria coincide.

Proof. The proof consists in identifying the value functions of both
problems. According to the description above, looking for a feedback-
consistent conjectural equilibrium involves the solution of the control
problem:

max
ei(.)

{
T∑

t=0

Πi†
t (xi†(t), ei(t))

}
,

with the state evolution (5.9):

xi†(t + 1) = f̃ i
t (x

i†(t), ei(t)), xi†(0) = x0,

and where f̃ i
t and Πi†

t have been defined by Equations (5.7)–(5.9). The
optimal feedback control in this case is given by the solution of the
dynamic programming equation:

W i
t−1(x) = max

ei∈Ei

{
Πi†

t (x, ei) + W i
t (f̃

i
t (x, ei))

}
which defines recursively the sequence of value functions W i

t (·), starting
with W i

T+1 ≡ 0.
Consider now the Nash-feedback equilibria (NFBE) of the dynamic

game: for each player i, maximize

T∑
t=0

Πi
t(x(t), e(t))



102 DYNAMIC GAMES: THEORY AND APPLICATIONS

with the state dynamics (5.2):

x(t + 1) = ft(x(t), e(t)), x(0) = x0.

According to Theorem 6.6 of Başar and Olsder (1999), the set of feedback
strategies {(γ1∗

t (·), . . . , γn∗
t (·)), t = 0, . . . , T}, where each γi∗

t is a function
from S to Ei, is a NFBE, if and only if there exists a sequence of functions
defined recursively by:

V i
t−1(x) (5.17)

= max
ei∈Ei

{
Πi

t

(
x, γ1∗

t (x), . . . , ei, . . . , γ
n∗
t (x)

)
+ V i

t (f̂ i
t (x, ei))

}
,

with V i
T+1 ≡ 0, and where

f̂ i
t (x) = ft

(
x, γ1∗

t (x), . . . , γ(i−1)∗
t (x), ei, γ

(i+1)∗
t (x), . . . , γn∗

t (x)
)
. (5.18)

Now, replacing γj∗ by φij in Equations (5.17) and (5.18), we see that the
dynamics f̂ i

t and f̃ i
t coincide, as well as the sequences of value functions

W i
t and V i

t . This means that every NFBE will provide a feedback consis-
tent system of conjectures. Conversely, if feedback consistent conjectures
φij

t are found, then φki
t (x) will solve the dynamic programming equation

(5.17) in which γj∗ is set to φkj (recall that in a feedback-consistent sys-
tem of conjectures, the functions φij

t are actually independent from i).
Therefore, such a conjecture will be a NFBE. �

Using the same arguments, we obtain a similar result for state and
control-based conjectures.

Theorem 5.2 Consider a game with state and control-based conjectures
φij

t : S × E → Ej. The Feedback-consistent equilibria of this game co-
incide with the Nash-feedback equilibria of the game with extended state
space S× E and dynamics defined in Equations (5.10)–(5.12).

Let us now turn to complete conjectures of the form (5.6). As in the
case of state and control-based conjectures, using the conjectures does
not allow player i to formulate a control problem, unless there are only
two players. We therefore assume n = 2. The optimization problem of
player i is then, with j �= i,

max
ei(·)

T∑
t=0

Πi
t

(
x(t), ei(t), φ

ij
t (x(t), ei(t))

)
,
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with the conjectured evolution of the state:

x(t + 1) = ft(x(t), ei(t), φ
ij
t (x(t), ei(t))), x(0) = x0.

Accordingly, the optimal reaction satisfies the following necessary con-
ditions (see Theorem 5.5 of Başar and Olsder (1999)):

Theorem 5.3 Consider a two-player game, with complete conjectures
φij

t which are differentiable. Let ei†(t) be the conjectured optimal control
path of player i, and

xi†(t + 1) = ft(xi†(t), ei†
i (t), φij

t (xi†(t), ei†
i (t))), xi†(0) = x0

be the conjectured optimal state path. Then there exist for each player a
sequence pi(t) of costate vectors such that:

pi(t) =

(
∂Πi

t

∂x
+

∂Πi
t

∂ej

∂φij
t

∂x

)
+ (pi(t + 1))′ ·

(
∂ft

∂x
+

∂ft

∂ej

∂φij
t

∂x

)

with pi(T + 1) = 0, where functions ft and Πi
t are evaluated at (xi†(t),

ei†
i (t), φij

t (xi†(t), ei†
i (t))) and φij

t is evaluated at (xi†(t), ei†
i (t))). Also,

for all i �= j,

ei†
i (t) ∈ arg max

ei∈Ei

{
Πi

t

(
xi†(t), ei, φ

ij
t (xi†(t), ei)

)
+ (pi(t + 1))′ · ft(xi†(t), ei, φ

ij
t (xi†(t), ei))

}
.

For this type of conjectures, several remarks arise. First, the notions
of consistency which can be appropriate are state consistency or control
consistency. Clearly from the necessary conditions above, computing
consistent equilibria will be more complicated than for state-based con-
jectures.

Next, the first order conditions of the maximization problem are:

0 =

(
∂Πi

t

∂ei
+

∂Πi
t

∂ej

∂φij
t

∂ei

)
+ (pi(t + 1))′ ·

(
∂ft

∂ei
+

∂ft

∂ej

∂φij
t

∂ei

)
.

One recognizes in the first term of the right-hand side the formula for the
conjectural variations equilibrium of a static game, see Equation (5.1).

Observe also that when the conjecture φij
t is just a function of the

state, we are back to state-based conjectures and the consistency con-
ditions obtained with the theorem above are that of a Nash-feedback
equilibrium. This was observed by Fershtman and Kamien (1985) for
differential games.
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Finally, if there are more than two players having complete conjec-
tures, the decision problem at each instant in time is not a collection of
individual control problems, but a game. We are not aware of results in
the literature concerning this situation.

3. Consistent conjectures in differential games
The model of Fershtman and Kamien (1985) is a continuous-time,

finite-horizon game. With respect to the general framework of the pre-
vious section, the equation of the dynamics (5.2) becomes

ẋ(t) = ft(x(t), e(t)),

and the total payoff is: ∫ T

0
Πi

t(x(t), e(t)) dt.

Players have conjectures of the form (5.4), or “complete conjectures” of
the form (5.6). Conjectures are assumed to be the same for all players
(Condition (5.16)). Classically, the definition of a dynamic game must
specify the space of strategies with which players can construct their
action ei(t) at time t. The information potentially available being the
initial state x0 and the current state x(t), three classes of strategies
are considered by Fershtman and Kamien: i) closed-loop no-memory
strategies, where ei(t) = ψi(x0,x, t), ii) feedback Nash strategies where
ei(t) = ψi(x, t), and iii) open-loop strategies where ei(t) = ψi(x0, t).

The first concept of consistent conjectural equilibrium studied is the
one of Definition 5.3 (weak control-consistent equilibrium). The follow-
ing results are then obtained:

Open-loop Nash equilibria are weak control-consistent conjectural
equilibria.

Weak control-consistent conjectural equilibria are closed-loop no-
memory equilibria.

In other words, the class of weak control-consistent conjectural equilibria
is situated between open-loop and closed-loop no-memory equilibria.

Fershtman and Kamien further define perfect conjectural equilibria as
in Definition 5.4: control-consistent equilibria. The result is then:

Control-consistent conjectural equilibria and feedback Nash equi-
libria coincide.

Further results of the paper include the statement of the problem
of calculating complete conjectural equilibria (defined as Definition 5.3
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with conjectures of the form (5.6)). The particular case of a duopoly
market is studied. The price is the state variable x(t) of this model; it
evolves according to a differential equation depending on the quantities
(e1(t), e2(t)) produced by both firms. The complete conjectures have
here the form: φij(x; ej). The feedback Nash equilibrium is computed, as
well as the complete conjectural equilibrium with affine conjectures. The
two equilibria coincide when conjectures are actually constant. When
∂φij(x; ej)/∂ej = 1, the stationary price is the monopoly price.

4. Consistent conjectures for supergames
In this section, we consider the problem set in Friedman (1968) (see

also Friedman (1976) and Friedman (1977), Chapter 5). The model is
a discrete-time, infinite-horizon supergame with n players. The total
payoff of player i has the form:

V i(x0; e(0), e(1), . . . ) =
∞∑

t=0

θt
i Πi(e(t)),

for some discount factor θi, and where e(t) ∈ E is the profile of strategies
played at time t. Friedman assumes that players have (time-independent)
conjectures of the form ej(t + 1) = φij(e(t)), and proposes the following
notion of equilibrium. Given this conjecture, player i is faced with an
infinite-horizon control problem, and when solving it, she hopefully ends
up with a stationary feedback policy γi : E → Ei. It can be seen as a
reaction function to the vector of conjectures φi. This gives the name
to the equilibrium advocated in Friedman (1968):

Definition 5.6 (Reaction function equilibrium) The vector of conjec-
tures (φ1, . . . ,φn) is a reaction function equilibrium if

γi = φki,∀k,∀i.
In the terminology we have introduced in Section 2.1, the conjectures

are “state and control-based” (Definition 5.1). Applying Theorem 5.2 to
this special situation where the state space is reduced to a single element,
we have:

Theorem 5.4 Reaction function equilibria coincide with the stationary
Nash-Feedback equilibria of the game described by the dynamics:

x(t) = e(t− 1),

and the payoff functions: Π̃i
0 ≡ 0 and

Π̃i
t(x, e) = θt−1

i Πi(x), t ≥ 1.
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In the process of finding reaction function equilibria, Friedman intro-
duces a refinement. He suggests to solve the control problem with a
finite horizon T , and then let T tend to infinity to obtain a stationary
optimal feedback control. If the finite-horizon solutions converge to a
stationary feedback control, this has the effect of selecting certain solu-
tions among the possible solutions of the infinite-horizon problem. Once
the stationary feedbacks γi are computed, the problem is to match them
with the conjectures φji.

No concrete example of such an equilibrium is known so far in the
literature, except for the obvious one consisting in the repetition of the
Nash equilibrium of the static game. Indeed, we have:

Theorem 5.5 (The repeated static Nash equilibrium is a reaction func-
tion equilibrium.) Assume there exists a unique Nash equilibrium
(eN

1 , . . . , eN
n ) for the one-stage (static) game. If some player i conjec-

tures that the other players will play the strategies eN
−i at each stage, then

her own optimal response is unique and is to play eN
i at each stage.

Proof. Let (eN
i , eN

−i) denote the unique Nash equilibrium of the static
game. Since player i assumes that her opponents systematically play
eN
−i, we have e−i(t) = eN

−i for all t. Therefore, her perceived optimization
problem is:

max
{ei(0),ei(1),... }

∞∑
t=0

θt
i Πi

(
ei(t), eN

−i

)
.

Since eN
i is the best response to eN

−i, the optimal control of player i is
ei(t) = eN

i for all t ≥ 0. In other words, player i should respond to her
“Nash conjecture” by playing Nash repeatedly. �

Based on Theorem 5.4 and tools of optimal control and games, it
is possible to develop the calculation of Friedman’s reaction function
equilibria in the case of linear-quadratic games. Even for such simple
games, finding Nash-feedback equilibria usually involves the solution of
algebraic Ricatti equations, which cannot always be done in closed form.
However, the games we have here have a special form, due to their
simplified dynamics.

The detailed analysis, reported in Figuières et al. (2004), proceeds
in several steps. First, we consider a finite time horizon game with sta-
tionary affine conjectures, and we construct the optimal control of each
player. We obtain that the optimal control is also affine, and that its
multiplicative coefficients are always proportional to those of the conjec-
ture. We deduce conditions for the existence of a consistent equilibrium
in the sense of Definition 5.5, in the case of symmetric players. Those
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conditions bear on the sign of quantities involving the coefficients of the
conjectures and the parameters of the model.

Applied to Cournot’s and Bertrand’s duopoly models, we demonstrate
that the repeated-Nash strategy of Theorem 5.5 is the unique reaction
function equilibrium of the game. We therefore answer to Friedman’s
interrogation about the multiplicity of such equilibria in the duopoly.

5. Conclusion
In this paper, we have put together several concepts of consistent con-

jectural equilibria in a dynamic setting, collected from different papers.
This allows us to draw a number of perspectives.

First, finding in which class of dynamic games the different definitions
of Section 2.1 coincide is an interesting research direction.

As we have observed above, an equilibrium according to Definition 5.4
(control-consistent) is an equilibrium according to Definition 5.2 (state-
consistent). We feel however that when conjectures are of the simple
form (5.4), it may be that actions of the players are not observable, so
that players should be happy with the coincidence of state paths. State-
consistency is then the natural notion. The stronger control-consistency
is however appropriate when conjectures are of the “complete” form. We
have further observed that for repeated games, Definitions 5.2 and 5.4
coincide.

The problem disappears when consistency in feedback is considered,
since the requirements of feedback-consistency (Definition 5.5) imply
the coincidence of conjectures and actual values for both controls and
states. Indeed, if the feedback functions of different players coincide,
their conjectured state paths and control paths will coincide, since the
initial state x0 is common knowledge.

Another issue is that of the information available to optimizing agents.
In the models of Section 2, agents do not know the payoff functions
of their opponents when they compute their optimal control, based on
their own conjectures. Computing an equilibrium requires however the
complete knowledge of the payoffs. This is not in accordance with the
idea that players hold conjectures in order to compensate for the lack of
information. On the other hand, verifying that a conjecture is consistent
requires less information. Weak control-consistency (and the weak state-
consistency that could have been defined in the same spirit) is verified by
the observation of the equilibrium path. A possibility in this case is to
develop learning models such as in Jean-Marie and Tidball (2004). The
stronger state-consistency, control-consistency and feedback-consistency
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can be checked by computations based on the knowledge of one’s payoff
function and the conjectures of the opponents.

Finally, we point out that other interesting dynamic game models
with conjectures and/or consistency have been left out of this survey.
We have already mentioned the work of Laitner (1980). Other ideas are
possible: for instance, it is possible to assume as in Başar, Turnovsky
and d’Orey (1986) that players consider the game as a static conjectural
variations game at each instant in time. Consistency in the sense of
Bresnahan is then used. Also related is the paper of Kalai and Stanford
(1985) in which a model similar to that of Friedman is analyzed. These
papers illustrate the fact that some types of conjectures may lead to a
multiplicity of consistent equilibria.
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Chapter 6

COOPERATIVE DYNAMIC GAMES WITH
INCOMPLETE INFORMATION

Leon A. Petrosjan

Abstract The definition of cooperative game in characteristic function form with
incomplete information on a game tree is given. The notions of op-
timality principle and based on it solution concepts are introduced.
The new concept of “imputation distribution procedure” is defined con-
nected with the basic definitions of time-consistency and strongly time-
consistency. Sufficient conditions of the existence of time-consistent
solutions are derived. For a large class of games where these conditions
cannot be satisfied the regularization procedure is developed and new
characteristic function is constructed. The “regularized” core is defined
and strongly time-consistency proved. The special case of stochastic
games is also investigated in details.

1. Introduction
In n-persons games in extensive form as in classical simultaneous game

theory different solution concepts are used. The most common approach
is a noncooperative setting where as solution the Nash Equilibrium is
considered. In the same time not much attention is given to the problem
of time-consistency of solution considered in each specific case. This may
follow from the fact that in most cases the Nash Equilibrium turns to be
time-consistent, but also not always as it was shown in Petrosjan (1996).

The problem becomes more serious when cooperation in games in ex-
tensive form is considered. Usually in cooperative settings players agree
to use such strategies which maximize the sum of their payoffs. As a
result the game then develops along the cooperative trajectory (condi-
tionally optimal trajectory). The corresponding maximal total payoff
satisfies Bellman’s Equation and thus is time-consistent. But the values
of characteristic function for each subcoalition of players naturally did
not satisfy this property along conditionally optimal trajectory. The
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characteristic function plays key role in construction of solution con-
cepts in cooperative game theory. And impossibility to satisfy Bell-
man’s Equation for values of characteristic function for subcoalitions
implies the time-inconsistency of cooperative solution concepts. This
was seen first for n-person differential games in papers (Filar and Pet-
rosjan (2000); Haurie (1975); Kaitala and Pohjola (1988)) and in the pa-
pers (Petrosjan (1995); Petrosjan (1993); Petrosjan and Danilov (1985))
it was purposed to introduce a special rule of distribution of the players
gain under cooperative behavior over time interval in such a way that
time-consistency of the solution could be restored in given sense.

In this paper we formalize the notion of time-consistency and strongly
time-consistency for cooperative games in extensive form with incom-
plete information, propose the regularization method which makes pos-
sible to restore classical simultaneous solution concepts in a way they
became useful in the games in extensive form. We prove theorems con-
cerning strongly time-consistency of regularized solutions and give a con-
structive method of computing of such solutions.

2. Definition of the multistage game with
incomplete information in characteristic
function form

To define the multistage cooperative game (in characteristic function
form) with incomplete information we have to define first the multistage
game in extensive form. In this definition we follow H. Kuhn (1953),
with the only difference that in our definition we shall not allow chance
moves, and the payoffs of players will be defined at each vertex of the
game tree.

Definition 6.1 The n-person multistage game in extensive form is de-
fined by

1. Specifying the finite graph tree G = (X, F ) with initial vertex x0

referred to as the initial position of the game (here X is the set
of vertexes and F : X → 2X is a point-to-set mapping, and let
Fx = F (x)).

2. Partition of the set of all vertices X into n+1 sets X1, X2, . . ., Xn,
Xn+1 — called players partition, where Xi is interpreted as the set
of vertices (positions) where player i “makes a move”, i = 1, . . . , n,
and Xn+1 = {x : Fx = ∅} is called the set of final positions.

3. For each x ∈ X specifying the vector function h(x) = (h1(x), . . . ,
hn(x)), hi(x) ≥ 0, i = 1, . . . , n; the vector function hi(x) is called
the instantaneous payoff of the ith player.
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4. Subpartition of the set Xi, i = 1, . . . , n, into non-overlapping sub-
sets Xj

i referred to as information sets of the ith player. In this
case, for any position of one and the same information set the set
of its subsequent vertices should contain one and the same number
of vertices, i.e., for any x, y ∈ Xj

i |Fx| = |Fy| (|Fx| is the number
of elements of the set Fx), and no vertex of the information set
should follow another vertex of this set, i.e., if x ∈ Xj

i then there
is no other vertex y ∈ Xj

i such that

y ∈ F̂x = {x ∪ Fx ∪ F 2
x ∪ · · · ∪ F r

x ∪ · · · }. (6.1)

(here F k
x is defined by induction F 1

x = Fx, F 1
x = F (F k−1

x ) =
⋃

y∈F k−1
x

Fy).

The conceptual meaning of the informational partition is that when a
player makes his move in position x ∈ Xi in terms of incomplete informa-
tion he does not know the position x itself, but knows that this position
is in certain set Xj

i ⊂ Xi (x ∈ Xj
i ). Some restrictions are imposed by

condition 4 on the players information sets. the requirement |Fx| = |Fy|
for any two vertices of the same information set are introduced to make
vertices x, y ∈ Xj

i indistinguishable. In fact, with |Fx| �= |Fy| player i

could distinguish among the vertices x, y ∈ Xj
i by the number of arcs

emanating therefrom. If one information set could have two vertices x, y
such that y ∈ F̂x this would mean that a play of game can intersect twice
an information set, but this in turn is equivalent to the fact that player j
has no memory of the number of the moves he made before given stage
which can hardly be concerned in the actual play of the game.

Denote the multistage game in extensive form starting from the vertex
x0 ∈ X by Γ(x0).

For purpose of further discussion we need to introduce some additional
notions.

Definition 6.2 The arcs incidental with x, i.e., {(x, y) : y ∈ Fx}, are
called alternatives at the vertex x ∈ X.

If |Fx| = k then there are k alternatives at vertex x. We assume
that if at the vertex x there are k alternatives then they are designated
by integers 1, . . . , k with the vertex x bypassed in clockwise sense. The
first alternative at the vertex x0 is indicated in an arbitrary way. If some
vertex x �= x0 is bypassed in a clockwise sense, then an alternative which
follows a single arc (F−1

x , x) entering into x is called the first alternative
at x. Suppose that in the game all alternatives are enumerated as above.
Let Ak be the set of all vertices x ∈ X having exactly k alternatives,
i.e., Ak = {x : |Fx| = k}.
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Let Ii = {Xj
i : Xj

i ⊂ Xi} be the set of all information sets of player i.
By definition the pure strategy of player i means the function ui mapping
Ii into the set of positive numbers so that ui(X

j
i ) ≤ k if Xj

i ⊂ Ak. We
say that the strategy ui chooses alternative l in position x ∈ Xj

i if
ui(X

j
i ) = l, where l is the number of the alternative.

One may see that to each n-tuple in pure strategies u(·) = (u1(·), . . . ,
un(·)) uniquely corresponds a path (trajectory) w = x0, . . . , xl, xl ∈
Xn+1, and hence the payoff

Ki(x0; u1(·), . . . , un(·)) =
∑l

k=0 hi(xk), (6.2)
hi ≥ 0. (6.3)

Here xl ∈ Xn+1 is a final position (vertex) and w = {x0, x1, . . . , xl} is
the only path leading (F is a tree) from x0 to xl. The condition that
the position (vertex) y belongs to w will be written as y ∈ w.

Consider the cooperative form of the game Γ(x0). In this formal-
ization we suppose, that the players before starting the game agree
to play u∗

1, . . . , u
∗
n such that the corresponding path (trajectory) w∗ =

{x∗
0, . . . , x

∗
k, . . . , x

∗
l } (x∗

l ∈ Xn+1) maximizes the sum of the payoffs

max
u

n∑
i=1

Ki(x0; u1(·), . . . , un(·)) =
n∑

i=1

Ki(x0; u∗
1(·), . . . , u∗

n(·))

=
n∑

i=1

[ l∑
k=0

hi(x∗
k)
]

= v(N ; x0),

where x0 is the initial vertex of the game Γ(x0) and N is the set of all
players in Γ(x0). The trajectory w∗ is called conditionally optimal. To
define the cooperative game one has to introduce the characteristic func-
tion. The values of characteristic function for each coalition are defined
in a classical way as values of associated zero-sum games. Consider a
zero-sum game defined over the structure of the game Γ(x0) between the
coalition S as first player and the coalition N \ S as second player, and
suppose that the payoff of S is equal to the sum of payoffs of players
from S. Denote this game as ΓS(x0). Suppose that v(S; x0) is the value
of such game. The characteristic function is defined for each S ⊂ N
as value v(S; x0) of ΓS(x0). From the definition of v(S; x0) it follows
that v(S; x0) is superadditive (see Owen (1968)). It follows from the
superadditivity condition that it is advantageous for the players to form
a maximal coalition N and obtain a maximal total payoff v(N ; x0) that
is possible in the game. Purposefully, the quantity v(S; x0) (S �= N)
is equal to a maximal guaranteed payoff of the coalition S obtained



6 Cooperative Dynamic Games with Incomplete Information 115

irrespective of the behavior of other players, even the other form a coali-
tion N \ S against S.

Note that the positiveness of payoff functions hi, i = 1, . . . , n implies
that of characteristic function. From the superadditivity of v it follows
that

v(S′; x0) ≥ v(S; x0)

for any S, S′ ⊂ N such that S ⊂ S′, i.e., the superadditivity of the
function v in S implies that this function is monotone in S.

The pair 〈N, v(·, x0)〉, where N is the set of players, and v the char-
acteristic function, is called the cooperative game with incomplete infor-
mation in the form of characteristic function v. For short, it will be
denoted by Γv(x0).

Various methods for “equitable” allocation of the total profit among
players are treated as solutions in cooperative games. The set of such
allocations satisfying an optimality principle is called a solution of the
cooperative game (in the sense of this optimality principle). We will now
define solutions of the game Γv(N ; x0).

Denote by ξi a share of the player i ∈ N in the total gain v(N ; x0).

Definition 6.3 The vector ξ = (ξ1, . . . , ξn), whose components satisfy
the conditions:

1. ξi ≥ v({i};x0), i ∈ N ,

2.
∑

i∈N ξi = v(N ; x0),

is called an imputation in the game Γv(x0).

Denote the set of all imputations in Γv(x0) by Lv(x0).
Under the solution of Γv(x0) we will understand a subset Wv(x0) ⊂

Lv(x0) of imputation set which satisfies additional “optimality” condi-
tions.

The equity of the allocation ξ = (ξ1, . . . , ξn) representing an imputa-
tion is that each player receives at least maximal guaranteed payoff and
the entire maximal payoff is distributed evenly without a remainder.

3. Principle of time-consistency (dynamic
stability)

Formalization of the notion of optimal behavior constitutes one of
fundamental problems in the theory of n-person games. At present, for
the various classes of games different solution concepts are constructed.
Recall that the players’ behavior (strategies in noncooperative games
or imputations in cooperative games) satisfying some given optimality
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principle is called a solution of the game in the sense of this principle
and must possess two properties. On the one hand, it must be feasible
under conditions of the game where it is applied. On the other hand,
it must adequately reflect the conceptual notion of optimality providing
special features of the class of games for which it is defined.

In dynamic games, one more requirement is naturally added to the
mentioned requirements, viz. the purposefulness and feasibility of an
optimality principle are to be preserved throughout the game. This
requirement is called the time-consistency of a solution of the game (dy-
namic stability).

The time-consistency of a solution of dynamic game is the property
that, when the game proceeds along a “conditionally optimal” trajec-
tory, at each instant of time the players are to be guided by the same
optimality principle, and hence do not have any ground for deviation
from the previously adopted “optimal” behavior throughout the game.
When the time-consistency is betrayed, at some instant of time there are
conditions under which the continuation of the initial behavior becomes
non-optimal and hence initially chosen solution proves to be unfeasible.

Assume that at the start of the game the players adopt an optimal-
ity principle and construct a solution based on it (an imputation set
satisfying the chosen principle of optimality, say the core, nucleolus,
NM–solution, etc.). From the definition of cooperative game it follows
that the evolution of the game is to be along the trajectory providing
a maximal total payoff for the players. When moving along this “con-
ditionally optimal” trajectory, the players pass through subgames with
current initial states and current duration. In due course, not only the
conditions of the game and the players opportunities, but even the play-
ers’ interests may change. Therefore, at some stage (at some vertex y on
the conditionally optimal trajectory) the initially optimal solution of the
current game may not exist or satisfy players at this stage. Then, at this
stage (starting from vertex y) players will have no ground to keep to the
initially chosen “conditionally optimal” trajectory. The latter exactly
means the time-inconsistency of the chosen optimality principle and, as
a result, the instability of the motion itself.

We now focus our attention on time-consistent solutions in the coop-
erative games with incomplete information.

Let an optimality principle be chosen in the game Γv(x0). The solution
of this game constructed in the initial state x0 based on the chosen
principle of optimality is denoted by Wv(x0). The set Wv(x0) is a subset
of the imputation set Lv(x0) in the game Γv(x0). Assume that Wv(x0) �=
∅. Let w∗ = {x∗

0, . . . , x
∗
k, . . . , x

∗
l } be the conditionally optimal trajectory.
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The definition suggests that along the conditionally optimal trajectory
players obtain the largest total payoff.

For further consideration an important assumption is needed.

Assumption A. The n-tuple u∗(·) = (u∗
1(·), . . . , u∗

n(·)) and the cor-
responding trajectory w∗ = {x∗

0, . . . , x
∗
k, . . . , x

∗
l } are common knowledge

in Γv(x0).
This assumption means that being at vertex x∗

k ∈ Xi player i knows
that he is in x∗

k. This changes the informational structures of subgames
Γ(x∗

k) along w∗ in the following natural way.
Denote by G(x∗

k) the subtree of tree G corresponding to the subgame
Γ(x∗

k) with initial vertex x∗
k. The information sets in Γ(x∗

k) coincide
with the intersections G(x∗

k) ∩Xj
i = Xj

i (k) for all i, j where Xj
i is the

information set in Γ(x0). The informational structure of Γ(x∗
k) consists

from the sets Xj
i (k), for all i, j.

As before we can define the current cooperative subgame Γv(x∗
k) of

the subgame Γ(x∗
k).

We will now consider the behavior of the set Wv(x0) along the condi-
tionally optimal trajectory w∗. Towards this end, in each current state
x∗

k current subgame Γv(x∗
k) is defined as follows. In the state x∗

k, we
define the characteristic function v(S; x∗

k) as the value of the zero-sum
game ΓS(x∗

k) between coalitions S and N \ S from the initial state x∗
k

(as it was done already for the game Γ(x0)).
The current cooperative subgame Γv(x∗

k) is defined as
〈N, v(S, x∗

k)〉. The imputation set in the game Γv(x∗
k) is of the form:

Lv(x∗
k) =

{
ξ ∈ Rn | ξi ≥ v({i};x∗

k), i = 1, . . . , n;
∑
i∈N

ξi = v(N ; x∗
k)
}

,

where

v(N ; x∗
k) = v(N ; x∗

0)−
k−1∑
m=0

∑
i∈N

hi(x∗
m).

The quantity
k−1∑
m=0

∑
i∈N

hi(x∗
m)

is interpreted as the total gain of the players on the first k − 1 steps
when the motion is carried out along the trajectory w∗.

Consider the family of current games

{Γv(x∗
k) = 〈N, v(S; x∗

k)〉, 0 ≤ k ≤ l} ,
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determined along the conditionally optimal trajectory w∗ and their so-
lutions Wv(x∗

k) ⊂ Lv(x∗
k) generated by the same principle of optimality

as the initial solution Wv(x∗
0).

It is obvious that the set Wv(x∗
l ) is a solution of terminal game Γv(x∗

l )
and is composed of the only imputation h(x∗

l ) = {hi(x∗
l ), i = 1, . . . , n},

where hi(x∗
l ) is the terminal part of player i’s payoff along the trajec-

tory w∗.

4. Time-consistency of the solution
Let the conditionally optimal trajectory w∗ be such that Wv(x∗

k) �= ∅,
0 ≤ k ≤ l. If this condition is not satisfied, it is impossible for players
to adhere to the chosen principle of optimality, since at the very first
stage k, when Wv(x∗

k) = ∅, the players have no possibility to follow this
principle. Assume that in the initial state x0 the players agree upon the
imputation ξ0 ∈ Wv(x0). This means that in the state x0 the players
agree upon such an allocation of the total maximal gain that (when the
game terminates at x∗

l ) the share of ith player is equal to ξ0
i , i.e., the

ith component of the imputation ξ0. Suppose the player i’s payoff (his
share) on the first k stages x∗

0, x∗
1, . . . , x∗

k−1 is ξi(x∗
k−1). Then, on the

remaining stages x∗
k, . . . , x∗

l according to the ξ0 he has to receive the
gain ηk

i = ξ0
i − ξi(x∗

k−1). For the original agreement (the imputation
ξ0) to remain in force at the instant k, it is essential that the vector
ηk = (ηk

1 , . . . , ηk
n) belongs to the set Wv(x∗

k), i.e., a solution of the current
subgame Γv(x∗

k). If such a condition is satisfied at each stage along the
trajectory w∗, then the imputation ξ0 is realized. Such is the conceptual
meaning of the time-consistency of the imputation.

Along the trajectory w∗, the coalition N obtains the payoff

v(N ; x∗
k) =

∑
i∈N

[
l∑

m=k

hi(x∗
m)

]
.

Then the difference

v(N ; x0)− v(N ; x∗
k) =

k−1∑
m=0

∑
i∈N

hi(x∗
m)

is equal to the payoff the coalition N obtains on the first k stages (0, . . . ,
k − 1). The share of the ith player in this payoff, considering the trans-
ferability of payoffs, may be represented as

γi(k − 1) =
k−1∑
m=0

βi(m)
n∑

i=1

hi(x∗
m) = γi(x∗

k−1, β), (6.4)
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where βi(m) satisfies the condition

n∑
i=1

βi(m) = 1, βi(m) ≥ 0, m = 0, 1, . . . , l, i ∈ N. (6.5)

From (6.4) we necessarily get

γi(k)− γi(k − 1) = βi(k)
n∑

i=1

hi(x∗
k).

This quantity may be interpreted as an instantaneous gain of the player
i at the stage k. Hence it is clear the vector β(k) = (β1(k), . . . , βn(k))
prescribes distribution of the total gain among the members of coali-
tion N . By properly choosing β(k), the players can ensure the desirable
outcome, i.e., to regulate the players’ gain receipt with respect to time,
so that at each stage k there will be no objection against realization of
original agreement (the imputation ξ0).

Definition 6.4 The imputation ξ0 ∈ Wv(x0) is called time-consistent
in the game Γv(x0) if the following conditions are satisfied:

1. there exists a conditionally optimal trajectory w∗ = {x∗
0, . . . , x

∗
k,

. . . , x∗
l } along which Wv(x∗

k) �= ∅, k = 0, 1, . . . , l,

2. there exists such vectors β(k) = (β1(k), . . . , βn(k)) that for each
k = 0, 1, . . . , l, βi(k) ≥ 0,

∑n
i=1 βi(k) = 1 and

ξ0 ∈
l⋂

k=0

[γ(x∗
k−1, β)⊕Wv(x∗

k)], (6.6)

where γ(x∗
k, β) = (γ1(x∗

k, β), . . . , γn(x∗
k, β)), and Wv(x∗

k) is a solution of
the current game Γv(x∗

k).

The sum ⊕ in the above definition has the following meaning: for
η ∈ Rn and A ⊂ Rn η ⊕A = {η + a | a ∈ A}.

The game Γv(x0) has a time-consistent solution Wv(x0) if all the im-
putations ξ ∈ Wv(x0) are time-consistent.

The conditionally optimal trajectory along which there exists a time-
consistent solution of the game Γv(x0) is called an optimal trajectory.

The time-consistent imputation ξ0 ∈ Wv(x0) may be realized as fol-
lows. From (6.6) at any stage k we have

ξ0 ∈ [γ(x∗
k−1, β)⊕Wv(x∗

k)], (6.7)
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where

γ(x∗
k−1, β) =

k−1∑
m=0

β(m)
∑
i∈N

hi(x∗
m)

is the payoff vector on the first k stages, the player i’s share in the gain
on the same interval being

γi(x∗
k−1, β) =

k−1∑
m=0

βi(m)
∑
i∈N

hi(x∗
m).

When the game proceeds along the optimal trajectory, the players on
the first k stages share the total gain

k−1∑
m=0

∑
i∈N

hi(x∗
m)

among themselves,

ξ0 − γ(x∗
k−1, β) ∈ Wy(x∗

k) (6.8)

so that the inclusion (6.8) is satisfied. Furthermore, (6.8) implies the
existence of such vector ξk ∈ Wv(x∗

k) that ξ0 = γ(x∗
k−1, β)+ ξk. That is,

in the description of the above method of choosing β(m), the vector of
the gains to be obtained by the players at the remaining stages of the
game

ξk = ξ0 − γ(x∗
k−1, β) =

l∑
m=k

βi(m)h(x∗
m)

belongs to the set Wv(x∗
k).

We also have

ξ0 =
l∑

m=0

βi(m)
∑
i∈N

h(x∗
m).

The vector

αi(m) = βi(m)
∑
i∈N

h(x∗
m), i ∈ N, m = 0, 1, . . . , l,

is called the imputation distribution procedure (IDP)
In general, it is fairly easy to see that there may exist an infinite

number of vectors β(m) satisfying conditions (6.4), (6.5). Therefore the
sharing method proposed here seems to lack true uniqueness. However,
for any vector β(m) satisfying conditions (6.4), (6.5) at each stage k
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the players are guided by the imputation ξk ∈ Wv(x∗
k) and the same

optimality principle throughout the game, and hence have no reason to
violate the previously achieved agreement.

Let us make the following additional assumption

Assumption B. The vectors ξk ∈ Wv(x∗
k) may be chosen as monotone

nonincreasing sequence of the argument k.
Show that by properly choosing β(m) we may always ensure time-

consistency of the imputation ξ0 ∈ Wv(x0) under assumption B. and
the first condition of definition (i.e., along the conditionally optimal
trajectory at each stage k Wv(x∗

k) �= ∅).
Choose ξk ∈ Wv(x∗

k) to be a monotone nonincreasing sequence. Con-
struct the difference ξ0−ξk = γ(k−1) then we get ξk+γ(k−1) ∈ Wv(x∗

k).
Let β(k) = (β1(k), . . . , βn(k)) be vectors satisfying conditions (6.4),
(6.5). Instead of writing γ(x∗

k, β) we will write for simplicity γ(k).
Rewriting (6.4) in vector form we get

k−1∑
m=0

β(m)
∑
i∈N

hi(x∗
m) = γ(k − 1)

and we get the following expression for β(k)

β(k) =
γ(k)− γ(k − 1)∑

i∈N hi(x∗
k)

= − ξk − ξk−1∑
i∈N hi(x∗

k)
≥ 0. (6.9)

Here the last expression follows from equality

ξ0 = γ(k) + ξk.

Theorem 6.1 If the assumption B is satisfied and

W (x∗
k) �= ∅, k = 0, 1, . . . , l (6.10)

solution W (x0) is time-consistent.

Theoretically, the main problem is to study conditions imposed on
the vector function β(m) in order to ensure time-consistency of specific
forms of solutions Wv(x0) in various classes of games.

Consider the new concept of strongly time-consistency and define
time-consistent solutions for cooperative games with terminal payoffs.

5. Strongly time-consistent solutions
For the time consistent imputation ξ0 ∈ Wv(x0), as follows from

the definition, there exists sequence of vectors β(m) and imputation
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ξk (generally nonunique) from the solution Wv(x∗
k) of the current game

Γv(x∗
k) that ξ0 = γ(x∗

k−1, β) + ξk. The conditions of time-consistency
do not affect the imputation from the set Wv(x∗

k) which fail to sat-
isfy this equation. Furthermore, of interest is the case when any im-
putation from current solution Wv(x∗

k) may provide a “good” continua-
tion for the original agreement, i.e., for a time-consistent imputation
ξ0 ∈ Wv(x0) at any stage k and for every ξk ∈ Wv(x∗

k) the condi-
tion γ(x∗

k−1, β) + ξk ∈ Wv(x0), where γ(x∗
l , β) = ξ0, be satisfied. By

slightly strengthening this requirement, we obtain a qualitatively new
time-consistency concept of the solution Wv(x0) of the game Γv(x0) and
call it a strongly time-consistency.

Definition 6.5 The imputation ξ0 ∈ Wv(x0) is called strongly time-
consistent (STC) in the game Γv(x0), if the following conditions are
satisfied:

1. the imputation ξ0 is time-consistent;

2. for any 0 ≤ q ≤ r ≤ l and β0 corresponding to the imputation ξ0

we have,

γ(x∗
r , β

0)⊕Wv(x∗
r) ⊂ γ(x∗

q , β
0)⊕Wv(x∗

r). (6.11)

The game Γv(x0) has a strongly time-consistent solution Wv(x0) if all
the imputations from Wv(x0) are strongly time-consistent.

6. Terminal payoffs
In (6.2) let hi(xk) ≡ 0, i = 1, . . . , n, k = 1, . . . , l− 1. The cooperative

game with terminal payoffs is denoted by the same symbol Γv(x0). In
such games the payoffs are payed when the game terminates (at terminal
vertex xl ∈ Xn+1).

Theorem 6.2 In the cooperative game Γv(x0) with terminal payoffs
hi(xl), i = 1, . . . , n, only the vector h(x∗

l ) = {hi(x∗
l ), i = 1, . . . , n} whose

components are equal to the players payoffs at the terminal point of the
conditionally optimal trajectory may be time-consistent.

Proof. It follows from the time-consistency of the imputation ξ0 ∈
Wv(x0) that

ξ0 ∈
⋂

0≤k≤l

Wv(x∗
k).

But since the current game Γv(x∗
l ) is of zero duration, then therein

Lv(x∗
l ) = Wv(x∗

l ) = h(x∗
l ). Hence⋂

0≤k≤l

Wv(x∗
k) = h(x∗

l ),
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i.e., ξ0 = h(x∗
l ) and there are no other imputations. �

Theorem 6.3 For the existence of the time-consistent solution in the
game with terminal payoff it is necessary and sufficient that for all 0 ≤
k ≤ l

h(x∗
l ) ∈ Wv(x∗

k),

where h(x∗
l ) is the players payoff vector at the terminal point of the

conditionally optimal trajectory w∗ = {x∗
0, . . . , x

∗
k, . . . , x

∗
l }, with Wv(x∗

k),
0 ≤ k ≤ l being the solutions of the current games along the conditionally
optimal trajectory generated by the chosen principle of optimality.

This theorem is a corollary of the previous one.
Thus, if in the game with terminal payoffs there is a time consistent

imputation, then the players in the initial state x0 have to agree upon
realization of the vector (imputation) h(x∗

l ) ∈ Wv(x0) and, with the
motion along the optimal trajectory w∗ = {x∗

0, . . . , x
∗
k, . . . , x

∗
l }, at each

stage 0 ≤ k ≤ l this imputation h(x∗
l ) belongs to the solution of the

current games Γv(x∗
k).

As the theorem shows, in the game with terminal payoffs only a unique
imputation from the set Wv(x0) may be time-consistent. Which is a
highly improbable event since this means,that imputation h(x∗

l ) belongs
to the solutions of all subgames along the conditionally optimal tra-
jectory. Therefore, in such games there is no point in discussing both
the time-consistency of the solution Wv(x0) as a whole and its strongly
time-consistency.

7. Regularization
For some economic applications it is necessary that the instantaneous

gain of player i at the stage k, which by properly choosing β(k) regulates
ith player’s gain receipt with respect to time

βi(k)
∑
i∈N

hi(x∗
k) = αi(k)

be nonnegative (IDP, αi ≥ 0). Unfortunately this condition cannot be al-
ways guaranteed. In the same time we shall purpose a new characteristic
function (c. f.) based on classical one defined earlier, such that solution
defined in games with this new c. f. would be strongly time-consistent
and would guarantee nonnegative instantaneous gain of player i at each
stage k.

Let v(S; x∗
k) S ⊂ N be the c. f. defined in subgame Γ(x∗

k) in Section 2
using classical maxmin approach.
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For the function V (N ; x∗
k) (S = N) the Bellman’s equation along

w∗ = {x∗
0, . . . , x

∗
k, . . . , x

∗
l } is satisfied, i.e.,

V (N ; x0) =
k−1∑
m=0

n∑
i=1

hi(x∗
m) + V (N ; x∗

k). (6.12)

Define the new “regularized” function v(S; x0), S ⊂ N by formula

v(S; x0) =
l∑

m=0

v(S; x∗
m)
∑n

i=1 hi(x∗
m)

v(N ; x∗
m)

(6.13)

And in the same manner for 0 ≤ k ≤ l

v(S; x∗
k) =

l∑
m=k

v(S, x∗
m)
∑n

i=1 hi(x∗
m)

v(N ; x∗
m)

(6.14)

It can be proved that v is superadditive and v(N ; x∗
k) = v(N ; x∗

k)
Denote the set of imputations defined by characteristic functions

v(S; x∗
k), v(S; x∗

k), k = 0, 1, . . . , l by L(x∗
k) and L(x∗

k) correspondingly.
Let ξk ∈ L(x∗

k) be a selector, 0 ≤ k ≤ l, define

ξ =
l∑

k=0

ξk

∑n
i=1 hi(x∗

k)
v(N ; x∗

k)
, (6.15)

ξ
k =

l∑
m=k

ξm

∑n
i=1 hi(x∗

m)
v(N ; x∗

m)
. (6.16)

Definition 6.6 The set L(x0) consists of vectors defined by (6.15) for
all possible selectors ξk, 0 ≤ k ≤ l with values in L(x∗

k).

Let ξ ∈ L(x0) and the functions αi(k), i = 1, . . . , n, 0 ≤ k ≤ l satisfy
the condition

l∑
k=0

αi(k) = ξi, αi ≥ 0. (6.17)

The vector function α(k) = {αi(k)} defined by the formula (6.17) is
called “imputation distribution procedure” (IDP) (see Section 4). Define

k−1∑
m=0

αi(m) = ξi(k − 1), i = 1, . . . , n.
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The following formula connects αi and βi (see Section 4)

αi(k) = βi(k)
∑
i∈N

hi(x∗
k).

Let C(x0) ⊂ L(x0) be any of the known classical optimality principles
from the cooperative game theory (core, nucleolus, NM -solution, Shap-
ley value or any other OP ). Consider C(x0) as an optimality principle
in Γ(x0). In the same manner let C(x∗

k) be an optimality principle in
Γ(x∗

k), 0 ≤ k ≤ l.
The STC of the optimality principle means that if an imputation

ξ ∈ C(x0) and an IDP α(k) = {αi(k)} of ξ are selected, then after
getting by the players, on the first k stages, the amount

ξi(k − 1) =
k−1∑
m=0

αi(m), i = 1, . . . , n,

the optimal income (in the sense of the optimality principle C(x∗
k)) on the

last l−k stages in the subgame Γ(x∗
k) together with ξ(k−1) constitutes

the imputation belonging to the OP in the original game Γ(x0). The
condition is stronger than time-consistency, which means only that the
part of the previously considered “optimal” imputation belongs to the
solution in the corresponding current subgame Γ(x∗

k−1).
Suppose C(x0) = L(x0) and C(x∗

k) = L(x∗
k), then

L(x0) ⊃ ξ(k − 1)⊕ L(x∗
k)

for all 0 ≤ k ≤ l and this implies that the set of all imputations L(x0) if
considered as solution in Γ(x0) is strongly time consistent (here a ⊕ B,
a ∈ Rn, B ⊂ Rn is the set of vectors a + b, b ∈ B).

Suppose that the set C(x0) consists of unique imputation — the Shap-
ley value. In this case from time consistency the strong time-consistency
follows immediately.

Suppose now that C(x0) ⊂ L(x0), C(x∗
k) ⊂ L(x∗

k), 0 ≤ k ≤ l are cores
of Γ(x0) and correspondingly of subgames Γ(x∗

k).
We suppose that the sets C(x∗

k), 0 ≤ k ≤ l are nonempty. Let Ĉ(x0)
and Ĉ(x∗

k), 0 ≤ k ≤ l, be the sets of all possible vectors ξ, ξk from (6.15),
(6.16) and ξk ∈ C(x∗

k), 0 ≤ k ≤ l. And let C(x0) and C(x∗
k), 0 ≤ k ≤ l,

be cores of Γ(x0), Γ(x∗
k) defined for c. f. v(S; x0), v(S; x∗

k).

Proposition 6.1 The following inclusions hold

Ĉ(x0) ⊂ C(x0) (6.18)
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Ĉ(x∗
k) ⊂ C(x∗

k), 0 ≤ k ≤ l. (6.19)

Proof. The necessary and sufficient condition for imputation ξ belong
to the core C(x0) is the condition∑

i∈S

ξi ≥ v(S; x0), S ⊂ N.

If ξ ∈ Ĉ(x0), then

ξ =
l∑

m=0

ξm

∑n
i=1 hi(x∗

m)
v(N ; x∗

m)
,

where ξm ∈ C(x∗
m). Thus∑
i∈S

ξm
i ≥ v(S; x∗

m), S ⊂ N, 0 ≤ m ≤ l.

And we get

∑
i∈S

ξ̄i =
l∑

m=0

∑
i∈S

ξm

∑n
i=1 hi(x∗

m)
v(N ; x∗

m)

≥
l∑

m=0

v(S; x∗
m)
∑n

i=1 hi(x∗
m)

v(N ; x∗
m)

= v(S; x0).

the inclusion (6.18) is proved similarly.
Define a new solution in Γ(x0) as Ĉ(x0) which we will call “regu-

larized” subcore. Ĉ(x0) is always time-consistent and strongly time-
consistent

Ĉ(x0) ⊃
k−1∑
m=0

ξm

∑n
i=1 hi(x∗

m)
v(N ; x∗

m)
⊕ Ĉ(x∗

m), 0 ≤ k ≤ m.

Here under a⊕A, where a ∈ Rn, A ⊂ Rn the set of all vector a+b, b ∈
A is understood. The quantity

αi = ξm

∑n
i=1 hi(x∗

m)
v(N ; x∗

m)
≥ 0

is IDP and is nonnegative. �
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8. Cooperative stochastic games
Stochastic games (Shapley (1953b)) constitute a special subclass of

extensive form games, but our previous construction cannot be used
to create the cooperative theory for such games, since we considered
only games in extensive form (and incomplete information) which do
not contain chance moves. But chance move play an an essential role in
stochastic games. Although the theory is very close to the discussed in
previous sections one cannot derive from it immediately the results, for
cooperative stochastic games, and we shall provide here the correspond-
ing investigation in details.

8.1 Cooperative game
Consider a finite graph tree G = (Z, L) where Z is the set of all

vertexes and L : Z → 2Z point to set mapping (Lz = L(z) ⊂ Z, z ∈
Z). In our setting each vertex z ∈ Z is considered as an n-person
simultaneous (one stage) game

Γ(z) = 〈N ; Xz
1 , . . . , Xz

n; Kz
1 , . . . , Kz

n〉 ,

where N = {1, . . . , n} is the set of players which is the same for all
z ∈ Z, Xz

i — the set of strategies of player i ∈ N , Kz
i (xz

1, . . . , x
z
n) (we

suppose that Kz
i ≥ 0) is the payoff of player i (i ∈ N, xz

i ∈ Xz
i ). The

n-tuple xz = (xz
1, . . . , x

z
n) is called situation in the game Γ(z). The game

Γ(z) is called a stage game. For each z ∈ Z the transition probabilities

p(z, y; xz
1, . . . , x

z
n) = p(z, y; xz) ≥ 0,∑

y∈Lz

p(z, y; xz) = 1

are defined. p(z, y; xz) is the probability that the game Γ(y), y ∈ Lz,
will be played next after the game Γ(z) under the condition that in Γ(z)
the situation xz = (xz

1, . . . , x
z
n) was realized.

Also p(z, y; xz) ≡ 0 if Lz = ∅.
Suppose that in the game the path

z0, z1, . . . , zl (Lzl
= ∅)

is realized. Then the payoff of player i ∈ N is defined as

Ki(z0) =
l∑

j=0

K
zj

i (xzj

1 , . . . , x
zj
n ) =

l∑
j=0

K
zj

i (xzj ).
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But since the transition from one stage game to the other has stochastic
character, one has to consider the mathematical expectation of player’s
payoff

Ei(z0) = exp Ki(z0).

The following formula holds

Ei(z0) = Kz0
i (xz0) +

∑
y∈Lz0

p(z0, y; xz0)Ei(y) (6.20)

where Ei(y) is the mathematical expectation of player ith payoff in the
stochastic subgame starting from the stage game Γ(y), y ∈ Lz0 .

The strategy πi(·) of player i ∈ N is a mapping which for each stage
game Γ(y) determines which local strategy xy

i in this stage game is to
be selected. Thus πi(y) = xy

i for y ∈ Z.
We shall denote the described stochastic game as G(z0). Denote by

G(z) any subgame of G(z0) starting from the stage game Γ(z) (played
on a subgraph of the graph G starting from vertex z ∈ Z).

If πi(·) is a strategy of player i ∈ N in G(z0), then the trace of this
strategy πy

i (·) defined on a subtree G(y) of G is a strategy in a subgame
G(y) of the game G(z0).

The following version of (6.20) holds for a subgame G(z) (for the
mathematical expectation of player ith payoff in G(z))

Ei(z) = Kz
i (xz) +

∑
y∈Lz

p(z, y; xz)Ei(y).

As mixed strategies in G(z0) we consider behavior strategies (Kuhn
(1953)). Denote them by qi(·), i ∈ N , and the corresponding situation
as

qN (·) = (q1(·), . . . , qn(·)).
Here qi(z) for each z ∈ Z is a mixed strategy of player i in a stage game
Γ(z).

Denote by π̄N (·) = (π̄1(·), . . . , π̄n(·)) the n-tuple of pure strategies in
G(z0) which maximizes the sum of expected players’ payoffs (cooperative
solution). Denote this maximal sum by V (z0)

V (z0) = max E(z0) = max
[∑

i∈N

Ei(z0)
]
.

It can be easily seen that the maximization of the sum of the expected
payoffs of players over the set of behavior strategies does not exceed
V (z0).



6 Cooperative Dynamic Games with Incomplete Information 129

In the same way we can define then cooperative n-tuple of strategies
for any subgame G(z), z ∈ Z, starting from the stage game Γ(z). From
Bellman’s optimality principle it follows that each of these n-tuples is
a trace of π̄N (·) in the subgame Γ(z). The following Bellman equation
holds (Bellman (1957))

V (z) = max
xz

i
∈Xz

i
i∈N

{∑
i∈N

Kz
i (xz

i ) +
∑
y∈Lz

p(z, y; xz)V (y)
}

=
∑
i∈N

Kz
i (x̄z) +

∑
y∈Lz

p(z, y; x̄z)V (y) (6.21)

with the initial condition

V (z) = max
xz

i ∈Xz
i i∈N

∑
i∈N

Kz
i (xz), z ∈ {z : Lz = ∅}. (6.22)

The maximizing n-tuple π̄N (·) = (π̄1(·), . . . , π̄n(·)) defines the probabil-
ity measure over the game tree G(z0). Consider a subtree Ĝ(z0) of G(z0)
which consists of paths in G(z0) having the positive probability under
the measure generated by π̄N (·). We shall call Ĝ(z0) cooperative subtree
and the vertexes in Ĝ(z0) shall denote by CZ ⊂ Z.

For each z ∈ CZ define a zero-sum game over the structure of the
graph G(z) between the coalition S ⊂ N as maximizing player and
coalition N \ S as minimizing. Let V (S, z) be the value of this game
in behavior strategies (the existence follows from Kuhn (1953)). Thus
for each subgame Ḡ(z), z ∈ CZ, we can define a characteristic function
V (S, z),S ⊂ N , with V (N, z) = V (z) defined by (6.21), (6.22). Consider
the cooperative version G(z), z ∈ Z, of a subgame G(z) with character-
istic function V (S, z).

Let I(z) be the imputation set in G(z)

I(z) =
{

αz :
∑
i∈N

αz
i = V (z) = V (N, z), αz

i ≥ V ({i}, z)
}

. (6.23)

As solution in G(z) we can understand any given subset C(z) ⊂ I(z).
This can be any of classical cooperative solution (nucleous, core, NM-
solution, Shapley Value). For simplicity (in what follows) we suppose
that C(z) is a Shapley Value

C(z) = Sh(z) = {Sh1(z), . . . , Shn(z)} ⊂ I(z)

but all conclusions can be automatically applied for other cooperative
solution concepts.
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8.2 Cooperative Payoff Distribution Procedure
(CPDP)

The vector function β(z) = (β1(z), . . . , βn(z)) is called CPDP if∑
i∈N

βi(z) =
∑
i∈N

Kz
i (x̄z

1, . . . , x̄
z
n), (6.24)

where x̄z = (x̄z
1, . . . , x̄

z
n) satisfies (6.21). In each subgame G(z) with

each path z̄ = z, . . . , zm (Lzm = ∅) in this subgame one can associate
the random variable — the sum of βi(z) along this path z̄. Denote the
expected value of this sum in G(z) as Bi(z).

It can be easily seen that Bi(z) satisfies the following functional equa-
tion

Bi(z) = βi(z) +
∑
y∈Lz

p(z, y; xz)Bi(y). (6.25)

Calculate Shapley Value (Shapley (1953a)) for each subgame G(z) for
z ∈ CZ

Shi(z) =
∑

S⊂Ni∈S

(|S| − 1)!(n− |S|)!
n!

(V (S, z)− V (S \ {i}, z)) (6.26)

where |S| is the number of elements in S.
Define γi(z) by formula

Shi(z) = γi(z) +
∑
y∈Z

p(z, y; xz)Shi(y). (6.27)

Since Sh(z) ∈ I(z) we get from (6.27)

V (N ; z) =
∑
i∈N

γi(z) +
∑
y∈Lz

p(z, y; xz)V (N ; y),

andV (N ; z) =↔
∑
i∈N

γi(z), for z ∈ {z : Lz = ∅}. (6.28)

Comparing (6.28) and (6.21) we get that∑
i∈N

γi(z) =
∑
i∈N

Kz
i (x̃z) (6.29)

for xz = (xz
1, . . . , x

z
n), xz

i ∈ Xz
i , i ∈ N and thus the following lemma

holds

Lemma 6.1 γ(z) = (γ1(z), . . . , γn(z)) defined by (6.27) is CPDP.
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Definition 6.7 Shapley Value {Sh(z0)} is called time-consistent in
G(z0) if there exists a nonnegative CPDP (βi(z) ≥ 0) such that the
following condition holds

Shi(z) = βi(z) +
∑
y∈Lz

p(z, y; xz)Shi(y), i ∈ N, z ∈ Z. (6.30)

From (6.30) we get

βi(z) = Shi(z)−
∑
y∈Lz

p(z, y; xz)Shi(y)

and the nonnegativity of CPDP βi(z) can follow from the monotonic-

ity of Shapley Value along the paths on cooperative subgame ˆ̂
G(z0)

(Shi(y) ≤ Shi(z) for y ∈ Lz). In the same time the nonnegativity of
CPDP βi(z) from (6.30) in general does not hold.

Denote as before by Bi(z) the expected value of the sums of βi(y)

from (6.30), y ∈ Z along the paths in the cooperative subgame ˆ̂
G(z) of

the game ˆ̂
G(z0).

Lemma 6.2
Bi(z) = Shi(z), i ∈ N. (6.31)

We have for Bi(z) the equation (6.25)

Bi(z) = βi(z) +
∑
y∈Lz

p(z, y; xz)Bi(y) (6.32)

with initial condition

Bi(z) = Shi(z) for z ∈ {z : Lz = ∅}, (6.33)

and for the Shapley Value we have

Shi(z) = βi(z) +
∑
y∈Lz

p(z, y; xz)Shi(y). (6.34)

From (6.32), (6.33), (6.34) it follows that Bi(z) and Shi(z) satisfy the
same functional equations with the same initial condition (6.33), and
the proof follows from backward induction consideration.

Lemma 6.2 gives natural interpretation for CPDP βi(z), βi(z) can
be interpreted as the instantaneous payoff which player has to get in
a stage game Γ(z) when this game actually occurs along the paths of

cooperative subtree ˆ̂
G(z0), if his payoff in the whole game equals to
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the i-th component of the Shapley Value. So the CPDP shows the
distribution in time of the Shapley Value in such a way that the players
in each subgame are oriented to get the current Shapley Value of this
subgame.

8.3 Regularization
In this section we purpose the procedure similar to one used in dif-

ferential cooperative games (Petrosjan (1993)) which will guarantee the
existence of time-consistent Shapley Value in the cooperative stochastic
game (nonnegative CPDP).

Introduce

β̄i(z) =
∑

i∈N Ki(x̄z
1, . . . , x̄

z
n)

V (N, z)
Shi(z) (6.35)

where x̄z = (x̄z
1, . . . , x̄

z
n), z ∈ Z is the realization of the n-tuple of strate-

gies π̄(·) = (π̄1(·), . . . , π̄n(·)) maximizing the mathematical expectation
of the sum of players’ payoffs in the game G(z0) (cooperative solution)
and V (N, z) is the value of c. f. for the grand coalition N in a sub-
game G(z). Since

∑
i∈N

Shi(z) = V (N, z) from (6.35) it follows that β̄i(z),

i ∈ N , z ∈ Z, is CPDP. From (6.35) it follows also that the instanta-
neous payoff of the player in a stage game Γ(z) must be proportional to
the Shapley Value in a subgame G(z) of the game G(z0).

Define the regularized Shapley Value (RSV) in G(z) by induction as
follows

Ŝhi(z) =
∑

i∈N Ki(x̄z)
V (N, z)

Shi(z) +
∑
y∈Lz

p(z, y; x̄z)Ŝhi(y) (6.36)

with the initial condition

Ŝhi(z) =
∑

i∈N Ki(x̄z)
V (N, z)

Shi(z) = Shi(z) for z ∈ {z : Lz = ∅}. (6.37)

Since Ki(x) ≥ 0 from (6.35) it follows that β̄i(z) ≥ 0, and the new
regularized Shapley Value Ŝhi(z) is time-consistent by (6.36).

Introduce the new characteristic function V̂ (S, z) in G(z) by induction
using the formula (S ⊂ N)

V̂ (S, z) =
∑

i∈N Ki(x̄z)
V (N, z)

V (S, z) +
∑
y∈Lz

p(z, y; x̄z)V̂ (S, y) (6.38)

with initial condition

V̂ (S, z) = V (S, z) for z ∈ {z : Lz = ∅}.
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Here V (S, z) is superadditive, so is V̂ (S, z), and V̂ (N, z) = V (N, z)
since both functions V̂ (N, z) and V (N, z) satisfy the same functional
equation (6.21) with the initial condition (6.22). Rewriting (6.38) for
{S \ i} we get

V̂ (S \ i, z) =
∑

i∈N Ki(x̄z)
V (N, z)

V (S \ i, z)+
∑
y∈Lz

p(z, y; x̄z)V̂ (S \ i, y). (6.39)

Subtracting (6.39) from (6.38) and multiplying on
(|S| − 1)!(n− |S|)!

n!
and summing upon S ⊂ N , S � i we get∑

S⊂N
S�i

(|S|−1)!(n−|S|)!
n!

[
V̂ (S, z)−V̂ (S \ i, z)

]

=

{∑
S⊂N
S�i

(|S|−1)!(n−|S|)!
n!

[V (S, z)−V (S \ i, z)]

}∑
i∈N Ki(x̄z)
V (N, z)

+
∑
y∈Lz

p(z, y; x̄z)

{∑
S⊂N
S�i

(|S|−1)!(n−|S|)!
n!

[V (S, z)−V (S \ i, z)]

}
.

(6.40)

From (6.36), (6.37) and (6.40) it follows that (RSV) Ŝh(z) is a Shapley
Value for the c. f. V̂ (S, z), since we got that Ŝhi(z) and the function∑

S⊂NS�i

(|S| − 1)!(n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ i, z)

]
satisfy the same functional equations with the initial condition.∑

S⊂N
S�i

(|S| − 1)!(n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ i, z)

]
=

∑
S⊂N
S�i

(|S| − 1)!(n− |S|)!
n!

[V (S, z)− V (S \ i, z)] = Shi(z)

which also coincides with (6.37).
Thus

Ŝhi =
∑
S⊂N
S�i

(|S| − 1)!(n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ i, z)

]
.
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Theorem 6.4 The RSV is Time-consistent and is a Shapley Value for
the regularized characteristic function V̂ (S, z) defined for any subgame
G(z) of the stochastic game G(z0).
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Chapter 7

ELECTRICITY PRICES IN A GAME
THEORY CONTEXT

Mireille Bossy
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Geert Jan Olsder
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Etienne Tanré

Abstract We consider a model of an electricity market in which S suppliers offer
electricity: each supplier Si offers a maximum quantity qi at a fixed
price pi. The response of the market to these offers is the quantities
bought from the suppliers. The objective of the market is to satisfy its
demand at minimal price.

We investigate two cases. In the first case, each of the suppliers
strives to maximize its market share on the market; in the second case
each supplier strives to maximize its profit.

We show that in both cases some Nash equilibrium exists. Never-
theless a close analysis of the equilibrium for profit maximization shows
that it is not realistic. This raises the difficulty to predict the behavior
of a market where the suppliers are known to be mainly interested by
profit maximization.

1. Introduction
Since the deregulation process of electricity exchanges has been initi-

ated in European countries, many different market structures have ap-
peared (see e.g. Stoft (2002)). Among them are the so called day ahead
markets where suppliers face a decision process that relies on a central-
ized auction mechanism. It consists in submitting bids, more or less
complicated, depending on the design of the day ahead market (power
pools, power exchanges, . . . ). The problem is the determination of the
quantity and price that will win the process of selection on the market.
Our aim in this paper is to describe the behavior of the participants
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(suppliers) through a static game approach. We consider a market where
S suppliers are involved. Each supplier offers on the market a maximal
quantity of electricity, q, that it is ready to deliver at a fixed price p.
The response of the market to these offers is the quantities bought from
each supplier. The objective of the market is to satisfy its demand at
minimal price.

Closely related papers are Supatchiat, Zhang and Birge (2001) and
Madrigal and Quintana (2001). They also consider optimal bids on elec-
tricity markets. Nevertheless, in Supatchiat, Zhang and Birge (2001),
the authors take the quantity of electricity proposed on the market as
exogenous, whereas here we consider the quantity as part of the bid.
In Madrigal and Quintana (2001), the authors do not consider exactly
the same kind of market mechanism, in particular they consider open
bids and fix the market clearing price as the highest price among the
accepted bids. They consider fixed demand but also stochastic demand.

The paper is organized as follows. The model is described in Section 2,
together with the proposed solution concept. In Section 3 we consider
the case where the suppliers strive to maximize their market share, while
in Section 4 we analyze the case where the goal is profit maximization.
We conclude in Section 5 with some comparison remarks on the two
criteria used, and some possible directions for future work.

2. Problem statement

2.1 The agents and their choices
We consider a single market, that has an inelastic demand for d

units of electricity that is provided by S local suppliers called Sj , j =
1, 2, . . . ,S.

2.1.1 The suppliers. Each supplier Sj sends an offer to the
market that consists in a price function pj(·), that associates to any
quantity of electricity q, the unit price pj(q) at which it is ready to sell
this quantity.

We shall use the following special form of the price function:

Definition 7.1 For supplier Sj, a quantity-price strategy, referred to
as the pair (qj , pj), is a price function pj(·) defined by

pj(q) =
{

pj ≥ 0, for q ≤ qj ,
+∞, for q > qj .

(7.1)

qj is the maximal quantity Sj offers to sell at the finite price pj. For
higher quantities the price becomes infinity.
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Note that we use the same notation, (pj) for the price function and
for the fixed price. This should not cause any confusion.

2.1.2 The market. The market collects the offers made by
the suppliers, i.e., the price functions p1(·), p2(·), . . . , pS(·), and has to
choose the quantities qj to buy from each supplier Sj , j = 1, . . . ,S. The
unit price paid to Sj is pj(qj).

We suppose that an admissible choice of the market is such that the
demand is fully satisfied at finite price, i.e., such that,

S∑
j=1

qj = d, qj ≥ 0, and pj(qj) < +∞, ∀j. (7.2)

When the set of admissible choices is empty, i.e., when the demand
cannot be satisfied at finite cost (for example when the demand is too
large with respect to some finite production capacity), then the market
buys the maximal quantity of electricity it can at finite price, though
the full demand is not satisfied.

2.2 Evaluation functions and objective
2.2.1 The market. We suppose that the objective of the mar-
ket is to choose an admissible strategy (i.e., satisfying (7.2)), (q1, . . . , qS)
in response to the offers p1(·), . . . , pS(·) of the suppliers, so as to minimize
the total cost.

More precisely the market problem is:

min
{qj}j=1···S

ϕM (p1(·), . . . , pS(·), q1, . . . , qS), (7.3)

with

ϕM (p1(·), . . . , pS(·), q1, . . . , qS) def=
S∑

j=1

pj(qj)qj , (7.4)

subject to constraints (7.2).

2.2.2 The suppliers. The two criteria, profit and market
share, will be studied for the suppliers:

The profit — When the market buys quantities qj , j = 1, . . . ,S,
supplier Sj ’s profit to be maximized is

ϕSj (p1(·), . . . , pS(·), qj)
def= pj(qj)qj − Cj(qj), (7.5)

where Cj(·) is the production cost function.
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Assumption 7.1 We suppose that, for each supplier Sj, the production
cost Cj(·) is a piecewise C1 and convex function.

When Cj is not differentiable we define the marginal cost C ′(q) as
limε→0+

dCj

dq (q − ε).
Because of the assumption made on Cj, the marginal cost C ′

j is monotonic
and nondecreasing. In particular it can be a piecewise constant increas-
ing function.

A typical special case in electricity production is when the marginal
costs are piecewise constant. It corresponds to the fact that the
producers starts producing in its cheapest production facility. If
the market asks more electricity, the producers start up the one
but cheapest production facility, etc.

The market share — for supplier Sj , qj is the quantity bought
from him by the market, i.e., we define this criterion as

ϕSj (p1(·), . . . , pS(·), qj)
def= qj . (7.6)

For this criterion, it is necessary to introduce a price constraint.
As a matter of fact, the obvious, but unrealistic, solution without
price constraint would be to set the price to zero whatever the
quantity bought is.

We need a constraint such that, for example, the profit is non-
negative, or such that the unit price is always above the marginal
cost, C ′

j .

For the sake of generality we suppose the existence of a minimal
unit price function Lj for each supplier. Supplier Sj is not allowed
to sell the quantity q at a unit price lower than Lj(q).

A natural choice for Lj is C ′
j , which expresses the usual constraint

that the unit price is above the marginal cost.

2.3 Equilibria
From a game theoretical point of view, a two time step problem with

S + 1 players will be formulated. At a first time step the suppliers an-
nounce their offers (the price functions) to the market, and at the second
time step the market reacts to these offers by choosing the quantities qj

of electricity to buy from each supplier. Each player strives to optimize
(i.e., maximize for the suppliers, minimize for the market) his own cri-
terion function (ϕSj , j = 1, . . . ,S, ϕM ) by properly choosing his own
decision variable(s). The numerical outcome of each criterion function
will in general depend on all decision variables involved. In contrast to
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conventional optimization problems, in which there is only one decision
maker, and where the word “optimum” has an unambiguous meaning,
the notion of “optimality” in games is open to discussion and must be
defined properly. Various notions of “optimality” exist (see Başar and
Olsder (1999)).

Here the structure of the problem leads us to use a combined Nash
Stackelberg equilibrium. Please note that the “leaders”, i.e., suppliers,
choose and announce functions pj(·). In Başar and Olsder (1999) the
corresponding equilibrium is referred to as inverse Stackelberg.

More precisely, define {qj(p1(·), . . . , pS(·)), j = 1, . . . ,S}, the best re-
sponse of the market to the offers (p1(·), . . . , pS(·)) of the suppliers, i.e.,
a solution of the problem ((7.2)-(7.3)). The choices ({p∗j (·)}, {q∗j}, j =
1, . . . ,S) will be said optimal if the following holds true,

q∗j
def= q∗j (p

∗
1(·), . . . , p∗S(·)), (7.7)

For every supplier Sj , j = 1, . . . ,S and any admissible price function
p̃j(·) we have

ϕSj (p
∗
1(·), . . . , p∗S(·), q∗j ) ≥ ϕSj (p

∗
1(·), . . . , p̃j(·), . . . , p∗S(·), q̃j), (7.8)

where
q̃j

def= q∗j (p
∗
1(·), . . . , p̃j(·), . . . , p∗S(·)). (7.9)

The Nash equilibrium Equation (7.8) tells us that supplier Sj cannot
increase its outcome by deviating unilaterally from its equilibrium choice
(p∗j (·)). Note that in the second term of Equation (7.8), the action of
the market is given by (7.9): if Sj deviates from p∗j (·) by offering the
price function p̃j(·), the market reacts by buying from Sj the quantity
q̃j instead of q∗j .

Remark 7.1 As already noticed the minimization problem ((7.2)–(7.3))
defining the behavior of the market may not have any solution. In that
case the market reacts by buying the maximal quantity of electricity it
can at finite price.

At the other extreme, it may have infinitely many solutions (for ex-
ample when several suppliers use the same price function). In that case
q∗j (·) is not uniquely defined by Equation (7.7), nor consequently is the
Nash equilibrium defined by Equation (7.8).

We would need an additional rule that says how the market reacts
when its minimization problem has several (possibly infinitely many)
solutions. Such an additional rule could be, for example, that the mar-
ket first buys from supplier S1 then from supplier S2, etc. or that the
market prefers the offers with larger quantities, etc. Nevertheless, it is
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not necessary to make this additional rule explicit in this paper. So we
do assume that there is an additional rule, known by all the suppliers
that insures that the reaction of the market is unique.

3. Suppliers maximize market share
In this section we analyze the case where the suppliers strive to max-

imize their market shares by appropriately choosing the price functions
pj(·) at which they offer their electricity on the market. We restrict our
attention to price functions pj(·) given in Definition 7.1 and referred to
as the quantity-price pair (qj , pj).

For supplier Sj we denote Lj(·) its minimal unit price function that
we suppose nondecreasing with respect to the quantity sold. Classically
this minimal unit price function may represent the marginal production
cost.

Using a quantity-price pair (qj , pj) for each supplier, the market prob-
lem (7.3) can be written as

under

min
{qj ,j=1,...,S}

S∑
j=1

pjqj ,

0 ≤ qj ≤ qj ,
S∑

j=1

qj = d.

To define a unique reaction of the market we use Remark 7.1, when
Problem (7.9) does not have any solution (i.e., when

∑S
j=1 qj < d) or

at the other extreme when Problem (7.9) has possibly infinitely many
solutions.

Hence we can define the evaluation function of the suppliers by

JSj ((q1, p1), . . . , (qS , pS)) def= ϕSj (p1(·), . . . , pS(·), q∗j (p1(·), . . . , pS(·)),

where the price function pj(·) is the pair (qj , pj) and q∗j (p1(·), . . . , pS(·))
is the unique optimal reaction of the market.

Now the Nash Stackelberg solution can be simply expressed as a Nash
solution, i.e., find u∗ def= (u∗

1, . . . , u
∗
S), u∗

j
def= (q∗j , p

∗
j ), so that for any

supplier Sj and any pair ũj = (q̃j , p̃j) we have

JSj (u
∗) ≥ JSj (u

∗
−j , ũj), (7.10)

where (u∗
−j , ũj) denotes the vector (u∗

1, . . . , u
∗
j−1, ũj , u

∗
j+1, . . . , u

∗
S).
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Assumption 7.2 We suppose that there exist quantities Qj for j =
1, . . . ,S, such that

S∑
j=1

Qj ≥ d, (7.11)

and such that the minimal price functions Lj are defined for the set
[0, Qj ] to R

+, with finite values for any q in [0, Qj ]. The quantities Qj

represent the maximal quantities of electricity supplier Sj can offer to
the market. It may reflect maximal production capacity for producers
or more generally any other constraints such that transportation con-
straints.

Remark 7.2 The condition (7.11) insures that shortage can be avoided
even if this implies high, but finite, prices.

We consider successively in the next subsections the cases where the
minimal price functions Lj are continuous (Subsection 3.1) or discon-
tinuous (Subsection 3.2). This last case is the most important from the
application point of view, since we often take Lj = C ′

j which is not in
general continuous.

3.1 Continuous strictly increasing minimal price
We suppose the following assumption holds,

Assumption 7.3 For any supplier Sj, j ∈ {1, . . . ,S} the minimal price
function Lj is continuous and strictly increasing from [0, Qj ] to R

+.

Proposition 7.1

1. Suppose that Assumption 7.3 holds. Then any strategy profile u∗ =
(u∗

1, u
∗
2, . . . , u

∗
S) with u∗

j = (q∗j , p
∗) such that

Lj(q∗j ) = p∗, ∀j ∈ {1, . . . ,S} such that q∗j > 0
Lj(0) ≥ p∗, ∀j ∈ {1, . . . ,S} such that q∗j = 0∑

j∈{1,2···S} q∗j = d,
(7.12)

is a Nash equilibrium.

2. Suppose furthermore that Assumption 7.2 holds, then the equilib-
rium exists and is unique.

We omit the proof of this proposition which is in the same vein as the
proof of the following Proposition 7.2. Nevertheless it can be found in
Bossy et al. (2004).
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3.2 Discontinuous nondecreasing minimal price
We now address the problem where the minimal price functions Lj are

not necessarily continuous and not necessarily strictly increasing. Nev-
ertheless we assume that they are non decreasing. We set the following
assumption,

Assumption 7.4 We suppose that the minimal price functions Lj are
nondecreasing, piecewise continuous, and that lim

y→x−
Lj(y) = L(x) for

any x ≥ 0.

Replacing Assumption 7.3 by Assumption 7.4, there may not be any
strategy profile or at the other extreme there may be possibly infinitely
many strategy profiles that satisfy Equations (7.12). Proposition 7.1 fail
to characterize the Nash equilibria.

For any p ≥ 0, we define ρj(p), the maximal quantity supplier Sj can
offer at price p, i.e.,

ρj(p) =
{

max{q ≥ 0,Lj(q) ≤ p}, if j is such that Lj(0) ≤ p,
0, otherwise .

(7.13)

Hence ρj(p) is only determined by the structure of the minimal price
function Lj . In particular it is not dependent on any choice of the
suppliers.

As a consequence of Assumption 7.4, ρj(p) increases with p, and for
any p ≥ 0, limy→p+ ρj(y) = ρj(p).

Denote by O(·) the function from R
+ to R

+ defined by

O(p) =
S∑

j=1

ρj(p). (7.14)

O(p) is the maximal total offer that can be achieved at price p by the
suppliers respecting the price constraints. The function O is possibly
discontinuous, non decreasing (but not necessarily strictly increasing)
and satisfies limy→p+ O(y) = O(p). Assumption 7.2 implies that

O(sup
j
Lj(Qj)) ≥

S∑
j=1

ρj(Lj(Qj)) ≥
S∑

j=1

Qj ≥ d,

hence there exists a unique p∗ ≤ supj Lj(Qj) < +∞ such that

O(p∗) =
S∑

j=1

ρj(p∗) ≥ d,

∀ε > 0, O(p∗ − ε) < d.

(7.15)
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The price p∗ represents the minimal price at which the demand could
be fully satisfied taking into account the minimal price constraint.

Assumption 7.5 For p∗ defined by (7.15), one of the following two con-
dition holds:

1. We suppose that there exists a unique j̄ ∈ {1, . . . ,S} such that
L−1

j̄
(p∗) �= ∅, where L−1

j (p) def= {q ∈ [0, d], Lj(q) = p}. In particu-
lar, there exists a unique j̄ ∈ {1, . . . ,S} such that Lj̄(ρj̄(p∗)) = p∗,
and such that for j �= j̄, we have Lj(ρj(p∗)) < p∗.

2. At price p∗ the maximal total quantity suppliers are allowed to
propose is exactly d, i.e.,

∑S
j=1 ρj(p∗) = d.

Proposition 7.2 Suppose Assumptions 7.4 and 7.5 hold. Consider the
strategy profile u∗ = (u∗

1, . . . , u
∗
S), u∗

j = (q∗j , p
∗) such that,

p∗ is defined by Equation (7.15),

for j �= j̄, i.e. such that Lj(ρj(p∗)) < p∗ (see Assumption 7.5), we
have q∗j = ρj(p∗) and p∗j ∈ [Lj(q∗j ), p

∗[ ,

for j = j̄, i.e. such that Lj̄(ρj̄(p∗)) = p∗ (see Assumption 7.5), we
have q∗j ∈ [min((d −∑k �=j̄ q∗k) , ρj̄(p∗)) , ρj̄(p∗)], and p∗̄

j
∈ [p∗, p[,

where p is defined by

p
def= min{Lk(q∗+k ), k �= j̄} (7.16)

then, u∗ is a Nash equilibrium.

Remark 7.3 There exists an infinite number of strategy profiles that
satisfy the conditions of Proposition 7.2 (the prices p∗j are defined as
elements of some intervals). Nevertheless, we can observe that there is
no need for any coordination among the suppliers to get a Nash equilib-
rium. Each supplier can choose independently a strategy as described
in Proposition 7.2, the resulting strategy profile is a Nash equilibrium.
Note that this property does not hold in general for non-zero sum games
(see the classical “battle of the sexes” game Luce and Raifa (1957)). We
can also observe that for each supplier the outcome is the same whatever
the Nash equilibrium set. In that sense we can say that all these Nash
equilibria are equivalent.

A reasonable manner to select a particular Nash equilibrium is to sup-
pose that the suppliers may strive for the maximization of their profits as
an auxiliary criteria. More precisely, among the equilibria with market
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share maximization as criteria, they choose the equilibrium that brings
them the maximal income. Because the equilibria we have found are
independent, it is possible for each supplier to choose its preferred equi-
librium. More precisely, with this auxiliary criterion, the equilibrium
selected will be,

q∗j = ρj(p∗), p∗j = p∗ − ε, for j �= j̄ (i.e. such that Lj(ρj(p∗)) < p∗),
q∗̄
j

= ρj̄(p∗), p∗̄
j

= p− ε,

where ε can be defined as the smallest monetary unit.

Remark 7.4 Assumption 7.5 is necessary for the solution of the market
problem (7.9) to have a unique solution for the strategies described in
Proposition 7.2, which are consequently well defined.

If Assumption 7.5 does not hold, we would need to make the additional
decision rule of the market explicit (see Remark 7.1). This is shown in
the following example (Figure 7.1), with S = 2. The Nash equilibrium
may depend upon the additional decision rule of the market. In Fig-
ure 7.1, we have L1(ρ1(p∗)) = L2(ρ2(p∗)) = p∗ and ρ1(p∗) + ρ2(p∗) > d,
where p∗ is the price defined at (7.15). This means that Assumption 7.5
does not hold. Suppose the additional decision rule of the market

p*

dq1~ q1^
d−q2^ d−q2~

p2~

Figure 7.1. Example

is to give the preference to supplier S1, i.e., for a pair of strategies
((q1, p), (q2, p)) such that q1 + q2 > d the market reacts by buying the
respective quantities q1 and d − q1 respectively to supplier S1 and to
supplier S2. The Nash equilibria for market share maximization are,

u∗
1 = (q∗1 ∈ [d− q̃2, q̂1], p∗), u∗

2 = (q̃2, p
∗
2 ∈ [p̃2, p

∗[),

where q̂i = ρi(p∗), q̃i = ρi(p∗ − ε), and p̃2 = L2(q̃2).
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Suppose now the additional decision rule of the market is a preference
for supplier S2. The previous pair of strategies is not a Nash equilibrium
any more. Indeed, supplier S2 can increase its offer, at price p∗, to the
quantity q̂2. The equilibrium in that case is

u∗
1 = (q∗1 ∈ [d− q̂2, q̂1], p∗), u∗

2 = (q̂2, p
∗).

Remark 7.5 In Proposition 7.2 we see that at equilibrium, the maximal
price p̄ that can be proposed is given by (7.16). A sufficient condition
for that price to be finite is that for any j ∈ {1, 2, . . . ,S} we have,∑

k �=j

Qk > d. (7.17)

Equation (7.17) means that with the withdrawal of an individual sup-
plier, the demand can still be satisfied. This will insure that none of the
suppliers can create a fictive shortage and then increase unlimitedly the
price of electricity.

Proof of Proposition 7.2. We have to prove that for supplier Sj

there is no profitable deviation of strategy, i.e. for any uj �= u∗
j , we have

JPj (u
∗
−j , u

∗
j ) ≥ JPj (u

∗
−j , uj).

Suppose first that j �∈ S(p∗) so that Lj(ρj(p∗)) < p∗. Since for the
proposed Nash strategy u∗

j = (q∗j , p
∗
j ), we have p∗j < p∗, the total

quantity proposed by Sj is bought by the market (qj = q∗j ). Hence
Jj(u∗) = q∗j .

– If the deviation uj = (qj , pj) is such that qj ≤ q∗j , then clearly
JPj (u

∗) = q∗j ≥ qj ≥ JPj (u
∗
−j , uj), whatever the price pj is.

– If the deviation uj = (qj , pj) is such that qj > ρj(p∗) then
necessarily, by the minimal price constraint, Assumption 7.5
and the definition of q∗j = ρj(p∗), we have

pj ≥ Lj(qj) ≥ Lj(q∗ +
j ) > sup

k �=j
p∗k.

Hence now supplier Sj is the supplier with the highest price.
Consequently the market first buys from the other suppliers
and satisfies the demand, when necessary, with the electricity
produced by supplier Sj (instead of the supplier Sj̄). Hence
the market share of Sj cannot increase with this deviation.

Suppose now that j = j̄, i.e., we have, Lj̄(ρj̄(p∗)) = p∗.
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– If the first item of Assumption 7.5 holds, then at the proposed
Nash equilibrium, supplier Sj̄ is the supplier that meets the
demand since it proposes the highest price.
Hence if supplier Sj̄ wants to increases its market share, it
has to sell a quantity q̃j̄ ≥ d−∑k �=j̄ q∗k. But we have,

Lj̄(q̃j̄) ≥ Lj̄(d−
∑
k �=j̄

q∗k) = p∗ > max
k �=j̄

p∗k.

This proves that the quantity q̃j̄ cannot be offered at a price
such that the market would buy it.

– If the second item of Assumption 7.5 holds, then the propo-
sition states that the quantity proposed, and bought by the
market is ρj̄ . An increase in the quantity proposed would im-
ply a higher price, which would not imply a higher quantity
proposed by the market since now the supplier would have
the highest price.

�

Now we suppose that Assumption 7.5 does not hold. So for the
price p∗ defined by (7.15) we have more than one supplier Sj such that
Lj(ρj(p∗)) = p∗.

As shown in the example of Remark 7.4 (see Figure 7.1), the Nash
equilibria may depend upon the reaction of the market when two sup-
pliers, Si and Sj , have the same price pi = pj = p∗. It is clear that for
a supplier Sj in such a way that Lj(ρj(p∗)) = p∗, two possibilities may
occur at equilibrium. Either, for some supplier Sj that fixes its price to
pj = p∗, the market reacts in such a way that qj < ρj(p∗ − ε), in which
case at equilibrium we will have p∗j = p∗ − ε, or the market reacts such
that qj ≥ ρj(p∗ − ε), and in that case we will have p∗j = p∗.

Although the existence of Nash equilibria seems clear for any possible
reaction of the market, we restrict our attention to the case where the
market reacts by choosing quantities (qj)j=1,...S that are monotonically
nondecreasing with respect to the quantity qj proposed by each supplier
Sj . More precisely we have the following assumption,

Assumption 7.6 Let u = (u1, . . . ,uS) be a strategy profile of the sup-
pliers with ui = (qi, p) for i ∈ {1, . . . , k}. Suppose the market has to use
its additional rule to decide how to share the quantity d̃ ≤ d among sup-
pliers S1 to Sk (the quantity d− d̃ has already been bought from suppliers
with a price lower than p).

Let i ∈ {1, . . . , k}, we define the function that associates qi to any
qi ≥ 0, where qi is the i-th component of the reaction (q1, . . . , qS) of the
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market to the strategy profile (u−i, (qi, p)). We suppose that this function
is not decreasing with respect to the quantity qi.

The meaning of this assumption is that the market does not penalize
an “over-offer” of a supplier. For fixed strategies u−i of all the suppliers
but Si, if supplier Si, such that pi = p increases its quantity qi, then
the quantity bought by the market from Si cannot decrease. It can
increase or stay constant. In particular, it encompasses the case where
the market has a preference order between the suppliers (for example, it
first buys from supplier Sj1 , then supplier Sj2 etc), or when the market
buys some fixed proportion from each supplier. It does not encompass
the case where the market prefers the smallest offer.

Proposition 7.3 Suppose Assumption 7.5 does not hold while Assump-
tion 7.6 does. Let the strategy profile ((q∗1, p∗1), . . . , (q∗S , p∗S)) be defined
by

– If Sj is such that Lj(ρj(p∗)) < p∗ then

p∗j = p∗ − ε, q∗j = ρj(p∗ − ε).

– If Sj is such that Lj(ρj(p∗)) = p∗, then either

p∗j = p∗, q∗j = ρj(p∗), (7.18)

when the reaction of the market is such that

qj ≥ ρj(p∗ − ε), ∀ε > 0,

or
p∗j = p∗ − ε, q∗j = ρj(p∗ − ε). (7.19)

when the new reaction of the market, for a deviation pj = p∗ would
be such that qj < ρj(p∗ − ε).

This strategy profile is a Nash equilibrium.

Proof. The proof follows directly from the discussion made before the
proposition, and from the proof of Proposition 7.2. �

Example. We consider a market with 5 suppliers and a demand d equal
to 10. We suppose that the minimal price functions Lj of suppliers are
increasing staircase functions, given in the following table (the notation
(]a, b]; c) indicates that the value of the function in the interval ]a, b] is c),
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supplier 1 ([0, 1]; 10), (]1, 3]; 15), (]3, 4]; 25), (]4, 10]; 50)
supplier 2 ([0, 5]; 20), (]5, 6]; 23), (]6, 7]; 40), (]7, 10]; 70)
supplier 3 ([0, 2]; 15), (]2, 6]; 25), (]6, 7]; 30), (]7, 10]; 50)
supplier 4 ([0, 1]; 10), (]1, 4]; 15), (]4, 5]; 20), (]5, 10]; 50)
supplier 5 ([0, 4]; 30), (]4, 8]; 90), (]8, 10]; 100)

We display in the following table the values for ρj(p) and O(p) respec-
tively defined by equations (7.13) and (7.14).

p ρ1(p) ρ2(p) ρ3(p) ρ4(p) ρ5(p) O(p)
p ∈ [0, 10[ 0 0 0 0 0 0
p ∈ [10, 15[ 1 0 0 1 0 2
p ∈ [15, 20[ 3 0 2 4 0 9
p ∈ [20, 23[ 3 5 2 5 0 15

The previous table shows that for a price p in [15, 20[, only suppliers
S1, S3 and S4 can bring some positive quantity of electricity. The total
maximal quantity that can be provided is 9 which is strictly lower than
the demand d = 10. For a price in [20, 23[, we see that supplier S2

can also bring some positive quantity of electricity, the total maximal
quantity is then 15 which is higher than the demand. Then we conclude
that the price p∗ defined by Equation (7.15) is p∗ = 20. Moreover,
L2(ρ2(p∗)) = L4(ρ4(p∗)) = p∗ which means that Assumption 7.5 is not
satisfied. Notice that for supplier S5, we have L5(0) = 30 > p∗. Supplier
S5 will not be able to sell anything to the market, hence, whatever its bid
is, we have q5 = 0. We suppose that Assumption 7.6 holds. According
to Proposition 7.3, we have the following equilibria.

u∗
1 =(3, p∗1∈ [15, 20[), u∗

3 =(2, p∗3∈ [15, 20[) and u∗
5 =(p∗, q∗), p∗≥L5(q)

to which the market reacts by buying the respective quantities q1(u∗) =
3, q3(u∗) = 2 and q5(u∗) = 0. The quantity 5 remains to be shared
between S2 and S4 according to the additional rule of the market. For
example, suppose that the market prefers S2 to all other suppliers. Then

u∗
2 = (q∗2 ∈ [1, 5], p∗2 = 20) and u∗

4 = (4, p∗4 ∈ [15, 20[).

to which the market reacts by buying q2(u∗) = 1 and q4(u∗) = 4. If now
the market prefers S4 to any other, then

u∗
2 = (q∗2 ∈ [1, 5], p∗2 = 20) and u∗

4 = (5, p∗4 = 20).

to which the market reacts by buying q2(u∗) = 0 and q4(u∗) = 5.



7 Electricity Prices in a Game Theory Context 149

4. Suppliers maximize profit
In this section, the objective of the suppliers is to maximize their

profit, i.e. for a strategy profile u = (u1, . . . , uS), uj = (qj , pj), their
evaluation functions are

JSj (u) = pjqj − Cj(qj), (7.20)

where Cj(·) denotes supplier Sj ’s production cost function, and qj is
the optimal reaction of the market, i.e. the solution of Problem (7.9)
together with an additional decision rule, known by all the suppliers, in
case of nonunique solutions (see Remark 7.1). As before, we do not need
to make this rule explicit.

In contrast to the market share maximization, we do not need a min-
imal price functions Lj . Nevertheless we need a maximal unit price
pmax under which the suppliers are allowed to sell their electricity. This
maximal price can either be finite and fixed by the market or be infinite.

From all the assumptions previously made, we only retain in this
section Assumption 7.1.

Lemma 7.1 We define, for any finite price p ≥ 0, Q̂j(p) as the set of
quantities that maximizes the quantity qp− Cj(q), i.e.,

Q̂j(p) def= arg max
q∈[0,d]

qp− Cj(q),

and for infinite price,

Q̂j(+∞) = min(Qj , d),

where Qj is the maximal production capacity of Sj.
We have for finite p,

Q̂j(p) = {0} if C ′(0) > p,

Q̂j(p) = {d} if C ′(d) < p,

Q̂j(p) = {q, C ′
j(q

−) ≤ p ≤ C ′
j(q

+)}, otherwise.
(7.21)

Proof. We prove the last equality of (7.21). For any q ∈ Q̂j(p), we have
for any ε > 0,

pq − Cj(q) ≥ p(q + ε)− Cj(q + ε),

from which we deduce that

Cj(q + ε)− Cj(q)
ε

≥ p,
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and letting ε tends to zero, it follows that C ′
j(q

+) ≥ p. The other equality
is obtained with negative ε.

The first two equalities of (7.21) follow directly from the fact that C ′
is supposed to be non decreasing. �

Note that if C ′(·) is a continuous and non decreasing function, then
(7.21) is equivalent to the classical first order condition for the evaluation
function of the supplier.

Lemma 7.2 The function p → max
q∈[0,d]

(qp− Ci(q)) is continuous and

strictly increasing.

Proof. We recognize the Legendre-Fenchel transform of the convex
function Cj . The continuity follows from classical properties of this
transform.

The function is strictly increasing, since for p > p′, if we denote by q̃
a quantity in arg maxq∈[0,d](qp′ − Ci(q)), we have

max
q∈[0,d]

(qp− Ci(q)) ≥ q̃p− Ci(q̃)

> q̃p′ − Ci(q̃)= max
q∈[0,d]

(qp′ − Ci(q)).

�

We now restrict our attention to the two suppliers’ case, i.e. S = 2.
Our aim is to determine the Nash equilibrium if such an equilibrium

exists. Hence we need to find a pair ((q∗1, p∗1), (q∗2, p∗2)) such that (q∗1, p∗1)
is the best strategy of supplier S1 if supplier S2 chooses (q∗2, p∗2), and con-
versely, (q∗2, p∗2) is the best strategy of supplier S2 if supplier S1 chooses
(q∗1, p∗1). Equivalently we need to find a pair ((q∗1, p∗1), (q∗2, p∗2)) such that
there is no profitable deviation for any supplier Si, i = 1, 2.

Let us determine the conditions which a pair ((q∗1, p∗1), (q∗2, p∗2)) must
satisfy in order to be a Nash equilibrium, i.e., no profitable deviation
exists for any supplier. We will successively examine the case where we
have an excess demand (q∗1 + q∗2 ≤ d) and the case where we have an
excess supply (q∗1 + q∗2 > d).

Excess demand: q∗1 + q∗2 ≤ d. In that case the market buys all the
quantities proposed by the suppliers, i.e., q∗i = q∗i , i = 1, 2.

1. Suppose that for at least one supplier, say supplier S1, we have
p∗1 < pmax. Then supplier S1 can increase its profit by increasing
its price to pmax. Since q∗1 + q∗2 ≤ d the reaction of the market to
the new pair of strategies ((q∗1, pmax), (q∗2, p∗2)) is still q∗1, q∗2. Hence
the new profit of S1 is now q∗1pmax − C1(q∗1) > q∗1p∗1 − C1(q∗1).
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We have exhibited a profitable deviation, (q∗1, pmax) for supplier
S1. This proves that a pair of strategies such that q∗1 +q∗2 ≤ d with
at least one price p∗i < pmax cannot be a Nash equilibrium.

2. Suppose that p∗1 = p∗2 = pmax, and that there exists at least one
supplier, say supplier S1, such that q∗1 = q∗1 �∈ Q̂1(pmax), i.e., such
that the reaction of the market does not maximize S1’s profit (see
Lemma 7.1). Consequently, the profit for S1, associated with the
pair ((q∗1, pmax), (q∗2, pmax)) is such that

q∗1pmax − C1(q∗1) < max
q∈[0,d]

(qpmax − C1(q)).

Since

lim
ε→0+

max
q∈[0,d]

(q(pmax − ε)− C1(q)) = max
q∈[0,d]

(qpmax − C1(q)),

there exists some ε̄ > 0 such that

max
q∈[0,d]

(q(pmax − ε̄)− C1(q)) > q∗1pmax − C1(q∗1).

This proves that any deviation (q̂1, pmax − ε̄) of supplier S1, such
that q̂1 ∈ Q̂1(pmax − ε̄), is profitable for S1.

Hence, a pair of strategies such that q∗1 + q∗2 ≤ d, p∗1 = p∗2 = p∗, to
which the market reacts with, for at least one supplier, a quantity
q∗i �∈ Q̂i(pmax) cannot be a Nash equilibrium.

3. Suppose that p∗1 = p∗2 = pmax, q∗1 = q∗1 ∈ Q̂1(pmax) and q∗2 = q∗2 ∈
Q̂2(pmax) (i.e., the market reacts optimally for both suppliers).

In that case the pair ((q∗1, p∗1), (q∗2, p∗2)) is a Nash equilibrium. As a
matter of fact no deviation by changing the quantity can be prof-
itable: since q∗i is optimal for pmax, the price cannot be increased,
and a decrease of the profit will follow from a decrease of the price
of one supplier (Lemma 7.2).

Excess supply: q∗1 + q∗2 > d. Two possibilities occur depending on
whether the prices pj , j = 1, 2 differ or not.

1. The prices are different, i.e., p∗1 < p∗2 for example.

In that case the market first buys from the supplier with lower
price (hence q∗1 = inf(q∗1, d)), and then completes its demand to
the supplier with highest price, S2 (hence q∗2 = d− q∗1).
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For ε̄ > 0 such that p∗1 + ε̄ < p∗2, we have

q∗1p
∗
1 − C1(q∗1) ≤ max

q∈[0,d]
{qp∗1 − C1(q)} < max

q∈[0,d]
{q(p∗1 + ε̄)− C1(q)}.

Hence supplier S1 is better off increasing its price to p∗1 + ε̄ and
proposing quantity q̂1 ∈ Q̂1(p∗1 + ε̄). As a matter of fact, since
p∗1 + ε̄ < p∗2, the reaction of the market will be q1 = q̂1.

So a pair of strategies with p1 �= p2 cannot be a Nash equilibrium.

2. The prices are equal, i.e., p∗1 = p∗2
def= p∗.

Now the market faces an optimization problem (7.9) with several
solutions. Hence it has to use its additional rule in order to deter-
mine the quantities q∗1, q∗2 to buy from each supplier in response to
their offers q∗1, q∗2.

If this response is not optimal for any supplier, i.e., q∗1 �∈ Q̂1(p∗)
and q∗2 �∈ Q̂2(p∗), the same line of reasoning as in Item 2 of the
excess demand case proves that the pair ((q∗1, p∗1), (q∗2, p∗2)) cannot
be a Nash equilibrium.

Suppose that the reaction of the market is optimal for both sup-
pliers, i.e., q∗1 ∈ Q̂1(p∗) and q∗2 ∈ Q̂2(p∗). A necessary condition for
a supplier, say S1, to increase its profit is to increase its price and
consequently to complete the offer of the other supplier S2. We
have two possibilities,

(a) If for at least one supplier, say supplier S1, we have,

(d− q∗2)pmax − C1(d− q∗2) > max
q∈[0,d]

{qp∗ − C1(q)},

then supplier S1 is better off increasing its price to pmax and
completing the market to sell the quantity d− q∗2.

(b) Conversely, if none of the suppliers can increase its profit by
“completing the offer of the other”, i.e., if

(d− q∗2)pmax − C1(d− q∗2) ≤ max
q∈[0,d]

{qp∗ − C1(q)}, (7.22)

(d− q∗1)pmax − C2(d− q∗1) ≤ max
q∈[0,d]

{qp∗ − C2(q)}, (7.23)

then the pair ((q∗1, p∗1), (q∗2, p∗2)) is a Nash equilibrium.
As a matter of fact, for one supplier, say S1, changing only
the quantity is not profitable since q∗1 ∈ Q̂1, decreasing the
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price is not profitable because of Lemma 7.2. Inequality (7.22)
prevents S1 from increasing its price.

Remark 7.6 Note that a sufficient condition for Inequality (7.22) and
(7.23) to be true, is that both suppliers choose q∗j = d, j = 1, 2.

With this choice each supplier prevents the other supplier from com-
pleting its demand with maximal price. This can be interpreted as a
wish for the suppliers to obtain a Nash equilibrium. Nevertheless, to
do that, the suppliers have to propose to the market a quantity d at
price p∗ which may be very risky and hence may not be credible. As a
matter of fact, suppose S1 chooses the strategy q1 = d, p1 = p∗ < pmax.
If for some reason supplier S2 proposes a quantity q2 at a price p2 > p1,
then S1 has to provide the market with the quantity d at price p1 since
q1 = d, which may be disastrous for S1.

Note also that if pmax is not very high compared with p∗ the inequali-
ties (7.22) and (7.23) will not be satisfied. Hence these inequalities could
be used for the market to choose a maximal price pmax such that the
equilibrium may be possible.

The previous discussion shows that in case of excess supply, the only
possibility to have a Nash equilibrium, is that both suppliers propose
the same price p∗ and quantities q∗1, q∗2, such that, together with an
additional rule, the market can choose optimal quantities q∗1, q∗2 that
satisfy its demand and such that q∗j ∈ Q̂j(p∗).

This is clearly not possible for any price p∗. If the price p∗ is too
small, then the optimal quantity the suppliers can bring to the market
is small, and for any q ∈ Q̂1(p∗) + Q̂2(p∗), we have q < d. If the price p∗
is too high, then the optimal quantity the suppliers are willing to bring
to the market are large, and for any q ∈ Q̂1(p) + Q̂2(p), we have q > d.
The following Lemma characterizes the possible values of p∗ for which
it is possible to find q1 and q2 that satisfy q1 ∈ Q̂1(p∗), q2 ∈ Q̂2(p∗) and
q1 + q2 = d.

Let us first define the function C′j from [0, d] to the set of intervals of
R

+ as
C′j(q) = [C ′

j(q
−), C ′

j(q
+)],

for q smaller than the maximal production quantity Qj , and Cj(q) = ∅
for q > Qj . Clearly C′j(q) = {C ′

j(q)} except when C ′
j has a discontinuity

in q. We now can state the lemma.

Lemma 7.3 It is possible to find q1, q2 such that q1 + q2 = d, q1 ∈ Q̂1(p)
and q2 ∈ Q̂2(p) if and only if

p ∈ I,
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where,
I def=

⋃
q∈[0,d]

(C′1(q) ∩ C′2(d− q)),

or, equivalently, when Q1 + Q2 ≥ d, I def= [I−, I+], where

I− def= min{p, max(q ∈ Q̂1(p)) + max(q ∈ Q̂2(p)) ≥ d},
I+ def= max{p, min(q ∈ Q̂1(p)) + min(q ∈ Q̂2(p)) ≤ d},

and I = ∅ when Q1 + Q2 < d.

Proof. If p ∈ I, then there exists q ∈ [0, d] such that p ∈ C′1(q) and
p ∈ C′2(d − q). We take q1 = q, q2 = d − q and conclude by applying
Lemma 7.1.

Conversely, if p �∈ I, then it is not possible to find q1, q2 such that
q1 + q2 = d, and such that p ∈ C′1(q1) ∩ C′2(q2) i.e., such that according
to Lemma 7.1 q1 ∈ Q̂1(p) and q2 ∈ Q̂2(p).

Straightforwardly, if I− ≤ p ≤ I+, then there exists q1 ∈ Q̂1(p) and
q2 ∈ Q̂2(p) such that q1 + q2 = d. �

We sum up the previous analysis by the following proposition.

Proposition 7.4 In a market with maximal price pmax with two sup-
pliers, each having to propose quantity and price to the market, and each
one wanting to maximize its profit, we have the following Nash equilib-
rium:

1. If pmax < min{p ∈ I}-Excess demand case, any strategy profile
((q∗1, pmax), (q∗2, pmax)), with q∗1 ∈ Q̂1(pmax) and q∗2 ∈ Q̂2(pmax) is a
Nash equilibrium. In that case we have q∗1 + q∗2 < d.

2. If pmax = min{p ∈ I}, any pair ((q∗1, pmax), (q∗2, pmax)) where q∗1 ∈
Q̂1(pmax) and q∗2 ∈ Q̂2(pmax) is a Nash equilibrium. In that case
we may have q∗1 + q∗2 ≥ d or q∗1 + q∗2 < d.

3. If pmax > min{p ∈ I}- Excess supply case, any pair
((q∗1, p∗), (q∗2, p∗)), such that p∗ ∈ I, p∗ ≤ pmax and which induces
a reaction (q1, q2), q1 ≥ q∗1, q2 ≥ q∗2, such that

(a) q1 + q2 = d,

(b) q1 ∈ Q̂1(p∗), q2 ∈ Q̂2(p∗),
(c)

(d− q∗2)pmax − C1(d− q∗2) ≤ q1p
∗ − C1(q1),

d− q∗1)pmax − C2(d− q∗1) ≤ q2p
∗ − C2(q2),

is a Nash equilibrium.
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We now want to generalize the previous result to a market with S ≥ 2
suppliers.

Let ((q∗1, p∗1), . . . , (q∗S , p∗S)) be a strategy profile, and let (q1, . . . , qS) be
the induced reaction of the market. This strategy profile is a Nash equi-
librium, if for any two suppliers, Si, Sj , the pair of strategies ((q∗i , p

∗
i ),

(q∗j , p
∗
j )) is a Nash equilibrium for a market with two suppliers (with

evaluation function defined by Equation (7.20)) and demand d̃ = d −∑
k �∈{i,j} qk.
Hence using the above Proposition 7.4, we know that necessarily at

equilibrium the prices proposed by the suppliers are equal, and the quan-
tities q∗i induce a reaction of the market such that qi ∈ Q̂i(p∗).

Let us first extend the previous definition of the set I by I = ∅ if∑S
j=1 Qj < d, and otherwise,

I def= [I−, I+],
where
I− = min{p,

∑S
j=1 max(q ∈ Q̂j(p)) ≥ d},

I+ = max{p,
∑S

j=1 min(q ∈ Q̂j(p)) ≤ d}.
(7.24)

We have the following

Theorem 7.1 Suppose we have S suppliers on a market with maximal
price pmax and demand d.

1. If pmax < min{p ∈ I}-Excess demand case, any strategy profile
((q∗1, pmax), . . . , (q∗S , pmax)), with q∗j ∈ Q̂j(pmax), j = 1, . . . ,S, is a
Nash equilibrium. In that case we have

∑S
j=1 q∗j < d.

2. If pmax =min{p∈I}, any strategy profile ((q∗1,pmax),. . ., (q∗S ,pmax))
where q∗j ∈ Q̂j(pmax), j = 1, . . . ,S is a Nash equilibrium. In that
case we may have

∑S
j=1 q∗j ≥ d or

∑S
j=1 qj < d.

3. If pmax > min{p ∈ I}- Excess supply case, any strategy profile
((q∗1, p∗), . . . , (q∗S , p∗)), such that p∗ ∈ I, p∗ ≤ pmax and which
induces a reaction (q1, . . . , qS), qj ≥ q∗j , j = 1, . . . ,S, such that

(a)
∑S

j=1 qj = d,

(b) qj ∈ Q̂j(p∗), j = 1, . . . ,S,
(c) for any j = 1, . . . ,S

(d−
∑
k �=j

q∗k)pmax − Cj(d−
∑
k �=j

q∗k) ≤ qjp
∗ − Cj(qj), (7.25)

is a Nash equilibrium.



156 DYNAMIC GAMES: THEORY AND APPLICATIONS

The previous results show that a Nash equilibrium always exists for
the case where the profit is used by the suppliers as an evaluation func-
tion. For convenience we have supposed the existence of a maximal price
pmax. On real markets we observe that, usually this maximal price is
infinity, since most markets do not impose a maximal price on electric-
ity. Hence the interesting case is the case where pmax > min{p ∈ I}.
The case with pmax ≤ min{p ∈ I}, can be interpreted as a monopolistic
situation. The demand is so large compared with the maximal price that
each supplier can behave as if it is alone on the market.

When pmax is large enough, Proposition 7.4 and Theorem 7.1 exhibit
some conditions for a strategy profile to be a Nash equilibrium. We can
make several remarks.

Remark 7.7 Note that conditions (7.25) are satisfied for q∗j = d. Hence
we can conclude that, provided that the market reacts in such a way that
qj ∈ Q̂j , the strategy profile ((d, p∗), . . . , (d, p∗)) is a Nash equilibrium.
Nevertheless, this equilibrium is not realistic. As a matter of fact, to
implement this equilibrium, the suppliers have to propose to the market
a quantity that is higher than the optimal quantity, and which possibly
may lead to a negative profit (when pmax is very large). The second
aspect that may appear unrealistic is the fact that the suppliers give
up their power of decision. As a matter of fact, they announce high
quantities, so that (7.25) is satisfied, and let the market choose the
appropriate qj .

Example. We consider the market, with demand d = 10 and maximal
price pmax = +∞, with the five suppliers already described page 147. In
order to be able to compare the equilibria for both criteria, market share
and profit, we suppose that the marginal cost is equal to the minimal
price function displayed in the table page 148, i.e., C ′

j = Lj .

The following table displays the quantities o(p) def=
∑5

j=1 min{q ∈
Q̂j(p)} and O(p) def=

∑5
j=1 max{q ∈ Q̂j(p)}.

p ∈ [0, 10[ = 10 ∈]10, 15[ = 15 ∈]15, 20[ = 20 ∈]20, 23[
o(p) 0 0 2 2 9 9 15
O(p) 0 2 2 9 9 15 15

From the above table we deduce that I = {20}, hence the only
possible equilibrium price is p∗ = 20. As a matter of fact, we have
O(20) = 15 > 10 = d, and for any p < 20, O(p) < 10 = d, and
o(20) = 9 < 10 = d, and for any p > 20, o(p) > 10 = d. Hence
p∗ = 20 ∈ I as defined by Equation (7.24).
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Now concerning the quantities, the equilibrium depend upon the ad-
ditional rule of the market. We suppose that the market chooses qi ∈
Q̂i, ∀i ∈ {1, . . . , 5}, and then to give preference to S1, then to S2, etc.

The equilibrium is q∗1 ≥ 3, q∗2 ≥ 0, q∗3 ≥ 2, q∗4 ≥ 4, q∗2 ≥
0, q∗5 ≥ 0.

The fact that the market wants to choose quantities qi ∈ Q̂i(20) im-
plies that q1 ∈ Q̂1(20) = 3, q2 ∈ Q̂2(20) = [0, 5], q3 ∈ Q̂3(20) =
2, q4 ∈ Q̂4(20) = [4, 5], q5 = 0, and the preference for S2 compared
to S5 implies that q1 = 3, q2 = 1, q3 = 2, q4 = 4, q5 = 0.

If the preference would have been S5 then S4 then S3 etc. the equi-
librium would have been the same, but we would have had

q1 = 3, q2 = 0, q3 = 2, q4 = 5, q5 = 0.

5. Conclusion
We have shown in the previous sections that for both criteria, market

share and profit maximization, it is possible to find a Nash equilibrium
for a number S of suppliers. It is noticeable that for both cases the
equilibrium price involved is the same (i.e., p∗ given by Equation (7.14)
for market share maximization and p∗ ∈ I defined by Equation (7.24)
for profit maximization), only the quantities proposed by the suppliers
differ.

Nevertheless as already discussed in Remark 7.7, for profit maximiza-
tion, the equilibrium strategies involved are not realistic in the inter-
esting cases (pmax large). This may suggest that on these unregulated
markets where suppliers are interested in instantaneous profit maximiza-
tion, an equilibrium never occurs. Prices may becomes arbitrarily high
and anticipation of the market behavior, and particularly market price,
basically impossible. An extended discussion on this topic can be found
in Bossy et al. (2004).

This paper contains some modeling aspects that could be considered
in more detail in future works. A first extension would be to consider
more general suppliers. As a matter of fact, in the current paper, the
evaluation functions chosen are more suitable for providers. Indeed, for
profit maximization, we assumed that we had a production cost only for
that part of electricity which is actually sold. This would fit the case
where suppliers are producers. They produce only the electricity sold.
The evaluation function chosen does not fit the case of traders who may
have already bought some electricity and try to sell at best price the
maximal electricity they have. The extension of our results in that case
should not be difficult.
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We supposed that every supplier perfectly knows the evaluation func-
tion of the other suppliers, and in particular their marginal costs. In
general this is not true. Hence some imperfect information version of
the model should probably be investigated.

An other extension worthwhile would be to consider the multi market
case, since the suppliers have the possibility to sell their electricity on
several markets. This aspect has been briefly discussed in Bossy et al.
(2004). It leads to a much more complex model, which in particular
involves a two level game where at both levels the agents strive to set a
Nash equilibrium.
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Chapter 8

EFFICIENCY OF BERTRAND AND
COURNOT: A TWO STAGE GAME

Michèle Breton
Abdalla Turki

Abstract We consider a differentiated duopoly where firms invest in research and
development (R&D) to reduce their production cost. The objective of
this study is to derive and compare Bertrand and Cournot equilibria,
and then examine the robustness of the literature’s results, especially
those of Qiu (1997). We find that The main results of this study are as
follows: (a) Bertrand competition is more efficient if R&D productivity
is low, industry spillovers are weak, or products are very different. (b)
Cournot competition is more efficient if R&D productivity is high and
R&D spillovers and products’ degree of substitutability are not very
small. (c) Cournot competition may lead to higher outputs, higher con-
sumer surpluses and lower prices, provided that R&D productivity is
very high and spillovers and degree of substitutability of firms’ prod-
ucts are moderate to high. (d) Cournot competition results in higher
R&D investments compared to Bertrand’s. These results show that the
relative efficiencies of Bertrand and Cournot equilibria are sensitive to
the suggested specifications, and hence far from being robust.

1. Introduction
This paper compares the relative efficiency of Cournot and Bertrand

equilibria in a differentiated duopoly. In a Cournot game, players com-
pete by choosing their outputs while in a Bertrand game, the strategies
are the prices of these products. In a seminal paper, Singh and Vives
(1984) show that (i) Bertrand competition is always more efficient than
Cournot competition, (ii) Bertrand prices (quantities) are lower (higher)
than Cournot prices (quantities) if the goods are substitutes (comple-
ments), and (iii) it is a dominant strategy for a firm to choose quantity
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(price) as its strategic variable provided that the goods are substitutes
(complements).

These findings attracted the economists’ attention and gave rise to two
main streams in the literature. The first one extends the above model in
different ways. However, it treats the firms’ costs of production as con-
stants and assumes that firms face the same demand and cost structure
in both types of competition (Vives (1985), Okuguchi (1987), Dastidar
(1997), Hackner (2000), Amir and Jin (2001), and Tanaka (2001)).

The second stream of research aims at examining the robustness of the
findings in Singh and Vives (1984) in a duopoly where firms’ strategies
include investments in research and development (R&D), in addition
to prices or quantities (see for instance, Delbono and Denicolo (1990),
Motta (1993), Qiu (1997) and Symeonidis (2003)). A general result is
that the findings in Singh and Vives (1984) may not always hold. For
instance, in a two stage model of a duopoly producing substitute goods
and engaging in process R&D (to reduce their unit production cost),
Qiu (1997) finds that (i) although Cournot competition induces more
R&D effort than Bertrand competition the latter still results in lower
prices and higher quantities, (ii) Bertrand competition is more efficient
if either R&D productivity is low, or spillovers are weak, or products are
very different, and (iii) Cournot competition is more efficient if either
R&D productivity is high, spillovers are strong, and products are close
substitutes. Similar results are obtained by Symeonidis (2003) for the
case where the duopoly engage in product R&D.

This paper belongs to this second stream, extending the model of
Qiu (1997) in three ways. First, costs of production are assumed to
be quadratic in the production levels, rather than linear (decreasing re-
turns to scale). Second, we incorporate the specification of the R&D cost
function suggested by Amir (2000), making it depend on the spillover
level to correct for the eventual biases introduced by postulating addi-
tive spillovers on R&D outputs rather than inputs. Finally, the firms’
benefits from each other in reducing their costs of production are as-
sumed to depend not only on the R&D spillovers but also on the degree
of substitutability of their products.

We show in this setting that Cournot competition may lead to higher
outputs, higher consumer surpluses and lower prices when R&D pro-
ductivity is high. We also show that when R&D productivity is high,
Cournot competition is more efficient. Finally, we show that our results
are robust, whether the investment cost is independent or not of the
spillover level.

The rest of this paper is organized as follows. In Section 2, we outline
the model. In Section 3 and 4, we respectively characterize Cournot and
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Bertrand equilibria. In Section 5, we compare the results and we briefly
conclude in Section 6.

2. The Model
Consider an industry formed of two firms producing differentiated but

substitutable goods. Each firm independently undertakes cost-reducing
R&D investments, and chooses the price pi or the quantity qi of its prod-
uct, so as to maximize its profits. If the firms choose quantity (price)
levels, then it is said that they engage in a Cournot (Bertrand) game.

Following Singh and Vives (1984), the representative consumer’s pref-
erences are described by the following utility function:

U(q1, q2) = a(q1 + q2)− 1
2
(q2

1 + q2
2)− ηq1q2, (8.1)

where a is positive constant and 0 ≤ η < 1. The parameter η represents
the degree of product differentiation; products become closer to sub-
stitutes as this parameter approaches 1. The resulting market inverse
demands are linear and given by

pi = a− qi − ηqj , i, j = 1, 2, i �= j. (8.2)

Denote by xi firm i’s R&D investment. The unit production cost is
assumed to depend on both firms’ investments in R&D as well as on the
quantity produced and has the following form

Ci(qi, xi, xj) = (c +
r

2
qi − xi − ηβxj), i, j = 1, 2, i �= j, (8.3)

where 0 < c < a, r ≥ 0 and 0 ≤ β ≤ 1. The parameter β is the industry
degree of R&D spillover and ηβ represents the effective R&D spillover.
We assume that the unit cost is strictly positive.

The cost specification in (8.3) differs from the one proposed by Qiu
(1997) in two aspects. First, the benefit in cost reduction from rival’s
R&D depends on the effective spillover rate ηβ and not only on β. An
explanation of our assumption lies in the fact that the products must be
related, i.e., η �= 0, for spillovers to be beneficial to firms (another way
to achieve this is to restrict the spillover rate in Qui’s model to values
that are smaller than η). Second, firm i’s production cost function is
assumed to be quadratic in its level of output rather than linear, which
allows to model decreasing returns to scale.

The investment cost incurred by player i is assumed quadratic in R&D
effort, i.e.,

Fi(xi) =
ν + δηβ

2
x2

i , i = 1, 2, (8.4)
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where δ ≥ 0. For δ > 0, the cost is increasing in the effective spillover
level ηβ. Thus higher R&D effective spillover leads to higher R&D costs
for each firm. For δ = 0, the cost is independent of the spillover, as in
Qui’s model. When δ > 0, the cost function is steeper in R&D and is
similar to the one proposed by Amir (2000)1.

The total profit of firm i, to be maximized, is given by

πi = (pi − Ci (qi, xi, xj)) qi − Fi(xi). (8.5)

We shall in the sequel compare consumer surplus (CS) and total welfare
(TW ) under Bertrand and Cournot modes of play. Recall that con-
sumer surplus is defined as consumer’s utility minus total expenditures
evaluated at equilibrium, i.e.,

CS = U(q∗1, q
∗
2)− p∗1q

∗
1 − p∗2q

∗
2. (8.6)

Total welfare is defined as the sum of consumer surplus and industry’s
profit, i.e.,

TW = CS + π∗
1 + π∗

2, (8.7)

where the superscript ∗ refers to (Bertrand or Cournot) equilibrium val-
ues.

Remark 8.1 Our model is symmetric, i.e., all parameters involved are
the same for both players. This assumption allows us to compare Bertrand
and Cournot equilibria in a setting where any difference would be due to
the choice of the strategic variables and nothing else. We shall con-
fine our interest to symmetric equilibria in both Cournot and Bertrand
games.

3. Cournot Equilibrium
In the non-cooperative two stage Cournot game, firms select their

R&D investments and output levels, independently and sequentially. To

1Notice that following d’Aspremont and Jacquemin (1988, 1990), the models used in Qui
(1997) postulate that the possible R&D spillovers take place in the final R&D outcomes.
However, Kamien et al. (1992), among others, presume that such spillovers take place in
the R&D dollars (spending). Amir (2000) makes an extensive comparison between these
two models (i.e. d’Aspremont and Jacquemin (1988, 1990), and Kamien et al. (1992)),
and assesses their validity. He concludes that the latter’s predictions and results are more
valid and robust. Furthermore, in order to make the above two models equivalent, Amir
(2000) suggests a certain specification of the R&D cost function of the first above-mentioned
models. As he shows, such specification does make the R&D cost functions steeper, and
hence do correct for the biases introduced by postulating additive spillovers on R&D outputs
rather than inputs.
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characterize Cournot equilibrium, it will be convenient to use the fol-
lowing notation:

A = a− c

V = ν + δηβ

B = ηβ + 1
R1 = r + 2
G1 = r + 2 + η

D1 = r + 2− η

E1 = r + 2− η2β

Δ1 = D1G
2
1V −BE1R1.

We assume that the parameters satisfy the conditions:

D2
1G

2
1V − E2

1R1 > 0 (8.8)

D1G1V

(
G1 − (a− c) (1 + η)

a

)
−BE1R1 > 0. (8.9)

The following proposition characterizes Cournot equilibrium.

Proposition 8.1 Assuming (8.8-8.9), in the unique symmetric sub-
game perfect Cournot equilibrium, output and R&D investment strategies
are given by

qC =
AD1G1V

Δ1
, (8.10)

xC =
AE1R1

Δ1
. (8.11)

Proof. Firm i’s profit function is given by:

πi =
(
a− qi − ηqj − (c +

r

2
qi − xi − ηβxj)

)
qi − ν + δηβ

2
x2

i ,

i, j = 1, 2, i �= j. (cournot profit function)

Cournot sub-game perfect equilibria are derived by maximizing the
above profit function sequentially as follows: Given any first-stage R&D
outcome (xi, xj), firms choose output to maximize their respective mar-
ket profits. Individual profit functions are strictly concave in qi and,
assuming an interior solution, the first order conditions yield the unique
Nash-Cournot equilibrium output:

q∗i =
AD1 − ηxj (1− βR1) + xiE1

D1G1
, i, j = 1, 2, i �= j.
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In the first stage firms choose R&D levels to maximize their respective
profits taking the equilibrium output into account. After substituting for
the equilibrium output levels q∗i , individual profit functions are concave
in xi if (8.8) is satisfied. The first order conditions yield the unique
symmetric R&D equilibrium given in (8.11), which is interior if D1G

2
1V −

BE1R1 = Δ1 > 0, which is implied by (8.9). Substituting for xC in q∗i
yields the Cournot equilibrium output (8.10). �

The equilibrium Cournot price and profit are given by

pC = a− AD1G1V (1 + η)
Δ1

,

πC =
A2R1V

(
D2

1G
2
1V − E2

1R1

)
2Δ2

1

which are respectively positive if (8.9) and (8.8) are satisfied. Insert-
ing Cournot equilibrium values in (8.6) and (8.7) provides the following
consumer surplus and total welfare

CSC =
(AD1G1V )2 (1 + η)

Δ2
1

, (8.12)

TWC = A2V
D2

1G
2
1V (1 + η + R1)− E2

1R2
1

Δ2
1

. (8.13)

The following proposition compares the results under the two spec-
ifications of the investment cost function in R&D, i.e., for δ > 0 and
δ = 0.

Proposition 8.2 Cournot’s output, investment in R&D, consumer sur-
plus and total welfare are lower and price is higher when the cost function
is steeper in R&D investments (i.e., δ > 0).

Proof. Compute d
dδ

(
xC
)

= − AD1E1G2
1R1ηβ

(D1G2
1(ν+δηβ)−BE1R1)2 < 0, indicating

that equilibrium R&D investment is decreasing in δ. Denote xCδ the
Cournot equilibrium investment corresponding to a given value of δ.
Straightforward computations lead to

xCδ − xC0 = − AD1E1G2
1R1δηβ

(D1G2
1(ν+δηβ)−BE1R1)(D1G2

1ν−BE1R1) .

Notice that:

qC =
A + BxC

G1
,
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pC = a− qC (1 + η) ,

CSC =
(
qC
)2

(1 + η) ,

yielding the results for output, price and consumer surplus.
To assess the effect of δ on profits, compute

d

dδ

(
πC
)

= −1
2
A2E1R

2
1ηβ

D1G
2
1V (2BD1 − E1)−BE2

1R1(
D1G2

1V −BE1R1

)3 .

Using
2BD1 − E1 > 0,

D1G
2
1V (2BD1 − E1)−BE2

1R1 > 2BE1R1 (BD1 − E1) ,

we see that the sign of the derivative depends on the parameter’s values,
so that profit can increase with δ when ν is small and β is less than 1

R1

(see appendix for an illustration). However, the impact of δ on total
welfare remains negative:

d

dδ

(
TWC

)
= −A2E1R1ηβ

D1G
2
1V (2BD1 (1 + R1 + η)− E1R1)−BE2

1R2
1(

D1G2
1V −BE1R1

)3
< −2A2BE2

1R2
1ηβ

(D1B (1 + R1 + η)− E1R1)(
D1G2

1V −BE1R1

)3 < 0.

�

4. Bertrand Equilibrium
In the non-cooperative two stage Bertrand game, firms select their

R&D investments and prices, independently and sequentially. From
(8.2), we define the demand functions

qi =
(1− η)a− pi + ηpj

(1− η2)
, i, j = 1, 2, i �= j. (8.14)

To characterize Bertrand equilibrium, it will be convenient to use the
following notation:

G2 = r + 2 + η − η2

D2 = r + 2− η − η2

E2 = r + 2− η2β − η2
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R2 = r + 2− 2η2

Δ2 = D2G
2
2V −BE2R2.

We assume that the parameters satisfy the conditions:

D2
2G

2
2V − E2

2R2 > 0 (8.15)

D2G2V

(
G2 − (a− c) (η + 1)

a

)
−BE2R2 > 0. (8.16)

The following proposition characterizes Bertrand equilibrium.

Proposition 8.3 Assuming (8.15-8.16), in the unique symmetric sub-
game perfect Bertrand equilibrium, price and R&D investment strategies
are given by

pB =
D2G2V (aG2 −A (η + 1))− aBE2R2

Δ2
, (8.17)

xB =
AE2R2

Δ2
(8.18)

Proof. The proof is similar to that of Proposition 1 and is omitted. �

The equilibrium Bertrand output and profit are given by

qB =
AD2G2V

Δ2
. (8.19)

πB =
A2R2V

(
D2

2G
2
2V − E2

2R2

)
2Δ2

2

which are respectively positive if (8.16) and (8.15) are satisfied. Con-
sumer surplus and total welfare are then given by:

CSB =
(AD2G2V )2 (1 + η)

Δ2
2

, (8.20)

TWB = A2V
D2

2G
2
2V (1 + η + R2)−R2

2E
2
2

Δ2
2

. (8.21)

The following proposition compares the Bertrand equilibrium under
the two specifications of the investment cost function in R&D, i.e., for
δ > 0 and δ = 0.

Proposition 8.4 Bertrand’s output, investment in R&D, consumer sur-
plus and total welfare are lower and price is higher when the cost function
is steeper in R&D investments (i.e., δ > 0).
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Proof. The impact of δ on output, investment, consumer surplus and
total welfare is obtained as in the proof of Proposition 2. Again, the ef-
fect of δ on profit depends on the parameter’s value, and can be positive
when η is large and r is less than 1−β

(2β+1) (see appendix for an illustra-
tion). �

5. Comparison of Equilibria
In this section we compare Cournot outputs, prices, profits, R&D lev-

els, consumer surplus and total welfare with their Bertrand counterparts.
We assume that conditions (8.8), (8.9), (8.15) and (8.16) are satisfied
by the parameters. These conditions are necessary and sufficient for the
equilibrium prices, quantities and profits to be positive in both modes
of play.

Proposition 8.5 Cournot R&D investments are always higher than
Bertrand’s.

Proof. From (8.11) and (8.18) we have

xC − xB = AV
D2E1G

2
2R1 −D1E2G

2
1R2

Δ1Δ2
,

where the denominator is positive under conditions (8.9) and (8.16).
Substituting the parameter values in the numerator yields

D2E1G
2
2R1 −D1E2G

2
1R2 =

η3r3 (η + ηβ + 1)

+ η3r2
((

2− η2
)
(3ηβ + 1) + (2− η) (η + 2) (η + 1) + η2

)
+ η3r

((
12− 11η2 − η3 + η4

)
(ηβ + 1) + η (2− η) (η + 2) (η + 1)

)
+ 2η3 (1− η) (2− η) (η + 2) (η + 1) (ηβ + 1)

which is positive. �

This finding is similar to that of Qiu (1997) and can be explained in
the same way. Qiu analyzes the factors that induce firms to undertake
R&D under both Cournot and Bertrand settings, using general demand
and R&D cost functions. He decomposes these factors into four main
categories: (i) strategic effects, (ii) spillover effects, (iii) size effects and
(iv) cost effects. He shows that while the last three factors do have
similar impact on both Cournot and Bertrand, the strategic factor does
induce more R&D under the Cournot and discourages it under Bertrand.
Therefore he concludes that due to the strategic factor, R&D investment
under Cournot will always be higher than that of Bertrand.



170 DYNAMIC GAMES: THEORY AND APPLICATIONS

Proposition 8.6 Cournot output and consumer surplus could be higher
than Bertrand’s.

Proof. Use (8.10) and (8.19) to get

qC − qB = AV
(D1G1Δ2 −D2G2Δ1)

Δ1Δ2
.

The numerator is the difference of two positive numbers, and is positive
if

V <
B (G2D2R1E1 −D1G1E2R2)

D2G2D1G1η2
,

that is, when V is small while satisfying conditions (8.8), (8.9), (8.15)
and (8.16), which are lower bounds on V . The intersection of these
conditions is not empty (see appendix for examples). This shows that the
output under Cournot could be higher than that of Bertrand when R&D
productivity is high. Consequently, consumer surplus under Cournot
could be higher than under Bertrand. �

These results are different from those of Qiu and Singh and Vives as
well. Furthermore, they contrast the fundamental results of the oligopoly
theory. As expected, if R&D productivity is low, then the traditional
results, which state that output and consumer surplus (prices) under
Bertrand are higher (lower) than Cournot’s, still hold. Notice that
Proposition 6 holds when r = 0 and δ = 0.2

The difference in profits can be written:

πC − πB =
V 2A2

2B2

(
D1G

3
1

R1B (ηβ − 1) + D1G1V

Δ2
1

−D2G
3
2

R2B (ηβ − 1) + G2D2V

Δ2
2

)
=

V 2A2

2Δ2
1Δ

2
2

(
αV 2 + γV + λ

)
,

where

α = D2
2G

2
2D

2
1G

2
1η

3 (R1 (2 + η) + 2η) > 0
γ = 2D2R2R1G

2
1D1G

2
2Bη3 (ηβ − 1) + D2

1G
4
1E

2
2R2

2 −D2
2G

4
2E

2
1R2

1

λ = (1− ηβ)R2R1B
(
D2G

3
2E

2
1R1 − E2

2G3
1D1R2

)
.

The sign of the above expression is not obvious. Extensive numeri-
cal investigations failed to provide an instance where the difference is

2This apparent contradiction with Qiu’s result is due to his using a restrictive condition on
the parameter values which is sufficient but not necessary for the solutions to make sense.
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negative, provided conditions (8.8), (8.9), (8.15) and (8.16) are satisfied.
Since V can take arbitrarily large values and α > 0, the difference is
increasing in ν when sufficiently large. This result is similar to that of
Qiu (1997) and Singh and Vives (1984) and indicates that firm should
prefer Cournot equilibrium, and more so when productivity of R&D is
low.

As a consequence, it is apparent that total welfare under Cournot can
be higher than that under Bertrand (when for instance both consumer
surplus and profit are higher). Examples of positive and negative differ-
ences in total welfare are provided in the appendix. With respect to the
conclusions in Qiu, we find that efficiency of Cournot competition does
not require that η and β both be very high, provided R&D productivity
is high. Again, this is true for r = 0 and δ = 0.

Remark 8.2 It can be easily verified that if η = 0, i.e., the products
are not substitutes, then Bertrand and Cournot equilibria coincide. This
means that each firm becomes a monopoly in its market and it does not
matter if the players choose prices or quantities as strategic variables.

6. Concluding Remarks
In this paper, we developed a two stage games for a differentiated

duopoly. Each of the two firms produces one variety of substitute goods.
It also engages in process R&D investment activities, which aims at
reducing its production costs, incidentally reducing also the competi-
tor’s costs because of spillovers which are proportional to the degree
of substitability of the products. The firms intend to maximize their
total profit functions by choosing the optimal levels of either their out-
puts/or prices as well as R&D investments. We derived and compared
the Bertrand and the Cournot equilibria, and then examined the robust-
ness of the literature’s results, especially those of Qiu (1997).

The main results of this study are as follows: (a) Bertrand competi-
tion is more efficient if R&D productivity is low and effective spillovers
are weak. (b) Cournot competition may lead to higher outputs, higher
consumer surpluses and lower prices, provided that R&D productivity is
very high. (c) Cournot competition results in higher R&D investments
compared to Bertrand’s. (d) A steeper investment cost specification
lowers output, investment and consumer surplus in both kinds of com-
petition but does not change qualitatively the results about their com-
parative efficiencies. (e) These results are robust to a convex production
cost specification.
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Appendix:
1 2 3 4 5 6

a 400 400 400 400 900 300
c 300 300 300 300 800 200
η 0.8 0.8 0.9 0.9 0.9 0.9
β 0.1 0.1 0.2 0.2 0.9 0.7
r 1 1 0.3 0.3 0 1
v 0.4 0.4 1 1 0.6 10
δ 0 1 0 1 0 0
xC 276 154 60 46 268 2
qC 105 70 54 49 202 27
pC 62 124 297 307 17 249
πC 1232 1682 1510 1453 19129 1036
CSC 19724 8810 5573 4542 77192 1348
TW C 22188 12174 8593 7448 115450 3419
xB 201 123 40 32 40 2
qB 100 74 63 59 82 33
pB 220 117 280 288 244 237
πB 581 1039 444 493 811 750
CSB 18108 9768 7533 6553 12805 2113
TW B 19271 11846 8421 7539 14428 3613
qC − qB 4 -4 -9 -10 119 -7
πC − πB 651 643 1066 960 18318 286
CSC − CSB 1616 -958 -1960 -2010 64387 -766
TW C − TW B 2917 328 172 -90 101022 -194

Columns 1 and 2 show an example where increasing δ increases Cournot profit.
Columns 3 and 4 show an example where increasing δ increases Bertrand profit.
Columns 1 and 5 show examples where Cournot quantities and consumer surplus are
larger than Bertrand’s.
Columns 1, 2, 3 and 5 show examples where total welfare is larger under Cournot,
columns 4 and 6 where it is smaller.
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Chapter 9

CHEAP TALK, GULLIBILITY, AND
WELFARE IN AN ENVIRONMENTAL
TAXATION GAME

Herbert Dawid
Christophe Deissenberg
Pavel Ševčik

Abstract We consider a simple dynamic model of environmental taxation that ex-
hibits time inconsistency. There are two categories of firms, Believers,
who take the tax announcements made by the Regulator to face value,
and Non-Believers, who perfectly anticipate the Regulator’s decisions,
albeit at a cost. The proportion of Believers and Non-Believers changes
over time depending on the relative profits of both groups. We show
that the Regulator can use misleading tax announcements to steer the
economy to an equilibrium that is Pareto superior to the solutions usu-
ally suggested in the literature. Depending upon the initial proportion
of Believers, the Regulator may prefer a fast or a low speed of reaction
of the firms to differences in Believers/Non-Believers profits.

1. Introduction
The use of taxes as a regulatory instrument in environmental eco-

nomics is a classic topic. In a nutshell, the need for regulation usually
arises because producing causes detrimental emissions. Due to the lack
of a proper market, the firms do not internalize the impact of these emis-
sions on the utility of other agents. Thus, they take their decisions on
the basis of prices that do not reflect the true social costs of their pro-
duction. Taxes can be used to modify the prices confronting the firms
so that the socially desirable decisions are taken.

The problem has been exhaustively investigated in static settings
where there is no room for strategic interaction between the Regu-
lator and the firms. Consider, however, the following situation: (a)
The emission taxes have a dual effect, they incite the firms to reduce
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production and to undertake investments in abatement technology. This
is typically the case when the emissions are increasing in the output and
decreasing in the abatement technology; (b) Emission reduction is so-
cially desirable, the reduction of production is not; and (c) The invest-
ments are irreversible. In that case, the Regulator must find an optimal
compromise between implementing high taxes to motivate high invest-
ments, and keeping the taxes low to encourage production. The fact
that the investments are irreversible introduces a strategic element in
the problem. If the firms are naive and believe his announcements, the
Regulator can insure high production and important investments by first
declaring high taxes and reducing them once the corresponding invest-
ments have been realized. More sophisticated firms, however, recognize
that the initially high taxes will not be implemented, and are reluctant
to invest in the first place. In other words, one is confronted with a
typical time inconsistency problem, which has been extensively treated
in the monetary policy literature following Kydland and Prescott (1977)
and Barro and Gordon (1983). In environmental economics, the time
inconsistency problem has received yet only limited attention, although
it frequently occurs. See among others Gersbach and Glazer (1999) for
a number of examples and for an interesting model, Abrego and Perroni
(1999), Batabyal (1996a), Batabyal (1996b), Dijkstra (2002), Marsiliani
and Renstrőm (2000), Petrakis and Xepapadeas (2003).

The time inconsistency is directly related to the fact that the situation
described above defines a Stackelberg game between the Regulator (the
leader) and the firms (the followers). As noted in the seminal work of
Simaan and Cruz (1973a,b), inconsistency arises because the Stackelberg
equilibrium is not defined by mutual best responses. It implies that the
follower uses a best response in reaction the leader’s action, but not
that the leader’s action is itself a best response to the follower’s. This
opens the door to a re-optimization by the leader once the follower has
played. Thus, a Regulator who announces that he will implement the
Stackelberg solution is not credible. An usual conclusion is that, in the
absence of additional mechanisms, the economy is doomed to converge
towards the less desirable Nash solution.

A number of options to insure credible solutions have been considered
in the literature – credible binding commitments by the Stackelberg
leader, reputation building, use of trigger strategies by the followers,
etc. See McCallum (1997) for a review in a monetary policy context.
Schematically, these solutions aim at assuring the time consistency of
Stackelberg solution with either the Regulator or the firms as a leader.
Usually, these solutions are not efficient and can be Pareto-improved.
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In this paper, we suggest a new solution to the time inconsistency
problem in environmental policy. We show that non-binding tax an-
nouncements can increase the payoff not only of the Regulator, but
also of all firms, if these include any number of naive Believers who
take the announcements at face value. Moreover, if firms tend to adopt
the behavior of the most successful ones, a stable equilibrium may exist
where a positive fraction of firms are Believers. This equilibrium Pareto-
dominates the one where all firms anticipate perfectly the Regulator’s
action. To attain the superior equilibrium, the Regulator builds reputa-
tion and leadership by making announcements and implementing taxes
in a way that generates good results for the Believers, rather than by
pre-committing to his announcements.

This Pareto-superior equilibrium does not always exist. Depending
upon the model parameters (most crucially: upon the speed with which
the firms that follow different strategies react to differences in their re-
spective profits, i.e., upon the flexibility of the firms) it may be rational
for the Regulator to steer the Pareto-inferior fully rational equilibrium.
This paper, thus, stresses the importance of the flexibility in explaining
the policies followed by a Regulator, the welfare level realized, and the
persistence or decay of private confidence in the Regulator’s announce-
ments.

The potential usefulness of employing misleading announcements to
Pareto-improve upon standard game-theoretic equilibrium solutions was
suggested for the case of general linear-quadratic dynamic games in
Vallée et al. (1999) and developed by the same authors in subsequent pa-
pers. An early application to environmental economics is Vallée (1998).
The Believers/Non-Believers dichotomy was introduced in Deissenberg
and Alvarez Gonzalez (2002), who study the credibility problem in mon-
etary economics in a discrete-time framework with reinforcement learn-
ing. A similar monetary policy problem has been investigated in Dawid
and Deissenberg (2004) in a continuous-time setting akin to the one used
in the present work.

The paper is organized as follows. In Section 2, we present the model
of environmental taxation, introduce the imitation-type dynamics that
determine the evolution of the number of Believers in the economy, and
derive the optimal reaction functions of the firms. In Section 3, we
discuss the solution of the static problem one obtains by assuming a
constant proportion of Believers. Section 4 is devoted to the analysis
of the dynamic problem and to the presentation of the main results.
Section 5 concludes.



178 DYNAMIC GAMES: THEORY AND APPLICATIONS

2. The Model
We consider an economy consisting of a Regulator R and of a con-

tinuum of atomistic, profit-maximizing firms i with identical production
technology. Time τ is continuous. To keep notation simple, we do not
index the variables with either i or τ , unless useful for a better under-
standing.

In a nutshell, the situation we consider is the following. The Regulator
can tax the firms in order to incite them to reduce their emissions.
Taxes, however, have a negative impact on the employment. Thus, R
has to choose them in order to achieve an optimal compromise between
emissions reduction and employment. The following sequence of events
occurs in every τ :

R makes a non-binding announcement ta ≥ 0 about the tax level
he will implement. The tax level is defined as the amount each
firm has to pay per unit of its emissions.

Given ta, the firms form expectations te about the actual level
of the environmental tax. As will be described in more detail
later, there are two different ways for an individual firm to form
its expectations. Each firm i decides about its level of emission
reduction vi based on its expectation tei and makes the necessary
investments.

R chooses the actual level of tax t ≥ 0.

Each firm i produces a quantity xi generating emissions xi − vi.

The individual firms revise the way they form their expectations
(that is, revise their beliefs) depending on the profits they have
realized.

The Firms

Each firm produces the same homogenous good using a linear produc-
tion technology: The production of x units of output requires x units
of labor and generates x units of environmentally damaging emissions.
The production costs are given by:

c(x) = wx + cxx2, (9.1)

where x is the output, w > 0 the fixed wage rate, and cx > 0 a parameter.
For simplicity’s sake, the demand is assumed infinitely elastic at the
given price p̃ > w. Let p := p̃− w > 0.
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At each point of time, each firm can spend an additional amount of
money γ in order to reduce its current emissions. The investment

γ(v) = cvv
2, (9.2)

with cv > 0 a given parameter, is needed in order to reduce the firm’s
current emissions by v ∈ [0, x]. The investment in one period has no
impact on the emissions in future periods. Rather than expenditures
in emission-reducing capital, γ can therefore be interpreted as the addi-
tional costs resulting of a temporary switch to a cleaner resource – say,
of a switch from coal to natural gas.

Depending on the way they form their expectations te, we consider
two types of firms, Believers B and Non-Believers NB. The fraction of
Believers in the population is denoted by π ∈ [0, 1]. Believers consider
the Regulator’s announcement to be truthful and set te = ta. Non-
Believers disregard the announcement and anticipate perfectly the actual
tax level, te = t. Making perfect anticipations at any point of time,
however, is costly. Thus, Non-Believers occur costs of δ > 0 per unit of
time.

The firms are profit-maximizers. As will become apparent in the
following, one can assume without loss of substance that they are myopic,
that is, maximize in every τ their current profit.

The Regulator R

The Regulator’s goal is to maximize over an infinite horizon the cu-
mulated discounted value of an objective function with the employment,
the emissions, and the tax revenue as arguments. In order to realize
this objective, it has two instruments at his disposal, the announced
instantaneous tax level ta, and the actually realized level t.

The objective function is given by:

Φ(ta, t) =
∫ ∞

0
e−ρτφ(ta, t)dτ (9.3)

:=
∫ ∞

0
e−ρτ

[
k(πxb + (1− π)xnb)− κ(π(xb − vb)

+(1− π)(xnb − vnb)) + t(π(xb − vb) + (1− π)(xnb − vnb))
]
dτ,

where xb, xnb, vb, vnb denote the optimal production respectively invest-
ment chosen by the Believers B and the Non-Believers NB, and where
k and κ are strictly positive weights placed by R on the average em-
ployment respectively on the average emissions (remember that output
and employment are in a one-to-one relationship in this economy). The
strictly positive parameter ρ is a social discount factor.
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Belief Dynamics

The firms’ beliefs (B or NB) change according to a imitation-type
dynamics, see Dawid (1999), Hofbauer and Sigmund (1998). The firms
meet randomly two-by-two, each pairing being equiprobable. At each
encounter the firm with the lower current profit adopts the belief of
the other firm with a probability proportional to the current difference
between the individual profits. This gives rise to the dynamics:

π̇ = βπ(1− π)(gb − gnb), (9.4)

where gb and gnb denote the profits of a Believer and of a Non-Believer:

gb = pxb − cx(xb)2 − t(xb − vb)− cv(vb)2,

gnb = pxnb − cx(xnb)2 − t(xnb − vnb)− cv(vnb)2 − δ.

Notice that π(1− π) reaches its maximum for π = 1
2 (the value of π for

which the probability of encounter between firms with different profits
is maximized), and tends towards 0 for π → 0 and π → 1 (for extreme
values of π, almost all firms have the same profits). The parameter
β ≥ 0, that depends on the adoption probability of the other’s strategy
may be interpreted as a measure of the willingness to change strategies,
that is, of the flexibility of the firms.

Equation (9.4) implies that by choosing the value of (ta, t) at time τ ,
the Regulator not only influences its instantaneous objective but also the
future proportion of Bs in the economy. This, in turn, has an impact on
the values of its objective function. Hence, although there are no explicit
dynamics for the economic variables v and x, the R faces a non-trivial
inter-temporal optimization problem.

Optimal Decisions of the Firms

Since the firms are atomistic, each single producer is too small to
influence the dynamics of π. Thus, the single firm does not take into
account any inter-temporal effect and, independently of its true planing
horizon, de facto maximizes its current profit in every τ . Each firm
chooses its investment v after it has learned ta but before t has been
made public. However, it fixes its production level x after v and t are
known. The firms being price takers, the optimal production decision is:

x =
p− t

2cx
. (9.5)

The thus defined optimal x does not depend upon ta, neither directly
nor indirectly. As a consequence, both Bs and NBs choose the same
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production level (9.5) as a function of the realized tax t alone, xb =
xnb = x.

The profit of a firm given that an investment v has been realized is:

g(v; t) =
(p− t)2

4cx
+ tv.

When the firms determine their investment v, the actual tax rate is not
known. Therefore, they solve:

max
v

[g(v; te)− cvv
2],

with te = t if the firm is a NB and te = ta if the firm is a B. The interior
solution to this problem is:

vb =
ta

2cv
, vnb =

t

2cv
. (9.6)

The net emissions x − v of any firm will remain non-negative after the
investment, i.e., v ∈ [0, x] will hold, if:

p ≥ cv + cx

cv
max[t, ta]. (9.7)

Given above expressions (9.5) for x and (9.6) for v, it is straightfor-
ward to see that the belief dynamics can be written as:

π̇ = βπ(1− π)
(−(ta − t)2

4cv
+ δ

)
. (9.8)

The two effects that govern the evolution of π become now apparent.
Large deviations of the realized tax level t from ta induce a decrease in
the stock of believers, whereas the stock of believers tends to grow if the
cost δ necessary to form rational expectations is high.

Using (9.5) and (9.6), the instantaneous objective function φ of the
Regulator becomes:

φ(ta, t) = (k − κ + t)
p− t

2cx
+

κ− t

2cv
(πta + (1− π)t). (9.9)

3. The static problem
In the model, there is only one source of dynamics, the beliefs updating

(9.4). Before investigating the dynamic problem, it is instructive to
cursorily consider the solution $ of the static case in which R maximizes
the integrand in (9.3) for a given value of π.
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From (9.9), one recognizes easily that at the optimum ta$ will either
take its highest possible value or be zero, depending on wether κ− t$ is
positive or negative. The case κ− t$ < 0 corresponds to the uninterest-
ing situation where the regulator values tax income more than emissions
reduction and thus tries to increase the volume of emissions. We there-
fore restrict our analysis to the environmentally friendly case t$ < κ.
Note that (9.7) provides a natural upper bound t̄a for t, namely:

t̄a =
pcv

cv + cx
. (9.10)

Assuming that the optimal announcement ta$ takes the upper value t̄a

just defined (the choice of another bound is inconsequential for the qual-
itative results), the optimal tax t$ is:

t$ =
1
2
(κ + t̄a − cvk

cv + cx − cxπ
). (9.11)

Note that t$ is decreasing in π. (As π increases, the announcement
ta becomes a more powerful instrument, making a recourse to t less
necessary). The requirement κ > t$ is fulfilled for all π iff:

cv(k + κ− p) + cxκ > 0. (9.12)

In the reminder of this paper, we assume that (9.12) holds.
Turning to the firms profits, one recognizes the difference gnb − gb

between the NB′s and B′s profits is increasing in |t$ − ta$|:

gnb − gb =
(t$ − ta$)2

4cv
− δ. (9.13)

For δ = 0, the profit of the NBs is always higher that the profit of the Bs
whenever ta �= t, reflecting the fact the latter make a systematic error
about the true value of t. The profit of the Bs, however, can exceed
the one of the NBs if the learning cost δ is high enough. Since ta$ is
constant and t$ decreasing in π, and since t$ < ta$, the difference ta$−t$

increases in π. Therefore, the difference between the profits of the NBs
and Bs, (9.13), is increasing in π.

Further analytical insights are exceedingly cumbersome to present due
to the complexity of the functions involved. We therefore illustrate a
remarkable, generic feature of the solution with the help of Figure 9.11.

1The parameter values underlying the figure are cv = 5, cx = 3, δ = 0, p = 6, k = 4, κ = 3.
The figure is qualitatively robust with respect to changes in these values.
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Not only the Regulator’s utility φ increases with π, so do also the profits
of the Bs and NBs. For π = 0, the outcome is the Nash solution of a
game between the NBs and the Regulator. This outcome is not efficient,
leaving room for Pareto-improvement. As π increases, the Bs enjoy the
benefits of a decreasing t, while their investment remains fixed at v(t̄a).
Likewise, the NBs benefit from the decrease in taxation. The lowering of
the taxation is made rational by the existence of the Believers, who are
led by the R’s announcements to invest more than they would otherwise,
and to subsequently emit less. Accordingly, the marginal tax income
goes down as π increases and therefore R is induced to reduce taxation
if the proportion of believers goes up.

The only motive that could lead R to reduce the spread between t
and ta, and in particular to choose ta < t̄a, lies in the impact of the
tax announcements on the beliefs dynamics. Ceteris paribus, R prefers
a high proportion of Bs to a low one, since it has one more instrument
(that is, ta) to influence the Bs than to control the NBs. A high spread
ta − t, however, implies that the profits of the Bs will be low compared
to those of the NBs. This, by (9.4), reduces the value of π̇ and leads
over time to a lower proportion of Bs, diminishing the instantaneous
utility of R. Therefore, in the dynamic problem, R will have to find an
optimal compromise between choosing a high value of ta, which allows
a low value of t and insures the Regulator a high instantaneous utility,
and choosing a lower one, leading to a more favorable proportion of Bs
in the future.

0.2 0.4 0.6 0.8

1.4

1.6

1.8

2

2.2

2.4
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φ, g

Figure 9.1. Profits of the Believers (solid line), of the Non-Believers (dashed line),
and Regulator’s utility (bold-line) as a function of π.
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4. Dynamic analysis

4.1 Characterization of the optimal paths
As pointed out earlier, the Regulator faces a dynamic optimization

problem because of the effect of his current action on the future stock
of believers. This problem is given by:

max
0≤ta(τ),t(τ)

Φ(ta, t) subject to (9.8).

The Hamiltonian of the problem is given by:

H(ta, t, π, λ) = (k − κ + t)
p− t

2cx
+

κ− t

2cv
(πta + (1− π)t)

+ λβπ(1− π)
(
− 1

4cv
(ta − t)2 + δ

)
,

where λ denotes the co-state variable. The Hamiltonian is concave in
(t, ta) iff:

2λβ(1− π)(cv + cx)− πcx > 0. (9.14)
The optimal controls ∗ are then given by:

t∗(π, λ) =
λβ(1− π)(cv(p̂− k + κ) + cxκ)− cxκπ

2λβ(1− π)(cv + cx)− cxπ
(9.15)

ta∗(π, λ) =
1

2λβ(1− π)(cv + cx)− cxπ

[
cxκ(1− π) (9.16)

+ λβ(1− π)(cv(p̂− k + κ) + cxκ)− cv(p̂− k − κ)
]

Otherwise, there are no interior optimal controls. In what follows we
assume that (9.14) is satisfied along the optimal path. It can be easily
checked that this is the case at the equilibrium discussed below.

The difference between the optimal announced and realized tax levels
is given by:

ta∗ − t∗ =
κ− t∗

λβ(1− π)
. (9.17)

Hence the optimal announced tax exceeds the realized one if and only
if t∗ < κ. As in the static case, we restrict the analysis to the environ-
mentally friendly case t∗ < κ and assume that (9.12) holds.

According to Pontriagins’ Maximum Principle, an optimal solution
(π(τ), λ(τ)) has to satisfy the state dynamics (9.8) plus:

λ̇ = ρλ− ∂H(ta∗(π, λ), t∗(π, λ), π, λ)
∂π

, (9.18)

lim
τ→∞ e−ρτλ(τ) = 0. (9.19)
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In our case the co-state dynamics are given by:

λ̇ = ρλ− κ− t

2cv
(ta − t)− λβ(1− 2π)

(
− 1

4cv
(ta − t)2 + δ)

)
. (9.20)

In order to analyze the long run behavior of the system we now provide
a characterization of the steady states for different values of the public
flexibility parameter β. Due to the structure of the state dynamics
there are always trivial steady states for π = 0 and π = 1. For π = 0 the
announcement is irrelevant. Its optimal value is therefore indeterminate.
The optimal tax level is t = κ. For π = 1, the concavity condition (9.14)
is violated and the optimal controls are like in the static case. In the
following, we restrict our attention to π < 1. In Proposition 1, we
first show under which conditions there exists an interior steady state
where Believers coexist with Non-Believers. Furthermore, we discuss the
stability of the steady states.

Proposition 9.1 Steady states and their stability:

(i) For 0 < β ≤ ρ
2δ there exists no interior steady state. The steady

state at π = 0 is stable.

(ii) For β > ρ
2δ there exists a unique stable interior steady state π+

with:
π+ = 1− ρ

2βδ
. (9.21)

The steady state at π = 0 is unstable.

Proof. We prove the existence and the stability of the interior steady
state. The claims about the boundary steady state at π = 0 follow
directly.

Equation (9.8) implies that, in order for π̇ = 0, to hold one must have:

(ta∗ − t∗)2 = 4cvδ. (9.22)

That is, taking into account (9.17):

t∗ = κ− 2λ+β(1− π+)
√

cvδ. (9.23)

Equation (9.22) implies that λ̇ = 0 is satisfied iff:

ρλ− κ− t∗

2cv
(ta∗ − t∗) = 0. (9.24)

Using (9.17) for ta∗ − t∗ in (9.24) we obtain the condition:

t∗ = κ−
√

2ρβ(1− π+)cv. (9.25)
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Combining (9.23) and (9.25) shows that

2λ+β(1− π+)
√

cvδ =
√

2ρβ(1− π+)cv

must hold at an interior steady state. This condition is equivalent to
(9.21). For β ≤ ρ

2δ , (9.21) becomes smaller or equal zero. Therefore, an
interior steady state is only possible for β > ρ

2δ .
Using (9.21, 9.15, 9.23), one obtains for the value of the co-state at

the steady state:

λ+ =
δβ(cx(2

√
cvδ + κ) + cv(k + κ− p))− ρcx

√
cvδ

2ρβ
√

cvδ(cv + cx)
. (9.26)

To determine the stability of the interior steady state we investigate
the Jacobian matrix J of the canonical system (9.8, 9.20) at the steady
state. The eigenvalues of J are given by:

e1,2 =
tr(J)±√tr(J)2 − 4det(J)

2
.

Therefore, the steady state is saddle point stable if and only if the deter-
minant of J is negative. Inserting (9.15, 9.16) into the canonical system
(9.8, 9.20), taking the derivatives with respect to (π, λ) and then insert-
ing (9.21, 9.26) gives the matrix J . Tedious calculations show that its
determinant is given by:

det(j) = C
(
−
√

δβ(cv(k + κ− p) + cxκ)− cx
√

cv(2βδ − ρ)
)

,

where C is a positive constant. The first of the two terms in the bracket is
negative due to the assumption (9.12), the second is negative whenever
β > ρ

2δ . Hence, det(J) < 0 whenever an interior steady state exists,
implying that the interior steady state is always stable. For β = ρ

2δ this
stable steady state collides with the unstable one at π = 0. The steady
state at π = 0 therefore becomes stable for β ≤ ρ

2δ . �

Since there is always only one stable steady state and since cycles
are impossible in a control problem with a one-dimensional state, we
can conclude from Proposition 9.1 that the stable steady state is always
a global attractor. Convergence to the unique steady state is always
monotone. The long run fraction of believers in the population is inde-
pendent from the original level of trust. From (9.21) one recognizes that
it decreases with ρ. An impatient Regulator will not attempt to build
up a large proportion of Bs since the time and efforts needed now for an
additional increase of π weighs heavily compared to the future benefits.
By contrast, π+ is increasing in β and δ. A high flexibility β of the
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firms means that the cumulated loss of potential utility occurred by the
Regulator en route to π+ will be small and easily compensated by the
gains in the vicinity of and at π+. Reinforcing this, the Regulator does
not have to make Bs much better off than NBs in order to insure a fast
reaction. As a result, for β large, the equilibrium π+ is characterized by
a large proportion of Bs and provide high profits respectively utility to
all players. A high learning cost δ means that the Regulator can make
the Bs better off than the NBs at low or no cost, implying again a high
value of π at the steady state.

Note that it is never optimal for the Regulator to follow a policy that
would ultimately insure that all firms are Believers, π+ = 1. There are
two concurrent reasons for that. On the one hand, as π increases, the
Regulator has to deviate more and more from the statically optimal solu-
tion ta$(π), t$(π) to make believing more profitable than non-believing.
On the other hand, the beliefs dynamics slow down. Thus, the dis-
counted benefits from increasing π decrease.

For ρ = 0.8, cv = 5, cx = 3, δ = 0.15, p = 6, k = 4, κ = 3 e.g., the
profits and utility at the steady state π+ = 0.733333 are gb = gnb =
1.43785, φ = 2.33043. This steady state Pareto-dominates the fully
rational equilibrium with π = 0, where gnb = 1.32708, φ = 2.30844. It
also dominates the equilibrium attained when the belief dynamics (9.8)
holds but the Regulator maximizes in each period his instantaneous
utility φ instead of Φ. At this last equilibrium, π = 0.21036, gb =
gnb = 1.375, φ = 2.23689. Note that the last two equilibria cannot be
compared, since the latter provides a higher profit to the firms but a
lower utility to the Regulator.

This ranking of equilibria is robust with respect to parameter varia-
tions. A clear message emerges. As we contended at the beginning of
this paper the suggested solution Pareto-improves on the static Nash
equilibrium. This solution implies both a beliefs dynamics among the
firms and a farsighted Regulator. A farsighted Regulator without beliefs
dynamics is pointless. Beliefs dynamics with a myopic Regulator lead to
a more modest Pareto-improvement. But it is the combination of beliefs
dynamics and farsightedness that Pareto-dominates all other solutions.

4.2 The influence of public flexibility
An interesting question is whether the Regulator would prefer a pop-

ulation that reacts quickly to profit differences, shifting from Believing
to Non-Believing or vice versa in a short time, or if it would prefer a less
reactive population. In other words, would the Regulator prefer a high
or a low value of β ?
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From Proposition 9.1 we know that the long run fraction of Believers
is given by:

π+ = max
[
0, 1− ρ

2βδ

]
.

A minimum level β > ρ
2δ of flexibility is necessary for the system to

converge towards an interior steady state with a positive fraction of Bs.
For β greater than ρ

2δ , the fraction of Bs at the steady state increases
with β, converging towards π = 1 as β goes to infinity. One might
think that, since the Regulator always prefers a high proportion of Bs
at equilibrium, he would also prefer a high value of β. Stated in a
more formal manner, one might expect that the value function of the
Regulator, V R(π0), increases with β regardless of π0. This, however,
is not the case. The dependence of V R(π0) on β is non-monotone and
depends crucially on π0. An analytical characterization of V R(π0) being
impossible, we use a numerical example to illustrate that point. The
results are very robust with respect to parameter variations.

Figure 9.2 shows the steady state value π+ = π+ (β) of π for β ∈
[1, 30]. Figure 9.3 compares2 V R(0.2) and V R(0.8) for the same values
of β. The other parameter values are as before ρ = 0.8, cv = 5, cx = 3,
δ = 0.15, p = 6, k = 4, κ = 3 in both cases.
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Figure 9.2. The proportion π of Believers at the steady state for β ∈ [1, 30].

2The numerical calculations underlying this figure were carried out using a powerful propri-
etary computer program for the treatment of optimal control problems graciously provided
by Lars Grüne, whose support is most gratefully acknowledged. See Grüne and Semmler
(2002).
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Figure 9.3. The value function of the Regulator for π = 0.2 (dotted line) and π = 0.8
(solid line) for β ∈ [1, 30].

Figure 9.3 reveals that one always has V R(0.8) > V R(0.2), reflecting
the general result that V R(π0) is increasing in π0 for any β. Both value
functions are not monotone in β but U-shaped. Combining Figure 9.2
and Figure 9.3 shows that the minimum of V R(π0) is always attained
for the value of β at which the steady state value π+ (β) coincides with
the initial fraction of Believers π0. This result is quite intuitive. If
π+ (β) < π0, it is optimal for the Regulator to reduce π over time. The
Regulator does it by announcing a tax ta much greater than the tax
t he will implement, making the Bs worse off than the NBs, but also
increasing his own instantaneous benefits φ. Thus, R prefers that the
convergence towards the steady state be as slow as possible. That is,
V R is decreasing in β. On the other hand, if π+ > π0, it is optimal
for R to increase π over time. To do so, he must follow a policy that
makes the Bs better off than the NBs, but this is costly in terms of his
instantaneous objective function φ. It is therefore better for R if the
firms react fast to the profit difference. The value function V R increases
with β. Summarizing, the Regulator prefers (depending on π0) to be
confronted with either very flexible or very inflexible firms. In-between
values of β provide him smaller discounted benefit streams.

Whether a low or a high flexibility is preferable for R depends on the
initial fraction π0 of Believers. Our numerical analysis suggests that a
Regulator facing a small π0 prefer large values of β, whereas he prefers a
low value of β when π0 is large. This result may follow from the specific
functional form used in the model rather than reflect any fundamental
property of the solution.
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If β = 0, the proportion of Bs remains fixed over time at π0 – any
initial value of π0 ∈ (0, 1) corresponds to a stable equilibrium. The
Pareto-improving character of the inner equilibrium then disappears.
Given β = 0, condition (9.14) is violated. The Regulator can announce
any tax level without having to fear negative long term consequences.
Thus, it is in his interest to exploit the gullibility of the Bs to the
maximum. To obtain a meaningful, Pareto-improving solution, some
flexibility is necessary that assures that the firms are not kept captive of
beliefs that penalize them. Only then will the Regulator be led to take
into account the Bs interest.

5. Conclusions
The starting point of this paper is a situation frequently encountered

in environmental economics (and similarly in other economic contexts
as well): If all firms are perfectly rational Non-Believers who make per-
fect predictions of the Regulator’s actions and discard the Regulators
announcements as cheap talk, standard optimizing behavior leads to a
Pareto-inferior outcome, although there are no conflicts of interest be-
tween the different firms and although the objectives of the firms and
of the Regulator largely concur. We show that, in a static world, the
existence of a positive fraction of Believers who take the Regulator’s an-
nouncement at face value Pareto-improves the economic outcome. This
property crucially hinges on the fact that the firms are atomistic and
thus do not anticipate the collective impact of their individual decisions.

The static model is extended by assuming that the proportion of Be-
lievers and Non-Believers changes over time depending on the difference
in the profits made by the two types of firms. The Regulator is assumed
to recognize his ability to influence the evolution of the proportion of
Believers by his choice of announced and realized taxes, and to be in-
terested not only in his instantaneous but also in his future utility. It is
shown that a rational Regulator will never steer the economy towards a
Pareto-optimal equilibrium. However, his optimal policy may lead to a
stable steady state with a strictly positive proportion of Believers that is
Pareto-superior to the equilibrium where all agents perfectly anticipate
his actions. Prerequisites therefore are a sufficiently patient Regulator
and firms that occur sufficiently high costs for building perfect anticipa-
tions of the government actions and/or are suitably flexible, i.e., switch
adequately fast between Believing and Non-Believing. The conjunction
of beliefs dynamics for the firms and of a farsighted Regulator allows for
a larger Pareto-improvement than either only beliefs dynamics or only
farsightedness. Depending upon the initial proportion of Believers, the
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Regulator is better off if the firms are very flexible or very inflexible. In-
termediate values of the flexibility parameter are never optimal for the
Regulator.

References
Abrego, L. and Perroni, C. (1999). Investment Subsidies and Time-

Consistent Environmental Policy. Discussion paper, University of War-
wick, U.K.

Barro, R. and D. Gordon. (1983). Rules, discretion and reputation in
a model of monetary policy. Journal of Monetary Economics, 12:
101–122.

Batabyal, A. (1996a). Consistency and optimality in a dynamic game of
pollution control I: Competition. Environmental and Resource Eco-
nomics, 8:205–220.

Batabyal, A. (1996b). Consistency and optimality in a dynamic game
of pollution control II: Monopoly. Environmental and Resource Eco-
nomics, 8:315–330.

Biglaiser, G., Horowitz, J., and Quiggin, J. (1995). Dynamic pollution
regulation. Journal of Regulatory Economics, 8:33–44.

Dawid, H. (1999). On the dynamics of word of mouth learning with and
without anticipations. Annals of Operations Research, 89:273–295.

Dawid, H. and Deissenberg, C. (2004). On the efficiency-effects of private
(dis-)trust in the government. Forthcoming in Journal of Economic
Behavior and Organization.

Deissenberg, C. and Alvarez Gonzalez, F. (2002). Pareto-improving cheat-
ing in a monetary policy game. Journal of Economic Dynamics and
Control, 26:1457–1479.

Dijkstra, B. (2002). Time Consistency and Investment Incentives in En-
vironmental Policy. Discussion paper 02/12, School of Economics,
University of Nottingham, U.K.

Gersbach, H., and Glazer, A. (1999). Markets and regulatory hold-up
problems. Journal of Environmental Economics and Management, 37:
151–64.
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Chapter 10

A TWO-TIMESCALE STOCHASTIC GAME
FRAMEWORK FOR CLIMATE CHANGE
POLICY ASSESSMENT

Alain Haurie

Abstract In this paper we show how a multi-timescale hierarchical non-coope-
rative game paradigm can contribute to the development of integrated
assessment models of climate change policies. We exploit the well recog-
nized fact that the climate and economic subsystems evolve at very dif-
ferent time scales. We formulate the international negotiation at the
level of climate control as a piecewise deterministic stochastic game
played in the “slow” time scale, whereas the economic adjustments in
the different nations take place in a “faster” time scale. We show how
the negotiations on emissions abatement can be represented in the slow
time scale whereas the economic adjustments are represented in the fast
time scale as solutions of general economic equilibrium models. We pro-
vide some indications on the integration of different classes of models
that could be made, using an hierarchical game theoretic structure.

1. Introduction
The design and assessment of climate change policies, both at national

and international levels, is a major challenge of the 21st century. The
problem of climate change concerns all the developed and developing
countries that together influence the same climate system through their
emissions of greenhouse gases (GHG) associated with their economic
development, and which will be differently affected by the induced cli-
mate change. Therefore the problem is naturally posed in a multi-agent
dynamic decision analysis setting. The Kyoto and Marrakech protocol
and the eventual continuation of the international negotiations in this
domain illustrate this point. To summarize the issues let us quote Ed-
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wards et al., 2005 who conclude as follows their introductory paper of a
book1 on the coupling of climate and economic dynamics:

- Knowledge of the dynamics of the carbon cycle and the forcing by
greenhouse gases permits us to predict global climate change due to an-
thropogenic influences on a time scale of a century (albeit with uncer-
tainty).
- Stabilizing the temperature change to an acceptable level calls for a
drastic worldwide reduction of the GHG emissions level (to around a
quarter of the 1990 level) over the next 50 years.
- Climate inertia implies that many of those who will benefit (suffer)
most from our mitigation actions (lack of mitigation) are not yet born.
- The climate change impacts may be large and unequally distributed
over the planet, with a heavier toll for some DCs.
- The rapid rise of GHG emissions has accompanied economic develop-
ment since the beginning of the industrial era; new ways of bypassing
the Kuznets curve phenomenon have to be found for permitting DCs to
enter into a necessary global emissions reduction scheme.
- The energy system sustaining the world economy has to be profoundly
modified; there are possible technological solutions but their implemen-
tations necessitate a drastic reorganization of the infrastructures with
considerable economic and geopolitical consequences.
- The policies to implement at international level must take explicitly
into account the intergenerational and interregional equity issues.
- The magnitude of the changes that will be necessary impose the imple-
mentation of market-based instruments to limit the welfare losses of the
different parties (groups of consumers) involved.
The global anthropogenic climate change problem is now relatively well
identified... viable policy options will have to be designed as equilibrium
solutions to dynamic games played by different groups of nations. The
paradigm of dynamic games is particularly well suited to represent the
conflict of a set of economic agents (here the nations) involved jointly in
the control of a complex dynamical system (the climate), over a very long
time horizon, with distributed and highly unequal costs and benefits...

Integrated assessment models (IAMs) are the main tools for analyzing
the interactions between climatic change and socio-economic develop-
ment (see the recent survey by Toth, 2005). In a first category of IAMs
one finds the models based on a paradigm of optimal economic growth
à la Ramsey, 1928, to describe the world economy, associated with a
simplified representation of the climate dynamics, in the form of a set
of differential equations. The main models in this category are DICE94
(Nordhaus, 1994), DICE99 and RICE99 (Nordhaus and Boyer, 2000),
MERGE (Manne et al., 1995), and more recently ICLIPS (Toth et al.,
2003 and Toth, 2005). In a second category of IAMs one finds a represen-

1We refer the reader to this book for a more detailed presentation of the climate change
policy issues.
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tation of the world economy in the form of a computable general equilib-
rium model (CGEM), whereas the climate dynamics is studied through
a (sometimes simplified) land-and-ocean-resolving (LO) model of the at-
mosphere, coupled to a 3D ocean general circulation model (GCM). This
is the case of the MIT Integrated Global System Model (IGSM) which is
presented by Prinn et al., 1999 as “designed for simulating the global en-
vironmental changes that may arise as a result of anthropogenic causes,
the uncertainties associated with the projected changes, and the effect of
proposed policies on such changes”.

Early applications of dynamic game paradigms to the analysis of GHG
induced climate change issues are reported in the book edited by Carraro
and Filar, 1995. Haurie, 1995, and Haurie and Zaccour, 1995, propose a
general differential game formalism to design emission taxes in an imper-
fect competition context. Kaitala and Pohjola, 1995, address the issue
of designing transfer payment that would make international agreements
on greenhouse warming sustainable. More recent dynamic game models
dealing with this issue are those by Petrosjan and Zaccour, 2003, and
Germain et al., 2003. Carraro and Siniscalco, 1992, Carraro and Sinis-
calco, 1993, Carraro and Siniscalco, 1996, Buchner et al., 2005, have
studied the dynamic game structure of Kyoto and post-Kyoto negoti-
ations with a particular attention given to the “issue-linking” process,
where agreement on the environmental agenda is linked with other possi-
ble international trade agreement (R&D sharing example). These game
theoretic models have used very simple qualitative models or adapta-
tions of the DICE or RICE models to represent the climate-economy
interactions.

Another class of game theoretic models of climate change negotia-
tions has been developed on the basis of IAMs incorporating a CGEM
description of the world economy. Kemfert, 2005, uses such an IAM
(WIAGEM which combines a CGEM with a simplified climate descrip-
tion) to analyze a game of climate policy cooperation between developed
and developing nations. Haurie and Viguier, 2003b, Bernard et al., 2002,
Haurie and Viguier, 2003a, Viguier et al., 2004, use a two-level game
structure to analyze different climate change policy issues. At a lower
level the World or European economy is described as a CGEM, at an
upper level a negotiation game is defined where strategies correspond to
strategic negotiation decisions taken by countries or group of countries
in the Kyoto-Marrakech agreement implementation.

In this paper we propose a general framework based on a multi-
timescale stochastic game theoretic paradigm to build IAMs for global
climate change policies. The particular feature that we shall try to repre-
sent in our modeling exercise is the difference in timescales between the
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interacting economic and climate systems. In Haurie, 2003, and Haurie,
2002, some considerations have already been given to that issue. In the
present paper we propose to use the formalism of hierarchical control
and singular perturbation theory to take into account these features (we
shall use in particular the formalism developed by Filar et al., 2001).

The paper is organized as follows: In Section 2 we propose a general
modeling framework for the interactions between economic development
and climate change. In particular we show that the combined economy-
climate dynamical system is characterized by two timescales; in Section 3
we formulate the long term game of economy and climate control which
we call game of sustainable development. In Section 4 we exploit the
multi timescale structure of the controlled system to define a reduced
order game, involving only the slow varying climate related variables. In
Section 5 we propose a research agenda for developing IAMs based on
the formalism proposed in this paper.

2. Climate and economic dynamics
In this section we propose a general control-theoretic modeling frame-

work for the representation of the interactions between the climate and
economic systems.

2.1 The linking of climate and economic
dynamics

2.1.1 The variables of the climate-economy system. We
view the climate and the economy as two dynamical systems that are
coupled. We represent the state of the economy at time t by an hy-
brid vector e(t) = (ζ(t),x(t)) where ζ(t) ∈ I is a discrete variable that
represents a particular mode of the world economy (describing for exam-
ple major technological advances, or major geopolitical reorganizations)
whereas the variable x(t) represents physical capital stocks, production
output, household consumption levels, etc. in different countries. We
also represent the climate state as an hybrid vector c(t) = (κ(t),y(t, ·)),
where κ(t) ∈ 	L is a discrete variable describing different possible cli-
mate modes, like e.g. those that may result from threshold events like
the disruption of the thermohaline circulation or the melting of the ice-
shields in Greenland or Antarctic, and y(t, ·) = (y(t, ω)) : ω ∈ Ω) is a
spatially distributed variable where the set Ω represents all the different
locations on Earth where climate matters. The climate state variable y
represents typically the average surface temperatures, the average pre-
cipitation levels, etc.
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The world is divided into a set J of economic regions that we shall
call nations. The linking between climate and economics occurs because
climate change may cause damages, measured through a vulnerability
index2 υj(t) of region j ∈ M , and also because emissions abatement
policies may exert a toll on the economy. The climate policies of nations
is summarized by the state variables zj(t), j ∈ M , which represent the
cap on GHG emissions that they impose on their respective economies
at time t. A control variable uj(t) will represent the abatement effort
of region j ∈ M which acts on the cap trajectory z(·) and through it
on the evolution of the climate variables c(·). We summarize the set of
variables and indices in Table 10.1.

Table 10.1. List of variables in the climate economy model

Variable name meaning

t time index (fast)
τ = t

ε
“stretched out” time index

ε timescales ratio
ω ∈ Ω spatial index
j ∈ M = {1, . . . , m} economic region (nation, player) index
Lj(t) j ∈ M population in region j ∈ M at time t
ζ(t) ∈ I economic/geopolitical mode
κ(t) ∈ �L climate mode
ξ(t) = (ζ(t), κ(t)) ∈ I × �L pooled mode indicator
xj(t) ∈ Xj economic state variable for Nation j
x(t) ∈ X economic state variable (all countries)
y(t) = (y(t, ω) ∈ Y (ω)) climate state variable
zj(t) ∈ Zj cap on GHG emissions for Nation j
z(t) ∈ Z world global cap on GHG emissions
s(t) = (z(t),y(t)) slow paced economy-climate state variables
uj(t) ∈ Uj GHG abatement effort of Nation j
υj(t) ∈ Υj vulnerability indicator for Nation j

2.1.2 The dynamics. Our understanding of the carbon cycle
and the temperature forcing due to the accumulation of CO2 in the
atmosphere is that the dynamics of anthropogenic climate change has a
slow pace compared to the speed of adjustment in the “fast” economic
systems. We shall therefore propose a modeling framework characterized
by two timescales with a ratio ε between the fast and the slow one.

2This index is a functional of the climate state c(t).
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Economic and climate mode dynamics. We assume that the
economic and climate modes may evolve according to controlled jump
processes described by the following transition rates

P[ζ(t + δ) = �|ζ(t) = k and x(t)] = pk�(x(t))δ + o(δ) (10.1)

lim
δ→0

o(δ)
δ

= 0. (10.2)

and

P[κ(t + δ) = ι|κ(t) = i and y(t)] = qiι(y(t))δ + o(δ) (10.3)

lim
δ→0

o(δ)
δ

= 0. (10.4)

Combining the two jump processes we have to consider the pooled mode
(k, i) ∈ I × 	L and the possible transitions (k, i) → (�, i) with rate
pk�(x(t)) or transitions (k, i) → (i, ι) with rate qiι(y(t)).

Climate dynamics. The climate state variable is spatially distrib-
uted (it is typically the average surface temperatures and the precipita-
tion levels on different points of the planet). The climate state evolves
according to complex earth system dynamics with a forcing term which
is directly linked with the global GHG emissions levels z(t). We may
thus represent the climate state dynamics as a distributed parameter
system obeying a (generalized) differential equation which is indexed
over the mode (climate regime) κ(t)

ẏ(t, ·) = gξ(t)(z(t), y(t, ·)) (10.5)
y(0, ·) = yo(·). (10.6)

Economic dynamics. The world economy can be described as a set
of interconnected dynamical systems. The state dynamics of each region
j ∈ M is depending on the state of the other regions due to international
trade and technology transfers. Each region is also characterized by the
current cap on GHG emissions zj(t) and by its abatement effort uj(t).
The nations j ∈ M occupy respective territories Ωj ⊂ Ω. The economic
performance of Nation j will be affected by its vulnerability to climate
change. In the most simple way one can represent this indicator as a
vector υj(t) ∈ IRp (e.g. the percentage loss of output for each of the p
economic sectors) defined as a functional (e.g. an integral over Ωj) of
a distributed damage function d̃

κ(t)
j (ω, ỹ(t, ω)) associated with climate

mode ξ(t) and distributed climate state y(t, ·).

υj(t) =
∫

Ωj

d̃
ξ(t)
j (ω, ỹ(t, ω)) dω. (10.7)
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Now the dynamics of the nation-j economy is described by the differen-
tial equation

ẋj(t) =
1
ε
f

ζ(t)
j (t,x(t), υj(t), zj(t)) j ∈ M (10.8)

xj(0) = xo
j (10.9)

x(t) = (xj(t))j∈M . (10.10)

We have indexed the velocities f
ζ(t)
j (t,x(t), υj(t), zj(t)) over the discrete

economic/geopolitical state ζ(t) since these different possible modes have
an influence on the evolution of the economic variables3. The factor 1

ε
where ε is small expresses the fact that the economic adjustments take
place in a much faster timescale than the ones for climate or modal
states. Notice also that the feedback of climate on the economies is
essentially represented by the influence of the vulnerability variables on
the economic dynamics of different countries.

The GHG emission cap variable zj(t) for nation j ∈ M is a controlled
variable which evolves according to the dynamics

żj(t) = h
ζ(t)
j (xj(t), zj(t), uj(t)) (10.11)

zj(0) = zo
j (10.12)

where uj(t) is the reduction effort. This formulation should permit the
analyst to represent the R&D and other adaptation actions that have
been taken by a government in order to implement a GHG emissions
reduction. Again we have indexed the velocity h

ζ(t)
j (xj(t), zj(t), uj(t))

over the economic/geopolitical modes ζ(t) ∈ I. The absence of factor
1
ε in front of velocities in Eqs. (10.11) indicates that we assume a slow
pace in the emissions cap adjustments.

2.2 A two timescale system
We summarize below the equations characterizing the climate-economy

system.

ẋj(t) =
1
ε
f

ζ(t)
j (t,x(t), zj(t), υj(t)) j ∈ M

xj(0) = xo
j j ∈ M

3We could have also indexed these state equations over the pooled modal state indicator
(ζ(t), κ(t)), assuming that the climate regime might also have an influence on the economic
dynamics. For the sake of simplifying the model structure we do not consider the climate
regime influence on economic dynamics.
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x(t) = (xj(t))j∈M

żj(t) = hζ(t)(xj(t), zj(t), uj(t))

z(t) =
∑
j∈M

zj(t)

zj(0) = zo
j j ∈ M

ẏ(t, ·) = gκ(t)(z(t), y(t, ·))
y(0, ·) = yo(·)
υj(t) =

∫
Ωj

d̃
κ(t)
j (ω, ỹ(t, ω)) dω

P[ζ(t + δ) = �|ζ(t) = k and x(t)] = pk�(x(t))δ + o(δ) k, � ∈ I
lim
δ→0

o(δ)
δ

= 0 k, � ∈ I
P[κ(t + δ) = ι|κ(t) = i and y(t)] = qiι(y(t))δ + o(δ) k, � ∈ 	L

lim
δ→0

o(δ)
δ

= 0 i, ι ∈ 	L.

In the parlance of control systems we have constructed a two-timescale
piecewise deterministic setting. The time index t refers to the “cli-
mate” and slow paced socio-economic evolutions. The parameter ε is
the timescale ratio between the slow and fast timescales. The stretched
out timescale is defined as τ = t/ε. It will be used when we study
the fast adjustments of the economy given climate, socio-economic and
abatement conditions.

3. The game of sustainable development
In this section we describe the dynamic game that nations4 play when

they negotiate to define the GHG emissions cap in international agree-
ments. The negotiation process is represented by the control variables
uj(t), j ∈ M . We first define the strategy space then the payoffs that
will be considered by the nations and we propose a characterization of
the equilibrium solutions.

3.1 Strategies
We assume that the nations use piecewise open-loop (POL) strategies.

This means that the controls uj(·) are functions of time that can be
adapted after each jump of the ξ(·) process. A strategy for Nation j is
therefore a mapping from (t, k, i,x, z,y) ∈ [0,∞)× I × 	L×X× Z×Y

4We identify the players as being countries (possibly group of countries in some applications).
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into the class U t
j of control functions uj(τ) : τ > t. We denote γ the

vector strategy of the m nations.
According to these strategies the nations (players) decide about the

pace at which they will decrease their total GHG emissions over time.
These decision can be revised if a modal change occurs (new climatic
regime or new geopolitical configuration).

3.2 Payoffs
In this model, the nations control the system by modifying their GHG

emission caps. As a consequence the climate change is altered, the dam-
ages are controlled and the economies are adapting in the fast timescale
through the market dynamics. Climate and economic state have also
an influence on the probability of switching to a different modal state
(geopolitical or climate regime). The payoff to nations is based on a
discounted sum of their welfare5.

So, we associate with an initial state (ξo;xo, zo,yo) at time to = 0 and
a strategy m-tuple γ a payoff for each nation j ∈ M defined as follows

Jξo

j (γ; to,xo, zo,yo) = Eγ

[∫ ∞

to
e−ρj(t−to)W

ξ(t)
j

(Lj(t), xj(t), zj(t), υj(t), uj(t)) dt

|ξ(0) = μ,x(0) = xo, z(0) = zo,y(0) = yo

]
,

j = 1, . . . , m (10.13)

where W
(k,i)
j (Lj , xj , zj , υj , uj) represents the welfare of nation j at a

given time when the population level is Lj , the cap level is zj , the vulner-
ability is υj and the cap reduction effort is uj , while the economy/geopo-
litical-climate mode is (k, i). The parameter ρj is the discount rate used
in nation j.

3.3 Equilibrium and DP equations
It is natural to assume that the nations will play a Nash equilibrium,

i.e. a strategy m-tuple γ∗ such that for each nation j, the strategy
γ∗

j is the best reply to the strategy choice of the other nations. The
equilibrium strategy m-tuple should therefore satisfy, for all j ∈ M and

5The simplest expression of it could be L(t)U(C(t)/L(t)) where L(t) is the population size,
C(t) is the total consumption by households and U(·) is the utility of per-capita consumption.
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all initial conditions6 (t, k, i,xo, so)

V ∗
j (k, i; to,xo, so) = J

(k,i)
j (γ∗; to,xo, so) ≥ J

(k,i)
j ([γ∗−j , γj ]; to,xo, so),

(10.14)
where the expression [γ∗−j , γj ] stands for the strategy m-tuple obtained
when Nation j modifies unilaterally its strategy choice.

The climate-economy system model has a piecewise deterministic struc-
ture. We say that we have defined a piecewise deterministic differential
game (PDDG). A dynamic programming (DP) functional equation will
characterize the optimal payoff function. It is obtained by applying the
Bellman optimality principle when one considers the time T of the first
jump of the ξ-process after the initial time to. This yields

V ∗
j (k, i; to,xo, so) = equil.

(
E
[∫ T

to
e−ρj(t−to)W

(k,i)
j

(Lj(t), xj(t), zj(t), υj(t), uj(t)) dt

+ e−ρj(T−to)V ∗
j (ζ(T ), κ(T ); T,x(T ), s(T ))

])
j ∈ M

(10.15)

where the equilibrium is taken with respect to the trajectories defined
by the solutions of the state equations

ẋj(t) =
1
ε
fk

j (t,x(t), zj(t), υj(t)) j ∈ M

xj(0) = xo
j j ∈ M

x(t) = (xj(t))j∈M

żj(t) = hk(xj(t), zj(t), uj(t))

z(t) =
∑
j∈M

zj(t)

zj(0) = zo
j j ∈ M

ẏ(t, ·) = gi(z(t), y(t, ·))
y(0, ·) = yo(·)
υj(t) =

∫
Ωj

d̃i
j(ω, ỹ(t, ω)) dω.

The random time T of the next jump, with the new discrete state
(ζ(T ), κ(T )) reached at this jump time are random events with prob-
ability obtained from the transition rates pk�(x(t)) and qiι(y(t)). We

6Here we use the notation s = (z,y) for the slow varying continuous state variables.
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can use this information to define a family of associated open-loop dif-
ferential games.

3.4 A family of implicit OLE games
We recall here7 that we can associate with a POL equilibrium in

a PDDG a family of implicitly defined Open-Loop Equilibrium (OLE)
problem for a class of deterministic differential games.

V ∗
j (k, i;xo, so) = equil.u(·)

∫ ∞

0
e−ρjt+

∫ t
0 λ(k,i)(x(s),y(s))ds{

Lk,i
j (xj(t), zj(t), υj(t), uj(t))

+
∑

�∈I−k

pk,�(x(s))V ∗
j ((�, i);x(t), s(t))

+
∑

ι∈	L−i

qi,ι(y(s))V ∗
j ((k, ι);x(t), s(t))

}
dt j ∈ M

(10.16)

where the equilibrium is taken with respect to the trajectories defined
by the solutions of the state equations

ẋj(t) =
1
ε
fk

j (t,x(t), zj(t), υj(t)) j ∈ M

xj(0) = xo
j j ∈ M

x(t) = (xj(t))j∈M

żj(t) = hk(xj(t), zj(t), uj(t))

z(t) =
∑
j∈M

zj(t)

zj(0) = zo
j j ∈ M

ẏ(t, ·) = gi(z(t), y(t, ·))
y(0, ·) = yo(·)
υj(t) =

∫
Ωj

d̃
κ(t)
j (ω, ỹ(t, ω)) dω

and where we have introduced the notation

λ(k,i)(x(s),y(s)) =
∑

�∈I−k

pk�(x(s)) +
∑

ι∈	L−i

qiι(y(s)). (10.17)

7See Haurie, 1989, and Haurie and Roche, 1994, for details.
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3.5 Economic interpretation
These auxiliary OLE problems offer an interesting economic interpre-

tation. The nations that are competing in their abatement policies have
to take into account the combined dynamic effect on welfare of the cli-
mate change damages and abatement policy costs; this is represented by
the term

L
(k,i)
j (xj(t), zj(t), υj(t), uj(t))

in the reward expression (10.16). But they have also to trade-off the risks
of modifying the geopolitical mode or the climate regime; the valuation
of these risks at each time t is given by the terms∑
�∈I−k

pk,�(x(s))V ∗
j ((�, i);x(t), s(t)) +

∑
ι∈	L−i

qi,ι(y(s))V ∗
j ((k, ι);x(t), s(t))

in the integrand of (10.16). Furthermore the associated deterministic
problem involves an endogenous discount term e−ρjt+

∫ t
0 λ(k,i)(x(s),y(s))ds

which is related to pure time preference (discount rate ρj) and controlled
probabilities of jumps (pooled jump rate λ(k,i)(x(s),y(s))). In solving
these dynamic games the analysts will face several difficulties. The first
one, which is related to the DP approach is to obtain a correct evalua-
tion of the value functions V ∗

j ((k, i);x, s); this implies a computationally
demanding fixed point calculation in a high dimensional space. A second
difficulty will be to find the solution of the associated OLEs. These are
problems with very large state space, in particular in the representation
of the coupled economies of the different nations j ∈ M . A possible way
to circumvent this difficulty is to exploit the hierarchical structure of this
dynamic game that is induced by the difference in timescale between the
evolution of the economy related state variables and those linked with
climate.

4. The hierarchical game and its limit
equilibrium problem

In this section we propose to define an approximate dynamic game
which is much simpler to analyze and to solve numerically in IAMs.
This approximation is proposed by extending formally, using8 “analogy
reasoning” some results obtained in the field of control systems (one-
player games) under the generic name of singular perturbation theory.

8Analogy reasoning is a sin in mathematics. It is used here to delineate the results (theorems
to prove) that are needed to justify the proposed approach.
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We will take our inspiration mostly from Filar et al., 2001. The reader
will find in this paper a complete list of references on the theory of
singularly perturbed control systems.

4.1 The singularly perturbed dynamic game
We describe here the possible extension of the fundamental technique

used in singular perturbation theory for control systems, which leads to
an averaging of the fast part of the system and a “lifting up” of the
control problem to the upper-level slow paced system.

4.1.1 The local economic equilibrium problem. If at a
given time t̄, the nations have adopted GHG emissions caps represented
by zt̄, the state of climate yt̄ is generating damages υt̄

j , j ∈ M , we call
local economic equilibrium problem the solution x̄t̄ of the set of algebraic
equations

0 = fμ
j (t̄, x̄t̄, z t̄

j , υ
t̄
j) j ∈ M. (10.18)

We shall now use a modification of the time scale, called the stretched
out timescale. It is obtained when we pose τ = t

ε . Then we denote
x̃(τ) = x(τε) the economic trajectory when represented in this stretched
out time.

Assumption 10.1 We assume that the following holds for fixed values
of time t̄, and slow paced state and control variables (z t̄

j , υ
t̄
j , u

t̄
j), j ∈ M .

Lk,i
j (x̄t̄

j , z
t̄
j , υ

t̄
j , u

t̄
j) +

∑
�∈I−k

pk,�(x̄t̄)vj((�, i); st̄)

= lim
θ→∞

1
θ

∫ θ

0
{Lk,i

j (x̃j(t), z̃j(t), υ̃j(t), uj(t))

+
∑

�∈I−k

pk,�(x̃(s))vj((�, i); , st̄)} dt j ∈ M (10.19)

s.t.
˙̃xj(τ) = fk

j (t̄, x̃(τ), z t̄
j) j ∈ M (10.20)

x̃j(0) = xo
j j ∈ M (10.21)

x̃j(θ) = xf
j j ∈ M. (10.22)

The problem (10.19)-(10.22) consists in averaging the part of the in-
stantaneous reward in the associated OLE game that depends on the fast
economic variable x. This averaging is made over the x̃(·) trajectory,
when the timescale has been stretched out and when a potential func-
tion vj((�, ι); , st̄) is used instead of the true equilibrium value function
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V ∗
j ((k, ι);x, s). The condition says that this averaging problem has a

value which is given by the reward associated with the local economic
equilibrium x̄t̄

j , j ∈ M corresponding to the solution of

0 = fk
j (t̄, x̄t̄, z t̄

j , υ
t̄
j) j ∈ M. (10.23)

Clearly this assumption holds if the economic equilibrium is a stable
point for the dynamical system (10.20) in the stretched out timescale.

4.1.2 The limit equilibrium problem. In control systems an
assumption similar to Assumption 10.1 permits one to “lift” the optimal
control problem to the “upper level” system which is uniquely concerned
with the slow varying variables. The basic idea consists in splitting the
time axis [0,∞) into a succession of small intervals of length Δ(ε) which
will tend to 0 together with the timescale ratio ε in such a way that
Δ(ε)

ε → ∞. Then using the averaging property (10.19)-(10.22) when
ε → 0 one defines an approximate control problem called the limit control
problem which is uniquely defined at the level of the slow paced variable.

We propose here the analogous limit equilibrium problem for the multi-
agent system that we are studying. We look for equilibrium (potential)
value functions v∗j ((k, i); , s), j ∈ M (where we use the notation s =
(z,y)) that satisfy the family of associated OLE defined as follows

v∗j ((k, i); , so) = equil.Lk,i
j (x̄j(t), zj(t), υj(t), uj(t)

+
∑

�∈I−k

pk,�(x̄(t))v∗j ((�, i); s(t))

+
∑

ι∈	L−i

qi,ι(y(t))v∗j ((k, ι); s(t)), j ∈ M

s.t.
0 = fk

j (t̄, x̄(t), zj(t), υj(t)), j ∈ M

żj(t) = hk(xj(t), zj(t), uj(t)), j ∈ M

z(t) =
∑
j∈M

zj(t), j ∈ M

zj(0) = zo
j , j ∈ M

ẏ(t, ·) = gi(z(t), y(t, ·))
y(0, ·) = yo(·)
υj(t) =

∫
Ωj

d̃i
j(ω, ỹ(t, ω)) dω, j ∈ M

In this problem, the economic variables x̄(t) are not state variables any-
more; they are not appearing in the arguments of the equilibrium value
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functions v∗j ((k, i); , s), j ∈ M . They serve now as auxiliary variables in
the definition of the nations rewards when they have selected an emis-
sion cap policy. The reduction in state space dimension is therefore very
important and it can be envisioned to solve numerically these equations
in simulations of IAMs.

5. A research agenda
The reduction of complexity obtained in the limit equilibrium problem

is potentially very important. An attempt to solve numerically the re-
sulting dynamic game could be considered, although a high dimensional
state variable, the climate descriptor y(t) remains in this limit problem.
More research is needed before such an attempt could succeed. We give
below a few hints about the topics that need further clarification.

5.1 Comparison of economic and climate
timescales

The pace of anthropogenic climate change is still a matter of contro-
versies. A better understanding of the influence of GHG emissions on
climate change should emerge from the development of better interme-
diate complexity models. Recent experiments by Drouet et al., 2005a,
and Drouet et al., 2005b, on the coupling of economic growth models
with climate models tend to clarify the difference in adjustment speeds
between the two systems.

5.2 Approximations of equilibrium in a
two-timescale game

The study of control systems with two timescales has been developed
under the generic name of “singular perturbation” theory. A rigorous
extension of the control results to a game-theoretic equilibrium solution
environment still remains to be done.

5.3 Viability approach
Aubin et al., 2005 propose an approach more encompassing than game

theory to study the dynamics of climate-economy systems. The concept
of viability could be introduced in the piecewise deterministic formalism
proposed here instead of the more “teleonomic” equilibrium solution
concept.
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6. Conclusion
In this paper we have proposed to use a formalism directly inspired

from the system control and dynamic game literature to model the
climate-economy interplay that characterizes the climate policy negotia-
tions. The Kyoto protocol is the first example of international agreement
on GHG emissions abatement. It should be followed by other complex
negotiations between nations with long term economic and geopolitical
consequences at stake. The framework of stochastic piecewise determin-
istic games with two-timescales offers an interesting paradigm for the
construction of IAMs dealing with long term international climate pol-
icy. The examples, given in the introduction, of the first experiments
with the use of hierarchical dynamic games to study real life policies in
the realm of the Kyoto protocol tend to show that the approach could
lead to interesting policy evaluation tools. It is remarkable that eco-
nomic growth models as well as climate models are very close to the
general system control paradigm. In a proposed research agenda we
have indicated the type of developments that are needed for making this
approach operational for climate policy assessment.

Acknowledgments. This research has been supported by the Swiss
NSF under the NCCR-Climate program. I thank in particular Laurent
Viguier for the enlightening collaboration on the economic modeling of
climate change and Biancamaria D’Onofrio and Francesco Moresino for
fruitful exchanges on singularly perturbed stochastic games.

References
Aubin, J.-P., Bernardo, T., and Saint-Pierre, P. (2005). A viability ap-

proach to global climate change issues. In: Haurie, A. and Viguier, L.
(eds), The Coupling of Climate and Economic Dynamics, pp. 113–140,
Springer.

Bernard, A., Haurie, A., Vielle, M., and Viguier, L. (2002). A Two-level
Dynamic Game of Carbon Emissions Trading Between Russia, China,
and Annex B Countries. Working Paper 11, NCCR-WP4, Geneva. To
appear in Journal of Economic Dynamics and Control.

Buchner, B., Carraro, C., Cersosimo, I., and Marchiori, C. (2005). Link-
ing climate and economic dynamics. In: Haurie, A. and Viguier, L.
(eds), Back to Kyoto? US participation and the linkage between R&D
and climate cooperation,Advances in GlobalChangeResearch, Springer.



10 A Two Timescale Dynamic Game Framework for Climate Change 209

Carraro, C. and Filar, J.A. (1995). Control and Game-Theoretic Models
of the Environment, volume 2 of Annals of the International Society
of Dynamic Games. Birhaüser, Boston.
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Chapter 11

A DIFFERENTIAL GAME OF
ADVERTISING FOR NATIONAL AND
STORE BRANDS

Salma Karray
Georges Zaccour

Abstract We consider a differential game model for a marketing channel formed by
one manufacturer and one retailer. The latter sells the manufacturer’s
product and may also introduce a private label at a lower price than
the manufacturer’s brand. The aim of this paper is twofold. We first
assess in a dynamic context the impact of a private label introduction
on the players’ payoffs. If this is beneficial for the retailer to propose
his brand to consumers and detrimental to the manufacturer, we wish
then to investigate if a cooperative advertising program could help the
manufacturer to mitigate the negative impact of the private label.

1. Introduction
Private labels (or store brand) are taking increasing shares in the

retail market in Europe and North America. National manufacturers
are threatened by such private labels that can cannibalize their market
shares and steal their consumers, but they can also benefit from the
store traffic generated by their presence. In any event, the store brand
introduction in a product category affects both retailers and manufac-
turers marketing decisions and profits. This impact has been studied
using static game models with prices as sole decision variables. Mills
(1995, 1999) and Narasimhan and Wilcox (1998) showed that for a bilat-
eral monopoly, the presence of a private label gives a bigger bargaining
power to the retailer and increases her profit, while the manufacturer
gets lower profit. Adding competition at the manufacturing level, Raju
et al. (1995) identified favorable factors to the introduction of a pri-
vate label for the retailer. They showed in a static context that price
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competition between the store and the national brands, and between na-
tional brands has considerable impact on the profitability of the private
label introduction.

Although price competition is important to understand the competi-
tive interactions between national and private labels, the retailer’s pro-
motional decisions do also affect the sales of both product (Dhar and
Hoch 1997). Many retailers do indeed accompany the introduction of a
private label by heavy store promotions and invest more funds to pro-
mote their own brand than to promote the national ones in some product
categories (Chintagunta et al. 2002).

In this paper, we present a dynamic model for a marketing chan-
nel formed by one manufacturer and one retailer. The latter sells the
manufacturer’s product (the national brand) and may also introduce a
private brand which would be offered to consumers at a lower price than
the manufacturer’s brand. The aim of this paper is twofold. We first
assess in a dynamic context the impact of a private label introduction
on the players’ profits. If we find the same results obtained from static
models, i.e., that it is beneficial for the retailer to propose his brand to
consumers and detrimental to the manufacturer, we wish then to inves-
tigate if a cooperative advertising program could help the manufacturer
to mitigate, at least partially, the negative impact of the private label.

A cooperative advertising (or promotion) program is a cost sharing
mechanism where a manufacturer pays part of the cost incurred by a
retailer to promote the manufacturer’s brand. One of the first attempts
to study cooperative advertising, using a (static) game model, is Berger
(1972). He studied a case where the manufacturer gives an advertising al-
lowance to his retailer as a fixed discount per item purchased and showed
that the use of quantitative analysis is a powerful tool to maximize the
profits in the channel. Dant and Berger (1996) used a Stackelberg game
to demonstrate that advertising allowance increases retailer’s level of
local advertising and total channel profits. Bergen and John (1997) ex-
amined a static game where they considered two channel structures: A
manufacturer with two competing retailers and two manufacturers with
two competing retailers. They showed that the participation of the man-
ufacturers in the advertising expenses of their dealers increases with the
degree of competition between these dealers, with advertising spillover
and with consumer’s willingness to pay. Kim and Staelin (1999) also
explored the two-manufacturers, two-retailers channel, where the coop-
erative strategy is based on advertising allowances.

Studies of cooperative advertising as a coordinating mechanism in
a dynamic context are of recent vintages (see, e.g., Jørgensen et al.
(2000, 2001), Jørgensen and Zaccour (2003), Jørgensen et al. (2003)).
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Jørgensen et al. (2000) examine a case where both channel members
make both long and short term advertising efforts, to stimulate current
sales and build up goodwill. The authors suggest a cooperative adver-
tising program that can take different forms, i.e., a full-support program
where the manufacturer contributes to both types of the retailer’s adver-
tising expenditures (long and short term) or a partial-support program
where the manufacturer supports only one of the two types of retailer
advertising. The authors show that all three cooperative advertising pro-
grams are Pareto-improving (profit-wise) and that both players prefer
the full support program. The conclusion is thus that a coop advertising
program is a coordinating mechanism in also a dynamic setting. Due to
the special structure of the game, long term advertising strategies are
constant over time. This is less realistic in a dynamic game with an
infinite time horizon. A more intuitive strategy is obtained in Jørgensen
et al. (2001). This paper reconsiders the issue of cooperative advertis-
ing in a two-member channel in which there is, however, only one type
of advertising of each player. The manufacturer advertises in national
media while the retailer promotes the brand locally. The sales response
function is linear in promotion and concave in goodwill. The dynamics
are a Nerlove-Arrow-type goodwill evolution equation, depending only
on the manufacturer’s national advertising. In this case, one obtains a
nondegenerate Markovian advertising strategy, being linearly decreasing
in goodwill.

In Jørgensen et al. (2000, 2001), it is an assumption that the re-
tailer’s promotion affects positively the brand image (goodwill stock).
Jørgensen, et al. (2003) study the case where promotions damage the
brand image and ask the question whether a cooperative advertising
program is meaningful in such context. The answer is yes if the initial
brand image is “weak” or if the initial brand image is at an “intermedi-
ate” level and retailer promotions are not “too” damaging to the brand
image.

Jørgensen and Zaccour (2003) suggest an extension of the setup in
Jørgensen et al. (2003). The idea now is that excessive promotions, and
not instantaneous action, is harmful to the brand image.

To achieve our objective, we shall consider three scenarios or games:

1. Game N : the retailer carries only the National brand and no
cooperative advertising program is available. The manufacturer
and the retailers play a noncooperative game and a feedback Nash
equilibrium is found.

2. Game S: the retailer offers a Store brand along with the manufac-
turer’s product and there is no cooperative advertising program.
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The mode of play is noncooperative and a feedback Nash equilib-
rium is the solution concept.

3. Game C: the retailer still offers both brands and the manufacturer
proposes to the retailer a Cooperative advertising program. The
game is played à la Stackelberg with the manufacturer as leader.
As in the two other games, we adopt a feedback information struc-
ture.

Comparing players’ payoffs of the first two games allows to measure
the impact of the private label introduction by the retailer. Comparing
the players’ payoffs of the last two games permits to see if a cooperative
advertising program reduces the harm of the private label for the man-
ufacturer. A necessary condition for the coop plan to be attractive is
that it also improves the retailer’s profit, otherwise the will not accept
to implement it.

The remaining of this paper is organized as follows: In Section 2 we
introduce the differential game model and define rigorously the three
above games. In Section 3 we derive the equilibria for the three games
and compare the results in Section 4. In Section 5 we conclude.

2. Model
Let the marketing channel be formed of a manufacturer (player M)

and a retailer (player R). The manufacturer controls the rate of national
advertising for his brand A(t), t ∈ [0,∞). Denote by G(t) the goodwill
of the manufacturer’s brand, which dynamics evolve à la Nerlove and
Arrow (1962):

Ġ(t) = λA(t)− δG(t), G(0) = G0 ≥ 0, (11.1)

where λ is a positive scaling parameter and δ > 0 is the decay rate.
The retailer controls the promotion efforts for the national brand,

denoted by p1(t), and for the store brand, denoted by p2(t).
We consider that promotions have an immediate impact on sales and
do not affect the goodwill of the brand. The demand functions for the
national brand (Q1) and for the store brand (Q2) are as follows:

Q1(p1, p2, G) = αp1(t)− βp2(t) + θG(t)− μG2 (t) , (11.2)
Q2(p1, p2, G) = αp2(t)− ψp1(t)− γG(t), (11.3)

where α, β, θ, μ, ψ andγ are positive parameters.
Thus, the demand for each brand depends on the retailer’s promo-

tions for both brands and on the goodwill of the national brand. Both
demands are linear in promotions.
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We have assumed for simplicity that the sensitivity of demand to own
promotion is the same for both brands considering that the retailer is
using usually the same media and methods to promote both brands.
However, the cross effect is different allowing for asymmetry in brand
substitution. We assume that own brand promotion has a greater im-
pact on sales, in absolute value, than competitive brand promotion, i.e.,
α > β and α > ψ. This assumption mirrors the one usually made on
prices in oligopoly theory. We further suppose that the marginal effect
of promoting the national brand on the sales of the store brand is higher
than the marginal effect of promoting the store brand on the sales of
the national brand, i.e., ψ > β. This actually means that the manufac-
turer’s brand enjoys a priori a stronger consumer preference than the
retailer’s one. Putting together these inequalities leads to the following
assumption

A1 : α > ψ > β > 0.

Finally, the demand for the national brand is concave increasing in
its goodwill (i.e., ∂Q1

∂G = θ − 2μG > 0,∀G > 0) and the demand for the
store brand is decreasing in that goodwill.

Denote by D(t), 0 ≤ D(t) ≤ 1, the coop participation rate of the
manufacturer in the retailer’s promotion cost of the national brand. We
assume as in, e.g., Jørgensen et al. (2000, 2003), that the players face
quadratic advertising and promotion costs. The net cost incurred by the
manufacturer and the retailer are as follows

CM (A) =
1
2
uMA2(t) +

1
2
uRD (t) p2

1(t),

CR (p1, p2) =
1
2
uR

{[
1−D (t)

]
p2
1(t) + p2

2(t)
}

,

where uR, uM > 0.
Denote by m0 the manufacturer’s margin, by m1 the retailer’s margin

on the national brand and by m2 her margin on the store brand. Based
on empirical observations, we suppose that the retailer has a higher
margin on the private label than on the national brand, i.e., m2 > m1.
Ailawadi and Harlam (2004) found indeed that for product categories
where national brands are heavily advertised, the percent retail margins
are significantly higher for store brands than for national brands.

We denote by r the common discount rate and we assume that each
player maximizes her stream of discounted profit over an infinite hori-
zon. Omitting the time argument when no ambiguity may arise, the
optimization problems of players M and R in the different games are as
follows:
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Game C: Both brands are offered and a coop program is available.

max
A,D

JC
M =

∫ +∞

0
e−rt

[
m0

(
αp1 − βp2 + θG− μG2

)
− uM

2
A2 − uR

2
Dp2

1

]
dt,

max
p1,p2

JC
R =

∫ +∞

0
e−rt

[
m1

(
αp1 − βp2 + θG− μG2

)
+ m2

(
αp2 − ψp1 − γG

)− 1
2
uR

[(
1−D

)
p2
1 + p2

2

]]
dt.

Game S: Both brands are available and there is no coop program.

max
A

JS
M =

∫ +∞

0
e−rt

[
m0

(
αp1 − βp2 + θG− μG2

)− uM

2
A2

]
dt,

max
p1,p2

JS
R =

∫ +∞

0
e−rt

[
m1

(
αp1 − βp2 + θG− μG2

)
+ m2

(
αp2 − ψp1 − γG

)− uR

2

(
p2
1 + p2

2

)]
dt.

Game N : Only manufacturer’s brand is offered and there is no
coop program.

max
A

JN
M =

∫ +∞

0
e−rt

[
m0

(
αp1 + θG− μG2

)− uM

2
A2

]
dt,

max
p1

JN
R =

∫ +∞

0
e−rt

[
m1

(
αp1 + θG− μG2

)− uR

2
p2
1

]
dt.

3. Equilibria
We characterize in this section the equilibria of the three games. In

all cases, we assume that the players adopt stationary Markovian strate-
gies, which is rather standard in infinite-horizon differential games. The
following proposition gives the result for Game N .

Proposition 11.1 When the retailer does not sell a store brand and
the manufacturer does not provide any coop support to the retailer, sta-
tionary feedback Nash advertising and promotional strategies are given
by

pN
1 =

αm1

uR
,
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AN (G) = X + Y G,

where

X =
2m0θλ(

r + 2
√

Δ1

)
uM

, Y =
r + 2δ − 2

√
Δ1

2λ
,

Δ1 =
(
δ +

r

2

)2
+

2μm0λ
2

uM
.

Proof. A sufficient condition for a stationary feedback Nash equilibrium
is the following: Suppose there exists a unique and absolutely continuous
solution G (t) to the initial value problem and there exist bounded and
continuously differentiable functions Vi :  + →  , i ∈ {M, R}, such
that the Hamilton-Jacobi-Bellman (HJB) equations are satisfied for all
G ≥ 0:

rVM (G) = max
A

{
m0

(
αp1 + θG− μG2

)
(11.4)

− 1
2
uMA2 + V ′

M (G)
(
λA− δG

) | A ≥ 0
}

,

rVR (G) = max
p1

{
m1

(
αp1 + θG− μG2

)
(11.5)

−1
2
uRp2

1 + V ′
R (G)

(
λA− δG

) | p1 ≥ 0
}

.

The maximization of the right-hand-side of equations (11.4) and (11.5)
yields the following advertising and promotional rates:

A (G) =
λ

uM
V ′

m (G) , p1 =
αm1

uR
.

Substituting the above in (11.4) and (11.5) leads to the following expres-
sions

rVM (G) = m0

(
α2m1

uR
+ θG− μG2

)
+

λ2

2uM

[
V ′

M (G)
]2 − δGV ′

M (G) ,

(11.6)

rVR (G) = m1

(
α2m1

2uR
+ θG− μG2

)
+ V ′

R (G)
[

λ2

uM
V ′

M (G)− δG

]
.

(11.7)
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It is easy to show that the following quadratic value functions solve the
HJB equations;

VM (G) = a1 + a2G +
1
2
a3G

2, VR (G) = b1 + b2G +
1
2
b3G

2,

where a1, a2, a3, b1, b2, b3 are constants. Substitute VM (G), VR (G) and
their derivatives into equations (11.6) and (11.7) to obtain:

r
(
a1 + a2G +

a3

2
G2
)

=
m0α

2m1

uR
+

λ2a2
2

2uM

+
(

m0θ − δa2 +
λ2a2a3

uM

)
G−

(
μm0 + δa3 − λ2a2

3

2uM

)
G2,

r

(
b1 + b2G +

1
2
b3G

2

)
=

α2m2
1

2uR
+

λ2

uM
a2b2

+
(

m1θ − δb2 +
λ2

uM
(a2b3 + a3b2)

)
G−

(
m1μ + δb3 − λ2

uM
b3a3

)
G2.

By identification, we obtain the following values for the coefficients of
the value functions:

a3 =

(
δ + r

2

)±√Δ1

λ2/uM
, b3 = − m1μ

r
2 + δ − λ2

uM
a3

a2 =
m0θ

r + δ − λ2

uM
a3

, b2 =
m1θ + λ2

uM
b3a2

r + δ − λ2

uM
a3

a1 =
m0α

2m1

ruR
+

λ2a2
2

2ruM
, b1 =

α2m2
1

2ruR
+

λ2a2b2

ruM

where

Δ1 =
(
δ +

r

2

)2
+

2μm0λ
2

uM
.

To obtain an asymptotically stable steady state, choose the negative
solution for a3. Note that the identified solution must satisfy the con-
straint A(G) > 0. Since λ

uM
V ′

M (G) = A(G), this assumption is true for
G ∈ [0, ḠN

]
, where

ḠN =−a2

a3
, A (G)=

λ

uM
V ′

M (G)=
2m0θλ(

r + 2
√

Δ1

)
uM

+
r + 2δ − 2

√
Δ1

2λ
G.

�
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The above proposition shows that the retailer promotes always the
manufacturer’s brand at a positive constant rate and that the advertising
strategy is decreasing in the goodwill. The next proposition characterizes
the feedback Nash equilibrium in Game S.

Proposition 11.2 When the retailer does sell a store brand and the
manufacturer does not provide any coop support to the retailer, assum-
ing an interior solution, stationary feedback Nash advertising and pro-
motional strategies are given by

pS
1 =

αm1 − ψm2

uR
, pS

2 =
αm2 − βm1

uR
, AS (G) = AN (G).

Proof. The proof proceeds exactly as the previous one and we therefore
print only important steps. The HJB equations are given by:

rVM (G) = max
A

{
m0

(
αp1 − βp2 + θG− μG2

)
− uM

2
A2 + V ′

M (G)
(
λA− δG

) | A ≥ 0
}

,

rVR (G) = max
p1,p2

{
m1

(
αp1 − βp2 + θG− μG2

)
+ m2

(
αp2 − ψp1 − γG

)
− uR

2
(
p2
1 + p2

2

)
+ V ′

R (G)
(
λA− δG

) | (p1, p2

) ≥ 0
}

.

The maximization of the right-hand-side of the above equations yields
the following advertising and promotional rates:

A (G) =
λ

uM
V ′

m (G) , p1 =
αm1 − ψm2

uR
, p2 =

αm2 − βm1

uR
.

We next insert the values of A (G), p1 and p2 from above in the HJB
equations and assume that the resulting equations are solved by the
following quadratic functions:

VM (G) = s1 + s2G +
1
2
s3G

2, VR (G) = k1 + k2G +
1
2
k3G

2,

where k1, k2, k3, s1, s2, s3 are constants. Following the same procedure
as in the proof of the previous proposition, we obtain

s3 =

(
δ + r

2

)±√Δ2

λ2/uM
, k3 = − m1μ

r
2 + δ − λ2

uM
s3

,
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s2 =
m0θ

r + δ − λ2

uM
s3

, k2 =
m1θ −m2γ + λ2

uM
k3s2

r + δ − λ2

uM
s3

,

s1 =
m0

ruR

(
α (m1α−m2ψ)− β (m2α−m1β)

)
+

λ2

2ruM
s2
2,

k1 =
1

2ruR

(
(m1α−m2ψ)2 + (m2α−m1β)2

)
+

λ2

ruM
k2s2,

where

Δ2 = Δ1 =
(
δ +

r

2

)2
+

2μm0λ
2

uM
.

In order to obtain an asymptotically stable steady state, we choose for s3

the negative solution. The assumption A(G) > 0 holds for G ∈ [0, ḠS
]
,

where ḠS = − s2
s3

. Note also that s3 = a3, s2 = a2 and b3 = k3. Thus
AS(G) = AN (G) and ḠS = ḠN . �

Remark 11.1 Under A1 (α > ψ > β > 0) and the assumption that
m2 > m1, the retailer will always promote his brand, i.e., pS

2 = αm2−βm1

uR

> 0. For pS
1 = αm1−ψm2

uR
to be positive and thus the solution to be inte-

rior, it is necessary that (αm1 − ψm2) > 0. This means that the retailer
will promote the national brand if the marginal revenue from doing so
exceeds the marginal loss on the store brand. This condition has thus
an important impact on the results and we shall come back to it in the
conclusion.

In the last game, the manufacturer offers a coop promotion program
to her retailer and acts as leader in a Stackelberg game. The results are
summarized in the following proposition.

Proposition 11.3 When the retailer does sell a store brand and the
manufacturer provides a coop support to the retailer, assuming an in-
terior solution, stationary feedback Stackelberg advertising and promo-
tional strategies are given by

pC
1 =

2αm0 + (αm1 − ψm2)
2uR

, pC
2 =

αm2 − βm1

uR
,

AC (G) = AS (G) , D =
2αm0 − (αm1 − ψm2)
2αm0 + (αm1 − ψm2)

.

Proof. We first obtain the reaction functions of the follower (retailer) to
the leader’s announcement of an advertising strategy and a coop support
rate. The later HJB equation is the following
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rVR (G) = max
p1,p2

{
m1

(
αp1 − βp2 + θG− μG2

)
+ m2

(
αp2 − ψp1 − γG

)
(11.8)

− uR

2
(
(1−D) p2

1 + p2
2

)
+ V ′

R (G)
(
λA− δG

) | (p1, p2

) ≥ 0
}

.

Maximization of the right-hand-side of (11.8) yields

p1 =
αm1 − ψm2

uR (1−D)
, p2 =

αm2 − βm1

uR
. (11.9)

The manufacturer’s HJB equation is:

rVM (G) = max
A,D

{
m0

(
αp1 − βp2 + θG− μG2

)− uM

2
A2 − 1

2
uRDp2

1

+ V ′
M (G)

(
λA− δG

) | A ≥ 0, 0 ≤ D ≤ 1
}

.

Substituting for promotion rates from (11.9) into manufacturer’s HJB
equation yields

rVM (G) = max
A,D

{
m0

(
α

αm1 − ψm2

uR (1−D)
− β

αm2 − βm1

uR
+ θG− μG2

)
−uM

2
A2 − uR

2
D
(αm1 − ψm2

uR (1−D)

)2
+ V ′

M (G)
(
λA− δG

)}
Maximizing the right-hand-side leads to

A (G) =
λ

uM
V ′

M (G) , D =
2αm0 − (αm1 − ψm2)
2αm0 + (αm1 − ψm2)

. (11.10)

Using (11.9) and (11.10) provides the retailer’s promotional strategies

p1 =
2αm0 + (αm1 − ψm2)

2uR
, p2 =

αm2 − βm1

uR
.

Following a similar procedure to the one in the proof of Proposition 11.1,
it is easy to check that following quadratic value functions provide unique
solutions for the HJB equations,

VM (G) = n1 + n2G +
1
2
n3G

2, VR (G) = l1 + l2G +
1
2
l3G

2,

where n1, n2, n3, l1, l2, l3 are constants given by:

n3 =

(
δ + r

2

)±√Δ3

λ2/uM
, l3 = − m1μ

r
2 + δ − λ2

uM
n3

,
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n2 =
m0θ

r + δ − λ2

uM
n3

, l2 =
m1θ −m2γ + λ2

uM
l3n2

r + δ − λ2

uM
n3

,

n1 =
m0

ruR

(
α
(
αm0 +

1
2
(m1α−m2ψ)

)− β
(
m2α−m1β

))
+

λ2

2ruM
n2

2 −
1

2ruR

(
α2m0

2 − 1
4
(
m1α−m2ψ

)2)
,

l1 =
(m1α−m2ψ)

2ruR

(
αm0 +

1
2
(
m1α−m2ψ

))
+

(m2α−m1β)2

2ruR
+

λ2l2n2

ruM
,

where Δ3 = Δ2 = Δ1 =
(
δ + r

2

)2 + 2μm0
λ2

uM
.

To obtain an asymptotically stable steady state, we choose the nega-
tive solution for n3. Note that n3 = s3 = a3, n2 = s2 = a2, l3 = k3 = b3

and l2 = k2. Thus AC(G) = AS(G) = AN (G). �

Remark 11.2 As in Game S, the retailer will always promote her brand
at a positive constant rate. The condition for promoting the manufac-
turer’s brand is (2αm0 + αm1 − ψm2) > 0 (the numerator of pC

1 has to
be positive). The condition for an interior solution in Game S was that
(αm1 − ψm2) > 0. Thus if pS

1 is positive, then pC
1 is also positive.

Remark 11.3 The support rate is constrained to be between 0 and 1.
It is easy to verify that if pC

1 > 0, then a necessary condition for D < 1 is
that (αm1 − ψm2) > 0, i.e., pS

1 > 0. Assuming pC
1 > 0, otherwise there

is no reason for the manufacturer to provide a support, the necessary
condition for having D > 0 is (2αm0 − αm1 + ψm2) > 0.

4. Comparison
In making the comparisons, we assume that the solutions in the three

games are interior. The following table collects the equilibrium strategies
and value functions obtained in the three games.

In terms of strategies, it is readily seen that the manufacturer’s adver-
tising strategy (A(G)) is the same in all three games. This is probably a
by-product of the structure of the model. Indeed, advertising does not
affect sales directly but do it through the goodwill. Although the later
has an impact on the sales of the store brand, this does not affect the
profits earned by the manufacturer. The retailer adopts the same pro-
motional strategy for the private label in the games where such brand
is available, i.e., whether a coop program is offered or not. This is also
due to the simple structure of our model.
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Table 11.1. Summary of Results

Game N Game S Game C

p1
αm1
uR

αm1−ψm2

uR

2αm0+(αm1−ψm2)
2uR

p2
αm2−βm1

uR

αm2−βm1

uR

A(G) AN (G) AN (G) AN (G)
D 2αm0−(αm1−ψm2)

2αm0+(αm1−ψm2)

VM (G) a1 + a2G + a3
2 G2 s1 + a2G + a3

2 G2 n1 + a2G + a3
2 G2

VR(G) b1 + b2G + b3
2 G2 k1 + k2G + b3

2 G2 l1 + k2G + b3
2 G2

The remaining and most interesting item is how the retailer promotes
the manufacturer’s brand in the different games. The introduction of the
store brand leads to a reduction in the promotional effort of the manu-
facturer’s brand (pN

1 − pS
1 = ψm2

uR
> 0). The coop program can however

reverse the course of action and increases the promotional effort for the
manufacturer’s brand

(
pC
1 − pS

1 = 2αm0−αm1+ψm2

2uR
> 0
)
. This result is

expected and has also been obtained in the literature cited in the in-
troduction. What is not clear cut is whether the level of promotion
could reach back the one in the game without the store brand. Indeed,(
pN
1 − pC

1

)
is positive if the condition that (αm1 + ψm2 > 2αm0) is sat-

isfied.
We now compare the players’ payoffs in the different games and thus

answer the questions raised in this paper.

Proposition 11.4 The store brand introduction is harmful for the
manufacturer for all values of the parameters.

Proof. From the results of Propositions 11.1 and 11.2, we have:

V S
M (G0)− V N

M (G0) = s1 − a1 = − m0

ruR
[m2ψα + β (m2α−m1β)] < 0.

�

For the retailer, we cannot state a clear-cut result. Compute,

V S
R (G0)− V N

R (G0) = k1 − b1 + (k2 − b2) G0

=
1

2ruR

[
(m1α−m2ψ)2 + (m2α−m1β)2 − α2m2

1

]
+

4λ2m0m2θγ

ruM

(
r +

√
Δ2

)2 +
2m2γ

r
(
r +

√
Δ2

)G0.
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Thus for the retailer to benefit from the introduction of a store brand,
the following condition must be satisfied

V S
R (G0)− V N

R (G0) > 0 ⇔ G0 >

(
r +

√
Δ2

)
4m2γuR

α2m2
1 −

2λ2m0θ

uM

(
r +

√
Δ2

)
−
(
r +

√
Δ2

)
4m2γuR

[
(m1α−m2ψ)2 + (m2α−m1β)2

]
.

The above inequality says that the retailer will benefit from the intro-
duction of a store brand unless the initial goodwill of the national one is
“too low”. One conjecture is that in such case the two brands would be
too close and no benefit is generated for the retailer from the product
variety. The result that the introduction of a private label is not always
in the best interest of a retailer has also been obtained by Raju et al.
(1995) who considered price competition between two national brands
and a private label.

Turning now to the question whether a coop advertising program can
mitigate, at least partially, the losses for the manufacturer, we have the
following result.

Proposition 11.5 The cooperative advertising program is profit Pareto-
improving for both players.

Proof. Recall that k2 = l2, k3 = l3 = n3 and n2 = s2. Thus for the
manufacturer, we have

V 3
M (G0)− V 2

M (G0) = n1 − s1 =
1

8ruR
[2αm0 − (αm1 − ψm2)]

2 > 0.

For the retailer

V C
R (G0)−V S

R (G0)= l1−k1 =
1

4ruR
(m1α−m2ψ) (2αm0 −m1α + m2ψ)

which is positive. Indeed, (m1α−m2ψ) = urp
S
1 which is positive by the

assumption of interior solution and (2αm0 −m1α + m2ψ) which is also
positive (it is the numerator of D). �

The above proposition shows that the answer to our question is indeed
yes and, importantly, the retailer would be willing to accept a coop
program when suggested by the manufacturer.

5. Concluding Remarks
The results so far obtained rely heavily on the assumption that the

solution of Game S is interior. Indeed, we have assumed that the retailer
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will promote the manufacturer’s brand in that game. A natural question
is that what would happen if it were not the case? Recall that we
required that

pS
1 =

αm1 − ψm2

uR
> 0 ⇔ αm1 > ψm2.

If αm1 > ψm2 is not satisfied, then pS
1 = 0 and the players’ payoffs

should be adjusted accordingly. The crucial point however is that in
such event, the constraint on the participation rate in Game C would
be impossible to satisfy. Indeed, recall that

D =
2αm0 − (αm1 − ψm2)
2αm0 + αm1 − ψm2

,

and compute

1−D =
2 (αm1 − ψm2)

2αm0 + αm1 − ψm2
.

Hence, under the condition that (αm1 − ψm2 < 0), the retailer does
not invest in any promotions for the national brand after introducing
the private label

(
pS
1 = 0

)
. In this case, the cooperative advertising

program can be implemented only if the retailer does promote the na-
tional brand and the manufacturer offers the cooperative advertising
program i.e., a positive coop participation rate, which is possible only if
(2αm0 + αm1 − ψm2) > 0.

Now, suppose that we are in a situation where the following conditions
are true

αm1 − ψm2 < 0 and 2αm0 + αm1 − ψm2 > 0 (11.11)

In this case, the retailer does promote the manufacturer’s product (pC
1 >

0), however we obtain D > 1. This means that the manufacturer has to
pay more than the actual cost to get her brand promoted by the retailer
in Game C and the constraint D < 1 has to be removed.

For pS
1 = 0 and when the conditions in (11.11) are satisfied, it is easy

to show that the effect of the cooperative advertising program on the
profits of retailer and the manufacturer are given by

V C
R (G0)− V S

R (G0) =
(αm1 − ψm2)

4ur
(2αm0 + m1α−m2ψ) < 0

V C
M (G0)− V S

M (G0) =
1

8ur
(2m0α + αm1 − ψm2)

2 > 0

In this case, even if the manufacturer is willing to pay the retailer more
then the costs incurred by advertising the national brand, the retailer
will not implement the cooperative program.
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To wrap up, the message is that the implementability of a coop promo-
tion program depends on the type of competition one assumes between
the two brands and the revenues generated from their sales to the re-
tailer. The model we used here is rather simple and some extensions are
desirable such as, e.g., letting the margins or prices be endogenous.
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Chapter 12

INCENTIVE STRATEGIES FOR
SHELF-SPACE ALLOCATION IN
DUOPOLIES

Guiomar Mart́ın-Herrán
Sihem Taboubi

Abstract We examine the issue of shelf-space allocation in a marketing channel
where two manufacturers compete for a limited shelf-space at a retail
store. The retailer controls the shelf-space to be allocated to brands
while the manufacturers make advertising decisions to build their brand
image and to increase final demand (pull strategy). Manufacturers also
offer an incentive designed to induce the retailer to allocate more shelf-
space to their brands (push strategy). The incentive takes the form
of a shelf dependent display allowance. The problem is formulated as
a Stackelberg differential game played over an infinite horizon, with
manufacturers as leaders. Stationary feedback equilibria are computed,
and numerical simulations are carried out in order to illustrate how
channel members should allocate their marketing efforts.

1. Introduction
The increasing competition in almost all industries and the prolifera-

tion of retailers’ private brands in the last decades induce a hard battle
for shelf-space between manufacturers at retail stores. Indeed, accord-
ing to a Food Marketing Institute Report (1999), about 100,000 grocery
products are available nowadays on the market, and every year, thou-
sands more new products are introduced. Comparing this number to
the number of products that can be placed on the shelves of a typical
supermarket (40,000 products) justifies the huge marketing efforts de-
ployed by manufacturers to persuade their dealers to keep their brands
on the shelves.

Manufacturers invest in promotional and advertising activities de-
signed to final consumers (pull strategies) and spend in trade promo-
tions designed for their dealers (push strategies). Trade promotions are
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incentives granted to retailers in return for promoting merchandise at
their stores. When these incentives are designed to induce retailers to
give a better display to the brand, they are called slotting (or display)
allowances.

Shelf-space allocation is a decision that has to be taken by the re-
tailer. However, this issue involves also the other channel members (i.e.
manufacturers) as long as they can influence the shelf-space allocation
decisions of retailers.

Studies on shelf-space allocation can be found in marketing and oper-
ational research literature. Some of these studies adopted a normative
perspective where the authors investigated optimal shelf-space alloca-
tion decisions (e.g., Corstjens and Doyle (1981); Corstjens and Doyle
(1983); Zufreyden (1986); Yang (2001)), while others examined the is-
sue of shelf-space allocation in a descriptive manner by proving that
shelf-space has a positive impact on sales (e.g., Curhan (1973); Drèze,
Hoch and Purk (1994); Desmet and Renaudin (1998)).

All the studies mentioned above suppose that shelf-space allocation is
a decision taken at the retail level, but they neglected the impact of this
decision on the marketing decisions of manufacturers, and the impact
of manufacturers’ decisions on the shelf-space allocation policy of the
retailers.

Studies that examined the marketing decisions in channels by tak-
ing into account the dynamic long term interactions between channel
members adopted differential games as a framework, are, among oth-
ers, Chintagunta and Jain (1992); Jørgensen, Sigué and Zaccour (2000);
Jørgensen, Sigué and Zaccour (2001); Jørgensen, Taboubi and Zaccour
(2001); Jørgensen and Zaccour (1999); Taboubi and Zaccour (2002). An
exhaustive survey of this literature is presented in Jørgensen and Zaccour
(2004).

In the marketing channels literature, studies that suggested the use
of incentive strategies as a coordinating mechanisms of the channel used
mainly a static framework (e.g., Jeuland and Shugan (1983); Bergen and
John (1997)). More recently, Jørgensen and Zaccour (2003) extended
this work to a dynamic setting where a manufacturer and a retailer
implement two-sided incentives designed to induce each other to choose
the coordinating pricing and advertising levels.

To our best knowledge, the only studies that investigated the shelf-
space allocation issue by considering the whole marketing channel are
those of Jeuland and Shugan (1983) and Wang and Gerchack (2001).
Both studies examined the shelf-space allocation decisions as a way
to reach channel cooperation (i.e., total channel profit maximization).
Wang and Gerchack (2001) design an incentive that takes the form of
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an inventory-holding subsidy and that leads the retailer to select the
coordinating inventory level (i.e., the inventory level that the manufac-
turer would have allocated to the brand in case of total channel profit
maximization).

An important shortcoming of both studies is that the shelf-space allo-
cation decision is considered as a single variable related to the brand of
a unique manufacturer (manufacturers of competing brands are passive
players in the game). Furthermore, both studies used a static setting,
thus ignored the long-term effects of some marketing variables (e.g.,
advertising and promotional efforts) and the intertemporal interactions
that take place between channel members.

Recent works by Mart́ın-Herrán and Taboubi (2004) and Mart́ın-
Herrán, Taboubi and Zaccour (2004) examine the issue of shelf-space
allocation by taking into account the interactions in the marketing chan-
nel and these interactions are not confined to a one-shot game. Both
studies assumed that the competing manufacturers can influence the
shelf-space allocation decisions of the unique retailer through advertis-
ing targeting their consumers (pull strategies) which builds the brand
image and increase sales. In both studies, manufacturers’ influence on
retailer’s shelf-space allocation is indirect. Manufacturers do not use
push mechanisms to influence directly retailer’s decisions.

In the present study we examine the case of a channel where a retailer
sells the brands of two competing manufacturers. Retailer’s shelf-space
allocation decisions can be influenced directly through the use of in-
centive strategies by both manufacturers (push strategies), or indirectly
through advertising (pull strategies).

By considering a dynamic model, we take into account the carry-
over effects of manufacturers’ advertising investments that build their
brand images and the long-term interactions between the partners in
the marketing channel.

The paper is organized as follows. Section 2 introduces the model.
Section 3 gives the analytical solutions to the shelf-space, advertising,
and incentive strategy problem of channel members. Section 4 and 5
present some numerical results to illustrate the findings, and Section 6
concludes.

2. The model
The model is designed to solve the problem of shelf-space allocation,

advertising investments, and incentive decisions in a competitive mar-
keting channel. The network is composed of a unique retailer selling the
brands of two competing manufacturers.
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The retailer has a limited shelf-space in her store. She must decide
on how to allocate this limited resource between both brands.

Let Si (t) denote the shelf-space to be allocated to brand i at time t
and consider that the total shelf-space available at the retail store is a
constant, normalized to 1. Hence, the relationship between the shelf-
spaces given to both brands can be written as

S2 (t) = 1− S1 (t) .

We assume that shelf-space costs are linear and the unit cost equal for
both brands1. Without loss of generality, we consider that these costs
of shelf-space allocation are equal to zero.

The manufacturers compete on the shelf-space available at the retail
store. They control their advertising strategies in national media (Ai (t))
in order to increase their goodwill stocks (Gi (t)). We consider that the
advertising costs are quadratic:

C(Ai(t)) =
1
2
uiA

2
i (t) , i = 1, 2,

where ui is a positive parameter.
Furthermore, in order to increase the final demand for their brands at

the retail store, each manufacturer can offer an incentive with the aim
that the retailer assigns a greater shelf-space to his brand.

The display allowance takes the form of a shelf dependent incentive
to the retailer. We suppose that the incentives given by manufacturers 1
and 2 are, respectively

I1(S1) = ω1S1, I2(S1) = ω2(1− S1).

The manufacturers control the incentive coefficient functions ω1(t) and
ω2(t), which have to take positive values. The incentive Ii(Si) is a linear
side-payment which rewards the retailer, with the objective that she
allocates more shelf-space to brand i.

The retailer faces a demand function for brand i, Di = Di(Si, Gi),
that takes the following form:

Di (t) = Si (t)
[
aiGi (t)− 1

2
biSi(t)

]
, i = 1, 2, (12.1)

where ai, bi are positive parameters and ai captures the cross effect of
shelf-space and goodwill on sales. The interaction between Gi (t) and

1Shelf-space costs are costs of removing one item from the shelves and replacing it by another,
and by putting price information on products.
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Si (t) means that the goodwill effect on the sales of the brand is enhanced
by his share of the shelf-space. Notice that the quadratic term 1/2biS

2
i (t)

in the sales function of each brand captures the decreasing marginal
effects of shelf-space on sales, which means that every additional unit of
the brand on the shelf leads to lower additional sales than the previous
one (see, for example, Bultez and Naert (1988)).

The demand function must have some features that, in turn, impose
conditions on shelf-space and the model parameters:

Di (t) � 0, ∂Di (t) /∂Gi (t) � 0, ∂Di (t) /∂Si (t) � 0, i = 1, 2,

and the resulting constraints on shelf-space are:

1− a2

b2
G2(t) ≤ S1(t) ≤ a1

b1
G1(t). (12.2)

The goodwill for brand i is a stock that captures the long-term effects
of the advertising of manufacturer i. It evolves according to the Nerlove
and Arrow (1962) dynamics:

dGi (t)
dt

= αiAi (t)− δGi (t) , Gi (0) = Gi0 > 0, i = 1, 2, (12.3)

where αi is a positive parameter that captures the efficiency of the adver-
tising investments of manufacturer i, and δ is a decay rate that reflects
the depreciation of the goodwill stock, because of oblivion, product ob-
solence or competitive advertising.

The game is played over an infinite horizon and firms have a constant
and equal discount rate ρ. To focus on the shelf-space allocation and
incentive problems, we consider a situation that involves brands in the
same product category with relatively similar prices. Hence, the retailer
and both manufacturers have constant retail and wholesale margins for
brand i, being fixed at the beginning of the game, and denoted by πRi

and πMi
2.

By choosing the amount of shelf-space to allocate to brand 1, the re-
tailer aims at maximizing her profit flow derived from selling the prod-
ucts of the two brands and the side-payments received from the manu-
facturers:

JR =
∫ ∞

0
exp (−ρt)

2∑
i=1

(πRiDi(t) + ωi(t)Si(t)) dt. (12.4)

2This assumption was used in Chintagunta and Jain (1992), Jørgensen, Sigué and Zaccour
(2000), and Jørgensen, Taboubi and Zaccour (2001).
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Manufacturer i controls his advertising investment, Ai(t), and the
incentive coefficient function ωi(t). His aim is to maximize his profit
flow, taking into account the cost of implementing this strategy:

JMi =
∫ ∞

0
exp (−ρt)

(
πMiDi(t)− 1

2
uiA

2
i (t)− ωiSi(t)

)
dt. (12.5)

To recapitulate, we have defined by (12.3), (12.4) and (12.5) a dif-
ferential game that takes place between two competing manufacturers
selling their brands through a common retailer. The game has five con-
trol variables S1 (t), A1 (t), A2 (t), w1 (t), w2 (t) (one for the retailer
and two for each manufacturer) and two state variables G1 (t), G2 (t).
The controls are constrained by 0 < S1 (t) < 1, A1 (t) � 0, A2 (t) � 0,
w1 (t) � 0, w2 (t) � 0, and the conditions given in (12.2)3. The state
constraints Gi (t) � 0, i = 1, 2, are automatically satisfied.

3. Stackelberg game
The differential game played between the different channel members

is a Stackelberg game where the retailer is the follower and the man-
ufacturers are the leaders. The sequence of the game is the following:
the manufacturers as leaders announce, simultaneously, their advertising
and incentive strategies. The retailer reacts to this information by choos-
ing the shelf-space level that maximizes her objective functional (12.4).
The manufacturers play a non-cooperative game à la Nash. We employ
the hypothesis that both manufacturers only observe the evolution of
their own goodwill, not that of their competitor4.

Since the game is played over an infinite time horizon and is au-
tonomous, we suppose that strategies depend on the current level of the
state variable only.

The following proposition characterizes the retailer’s reaction func-
tion.

Proposition 12.1 If S1 > 0, the retailer’s reaction function for shelf-
space allocation is given by5:

S1 (G1, G2) =
ω1 − ω2 + a1πR1G1 − a2πR2G2 + b2πR2

b1πR1 + b2πR2
. (12.6)

3We do not take into account these conditions in the problem resolution. However, we check
their fulfillment “a posteriori”.
4This assumption is mainly set for model’s tractability, see Roberts and Samuelson (1988),
Jørgensen, Taboubi and Zaccour (2003) and Taboubi and Zaccour (2002). In Mart́ın-Herrán
and Taboubi (2004), we prove that the qualitative results still hold whenever the hypothesis
is removed.
5From now on, the time argument is often omitted when no confusion can arise.
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Proof. The retailer’s optimization problem is to choose the shelf-space
level that maximizes (12.4) subject to the dynamics of the goodwill
stocks given in (12.3). The shelf-space decision does not affect the differ-
ential equations in (12.3) and therefore, her optimal shelf-space decision
is the solution of the following static optimization problem:

max
S1

{
2∑

i=1

(πRiDi + ωiSi)

}
.

The expression in (12.6) is the unique interior shelf-space allocation so-
lution of the problem above. �

The proposition states that the shelf-space allocated to each brand
is positively affected by its own goodwill and negatively affected by the
goodwill stock of the competing brand. Shelf-space allocation depends
also on the retail margins of both brands and the parameters of the
demand functions.

Furthermore, the state-dependent (see Proposition 12.2 below) coef-
ficient functions of both manufacturers’ incentive strategies (ωi) affect
the shelf-space allocation decisions. Indeed, the term ω1 − ω2 in the
numerator indicates that the shelf-space allocated to brand 1 is greater
under the implementation of the incentive (than without it) if and only if
ω1−ω2 > 0. That is, manufacturer 1 attains his objective by giving the
incentive to the retailer only if his incentive coefficient ω1 is greater than
the incentive coefficient ω2 selected by the other manufacturer. Further-
more, when only one manufacturer offers an incentive, the shelf-space
allocated to the other brand is reduced compared to the case where none
gives an incentive.

3.1 Manufacturers’ incentive strategies
Manufacturers play a Nash game and, as leaders in the Stackelberg

game, they know the shelf-space that will be allocated to the brands by
the retailer. Both manufacturers decide at the same time their adver-
tising investments and values of the incentive coefficients ωi. The man-
ufacturers maximize their objective functionals, where the shelf-space
has been replaced by its expression in (12.6), subject to the dynamics of
their own brand goodwill.

The following proposition characterizes manufacturers’ incentive state-
dependent coefficient functions at the equilibrium.
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Proposition 12.2 If ωi > 0, manufacturers’ equilibrium incentive co-
efficients are

ωi(Gi, Gj) = − [bi(πMi + πRi) + bjπRj ][biπRi + bj(πMj + 2πRj )]
bi(πMi + 3πRi) + bj(πMj + 3πRj )

+
(biπRi + bjπRj )(πMi − πRi) + bjπMi(πMj + πRj )

bi(πMi + 3πRi) + bj(πMj + 3πRj )
aiGi

+
(πMj + πRj )[bi(πMi + πRi) + bjπRj ]
bi(πMi + 3πRi) + bj(πMj + 3πRj )

ajGj ,

i, j = 1, 2, i �= j. (12.7)

Proof. Since the incentives do not affect the dynamics of the goodwill
stocks, the manufacturers solve the static optimization problem:

max
ωi

[
πMiDi − 1

2
uiA

2
i − ωiSi

]
, i = 1, 2,

where S2 = 1− S1 and S1 is given in (12.6).
Equating to zero the partial derivative of manufacturer i’s objective

function with respect to ωi, we obtain a system of two equations for
ωi, i = 1, 2. Solving this system gives the manufacturers’ incentive coef-
ficient functions at the equilibrium in (12.7). �

The proposition states that the incentive coefficients at the equilib-
rium depend on both channel members’ goodwill stocks. The equilib-
rium value of ωi is increasing in Gj , j �= i. This means that each man-
ufacturer increases his incentive coefficient when the goodwill stock of
the competing brand increases, a behavior that can be explained by the
fact that the retailer’s shelf-space allocation rule indicates that the shelf-
space given to a brand increases with the increase of his own goodwill
stock. Hence, the manufacturer of the competing brand has to increase
his incentive in order to try to increase his share of the shelf-space.

The incentive coefficient of a manufacturer could be increasing or
decreasing in his goodwill stock, depending on the parameter values.
The following corollary gives necessary and sufficient conditions ensuring
a negative relationship between the manufacturer’s incentive coefficient
function and his own goodwill stock.

Corollary 12.1 Necessary and sufficient conditions guaranteeing that
ωi is a decreasing function of Gi are given by:

(biπRi+bjπRj )(πMi−πRi)+bjπMi(πMj+πRj ) < 0, i, j = 1, 2, i �= j. (12.8)
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In the case of symmetric demand functions, a1 = a2 = a, b1 = b2 = b,
and symmetric margins, πM1 = πM2 = πM , πR1 = πR2 = πR, the in-
equalities in (12.8) reduce to:

πR > (3 +
√

17)/4πM .

Proof. Inequalities (12.8) can be derived straightforwardly from the
expressions in (12.7). The inequality applying in the symmetric case is
obtained from (12.8). �

The inequality for the symmetric case indicates that the manufacturer
of one brand will decrease his shelf-space incentive when the goodwill
level of his brand increases if the retailer’s margin is great enough, com-
pared to the manufacturers’ margins.

The next corollary establishes a necessary and sufficient condition
guaranteeing that the implementation of the incentive mechanism allows
manufacturer i to attain his objective of having a greater shelf-space
allocation at the retail store.

Corollary 12.2 The shelf-space allocated to brand i is greater when
the incentive strategies are implemented than without, if and only if the
following condition holds:

b2
i π

2
Ri
−b2

jπ
2
Rj

+ bibj(πMjπRi − πMiπRj ) (12.9)

− [2biπ
2
Ri

+ bj(πMjπRi − (πMi − 2πRi)πRj )]aiGi

+ [2bjπ
2
Rj
− bi(πMjπRi − (πMi + 2πRi)πRj )]ajGj > 0,

i, j = 1, 2, i �= j.

In the symmetric case inequality (12.9) reduces to:

Gi −Gj < 0, i, j = 1, 2, i �= j.

Proof. From the expression of the retailer’s reaction function in Propo-
sition 12.1, we have that the shelf-space given to brand i is increased
with the incentive whenever the difference ωi − ωj is positive. This
later inequality replacing the optimal expressions of ωk in (12.7) can be
rewritten as in inequality (12.9).

Exploiting the symmetry hypothesis, inequality (12.9) becomes:

−2a(Gi −Gj)π2
R

πM + 3πR
> 0, i, j = 1, 2, i �= j, (12.10)

which is equivalent to Gi −Gj < 0. �

The result in (12.10) indicates that the shelf-space allocated by the
retailer to brand i under the incentive policy is greater than without
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the incentive if and only if the goodwill of brand i is lower than that of
his competitor. This result means that if the main objective of manu-
facturer i, when applying the incentive program, is to attain a greater
shelf-space allocation for his brand, then he attains this objective only
when his brand has a lower goodwill than that of the other manufac-
turer. The intuition behind this behavior is that the manufacturer with
the lowest goodwill stock will be given a lowest share of total shelf-space,
thus, he reacts by offering an incentive.

3.2 Manufacturers’ advertising decisions
The following proposition gives the advertising strategies and value

functions for both manufacturers.

Proposition 12.3 Assuming interior solutions, manufacturers’ adver-
tising strategies and value functions are the following:

(i) Advertising strategies:

A1 (G1, G2) =
α1

u1
(K11G1 + K13G2 + K14) , (12.11)

A2 (G1, G2) =
α2

u2
(K23G1 + K22G2 + K25) , (12.12)

where Kij , i = 1, 2, j = 1, . . . , 6 are parameters given in the Appendix.
Furthermore, K11, K22 ≥ 0 and

Ki3 ≥ 0 if K
′
ii is chosen and Γ > 0;

Ki3 ≤ 0 if K
′
ii is chosen and Γ < 0 or K

′′
ii is chosen,

where i, j = 1, 2, i �= j, K
′
ii, K

′′
ii are given in the Appendix and

Γ = δ(δ+ρ)uMi(biπRi+bjπRj)2−α2
i πMiπRia

2
i (biπRi+2bjπRj).

(ii) Manufacturers’ value functions are the following:

VMi (G1, G2) =
1
2
Ki1G

2
1 +

1
2
Ki2G

2
2 + Ki3G1G2 + Ki4G1 + Ki5G2 + Ki6,

i = 1, 2.

Proof. See Appendix. �

Item (i) indicates that the Markovian advertising strategies in oligo-
polies are linear in the goodwill levels of both brands in the market. As in
situations of monopoly they satisfy the classical rule equating marginal
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revenues to marginal costs. However, for competitive situations, the re-
sults state that each manufacturer reacts to his own goodwill increase
by rising his advertising investments, while its reaction to the increase
of his competitor’s brand image could be an increase or a decrease of his
advertising effort. Such reaction differs from that of monopolist manu-
facturer who must decrease his advertising when his goodwill increases.
This reaction is mainly driven by the model’s parameters. According to
Roberts and Samuelson (1988), it indicates whether manufacturers’ ad-
vertising effect is informative or predatory. When the advertising effect
is informative, the advertising investment by one manufacturer leads to
higher sales for both brands and a higher total market size. In case of
predatory advertising, each manufacturer increases his advertising effort
in order to increase his goodwill stock. This increase leads the competi-
tor to decrease his advertising effort, which leads to a decrease of his
goodwill stock6.

Item (ii) in the proposition indicates that the values functions of both
manufacturers are quadratic in the goodwill levels of both brands.

3.3 Shelf-space allocation
The shelf-space allocated to brand 1 can be computed once the opti-

mal values for the incentive coefficients in (12.7) have been substituted.
The following proposition characterizes the shelf-space allocation deci-
sion and value function of the retailer.

Proposition 12.4 If S1 > 0, retailer’s shelf-space allocation decision
at the equilibrium and value function are the following:

(i) Shelf-space allocation at the equilibrium:

S1(G1, G2) =
a1(πM1 +πR1)G1−a2(πM2 +πR2)G2

b1(πM1 +3πR1)+b2(πM2 +3πR2)

+
b2(πM2 +2πR2)+b1πR1

b1(πM1 +3πR1)+b2(πM2 +3πR2)
. (12.13)

(ii) Retailer’s value function:

VR (G1, G2) =
1
2
L1G

2
1 +

1
2
L2G

2
2 + L3G1G2 + L4G1 + L5G2 + L6,

where constants Lk, k = 1, . . . , 6 are given in the Appendix.

6Items (i) and (ii) in the proposition above are similar, qualitatively speaking, to previous
results obtained in Mart́ın-Herrán and Taboubi (2004). For more details about the advertis-
ing strategies of manufacturers and proofs about the issue of bounded goodwill stocks and
stability of the optimal time paths, see Mart́ın-Herrán and Taboubi (2004).
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Proof. Substituting into the retailer’s reaction function (12.6) the in-
centive coefficient functions at the equilibrium in (12.7), the expression
(12.13) is obtained.

The proof of item (ii) follows the same steps than that of Proposi-
tion 12.3 and for that reason is omitted here. In the Appendix we state
the expressions of the coefficients of the retailer’s value function. �

From item (i) in the proposition, the shelf-space allocated to brand 1
is always increasing with its goodwill stock and decreasing with the
goodwill of the competitor’s brand, 2.

Item (ii) of the proposition states that the retailer’s value function is
quadratic in both goodwill stocks. Let us note that the expression of the
retailer’s value function is not needed to determine her optimal policy,
but only necessary to compute the retailer’s profit at the equilibrium.

Corollary 12.3 The shelf-space allocated to brand i is greater than
that of the competitor if and only if the following condition is fulfilled:

(2aiGi−bi)(πMi +πRi)−(2ajGj−bj)(πMj +πRj ) > 0, i, j = 1, 2, i �= j.
(12.14)

Under the symmetry assumption, (12.14) reduces to

Gi −Gj > 0, i, j = 1, 2, i �= j. (12.15)

Proof. Expression (12.13) can be rewritten as:

S1 =
1
2

+
(2a1G1 − b1)(πM1 + πR1)− (2a2G2 − b2)(πM2 + πR2)

2(b1(πM1 + πR1) + b2(πM2 + πR2))
.

Therefore, the retailer allocates a greater shelf-space to brand 1 than to
brand 2 if and only if the following condition is satisfied:

(2a1G1 − b1)(πM1 + πR1)− (2a2G2 − b2)(πM2 + πR2) > 0.
�

In the symmetric case, the condition in (12.15) means that the retailer
gives a highest share of her available shelf-space to the brand with the
highest goodwill stock.

4. A numerical example
In order to illustrate the behavior of the retailer’s and manufacturers’

equilibrium strategies, we present a numerical example. The values of
the model parameters are shown in Table 12.1, except α1 = 2.7, α2 =
2.74. The subscript k in Table 12.1 indicates that the same value of the
parameter has been fixed for brands 1 and 2.
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Table 12.1. Values of model parameters.

Parameters πMk
πRk

ak bk uk αk δ ρ

Fixed values 1 1.8 0.5 1.62 1 2.7 0.5 0.35

We assume that both players choose K
′′
ii, implying that Ki3 is nega-

tive. The steady-state equilibrium for the goodwill variables (G∞
1 , G∞

2 )
= (7.9072, 7.7000) is a saddle point7.

S1(G1,G2)

Figure 12.1. Shelf-space feedback strategy

Figure 12.1 shows the retailer’s feedback equilibrium strategy and
displays how the shelf-space for brand 1 varies according to G1 and G2.
The slope of the plane shows that the shelf-space for each brand increases
with his own goodwill and decreases with that of the competitor. For
high values of G2 and low values of G1 the highest shelf-space is allocated
to brand 2.

Figure 12.2 shows the incentive strategies of both manufacturers. The
slopes of the two planes illustrate that the state-dependent coefficient in
the incentive strategy of each manufacturer depends negatively on his
own goodwill and positively on the goodwill of his competitor. It is easy
to verify that both manufacturers choose the same coefficients if and only
if G1 equals G2. Therefore, as Figure 12.2 depicts for values of G1 greater
than those of G2, manufacturer 1 chooses an incentive coefficient lower
than that of his competitor. The result is reversed when the goodwill
stock of the first brand is lower than that of the second brand.

7The expressions of the steady-state equilibrium values are shown in the Appendix.
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w2(G1,G2)

w1(G1,G2)

Figure 12.2. Incentive coefficient feedback strategies

A1(G1,G2)

A2(G1,G2)

Figure 12.3. Advertising feedback strategies

Figure 12.3 shows the advertising feedback strategies of the manu-
facturers. The slopes of the two planes illustrate how the advertising
strategy of each manufacturer is positively affected by his own good-
will and negatively by the goodwill of his competitor. Note that this
behavior is just the opposite of the one presented above for the incen-
tive coefficient feedback strategies. We also notice that for high values
of G1 and low values of G2, manufacturer 1 invests more in advertis-
ing than his competitor, who acts in the opposite way. Both manufac-
turers invest equally in advertising when their goodwill stocks satisfy
the following equality: G2 = 1.2744G1 − 2.3043. As Figure 12.3 illus-
trates, manufacturer 1 advertises higher than his competitor if and only
if G2 < 1.2744G1 − 2.3043.
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An easy computation allows us to establish that if the goodwill stock
for the first brand, G1 exceeds 8.3976, then whenever G2 < G1, man-
ufacturer 1 invests more in advertising but chooses a lower incentive
coefficient than that of his competitor. When G1 belongs to the inter-
val (1.8081, 8.3976), the same behavior than before can be guaranteed if
the goodwill stocks of the both brands satisfy the following inequality:
G2 < 1.2744G1 − 2.3043.

5. Sensitivity analysis
In order to understand the behavior of the strategies and the outcomes

at the steady-state, we use specific values of the parameters. We examine
the sensitivity of the strategies and outcomes to these parameters by
fixing all except one. The effects of the parameters are identified by
comparing the results to a “base” case. The parameter values for the
“base” case are given in Table 12.1.

We examined the sensitivity of the strategies and outcomes to the
the effect of advertising on goodwill (αk), the retail margins (πRk), and
the long-term effect of shelf-space on sales (bk) under symmetric and
asymmetric conditions. In Tables 12.2-12.4 we report the results at
the steady-states8. Moreover, for all the numerical simulations reported
below one of the eigenvalues of the Jacobian matrix associated to the
dynamical system is negative, leading to asymptotically stable steady-
states for the goodwill stocks. All the results we present correspond to
values of the parameters for which the incentive coefficient of a manu-
facturer is a decreasing function of his own goodwill stock 9.

Each table shows the steady-state values for the goodwill stocks,
advertising investments, incentive coefficients, shelf-space for the first
brand, demand for each brand, and channel members’ individual prof-
its.

5.1 Sensitivity to the advertising effect on
goodwill

We begin by analyzing the sensitivity of channel members’ strategies
and outcomes to the variation in the advertising effect on goodwill, un-
der symmetric and asymmetric conditions. The values in the first two
columns of Table 12.2 are obtained under the hypotheses of symmetry

8For all the numerical simulations it has been verified that the increasing and positiveness
conditions on the demand functions leading to conditions (12.2) are satisfied.
9The results of the different sensitivity analysis remain qualitatively the same when the values
of the parameters lead to incentive coefficient functions which increase with an increment of
his own goodwill stock.
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in all the parameters, while the values of the last column give the re-
sults of a scenario where all the parameters are set equal, except for
the parameter that we vary. This case corresponds to a situation of
non-symmetry.

Table 12.2. Summary of sensitivity results to the advertising effect on goodwill.

Sensitivity to αk = 2.7 αk = 2.74 α2 = 2.74

G1 7.6920 7.9216 7.9072
G2 7.6920 7.9216 7.7000
A1 1.4244 1.4456 1.4643
A2 1.4244 1.4456 1.4051
w1 0.1200 0.2348 0.1234
w2 0.1200 0.2348 0.2282
S1 0.5000 0.5000 0.5140
D1 1.7205 1.7779 1.8181
D2 1.7205 1.7779 1.6798
JM1 1.8456 1.7591 1.9503
JM2 1.8456 1.7591 1.6621
JR 18.0395 18.9579 18.4875

The results in the first column of Table 12.2 are intuitive. They
indicate that under full symmetry, manufacturers use both pull and push
strategies at the steady-state: they invest equally in advertising and give
the same incentive to the retailer, who allocates the shelf-space equally
to both brands. Interestingly, we can notice that even though the shelf-
space is equally shared by both brands, the manufacturers still offer an
incentive to the retailer. This behavior can be explained by the fact that
both manufacturers act simultaneously without sharing any information
about their advertising and incentive decisions. Each manufacturer gives
an incentive with the aim of getting a higher share of the shelf-space
compared to his competitor.

The second column indicates that a symmetric increase of the adver-
tising effect on the goodwill stock for both brands leads to an increase
of advertising and goodwill stocks. The shelf-space is equally shared by
both brands, and the manufacturers decide to offer the same incentive
coefficient to the retailer, but this coefficient is increased.

Now we remove the hypothesis that the effect of advertising on good-
will is the same for both brands, and suppose that these effects are
α1 = 2.7 for brand 1, and α2 = 2.74 for brand 2. The results are
reported in the last column of Table 12.2 and state that, when the
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advertising efficiency of manufacturer 2 is increased10, compared to that
of manufacturer 1, manufacturer 2 allocates his marketing efforts differ-
ently (compared to the symmetric case): he invests more in push than in
pull strategies. Indeed manufacturer 2 lowers his advertising investment
while his competitor invests more in advertising. The resulting goodwill
stock for brand 1 becomes higher than that of brand 2. The retailer
then gives a highest share of the available shelf-space to brand 1 and
the manufacturer of brand 2 has to fix a highest incentive coefficient in
order to influence the retailer’s shelf-space allocation decision.

5.2 Sensitivity to retailer’s profit margins
The results in the first and second columns of Table 12.3 indicate the

effects of an increase of retailer’s profit margins on channel members’
strategies and outcomes under symmetric conditions. We notice that an
increase of πRk

leads both manufacturers to allocate more efforts to the
pull than the push strategies: both of them increase their advertising
investments and decrease their display allowances.

Table 12.3. Summary of sensitivity results to retailer’s margin.

Sensitivity to πRk
= 1.8 πRk

= 1.85 πR2 = 1.85

G1 7.6920 7.8367 7.9294
G2 7.6920 7.8367 7.5951
A1 1.4244 1.4512 1.4684
A2 1.4244 1.4512 1.4273
w1 0.1200 0.1113 0.0838
w2 0.1200 0.1113 0.1455
S1 0.5000 0.5000 0.5152
D1 1.7205 1.7567 1.8276
D2 1.7205 1.7567 1.6507
JM1 1.8456 1.8513 2.0180
JM2 1.8456 1.8513 1.6887
JR 18.0395 18.8886 18.4491

Under non-symmetric conditions, the manufacturer of the brand with
the lowest retail margin (the first one in this example) increases his ad-
vertising effort, which becomes higher than that of his competitor. This
leads to a higher goodwill stock for his brand and a higher share of the

10We can imagine a situation where manufacturer 2 chooses a more efficient advertising media
or message.
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shelf-space. The manufacturer of the other brand reacts by increasing
the incentive that he offers to the retailer (compared to the symmet-
ric case). The results indicate that, even though the display allowance
of manufacturer 2 is higher than that of manufacturer 1, the retailer’s
shelf-space allocation decision is driven by the goodwill differential of
brands. Sales and profits are higher for the brand with the lowest retail
margin, since sales are affected by the shelf-space and the goodwill levels
of the brands, which are higher for brand 1.

5.3 Sensitivity to the effect of shelf-space on
sales

The results in the first two columns of Table 12.4 indicate that the pa-
rameter capturing the long-term effect of shelf-space on sales (bk) has no
effect on the steady-state values of the advertising strategies of the man-
ufacturers. However, it has a positive impact on their incentive strategies
which are increased under a decrease of this parameter. Hence, when
the long-term effect of shelf-space on sales is decreased, manufacturers
are better off when they choose to allocate more marketing efforts in
push strategies in order to get an immediate effect on the shelf-space
allocation.

Table 12.4. Summary of sensitivity results to the long-term effect of shelf-space on
sales.

Sensitivity to bk = 1.62 bk = 1.58 b2 = 1.58

G1 7.6920 7.6920 7.7195
G2 7.6920 7.6920 7.6645
A1 1.4244 1.4244 1.4295
A2 1.4244 1.4244 1.4194
w1 0.1200 0.2120 0.1622
w2 0.1200 0.2120 0.1698
S1 0.5000 0.5000 0.5010
D1 1.7205 1.7255 1.7305
D2 1.7205 1.7255 1.7155
JM1 1.8456 1.7285 1.7927
JM2 1.8456 1.7285 1.6676
JR 18.0395 18.3538 18.3045

Finally, under non-symmetric conditions, the results in the last col-
umn indicate that the manufacturer of the brand that has the lowest
long-term effect of shelf-space on sales (in our numerical example, the
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second one) increases his incentive, but lowers his advertising invest-
ment. Thus, his goodwill stock decreases while the goodwill stock of his
competitor increases (since the competitor reacts by increasing his ad-
vertising investment). The retailer gives a higher share of her shelf-space
to the brand with the highest goodwill level and manufacturer 2 reacts
by increasing his incentive coefficient and setting it higher than that of
his competitor.

6. Concluding remarks
Manufacturers can affect retailer’s shelf-space allocation decisions
through the use of incentive strategies (push) and/or advertising
investments (pull).

The numerical results indicate that a manufacturer who wants to
influence the retailer’s shelf-space allocation decisions can choose
between using incentive strategies and/or advertising, this choice
depends on the model’s parameters.

In further research, we should remove the hypothesis of myopia
and relax the assumption of constant margins by introducing retail
and wholesale prices as control variables for the retailer and both
manufacturers.
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Appendix: Proof of Proposition 12.3
We apply the sufficient condition for a stationary feedback Nash equilibrium and

wish to find bounded and continuously functions VMi(G1, G2), i = 1, 2, which satisfy,
for all Gi(t) ≥ 0, i = 1, 2, the following HJB equations:

ρVMi(G1, G2) = max
Ai

{
πMiDi − 1

2
uiA

2
i − ωiSi +

∂VMi

∂G1
(G1, G2)(αiAi − δGi)

}
,

i = 1, 2, where Di, ωi and Si are given in (12.1), (12.7) and (12.6), respectively.
The maximization of the right-hand side of the above equation with respect to Ai

leads to

Ai(G1, G2) =
αi

uMi

∂VMi

∂Gi
(G1, G2).
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Substitution of Ai, i = 1, 2 by their values into the HJB equations leads to conjec-
ture the following quadratic functions for the manufacturers:

VMi (Gi, Gj) =
1

2
Ki1G

2
1 +

1

2
Ki2G

2
2 + Ki3G1G2 + Ki4G1 + Ki5G2 + Ki6.

Inserting these expressions as well as their partial derivatives in the HJB equations
and identifying coefficients, we obtain the following:

K11 =
(2δ + ρ)u1 ±

√
[(2δ + ρ)u1]

2 − 4α2
1u1Z

2α2
1

,

Y = (b1(πM1 + 3πR1) + b2(πM2 + 3πR2))
2,

Z1 =
a2
1(πM1 + πR1)

2(b1(πM1 + 2πR1) + 2b2πR2)

Y
,

K13 =
a1a2u1(πM1 + πR1)(πM2 + πR2)(b1(πM1 + 2πR1) + 2b2πR2)

Y (K11α2
1 − u1(δ + ρ))

,

K12 =
(K13α1)

2Y + a2
2u1(πM2 + πR2)

2(b1(πM1 + 3πR1) + 2b2πR2)

u1ρY
,

K14 = −a1u1(πM1 + πR1)(b1(πM1 + 2πR1) + 2b2πR2)(b1πR1 + b2(πM2 + 2πR2))

Y (K11α2
1 − u1(δ + ρ))

,

K15 =
1

u1ρY

{
K13K14α

2
1Y − a2u1(πM2 + πR2)[b

2
1πR1(πM1 + 2πR1)

+ 2b2
2πR2(πM2 + 2πR2) + b1b2(πM1(πM2 + 2πR2) + 2πR1(πM2 + 3πR2))]

}
,

K16 =
1

2u1ρY

{
u1{b2

1πR1 [b1πR1(πM1 + 2πR1) + 2b2(πM2(πM1 + 2πR1)

+ πR2(2πM1 + 5πR1))] + b2
2(πM2 + πR2)[2b2πR2(πM2 + 2πR2)

+ b1(πM1(πM2 + 2πR2) + 2πR1(πM2 + 4πR2))] + (K14α1)
2Y }} .

The coefficients of the value function for the manufacturer 2, as in the standard
case, can be obtained following next rule:

K12 ↪→ K21, K11 ↪→ K22, K13 ↪→ K23, K15 ↪→ K24, K14 ↪→ K25, K16 ↪→ K26,

where the arrow indicates that in each parameter the subscripts 1 and 2 have been
interchanged.

Appendix: Parameters of retailer’s value function
Parameters of retailer’s value function are the following:

Ni = ui(2δ + ρ) − 2Kiiα
2
i , Ri = πMi + πRi ,

P = b1(πM1 + 3πR1) + b2(πM2 + 3πR2), Q = b1πR1 + b2πR2 ,

Ti = (2πMi + 3πRi)(πMi + 3πRi) + πRi(πMi + 2πRi),

Xi = π2
Mi

+ 5πRiπMi + 5π2
Ri

, Yi = πMj Ri + πRj (5πMi + 9πRi),
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Zi = 12πMj πRj (πMi + 2πRi) + π2
Mj

(2πMi + 3πRi) + 2π2
Rj

(7πMi + 17πRi),

i, j = 1, 2, i �= j,

L1 =
u1(2K23L3α

2
2P

2 + a2
1u2R1

2Q)

u2P 2N1
,

L2 =
u2(2K13L3α

2
1P

2 + a2
2u1R2

2Q)

u1P 2N2
,

L3 =
u1u2Q(a2

2K23α
2
2R

2
2N1 + a2

1K13α
2
1R

2
1N2 − a1a2R1R2N1N2)

P 2(K11u2α2
1 + u1(K22α2

2 − u2(2δ + ρ)))(4K13K23α2
1α

2
2 − N1N2)

,

L4 =
u1[2K14K23L3α

2
1α

2
2P

2 + α2
2(K25L3 + K23L5)P

2N1 + a2
1K14u2α

2
1R

2
1Q]

u2P 2N1(α2
1K11 − u1(δ + ρ))

+
u1a1R1N1(b

2
1πR1(πM1 + 4πR1) + b2

2X2 + b1b2Y1

P 2N1(α2
1K11 − u1(δ + ρ))

,

L5 =
u2[N2P

2α2
1(L4K13 + L3K14) + K25α

2
2(Qa2

2u1R
2
2 + 2L3α

2
1P

2)]

u1P 2N2(u2(δ + ρ) − K22α2
2)

+
a2u1u2R2[b

2
1X1 + b2

2(πM2 + 4πR2) + b1b2Y2]

u1P 2(u2(δ + ρ) − K22α2
2)

,

L6 =
2P 2(u1K25L5α

2
2+u2K14L4α

2
1)−u1u2[b

3
1πR1T1+b3

2πR2T2+b1b2(b1Z1−b2Z2)]

2ρu1u2P 2
.

Appendix: Steady-state equilibrium values for the
goodwill stocks

The steady-state values are given by:

G∞
1 = − α2

1(K13K25α
2
2 +

(
u2δ − K22α

2
2

)
K14)

K13K23α2
1α

2
2 − (u1δ − K11α2

1) (u2δ − K22α2
2)

,

G∞
2 = − α2

2(K23K14α
2
1 +

(
u1δ − K11α

2
1

)
K25)

K13K23α2
1α

2
2 − (u1δ − K11α2

1) (u2δ − K22α2
2)

.
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Chapter 13

SUBGAME CONSISTENT
DORMANT-FIRM CARTELS

David W.K. Yeung

Abstract Subgame consistency is a fundamental element in the solution of co-
operative stochastic differential games. In particular, it ensures that
the extension of the solution policy to a later starting time and any
possible state brought about by prior optimal behavior of the players
would remain optimal. Hence no players will have incentive to deviate
from the initial plan. Recently a general mechanism for the derivation
of payoff distribution procedures of subgame consistent solutions in sto-
chastic cooperative differential games has been found. In this paper,
we consider a duopoly in which the firms agree to form a cartel. In
particular, one firm has absolute and marginal cost advantage over the
other forcing one of the firms to become a dormant firm. A subgame
consistent solution based on the Nash bargaining axioms is derived.

1. Introduction
Formulation of optimal behaviors for players is a fundamental ele-

ment in the theory of cooperative games. The players’ behaviors sat-
isfying some specific optimality principles constitute a solution of the
game. In other words, the solution of a cooperative game is generated
by a set of optimality principles (for instance, the Nash bargaining so-
lution (1953) and the Shapley values (1953)). For dynamic games, an
additional stringent condition on their solutions is required: the specific
optimality principle must remain optimal at any instant of time through-
out the game along the optimal state trajectory chosen at the outset.
This condition is known as dynamic stability or time consistency. In par-
ticular, the dynamic stability of a solution of a cooperative differential
game is the property that, when the game proceeds along an “optimal”
trajectory, at each instant of time the players are guided by the same
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optimality principles, and hence do not have any ground for deviation
from the previously adopted “optimal” behavior throughout the game.

The question of dynamic stability in differential games has been ex-
plored rigorously in the past three decades. Haurie (1976) discussed
the problem of instability in extending the Nash bargaining solution to
differential games. Petrosyan (1977) formalized mathematically the no-
tion of dynamic stability in solutions of differential games. Petrosyan
and Danilov (1979 and 1985) introduced the notion of “imputation dis-
tribution procedure” for cooperative solution. Tolwinski et al. (1986)
considered cooperative equilibria in differential games in which memory-
dependent strategies and threats are introduced to maintain the agreed-
upon control path. Petrosyan and Zenkevich (1996) provided a detailed
analysis of dynamic stability in cooperative differential games. In par-
ticular, the method of regularization was introduced to construct time
consistent solutions. Yeung and Petrosyan (2001) designed a time con-
sistent solution in differential games and characterized the conditions
that the allocation distribution procedure must satisfy. Petrosyan (2003)
used regularization method to construct time consistent bargaining pro-
cedures.

A cooperative solution is subgame consistent if an extension of the
solution policy to a situation with a later starting time and any feasible
state would remain optimal. Subgame consistency is a stronger no-
tion of time-consistency. Petrosyan (1997) examined agreeable solutions
in differential games. In the presence of stochastic elements, subgame
consistency is required in addition to dynamic stability for a credible
cooperative solution. In the field of cooperative stochastic differential
games, little research has been published to date due to the inherent
difficulties in deriving tractable subgame consistent solutions. Haurie et
al. (1994) derived cooperative equilibria of a stochastic differential game
of fishery with the use of monitoring and memory strategies. As pointed
out by Jørgensen and Zaccour (2001), conditions ensuring time consis-
tency of cooperative solutions could be quite stringent and analytically
intractable. The recent work of Yeung and Petrosyan (2004) developed
a generalized theorem for the derivation of analytically tractable “payoff
distribution procedure” of subgame consistent solution. Being capable
of deriving analytical tractable solutions, the work is not only theoret-
ically interesting but would enable the hitherto intractable problems in
cooperative stochastic differential games to be fruitfully explored.

In this paper, we consider a duopoly game in which one of the firms
enjoys absolute cost advantage over the other. A subgame consistent
solution is developed for a cartel in which one firm becomes a dormant
partner. The paper is organized as follows. Section 2 presents the
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formulation of a dynamic duopoly game. In Section 3, Pareto opti-
mal trajectories under cooperation are derived. Section 4 examines the
notion of subgame consistency and the subgame consistent payoff distri-
bution. Section 5 presents a subgame consistent cartel based on the Nash
bargaining axioms. An illustration is provided in Section 6. Concluding
remarks are given in Section 7.

2. A generalized dynamic duopoly game
Consider a duopoly in which two firms are allowed to extract a renew-

able resource within the duration [t0, T ]. The dynamics of the resource
is characterized by the stochastic differential equations:

dx (s) = f [s, x (s) , u1 (s) + u2 (s)] ds + σ [s, x (s)] dz (s) ,

x (t0) = x0 ∈ X, (13.1)

where ui ∈ Ui is the (nonnegative) amount of resource extracted by
firm i, for i ∈ [1, 2], σ [s, x (s)] is a scaling function and z (s) is a Wiener
process.

The extraction cost for firm i ∈ N depends on the quantity of re-
source extracted ui(s) and the resource stock size x(s). In particular,
firm i’s extraction cost can be specified as ci [ui (s) , x (s)]. This formu-
lation of unit cost follows from two assumptions: (i) the cost of extrac-
tion is proportional to extraction effort, and (ii) the amount of resource
extracted, seen as the output of a production function of two inputs
(effort and stock level), is increasing in both inputs (See Clark (1976)).
In particular, firm 1 has absolute and marginal cost advantage so that
c1 (u1, x) < c2 (u2, x) and ∂c1 (u1, x) /∂u1 < ∂c2 (u2, x) /∂u2.

The market price of the resource depends on the total amount ex-
tracted and supplied to the market. The price-output relationship at
time s is given by the following downward sloping inverse demand curve
P (s) = g [Q (s)], where Q(s) = u1 (s) + u2 (s) is the total amount of re-
source extracted and marketed at time s. At time T , firm i will receive a
termination bonus qi (x (T )). There exists a discount rate r, and profits
received at time t has to be discounted by the factor exp [−r (t− t0)].

At time t0, the expected profit of firm i ∈ [1, 2] is:

Et0

{∫ T

t0

[
g [u1 (s) + u2 (s)]ui (s)− ci [ui (s) , x (s)]

]
exp [−r (s− t0)] ds

+ exp [−r (T − t0)] qi [x (T )] | x (t0) = x0

}
, (13.2)

where Et0 denotes the expectation operator performed at time t0.
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We use Γ (x0, T − t0) to denote the game (13.1)–(13.2) and Γ (xτ , T − τ)
to denote an alternative game with state dynamics (13.1) and payoff
structure (13.2), which starts at time τ ∈ [t0, T ] with initial state xτ ∈ X.
A non-cooperative Nash equilibrium solution of the game Γ (xτ , T − τ)
can be characterized with the techniques introduced by Fleming (1969),
Isaacs (1965) and Bellman (1957) as:

Definition 13.1 A set of feedback strategies
{
u

(τ)∗
i (t) = φ

(τ)∗
i (t, x) ,

for i ∈ [1, 2]
}
, provides a Nash equilibrium solution to the game

Γ (xτ , T − τ), if there exist twice continuously differentiable functions
V (τ)i (t, x) : [τ, T ] × R → R, i ∈ [1, 2], satisfying the following partial
differential equations:

−V
(τ)i
t (t, x)− 1

2
σ (t, x)2 V (τ)i

xx (t, x) =

max
ui

{[
g
[
ui + φ

(τ)∗
j (t, x)

]
ui − ci [ui, x]

]
exp [−r (t− τ)]

+V (τ)i
x (t, x) f

[
t, x, , ui + φ

(τ)
j (t, x)

]}
, and

V (τ)i (T, x) = qi (x) exp [−r (T − τ)] ds,

for i ∈ [1, 2] , j ∈ [1, 2] and j �= i.

Remark 13.1 From Definition 13.1, one can readily verify that V (τ)i (t, x)
= V (s)i (t, x) exp [−r (τ − s)] and φ

(τ)∗
i (t, x) = φ

(s)∗
i (t, x), for i ∈ [1, 2],

t0 ≤ τ ≤ s ≤ t ≤ T and x ∈ X.

3. Dynamic cooperation and Pareto optimal
trajectory

Assume that the firms agree to form a cartel. Since profits are in
monetary terms, these firms are required to solve the following joint
profit maximization problem to achieve a Pareto optimum:

Et0

{∫ T

t0

[
g [u1 (s) + u2 (s)] [u1 (s) + u2 (s)]− c1 [u1 (s) , x (s)]

−c2 [u2 (s) , x (s)]
]
exp [−r (s− t0)] ds

+ exp [−r (T − t0)] (qi [x (T )] + qi [x (T )]] | x (t0) = x0

}
,(13.3)

subject to dynamics (13.1).
An optimal solution of the problem (13.1) and (13.3) can be charac-

terized with the techniques introduced by Fleming’s (1969) stochastic
control techniques as:
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Definition 13.2 A set of feedback strategies
[
ψ

(t0)∗
1 (s, x) , ψ

(t0)∗
2 (s, x)

]
,

for s ∈ [t0, T ] provides an optimal control solution to the problem (13.1)
and (13.3), if there exist a twice continuously differentiable function
W (t0) (t, x) : [t0, T ] × R → R satisfying the following partial differen-
tial equations:

−W
(t0)
t (t, x)− 1

2
σ (t, x)2 W (t0)

xx (t, x) =

max
u1,u2

{[
g (u1 + u2) (u1 + u2)− c1 (u1, x)− c2 (u2, x)

]
exp [−r (t− τ)]

+W (t0)
x (t, x) f (t, x, u1 + u2)

}
, and

W (t0) (T, x) = [q1 (x) + q2 (x)] exp [−r (T − t0)] .

Performing the indicated maximization in Definition 13.2 yields:

g′ (u1 + u2)u1 + g (u1 + u2) + W (t0)
x (t, x) fu1+u2 (t, x, u1 + u2)

−∂c1 (u1, x) /∂u1 ≤ 0, (13.4)

and

g′ (u1 + u2)u2 + g (u1 + u2) + W (t0)
x (t, x) fu1+u2 (t, x, u1 + u2)

−∂c2 (u1, x) /∂u2 ≤ 0. (13.5)

Since ∂c1 (u1, x) /∂u1 < ∂c2 (u2, x) /∂u2, firm 2 has to refrain from
extraction.

Upon substituting ψ
(t0)∗
1 (t, x) and ψ

(t0)∗
2 (t, x) into (13.1) yields the

optimal cooperative state dynamics as:

dx (s) = f
[
s, x (s) , ψ

(t0)∗
1 (s, x (s))

]
ds + σ [s, x (s)] dz (s) ,

x (t0) = x0 ∈ X. (13.6)

The solution to (13.6) yields a Pareto optimal trajectory, which can be
expressed as:

x∗ (t) = x0 +
∫ t

t0

f
[
s, x (s) , ψ

(t0)∗
1 (s, x (s))

]
ds +

∫ t

t0

σ [s, x (s)] dz (s) .

(13.7)
We denote the set containing realizable values of x∗ (t) by X

α1(t0)
t , for

t ∈ (t0, T ].
We use Γc (x0, T − t0) to denote the cooperative game (13.1)–(13.2)

and Γc (xτ , T − τ) to denote an alternative game with state dynam-
ics (13.1) and payoff structure (13.2), which starts at time τ ∈ [t0, T ]
with initial state xτ ∈ X∗

τ .
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Remark 13.2 One can readily show that:

W (τ) (s, x) = exp [−r (t− τ)] W (t) (s, x) , and

ψ
(τ)∗
i (s, x (s)) = ψ

(t)∗
i (s, x (s)) ,

for s ∈ [t, T ] and i ∈ [1, 2] and t0 ≤ τ ≤ t ≤ s ≤ T.

4. Subgame consistency and payoff distribution
Consider the cooperative game Γc (x0, T − t0) in which total cooper-

ative payoff is distributed between the two firms according to an agree-
upon optimality principle. At time t0, with the state being x0, we use
the term ξ(t0)i (t0, x0) to denote the expected share/imputation of to-
tal cooperative payoff (received over the time interval [t0, T ]) to firm i
guided by the agree-upon optimality principle. We use Γc (xτ , T − τ) to
denote the cooperative game which starts at time τ ∈ [t0, T ] with initial
state xτ ∈ X∗

τ . Once again, total cooperative payoff is distributed be-
tween the two firms according to same agree-upon optimality principle
as before. Let ξ(τ)i (τ, xτ ) denote the expected share/imputation of total
cooperative payoff given to firm i over the time interval [τ, T ].

The vector ξ(τ) (τ, xτ ) =
[
ξ(τ)1 (τ, xτ ) , ξ(τ)2 (τ, xτ )

]
, for τ ∈ (t0, T ],

yields valid imputations if the following conditions are satisfied.

Definition 13.3 The vectors ξ(τ) (τ, xτ ) is an imputation of the coop-
erative game Γc (xτ , T − τ), for τ ∈ (t0, T ], if it satisfies:

(i)
2∑

j=1
ξ(τ)j (τ, xτ ) = W (τ) (τ, xτ ) , and

(ii) ξ(τ)i (τ, xτ ) ≥ V (τ)i (τ, xτ ), for i ∈ [1, 2] and τ ∈ [t0, T ].

In particular, part (i) of Definition 13.3 ensures Pareto optimality,
while part (ii) guarantees individual rationality.

A payoff distribution procedure (PDP) of the cooperative game (as
proposed in Petrosyan (1997) and Yeung and Petrosyan (2004)) must
be now formulated so that the agreed imputations can be realized. Let
the vectors Bτ (s) = [Bτ

1 (s) , Bτ
2 (s)] denote the instantaneous payoff

of the cooperative game at time s ∈ [τ, T ] for the cooperative game
Γc (xτ , T − τ). In other words, firm i, for i ∈ [1, 2], is offered a payoff
equaling Bτ

i (s) at time instant s. A terminal payment qi (x (T )) is given
to firm i at time T .

In particular, Bτ
i (s) and qi (x (T )) constitute a PDP for the game

Γc (xτ , T − τ) in the sense that ξ(τ)i (τ, xτ ) equals:

Eτ

{(∫ T

τ
Bτ

i (s) exp [−r (s− τ)] ds
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+qi (x (T )) exp [−r (T − τ)]
)
| x (τ) = xτ

}
, (13.8)

for i ∈ [1, 2] and τ ∈ [t0, T ].
Moreover, for i ∈ [1, 2] and t ∈ [τ, T ], we use ξ(τ)i (t, xt) which equals

Eτ

{(∫ T

t
Bτ

i (s) exp [−r (s− τ)] ds

+qi (x (T )) exp [−r (T − τ)]
)
| x (t) = xt

}
, (13.9)

to denote the expected present value of firm i’s cooperative payoff over
the time interval [t, T ], given that the state is xt at time t ∈ [τ, T ], for
the game which starts at time τ with state xτ ∈ X∗

τ .

Definition 13.4 The imputation vectors ξ(t)(t, xt) =
[
ξ(t)1(t, xt),

ξ(t)2(t, xt)
]
, for t ∈ [t0, T ], as defined by (13.8) and (13.9), are subgame

consistent imputations of Γc (xτ , T − τ) if they satisfy Definition 13.3
and the condition that ξ(t)i (t, xt) = exp [−r (t− τ)] ξ(τ)i (t, xt), where
t0 ≤ τ ≤ t ≤ T, i ∈ [1, 2] and xt ∈ X

(τ)∗
t .

The conditions in Definition 13.4 guarantee subgame consistency of
the solution imputations throughout the game interval in the sense that
the extension of the solution policy to a situation with a later starting
time and any possible state brought about by prior optimal behavior of
the players remains optimal.

For Definition 13.4 to hold, it is required that Bτ
i (s) = Bt

i (s), for
i ∈ [1, 2] and τ ∈ [t0, T ] and t ∈ [t0, T ] and r �= t. Adopting the
notation Bτ

i (s) = Bt
i (s) = Bi (s) and applying Definition 13.4, the PDP

of the subgame consistent imputation vectors ξ(τ) (τ, xτ ) has to satisfy
the following condition.

Corollary 13.1 The PDP with B (s) and q (x (T )) corresponding to
the subgame consistent imputation vectors ξ(τ) (τ, xτ ) must satisfy the
following conditions:

(i)
2∑

j=1
Bi (s) =

[
g
[
ψ

(τ)∗
1 (s) + ψ

(τ)∗
2 (s)

] [
ψ

(τ)∗
1 (s) + ψ

(τ)∗
2 (s)

]
−c1

[
ψ

(τ)∗
1 (s) , x (s)

]
− c1

[
ψ

(τ)∗
1 (s) , x (s)

]]
,

for s ∈ [t0, T ];

(ii) Eτ

{(∫ T
τ Bi (s) exp [−r (s− τ)] ds

+qi (x (T )) exp [−r (T − τ)]
) | x (τ) = xτ

} ≥ V (τ)i (τ, xτ ),
for i ∈ [1, 2] and τ ∈ [t0, T ]; and
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(iii) ξ(τ)i (τ, xτ ) =
Eτ

{(∫ τ+Δt
τ Bi (s) exp [−r (s− τ)] ds + exp

[
− ∫ τ+Δt

τ r (y) dy
]

×ξ(τ+Δt)i (τ + Δt, xτ + Δxτ ) | x (τ) = xτ

}
,

for τ ∈ [t0, T ] and i ∈ [1, 2];

where
Δxτ = f

[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
Δt + σ [τ, xτ ] Δzτ + o (Δt) ,

x (τ) = xτ ∈ X∗
τ , Δzτ = z (τ + Δt) − z (τ), and Eτ [o (Δt)] /Δt → 0 as

Δt → 0.

Consider the following condition concerning subgame consistent im-
putations ξ(τ) (τ, xτ ), for τ ∈ [t0, T ]:

Condition 13.1 For i ∈ [1, 2] and t ≥ τ and τ ∈ [t0, T ], the terms
ξ(τ)i (t, xt) are functions that are continuously twice differentiable in t
and xt.

If the subgame consistent imputations ξ(τ) (τ, xτ ), for τ ∈ [t0, T ], sat-
isfy Condition 13.1, a PDP with B (s) and q (x (T )) will yield the rela-
tionship:

Eτ

{∫ τ+Δt

τ
Bi (s) exp

[
−
∫ s

τ
r (y) dy

]
ds | x (τ)=xτ

}
=Eτ

{
ξ(τ)i (τ, xτ )−exp

[
−
∫ τ+Δt

τ
r (y) dy

]
ξ(τ+Δt)i (τ + Δt, xτ + Δxτ )

}
=Eτ

{
ξ(τ)i (τ, xτ )−ξ(τ)i (τ + Δt, xτ + Δxτ )

}
,

for all τ ∈ [t0, T ] and i ∈ [1, 2]. (13.10)

With Δt → 0, condition (13.10) can be expressed as:

Eτ {Bi (τ) Δt + o (Δt)}
= Eτ

{
−
[
ξ
(τ)i
t (t, xt) |t=τ

]
Δt

−
[
ξ(τ)i
xt

(t, xt) |t=τ

]
f
[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
Δt

−1
2
σ [τ, xτ ]

2

[
ξ
(τ)i

xh
t xζ

t

(t, xt) |t=τ

]
Δt

−
[
ξ(τ)i
xt

(t, xt) |t=τ

]
σ [τ, xτ ] Δzτ − o (Δt)

}
. (13.11)

Taking expectation and dividing (13.11) throughout by Δt, with Δt →
0, yield

Bi (τ) = −
[
ξ
(τ)i
t (t, xt) |t=τ

]
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−
[
ξ(τ)i
xt

(t, xt) |t=τ

]
f
[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
− 1

2
σ [τ, xτ ]

2

[
ξ
(τ)i

xh
t xζ

t

(t, xt) |t=τ

]
. (13.12)

Therefore, one can establish the following theorem.

Theorem 13.1 (Yeung-Petrosyan Equation (2004)). If the solution
imputations ξ(τ)i (τ, xτ ), for i ∈ [1, 2] and τ ∈ [t0, T ], satisfy Defini-
tion 13.4 and Condition 13.1, a PDP with a terminal payment qi (x (T ))
at time T and an instantaneous imputation rate at time τ ∈ [t0, T ]:

Bi (τ) = −
[
ξ
(τ)i
t (t, xt) |t=τ

]
−
[
ξ(τ)i
xt

(t, xt) |t=τ

]
f
[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
− 1

2
σ [τ, xτ ]

2

[
ξ
(τ)i

xh
t xζ

t

(t, xt) |t=τ

]
, for i ∈ [1, 2] ,

yielda a subgame consistent solution to the cooperative game
Γc (x0, T − t0).

5. A Subgame Consistent Cartel
In this section, we present a subgame consistent solution in which the

firms agree to maximize the sum of their expected profits and divide
the total cooperative profit satisfying the Nash bargaining outcome –
that is, they maximize the product of expected profits in excess of the
noncooperative profits. The Nash bargaining solution is perhaps the
most popular cooperative solution concept which possesses properties
not dominated by those of any other solution concepts. Assume that the
agents agree to act and share the total cooperative profit according to an
optimality principle satisfying the Nash bargaining axioms: (i) Pareto
optimality, (ii) symmetry, (iii) invariant to affine transformation, and
(iv) independence from irrelevant alternatives. In economic cooperation
where profits are measured in monetary terms, Nash bargaining implies
that agents agree to maximize the sum of their profits and then divide
the total cooperative profit satisfying the Nash bargaining outcome –
that is, they maximize the product of the agents’ gains in excess of the
noncooperative profits. In the two player case with transferable payoffs,
the Nash bargaining outcome also coincides with the Shapley value.
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Let Si denote the aggregate cooperative gain imputed to agent i, the
Nash product can be expressed as

[Si]
[
W (t0)(t0, x0)−

2∑
j=1

V (t0)j(t0, x0)− Si

]
.

Maximization of the Nash product yields

Si =
1
2

[
W (t0) (t0, x0)−

2∑
j=1

V (t0)j (t0, x0)
]
, for i ∈ [1, 2].

The sharing scheme satisfies the so-called Nash formula (see Dixit and
Skeath (1999)) for splitting a total value W (t0) (t0, x0) symmetrically.

To extend the scheme to a dynamic setting, we first propose that the
optimality principle guided by Nash bargaining outcome be maintained
not only at the outset of the game but at every instant within the game
interval. Dynamic Nash bargaining can therefore be characterized as:
The firms agree to maximize the sum of their expected profits and dis-
tribute the total cooperative profit among themselves so that the Nash
bargaining outcome is maintained at every instant of time τ ∈ [t0, T ].

According the optimality principle generated by dynamic Nash bar-
gaining as stated in the above proposition, the imputation vectors must
satisfy:

Proposition 13.1 In the cooperative game Γ (xτ , T − τ), for τ ∈ [t0, T ],
under dynamic Nash bargaining,

ξ(τ)i (τ, xτ ) = V (τ)i (τ, xτ ) + 1
2

[
W (τ) (τ, xτ )−

2∑
j=1

V (τ)j (τ, xτ )
]
,

for i ∈ [1, 2].

Note that each firm will receive an expected profit equaling its expected
noncooperative profit plus half of the expected gains in excess of ex-
pected noncooperative profits over the period [τ, T ], for τ ∈ [t0, T ].

The imputations in Proposition 13.1 satisfy Condition 13.1 and Defi-
nition 13.4. Note that:

ξ(t)i (t, xt) = exp
[∫ t

τ
r (y) dy

]
ξ(τ)i (t, xt) ≡

exp
[∫ t

τ
r (y) dy

]{
V (τ)i (t, xt) +

1
2

[
W (τ) (t, xt)−

2∑
j=1

V (τ)j (t, xt)
]}

,

for t0 ≤ τ ≤ t, (13.13)
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and hence the imputations satisfy Definition 13.4. Therefore Proposi-
tion 13.1 gives the imputations of a subgame consistent solution to the
cooperative game Γc (x0, T − t0).

Using Theorem 13.1 we obtain a PDP with a terminal payment
qi (x (T )) at time T and an instantaneous imputation rate at time τ ∈
[t0, T ]:

Bi (τ) =
−1
2

[[
V

(τ)i
t (t, xt) |t=τ

]
+
[
V (τ)i

xt
(t, xt) |t=τ

]
f
[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
+

1
2
σ [τ, xτ ]

2

[
V

(τ)i

xh
t xζ

t

(t, xt) |t=τ

]]
−1

2

[[
W

(τ)
t (t, xt) |t=τ

]
+
[
W (τ)

xt
(t, xt) |t=τ

]
f
[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
+

1
2
σ [τ, xτ ]

2

[
W

(τ)

xh
t xζ

t

(t, xt) |t=τ

]]
+

1
2

[[
V

(τ)j
t (t, xt) |t=τ

]
+
[
V (τ)j

xt
(t, xt) |t=τ

]
f
[
τ, xτ , ψ

(τ)∗
1 (τ, xτ )

]
+

1
2
σ [τ, xτ ]

2

[
V

(τ)j

xh
t xζ

t

(t, xt) |t=τ

]]
, for i ∈ [1, 2]. (13.14)

6. An Illustration
Consider a duopoly in which two firms are allowed to extract a renew-

able resource within the duration [t0, T ]. The dynamics of the resource
is characterized by the stochastic differential equations:

dx (s) =
[
ax (s)1/2 − bx (s)− u1 (s)− u2 (s)

]
ds + σx (s) dz (s) ,

x (t0) = x0 ∈ X, (13.15)

where ui ∈ Ui is the (nonnegative) amount of resource extracted by firm
i, for i ∈ [1, 2], a, b and σ are positive constants, and z (s) is a Wiener
process. Similar stock dynamics of a biomass of renewable resource had
been used in Jørgensen and Yeung (1996 and 1999), Yeung (2001 and
2003).

The extraction cost for firm i ∈ N depends on the quantity of resource
extracted ui(s), the resource stock size x(s), and a parameter ci. In
particular, firm i’s extraction cost can be specified as ciu

i (s)x (s)−1/2.
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This formulation of unit cost follows from two assumptions: (i) the cost
of extraction is proportional to extraction effort, and (ii) the amount of
resource extracted, seen as the output of a production function of two
inputs (effort and stock level), is increasing in both inputs (See Clark
(1976)). In particular, firm 1 has absolute cost advantage and c1 < c2.

The market price of the resource depends on the total amount ex-
tracted and supplied to the market. The price-output relationship at
time s is given by the following downward sloping inverse demand curve
P (s) = Q (s)−1/2, where Q(s) = u1 (s)+u2 (s) is the total amount of re-
source extracted and marketed at time s. At time T , firm i will receive a
termination bonus with satisfaction qix (T )1/2, where qi is nonnegative.
There exists a discount rate r, and profits received at time t has to be
discounted by the factor exp [−r (t− t0)].

At time t0, the expected profit of firm i ∈ [1, 2] is:

Et0

{∫ T

t0

[
ui (s)

[u1 (s) + u2 (s)]1/2
− ci

x (s)1/2
ui (s)

]
exp [−r (s− t0)] ds

+ exp [−r (T − t0)] qix (T )
1
2 | x (t0) = x0

}
, (13.16)

where Et0 denotes the expectation operator performed at time t0.
A set of feedback strategies

{
u

(τ)∗
i (t) = φ

(τ)∗
i (t, x) , for i ∈ [1, 2]

}
provides a Nash equilibrium solution to the game Γ (xτ , T − τ), if there
exist twice continuously differentiable functions V (τ)i (t, x) : [τ, T ]×R →
R, i ∈ [1, 2], satisfying the following partial differential equations:

−V
(τ)i
t (t, x)− 1

2
σ2x2V (τ)i

xx (t, x) =

max
ui

{[
ui

(ui + φj (t, x))1/2
− ci

x1/2
ui

]
exp [−r (t− τ)]

+V (τ)i
x (t, x)

[
ax1/2 − bx− ui − φj (t, x)

]}
, and

V (τ)i (T, x) = qix
1/2 exp [−r (T − τ)] ds,

for i ∈ [1, 2] , j ∈ [1, 2] and j �= i. (13.17)

Proposition 13.2 The value function of firm i in the game Γ (xτ , T − τ)
is:

V (τ)i (t, x) = exp [−r (t− τ)]
[
Ai (t) x1/2 + Bi (t)

]
,

for i ∈ [1, 2] and t ∈ [τ, T ] , (13.18)



13 Subgame Consistent Dormant-Firm Cartels 267

where Ai (t), Bi (t), Aj (t) and Bj (t) , for i ∈ [1, 2] and j ∈ [1, 2] and
i �= j, satisfy:

Ȧi (t) =
[
r +

1
8
σ2 +

b

2

]
Ai (t)−

(
3
2

)
[2cj − ci + Aj (t)−Ai (t) /2]

[c1 + c2 + A1 (t) /2 + A2 (t) /2]2

+
(

3
2

)2 ci [2cj − ci + Aj (t)−Ai (t) /2]
[c1 + c2 + A1 (t) /2 + A2 (t) /2]3

+
(

9
8

)
Ai (t)

[c1 + c2 + A1 (t) /2 + A2 (t) /2]2
,

Ai (T ) = qi;

Ḃi (t) = rBi (t)− a

2
Ai (t) , and Bi (t) = 0.

Proof. Perform the indicated maximization in (13.17) and then substi-
tute the results back into the set of partial differential equations. Solving
this set equations yields Proposition 13.2. �

Assume that the firms agree to form a cartel and seek to solve the fol-
lowing joint profit maximization problem to achieve a Pareto optimum:

Et0

{∫ T

t0

[
[u1 (s) + u2 (s)]1/2 − c1u1 (s) + c2u2 (s)

x (s)1/2

]
exp [−r (s− t0)] ds

+ exp [−r (T − t0)] [q1 + q2] x (T )1/2 | x (t0) = x0

}
, (13.19)

subject to dynamics (13.15).
A set of feedback strategies

[
ψ

(t0)∗
1 (s, x) , ψ

(t0)∗
2 (s, x)

]
, for s ∈ [t0, T ]

provides an optimal control solution to the problem (13.15) and (13.19),
if there exist a twice continuously differentiable function
W (t0) (t, x) : [t0, T ] × R → R satisfying the following partial differen-
tial equations:

−W
(t0)
t (t, x)− 1

2
σ2x2W (t0)

xx (t, x) =

max
ui,u2

{[
(u1 + u2)

1/2 − (c1u1 + c2u2)x−1/2
]
exp [−r (t− t0)]

+W (t0)
x (t, x)

[
ax1/2 − bx− u1 − u2

]}
, and

W (t0) (T, x) = (q1 + q2) x1/2 exp [−r (T − t0)] .
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The indicated maximization operation in the above definition requires:

ψ
(t0)∗
1 (t, x) =

x

4
[
c1 + Wx exp [r (t− t0)] x1/2

]2 and ψ
(t0)∗
2 (t, x) = 0.

(13.20)
Along the optimal trajectory, firm 2 has to refrain from extraction.

Proposition 13.3 The value function of the stochastic control problem
(13.15) and (13.19) can be obtained as:

W (t0) (t, x) = exp [−r (t− t0)]
[
A (t)x1/2 + B (t)

]
, (13.21)

where A (t) and B (t) satisfy:

Ȧ (t) =
[
r +

1
8
σ2 +

b

2

]
A (t)− 1

4 [c1 + A (t) /2]
,

A (T ) = q1 + q2;

Ḃ (t) = rB (t)− a

2
A (t) , and B (T ) = 0.

Proof. Substitute the results from (13.20) into the partial differential
equations in (13.19). Solving this equation yields Proposition 13.3. �

Upon substituting ψ
(t0)∗
1 (t, x) and ψ

(t0)∗
2 (t, x) into (13.15) yields the

optimal cooperative state dynamics as:

dx (s) =
[
ax (s)1/2 − bx (s)− x (s)

4 [c1 + A (s) /2]2

]
ds + σx (s) dz (s) ,

x (t0) = x0 ∈ X. (13.22)

The solution to (13.22) yields a Pareto optimal trajectory, which can be
expressed as:

x∗ (t) =
{

Φ (t, t0)
[
x

1/2
0 +

∫ t

t0

Φ−1 (s, t0)
a

2
ds

]}2

, (13.23)

where

Φ (t, t0) = exp
[∫ t

t0

(−b

2
− 1

8 [c1 + A (s) /2]2
− 3σ2

8

)
ds +

∫ t

t0

σ

2
dz (s)

]
.

We denote the set containing realizable values of x∗ (t) by X
α1(t0)
t , for

t ∈ (t0, T ].
Using Theorem 13.1 we obtain a PDP with a terminal payment

qi (x (T )) at time T and an instantaneous imputation rate at time τ ∈
[t0, T ]:
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Bi (τ) =
−1
2

[[
V

(τ)i
t (t, xt) |t=τ

]
+
[
V (τ)i

xt
(t, xt) |t=τ

] [
ax1/2

τ − bxτ − xτ

4 [c1 + A (τ) /2]2

]
+

σ2x2

2

[
V

(τ)i

xh
t xξ

t

(t, xt) |t=τ

]]
−1

2

[[
W

(τ)
t (t, xt) |t=τ

]
+
[
W (τ)

xt
(t, xt) |t=τ

] [
ax1/2

τ − bxτ − xτ

4 [c1 + A (τ) /2]2

]
+

σ2x2

2

[
W

(τ)

xh
t xξ

t

(t, xt) |t=τ

]]
+

1
2

[[
V

(τ)j
t (t, xt) |t=τ

]
+
[
V (τ)j

xt
(t, xt) |t=τ

] [
ax1/2

τ − bxτ − xτ

4 [c1 + A (τ) /2]2

]
+

σ2x2

2

[
V

(τ)j

xh
t xξ

t

(t, xt) |t=τ

]]
, for i ∈ [1, 2]. (13.24)

yields a subgame consistent solution to the cooperative game
Γc (x0, T − t0), in which the firms agree to divide their cooperative gains
according to Proposition 13.1.

Using (13.19), we obtain:[
V (τ)i

xt
(t, xt) |t=τ

]
=

1
2
Ai (τ)x−1/2

τ ,[
V

(τ)i

xh
t xξ

t

(t, xt) |t=τ

]
=
−1
4

Ai (τ)x−3/2
τ ,

and[
V

(τ)i
t (t, xt) |t=τ

]
= −r

[
Ai (τ) x1/2

τ + Bi (τ)
]

+
[
Ȧi (τ) x1/2

τ + Ḃi (τ)
]
,

for i ∈ [1, 2] , (13.25)

where Ȧi (τ) and Ḃi (τ) are given in Proposition 13.2.
Using (13.21), we obtain:[
W (τ)

xt
(t, xt) |t=τ

]
=

1
2
A (τ)x−1/2

τ ,[
W

(τ)

xh
t xξ

t

(t, xt) |t=τ

]
=
−1
4

A (τ) x−3/2
τ ,

and
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W

(τ)
t (t, xt) |t=τ

]
= −r

[
A (τ) x1/2

τ + B (τ)
]

+
[
Ȧ (τ)x1/2

τ + Ḃ (τ)
]

where Ȧ (τ) and Ḃ (τ) are given in Proposition 13.3.
Bi (τ) in (13.25) yields the instantaneous imputation that will be of-

fered to firm i given that the state is xτ at time τ .

7. Concluding Remarks
The complexity of stochastic differential games generally leads to great

difficulties in the derivation of game solutions. The stringent require-
ment of subgame consistency imposes additional hurdles to the deriva-
tion of solutions for cooperative stochastic differential games. In this
paper, we consider a duopoly in which the firms agree to form a cartel.
In particular, one firm has absolute cost advantage over the other forc-
ing one of the firms to become a dormant firm. A subgame consistent
solution based on the Nash bargaining axioms is derived. The analysis
can be readily applied to the deterministic version of the duopoly game
by setting σ equal zero.
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