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Preface

This volume contains the Proceedings of ICFCA 2005, the 3rd International
Conference on Formal Concept Analysis. The ICFCA conference series aims to
be the premier forum for the publication of advances in applied lattice and order
theory, and in particular scientific advances related to formal concept analysis.

Formal concept analysis is a field of applied mathematics with its mathe-
matical root in order theory, in particular in the theory of complete lattices.
Researchers had long been aware of the fact that these fields have many po-
tential applications. Formal concept analysis emerged in the 1980s from efforts
to restructure lattice theory to promote better communication between lattice
theorists and potential users of lattice theory. The key theme was the mathema-
tization of concept and conceptual hierarchy. Since then, the field has developed
into a growing research area in its own right with a thriving theoretical commu-
nity and an increasing number of applications in data and knowledge processing,
including data visualization, information retrieval, machine learning, data anal-
ysis and knowledge management.

ICFCA 2005 reflected both practical benefits and progress in the foundational
theory of formal concept analysis. Algorithmic aspects were discussed as well as
efforts to broaden the field. All regular papers appearing in this volume were
refereed by at least two, in most cases three independent reviewers. The final
decision to accept the papers was arbitrated by the Program Chairs based on
the referee reports. It was the involvement of the Program Committee and the
Editorial Board that ensured the scientific quality of these proceedings.

The Organizing Chair of the ICFCA 2005 conference, held at the Université
d’Artois, Lens, France, was Engelbert Mephu Nguifo. The success of the confer-
ence was the result of many hours of tireless planning and work by many vol-
unteers, including the Conference Organization Committee, the Editorial Board
and the Program Committee, to whom we convey our sincerest gratitude.

February 2005 Bernhard Ganter
Robert Godin
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Glossary

– A formal context (G,M, I) consists of two sets G, M , and a binary relation
I⊆ G ×M between these two sets.
The elements of G are usually called the objects of the formal context
(G,M, I), while those of M are the attributes.
We write g I m or (g,m) ∈I to express that g and m are in relation I.
g I m may be read as “the object g has the attibute m”.

– If A ⊆ G is a set of objects, then

A′ := {m ∈ M | g I m for all g ∈ A}

is the set of attributes that are common to all objects in A. Dually, if B ⊆ M
is a set of attributes, then

B′ := {g ∈ G | g I m for all m ∈ B}

is the set of those objects in G that have all the attributes from B.
– The two operators

A �→ A′ and B �→ B′

form a Galois connection. Their compositions

A �→ A′′ and B �→ B′′

form closure operators on G and M , respectively.
– A formal concept of a formal context (G,M, I) is a pair (A,B) of sets A ⊆ G,

B ⊆ M , with A′ = B and A = B′.
The set A is called the extent of the formal concept (A,B). The set B is its
intent.

– Formal concepts are naturally ordered by the subconcept-superconcept rela-
tion defined as follows:

(A1, B1) ≤ (A2, B2) : ⇐⇒ A1 ⊆ A2 ( ⇐⇒ B2 ⊆ B1).

– The set B(G,M, I) of all formal concepts of a formal context (G,M, I) with
this order is called the concept lattice of (G,M, I).
It is indeed a complete lattice in the sense of mathematical order theory.
Some authors use the name Galois lattice of the relation I instead of “concept
lattice of (G,M, I)”.



Towards Generic Pattern Mining�

Mohammed J. Zaki��, Nagender Parimi, Nilanjana De, Feng Gao,
Benjarath Phoophakdee, Joe Urban, Vineet Chaoji,

Mohammad Al Hasan, and Saeed Salem

Computer Science Department,
Rensselaer Polytechnic Institute, Troy NY 12180

Abstract. Frequent Pattern Mining (FPM) is a very powerful paradigm
for mining informative and useful patterns in massive, complex datasets.
In this paper we propose the Data Mining Template Library, a collection
of generic containers and algorithms for FPM, as well as persistency and
database management classes. DMTL provides a systematic solution to
a whole class of common FPM tasks like itemset, sequence, tree and
graph mining. DMTL is extensible, scalable, and high-performance for
rapid response on massive datasets. Our experiments show that DMTL
is competitive with special purpose algorithms designed for a particular
pattern type, especially as database sizes increase.

1 Introduction

Frequent Pattern Mining (FPM) is a very powerful paradigm which encom-
passes an entire class of data mining tasks. The specific tasks encompassed
by FPM include the mining of increasingly complex and informative patterns,
in complex structured and unstructured relational datasets, such as: Itemsets
or co-occurrences [1] (transactional, unordered data), Sequences [2, 29] (tempo-
ral or positional data, as in text mining, bioinformatics), Tree patterns [30, 3]
(XML/semistructured data), and Graph patterns [12, 16, 26, 27] (complex rela-
tional data, bioinformatics). Figure 1 shows examples of these different types of
patterns; in a generic sense a pattern denotes links/relationships between sev-
eral objects of interest. The objects are denoted as nodes, and the links as edges.
Patterns can have multiple labels, denoting various attributes, on both the nodes
and edges.

The current practice in frequent pattern mining basically falls into the
paradigm of incremental algorithm improvement and solutions to very specific
problems. While there exist tools like MLC++ [15], which provides a collec-
tion of algorithms for classification, and Weka [25], which is a general purpose

� This work was supported by NSF Grant EIA-0103708 under the KD-D program,
NSF CAREER Award IIS-0092978, and DOE Early Career PI Award DE-FG02-
02ER25538.

�� We thank Paolo Palmerini and Jeevan Pathuri for their work on an early version of
DMTL.

B. Ganter and R. Godin (Eds.): ICFCA 2005, LN 3403, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 M.J. Zaki et al.

Java library of different data mining algorithms including itemset mining, these
systems do not have an unifying theme or framework, there is little database sup-
port, and scalability to massive datasets is questionable. Moreover, these tools
are not designed for handling complex pattern types like trees and graphs.

Our work seeks to address all of the above limitations. In this paper we de-
scribe Data Mining Template Library (DMTL), a generic collection of algorithms
and persistent data structures, which follow a generic programming paradigm[4].
DMTL provides a systematic solution for the whole class of pattern mining tasks
in massive, relational datasets. The main contributions of DMTL are as follows:

– Isolation of generic containers which hold various pattern types from the
actual mining algorithms which operate upon them. We define generic data
structures to handle various pattern types like itemsets, sequences, trees and
graphs, and outline the design and implementation of generic data mining
algorithms for FPM, such as depth-first and breadth-first search.

– Persistent data structures for supporting efficient pattern frequency compu-
tations using a tightly coupled database (DBMS) approach.

– Native support for both vertical and horizontal database formats for highly
efficient mining.

– Developing the motivation to look for unifying themes such as right-most
pattern extension and depth-first search in FPM algorithms. We believe this
shall facilitate the design of a single generic algorithm applicable across a
wide spectrum of patterns.

One of the main attractions of a generic paradigm is that the generic algo-
rithms for mining are guaranteed to work for any pattern type. Each pattern is
characterized by inherent properties that it satisfies, and the generic algorithm
exploits these properties to perform the mining task efficiently. We conduct sev-
eral experiments to show the scalability and efficiency of DMTL for different
pattern types like itemsets, sequences, trees and graphs. Our results indicate
that DMTL is competitive with the special purpose algorithms designed for a
particular pattern type, especially with increasing database sizes.

2 Preliminaries

The problem of mining frequent patterns can be stated as follows: Let N =
{x1, x2, . . . , xnv

} be a set of nv distinct nodes or vertices. A pair of nodes (xi, xj)
is called en edge. Let L = {l1, l2, . . . , lnl

}, be a set of nl distinct labels. Let Ln :
N → L, be a node labeling function that maps a node to its label Ln(xi) = li,
and let Le : N × N → L be an edge labeling function, that maps an edge to its
label Le(xi, xj) = lk.

It is intuitive to represent a pattern P as a graph (PV , PE), with labeled
vertex set PV ⊆ N and labeled edge set PE = {(xi, xj) | xi, xj ∈ PV }. The
number of nodes in a pattern P is called its size. A pattern of size k is called
a k-pattern, and the class of frequent k-patterns is referred to as Fk. In some
applications P is a symmetric relation, i.e., (xi, xj) ≡ (xj , xi) (undirected edges),
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while in other applications P is anti-symmetric, i.e., (xi, xj) 	≡ (xj , xi) (directed
edges). A path in P is a set of distinct nodes {xi0 , xi1 , xin

}, such that (xij
, xij+1)

in an edge in PE for all j = 0 · · ·n − 1. The number of edges gives the length
of the path. If xi and xj are connected by a path of length n we denote it as
xi <n xj . Thus the edge (xi, xj) can also be written as xi <0 xj .

Given two patterns P and Q, we say that P is a subpattern of Q (or Q is
a super-pattern of P ), denoted P
Q if and only if there exists a 1-1 mapping
f from nodes in P to nodes in Q, such that for all xi, xj ∈ PV : i) Ln(xi) =
Ln(f(xi)), ii) Le(xi, xj) = Le(f(xi), f(xj)), and iii) (xi, xj) ∈ PV iff (if and
only if) (f(xi), f(xj)) ∈ QV . In some cases we are interested in embedded
subpatterns. P is an embedded subpattern of Q if: i) Ln(xi) = Ln(f(xi)), iii)
Le(xi, xj) = Le(f(xi), f(Xj)), and iii) (xi, xj) ∈ PE iff f(xi) <l f(xj) for some
l ≥ 0, i.e., f(xi) is connected to f(xj) on some path. If P
Q we say that P is
contained in Q or Q contains P .

A database D is just a collection (a multi-set) of patterns. A database pattern
is also called an object. Let O = {o1, o2, . . . , ono

}, be a set of no distinct object
identifiers (oid). An object has a unique identifier, given by the function O(di) =
oj , where di ∈ D and oj ∈ O. The number of objects in D is given as |D|.

The absolute support of a pattern P in a database D is defined as the number
of objects in D that contain P , given as πa(P,D) = |{P
d | d ∈ D}|. The
(relative) support of P is given as π(P,D) = πa(P,D)

|D| . A pattern is frequent if its
support is more than some user-specified minimum threshold, i.e., if π(P,D) ≥
πmin. A frequent pattern is maximal if it is not a subpattern of any other frequent
pattern. A frequent pattern is closed if it has no super-pattern with the same
support. The frequent pattern mining problem is to enumerate all the patterns
that satisfy the user-specified πmin frequency requirement (and any other user-
specified conditions).

The main observation in FPM is that the sub-pattern relation 
 defines a
partial order on the set of patterns. If P
Q, we say that P is more general than
Q, or Q is more specific than P . The second observation used is that if Q is a
frequent pattern, then all sub-patterns P
Q are also frequent. More important
is the converse, i.e. if P is infrequent and P
Q then Q shall also be infrequent
(follows from the anti-monotonicity of frequency). The different FPM algorithms
differ in the manner in with they search the pattern space.

2.1 FPM Instances

Some common types of patterns include itemsets, sequences, trees, and graphs,
as shown in Figure 1. In fact, every pattern can be modeled as a graph; the
nodes (xi) are shown under each circle and the node labels (Ln(xi)) are shown
inside the circle, whereas edge labels have been omitted.

In an itemset [1] no two nodes have the same label. Let V = {x1, x2, · · ·xk} be
a node set such that Ln(xi) 	= Ln(xj) for all xi, xj ∈ V , and Ln(xi) < Ln(xi+1)
for all 1 ≤ i ≤ k − 1. There are several possible formulation of the itemset
pattern: i) vertex-only: An itemset pattern P is just a of vertices, i.e., PV = V
and PE = ∅, this is shown in Figure 1, ii) linear: in another formulation the
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Fig. 1. FPM Instances

itemset is defined as PV = V , and PE = {(xi, xi+1)|xi, xi+1 ∈ PV }, iii) clique:
A third alternative is to represent itemset P as a clique, i.e., PV = V and
PE = {(xi, xj) | i < j and xi, xj ∈ PV }.

In sequence mining [2], a sequence is modeled as an ordered list of itemsets,
and thus the different nodes in a sequence can have the same label. We can
model a sequence pattern P as being made up of a sequence of n itemsets P i,
i = 1, · · ·n, using the linear formulation (as shown in Figure 1); note that using
the vertex-only formulation is problematic, since it results in a disconnected
pattern. Thus P has a vertex set made up of n disjoint subsets PV =

⋃n
i=1 P

i
V .

The edge set PE contains all the edges within P i (consecutive and undirected),
and it also contains a directed edge for every pair of consecutive itemsets, i.e.,
from the last node of P i to the first node of P i+1.

In tree mining [30, 3], typically rooted, ordered and labeled trees are consid-
ered. Thus a tree pattern P consists of the vertex set PV = {r, x1, x2, · · ·}, where
r is a special node called root. A tree pattern must satisfy all tree properties,
namely i) the root has no parent, i.e., (xi, r) 	∈ PE for any xi ∈ PV , ii) the edges
are directed, i.e., if (xi, xj) ∈ PE , then (xj , xi) 	∈ PE), iii) a node has only one
parent, i.e., if (xi, xj) ∈ PE , then (xk, xj) 	∈ PE for any xk 	= xi, iv) the tree is
connected, i.e., for all xi ∈ PV , there exists a path from the root r to xi, and v)
tree has no cycles. Furthermore for ordered trees the order of a nodes’ children
matters. This means that there is an ordering of edges in PE , such that (xi, xj)
comes before (xi, xk) in PE only if xj is before xk in the ordering of xi’s children.
Embedded trees can be defined by following the definition of embedded patterns
introduced earlier.

Finally, by definition a pattern can model any general graph, as well as any
special constraints that might appear in graph mining [12, 16, 26], such as con-
nected graphs, or induced subgraphs. It is also possible to model other patterns
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such as DAGs (directed acyclic graphs). DMTL currently supports pattern min-
ing of i) itemsets, ii) sequences, iii) embedded, rooted trees with ordered edges
and iv) induced, undirected graphs with no single loops or multiple edges. As we
shall soon see, the toolkit can be extended to incorporate mining of other user
defined patterns as well.

2.2 Database Format

In a typical FPM task, the database is in the horizontal format i.e. a set of trans-
actions, where each transaction is an object of the pattern type being mined [1].
Recently, vertical database formats have been proposed for mining itemsets, se-
quences and trees [28, 29, 30]. The vertical format is the more attractive alterna-
tive since it enables fast computation of supports by avoiding repeated database
accesses. It does so by associating an entity called Vertical Attribute Table, VAT
with each pattern. For an itemset, the VAT is the list of tids in which it is con-
tained; VATs for sequences and trees are more complex and are described later.
There currently does not exist a vertical scheme for graphs; the introduction
of a new and efficient VAT scheme for graphs is one of our main contributions.
DMTL introduces two modes of persistency: i) the collection of frequent patterns
itself may be too large to fit in main memory, and hence persistent containers
are provided to hold them, and ii) persistent storage and access to VATs. Both
these modes of persistency are entirely transparent to the user.

3 DMTL: Data Structures and Algorithms

The C++ Standard Template Library (STL) provides efficient, generic imple-
mentations of widely used algorithms and data structures, which tremendously
aid effective programming. Like STL, DMTL is a collection of generic data min-
ing algorithms and data structures. In addition, DMTL provides persistent data
and index structures for efficiently mining any type of pattern or model of inter-
est. The user can mine custom pattern types, by simply defining the new pattern
types, but the user need not implement a new algorithm - the generic DMTL
algorithms can be used to mine them. Since the mined models and patterns
are persistent and indexed, this means the mining can be done efficiently over
massive databases, and mined results can be retrieved later from the persistent
store.

Following the ideology of generic programming, DMTL provides a standard-
ized, general, and efficient implementation of frequent pattern mining tasks by
isolating the concept of data structures or containers, as they are called in generic
programming, from algorithms. DMTL provides container classes for represent-
ing different patterns (such as itemsets and sequences) and collection of pat-
terns, containers for database objects (horizontal and vertical), and containers
for temporary mining results. These container classes support persistency when
required.

Generic algorithms, on the other hand are independent of the container and
can be applied on any valid container. These include algorithms for performing
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intersections of the vertical lists [28, 29, 30] for itemsets, sequences or other pat-
terns. Generic algorithms are also provided for mining itemsets, sequences and
trees [1, 20, 28, 29], as well as for finding the maximal or closed patterns [11, 31].
Finally DMTL provides support for the database management functionality,
pre-processing support for mapping data in different formats to DMTL’s native
formats, as well as for data transformation (such as discretization of continu-
ous values). It should be noted that some of the algorithms designed for the
C++ STL were inherently generic i.e. independent of the underlying datatype
or container (e.g. sort). However devising a generic algorithm for FPM was a
significant design challenge; we present it in Figure 3.

In this section we focus on the containers and algorithms for mining. In later
sections we discuss the database support in DMTL as well as support for pre-
processing and post-processing.

pvector plist partial−order

PatFamType

Pattern Family

Pattern Persistency Manager

Pattern Type

Itemset Sequence GraphTree

Fig. 2. DMTL Container Hierarchy

3.1 Containers

Figure 2 shows the different DMTL container classes for PMT (the Pattern
Mining Toolkit) and the relationship among them. At the lowest level are the
different kinds of pattern-types one might be interested in mining. A pattern is
a generic container instantiated for one of the pattern-types. There are several
pattern family types (such as pvector, plist, etc.) which together with a persis-
tency manager class make up different pattern family classes. More details on
each class appears below.
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Pattern. In DMTL a pattern is a generic container, which can be instantiated as
an itemset, sequence, tree or a graph, specified as Pattern<class P> by means
of a template argument called Pattern-Type (P). A generic pattern is simply a
Pattern-Type whose frequency we need to determine in a larger collection or
database of patterns of the same type.

Pattern-Type. A pattern type is the specific pattern to be mined, e.g. itemset,
and in that sense is not a generic container. DMTL has the itemset, sequence,
tree and graph pattern-types defined internally; however the users are free to
define their own pattern types, so long as the user defined class provides imple-
mentations for the methods required by the generic containers and algorithms.
We shall later show how a new pattern type may be added to the library.

Pattern Family. In addition to the basic pattern classes, most pattern mining
algorithms operate on a collection of patterns. The pattern family is a generic
container PatternFamily <class PatFamType> to store groups of patterns,
specified by the template parameter PatFamType. PatFamType represents a per-
sistent class provided by DMTL, that provides seamless access to the members,
whether they be in memory or on disk.

Pattern Family Type. This class provides the required persistency in stor-
age and retrieval of patterns. DMTL provides several pattern family types to
store groups of patterns. Each such class is templatized on the pattern-type (P)
and a persistency manager class PM. An example is pvector <class P, class
PM>, a persistent vector class. It has the same semantics as a STL vector with
added memory management and persistency. Another class is plist<P,PM>. In-
stead of organizing the patterns in a linear structure like a vector or list, another
persistent family type DMTL class, partial-order <P,PM>, organizes the pat-
terns according to the sub-pattern/super-pattern relationship. While pvector and
partial-order provide the same interface, certain operations will be more efficient
in one class than the other. For example, inserts and deletions are cheaper for
plists, while the maximality and closed testing functions will be cheaper for
partial-orders, since the patterns are already organized according to sub/super-
pattern relation.

3.2 Persistency Manager for Patterns

An important aspect of DMTL is to provide a user-specified level of persistency
for all DMTL classes. To support large-scale data mining, DMTL provides au-
tomatic support for out-of-core computations, i.e., memory buffer management,
via the persistency manager class PM. The PatternFamilyType class uses the
persistency manager (PM) to support the buffer management for patterns. The
details of implementation are hidden from PatternFamily; all generic algorithms
continue to work regardless of whether the family is (partially) in memory or on
disk. The interface of a persistent container (like pvector) is similar to that of
a volatile container (like STL vector), hence encapsulating the implementation
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behind the common interface. More details on the persistency manager will be
given later.

3.3 Generic Mining Algorithms

The pattern mining task can be viewed as a search over the pattern space looking
for those patterns that match the minimum support constraint. For instance
in itemset mining, the search space is the set of all possible subsets of items.
Within DMTL we attempt to provide a unifying framework for the wide range
of mining algorithms that exist today. Figure 3 shows the pseudo-code for the
generic mining algorithm, which was devised by combining the unifying aspects
of mining itemsets, sequences, trees and graphs [28, 29, 30, 26]. Note that mining
F2 (i.e., level-2) often creates performance and memory bottleneck in FPM tasks,
hence we employ a preemptive horizontal scan to accumulate estimated supports
of level-2 patterns (line 3). This is an optimization intended for level-2 only, and
we use the vertical approach thereon. The extend routine outlines the important
tasks for mining any pattern: i) systematic candidate generation (line 8), ii)
isomorphism checking (line 9) and iii) support counting which we accomplish
through the vertical approach (lines 10-11). Partitioning frequent patterns into
equivalence classes leads to a Fk×Fk candidate generation i.e. an Fk+1 candidate
is generated by joining two Fk sized patterns. It should also be noted that for
graphs g ∈ Fk implies g has k edges (not k nodes). Some of the salient features
of our algorithm’s design are:

Search Strategy. Several variants exist, depth-first search (DFS) and breadth-
first search (BFS) being the primary ones. BFS has the advantage of providing
better pruning of candidates but suffers from the cost of storing all of a given
level’s frequent patterns in memory. Recent algorithms for mining complex pat-
terns like trees and graphs have focused on the DFS approach, hence it is the
preferred choice for our toolkit as well. Nevertheless, support for BFS mining of
itemsets and sequences is provided.

Vertical Mining. It has been shown that efficient vertical mining typically
outperforms the horizontal approaches [28, 29, 30]. The vertical approach accom-
plishes fast support counting by intersection of VATs, thereby avoiding repeated
database accesses. Section 4 gives details of the support we provide for vertical
as well as horizontal mining.

Right-Most Extension. Recent algorithms towards solving tree and graph
mining [30, 26] have focused on an approach of right-most extension i.e. a new
node is added to the pattern only on the right most path from the root. This
method has been shown to exhaustively enumerate all candidates for trees and
graphs, and we believe that it can be augmented to work for itemsets and se-
quences as well. Though in the current framework the extension strategy is an
internal component of each pattern’s specialized routine, part of the proposed fu-
ture work is devising a completely generic pattern mining algorithm, leveraging
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aspects such as right most extension and depth-first search which are common
across a wide range of patterns. We believe that developing the motivation to
look for such unifying themes in pattern mining is one of the key contributions
of this toolkit.

DMTL provides generic algorithms encapsulating these search strategies; by
their definition these algorithms can work on any type of pattern: Itemset, Se-
quence, Tree or Graph. An example is the generic algorithm DFS-Mine<class
PatFamType> (PatternFamily<PatFamType> &pf, DB &db, ...), which
mines the frequent patterns using a depth-first search (DFS) [28, 29]. The DFS
algorithm in turn relies on other generic subroutines for creating equivalence
classes, for generating candidates, and for support counting. There is also a
generic BFS-Mine that performs Breadth-First Search [1, 20] over the pattern
space.

dfs mine (DB,result pats):
1. F1 = {level-1 frequent patterns}
2. result pats = result pats ∪F1

3. F2 = {optimized mining of level-2 patterns}
4. result pats = result pats ∪ F2

5. F2 = {partition F2 into equivalence classes}
6. for each equivalence class [P ]1 in F2 do
7. extend(DB, result pats, [P ]1)

extend (DB, result pats, [P ]):
//DFS, equivalence class-based extension

6. Fk+1 = ∅
7. ∀ patterns Pi, Pj ∈ [P ] such that i �= j
8. new pat = Pi

⊙
Pj //generate new candidate

9. if new pat.canonical code is minimal then
//candidate has passed isomorphism test

10. new pat.vat = Pi.vat
⊗

Pj .vat //vat intersection
11. if |new pat.vat| ≥ minsup then //new pat is frequent
12. result pats = results pat ∪ new pat
13. Fk+1 = Fk+1 ∪ new pat
14. Fk+1 = {partition Fk+1 into equivalence classes}
15. for each equivalence class [P ]k in Fk+1 do
16. extend(DB, result pats, [P ]k)

Fig. 3. Generic DFS Pattern Mining

Figure 3 seeks to illustrate the major steps of DFS-Mine, our equivalence class-
based vertical mining algorithm. The toolkit employs templates to provide for
efficient compile time polymorphism based on the pattern type: the underlying
algorithm stays the same but each distinct pattern has its specialized implemen-
tation of the key steps. For instance, the isomorphism check in line 9 is necessary
only for graphs, and is omitted for other simpler patterns. Isomorphism checking
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is achieved through the canonical code member of each pattern. Each graph has
a canonical code representation, and an ordering is defined on the code such
that among all isomorphic graphs only one has the the least canonical code; all
other graphs shall be discarded at line 9. DMTL applies the DFS minimal code
of gSpan [26] but is not constrained by the choice of the canonical code. It is also
to be noted that the equivalence class partitioning is omitted for graphs since
Fk ×F1 candidate generation does not lend itself easily to equivalence partitions.

3.4 Candidate Generation

We now provide a brief review of our extension routine (
⊙

) for the four primary
pattern types, details of the VAT intersection follow later.

Itemset: Itemset join is the simplest and DMTL employs a vertical mining
approach based on [28]. The join operation is defined on two itemsets Px and
Py, belonging to the same equivalence class, [P ], which yields Pxy ∈ [Px].

Sequence: An equivalence class of sequences can comprise members which are
sequence atoms (P → X) or event atoms (PY ). As described in [29], a join
of two sequences within the same equivalence class [P ] can lead to one of three
possibilities – i) joining PB with PD yields PBD (join of two event atoms); ii)
join of PB with P → A results in PB → A (join of event atom with sequence
atom) and iii) join of two sequence atoms, P → A with P → F leads to three
outcomes: an event atom P → AF and two sequence atoms, P → A → F and
P → F → A.

Tree: An equivalence class of trees comprises members which share the common
prefix, but differing in the last node of the tree and the position where it is
attached to the prefix. Hence members of the same equivalence class [P ] may
be denoted as pairs of (last node, position). A join of (x, i) with (y, j) leads to
the following possibilities: i) if i = j add (y, j) and (y, ni)) to [Px], where ni is
the depth-first number of node x; ii) if i > j the new candidate is (y, j) in class
[Px]; and iii) no candidates are possible when i < j. We refer the reader to [30]
for elaboration on the prefix based representation scheme used for trees.

Graph: To assist in systematic candidate generation and isomorphism testing,
DMTL uses the ordering of vertex and edge labels to generate graphs from a
core tree structure [26]. An Fk × F1 join on graphs is a complex operation; at
each such extension a new edge is added to the given graph. Two types of edge
extensions are defined: a back edge which introduces a cycle, and a forward edge
which adds a new node to the graph. See [26] for more details.

3.5 Isomorphism Checking

Since a graph encompasses other simpler patterns (itemset, sequence, tree) we
define the isomorphism problem for graphs: a graph p is isomorphic to q if there
exists a mapping M : pv → qv such that for all xi, xj ∈ p, Lp(xi) = Lq(M(xi))
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and (xi, xj) ∈ pe iff (M(xi),M(xj)) ∈ qe. It has been shown that for itemsets,
sequences and ordered trees the isomorphism checking may be averted by in-
telligent candidate generation, e.g., for the case of itemsets, AB and BA are
isomorphic, but the algorithm can avoid generating BA by joining an itemset Pi

only with a lexicographically greater itemset Pj (where both belong to the equiv-
alence class [P ]). Such schemes exist for sequences and ordered trees as well, but
more complex patterns like unordered trees, free trees, directed acyclic graphs
(DAGs) and generic graphs shall require some form of isomorphism testing.

Isomorphism Checking in Graphs: We follow the scheme outlined in [26]
to achieve isomorphism checking for graphs. Based on a linear order on vertex
and edge labels, a unique depth-first traversal is defined for any given graph.
Each vertex in the graph is assigned a depth-first id, which is its order in the
depth-first traversal. Each edge is represented by a 5-tuple (i, j, li, lij , lj) where
i is the DFS id of the first vertex of the edge and j of the second one, and li,
lij and lj are labels of the first vertex, the edge and second vertex respectively.
Isomorphism checking is accomplished by defining an order on such 5-tuples.

4 DMTL: Persistency and Database Support

DMTL employs a back-end storage manager that provides the persistency and
indexing support for both the patterns and the database. It supports DMTL
by seamlessly providing support for memory management, data layout, high-
performance I/O, as well as tight integration with database management sys-
tems (DBMS). It supports multiple back-end storage schemes including flat files,
embedded databases, and relational or object-relational DBMS. DMTL also pro-
vides persistent pattern management facilities, i.e., mined patterns can them-
selves be stored in a pattern database for retrieval and interactive exploration.

DMTL provides native database support for both the horizontal [1] and ver-
tical [28, 29, 30] data formats. It is also worth noting that since in many cases the
database contains the same kind of objects as the patterns to be extracted (i.e.,
the database can be viewed as a pattern family), the same database functionality
used for horizontal format can be used for providing persistency for pattern fam-
ilies. It is relatively straightforward to store a horizontal format object, and by
extension, a family of such patterns, in any object-relational database. Thus the
persistency manager for pattern families can handle both the original database
and the patterns that are generated while mining. DMTL provides the required
buffer management so that the algorithms continue to work regardless of whether
the database/patterns are in memory or on disk.

4.1 Vertical Attribute Tables

To provide native database support for objects in the vertical format, DMTL
adopts a fine grained data model, where records are stored as Vertical Attribute
Tables (VATs). Given a database of objects, where each object is characterized
by a set of properties or attributes, a VAT is essentially the collection of objects
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that share the same values for the attributes. For example, for a relational ta-
ble, cars, with the two attributes, color and brand, a VAT for the property
color=red stores all the transaction identifiers of cars whose color is red. The
main advantage of VATs is that they allow for optimizations of query intensive
applications like data mining where only a subset of the attributes need to be
processed during each query. As was mentioned earlier these kinds of vertical
representations have proved to be useful in many data mining tasks [28, 29, 30].

In DMTL there is one VAT per pattern-type. Depending on the pattern type
being mined the vat-type class may be different. Accordingly, their intersection
(line 10, Figure 3) shall vary as well:

Itemset. For an itemset the VAT is simply a vector <tid>, where each tid
may be stored as an int. VAT intersection in this case is straight forward,
new pat.vat = {t|t ∈ Pi.vat and t ∈ Pj .vat}, where new pat = Pi

⊙
Pj .

Sequence. The VAT for a sequence is defined as a vector<pair<tid, vector
<time-stamp>>>. In this case the intersection has to take into account the type
of extension under consideration (refer to the section on sequence extension).
The intersection operation is a simple intersection of tid-lists for a join of two
event atoms, but requires comparison of the timestamps when doing sequence
joins. For instance, when computing the VAT intersection for P → A → F from
its subsequences P → A and P → F , one needs to match the tid and ensure
that the time-stamp of A in that tid is less than that of F .

Tree. Define triple to be (tid, scope, match-label), then the VAT for a
tree pattern is a vector<triple>. The tid identifies a tree in the input database;
scope is an interval [l,u] which denotes the range of DFS ids which lie em-
bedded under the last depth-first node of the tree, and match-label is a list
of DFS positions at which the current tree is embedded in that tree of the
database. Intersection of tree VATs is an involved operation, comprising in-scope
and out-scope tests corresponding to the two types of tree extensions described
earlier [30].

Graph. The VAT for a graph is defined as a vector<edge vat> where an
edge vat is defined as vector<tid, vids> where vids is a vector <pair<int,
int>>. A graph may be viewed as a collection of edges; following this approach
an edge vat is in essence the VAT for an edge of a graph. It stores the tid of
the graph in which the edge is present, and a collection of pair of vertex ids –
each pair denoting an occurrence of the edge in that graph. Intersection of graph
VATs is complicated due to isomorphism checking, and the details are beyond
the scope of this paper.

DMTL provides support for creating VATs during the mining process, i.e.,
during algorithms execution, as well as support for updating VATs (add and
delete operations). In DMTL VATs can be either persistent or non-persistent.
Finally DMTL uses indexes for a collection of VATs for efficient retrieval based
on a given attribute-value, or a given pattern.
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4.2 Storage and Persistency Manager

The database support for VATs and for the horizontal family of patterns is
provided by DMTL in terms of the following classes, which are illustrated in
Figure 4. Vat-type is a class describing the vat-type that composes the body
of a VAT, for instance int for itemsets and pair<int,time> for sequences.
VAT<class V> is the class that represents VATs. This class is composed of a col-
lection of records of vat-type V. Storage<class PM> is the generic persistency-
manager class that implements the physical persistency for VATs and other
classes. The class PM provides the actual implementations of the generic oper-
ations required by Storage. For example, PM metakit and PM gigabase are two
actual implementations of the Storage class in terms of different DBMS like
Metakit [24], a persistent C++ library that natively supports the vertical format,
and Gigabase [14], an object-relational database. Other implementations can eas-
ily be added as long as they provide the required functionality. MetaTable<class
V, class PM> represents a collection of VATs. It stores a list of VAT pointers
and the adequate data structures to handle efficient search for a specific VAT
in the collection. It also provides physical storage for VATs. It is templatized
on the vat-type V and on the Storage implementation PM. In the figure the H
refers to a pattern and B its corresponding VAT. The Storage class provides for
efficient lookup of a particular VAT object given the header. DB<class V, class
PM> is the database class which holds a collection of Metatables. This is the
main user interface to VATs and constitutes the database class DB referred to
in previous sections. It supports VAT operations such as intersection, as well as
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B
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B

MetaTable<V,PM>

VAT<V> VAT<V>

DB<V,PM>

Buffer<V>

Intersect(VAT &v1, VAT &v2)

Get_Vats()

Get_Vat_Body()

Storage<PM> Storage<PM>

Fig. 4. DMTL: High level overview of the different classes used for Persistency
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the operations for data import and export. The DB class is a doubly templated
class where both the vat-type and the storage implementation need to be speci-
fied. An example instantiation of a DB class for itemset patterns would therefore
be DB<int,PM metakit> or DB<int, PM gigabase>. DB has as data members an
object of type Buffer<V> and a collection of MetaTables<V,PM>. Buffer<class
V> provides a fixed-size main-memory buffer to which VATs are written and
from which VATs are accessed, used for buffer management to provide seamless
support for main-memory and out-of-core VATs (of type V). When a VAT body
is requested from the DB class, the buffer is searched first. If the body is not
already present there, it is retrieved from disk, by accessing the Metatable con-
taining the requested VAT. If there is not enough space to store the new VAT
in the buffer, the buffer manager will (transparently) replace an existing VAT
with the new one. A similar interface is used to provide access to patterns in a
persistent family or the horizontal database.

5 Extensibility of DMTL

DMTL provides a highly extensible yet potent framework for frequent pattern
mining. We provide this flexibility via two central distinctions built into the
library by design.

Containers and Algorithms. DMTL makes a clear delineation between pat-
terns and the containers used to store them, and the underlying mining algo-
rithm. This enables us to introduce the concept of a generic pattern mining
algorithm, e.g., dfs mine. The algorithms presented are the first step towards
that end, and in our conclusions we outline the future challenges. We believe
the benefits of a generic framework are at least two-fold: firstly, it provides a
single platform for the field of frequent pattern mining and facilitates re-use of
mining techniques and methodologies among various patterns, and secondly it
may yield insight into discovering algorithms for newer patterns, e.g. DAGs.

Front-End and Back-End. We provide an explicit demarcation between the
roles played by the containers and methods used by the actual mining algorithms
(called the front-end operations) and those employed by the database to provide
its functionality (back-end operations). FPM algorithms so far have mainly fo-
cused on a highly integrated approach between the front-end operations and
back-end procedures. Though such an approach leads to efficient mining algo-
rithms, it compromises on their extensibility and scalability. For instance, there
is little support for persistency, buffer management, or even adding new DBMSs.
DMTL addresses this issue by demonstrating a clean way of seamlessly integrat-
ing new pattern types, buffer management techniques or even support for a
new DBMS. Furthermore, such a framework also enables us to define distinctly
the roles played by its various components, especially in the vertical mining ap-
proach, e.g., a pattern need not be aware of its VAT representation at all, and this
appeals intuitively too. A pattern is characterized completely by its definition
only, and its VAT is an entity defined by us in order to achieve vertical mining.
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This concept is again depicted cleanly in our toolkit - the pattern is aware of
only the high-level methods add vat() and get vat(); it is not restricted by
the specific VAT representation used.

This design enables DMTL to provide extensibility in three key ways.

Adding a New Pattern-Type. Due to the inherent distinction between con-
tainers and algorithms, a new pattern type can be added to DMTL in a clean
fashion. We demonstrate how it may be extended for unordered, rooted trees [17].
The order of a node’s children is relevant in ordered trees, while it is not so in
unordered trees. We observe that DMTL already provides tree mining, hence
much of the infrastructure may be re-used. The only significant modification
required is isomorphism checking. Hence the user can define an unordered tree
class, utree, similar to the in-built tree class. utree should provide an im-
plementation for its canonical code member, which our algorithm shall use to
determine isomorphism. In addition, a vertical representation (VAT) needs to be
provided for utree. Since utree is essentially a tree itself, it may utilize tree’s
vat body but needs to provide its distinct implementation of VAT intersection.
In this instance, due to its similarity to tree, utree could utilize many of the
common algorithms and routines. We acknowledge that this may not always be
the case; nevertheless for a new pattern-type, the user needs to define specialized
implementations of the main containers, viz., utree and utree vat and their
methods, but can reuse the toolkit’s infrastructure for vertical/horizontal and
DFS/BFS mining, as well as buffering and persistency. This way all algorithms
are guaranteed to work with any pattern as long as certain basic operations are
defined.

Buffering Scheme. The Buffer class provides memory management of pat-
terns and VATs. A new buffer manager may be put in place simply by defining an
appropriate new class, say NFU Buffer employing a not frequently used strategy.
NFU Buffer should define methods such as add vat(vat body&) which shall im-
plement the appropriate buffering of VATs. No other modification to the toolkit
is necessary.

DBMS Support. The back-end DBMS and buffer manager are interleaved to
provide seamless retrieval and storage of patterns and VATs. The buffer manager
fetches data as required from the DBMS, and writes out excess patterns/VATs
to the DBMS as the buffering strategy may dictate. In order to provide support
for a new DBMS, appropriate methods shall have to be defined, which the toolkit
would invoke through templatization of the DB class. Again, the design ensures
that this new DBMS can be cleanly integrated into the toolkit.

6 Experiments

Templates provide a clean means of implementing our concepts of genericity of
containers and algorithms; hence DMTL is implemented using the C++ Stan-
dard Template Library [4]. We present some experimental results on the time
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taken by DMTL to perform different types of pattern mining. We used the IBM
synthetic database generator [1] for itemset and sequence mining, the tree gen-
erator from [30] for tree mining and the graph generator by [16], with sizes
ranging from 10K to 500K (or 0.5 million) objects. The experiment were run
on a Pentium4 2.8Ghz Processor with 6GB of memory, running Linux.

Figure 5 shows the DMTL mining time versus the specialized algorithms for
itemset mining (Eclat [28]), sequences (Spade [29]), trees (TreeMiner [30]) and
graphs (gSpan [26]). For the DMTL algorithms, we show the time with differ-
ent persistency managers/databases: flat-file (Flat), metakit backend (Metakit)
and the gigabase backend (Gigabase). The left hand column shows the effect of
minimum support on the mining time for the various patterns, and the column
on the right hand size shows the effect of increasing database sizes on these al-
gorithms. Figures 5(a) and 5(b) contrast performance of DMTL with Eclat over
varying supports and database sizes, respectively. As can be seen in, Figure 5(b),
DMTL(Metakit) is as fast as the specialized algorithm for larger database sizes.
Tree mining in DMTL (figures 5(e) and 5(f) ) substantially outperforms TreeM-
iner; we attribute this to the initial overhead that TreeMiner incurs by reading
the database in horizontal format, and then converting it into the vertical one.
We have accomplished high optimization of the mining algorithm for itemsets
and trees; proposed future work is to utilize similar enhancements for sequences
and graphs. For graph and sequence patterns, we find that DMTL is at most,
within a factor of 10 as compared to specialized algorithms and often much closer
(Figure 5(d) ). Overall, the timings demonstrate that the performance and scal-
ability benefits of DMTL are clearly evident with large databases. For itemsets,
another experiments (not shown here) reported that Eclat breaks for a database
with 5 million records, while DMTL terminated in 23.5s with complete results.

7 Future Work: Generic Closed Patterns

Our current DMTL prototype allows the mining of all frequent patterns. How-
ever, in the future we also plan to implement generic mining of other pattern
spaces such as maximal patterns, and closed patterns. Informally, a maximal
frequent pattern is a pattern which is not contained in another longer frequent
pattern, whereas a closed frequent patterns is not contained in a longer frequent
pattern which has the same frequency. We are especially interested in closed pat-
terns since they form a lossless representation for the set of all frequent patterns.

Mining closed patterns has a direct connection with the elegant mathemati-
cal framework of formal concept analysis (FCA) [9], especially in the context of
closed itemset mining. Using notions from FCA one can define a closure oper-
ator [9] between the item (N ) and transaction (O) subset spaces, which allows
one to define a closed itemset lattice. This in turn provides significant insight
into the structure of the closed itemset space, and has lead to the development
of efficient algorithms. Initial use of closed itemsets for association rules was
studied in [32, 18]. Since then many algorithms for mining all the closed sets
have been proposed, such as Charm [31], Closet [19], Closet+ [22] Closure [8],
Mafia [6] and Pascal [5]. More recent algorithms have been studied in [10].
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Fig. 5. Itemset, Sequence, Tree and Graph Mining: Effect of Minimum Support and
Database Size
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Recently, there has also been a surge of interest in mining other kinds of closed
patterns such as closed sequences [23], closed trees [21, 7] and closed graphs [27].
For trees and graphs patterns there is currently no good understanding on how
to construct the closure operator, and to leverage that to develop more efficient
algorithms. The methods cited above use the intuitive notion of closed patterns
(i.e., having no super-pattern with the same support) for mining. Recently, for or-
dered data or sequences, a closure operator has been proposed [13]. In our future
work, we would like to develop the theory of a generic closure operator for any
pattern and we will also develop generic data structures (e.g., partial-order
pattern family) and algorithms to efficiently mine the set of all closed patterns.

8 Conclusions

In this paper we describe the design and implementation of the DMTL prototype
for important FPM tasks, namely mining frequent itemsets, sequences, trees,
and graphs. Following the ideology of generic programming, DMTL provides a
standardized, general, and efficient implementation of frequent pattern mining
tasks by isolating the concept of data structures or containers, from algorithms.
DMTL provides container classes for representing different patterns, collection of
patterns, and containers for database objects (horizontal and vertical). Generic
algorithms, on the other hand are independent of the container and can be
applied on any valid pattern. These include algorithms for candidate generation,
isomorphism testing, VAT intersections, etc.

The generic paradigm of DMTL is a first-of-its-kind in data mining, and we
plan to use insights gained to extend DMTL to other common mining tasks like
classification, clustering, deviation detection, and so on. Eventually, DMTL will
house the tightly-integrated and optimized primitive, generic operations, which
serve as the building blocks of more complex mining algorithms. The primitive
operations will serve all steps of the mining process, i.e., pre-processing of data,
mining algorithms, and post-processing of patterns/models. Finally, we plan to
release DMTL as part of open-source, and the feedback we receive will help drive
more useful enhancements. We also hope that DMTL will provide a common
platform for developing new algorithms, and that it will foster comparison among
the multitude of existing algorithms.
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Abstract. The “Semantic Mirrors Method” (Dyvik, 1998) is a means for auto-
matic derivation of thesaurus entries from a word-aligned parallel corpus. The
method is based on the construction of lattices of linguistic features. This paper
models the Semantic Mirrors Method with Formal Concept Analysis. It is argued
that the method becomes simpler to understand with the help of FCA. This paper
then investigates to what extent the Semantic Mirrors Method is applicable if the
linguistic resource is not a high quality parallel corpus but, instead, a medium
quality bilingual dictionary. This is a relevant question because medium quality
bilingual dictionaries are freely available whereas high quality parallel corpora
are expensive and difficult to obtain. The analysis shows that by themselves, bilin-
gual dictionaries are not as suitable for the Semantic Mirrors Method but that this
can be improved by applying conceptual exploration. The combined method of
conceptual exploration and Semantic Mirrors provides a useful toolkit specifically
for smaller size bilingual resources, such as ontologies and classification systems.
The last section of this paper suggests that such applications are of interest in the
area of ontology engineering.

1 Introduction

Dyvik (1998, 2003, 2004) invented the “Semantic Mirrors Method” as a means for
automatic derivation of thesaurus entries from a word-aligned parallel corpus. His on-
line interface1 uses a parallel corpus of Norwegian and English texts, from which users
can interactively derive thesaurus entries in either language. A feature set is derived for
each sense of each word. The senses then form a semi-lattice based on inclusion and
overlap among feature sets. Priss & Old (2004) note (without providing any details) that
Dyvik’s method is similar to certain concept lattices derived from monolingual lexical
databases. The Semantic Mirrors Method is briefly described in section 2 of this paper.
Section 3 explains how the Semantic Mirrors Method can be represented with respect
to Formal Concept Analysis (FCA). We believe that the Semantic Mirrors Method is of
general interest to the FCA community because there may be other similar applications
in this area.

In section 4, the FCA version of the Semantic Mirrors Method from section 3 is
applied to an English-German dictionary. An advantage of using bilingual dictionaries
instead of parallel corpora is that bilingual dictionaries are freely available on the Web
whereas word-aligned parallel corpora are expensive. A disadvantage of using bilingual

1 http://ling.uib.no/˜helge/mirrwebguide.html
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dictionaries is that the semantic information which can be extracted from them is less
complete, at least with respect to the creation of Semantic Mirrors. Therefore, in section 5
of this paper we analyse how conceptual exploration (cf. Stumme (1996)) can be used to
improve the incomplete information extracted from bilingual dictionaries. Even though
conceptual exploration is a semi-automated process, we believe that in combination with
the Semantic Mirrors Method, this approach has potential applications with respect to
ontology merging as described in section 6.

This paper attempts to provide sufficient details of the Semantic Mirrors Method to
be understandable for non-linguists, but it is assumed that readers are familiar with the
basics of FCA, which can be found in Ganter & Wille (1999).

2 The Semantic Mirrors Method

The Semantic Mirrors Method intends to extract semantic information from bilingual
corpora, which are large collections of texts existing in two languages and which are
aligned according to their translations. The assumption is that if the same sentence is
expressed in two different languages, then it should be possible to align words or phrases
(or “lemmata”) in one language with the corresponding words or phrases in the other
language. This word alignment is not trivial because languages can differ significantly
with respect to grammar and syntactic ordering. Computational linguists have devel-
oped a variety of statistical algorithms for such word-alignment tasks. These algorithms
perform with different degrees of accuracy. One of Dyvik’s interfaces allows for users
to vary the parameters used in these algorithms to explore their impact on the extracted
Semantic Mirrors. For comparison, Dyvik has also experimented with manually aligned
corpora2. For the purposes of this paper, only the resulting lists of aligned translations are
of interest. The quality or accuracy of the word alignment algorithms are not discussed
in this paper.

2.1 Step 1

Once a bilingual corpus is word-aligned, one can select a word in either language and
list all translations of that word occurring in the corpus. These lists of words and their
respective lists of translations form the basis of the Semantic Mirrors Method. Dyvik
(2003) calls the set of translations of a word a from language A its “(first) t-image” in
language B. One can then form the t-images (in language A) of the t-image (in language
B) of word a from language A. This set of sets is called the “inverse t-image of a”. This
algorithm of collecting the translations of the translations of a word has been mentioned
by other authors (for example, Wunderlich (1980)) and is called the “plus operator” by
Priss & Old (2004). This algorithm presents the first step of Dyvik’s Mirrors Method. In
contrast to this first step which has independently been discovered by different authors,
to our knowledge, the next steps of the Semantic Mirrors Method are unique to this
method.

2 http://ling.uib.no/˜helge/mirrwebguide.html\#bases
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2.2 Step 2

The second step is to partition the t-image of a word into distinct senses. As an example,
a t-image of English “wood” in German could be {Wald, Holz, Gehölz}. Intuitively,
these three words belong to two senses: the sense of “wood” as a collection of trees
(“Wald” and “Gehölz”) and the sense of “wood” as a building material (“Holz”). These
senses can be derived automatically by analysing the inverse t-image, i.e., the set of
sets of t-images of the initial t-image. In this example, it is assumed that the t-image of
“Holz” is {timber, wood}, the t-image of “Gehölz” is {grove, wood}, and the t-image of
“Wald” is {grove, forest, wood}. Because the t-images of “Wald” and “Gehölz” overlap
in more than one word, they are considered one sense of “wood” denoted by “wood1”.
Because the t-image of “Holz” overlaps with the other two t-images only in the original
word “wood”, “Holz” is considered a second sense of “wood” denoted by “wood2”.

Once each sense of a word is individuated, it can be associated with its own t-image.
Thus the t-image of “wood1” is {Wald, Gehölz}; the t-image of “wood2” is {Holz}.
These two senses belong to different “semantic fields”. According to Dyvik (2003):
“traditionally, a semantic field is a set of senses that are directly or indirectly related to
each other by a relation of semantic closeness. In our translational approach, the semantic
fields are isolated on the basis of overlapping t-images: two senses belong to the same
semantic field if at least one sense in the other language corresponds translationally
with both of them.” This means that “grove” and “forest” belong to the same semantic
field as “wood1”; “timber” belongs to the same semantic field as “wood2”. Of course,
before assigning “grove”, “forest”, and “timber” to semantic fields, one would need to
determine their own inverse t-images to see whether or not they have more than one
sense themselves.

Dyvik (2003) explains that because the translational relation is considered symmetric,
i.e. independent of the direction of the translation, one obtains corresponding semantic
fields in two languages. These fields are not usually exactly structurally identical because
the t-images in each language can be of different sizes and their sub-relationships can
be different. But each semantic field imposes a subset structure on the corresponding
semantic field in the other language. Thus each semantic field is structured by its own
subset relationships and receives further structures from the corresponding field in the
other language. We defer a more detailed description of these relationships to the next
section because they are easier to explain with the help of FCA. The Semantic Mirrors
Method receives its name from the fact that the semantic structures from one language
can be treated as a “Semantic Mirror” of structures in the other language.

2.3 Step 3

In the third step of the Semantic Mirrors Method a feature hierarchy is formed based on
the set-structures. Again this is more easily explained with FCA in the next section. The
idea of expressing semantic information in feature hierarchies (or lattices) is common in
the field of componential semantics. But in contrast to componential semantics where
features often represent abstract ontological properties (such as “material”, “immate-
rial”), in the Semantic Mirrors Method features are automatically derived as pairs of
senses from the two languages, such as “[wood1, Holz]”. Thus there is no attempt to
manually de-construct features into any form of primitives or universals.
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2.4 Step 4

As a last step of the Semantic Mirrors Method, thesaurus entries are generated. This
is achieved by operations which extract synonyms, hypernyms, hyponyms and related
words for a given word. In contrast to the feature structures which are graphically dis-
played as lattices, the thesaurus entries are displayed in a textual format. Users of the
on-line interface can vary the parameters of “SynsetLimit” and “OverlapThreshold”
which influence how wide or narrow the notion of “synonymy” is cast and thus how
the thesaurus entries are constructed. The FCA description in the next section does not
include an analysis of Step 4 because we have not yet determined whether there is any
advantage of using FCA at this stage. That will be left for future research.

3 An FCA Description of Semantic Mirrors

Dyvik (1998) uses Venn diagrams as means of visualising and explaining the different
steps of the Semantic Mirrors Method. A disadvantage of Venn diagrams is that they
are difficult (or even impossible) to draw for more complex examples. This section
demonstrates how concept lattices can be used to visualise the first three steps of the
Mirrors Method. As Priss & Old (2004) observe, the first step of the Semantic Mirrors
Method is similar to what Priss & Old call “neighbourhood lattices” with respect to
lexical databases. By modelling the Semantic Mirrors Method with FCA, the techniques
developed for neighbourhood lattices can now also be applied to the Semantic Mirrors
Method and vice versa.

3.1 Step 1: Forming a Neighbourhood Lattice

The first step of the Semantic Mirrors Method consists of constructing a formal context,
which has a union of t-images as a set of objects and a union of corresponding inverse
t-images as a set of attributes. Figure 1 shows an example for English “good”, “clever”,
“cute” and “pretty”. The data for this example comes from one of Dyvik’s “toy” ex-
amples3. The t-images (or translations) of “good”, “clever”, “cute” and “pretty” are the
objects in figure 1. The inverse t-images (i.e., the translations of the translations) are the
attributes. This kind of lattice is a “neighbourhood lattice” in the sense of Priss & Old
(2004).

Instead of t-images and inverse t-images, one can also use inverse t-images and
inverse t-images of inverse t-images, and so on. In many cases the continuous search
for translations may not converge until large sets of words from both languages are
included. For example, Dyvik and Thunes started with the Norwegian words “god”,
“tak” and “selskap”4. After translating back and forth between Norwegian and English
four times, they collected a set of 2796 Norwegian words and 724 English words!
Therefore, it may be sensible for some applications to terminate the search for t-images
after a few iterations. The resulting neighbourhood lattice is complete for the initial set
but incomplete either with respect to the translations of the objects or the attributes. If

3 http://ling.uib.no/˜helge/mirrwebguide.html
4 http://ling.uib.no/˜helge/mirrwebguide.html\#bases
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Fig. 1. A neighbourhood lattice for “good/god” (Step 1)

the translations are stopped after adding attributes, then some of the attributes which
were added last may not have their complete set of translations among the objects. If the
translations are stopped after adding objects, then some of these may be missing some
of their translations.

3.2 Step 2: The Sense Distinction Algorithm

The second step of the Semantic Mirrors Method consists of identifying which different
senses each word has. The different senses are then used to form different semantic
fields. Modelled with respect to FCA, we call this algorithm the “Sense Distinction
Algorithm”. This algorithm can be applied to any finite formal context, but we do not
know whether the algorithm produces any interesting results for other formal contexts
than those describing neighbourhood lattices. It should be noted that this algorithm
focuses on attributes attached to co-atoms (the lower neighbours of the top concept)
and on objects attached to atoms (the upper neighbours of the bottom concept). Thus in
figure 1 only the attributes “good”, “clever”, “cute” and “pretty” and the objects “god”,
“flink”, and “pen” are of interest. A “contingent” of a concept is defined as the set of
attributes and objects, which are in the extension of the concept but not in the extension
of any subconcept and in the intension of the concept but not in the intension of any
superconcept. Thus these attributes and objects belong directly to the concept and are
not inherited from sub- or superconcepts. In line diagrams, such as figure 1, the objects
and attributes attached to each node form the contingent of that concept.
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The Sense Distinction Algorithm can be described as follows:

– For each co-atom cwhich has attributea in its contingent collect the setS of concepts
immediately below and adjacent to c.
• i) If c also has at least one object in its contingent, then each object in the

contingent defines one sense of a.
• ii) If the meet of S is above the bottom concept ⊥, then a has one remaining

sense. Skip iii) and continue with the next co-atom.
• iii) Else, if the meet ofS is the bottom concept, construct a relationR as follows:

for c1, c2 ∈ S : c1Rc2 :⇐⇒ c1 ∧ c2 > ⊥. Form the transitive closure of R
(which makes R an equivalence relation on S). The remaining senses of a now
correspond to the equivalence classes of R on S.

– Determine the senses for each atomic object in an analogous, dual manner.

Step i) of the algorithm relates to what was said above about the incompleteness of
the neighbourhood lattices. If an object is attached to a co-atom then the chances are
that some of its translations are missing from the formal context. This is because many
words have more than one translation, which means that they are attached to the meet (or
dually join) of several co-atomic (or dually atomic) concepts. Objects that are attached
to a co-atom because their translational information is incomplete, would move further
down in the lattice if their translations were added to the set of attributes. Therefore
objects attached to co-atoms can indicate that the word which is the attribute of that
co-atom has several senses. Step 1 provides information about whether the set of objects
or whether the set of attributes may have incomplete translations. Therefore step i) can
be rewritten to incorporate this information as “If c has an object in its contingent and
the translations of this object may be incomplete in the formal context, then each object
attached to c corresponds to one sense of a”. But this rewritten version of step i) is
different from Dyvik’s (1998) Mirrors Method.

In figure 1, only the attribute “cute” has two senses. The dotted line in figure 1
indicates that the lattice contains two separate semantic fields: one for each sense of
“cute”. Figure 2 shows these two semantic fields. The algorithm which leads from figure
1 to figure 2 can be described as deleting the top and bottom concept and all atomic or
co-atomic concepts which were identified as having words with more than one sense
in the Sense Distinction Algorithm. The different senses are numerically labelled and
move to adjacent concepts. For example in figure 2, “cute2” is now attached to the same
concept as “sharp”, and “cute1” is now attached to the same concept as “yndig”. The
left diagram in figure 2 is not a lattice anymore but it can be thought of as a lattice whose
top and bottom concepts are omitted in the graphical representation.

3.3 Step 3: Creating Mirror Images

Figure 1 shows that the neighbourhood lattice in this example is almost symmetric with
respect to a horizontal line in the middle. This line can be thought of as the “Semantic
Mirror” between the two languages. In this example, the two languages are very similar.
Except for “nice”, all other words have a corresponding translation in the other language.
For “nice” there are two possibilities to find translations as explained further below.
Figures 3 to 5 show the resulting semantic fields.
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Fig. 2. Two semantic fields (Step 2)

Fig. 3. The mirror images for “pretty” in English and Norwegian (Step 3)

In the example in figure 2, all attributes belong to concepts above or equal to the
mirror line and all objects to concepts below or equal to the mirror line. This indicates
that the lattices in this example can be cut apart along the mirror line so that each half
represents the structures in one language. In general, this may not always be possible.
Step 2 ensures only that co-atoms have no objects and atoms have no attributes in their
contingents. The concept for “nice” could still have an object attached. It may be useful
to apply the Sense Distinction Algorithm to any concept above or below the mirror line if
the concept has both objects and attributes in its contingent. In any case, for each lattice
resulting from Step 2, a “mirror” M can be defined as the set of all concepts which
have both objects and attributes in their contingents plus those concepts which have no
objects and attributes in their contingents but which are “equi-distant” from the top and
bottom concept. This notion is somewhat fuzzy because there are different possibilities
for defining “equi-distance” in a lattice.

In figure 2, the left lattice has a mirror M containing 4 concepts (the anti-chain in
the middle), the right lattice has a mirror M containing two concepts. Each lattice is
now split into two halfs as follows: a formal context C1 is formed which has an object
for each concept in the mirror M and which has the original set of attributes; a second
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Fig. 4. The mirror image of English “good” in Norwegian (Step 3)

Fig. 5. The two mirror images of Norwegian “god” in English (Step 3)

formal context C2 is formed which also has an object for each concept in the mirror M
but has the original set of objects as a set of attributes. The crosses for each of these
formal contexts are inserted according to the relation between the mirror elements and
the objects (or attributes, respectively) in the original formal context.

If C1 and C2 are structurally identical, then their lattices are “exact mirror images”
of each other (such as in figure 3). Otherwise, Step 3 of Dyvik’s method attempts to
relate the concepts from C1 and C2 in a top-down manner, which corresponds to context
isomorphisms in FCA. The resulting lattices are “distorted mirror images”. If C1 is a
subrelation of C2, then C1 is left unchanged (such as the Norwegian “god” in figure 4).
For any column in the relation of C2 that is not contained in the relation of C1 there are
several possibilities (cf. figure 5), some of which require addition of structural attributes,
which do not correspond to words in the language (such as the two missing attributes in
figure 5).
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4 Semantic Mirrors in Bilingual Dictionaries

As mentioned in the introduction, a disadvantage of the use of parallel corpora is that
they are expensive to obtain or construct. On the other hand, bilingual dictionaries
for many languages are available on-line for free5. These bilingual dictionaries can be
of questionable quality, but methods such as the Semantic Mirrors Method should be
applicable even to slightly faulty data because errors should be detectable in the end
result. The lists of possible translations which Dyvik (1998) utilises for his method are
also not without errors if they are based on statistical automatic word alignment. The
Semantic Mirrors Method is designed to cope with such data.

A more significant problem relating to bilingual dictionaries is not their quality but
the fact that they contain fewer translations than parallel corpora because, in a corpus,
words are not only translated into their direct counterparts but can also be translated into
their hypernyms or hyponyms. This is because in natural language it is in general possible
to use hypernyms and hyponyms for the same reference. For example, in a conversation
a single person could be referred to as “the man”, “that guy”, “he”, “Paul”, and so on.
Therefore in a parallel corpus of sufficient size one can expect these kinds of relationships
to occur across languages. The separation into semantic fields in the Semantic Mirrors
Method depends on these relationships. In a bilingual dictionary, however, it is usually
attempted to translate words into exact counterparts if possible and to provide only as
few translations as necessary. Therefore, one can expect that different translations of a
word in a bilingual dictionary will more often refer to different senses than to synonyms
within the same semantic field. For a single sense fewer translations can be expected
than would be found in a parallel corpus.

The following example is constructed using a freely available German-English dic-
tionary6. The dictionary has more than 400,000 entries and is thus of reasonable size. A
manual comparison of the translations of a few words with other dictionaries shows that
the dictionary is of reasonable quality. Figure 6 shows a neighbourhood lattice generated
from this dictionary for the starting word “wood”. This lattice is very “shallow” in that it
has only two levels of concepts between the top and bottom concept. If the Sense Distinc-
tion Algorithm from the last section was applied to this lattice, every single translational
pair would be a separate sense. For example, “wood” would have three senses “Wald”,
“Gehölz”, and “Holz”. The resulting semantic fields would all be lattices consisting
of a single concept. On the other hand, manual inspection of the lattice indicates that
there are two larger fields contained among the words: one for the “set of trees”-sense
of “wood” and one for the building material sense of “wood”. Several words indicate
other semantic fields, which are incomplete in the context, such as the “beam” sense
of “timber” and the other senses of “lumber”. Clearly, the Sense Distinction Algorithm
is insufficient in this case because it does not result in such fields. The reason for this
insufficiency, however, is not a shortcoming of the algorithm but instead the differences
in the nature of the data derived from bilingual dictionaries opposed to parallel corpora.

5 For example at www.fdicts.com
6 http://www.dict.cc
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Fig. 6. A neighbourhood lattice generated from a bilingual dictionary

5 Conceptual Exploration of Semantic Mirrors

Since the Sense Distinction Algorithm is insufficient with respect to bilingual dictio-
naries, the question arises as to how it can be improved. A common FCA technique for
improving incomplete data sets is “conceptual exploration”. Stumme (1996) lists four
cases of conceptual exploration: attribute exploration, which refers to the process of
interactive addition of attributes to a formal context, object exploration, which refers to
the process of interactive addition of objects to a formal context, concept exploration,
which refers to the process of interactive addition of objects and attributes to a formal
context, and an un-named fourth type of conceptual exploration, which refers to the
process of interactive addition of crosses to a formal context. Stumme notes that so far
there exists no exploration software for this last type of exploration.

The main shortcoming of the lattice in figure 6 is the fact that it is too shallow. From
a linguistic view this means that hypernyms are missing. For example, “wood” in its first
sense could be considered a hypernym of “grove” and “forest”, but that is not depicted
in the lattice. From an FCA view, for a word to be a hypernym of another word, there
must be a subset-superset relation between the intensions or extensions. If “wood” is to
become a hypernym of “grove” it must also be a translation of “Hain” and a cross for
“Hain/wood” must be added in the formal context. Thus hypernyms can be established
by adding certain crosses to the relation of a formal context. But these crosses cannot
be randomly chosen because they must result in subset-superset relations.

Stumme’s fourth type of conceptual exploration is relevant for this situation. The
other types of conceptual exploration can also be relevant, because in some cases a
hypernym may exist in a language but may not yet be included among the objects or
attributes of the formal context in question. The conceptual exploration algorithm can
work as follows: the inverse t-image is formed for each co-atomic object. In each case,
a user is asked whether a hypernym in the other language can be found for the set. Since
there are four co-atoms in figure 6, a user will be asked four questions. The inverse
t-image of “Wald” is “Wald, Gehölz, Forst, Holz”. A user might decide that “wood” is
in fact a hypernym in English for this set. The inverse t-image for “Gehölz” is the set
“Wald, Gehölz, Hain, Holz” and also has the English hypernym “wood”. For the inverse
t-images of “Holz” and “Nutzholz” no English hypernyms can be found. The first two
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Fig. 7. The lattice after conceptual exploration

questions result in adding “Forst/wood” and “Hain/wood” to the relation. Next, any
hypernym that was found is tested against any words of the other language that have not
been considered as translations. Therefore a user is asked whether “wood” can also be
a translation of any of the words “Trödelkram, Gerümpel, Nutzholz, Bauholz, Balken”.
A user might decide that “Nutzholz/wood” and “Bauholz/wood” also need to be added.

After finishing with the objects, the lattice is recalculated. It now has only three atoms:
“wood”, “timber” and “lumber”. Each of the three inverse t-images is checked: a German
hypernym of “wood, grove, forest” is identified as “Wald”; “wood, grove, lumber” has no
hypernym; a German hypernym of “wood, lumber, timber” is determined to be “Holz”.
The crosses “Wald/grove” and “Holz/timber” are added. As a last step, the newly found
hypernyms “Holz” and “Wald” are checked against the remaining English words, which
does not lead to any further added crosses. The recalculated lattice is depicted in figure
7. The Sense Distinction Algorithm applied to the lattice in figure 7 identifies two senses
of “wood”, two senses of “Holz”, two senses of “lumber” and two senses of “timber”.
All other words have only a single sense. This division of senses and semantic fields
is much more compatible with an intuitive notion than the initial results obtained from
figure 6.

This algorithm does not identify every possibly missing cross in the original context.
It only checks for hypernyms because these are essential for the division into semantic
fields. We have tested the algorithm with a few other examples. It works better in areas
where hypernyms are easily identifiable, such as for concrete nouns. With respect to
other types of words, more research is needed. It is hoped that a heuristic rule set can
be developed that adjusts the conceptual exploration to the specific requirements of the
types of semantic fields that are involved.
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6 Conclusion

This paper argues that a combination of the Semantic Mirrors Method with conceptual
exploration may yield promising results in certain areas. Because conceptual exploration
is an interactive method, it can be labour-intensive. In the example in the last section,
the relation contained 30 possibilities for added crosses, but a user was asked only 10
questions. Thus the conceptual exploration was more efficient than asking a user to
manually complete a given formal context without any further tools.

We believe that these kinds of methods can be suitably applied in the area of ontology
engineering and ontology merging. Ontologies are much smaller than bilingual dictionar-
ies. While bilingual dictionaries of natural languages are too large to be processed with
semi-automated methods, ontologies might still be in a range where semi-automated
methods are feasible. In fact, many current methods of ontology merging in AI are
semi-automated.
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Towards a Formal Concept Analysis Approach
to Exploring Communities
on the World Wide Web
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Abstract. An interesting problem associated with the World Wide Web
(Web) is the definition and delineation of so called Web communities. The
Web can be characterized as a directed graph whose nodes represent Web
pages and whose edges represent hyperlinks. An authority is a page that
is linked to by high quality hubs, while a hub is a page that links to
high quality authorities. A Web community is a highly interconnected
aggregate of hubs and authorities. We define a community core to be a
maximally connected bipartite subgraph of the Web graph.

We observe that the web subgraph can be viewed as a formal context
and that web communities can be modeled by formal concepts. Addi-
tionally, the notions of hub and authority are captured by the extent
and intent, respectively, of a concept. Though Formal Concept Analysis
(FCA) has previously been applied to the Web, none of the FCA based
approaches that we are aware of consider the link structure of the Web
pages. We utilize notions from FCA to explore the community structure
of the Web graph. We discuss the problem of utilizing this structure to
locate and organize communities in the form of a knowledge base built
from the resulting concept lattice and discuss methods to reduce the
complexity of the knowledge base by coalescing similar Web communi-
ties. We present preliminary experimental results obtained from real Web
data that demonstrate the usefulness of FCA for improving Web search.

1 Introduction

Traditional techniques for information retrieval involve text based search and
various indexing methods. The presence of hyperlinks between documents presents
challenges and opportunities that traditional information retrieval techniques
have not had to deal with. By viewing the set of n pages on the World Wide
Web as nodes V and links (similarity, association) between pages as directed
edges E of a directed graph Γ = (V,E), the graph of n nodes can be stored in
an n×n matrix. A nonzero entry in the (i, j)th position of the matrix indicates an
edge (possibly weighted or labelled) from node i to node j. A hyperlink implies
some form of endorsement, or conferral of authority, by citing document to the
cited document. A large portion of the current research in improving web search

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 33–48, 2005.
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is concerned with utilizing the hyperlinked nature of the web. Kleinberg’s HITS
algorithm [1], and various extensions [2], [3], [4], [5], and the Google PageRank
algorithm [6], [7] demonstrate the success of link based ranking in refining Web
search. Henziger’s recent survey [8] enumerates the following open algorithmic
challenges for Web search engines:

– Finding techniques to generate random samples of the Web in order to de-
termine statistical properties of the Web,

– Modeling the web to explain observed properties,
– Detecting duplicates and near duplicates to improve search efficiency,
– Analyzing temporal trends in data streams that result from user access logs,
– Finding and analyzing dense bipartite subgraphs, or Web communities,
– Finding eigenvector-induced partitionings of directed graphs in order to clus-

ter the Web graph.

1.1 Hubs and Authorities

Consider the problem of finding “definitive” or “authoritative” sources in the
mass of information available on the web. The user should be provided with
relevant pages of the highest quality. The hyperlink structure of the web contains
a tremendous amount of latent information in that the creation of a link from
page a to page b in some way represents a’s endorsement of b. Purely text based
search methods fail to find authoritative sources. For example if one uses the
query “operating systems,” there is no guarantee that Windows, Linux, Apple
or any other operating system vendor will be among the pages returned because
these pages may not explicitly contain the query terms. These pages are, however,
relevant and of high quality and should in fact be returned. We can define these
pages to be authorities because they are linked to by a large number of other
pages. We can define a hub to be a page with a large collection of links to related
pages. A good hub should point to many good authorities and a good authority
should be pointed to by good hubs [1].

1.2 Web Communities

An interesting problem associated with the Web is the definition and delineation
of so called Web communities [9], [10], [11], [12], [13], [14]. A web community is
loosely defined to be a collection of content creators that share a common in-
terest or topic and manifests itself as a highly interconnected aggregate or sub-
graph [9]. Kumar et al define a web community as being “characterized by dense
directed bipartite subgraphs [10].” Figure 1 illustrates a simple community cen-
tered around a densely interconnected set of hubs and authorities. The World
Wide Web contains many thousand explicitly defined communities and many
more that are implicitly defined or are emerging [10]. The systematic extraction
of emerging communities is useful for many reasons, including communities pro-
vide high quality information to interested users, they represent the sociology of
the web and they can be used for target advertising [9]. In addition, community
linkage can be used to find association between seemingly unconnected topics.
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Fig. 1. A web community is characterized by a maximally complete bipartite sub-
graph, or diclique. In this example, nodes {A, B, C} are hubs and nodes {D, E, G} are
authorities for a Web community

1.3 Previous Work

Previous work on defining and delineating structures of the web graph can be
roughly broken down into graph theoretic, spectral graph theoretic, distance
based and probabilistic approaches.

Botafogo and Schneiderman [15] proposed a method for determining aggre-
gates from the hyperlink structure of a small hypertext system by using the
graph theoretic notions of biconnected components and strongly connected com-
ponents. Flake, et al [12] describe a method for identifying Web communities
based on solving for the maximal flow/minimal cut through the network. Ku-
mar, et al [10] present a method for enumerating bipartite cores of a snapshot
of the web graph.

Spectral graph theoretic methods [16] form the foundation for many link
based approaches, including the Google Page Rank algorithm [7], [6] and Klien-
berg’s HITS algorithm [1]. Klienberg uses non principle eigenvectors of matrices
derived from the graph matrix to partition the graph into communities. Pirolli
et al, [17] propose a procedure based on the paradigm of information foraging
that “spreads activation” through the network in order to utilize both link and
text information for the purposes of locating useful structures and aggregates.
The method can be viewed in terms of a random walk on a weighted graph
in which the nodes with the greatest activation are selected from the steady
state distribution of the random process. He et al [18] describe a spectral graph
partitioning method based on the Normalized Cut criterion [19].

Modha and Spangler [20] describe a method of clustering results returned by
a search engine using a geometric technique based on a similarity measure that
incorporates word and link information.

Almeida and Almeida [21] propose a Bayesian network approach to combine
content information with user behavior to model interest based communities.
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1.4 Knowledge Bases

Once we have found the communities we require a method for organizing and
analyzing them. A knowledge base is a system for enumerating, indexing and
annotating all occurrences of a specific subgraph on the web and organizing the
information into a useful structure [9]. Knowledge bases are constructed by:

– Identifying a signature subgraph that is likely to characterize a specific phe-
nomena.

– Devising a method for enumerating all occurrences of the signature subgraph.
– From each enumerated subgraph, reconstructing the associated element of

the knowledge base.
– Annotating and indexing the elements of the knowledge base [9].

Reasons for building such knowledge bases include the fact that they can provide
a better starting point than raw data for analysis and mining and can aid in
navigation and searching. In addition, fine-grained structures can be used for
targeted market segmentation and the time evolution of such structures can
provide information regarding the sociological evolution of the web [10].

Though Formal Concept Analysis (FCA) has been applied to the Web, [22],
[23], [24], [25], [26], [27], these approaches focus on the terms found in Web
documents rather than links between documents. Kalfoglou et al [28] report using
FCA to analyze program committee membership, evolution of research themes
and research areas attributed to published papers. The techniques that they
describe are also used to identify communities of practice [29] which are clusters
of individuals defined on a weighted association network. Tilley et al [30] report
results of applying FCA to the transitive closure of the citation graph within a
set of survey papers. None of the approaches that we are aware of consider the
context defined by the link structure of the Web graph.

In the remainder of the paper we show an example of how we use notions from
Formal Concept Analysis to explore the algebraic structure of Web communities,
describe a prototype system for building web community knowledge bases using
FCA and present preliminary experimental results obtained from real Web data
that demonstrate the usefulness of FCA for improving Web search.

1.5 FCA for the Web

We formally define a community to be a set of hub pages that link to a set
of authority pages. We model a community as a maximally complete directed
bipartite subgraph, or diclique [31]. Our model is similar to the bipartite cores
used in [10] except that we require the cores to be maximal. This definition suf-
fers from being too strong in that it allows no exceptions, and at the same time
being too weak in that it allows communities with few members as well as com-
munities that are defined by a single page. Our current approach to addressing
these problems is to apply a post processing step in which similar concepts are
coalesced together.

In most applications of FCA the sets G and M are disjoint. However, if we
take both the set of objects and the set of attributes to be a set of web pages so



Towards a FCA Approach to Exploring Communities 37

that G = M , and the link matrix of the web pages to be the incidence relation I,
then concepts of the context (G,M, I) correspond directly to communities of the
subgraph Γ = (V,E). For a given concept C = (A,B), the extent A corresponds
to the set of hub pages and the intent B corresponds to the set of authorities.

1.6 Concept Coalescing

Given a set of concepts, the concept lattice provides a convenient hierarchical
description. Contexts constructed from the Web can be very large in terms of
the number of nodes and dense in terms of the number of edges. It is well known
that the size of the lattice grows with the size of the relation [27].

For the purposes of our investigations we are interested in reducing the com-
plexity of the lattice by merging concepts that are in some sense similar. One
approach is to look for an algebraic decomposition of the lattice [32]. Funk, et
al [33] present algorithms for horizontal, subdirect and subtensorial decomposi-
tions.

In addition, homomorphisms that results from a congruence relation can be
used to reduce the complexity of the lattice by coalescing of concepts, while
preserving much of the underlying structure. A complete congruence relation
of a concept lattice B(G,M, I) is an equivalence relation θ on B(G,M, I) such
that xtθyt for t ∈ T implies

(∧
t∈T xt

)
θ
(∧

t∈T yt

)
and

(∨
t∈T xt

)
θ
(∨

t∈T yt

)
[34]. Define [x]θ = {y ∈ B(G,M, I)|xθy} to be the equivalence class of θ that
contains element x and B(G,M, I)/θ := {[x]θ|x ∈ B(G,M, I)} to be the factor
lattice for B(G,M, I) and congruence θ [34]. The set of all complete congruences
forms a complete lattice. Ganter and Wille describe a method to construct the
congruence lattice for a formal context [34].

Another approach is to utilize notions from association rule mining in order to
relax the restrictions on what constitutes a concept. The confidence is a measure
of the strength of a rule , while support is a measure of the statistical significance
of a rule [35].

Needed Links. Often the definition of the binary relation I is prone to error,
and this is especially true when dealing with the web. These errors could be an
error of omission, in which a pair (g,m) that should be in the relation is left out,
or an error of commission, in which the pair (g,m) has erroneously been included
in the relation. Omission tends to have more dramatic effect than commission
[31] in that it is often easier to detect a spurious association from a given set of
associations than to find a previously unknown association.

In order to collapse the lattice by the coalescing procedure we used in our
experiments, we need to introduce edges to the original relation. The ability to
isolate needed links automatically can be of great benefit in the case of the Web
due to the fact that the Web is a volatile and dynamic environment. Additionally
many communities that are forming or emerging may not know that they are,
or that they should be, part of another community.
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Table 1. The incidence relation I

x I(x) I−1(x)
1 2,6,9 10,11,12
2 10,11 1,3,5,7
3 2,6,9 10,11,12
4 6,9 0
5 2,6 0
6 10,12 1,3,4,5,7
7 2,6,9 0
8 10,12 0
9 10,11,12 1,3,4,7
10 1,3 2,6,8,9
11 1,3 2,9
12 1,3 6,9

2 A Simple Example

We shall take an example first presented by Haralick [31] that is sufficiently com-
plex to illustrate the manipulation of communities. We are given the incidence
relation I, shown in tabular form in table 1 and graphical form in figure 2, which
we can take to be the link structure of some subgraph of the Web. The commu-
nities of this relation are graphically enumerated in figure 3. Even with only 12
nodes and 28 links, finding these communities by inspection is nontrivial. The
concept lattice, shown in figure 4, reveals the underlying structure in a relatively
straightforward manner. Viewing the lattice structure is only useful for a small
number of communities and for larger lattices we require a method of collapsing,
or coalescing similar communities.
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Fig. 2. The graph of binary relation I
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Fig. 3. A graphical enumeration of the concepts (community cores) of relation I

Coalescing finds “needed links,” i.e. those links that need to be added to the
relation I such that the concepts of the new coalesced relation Î, shown in figure
6 are themselves concepts. For example, let us again consider relation I. In order
to coalesce concepts A,C,D and the concept labelled I, we need to introduce
edges (4, 2) and (5, 9) to relation I in order to make the bipartite graph defined
by {1, 3, 4, 5, 7}, {2, 6, 9} complete. To coalesce concepts B,E, F, and H, we need
to add (2, 12), (6, 11) and (8, 11) to the original relation to make the bipartite
graph defined by {2, 6, 8, 9}, {10, 11, 12} complete.

1,3

1,3,4,5,7 2,6,8,9

10,11

2,9 6,8,9

10,12

1,3,4,7

6,9

1,3,5,7

2,6

10,11,122,6,9
91,3,7

6 10

G A F

D C

I H

B E

10,11,12

Fig. 4. The concept lattice for incidence relation I with intent (top) and extent (bot-
tom) for each concept written out in full

3 Experimental Setup

We built a prototype system, whose architecture is shown in figure 7, to empir-
ically verify the effectiveness of our approach. We chose to use live data from
the web, rather than a test collection like the TREC WT10g dataset or the
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Fig. 5. A graphical representation of the relationship between concepts of I. The coa-
lesced concepts (equivalence classes) are shown with dashed boxes
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cba
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1,3
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Fig. 6. The concept lattice for the coalesced binary relation Î with intent and extent
for each concept written out in full

crawls available from the Internet Archive, because it is free, easily available
and supported by a large set of software tools and search services. A simple Web
crawler is used to query a search engine and retrieve a set of urls that make up
the nodes of the subgraph. For our experiments we used the text based search
engine AltaVista. The top 20 results of the query are used to form a root set. A
base set is constructed by adding those pages that point to any page in the root
set and those pages which are pointed to by a page in the root set. Inbound links
to page URL were obtained from the search engine using the link:URL command.
This procedure can be repeated recursively up to a depth k, though the number
of pages increases drastically with k. For each crawled page an index is created,
the html source is stored and an entry is added into a graph that stores the link
information. Text processing is used to create a descriptive feature vector for
each page. These vectors are used to create summaries for each community in
the knowledge base. The object set G and the attribute set M are the pages in
the base set. The graph of the base set is constructed and used as the incidence
relation I. The concepts and concept lattice B(G,M, I) of the context (G,M, I)
are computed and the concepts are coalesced produce a new relation Î and a new
concept lattice B(G,M, Î). Finally, a knowledge base is created by combining
the concept lattice with the feature vectors.

A variety of algorithms are available to compute concepts and concept lat-
tices [34], [36], [27], [37]. Given the lattice structure of the concepts a separate
procedure is used to coalesce the concepts and form a new concept lattice. Ad-
ditional research needs to be done to define criterion by which an “optimal”
coalescing procedure can be determined.
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Fig. 7. System flow diagram for the prototype

Experimental Coalescing Procedure. For the experiments presented here,
we utilized a coalescing procedure similar to the horizontal decomposition de-
scribed in [33]. This procedure was chosen because it is straightforward to
compute and is easily understood intuitively. Recall that a lattice L is said
to be horizontally decomposable if it can be expressed as a horizontal sum
L = {�,⊥}⋃∑N

i=1 Li \{�i,⊥i}, where the summands Li ∩Lj = ∅ for i 	= j are
lattices.

We define a relation R on B(G,M, I)\{�i,⊥i} as follows R = {(α, β)|∃γ, δ �
γ ∧ δ = α, and γ ∨ δ = β} for α, β, γ, δ ∈ B(G,M, I) \ {�i,⊥i} and a relation S
on B(G,M, I) as S = (R∪R−1)T ∪B(G,M, I), where T signifies the transitive
closure operation. The relation S is reflexive, symmetric and transitive and is
therefore an equivalence relation on B(G,M, I). Thus S forms a partition of the
set of concepts. All concepts within a given equivalence class are merged to form
a new concept.

We apply this approach by constructing a directed graph whose nodes are
the concepts of B(G,M, I) \ {�i,⊥i}. For every pair of concepts we connect
the supremum and the infimum by a directed edge. For the relation I the graph
is shown in figure 5. The connected components of this graph, shown by the
dashed boxes, correspond to the equivalence classes of the equivalence relation
S, and therefore represent the coalesced concepts. The coalesced concept that
contains element x is formed by C[x]S =

⋃
i∈[x]S Ci = (

⋃
i∈[x]S Ai,

⋃
i∈[x]S Bi) =

(A[x]S , B[x]S). Finally, the relation I is updated by forming the new relation Î

defined by aÎb ∀a ∈ A[x]S , b ∈ B[x]S .

3.1 The Knowledge Base

The hierarchy that results from the lattice structure forms a knowledge base
that contains information about the relationships between various communities.
The knowledge base is created by:

– Identifying a maximally complete bipartite subgraph (concept) to model a
community core.

– Using FCA to enumerate all community cores (concepts).
– From each core, computing a representative description in the form of a

feature vector.
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– Using the concept lattice and the community representatives for annotating
and indexing the elements of the knowledge base.

4 Experimental Results

To verify the effectiveness of the approach we performed several experiments
on real Web data. Experiments were performed by posting a query to a text
based search engine (in this case Alta Vista) and the base set was grown to
depth k = 1. A summary of the results is given in table 2. The number of pages
returned for a given query can be larger than what is realistically computable.
Due to computational complexity, some preprocessing may be required to reduce
the context to a reasonable size. The simplest method is to remove those nodes
whose edge degree is below some threshold τI . For each query the resulting
concept lattice is shown. There is clearly structure in the lattice as indicated by
the number of concepts found and the density of the concept lattice.

Table 2. Summary of experimental results

Query |G| = |M | Number of Communities Number Coalesced
formal concept analysis 382 43 10
support vector machine 442 51 7

ronald rivest 631 31 14
sustainable energy resources 2256 72 10

jaguar 253 41 10
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Fig. 8. The community knowledge base in the form of the concept lattice for the sub-
graph resulting from query sustainable energy resources. The base set was constructed
to depth 1

4.1 Community Evaluation

Community representatives are needed for the evaluation of the quality and
content of a given community and can be used for annotating and indexing the
knowledge base. We expect that the communities found will have some cohesive-
ness in terms of content. Standard approaches to clustering of text documents
involve expressing each document in terms of a feature vector and then group-
ing the documents into clusters based on some measure of similarity. Hotho and



Towards a FCA Approach to Exploring Communities 43

00

11 223344 5566 77 88 991010

11111212

13131414

15151616

1717

1818

1919 2020

2121

2222 2323 24242525

2626 2727

2828

2929

3030

Fig. 9. The community knowledge base in the form of the concept lattice for the
subgraph resulting from the query ronald rivest. The base set was constructed to depth
1
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Fig. 10. The community knowledge base in the form of the concept lattice for subgraph
resulting from the query support vector machine. The base set was constructed to depth
1

Stumme describe a system that uses text based clustering as a preprocessing
step prior to conceptual clustering using FCA [38]. To evaluate the quality of
the communities found we use the text features in a post-processing step to
create descriptions of the concepts found by FCA.

Documents were processed by first extracting the text from the html docu-
ments and discarding all html markup commands. The text was broken up into a
list of single words, or tokens. Stop words were removed from the token list, using
a standard list of stop words. Each token was then stemmed to its root word using
the Porter Stemming algorithm [39]. For each document, terms were constructed
from the token list by considering all sets of words up to size s, for the purposes
of the experiments described here s = 3. Thus, for example, the sentence “The
quick brown fox jumps over the lazy dog” becomes quick brown fox jump
over lazi dog” after stemming and stop word removal and gives the features:
{quick, quick-brown, quick-brown-fox, brown, brown-fox, brown-fox-jump,
...”} This procedure captures a great deal of the word interaction and semantic
content of the documents. For each term t in each document d the term frequency
- inverse document frequency tfidf(d, t) is computed so that:

tfidf(d, t) = tf(d, t) × log

( |V |
|Vt|

)
where tf(d, t) is the frequency of term t in document d, V is the set of Web
documents and Vt is the number of documents in which term t occurs [38].

In the prototype system community representatives are determined by com-
puting a set of mean vectors over members of the given community. A mean
vector for the object set and a mean vector for the attribute set as well as a
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Fig. 11. The community knowledge base in the form of the concept lattice for subgraph
resulting from the query jaguar. The base set was constructed to depth 1
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Fig. 12. The factor lattice for concept lattice resulting from the query jaguar

combined mean that considers pages in both the object and attribute sets are
all computed. For each community the top n features, ranked in terms of tf-idf
score, from the community representatives are used to create a description of
the community.

Table 3. The urls returned from the search engine for the query jaguar

URL
http://www.jaguar.com

http://www.jaguarcars.com
http://www.jaguar.co.uk

http://www.apple.com/macosx
http://www.jag-lovers.org
http://www.jagweb.com

http://ds.dial.pipex.com/agarman/jaguar.htm
http://www.jaguar.com.au

http://www.jaguar-racing.com/uk/flash
http://www.psgvb.com/Products/jaguar.html

http://www.jaguarmodels.com
http://www.jaguar.ca

http://www.digiserve.com/eescape/showpage.phtml?page=a2
http://www.jaguar.is

http://hem.passagen.se/isvar/jaguar server/jserver.html
http://www.primenet.com/ brendel/jaguar.html

http://www.jec.org.uk
http://www.bluelion.org/jaguar.htm

http://www.oneworldjourneys.com/jaguar

4.2 Query : jaguar

In this section we will look at results for the query “jaguar,” which has become
a frequently used query for evaluating web search [40], [1], [27]. There are many
reasonable answers for the query “jaguar,” including Jaguar Automobiles, An-
imals, the Jaguar Operating System and the Atari Jaguar Game system. The
urls returned from the search engine are listed in table 3. This query is an il-
lustrative example because we expect to find many disjoint communities with
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interconnections between communities, documents with varied quality and with
text drawn from a large vocabulary with wide variation. The concept lattice for
the query is shown in figure 11 and the factor lattice in figure 12. Examining

Table 4. The top 10 features for jaguar Community 28 (|O| = 2 and |A| = 2) and
Community 34 (|O| = 1 and |A| = 34)

O OA A
jag-lov triumph triumph

th-image british british
xj mg mg

find tr tr
cmpage car car

jag-lovers usa usa
ord british-car british-car

brochures restor restor
archives club club
forums Mini Mini

O OA A
atari atari action
tagid action atari
lynx game bit
sid bit game
tag processor processor

game telegam telegam
title padport padport
crs hz hz

akamai jaguar jaguar
referrer arcade arcade

the top ranked features for the representatives of each community gives us an
indication of the semantic content of the community. For tables 4 through 5 O
indicates the mean for the object set, A indicates the mean for the attribute set
and OA indicates the mean for the combined sets. For example, the top ranked
features for concept 28, shown in table 4, indicate that the community is fo-
cused on automobiles, concept 34 in table 4 is concerned with the Atari game
system, while concept 38 in table 5 deals with the Macintosh operating system.
After applying the coalescing procedure we observe that many communities re-

Table 5. The top 10 features for jaguar Community 38 (|O| = 1 and |A| = 29) and
CoConcept 2 (|O| = 158 and |A| = 51)

O OA A
mac mac mac
tagid tagid panther
tag tag os
os os tagid
sid sid tag

apple apple apple
mac-os mac-os sid

crs panther ll
akamai crs crs

contentgroup-wtl akamai akamai

O OA A
species maya maya
bluelion cat coat
geovisit coat rosett
previou bluelion leopard

lion leopard cat
image rosett captiv
skip species civil

suitabl geovisit jaguar
cat captiv differ
wild speci speci

main unchanged while many communities are merged together. In the factor
lattice, concept 34 gets mapped uniquely to coconcept 5 while concepts 28 and
38 get merged with many other concepts to form coconcept 2. Looking at the
top ranked features for coconcept 2 shown in table 5 we see that information
about the Macintosh operating system and the Jaguar automobile have been
diluted by the information about the animal. So while coalescing can be a useful
tool for reducing the complexity of the concept lattice, it should not be done
blindly. The equivalence relation that we used in the experiments described here
is very coarse. What we require is a finer coalescing procedure that considers
some measure of goodness of a given congruence to select the “best” equivalence
relation based on the specified criterion.
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5 Conclusions

We have demonstrated the utility of Formal Concept Analysis in the problem
domain of defining and delineating communities on the Web. A formal concept
can be used to model a Web community, the extent of the concept corresponding
to the set of hubs and the intent of the concept corresponding to the set of au-
thorities. The lattice of communities can be used to investigate the relationships
between various communities as well as provide a method of coalescing commu-
nities that are similar. The size of the contexts involved when dealing with the
Web require some preprocessing. Coalescing is a powerful tool that can be used
to greatly simplify the concept lattice as well as isolate needed links, though it
needs to be done carefully. Additional research needs to be done to determine a
criterion that can be used to determine an optimal coalescing procedure.

Special Thanks. The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions.
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Abstract. Automatic attribute selection is a critical step when us-
ing Formal Concept Analysis (FCA) in a free text document retrieval
framework. Optimal attributes as document descriptors should produce
smaller, clearer and more browsable concept lattices with better cluster-
ing features. In this paper we focus on the automatic selection of noun
phrases as document descriptors to build an FCA-based IR framework.
We present three different phrase selection strategies which are eval-
uated using the Lattice Distillation Factor and the Minimal Browsing
Area evaluation measures. Noun phrases are shown to produce lattices
with good clustering properties, with the advantage (over simple terms)
of being better intensional descriptors from the user’s point of view.

1 Introduction

The main goal of an Information Retrieval (IR) system is to ease information
access tasks over large document collections. Starting from a user’s query, usually
made in natural language, a classic IR system retrieves the set of documents
relevant to the user needs and shows them using ranked lists (e.g. Google, Yahoo
or Altavista).

The use of ranked lists, however, does not always satisfy the user’s information
needs. Ranked lists are best suitable when users know exactly what they are
looking for and how to express it using the right words (e.g. the last driver for
a specific graphics card or the papers published by any author). More generally,
ranked lists can be useful when the task is to retrieve a very small number of
relevant items. However, when there is a need to retrieve relevant information
from many sources, or when the query involves fuzzy or polysemous terms, the
use of a ranked list implies to read almost the whole list to find the maximum
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number of relevant documents. For instance, if we ask Google (www.google.com)
with the query ’jaguar ’ looking for documents related with the jaguar as animal,
we obtain 7.420.000 of web pages as a result. Of course, not all the retrieved
pages are relevant to our needs and, based on the ranking algorithm of Google
[1], pages containing the term ’jaguar ’ but with different senses (i.e. jaguar as a
car brand or jaguar as a Mac operating system) are mixed up in the resulting
ranking, making the information access task tedious and time consuming.

As an alternative, clustering techniques organize search results allowing a
quick focus on specific document groups and improving, as a consequence, the
final precision of the system from a user’s perspective. In this way, some com-
mercial search engines (i.e. www.vivisimo.com) apply clustering to a small set
of documents obtained as a result of a query or a filtering profile. The use of
clustering as a post-search process applied only to a subset of the whole docu-
ment collection makes clustering an enabling search technology halfway between
browsing (i.e. as in web directories) and pure querying (i.e. as in Google or
Yahoo).

We propose the use of Formal Concept Analysis (FCA) as an alternative
to classic document clustering, not only considered as an information organiza-
tion mechanism but also as a tool to drive the user’s query refinement process.
Advantages of FCA over standard document clustering algorithms are: a) FCA
provides an intensional description of each document cluster that can be used
for query modification or refinement, making groups more interpretable; and b)
the clustering organization is a lattice, rather then a hierarchy, which is more
natural when multiple classification is possible, and facilitates recovering from
bad decisions while browsing the lattice to find relevant information.

The main drawbacks of FCA disappear when dealing with small contexts (i.e.
with a small set of documents obtained as the result of a search process): a) FCA
is computationally more costly than standard clustering, but when it is applied
to small sets of documents (i.e. in the range of 50 to 500 documents) is efficient
enough for online applications; and b) lattices generated by FCA usually are big,
complex and hence difficult to use for practical browsing purposes. Again, this
should not be a critical problem when the set of documents and descriptors are
restricted in size by a previous search over the full document collection.

But the use of FCA for clustering the results of a free text search is not a
straightforward application of FCA. Most Information Retrieval applications of
FCA are domain-specific, and rely on thesauruses or (usually hierarchical) sets
of keywords which cover the domain and are manually assigned as document
descriptors [12, 6, 7, 5, 8, 16, 9]. The viability of using FCA in this scenario implies
to solve some challenges related with: a) the automatic selection of suitable
descriptors for context building, b) the rendering of node descriptions, c) the
visualization of concept lattices obtained, and; d) the definition of suitable query
refinement tasks. Most importantly, the (non-trivial) issue of how to evaluate and
compare different approaches has barely been discussed in the past.

This paper is presented as a continuation of the research presented in [4],
where the problem of automatic selection of descriptors was first addressed. In
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that previous research we focused on the automatic selection of single terms
as document descriptors. The problem with single terms is that, even if the
lattice has good clustering/browsing properties, the intensional descriptions are
not descriptive enough from a user’s point of view. Noun phrases, however, tend
to be excellent descriptors of the main concepts in a document, and are easily
interpretable to users. Therefore, in this paper we will refine our proposal by
using noun phrases as document descriptors. We will propose and compare three
algorithms to select noun phrase document descriptors, using a shallow, efficient
phrase extraction technique and the evaluation framework introduced in [4].

The paper is organized as follows. First of all we will present the information
retrieval and organization system in which our evaluation framework is based;
we will introduce the information organization model used and the system archi-
tecture. Then, we will describe the phrase extraction methodology and the set
of phrase selection strategies presented for evaluation. Finally, we will present
the evaluation experiments and discuss the results.

2 Information Retrieval and Organization System

2.1 The Information Organization Model

Using the ranked list of documents retrieved by a search engine, we generate a
concept lattice to organize these search results. Lattices generated are based on
a formal context K := (G,M, I), where G = {doc1, doc2, . . . , docn} represents a
subset of the retrieved documents, M = {desc1, desc2, . . . , desck} is a subset of
document descriptors and I is the incidence relationship.

Fig. 1. Example concept lattice

This model relies on the set of concepts generated and its corresponding
concept lattice, while introducing some assumptions about what concept infor-
mation is going to be considered for showing, browsing or evaluation purposes.
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Table 1. Formal concepts and their corresponding information nodes of the example
lattice of Figure 1

Concept Node Information Node
c1 = ({d1, d2, d3, d4}, {∅}) n1 = ({∅}, {∅})
c2 = ({d1, d2}, {a1}) n2 = ({d1}, {a1})
c3 = ({d2, d3}, {a2}) n3 = ({∅}, {a2})
c4 = ({d4, d3}, {a5}) n4 = ({d4}, {a5})
c5 = ({d2}, {a1, a2, a3, a4}) n5 = ({d2}, {a1, a2, a3, a4})
c6 = ({d3}, {a2, a5}) n6 = ({d3}, {a2, a5})
c7 = ({∅}, {a1, a2, a3, a4, a5}) n7 = ({∅}, {a1, a2, a3, a4, a5})

In our context, the remade formal concepts will be called information nodes
and are defined as follows. Being Ai and Bi the extent and the intent of a generic
formal concept ci, we define its corresponding information node ni as:

ni = (AIi, BIi) ≡
{
AIi ⊆ Ai,where ∀α ∈ AIi · γ(α) = ci

BIi = Bi,
(1)

We also define a connection node as a information node where AIi = ∅.
Information nodes are based on the assumption that a concept node should

not display all its extent information. Working with the whole extent implies
no differences between those documents which are object concepts (i.e. they are
not going to appear as extent components of lower nodes) and those documents
that can be specialized.

Figure 1 shows, as an example, a concept lattice where concept nodes are
represented in Table 1 followed by its corresponding information nodes. Show-
ing concept extent implies, for instance, that a user located at the top node of
the lattice would be seeing the whole list of the documents retrieved at once.
This situation would make our system essentially identical to a ranked list for
browsing purposes. The use of information nodes overcome this problem, grant-
ing the document access only when no more specialization is possible. This model
agrees with the access model used by most web directories (e.g. Open Directory
Project ODP or Yahoo! Directory), where it is possible to find categories with
no documents (i.e. categories that being very general do not completely describe
any web page).

2.2 System Architecture

Our proposal to integrate FCA in a information retrieval and organization sys-
tem is based on the architecture presented in Figure 2. It is divided in four
main subsystems that solve the indexing, retrieval, lattice building and lattice
representation and visualization tasks. Interactions between the subsystems are
represented in the same figure and can be summarized as follows:
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Fig. 2. System Architecture

1. The user makes a query using natural language as query language. The re-
trieval subsystem processes the query, removing stopwords and lemmatising
meaningful query terms. The output of this step is a query representation
which is used in the next step to make the retrieval process.

2. Relevant documents are retrieved by the retrieval subsystem using the query
representation and the vector space model cosine measure.

3. The FCA subsystem builds a formal context using the first n most relevant
documents retrieved and the k most suitable descriptors, which generates a
concept lattice.

4. The Lattice representation subsystem applies the information organization
model to the lattice generated, displaying a suitable visualization for user
browsing purposes.

Currently, two prototypes have been developed based on this architecture,
JBraindead and JBraindead2, which are used as our framework for evaluation
purposes.

3 Phrase Selection

Dealing with noun phrases involves three main steps [14]: phrase extraction,
phrase weighting and phrase selection.

3.1 Phrase Extraction

Phrase extraction is aimed at detecting all the possible candidate phrases that
could be relevant and descriptive for the document in which they appear, and
for the domains related to the document. These phrases are sequences of words
that match the pattern of terminological phrases [13].

The phrase extraction procedure is divided in four main steps:

1. Document tokenisation, which identifies all possible tokens in the document
collection.

2. Text segmentation according to punctuation marks.
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3. Lemmatisation and part-of-speech tagging, in order to associate a base form
to each word, together with its grammatical category.

4. Syntactic pattern recognition to detect the sequences of words that match
a terminological phrase structure. The pattern is defined in Formula 2 as
morpho-syntactic tag sequences. If the text contains a word sequence whose
gramatical tags match the pattern, then a new candidate phrase has been
detected.
According to the pattern, a candidate phrase is a sequence of words that
starts and ends with a noun or an adjective and might contain other nouns,
adjectives, prepositions or articles in between. This pattern does not attempt
to cover the possible constructions of a noun phrase, but the form of termi-
nological expressions. The pattern is general enough to be applied to several
languages, including English and Spanish [13, 15].

The result of the term detection phase is a list of terminological phrases
with their collection term and document frequencies. For practical purposes, in
our experiments we only consider those phrases of two or three terms (longer
phrases usually have very low frequency values, which is of little help for concept
clustering purposes).

[Noun|Adjective] [Noun|Adjective|Preposition|Article] ∗ [Noun|Adjective]
(2)

3.2 Selection Strategies

Once suitable phrases are extracted, the next step is to select the subset of
phrases that best characterizes the retrieved document set. Results of this phase
are critical to a) reach a reasonable cardinality for the concept set; and b) reach
an optimal distribution of the documents in the lattice. A good balance between
the cardinality of the descriptors set and the coverage of each descriptor should
provide meaningful and easy to browse concept lattices.

With this objective in mind, we introduce three different phrase selection
strategies to select candidate phrases as document descriptors: a) selection of
generic phrases that occur with highest document frequencies (Generic Balanced
strategy), b) selection of those phrases that, containing at least one query term
as phrase component, have the highest document frequency values (Query Spe-
cific Balanced strategy) , and c) selection of phrases which are terminologically
relevant to describe the retrieved document set (Terminological strategy).

Generic Balanced Strategy. This strategy selects the k phrases with the
highest document frequency covering the maximum number of documents re-
trieved. Noun phrases occur much less frequently than terms, so the main idea
is to describe, at least with one descriptor, the maximum number of documents.
This is the algorithm to select the k set of descriptors according to this principle:

– Being D = {doc1, doc2, . . . , docn}, the set of n most relevant documents
selected from the retrieved set, and P = {phr1, phr2, . . . , phrm}, the set of
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m phrases that appear in the n documents. We define a set G = {∅} that
will store the covered documents, and a set S = {∅}, that will store the final
selected phrases.

– Repeat until |S| = k or |D| = ∅, where k is the number of phrases to select
for the document descriptors set.
1. From P extract the phri with the highest document frequency in current

D. If two or more phrases should have the same document frequency,
then select the phrase that appear in the most relevant document of D
(i.e. documents are ranked by the search engine).

2. Store in an empty auxiliary set (AUX) those documents, belonging to
current D, where phri appears.

3. Delete the selected phrase from the candidate phrases set. P = P\{phri}.
4. Delete the selected documents from the documents set. D = D \ AUX
5. Add the selected phrase to the final descriptors set. S = S ∪ {phri}
6. Add the selected documents to the used documents set. G = G ∪AUX

– The S set will contain the k highest document frequency phrases with max-
imal document coverage.

Query Specific Balanced Strategy. This is the same strategy, but restricting
the set of candidate phrases P to those phrases containing one or more query
terms as phrase components. First, we directly add to the S set the k′ phrases
with more than one query term and with a document frequency greater than
one. Then we apply the above algorithm to calculate the best k − k′ phrases
containing one query term. The main idea of this approach is to extract query
related phrases that, due to its lower document frequencies, are not selected as
document descriptors by the Generic Balanced selection strategy. In addition,
phrases containing query terms should be better suggestions for users.

Terminological Strategy. Here we apply the terminological formula intro-
duced in [4], but computed on phrases instead of terms. The main motivation
of this formula is to weight with higher values those phrases that appear more
frequently in the retrieved document set than in the whole collection. Formula 3
reflects this behavior, where wi is the terminological weight of phrase i, tfi,ret

is the relative frequency of phrase i in the retrieved document set, fi,ret is the
retrieved set document frequency of phrase i, and tfi,col is the relative frequency
of phrase i in the whole collection minus the retrieved set.

wi = 1 − 1

log2

(
2 +

tfi,ret � fi,ret − 1
tfi,col + 1

) (3)

4 Evaluation

4.1 Information Retrieval Testbed and Evaluation Measures

The Information Retrieval testbed for our experiments has been the same as in
[4]. The new JBraindead2 prototype, which was tested with a set of 47 TREC-like
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topics coming from the CLEF 2001 and 2002 campaigns, and having extensive
manual relevance assessments in the CLEF EFE 1994 text collection.

The main evaluation measures used were the Lattice Distillation Factor (LDF)
and the Minimal Browsing Area (MBA) defined and motivated in [4]. LDF is
the precision gain between the original ranked list and the minimal set of docu-
ments which should be inspected in the lattice in order to find the same amount
of relevant information. The biggest the LDF, the better the lattice. The MBA
is the percentage of nodes in the lattice which have to be considered with an
optimal browsing strategy. The smaller the MBA, the better the lattice.

Previous research on FCA applied to IR has barely focused on evaluation
issues. Two exceptions are [11, 3], where empirical tests with users were con-
ducted. In both cases, documents were manually indexed and the lattices were
built using that information. Therefore, the problem of choosing optimal indexes
was not an issue. In free-text retrieval, however, selecting the indexes is one of
the main research challenges. Our LDF and MBA measures estimate the quality
of the lattices for browsing purposes on different index sets, permitting an initial
optimization of the attribute selection process prior to experimenting with users.

4.2 Experiments

We made three main experiments to test which selection strategy had best per-
formance values in our information organization framework. Experiments are
described in the following subsections.

Table 2. Experimental results for Experiment 1 with k = 10 and k = 15 with a number
of documents n = 100. The averaged precision of the baseline ranked list was 0.15

GB QSB T
LDF(%) (k=10) 255.7 84.17 16.7
LDF(%) (k=15) 562.72 127.01 25.17
MBA(%) (k=10) 46.97 59.25 69.14
MBA(%) (k=15) 42.48 60.64 73.29
Nodes (k=10) 114.27 35.89 13.31
Nodes (k=15) 161.24 48.07 19.87
Obj. Concepts (k=10) 52.8 27.56 12.09
Obj. Concepts (k=15) 65.73 36.98 17.93
Connect. Nodes (k=10) 61.47 8.33 1.22
Connect. Nodes (k=15) 95.51 11.09 1.93

Experiment 1. We evaluated the system using only noun phrases as docu-
ment descriptors. We applied the three selection strategies (i.e. generic balanced,
query-specific balanced and terminological) presented to extract the k most rel-
evant phrases. The strategies were tested with the first 100 most relevant doc-
uments retrieved and a set of descriptors with k = 10 and k = 15. Results are
summarized in Table 2 and in Figures 3 and 4, where GB stands for the generic
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Fig. 3. Lattice Distillation Factor in Experiment 1

Fig. 4. Number of nodes, object concepts, connection nodes and Minimal browsing
Area for Experiment 1

balanced phrase selection strategy, QSB is the query specific balanced strategy
and T the terminological selection strategy.

Although the best lattice distillation factor (LDF) values are obtained using
the Generic Balanced strategy (with improvements of 256% and 563% in the
retrieval precision of the system), the size of the concept lattices generated makes
them too complex for practical browsing purposes. In addition, minimal browsing
area (MBA) values (i.e. which imply to explore a 47% and a 42% of the lattices)
imply that a substantial proportion of a big lattice has to be inspected to find all
relevant information. We estimate that the size (i.e. number of nodes) of a lattice
should in any case be below 50% of the size of the document set; otherwise, the
lattice makes document inspect even more complex than the original ranked list.
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The main reason for the high LDF values in the Generic Balanced approach
is the nature of the selected phrases. High document frequency phrases selected
are shared by many documents, which enhances the possibility of combinations
between documents. This situation generates lattices with a great number of
connection nodes (i.e. nodes that are not object concepts and, as a consequence,
do not have any document to be shown), which makes very easy to find the
optimal ways to the relevant nodes without traversing any non-relevant node. A
large set of connection nodes also explains the high values for the MBA.

Query Specific Balanced and Terminological strategies obtain lower LDF val-
ues but, in contrast, the number of nodes generated and the MBA values are
more appropriate to our requirements. These two selection strategies choose
more specific phrases (i.e. with lower document frequencies) than the Generic
Balanced recipe, which explains the smaller size of the concept lattices obtained.
At this point, two questions arise: due to the lower document frequency of the
phrases selected, is the whole document space covered by the set of descriptors
selected? and how many documents are generators of the top concept as ob-
ject concept?. Answers to these questions explain the lower LDF values: a) a
top information node with a small set of documents implies to read only a few
documents at the very first node of the lattice. In this case, a low LDF value
implies a poor clustering process with the relevant and non relevant documents
mixed up in the same clusters, and; b) a top information node with a large set of
documents implies to read too many documents at the first node of the lattice.
In this situation, a low LDF value does not necessarily imply a bad clustering
process, but probably a damaged LDF where lots of non relevant documents are
clustered in the top node, and therefore always counted for precision purposes.

Experiment 2. In order to solve this problem, we proposed to characterize
the documents which do not receive descriptors with a dummy descriptor ’other
topics’. This new context description generates a concept lattice with a top
information node with an empty set of documents, which ensures a first node
of the lattice with no documents to show. If the new node containing “other
topics” documents does not contain relevant documents, then it will not affect
negatively to the LDF measure.

Using this “other topics” strategy, we re-evaluated the three selection strate-
gies with the first 100 most relevant documents retrieved and a set of descriptors
with k = 10. Results are shown in Table 3 and in Figure 5, where GB represents
the generic balanced phrase selection strategy, QSB the query specific balanced
strategy and T the terminological selection strategy.

The results show much better LDF values for the Specific Query Balanced
and the Terminological selection strategies than in the previous experiment (with
improvements of 182% and 1300% respectively). The LDF value for the Generic
Balanced selection strategy is also improved (237.84%). The values obtained
in the previous experiment indicate that the bad clustering performance of the
proposed selection strategies were due to the generation of top information nodes
with too many non relevant documents (which the user is forced to read) which
damage the final LDF values.
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Table 3. Experimental results for Experiment 2 with k = 10 and with a number of
documents selected of n = 100. The averaged precision of the baseline ranked list was
0.15

GB QSB T
LDF(%) (k=10) 863.86 237.64 233.81
MBA(%) (k=10) 48.4 65.55 84.62
Nodes (k=10) 115.27 36.87 14.31
Obj. Concepts (k=10) 52.8 27.56 12.09
Connect. Nodes (k=10) 62.47 9.31 2.22

Fig. 5. Lattice Distillation Factor in Experiment 2

LDF values for the Specific Query Balanced and the Terminological selec-
tion strategies are very similar; a new question has to be asked to differentiate
both: having similar LDF values, which of these strategies groups documents
best?. Both strategies generate an acceptable number of nodes, but looking at
the number of object concepts generated, we can see that the Specific Query
Balanced strategy doubles the number of object concepts in the Terminological
one. The number of object concepts is directly related with the number and size
(i.e. in average) of the clusters generated and, as a consequence, the Specific
Query Balanced strategy generates more clusters with a smaller size than those
generated by the Terminological one. In this situation, a small set of large clus-
ters gives a vast, poorly related view of the clustered document space where the
user is not able to specialize the contents of the large relevant clusters selected.
We think that this scenario is not desirable for browsing purposes and, provided
that acceptable lattice sizes and similar LDF values are obtained, the selection
strategy which gives the maximum number of clusters should be preferred.

Finally, there is a practical reason to select Specific Query Balanced as the
preferred selection strategy: it is very simple to compute, and does not need
collection statistics to be calculated. This is relevant, e.g., if the goal is to cluster
the results of a web search without having collection statistics from the full web.

Experiment 3. As an additional experiment to avoid the overload of the top
information nodes, we tested the effect of adding the query terms as document
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Fig. 6. Lattice Distillation Factor in Experiment 3

descriptors, in addition to noun phrases. The idea is based in the fact that query
terms, that should appear as attribute concepts in the first levels of the lattice,
are not only a good aid to drive the initial user navigation, but also they make a
natural partition of the document space clarifying basic document relations and
generating top information nodes with an empty document set.

We evaluated the three selection strategies with the first 100 most relevant
documents retrieved and a set of descriptors with k = 10 and k = 15 built using
the qt query terms and the k − qt phrases selected. Results are summarized
in Table 4 and in Figures 6 and 7, where GB represents the generic balanced
phrase selection strategy, QSB the query specific balanced strategy and T the
terminological selection strategy.

Although the results show that the Generic Balanced selection strategy ob-
tains the best LDF values, the large number of nodes generated and, as a conse-
quence, the small size of the clusters generated and the large number of connec-
tion nodes lead us to reject this selection strategy as optimal for our information
organization purposes.

Query Specific Balanced and Terminological selection strategies perform lower
LDF values but generate better-sized lattices. Query Specific obtains better LDF

Table 4. Experimental results for Experiment 3 with k = 10 and k = 15, with a
number of documents n = 100. The averaged precision of the baseline ranked list was
0.15

GB QSB T
LDF(%) (k=10) 664.34 235.97 192.04
LDF(%) (k=15) 1239.75 277.99 208.14
MBA(%) (k=10) 43.57 59.74 66.27
MBA(%) (k=15) 38.36 55.43 63.55
Nodes (k=10) 92.53 38.96 16.33
Nodes (k=15) 191.31 53 23.49
Obj. Concepts (k=10) 49.22 27.91 13.84
Obj. Concepts (k=15) 66.36 38.36 20.16
Connect. Nodes (k=10) 43.31 11.04 2.49
Connect. Nodes (k=15) 124.96 14.64 3.33
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Fig. 7. Number of nodes, object concepts, connection nodes and Minimal browsing
Area in Experiment 3

values than Terminological, which, in addition to our previous experiment discus-
sion, makes this strategy better than the others in our information organization
framework. Furthermore, although the growth of k does not significantly im-
prove the LDF values, a better improvement is detected with the Query Specific
Balanced selection strategy (i.e. Query Specific selection strategy improves in a
18% LDF values while, in contrast, Terminological selection strategy improves
LDF only in a 8%).

5 Conclusions

Starting from the organization framework presented in [4], this paper has ex-
plored the possibility of using noun phrases as document descriptors to generate
lattices for browsing search results. We have focused our research on the de-
velopment of different phrase selection strategies, which have been tested using
the LDF and MBA evaluation measures specifically designed for this task and
introduced in [4].

The experiment results reveal a high clustering power for lattices built using
all three selection strategies studied, being the Query Specific Balanced selection
strategy the most suitable for user browsing purposes. The use of noun phrases, in
contrast with the use of terms as document descriptors, deals with low document
frequency values so the use mixed approach based on the use of query terms and
phrases as document descriptors gives us the best LDF values. In addition, noun



62 J.M. Cigarrán et al.

phrases are more adequate as intensional descriptions of lattice nodes from a
user’s point of view.

Our current work is focused on two main objectives: a) the evaluation of the
generated lattices in an interactive setting involving users, and b) the research
on lattice visualization and query refinement aspects.

The information organization framework proposed illustrates the scalability
of FCA to unrestricted IR settings if it is applied to organize search results,
rather than trying to structure the whole document collection. In this direction,
some recent efforts have also been made by other systems such as CREDO [2]
(i.e. an FCA system oriented to organize web search results) or DOCCO [10]
(i.e. and FCA system oriented to manage the organization and retrieval of PC
stored files with different formats) with promising results. A distinctive feature
of our proposal is the incorporation of a framework for the systematic evaluation
and comparison of indexing strategies within this general paradigm of FCA as
a tool to organize search results in generic free-text retrieval processes.
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Abstract. In this paper we report on practical information visualiza-
tion aspects of Conceptual Knowledge Processing (CKP), realizing and
illustrating Wille’s “conceptual landscapes” in the context of develop-
ing a conceptual information system to determine surfing conditions on
the South Coast of New South Wales, Australia. This novel application
illustrates some (if not all) of Wille’s CKP tasks: exploring, searching,
recognizing, identifying, analyzing, investigating, deciding, restructuring
and memorizing (all but improving). It does this by concentrating on
combining an information landscape with maps of the physical world.

1 Introduction

Conceptual Information Systems (CIS) conform to the 10 tasks of conceptual
knowledge processing (CKP) defined in Wille’s Landscape paradigm [1]. These
include exploring, searching, recognizing, identifying, analyzing, investigating,
deciding, restructuring and memorizing. Experimenting with Wille’s 10 methods
motivates this work and provides a design framework for the development of
practical problem solving tools in CIS.

A survey of existing Web-based surfing portals reveals their reliance on Web-
cams and the absence of any analytical features1234. These sites rely on low-
quality streamed video inputs that are unreliable – they are often off-line, do
not work in poor lighting conditions or at night and often “point” in the wrong
direction to give any clear indication of the prevailing conditions (see Fig. 1).

Our objective is to improve on these portals by providing a more principled
analysis of surfing breaks based on geographic information & weather inputs
and showing prototypical images of the breaks based on a variety of weather
conditions. By tying this information with maps and a concept lattice we have
engineered the first Web-based Spatial CIS.

1 http://www.coastalwatch.com.au
2 http://www.surfit.com.au
3 http://www.realsurf.com
4 http://www.wannasurf.com

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 64–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. http://www.coastalwatch.com is a popular surfing portal that features many
Web-cams and weather forecasting tools for locations around Australia and a limited
number of International locations including New Zealand

While the dimensionality of the input data to the system we describe is
low, reflecting the detail (or lack thereof) contained within the input primary
data sources, the SurfMachine system is a prototypical example of a Web-
based CIS that integrates (in a natural way) with spatial data and improves the
predominant Web-cam paradigm for portals aimed at surfers. The “landscape
of knowledge” that results therefore closely reflects the practical knowledge that
surfers apply when deciding where to surf.

This paper is structured as follows. Section 2 gives an overview of how beaches
are affected by their shape and orientation. Section 3 describes the input source
data. Section 4 describes the SurfMachine Conceptual Information System
(CIS). Section 5 describes elements of the CIS as they relate to Wille’s CKP
tasks and Section 6 describes extensions and limitations of this work.
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2 The Mechanics of Beach Selection in Surfing

One of the most important aspects of surfing is locating the best waves. Different
surf locations – or breaks – on a coastline have different physical properties
setting them apart. The shape of the coastline and underwater terrain determines
how and where waves will form. Ideally, a wave should break along the beach,
rather than all at once, thus headlands and curved beaches usually provide better
surfing than long straight stretches of sand (See Fig. 2). The exception is the
occurance of reefs5 which cause the waves to break on both sides of the reef.
With knowledge of the structure of the local breaks, the determining factor on
any given day is based on the current weather conditions.

Fig. 2. The angle between the swell and the shore should be sufficient that the wave
breaks along the beach (left), rather than all at once against the beach (right)

The primary weather condition which determines if a break will be good is
the wind direction and strength. Wind should optimally be offshore, i.e. blowing
against the oncoming wave. This holds the wave up, slowing the break, and
giving the surf-rider time to navigate the face of the wave. Wind is affected by
the land structures surrounding or adjacent to a break; for example, wind can
be diverted around a headland, becoming an offshore breeze when it reaches the
sea. The strength of the wind should never be too strong (in any direction), but
some breaks are protected from strong offshore breezes by their geography.

The secondary condition which affects the quality of a break is the swell
direction and size. Swell waves are generated by wind and storm conditions far
from the point where they reach the coastline. As swell travels from its point of
origin, it becomes organised into groups with similar height and period6. These
groups can travel thousands of kilometers without significant changes to their
height and period. An example of this are Australian “cyclone swells”, which

5 Underwater structures, either natural (rocks) or man-made (pipes and purpose-built
artificial reefs).

6 Distance between consectutive waves.
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may cause a swell to start in northern Queensland and are felt as far south as
the east coast of Victoria (some 3,000kms away)7.

When swell reaches a coast, the way it interacts with the shape and orienta-
tion of each break dictates how the wave will break. As mentioned earlier, the
wave should break along the beach. When a break is curved it will be better in a
wider range of swell directions. Point breaks8 have an interesting property that
causes swell to wrap around the headland and so also allows for better surfing.
Swell size, for the most part, relates to the skills and fitness of the surfer, but in
situations like reef breaks, it can directly influence the break’s quality (i.e. the
wave has to be large to form over a reef).

Tidal conditions are the third factor of importance. In all but the smallest
swell an incoming tide will have an effect on the swell size, increasing it. This is
called tidal surge. The shape of the sand banks on a beach at any given time will
determine the surf quality for a given tidal condition, either incoming or outgoing
tide, but this is not usually something that can be codified in a surfing guide
and is largely dependent on shifting sand. Ideal tide conditions can however be
a predicting factor for more permanent undersea terrains, such as rock or point
breaks. For the novice surfer, point and rock breaks are to be avoided because
they require much higher skill levels to be ridden safely.

In general the combination of wind, swell direction and tidal condition mean
that each break has its own characteristics and nuances which are usually learnt
through experience and local knowledge.

3 Sources of Data

For this study, the primary data source was, “The Surf Report - Journal of
World-wide Surfing Destinations”. Despite being published in the US by Surf
Publications (Volume 17 No. 2, 1996)9, this is the most authoritative guide on
Australian surfing we have seen. It is a detailed (often obsessively so) list of all
breaks – listing some 120 different breaks over almost 500 kilometers of coastline
on the South New South Wales coast. Only 44 of the breaks were used in our
study (considered “local” breaks), mainly due to data entry constraints. The
44 selected breaks are those around the Illawarra area from the Royal National
Park (near Sydney) down to Minnamurra (north of Kiama) covering 94 kms of
coastline.

An excerpt from “The Surf Report” is shown in Fig. 3. Data inconsistencies
were checked with a secondary source “Mark Warren’s Australian Surfing At-
las” [2] and with local surfers, mostly to normalize the local name of the break
rather than use the official map location name10.

7 A similar European phenomenon is the Icelanic trough (“Island-Tief” in German).
8 A wave that breaks along a headland or promontory.
9 First Published in 1984.

10 Surfers often use colloquial names for breaks, for example, Kilalea Beach is known
as “The Farm” because for many years access to that beach required surfers to pay
a toll to the local farmer in order to cross his land.
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Fig. 3. Excerpt from “The Surf Report”

The context derived from this data uses the breaks as the object set G. This
is because the breaks form part of the desired result set.

G := {Garie Beach, ...,Minnamurra}

The attribute set M is comprised of possible wind and swell conditions, which
form a constraint over the objects. These conditions are broken into eight pos-
sible compass directions. (Note: WN is representitive of Northerly W ind. Also,
this does not include swells that cannot occur, i.e., swells do not orginate from
inland.)

M := {WN ,WNE ,WE ,WSE ,WS ,WSW ,WW ,WNW , SN , SNE , SE , SSE , SS}

The incidence relation I between the elements of G and the elements of M
can be thought of as “works well in” and is represented by,

gIm ⇔ break g works well in condition m, where g ∈ G and m ∈ M .

The formal context is shown in Table 1.
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Garie Beach × × × × × × × ×
Burning Palms × × × × × × × ×
Stanwell Park × × × × × × × ×
Coalcliff × × × ×
Scarborough × × × × × × × ×
Wombarra × × × × × × × ×
Coledale × × × × × × × ×
Sharkies
Headlands × × × × × × ×
Austinmer × × × × × × × ×
Thirroul × × × × × × × ×
Sandon Point × × × ×
Peggy’s Point × ×
Woonona × × × ×
Bellambi × × × × × × ×
Corrimal × × × × × × × ×
East Corrimal × × × × × × × ×
Towradgi × × × × × × × ×
Pucky’s × ×
North Wollongong × ×
City Beach Wollongong × × × × × × ×
Bastian’s × × × ×
Shitties × × ×
MM Reef × ×
MM Beach × × × × × ×
MM Bay × × × ×
Fisho’s Reef
Stoney’s ×
Port Reef × × × × ×
Port Beach × × × × × × × ×
Lake Illawarra Entrance
Sharkies (Windang) × × × ×
Windang Island × × × × × ×
Warilla Beach × × ×
Barrack Point × × × ×
Madman’s × ×
Suck Hole × × × × × ×
Cowries × × × × ×
Pools / The Bombie × × ×
South Shellharbour × × ×
The Shallows ×
Redsands × × × ×
The Farm × ×
Minnamurra × × ×

Table 1. The formal
context for the Surf-
Machine. Note Sharkies,
Fisho’s and Lakes En-
trance. The description
for Fisho’s in the guide
says “a right-hand reef
break that breaks sev-
eral times a decade”
which tells us something
but nothing about the
Wind or Swell condi-
tions. Likewise Sharkies,
“short shallow left reef,
break named after shark
attack 30 years ago”.
Lakes Entrance also con-
tains no extractable in-
formation. This explains
why there are no at-
tributes for these objects
and helps underline the
difficulty of the informa-
tion extraction problem
in texts of this sort
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Fig. 4. The above photos show two breaks in the Illawarra region in good conditions.
(Top: Sandon Point, Bottom: Port Kembla)

4 The SurfMachine

The SurfMachine system is a simple Web-based CIS (in the style of Rental-
FCA [3]) and comprises an area to capture the user’s query, a lattice display,
a geographical map of the areas covered and a database of individual photos of
indicative conditions.

Fig. 5. Wind and Swell Queries are captured with a Pair of Compasses

The user enters a query with 2 facets, wind and swell direction via a graphical
representation of 2 compasses. This provides an input control so that only valid
compass points can be entered (see Fig. 5). Both wind and swell directions are
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Fig. 6. Queries are restricted to ranges achieved by clicking on the start compass point
followed by the end compass point. Above left, South-West is clicked, then, above
right, South-East is clicked. This would be representative of the query ‘Wind equals
South-West, South or South-East’

Fig. 7. The lattice component displays the break data as a conceptual breakdown of
the current weather conditions

split into 8 discrete values (North, North-East, East, South-East, South, South-
West, West, North-West) and queries are limited to a range of directions not
exceeding a range over 4 compass points, e.g. North through South-East, which
is 4 values (N, NE, E, SE). Another example is shown in Fig. 6. Each of the
values are used as a scale representing current weather and the corresponding
concept lattice is generated (see Fig. 7). The extent of each concept of the lattice
translates to a set of locations on the map, and clicking the concept realises its
extent as locations on the map (see Fig. 8).
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Fig. 8. (left) The map component uses a simplified vector-based map of the extended
Illawarra coastline; and (right) The map component realises concepts as point data for
the given weather conditions, and places markers and labels on the map, then zooms
to optimize the map display

In this way, the resulting formal concepts map to sets of geographic point
data. A given formal concept may therefore contain multiple surf breaks geo-
graphically dispersed over the total area of the study. Visualizing the information
space as a concept lattice allows the user to view multiple results by representing
the objects in the extent as points on a map.

An important feature of the SurfMachine is that the surfer can see breaks
which are “similar to one another” from the concept lattice. In so doing, the
concept lattice reaffirms local knowledge about which breaks work in which
conditions and suggests alternate locations to those the surfers may know and
like. For instance, from the concept lattice in Fig. 7 we can see that Garie Beach,
Thirroul, Sandon Point and Austimer etc all cluster to the same formal concept



Combining Spatial and Lattice-Based Information Landscapes 73

Fig. 9. The complete interface view of the SurfMachine

under the input weather conditions. They will therefore all be similar in a SW
Wind and a N Swell, so the surfer would feel inclined to visit the closest on the
day or if he/she is feeling adventurous try a different break with knowledge that
that break will be similar to one already surfed.

The SurfMachine uses the Model–View–Controller design pattern, with
the server holding all data and performing processing of the conceptual data
(the model). The client controls all transactions and data flow (the controller)
and uses an embedded plug-in for lattice drawing and a map view component
to render the spatial data and images (the view). The architecture is shown in
Fig. 10.

The lattice visualization component has been based on code from the Mail-
Sleuth11[4] program. It has been extensively re-worked to be used as a general
flash plug-in and is now part of the Tockit project12. It uses the ToscanaJ
[5] look-and-feel (also used in HierMail13), and uses a more advanced user
interaction method than HierMail/Mail-Sleuth14. The map component is a

11 http://www.mail-sleuth.com
12 http://tockit.sourceforge.net
13 The academic version of Mail-Sleuth at http://www.hiermail.com
14 SurfMachine uses a simple attribute additive interaction, rather than using the

ideal.
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Fig. 10. Block Diagram of the SurfMachine architecture

vector-based map which scales and pans to optimise the display of highlighted
locations.

The model goes through two phases, a creation phase and a usage phase. The
creation phase makes use of the various data sources to create a concept lattice
that encompasses the entire context and a database of coordinates. This phase
was used initially to set up the databases and then subsequently to restructure
the data when faults or deficiencies were found. The usage phase centers around
a Query Processor which accepts the query from a client and returns XML
representing the lattice to be displayed. The Query Processor is divided into four
steps; filtering, rebuilding, adding map information and mark-up into XML. The
term ‘filtering’ is used in the lattice theory sense, whereby the attribute set of a
lattice is restrict to produce a sub-lattice. The next step rebuilds the layout so
that it is optimised and the filtered lattice will graphically fit better in the lattice
viewer component. Then the point data is added to the concepts by querying the
spatial database and extracting the breaks for each concept. Finally, the various
data is brought together, and formatted into XML for transport to the browser
client.

5 SurfMachine and CKP Tasks

Having given the details of the domain knowledge and implementation architec-
ture, we return in this last section to the landscapes paradigm and identify the
conceptual CKP tasks that SurfMachine demonstrates.
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The surfer is looking for a place to surf so he knows that he is looking for a
break, but which one? He can constrain his choice by giving the input weather
conditions and this corresponds to exploring the conceptual landscape of knowl-
edge by specifying constraints on the attribute space. Depending on the strength
of the specified constraints, the user is alternatively searching or recognizing
knowledge. For instance, he can search for the best break in current conditions
or he can see which day (given a several day forecast) would be best for a specific
break. The user therefore shifts from a search focus based on the attribute space
to recognition by focusing on individuals from the object space.

Recognizing in the context of the SurfMachine is being able to clearly
see which breaks have similar properties, and those which are anomolies in the
data. For example, the “Garie Beach, Burning Palms, Thirroul, Corrimal, East
Corrimal, Towradgi, Stanwell Park, Scarborough, Wombarra, Coledale, Austin-
mer” concept is the only concept that has a contingent size greater than 3 and
is also the upper cover of the base concept. This group shares 8 of the 13 at-
tributes used15 attributes “NW Wind, W Wind, SW Wind, N Swell, NE Swell,
E Swell, SE Swell, S Swell” and is not broken down any further. This means the
group represented by this formal concept is always seen together and because
they share a large portion of the possible attributes these beaches can be con-
sidered “safe” beaches, namely because they are recommended in the majority
of conditions.

At the other end of the spectrum is a break by the name of ‘Stoney’s’, which
is the only break in the data which has ‘E Wind ’ as an attribute. Initially this
was assumed to be an error, but after some research it was found that ‘Stoney’s’
is in fact the only break on the entire east coast of Australia considered surfable
in an onshore breeze because it breaks on the western edge of an off-shore island
called Big Island (aka Rabbit Island) near Port Kembla.

The information space in SurfMachine also suggests a topology of surf
breaks that corresponds to identifying in the landscapes paradigm. The concept
lattice represents a conceptual landscape where it is possible to see a hierarchy
of breaks in the current weather conditions; from top to bottom, and as an order
ranking, worst to best.

Analyzing is what is revealed by the structure of the conceptual language
and the way it supports the collected knowledge. For instance, two of the most
reliable beaches in the Illawarra during summer are Port Beach and Woonona,
everyone who surfs locally “understands” this. It is therefore reassuring that
SurfMachine shows these two beaches as a single formal concept when the
prevailing summer conditions are used as the query (North East wind & North,
North East swell).

When looking for a break, if the ‘best’ break(s) (contained in the bottom most
concept of the lattice, i.e., those that have all query conditions as attributes) are
undesirable – because it is unsafe to park your car for instance – relaxing the

15 The swell never comes from inland, so NW Swell, W Swell and SW Swell are at-
tributes that are never used.



76 J. Ducrou and P. Eklund

Fig. 11. The two best beaches in summer on the Illawarra are Woonona and Port
Beach because they ‘work’ on the prevailing summer winds and swells

concept to its upper neighbors requires a methodology for investigating its
direct upper cover. Generalization of a best concept point should therefore pro-
ceed by choosing concepts above that have both swell and wind attributes. This
is illustrated in Fig. 11: if we can’t surf Port Beach or Woonona (for whatever
reason) the next best generalization is South Shellharbour combining a Northerly
Wind and North-East Swell. The formal concept with the extension South Shell-
harbour is preferred to the formal concept with the extension Port Reef (also in
the direct cover) which combines Northerly and North-East Wind conditions in
its intent (and therefore ignores all swell information).

Restructuring the presentation of the conceptual landscape from its original
paper-based form improves the presentation of the source data and introduces
support for inter-subjective argumentation – namely decision support based on
mixed initiative. This enhances the user’s capacity to investigate the domain.
Further restructuring occurs at fault points in the data; these were found when
domain experts (local surfers) could see breaks that didn’t belong with others,
or breaks that were missing from natural groupings in formal concepts of the
concept lattice.
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With the aid of the SurfMachine, the process of gaining experience with a
surfer’s local coastline is accelerated, allowing an entire lifetime of local experi-
ence (often based on trial and error) to be committed to the concept lattice for
memorizing the quality of various local breaks under various conditions. The
resulting conceptual landscape is intuitive and anecdotally correct.

6 Limitations

We mentioned in the introduction that the dimensionality of the input data is
low, reflecting the detail (or lack thereof) contained within the input primary
data sources. This statement needs some clarification.

Wind and swell directions are uniformly presented in “The Surf Report -
Journal of World-wide Surfing Destinations” by Surf Publications (1996) mak-
ing data acquisition in these dimensions straightforward. The same cannot be
said for other attributes such as tide conditions, wind strength and swell size.
These attributes are somewhat obscured in the text, for instance the use of fuzzy
phrases like “works well on large swells”, and surf idioms like “southerly buster”,
“double over-head..” and “ebb-tide danger-spot..”. These give character to the
narrative as well as useful information about swell size, wind and tidal condi-
tions (if you can understand the idioms). These features are harder to extract
and quantify but represent ways to extend the data.

In the same way that the dimensionality of the data can be extended to
include tide conditions, wind strength and swell size, so too can the analysis
be improved by these attributes being filtered using the same kind of control
input widgets as swell and wind direction. Likewise, filtering is complemented
by object zooming, allowing the user to explore the attribute space for a select
group of objects, e.g. analysis of all reef breaks, beach breaks only, good high-tide
point breaks, double overhead spots etc.

Finally, the current local weather conditions can be extracted directly from
the Bureau of Meteorology16 and presented as the default view. This eliminates
the need for user data inputs but it also limits the exploration aspect of Surf-
Machine.

7 Conclusion

Our claim is that SurfMachine is the first Web-based Spatial Conceptual In-
formation System. It demonstrates a number of Wille’s Conceptual Knowledge
Processing tasks: namely exploring, searching, recognizing, identifying, analyz-
ing, investigating, deciding, restructuring and memorizing – all but improving.
It does this by concentrating on combining a conceptual information landscape
with maps of the physical world.

16 http://www.bom.gov.au
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Abstract. This paper reports on ongoing work to use Formal Concept
Analysisas an auxiliary tool in understanding and visualising the wealth
of data produced by lexical-resource building as embodied in the con-
struction of FrameNet, a database to capture the syntax and semantics
of language use in Frame Linguistics. We present proof of the abundance
of concept lattices both in the theory of frames and in its present day
incarnation, the FrameNet resource, with contributions that range from
data-visualisation to the fine-tuning of some lexico-theoretical concepts
better understood in terms of Formal Concept Analysis.

1 Introduction

FrameNet[1, 2, 3] is a lexical resource and database being developed at the Inter-
national Computer Science Institute, ICSI. The name “FrameNet” reflects the
twin facts that the project exploits the theory of Frame Semantics and that it
is concerned with the semantics of networks through which word meanings are
connected with each other. In this paper, we will be concerned with the mod-
elling of Frame Semantics in terms of concept lattices and we will use the data
in FrameNet to build concrete examples of such lattices.

The modelling of linguistic phenomena figures among the first applications
of Formal Concept Analysis. Early references first applied the technique to the
modelling of linguistic paradigms [4, 5, 6]. Lately the spectrum of applications
has widened [7] for instance to the formalization of the sign relation [8]. In the
lexical enterprise proper, a formalization of WordNet in terms of concept lattices
has already been attempted [9, 10]; non-standard techniques like neighbourhood
concept lattices have even been used to add structure to such a widely-used
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resource as Roget’s thesaurus [11, 12] and even machine learning techniques have
been used to induce the concept lattice of some lexical relations [13, 14]. We
believe, however, that ours is the first attempt to model Frame Semantics with
the help of Formal Concept Analysistechniques.

The unit of description in FrameNet is not the word of traditional dictionaries,
or the Synsets of WordNet, but rather frames, the “schematic representations of
the conceptual structures and patterns of beliefs, practices, institutions, images,
etc. that provide a foundation for the meaningful interaction of a given speech
community”[3]. The central idea of the whole frame semantic enterprise is that
word meanings must be described relative to semantic frames. FrameNet also
considers frames as being partially ordered by several special semantic relations,
among which the “inherits” relation stands out as the most informative and
restrictive.

Our contention is that Formal Concept Analysismethods and constructions
can help greatly in formalizing frames, frame elements and other frame-theoretic
concepts. Because of the constructive approach of concept lattices, such for-
malization would automatically entail visualisation, data-mining and (lattice-
oriented) application-building capabilities around the FrameNet data. Our pur-
pose with this paper is to show the abundance of concept lattices in FrameNet
and how they can help not only in the above-mentioned roles, but also in bringing
formalization to strictly frame-theoretic notions.

In the rest of the paper we first review the general enterprise of FrameNet
with special attention to the concept of “coreness” so that the reader may later
understand lattices built from a lexicographical perspective. In section 3 we
introduce the types of lattices we will be considering and how to build them
from FrameNet data. Section 4 is dedicated to the analysis of the coreness of
frame elements and invokes Formal Concept Analysisto obtain concept lattices
that help define the concept of “coresets”, crucial to Frame Semantics, producing
some analyses of coreness and coresets as obtained from the FrameNet database.
In this section we also pose the question whether frame structure is inherited
through the frame hierarchy. We conclude with some suggestions of research into
Frame Semantics using concept lattices.

2 FrameNet: An Embodiment of Frame Semantics

Regardless of their theoretical interest, lexical resources capable of serving nat-
ural language processing applications should at least include the following types
of information:

– representations of the meaning of each lexical unit (LU);
– various types of relations between lexical units;
– information about a word’s capacity to combine with other linguistic units

to form phrases and sentences;
– semantic information associated with individual words that allows us to in-

terpret the phrases that contain them.
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However, FrameNet does not cover all these issues, but rather concentrates
on the first, third and fourth points, in the hope of complementing previously
existing lexical resources more concerned with the second point, such as Word-
Net. On the other hand, FrameNet is arguably the paramount example of a
frame-based resource for English (and has spawned a number of versions for
other languages) hence its perspective on the task of defining the meaning of
linguistic items is unique.

2.1 Introducing Frame Semantics

The unit of description in FrameNet is not the word of traditional dictionaries, or
the synsets of WordNet, but rather frames, “(the) schematic representations of
the conceptual structures and patterns of beliefs, practices, institutions, images,
etc. that provide a foundation for the meaningful interaction of a given speech
community”[3].

Specifically, FrameNet endeavours [3]:

1. “to describe the conceptual structures, or frames, a given lexical unit belongs
to;

2. to extract sentences from the corpus that contain the word and to select
sentences that exemplify the intended sense of each of the lexical units;

3. to annotate selected sentences by assigning frame-relevant labels to the
phrases found in the sentences containing the lexical unit; and

4. to prepare reports that summarize the resulting annotations, showing suc-
cintly the combinatorial possibilities of each lexical unit; these are called
valence descriptions.”

An Example: The Revenge frame. In order to better understand these
concepts we now review a frame definition example. We have somehow1 detected
the need for:

– a frame we will call the Revenge frame;
– to accomodate lexical units like avenge, avenger, revenge(noun), revenge

(verb), get back (at), get even (with), etc.
– where salient participants in the idea would be an avenger, who inflicts a

punishment on an offender as a consequence of the injury, an earlier
action perpetrated by the offender. (Note that the avenger may or may
not be the same individual as the injured party suffering the injury.)

– And a description of this Revenge idea has to do with the idea of inflicting
punishment in return for a wrong suffered, where the offender has been
judged independent of the law (so as to distinguish Revenge from legally
sanctioned Punishment).

1 In whatever manner lexicographers detect the need for a new entry in their inventory
of items.
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All the items above involve Frame Semantics-distinguished concepts:

– “Revenge” is the frame name, an univocal identifier;
– We say that the set of lexical units ascribed to a frame evoke it in the

discourse.
– The events, participants and props (tools), involved in instances of the frame

scenario are its frame elements;
– The description itself constituting a definition of the frame in question.

The immediate consequence of having achieved such a definition is that we may
properly interpret the following annotated sentences with respect to the Re-
venge frame:

(1) [avenger Ethel] eventually got even [offender with Mildred] [injury for the
insult to Ethel’s family]

(2) Why hadn’t [avenger he] sought to avenge [injured party his child]?

2.2 Frame to Frame Relations

FrameNet considers the set of frames as partially ordered by several special
semantic relations, notably:

– the inherits relation, which holds between a more general and a more spe-
cific frame when all of the properties assigned to the parent correspond to
some properties of the child frame. For instance, the Motion directional
frame inherits all of its properties from the Motion frame and further spec-
ifies some of the frame elements.

– in contrast, the using relation is posited to hold between two frames when
one makes reference to the structure of a more abstract schematic frame, but
it may fail to acquire all the defining properties of the parent, for instance
the set of core frame elements.

– a different kind of ordering is introduced by the subframe relation, which
holds between a frame that is temporally complex, like a process, and the
frames describing possible states of affairs in the process and transitions
between them. For instance, in the Employment frame describing the em-
ploying process from the viewpoint of the employer, we could have frames
hiring, employing and firing describing the initial event, mid-state and final
event of the employment scenario.

2.3 Frame Structures

For each frame f , the set of frame elements which may appear as salient in a
sentence evoking the frame will be referred to as the frame structure of f , E(f).
A frame element for a frame f can be classified as [1] :
core if it “instantiates a conceptually necessary participant or prop of a frame,
while making the frame unique and different from other frames”. We take this to
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imply that all uses of f -evoking lexical units should express it2. Hence, the core
elements for f must appear in each sentence in the annotated subcorpus of f . For
instance, avenger is a core frame element for frame Revenge. The importance
of coreness resides in the fact that all core frame elements are inherited by every
child frame.
non-core if it does not “introduce additional, independent or distinct events
from the main reported event (. . . ) They do not uniquely characterize a frame,
and can be instantiated in any event frame”. What we take to mean that their
relation with the frame is rather contingent, hence they may or may not be
expressed in any sentence annotated in the subcorpus of f . For instance, time
is extrathematic in Revenge, because not all uses of lexical units evoking it
require a salient time coordinate.

Coreness of frame elements is crucial for a theory of frame-semantics because
it describes the syntagmatic behaviour of lexical units evoking that frame: all
core elements have to appear in every use of a frame somehow or other. As such,
it has received much theoretical attention in recent FrameNet work. It is defined
in [1] under the heading “Recent innovations and Future plans” (hence we may
consider it a topic undergoing consideration and testing) and further discussed
in the subsection “Coreness sets”, where the following facts about frame element
behaviour are recorded:

– “some groups of frame elements seem to act like sets, in that the presence
of any member of the set is sufficient to satisfy a semantic valence of the
predicator.” 3

– “. . . it is not necessary for all the frame elements (in such sets) to occur . . . ”
– “. . . if only one of them (i.e. frame elements) occurs in a sentence annotated

in a . . . frame, we consider it to be sufficient to fulfill the valence requirement
of the target word. . . ”

– “. . . In some cases, the occurrence of one frame element in a coreness set
requires that another occurs as well”.

– “. . . In some cases, if one of the frame elements in a CoreSet shows up, no
other frame element in that set can”.

We prefer “core sets” to “coreness sets” for reasons of terminology.

Missing Elements or Null Instantiation. One more phenomenon compli-
cates questions of coreness: sometimes annotation is put on a sentence to indicate
null instantiation, i.e. the fact that some salient frame elements are omitted in
the sentence. There are three types of null instantiation:

– Constructional Null Instantiation (CNI, structural omission), when the “omis-
sion (is) licensed by a grammatical construction in which the target word

2 Allowing here for the consideration of phenomena related to null-instantiation, see
below.

3 Italics added.
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appears and are therefore more or less independent of the lexical unit”, for
instance, “the omitted subject of imperatives, the omitted object of pas-
sive sentences, the omitted subjects of independent gerunds and infinitive”,
“missing objects in instructional imperatives”, etc;

– Definite Null Instantiation (DNI, anaphoric null instantiation), a lexically
specific type of null instantiation, “in which the missing element must be
something that is already understood in the linguistic discourse context”;

– Indefinite Null Instantiation (INI, existential null instantiation), as “illus-
trated by the missing objects of verbs like eat, sew, bake, drink, etc., that
is, cases in which these ordinarily transitive verbs can be spoken of as used
intransitively.” We also learn from [1] that:
• “There are often special interpretations of the existentially understood

missing objects.”
• “However, the essential difference between indefinite/existential ad def-

inite/anaphoric omissions is that with existential cases the nature (or
at least the semantic type) of the missing element can be understood
given the conventions of interpretation, but there is no need to retrieve
or construct a specific discourse referent.”

• “. . . usually verbs in a frame differ in this respect. For instance, while eat
allows its object to be omitted, devour does not,” although both belong
in the same frame.

Null instantiation is important for the synthesis of concept lattices because
crosses have to be supplied differently for different formal contexts, depending
on the type of null instantiation in each sentence.

3 Concept Lattices for FrameNet

Given the above state of affairs from the perspective of FrameNet as a lexico-
graphic enterprise and the present-day development of Formal Concept Analy-
sisas outlined in [15], the question is whether the methods of Formal Concept
Analysiscan help alleviate the titanic effort of developing a resource such as
FrameNet. From the lexicographic point of view, we hope to glean some under-
standing from the alternate view on FrameNet data offered by concept lattices.

From the lattice-application point of view we try to find rich, real-world data
demonstrate the adequacy of Formal Concept Analysisfor data analysis, as well
as making these techniques available to a broader community.

3.1 Prominent Contexts and Lattices in FrameNet

To apply Formal Concept Analysistechniques to FrameNet data the following
must hold: objects should include theoretically meaningful concepts of Frame Se-
mantics; attributes should depict theoretically meaningful properties or property-
bearing items of Frame Semantics; and the incidences should capture linguisti-
cally meaningful relations between the above-mentioned items and properties or
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property-bearing items. For the above-mentioned fragment of Frame Semantics
only the following theoretical objects are necessary4:

– The set F of frames (amounting to some 450 annotated frames as of Fall
2004).

– A class of partial order relations in this set, included in its partial orders,
O(F):

{inherits, subframe of, uses, · · · } ⊆ O(F) ⊆ 2F×F

– The set E of frame elements, and in particular the frame structure of f ∈ F ,
i.e. the set of frame elements salient in the frame E(f) ⊆ E .

– The set of sentences in the corpus, S, and in particular the subcorpus5 for
f ∈ F , i.e. the set of sentences with targets evoking a particular frame
S(f) ⊆ S .

With those structures in mind, there are at least the following types of concept
lattices that prominently come to mind when considering the lexicographic data:

– The lattices derived from any ordering relation between frames, i.e. lattices
of contexts [H](r) = (F ,F , r), where r ⊆ F × F may range over all possi-
ble orders induced by the covering relations between frames. These are the
Dedekind-MacNeille completions of such orders and allow, for instance, to
observe the inheritance relation between frames in FrameNet. We may ob-
tain a lattice for each of these relations between frames, hence we call these
the frame lattices.

– The lattice of frames and their associated frame elements, or overall frame
structure, i.e. [S] = (F , E , I). The description of I ⊆ F × E is one of the
main endeavours of FrameNet and may be paraphrased as “frame f sports
frame element e”. However, because frame elements are defined as frame-
dependent, essentially no structure would be observed in this lattice, as each
frame element (as attribute) ranges exactly one object: its frame. Without
further constraints, this lattice would look like M|F|, the Dedekind-MacNeille
completion of the antichain of |F| elements: the flattest complete bounded
lattice of cardinal |F| + 2.

Although some further structure can be gained from considering frame element
to frame element relations, we now concentrate on a different device to see a part
of the overall frame structure lattice. Specifically, for a particular frame f we
consider the lattice of sentences evoking it S(f) and its frame elements E(f), i.e.
those uses of a particular frame [U ](f) = (S(f), E(f), I(f)), where the incidence
I(f) ⊆ S(f) × E(f) describes uses of f attested in some corpus. We call this a
frame structure lattice.

4 Note that we choose to ignore at present the underlying set L of lexical units evoking
frames already in the database, although its elements are somehow implied in the
definition of the set of sentences bearing frame-evoking lexical units.

5 Note also that the use of “subcorpus” here differs from that of FrameNet practice.
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3.2 Frame Lattices

These lattices can easily be obtained as the concept lattice of up-sets and down-
sets of points in the ordering relation achieved with the transitive and reflexive
closure of covering relation recorded in FrameNet, [H](r) = (F ,F , r). For in-
stance, let r be the inherits relation in the following. The concepts of this lattice
are proven to be of the kind

(↓ f, ↑ f)

([16], p. 73), i.e. the concept for a particular frame f ∈ F has for its extent all
those frames inheriting from it and for its intent all those frames it inherits from.
Figure 1 shows the part of the frame lattice where the Motion frame resides.

Fig. 1. A partial view of the frame lattice in an environment of frame Motion

3.3 Frame Structure Lattices

Next, consider the annotation subcorpus for a frame f : it is composed of those
sentences with a target element evoking the frame S(f) for which all incident
frame elements E(f) have been annotated. Hence, we may view the sentences in
the subcorpus as the objects, and the frame elements for the particular frame in
the subcorpus as the attributes for a formal context U(f) = (S(f), E(f), I(f))
whose incidence relation sI(f)e quite intuitively reads: “for frame f sentence s
expresses frame element e.” Note that there is one such context for each frame
f in the set of frames, i.e. around 450 as noted previously.

Lattice Building Procedure. The data for frame structure contexts can be
obtained straightforwardly from the FrameNet database through the use of
MySQL statements. For each frame, if we choose to represent the sentences
in its annotation subcorpus by their identifiers and its frame elements by their
names in the database, the data extraction procedure can proceed as follows:
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sentence × FE theme path goal manner area . . .
948874 × × ×
948886 × ×
948888 × ×
948891 × ×
948893 × × ×
. . .

Fig. 2. Part of the sentence-by-FE formal context for Motion directional

1. For each frame, the FrameNet database is consulted, by selecting all data for
lexical units in the appropriate annotation status6. For instance, the context
for frame Motion directional looks something like that shown in Fig. 2.

2. The data returned by the DBMS is filtered by a program to write the frame
structure context in a suitable interchange format. Since we are interested
in quantifying the support for certain concepts in the frame structure, no
rows or columns are eliminated from the observed data, i.e. no clarification
or reduction are carried out

Fig. 3. The frame structure lattice for Motion directional

3. Finally, the data are uploaded in the ConExp tool7 [17], the resulting graph
of the selected core frame element rearranged to improve its readability and
its picture written to secondary storage for later transformation to printable
format (PostScript), as exemplified in Fig. 3.

4 Lattice Analysis of Core Frame Structures

Because core sets are so important in the theory of frame elements, our purpose
in this paper is to contribute to their understanding by providing a model in

6 In the following, we only used annotation in the FN1 Sent or Finished Initial status
of annotation, and only considered the annotation of lexical units which are in fact
verbs.

7 http://sourceforge.net/projects/conexp
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which both qualitative (competence-inspired) and quantitative (data-inspired)
hypotheses can be tested. We will start by reducing the question of describing
all aspects of “coreness” related to a frame to the description of an inventory
and typology of the core sets for the frame, and then proceed by providing a
model based on concept lattices that fulfills the claims made above.

4.1 Core Frame Structure Lattices

For such purposes, we take the linguistic implications of the microtheory of frame
elements to be:

– Core elements for f ∈ F are necessary in each sentence in the subcorpus for
f .

– Non-core elements for f are contingent in sentences evoking f .
– The existence of one frame element in one sentence and a requires relation

between that element and another implies the occurrence of the other frame
element in the annotation for that sentence.

– The existence of one frame element in one sentence and an excludes relation
between that element and others prevents the occurrence of the other frame
elements in the annotation for that sentence.

Consequently, we take the following actions regarding null instantiation:

– CNI and DNI being licensed implies that they appear under some syntactically-
induced disguise, hence we consider them examples of actual instantiation,
and substitute them with crosses in frame structure contexts.

– INI and incorporated frame elements being idiosyncratic of each verb (en-
tailing a slight modulation of meaning) might be treated differently, but the
fact remains that the frame element is present in the use (it is just brought
in the scene by the lexical unit instead of being a different phrase).

In practice, we carry out the following scaling of the frame element values (acting
as attributes):

– for each frame element e with value INI we create an attribute e.INI

– for each sentence in which a frame value e appeared with value INI, we
blank attribute e and put a cross in e.INI, to signal the special status.

Finally, the lattices obtained in the previous section are neither simple nor
elucidating of the behaviour of the core frame elements. For instance in the
lattice for Motion directional the incidence of contingent, non-core frame
elements obscures the structure due to core frame elements namely theme,
source, path, goal and area, as shown in Fig. 3. Keeping the two preceding
paragraphs in mind, we select only the core attributes to be visualised and adjust
the visualisation to obtain Fig. 4, an instance of a core frame structure, the
sublattice of a frame structure lattice obtained by projecting only core elements
in the frame structure context.
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Fig. 4. The core frame structure lattice for Motion directional

4.2 Core Set Analysis

In core frame structure lattices we will consider reduced labelling on the at-
tributes and a particular labelling on the objects: instead of showing the rather
meaningless set of sentence labels at the lowest concept in which they appear,
we show the number of sentences that support that concept, and their overall
percentage in the lattice. With these provisos, each node in Fig. 4 is read as
follows:

– Its extent is composed of all the sentences in which a lexical unit has evoked
the frame, i.e. for the node below frame element path, the sentences it
contains are those found in itself (“52(32%)”), those of the node marked
with “10(6%)” directly below it, those of the node marked with “1(1%)”
down to the right and finally those of the node marked “1(1%)” below the
latter two8. This means the concept has a total of 64 sentences in its extent.

– More interestingly, its intent is composed of all the frame elements collected
by navigating the lattice towards the top, i.e. path (for itself) and theme
(for the top concept).

The next step is to try to profit from this formal apparatus to help in the
task of understanding and formalizing coreness. We claim that a number of
issues regarding the coreness of frame elements are better exposed with core
frame structure lattices.

For that purpose, consider the top concept: its extent is formed by all sen-
tences in nodes below it (i.e. all of them in this example), while its intent is
formed by the single attribute theme. This means that theme is expressed in

8 Different settings in ConExp allow to view this quantities aggregated in a different
way.
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all sentences for Motion directional, i.e. it is indeed a core frame element
after the definition above. The reason not to reduce the context is now clear: to
test the coreness of frame elements against their actual support. We call frame
elements appearing in the top concept, singleton core sets, because each one
works as a separate core element9.

Next, consider the concept annotated with area:

– Clearly such a frame element is not salient on all frame instances as there
are sentences which do not express it (e.g., all the sentences in the concepts
below those marked with source, path or goal).

– Furthermore, there isn’t any sentence marked with area and either source,
path or goal. Hence we may safely conclude that area excludes the set
{source,path,goal} as a whole. Since excludes is a symmetric constraint,
any of the latter also excludes the former.

These results agree completely with standard FrameNet practice.
However, consider the almost perfect cube of concepts representing all the

combinations in which source, path and goal may appear:

– None of these combinations is exhaustive, i.e. all leave out all the sentences
annotated with area.

– Further, the presence of any of these frame elements does not require or
prevent the presence or absence of any of the others except in a purely
stochastic way: out of the 71 times goal appears, in 63 it is on its own, 4 it
appears associated with path, in 3 to source, and only once with both of
them. We may infer a conditional distribution from this fact but we cannot
rule out or assert the presence of path or source given goal.

This is only implicitly assumed in FrameNet description and not enforced in any
way: it is a sort of “default” rule.

The preceding paragraphs rather belabour the following points we are trying
to clarify:

– Neither {source,path,goal} together, nor area on its own are properly
speaking core frame elements. Rather they are a core set, i.e. a set of frame
elements related by co-occurrence constraints, at least one of which must
appear to license the use of the frame-evoking target.

– Furthermore, the structure of the core set is not merely that of a set in
which any possible combination of elements in the powerset may appear.
For example, area excludes the rest.

– This structure cannot be made clear by the mere use of requires and excludes
constraints, because there is no way the co-occurence patterns of source,
path and goal may be described with these constraints alone.

– There is no formal reason why {source,path,goal,area}, a (proper) core
set, should be considered with different ontological status from {theme}, a
(singleton) core set.

9 This is not standard FrameNet practice, but has been suggested by this research, as
noted further ahead.
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In the next section we will be visiting more examples of the use of lattice
methods to visualise sentence-by-FE lattices and core sets, and better grounding
a new intuition of how core sets behave with respect to a number of phenomena.

4.3 Discussion: The Inheritance of Core Frame Structure in the
Lattices of Motion and Daughter Frames

We now turn to exploring the effect of the inherit relation on the structure of
the core frame elements of a frame, in order to contrast the order imposed on
the frame lattice by the relation with the order suggested by the structure of the
different core frame structure lattices for each frame in the relation.

For that purpose, recall that Motion directional and Mass motion both
inherit from Motion. The single difference is a name change from the theme
frame element in Motion to mass theme in Mass motion.

Fig. 5. The core frame structure sublattice for Motion

Figures 5 and 6 together with Fig. 4 above describe this evolution through
the hierarchy and show remarkable consistency: the only discordant note is a
seemingly spurious case of Motion in which area and source cooccur. In
this case, we think the data would have to be consulted to see if the original
annotation is correct and unproblematic or to adopt an interpretation more
coherent with the rest of the annotation. Examples such as these have been used
to detect patterns of annotation in the database requiring further attention.

As it turned out, in this particular example the annotation was right and
the spurious link demonstrated a peculiar, but perfectly valid instance of the
use in which some odour was coming from a source and spreading through some
area. Because we can no longer say that area excludes source, this example
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Fig. 6. The core frame structure sublattice for Mass motion

demonstrates the adequacy of frame structure lattices for capturing core set and
the inadequacy of mere constraint statements to do so.

As to the larger, more interesting question, whether not only the frame el-
ements are inherited, as dictated by the manually encoded inherit relation,
but also the lattice structure percolates from parents to children, the behaviour
of the MotionXX lattices suggests rather that structure is refined through
inheritance. This abduction may easily be proven wrong by subsequent frame
subhierachies, however, and further work needs to be carried out to test it. The
point here is that visualising the structure as a lattice has eased the scientific
process of hypothesis building and testing in the lexicographic enterprise.

5 Conclusion

In this paper we have introduced the use of Formal Concept Analysisto explore
FrameNet, a database of lexical items embodying Frame Semantics principles,
with the intention of clarifying its concepts and bringing the power (and rigor)
of formalization to its theory. Among the abstractions in FrameNet we have
found the set of frames, their frame elements, and their instances, in particular
sentences, the most amenable to analysis using the techniques of Formal Concept
Analysis.

We have first described the use of standard Formal Concept Analysistools
and concepts to visualize the orders with which the set of frames is endowed:
inherits from, uses and subframe of. In this instance the use of Formal Concept
Analysisis more of a data structuring tool than a real aid in developing the
theory of Frame Semantics, which already had made provisions to develop such
structuring.
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Second and more interestingly, we have shown that the linguistically-conceived
concept of a core set can be appropriately captured by the intents of an appro-
priate formal context. These contexts are built around the sentences attested in
a corpus evoking each frame and annotated with the salient frame elements for
that frame. We have argued that the description of core sets with requires and
excludes constraints could be profitably replaced with the core frame structure.
We now further hint at the fact that each core set can by itself be considered
the attribute set of one of the core frame structure factor lattices whose decom-
position process would considerably ease the lexicographic enterprise of defining
core frame elements

We are also considering how to better model the overall frame structure
lattice by taking into consideration equivalence and ordering relations between
not only frames, but also frame elements.

Finally, the consideration of several types of decomposition, and the inclusion
of lexical units as new objects with which to build contexts encourages us to look
forward to the use of lattice techniques in Frame Semantics with barely contained
glee.
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Abstract. A key difficulty in the maintenance and evolution of com-
plex software systems is to recognize and understand the implicit de-
pendencies that define contracts that must be respected by changes to
the software. Formal Concept Analysis is a well-established technique
for identifying groups of elements with common sets of properties. We
have successfully applied FCA to complex software systems in order to
automatically discover a variety of different kinds of implicit, recurring
sets of dependencies amongst design artifacts. In this paper we describe
our approach, outline three case studies, and draw various lessons from
our experiences. In particular, we discuss how our approach is applied
iteratively in order to draw the maximum benefit offered by FCA.

1 Introduction

One of the key difficulties faced by developers who must maintain and extend
complex software systems, is to identify the implicit dependencies in the system.
This problem is particularly onerous in object-oriented systems, where mecha-
nisms such as dynamic binding, inheritance and polymorphism may obscure the
presence of dependencies [DRW00, Dek03]. In many cases, these dependencies
arise due to the application of well-known programming idioms, coding conven-
tions, architectural constraints and design patterns [SG95], though sometimes
they may be a sign of weak programming practices.

On the one hand, it is difficult to identify these dependencies in non-trivial
applications because system documentation tends to be inadequate or out-of-
date and because the information we seek is not explicit in the code [DDN02,
SLMD96, LRP95]. On the other hand, these dependencies play a part in im-
plicit contracts between the various software artifacts of the system. A developer
making changes or extensions to an object-oriented system must therefore un-
derstand the dependencies among the classes or risk that seemingly innocuous
changes break the implicit contracts they play a part in [SLMD96]. In short,
implicit, undocumented dependencies lead to fragile systems that are difficult to
extend or modify correctly.

Due to the complexity and size of present-day software systems, it is clear
that a software engineer would benefit from a (semi-)automatic tool to help cope
with these problems.

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 95–112, 2005.
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96 G. Arévalo, S. Ducasse, and O. Nierstrasz

Formal Concept Analysis provides a formal framework for recognizing groups
of elements that exhibit common properties. It is natural to ask whether FCA
can be applied to the problem of recognizing implicit, recurring dependencies
and other design artifacts in complex software systems.

From our viewpoint, FCA is a metatool that we use as tool builders to build
new software engineering tools to analyze the software. The software engineer is
considered to be the end user for our approaches, but his knowledge is needed to
evaluate whether the results provided by the approaches are meaningful or not.

Over the past four years, we have developed an approach based on FCA to
detect undocumented dependencies by modeling them as recurring sets of prop-
erties over various kinds of software entities. We have successfully applied this
approach to a variety of different reverse engineering problems at different levels
of abstraction. At the level of classes, FCA helps us to characterize how the
methods are accessing state and how the methods commonly collaborate inside
the class [ADN03]. At the level of the class hierarchy, FCA helps us to identify
typical calling relationships between classes and subclasses in the presence of late
binding and overriding and superclass reuse [Aré03]. Finally, at the application
level, we have used FCA to detect recurring collaboration patterns and program-
ming idioms [ABN04]. We obtain, as a consequence, views of the software at a
higher level of abstraction than the code. These high level views support oppor-
tunistic understanding [LPLS96] in which a software engineer gains insight into
a piece of software by iteratively exploring the views and reading code.

In this paper we summarize our approach and the issues that must be taken
into consideration to apply FCA to software artifacts, we briefly outline our three
case studies, and we conclude by evaluating the advantages and drawbacks of
using FCA as a metatool for our reverse engineering approaches.

2 Overview of the Approach

In this section we describe a general approach to use FCA to build tools that
identify recurring sets of dependencies in the context of object-oriented software
reengineering. Our approach conforms to a pipeline architecture in which the
analysis is carried out by a sequence of processing steps. The output of each
step provides the input to the next step. We have implemented the approach as
an extension of the Moose reengineering environment [DLT00].

The processing steps are illustrated in Figure 1. We can briefly summarize
the goal of each step as follows:

– Model Import: A model of the software is constructed from the source code.
– FCA Mapping: A FCA Context (Elements, Properties, Incidence Table) is

built, mapping from metamodel entities to FCA elements (referred as objects
in FCA literature) and properties (referred as attributes in FCA literature)1.

1 We prefer to use the terms element and property instead of the terms object and
attribute in this paper because the terms object and attribute have a very specific
meaning in the object oriented programming paradigm.
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Fig. 1. The overall approach

– ConAn Engine: The concepts and the lattice are generated by the ConAn
tool.

– Post-Filtering: Concepts that are not useful for the analysis are filtered out.
– Analysis: The concepts are used to build the high level views.

A key aspect of our approach is that one must iterate over the modeling and
the interpretation phases (see Figure 1). The modeling phase entails a process of
experimentation with smaller case studies to find a suitable mapping from the
source code model to FCA elements and properties. A particular challenge is to
find a mapping that is efficient in terms of identifying meaningful concepts while
minimizing the quantity of data that must be processed.

The interpretation phase is the other iterative process in which the output
of the modeling phase is analyzed in order to interpret the resulting concepts in
the context of the application domain. The useful concepts can then be flagged
so that future occurrences can be automatically detected. As more case studies
are analyzed, the set of identifiably useful concepts typically increases up to a
certain point, and then stabilizes.

We must remark that, from our experiences, there are two main participants
in the approach: the tool builder and the software engineer. The tool builder
builds the FCA-based tool to generate the high level views, and the software
engineer uses the results provided by the tool to analyze a piece of software.
Both of them work together in the modeling and interpretation phase of the
approach, because software engineer has the knowledge of analyzing a system
and the tool builder can represent this knowledge in the tool.
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We will now describe each processing step in detail and outline the key issues
that must be addressed in order to apply the approach.

Model Import

Description: Our first step is to build a model of the application from the
source code. For this purpose we use the Moose reengineering platform, a research
vehicle for reverse and reengineering object-oriented software [DDN02]. Software
models in Moose conform to the Famix metamodel [TDDN00], a language-in-
dependent metamodel for reengineering. Moose functions both as a software
repository for these models, and as a platform for implementing language-inde-
pendent tools that query and manipulate the models.
Issues: In this step the most important issue is how to map the source code to
metamodel entities. The main goal of this step is to have a language-independent
representation of the software. In our specific case, we use the Famix metamodel,
which includes critical information such as method invocations and attribute
accesses. The tool builder can, however, choose any suitable metamodel.

FCA Mapping

Description: In the second step, we need to map the model entities to elements
and properties, and we need to produce an incidence table that records which
elements fullfil which property. The choice of elements and properties depends
on the view we want to obtain.
Issues: This is a critical step because several issues must be considered. Each
of these issues is part of the iterative modeling process.

– Choice of Elements: First we must decide which metamodel entities are
mapped to FCA elements. This is normally straightforward. In most cases
there are some particular metamodel entities that are directly adopted as
FCA elements (e.g., classes, methods). Alternatively, a FCA element may
correspond to a set of entities (e.g., a set of collaborating classes).

– Compact Representation of Data: In some cases, a näıve mapping from meta-
model entities to FCA elements may result in the generation of massive
amounts of data. In such cases, it may well be that many elements are in
fact redundant. For example, if method invocations are chosen as FCA ele-
ments, it may be that multiple invocations of the same method do not add
any new information for the purpose of applying FCA. By taking care in how
FCA elements are generated from the metamodel, we can not only reduce
noise, but we can also reduce the cost of computing the concepts.

– Choice of Properties: Once the issue of modeling FCA elements is decided,
the next step is to choose suitable properties. Well-chosen properties achieve
the goal of distinguishing groups of similar elements. This means that they
should neither be too general (so that most elements fulfill them) nor be too
specific (so only few elements fulfill them).

– Use of Negative Properties: Nevertheless, in some cases the developer needs
still more properties to distinguish the elements. But simply adding more
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properties may only increase the complexity of the approach. The use of
“negative” information (built by negating existing properties) may help.

– Single or Multiple FCA Contexts: In some cases, multiple FCA contexts may
be required. For example, in the XRay views case study, one context was used
to analyze state and another to analyze behavior.

– Computation of Properties or Elements: When building the FCA context of
a system to analyze, there are two alternatives for the FCA mapping. In an
one-to-one mapping, the developer directly adopts metamodel entities and
metamodel relationships as FCA elements and properties respectively. In a
many-to-one the developer builds more complex FCA elements and prop-
erties by computing them from the metamodel entities and relationships,
meaning for example that an FCA element can be composed of several meta-
model entities, or an FCA property must be calculated based on metamodel
relationships between different entities. This issue is one of the bottlenecks
in the total computation time of the approach, because the incidence table
must be computed in this step and if the FCA property must be calculated,
this time can also compromise the total computation time.

ConAn Engine

Description: Once the elements and properties are defined, we run the ConAn
engine. The ConAn engine is a tool implemented in VisualWorks 7 which runs
the FCA algorithms to build the concepts and the lattice. ConAn applies the
Ganter algorithm [GW99] to build the concepts and our own algorithm to build
the lattice [Aré05].
Issues: In this step, there are two main issues to consider

– Performance of Ganter Algorithm: Given an FCA Context C = (E,P, I),
the Ganter algorithm has a time complexity of O(|E|2|P |). This is the second
bottleneck of the approach because in our case studies the number of FCA
elements is large due to the size of the applications. We consider that |P| is
not a critical factor because in our cases studies the maximum number of
properties is 15.

– Performance of Lattice Building Algorithm: Our algorithm is the simplest
algorithm to build the lattice but the time complexity is O(n2) where n
is the number of concepts calculated by Ganter algorithm. This is the last
bottleneck of the approach.

– Unnecessary Properties: It may happen that certain properties are not held
by any element. Such properties just increase noise, since they will percolate
to the bottom concept of the lattice, where we have no elements and all
properties of the context.

Post-filtering

Description: Once the concepts and the lattice are built, each concept consti-
tutes a potential candidate for analysis. But not all the concepts are relevant.
Thus we have a post-filtering process, which is the last step performed by the
tool. In this way we filter out meaningless concepts.
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Issues: In this step, there are two main issues to consider:

– Removal of Top and Bottom Concepts: The first step in post-filtering is to
remove the top and bottom concepts. Neither provides useful information for
our analysis because each one usually contains an empty set. (The intent is
empty in the top concept and the extent is empty in the bottom concept).

– Removal of Meaningless Concepts: This step depends on the interpretation
we give to the concepts. Usually concepts with only a single element or
property are candidates for removal because the interesting characteristic of
the approach is to find groups of elements sharing common characteristics.
Concepts with only a single element occur typically in nodes next to the
bottom of the lattice, whereas concepts with only one property are usually
next to the top of the lattice.

Analysis

Description: In this step, the software engineer examines the candidate con-
cepts resulting from the previous steps and uses them to explore the different
implicit dependencies between the software entities and how they determine or
affect the behavior of the system.
Issues: In this step, there are several issues to consider. All of them are related
to how the software engineer interprets the concepts to get meaningful or useful
results.

– Concept Interpretation Based on Elements or Properties: Once the lattice
is calculated, we can interpret each concept C = ({E1 . . . En}, {P1 . . . Pm})
using either its elements or its properties. If we use the properties, we try
to associate a meaning to the conjunction of the properties. On the other
hand, if we focus on the elements, we essentially discard the properties and
instead search for a domain specific association between the elements (for
example, classes being related by inheritance).

– Equivalent Concepts: When we interpret the concepts based on their proper-
ties, we can find that the meaning of several concepts can be the same. This
means that for our analysis, the same meaning can be associated to different
sets of properties.

– Automated Concept Interpretation: The interpretation of concepts can be
transformed into an automatic process. Once the software engineer estab-
lishes a meaning for a given concept, this correspondence can be stored in
a database. The next time the analysis is performed on another case study,
the established interpretations can be retrieved and automatically applied
to the concepts identified. Once this process is finished, the software engi-
neer must still check those concepts whose meaning has not been identified
automatically.

– Using Partial Order in the Lattice: The concepts in the lattice are related
by a partial order. During analysis, the software engineer should evaluate
if it is possible to interpret the partial order of the lattice in terms of soft-
ware relationships. This means that the software engineer should only not
interpret the concepts but also the relationships between them.
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– Limit of Using FCA as a Grouping Technique: When additional case stud-
ies fail to reveal new meaningful concepts, then the application of FCA has
reached its limit. At this point, the set of recognized concepts and their inter-
pretations can be encoded in a fixed way, for example, as logical predicates
over the model entities, thus fully automating the recognition process and
bypassing the use of FCA.

3 High Level Views in Reverse Engineering

Using the approach we have introduced in the previous section, we have gen-
erated different views at different abstraction levels for object oriented appli-
cations. We present each analysis according to a simple pattern: Reengineering
Goal, FCA Mapping, High Level Views, Validation, Concrete Examples and Is-
sues. Reengineering Goal introduces the analysis goal of the corresponding high
level view. FCA Mapping explains which are the chosen elements and properties
of the context for the analysis. High level view presents how the concepts are
read to interpret which of them are meaningful or not for our analysis and how
we use them to build the corresponding high level views. Validation summarizes
some results of the case studies. Concrete Examples presents some examples
found in the specific case study. Issues summarizes briefly which were the main
issues taken into account to build the high level view.

3.1 Understanding a Class: XRay Views

Reengineering Goal: The goal is to understand the internal workings of a
class by capturing how methods call each other and how they collaborate in
accessing the state. We focus on analyzing a class as an isolated development
unit [ADN03].

FCA Mapping: The elements are the methods (labelled m or n) and the at-
tributes (labelled a) of the class, and the properties, are:

– m reads or writes the value of a
– m calls via-self n in its body
– m is abstract in its class
– m is concrete in its class
– m is an “interface” (not called in any method defined in the same class)
– m is “stateless” (doesn’t read or write any attribute defined in the class)

High Level Views: A XRay view is a combination of concepts that exposes
specific aspects of a class. We have defined three XRay views: State Usage,
External/Internal Calls and Behavioural Skeleton. These three views
address different but logically related aspects of the behavior of a class.

State Usage focuses on how the behavior accesses the state of the class,
and what dependencies exist between groups of methods and attributes. This
view helps us to measure the class cohesion [BDW98] revealing whether there
are methods using the state partially or totally and whether there are attributes
working together to provide different functionalities of the class.
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Behavioural Skeleton focuses on methods according to whether or not
they work together with other methods defined in the class or whether or not
they access the state of the class. The way methods form groups of methods that
work together also indicates how cohesive the class is [BDW98].

External/Internal Calls focuses on methods according to their partic-
ipation in internal or external invocations. Thus, this view reveals the overall
shape of the class in terms of its internal reuse of functionality. This is impor-
tant for understanding framework classes that subclasses will extend. Interface
methods, for example, are often generic template methods, and internal methods
are often hook methods that should be overridden or extended by subclasses.
Validation: We have applied the XRay views to three Smalltalk classes: Ordered-
Collection (2 attributes, 54 methods), Scanner(10 attributes, 24 methods) and
UIBuilder(18 attributes, 122 methods). We chose these particular three classes
because they are different enough in terms of size and functionality and they
address well-known domains. In general terms, we discovered that in Ordered-
Collection most of the methods access all the state of the class, that there is little
local behavior to be reused or extended by subclasses because the class works
with inherited methods, and there are few collaborations among the methods.
UIBuilder is a class where most of the methods are not invoked in the class
itself, meaning the internal behavior is minimal, and we have a large interface.
This class offers a lot of functionality to build complex user interface and also
several ways to query its internal state. In Scanner, the collaboration between
methods occurs in pairs and there are no groups of methods collaborating with
other groups.
Concrete Examples: We illustrate this case study with the XRay State Us-
age found in the Smalltalk class OrderedCollection. This view is composed of
several concepts, and it clusters attributes and methods according to the way
methods access the attributes. The motivation for this view is that, in order to
understand the design of a class, it is important to gain insight into how the
behaviour accesses the state, and what dependencies exist between groups of
methods and attributes. This view helps us to measure the cohesion of the class
[BDW98], thereby revealing any methods that use the state partially or totally
and any attributes that work together to provide different functionalities of the
class.

Some of the concepts occurring in State Usage are the following:

– {before, removeAtIndex:, add:beforeIndex:, first, removeFirst, removeFirst:, addFirst
} reads or writes {firstIndex } represents the Exclusive Direct Accessors of firstIn-
dex.

– {after, last, removeIndex:, addLastNoCheck:, removeLast, addLast:, removeLast: }
reads or writes {lastIndex } represents the Exclusive Direct Accessors of lastIndex

– {makeRoomAtFirst, changeSizeTo:, removeAllSuchThat:, makeRoomAtLast, do:,
notEmpty:, keysAndValuesDo:, detect:ifNone:, changeCapacityTo:, isEmpty, size, re-
move:ifAbsent:, includes:, reverseDo:, find:, setIndices, insert: before:, at:, at:put:,
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includes: } reads or writes {firstIndex, lastIndex } represents the Collaborating
Attributes

– Stateful Core Methods = the same set as Collaborating Attributes

Before analysing the concepts identified by this view, we posed the hypothesis
that the two attributes maintain an invariant representing a memory zone in the
third anonymous attribute. From the analysis we obtain the following points:

– By browsing Exclusive Direct Accessors methods, we confirm that the nam-
ing conventions used help the maintainer to understand how the methods
work with the instance variables, because we see that the method removeFirst
accesses firstIndex and removeLast: accesses lastIndex.

– The numbers of methods that exclusively access each attribute are very
similar, however, we discover (by inspecting the code) that firstIndex is mostly
accessed by readers, whereas lastIndex is mostly accessed by writers.

– It is worth noting that Collaborating Attributes are accessed by the same meth-
ods that are identified as Stateful Core Methods. This situation is not common
even for classes with a small number of attributes, and reveals a cohesive col-
laboration between the attributes when the class is well-designed and gives
a specific functionality, in this specific case, dealing with collections.

– We identified 20 out of 56 methods in total that systematically access all the
state of the class. By further inspection, we learned that most of the accessors
are readers. There are only five methods, makeRoomAtFirst, makeRoomAtLast,
setIndices, insert:before:, and setIndicesFrom:, that read and write the state at the
same time. More than half of the methods (33 over 56) directly and indirectly
access both attributes. This confirms the hypothesis that the class maintains
a strong correlation between the two attributes and the anonymous attribute
of the class.

All these facts confirm the hypothesis that the class maintains a strong cor-
relation between the two attributes and the anonymous attribute of the class.
Issues: We mention some important issues about this approach.

– Choice of Elements and Properties. Elements and properties are mapped
directly from the metamodel: the elements are attributes and methods, and
the properties are accesses to attributes and calls to methods.

– Compact Representation of Data. Supposing you have two methods m and
n and one attribute a, if we have several calls to the method n or accesses
to the attribute a in the method body of m, we just keep one representative
of n and a related to the method m.

– Multiple FCA Contexts. In this case, we have used two lattices. The first
one is used to analyze the state of the class and the second one is used to
analyze the invocations of the class. We did not combine this information in
a single lattice because we consider them to be completely different aspects
of the class.

– Unnecessary Properties. In some classes, the following properties isAbstract,
isStateless, isInterface are discarded. This is normal because in any given
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class, it commonly occurs that all methods are concrete, or that all the
methods access the state, or that most methods are called inside the class.

– Meaningless Concepts. We discarded concepts with a single method in the set
of elements, because we were more focused on groups of methods (represented
in the elements) collaborating with another group of methods (represented
in the properties).

3.2 Analyzing Class Hierarchies: Dependency Schemas

Reengineering Goal: Using the state and behavior of a class we analyze the
different recurring dependencies between the classes of a hierarchy. They help us
to understand which are the common and irregular design decisions taken when
the hierarchy was built, and possible refactorings that were carried out [Aré03].

FCA Mapping: The elements are the accesses to any attribute defined in any
classes of the hierarchy, and the called methods in any class of the hierarchy.
If i is an invoked method or accessed attribute, and C, C1, C2 are classes, the
properties are grouped as follows:

– Kind of calls: C invokes i via self and C invokes i via super
– Location of accessed state: i accesses { local state, state in Ancestor C1,

state in Descendant C1 }
– Kind and Location of invoked method: { is abstract , is concrete, is cancelled

} × { locally , in ancestor C1 of C , in descendant C1 of C }

High Level Views: A dependency schema is a recurring set of dependencies
(expressed with the properties of the concepts) over methods and attributes in
a class hierarchy. We have identified 16 dependency schemas that are classified
as:

Classical schemas representing common idioms/styles that are used to build
and extend a class hierarchy.

Bad Smell schemas representing doubtful designs decisions used to build
the hierarchy. They are frequently a sign that some parts should be completely
changed or even rewritten from scratch.

Irregularity schemas representing irregular situations used to build the hier-
archy. Often the implementation can be improved using minimal changes. They
are less serious than bad smell schemas.

Thus we see that the dependency schemas can be a good basis for identifying
which parts of a system are in need of repair. These schemas can be used in two
different ways: Either we obtain the global view of the system and which kinds
of dependencies and practices occur when analyzing a complete hierarchy, or we
get detailed information about how specific classes are related to others in their
hierarchy by restricting the analysis to just those classes.

Validation: We have validated dependency schemas in three Smalltalk class hi-
erarchies: Collection (104 classes distributed in 8 inheritance levels, 2162 meth-
ods, 3117 invocations, 1146 accesses to the state of the classes), Magnitude and
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Model. Collection is an essential part of the Smalltalk system and it makes use of
subclassing for different purposes. In this class hierarchy, the most used classi-
cal schemas are (1) the reuse of superclass behavior, meaning concrete methods
that invokes superclass methods by self or super, (2) local behavior, meaning
methods defined and used in the class that are not overridden in the subclasses
and (3) local direct access, meaning methods that directly access the class state.
In general terms, this means that the classes define their own state and behavior
but they exhibit heavy superclass reuse. Within bad smell schemas, the most
common is the ancestor direct state access meaning methods that directly ac-
cess the state of an ancestor, bypassing any accessors. This is not a good coding
practice since it violates class encapsulation. Within irregularity schemas the
most common case is that of inherited and local invocations where methods are
invoked by both self and super sends within the same class. This may be a
problem if the super sends are invoked from a method with a different name.
This is an irregular case because the class is overriding the superclass behavior
but is indirectly using the superclass behavior.

Concrete Examples: We illustrate this case study with the schema named
Broken super send Chain, which is categorized as a Bad Smell schema. It was
found in the analysis of the Smalltalk class OrderedCollection.

Within the “Bad Smell” category, we have the schema Broken super send
Chain (shown in Figure 2). It is composed of the following elements and prop-
erties:

– C invokes i via super : {representBinaryOn:, =} are super-called in SortedCollec-
tion

– i is concrete locally : {representBinaryOn:, =} has concrete behavior in Sorted-
Collection.

– i is concrete in ancestor C1 of C : {representBinaryOn:, =} has concrete be-
havior in ancestor SequenceableCollection of SortedCollection.

– i is concrete in descendant C1 of C : {representBinaryOn:, =} has concrete
behavior in descendant SortedCollectionWithPolicy of SortedCollection.
This schema identifies methods that are extended (i.e., performing a super

send) in a class but redefined in their subclasses without calling the overridden
behavior, thus giving the impression of breaking the original extension logic. In
SortedCollection the methods = and representBinaryOn: invoke hidden superclass
methods. But the definitions of these methods in the subclass SortedCollection-
WithPolicy do not invoke the super methods defined in SortedCollection. Such a
behavior can lead to unexpected results when the classes are extended.
Issues: We mention some important issues about this approach.

– Choice of Elements and Properties. We map the attribute accesses and
method calls directly from the metamodel. The choice of properties requires
some analysis, because we need to cover the different possible inheritance re-
lationships of the elements. The properties in the category Kinds of calls are
mapped directly from the metamodel the rest of the properties are calculated
based on the relationships expressed in the metamodel.
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– Single Context. In this case, we just use only one lattice, because we analyze
only one aspect of classes: inheritance relationships.

Fig. 2. Broken super send Chain

– Compact Representation of Data. Supposing
you have one method m and one attribute a
in a class C. If we have several calls to the
method m or accesses to the attribute a in
several methods of the class C, we just keep
one representative of the call to n and of the
access to a related to the class C.

– Use Negative Properties. We define three
negative properties because they help us to
complement the information of the elements
considering the three inheritance relation-
ships used in the approach: local, ancestor
and descendant definitions.

– Meaningless Concepts. All the meaningful
concepts must show either a positive or neg-
ative information about the 3 relationships:
local, ancestor and descendant, and have at
least one property of category kinds of calls
(invokes i via self or via super). The rest of
the concepts are discarded.

3.3 Collaborations Patterns on Applications

Reengineering Goal: We analyze the different patterns used in a system using
structural relationships between classes in a system. We call them Collaboration
Patterns and they show us not only classical design patterns [GHJV95] but
any kind of repeated patterns of hidden contracts between the classes, which
may represent design patterns, architectural constraints, or simply idioms and
conventions adopted for the project. With these patterns, we analyze how the
system was built and which are the main constraints it respects [ABN04]. This
approach refines and extends that which was proposed by Tonella and Antoniol
[TA99] for detecting classical design patterns.

FCA Mapping: The elements are tuples composed of classes from the analyzed
application. The order refers to length of the tuples. In our cases, we have ex-
perimented with order 2, 3 and 4. The properties are relations inside one class
tuple, and are classified as binary and unary properties. The binary property
characterizes a relationship between two classes inside the tuple, and the unary
property gives a characteristic of a single class in the tuple. Given a tuple com-
posed of classes (C1, C2, .....Cn), the properties are:

– Binary Property: For any i, j, 1 ≤ i, j ≤ n, Ci is subclass of Cj , Ci accesses
Cj , Ci has as attribute Cj , Ci invokes Cj , Ci uses locally Cj
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– Unary Property: For any i, 1 ≤ n, Ci is abstract, Ci is root, Ci is singleton,
Ci has local defined method.

High Level Views: The concepts are composed of groups of tuples of classes
that share common properties. The conjunction of these properties character-
izes the pattern that all the tuples in the concept represent. Each meaningful
concept represents a candidate for a pattern. Based on our case studies using
tuples of classes of length 3 and 4, we have identified 8 collaboration patterns.
4 of 8 patterns exhibit the structural relationships of known design patterns
(Facade, Composite, Adapter and Bridge). The rest of the identified patterns
called Subclass Star, Subclass Chain, Attribute Chain and Attribute Star show
the relationships among classes based on inheritance or on invocations, but not
combined at the same time. The frequency of the patterns helps the developer
to identify coding style applied in the application. The most interesting contri-
bution of this high level view is the possibility of establishing a called pattern
neighbourhoods over detected patterns. With the neighbours of the patterns, we
can detect either missing relationships between classes needed to complete a pat-
tern, or excess relationships between classes that extend a pattern. We can also
analyze the connections of the identified patterns with the classes implemented
in the analyzed application.

Validation: We have investigated the collaboration patterns in three Smalltalk
applications: (1) ADvance 2(167 classes, 2719 methods, 14466 lines of code) is
a multidimensional OOAD-tool for supporting object-oriented analysis and de-
sign, reverse engineering and documentation, (2) SmallWiki 3 (100 classes, 1072
methods, 4347 lines of code) is a new and fully object-oriented wiki implementa-
tion in Smalltalk and (3) CodeCrawler 4 (81 classes, 1077 methods, 4868 lines of
code) is a language independent software visualization tool. These three appli-
cations have different sizes and complexity. We briefly summarize some results
related to coding styles. We have seen that frequency and the presence of a pat-
tern in a system is besides domain specific issues of coding style. In our case
studies we have seen that CodeCrawler has a lot of Subclass Star and Facade
patterns, whereas SmallWiki has a lot of Attribute Chain and Attribute Star
patterns. Advance is the only application with the Composite pattern.

Concrete Examples: We illustrate this case study showing two collaboration
patterns named Attribute Chain and Subclass Chain that were found in the tool
CodeCrawler (shown in the Figure 4).

Pattern Subclass Chain in order = 3 is described with the following properties:
C3 is subclass of C2, {C2 is subclass of C1, C1 is abstract}, and in order = 4
the property C4 is subclass of C3 is added. Pattern Attribute Chain in order =
3 is described with the following properties: {C1 invokes C2, C2 invokes C3 and
C1 is abstract}, and in order = 4 the property C3 invokes C4 is added. Pattern

2 http://www.io.com/ icc/
3 http://c2.com/cgi/wiki?SmallWiki
4 http://www.iam.unibe.ch/ scg/Research/CodeCrawler/index.html
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Fig. 3. Composite Pattern

a.

b.

c.

d.

Fig. 4. Subclass Chain (a)(b) and Attribute Chain
(c)(d) in order = 3 and order = 4. Number in the
classes indicate position in the tuple

Composite (shown in the Figure 3) is described with the following properties:
{C2 is subclass ofC1, C3 is subclass of C1, C3 invokes C1, C1 is abstract}.

The first two patterns help us to analyze some coding styles used in
CodeCrawler. We have found 25 instances of 3 classes (order = 3) of Attribute
Chain but no instances of 4 classes (order = 4). This means that in this appli-
cation the developer has used at most 3 levels of delegation between the classes.
Thus, if we detect a case of delegation in a method in a class in CodeCrawler,
we are sure that this delegation will relate 2 or 3 classes. In the case of Subclass
Chain, we have found 11 instances of 3 classes (order = 3) but only 3 instances
of 4 classes (order = 4). This means that in this application most of hierarchies
have 3 levels of inheritance and only some of them have 4 levels of inheritance.
This is a symptom that the application uses flat hierarchies in its implemen-
tation. Related to the idea of pattern neighbourhood, as we have said exploring
the neighbours of a pattern is important to detect all candidates for a classical
pattern. For example, we have found the Abstract Composite pattern of order
o = 3 of the ADvance application. We have detected two Abstract Composite
patterns, but in the neighborhood we find four more Composite patterns without
an abstract composite root.
Issues: We mention some important issues about this approach.

– Choice of elements and properties. Elements are tuples of classes built from
the metamodel. As our case study refines the work of Tonella and Antoniol
[TA99] we use the same idea to build the elements. The choice of properties
is the set of the structural relationships to characterize Structural Design
Patterns [GHJV95]. Except the properties is subclass of and is abstract
that are mapped directly from the metamodel, the rest of properties are
computed from the metamodel.

– Compact representation of data. This issues is related to how the tuples
of classes are generated. We avoid generating all permutations of class se-
quences in the tuples. For example, if the tuple (C A P) is generated, and
we subsequently generate (A P C) or (C P A), we only keep one of these as
being representative of all three alternatives.
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– Multiple Contexts. In this case, we have used 3 lattices. Each lattice is for
one order of the elements: 2, 3 and 4. All use the same set of properties.

– Performance of the algorithm. With the tuples of classes of order more than 4,
we are not able to have a reasonable computation time of the algorithm. With
one of the applications using tuples of classes of order 4, the computation
time took around 2 days and this is not acceptable time from our viewpoint
to software engineering.

– Meaningless concepts. As we said previously, each concept is a candidate
for a pattern. In this case, each concept represents a graph in which the
set of the elements is the set of nodes, and the set of properties define the
edges that should connect the nodes, e.g., if (A P C) has the properties A is
subclass of P and P uses C, then we have a graph of 3 nodes with edges from
A to P and from P to C. Thus we discarded all the concepts that represent
graphs in which one or several nodes are not connected at all with any node
in the graph.

– Mapping Partial Order of the Lattice. In this case, we map the partial order
of the lattice to the definition of neighbours of a pattern. We can detect
either missing relationships between classes needed to complete a pattern,
or excess relationships between classes that extend a pattern.

– Limits of Collaboration Patterns. In this high level view, we consider that
there are still possible new collaboration patterns to detect when applying
the approach in other applications.

4 Lessons Learned

In general terms, we have seen that Formal Concept Analysis is a useful tech-
nique in reverse engineering. From our experiencies [Aré03, ABN04, ADN03] in
developing this approach, several lessons learned are worthwhile mentioning.

Lack of a General Methodology. The main problem we have found in the
state of the art is the lack of a general methodology for applying FCA to the
analysis of software. In most publications related to software analysis, the au-
thors only mention the FCA mapping as a trivial task, and how they interpret
the concepts. With our approach, we achieved not only to identify clear steps
for applying FCA to a piece of software but where we have identified different
bottlenecks in using the technique.

Modelling Software Entities as FCA Components. The process of mod-
elling software entities as FCA components is one of most difficult tasks and we
consider it as one of the critical steps in the approach. Modelling is an itera-
tive process in which we map software entities to FCA components, and we test
whether they are useful enough to provide meaningful results. This task is not
trivial at all, because it entails testing at least 5 small case studies (which should
be representative of larger case studies). Each case study should help to refine
the building of FCA components.
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Performance of FCA Algorithms. Part 1 The performance of the algo-
rithms (to build the concepts and lattice) was one of main bottlenecks. In small
case studies, this factor can be ignored because the computation time is insignif-
icant. But in large case studies this factor can cause the complete approach
to fail because computing the concepts and the lattice may take several hours
(eventually days).

Performance of FCA Algorithms. Part 2 The computation of the FCA
algorithms is also affected by how they are implemented in a chosen language.
A direct mapping of the algorithms (in pseudo-code, as they are presented in
books) to a concrete programming language is not advisable. In our specific case,
we took advantage of efficient data structures in Smalltalk language to represent
the data and improve the performance.

Supporting Software Engineers. The result of our experiences must be read
by software engineers. One positive issue in this point is that with the high level
views the software engineer is not obliged to read the concept lattices , meaning
that he need not be a FCA expert.

Interpretation of the Concepts. Although we can have an adequate choice of
FCA elements and properties, the interpretation of the concepts is a difficult and
time-consuming task. In most of the cases, we have tried to associate a meaning
(a name) to each concept based on the conjunction of its properties. This task
must be done by a software engineer applying opportunistic code reading to
get meaningful interpretations. This process is completely subjective because it
depends on the knowledge and experience of the software engineer.
Use of the Complete Lattice. Not all the concepts have a meaning in our
approach, so we do not use the complete lattice in our analysis. In most of the
cases, we remove meaningless concepts because from software engineering view-
point they did not provide enough information for the analysis. We hypothesize
that in certain cases it may be possible to use the complete lattice, but we did
not find any.
Use of the Partial Order. Another critical factor is the interpretation of the
partial order of the lattice in terms of software relationships. Only in Collabora-
tion Patterns we were able to obtain a satisfactory interpretation of the partial
order. So far, the interpretation is not a trivial task.

5 Related Work

Several researchers have also applied FCA to the problem of understanding ob-
ject oriented software. Dekel uses CA to visualize the structure of the class in
Java and to select an effective order for reading the methods and reveal the state
usage [Dek03]. Godin and Mili [GMM+98] use concept analysis to maintain, un-
derstand and detect inconsistencies in the Smalltalk Collection hierarchy. They
show how Cook’s [Coo92] earlier manual attempt to build a better interface
hierarchy for this class hierarchy (based on interface conformance) could be au-
tomated. In C++, Snelting and Tip [ST98] analysed a class hierarchy making
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the relationship between class members and variables explicit. They were able
to detect design anomalies such as class members that are redundant or that can
be moved into a derived class. As a result, they propose a new class hierarchy
that is behaviorally equivalent to the original one. Similarly, Huchard [HDL00]
applied concept analysis to improve the generalization/specialization of classes
in a hierarchy. Tonella and Antoniol [TA99] use CA to detect the structure of
Gamma-style design patterns using relationships between classes, such as inher-
itance and composition.

6 Conclusions and Future Work

In this paper we present a general approach for applying FCA in reverse engineer-
ing of object oriented software. We also evaluate the advantages and drawbacks
of using FCA as a metatool for our reverse engineering approaches. We also
identify the different bottlenecks of the approach. Thus, we are able to focus
clearly on solving which and where the limitations appear (if there are some
possible solutions) to draw the maximum benefit offered by FCA. From our tool
builder viewpoint, we have proven that FCA is an useful technique to identify
groups of software entities with hidden dependencies in a system. With FCA, we
have built different software engineering tools that help us to generate high level
views at different levels of abstraction of a system. We generate the high level
views because without them, the software engineer should be obliged to read
the lattice. This can represent a problem because in most of the cases, besides
the useful information, the lattice can also have useless information that can
introduce noise in analyzing a system.

Our future work is focused on several research directions that consist of: (1)
the development of new case studies to analyze how useful the approach is or if
there are still some refinements and improvements to do, (2) Testing with other
concept and lattice building algorithms to see if we can improve the computation
time of the ConAn engine and(3) Analysis of the partial order to get possible
mappings in terms of software engineering relationships.
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[ADN03] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. X-Ray views:
Understanding the internals of classes. In Proceedings of ASE 2003, pages
267–270. IEEE Computer Society, October 2003. Short paper.
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[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[Dek03] Uri Dekel. Revealing java class structures using concept lattices. Diploma
thesis, Technion-Israel Institute of Technology, February 2003.
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Abstract. Information technology of today is often concerned with information
that is not only large in quantity but also complex in structure. Understanding
this structure is important in many domains – many quantitative approaches such
as data mining have been proposed to address this issue. This paper presents a
conceptual approach based on Formal Concept Analysis. Using software source
code as an example of a complex structure we present a framework for concep-
tually analysing relational structures. In our framework, a browsable space of
sub-contexts is automatically derived from a database of relations augmented by
a rule engine and schema information. Operations are provided for the user to
navigate between sub-contexts. We demonstrate how the use of these operations
can lead to quick identification of an area of software source code that establishes
an unecessary dependency between software parts.

1 Introduction

Many modern information systems contain not only large amounts of information, but
also complex structures. From operating on large but simple tables, information tech-
nology moved on to complex models represented by object-relational structures. This
can be seen in the database world in the form of Entity-Relationship Modeling (ER) or
Object-Role Modeling (ORM) [Hal96], it can be found in Object-Oriented Program-
ming (OOP) and it is the basis of disciplines such as Knowledge Engineering (KE)
[Smi96].

While modeling tools have been advanced over time to accommodate the complex-
ity found, approaches to retrieve information from such structured sources are not much
more sophisticated than they were decades ago. The main methods of querying are still
based on relational joins and projections, combined with statistical methods to reduce
the resulting information into sizes a human can handle. But while the result of the for-
mer usually produces tabular data too large to be understood in its entirety, the latter
suffers from reducing information in an opaque manner.

Formal Concept Analysis (FCA) [GW99] is a successful technique of data analysis
for data that fits well into the structure of a many-valued context. But while the structure
of a many-valued context (attribute-value data) is common, it is still quite restricting,
requiring the identification of a single object set and assuming functional dependencies.
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In many examples significant steps were required in order to convert relational data into
the form of a many-valued context.

To address this issue, this paper proposes other approaches to use FCA in combina-
tion with relationally structured data. This does not only apply to relational databases,
but also knowledge bases in the sense of Conceptual Graphs or RDF. Other data can
often be mapped into a suitable structure easily; in this paper we will demonstrate the
techniques with an example analysing software source code.

Part of the problem posed by complex data is that the user has to be able to select
views on the whole data, which can be displayed and understood easily. T sys-
tems solve this problem by predefining a number of scales to be used. Since the scales
are predefined it can be the case during analysis that desired scales have not yet been
constructed, or that constructed scales are never used. If the number of scales is large
it can also become difficult for the user to identify which scale meeting their analysis
requirements. Furthermore structural changes on the input data can invalidate scales.

To overcome these problems we propose a different approach: defining and using
a navigation space. The navigation space consists of points and functions. A point in
the navigation space corresponds to a view on the data. The user moves from point to
point within the space by selecting a function to apply to their current point. This mode
of goal directed interaction is akin to browsing within hypertext documents. Similar to
web browsers the user should be allowed to return to points visited earlier to follow
different paths of investigation.

We demonstrate that FCA can be used as a powerful visualisation technique for
querying complex relational structures by applying this notion of a navigation space to
a concrete example in the domain of software engineering.

Before we start the discussion of our approaches, Section 2 introduces the general
notion of relational structures and our problem domain: relational structures in software.
We then outline our approach in Section 3, before introducing the notion of a navigation
space in Section 4. Section 5 discusses our prototypical implementation, Section 6 gives
an overview of related work and Section 7 concludes the paper with an outlook on
further research.

2 Relational Structures

One of the most important building blocks of modern large-scale software systems is
the notion of a relational database. A relational database can be defined as:

Relational Database: [A] collection of data items organised as a set of
formally-described tables from which data can be accessed or reassembled in
many different ways without having to reorganise the database tables.1

Quite often the notion of a relational database is connected to relational model as de-
fined by E.F.Codd in [Cod70], which is historically correct, although technically mod-
ern databases do not use pure relational algebra due to the introduction of the NULL
value in SQL.

1 http://his.osu.edu/help/database/terms.cfm
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Sometimes the notion of a relational database is extended to the notion of an object-
relational database. In an object-relational database the relational structures are ex-
tended by introducing the notion of classes with an inheritance hierarchy: subclasses
inherit the attributes of their superclasses.

In the domain of Artificial Intelligence (AI) the term “knowledge base” (KB) is used
quite frequently. In [Smi96] a knowledge based is defined as follows:

Knowledge Base: A collection of facts and rules; the assembly of all the
information and knowledge from a particular problem domain.

The underlying definition of knowledge is that “Knowledge consists of symbols, the
relationships between them and rules or procedures for manipulating them.” [Smi96],
which is common in the area of AI.

Following these definitions the relevant distinction between a database and a knowl-
edge base is that the former stores only facts, while the latter also stores rules. Rules
can be implemented either by forward-chaining (deriving new facts from exiting facts
by applying the rules) or backward-chaining (testing goals by breaking them into sub-
goals). For the purposes of this paper we will use the term “knowledge base” in the
definition above and will not distinguish between the actual implementation of the stor-
age system.

2.1 Relational Structures in Software

Modern software systems are a rich source of structured information. This structured
information can be extracted automatically and is classified as either (i) static infor-
mation, extracted from programs without running them, or (ii) dynamic information
extracted from programs during their execution.

Even though modern software systems are highly structured, a significant part of the
structure cannot be captured explicitly within the software code with existing tools. For
example, software engineering promotes orthogonality as a desirable aspect of software
structure, yet it is often hard to define the exact meaning of orthogonality in a particu-
lar software design. The process of modifying software incrementally towards a better
and more orthogonal design has become increasingly interesting with larger software
projects. With the notion of refactoring [Fow99] this process has been formalised and
there is significant tool support in applying standard patterns of changes that enhance
software structure without changing the functionality of the program.

Modern software tools still fail to give much guidance in where and how to refactor.
Since within FCA orthogonality has a clear definition as a direct product of partial
orders, we see FCA as well placed to aid humans in the task of understanding software
structure in general and for the purpose of refactoring in particular.

For the purpose of this paper we consider the following artifacts of a Java program:
packages, classes, interfaces, methods, and fields. Java programs follow a document
model in which packages may contain packages, classes and interfaces. Classes and
interfaces contain method declarations, and classes may contain method definitions and
fields. Methods are identified by method signatures that define the method name and
its parameters types. Classes, methods and fields additionally have modifiers such as
public, private, synchronised or abstract attached to them.
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The artifacts in a Java program have unique names derived from the position of
that artifact within the program. Having unique names for objects in a domain greatly
simplifies the task of analysis since we can use those names as referents for the artifacts
and do not have to introduce artificial identifiers.

The relations between artifacts of a Java program we are interested in are: in,
calls, extends, and implements. The relation in is derived from the document struc-
ture of the source code. The relation calls tracks when one method potentially makes
a call to another method. If one class extends another class, then it inherits the fields
and methods of the class it extends, similar for interfaces extending other interfaces. A
class can implement an interface meaning that it takes the responsibility to provide the
methods defined within the interface.

We will occasionally refer to some of these relations with names common for soft-
ware engineering. The calls relation is called the static call graph, in is referred to as
containment relation and both extends and implements are considered inheritance
relations.

3 System Overview

Figure 1 gives an overview of our approach. A domain analyser extracts relational
structure from the domain, in our example the domain analyser is a utility to reconstruct
source code structure from Java programs.

A rule based system is then used to derive additional information from the data
extracted by the domain analyser, thus introducing abstractions which are specific to
the domain. Such additional relations can be transitive or reflexive closures or they can
be defined by set functions such as unions of other relations (which can be used to
generalise relations) or set-minus (which can be used to specialise relations).

Fig. 1. System Overview: Information is extracted by a source code analyser. A knowledge base
uses rules to interpret the information, provide a query interface and a definition of the schema.
A navigation space of concept lattices is automatically derived and made browsable by the user
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As an example, our domain analyser produces extends and implements as re-
lations between classes and interfaces. Both model the conceptually related notion of
inheritance and for our purposes it is sometimes useful to consider them as two aspects
of a larger relation is-derived-from. This is achieved in our system by adding a rule
that defines is-derived-from as the union of the two basic relations.

Our system applies the rules in a separate step before analysis of the data takes
place, deriving additional facts using forward-chaining. We are able to do this because
our rules have a finite closure that is small enough to be computed and stored on contem-
porary hardware. In combination with the indexing mechanisms applied, the retrieval
performance of the system for derived relations allows quick navigation.

A navigation space is then automatically generated from the relational structure
— both the relations extracted from the domain and the relations derived by the rule
based engine. Each point in the navigation space corresponds to a concept lattice, and
a browsing tool is used to move between points in the navigation space. Movement
through the navigation space is performed by the user who moves from one point to the
next via a choice of functions.

The details of the navigation space will be discussed in the next section.

4 Constructing a Navigation Space

We begin this section with a formal definition of a navigation space. We then motivate
this definition within the context of our software engineering application before work-
ing through a concrete example. We then offer some discussion on how the navigation
space may be expanded to employ nested line diagrams to reduce diagram complexity.

4.1 Formal Notions

The starting point for the navigation space as used in this paper is a formal context with
additional orders on the objects and attributes.

Definition 1. An ordered context is a triple ((G,M, I), (G†,≤G† ), (M†,≤M† )) where
(G,M, I) is a formal context, (G†,≤G† ) and (M†,≤M† ) are partially ordered sets, with
G ⊆ G† and M ⊆ M†. These ordered sets are called the object order and the attribute
order respectively.

We then complete this context by interpreting the object and attribute orders as
defining object and attribute implications, i.e. we wish that h ≤ g induces the object
implication h→ g and n ≤ m induces the attribute implication n→ m.

Definition 2. The completed context of an ordered context ((G,M, I), (G†,≤G† ),
(M†,≤M† )) is the formal context (G†,M†, I†) where for g ∈ G† and m ∈ M†

(g,m) ∈ I† :⇔ ∃h ∈ G†, n ∈ M† : h ≤G† g, n ≤M† m, (h, n) ∈ I

The user moves from point to point in the navigation space using a number of func-
tions. In a user interface this could be achieved by allowing the user to interact with a
concept, object or attribute and make a choice from a menu.
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Definition 3. A navigation space is a triple (P, F, X) where P is a set, and F := { f j} j∈J

is a set of functions indexed by J with f j : Dj → P and Dj ⊆ P × X and X is a set of
potential user inputs. The element of P are called points of the navigation space.

Definition 4. The navigation space of a completed context C = (G†,M†, I†), functions
F and user input X, is the navigation spaceN(C, F, X) := (P, F, X) where P := P(G†)×
P(M†).

Each point in the navigation space is represented to the user as a concept lattice of a
subcontext of the completed context. The user inputs X represent the ability of the user
to select from the diagram an object, and attribute or a concept.

Definition 5. The subcontext of a point (H,N) in a navigation space
N((G†,M†, I†), F, X) is the formal context (H,N, I† ∩ (H × N)).

The choice of a set of navigation functions is a design decision. For our application
we consider functions acting on the following domains:

DO :=
{
((H,N), g) ∈ P ×G† | g ∈ H

}

DA :=
{
((H,N),m) ∈ P × M† | m ∈ N

}

DC :=
{
((H,N), c) ∈ P ×P(G†) ×P(M†) | c ∈ B(H,N, I† ∩ (H × N))

}

corresponding to whether the user chooses an object, an attribute or a concept.
For each of these domains a number of functions are offered. If the user has selected

an object then the following functions are defined:

move down((H,N), g) := (lower covers(g),N)

unfold down((H,N), g) := (H ∪ lower covers(g),N)

fold down((H,N), g) := (H \ lower covers(g),N)

Additionally we provide the functions zoom up, unfold up, and fold up which use up-
per covers rather than lower covers. Six equivalent functions are available for attributes.

If the user selects a concept then the following functions are defined:

focus on extent((H,N), c) := (extent(c),N)

focus on object contingent((H,N), c) := (object contingent(c),N)

focus on intent((H,N), c) := (H, intent(c))

focus on attribute contingent((H,N), c) := (H, attribute contingent(c))

These functions are designed to strike a balance between guiding the user toward
meaningful diagrams, and not overly constraining the user. By providing functions that
add or remove covers the user makes strong use of the object and attribute orderings to
derive meaningful subcontexts. To avoid lattices growing too large the user can focus on
particular concept, but then will usually drill down by unfolding objects and attributes.

The path of the user through the navigation space is important so we additionally
store this path and allow the user to move backwards and forwards along the path in a
similar fashion to a web browser.
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4.2 Navigation Space for Software Analysis

As is evident from our definitions, a navigation space is constructed from an ordered
formal context. In our application an ordered formal context is naturally formed by the
calls-t and in-rt relations. in-rt is the reflexive transitive closure of in and is
used to define both the attribute and object orderings of the ordered formal context.
Completing this natural ordered formal context extends the calls-t relation defined
on methods to a relation defined over packages, classes and methods with the basic rule
being that package a calls package b if the a contains a method calling a method in b.

Software engineers are interested in which packages contain calls to which other
packages, because this introduces a dependency from one package to the other. To be
used, a package requires all packages it depends on, which can affect reuse of software
components. Keeping track of dependencies is also very important when software is
modified because the modification of a package will potentially affect all the packages
that are dependent on it.

Dependencies are also established by the is-derived-from relation and so an-
other natural choice for an ordered formal context is a combination of the is-derived-
from-t relation and the in-rt relation.

In cases where the analyst is less interested in the layered nature of the software
design and instead wants to focus in the immediate dependencies between packages
and classes, an ordered context formed from calls rather than calls-t is of interest.

A little less intuitive is the ordered formal context formed by the relations calls-t
and the inverse relation of is-derived-from. This ordered context is related to the no-
tions of polymorphism and dynamic dispatch in object-oriented programming and can
be used to identify which method implementations are potentially executed by method
calls.

By presenting the user with a navigation space, we allow browsing these complex
structures via relatively simple diagrams. Each association in these diagrams can be
traced to a portion of the source code. Since the names used in our application identify
software artifacts, we allow navigating from the objects and attributes directly to these
artifacts.

4.3 Example

To demonstrate navigation within the space of concept lattices in a realistic example we
have applied our tool to the TJ source as it was on April, 1st 20022. The aim of
using this tool was to identify design decisions in the software and to test if these were
applied consistently throughout the source code. The top level package for the program
is called net.sourceforge.toscanaj. For brevity we will use tj instead, both in the
diagrams and in the text.

The start point for the exploration is given on the left of Figure 2. Both the object
and the attribute set are the lower covers of the top concept in the containment relation,
which means the first navigation point is (lower covers tj, lower covers tj).

2 This code can be extracted from the source code repository at http://sf.net/
projects/toscanaj
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tj.canvas
tj.view

tj.canvas

Fig. 2. First and second in a series of concept lattices generated by navigating through the space
of concept lattice in which suspicious dependency of tj.canvas on tj.view is investigated

The resulting diagram shows which top level packages and classes contain method calls
into which other top level packages and classes.

In this software the tj.canvas package is supposed to model a general notion of a
drawing canvas, independent of the TJ software itself. In fact this package was
extracted into a separate software component later in the product development. Based
on this knowledge the call from tj.canvas to tj.view is considered wrong since it
establishes a dependency from this supposedly general package into TJ specific
code.

To examine this call in more detail we first zoom into the object concept of tj.canvas,
restricting both the attribute and object set to the corresponding contingents. This pro-
duces the concept lattice on the right of Figure 2 where only one node is left. With this
step we have restricted our view to the relevant aspects of the structure.

Next we unfold the lower covers of the object tj.canvas to see which parts of the
canvas module contain the problematic call. Additionally we unfold the lower covers of
the attribute tj.view to see which parts of the view package are called. The result is
the diagram in the left of Figure 3. The central concept shows us that the dependency
must be established between the two classes DrawingCanvas and ImageWriter on the
canvas side and the package tj.view.diagram on the view side. Further unfolding of
the attribute tj.view.diagram produces the diagram in the right of Figure 3 which
identifies the dependency on the class level: the two classes mentioned above call the
class DiagramSchema in tj.view.diagram.
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tj.canvas.CanvasItem

tj.view.DiagramHistoryView
tj.view.DiagramOrganiser
tj.view.dialogs

tj.canvas
tj.canvas.DrawingCanvas
tj.canvas.imagewriter

tj.canvas
tj.view
tj.view.diagram

tj.canvas.CanvasItem

tj.canvas
tj.view
tj.view.diagram
tj.view.diagram.DiagramSchema

tj.canvas
tj.canvas.DrawingCanvas
tj.canvas.imagewriter

tj.view.DiagramHistoryView
tj.view.DiagramOrganiser
tj.view.diagram.AttributeLabelView
...6 more...

Fig. 3. Third and fourth in a series of concept lattices generated by navigating through the space
of concept lattice in which suspicious dependency of tj.canvas on tj.view is investigated

In a last navigation step we identify the dependency on the method level by unfold-
ing the object tj.canvas.DrawingCanvas to find which methods of
tj.canvas.DrawingCanvas are making the relevant calls. The resulting diagram is
shown in Figure 4 and shows that there are only a few dependencies between the
packages. Most parts of the canvas package are now shown as independent from the
view package, only two methods are marked as having dependencies. From the method
names we can navigate to the source code for the methods and examine the source code.
Examining the code for tj.canvas.DrawingCanvas.paintCanvas we find a call to
tj.view.diagram.DiagramSchema, which in this example turns out to be not only
an unwanted dependency but also a bit of code that has no functionality in the system –
it was most likely left during previous changes.

To identify the dependency coming from the tj.canvas.imagewriter package
we would have to unfold the package again, but in this case it is not required since this
dependency turned out to be not a direct dependency, but a call to the paintCanvas
method, thus fixing this method solves the problem of the invalid dependency com-
pletely. Alternatively we could have looked at the calls relation instead of its tran-
sitive closure, in which case we would not have found this dependency between the
tj.canvas.imagewriter and the tj.view package.

Note that in our navigation we chose to maintain the original attributes and ob-
jects when unfolding. This was a somewhat arbitrary choice, alternatively we could
have zoomed into lower covers. By unfolding, and keeping attributes from previous
diagrams, we kept additional structure within the diagram that gave a hint as to the
previous navigation points we visited. Keeping these attributes also allowed us to ob-
serve the object and attribute implications embedded in the lattice by the completion
algorithm.

To demonstrate the generality of the approach we navigated to the concept lattice
shown in Figure 5. In contrast to our earlier example this space is not based on the static
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Fig. 4. Fifth in a series of concept lattices generated by navigating through the space of concept
lattice in which suspicious dependency of tj.canvas on tj.view is investigated

call graph, but on the transitive and reflexive closure of the class hierarchy relation. The
navigation space is again constructed from the containment relation.

The diagram shows the inheritance of interfaces and classes between the top level
package and the view package on the object side and the canvas and observer pack-
age on the attribute side. The resulting lattice identifies three categories of classes: ob-
servers, observable, and observable observers. In this case the diagram reflected the
expectation of the software designer. It validates a number of assumptions, which were
not made explicit before: for example the class DiagramView is not observable because
it is the outer-most view, meaning it is not contained within any other view. The classes
LineView and NodeView are not observers because they don’t change in response to
other elements. LabelView objects in contrast follow NodeView objects around the
diagram and so are observers.

It is interesting to note that even a hand rendered UML class diagram is incapable
of conveying the same information — the grouping of the classes according to their
inheritance — as is captured in the concept lattice. We believe that Figure 5 would be a
valuable addition to a software design document accompanied by a textual description
reflecting on the relationship of the diagram to the software design.
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tj.canvas
tj.observer

tj.view.diagram.AttributeLabelView
tj.view.diagram.LabelView
tj.view.diagram.ObjectLabelView

tj.view.diagram.LineView
tj.view.diagram.NodeView

tj.canvas.CanvasItem
tj.observer.ChangeObservable

tj.DataDump
tj.MainPanel
tj.canvas.imagewriter
...3 more...

tj.view.diagram.DiagramSchema

tj.view

tj.view.diagram.DiagramView

tj.canvas.DrawingCanvas

tj.observer.ChangeObserver

Fig. 5. Concept lattice showing inheritance of the interfaces ChangeObserver and
ChangeObservable within the view package

4.4 Nested Line Diagrams

As concept lattices become large they can become difficult to layout and difficult to
comprehend. A popular mechanism to reduce the complexity of concept lattice diagram
is the nested line diagram. A nested line diagram essentially embeds the concept lattice
of a context (G,M, I) into the direct product of the concept lattices of two sub-contexts
(G,M1, I ∩G × M1) and (G,M2, I ∩G × M2) where M1 and M2 partition M.

In the resulting nested line diagram the grouping of attributes into the two sets M1

and M2 makes a very strong statement to the reader. For rhetoric reasons this grouping
should be selected carefully.

In order to support nested line diagrams we extend the navigation space to include
triples (H,N,m) where m ∈ N. To display a navigation point (H,N,m) we partition N
to form Ninner and Nouter as:

Ninner((H,N,m)) = N ∩ (↓≤M† m)

Nouter((H,N,m)) = N \ Ninner

The two subcontext then become (H,Ninner, I†∩H×Ninner) and (H,Nouter, I†∩H×Nouter).
This partitioning has a natural conceptual mapping in the case where the navigation

relation M† is some type of containment relation, since the grouping into the inner and
outer diagram represents the distinction as containment. It is also very well suited for
local scaling as described in [Stu96].

To include moving between nested and unnested diagrams the functions defined
previously need to be modified slightly. The key property that these functions should
preserve is that for any state (H,N,m) the attribute m has to be in the set N. Whenever
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an operation violates this condition the system has to change back into displaying an
unnested diagram.

Nesting is used usually within T systems to combine conceptual scales. The
translation of this idea into the navigation space would produce a mechanism for com-
bining two navigation points. This would be a significant extension to the approach we
have outlined so far, but would most likely also add significant complexity to the user
interface.

5 A Prototype Implementation

In our prototype we employ a graph based database system we implemented ourself
with the aims of: (i) being comparatively fast; (ii) being comparatively succinct in
expressing binary relations since our domain consists largely of these; (iii) indexing
should performed automatically; (iv) simple rules should be supported to permit us to
leverage background information when interpreting data.

We will briefly describe the three components of our prototype, namely: a class file
analyser, a system to manage the data and the rules, and a navigation component.

5.1 Class File Analyser

Java class files contain the program in a compiled form, but still close enough to re-
construct some of the original source code structure. The main loss is the information
about names of parameters and variables in the code, which is not relevant for many ap-
plications of our technique. For various technical reasons we decided to use class files
instead of actual source code as the input of our prototype — later versions are planned
to accept both class files and source code itself.

We used the CFP library from IBM which provides functions that allow ac-
cess to the contents of Java class files. The class file analyser produces a list of triples
with each triple being a single relationship of the form (subject, predicate, object). An
example for such a triple is (java.lang, is-a, package).

The class file analyser already extracts unique names for software artifacts which
we use to determine object identity in the system.

5.2 Knowledge Base Management System

The core component for storing the knowledge base is a quadruple store which stores
and indexes quadruples. Each quadruple is of the form (context, subject, predicate, ob-
ject) where context is an identifier that specifies the context in which the statement
represented by the triple holds. In our software analysis example the context is usually
a particular version of the software analysed.

The quadruple store store provides a simple query language whereby mappings from
a query graph into the quadruple store are found and returned. It can be modelled as a
set of quadruples G ⊆ C ×C ×C ×C where C is a set of strings3. A query graph, Q, is
a set of quadruples Q ⊆ W ×W ×W ×W where W ⊆ V ∪ C is a set containing strings

3 a string is a sequence of characters of a given alphabet.
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and variables (V is a set of variables). A mapping, φ : W → C from the query graph Q
to the data graph G is valid iff

∀(x1, x2, x3, x4) ∈ Q : (φx1, φx2, φx3, φx4) ∈ G
∀c ∈ C ∩W : φc = c

The rule-based system attached to this quadruple store implements simple rules
composed of two graphs: a query graph as a premise and a second graph using the
same variables as conclusions. The rule is applied by iterating through each valid map-
ping from the premise into the data graph. In each iteration the mapping is applied to
the conclusion graph and the result added to the data graph.

5.3 Navigation Component

In order to make sub-contexts directly computable from the quadruple store, the current
navigation point (H,N) is stored within the quadruple store. The sub-context (H,N, I† ∩
(H×N)) corresponding to the navigation point (H,N) is then queried directly and turned
into a context representation which can be displayed by tools from the TJ suite.

6 Related Work

There are essentially two contributions made by this paper: the idea of a navigation
space as a way to structure relational data for conceptual analysis, and the application
of this idea to provide a tool to aid in the analysis of software structure. We will first
situate out work in relation to use of formal concept analysis as a tool in software
engineering and then go on to situate our work in relation to general methods of formal
concept analysis.

A significant problem facing the application of formal concept analysis to software
structure is the size of the lattices constructed. Our approach of situating the user within
a navigation space structured by familiar hierarchies such as the package structure hier-
archy or the type system hierarchy solves this problem and is novel.

A number of authors have recommended methods using FCA as a tool to under-
stand software structure. A significant portion of such work revolves around clustering
of software artifacts with the purpose of deriving a new and improved software struc-
ture. One significant approach in this regard, is the work of Snelting et al. [ST00, Sne98]
on re-engineering class hierarchies. Briefly stated, the idea is that a formal context with
program artifacts (functions, common blocks, types etc.) as objects and attributes, and
an incidence relation that says whether one artifact accesses another artifact, has for-
mal concepts that can be considered candidates for program organisation. Contributions
around this idea have been made by various authors [GM93, GMM+98, Ton01, KM00].
In the case considered by Snelting the context is built from variables and method calls
the concepts can be considered candidate interfaces. We consider Snelting’s approach to
be a large lattice approach, meaning a single concept lattice from a single input context
is utilised. A problem with large lattices is that they are difficult to comprehend and of-
ten contain objects and attributes that the user, for her current purpose, is not interested
in. Our approach complements Snelting’s work in that it allows the user to exclude some
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aspects of the software structure and focus on others. Being situated within a navigation
space the user is able to quickly shift her focus.

Further to the work of Snelting on re-engineering class hierarchies, our work fo-
cuses on program understanding and human reflection. Our central purpose is not to
re-engineer class hierarchies, but rather provide a tool for programmers to access and
reflect on software structure as a way to plan his or her next move. Furthermore we
believe the structure and tool we have outlined in this paper to be relevant to other
domains.

The literature concerning the application of FCA to software engineering is exten-
sive. For a more complete description of the field we refer the reader to [TCBE03]
where we conducted a literature review of applications of formal concept analysis gen-
erally within the software engineering process. Our previous work [CT03] analysing
software structure using a rule based system, triple store, and formal concept analysis
can been seen as relevant background to the idea of a navigation space.

We now turn to the position of navigation spaces in relation to general approaches to
data analysis using formal concept analysis. The notion of conceptual scaling [GW89]
and analysis tools and techniques that have grown from it [VW95, BH04] present a way
to analyse data that can be formulated as a many valued context. Although these tools
have been very successful in a large number of domains, a difficulty that can occur
when the number of conceptual scales becomes large. Toscana based systems require
an analyst to produce conceptual scales a-priori and if there is a large number of scales
this work can be extensive. Also in Toscana systems there is generally no provision for
organising the conceptual scales and so as the number of scales becomes large the user
tends to become lost.

The navigation space idea that we have outlined in this paper provides a way to
automatically generate and structure a space of subcontexts using hierarchies. Thus it
attempts to solve two difficulties associated with Toscana systems: (i) the time con-
suming task of generating many scales by hand, and (ii) the lack of organisation of
the scales once produced. The user interacts with the system like they do with a web
browser moving along links from one diagram to the next.

There have been number of attempts to move away from, or to extend, Toscana
systems. Our previous work [CS00] and work by Stumme [Stu99] can be seen as a pre-
cursor to the idea of a navigation space. Stumme and Herreth [Stu00] have proposed
ways to extend Toscana systems in the direction of On-Line Analytical Processing.

7 Outlook and Conclusion

When concept lattices become large they loose their ability to succinctly communicate
information to the user of an analysis system as their complexity becomes overwhelm-
ing. The system presented here allows browsing a large information space and repre-
senting views on this space as concept lattices, thus mapping a larger structure into
understandable parts.

In order to provide an analysis tool for complex relational data we have presented
a system for automatically constructing a navigation space consisting of sub-contexts
displayed as concept lattices. As opposed to T systems these views can be created
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dynamically by the user and a navigational structure over the diagrams is provided. In
order to demonstrate the utility of this navigation structure we applied it to the analysis
of software structure and demonstrated its use via a simple example.

The navigation space we presented in this paper is only one of a family of browsing
structures that could be constructed via a similar methodology. The use of navigation
spaces is not restricted to software structure but we believe can be usefully applied to a
wide range of relational structures. Ideally a software tool would be able to allow tai-
loring of the navigation functions to a particular application domain. It such a software
tool would also abstract over different database types to make it easy to process data
found in different systems.

In this paper we have not considered mechanisms to combine points from different
navigation spaces. We feel that the theory of multicontexts [Wil96] will be helpful in
this direction but leave it as an area of further work.

Another area of further investigation is that of temporal and modal aspects of soft-
ware systems. Software programs under development undergo change – changes which
are commonly stored within a version control system, which gives access to differ-
ent versions of the software at different points in time (e.g. a release vs. a development
version). While our prototype is specifically designed to capture information about soft-
ware versions and configurations and so allow the analysis of the differences and sim-
ilarities between versions or configurations, we have not yet experimented extensively
with this task.
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Abstract. This paper extends standard help system technology to
demonstrate the suitability of Formal Concept Analysis in displaying,
searching and navigating help content. The paper introduces a method
for building suitable scales directly from the help system index by com-
puting a keyword extension set. The keyword extension technique is gen-
eralisable in any document collection where a hand-crafted index of terms
is available.

1 Introduction

Wille [1] writes that methods for knowledge processing presuppose an under-
standing of what knowledge is, we therefore begin by examining the nature of
“knowledge” in the help domain.

Firstly, help systems are multipurpose. To understand their purpose, we ex-
amine help in terms of the dimensions of Conceptual Knowledge Processing
(CKP) [1]. At the simplest level a help system provides instruction in the style
of an on-line tutorial. In this case there is an instructional narrative where tasks
are presented in a predefined order. In the same vein, help systems are also used
to present more advanced “how to” information to users who have mastered
the basics but are following a command sequence for the first time. This cor-
responds to exploring in CKP [1]. More advanced users have completed most
command sequences in the software. For these users, the help system is used to
search for something they can “more or less specify but not localize” [1]. The
help materializes knowledge that is either beyond the present recollection or too
unimportant to commit to memory.

Identifying the taxonomy of commands – or functionality – is a major prob-
lem for many software systems, particularly those based on Windows. The drill
down made possible by the combination of dynamic menus, property settings,
tabs and dialog boxes often leads to feature discovery through trial and error.
Windows-based help systems have a particular style that supports pathfinding
of this sort to reduce the “uncertainty” (as it is called in information science [2])
resulting from so many branches in a hierarchy.
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Having identified the “knowledge” of help systems w.r.t. elementary methods
used in CKP, the hypothesis we test is that the application of FCA to the anal-
ysis of help system content can be restructured to improve its presentation
for the purpose of supporting inter-subjective human argumentation (decision
support based on mixed initiative – a dominant theme in the modern practice
of HCI [3]). This we believe will enhance the user’s capacity to investigate the
help content.

Two outcomes result from our study. The first is the recasting of the help
system for the Mail-Sleuth program as a Conceptual Information System. We
demonstrate how the creation of suitable scales can clarify the presentation of
help content. The second is a method to extend search terms from the help
system index. This method involves seeding the scale with search terms which
are then expanded using the hand made index provided by the CHM file format.
We describe this technique and evaluate its suitability to help systems.

2 Motivation

Fig. 1 shows the lattice that results from a context made of a set of objects
as help pages (HTML documents) with attributes as URLs (</href= /> tags
to other help pages)1. The resulting concept lattice is rather poor. This line
diagram is included because we can learn from it. First, we learn that scaling is
required to isolate the help contents w.r.t. the purpose and functionality of the
software being described. Second, the disarray in this concept lattice reinforces
that the help system was not developed in a systematic way. The presentation
of the content is ad hoc and is therefore likely to require restructuring.

Most help systems for Windows applications are constructed from compiled
HTML files (so called CHM files) using a program called Microsoft HTML help.
Compiled HTML has a number of advantages. Firstly, the compiled HTML is
usually smaller than the original source. Second, compiled HTML is indexed and
is therefore searchable. Third, the format for the presentation of the compiled
HTML is standard in the Windows operating environment. Finally, the content
of the help pages is not easily copied once compiled.

The search functionality for compiled HTML is a keyword search. Search
terms can be entered into the search area, index entries relate to help pages
and lack relations to other index terms; no context is given on a search term
even when the term appears in multiple contexts. Although it is easy to find
explanations when the correct search term has been entered, it is much harder to
find the right explanation when the searcher is unsure of the appropriate search
term to use. The browsing metaphor for compiled HTML is also rather limited. A
tree widget is presented that requires browsing hierarchically by chapter, section
and page. In short, the HTML help environment lacks the ability to semantically
relate terms with pages and the search context.

1 A Java program called Exlink was written for this purpose by Shaun Domingo to
automatically build the context.
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2.1 Quick Search.html

1.7 DrillDown.html 1.3 Predefined Virtual Folders.html

1.4 Virtual Folders.html

1.5 The Folder Manager.html

2.6 Advanced Search Features.html

1.6 Structures.html

1.2 Settings and
   Mail−Sleuth.html

2.5 Understanding the Key Search Options.html

1.8 Displaying Lattice Diagrams.html

2.4 Querying Lattice Diagrams.html

1.1 Getting Started with Mail−Sleuth.html

2.3 Attaching a Query to a Virtual Folder.html

2.2 Creating your own Virtual Structures.html

Fig. 1. Naive analysis of the help system for the Mail-Sleuth program using Siena.
Many of the pages towards the top of the lattice involve initial set-up, configuration or
initialization tasks, done once on installation. Help pages that are insinuated across the
Mail-Sleuth help appear lower in the lattice, the idea of “structures” (presented in
the page Structure.html) is (for instance) important because it is referred to from many
other pages. The poor structure and presentation are indicative of the unstructured ad
hoc content of the help system

What attracts our attention to compiled HTML as a content platform is its
potential to be improved through the application of the concept lattice for brows-
ing and visualizing help content. In the next generation of Microsoft operating
systems, the use of MAML (Microsoft Assistance Markup Language) claims
to counter this difficulty2. MAML will enable help to be tagged with dynamic
properties that allow parts of the help system to be activated depending on
the content. However, this paper addresses how FCA can value-add the current
generation of help systems and compiled HTML.

Our paper follows the application thread presented by other work, specifi-
cally Cem [4] and Rental-Fca [5], where the use of the concept lattice has
been shown to be well-suited to document browsing in the domains of email
and News classifieds. More recent work by Eklund et al.[6] supports these claims
through a usability trial for the Mail-Sleuth program. A more comprehensive
usability study of Mail-Sleuth’s Web-mail variant, MailStrainer, was also
recently completed [7]. In the MailStrainer study, 16 users completed 7 search
and document management tasks and completed a psychometric survey based

2 http://www.winwriters.com/articles/longhorn
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Fig. 2. The Introduction scale provides the starting point for the Mail-Sleuth help.
Fig. 3 is the scale that appears when the user double clicks on the centre left vertex
Line Diagrams. Nested-line diagrams are therefore implemented as a form of progressive
drill-down rather than in the usual all-at-once nested line diagram

Fig. 3. Restructuring of the Mail-Sleuth help involved the creation of several static
scales: these included a scale for searching, drawing line diagrams, Getting Started,
Configuration, Folder Management and Global Settings
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on 10 questions on their experience and impressions with the software. A detailed
presentation of MailStrainer will be presented in a subsequent paper as a
synthesis of Domingo [7].

Further, Carpineto and Romano – pioneers in the application of FCA to
information retrieval [8, 9] – have engineered the Credo search engine3. This
outcome reinforces the appeal of a lattice-based approach to search. The outcome
from our paper is narrower in scope, it demonstrates the suitability of FCA to the
search and navigation of help system content and characterizes the mathematical
structures that support an understanding of this process.

3 Examination of Help Content Using FCA

In the following section we presume a basic knowledge of Formal Concept Anal-
ysis. For a introduction to FCA see [10], further mathematical foundations are
given in [11]. Practical FCA algorithms and methods are presented in [8].

We will discuss two ways to create a Conceptual Information System (CIS)
based around the functionality of help systems. The first is to take an existing
help system based on the index file, the content file and the explanation files (a
CHM file) and restructure it in Conceptual Knowledge Processing terms. The
second is the creation of a help system from the ground up regarding principles
of CKP. For both approaches, FCA is used as an analysis technique and the
known advantages of line diagrams representing concept lattices are reinforced.
The advantages of the concept lattice as a visual metaphor of the information
help space include:

– the line diagram simultaneously displays the results of one or more search
terms;

Search of the index in HTMLhelp CHM files is conjunctive keyword search, all
search terms must be contained in the document if a match is to be found. This
encourages one (or few) search terms initially with iterative search proceeding
from a single keyword and then introducing additional keywords one at a time
with the objective of reducing the size of the result set. Iterative search in the
standard help system paradigm therefore proceeds from few-to-many keywords.
In the CIS search paradigm, this is not normally the case, search encourages as
many search terms as can be thought of in order to produce as rich a lattice
structure as possible. This style of search isolates search terms of little value
quickly, reducing the dimensionality of the search. Therefore iterative search
proceeds in a many-to-few keyword direction initially. The search act in CIS,
just described, includes exploration, identification and investigation of the
information landscape [1].

– the diagrams display the search results embedded in their conceptual context;

3 http://credo.fub.it
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The result from search in a CIS will display the context of the pages from
the search terms. In the case of Docco and CEM the documents retrieved are
revealed along with their position in the underlying file system. This provides
context for the search.

– the diagrams at one time can offer global, general and detailed views;

The concept lattice that emerges from search in a CIS shows either the com-
plete boolean lattice of search terms used or alternatively the reduced line di-
agram showing all points on the concept lattice instantiated by the keyword
used in the search. This reveals the distribution of matching documents over the
entire document collection. In so doing, it provides both detailed and general
views of the collection according to the dimensions of the search.

– predefined diagrams can guide you through a domain.

The idea of a library of predefined contextual scales is not new and has been
used in the ZIT library system [12] and elsewhere [5]. The creation and re-use of
conceptual scales are a fundamental basis for the Toscana-workflow. General
CIS tools, such as Cem [4] and ToscanaJ4, allow the user to create their own
individual search scales to provide reusable search contexts. In Mail-Sleuth [6],
several useful predefined search scales are pre-loaded with the program and fur-
ther scales may be added by the user. Docco5 and Credo6 do not provide any
scaling tools but this is consistent with the general nature of the collections they
index.

3.1 Reprocessing of CHM-Based Help Systems

The CHM files can be decompiled using free decompilers like KeyTools from
KeyWorks Software7. The result is a set of HTML files, a file containing the
index and a file containing the contents of the help system. The HTML files are
the explanation texts that appear in the right hand output window of a standard
help system window, Fig. 4 shows such an interface. The system provides three
options to find the explanation text that answers a request, the search function,
the tree structured content of the help system and the index. The explanation
text itself is structured in three elements: the title, the text body and a paragraph
that lists related topics: “see also” or “related topics”. Further, there may be
hyperlinks in the body of the text that connect certain words or phrases in
the explanation text to other relevant pages. All hyperlinks from the “see also”
section can also address other CHM help files.

The application of Formal Concept Analysis requires the assignment of ob-
jects and attributes to the de-compiled elements. The subjects the user is looking

4 http://www.toscanaj.sf.net
5 http://www.tockit.sf.net
6 http://credo.fub.it
7 http://www.keyworks.net
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Fig. 4. The standard user interface for a help system in Microsoft Windows sys-
tems. The user has three means to search the help content provided by tabs on the
left hand of the window: the index, the contents and the search function. All these
functions produce a list of potential titles, phrases of keywords to the user, selecting
one item from this list displays its corresponding explanation file in the right hand
frame of the window. Further navigation functionalities similar to web browsing are
also provided

for are the explanation texts and the constraints for the search are the keywords
the user enters. So the explanation files become the objects and the keywords
entered become the attributes of the Conceptual Information System. With G
as the set of explanation files, M being the set of entered keywords and the in-
cidence relation gIm, if an explanation files contains a keyword m, we produce
the Formal Context (G,M, I) that is the basis for the concept lattice displayed
in the graphical search interface.

Fig. 5 shows a simple search result using the FCA based retrieval tool Docco8

applied on the help content of Mail-Sleuth9.
This result is produced against on the raw set of HTML files from the de-

compilation. Docco creates an index of the words contained in the explanation
files and displays a diagram of a concept lattice where the search terms are
the attributes and the explanation files containing any of the search terms as

8 http://www.tockit.sf.net
9 http://www.mail-sleuth.com
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Fig. 5. Screenshot of Docco: the entered search terms are “drill down”, “virtual folder”
and “diagram”. The relevant search result is actually the explanation file attached to
the bottom node highlighted. The selected file(s) can directly be opened with the
button “Open with default application...”

objects. The inherent structures of the explanation files given by the links to
related topics are not considered in this approach.

The opposite approach, where the search terms are the objects and the expla-
nation files the attributes, yields a diagram that better supports users without
familiarity with FCA. This structure provides a kind of ranking with the best
results, the most specific explanation files, in the top section of the diagram
and more general matches below. This hierarchy is also given in the approach
pursued in this paper: the best results are expected in the extent of the bottom
concept of the lattice.

3.2 Search Improvements and Automatic Search Extension

A user searching a large data set for a special question would like to achieve
best results with minimum effort. The process of searching has been effective
and successful when the set of relevant search results resp. explanation files is
small. So the objective is to minimize the number of objects in the extent of
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14

change

19

name

9

Fig. 6. Diagram representing the concept lattice of a search for the explanation for
“Changing the name of a folder”: the user enters “change” and “name” as search terms

the bottom concept of the line diagram. The more search terms provided, the
smaller the extent and the more specific the concept. The problem here is that
users do not generally enter many search terms, so some alternative support is
required to improve the search functionality: through query expansion. Fig. 6
shows the result of a search for the simple question “Changing the name of a
folder” in the standard help file of Microsoft Windows. The user entered
“change” and “name” as search terms, the size of extent of the bottom concept
is 9, so 9 different explanation files are offered as result.

Most help systems do not support query expansion to find the relevant ex-
planation file, so the user often has few clues on what to search for. Query
expansion by the automatic extension of the search terms is one solution. The
use case requires one or two keywords to act as a seed for generating extension
terms. In Windows help, the search terms “change”, “name” might be expanded
to “change”, “name” “file” and “folder” for instance.

Additional search terms can be derived from the index of the given help
system. In the following we propose a simple method which leverages the human
effort formalized in the hand-made index contained within the CHM file. By
understanding this hand-made index as a formal context KCHM , as described
in Section 3.1, we can use it to derive additional search terms using the prime
operator.

Let Kindex be the formal context used by Docco, with Gindex = GCHM being
the set of explanation files of the help system, MIndex being the automatically
indexed words and gIm, if m ∈ Mindex appears in g ∈ Gindex. As the index used
by Docco is not manually created, but collects all words (except those in a stop
words list) that appear in the explanation files, it is (in practice) much larger
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than the hand-made index. By larger we mean that MCHM ⊆ Mindex, the object
sets are identical. It is possible that the author of the help system has added
entries in the hand-made CHM index that do not occur in the explanation file,
but this is a rather pathological case. Furthermore there are differences in the
incidence relations ICHM and Iindex: not every incidence relation in between a
term m ∈ Mindex and an explanation file g ∈ Gindex is realised in the context
KCHM and symmetrically there may be incidence relations in KCHM that are
not realised in Kindex.

The advantage of the hand-made index is the fact that the words or phases are
assigned by a human to a certain explanation file and therefore the explanation
file being “about” the phrase or keyword assigned is assured.

Let S be the set of seed search terms entered by the user, Sext be the extended
set of search terms and GCHM the set of explanation files. Sext is derived from
S and GCHM by the following:

1. Derive the set S′ ∈ GCHM of explanation files where all instances of S occur
in every instance of S′.

2. Sext = S′′, S′′ ∈ MCHM is the set of words that all instances of S′ have in
common.

In the language of FCA this is the derivation of the attribute concept of the
seed search terms in the context KCHM :

Sext := {S ∩MCHM}′′.

If the CHM index on the explanation files does not remove stop words Sext

will contain many redundant words. This stop word filter should be applied after
the derivation of Sext, because the removal of stop words can result in substantial
information loss, e.g. the words “on” and “off” in “log on” and “log off”.

The resulting set Sext can be offered to the user to specialize.
Applying this method on the search displayed in Fig. 6 with S = {change,

name} returns,

Sext = {Change, file, folder, changing, forbidden, characters, names, renaming,
naming, overview}.

Adding the search terms “file” and “folder” to the search yields the diagram
given in Fig. 7. Due to the more specific search this line diagram has just three
explanation files in the extent of the bottom concept and among those the most
relevant file to the intended query, “Change the name of a file or folder” is
included.

The complexity of this operation is O(|G||M |), |G| being the number of ob-
jects and |M | the number of attributes. This operation computes in an acceptable
practical time frame for instantaneous keyword expansion for contexts based on
indexed decompiled CHM Help files.

The method to derive an extended set of search terms relates to [13] and [14].
The following presents a short introduction to multicontexts:
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Fig. 7. A line diagram representing the concept lattice of a search for the explanation
for “Changing the name of a folder” as in Fig. 6. Additional to the initially entered
terms “change” and “name”, the user also entered “file” and “folder”: derived by
automatic search term extension. The most specific results are the most relevant and
represented in the three explanation files objects in the extent of the bottom concept
of the line diagram

Multicontexts can be understood as a network of formal contexts describing
incidence relations of a domain, each context representing a different view of
the “situation”. Different contexts may have different object and attribute sets,
they may also share elements in common, although they do not have to. It is
also possible that the object set of a context shares elements with the attribute
set of another context, which causes interesting relations in between the lattices
of two different contexts of a multicontext.

Following the definition of multicontexts, quoted from [13]:

Definition 1. A multicontext of signature σ : P → I2, where I and P are
nonempty sets, is defined as a pair (SI , RP ) consisting of a family SI := (Si)i∈I

of sets and a family RP := (Rp)p∈P of binary relations with Rp ⊆ Si × Sj if
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σp = (i, j). A multicontext (SI , RP ) of signature σ : P → I2 can be understood
as a network of formal contexts Kp := (Si, Sj , Rp) with σp = (i, j).

Multicontexts provide so called coherence mappings between two contexts:

Definition 2. Let (SI , RP ) be a multicontext, let Kp := (Si, Sj , Rp) and Kq :=
(Sk, Sl, Rq) be formal contexts of (SI , RP ), and let (A,B) be a formal concept of
Kp. Then there are four coherence mappings from B(Kp) to B(Kq) defined by:

λpq(A,B) := ((A ∩ Sk)qq, (A ∩ Sk)q)
�pq(A,B) := ((B ∩ Sl)q, (B ∩ Sl)qq)
ϕpq(A,B) := ((B ∩ Sk)qq, (B ∩ Sk)q)
ψpq(A,B) := ((A ∩ Sl)q, (A ∩ Sl)qq)

The concept lattices of the formal contexts of (SI , RP ) together with all co-
herence mappings form a coherence network of concept lattices which shall be
denoted by R(SI , RP ). See also Fig. 8.

Fig. 8. Coherence mappings

Coherence mappings, shown in Fig. 8, allow the user to select a concept as a
formal context of a multicontext and to map this concept to another context –
simply put, the user has the option to select his objects of interest in a certain
view and to compare this selection to the corresponding results in a different
view.

The coherence mappings establish a means to examine the relations between
two contexts – exactly the way we derived the extended set Sext of search terms.
In our example we took the concept of interest and mapped it to the correspond-
ing one in the lattice of KCHM , then we transfered the intent of the mappings
image back to Docco and created the sub lattice of Kindex with the new set of
search terms to specify the search.

Let (A,B) be the concept of Kindex that seems interesting from the users
point of view. Then the corresponding concept of KCHM is derived using the
mapping ϕpq with p = index and q = CHM that maps from Kindex to KCHM :

ϕpq(A,B) = ((B ∩MCHM )qq, (B ∩MCHM )q)

The intent of ϕpq(A,B) is the extension set Sext that we used to specify the
search, and because of MCHM ⊆ Mindex, the intent of the derived concept is
still part of Mindex and produces a promising extension of search terms.
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3.3 Processing the Structure of the Help Content

Any CHM based help system is a structured document with three key elements.
The first is the HTML of the actual explanation file. Sub-parts of the layout
as described in Section 3.1 can easily be found in the HTML source code: the
title and the body tags of the explanation file for example. The identification of
the “related topic” paragraph is more difficult, because HTML provides various
means to tag this paragraph. The second key element is the table of contents of
the help system. Although a tree structure, the table of contents groups expla-
nation files by their content. The third key element is given by the links from
words in the body of an explanation file to other explanation files. The fact
that external explanation files of other CHM files can be incorporated allows the
inclusion of related files.

These elements can be used to derive sets of explanation files that are of
higher importance to each explanation file: for every explanation file we define
a set of related explanation files, these are those that appear in the same sub-
directory of the table of contents, those listed in the “related topics” paragraph
and those that are link targets from the body of the explanation file. This set,
we call the scope set of an explanation file, because it forms a scope for every
explanation file and can be used in Formal Concept Analysis to create predefined
conceptual scales for the CIS. Such derived sets will not normally be disjoint,
except in the case where pages indexed by the table of contents are disjoint.

The elements: title, body and “related topics” can also be used to apply
constraints on the search. These provide three “search modalities”: restricting
search to titles, bodies, titles and bodies, an so on. Only title search can be
achieved with current version of Docco. Fig. 9 shows the result of a title element

Fig. 9. A line diagram representing the concept lattice of a search for the explanation
for “how to change name of a folder”: the user entered “change” and “name” as search
terms and the search is restricted to the title element tags of the explanation files
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search using the same terms “change” and “name” as in Figure 6 and 7, but
restricted to the titles. The only object in the extent of the bottom concept is
the relevant explanation file.

Further possibilities to use the resolved structure of the HTML help files to
improve the relevant results will be proposed in Section 4.

4 Further Research

The structure provided by the HTML files and the human effort coded in the
content and index files that form part of the CHM files have not been used
before to engineer a Conceptual Information System. In addition, the following
paragraph proposes a means to capture the inherited structure of the explanation
and the content files using multicontexts.

In addition to multicontexts, triadic contexts as introduced by Wille and
Zickwolff in [15] need to be addressed also. The core difference between triadic
contexts and formal contexts of a multicontext is that every incidence relation in
a triadic context is valid in a certain modality. This suits our requirements, with
different “search modalities” conforming to help system key elements. Triadic
contexts and multicontexts are related, because every triadic context gives rise
to a multicontext [13]. The problem of characterising triadic contexts to improve
the exploration of help systems is that the understanding of line diagrams rep-
resenting triadic contexts requires considerable experience in Formal Concept
Analysis, so we focus on multicontexts.

The idea is to create a multicontext consisting of contexts based on the
indexed words of the titles of the explanation texts, e.g., the bodies and the
“related topics” paragraph in order to have a mathematical foundation for the
search modalities as described in Section 3.3.

Additional contexts can be derived from each chapter of the table of contents.
An implementation of the multicontexts would allow the user to search the data
in different modalities, e.g. to restrict the search to titles and to incorporate
the bodies of the explanation files after selecting a certain concept. The intro-
duction of other content tags can enhance the search additionally by providing
finer segmentation on the document. Imagine a user having problems with his
network connection. A search on the standard MS Windows help for “network
connection” gives about 100 hits. The Windows help has a chapter “Network-
ing” and another “Mobile Users”, a search using the “mobile” or “standard”
context would focus on the related explanation files. If the user has found an
explanation file that helps, but does not solve his problem, he can then compare
search results to the corresponding results from another search modality.

5 Conclusion

Mail-Sleuth is a program that itself uses the concept lattice to dynamically
organize the contents of an email collection into thematically coherent views
based on the application of Formal Concept Analysis. It therefore seems fitting



Restructuring Help Systems Using Formal Concept Analysis 143

to experiment with the very same idea for the Mail-Sleuth help system. This
desire for design coherence was the starting point for our study.

Our research reveals that help systems (in general) are well-suited to a
content-management approach based on the concept lattice for navigation. There
are several reasons for this, the first is that help systems are relatively small so
computing extension keywords is realistic, the second is that help systems are a
semi-structured document source with strongly inter-related content and finally
help systems come equipped with a handy precomputed, hand-crafted index.

In our paper Wille’s restructuring idea is applied by examining the content
of the Mail-Sleuth help. The results were the creation of six predefined scales
that thematically covered all functional aspects of the software. The new help
contents were then re-written w.r.t. the scales with self-evident improvements to
the presentation and structure of the help system. Hand crafting scales in this
way is ideal but there is also scope to automatically generate scales by using
seed search terms and computing the extension set. We show how this can be
achieved and present examples that illustrate keyword extension.
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16. Dieberger, A., Dourish, P., Höök, K., Resnick, P., Wexelblat, A.: Social naviga-
tion: Techniques for building more usable systems. ACM Transactions on Human-
Computer Interaction 7 (2004) 26–58



An Application of FCA to the Analysis of
Aeronautical Incidents

Nicolas Maille1, Irving C. Statler2, and Laurent Chaudron3

1 ONERA - Centre de Salon de Provence,
Base Arienne 701 - 13661 Salon Air - France

maille@onera.fr
2 NASA - Ames Research Center,

Code IHS, Mail Stop 262-7 - Moffett Field, CA 94035-1000
Irving.C.Statler@nasa.gov

3 ONERA - Centre de Toulouse,
2, avenue E. Belin - 31400 Toulouse - France

chaudron@onera.fr

Abstract. This paper illustrates how a new clustering process dedi-
cated to the analysis of anecdotal reports of aviation incidents has been
designed and tested thanks to an FCA tool called Kontex. Special atten-
tion has been given to the necessary transcription of the data from the
initial relational database to an FCA context. The graphical interface
for Kontex, which has been specially implemented for this study, is also
presented.

The study presented in this paper validates the process adopted and
highlights the use of FCA to help the expert to mine the database without
previous knowledge of the searched concepts. The work brought original
ideas to the aviation safety community by the development of an incident
model and the notion of scenario. For the FCA community, one interest-
ing aspect of this work lies on the use of a first-order context (given by
a relational database) and its translation into a classical context.

1 Introduction

1.1 Scope of This Paper

This paper describes an experiment that has been realized cooperatively by ON-
ERA and NASA. Its aim was to test a new clustering methodology dedicated to
the analysis of textual reports of aviation incidents. A Formal Concept Analysis
(FCA) tool has been developed and used for this work.

The work brought original ideas to the aviation safety community by the
development of an incident model and the notion of scenario. For the FCA
community, one original aspect of this work lies on the use of a first-order context
(given by a relational database) and its translation into a classical context. This
point is developed in this paper in section 2.1 for the theoretical approach and
in section 4.3 for its application to the aviation incident reports.
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After a short overview of incident analysis, the paper describes briefly the
FCA tool (Kontex) in section 2. Then a simplified view of the incident model
and the definition of the clustering methodology are given in section 3. Finally,
the experiment and a summary of the results given by the use of the FCA tool
are presented in section 4.

1.2 ONERA-NASA Cooperation

Since 1995, ONERA and NASA Ames Research Center have conducted collab-
orative research on the analysis of aeronautical incident reports. The aim is to
develop methodologies and tools that allow the experts to identify causal fac-
tors and human-factor-related issues. The ASRS1 database [1], [2] is used as a
representative data resource for this study even though the approach adopted is
not designed to fit any specific incident reporting systems.

Several codification processes that have been developed and tested on ASRS
reports [3] were evaluated. Then the effort have focused on the design of a new
clustering process. In 2003, an experiment validating the methodology was com-
pleted [4] and is the subject of this paper. It was based on the use of the FCA
tool Kontex (developed by ONERA) with a limited set of selected ASRS reports.
Other experiments based on statistical methods are now under study.

1.3 Applicative Background

Even though air transportation is the safest mode of travel, improving the level
of security is a major concern for the aeronautical community. The airlines and
the authorities would like to have a proactive management of safety risk from a
system-wide prospective. Such a process involves identifying hazards, evaluating
causes, assessing risks and implementing appropriate solutions. It is a non-trivial
task that relies on the capability of continuously monitoring the system’s per-
formance.

Some airlines have already developed quality-control strategies in which they
analyze routinely their performance data. Their safety programs rely mainly on
two types of data sources: (1) flight-recorded data [5], and (2) incident-reporting
systems. Other techniques such as in-flight audit (LOSA) [6] are emerging but
are not widely used yet2. While flight-data analysis provides an objective under-
standing of “what” happened during operations, it gives little information about
the “ why”. This distinction between the “what” and the “why” of an incident
is discussed further in the discussion of the notion of scenario in Section 3.2.
An understanding of the causal factors of why an incident occurred is essential

1 The ASRS (Aviation Safety Reporting System) managed by NASA and funded by
the FAA Office of System Safety since 1976, is one of the world’s best-known and
most highly regarded repositories of safety information. The ASRS database is a
collection of nearly 112,000 narratives of aviation safety incidents that have been
voluntarily submitted by reporters across the aviation industry.

2 At least when measured on the basis of the extent of the ongoing collection of data.
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to formulating the appropriate intervention in proactive management of safety
risk.

The search for causal factors of incidents depends mainly on the anecdo-
tal account of the incident reporter. So, incident databases constitute the best
available sources of information about why incidents happened. However, their
analyses pose several challenges. First, the process is typically labor-intensive
and requires high-priced domain expertise to read and interpret each report.
Further, while available tools allow automated extraction from a database of
reports on a specified issue, they are unable to highlight the unknown systemic
issue requiring a proactive intervention. There is a need for new analytical meth-
ods and automated capabilities to help the experts mine these rich and complex
textual databases for insight into the causal, contributing, and aggravating fac-
tors of an incident or event. Finally, the breakthrough in the new generation of
text-analysis tools is their ability to deal with the complex semantics of these
anecdotal reports. Thus, the need for formal means that could preserve and em-
power the symbolic content of these data is essential. A first step is to build
meaningful sets of reports that identify recurrent issues and reduce the task of
the experts.

2 The ONERA Kontex Tool

The ONERA team involved in the ONERA-NASA cooperation worked for sev-
eral years on FCA and especially on the use of FCA with generalized contexts
[7], [8]. They developed several prototypes of tools among which a Prolog III c©
program allows computation of the concept lattice when the attributes are rep-
resented by literals of a first-order language.

The investigation of real incident reports achieved during this collaborative
study generated large concept lattices (over 4000 concepts) for which the ex-
ploration required a more sophisticated graphical interface. This motivated the
ONERA team to develop a new tool (called Kontex) based on the C language and
OpenGL. Unlike their previous Prolog tool, this one uses classical FCA contexts.
Indeed, it is always possible to find a classical context that generates the same
concept lattice as the one calculated with the first-order context (or any gener-
alized context). The next section explains how to make such a transformation.
In the specific case of a first-order context, it is better, from a computational
point of view, to generate the equivalent classical context before calculating the
concept lattice, as the use of first-order logic is time consuming. This explains
the choices made for the new ONERA tool.

2.1 Generalized and Classical Contexts

When the knowledge about the objects to be analyzed is captured by a rela-
tional database, it is sometimes easier to characterize those objects by literals of
a first-order logical language. Then the description is closer to the original infor-
mation and more understandable by the domain experts. It has been shown in [7]
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that FCA theory can be adapted to the use of such contexts (called generalized
contexts).

Definition 1.
A generalized context K is a triple (O, (L,≤,�,�), ζ) where O is a finite set,
(L,≤,�,�) is a lattice and ζ is a mapping from O to L.

We will not review here all the mathematical elements (i.e., generalized con-
cepts and, generalized concept lattices) required to extend FCA to the use of such
generalized contexts. As already noted, it is not really an extension of the FCA
theory, but a way to use contexts represented in a more expressive way. Indeed,
for each generalized context K, there is a classical context K′ that generates an
isomorphic lattice [9].

The aim of this section is to show briefly how to build such a corresponding
classical context when the generalized context K is based on finite lattice L. The
demonstration relies on the use of ∨-irreducible elements. Let us make a short
review:

Definition 2.
Let (L,≤,�,�) be a lattice. An element x ∈ L is ∨-irreducible if:
– x 	= 0 (in case L has a zero);
– x = a ∨ b implies x = a or x = b for all a, b ∈ L

The set of all the ∨-irreducible elements of L is noted J(L).

In the case of a finite lattice L, J(L) is supremum -dense and so each element
of L can be represented as the supremum of elements of J(L) [9]. This allows us
to define the decomposition of an element as follows.

Definition 3.
Let (L,≤,�,�) be a finite lattice. The decomposition of an element x of L is
x∨ = {y ∈ J(L) | y ≤ x}

This definition can now be used to define a classical context from a generalized
one as follows.

Definition 4.
Let K = (L,≤,�,�) be a finite lattice and (O, (L,≤,�,�), ζ) be a generalized
context.
K′ = (G,M, I) is a classical context defined by G = O, M = J(L) and (g,m) ∈ I
iff m ∈ g∨ (for all g,m ∈ G ×M).

It is easy to check that for all a, b ∈ L we have: (1) a ∨ b =
∨

(a∨ ∪ b∨), (2)
a ∧ b =

∨
(a∨ ∩ b∨), and (3) a ≤ b ⇔ a∨ ⊆ b∨

From these properties the following result can be deduced.

Proposition.
The generalized concept lattice B(O, (L,≤,�,�), ζ) is isomorphic to the classi-
cal concept lattice B(O, J(L), I).
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Fig. 1. The Kontex graphical interface

This property gives a theoretical way to transform any generalized context
(based on a finite lattice) into a classical context, which generates an isomorphic
concept lattice. Therefore, one can either choose to use the adaptation of FCA
with a generalized context or choose to transform it into a classical context before
calculating the concept lattice. The choice mainly depends on the complexity of
the algorithm required to implement the lattice operators (≤,�,�) compared
to the complexity of the decomposition algorithm. When the cube lattice3 is
used, it is more efficient to transform the context as the ≤ operator used the
subsomption algorithm. The automated transformation of a cubical context into
a classical context is under development and will be integrated in Kontex.

2.2 The Kontex Tool

The Kontex tool has been developed by ONERA in order to explore concept lat-
tices. The set of concepts and their relations are calculated with the algorithm
of Lindig [10]. The graphical interface (shown in Figure 1) mainly enables nav-
igation in the lattice structure and extraction of sub-lattices. It contains three
windows: one (upper left) for the description of the selected concept, one (lower
left) with the parents and the children of the selected concept (which is useful
when the number of concepts is high), and one (right) with the current view of
the lattice (it can be the full lattice or a sub-lattice). Menus allow access directly
to the concept labeled by the selected attribute or by the object name.

3 A cube is a conjunction of first order literals. A finite lattice, called the cube lattice,
can be defined on the set of cubes and used to build a generalized context, called a
cubical context [7], [8].
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3 Mining an Aeronautical Incident Database

Large databases, like the ASRS, have been extensively used in a retroactive
way with automated tools: when an accident occurs or when a safety issue is
suspected, a dedicated request is built and the relevant reports analyzed. But,
in order to enhance safety, the decision makers in the aviation system need now
to develop proactive strategies4. The challenge of the next generation of safety
tools is to bring to the attention of the decision makers unexpected, hidden, and
relevant issues in the database that may be the precursors of the next accidents.
Thus, the adequate intervention strategies can be formulated based on the causal
factors of the precursors before the accidents occur.

Discovering relevant safety issues in an incident report database is not a
trivial task. It implies the ability to extract meaningful sets of reports related
to recurrent situations. Such sets of reports will then be analyzed by domain
experts to assess the operational significance of the recurring event.
In order to build relevant clusters, the specificities of what is an aviation incident
must be taken into account. Hence, in this section (which is completely dedicated
to the application), we review briefly the content of the ASRS database and
present the incident model upon which the clustering methodology is based. A
detailed view of these notions can be found in [4].

Reporter Analyst

Database

Fig. 2. From the event to the Database

3.1 An Aeronautical Incident Reporting System

Aeronautical incident reporting systems, such as the ASRS, are voluntary, non
punitive and confidential. They rely on the participation of certificated person-
nel (pilots, air traffic controllers, dispatchers, mechanics...) who report safety
concerns they observe, even if they resulted from their own errors. As we do
not want to describe one particular system, we just present here some essential
steps performed in order to build the database of such a system. Accordingly,
an oversimplified report processing system can be described by Figure 2.

4 This is sort of what the ASRS does in the triage mode when experts identify incidents
worthy of alert bulletins. However this step is not at all automated and highly
dependent on the analyst’s memory as to whether similar incidents ever occurred
before.
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The report is submitted on a reporting form that contains a few fixed fields
and a blank section for the narrative. When received by the experts of the
reporting system, the report is analyzed and codified through a codification
form that is based on a structured set of items. The resulting codification and
the narrative are entered in the database.

3.2 The Incident Model

The main information of the initial report is concentrated in the narrative where
reporters of aviation incidents describe problems encountered during their oper-
ations. They usually relate them as stories and focus on what happened, on the
involvement and behavior of people as well as on the important features that
help us to understand why these problems occurred.

Let us take an example extracted from the ASRS database. The narrative (in
which the abbreviations and acronyms have been expanded) is reproduced here:
”We were on a visual approach behind a wide-body for runway 28 Right. At about
1000 feet above ground level, the tower offered us 28 Left. We changed to 28 Left
and the tower cleared the wide-body to cross 28 Left ahead of us. The wide-body
delayed crossing and when we were close in, the tower offered us 28 Right. We
attempted to change to 28 Right but were too close in to maneuver and so we went
around.”

This short story can be understood through a sequence of four states and the
three transitions between them, as displayed in the Figure 3. Extracting such a
decomposition from the narrative is a natural process for the expert as it allows
him/her to capture quickly the essence of the evolution of the situation in a
meaningful way.

Fig. 3. The story of an incident report

In such a story, all the states and transitions do not play the same role and
a story is an incident only if certain specific states are entailed. In a simplified
view, we can say that a story relates an incident if it starts with a safe state,
evolves to an anomalous one and returns to a safe state. Then the main features
of the incident are captured by the three components of the notion of a scenario,
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as defined on Figure 4. We point out that the Context5 (or Initial Situation)
and the Outcome mainly represent the “WHAT” happened while the Behavior
is more linked to the “WHY”.

Fig. 4. Scenario and incident model

In order to generate meaningful sets of reports, the process designed will have
to be based on the notions highlighted by this incident model.

3.3 The Clustering Methodology Adopted

Let us recall that we want to group reports that look similar so as to illustrate
a recurrent issue. Each cluster should be meaningful for an expert who is going
to decide if it is operationally significant and if there is any specific intervention
to design in order to address the problem highlighted.

Our clustering process will be defined according to the scenario notion: it re-
lies on the assumption that if two stories have similar scenarios, they fit together.
As the behavior is context dependent, a three-step process has been adopted:

1. find sets of reports with similar Outcomes
2. for each set produced by step one search for typical Initial Situation and

produce a subset for each identified Initial Situation.
3. for each subset generated by step 2, analyze the Behavior.

This methodology gives us the framework that should allow us to extract
meaningful clusters from the incident database. However, the tools used for each
step of the process are not determined yet. They will depend on the number of
reports processed and on the kind of knowledge (i.e., Fixed Fields, Free text...)
used to describe each of these three parts of the scenario.

5 In the incident model, the Context refers to the state and the setting elements that are
at the starting point of the compromised situation. We will, in this paper, use “Initial
Situation” instead of Context in order to avoid any confusion with the meaning of
the term context as it is used in the FCA. However, it should be understood that
the “Initial Situation” is not limited to the proximate factors and may include latent
factors such as organizational culture and training.
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The analysis of the available codification showed that the fixed fields ade-
quately describe the Initial Situation and the Outcome (the “WHAT”), but not
the Behavior. Consequently, it is possible to conduct the two first steps of the
process using only the information in the fixed fields. This allows us to use pow-
erful clustering tools such as FCA for these steps. However, the third step relies
mainly on free text analyses of the narrative portion of the reports. The first two
steps define what happened, but the third step to identify the causal factors of
the Behavior is critical to understanding why the incident happened and the ap-
propriate intervention. The third step is the subject of on-going ONERA-NASA
collaboration. The concept of the approach is that the automated analysis re-
quired for the third step will benefit from the focus achieved in accomplishing
the first two steps.

This methodology has now to be tested on a set of ASRS reports. This first
experiment is the focus of the next section.

4 Analysis of 40 Incident Reports

4.1 Aim of the Experiment

When experts analyze a set of reports, they build up, in an informal way, groups
of reports that illustrate important similar issues. They use intensively the free
text for this task. However, an automated tool that could achieve an initial clus-
tering of similar reports would reduce the amount of their work. The assumption
is that the designed methodology is able to build meaningful groups of reports
based solely on the fixed fields recorded in the database. The underlying assump-
tions are that (1) it is useful to cluster reports that are similar with respect to
“what” happened, (2) the factors of the Initial Situation and the related Out-
come define what happened, and (3) the factors of the Initial Situation and the
Outcome of an incident are adequately defined by the fixed fields of that incident
report. It is important to recognize that, while these may be valid for the ASRS
database, they do not necessarily maintain for all textual databases. The aim
of the experiment is to test these assumptions on a small sample set of reports
from the ASRS database.

Thus, we want to evaluate whether the designed process can produce mean-
ingful clusters when used in the best possible conditions. More precisely we want
to test whether we can achieve the two first steps using only the fixed fields of
the codification and obtain:

– well separated categories of reports related to specific Outcomes and,
– meaningful Initial Situation associated to each category.

The groups of reports generated and the attributes that characterize them
will have to be relevant and meaningful to experts. In this work, we do not intend
to design the final user tool, but rather just to validate the methodology. So we
decided to:

– adopt a formal representation of the data that exactly fit the expert codifi-
cation entered in the database [11] (based on the cube model [8]);
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– build a generalized context where each incident is described by a cube;
– produce the concept lattice and “manually” check if meaningful clusters

appeared or not.

If the clusters expected by experts do not appear in the lattice structure, it
will mean that the Fixed Fields entered in the database do not contain all the
required knowledge: the classifications produced by the experts utilize additional
information contained in the narrative.

One of the key issues here is to keep in the context all the information de-
scribed in the relational database. This is why a generalized context is build even
if it is not the more efficient from a computational point of view. Then, using
the theoretical results of section 2.1, a classical context that gives an isomorphic
concept lattice is generated and used as input to the FCA tool.

Designing an automated tool that can build similar clusters for huge sets of
reports (typically 50,000 reports) will be the next step of the work and is the
purpose of other experiments being conducted that are not described in this
paper. The value of the study reported here is largely in establishing confidence
in the approach. However, the process has more general value as a way to assess
the validity (with a few representative reports) of the results obtained using fully
automated tools on very large numbers of reports.

4.2 The 40 Incident Reports

As this experiment is designed to evaluate the methodology, we wanted to use
a set of reports dealing with a small number of somewhat similar scenarios.
The validity of the clusters generated will be determined by experts. Therefore,
the global set of reports had to be small and well known. As the ASRS and
NASA experts had already studied a set of reports about “In Close Approach
Changes” (ICAC), we decided to randomly extract 40 of those for this study.
All these reports deal with an aircraft in the approach flight phase and, thus,
close to an airport. The involved Initial Situations of all 40 reports are not very
different and the experts had identified a limited set of Outcomes. So we knew
that this set of reports could be divided into 3 or 4 scenarios by domain experts
and we wanted to test whether our two-step clustering process was able to find
them.

The number of 40 reports was also taken to limit the amount of “manual”
work required to transfer and format the data from the ASRS database to the
ONERA Kontex tool.

4.3 From the ASRS Codification to an FCA Context

Our primary description of each incident is its ASRS codification. From that, we
want to extract a context that describes both the Initial Situation of the incident
and its Outcome in order to perform the two first steps of the clustering process.
Figure 5 is an excerpt of the ASRS codification of the incident report number
81075.
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ACN: 81075
Time

Date : 198801
Day : Mon
Local Time Of Day : 0001 To 0600

Place
Locale Reference.Airport : SFO
State Reference : CA
Altitude.AGL.Bound Lower : 0
Altitude.AGL.Bound Upper : 100

Environment
Flight Conditions : VMC
Light : Night
Visibility.Bound Lower : 15
Visibility.Bound Upper : 15

Aircraft / 1
Involvement : Unique Event
Controlling Facilities.Tower : SFO
Operator.Common Carrier : Air Carrier
Make Model : Medium Large Transport, Low Wing, 2 Turbojet Eng
Crew Size : 2
Flight Phase.Descent : Approach
Flight Phase.Landing : Go Around
Airspace Occupied.Class D : SFO

Aircraft / 2
Operator.Common Carrier : Air Carrier

...
Person / 1

Involvement : Pilot Flying
Involvement.Other : Reporter
Affiliation.Company : Air Carrier
Function.Oversight : PIC

...
Person / 4

Involvement : Controlling
...
Events

Type Of Event : Unique Event
Anomaly.Other Anomaly.Other : Unspecified
Independent Detector.Other.Flight CrewA : Unspecified
Resolutory Action.Other : Flight Crew Executed Missed Approach Or Go Around

...
Fig. 5. Excerpt of an ASRS codification

The information encoded in such a form is complex and its meaning partly
relies on the links between the fixed fields. As an example, the person 1 is the
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pilot of the Aircraft 1, person 4 is the controller of San Francisco tower who is in
charge of Aircraft 1. A special study was conducted to highlight all these links
and formally represent them in a first-order logical language [11]. Figure 6 shows
an extract of the formal representation of the incident 81075.

Date(01,1988) Aircraft(Acft 2,WDB,LW,TE,2,2)
Day(Mon) ...
Time(1) Person(Per 1,PilotFlying)
Place(CA(SFO(VAR1,VAR2))) Location(Per 1,Acft 1)
Altitude(AGL(0,100)) Affiliation(Per 1,Company(AirCarrier))
Airport(CA(SFO), Open, Controlled, Parallel) Function(Per 1,Oversight(PIC))
Traffic(Samedir) ...
Flight Condition(VMC) Person(Per 2,Monitoring)
Visibility(15,15) Location(Per 2,Acft 1)
Aircraft(Acft 1,MLT) ...
... Person(Per 4,Controlling)
Flight Phase(Acft 1,Descent(Approach)) Location(Per 4,Tower(CA(SFO)))
Flight Phase(Acft 1,Landing(GoAround)) ...
Control(Acft 1,Tower(CA(SFO))) Anomaly(Other(Other))
Airspace(Acft 1,ClassD(SFO))

Fig. 6. Formal representation of the incident 81075

The two variables, VAR1 and VAR2, indicate that the orientation and the
distance between the place of the incident and the airport of San Francisco are
not known. The ASRS codification has been augmented by the use of the fixed
fields of two other codification forms (X-Form and Cinq-Demi form6). As an
example the information Traffic(Samedir) (which indicates the presence of other
aircraft flying in the same direction) and Parallel (parallel runways are in use)
come from the fixed fields of the X-Form.

Once all the information contained in the database has been captured, the
literals related to the Initial Situation and the Outcome of the incident are se-
lected. Then, following the methodology developed in section 2.1, a classical FCA
context was generated from this first-order codification. Figure 7 illustrates some
of the properties used to describe our incident 81075.

Thus, the decomposition of the literal Flight Phase(Acft 1,Descent(Approach))
in the cube lattice is a set of 6 ∨-irreducible elements:
Flight Phase(x,y), Flight Phase(x,Descent(y)) ,Flight Phase(x,Descent(Approach)),
Flight Phase(Acft 1,y), Flight Phase(Acft 1,Descent(y)) and
Flight Phase(Acft 1,Descent(Approach)).

Of these 6 elements, only two have been kept: Flight Phase(x,Descent(y))
called Descent and Flight Phase(x,Descent(Approach)) called DescentApproach.
Indeed the other elements are not useful as all the incidents contain the ∨-
irreducible element Flight Phase(x,y) and the reference to the Aircraft Acft 1 is

6 Information about these forms can be found in [4].
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not meaningful by itself as it is only used to link the literals together. As the
aircraft Acft 1 is of type MLT (encoded by Aircraft(Acft 1,MLT) we also generate
other ∨-irreducible elements such as {Aircraft(x,MLT),Flight Phase(x,Descent(y))}
in which the two literals are linked by the variable x. This element has been called
DescentMLT.

Open DescentMLT
Parallel DescentApproachMLT
Traffic exp2
Samedir Descentexp2
VMC DescentApproachexp2
vis3 MLTexp2
... DescentMLTexp2
Descent ...
DescentApproach AnomalyOtherOther
MLT AnomalyOther

Fig. 7. Some attributes of the incident 81075

The decomposition has been achieved by means of a dedicated Prolog III
program. It is not a complete decomposition as some of the reducible attributes
([9] page 24) have been removed. The context describing the incidents Initial
Situation and Outcome contains 210 attributes for the 40 objects and generates
2162 concepts. It has been “manually” explored and analyzed with the Kontex
tool as explained in the following section.

4.4 Results of the Study

First Step: The Outcome
As explained in section 3.3 the process started with the analysis of the Outcome.
In the description of each incident, only the attributes related to the Outcome
have been kept and the lattice structure generated. The Outcomes of the forty
reports were characterized by 26 attributes and 50 concepts were found (see
Figure 8).

This lattice structure has been explored with a top-down approach. This
top-down analysis identified discriminant concepts. A concept was considered
discriminating if (1) it had none or few reports shared with other significant
concepts, (2) it contained an interesting percentage of all the reports, and (3)
collectively, the discriminating concepts contained nearly all of the reports.

This process highlighted two significant concepts based on the two attributes:
“Track or Heading Deviation”, and “Conflict”. With the same top-down approach,
the two sub-lattices generated respectively by these two concepts have been
explored. Then, we point out that the “Conflict” concept can be decomposed
into three significant sub-concepts described by the three attributes: “Airborne”,
“Ground”, and “Near Mid-Air Collision (NMAC)”. So, we are able to state two
main Outcomes in the scenarios of these 40 reports; namely reports that deal
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Fig. 8. The concept lattice based on the Outcome attributes

with a spatial deviation (track or heading) and reports dealing with a conflict.
This first stage of analysis also showed that the attribute “Non Adherence to a
Clearance” was often encountered but seemed to be a contributing factor in the
four main groups of reports identified, rather than a discriminating factor.

In addition, a concept (“Other”) containing all the reports that were not
related to any anomaly of the ASRS taxonomy (as the incident 81075) and
2 exceptions (“InFlight”: the aircraft encountered a turbulence, and “Aircraft”:
technical problem on the aircraft systems) were identified. The following table
summarizes these results.

Table 1. Outcome classification of the reports

Report# 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 1 2 1 1 2 1 2 1 1 2 2
2 3 3 6 6 1 1 2 2 3 4 6 9 7 8 0 1 2 5 6 6 6 5 9 6 9 1 0 8 8 4 9 3 2 2 8 0 9 0 4
1 1 6 3 4 0 3 3 9 0 0 4 9 1 3 1 5 4 4 6 9 8 3 1 3 3 2 2 1 1 0 5 6 4 6 6 4 7 4 4
1 9 0 4 7 6 4 6 8 8 7 5 6 1 2 9 4 2 3 6 1 2 7 3 0 4 2 7 0 8 8 0 5 6 9 9 4 4 5 8
9 1 3 6 1 9 2 7 5 9 8 9 9 7 1 7 8 9 6 2 6 9 4 7 9 1 9 2 7 7 9 8 9 5 3 0 1 5 3 5
0 7 8 9 6 2 8 2 8 3 6 3 9 8 5 0 0 1 0 0 2 6 2 0 7 0 3 8 5 1 3 9 5 5 4 8 7 1 0 1

Track/Hd * * * * * * * * * * * *
Airborne * * * * * * * * * *
Ground * * * *
NMAC * * *
Other * * * * *
InFlight *
Aircraft *
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Second Step: The Initial Situation
In this next step, we wanted to cluster on the shared Initial Situation within
each discriminative concept. Thus for each of the discriminative concepts, an
FCA context containing only their reports and the attributes related to their
Initial Situations was built and analyzed. The main results of this second stage
are summarized here.

Track or Heading Deviation: the shared Initial Situation of these incidents
can be described by: “An aircraft is in the approach flight phase to an open
and controlled airport. The aircraft is controlled by the TRACON7 in a Class B
airspace.”

Conflict: the shared Initial Situation of these incidents is characterized by: “Two
aircraft are in the vicinity of an open and controlled airport. One of them is in
the approach flight phase and there is some traffic.”

The Initial Situation of these two incidents look similar because all the inci-
dents dealt with ICACs. Nevertheless, the differences highlighted are meaningful:
Track or Heading deviations usually start far away from the airport, while con-
flicts often appear later, when the aircraft are closer to the airport. Conflicts
require two aircraft and are associated with traffic.

When the typical Initial Situations of three types of Conflicts are studied, it
appears that :

– for a Ground conflict, the aircraft is under the control of the Tower,
– for an Airborne conflict, the two aircraft are in the same flight phase and

parallel runways are in use,
– no meaningful specific attributes for the NMAC conflict were identified.

4.5 Conclusion of the Experiment

This limited experiment shows that, within the phase of flight selected for the
Initial Situation of these 40 reports, an initial clustering process based on the
description of the Outcome generated well-separated groups of reports. Then,
the analysis of the related Initial Situations was able to point out discriminat-
ing parameters. Of course, with such a small number of reports, one should be
careful about the reliability and the generalization of the results. The purpose of
this study was to test the value of the model and the process, and not so much
to come to conclusions about the links between Initial Situations and Outcomes
based on this small set of reports. It appears that an adequate description of
what happened (i.e., of the Initial Situation and of the Outcome can be ob-
tained from solely the Fixed Fields of the codification of these ASRS reports.
This is important to the automated methodologies being developed that are in-
tended to identify the causal factors of the Behavior entailed in a scenario of an
incident.

7 The TRACON (Terminal Radar Approach Control) control the aircraft when it is
still far from the airport. Afterward the control is transferred to the Tower.



160 N. Maille, I.C. Statler, and L. Chaudron

5 Conclusion

We presented here a new process dedicated to the analysis of reports of aviation
incidents. The methodology adopted is innovative for the safety community as
the design of the clustering process relied on the components of an incident
model. The validity of the model has been tested on a limited set of reports
with the FCA tool Kontex. The primary representation of the incident is done
by conjunctions of first-order literals (the cube model) because the codification
used in the relational database matches this model.

This paper demonstrates, from a theoretical point of view, how to transform
the first-order context (decomposition of the elements) into a classical context
and how to apply it to this particular set of reports. The decomposition function
will be integrated in the Kontex tool.

Moreover this work illustrates how the FCA technique, combined with an
adapted graphical interface, allows an expert to “manually” mine a textual data-
base and extract a set of similar, relevant reports. Heuristic functionalities could
be added so as to make a first selection of the discriminant concepts before
validation by the expert.

The same methodology will now be tested to explore how in-flight events ex-
tracted from flight-recorded quantitative data and from subjective data of anec-
dotal reports could be correlated. This work has also helped us to define other
experiments based on statistical methods and on natural language processing,
which are currently being pursued on large numbers of reports.
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Abstract. Functional dependencies, a notion originated in Relational
Database Theory, are known to admit interesting characterizations in
terms of Formal Concept Analysis. In database terms, two successive,
natural extensions of the notion of functional dependency are the so-
called degenerate multivalued dependencies, and multivalued dependen-
cies proper. We propose here a new Galois connection, based on any
given relation, which gives rise to a formal concept lattice corresponding
precisely to the degenerate multivalued dependencies that hold in the
relation given. The general form of the construction departs significantly
from the most usual way of handling functional dependencies. Then, we
extend our approach so as to extract Armstrong relations for the degen-
erate multivalued dependencies from the concept lattice obtained; the
proof of the correctness of this construction is nontrivial.

1 Introduction

It is well-known [19] that, from the Concept Lattice associated to a given binary
relation, one can extract a number of implications that hold in the relation, for
instance via the Duquenne-Guigues basis or, alternatively, by using minimal hy-
pergraph transversals of the predecessors of each closed set ([26], [27]). Actually,
the implications obtained in that way are known to characterize a Horn axioma-
tization of the given relation if one exists (otherwise, they provide a well-defined
Horn approximation to the data; see [3], where a complete proof may be found).

Moreover, in [19] we also find an interesting application to database theory,
since the syntactical similarity between implications and functional dependencies
is more than a mere syntactical similarity; and there is a precise method (that
we will call here “comparison-based binarization”) to change a given database
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relation r into a binary relation, or scaling, whose implications (its Horn axioma-
tization) provide exactly the functional dependencies that hold in r. Specifically,
for each pair of tuples in r the values for each attribute are compared so as
to yield a binary result, and therefore a binary relation (of quadratic size) is
obtained.

There are other forms of dependencies in database theory, and we consider it
interesting to find methods to obtain or characterize them on the basis of Formal
Concept Analysis (FCA). Indeed, we have seen that this is possible for some of
them, but the task turns out to be far from trivial. In [4] we have developed a
careful semantic study of the relations or propositional theories where formulas
of these sorts do hold: namely, multivalued dependencies, degenerate multivalued
dependencies, and a family of propositional formulas introduced by Sagiv [28]
that parallel them in the same sense as Horn clauses parallel functional depen-
dencies. There we have identified precise meet operators, that is, various forms of
combining objects to replace the standard intersections in the closure property,
that characterize semantically these dependencies; but these do not readily give
as yet a formal concept lattice. Here we consider instead an alternative approach
based on defining Galois connections on classes, or partitions, of tuples and of
attributes.

Along this line, in [1] we actually demonstrate how to define a Galois connec-
tion between attributes and partitions of tuples, inspired by the algorithms in
[21] for computing functional dependencies, and thus propose a closure operator
giving another precise characterization of functional dependencies in terms of
FCA; and our recent, still unpublished work [2] proves that this approach, gen-
eralized to handle partitions of attributes instead of single attributes, actually
does handle adequately multivalued dependencies.

Associated to each sort of dependency in databases is a notion of Armstrong
relation: for a given set of rules, according to whatever syntax the sort of depen-
dency considered allows for, an Armstrong relation is a relation that obeys that
set of rules, and of course their logical consequences, but absolutely no other rule.
They are useful in database design since they exemplify a set of dependencies,
for instance those designed for a database schema prior to actually populating
the database with tuples, and the analysis of such an Armstrong relation (seen
as a potential database that the rules do allow, but where no other rules hold)
is valuous for the prior understanding of the schema designed. Indeed, if the
schema should have included a dependency that was forgotten, or expected to
follow from the others, but actually does not, the Armstrong relation will point
it out by including tuples that violate it, and this is usually a good method for
the database engineer to realize the omission.

Our goal in this paper is twofold: first, we complete the existing characteri-
zations by exhibiting an FCA-based characterization of degenerate multivalued
dependencies, that did not follow from the previous study; and then, taking
advantage of the crisper semantics of these dependencies in comparison with
multivalued dependencies proper, we set out to explore the possibility of us-
ing FCA methods to construct appropriate Armstrong relations. For the case
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of functional dependencies there are methods actually very close to FCA [13];
in our case of DMVD’s, we describe here a method to obtain the Armstrong
relation from the associated Concept Lattice.

We choose a way of handling partitions of attributes and classes of tuples, and
define a Galois connection between them; then we prove that the associated clo-
sure operator yields exactly the degenerate multivalued dependencies that hold
in the original table, and move on to provide and fully verify a method to obtain
an Armstrong relation from the family of the closed sets. Future goals would
be to find a similarly-behaving method for multivalued dependencies proper, or
for other stronger notions of dependency arising in the database theory area;
and to investigate a potential, possibly strong connection between the notions
of dependency that can be exemplified by Armstrong relations and those that
can be characterized in terms of Formal Concept Analysis.

2 Basic Definitions

The following definitions and propositions have been taken from [14] and [31].
We keep mostly a database-theoretic notation since we are working for the most
part with multivalued relations. We have a set of attributes U := {X1, . . . , Xn}
and, for each attribute Xi ∈ U , a domain of values Dom(Xi). A tuple t is a
mapping from U into the union of the domains, such that t[Xi] ∈ Dom(Xi)
for all i. Alternatively, tuples can be seen as well as elements of Dom(X1) ×
· · ·×Dom(Xn). We also use tuples over subsets X of U , naturally extending the
notation to t[X] for such projected sub-tuples. We will freely use the associativity
(modulo a bijection) of the cartesian product to speak of tuples over a subset
X of U as being obtained from cartesian products of subsets of X. A relation
r over U is a set of tuples. We will use capital letters from the end of the
alphabet for sets of attributes, and abuse language by not distinguishing single
attributes from singleton sets of attributes; the context will allow always easy
disambiguation. We denote by XY the union of the sets of attributes X and Y .

Given two tuples t1, t2, we say that they agree on a set of attributes X if
their values in X are pointwise the same or, formally, t1[X] = t2[X] seen as
tuples.

2.1 Degenerate Multivalued Dependencies

This sort of database constraints, introduced in [15], is of intermediate strength
between functional dependencies and multivalued dependencies. Whereas of less
practical importance than either, it has been the right spot for generalizing the
construction of Armstrong relations as we prove in the next section.

Definition 1. A degenerate multivalued dependency X → Y |Z holds in
a relation iff whenever two tuples t1, t2 agree on X, then, they agree on Y or in
Z, where X∪Y ∪Z = U . Formally: t1[X] = t2[X] implies t1[Y ] = t2[Y ]∨t1[Z] =
t2[Z].
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The dependency basis for a given set of attributes X ⊆ U , which is a notion
deeply related to multivalued dependencies in their general form, was defined
in [7]. It consists in a unique partition of the set of attributes U such that, for
any (nondegenerate) multivalued dependency (MVD) that has X in the left-
hand side, the right-hand side is a union of one or more of the classes of this
partition. It could be defined in this way because MVD’s fulfill the reflexivity
property (Y ⊆ X |= X → Y ) and their right-side parts are closed under union
(X → Y,X → Z |= X → Y ∪ Z).

The dependency basis of [7] for MVD’s easily allows one to summarize a set
of dependencies with the same left-hand side in a single expression (as it has
been proposed in [12]). Since DMVD’s also have the reflexivity property and
are closed under union, likewise, we summarize a set of DMVD’s in a single
(generalized) DMVD as follows:

Definition 2. X → Y1| . . . |Yn (where Y1 ∪ · · · ∪ Yn is a partition of U) is a
generalized DMVD in r if for each DMVD X → Z|W that holds in r, Z (W )
can be formed by the union of some Yi, and ∀Yi : X → Yi|U \ (X ∪ Yi) holds in
r.

We will use here vertical bars in enumerations of classes of attributes, when
they make sense syntactically as a potential generalized dependency, that is,
when they constitute a partition of the attributes.

3 Modeling DMVD’s with FCA

We are ready to describe the first core contribution of this paper. On the basis
of an input relation r, we define a pair of functions for which we prove that
they constitute a Galois connection (in a slightly generalized sense); then we
analyze the closure operator obtained, and show that the implications it provides
correspond to the degenerate multivalued dependencies that hold in the given
r. To explain our construction, we will use throughout the following running
example, in which U = {A,B,C,D} and that has four tuples: {1, 2, 3, 4}. For
sake of simplicity, we will use the tuple id’s to refer the tuples:

Example 1.

id A B C D
1 a b c d
2 a b d c
3 a c c d
4 a c d b

Often Galois connections are defined between two sub-semilattices of a power
set lattice; however, structurally it is not necessary to restrict ourselves to power
set lattices, and many other partial orderings are as appropriate [23]. We will
work with the following orderings: on the one hand, partitions of the set of
attributes U , ordered according to a refinement relation; on the other hand,
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sets of classes of tuples, ordered according to a covering relation similar to the
refinement relation1.

Thus, assume we are given a set of tuples r over the schema U . The central
definition for our notion of closure is as follows:

Definition 3. A partition P of the set of attributes U , P := {P1| . . . |Pn},
matches a class of tuples π ⊆ r iff different tuples differ on a single class.
We also say that P matches a set of classes of tuples Π if P matches all classes
πi ∈ Π.

Therefore, t1, t2 ∈ π, for a matching π, requires that there is some j such
that t1[Pj ] 	= t2[Pj ] but t1[Pk] = t2[Pk] for k 	= j. Moreover, in principle this j
depends of the pair of tuples, as the definition is stated, but in fact it does not:
all the different tuples that belong to the same class agree on all the values of
the different classes of attributes Pi except in one and only one sole class Pj , the
same for all the pairs of tuples in π as we prove in the next proposition.

Proposition 1. Let π be a class of tuples matched by a partition of attributes
P ; then all different tuples differ in the same class of attributes.

Proof. Let us suppose that given partition of attributes P := {P1| . . . |Pn} there
are two tuples t1, t2 in π such that t1[Pi] 	= t2[Pi] and let us suppose that there
is also another tuple t3 such that t2[Pj ] 	= t3[Pj ]. Since each pair has to agree in
the rest of the classes in which they do not differ, t1 and t3 will differ in Pi and
in Pj , which would be a violation of the definition unless i = j.

Intuitively, we are implicitly handling a structural binarization, or scaling,
that provides us with a standard binary formal context, which in turn is able
to give us the implications as we need them; the objects of this implicit scaling
are the classes of tuples, of which actually only the maximal ones are relevant,
whereas the implicit attributes are the partitions of the original attributes; and
the binary relation is defined exactly by the match property. The following mono-
tonicity property holds.

Lemma 1. Let P , P ′ be two partitions of attributes, where P ′ is finer than (or
equal to) P , that is, ∀p′ ∈ P ′ : ∃p ∈ P (p′ ⊆ p). Then, each class matched by P ′

is also matched by P .

Proof. Let π′ be a class of tuples matched by P ′. For each pair of tuples in it,
there will be only one sole class of attributes from P ′ in which both tuples will
disagree, and it will be fully contained in a class of P , which is thus the only
class of P where these two tuples can disagree, which means that P will also
match π′.

1 Our sets of attributes will be called classes since they belong to equivalence relations;
to keep consistency, we call classes also the sets of tuples, and indeed their role is
very similar to the equivalence classes of tuples in [1]. A set-theorist might object
to our practice of calling sets (of classes) the third order objects and classes the
second order objects, but note that in our absolutely finitary approach everything
is (set-theoretic) sets and there are no proper (set-theoretic) classes.
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We have a similar monotonicity property along the other dimension. To com-
pare sets of classes of tuples, we use the following ordering:

Definition 4. Let Π and Π ′ be sets of classes of tuples. Π ′ ≤ Π means: ∀π′ ∈
Π ′ : ∃π ∈ Π(π′ ⊆ π).

According to this ordering, the monotonicity property reads:

Lemma 2. Let Π, Π ′ be sets of classes of tuples; if Π ′ ≤ Π and P matches Π,
then P also matches Π ′.

Proof. Let t1, t2 be two tuples that are in the same class π′ ∈ Π ′. Since Π ′ ≤ Π,
then they will be in one class π ∈ Π, and they will disagree in only one class of
attributes Pi. Therefore, P matches Π ′.

We denote by ℘ as the set of all possible partitions of attributes and present
the definition of the two functions of the Galois connection.

Definition 5. Operator φ: ℘ → P(P(r)). This operator receives a partition of
the set of attributes U : P := {P1| . . . |Pn} and returns a set of classes of tuples
Π := {π1, . . . , πm} matched by P , each of which is maximal under inclusion.

Of course, φ(P ) may not be a partition, in that a given tuple can belong
to more that one class matched by P ; this can be seen also in Example 1:
φ({A|B|CD}) = {{1, 2}, {3, 4}, {1, 3}}, and φ({A|BCD}) = φ({ABCD}) =
{{1, 2, 3, 4}}.
Definition 6. Operator ψ: P(P(r)) → ℘. This operator receives a set of classes
of tuples Π := {π1, . . . , πn} and returns a partition of the set of attributes P
that is the finest partition of attributes that matches that set of classes.

Actually, this last definition could, in principle, be ambiguous, but fortunately
there is always a unique most refined partition of attributes for a given set of
classes. It is instructive to see how to prove it. We work on the basis of the
following operation, which will take the role of a meet in the semilattice, and
which we find most intuitive to call intersection of partitions.

Definition 7. Let X := {X1|X2| . . . |Xn} and Y := {Y1|Y2| . . . |Ym} be two par-
titions of attributes. We define the intersection of two partitions of attributes
X ∩ Y as follows: X ∩ Y := {Z1|Z2| . . . |Zl} such that ∀Zi(∃j, k : Zi = Xj ∩ Yk).

Example 2. Let X := {AB|CD|EFG} and Y := {ABC|DEF |G}, then, X ∩
Y := {AB|C|D|EF |G}.

It is easy to see that this operation is associative.

Lemma 3. Let X := {X1|X2| . . . |Xn} and Y := {Y1|Y2| . . . |Ym} two partitions
of attributes, and let π be a class matched by both X and Y . Then, X ∩ Y also
matches π.
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Proof. Let t1, t2 be two tuples in π. They disagree only in one class of attributes
in X, let it be Xi, and in one sole class of attributes in Y , let it be Yj . Then,
the set of attributes in which both tuples disagree must be contained in both
Xi and Yj , and hence in Xi ∩ Yj . This proves that the intersection X ∩ Y also
matches π.

Corollary 1. (Unicity of the most refined matcher). Let π be a class of tuples.
There is a unique partition of attributes that is the most refined partition of
attributes that matches π.

Proof. The trivial partition consisting of a single class of attributes matches all
classes. If two or more different and incomparable partitions of attributes match
the same class, according to Lemma 3 and to the associativity of the intersection,
their intersection, which is more refined, also matches π.

In fact, this sort of intersection and the closure property that we have just
argued correspond to the notion of intersection in the implicit binary formal
context that we are using as scaling, alluded to above.

Now we can prove easily the basic property that relates both operators. To
state it in the most standard terms we denote the ordering of partitions of
attributes as follows:

Definition 8. Let P, P ′ be partitions of a set of attributes U . We denote by
P 
 P ′ the fact that P ′ is finer than P .

Then we have:

Lemma 4. Let P be a partition of attributes and Π ′ a set of classes of tuples.
P 
 ψ(Π ′) ⇔ Π ′ ≤ φ(P ).

Proof. (⇒) Let us call ψ(Π ′) = P ′. By Lemma 1, every class of tuples matched
by P ′ is also matched by P . Then, every class of tuples matched by ψ(Π ′) is
included in some maximal class matched by P ; that is: Π ′ ≤ φ(P ).

(⇐) Let us call φ(P ) = Π. By Lemma 2, since Π ′ ≤ Π and and P matches
Π (since φ(P ) = Π), then we have that P matches Π ′. Since ψ(Π ′) is the finest
partition of attributes that matches Π ′, then it must be finer than (or equal to)
P , that is, P 
 ψ(Π ′).

It is well known that the property we have just proved characterizes Galois
connections; thus,

Corollary 2. φ and ψ is a Galois connection between U and P(r).

We come now to the closure operator corresponding to this Galois connection,
from which we will obtain the dependencies we search for, which is Γ := ψ ◦ φ.
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The informal definition is that given a partition of the set of attributes P , it
returns the finest partition of attributes P ′ that can match the same classes as
P . For instance, in Example 1 we have that Γ ({B|ACD}) = {A|B|CD} because
both match the classes {{1, 2}, {3, 4}, {1, 3}}, but {A|B|CD} is the finest; and,
also, Γ ({ABCD}) = {A|BCD}. Such a composition of both directions of a
Galois connection is always a closure operator [19]. Thus,

Proposition 2. Γ is a closure operator.

We are ready for the main result in this section: the closure operator so
constructed corresponds, in a precise sense, to the degenerated multivalued de-
pendencies that hold in the original relation r. Specifically, we consider pairs
of partitions of attributes having the same closure; for instance, one of them
could be the closure of the other. We consider pairs of partitions that dif-
fer in only one class of attributes in the following way: we assume (to sim-
plify notation) that they have been numbered in such a way that the first
k classes in both partitions coincide, and the rest of them in X are merged
into a single class in X ′. We prove that, in this case, the union of the com-
mon classes can be taken as left hand side of a degenerate multivalued de-
pendency with the remaining classes of X as right hand side, and it holds in
the input relation; moreover, the converse also holds, so that each true DMVD
of r gives rise in the same way to two partitions X and X ′ having the same
closure.

Theorem 1. Let X,X ′ be partitions of attributes such that the n classes of X
are X := {X1| . . . |Xk|Xk+1| . . . |Xn}, whereas the k+1 classes of X ′ are X ′ :=
{X1| . . . |Xk|Xk+1 . . . Xn}. Then, Γ (X) = Γ (X ′) ⇔ X1 . . . Xk → Xk+1| . . . |Xn.

Proof. (⇒) Since Γ (X) = Γ (X ′), then for each pair of tuples t1, t2 we have the
following cases: (a) they both belong to the same class matched by X and X ′. If
this is the case, then they only disagree in one class of attributes. If this class is
one Xi : i ∈ {1 . . . k} then the DMVD holds because they disagree in X1 . . . Xk.
If this class is one Xi : i ∈ {k + 1 . . . n} then the DMVD holds as well. (b) they
do not belong to the same class matched by X and X ′. Then, they disagree in
more than one class of attributes, let’s say that at least they disagree in two
classes. In X ′, at least, one of these classes must be in one Xi : i ∈ {1 . . . k}.
Then, the same must apply in X, and, since both tuples disagree in {X1| . . . |Xk}
the DMVD holds as well.

(⇐) If X1 . . . Xk → Xk+1| . . . |Xn holds, then, for each pair of tuples we can
have two cases:

(a) they agree in X1 . . . Xk. In this case, in order for the DMVD to hold, they
must only dissagree in one partition of attributes Xi : i ∈ {k + 1 . . . n}. In this
case, they will also disagree only in one class of attributes in X and in X ′ and
they will belong to the same class of tuples induced by X and X ′.
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(b) they disagree in X1 . . . Xk. Then, if both tuples belong to a class matched
by X, it means that they disagree in only one Xi ∈ {X1| . . . |Xk} and that, there-
fore, they agree in the rest of classes. Then, they will disagree in the same sole
class of attributes in X ′ as well, and they will belong to the same class in-
duced by X and X ′. If both tuples do not belong to a class matched by X,
then it means that they disagree in, at least, two classes of attributes. Since
one of these classes will be one in {X1| . . . |Xk}, the other can also belong to
the same subset of classes or to one Xi : 1 ≤ i ≤ k and agree on the rest of
classes. In either case, both tuples will also disagree in, at least, two classes of
attributes in X ′ and they will not belong to the same class of tuples induced by
X or X ′.

4 Calculating Armstrong Relations

In this section we explain a method to construct Armstrong relations for
DMVD’s. As indicated above, an Armstrong relation obeys only a given set
of dependencies and their logical consequences and no other dependency. In our
case, there is an input relation r from which we have obtained the concept lattice
via the Galois connection described in the previous section; we want to recover
a relation r′ only from the concept lattice, in such a way that r′ satisfies exactly
the same degenerate multivalued dependencies as r, which can be represented
as a set of tuples or as a set of dependencies. In this section, for the sake of
clarity, we will assume that r is represented as a set of tuples, but in the con-
clusions section we will argue that the method which is about to be presented is
independent of the representation of r.

Along this section, we assume that the input relation r does not have constant
attributes, that is, attributes which only take one single value along all the
tuples of r. This is not a serious restriction since such attributes bear in fact no
information and can be projected out and recovered later, if necessary; but, for
the sake of completeness, a more detailed discussion of this case has been added
to the next section of this paper.

Given a relation r, let CL1, CL2, . . . , CLn be the closed partitions generated
by Γ . We start with an empty relation r′. For each CLi : i ∈ {1 . . . n} =
{X1| . . . |Xm} we add to r′ a new pair of tuples for each Xj : j ∈ {1 . . .m} as
follows: all the values of Xj must be different in both tuples, and the values of
the rest of classes must be the same. Also, each new value in this new pair of
tuples must be different from the rest of existing values in r′. For each CLi we
will add 2m tuples, where m is the number of classes in that closed set.

Example 3. Let us suppose that, from a given relation r, the following closed
sets are obtained: {A|BCD} and {A|B|CD}. The Armstrong relation r′ will be
constructed as follows: for the closed set {A|BCD} we will add two pairs of
tuples: 1,2, that disagree in A and 3,4 that disagree in BCD. For the closed set
{A|B|CD} we will add three pairs: 5, 6, that disagree in A; 7, 8, that disagree
in B; and 9, 10, that disagree in CD.



Characterization and Armstrong Relations for DMVD’s Using FCA 171

id A B C D
1 a0 b0 c0 d0

2 a1 b0 c0 d0

3 a1 b1 c1 d1

4 a1 b2 c2 d2

5 a3 b3 c3 d3

6 a4 b3 c3 d3

7 a5 b4 c4 d4

8 a5 b5 c4 d4

9 a6 b6 c5 d5

10 a6 b6 c6 d6

Theorem 2. The method described calculates an Armstrong relation for a given
set of DMVD’s.

Proof. According to Theorem 1, it is enough to prove that this relation produces
the same set of closed partitions. Equivalently, that if a given partition of at-
tributes is closed under r, it is also closed under r′, and that if this partition is
not closed under r it is not closed under r′ either. We will prove it in two steps:

1. (⇒) If X := {X1| . . . |Xm} is closed under r it is also closed under r′. Let’s
suppose that X is not closed in r′. Let Y be the closure of X in r′ that
matches the same classes of tuples as X. Since it is more refined, there will
be two attributes that are in the same class in X, let it be Xi, and that are
in different classes in Y , let it be Yj and Yk. By construction of r′, there will
be a pair of tuples in r′ such that they will differ in all the attributes Xi, and
they will be matched by X. These same pair of tuples will differ in classes
Yj and Yk, and will not be matched by Y , but it contradicts our previous
assumption.

2. (⇐) We assume that X is a partition closed in r′ but not in r and derive a
contradiction. Consider first the case where X contains a single class with
all the attributes (the coarsest trivial partition). This X is always closed
according to r′, and would not be closed according to r only if some constant
attribute exists in r; but we have explicitly assumed that this is not the case,
so it is closed in both. For the rest of the argument, we consider some X
that has at least two classes.
Let Y be the closure of X according to r. Thus, Y is a partition that is
strictly finer than X, since X is not closed and thus is different from its
closure; and both X and Y match the same sets of tuples in r. Let Xi be a
class of X that is not in Y , and let Yi ⊂ Xi a class of Y strictly included
in Xi. Let W be the union of the rest of the classes of Y included in Xi, so
that Xi = Yi ∪W , and W is a union of classes of Y ; also, W 	= ∅.
We compare now Yi to Xi according to r′. We have that X is closed in r′,
so that no further refinement is possible unless some class of tuples in r′ is
lost. We nevertheless refine X by splitting Xi into Yi and W , and pick two
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tuples of r′ that witness the fact that classes of tuples are thus lost. That
is, let t′1 and t′2 be tuples in r′ that do match X, but would not match it
anymore if Xi is split into Yi and W .
Given that X has at least two nonempty classes, there are attributes on which
t′1 and t′2 have the same value. These pair of tuples, that agree in several
attributes, witness in r′ the existence of a closure in r, by construction of
r′. Let Z be this closed partition of attributes, and let Zi ∈ Z be the class
of attributes that differ in t′1, t

′
2. On the other hand, t′1 and t′2 together

did match X, and differ in Xi since otherwise they would still match after
refining it; thus, they cannot differ anywhere else in X. This implies that all
their differing attributes, namely Zi, belong to Xi: hence Zi ⊆ Xi.
Moreover, t′1 and t′2 differ both in some attribute of Yi and in some attribute
of W , otherwise they would still match the split. This implies that Zi∩Yi 	= ∅,
and that Zi ∩W 	= ∅ as well. Note that Zi ⊆ Xi = Yi ∪W .
We return back and reason at r. Since Z is closed according to r, if we split
its class Zi into Zi ∩ Yi and Zi ∩W , then some class of tuples must be lost,
and, similarly to above, there must exist tuples t1 and t2 in r that differ in
some attribute of Zi ∩Yi and also in some attribute of Zi ∩W , and coincide
everywhere outside Zi. Since Zi ⊆ Xi, they coincide everywhere outside Xi

as well, and thus they match X. However, they do not match Y , because
they exhibit differences both in Yi and in some attribute of W , which belongs
to some other class Yj different from Yi. This implies that X and Y do not
match the same sets of tuples of r, and therefore Y cannot be the closure of
X as assumed initially. Having reached this contradiction, we have proved
that X must be closed according to r if it is closed according to r′.

5 Conclusions

In this paper we have used FCA to represent the set of DMVD’s that hold in
a relation. This can be useful because we can profit from the expressiveness of
FCA (using the concept lattice as a graphical tool) and also because the different
brands of dependencies so far examined can be expressed in function of a closure
operator, thus complementing existing characterizations based on algebraic or
logic-based approaches.

We also have presented a method for constructing an Armstrong relation
following a similar approach to that used in [13] for functional dependencies,
in which the notion of closed set (though not in an FCA context) was used:
for each closed set, a witness was added to the Armstrong relation. It is worth
to note that an Armstrong relation is usually constructed for an input relation,
represented explicitly as a set of tuples or implicitly as a set of dependencies that
the tuples coming in in the future will obey. Of course, when it is represented as
a set of tuples, this same representation is an Armstrong relation for itself, but
it does not prevent us from constructing a new one that can be much smaller in
number of tuples, and more self-explanatory from the point of view of a database
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analyzer, for instance. In any case, the set of closures can be constructed from
the set of DMVD’s according to Theorem 1 in the same way the set of closures
in [13] can be extracted from a set of FD’s.

5.1 Constant Attributes

Here we discuss briefly the case where the trivial coarsest partition, consisting
of a single class with all the attributes, is not closed according to the input
relation r. This means that it is possible to split its only class into a finer
partition, and yet the set of all the tuples in r will still match, that is, all the
tuples will coincide in all classes except one, always the same by Proposition 1.
Everywhere outside this class, all the tuples coincide, and therefore the attributes
exhibit a constant value. The closure of the trivial coarsest partition is formed
thus: each such constant attribute becomes a singleton class, and the others are
kept together in a single class.

These constant attributes actually bear no information at all, and can be
safely projected out of r, and added to it again later if need arises. Therefore,
the construction of the Armstrong relation is to be done only in the nontrivial
part, so that the argument in the previous paragraphs fully applies. Alternatively,
the constant attributes of r can be maintained in r′, but are to be kept constant
as well, instead of following the process of creation of r′ that we have explained;
this process would apply only to the nonconstant attributes.

5.2 Future Extensions

The next goal is to find a method, similar in spirit, to construct Armstrong
relations for multivalued dependencies proper, comparing it with the one we have
described here and with somewhat similar methods existing for the construction
of Armstrong relations for functional dependencies [13]. On the other hand, it
is known that there are notions of dependency that do not allow for Armstrong
relations, and here a higher-level question arises: what is the relationship between
those sorts of dependencies that have Armstrong relations and those sorts of
dependencies for which a scaling exists (based maybe on partitions or sets like
our own here) that provides these dependencies as the implications corresponding
to the associated concept lattice. In fact, this is the major question we intend to
progress on along our current research.
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Abstract. An important topic in formal concept analysis is to cope
with a possibly large number of formal concepts extracted from formal
context (input data). We propose a method to reduce the number of
extracted formal concepts by means of constraints expressed by partic-
ular formulas (attribute-dependency formulas, ADF). ADF represent a
form of dependencies specified by a user expressing relative importance
of attributes. ADF are considered as additional input accompanying the
formal context 〈X, Y, I〉. The reduction consists in considering formal
concepts which are compatible with a given set of ADF and leaving out
noncompatible concepts. We present basic properties related to ADF, an
algorithm for generating the reduced set of formal concepts, and demon-
strating examples.

1 Preliminaries and Problem Setting

We refer to [6] (see also [14]) for background information in formal concept
analysis (FCA). We denote a formal context by 〈X,Y, I〉, i.e. I ⊆ X×Y (object-
attribute data table, objects x ∈ X, attributes y ∈ Y ); the concept deriving
operators by ↑ and ↓, i.e. for A ⊆ X, A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}
and dually for ↓; a concept lattice of 〈X,Y, I〉 by B (X,Y, I), i.e. B (X,Y, I) =
{〈A,B〉 ∈ 2X × 2Y | A↑ = B, B↓ = A}.

An important aspect of FCA is a possibly large number of formal concepts in
B (X,Y, I). Very often, the formal concepts contain those which are in a sense not
interesting for the expert. In this paper, we present a way to naturally reduce the
number of formal concepts extracted from data by taking into account informa-
tion additionally supplied to the input data table (formal context). We consider
a particular form of the additional information, namely, a form of particular at-
tribute dependencies expressed by (logical) formulas that can be supplied by an
expert/user. The primary interpretation of the dependencies is to express a kind
of relative importance of attributes. We introduce the notion of a formal concept
compatible with the attribute dependencies. The main gain of considering only
compatible formal concepts and disregarding formal concepts which are not com-
patible is the reduction of the number of resulting formal concepts. This leads
to a more comprehensible structure of formal concepts (clusters) extracted from
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the input data. We present basic theoretical results, an algorithm for generating
compatible formal concepts, and illustrate our approach by examples.

2 Constraints by Attribute Dependencies

2.1 Motivation

When people categorize objects by means of their attributes, they naturally take
into account the importance of attributes. Usually, attributes which are less im-
portant are not used to form large categories (clusters, concepts). Rather, less
important attributes are used to make a finer categorization within a larger cat-
egory. For instance, consider a collection of certain products offered on a market,
e.g. home appliances. When categorizing home appliances, one may consider sev-
eral attributes like price, the purpose of the appliance, the intended placement
of the appliance (kitchen appliance, bathroom appliance, office appliance, etc.),
power consumption, color, etc. Intuitively, when forming appliance categories,
one picks the most important attributes and forms the general categories like
“kitchen appliances”, “office appliances”, etc. Then, one may use the less impor-
tant attributes (like “price ≤ $10”, “price between $15–$40”, “price > $100”,
etc.) and form categories like “kitchen appliance with price between $15–$40”.
Within this category, one may further form finer categories distinguished by
color. This pattern of forming categories follows the rule that when an attribute
y is to belong to a category, the category must contain an attribute which deter-
mines a more important characteristic of the attribute (like “kitchen appliance”
determines the intended placement of the appliance). This must be true for all the
characteristics that are more important than y. In this sense, the category “red
appliance” is not well-formed since color is considered less important than price
and the category “red appliance” does not contain any information about the
price. Which attributes and characteristics are considered more important de-
pends on the particular purpose of categorization. In the above example, it may
well be the case that price be considered more important than the intended place-
ment. Therefore, the information about the relative importance of the attributes
is to be supplied by an expert (the person who determines the purpose of the
categorization). Once the information has been supplied, it serves as a constraint
for the formation of categories. In what follows, we propose a formal approach
to the treatment of the above-described constraints to formation of categories.

2.2 Constraints by Attribute-Dependency Formulas

Consider a formal context 〈X,Y, I〉. We consider constraints expressed by for-
mulas of the form

y ! y1 � · · · � yn. (1)

Formulas (1) will be called AD-formulas (attribute-dependency formulas). The
set of all AD-formulas will be denoted by ADF . Let now C ⊆ ADF be a set of
AD-formulas.
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Definition 1. A formal concept 〈A,B〉 satisfies an AD-formula (1) if we have
that

if y ∈ B then y1 ∈ B or · · · or yn ∈ B.

Remark 1. More generally, we could consider formulas l(y) ! l(y1) � · · · � l(yn)
where l(z) is either z or z. For instance, y ! y1 would be satisfied by 〈A,B〉
if whenever y ∈ B then none of x ∈ A has y1. For the purpose of our paper,
however, we consider only (1).

The fact that 〈A,B〉 ∈ B (X,Y, I) satisfies an AD-formula ϕ is denoted by
〈A,B〉 |= ϕ. Therefore, |= is the basic satisfaction relation (being a model)
between the set B (X,Y, I) of all formal concepts (models, structures) and the
set ADF of all AD-formulas (formulas). As usual, |= induces two mappings,
Mod : 2ADF → 2B(X,Y,I) assigning a subset

Mod(C) = {〈A,B〉 ∈ B (X,Y, I) | 〈A,B〉 |= ϕ for each ϕ ∈ C}

to a set C ⊆ ADF of AD-formulas, and Fml : 2B(X,Y,I) → 2ADF assigning a
subset

Fml(U) = {ϕ ∈ ADF | 〈A,B〉 |= ϕ for each 〈A,B〉 ∈ U}
to a subset U ⊆ B (X,Y, I). The following result is immediate [12].

Theorem 1. The mappings Mod and Fml form a Galois connection between
ADF and B (X,Y, I). That is, we have

C1 ⊆ C2 implies Mod(C2) ⊆ Mod(C1), (2)
C ⊆ Fml(Mod(C)), (3)

U1 ⊆ U2 implies Fml(U2) ⊆ Fml(U1), (4)
U ⊆ Mod(Fml(U)). (5)

for any C, C1, C2 ⊆ ADF, and U,U1, U2 ⊆ B (X,Y, I).

Definition 2. For C ⊆ ADF we put

BC (X,Y, I) = Mod(C)

and call it the constrained (by C) concept lattice induced by 〈X,Y, I〉 and C.

For simplicity, we also denote BC (X,Y, I) by BC . That is, BC (X,Y, I) is the
collection of all formal concepts from B (X,Y, I) which satisfy each AD-formula
from C (satisfy all constraints from C).

The following is immediate.

Theorem 2. BC (X,Y, I) is a partially ordered subset of B (X,Y, I) which is
bounded from below. Moreover, if C does not contain an AD-formula (1) such
that y is shared by all objects from X and none of y1, . . . , yn is shared by all
objects, then BC (X,Y, I) is bounded from above.
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Proof. Obviously, 〈Y ↓, Y 〉 is the least formal concept from B (X,Y, I) and it is
compatible with each AD-formula. Therefore, 〈Y ↓, Y 〉 bounds BC (X,Y, I) from
below. Furthermore, if there is no AD-formula (1) with the above-mentioned
properties then 〈X,X↑〉 is the upper bound of BC (X,Y, I) since in this case
〈X,X↑〉 clearly satisfies C.

Remark 2. Note that the condition guaranteeing that BC (X,Y, I) is bounded
from above is usually satisfied. Namely, in most cases, there is no object satisfying
all attributes and so X↑ = ∅ in which case the condition is fulfilled.

Let us now consider AD-formulas of the form

y ! y′. (6)

Clearly, (6) is a particular form of (1) for n = 1. Constraints equivalent to
(6) were considered in [1, 2], see also [9] for a somewhat different perspective.
In [1, 2], constraints are considered in the form of a binary relation R on a
set of attributes (in [1]) or objects (in [2]). On the attributes, R might be a
partial order expressing importance of attributes; on the objects, R might be an
equivalence relation expressing some partition of objects. Restricting ourselves
to AD-formulas (6), BC (X,Y, I) is itself a complete lattice:

Theorem 3. Let C be a set of AD-formulas of the form (6). Then BC (X,Y, I)
is a complete lattice which is a

∨
-sublattice of B (X,Y, I).

Proof. Since BC (X,Y, I) is bounded from below (Theorem 2), it suffices to show
that BC (X,Y, I) is closed under suprema in B (X,Y, I), i.e. that for 〈Aj , Bj〉 ∈
BC (X,Y, I) we have 〈(∩jBj)↓,∩jBj〉 ∈ BC (X,Y, I). This can be directly verified.

One can show that BC (X,Y, I) in Theorem 3 need not be a
∧

-sublattice of
B (X,Y, I). Note that 〈A,B〉 |= (y ! y′) says that B contains y′ whenever it
contains y. Then, 〈A,B〉 |= {y ! y′, y′ ! y} if either both y and y′ are in B or
none of y and y′ is in B. This seems to be interesting particularly in the dual
case, i.e. when considering constraints on objects, to select only formal concepts
which do not separate certain groups of objects (for instance, the groups may
form a partition known from outside or generated from the formal context).

In the rest of this section we briefly discuss selected topics related to con-
straints by AD-formulas. Due to the limited space, we omit details.

2.3 Expressive Power of AD-Formulas

An attribute may occur on left hand-side of several AD-formulas of C. For ex-
ample, we may have y ! y1 � y2 and y ! y3 � y4. Then, for a formal concept
〈A,B〉 to be compatible, it has to satisfy the following: whenever y ∈ B then it
must be the case that y1 ∈ B or y2 ∈ B, and y3 ∈ B or y4 ∈ B. Therefore, it is
tempting to allow for expressions of the form

y ! (y1 � y2) � (y3 � y4)
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with the intuitively clear meaning of compatibility of a formal concept and a
formula of this generalized form. Note that a particular form is also e.g. y !
y2�y3. One may also want to extend this form to formulas containing disjunctions
of conjunctions, e.g.

y ! (y1 � y2) � (y3 � y4).

In general, one may consider formulas of the form

y ! t(y1, . . . , yn) (7)

where t(y1, . . . , yn) is a term over Y defined by: (i) each attribute y ∈ Y is a
term; (ii) if t1 and t2 are terms then (t1 � t2) and (t1 � t2) are terms. Then
for a set D of formulas of the form (7), BD (X,Y, I) has the obvious meaning
(formal concepts from B (X,Y, I) satisfying all formulas from D). The following
assertion shows that with respect to the possibility of expressing constraints, we
do not gain anything new by allowing formulas (7).

Theorem 4. For each set D of formulas (7) there is a set C of AD-formulas
such that BD (X,Y, I) = BC (X,Y, I).

Proof. It is tedious but straightforward to show that each formula ϕ of the form
(7) can be transformed to an equivalent formula of the form y ! D1 � · · · �Dm

where each Dk is of the form yk,1�· · ·�yk,lk . Now, y ! D1�· · ·�Dm is equivalent
to the set AD(ϕ) = {y ! Di | i = 1, . . . ,m} of AD-formulas. Therefore, D is
equivalent to C =

⋃
ϕ∈D AD(ϕ) in that BD (X,Y, I) = BC (X,Y, I). An easy

way to see this is to look at !,�, � as propositional connectives of implication,
disjunction, and conjunction, respectively, and to observe that a formula ϕ of
the form (7) is satisfied by a formal concept 〈A,B〉 iff the propositional formula
corresponding to ϕ is true under a valuation v : Y → {0, 1} defined by v(y) = 1
if y ∈ B and v(y) = 0 if y 	∈ B.

We will demonstrate the expressive capability of AD-formulas in Section 3.

2.4 Entailment of AD-Formulas

We now focus on the notion of entailment of AD-formulas. To this end, we extend
in an obvious way the notion of satisfaction of an AD-formula. We say that a
subset B ⊆ Y (not necessarily being an intent of some formal concept) satisfies
an AD-formula ϕ of the form (1) if we have that if y ∈ B then some of y1, . . . , yn

belongs to B as well and denote this fact by B |= ϕ (we use B |= {ϕ1, . . . , ϕn}
in an obvious sense).

Definition 3. An AD-formula ϕ (semantically) follows from a set C of AD-
formulas if for each B ⊆ Y we have that if B |= C (B satisfies each formula
from C) then B |= ϕ.

We are going to demonstrate an interesting relationship between AD-formulas
and so-called attribute implications which are being used in formal concept
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analysis and have a strong connection to functional dependencies in databases,
see [6, 10]. Recall that an attribute implication is an expression of the form
A ⇒ B where A,B ⊆ Y . We say that A ⇒ B is satisfied by C ⊆ Y (denoted by
C |= A ⇒ B) if B ⊆ C whenever A ⊆ C (this obviously extends to M |= T for
a set M of subsets of Y and a set T of attribute implications). The connection
between AD-formulas and attribute implications is the following.

Lemma 1. For a set B ⊆ Y we have

B |= y ! y1 � · · · � yn iff B |= {y1, . . . , yn} ⇒ y

where B = Y −B. Furthermore,

B |= {y1, . . . , yn} ⇒ {z1, . . . , zm} iff
B |= zi ! y1 � · · · � yn for each i = 1, . . . ,m.

Proof. The assertion follows from definition by a moment’s reflection.

Now, this connection can be used to reducing the notion of semantical entail-
ment of AD-formulas to that of entailment of attribute implications which is well
studied and well known [6, 10]. Recall that an attribute implication ϕ (semanti-
cally) follows from a set C of attribute implications (C |= ϕ) if ϕ is true in each
B ⊆ Y which satisfies each attribute implication from C. For an AD-formula
ϕ = y ! y1 �· · ·�yn, denote by I(ϕ) the attribute implication {y1, . . . , yn} ⇒ y.
Conversely, for an attribute implication ϕ = {y1, . . . , yn} ⇒ {z1, . . . , zm}, denote
by A(ϕ) the set {zi ! y1 � · · · � yn | i = 1, . . . ,m} of AD-formulas. Then it is
immediate to see that we have the following “translation rules”:

Lemma 2. (1) Let ϕ,ϕj, (j ∈ J) be AD-formulas. Then {ϕj | j ∈ J} |= ϕ
(entailment of AD-formulas) iff {I(ϕj) | j ∈ J} |= I(ϕ) (entailment of attribute
implications). (2) Let ϕ,ϕj, (j ∈ J) be attribute implications. Then {ϕj | j ∈
J} |= ϕ (entailment of attribute implications) iff ∪j∈JA(ϕj) |= A(ϕ) (entailment
of AD-formulas).

Lemma 2 gives a possibility to answer important problems related to entail-
ment like closedness, completeness, (non)redundancy, being a base, etc. Due to
the limited space, we leave a detailed discussion to our forthcoming paper.

2.5 Trees from Concept Lattices

A particularly interesting structure of clusters in data is that of a tree, see [3, 5].
In a natural way, trees can be extracted from concept lattices by AD-formulas.
Here, we present a criterion under which BC (X,Y, I) is a tree. Since BC (X,Y, I)
has always the least element (see Theorem 2), we will call BC (X,Y, I) a tree if
BC (X,Y, I) − {〈Y ↓, Y 〉} (deleting the least element) is a tree.

Theorem 5. If for each y1, y2 ∈ Y which are not disjoint (i.e. {y1}↓∩{y2}↓ 	= ∅)
C contains an AD-formula y1 ! · · · � y2 � · · · or y2 ! · · · � y1 � · · · such that the
attributes on the right hand-side of each the formulas are pairwise disjoint then
BC (X,Y, I) is a tree.
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Proof. If BC (X,Y, I) is not a tree, there are distinct and noncomparable 〈A1, B1〉,
〈A2, B2〉 ∈ BC (X,Y, I) such that A1 ∩ A2 	= Y ↓ (their meet in BC (X,Y, I)) is
greater than the least formal concept 〈Y ↓, Y 〉. Then there are y1 ∈ B1 −B2 and
y2 ∈ B2 −B1. But y1 and y2 cannot be disjoint (otherwise A1 ∩A2 = ∅ which is
not the case). By assumption (and without the loss of generality), C contains an
AD-formula y1 ! · · · � y2 � · · ·. Now, since there is some x ∈ A1 ∩ A2, we have
〈x, y1〉 ∈ I and 〈x, y2〉 ∈ I. Since 〈A1, B1〉 satisfies y1 ! · · · � y2 � · · ·, B1 must
contain some y′ which appears on the right hand-side of the AD-formula, from
which we get 〈x, y′〉. But 〈x, y2〉 ∈ I and 〈x, y′〉 ∈ I contradict the disjointness
of y2 and y′.

Remark 3. Note that the assumption of Theorem 5 is satisfied in the following
situation: Attributes from Y are partitioned into subsets Y1, . . . , Yn of Y such
that each Yi = {yi,1, . . . , yi,ni

} corresponds to some higher-level attribute. E.g.,
Yi may correspond to color and may contain attributes red, gree, blue, ... Then,
we linearly order Yi’s, e.g. by Y1 < . . . Yn and for each i < j add a set Yi ! Yj

of AD-formulas of the form yi,j ! yj,1 � · · · � yj,nj
for each yi,j ∈ Yi. In fact,

we may add only Yi ! Yi+1 and omit the rest with the same restriction effect.
Then the assumptions of Theorem 5 are met. Such a situation occurs when one
linearly orders higher-level attributes like color < price < manufacturer and want
to see the formal concepts respecting this order. The just described ordering of
attributes is typical of so-called decision trees [13].

Remark 4. Note that formulas y1 ! · · · � y2 � · · · and y2 ! · · · � y1 � · · · in
Theorem 5 need not belong to C. It is sufficient if they are entailed by C, i.e. if
C |= y1 ! · · · � y2 � · · · or C |= y2 ! · · · � y1 � · · ·.

2.6 Algorithm for Computing BC (X, Y, I)

In this section we present an algorithm for computing BC (X,Y, I). The algorithm
computes both the formal concepts and their ordering, and is a modification of
the incremental algorithms (see [8]), particularly of [11]. The purpose of our
algorithm is to compute BC (X,Y, I) without the need to compute the whole
B (X,Y, I) and then test which formal concepts 〈A,B〉 ∈ B (X,Y, I) satisfy C. For
the reader’s convenience, we list the whole pseudocode. For explaining of the idea
of the background algorithm we refer to [11]. In what follows, we comment only
on the modification related to taking into account the constraining AD-formulas.
In addition to CreateLatticeIncrementally (computes the constrained lattice)
and GetMaximalConcept (auxiliary function) which are the same as in [11], our
modification consists in introducing a new function GetValidSubIntent and a
new function ADFAddIntent which is a modified version of AddIntent from [11].

The algorithm is a kind of so-called incremental algorithms. The main pro-
cedure, called CreateLatticeIncrementally, calls for each object x ∈ X re-
cursive function ADFAddIntent. ADFAddIntent checks whether the intent of the
input object x satisfies AD-formulas from C. If yes, it passes the intent. If not,
it passes the largest subset of the intent which satisfies C. The largest subset
B is obtained by GetValidSubIntent and need not be an intent. Nevertheless,
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ADFAddIntent, in the further processing, can create new intents from B. This
way, “false” concepts may be created. Therefore, after processing of all the ob-
jects, we need to check and remove the “false” concepts. The algorithm plus its
illustration follow.

01:Procedure CreateLatticeIncrementally (X,Y,I)
02: BottomConcept := (Y’,Y)
03: L := {BottomConcept}
04: For each x in X
05: ObjectConcept := AddIntent(x’, BottomConcept, L)
06: Add x to the extent of ObjectConcept and all concepts above
07: End For

01:Function ADFAddIntent(inputIntent, generator, L)
02: if IsValidIntent(inputIntent)
03: intent := inputIntent
04: else
05: intent := GetValidSubIntent(inputIntent)
06: End If
07: GeneratorConcept = GetMaximalConcept(intent, generator,L)
08: If GeneratorConcept.intent = intent
09: Return GeneratorConcept
10: End If
11: newParents := Empty Set
12: GeneratorParents = GetParents(GeneratorConcept, L)
13: For each Candidate in GeneratorParents
14: if Candidate.Intent Is Not SubSet intent
15: Candidate:=
16: ADFAddIntent(Intersection(Candidate.Intent,intent),
17: Candidate, L)
18: End if
19: addParent = true
20: for each Parent in NewParents
21: if Candidate.Intent Is Subset Parent.Intent
22: addParent := false
23: Exit For
24: Else If Parent.Intent Is Subset Candidate.Intent
25: Remove Parent from newParents
26: End If
27: End For
28: if addParent
29: Add candidate to newParents
30: End If
31: End For
32: newConcept := (GeneratorConcept.Extent,intent)
33: Add NewConcept to L
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34: For each Parent in newParents
35: RemoveLink(Parent, GeneratorConcept, L)
36: SetLink(Parent, NewConcept, L)
37: End For
38: SetLink(NewConcept, GeneratorConcept, L)
39: Return NewConcept

01:Function GetValidSubIntent(intent, L)
02: notValid := true
03: While notValid and intent <> EmptySet
04: conflictADF := GetConflictADF (intent, L)
05: For each adf in conflictADF
06: Remove adf.LeftSide from intent
07: End For
08: notValid := IsValidIntent(intent)
09: End If
10: End While
11:return intent

01:Function GetMaximalConcept(intent, GeneratorConcept, L)
02: parentIsMaximal := true
03: While parentIsMaximal
04: parentIsMaximal := false
05: Parents = GetParents(GeneratorConcept, L)
06: For each Parent in Parents
07: If intent is subset Parent.Intent
08: GeneratorConcept := Parent
09: parentIsMaximal := true
10: Exit For
11: End If
12: End For
13: End While
14: return GeneratorConcept

We now illustrate the algorithm on an example which is a modification of an
example from [8].

First, we add object 6 with attributes b, c, f, i to (already computed) concept
lattice depicted in Fig. 1. First, if we do not apply any constraints, we obtain 4
new concepts and get the concept lattice in Fig. 2.

Second, we add 6 under an AD-formula f ! h � i (note that all concepts from
the concept lattice in Fig. 1 satisfy this AD-formula). In this case, the intent
of 6 satisfies f ! h � i. As a result, we get the constrained concept lattice in
Fig. 3.

Third, we add object 6 under an AD-formula i ! a (note again that all con-
cepts from the concept lattice in Fig. 1 satisfy this AD-formula). In this case,
the intent of 6 does not satisfy i ! a. As a result, we get the constrained concept
lattice in Fig. 4.
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Fig. 1. A concept lattice to which we wish to add object 6 having attributes b, c, f, i,
under different constraints

Fig. 2. Adding object 6 to concept lattice from Fig. 1 with no constraints

Fig. 3. Adding object 6 to concept lattice from Fig. 1 under constraint f � h � i

{{}{a,b,c,d,e,f,g,h,i}}

{{1,2,3,4,5}{}}

{{1}{a,c,h}}

{{1,2}{a,c}}

{{2}{a,c,g,i}}

{{1,2,3}{a}}

{{2,3}{a,g,i}}

{{3}{a,d,g,i}}

{{1,2,4}{c}}

{{1,4}{c,h}}

{{4}{b,c,f,h}}

{{2,3,5}{g}}
{{4,5}{b}}

{{5}{b,e,g}}

{{}{a,b,c,d,e,f,g,h,i}}

{{1,2,3,4,5,6}{}}

{{1}{a,c,h}}

{{1,2}{a,c}}

{{2}{a,c,g,i}}

{{1,2,3}{a}}

{{2,3}{a,g,i}}

{{3}{a,d,g,i}}

{{1,2,4,6}{c}}

{{1,4}{c,h}}

{{4}{b,c,f,h}}

{{2,3,5}{g}} {{4,5,6}{b}}

{{5}{b,e,g}}

{{2,3,6}{i}}

{{2,6}{c,i}}

{{4,6}{b,c,f}}

{{6}{b,c,f,i}}

{{}{a,b,c,d,e,f,g,h,i}}

{{1,2,3,4,5,6}{}}

{{1}{a,c,h}}

{{1,2}{a,c}}

{{2}{a,c,g,i}}

{{1,2,3}{a}}

{{2,3}{a,g,i}}

{{3}{a,d,g,i}}

{{1,2,4,6}{c}}

{{1,4}{c,h}}

{{4}{b,c,f,h}}

{{2,3,5}{g}} {{4,5,6}{b}}

{{5}{b,e,g}}

{{2,3,6}{i}}

{{2,6}{c,i}}

{{6}{b,c,f,i}}
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Fig. 4. Adding object 6 to concept lattice from Fig. 1 under constraint i � a

3 Examples

We now present illustrative examples. We use Hasse diagrams and label the nodes
corresponding to formal concepts by boxes containing concept descriptions. For
example, ({1, 3, 7}, {3, 4}) is a concept with extent {1, 3, 7} and intent {3, 4}.
Consider a formal context described in Tab. 1. The context represents data
about eight car models (1–8) and their selected attributes (1: diesel engine,. . . ,
8: ABS).

Table 1. Formal context given by cars and their properties

1 2 3 4 5 6 7 8
car 1 1 0 1 0 0 1 0 1
car 2 1 0 1 0 1 1 0 1
car 3 0 1 1 0 0 0 0 1
car 4 0 1 0 1 1 0 0 0
car 5 0 1 1 0 1 1 0 0
car 6 0 1 0 1 0 1 1 0
car 7 0 1 0 1 1 1 1 1
car 8 0 1 0 1 0 0 0 1

attributes: 1 - diesel engine, 2 - gasoline engine, 3 - sedan, 4 - hatchback, 5 - air-
conditioning, 6 - airbag, 7 - power stearing, 8 - ABS

The attributes can be partitioned into three groups: {1, 2} (engine type),
{3, 4} (car type), {5, 6, 7, 8} (equipment). The concept lattice B (X,Y, I) corre-
sponding to formal concept 〈X,Y, I〉 contains 27 formal concepts and is depicted
in Fig. 5. The formal concepts of B (X,Y, I) represent, in the sense of FCA, all
meaninfull concepts-clusters present in the data. Suppose we want to use a (part

{{}{a,b,c,d,e,f,g,h,i}}

{{1,2,3,4,5,6}{}}

{{1}{a,c,h}}

{{1,2}{a,c}}

{{2}{a,c,g,i}}

{{1,2,3}{a}}

{{2,3}{a,g,i}}

{{3}{a,d,g,i}}

{{1,2,4,6}{c}}

{{1,4}{c,h}}

{{4}{b,c,f,h}}

{{2,3,5}{g}}
{{4,5,6}{b}}

{{5}{b,e,g}}

{{4,6}{b,c,f}}
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Fig. 5. Concept lattice corresponding to the context from Tab. 1

of a) concept lattice to provide a conceptual view of the data table and sup-
pose we know that the customers find most important the type of engine (diesel,
gasoline) and then the type of the bodywork. Such a situation is described by a
set C of AD-formulas from (8).

air-conditioning ! hatchback � sedan (8)
power stearing ! hatchback � sedan

airbag ! hatchback � sedan
ABS ! hatchback � sedan

hatchback ! gasoline engine � diesel engine
sedan ! gasoline engine � diesel engine

The corresponding constrained BC (X,Y, I) contains 13 formal concepts and is
depicted in Fig. 6. Second, consider a set C of AD-formulas (9). Contrary to the
previous example, the importance of the type of a bodywork and the type of the
engine are reversed.

air-conditioning ! diesel engine � gasoline engine (9)
power stearing ! diesel engine � gasoline engine

airbag ! diesel engine � gasoline engine
ABS ! diesel engine � gasoline engine

gasoline engine ! hatchback � sedan
diesel engine ! hatchback � sedan

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})({7},{2,4,5,6,7,8}) ({2},{1,3,5,6,8})({5},{2,3,5,6})

({6,7},{2,4,6,7})

({7,8},{2,4,8})

({2,5},{3,5,6})

({5,7},{2,5,6}) ({3,5},{2,3}) ({1,2},{1,3,6,8})

({4,7},{2,4,5}) ({2,7},{5,6,8})

({4,5,7},{2,5}) ({1,2,5},{3,6})

({1,2,3},{3,8})

({2,5,7},{5,6})({3,7,8},{2,8})

({1,2,7},{6,8})({5,6,7},{2,6})

({2,4,5,7},{5})

({4,6,7,8},{2,4})

({1,2,3,5},{3}) ({1,2,3,7,8},{8})({1,2,5,6,7},{6})({3,4,5,6,7,8},{2})

({1,2,3,4,5,6,7,8},{})
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Fig. 6. Concept lattice from Fig. 5 constrained by AD-formulas 8

The corresponding constrained BC (X,Y, I) contains 13 formal concepts and is
depicted in Fig. 7. We can see that the bottom parts in Fig. 6 and Fig. 7 are
the same. The lattices differ according to the selection of importance of the
attributes.

Third, suppose the customer changes the preferences and finds the most
important car property to be safety and requires ABS and airbag. The situation
is described by a set C of AD-formulas from 10.

air-conditioning ! diesel engine � gasoline engine (10)
power stearing ! diesel engine � gasoline engine
gasoline engine ! hatchback � sedan

diesel engine ! hatchback � sedan
sedan ! ABS

hatchback ! ABS
ABS ! airbag

airbag ! ABS

The resulting BC (X,Y, I) corresponding to (10) contains 6 formal concepts and
is depicted in Fig. 8. In general, if an attribute y′ ∈ Y is required, it is sufficient to
have C such that C |= {y ! y′} for each y ∈ Y . In particular, for C = {y ! y′ | y ∈
Y } we have BC (X,Y, I) = {〈A,B〉 ∈ B (X,Y, I) | 〈{y′}↓, {y′}↓↑〉 ≤ 〈A,B〉}, i.e.
BC (X,Y, I) is a main filter in B (X,Y, I) corresponding to attribute concept of
y′.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})

({7},{2,4,5,6,7,8})

({2},{1,3,5,6,8})

({5},{2,3,5,6})

({7,8},{2,4,8})

({1,2},{1,3,6,8})

({6,7},{2,4,6,7})

({3,5},{2,3})
({4,7},{2,4,5})

({4,6,7,8},{2,4})

({3,4,5,6,7,8},{2})

({1,2,3,4,5,6,7,8},{})
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Fig. 7. Concept lattice from Fig. 5 constrained by AD-formulas 9

Fig. 8. Concept lattice corresponding to AD-formulas 10

4 Future Research

In the next future, we focus on the following:
– As one of the referees pointed out, AD-formulas are what is called surmise

relationships in [4]. In [7], even more general formulas (clauses) are studied. A

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})
({7},{2,4,5,6,7,8})

({2},{1,3,5,6,8})

({5},{2,3,5,6})

({7,8},{2,4,8})
({1,2},{1,3,6,8})

({4,7},{2,4,5})

({6,7},{2,4,6,7})

({3,5},{2,3})

({4,6,7,8},{2,4}) ({1,2,3,5},{3})

({1,2,3,4,5,6,7,8},{})

({},{1,2,3,4,5,6,7,8})

({2},{1,3,5,6,8})

({7},{2,4,5,6,7,8})

({1,2},{1,3,6,8})

({1,2,7},{6,8})

({1,2,3,4,5,6,7,8},{})
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future research will be focused on constraints by more general formulas, e.g.
to allow negations (see Section 2.2), and on studying relationships to earlier
work on formulas over attributes, see [7] and the papers cited therein.

– Entailment. In Section 2.4, we showed basic observations which make it
possible to reduce the problems related to entailment of AD-formulas to the
corresponding problems of entailment of attribute implications which are
well described. In our forthcoming paper, we elaborate more on this.

– Algorithms. We will study further possibilities to generate concepts satisfying
the constraints directly, see Section 2.6.

– Experiments with large datasets. In a preliminary study we used a database
of mushrooms avaliable at UCI KDD Archive (http://kdd.ics.uci.edu/). We
transformed the database to a formal context with 8124 objects and 119 at-
tributes. The corresponding concept lattice contains 238710 formal concepts
and took about 10 minutes to compute it. We run experiments with sev-
eral sets of AD-formulas which seemed to express natural constraints. The
resulting constrained concept lattices were considerably smaller (from tens
to thousands of formal concepts, depending on the sets of AD-formulas).
The computation of the constrained concept lattices took a correspondingly
smaller amount of time (from 2 seconds up). We will run further experiments
on this database, possibly with an expert in the field and compare our results
with other clustering methods.
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Abstract. Minimal generators (or mingen) constitute a remarkable part
of the closure space landscape since they are the antipodes of the closures,
i.e., minimal sets in the underlying equivalence relation over the powerset
of the ground set. As such, they appear in both theoretical and practical
problem settings related to closures that stem from fields as diverging as
graph theory, database design and data mining. In FCA, though, they
have been almost ignored, a fact that has motivated our long-term study
of the underlying structures under different perspectives. This paper is
a two-fold contribution to the study of mingen families associated to a
context or, equivalently, a closure space. On the one hand, it sheds light
on the evolution of the family upon increases in the context attribute set
(e.g., for purposes of interactive data exploration). On the other hand, it
proposes a novel method for computing the mingen family that, although
based on incremental lattice construction, is intended to be run in a batch
mode. Theoretical and empirical evidence witnessing the potential of our
approach is provided.

1 Introduction

Within the closure operators/systems framework, minimal generators, or, as we
shall call them for short, mingen, are, beside closed and pseudo-closed elements,
key elements of the landscape. In some sense they are the antipodes of the
closed elements: a mingen lays at the bottom of its class in the closure-induced
equivalence relation over the ground set, whereas the respective closure is the
unique top of the class. This is the reason for mingen to appear in almost every
context where closures are used, e.g., in fields as diverging as the database design
(as key sets [7]), graph theory (as minimal transversals [2]), data analysis (as
lacunes irréductibles1, the name given to them in French in [6]) and data mining
(as minimal premises of association rules [8]). In FCA, mingen have been used
for computational reasons, e.g., in Titanic [11], where they appear explicitly,
as opposed to their implicit use in NextClosure [3] as canonical representations
(prefixes) of concept intents.

Despite the important role played by mingen, they have been paid little at-
tention so far in the FCA literature. In particular, many computational problems

1 Irreducible gaps, translation is ours.

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 192–207, 2005.
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related to the mingen family are not well understood, let alone efficiently solved.
This observation has motivated an ongoing study focusing on the mingen sets
in a formal context that considers them from different standpoints including
batch and incremental computation, links to other remarkable members of the
closure framework such as pseudo-closed, etc. Recently, we proposed an efficient
method for maintaining the mingen family of a context upon increases in the
context object set [16]. The extension of the method to lattice merge has been
briefly sketched as well. Moreover, the mingen-related part of the lattice mainte-
nance method from [16] was proved to easily fit the iceberg lattice maintenance
task as in [10].

In this paper, we study the mingen maintenance problem in dual settings,
i.e., upon increases in the attribute set of the context. The study has a two-fold
motivation and hence contributes in two different ways to the FCA field. Thus,
on the one hand, the evolution of the mingen is given a characterization, in
particular, with respect to the sets of stable/vanishing/newly forming mingen.
To assess the impact of the provided results, it is noteworthy that although in
lattice maintenance the attribute/object cases admit dual resolution, this does
not hold for mingen maintenance, hence the necessity to study the attribute
case separately. On the other hand, the resulting structure characterizations are
embedded into an efficient maintenance method that can, as all other incre-
mental algorithms, be run in a batch mode. The practical performances of the
new method as batch iceberg-plus-mingen constructor have been compared to
the performances of Titanic, the algorithm which is reportedly the most ef-
ficient one producing the mingen family and the frequent part of the closure
family2. The results of the comparison proved very encouraging: although our
algorithm produces the lattice precedence relation beside concepts and mingen,
it outperformed Titanic when run on a sparse data set. We tend to see this
as a clear indication of the potential the incremental paradigm has for mingen
computation.

The paper starts with a recall of basic results about lattices, mingen, and
incremental lattice update (Section 2). The results of the investigation on the
evolution of the mingen family are presented in Section 3 while the proposed
maintenance algorithm, IncA-Gen, is described in Section 4. In Section 5, we
design a straightforward adaptation of IncA-Gen to iceberg concept lattice
maintenance. Section 6 discusses preliminary results of the practical performance
study that compared the algorithm to Titanic.

2 Background on Concept Lattices

In the following, we recall basic results from FCA [18] that will be used in later
paragraphs.

2 Other algorithms include Close and A-Close [9].
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2.1 FCA Basics

Throughout the paper, we use standard FCA notations (see [4]) except for the
elements of a formal context for which English-based abbreviations are preferred
to German-based ones. Thus, a formal context is a triple K = (O,A, I) where
O and A are sets of objects and attributes, respectively, and I is the binary
incidence relation.

We recall that two derivation operators, both denoted by ′ are defined: for
X ⊆ O, X ′ = {a ∈ A|∀o ∈ X, oIa} and for Y ⊆ A, Y ′ = {o ∈ O|∀a ∈ Y, oIa}.
The compound operators ′′ are closure operators over 2O and 2A, respectively.
Hence each of them induces a family of closed subsets, Co

K and Ca
K, respectively.

A pair (X,Y ) of sets, where X ⊆ O, Y ⊆ A, X = Y ′ and Y = X ′, is called a
(formal) concept [18].

Furthermore, the set CK of all concepts of the context K is partially ordered by
extent/intent inclusion and the structure L = 〈CK,≤K〉 is a complete lattice. In
the remainder, the subscript K will be avoided whenever confusion is impossible.
Fig. 1 shows a sample context where objects correspond to lines and attributes
to columns. Its concept lattice is shown next.

a b c d e f g h

1 X X X X
2 X X X
3 X X X X X
4 X
5 X X X
6 X X X X
7 X X X
8 X X

Fig. 1. Left: Binary table K1 =(O = {1, 2, ..., 8}, A1 = {a, b, ..., g}, I1) and the at-
tribute h. Right: The Hasse diagram of the lattice L1 of K1. Concepts are provided
with their respective intent (I), extent (E) and mingen set (G)

Within a context K, a set G ⊆ A is a minimal generator (mingen) of a closed
set Y ⊆ A (hence of the concept (Y ′, Y )) iff G is a minimal subset of Y such
that G′′ = Y . As there may be more than one mingen for a given intent Y , we
define the set-valued function gen. Formally,
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Definition 1. The function associating to concepts their mingen sets, gen(c) :
C → 22A

, is defined as follows:

gen(Y ′, Y ) = {G ⊆ Y | G′′ = Y and ∀ F ⊂ G, F ′′ ⊂ Y }.

In Fig. 1, the concept c#2 = (26, abc) has two mingen: gen(c#2) = {ab, ac}. In
the remainder, gen will be used both on individual concepts and on concept sets
with a straightforward interpretation.

2.2 Incremental Lattice Update, a Recall

Assume that K1 and K2 are two contexts diverging by only one attribute, i.e.,
K1 = (O,A1, I1) and K2 = (O,A2, I2) with A2 = A1∪{a} and I2 = I1∪{a}×a′.
In the following, to avoid confusion, we shall denote the derivation operators in
Ki (i = 1, 2), by i. Similarly, mingen functions will be subscripted. Let now
L1 and L2 be the two concept lattices of K1 and K2, respectively. If L1 is
already available, say, as a data structure in the main memory of a computer,
then, according to the incremental lattice construction paradigm [5], it can be
transformed at a relatively low cost into a structure representing L2. Hence there
is no need to construct L2 from scratch, i.e., by looking on K2.

In doing the minimal reconstruction that yields L2 from L1 and (a, a2), all
the incremental methods rely on basic property of closure systems: Co is closed
under set intersection [1]. In other words, if c = (X,Y ) is a concept of L1 then
X ∩ a2 is closed object set and corresponds to an extent in L2. Hence, the
transformation of L1 into L2 via the attribute a is mainly aimed at computing
all the concepts from L2 whose extent is not an extent in L1. Those concepts
are called the new concepts in [5] (here denoted N(a)). As to L1, its concepts
are partitioned into three categories. The first one is made of modified concepts
(labeled M(a)): their extent is included in a2, the extent of a, hence they evolve
from L1 into L2 by integrating a into their intents while extents remain stable.
The second category is made of genitor concepts (denoted G(a)) which help
create new concepts but remain themselves stable (changes appear in the sets
of neighbor concepts). Finally, old concepts (denoted U(a)) remain completely
unchanged. As concepts from L1 have their counterparts in L2, we shall use
subscripts to distinguish both copies of a set. Thus, G1, U1 and M1 will refer
to L1, while G2, U2, M2 and N2 will refer to L2.

A characterization of each of the above seven concept categories is provided
in [17]. It relies on two functions which map concepts to the intersection of their
extents with a2: Ri : Ci → 2O with Ri(c) = extent(c) ∩ a2. Each Ri induces
an equivalence relation on Ci where [c]Ri

= {c̄ ∈ Ci|Ri(c) = Ri(c̄)}. Moreover,
following [15], G1(a) and M1(a) are the minimal concepts in their respective
equivalence classes in L1.

Example 1. Assume L1 is the lattice induced by the attribute set abcdefg (see
Fig. 1 on the right) and consider h the new attribute to add to K1. Fig. 2
shows the resulting lattice L2. The sets of concepts are as follows: U2(h) =
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{c#0, c#3, c#6, c#7, c#8, c#9, c#14}; M2(h) = {c#5, c#10, c#11, c#12, c#13}; G2(h)
= {c#1, c#2, c#4} and N2(h) = {c#15, c#16, c#17}.

Following [17], three mappings will be used to connect L1 into L2. First, σ
maps a concept in L1 to the concept with the same extent in L2. Second, γ
projects a concept from L2 on A1, i.e., returns the concept having the same
attributes but a. Finally, χ+ returns for a concept c in L1 the minimal element
of the equivalence class []R2 for its counterpart σ(c) in L2.

Definition 2. We define the following mappings between L1 and L2:

– σ: C1 → C2, σ(X,Y ) = (X,X2),
– γ: C2 → C1, γ(X,Y ) = (Ȳ 1, Ȳ ) where Ȳ = Y − {a},
– χ+: C1 → C2, χ+(X,Y ) = (X̄, X̄2) where X̄ = X ∩ a2.

3 Structure Characterization

We clarify here the evolution of the mingen family between L1 and L2. First, we
prove two properties stating, respectively, that no generator vanishes from L1 to
L2 and that only modified and new concepts in L2 contribute to the difference
gen2(C2)−gen1(C1). Then, we focus on the set of new mingen that forms in each
of the two cases and prove that a new mingen is made of an old one augmented
by the attribute a.

3.1 Global Properties

Let us first find the relation between the mingen of a concept c in L1 and those
of its counterpart σ(c) in L2. The following property shows that the mingen of
c are also mingen for σ(c).

Fig. 2. The Hasse diagram of the new lattice L2 derived from context K2
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Property 1. ∀ c ∈ L1 gen1(c) ⊆ gen2(σ(c)).

Proof. If G ∈ gen1(c) then G1 = G2, hence, G22 = Ȳ . Moreover G is minimal
for Ȳ , otherwise it could not be a mingen of c.

Consequently, if G is a mingen in L1 it can only be a mingen in L2.

Corrolary 1. gen(C1) ⊆ gen(C2)

Proof. Given a concept c = (X,Y ) in L1, whatever is the category of σ(c) in
L2(old, genitor or modified), we always have gen1(c) ⊆ gen2(σ(c)).

For example, consider the concept c#12 = (1, cdg) in L1 whose mingen cg is
also a mingen of σ(c)#12) = (1, cdgh) in L2. However, the concept c#12 in L2 has
another mingen, cdh, which it does not share with its image in L1. This case can
only happen with modified concepts from L1 because, as the following property
states it, for old and genitor concepts in L1, the mingen of their σ(c)-counterpart
in L2 are exactly the same as their own mingen.

Property 2. ∀ c = (X,Y ) ∈ C1, if σ(c) = c then gen1(c) = gen2(σ(c))

Proof. Following Property 1, gen1(c) ⊆ gen2(σ(c)). Then, gen2(σ(c) ⊆ gen1(c))
comes from the fact that if G ∈ gen2(σ(c) and c = σ(c) then G1 = G2 and G11

= G22 = Y . Moreover, G is minimal for c otherwise it would not be a mingen
of σ(c).

For example, consider the concept c#2 = (26, abc) in L1. It is easily seen that
the set of its mingen, {ab, ac}, is the same as the mingen set of σ(c#2) in L2.

3.2 Characterizing the New Mingen

Now that we know that all mingen in L1 stay mingen in L2, the next step
consists in finding the new mingen in L2. As the modified concepts and the
genitor ones are the minimal elements of their equivalence classes in L1, we
express the evolution of these classes from L1 to L2. In fact, the class of a new
concept c in L2 is exactly the image of the class of its genitor in L1 to which we
add c. The class of a modified concept is identical in both L1 and L2.

Property 3. The equivalence classes of new and modified concepts in L2 are
composed as follows:

– ∀c ∈ N2(a), [c]R2 = [γ(c)]R1 ∪ c
– ∀c ∈ M2(a), [c]R2 = [γ(c)]R1

In summary, it was established that the equivalence classes []R2 differ by at
most one element from their counterparts []R1 and that new mingen may only
appear at the minimal element of each class. The next question to ask is how
mingen of concepts in [γ(c)]R1 are related to those of the minimal element of
[c]R2 . The first step is to notice that whenever a mingen of a concept c from L1
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is augmented with the new attribute a, the closure of the resulting set in K2 is
the intent of the minimal element in the respective class [σ(c)]R2 .

Assume cmin = (X,Y ) ∈ C2 is the minimal element of its class in L2 and let
c̄ = (X̄, Ȳ ) a concept of that class while Ḡ is a mingen of c̄. According to the
definition of [c]Ri , we have: X̄ ∩ a2 = X and hence Ḡ2 ∩ a2 = Y 2. Moreover, it
is known that for A, B ∈ 2O, (A ∪ B)2 = A2 ∩ B2. Thus, Ḡ2 ∩ a2 = Y 2 can be
written as (Ḡ ∪ a)2 = Y 2 and consequently (Ḡ ∪ a)22 = Y 22.

In summary, for every mingen G of a concept in a class [c]R1 , its superset
obtained by adding the new attribute a, Ḡ ∪ a, has as closure the intent of
the minimal element of the corresponding class [σ(c)]R2 . The following property
states that (Ḡ ∪ a) is a mingen of c iff Ḡ is minimal among the mingen of the
entire equivalence class [c]R1 .

Property 4. ∀c ∈ M2(a) then :

gen2(c) = gen1(γ(c)) ∪min(
⋃

ĉ∈[c]Ri
and ĉ �= c

gen1(ĉ)) × {a}

For example, consider the concept c#13 = (13, dgh) in L2. Here R2(c#13) = 13
and [c#13]L2 = {c#9, c#14, c#13}. Clearly, c#13 is minimal in its class, and more
precisely, it is a modified concept. Since gen1(c#9) = {d} and gen1(c#9) = {g}
whereas both mingen d and g are incomparable, the newly formed mingen of
c#13 in L2 are {dh, gh}. Consequently, the entire set of mingen for c#13 in L2 is
gen2(c#13) = {dg, dh, gh}. Indeed, the correctness of that result can be checked
upon Fig. 2.

A similar result can be proved for the complementary case for the minima in
a class []R2 , i.e., for new concepts. The following property states that the mingen
of a new concept c = (X,Y ) ∈ N2(a) are exactly the sets produced by adding a
to each of the mingen that are minimal in the entire class [γ(c)]R1 .

Property 5.

∀c ∈ N2(a), gen2(c) = min(
⋃

ĉ∈[γ(c)]R1

gen1(ĉ)) × {a}

For example, consider the concept c#15 = (6, abch) in L2. R2(c#15) = 6
and [c#15]R2 = {c#0, c#3, c#2, c#15}. Clearly, [γ(c#15)]R1 = {c#0, c#3, c#2}.
Moreover, gen1(c#0) = {a}, gen1(c#3) = {b}, gen1(c#2) = {ab, ac}. Thus,
min(

⋃
ĉ∈[c#15]R1

gen1(ĉ)) = min{a, b, ab, ac} = {a, b} and hence gen(c)#15 =
{ah, bh}.

Following Properties 4 and 5, we state that every new mingen in L2 is ob-
tained by adding a to a mingen from L1.

Corrolary 2. gen(C2) − gen(C1) ⊆ gen(C1) ×{a}.
In summary, to compute the mingen in L2, one only needs to focus on new

and modified elements. In both cases, the essential part of the calculation is the
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detection of all the mingen G of concepts from the underlying equivalence classes
which are themselves minimal, i.e., there exists no other mingen in the class that
is strictly included in G. Obviously, this requires the equivalence classes to be
explicitly constructed during the maintenance step.

4 Mingen Maintenance Method

The results presented in the previous section are transformed into an algorithmic
procedure, provided in Algorithm 1, that updates both the lattice and the mingen
sets of the lattice concepts upon the insertion of a new attribute into the context.
The key task of the method hence consists in computing/updating the mingen
of the minimal concept in each class []R2 in L2. Such a class will be explicitly
represented by a variable, θ, which is a structure with two fields: the minimal
concept, min-concept, and minimal mingen, min-gen. Moreover, the variable for
all classes are gathered in a index, called Classes, where each variable is indexed
by the R1 value for the respective class.

1: procedure IncA-Gen(In/Out: L = 〈C, ≤〉 a Lattice, In: a an attribute)
2: Local : Classes : an indexed structure of classes
3:
4: Compute-Classes(C,a)
5: for all θ in Classes do
6: c ← θ.min-concept
7: if |R(c)| = |extent(c)| then
8: intent(c) ← intent(c) ∪ {a} {c is modified}
9: else

10: ĉ ← newConcept(R(c),Intent(c) ∪ {a}) {c is genitor}
11: L ← L ∪ {ĉ}
12: updateOrder(c,ĉ)
13: gen(ĉ) ← ∅
14: θ.min-concept ← ĉ
15: c ← θ.min-concept
16: gen(c) ← gen(c) ∪ θ.min-gen × {a}

Algorithm 1: Insertion of a new attribute in the context

It is noteworthy that the lattice update part of the work is done in a way
which is dual to the object-wise incremental update. Thus, the Algorithm 1
follows the equivalent of the basic steps for object incrementing described in [14].
The work starts with a pre-processing step that extracts the class information
from the lattice and stores it in the Classes structure (primitive Compute-
Classes, see Algorithm 2). At a second step, the variables θ corresponding to
each class are explored to restructure the lattice and to compute the mingen
(lines 6 to 16). First, the kind of restructuring, i.e., modification of an intent
versus creation of a new concept, is determined (line 7). Then, the standard
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update procedures are carried out for modified (line 8) and genitor concepts
(lines 10 to 12). In the second case, the computation specific to the mingen
family update is limited to lines 13 and 14. Finally, the mingen set of a minimal
concept is updated in a uniform manner that strictly follows the Properties 4
and 5.

The preprocessing step as described in Algorithm 2 basically represents a
traversal of the lattice during which the content of the Classes structure is
gradually collected.

At each concept, the intersection of the extent and the object set of the
attribute a is computed (line 5). This provides an entry point for the concept
to its equivalence class which is tentatively retrieved from the Classes structure
using the intersection as a key (line 6). If the class is not yet present in the
structure (line 7), which means that the current concept is its first encountered
member, the corresponding variable θ is created (line 8), initialized with the
information found in c (line 9), and then inserted in Classes (line 10). The
current concept is also compared to the current minimum of the class (lines
11 and 12) and the current minima of the total mingen set of the class are
updated (line 13). At the end, the structure Classes comprises the variables of
all the equivalence classes in R1 with the accurate information about its minimal
representative and about the minima of the global mingen set.

1: procedure Compute-Classes(In/Out: C concept set, In: a an attribute)
2:
3: for all c in C do
4: E ← extent(c) ∩ a2

5: θ ← lookup(Classes, E)
6: if (θ = NULL) then
7: θ ← newClass()
8: θ.min-concept ← c
9: put(Classes, θ, E)

10: if (θ.min-concept < c) then
11: θ.min-concept ← c
12: θ.min-gen ← Min(θ.min-gen ∪ gen(c))

Algorithm 2: Computation of the equivalence classes []R in the initial lattice

5 Iceberg Lattice Variant

Let c = (X,Y ) a concept in L1. The frequency of c, denoted freq(c), is defined
as the ratio of its extent and the size of the object set: freq(c) = ‖X‖/‖O‖).
Given α a minimal threshold of support defined by the user, the concept c is
frequent if freq(c) ≥ α. The iceberg concept lattice generated by α, Lα

1 , is made
of all frequent concepts. An iceberg is thus a join-semi-lattice, a sub-semi-lattice
of the complete concept lattice [11].

For example, the iceberg L0.20
1 obtained from the complete lattice of Fig. 1

with α ≥ 0.20 is shown in Fig. 3.
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Fig. 3. The iceberg lattice L0.20
1 of the context K1 with A1 = {a, .., g}

Unlike the object-wise incremental iceberg update [10], when a new attribute
is added, the maintenance of the iceberg follows strictly that of the complete
lattice. This is due to the invariance of concept frequency: Once a concept is
generated, its frequent status remains unchanged. Assume c is a concept in Lα

1 .
The freq(σ(c)) in Lα

2 will be |extent(σ(c))|
|O| . As extent(σ(c)) = extent(c) and the

number of objects does not vary along the transition from Lα
1 to Lα

2 it follows
that freq(c) = freq(σ(c)).

Moreover, the frequency of the intersection R1(c) is monotonously
non-decreasing with respect to lattice order since it is the composition of two
monotonous non-decreasing functions.

Property 6. ∀c ∈ Lα
1 , if |R1(c)| ≤ α|O| then ∀c s.t c ≺ c, |R1(c)| ≤ α|O|.

Exploring the monotonicity of the frequency function and restricting the Ri

functions (i = 1, 2) from section 2.2 to icebergs, we obtain the fact that a class
may be only partially included in the iceberg. Furthermore, as for any concept
c = (X,Y ) in Lα

1 , extent(χ+(c)) is the extent of a new or a modified concept
in Lα

2 , only the frequent intersections could be considered since the concepts
corresponding to infrequent ones do not belong to the iceberg.

The above observation could potentially invalidate our mingen calculation
mechanism since it relies on the presence of the entire mingen set for a class in
R1. However, observe that only the minima of the equivalence classes require
some calculation. Moreover, because of the monotonicity, the minima are also
the less frequent concepts of a class and thus cannot be present in the iceberg Lα

2
if the class is only partially covered by Lα

2 . Consequently, infrequent intersections
could simply be ignored.

In summary, the icebergs could be dealt with in a way similar to that for
complete lattices. The only thing to be added is a filter for infrequent intersec-
tions. Thus, a concept producing such an intersection should be discarded from
the preprocessing step. As a result, only the classes corresponding to frequent
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intersections, or, equivalently, having frequent minima, will be sent to the main
algorithm for further processing.

1: procedure Compute-F-Classes(In/Out: Lα an iceberg lattice, In: a an attribute)
2: Local : cQ : a queue of concepts
3:
4: in(cQ, top(Lα))
5: while nonempty(cQ) do
6: c ← out(cQ)
7: E ← extent(c) ∩ a2

8: if (|E| ≥ α|O| then
9: θ ← lookup(Classes, E)

10: if (θ = NULL) then
11: θ ← newClass()
12: θ.min-concept ← c
13: put(Classes, θ, E)
14: if (θ.min-concept > c) then
15: θ.min-concept ← c
16: θ.min-gen ← Min(θ.min-gen ∪ gen(c))
17: for all ĉ ∈ Covu(c) do
18: in(cQ, ĉ)

Algorithm 3: Computation of the frequent equivalence classes []R in the initial
iceberg lattice

Luckily enough, the difference between the processing of icebergs and that
of complete lattices can be confined in the class construction step. Thus, the
frequency-aware traversal of the iceberg relies on the monotonicity of the inter-
section function to prune unnecessary lattice paths. More specifically, it explores
the concept set following the lattice order and in a top-down manner whereby the

Fig. 4. The iceberg lattice L0.20
2 of the context K2 with A2 = A1 ∪ {h}



On Computing the Minimal Generator Family 203

exploration of a new path stops with the first concept producing an infrequent
intersection. These differences are reflected in the code of Algorithm 3. The al-
gorithm uses a queue structure to guide the top-down, breadth-first traversal of
the iceberg (lines 4 to 6 and 17 to 18). The remaining noteworthy difference with
Algorithm 2 is that infrequent concepts are ignored whenever pulled out of the
queue (line 8).

Finally, to obtain an iceberg-based version of the lattice algorithm IncA-
Gen, it would suffice to replace in Algorithm 1 the call of Compute-Classes by
Compute-F-Classes on line 4. For example, the iceberg lattice L0.20

2 resulting
from the addition of the attribute h to the iceberg lattice L0.20

1 in Fig. 3 is
depicted in Fig. 4.

6 Experiments and Performance Evaluation

The algorithm IncA-Gen has been implemented in Java and a version thereof
is available within the Galicia3 platform [13]. The platform version is designed
for portability and genericity and therefore is not optimized for performances.

A stand-alone version of the algorithm, called Magalice-A, was devised for
use in experimental studies. Its performances have been examined on a com-
parative basis. In a preliminary series of tests, Magalice-A was confronted to
the Titanic algorithm [11]. Titanic is a batch method which solves a similar
problem, known as frequent closed itemset mining, and produces comparable re-
sults, i.e., the set of frequent concept intents and the corresponding mingen sets.
The choice of Titanic was further motivated by the reported efficiency of the
method and its status of reference algorithm in the FCA community. We used
our own Java implementation of Titanic for the experiments since at the time
of the study, no code was publicly available4.

The experiments were carried out on a Pentium IV 2 GHz workstation run-
ning Windows XP, with 1 GB of RAM. The comparisons were performed on two
types of datasets:

– subsets of Mushroom, a real-world dataset which is also a dense one (8, 124
objects, 119 attributes, average of 23 attributes per object), and

– subsets of T25.I10.D10K, a sparse synthetic dataset popular with the data
mining community (10, 000 objects, 1000 attributes, average of 25 attributes
per object).

The choice of both datasets was motivated by the following observation. It is
now widely admitted that incremental lattice algorithms perform well on sparse
datasets but lag behind batch methods when applied to dense ones. Our goal
was to test whether this trend persists when the mingen families are fed into
the computation process. Indeed, the experimental results seem to confirm the

3 http://galicia.sourceforge.net
4 The authors would like to thank G. Stumme for the valuable information he provided

about Titanic.
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hypothesis that incremental methods may be used as efficient batch procedure
whenever dealing with low-density data tables.

More concretely, two types of statistics have been gathered. On the one hand,
the efficiency of both algorithms has been directly related to the CPU time that
was required to solve the task. On the other hand, we have recorded the memory
consumption as an important secondary indicator of how suitable the algorithm
is for large dataset analysis.

Fig. 5 depicts the CPU time of the analysis of both datasets: the dense
one, on the left, and the sparse one, on the right. The first diagram indicates
that Titanic outperforms Magalice-A by far: it runs 2 to 7 times faster.
However, the reader should bear in mind the fact that beside the concept set
and the mingen, Magalice-A also maintains the order in the iceberg lattice
while Titanic does not.

Fig. 5. CPU-time for Magalice-A and Titanic. The tests involved the entire dataset
from which only the frequent concepts had to be computed using a range of support
threshold values

The second diagram reverses the situation: Magalice-A beats Titanic by
a factor going up to 18. A more careful analysis would be necessary to explain
such a dramatic shift in performances. However, the main reason seems to lay in
the fact that the performance of the incremental algorithm is strongly impacted
by the actual number of concepts in the iceberg. Thus, with a higher number
of concepts as with the Mushroom dataset, the algorithm suffers a significant
slow-down whereas with T25.I10.D10K where the number of concepts is low, it
performs well. The closure computation used by Titanic to find concept intents
depends to a much lesser degree on the number of concepts in the iceberg and
therefore the performances of the algorithm vary in a narrow interval.

Fig. 6 visualizes the results about the memory usage for both algorithms. The
same trends as with CPU-time seem to appear here. Thus, while dense datasets
increase substantially the memory consumption of our algorithm, Titanic re-
mains at a reasonable usage rate. With sparse datasets however, the figures are
mirrored: Magalice-A leads by far with a much smaller memory demand. Once
again, the number of frequent concepts might be the key to the interpretation
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Fig. 6. Memory consumption for Magalice-A and Titanic. The tests involved the
entire dataset from which only the frequent concepts had to be computed using a range
of support threshold values

of the results: with larger number of concepts, the overhead due to additional
computations in Magalice-A, i.e., equivalence class constitution, extent and
order computation/storage, etc., takes over the core tasks of computing intents
and mingen. Conversely, with a small number of frequent intents, the number
of mingen is (proportionally) larger. Magalice-A does well since only small
amount of computing is performed on a mingen, whereas Titanic wastes time
in computing a large number of closures.

It is noteworthy that for support values of 1% and less, both algorithms
exhaust the main memory capacity and relied on swapping to continue their
work. For Titanic, this happens when working on the sparse dataset while for
Magalice-A it is the case with the dense one.

7 Conclusion

Minimal generators of concept intents are intriguing members of the FCA land-
scape with strong links to practical and theoretical problems from neighbor
areas. Because of their important role, it is worth studying their behavior under
different circumstances, in particular their evolution upon small changes in the
input context. In this paper we studied the evolution of the mingen family of a
context upon increases of the attribute set. The operation has a certain prac-
tical value since in many FCA tools, dynamic changes in the set of “visible”
attributes are admitted. However, in this study we looked at the incrementing
of the attribute set as a pure computational technique and examined its relative
merits compared to those of an existing batch method.

The results up to date suggest that the incremental paradigm has its place
in this particular branch of FCA algorithmic practices. They also motivate the
research on a second generation algorithms that would improve on the design of
the initial, rather straightforward procedures, IncA-Gen and Magalice-A.
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The presented research is a first stage in a broader study on the dynamic
behavior of FCA-related subset families: closures, pseudo-closed, mingen, etc.
An even more intriguing subject is the cross-fertilization between methods for
computing separate families in the way it is done in Titanic or in the Merge
algorithm described in [12].
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Abstract. Galois sub-hierarchies have been introduced as an interesting
polynomial-size sub-order of a concept lattice, with useful applications.
We present an algorithm which, given a context, efficiently computes an
ordered partition which corresponds to a linear extension of this sub-
hierarchy.

1 Introduction

Formal Concept Analysis (FCA) aims at mining concepts in a set of entities
described by properties, with many applications in a broad spectrum of research
fields including knowledge representation, data mining, machine learning, soft-
ware engineering or databases. Concepts are organized in concept (Galois) lat-
tices where the partial order emphasizes the degree of generalization of concepts
and helps to visually apprehend sets of shared properties as well as groups of
objects which have similarities.

The main drawback of concept lattices is that the number of concepts may
be very large, or even exponential in the size of the relation.

One of the options for dealing with this problem is to use a polynomial-size
representation of the lattice which preserves the most pertinent information. A
way of doing this is to restrict the lattice to the concepts which introduce a
new object or property, leading to two similar structures called the ’Galois sub-
hierarchy’ (GSH) and the ’Attribute Object Concept poset’ (AOC-poset). GSH
has been introduced in the software engineering field by Godin and Mili in 1993
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([11]) for class hierarchy reconstruction and successfully applied in later research
works ([12, 20, 14, 6]).

Recent work has shown interest of GSH in an extension of FCA to Relational
Concept Analysis (RCA); RCA has been tested to identify abstractions in UML
(Unified Modeling Language, see [19]) diagrams allowing to improve such dia-
grams in a way that had not been explored before ([7]). AOC-poset has been
used in applications of FCA to non-monotonic reasoning and domain theory
([13]) and to produce classifications from linguistic data ([17, 16]). Considering
AOC-poset or GSH is interesting from two points of view, namely the algorith-
mic and the conceptual (human perception), because the structure which is used
has only a restricted number of elements.

Several algorithms have been proposed to construct the Galois sub-hierarchy,
either incrementally or globally. Incremental algorithm Ares [8] and IsGood
[10] add a new object given with its property set in an already constructed GSH.
The best worst-case complexity is in O(k3 n2) for Ares (in O(k4 n2) for IsGood)
where k is the maximal size of a property set and n is the number of elements
in the initial GSH. Note that best pratical results are nevertheless obtained by
IsGood. The global algorithm Ceres ([15]) computes the elements of the GSH
as well as the order and has worst case complexity in O(|O| (|O| + |P |)2).

In this paper, we present an algorithm which outputs the elements of the
GSH in a special order, compatible with a linear extension of the GSH: roughly
speaking, we decompose each element of the GSH into an extent (which is the
set of objects of this element) and an intent (which is the set of properties of this
element), and we output a list of subsets of objects and properties, such that if
E1 is a predecessor of E2 in the GSH, then both the intent and the extent of E1
are listed before the intent and extent of E2 in our output ordering.

To do this, we use a partition refinement technique, inspired by work done in
Graph Theory, which can easily be implemented to run in linear time. We used
this in previous works to improve Bordat’s concept generation algorithm (see
[4]), in order to rapidly group together the objects (or, dually, the properties)
which are similar. Partition refinement has also been used to reorder a matrix
([18]).

One of the interesting new points of the algorithm presented here is that it
uses the objects and properties at the same time, instead of just the objects or
just the properties.

The other interesting development is that the orderings on the properties
and objects created by our algorithm define a new representation of the input
relation, essentially by re-ordering its rows and columns, creating a zone of zeroes
in its lower right-hand corner.

The paper is organized as follows: in Section 2, we give a few necessary
notations, and present a running example which we will use throughout the paper
to illustrate our work. Section 3 presents some results from previous papers,
and explains the general algorithmic process which is used. Section 4 gives the
algorithm, as well as some interesting properties of the output. The algorithm
is proved in Section 5.
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2 Notations and Example

It is assumed that the reader is familiar with classical notions of partial orderings
and lattices, and is referred to [5], [1] and [9]. We will need a few preliminary
notations and definitions.

Given a context (O,P, R), O is a set of objects and P a set of properties, for
X ⊆ O, Y ⊆ P, we will denote by R(X,Y ) the subrelation R ∩ (X × Y ). In the
algorithms we present in this paper, objects and properties can be interchanged,
so we will need to unify notations x′ and x′′ from [9] into R[x] as follows: we will
denote by R[x] the set {y ∈ P, (x, y) ∈ R} if x ∈ O and {y ∈ O, (y, x) ∈ R} if
x ∈ P. R̄ will denote the complement of relation R: (x, y) ∈ R̄ iff (x, y) 	∈ R.

We will say that a concept A′ ×B′ is a successor of concept A×B if A ⊂ A′

and there is no intermediate concept A′′×B′′ such that A ⊂ A′′ ⊂ A′. A concept
A′×B′ is a descendant of concept A×B if A ⊂ A′. The notions of predecessor
and ancestor are defined dually.

In the rest of this paper, we will use the same running example to illustrate
our definitions and algorithms.

Example 1. Binary relation R:

Set of objects:
O = {1, 2, 3, 4, 5, 6},

Set of properties:
P = {a, b, c, d, e, f, g, h}.

a b c d e f g h
1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × ×
6 × ×

The associated concept lattice L(R) is shown in Figure 1.

O

O

abcdefgh

123456

1 bcdeabcgh23

41 de15 cd12 bc23

ab  gh

ab   h

f

g

23 ah6 123   b 125 145   d  c(      ,      ) (      ,     ) (      ,     ) (      ,     )

(    ,      )(    ,           ) (    ,      ) (    ,       )

(   ,           ) (   ,           ) (   ,         )

(    ,                  )

(           ,       )

Fig. 1. Concept lattice L(R) of Example 1. For example, (12, bc) denotes concept
{1, 2} × {b, c}
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Fig. 2. Simplified labelling of Lattice of Figure 1, first step to generate Galois sub-
hierarchy of Figure 3

Definition 1. An object (resp. a property) x is said to be introduced by a con-
cept if x is in the extent (resp. intent) of this concept and no ancestor (resp.
descendant) of this concept contains x in its extent (resp. intent). An element of
the lattice is said to be an introducer if it introduces a property or an object.

In [9], an introducer of an object is called an ’Object Concept’ and an intro-
ducer of a property is called a ’Property Concept’.

Definition 2. ([11]) The Galois sub-hierarchy (GSH) of a concept lattice is
the partially ordered set of elements X × Y , X ∪ Y 	= ∅, such that there exists
a concept where X is the set of objects introduced by this concept and Y is the
set of properties introduced by this concept. The ordering of the elements in the
GSH is the same as in the lattice.

Let E1 and E2 be two elements of the GSH. We will denote E1 < E2 if E1 is
an ancestor (i.e. represented below in the GSH) of E2 and E1 ≤ E2 if E1 = E2
or E1 < E2.

The Attribute Object Concept Poset (AOC-Poset) is a GSH with addi-
tion of the top and bottom elements of the lattice, if they are not present in the
GSH ([16]).

Example 2.
For example, 23×abgh is the introducer of g, as the descendants of this concept:
236 × ah, 123 × b and 123456 × ∅ do not have g in their intent.

Simplifying the labeling of Figure 1 to the introduced objects and properties
leads to the lattice represented in Figure 2. Then, removing trivial nodes and
nodes labeled with empty sets leads to the Galois sub-hierarchy represented in
Figure 3.



212 A. Berry et al.

4

3 f

e

6

g

12

5

  c  b   dah,
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Fig. 3. Galois sub-hierarchy of Example 1, with the simplified labeling: b, for example,
corresponds to (∅, {b}). This hierarchy is obtained by removing trivial nodes from
simplified lattice of Figure 2

3 Previous Results and Algorithmic Process

In order to explain our algorithm, we will need some extra notions which we
introduced in previous papers to improve concept-related algorithms.

First, we will need the notion of maxmod, which is a set of objects or proper-
ties which share the same row or column. These are useful, because when gener-
ating concepts using Bordat’s algorithm for example, the elements of a maxmod
of the relation or subrelation which is used are always grouped together in the
concepts. Note that if the relation is reduced ([1]), all maxmods are of cardi-
nality one; however, reducing a relations costs O(|O + P|3) time, whereas our
algorithm is in O(|O + P|2), so we cannot assume that the relation is reduced.

Definition 3. ([2]) Let (O,P, R) be a context. For x, y ∈ O or x, y ∈ P, x and
y belong to the same maxmod if R[x] = R[y]. We refer to maxmods as object
maxmods or property maxmods, according to the nature of their elements.

The maxmods define a partition of O + P. The GSH, with its simplified
labeling, contains exactly the maxmods of O + P. For any maxmod M , we will
denote E(M) the element of the GSH which contains M in its label.

Example 3. For example, {a, h} defines a maxmod, as a and h have identical
columns in the matrix of R. a and h always appear together, both in the lattice
and in the GSH. The set of maxmods is:
{{a, h}, {b}, {c}, {d}, {e}, {f}, {1}, {2}, {3}, {4}, {5}, {6}}.
These are exactly the labels of the GSH of Figure 1.

Another important notion, which stems from Graph Theory, is that of domina-
tion:

Definition 4. ([2]) Let (O,P, R) be a context. For x, y ∈ O or x, y ∈ P, x is
said to dominate y if R[x] ⊆ R[y]. A maxmod X is said to dominate another
maxmod Y if for x ∈ X, for y ∈ Y , x dominates y.

In the rest of this paper, we will often use maxmods, and denote them infor-
mally without columns, for example we will use ah instead of {a, h}; matrices
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c{a,h} b

f

g

d

e

6

3 2

4 5

1

Fig. 4. Domination order of Example 1. For example, we see that e dominates d and
f dominates b, whereas 6 dominates 2

will be represented with maxmods instead of lone objects or properties, which is
equivalent to keeping in the matrix only one representative for every set of lines
which are identical.

The notion of domination leads us to a decomposition of the GSH into an
object-GSH and a property-GSH, as introduced in [3]. We will use the following
simple terms in referring to this:

Definition 5. ([3]) Let (O,P, R) be a context. The partial order on the property
maxmods is called the property domination order, and likewise the partial order
on the object maxmods is called the object domination order.

Note that both partial orders on objects and properties are compatible with
the GSH:

Theorem 1. ([3]) Let P1 and P2 be two property maxmods ; then P1 dominates
P2 iff E(P1) < E(P2). Let O1 and O2 be two object maxmods, then O1 dominates
O2 iff E(O2) < E(O1).

Example 4. Figure 4 shows the domination orders on our example.

We showed in [4] that a linear extension of the object or property ordering
can be very efficiently computed in linear time, using another Graph Theory
tool: partition refinement. The partition algorithm is given in Section 4.

Our aim here is to compute a linear extension of the GSH. Since the object
and property orderings are preserved in the GSH, both the corresponding linear
extensions are compatible with the GSH. Our idea here is to use the object
linear extension and the property linear extension and merge them into a linear
extension of the GSH.

4 The Algorithm

We present an algorithm which takes a context as input, and outputs a linear
extension of the GSH.

Our algorithm uses as a primitive a partition refinement technique (based on
a process presented in [4]), called Algorithm Maxmod-Partition, which com-
putes a linear extension of the domination order. We use this primitive twice in
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our main algorithm (Algorithm Tom Thumb): the first time, we use Algorithm
Maxmod-Partition with an arbitrary ordering L on P; the second time, we use
in the input the ordering on O output by the first pass of Algorithm Maxmod-
Partition.

Algorithm Maxmod-Partition
Input: A context (O,P, R), a set S which is either O or P, and an ordered
partition L of (O + P) − S.
Output: An ordered partition of the maxmods of S.
Part is a queue, initialized with S;
for each class of partition L taken in the input ordering do

choose a representative x of the class;
for each class K of Part such that |K| > 1 do

K ′ ← K ∩R[x];
K ′′ ← K −R[x];
if K ′ 	= ∅ and K ′′ 	= ∅ then

In Part, replace K by K ′ followed by K ′′;
return Part.

Note that the execution can be stopped if all classes trivially contain a single
element.
This process has the remarkable property that a given maxmod taken in the
output partition can dominate only maxmods which lie to its left:

Theorem 2. ([4]) Algorithm Maxmod-Partition outputs an ordered list of
maxmods such that if maxmod A dominates maxmod B, then B is before A in
this list.

Example 5. Let us apply Algorithm Maxmod-Partition to our running exam-
ple, using S = O, L is the total ordering (a, b, c, d, e, f, g, h) of P (each partition
is trivially formed of a single element).
({1,2,3,4,5,6})

↓ R[a]={2,3,6}
({2,3,6}; {1,4,5})

↓ R[b]={1,2,3}
({2,3}; {6}; {1}; {4,5})

↓ R[c]={1,2,5}
({2}; {3}; {6}; {1}; {5}; {4}).

Our algorithm for computing a linear extension of the GSH first uses Algorithm
Maxmod-Partition to compute a linear extension of the object maxmods, us-
ing any ordering of the property set, then uses the output ordering on object
maxmods to find a special linear extension of the property maxmods. In a third
step, the algorithm will merge the two extensions. The result is a list Linext
of maxmods, which represent a linear extension of the GSH, in which for any
element of the GSH formed by both an object maxmod and a property maxmod,
these appear consecutively.
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Algorithm Tom Thumb
Input: A context (O,P, R).
Output: A linear extension of the GSH, where object maxmods and property
maxmods are separated (if an element of the GSH contains an object maxmod
O and a property maxmod P then P and O appear consecutively in the linear
extension).

1. Apply Maxmod-Partition to (O,P, R), with S = O and L an arbitrary
ordering of P, resulting in an ordered partition (Y1, ..., Yq) of object max-
mods;

2. Apply Maxmod-Partition, with S = P, and using for L partition (Yq, ...,
Y1), i.e. the partition obtained at step one in reverse order, resulting in an
ordered partition (X1, ..., Xr) of property maxmods;

3. List is an empty queue.
j← q; i← 1;
while j>0 and i≤r do

choose representatives: y ∈ Yj and x ∈ Xi;
if (y, x) ∈ R then add Xi to queue List; i← i+1;
else add Yj to queue List; j← j−1;

// At this point, there may remain either objects or properties, which are
added to List
while j>0 do add Yj to queue List; j← j−1;
while i≤r do add Xi to queue List; i← i+1;
Linext←List in reverse; Return Linext.

Note that List computes a linear extension which is in reverse order with
respect to the orientation of the GSH we have chosen for this paper, as illustrated
in our running example. List thus has to be output in reverse as Linext. In
the final Linext output, the list of properties output by Maxmod-Partition
is reversed, while the list of objects is preserved.

Example 6. An execution of Algorithm Tom Thumb on Relation R from Ex-
ample 1.
Step 1: Partition the object set, using any ordering on the property set. With
ordering (a, b, c, d, e, f, g, h) used in Example 5, (2,3,6,1,5,4) is obtained.
Step 2: Partition property set using objects ordering (4,5,1,6,3,2).
({a,b,c,d,e,f,g,h})

↓ R[4]={d,e}
({d,e}; {a,b,c,f,g,h})

↓ R[5]={c,d}
({d}; {e}; {c,}; {a,b,f,g,h})

↓ R[1]={b,c,d,e}
({d}; {e}; {c,}; {b}; {a,f,g,h})

↓ R[6]={a,h}
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({d}; {e}; {c,}; {b}; {a,h}; {f,g})
↓ R[3]={a,b,f,g,h} let the partition unchanged
↓ R[2]={a,b,c,g,h}

({d}; {e}; {c,}; {b}; {a,h}; {g}; {f})

Step 3: Merge ordered partitions (4,5,1,6,3,2) and (d,e,c,b,ah,g,f).
List=();

current object: 4, current property: d, (4, d) ∈ R, d is chosen next,
List=(d);

current object: 4, current property: e, (4, e) ∈ R, e is chosen next,
List=(d; e);

current object: 4, current property: c, (4, c) 	∈ R, 4 is chosen next,
List=(d; e; 4);

current object: 5, current property: c, (5, c) ∈ R, c is chosen next,
List=(d; e; 4; c);

current object: 5, current property: b, (5, b) 	∈ R, 5 is chosen next,
List=(d; e; 4; c; 5);

current object: 1, current property: b, (1, b) ∈ R, b is chosen next,
List=(d; e; 4; c; 5; b);

current object: 1, current properties: ah, (1, a) 	∈ R, 1 is chosen next,
List=(d; e; 4; c; 5; b; 1);

current object: 6, current properties: ah, (6, a) ∈ R, ah is chosen next,
List=(d; e; 4; c; 5; b; 1; ah);

current object: 6, current property: g, (6, g) 	∈ R, 6 is chosen next,
List=(d; e; 4; c; 5; b; 1; ah; 6);

current object: 3 current property: g, (3, g) ∈ R, g is chosen next,
List=(d; e; 4; c; 5; b; 1; ah ;6 ;g);

current object: 3 current property: f, (3, f) ∈ R, f is chosen next,
List=(d; e; 4; c; 5; b; 1; ah; 6; g; f);

no property left, add objects 3 then 2,
List=(d; e; 4; c; 5; b; 1; ah; 6; g; f; 3; 2).
The resulting list of maxmods is (d; e; 4; c; 5; b; 1; ah; 6; g; f ; 3; 2).
In the GSH of Example 2, ah and 6 are in the same element, and so are e and
4, as well as f and 3.
The output Linext represents linear extension
({2}, {3, f}, {g}, {6, ah}, {1}, {b}, {5}, {c}, {4, e}, {d})
of the GSH.

Note that, as usual, O and P could be interchanged in the algorithms above.

Time Complexity:
Algorithm Maxmod-Partition can be implemented to run in O(|R|) time,
thus Step 1 and Step 2 cost O(|R|). In Step 3, each time we enter the while-loop
i + (q − j) is incremented; as i + (q − j) ≤ r + q ≤ |P| + |O|, Step 3 costs
O(|P| + |O|). Algorithm Tom Thumb has then a complexity in O(|R|).
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Algorithm Tom Thumb runs in linear time, but does not explicitely com-
pute the elements of the GSH. Computing these elements, using a brute-force
approach, costs O((|P| + |O|)3) time, and no better process is known for this.
However, in order to compute these elements, we could use the output of Algo-
rithm Tom Thumb in the following fashion: if an element of the GSH has both
a non-empty extent and a non-empty intent, call them O and P , then in list
Linext output by the algorithm, P comes first and O is just after P ; thus we
need to test all pairs of the list where an object maxmod immediately follows
a property maxmod, to find out whether they together form an element of the
GSH. This test can be performed by taking an element o1 in O and an element
p1 in P ; (O,P ) is an element of the GSH iff R[o1] ×R[p1] is a rectangle, i.e. the
corresponding cartesian product is a subset of R. The test costs O((|P|+ |O|)2)
time for each pair which is tested. The overall cost of computing all the elements
of the GSH may become lower than O((|P| + |O|)3) in some cases.

Algorithm Tom Thumb turns out to have a variety of interesting properties,
due to the fact that it computes a very special linear extension of the GSH, as
Theorem 3 for which will will define the notion of ‘staircase’:

Definition 6. Let (O,P, R) be a context. Let α = (o1, ..., oq) be a total ordering
of O and β = (p1, ..., pr) be a total ordering of P. Let M be the matrix of R,
with the rows ordered by α and the columns ordered by β.

We will say that M has a lower-right-hand staircase of zeroes if there exist
an total function ϕ from an interval [oh, oq] of α to P such that:

– for oi and oj objects of [oh, oq], if o − i before oj in α then ϕ(oi) is after
ϕ(oj) in β, and

– for each i in [h, q], the rectangle Si = {oi}×[ϕ(oi), pr] is a rectangle of zeroes
(i.e. ∀y ∈ [ϕ(oi), pr], M [oi, y] = 0).

We will say that the union Z2 of all these rectangles Si of zeroes is a lower-right-
hand staircase of zeroes of M . We will denote by Z1 the other part M − Z2 of
M .

Theorem 3. Using an arbitrary ordering α of O to compute with Algorithm
Maxmod-Partition an ordered partition α of the maxmods of P (as in Step
2 of the Tom Thumb Algorithm), and reordering the rows and columns of the
matrix with α in reverse and β results in a matrix which has a lower-right-hand
staircase of zeroes.

The proof follows the definition of the partition process: at each step, ‘ones’ are
put to the left, and ‘zeroes’ are left at the right; this is repeated one step higher,
to partition the zone above the previous zeroes zone; this results in a staircase
of zeroes, in any matrix defined in this fashion.

Proof. Let (O,P, R) be a context. Let α = (o1, ..., oq) be a total ordering of
O and β = (p1, ..., pr) be a total ordering of P. Let M be the matrix of R
with the rows ordered by α in reverse: (oq, ..., o1) and the columns ordered by
α = (p1, ..., pr) .
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At the first step of the algorithm, if R[o1] 	= ∅, set P will be split into
K ′ = R[o1] and K ′′ = R[o1]; thus ∀y ∈ K ′′, M [o1, y] = 0, and K ′′ is the
righmost class of Part at the end of step 1. If R[o1] = ∅, let k = 0; note that
this only occurs if R[o1] = P. Suppose that at the end of step i of the algorihm,
the rightmost class of Part is Si =

⋂
i
j=1R[oi]. If, at step i + 1, R[oi+1] 	= ∅,

Si+1 =
⋂ i+1

j=1R[ok] will be the new rightmost class in Part. If R[oi+1] = ∅, let
k = i.

Thus we recursively construct a list {o1} × S1, ..., {ok} × Sk of rectangles of
zeroes, with inclusions S1 ⊇ ... ⊇ Sk. This will define the successive elements of
the ordered partition on P, which w.l.o.g. are: R[o1], R[o2]∩S1, ... , R[ok]∩Sk−1,
Sk.

We can thus define function ϕ from [o1, ok] to P by ϕ(oi) = Si with the
different rectangles of zeroes Si of Definition 6. Thus M has a lower-right-hand
staircase of zeroes Z2 = ∪k

i=1({oi}×Si). Note that the use of a reverse ordering
on O makes the object indices different from those of Definition 6.

Example 7. Let us use (2,3,6,1,5,4) and (d,e,c,b,ah,g,f) as output by Steps 1 and
2 of the execution of Algorithm Tom Thumb of Example 6. The resulting matrix
is:

R d e c b ah g f
2 × × × ×
3 × × × ×
6 ×
1 × × × ×
5 × ×
4 × ×

The lower-right-hand part of the matrix contains only zeroes. The limit of this
zone is defined by the succession of queries on R given in Step 3 of the Tom
Thumb Algorithm: (x, y) 	∈ R, (4, c) 	∈ R, (5, b) 	∈ R, (1, a) 	∈ R, (6, g) 	∈ R. Thus
Z2 = {4} × {c, b, ah, g, f} ∪ {5} × {b, ah, g, f} ∪ {1} × {ah, g, f} ∪ {6} × {g, f}.

5 Proof of the Algorithm

The Tom Thumb Algorithm does a traversal of the GSH in a such fashion that
an element of the GSH is reached – and then put in the list – only after all its
descendants in the GSH are reached:

Theorem 4. Algorithm Tom Thumb gives a linear extension of the GSH,
where object maxmods and property maxmods are separated: if a property max-
mod P and an object maxmod O are in the same element of the GSH then O
appears just before P in the linear extension.

In order to prove this, we will use Theorem 3, as well as the following lemmas.
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Lemma 1. In the course of the execution of Algorithm Tom Thumb,

1. when a property maxmod P is added to List, then for any object maxmod
O added after P , (O,P ) is in Z1.

2. when an object maxmod O is added to List, then for any property P added
after O, (O,P ) is in Z2.

Proof. Let (O,P, R) be a context. Let α = (O1, ..., Oq) be the partition in object
maxmods obtained at the first step of Algorithm Tom Tumb, let β = (P1, ..., Pr)
be the partition in property maxmods obtained at the second step of Algorithm
Tom Tumb, using α in reverse: (Oq, ..., O1), as ordered partition L in the input.
Let M be the matrix of R with rows in order α and columns in order β. By
Theorem 3, M has a lower-right-hand staircase of zeroes.

1. Let O be an object maxmod and let P be a property maxmod such that
O is after P in List. If P and O have been compared in the third step
of Algorithm Tom Tumb, then (O,P ) ∈ R and (O,P ) may not be in Z2.
On the other hand, if P has been inserted in List without being compared
to O, this means there exists another object maxmod O′ which is after O
in α, which has been compared to P , and which has been put after P as
(O′, P ) ∈ R. Thus (O′, P ) ∈ Z1 and, by Definition 6 of M , (O,P ) is in Z1.

2. We will prove by induction that for each object maxmod Oi of α, all the
properties Pj put after Oi in List verify (Oi, Pj) ∈ Z2.
The first step of Algorithm Tom Thumb begins by comparing Oq and P1. All
the property maxmods of R[Oq] are put before Oq in List, as for Pj ∈ R[Oq],
(Oq, Pj) ∈ R. The property maxmods of R[Oq] will be put after Oq in List
and will constitute the first ‘step’ S1 of the lower-right-hand staircase in
matrix M . Thus for all Pj ∈ R[Oq], (O1, Pj) ∈ Z2.
Suppose that for object maxmod Oi, all the property maxmod Pj that are
after Oi in List verify (Oi, Pj) ∈ Z2.
When Oi−1 is processed, the set B of property maxmods which have yet
to be processed can be split into B ∩ R[Oi−1] and B ∩ R[Oi−1]. Then, the
property maxmods of B∩R[Oi−1] will be put before Oi−1 in List and these
of B∩R[Oi−1] will be put after Oi−1. By Definition 6, Oi−1×(B∩R[Oi−1]) is
an element of the staircase of zeroes of matrix M . Thus, all Pj in B∩R[Oi−1]
put after Oi−1 in List will verify (Oi−1, Pj) ∈ Z2.

Lemma 2. Let O be an object maxmod associated with element E(O) of the
GSH, let P be a property maxmod associated with E(P ); then (O,P ) ∈ R iff
E(O) ≤ E(P ).

Proof.

⇒ This follows directly from the definitions of concept lattice and GSH: the
introducer of P is concept R[P ] × R[R[P ]]. If (O,P ) ∈ R, O is in this
concept and in all its predecessors, one of which is the introducer of O. Then
E(O) ≤ E(P ) if (O,P ) ∈ R.
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⇐ If E(O) ≤ E(P ), the introducer of P is a descendant of the introducer of O
and thus will have O in its extent. Then (O,P ) ∈ R.

Theorem 5. For any pair (O,P ) of maxmods such that (O,P ) 	∈ R and
(O,P ) ∈ Z1, O and P belong to non-comparable elements E(O) and E(P ) of
the GSH.

Proof. Let (O1, P1) be a zero in Z1. Suppose by contradiction that P1 and O1
belong to comparable elements of the GSH.

Since (O1, P1) 	∈ R, by Lemma 2, we must have E(P1) < E(O1). Let us
consider the moment when P1 is added to List: by Lemma 1, since (O1, P1) ∈ Z1,
O1 has not yet been added. Let O2 be the object which is queried by Step 3 of
Algorithm Tom Thumb, and which results in adding P1 to List, let E(O2) be
the element of the GSH which contains O2: we have (O2, P1) ∈ R. Clearly, the
algorithm will insert O2 after P1 in List; by Lemma 2, E(O2) ≤ E(P1).

Combining the above remarks together, we obtain E(O2) ≤ E(P1) < E(O1),
so by Theorem 1, O1 dominates O2. But this is impossible, by Theorem 2, as the
ordering used ensures that O1 can dominate only objects which are output before
it by Algorithm Maxmod-Partition; since this ordering is used in reverse by
Step 3 of Algorithm Tom Thumb, O2, which is used first, cannot be dominated
by O1 - a contradiction.

We are now ready to prove Algorithm Tom Thumb:

Proof. (of Theorem 4) Let A and B be two different maxmods, belonging to
elements E(A) and E(B) of the GSH respectively. There will be two cases:

– Suppose that E(B) < E(A). We will show that B is placed before A in
Linext, which is equivalent to saying that A is placed before B in List.
1. If A and B are both property maxmods: by Theorem 1, B dominates

A. Clearly, the ordering output by Step 2 of Algorithm Tom Thumb is
preserved in list. By Theorem 2, A is before B in List.

2. If A and B are both object maxmods: by Theorem 1, A dominates B.
The ordering output by Step 1 of Algorithm Tom Thumb is reversed in
List. By Theorem 2, A is before B in List.

3. If A is a property maxmod and B is an object maxmod: as E(B) < E(A),
by Lemma 2, (B,A) ∈ R, which implies (B,A) 	∈ Z2. By contraposition
of the second item of Lemma 1, A must be before B in List.

4. If A is an object maxmod and B is a property maxmod: as E(B) < E(A),
by contraposition of Lemma 2, (A,B) 	∈ R. By Theorem 5, (A,B) 	∈ Z1,
as E(A) and E(B) are comparable. Finally, by contraposition of the first
item of Lemma 1, object maxmod A is before property maxmod B in
List.

– Suppose that E(B) = E(A). This corresponds to the case where object
maxmod A and property maxmod B appear in the same element of the
GSH. We will show that B is placed after A in Linext, which is equivalent
to saying that A is placed after B in List.
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If E(A) = E(B) then, by Lemma 2, (A,B) ∈ R and thus (A,B) 	∈ Z2.
By contraposition of the second item of Lemma 1, object maxmod A is
after property maxmod B in List. Finally, as a direct consequence of the
precedent case, no other maxmod will appear between A and B in List.

6 Conclusion

In this paper, we present a new algorithm to efficiently compute an ordering on
the object and property maxmods which is compatible with a linear extension
of the Galois sub-hierarchy.

It turns out that the linear extension we compute has very special properties,
which will require further investigation, both as useful for dealing with Galois
sub-hierarchies, and as interesting in the more general context of handling a
binary relation. For example, the way the algorithm traverses the sub-hierarchy
is interesting, as well as the definition of some zones of the matrix with non-
comparable elements.

Moreover, the family of reorderings computed by our Tom Thumb algorithm
turns out to often lead to cases where concept generation can be accomplished
faster than in the general case. Experimentation on this is being pursued.
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Abstract. In this paper we propose a “divide and conquer” based gen-
erating algorithm for closed sets of a binary relation. We show that some
existing algorithms are particular instances of our algorithm. This al-
lows us to compare those algorithms and exhibit that the practical effi-
ciency relies on the number of invalid closed sets generated. This number
strongly depends on a choice function and the structure of the lattice. We
exhibit a class of lattices for which no invalid closed sets are generated
and thus reduce time complexity for such lattices. We made several tests
which illustrate the impact of the choice function in practical efficiency.

Keywords: Generation algorithm, Closure operator, Galois or concept
lattice.

1 Introduction

Closure systems or lattices are mathematical structures which are used for many
applications in computer science and in particular, for discovering information
in databases [1, 2].

In this paper, we give a generic divide and conquer algorithm which gener-
ates closed sets of a given binary relation. The main idea of this approach is to
generate closed sets which contain an element a, then closed sets which do not
contain a. This approach is then recursively applied. Moreover, we show that ex-
isting algorithms, in the spirit of generating algorithms, are particular instances
of this algorithm, by only modifying the choice function. Time complexity of our
algorithm is the same as that of Ganter’s algorithm [5]. However, our algorithm
has some extra features which can be of interest: It is simple, general, well suited
for particular classes of lattices and well suited for distributed computation. It
can be used as a basis for comparing different algorithms or to conceive new
ones, using polynomial space.

The aim of this paper is to generate all the closed sets associated to a binary
relation. This is a classical problem which could be equivalently formulated as
“Generate all the maximal bicliques of a bipartite graph” or “Generate all the
maximal 1-rectangles of a Boolean matrix”. Number of closed sets of a binary
relation may be exponential in the size of the relation.

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 223–234, 2005.
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Complexity of a generating algorithm is based on the size of the input as well
as the size of the output (i.e. the number of closed sets). In this paper, when
time complexity is given without mention of the output size, we talk about the
time complexity per closed set.

We only want to generate all the closed sets, and not build the lattice struc-
ture. As we do not need to store all the closed sets, we do not allow an exponential
use of memory. Thus, the algorithm presented here uses, at worst, a polynomial
space in the size of the binary relation.

To describe our algorithm, we first recall some notations we will use in this
paper. For definitions and proofs not given here, we refer to [7].

In this paper, we consider a binary relation R = (J,M, I) where elements
of J are usually called the objects, those of M the attributes of R. For j ∈ J ,
m ∈ M one has jIm iff there exists an edge between j and m, i.e. if the object
j possesses the attribute m. We denote usually the attributes by numbers, and
the objects by small letters.

Recall Galois connection is given by the following derivation operators:

– For a set A ⊆ J , A′ = {m ∈ M | jIm for all j ∈ A}.
– For a set B ⊆ M , B′ = {j ∈ J | jIm for all m ∈ B}.

We consider the classical closure operator ′′ : 2J → 2J , defined by applying
twice the derivation operators. Let X be a set, then X ′′ is the closure of X.

2 A Generic Algorithm

The main idea of our algorithm is to generate closed sets which contain element a
and closed sets which do not contain a. And then apply this principle recursively.
However, input data of our algorithm is a binary relation R. Main difficulty
is thus to determine two sub-relations R1 and R2 of R such that closed sets
containing a can be generated from R1, while closed sets which do not contain
a can be generated from R2.

Let F(R) be the set of all closed subsets of J with respect to the binary
relation R = (J,M,<). Given a ∈ J , the closed sets of R may be decomposed
according to whether they contain a or not.

– Fa(R) = {F ∈ F(R) | a ∈ F}, i.e. closed sets which contain a.
– Fa(R) = {F ∈ F(R) | a 	∈ F}, i.e. closed sets which do not contain a.

Clearly Fa(R) is a closure system on J , but the set Fa(R) may not be a
closure system since it may not contain a top element (see Figure 1).

Since Fa(R) is a closure system on J , we can find a sub-relation R1 ⊆ R such
that F(R1) = Fa(R). More formally R1 = (J, a′, <) since a closed set X of R
that contains a must satisfy X ′ ⊆ a′. Note that, in a sub-relation, < denotes the
restriction of < in R for present elements in the sub-relation.

On the other hand, since Fa(R) is not always a closure system, we need to
find R2 ⊆ R such that Fa(R) ⊆ F(R2). We define R2 by R2 = (J\ ↑ a,M,<)
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Fig. 1. A decomposition of the closure system in Figure 2 when b is chosen. Notice
that the set {ac} is not a closed set of R
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Fig. 2. a) A binary relation R = (J, M, <), b) R1 = (J, a′, <), c),R2 = (J\ ↑ a, M, <)

since a closed set of R which does not contain a must not contain any element
of ↑ a, where ↑ a = {j ∈ J | j′ ⊆ a′}.

Figure 2 illustrates this decomposition of a binary relation to sub-relations.

Definition 1. Invalid closed set.
Let R the initial context, and Ri a context derived from R by a sequence of
transformations of R in R1 or R2. We say X is an invalid closed set if X ∈
F(Ri) but X 	∈ F(R).

We say that a set X is valid if X ∈ F(R). F(R2) may contain more closed sets
than Fa(R). We denote by NV (R) = F(R2)\Fa(R) the set of closed sets of R2
which are invalid closed sets in R. Thus the whole difficulty with our approach
is first to determine from R the two sub-relations which contain the valid closed
sets, and second to avoid generating too many invalid closed sets.

The following Lemma shows that if a set is invalid then all its upper sets are
invalid.

Lemma 1. Let R(J,M,<) be a binary relation and X ∈ NV (R). Then for all
Y ∈ F(R2) such that X ⊂ Y , one has Y ∈ NV (R).

Proof. Let X ∈ NV (R) and X ′′ its closed set in R. Then a ∈ X ′′. Moreover, for
all Y ∈ F(R2): X ⊂ Y , and we have X ′′ ⊆ Y ′′. And thus, a ∈ Y ′′.

We conclude Y ∈ NV (R). ��
Thus using Lemma 1, we can avoid generating too many invalid closed sets

since we know that upper sets of an invalid closed sets are also invalid. We can
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thus deduce the following divide and conquer algorithm for the generation of
closed sets. In the algorithms below, R is the binary relation considered, P is
the set of elements of J which can be chosen to separate the closure system.
So, when the algorithm runs from R to R1, we delete a′′ from P , and when the
algorithm runs from R to R2, we delete ↑ a from P .

Algorithm 1: Generating closed sets
Data : A binary relation R = (J, M, <).
Result : F(R)
begin

Output ∅′′;
Closure(R, J \ ∅′′);

end

Algorithm 2: Closure(R,P)
begin

if P �= ∅ then
1 Choose an element a ∈ P ;

Compute a′′ in the current relation R;
if a′′ is valid then

2 Output a′′;
R1 ← (J, a′, <);

3 Closure(R1, P\a′′);

R2 ← (J\ ↑ a, M, <);
4 Closure(R2, P\ ↑ a);

end

Theorem 1. Algorithm 2 generates the closed sets of a binary relation R =
(J,M,<) using a polynomial space and O(|J |2 ∗ |M |) time per closed set.

Proof. We first explain how to construct Closure(Ri, Pi). If Pi = ∅ then our list
of choices is empty and the procedure stops.

Suppose Pi 	= ∅ and let a ∈ Pi be chosen. The procedure computes the closed
set a′′ in the binary relation Ri and tests if it is valid or not. It suffices to test if
a′′ is a closed set on the sub-relation (J,Mi, <), where Mi is the set of attributes
of the context Ri considered at the present time. It costs at most O(|J |.|M |).

Indeed, the closure operator is applied only once, on the relation R′
i =

(J,Mi, <). Then, a closed set X ⊂ J is valid if ∀x ∈ J\Ji, we have x 	∈ X.
If a′′ is valid, then the procedure computes R1 and R2 from R and calls

Closure(R1, Pi \ a′′) and Closure(R2, Pi\ ↑ a′′). It costs at most O(|J |.|M |).
But if a′′ is not valid then only R2 is computed and only one call is realized

with the same time complexity.
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It remains to show that the number of invalid closed sets is bounded by
O(|J |.|F(R)|).

Consider the computation tree corresponding to the procedure Closure(R,P ).
Notice that the computation tree is a binary tree since the procedure contains
two recursive calls. To each invalid closed set there corresponds a node of degree
1 in the computation tree and to each valid closed set there corresponds a node
of degree 2. It is known that for any binary tree the number of leaves is at most
twice the number of nodes of degree 2. And, since the height of the search tree
is at most |J |, then any path (containing only nodes of degree 1) from a leaf to a
node of degree 2 contains at most |J | invalid closed sets. We charge complexity
of computing these invalid closed sets to the corresponding node of degree 2.
Moreover, to any node of degree 2 we associate at most two leaves. We conclude
that the number of invalid closed sets is at most 2.|J |.|F(R)|.

Actually, it is easy to see that the complexity can be expressed as a function of
the number of valid and invalid closed sets: O(|J ||M |F(R))+O(|J ||M ||NV (R)|).

As we have seen above |NV (R)| ≤ 2.|J |.F(R), thus we obtain the classical
complexity of O(|J |2.|M |) per closed set.

��
The proof of Theorem 1 shows that time complexity of the generic algo-

rithm deeply relies on the generation of invalid closed sets: In O(|J |.|M |.F(R))+
O(|J |.|M |.|NV (R)|), the second term represents the impact of invalid closed sets.

Clearly, one can ask if the number of invalid closed sets is bounded by
K.|F(R)|, where K is a constant. We made several tests on different binary rela-
tions and all results seem to confirm this. However, experimental results cannot
validate theoretical bounds and thus this question remains open. Answering this
question may improve time complexity of our algorithm.

We now discuss two particular instances of this algorithm, in goal to deal
with two approaches: The approach of Ganter’s [5, 6], which uses a property on
the label elements, and an approach like the one of Bordat’s [4] (Or Lindig [10])
algorithms, which use lattice property (computation of the immediate successors
of a closed set).

Other existing algorithms might be seen as particular instances of our generic
algorithm. Indeed, depending on how element a is to be chosen in line 1 and the
order of recursive calls, we can simulate the behaviour of well-known algorithms.

2.1 Example of Particular Instance: Ganter’s Algorithm

In Ganter’s algorithm [5], closed sets are generated in a lectic order as defined
below:

Definition 2. Let A, B be two subsets of a set of ordered elements. We say the
set A is lectically smaller than the set B if the smallest element distinct in A
and B belongs to B.

More formally, ∃i ∈ B\A such that A∩{1, 2, . . . , i−1} = B∩{1, 2, . . . , i−1}
To generate closed sets in a lectic order using our algorithm, we first suppose

that J is totally ordered. Choosing element a is then reduced to picking up the
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smallest element of J (line 1). Moreover, the two recursive calls are swapped
in order to respect the lectic order definition (line 2 and 5). Ganter’s algorithm
thus looks like as follows:

Algorithm 3: Closure(R,P) (Ganter’s instance)
begin

if P �= ∅ then
1 Choose the smallest element a ∈ P ;

R2 ← (J\ ↑ a, M, <);
2 Closure(R2, P\ ↑ a);

Compute a′′;
if a′′ is valid then

3 Output a′′;
4 R1 ← (J, a′, <);
5 Closure(R1, P\a′′);

end

One can note this version is not totally equivalent to the Next Closure algo-
rithm: This version computes less invalid closed sets than the original one.

One of the main advantages of using Next Closure algorithm is that the only
data needed are J and a closure operator. For Ganter’s algorithm, the closure
operator may be used as a black box. As a consequence, Next Closure does not
use informations whose can be deduced from a particular closure operator. Here,
we use such informations since from the binary relation, we deduce the partial
order of J .

As the closed sets are generated in the lectic order, our version can be con-
sidered as a particular implementation of Next Closure.

It is possible to obtain a behaviour similar to the original one by replacing
R2 = (J\ ↑ a,M,<) by R2 = (J\a,M,<). In this case, we do not use the
additional knowledge about the partial order on J given to us by the binary
relation. Number of closure computed is then equal to the number of closure
computed by Next Closure.

Time complexity remains unchanged. However, even this implementation us-
ing extra-informations on the poset of J elements generates more invalid closed
sets than an implementation based on Bordat’s method (See tests in Section 4).
A possible explanation will be given in the section dealing with choice functions.

2.2 Another Particular Instance: Bordat’s Algorithm

Bordat’s algorithm [4] realizes a depth first search of the closed sets lattice by
choosing at each step element a such that a′′ is minimal. In a similar way, Lindig
[10] computes from a concept all the covers of this concept.

These algorithms have been designed to build the lattice. Here, we only want
to generate the set of closed sets, without structural informations.
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So, of course, implementation below is not strictly equivalent to the one of
Bordat (or Lindig). The principle, nevertheless, is the same: go from a closed
set to another closed set which covers it. Here, we use a bottom-up approach
for generation problem where Bordat and Lindig used such an approach for the
diagram-building problem.

Thus, to use a bottom-up approach, it is sufficient to modify the choice
function in our algorithm to obtain the same output order as that of Bordat.

Algorithm 4: Closure(R,P) (Bordat’s instance)
begin

if P �= ∅ then
1 Choose a ∈ P such that a′′ is minimal;

Compute a′′;
if a′′ is valid then

2 Output a′′;
3 R1 ← (J, a′, <);
4 Closure(R1, P\a′′);

R2 ← (J\ ↑ a, M, <);
5 Closure(R2, P\ ↑ a);

end

Again, time complexity remains unchanged. However, this instance generates
less invalid closed sets than Ganter’s instance as shown by our tests (see Section
4).

It is easy to see it is also possible to generate closed sets in the lexicographic
order, or, more generally, using arbitrary property on the labels of elements. We
can also generate the closed sets using some structural properties on the poset J .
In all cases, testing if a closed set is invalid may be viewed as a test of canonicity
[9], since it is equivalent to say that a closed set is invalid if it contains some
forbidden elements.

However, for all instances, same remark applies: practical efficiency of the
algorithms depends on the number of invalid closed sets generated. Thus, a
question arises: does there exist a class of lattices for which no invalid closed set
is generated?

The next Section answers this question.

3 Decomposition of Closure Systems

We have previously seen that invalid closed sets might be generated since Fa(R)
is not a closure system. However, we show that whenever a is a ∨-prime element
then Fa(R) is a closure system. We first recall the definition of a ∨-prime element:

Definition 3. a ∈ J is ∨-prime if for all A,B ∈ F(R), a 	∈ A ∪ B implies
a 	∈ (A ∪B)′′.
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∨-prime elements were first introduced by G. Markowsky in [11] to character-
ize certain types of lattices. Here, we use property of decomposition of ∨-prime
elements to deduce a generation algorithm.

This leads to the following property:

Property 1. Let a ∈ J be an element of (J,≤). Then

1. Fa(R) is a closure system.
2. Fa(R) is a closure system iff a is ∨-prime.

Figure 3 illustrates this property.

a

abc b c

bc

a) b) c)

b ca

bc

abc

Fig. 3. A closure system and its decomposition based on the ∨-prime element a.
a)F(R), b)Fa(R), c) Fa(R)

As a consequence, using the same sub-relations R1 and R2 of R as defined in
Section 2, we obtain the following corollary:

Corollary 1. Let F(R) be a closure system and a be a ∨-prime element. Then

1. Fa(R) = F(R1)
2. Fa(R) = F(R2)

Thus, whenever there exists a ∨-prime element, F(R) can be decomposed
in two closure systems Fa(R) and Fa(R). If this property is recursively verified
on both closure systems, then F(R) is called ∨-separable. For instance, ∧-semi-
distributive lattices are ∨-separable [12].

Definition 4. [12] A closure system F is called ∨-separable if one of the fol-
lowing condition is satisfied:

1. |F| ≤ 1.
2. F contains a ∨-prime element a and both Fa(R) and Fa(R) are ∨-separable.

As a consequence, for such class of lattices, a simplicial elimination scheme
can be used at each step by choosing a ∨-prime element and decomposing the
relation in two closure systems. Moreover, according to Corollary 1, no invalid
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closed set will be generated. Thus to respect this elimination scheme it is suffi-
cient to modify the choice function in our algorithm in order to choose at each
step a ∨-prime element (line 1). Moreover, we can also drop the validity test.

Algorithm 5: Closure(R,P )
begin

if P �= ∅ then
1 Choose a ∨-prime element a ∈ P ;
2 Compute a′′;
3 Output a′′;
4 R1 ← (J, a′, <);
5 Closure(R1, P\a′′);
6 R2 ← (J\ ↑ a, M, <);
7 Closure(R2, P\ ↑ a);

end

The next proposition shows how to determine if an element a is ∨-prime in
a relation R.

Proposition 1. Let R = (J,M,<) be a binary relation and a ∈ J . Then a is
∨-prime iff there exists m ∈ M such that m′ = J\ ↑ a.

Proof. Suppose that for all m ∈ M , m′ 	= J\ ↑ a. Then, there exists m1,m2 ∈ M
such that a ∈ (m′

1 ∪m′
2)

′′, with a 	∈ m′
1 ∪m′

2 and m′
1, m

′
2 ∈ F(R)

Conversely, let m ∈ M with m′ = J\ ↑ a. We show that a is ∨-prime. Let
A,B ∈ F(R) such that a 	∈ A ∪ B. Then A ∪ B ⊆ J\ ↑ a = m′, since A and B
are ideals of (J,≤). Since the operator ′′ is extensive, we have (A∪B)′′ ⊆ (J\ ↑
a)′′ = (m′)′′ = m′. This implies that a 	∈ (A ∪B)′′, since a 	∈ m′.

��
Detection of ∨-prime element can be done in O(|J | × |M |) time. Thus this

choice function does not interfere with the overall complexity of our algorithm.
To be convinced it is possible to detect a ∨-prime element, note that we can

use counters over elements of J and M . For each element j ∈ J (resp. m ∈ M),
a counter is associated to |j′| (resp. |m′|).

When computing the closure of an element a, it is possible, at the same time,
to compute ↑ a. So, it is possible to compute |J | − | ↑ a|. Then a is ∨-prime if
exists m ∈ M such that |m′| = |J | − | ↑ a| and j 	 Im. This test may be done in
O(M).

To keep the O(|J | × |M |) complexity, the idea is to pre-compute and test, at
each step, |J | closed sets. Space remains polynomial since the call depth is no
more than |J |. At most, we store |J |2 closed sets at the same time.

However, since now no invalid closed sets are generated, the overall complex-
ity of the algorithm is lowered as shown by the next theorem.
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Theorem 2. Algorithm 5 generates the closed sets of ∨-separable closure system
in O(|J | × |M |) time per concept using polynomial space.

The proof of Theorem 2 is contained in the proof of Theorem 1, considering
|NV (R)| = 0.

4 On the Impact of the Choice Function

All along this paper we have shown that the choice function is essential for
practical efficiency, since it will determine the number of invalid closed sets
generated. This has been possible since our algorithm is generic and since existing
algorithms are just particular instances. The only difference which modifies the
practical efficiency is the way element a is chosen.

We made different tests by implementing several choice functions in order to
have a hint on what could be a “good” choice function. The choice functions we
decided to implement are the following:

– “Random”: Choose an arbitrary element of a ∈ J . It may serve as a reference
for other choices.

– “Maximize |a′′|”: Choose a ∈ J such that |a′′| is maximum.
– “Minimize |a′′|”: Choose a ∈ J such that |a′′| is minimum.
– “Maximize |a′|”: Choose a ∈ J such that |a′| is maximum.
– “Minimize |a′|”: Choose a ∈ J such that |a′| is minimum.

We have tested our implementations on binary relations generated randomly
with different densities. All binary relations are tables of 50×50 size and densities
50%, 60% and 70%. For each density, we have made several tests on several binary
relations, and the average numbers of closed sets of these binary relations are
77515 for density 50, 512779 for density 60 and 4715307 for density 70. Figure 4
shows the results (number of invalid closed sets) for these different choices.

The random choice may be viewed as an execution of the Next Closure in-
stance. In effect, taking element randomly is equivalent to taking a particular
total order on the label of elements.

So, tests let think that Next Closure implementation is less efficient than an
implementation in bottom-up style (which minimizes |a′′|). A partial answer is
the following: Tests were done on randomly generated contexts. These contexts
are not reduced, and so, some labelled elements may not be irreducible elements.
Furthermore, even if the initial context was reduced, there are no warranty that
sub-context Ri are reduced. Closed sets which are not ∨-irreducible are bad
choices to separate the closure system. In effect, in this case, it is sure that the
family of closed sets which do not contain this element is not a closure system.
On the contrary, using a bottom-up approach warrants us to choose, at each
step, a ∨-irreducible of the closure system.

Our conclusion is that the better implementation is to choose an element
with minimum closure. Moreover, we confirm the observation in [9] that Bordat
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#Invalid #not valid/#valid
Density 50
Random 94629,1 1,22
Min |a′′| 52446,6 0,67
Max |a′′| 160432 2,06
Min |a′| 70816,3 0,91
Max |a′| 142385 1,83
Density 60
Random 509295 0,99
Min |a′′| 252623 0,49
Max |a′′| 952471,9 1,85
Min |a′| 361749,9 0,70
Max |a′| 858963 1,65
Density 70
Random 3389429 0,71
Min |a′′| 1544736 0,32
Max |a′′| 6902954 1,46
Min |a′| 2264626 0,48
Max |a′| 6366286 1,35

Fig. 4. Binary Relations 50x50, for density 50%, 60% and 70%. The average numbers
of closed sets of these binary relations are 77515 for density 50, 512779 for density 60
and 4715307 for density 70

algorithm is better for dense binary relations, as shown in Figure 4 for invalid
closed sets.

In this paper we have considered that the choice function is defined “a priori”.
However one could imagine having several choice functions and use the best one
at each step. For instance, if at a given step there exists a ∨-prime element then
this element should be chosen. In the same way, if at some steps the lattice is
of a particular class for which an efficient algorithm exists, then the divide and
conquer approach should be dropped and the efficient algorithm preferred. For
instance, in the case of distributive lattice an efficient algorithm exists [8] and
testing distributivity can be done in O(|J | × |M |) time.

5 Conclusion

In this paper we presented a generic “divide and conquer” algorithm which
generates closed sets induced by a binary relation. We have shown that some
existing algorithms can be viewed as particular instances of our algorithm. This
allowed us to exhibit the key role played by the ”choice function” for practical
efficiency. This “choice function” can be viewed as a heuristic which tries to
minimize the number of invalid closed sets generated. For instance, we showed
that when there exists a ∨-prime element, no invalid closed set is generated. It is
important to notice that the time complexity of the “choice function” has to be
lower or equal to |J | × |M | in order to keep the overall complexity unchanged.
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Indeed, this factor corresponds to the cost of computing the closure of a set
which has to be done anyway. One could imagine that proposing new closed
sets generation algorithms is reduced to proposing a new choice function for
which the number of invalid closed set can be bounded. The overall complexity
could then be somewhere between |J | × |M | and |J |2 × |M | per closed set. The
|J | × |M | corresponding to the choice of a ∨-prime element, while |J |2 × |M |
being the choice of a random element. Based on our tests, we strongly believe
that the number of invalid closed sets generated is bounded by a constant factor.
However, this has still to be proved formally and remains our next challenge.
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Abstract. Mannila and Räihä [5] have shown that minimum implica-
tional bases can have an exponential number of implications. Aim of our
paper is to understand how and why this combinatorial explosion arises
and to propose mechanisms which reduce it.
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1 Introduction

One of the most important open problems in formal concept analysis is the
generation of a minimum implicational base from a context. This problem has
two major practical difficulties.

First, there is no known polynomial time algorithm which computes such a
base. This is still an open problem and many ongoing researches try to classify
this problem for particular cases (for instance, finding the keys of a multi-valued
context [2]). The other critical problem is the size of the result. A minimum
implicational base might have an exponential size (see Mannila and Räihä [5]).

In this paper, we explain why such combinatorial explosion arises and then
try to reduce it. For this study, we consider only Guigues-Duquenne bases since
they are well defined.

In the example given by Mannila and Räihä, one can notice that some at-
tributes play similar roles in the pseudo-closed sets, i.e. some pseudo-closed sets
can be obtained from others by simply exchanging one attribute by another one.
We say that a and b are P-clone attributes if all pseudo-closed sets containing
attribute b can be obtained by exchanging a for attribute b in all pseudo-closed
sets containing attribute a, and reciprocally.

We believe that the combinatorial explosion of the Guigues-Duquenne base
is due to the presence of P-clone attributes. Aim of our ongoing work is either
to prove or invalidate this belief. In this paper we present some results which
could help in achieving this aim.

Medina and Nourine [6] introduced the notion of clone attributes, which is
a relaxed definition of P-clone attributes. Indeed, clone attributes are attributes
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having a similar role on closed sets1 rather than on pseudo-closed sets. With this
notion, it has been shown that the combinatorial explosion of Mannila and Räihä
example is due to clone attributes. Moreover, a clone reduction operator which
drastically reduces the size of the Guigues-Duquenne base has been proposed.
The Mannila and Räihä example reduces to only one implication on its clone-free
reduced context.

However, in spite of this reduction, one can easily find a new example of a
base with exponential size. In this example, combinatorial explosion is due to the
presence of implications having a single attribute as premise. We thus propose
a new context transformation operator, called atomization, which computes a
new context that preserves pseudo-closed sets having more than one attribute
in their premise. We thus obtain a new relaxed definition of P-clone attributes:
the A-clone attributes which are the clone attributes present in an atomized
context. We do not know if there exists an example of A-clone free context with
an exponential minimum base. This is still an open problem.

2 Notations, Definitions and Main Problem Statement

2.1 Definitions

In this paper, minimum implicational bases are noted by Σ and are supposed to
be in the Guigues-Duquenne form. We abusively use the notation F to denote
a closure system and its corresponding lattice. The classical closure operator
(Galois operator) over a context R = (J,M, I) is noted by . Thus, the closure
of x is noted x.

We suppose that small letters are used to represent attributes of the context
and two attributes are not identical in the context; i.e. for any pair of attributes
(a, b), a 	= b. We denote by J the set of attributes and M the objects of the
context R = (J,M, I). We consider that objects present in the context are the
meet-irreducible closed sets of the closure system associated to R. A closed set
is said to be meet-irreducible in a closure system if it has exactly one cover.

We briefly recall here the main property of the Guigues-Duquenne base.

Definition 1. Quasi-closed and Pseudo-closed set
Let F be a closure system and the closure operator associated to F . Let P ∈ 2J

and P 	∈ F .

– P is a Quasi-closed set iff for all Q ⊂ P , Q ⊂ P or Q = P .
– A quasi-closed set P is a pseudo-closed set if there is no quasi-closed set

Q ⊂ P with Q = P .

Theorem 1. Duquenne-Guigues base [1].
Let F be a closure system. The set ΣF = {P → P\P | P is pseudo closed} is
an implicational base of F and has a minimum number of implications.

1 This idea was used in Ganter [3] to generate closed sets under symmetry, i.e. generate
only one closed set in each class of closed sets.
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2.2 P-Clone Attributes

As said in the introduction, there are two ways to cope with the efficiency of
the Guigues-Duquenne base generation. The first way is to produce effective
algorithms to compute the base. Many researches are done in this direction but
it is still an open problem even for particular cases [2].

The second way is to deal with the size of the Guigues-Duquenne base. But
since there exists an example of context having an exponential base [5], this
approach looks like a dead-end. Let us try to understand on an example why
this combinatorial explosion might arise.

Consider the following Guigues-Duquenne base:

Σ


ac → bd, ae → bf, ce → df
ad → bc, af → be, cf → de
bc → ad, be → af, de → cf
bd → ac, bf → ae, df → ce


One can remark that for each implication where attribute a appears as premise,
there is the same implication obtained by swapping attributes a and b. We say
that attributes a and b are P-clone. The same remark applies for attributes c and
d as well as for attributes e and f . We thus obtain a family of P-clone attributes:
C = {{a, b}, {c, d}, {e, f}}. When keeping only one attribute per class of P-clone
attributes, we obtain a new base Σ′ = {ac → bd, ae → bf, ce → df}. Computing
the original base Σ from Σ′ and C is straightforward. Thus P-clone attributes
seem to play a key role in the possibles combinatorial explosion of minimum
bases.

One can notice that implications which premises are a single attribute do
not introduce any combinatorial explosion. Indeed, their number is polynomial
and they can trivially be computed from the context. Thus, we will not consider
pseudo-closed sets of size one in the P-clone definition.

Let us now define formally the notion of P-clone.
Consider ϕa,b be the mapping ϕa,b : 2J → 2J which associates to each subset

F of F its image by swapping a and b.

ϕa,b(F ) =


(F\{a}) ∪ {b}, if b 	∈ F and a ∈ F ;
(F\{b}) ∪ {a}, if a 	∈ F and b ∈ F ;
F, otherwise.

Definition 2 (P-Clone Attributes). Let R = (J,M, I) be a context and a, b ∈
J . We say that a and b are P-clone if for any pseudo-closed set P of R (| P |> 1),
ϕa,b(P ) is a pseudo-closed set of R.

This leads to the following decision problem.

Problem 1 (P-Clone Problem).
Data : A context R = (J,M, I) and a, b ∈ J .
Question : Are a and b P-clone in R?

This problem remains open in this paper.
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3 Clone Attributes

3.1 Motivations

Clone attributes were initially proposed in [6]. Definition of clone attributes is a
relaxation of the P-clone definition: we now consider similarities on closed sets
rather than on pseudo-closed sets.

Let us illustrate the notion of clone attributes through an example (see figure
1).

a dcb e

abcde

ce decd

Fig. 1. Elements with a similar behaviour

When observing attributes a and b in the closure system in figure 1, one can
notice that these attributes can be swapped (a becoming b and b becoming a)
without changing the closure system. A same phenomenon arises with attributes
c, d and e: any of those attributes can be swapped with any of the two others,
and the closure system will remain unchanged. On the other hand, swapping
attributes a and c changes the closure system; indeed, we loose the closed sets
cd and ce and we obtain extra closed sets ac and ae. We will say that a and b are
clone, as well as attributes c, d and e. Formally, two attributes can be swapped
if the closure system remains unchanged.

Once this information discovered, it is possible to reduce the size of the closure
system by keeping one attribute for each clone class. A possible application of
clone attributes is thus the reduction of a closure system.

Moreover, one can also notice that a and b, as well as c, d and e, play sym-
metrical roles in the implicational base of the context (see figure 2). For any
implication where a is in the premise, there exists the same implication where
a and b have been swapped. Similarly, for any implication containing c in the
premise, there is another one where c is swapped with d and another one ob-
tained by swapping c and e. If several attributes belonging to a clone class are
present in the premise of an implication, their swapping resumes to the identity
function.

We can now define more formally the notion of clone attributes.

Definition 3 (Clone Attributes). Let R = (J,M, I) be a context and a, b ∈ J .
We say that a and b are clone if for any closed set F of R, ϕa,b(P ) is a closed
set of R.
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a b cd ce de
a X
b X
c X X
d X X
e X X


ab → cde,
ac → bde, ad → bce, ae → bcd,
bc → ade, bd → ace, be → acd,
cde → ab


Fig. 2. Context (lines correspond to join-irreducible elements, columns to meet-
irreducible elements) and its implicational base corresponding to the closure system in
figure 1

First, let us show through the example in figure 3 that P-clone attributes
generalize clone attributes.

abc

ba

ac

Fig. 3. Σ = {c → a, ab → c}, F = {∅, a, b, ac, abc}

Let examine the following implicational base: {c → a, ab → c} (cf. figure
3). Here, a and b are P-clone since they appear as premise in the same im-
plication: (ab → c). The closure system associated to this minimum base is
F = {∅, a, b, ac, abc}. If we consider this closure system, permutation of a and b
cannot be done without changing the closure system. Indeed, the set bc obtained
from ac by exchanging a by b does not belong to the closure system F . Thus, a
and b are not clone. The notion of P-clone is thus more general than the notion
of clone.

What is the impact of clone attributes on pseudo-closed sets computation?
A first answer is given by the following lemma.

Lemma 1. [6] Let a, b ∈ J be two clone attributes. Then P = a ∪ b is either a
closed-set or a pseudo-closed set.

Thus, some pseudo-closed sets can be found by simply checking for all pairs
(a, b) of clone attributes if a ∪ b is not a closed set.

Next lemma shows that the search space can be reduced when clone attributes
are present in the context.



240 A. Gély et al.

Lemma 2. [6] Let F be a closure system and P a pseudo-closed set of F . If
a, b ∈ J are clone attributes then ϕa,b(P ) is a pseudo-closed set of F .

In other words, if a and b are clone, for any pseudo-closed set P containing
a, its ϕ mapping is also a pseudo-closed set (and reciprocally). From the above,
we conclude that clone attributes are P-clone attributes.

3.2 Clone Detection

In this section we deal with the following decision problem (which is a particular
case of Problem 1).

Problem 2 (Clone Problem).
Data : A context R = (J,M, I) and a, b ∈ J .
Question : Are a and b clone in R?

In the following, we show that this problem is polynomial.

Proposition 1. [6] Let F be a closure system and a, b ∈ J . Then a and b are
clone attributes iff for any meet-irreducible M of F , we have ϕa,b(M) a meet-
irreducible of F .

We note by F(a) the set of closed sets containing a. Previous proposition
indicates that in order to detect clone attributes, it is sufficient to consider
only meet-irreducible elements. Indeed, a and b are clone if there exists an iso-
morphism between the closure systems F(a) and F(b). Thus, if such isomorphism
exists between those closure systems, then it also exists for their meet-irreducible
elements, since any closed set is the intersection of meet-irreducible elements.
Thus, only meet-irreducible elements need to be considered to detect clone. And
meet-irreducible elements are necessarily in the context. An example of such be-
haviour of the meet-irreducible elements can be seen for clone attributes c and
d in figure 1.

Thus, testing if two attributes a and b are clone can be done in polynomial
time by simply testing for each meet-irreducible M that ϕa,b(M) is also a meet-
irreducible element.

3.3 Clone Reduction

Once clone attributes have been detected, we can do a clone reduction of the
input context. Indeed, according to Lemma 2, if two attributes a and b are clone
then pseudo-closed sets containing b can be deduced from pseudo-closed sets
containing a. Thus, closed sets containing attribute b without attribute a are
no longer necessary. When removing those closed sets, we obtain a new closure
system Fa\b. Which are the meet-irreducible elements belonging to the new
closure system Fa\b? Since only closed sets containing b without a are removed
from the system, it is straightforward to see that:

{M ∈ MF | b 	∈ M or a ∈ M} ⊆ MFa\b
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abcde

cecd

caa dcb e

abcde

ce decd

(b)(a)

Fig. 4. Closure system after clone-reduction of {a, b} and {c, d, e}

New meet-irreducible elements might appear during the reduction phase since
some closed sets are removed from the closure system. A closed set becomes a
meet-irreducible, if all closed sets that cover it are removed but one. Lemma
3 characterizes closed sets which are new meet-irreducible elements in the new
closure system Fa\b.

Lemma 3. [6] Let M ⊂ J be a new meet-irreducible in Fa\b. Then M ∪ {b} ∈
MF

From previous results we deduce that:

MFa\b
⊆ {M ∈ MF | b 	∈ M or a ∈ M} ∪ {M\{b} | M ∈ MF(b)}

All those results can be applied on the context (via the meet-irreducible
elements). All the operations, such as the removal or the insertion of meet-
irreducible elements are done in polynomial time. Clone reduction can thus be
done in polynomial time. According to the previous lemma, the size of the new
context is lesser or equal to the size of the original context.

Finally, note that during the clone reduction phase, new clone attributes
might appear. For instance, in figure 4(b), attributes d and e are clone, and thus
the whole process can be applied again.

a cd ce
a X
c X X
d X
e X
b

{
ac → bde,
d → c, e → c, b → acde
cde → ab

}

Fig. 5. Context and Guigues-Duquenne base after clone-reduction
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3.4 Restoring Guigues-Duquenne Base

After clone reduction of the context, the size of the Guigues-Duquenne base of
the new context is smaller. Thus, after several clone reductions, we obtain a
clone-free context. Now let us show how to retrieve the Guigues-Duquenne base
of the original context from that of the clone-free context and classes of clone
attributes. The reconstruction process relies on the following theorem:

Theorem 2. Let F be a closure system and a and b two clone attributes. If
ΣFa\b

is a Guigues-Duquenne base of Fa\b then

ΣF =


Σ′ = ΣFa\b

\ {b → b}⋃ {a ∪ b → a ∪ b, if a ∪ b is not closed}⋃ {ϕa,b(P ) → ϕa,b(P ) | P → P ∈ ΣFa\b
\ {b → b}}

is a Guigues-Duquenne base of F .

Here, we explain Theorem 2 by a commented example. We note Σ the
Guigues-Duquenne base of the original closure system, and Σr the Guigues-
Duquenne base of the clone-reduced context.

Let consider the minimum base of figure 5 and see how to come back to the
minimum base of figure 2. The input data of the process is the base Σr of figure
5 as well as the clone classes: {a, b}, {c, d, e}.

There are three major steps to obtain Σ from Σr. Those steps are detailed
for both clone classes detected (first {a, b}, and then {c, d, e}).

Restoration Process for Clone Class {a, b}

1. Extra implication removal
New implications appear during the clone reduction operation. Let C be a
clone class and let a be its representative attribute. Then, for any x ∈ C and
x 	= a, the implication x → a ∪ x has been artificially added by the clone
reduction, since closed sets containing x are kept only if they also contain
attribute a. Thus a ⊂ x, which is expressed by the new implication.
Thus, the first step is to remove such implications from Σr. Here, implication
{b → acde} is removed.

Σr =


ac → bde,
d → c, e → c, b → acde
cde → ab

⇒


ac → bde,
d → c, e → c,
cde → ab

 = Σ1

2. Restoring pseudo-closed sets
In a second step, it is mandatory to check if some pseudo-closed sets have
been removed from the closure system during the clone reduction. Let C be
a clone class and a be its representative attribute. For any x ∈ C, x 	= a, we
have to check if a∪x is a closed set of the original closure system. If it is not
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a closed set, then it is a pseudo-closed set (see lemma 1) and thus we need
to restore the implication a ∪ x → a ∪ x.
In our example, when processing the clone class {a, b}, we obtain the new
implication ab → cde since ab is not a closed set in the initial closure system.
The new minimum base is now:

ac → bde,
ab → cde,
d → c, e → c,
cde → ab

 = Σ2

3. Applying the ϕ mapping
The last step is to apply the ϕ mapping, in order to recover the initial
implications (direct application of Lemma 2):

ac → bde
ϕa,b−→ bc → ade

d → c
ϕa,b−→ d → c (identity)

e → c
ϕa,b−→ e → c (identity)

cde → ab
ϕa,b−→ cde → ab (identity)

The new minimum base is then:

ac → bde
bc → ade
ab → cde
d → c
e → c
cde → ab


= Σ3

Once the three steps have been done for the clone class {a, b}, we restart the
whole process for the clone class {c, d, e}. Beware that the input data is now the
minimum base obtained after restoring the clone class {a, b}. Thus, potentially,
the size of the minimum base might double at each global step, which explains
the combinatorial explosion that might appear in some minimum bases.

Restoration Process for Clone Class {c, d, e}

1. Extra implications removal
During this step, two implications are removed: {d → c} and {e → c}. The
new minimum base is then:

Σ3 =



ac → bde
bc → ade
ab → cde
d → c
e → c
cde → ab


⇒


ac → bde
bc → ade
ab → cde
cde → ab

 = Σ4
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2. Restoring pseudo-closed sets
The sets cd, de, ce are closed sets of the initial closure system. Thus, no
pseudo-closed set was removed by the clone reduction. Thus, no implication
is restored.

3. Applying the ϕ mapping
Here are the different mappings we apply:

ac → bde
ϕc,d−→ ad → bce
ϕc,e−→ ae → bcd
ϕd,e−→ (identity)

bc → ade
ϕc,d−→ bd → ace
ϕc,e−→ be → acd
ϕd,e−→ (identity)

ab → cde
ϕc,d−→ (identity)
ϕc,e−→ (identity)
ϕd,e−→ (identity)

cde → ab
ϕc,d−→ (identity)
ϕc,e−→ (identity)
ϕd,e−→ (identity)

Finally, we thus obtain the minimum base of the initial closure system:
ab → cde,
ac → bde, ad → bce, ae → bcd,
bc → ade, bd → ace, be → acd,
cde → ab

 = Σ

4 A-Clone Attributes

4.1 Motivation

Consider again the example in figure 3. Clearly, the attributes a and b are not
clone, but they are P-clone. This is due to attribute c, since ac is a closed set but
not bc. Thus, if we add bc and c we obtain a new closure system which preserves
pseudo-closed sets with premise size greater than one, and, where a and b are
clone.

In a more general way, consider two clone attributes a and b and insert a new
implication x → a. Then a and b are no longer clone attributes, but they remain
P-clone attributes. The existence of an order between attributes might break
the possibility of permuting two closed sets at the closed set level... but not at
minimum base level. Thus, one can deduce from Mannila and Räihä example a
new example of clone-free context which has an exponential base.

Knowing this, the straightforward idea is to get rid of any order between
attributes. Implications having a single element as premise define exactly the
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abc

ba

ac bc

c

Fig. 6. Lattice F , associated with Σ′ = Σ\{c → a}

order between attributes. Those implications can easily be computed in poly-
nomial time from the context. The idea is then to remove those implications
from the Guigues-Duquenne base, and thus obtain a new closure system, where
attributes are pairwise incomparable.

Consider the set of implications in Σ which premises are a single attribute,
denoted by ΣJ = {a1 → a1, a2 → a2, ..., an → an}. The atomization process
will remove a1 → a1, a2 → a2, and so on... We denote by Fi the closure system
corresponding to Σi = Σ \ {aj → aj , j ≤ i} and Ri = (J,Mi, Ii) its context.
This process is called atomization and the resulting closure system Fn is said to
be atomistic.

Figure 6 shows how the closure system in figure 3 evolves after atomization,
i.e. when removing the implication {c → a}.

One can check that, now, the attribute c appears in F(a) with the set ac and in
F(b) with the set bc which was not present in the previous closure system. After
this operation, there is now an isomorphism between the two closure systems
F(a) and F(b). Thus, attributes a and b are clone in the new closure system.

Definition 4 (A-Clone Attributes). Let R = (J,M, I) be a context and Rn =
(J,Mn, In) be the corresponding atomized context. We say that a and b are A-
clone in R if they are clone in Rn. In other words, A-clone attributes are the
clone attributes that can be found after the atomization process.

This leads to the new decision problem.

Problem 3 (A-Clone Problem).
Data : A context R = (J,M, I) and a, b ∈ J .
Question : Are a and b A-clone in R?

In the remaining of this section, we study the impact of the atomization
process on the closure system Fn, the context Rn and the closure operator of
Fn.

4.2 The Impact of Atomization on Closure Systems

Here, we present some results around the atomization process when handling
the closure system rather than the context.
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Problem 4 (Atomization Problem 1).
Input : A closure system F on J and ΣJ .
Output : The closure system Fn.

Let Σ be the Guigues-Duquenne base of the closure system F . We examine
how the closure system F evolves when the first implication a1 → a1 ∈ Σ is
removed; i.e. the closure system F1 corresponding to Σ1 = Σ \ {a1 → a1}.
Intuitively, there are new sets which are not closed sets in F and become closed
sets in F1.

Recall, that a set F satisfies an implication P → P , if P ⊆ F implies P ⊆ F .
Thus a closure system associated to a base Σ is the set of all subsets that satisfy
any implication in Σ.

First, we have F ⊂ F1 since any closed set of F that satisfies Σ also satisfies
Σ1. Intuitively, the closed sets in F1 \F are all sets that satisfy Σ1 but a1 → a1.
The following lemma characterizes the new closed sets.

Lemma 4. A set F ⊆ J belongs to F1 \ F if and only if a1 ∈ F , a1 	⊆ F and
F \ {a1} ∈ F .

According to lemma 4, removing an implication a1 → a1 will consist in adding
new closed sets obtained by copying any closed set F ∈ F such that a1\a1 	⊂ F .
Thus, we deduce that F1 = F ∪ {F ∪ {a1} | F ∈ F and a1\a1 	⊂ F}.

Inductively, we can construct the closure system Fi from the closure system
Fi−1. As a consequence, there is a polynomial time algorithm to compute the
closure system Fn.

Moreover, the atomization process preserves pseudo-closed sets which premise
size is greater than one, since when deleting any implication in a Guigues-
Duquenne base we obtain a Guigues-Duquenne base. Thus, if two attributes
are A-clone then they are P-clone. We can also show that atomization process
preserves clone attributes.

4.3 The Impact of Atomization on Contexts

In this section, we study how the context R evolves during the atomization
process, and more precisely how the meet-irreducible closed sets of F evolve.

This leads to the second “atomization problem”.

Problem 5 (Atomization Problem 2).
Input : A context R = (J,M, I) and ΣJ .
Output : Rn = (J,Mn, In) the context corresponding to Fn.

To solve this problem, we need to know which meet-irreducible closed sets
will disappear and which meet-irreducible closed sets will appear.

Lemma 5. Let F ⊆ J be a meet-irreducible closed set in F1. Then either F is a
meet-irreducible closed set of F or F \{a1} has at most one cover not containing
a1 \ {a1}.
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From previous lemma, we thus know that some of the meet-irreducible closed
sets of F will remain meet-irreducible closed sets in F1.

Now, since a closed set F \ {a1} does not contain a1 \ {a1}, it cannot have
two covers containing a1 \ {a1}. Thus F \ {a1} has at most one cover containing
a1 \ {a1} and at most one cover not containing a1 \ {a1}. Thus F \ {a1} can
be obtained as the intersection of two meet-irreducible closed sets (possibly the
same) in F . As a consequence, we can state that:

M(F1) ⊆ M(F)∪{M1∩M2∪{a1} | M1,M2 ∈ M(F) and a1 \{a1} 	⊆ M1∩M2}
Thus, we can polynomially compute R1. Inductively, we can compute in poly-

nomial time Rn.
However, the following question remains open.

Question 1. Is Rn polynomial in the size of R?

A positive answer to this question would imply that problem 3 is polynomial.

4.4 The Impact of Atomization on Closure Operators

In this section, we exhibit a closure operator of the atomized closure system
Fn. This closure operator is derived from the initial context R and the set of
implications ΣJ .

Proposition 2. The mapping CFn : 2J → 2J , with CFn(X ′) = X ∪ Y , where
X = X ′ \ Y and Y = {a | a → a ∈ ΣJ , a ∈ X ′ and a 	⊆ X ′} is a closure
operator for Fn.

According to proposition 2, there exists a polynomial time algorithm (in the
size of R) that computes the closure CFn(X ′), X ′ ⊂ J , since computing X is
polynomial.

5 Conclusion

We showed that P-clone attributes might induce a combinatorial explosion of
minimum bases. But we do not know how to detect P-clone attributes from the
context.

We thus proposed a relaxed definition of P-clone attributes: the clone at-
tributes, which exhibit similarities on closed sets rather than on pseudo-closed
sets. Their detection can be done in polynomial time. Moreover, we proposed a
clone reduction operator which can be interesting as a pre-processing for prac-
tical improvement of various other algorithms. Unfortunately, even after clone
reduction, some combinatorial explosion could remain.

We then introduced a new context transformation operator: atomization.
More clone attributes can be found on an atomized context: the A-clone at-
tributes. We could not find an example of A-clone free context such that its
minimum base is exponential. This leads to the following question:
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Question 2. What is the maximal number of implications of a minimum base of
an A-clone free context?

We now have two context transformation operators: atomization and clone
reduction. Those operations can be applied several times on a context before
obtaining an A-clone free context. This leads to this other question:

Question 3. Is the operators order significant when repeatedly applying them?
In other words, does there exist a fixed point?

Even, if many questions remain open, we hope this study gives a better
understanding of combinatorics explosion in a Guigues-Duquenne base.

Acknowledgments. The authors are very grateful to the referees for their
helpful comments and suggestions.
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Abstract. The construction of the concept lattice of a context is a time consuming
process. However, in many practical cases where FCA has proven to provide
theoretical strength, e.g., in data mining, the volume of data to analyze is huge. This
fact emphasizes the need for efficient lattice manipulations. The processing of large
datasets has often been approached with parallel algorithms and some preliminary
studies on parallel lattice construction exist in the literature. We propose here a
novel divide-and-conquer (D&C) approach that operates by data slicing. In this
paper, we present a new parallel algorithm, called DAC-ParaLaX, which borrows
its main operating primitives from an existing sequential procedure and integrates
them into a multi-process architecture. The algorithm has been implemented using
a parallel dialect of the C++ language and its practical performances have been
compared to those of a homologue sequential algorithm.

1 Introduction

FCA [19] has already found a wide range of applications in various domains, in particular
in data mining and information retrieval where the volume of data to analyze is usually
huge. However, the construction of the concept lattice or even the extraction of the
concept set can be a time consuming task because of the potentially exponential growth
of the lattice size in the number of data items. Therefore, there is a room for the design
of efficient manipulation methods for concept lattices and derived structures such as
iceberg lattices and implication bases.

Utilization of parallel processing is a typical approach for dealing with large datasets
[2]. It allows the work load to be divided among a set of computing units which com-
municate in the process of constructing the solution of the initial sequentially defined
problem. To that end, these units may establish various modes of collaboration such as
data sharing, remote procedure calls, message sending, etc.

Unlike previous studies of parallel lattice construction, we follow a data-centered
approach. The approach amounts to slicing the input context into disjoint fragments
and assigning each fragment to a different processing unit. Once the processing of a
particular unit is finished, an assembly of the results for two neighbor fragments, i.e., the
concept lattices of the respective subcontexts, takes place. The assembly task is repeated
until a single global lattice is obtained. The approach represents a parallel homologue of
an existing sequential algorithm for lattice construction of divide-and-conquer (D&C)
type [17].

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 249–264, 2005.
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In this paper, we present a concrete parallel algorithm, called DAC-ParaLaX, which
implements the D&C approach. DAC-ParaLaX relies on a multi-task architecture made
of three different sorts of processes: concept servers, shared data servers, and concept
assemblers. Each sort plays specific role in the global collaboration: while servers provide
access to data and partial results, assemblers use those information chunks to create
new concepts and link them in the factor lattice under construction. The entire set of
processes is divided into blocks: Each block is assigned a specific fragment of the initial
table whereby the aim is to construct the lattice of the fragment. Moreover, at the end of
a parallel assembly round, blocks assigned to neighbor fragments are merged.

The algorithm has been implemented in a parallel dialect of the C++ language using
the STL and the MPI standard libraries. Experiments has been carried out on a cluster
of 16 CPUs running Linux and related by a Myrinet-type network. A comparison of
the sequential and the parallel versions of the algorithm along the performance axis is
provided together with a discussion of the observed strengths and weaknesses of our
D&C approach.

The paper is organized as follows. In section 2 the basic principles of the sequential
lattice assembly are recalled. Section 3 describes the transition from the sequential to a
parallel design of the lattice assembly approach. The current realization of that design,
the DAC-ParaLaX algorithm, is presented in section 4. Finally, section 5 summarizes
the results of an experimental study on the performances of the algorithm.

2 The Sequential D&C Algorithm

In its sequential version, the D&C lattice construction [17] is composed of a series of
assembly tasks performed along a recursive binary split of the initial context.

2.1 Global Construction Process

The global construction process has three steps:

1. The initial context C = (O,A, I) is recursively split into two parts until contexts of
singleton attribute sets are obtained. The result is a (strictly) binary tree of contexts,
further termed D&C-tree, where the leafs correspond to single-column tables while
the context at each inner node is the apposition1 of the contexts at the children nodes.

2. The lattices for each leaf context are constructed in a direct manner.
3. The lattices of all the inner contexts are constructed by assembling the lattices

corresponding to children contexts. The process is itself a multi-step one: At each
step, the nodes of a particular depth in the D&C-tree are processed. The lattices for
inner nodes of depth i − 1 are obtained from the lattices for nodes at depth i. The
final result is provided by the lattice of the root node.

The lattice constructing tasks involved in the above process, i.e., in steps two and
three, are described with further details in the following paragraphs.

1 Apposition is the horizontal concatenation of contexts sharing the same set of objects [5].
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2.2 Lattice Construction for Single-Attribute Contexts

With a single-attribute context C = (O,A = {a}, I), the corresponding lattice may
have at most two concepts. Actually, the following cases may occur:

1. All the objects have the attribute a, i.e., a′ = O. In this case, the lattice is reduced
to a single node since its top and bottom concept coincide ((O,O′) = (A′, A)).

2. Some of the objects are not incident to a, i.e., a′ ⊂ O. There are two distinct concepts
in the lattice: the top (O, ∅) and the bottom (a′, a).

The recognition of the specific case and the construction of the corresponding lattice are
straightforward tasks (see [17]).

2.3 Assembly of Two Lattices Corresponding to the Fragments of a Global
Context

The task is to construct the lattice L of the context C = (O,A, I) from the lattices L1
and L2 corresponding to two complementary fragments of C, C1 = (O,A1, I1) and
C2 = (O,A2, I2), respectively. Here A = A1 ∪ A2 and Ik = I ∩ O × Ak (k = 1, 2).
L1 and L2 are called factor lattices [18].

The direct product of the factor lattices, L1,2 = L1 × L2, provides the search space
for the target lattice L. Indeed, L is a join sub-semi-lattice of L1,2 while there is an order
morphism ϕ from L1,2 to L. The morphism ϕ is realized through extent intersection:
The extent of the image concept in L is the intersection of the extents of the compo-
nent concepts in every member of the equivalence class. The ϕ morphism induces an
equivalence relation on L1,2 in which two nodes belong to the same class whenever they
are mapped to the same concept of L. Each class has a unique canonical representative
which is the minimal node of the class. The canonical representatives are called genitors
in the remainder as they provide all the information required for the creation of the
corresponding concept in L. Actually, beside the extent of the image concept which is
defined by an arbitrary member of the equivalence class, the intent is the union of both
genitor intents.

The precedence order in L is also computed with respect to genitors. Indeed, the sub-
order induced by the genitor set inL1,2 is isomorphic toL. Therefore, the computation of
precedence links for an image concept only requires the information about the respective
genitor node in L1,2. In particular, the lower covers of the genitor are used to compute
a set of candidate lower covers of the image concept. The actual lower covers in L are
the maximal concepts in that set.

The algorithm Assembly described in [17] implements a straightforward approach
for lattice merge. Given two factor lattices L1 and L2, it performs a bottom-up traversal
of L1,2 with a canonicity test at each node. The information available at genitor nodes
are then used in the creation of the respective global concepts. Lower cover computation
for a new concept relies on a materialization of the ϕ morphism, called Embed. Embed
is a two-way indexed structure which maps the pairs of factor concepts behind the nodes
of L1,2 to the corresponding image concepts from L. Algorithmically speaking, the
structure is constructed "on the fly’, i.e., simultaneously with the construction of L.
Thus, at each moment, it comprises correct information for all the nodes of L1,2 which
have already undergone the canonicity test.
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3 Design of DAC-ParaLaX Algorithm

Here we design a parallel version, called DAC-ParaLaX, of the sequential algorithm
presented in section 2. This is done following the PCAM2 methodology [2]. This method-
ology organizes the design of a parallel algorithm from a sequential algorithm into four
phases. The starting phase dealts with partitioning of the total work into tasks and the
second one with communications among tasks. The third and fourth phase study the
possible agglomerations of tasks and the mapping of the resulting processes to CPU,
also called allocation. The partitioning is concerned with a fine-grain decomposition
[14, 16] of the sequential algorithm into tasks, called fine-grain tasks, to be executed.
The study of communications involves the identification of data to be transferred be-
tween tasks as well as the definition of data structures and of reliable communication
protocols (if possible optimal) for data exchanges between tasks. The study of agglomer-
ations leads to a coarse-grain decomposition of the sequential algorithm stemming from
the fine-grain decomposition of the partitioning phase. In this phase, fine-grain tasks
are gathered to obtain coarse-grain tasks so as to reduce the number of data transfers
between tasks as much as possible. The mapping [14] consists in assigning coarse-grain
tasks to processors so as to minimize communication costs and the sum of idle times of
all the processors used in the parallel execution of the algorithm.

At first glance, the sequential algorithm presented in section 2 may be decomposed
in terms of factor lattice assembly. In this approach, a task is defined as the assembly of
factor lattices. Therefore, in each level of the D&C-tree associated with the sequential
algorithm, one may perform all the assemblies of factor lattices simultaneously. However,
this approach will not minimize the idle time of available processors as the number of
available processors is greater than the number of tasks in many levels of the D&C-tree.
In this paper, the processors utilization problem is tackled by parallelizing the assembly
of factor lattices. Following this strategy, the parallel assembly of two factor lattices is
performed by all the processors that have constructed them.

3.1 Parallel Assembly of Two Factor Lattices

Here we design an algorithm devoted to the parallel assembly of two factor lattices
following the PCAM methodology. Assume that the factor lattices L1 and L2 are to be
assembled. Let L denotes the resulting lattice. Let also c1, c2 and c denote the concepts
of latticesL1,L2 andL, respectively. Concept c1 will be referred to as 1-genitor concept,
concept c2 as 2-genitor concept and concept c as new concept. Let (c1, c2) be a couple
concept of the direct product of lattices L1 and L2. Given a 1-genitor, all the couples
(c1, c2) where c2 is an arbitrary 2-genitor concept will be referred to as 1-genitor line.
In other words, a 1-genitor line is a direct product of the form {c1} × L2.

The Partitioning. The tasks obtained from this phase are provided by basic treatments
related to the assembly of two factor lattices. For instance, the question of knowing
if an arbitrary couple of concepts (c1, c2) is the minimum of its equivalence class is
considered as a basic treatment. If this is the case, the corresponding new concept is

2 Partitioning, Communication, Agglomeration and Mapping.
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generated, then the Embed structure is used to compute its lower covers and the Embed
entry corresponding to (c1, c2) is updated.
The different types of tasks emerge from the two following remarks:

1. All new concepts generated from a 1-genitor line need the same line of Embed for
the computation of their respective lower covers.

2. A 1-genitor line is used to construct the corresponding line of Embed (indexed by
the 1-genitor concept rank).

The first type of tasks that comes from these remarks consist in performing the treatments
related to a 1-genitor line. Such a task will be referred to as assembler. Each assembler
computes new concepts from a 1-genitor line, participates in the computation of a line
of table Embed and constructs the lower cover of each new concept. To do this, each
assembler must have a sorted copy of lattice L2 [17], suitable lines of Embed and a
1-genitor concept. We will explain how each assembler gets a copy of lattice L2 in
section 3.2. There are as many assemblers as there are concepts in the lattice L1. The
execution graph of assemblers corresponds to the Hasse diagram of lattice L1.

Another task, the SDS3, is given the responsibility to supply each assembler with
suitable Embed lines for the computation of the lower covers of new concepts. The
1-genitor concepts are provided to each assembler by a task called CS4 The CS should
ensure that the concurrent execution of assemblers is correct: No two assemblers related
by a precedence link in the execution graph should be executed simultaneously. This
can be done by supplying assemblers with 1-genitor concepts in a suitable order. In
particular, all the assemblers of a same level in the assemblers execution graph can be
executed simultaneously. More generally, one can consider simultaneous executions of
assemblers that are not related with a precedence link. This is exploited here by making
the CS compute and sort the concepts of L1 according to the order proposed in [17].
The CS also collects lists of concepts computed by assemblers and returns the result
of the parallel assembly. Moreover, CS informs the SDS about the number of active
assemblers, i.e., assemblers that are being executed.

The SDS supplies each of the active assemblers with a suitable Embed lines and
receives the lines of Embed that each assembler has computed. Based on the received
lines, the SDS updates Embed and invites the CS to supply other assemblers with 1-
genitor concept This is the beginning of a new assembly pass.

The Study of Communications. A pass corresponds to a concurrent execution of one
CS, one SDS and a number of assemblers. A new pass begins when the CS chooses
a number of assemblers and supplies each of them with a 1-genitor concept. These
assemblers will be referred to as elected assemblers or active assemblers. A pass ends
when all the elected assemblers accomplish their tasks. Each pass is identified by an
integer number. A parallel assembly consists of a successive execution of a number of
passes, the tasks of each pass being concurrently executed. Each parallel assembly starts
with an initialization phase. During it the different sorts of tasks obtain the number of the

3 for Shared Data Server.
4 for Concept Server.
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first pass and the sizes of lattices L1 and L2. The former two parameters are computed
by the CS whereas the size of L2 is calculated by each assembler. During each pass,
three types of data are exchanged by the tasks: concepts, lists of concepts and 1-genitor
concept ranks. A concept is represented by a data record storing its intent, its extent, the
list of lower covers and its rank.

At the beginning of each pass, the CS sends the number of elected assemblers to the
SDS. After the reception of the corresponding message, the SDS are ready to supply
Embed lines to assemblers. When an assembler receives a 1-genitor concept from the
CS it asks the SDS for all the lines from Embed that are required for the computation of
the related new concepts. The query is made up of the ranks of all the lower covers of the
1-genitor concept. The SDS sends back a list of concepts (Embed lines). Furthermore,
each Embed line starts with the concept it corresponds to.

Each assembler sends to the CS the list of the new concepts resulting from the
computation of its 1-genitor line. It also sends to the SDS its contribution to the update
of the Embed structure. i.e., a list of concepts in which the first one indicates the line
number. Once the SDS received the contributions of all the elected assemblers, it sends
to the CS a pass termination message. This is an invitation for the CS to launch the next
pass. Once all the passes of a parallel assembly have been successfully executed, the
assembly itself terminates. To that end, the CS sends a concept of rank −1 to assemblers
and the integer number −1 to the SDS. Fig.1. summarizes the communications between
a CS, a SDS and assemblers during a parallel assembly.

Fig. 1. Communications in a parallel assembly block

The Study of Agglomerations. Here, the granularity of assemblers is increased by
assigning to each of them a set of 1-genitor lines. This leads to an increase in the
granularity of a pass, i.e. the number of the processed 1-genitor lines. Hence, that number
is no longer limited to the number of elected assemblers. Now, a pass involves all the
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lines of 1-genitors of the same level5 in L1. Each pass is numbered by the level of its
1-genitors.

Due to constraints related to the handling of Embed (see [17]) a pass numbered p
should be executed after the passes of numbers greater or equal top+1.As a consequence,
the passes of a parallel assembly following a decreasing order of their pass numbers. The
maximal number of elected assemblers is fixed at the beginning of a parallel assembly.
It depends on the number of available processors.

The increase in the granularity of assemblers also leads to an increase in the granular-
ity of messages. At the beginning of a pass each assembler receives from the CS a block
of 1-genitor concepts. The load balancing between assemblers is obtained by supplying
them with blocks of substantially the same size. Once an assembler completes its exe-
cution, the new concepts that have been computed are sent to the CS and its contribution
to the update of Embed to the SDS.

The Mapping. The target architecture is a star network that consists of a cluster of
computers connected by a Myrinet switch. Each task is assigned to a distinct processor.
Let P denote the number of available processors. This means that the maximum number
of elected assemblers in a pass is P − 2.

Optimization. The 1-genitor lines assigned to a given assembler are processed in a
row. The treatment of a 1-genitor concept involves a set of lines from Embed. Because
of the potentially large size of lines from Embed, their transfers from the SDS to as-
semblers may generate heavy communications traffic. Therefore, a well known strategy
called communication-computation overlap was applied to Embed line transfer. More
precisely, an anticipation mechanism similar to that used in [15] was implemented. It
allows assemblers to anticipate the requests ofEmbed lines. Here, the request ofEmbed
lines related to the next 1-genitor is initiated once the Embed lines related to the current
1-genitor are received. The number of such requests can be reduced by allowing each
assembler to keep a copy of each Embed line received and a copy of its contribution to
the update of Embed.

Another optimization is the minimization of the idle time of assemblers due to the
tranfers of concepts from the CS. This problem is tackled here by introducing another
anticipation mechanism [15] that enables assemblers to launch the processing of the
1-genitor lines of the next pass once the current pass is completed. To that end, during
the execution of a pass all the buckets of concepts related to the next pass are sent to the
assemblers by the CS.

3.2 Parallel Construction of Concept Lattice with Several Assembly Blocks

We call Assembly block any set of tasks that consists of a CS, a SDS and at least
two assemblers. The tasks of an assembly block are assigned to distinct processes that
concurrently run on distinct processors.

Segmentation of the Initial Context. Assume that we have B = 2n assembly blocks
that can be executed simultaneously. Here, these assembly blocks are numbered from 0

5 The level of a 1-genitor is given by the cardinal of its intent.
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Fig. 2. Parallel Construction of Concept Lattice with four assemblies bloc

to B−1. To compute the concept lattice associated with context C = (O,A, I), we first
perform a segmention of context C into 2B partial contexts that have approximatively
the same size. The first partial context is made up of the &‖A‖

2B ' first attributes of context

C = (O,A, I), the next one is made up of the &‖A‖
2B ' next attributes. More generaly, let

Ci, i = 0, 1, ...2B − 1 denotes the ith partial context resulting from that segmentation.
Ci, 0 ≤ i < 2B − 1 is made up of the (i+ 1)th block of &‖A‖

2B ' attributes while C2B−1

is made up of the ‖A‖− (2B − 1) &‖A‖
2B ' last attributes. The first and the second partial

contexts are assigned to the first assembly block, the third and the fourth ones to the
second assembly block and so on. More generaly, the partial contexts C2i and C2i+1
are assigned to the assembly block numbered i. In what follows Li denotes the ordered
concept lattice [17] corresponding to the partial context Ci. The ordered concept lattice
resulting from the parallel assembly of lattices L2i and L2i+1 is denoted by L2i,2i+1.

Interactions Between Assembly Blocks. In each assembly block numbered i, the CS
constructs the concept lattice L2i and meanwhile each assembler constructs the concept
lattice L2i+1. After that, the parallel assembly of the two concept lattices L2i and L2i+1
is performed. This leads to the larger concept lattice L2i,2i+1. Then, the assembly blocks
numbered 2i and 2i+1 merge to obtain a new and larger assembly block. The new block
performs the parallel assembly of the concepts lattices L2i,2i+1 and L2i+2,2i+3 built by
the assembly blocks which merged. To that end, all the processes of the former block
2i + 1 play the assembler role in the new block which is numbered i. Its CS and SDS
processes are respectively the CS and the SDS processes of the former block 2i.

The merge of assembly blocks continues until a single block remains, i.e., the one
corresponding to the root context (referenced by 0). The CS of this assembly block returns
the concept lattice related to context C = (O,A, I). Fig.2. illustrates the evolution of
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the tasks in a DAC-ParaLaX execution which started with four assembly blocks each
made up of four tasks. The assembly block merge involves important data transfers:
after the merging of blocks 2i and 2i+ 1, all the assemblers of the new assembly block
numbered i need a copy of the concept lattice constructed by the block 2i + 1. This
may lead to heavy communication costs and important idle times, especially if a whole
concept lattice is transferred at once. Once more, a communication-computation overlap
strategy is used to tackle the problem. To that end, we introduced the notion of diffusion
groups.

The Diffusion Groups. Here we tackled the data transfer problem that arises when two
assembly blocks, say 2i and 2i + 1, are merged. Our solution is based, once again. on
an anticipation mechanism following the communication-computation overlap strategy.
To that end, we consider the group of tasks concerned by diffusion of the final result of
a pass. The group comprises the assemblers in both assembly blocks and the SDS of the
block 2i + 1. At the end of a pass, every assembler of block 2i + 1 sends a copy of the
new concepts it has computed to the other tasks of its respective diffusion group. Thus,
it is ensured that, when the execution of the assembly is completed, all the tasks in the
diffusion group have a copy of the concept lattice computed by the block 2i + 1. Note
that, as stated in section 3.1 the CS of the block 2i + 1 also has a copy of the lattice at
the same moment. Consequently, at the end of the current assembly, every assembler of
the new block i has the necessary information for the next step.

4 DAC-ParaLaX Algorithm

DAC-ParaLaX is a SPMD6 algorithm, i.e. each process performs the same program on
distinct data. Here data are either partial contexts assigned to each assembly block or
the concept lattice produced by a block. Each process executes a task of an assembly
block , i.e. a CS, a SDS or an assembler. The processes are identified by positive integer
numbers. Thus, given an execution of DAC-ParaLaX with B blocks of α tasks each, one
has Bα processes addressed by integer numbers ranging from 0 to Bα − 1. Let n ∈ N
be the number of an assembly block. The block includes the processes whose addresses
range from nα to nα− 1 whereby nα and nα+ 1 correspond to the CS and the SDS of
the block, respectively. The remaining adresses indentify assemblers.

The behavior of DAC-ParaLaX algorithm can be summarized as follows. It gathers
processes in blocks (initAssemblyGroups), creates diffusion groups
(createDiffGroups), determines the data to be used (partial context or concept
lattice) by each process, defines the task executed by each process (executeTask)
and handles the merging of assembly blocks (mergeOfAssemblyBlocks). This cor-
responds to the following algorithm.

program DAC-ParaLaX (L: Lattice)
Input

c: Context;

6 Single Program and Multiple Data.
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sizeOfGroups: Integer
var

vc: Vector of Context;
diff: Diffusion Group
adr, whichTask: Integer

begin
vc := splitContext(c);
adr=getAdress();
nbOfGroups := initAssemblyGroups(adr, sizeOfGroups);
while(nbOfGroups >0)

diff := createDiffGroups(adr, nbOfGroups);
whichTask := getExecutionCode(adr, nbOfGroups);
L := executeTask(adr, whichTask, vc, L, diff);
nbOfGroups := mergeOfAssemblyBlocks(adr);

end.

Depending on the process address, executeTask will launch the execution of a CS,
a SDS or an assembler. The algorithms for each type of task are given in the following
paragraphs.

4.1 CS Execution Algorithm

During each pass, the CS supplies assemblers (serviceOfConcepts) with concepts,
receives the computed new concepts from the assemblers (receiveNewConcepts)
and a pass termination message from the SDS (receiveTermMessage). At the be-
gining of a parallel assembly the CS starts by configuring itself (initCS). When all
the passes have been accomplished, the CS informs the other tasks by an assembly-end
message (endOfWork). This behavior is summarized by the algorithm below.

program CS (L: Lattice)
Input

L1: Lattice or Cj: Context
var

nbAss, level, i: Integer;
begin
level := initCS(L1 or Cj);
for i := level downto 0 do

nbAss := serviceOfConcepts(i, i-1);
L := L + receiveNewConcepts(nbAss, i);
receiveTermMessage();

endOfWork();
end.

4.2 Assembler Execution Algorithm

Each assembler configures itself at the beginning of each parallel assembly (initAss).
During the assembly process, the assembler receives a list of 1-genitor concepts from the
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CS (recieveConceptList), computes both the new concepts generated by those 1-
genitors and the respective lines in the Embed structure of the assembly
(treatmentOfRecievedList), sends its contribution to the update ofEmbed lines
to the SDS (sendEmbedLines), sends the new concepts to the CS and takes part in the
diffusion process within its group (bcastResults). As a mandatory part of the dif-
fusion, an assembler receives new concepts from other members of its diffusion group.
Moreover, if it belongs to an assembly block of an odd number it sends the computed new
concepts to the rest of the group. In the later case, its execution ends when it receives an
assembly-end message from the CS (messType = -1). The assembler then sends a
diffusion-end message within the diffusion group (endOfDiffusionMessage). An
assembler from an even-number block, say 2i, ends its execution only after the reception
of all the concepts computed by the block 2i+ 1 and an assembly-end message from its
own CS.

program Assembler (L: Lattice)
Input

L2: Lattice or Ck: Context
var

messType, level: Integer;
cwork: Boolean;
lineToSend: list of Integer;
mess, lcToSend: List of Concepts;

begin
level := initAss(L2 or Ck);
cwork := true;
while(cwork = true)

mess := recieveConceptList(level);
messType := getMessageType(mess);
if (messType <> -1)
treatmentOfRecievedList(mess, lcToSend, lineToSend);
L := L + bcastResults(lcToSend, level, messtype);
sendEmbedLines(lineToSend);
else

endOfDiffusionMessage();
cwork := false;

level := level-1;
end.

4.3 SDS Execution Algorithm

The SDS starts a parallel assembly by configuring itself (initSDS). At the beginning
of each pass the SDS receives the required parameters, i.e., the number of elected as-
semblers and the number of concepts in the pass, from its CS (recievePassParam).
During its execution, the SDS serves Embed lines to the assemblers (serviceOfLines),
takes part in diffusions of concepts whenever its assembly block has an odd number
(bcastResults), receives the lines computed by the assemblers and updates Embed
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(receptionOfLines). When the SDS receives an assembly-end message from the
CS (messType = -1), its execution ends if it belongs to an assembly block of even
number. Otherwise, it needs also a diffusion-end message from each assembler in its
diffusion group (endOfDiffusionMessage). The algorithm below provides a sum-
mary of the SDS behavior.

program SDS (L: Lattice)
var

Embed: 2D Array of Concepts
mess: Message;

begin
level := initSDS();
cwork := true;
while(cwork = true)

mess := recievePassParam(level);
messType := getMessageType(mess);
if (messType <> -1)

serviceOfLines(mess, level, Embed);
L := L + bcastResults(level);
receptionOfLines(mess, level, Embed);

else
endOfDiffusionMessage();
cwork := false ;

end.

5 Implementation and Experiments

We have implemented DAC-ParaLaX in C++ for Linux. For this purpose, we used the
STL7 [13] and the MPI8 [6] standard libraries.

STL was chosen since it implements operations on sets and lists with satisfactory
complexity. Its choice allowed the extent, intent and the lower covers of a concept to be
represented and handled as integer sets. MPI is a message-passing library specification
for parallel programming. Since its version 2, MPI provides an object-oriented specifica-
tion compatible with the C++ language. The choice of MPI was influenced by our target
architecture, a cluster of computers equipped with LAM/MPI [8] and a Myrinet version
of MPICH [9] which are two implementations of the MPI specification. For the current
study we used MPICH.

In MPI, a message is limited to using the basic data types in C/C++9. For composite
data types of fixed size such as C/C++ data structures that do not contain pointers, MPI
offers possibilities for representing them on top of admitted basic data types [6]. These
could not be used in our context as concept intents, extents, and lists of lower covers are

7 Standard Template Library.
8 Message Passing Interface.
9 byte, integer, Boolean, double etc.
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modeled as STL sets, i.e., using pointers. Therefore, we had to solve the data conversion
problem which arises when concepts are transferred between tasks. This gap between
STL and MPI was tackled by converting each concept or list of concepts into a vector
of integers before sending them through MPI. The reverse transformation is done upon
the reception of an encoded structure.

The obtained program was used to reach two experimentations goals. The first goal
was to evaluate the data conversion time whereas the second goal was to evaluate the time
saving when DAC-ParaLaX is executed at the place of the sequential D&C algorithm
in [17].

To reach the first goal, we consider contexts with a large number of concepts. DAC-
ParaLaX was then executed with two assembly blocks of four tasks each (DAC-ParaLaX
2x4) on five contexts with 117 attributes, extracted from the Mushroom context. The
number of concepts in these contexts ranges from 3460 to 17782. The CPU times related
to data conversion and to DAC-ParaLaX execution on these contexts are consigned in
Fig.3. We tend to see the results of the first experiment as an indication that for contexts

Fig. 3. The time spent by DAC-ParaLaX on concept transformation vs the rest of its total time

involving a large number of concepts, the data conversion operations may take a large
part of the total CPU time and hence cause a substantial slow-down of the algorithm.
In fact, the CPU time spent on that task amounts to more than 50% of the total time of
DAC-ParaLaX.

To reach the second goal, it was therefore necessary to consider contexts for which
the data conversion time could be neglected. Thus, for this initial stage of our study
we examined contexts with 34 attributes, extracted from the Mushroom context, the
number of objects ranging from 500 to 4000. DAC-ParaLaX was executed on these
contexts in four different configurations:

– one assembly block of four tasks each (DAC-ParaLaX 1x4),
– one assembly block of eight tasks each (DAC-ParaLaX 1x8),
– two assemblies blocks of four tasks each (DAC-ParaLaX 2x4)
– two assemblies blocks of eight task each (DAC-ParaLaX 2x8).
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For each context we computed the speedup of DAC-ParaLaX with respect to our STL-
based implementation of the sequential D&C algorithm in [17]. Recall that a speedup
is obtained by dividing the execution time of the sequential algorithm by the execution
time of DAC-ParaLaX. Also recall that a speedup S ( 1 means that DAC-ParaLaX
goes S time more quickly than the sequential algorithm. An acceleration is obtained
by deviding a speedup with the number of processors used. The various speedups are
depicted in Fig.4. Obviously, the speedup of DAC-ParaLaX depends on both the number

Fig. 4. Speedup obtained by DAC-ParaLaX with respect to the sequential D&C algorithm

of processors and the number of assembly blocks. Indeed, with the contexts used for the
tests, the average speedup for 8processors is2.5with one assembly block (DAC-ParaLaX
1x8), and 2.9 with two assembly blocks (DAC-ParaLaX 2x4). The average speedup
growths with the number of processors whereas the average acceleration decreases with
the number of processors. For4processors (DAC-ParaLaX 1x4), the average speedup and
acceleration are respectively 1.9 and 0.475. This case provides the worst average speedup
and the best average acceleration. For 16 processors (DAC-ParaLaX 2x8), the average
speedup is 3.60 whereas the average acceleration is 0.225. This case provides the best
average speedup and the worst average acceleration. The average acceleration decreases
with the number of processors due to the fact that the number of communications related
to the handling of the table Embed seriously growths with the number of processors.

The two experiments confirm our hypothesis that DAC-ParaLaX realizes significant
computation time gains with respect to the sequential version. However, the current
implementation of DAC-ParaLaX is not yet ready for the computation of the concept
lattices from real-world contexts because of the heavy communication costs related
to the handling of the table Embed. Indeed, the concept redundancy unnecessarily
increases the size of the messages related to the transfers of Embed lines. To improve
the handling of the table Embed, data conversions should first be avoided. To this end,
the handling of concepts lists should be implemented using C/C++ vectors of basic data
types, that are recognized by MPI, rather than STL set data structure. Secondly, a study
of communications will be necessary to determine the size of messages, made ofEmbed
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lines, that will maximize communication-computation overlap. In particular, the size of a
message should be determined in such a way that its transfer time do not exceed the time
spent by the receiver of the corresponding message to perform computations without
needing that message.

6 Related Work

In [10], the standard methodology for the parallelization of nested loops is used to design
a parallel version of Bordat algorithm [1]. In that parallel version the parallelization is
confined to the handling of redundancies that appear in the generation of new concepts.
Because of this, that parallelization is incompleted as stated in [11] where a better fine-
grain parallelization is proposed. In [3] a parallel version of Ganter algorithm [4] for large
context is proposed. This parallelization is based on a partitioning of the search space.
The main drawback of that approach stems from the fact that a large search space may
provide a few number of concepts. Moreover, it is important to point out that for each
of these previous works no effective implementation of the parallel algorithm designed
is provided.

7 Conclusion

In this paper, we have proposed a parallel version of the sequential D&C algorithm
proposed in [17] for the computation of concept lattices. The obtained parallel algorithm,
DAC-ParaLaX, is based on coarse-grain tasks. It was designed following the PCAM
methodology to which we have added an optimization phase. Although the algorithm
is at an initial stage of parallel optimization, its practical performances show that the
approach has a potential for further development. In fact, the current bottlenecks are
mainly due to technological constraints rather than to design faults.

A subject of ongoing research is the minimization of communications costs in DAC-
ParaLaX for an arbitrary number of processors. This study should lead to a better
implementation of DAC-ParaLaX that scales over real-world contexts. Another re-
search track to follow will be to integrate in DAC-ParaLaX the improvements made to
the initial sequential D&C algorithm in [18]. This should lead to a parallel algorithm for
the computation of both the lattice and its Guigues-Duquenne implication base [7].
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Abstract. Automated layout of line diagrams for concept lattices is a
hard problem as it requires not only asthetical but also semantic consid-
erations. While many layout approaches have been proposed to produce
line diagrams that are perceived as good for many applications, a gen-
eral approach that suits all applications has not yet been found. Instead
of proposing another specific layout approach we propose a framework
that allows modelling layout constraints that are not only applied for
automated layout, but also during manipulation of the diagram layout.

1 Introduction

Laying out concept lattices is a complex problem since there not only asthetical
considerations, but the layout of the diagram can also be considered the rhetor-
ical structure of the lattice presentation, an aspect which can be very important
for understanding of the underlying information.

Additionally the need for means to interact with the diagrams arises in
computer-based tools. For example, the tool Anaconda offers the user to change
diagram layout with the mouse by moving either single nodes, or the nodes rep-
resenting the corresponding concept’s downset or upset.

The program Cernato introduced the notion of using an intermediate rep-
resentation to offer manipulation methods that ensure certain layout properties
are retained [Bec01]. Experience has shown that the restrictions induced by
these constraints were rarely perceived as negative by the intended target au-
dience (business analysts), while people experienced in FCA perceived some of
the constraints as too limiting.

This paper gives an overview of the model behind the ToscanaJ suite
[BH04], which is based on the notion of representation systems. It allows mod-
elling different constraints for the manipulation of the diagrams. Basic knowledge
of Formal Concept Analyis is assumed throughout the paper.

2 Issues in Lattice Layout

While one can consider a number of asthetical goals for lattice layout, this paper
is focused on semantic considerations. The layout of a concept lattice can be
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seen as a rhetorical structure, emphasizing certain aspects and de-emphasizing
others. In the worst case a wrong layout can be strongly misleading.

Fig. 1. Three different diagram layouts for the same lattice

Consider Figure 1, where three diagrams represent the same lattice. While
they are technically equivalent and all attribute-additive, the left diagram em-
phasizes the A3 → A2 implication, the center one the A3 → A1∧A2 implication
and the rightmost diagram does not emphasize any particular implication.

We believe that in many cases finding a suitable rhetorical structure is beyond
the capabilities of an automated system. But an automated system can provide
some guidance in the process.

3 Representation Systems

Ganter and Wille present a framework to model additive line diagrams using
set representations and grid projections [GW99]. To create an attribute-additive
line diagram of a concept lattive, the set representation used is a mapping from
the concept onto the power set of the irreducible attributes, i.e. the attributes of
the purified context. These attributes then get projected using a grid projection.

The general approach to manipulate such a diagram without breaking at-
tribute additivity is to map every movement of a node into a change of the grid
projection such that the new position of the node matches the target position.
A simple approach to achieve this in the attribute-additive case is to distribute
the movement evenly through the projection vectors of all irreducible attributes
matching the corresponding upset.

Sometimes additional constraints on the layout should be enforced, especially
when additional information is available, such as an order on the attributes.
Consider an interordinal scale as an example, where the two ordinal scales should
be represented by only two directions in the diagram, not more.

The core idea of our approach is to project the set representation into the
target space R2 by going through two independent steps: first projecting into
Rn

+, then applying a parallel projection onto the plane. While this is equivalent
to a direct projection in the static case, it allows us to distinguish modifiable
and unmodifiable aspects in the interactive case. We split the projection into one
part we consider to be fixed and another which we allow the user to change. The
intermediate representation in Rn

+ allows us to model a notion of dimensionality
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explicitly which is intuitively found in many line diagrams, for example those
representing interordinal or boolean scales.

4 Layout Manipulations

We want the user to be able to move any node excepts for the top node in a
diagram by dragging it with the mouse. To fit into the model proposed, the
movement of a node has to map into a change of the parallel projection, while at
the same time the user will expect the node to move to the location underneath
the mouse pointer.

To enforce nothing but attribute-additivity we can assign a unit vector of each
dimension to the irreducible attributes. The result for the lattice in Figure 1 is
shown in Figure 2, with the vectors in the resulting three-dimensional space
attached as labels. Movement along the arrows in the left diagram results in
either of the other two as labelled.

Fig. 2. Diagram manipulation when constrained to attribute additive layouts

If we assume that A3 is related to A1 in a way that we want to force their
vectors to be aligned (for example if we know that generally A3 implies A1 in
the system), then we can assign both the same vector as shown in Figure 3.

Fig. 3. Diagram manipulation with a chain constraint

Exactly the same layout can be achieved with the first representation system
– Figure 2 shows this in the middle. By adding the constraint we enforce that this
alignment can not be broken through the manipulations. For example trying to
move the bottom node to achieve the layout shown in the left of Figure 2 results
in the diagram shown in Figure 3 instead. But moving the center node behaves
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exactly as with the first layout – the projection of all nodes but the bottom
stayed the same, no constraints are enforced on this part of the diagram.

Another constraint possible for diagrams of this lattice is enforcing that the
vector assigned to A3 is always extending the vector straight through the di-
amond shape above. In that case the second representation and layout system
has to be changed to assign a vector such as (

√
2,

√
2) instead of (0, 1) to A3.

In some situations the user laying out a diagram might want to ignore
the constraints given by the framework proposed. In the case of highly non-
distributive lattices such as Mn with large n, breaking a constraint such as
attribute-additivity is highly desirable. To achieve this, another set of vectors
can be added to the concepts, which is applied as an additional offset when
determining the position of the concept.

5 Conclusion

We have presented a short overview of a framework that enables software users to
interact with concept lattices while maintaining certain layout constraints. The
framework allows modelling a range of different constraints, such as attribute-
additivity and chain layouts. These constraints can be application-specific, they
can be derived automatically from additional information or they can be explic-
itly given by a user.

Further work will have to investigate which constraint systems are useful
for different applications and different types of users. The connection to related
work in general lattice layout (e.g. [Sko92]) and to force-based lattice layout (e.g.
[Col00]) should be elaborated.
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Abstract. In formal concept analysis of data with fuzzy attributes, both
the extent and the intent of a formal (fuzzy) concept may be fuzzy sets.
In this paper we focus on so-called crisply generated formal concepts.
A concept 〈A, B〉 ∈ B (X, Y, I) is crisply generated if A = D↓ (and so
B = D↓↑) for some crisp (i.e., ordinary) set D ⊆ Y of attributes (gen-
erator). Considering only crisply generated concepts has two practical
consequences. First, the number of crisply generated formal concepts is
considerably less than the number of all formal fuzzy concepts. Second,
since crisply generated concepts may be identified with a (ordinary, not
fuzzy) set of attributes (the largest generator), they might be considered
“the important ones” among all formal fuzzy concepts. We present ba-
sic properties of the set of all crisply generated concepts, an algorithm
for listing all crisply generated concepts, a version of the main theorem
of concept lattices for crisply generated concepts, and show that crisply
generated concepts are just the fixed points of pairs of mappings re-
sembling Galois connections. Furthermore, we show connections to other
papers on formal concept analysis of data with fuzzy attributes. Also, we
present examples demonstrating the reduction of the number of formal
concepts and the speed-up of our algorithm (compared to listing of all
formal concepts and testing whether a concept is crisply generated).

1 Problem Setting and Preliminaries

1.1 Problem Setting

Formal concept analysis (FCA) [12] deals with object-attribute data tables (ob-
jects and attributes corresponding to table rows and columns, respectively). In
the basic setting, attributes are assumed to be binary, i.e. table entries are 1 or
0 according to whether an attribute applies to an object or not. If the attributes
under consideration are fuzzy (like “cheap”, “expensive”), each table entry con-
tains a truth degree to which an attribute applies to an object. The degrees
can be taken from some appropriate scale containing 0 (does not apply at all)
and 1 (fully applies) as bounds. The most popular choice is some subinterval
of [0, 1], but in general, degrees need not be numbers. A data table with truth
degrees can be considered a many-valued context and can be transformed to a
binary data table via so-called conceptual scaling [12]. Alternatively, the table
with truth degrees can be approached using the apparatus of FCA generalized
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to fuzzy setting (generalization of FCA from the point of view of fuzzy logic).
A general discussion about the relationship between conceptual scaling in the
sense of FCA and membership functions in the sense of fuzzy set can be found
in [21].

In the present paper, we are interested in FCA of data with fuzzy attributes
(FCAf) in the framework of fuzzy logic and fuzzy set theory. Probably the first
paper on this was [11]. Later on, FCAf was developed by Pollandt [18] and, inde-
pendently, by the first author of this paper, e.g. [1, 2, 3, 7]. An important aspect
of FCA in general is the possibly large number of formal concepts extracted
from data. In this paper, we propose and study what we call crisply generated
formal fuzzy concepts. These are particular formal fuzzy concepts which can be
considered “more important” than the others (non-crisply generated). Consider-
ing only crisply generated concepts, the main practical effect is the reduction of
the number of formal concepts extracted from data. In the rest of this section,
we present preliminaries on fuzzy logic and FCAf. In Section 2 we present our
approach and theoretical results. Section 3 contains examples and experiments
studying mainly the reduction of the number of extracted concepts.

1.2 Preliminaries

Fuzzy Sets and Fuzzy Logic. We assume basic familiarity with fuzzy logic
and fuzzy sets [16, 13, 6]. An element may belong to a fuzzy set in an intermedi-
ate degree not necessarily being 0 or 1. Formally, a fuzzy set A in a universe X
is a mapping assigning to each x ∈ X a truth degree A(x) ∈ L where L is some
partially ordered set of truth degrees containing at least 0 (full falsity) and 1
(full truth). L needs to be equipped with logical connectives, e.g. ⊗ (fuzzy con-
junction), → (fuzzy implication), etc. L together with logical connectives forms a
structure L of truth degrees. We assume that L forms a so-called complete resid-
uated lattice. Recall that a complete residuated lattice [6, 13, 14] is a structure
L = 〈L,∧,∨,⊗,→, 0, 1〉 such that (1) 〈L,∧,∨, 0, 1〉 is a complete lattice (with
the least element 0, greatest element 1), i.e. a partially ordered set in which arbi-
trary infima (

∧
) and suprema (

∨
) exist; (2) 〈L,⊗, 1〉 is a commutative monoid,

i.e. ⊗ is a binary operation satisfying x⊗(y⊗ z) = (x⊗ y)⊗ z, x⊗ y = y⊗x,
and x⊗ 1 = x; (3) ⊗,→ satisfy x⊗ y ≤ z iff x ≤ y → z. In what follows, L
always denotes a fixed complete residuated lattice.

The most applied set of truth degrees is the real interval [0, 1]; with a ∧ b =
min(a, b), a∨ b = max(a, b), and with three important pairs of fuzzy conjunction
and fuzzy implication: �Lukasiewicz (a⊗ b = max(a+ b− 1, 0), a → b = min(1 −
a + b, 1)), minimum (a⊗ b = min(a, b), a → b = 1 if a ≤ b and = b else), and
product (a⊗ b = a · b, a → b = 1 if a ≤ b and = b/a else). Another possibility
is to take a finite chain {a0 = 0, a1, . . . , an = 1} (a0 < · · · < an) equipped
with �Lukasiewicz structure (ak ⊗ al = amax(k+l−n,0), ak → al = amin(n−k+l,n))
or minimum (ak ⊗ al = amin(k,l), ak → al = an for ak ≤ al and ak → al = al

otherwise).
The set of all fuzzy sets (or L-sets) in X is denoted LX . For a fuzzy set

A ∈ LX , the 1-cut 1A of A is an ordinary set 1A = {x ∈ X | A(x) = 1}. A is called
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crisp if A(x) ∈ {0, 1}. By { a
/
x} we denote a fuzzy set A for which A(x) = a

and A(y) = 0 for y 	= x. For fuzzy sets A,B in X we put A ⊆ B (A is a subset of
B) if for each x ∈ X we have A(x) ≤ B(x). More generally, the degree S (A,B)
to which A is a subset of B is defined by S (A,B) =

∧
x∈X(A(x) → B(x)). Then,

A ⊆ B means S (A,B) = 1.

Formal Concept Analysis of Data with Fuzzy Attributes. Let X and
Y be sets of objects and attributes, respectively, I be a fuzzy relation between
X and Y . That is, I : X × Y → L assigns to each x ∈ X and each y ∈ Y a
truth degree I(x, y) ∈ L to which object x has attribute y (L is a support set
of some complete residuated lattice L). The triplet 〈X,Y, I〉 is called a formal
fuzzy context (corresponds to a data table with fuzzy attributes). For fuzzy sets
A ∈ LX and B ∈ LY , consider fuzzy sets A↑ ∈ LY and B↓ ∈ LX (denoted also
A↑I and B↓I ) defined by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)), (1)

B↓(x) =
∧

y∈Y

(B(y) → I(x, y)) (2)

for y ∈ Y and x ∈ X. Using basic rules of predicate fuzzy logic, one can see that
A↑(y) is the truth degree of the proposition “y is shared by all objects from A”
and B↓(x) is the truth degree of “x has all attributes from B”. Putting

B (X,Y, I) = {〈A,B〉 | A↑ = B, B↓ = A},
B (X,Y, I) is the set of all pairs 〈A,B〉 such that (a) A is the collection of all
objects that have all the attributes of (the intent) B and (b) B is the collection
of all attributes that are shared by all the objects of (the extent) A. Elements of
B (X,Y, I) are called formal concepts of 〈X,Y, I〉 (formal fuzzy concepts, formal
L-concepts); B (X,Y, I) is called the concept lattice given by 〈X,Y, I〉 (fuzzy
concept lattice, L-concept lattice). Both the extent A and the intent B of a
formal concept 〈A,B〉 are in general fuzzy sets. This corresponds to the fact
that in general, concepts apply to objects and attributes to various intermediate
degrees, not only 0 and 1.

Putting
〈A1, B1〉 ≤ 〈A1, B1〉 iff A1 ⊆ A2(iff B1 ⊇ B2) (3)

for 〈A1, B1〉, 〈A2, B2〉 ∈ B (X,Y, I), ≤ models the subconcept-superconcept hi-
erarchy in B (X,Y, I).

The following is a version of the main theorem for fuzzy concept lattices
(see [7, 18]).

Theorem 1. The set B (X,Y, I) is under ≤ a complete lattice where infima and
suprema are given by ∧

j∈J

〈Aj , Bj〉 = 〈
⋂
j∈J

Aj , (
⋃
j∈J

Bj)↓↑〉 , (4)

∨
j∈J

〈Aj , Bj〉 = 〈(
⋃
j∈J

Aj)↑↓,
⋂
j∈J

Bj〉 . (5)
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Moreover, an arbitrary complete lattice V = 〈V,∧,∨〉 is isomorphic to some
B (X,Y, I) iff there are mappings γ : X × L → V , µ : Y × L → V such that
γ(X,L) is

∨
-dense in V, µ(Y, L) is

∧
-dense in V; a⊗ b ≤ I(x, y) iff γ(x, a) ≤

µ(y, b).

Note that Theorem 1 can be proved by reduction (see [18, 4]) to the main
theorem of ordinary concept lattices [20] or directly in the framework of fuzzy
logic [7]. Note also that Theorem 1 is concerned with bivalent order, there is still
a more general version [7] dealing with many-valued (fuzzy) order.

Taking L = {0, 1} (two truth degrees; bivalent case), the notions of formal
fuzzy context, formal fuzzy concept, and fuzzy concept lattice coincide with
the ordinary notions [12]. In the following we denote Ext(I) = {A | 〈A,B〉 ∈
B (X,Y, I) for some B} (extents of concepts) and Int(I) = {B | 〈A,B〉 ∈
B (X,Y, I) for some A} (intents of concepts). Recall [3] that ↑ and ↓ satisfy
S (A1, A2) ≤ S (A↑

2, A
↑
1); S (B1, B2) ≤ S (B↓

2 , B
↓
1); A ⊆ A↑↓; B ⊆ B↓↑. As a

consequence, A↑ = A↑↓↑ and B↓ = B↓↑↓.

2 Crisply Generated Formal Concepts

2.1 Motivation and Definition

A formal concept 〈A,B〉 consists of a fuzzy set A and a fuzzy set B such that
A↑ = B and B↓ = A. Due to (1) and (2), and the basic rules of predicate fuzzy
logic, this directly captures the verbal definition of a formal concept inspired by
Port-Royal logic. Nevertheless, this definition actually allows for formal fuzzy
concepts 〈A,B〉 such that, for example, for any x ∈ X and y ∈ Y we have
A(x) = 1/2 and B(y) = 1/2. A verbal description of such a concept is “a
concept to which each attribute belongs to degree 1/2”. Such a concept, although
satisfying the verbally described condition A↑ = B, B↓ = A, will probably be
considered “not the important one”. This is because people expect concepts to
be determined by “some attributes”, i.e. by an ordinary set of attributes. This
leads to the following definition.

Definition 1. A formal fuzzy concept 〈A,B〉 ∈ B (X,Y, I) is called crisply gen-
erated if there is a crisp set Bc ⊆ Y such that A = B↓

c (and thus B = B↓↑
c ).

We say that Bc crisply generates 〈A,B〉. Let Bc (X,Y, I) denote the collection
of all crisply generated formal concepts in 〈X,Y, I〉, i.e.

Bc (X,Y, I) = {〈A,B〉 ∈ B (X,Y, I) | there is Bc ⊆ Y : A = B↓
c }.

If 〈A,B〉 is a crisply generated concept with A = B↓
c , it might be actually more

informative to write 〈A,Bc〉 instead of 〈A,B〉. Doing so, no information is lost
since the corresponding fuzzy concept 〈A,B〉 can be obtained from 〈A,Bc〉 by
taking B = B↓↑

c . In general, there may be several crisp Bc’s with A = B↓
c . To

remove this ambiguity, we can always take the greatest Bc:

Lemma 1. For a crisply generated formal concept 〈A,B〉, 1B is the largest crisp
set Bc for which A = B↓

c .
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Proof. Let 〈A,B〉 be crisply generated by some Bc, i.e. A = B↓
c . Since Bc ⊆

B↓↑
c = B, we have Bc = 1Bc ⊆ 1B. That is, 1B contains any crisp Bc which gen-

erates 〈A,B〉. Moreover, 1B itself is a crisp set which generates 〈A,B〉. Indeed,
take some crisp Bc which generates 〈A,B〉. We know that Bc ⊆ 1B, from which
we get B = B↓↑

c ⊆ (1B)↓↑. On the other hand, 1B ⊆ B gives (1B)↓↑ ⊆ B↓↑ = B
which shows (1B)↓↑ = B.

Crisply generated formal concepts can be alternatively defined as maximal
rectangles 〈A,B〉 contained in I for which A is the projection of 1B. Call a fuzzy
relation I ′ ∈ LX×Y a rectangular relation if there are A ∈ LX , B ∈ LY such that
I ′(x, y) = A(x)⊗B(y), written I ′ = A⊗B (call then 〈A,B〉 a rectangle). 〈A,B〉
is said to be contained in I ′′ ∈ LX×Y if A⊗B ⊆ I ′′. We put 〈A1, B1〉� 〈A2, B2〉
if for each x ∈ X, y ∈ Y we have A1(x) ≤ A2(x) and B1(y) ≤ B2(y). By an
I-projection of a subset C ⊆ Y on X we mean a fuzzy set A in X defined by
A(x) =

∧
y∈C I(x, y).

Lemma 2. 〈A,B〉 is a crisply generated concept iff 〈A,B〉 is a maximal (w.r.t.
�) rectangle contained in I such that A is the projection of 1B.

Proof. The assertion follows from [6 Theorem 5.7], the fact that 〈A,B〉 is crisply
generated iff A = (1B)↓ (see Lemma 1), and from (1B)↓(x) =

∧
y∈1B I(x, y).

2.2 Independence of the Choice of Fuzzy Logical Connectives

The next step is to observe that restricting ourselves to crisply generated con-
cepts, one is no more dependent (almost) on the logical connectives defined on
the scale L of truth degrees. To formulate this precisely, let us denote the con-
cept lattice over the structure L of truth degrees by BL(X,Y, I) and denote
BL

c (X,Y, I) the set of all crisply generated concepts of BL(X,Y, I). Suppose
we have two structures L1 and L2 with a common set L of truth degrees, i.e.
L1 = 〈L,⊗1,→1, . . .〉 and L2 = 〈L,⊗2,→2, . . .〉, and a data table (formal fuzzy
context) 〈X,Y, I〉 which is filled with truth degrees from L.

Lemma 3. Let L1 and L2 have a common set L of truth degrees, let 〈X,Y, I〉 be
a formal fuzzy context with truth degrees from L. Then there is an isomorphism
between BL1

c (X,Y, I) and BL2
c (X,Y, I) such that for the corresponding formal

concepts 〈A1, B1〉 ∈ BL1
c (X,Y, I) and 〈A2, B2〉 ∈ BL2

c (X,Y, I) we have A1 = A2
and 1B1 = 1B2.

Proof. Denote by ↓i and ↑i the operators generated by →i (i = 1, 2). Recall that
for each residuated implication connective → we have 1 → a = a. Therefore,
for each crisp B ⊆ Y we have B↓i(x) =

∧
y∈Y (B(y) →i I(x, y)) =

∧
y∈B(1 →i

I(x, y)) =
∧

y∈B I(x, y). That is, B↓i does not depend on →i. Therefore, if
〈A,B〉 ∈ BL1

c (X,Y, I) is crisply generated then from Lemma 1 we have (1B)↓1 =
A and since 1B is crisp, also (1B)↓2 = A. This shows that 〈A,D〉, for D = A↑2 , is
a crisply generated formal concept from BL2

c (X,Y, I). Clearly, 1B ⊆ 1D. If 1B ⊂
1D, i.e. D is larger than B, then Lemma 1 gives (1D)↓2 = A and so (1D)↓1 = A

,
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which is impossible since by Lemma 1, 1B is the largest one with (1B)↓1 = A.
In a similar way one shows that if 〈A,B〉 ∈ BL2

c (X,Y, I) is crisply generated
then 〈A,A↑1〉 ∈ BL1(X,Y, I) is crisply generated as well and 1B = 1A↑1 . The
assertion then immediately follows.

Note that in general, BL1(X,Y, I) and BL2(X,Y, I) may have different num-
ber of formal concepts, i.e. the choice of fuzzy logical connectives matters.
Lemma 3 shows that their crisply generated parts BL1

c (X,Y, I) and BL2
c (X,Y, I)

are isomorphic. That is, if we consider only crisply generated concepts, the choice
of fuzzy logical connectives, in a sense, does not matter.

2.3 Computing All Crisply Generated Formal Concepts

We now present an algorithm for generating Bc (X,Y, I). Going directly by def-
inition, i.e. creating 〈B↓, B↓↑〉 for each crisp B ∈ 2X , has exponential time
complexity and thus, cannot be used. Our algorithm is inspired by Ganter’s
Next Closure algorithm [12 p. 67] for generating an ordinary concept lattice, i.e.
generating all formal concepts in lexicographic order. This idea can be adopted
to fuzzy setting to generate all crisply generated formal fuzzy concepts.

The idea of our algorithm is to introduce a linear ordering < on Bc (X,Y, I)
such that for a given 〈A,B〉 ∈ Bc (X,Y, I), we can compute its immediate succes-
sor w.r.t. to <. Since a formal concept 〈A,B〉 is uniquely given by its intent B, it
is sufficient to generate all intents B. By Intc(I) we denote all intents of crisply
generated fuzzy concepts, i.e. Intc(I) = {B | 〈A,B〉 ∈ Bc (X,Y, I) for some A ∈
LX}. We suppose that Y = {1, . . . , n}; L = {0 = a1, a2, . . . , ak = 1} such that if
ai ≤ aj in L then i ≤ j (that is, the ordering of elements of L by indices extends
their ordering in ≤ in L; such an indexing is always possible and is automatically
satisfied if L is linearly ordered and we index the elements in L using this order
from the least to the greatest element, i.e. a1 ≤ a2 ≤ · · · ≤ ak). For i = 1, . . . , n,
introduce a relation <i on LY by

B1 <i B2 iff (1B1)(i) = 0, (1B2)(i) = 1, and (1B1)(j) = (1B2)(j) for j < i.

Furthermore, we put

B1 < B2 iff B1 <i B2 for some i.

That is, B1 < B2 iff the first element of Y on which 1B1 and 1B2 differ, belongs
to B2; i.e. B1 < B2 means that 1B1 is lexicographically smaller than 1B2.

Lemma 4. < is a strict total order on Intc(I) which extends ⊂.

Proof. Easy to see since every B1, B2 ∈ Intc(I) with common 1-cuts (i.e. with
1B1 = 1B2) are equal. Indeed, By Lemma 1, if 1B1 = 1B2 then B1 = (1B1)↓↑ =
(1B2)↓↑ = B2.

Furthermore, for B ∈ LY and i ∈ {1, . . . , n}, we put

B ⊕c i := ((1B ∩ {1, . . . , i− 1}) ∪ {i})↓↑.

,
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That is, we obtain B ⊕c i by taking the 1-cut of B, cutting off the elements
i, . . . , n, joining with element i and applying the closure ↓↑.

Lemma 5. The following assertions are true.

(1) If B <i D1, B <j D2, and i < j then D2 <i D1;
(2) if B <i D and D = D↓↑ then (1B) ⊕c i ⊆ D;
(3) if B <i D and D = D↓↑ then B <i (1B) ⊕c i.

Proof. (1) follows directly from definition. (2) From B <i D we have D(i) = 1
and 1B∩{1, . . . , i−1} ⊆ D. Putting C1 = 1B∩{1, . . . , i−1}, C2 = { 1/i}, we thus
have C1∪C2 ⊆ D, whence (1B)⊕c i = (C1∪C2)↓↑ ⊆ D↓↑ = D. (3) From B <i D
we have 1B∩{1, . . . , i−1} = 1D∩{1, . . . , i−1}. Using (2) we get (1B)⊕c i ⊆ D,
and so 1(1B ⊕c i)∩{1, . . . , i−1} ⊆ 1D∩{1, . . . , i−1} = 1B∩{1, . . . , i−1}. On the
other hand, 1(1B ⊕c i) ∩ {1, . . . , i − 1} ⊇ 1(1B ∩ {1, . . . , i− 1})↓↑ ∩ {1, . . . , i −
1} ⊇ 1(1B ∩ {1, . . . , i− 1}) ∩ {1, . . . , i − 1} ⊇ 1B ∩ {1, . . . , i − 1}. Therefore,
1B∩{1, . . . , i−1} = 1(1B ⊕c i)∩{1, . . . , i−1}. Finally, by (2), 1 = (1B⊕c i)(i) ≤
D(i), i.e. D(i) = 1 = ak proving B <i (1B) ⊕c i.

Theorem 2. For B ∈ LY , the least crisply generated intent B+c ∈ Intc(I)
which is greater than B is given by

B+c = B ⊕c i

where i is the greatest element with B <i B ⊕c i.

Proof. Let B+c be the required successor of B w.r.t. <. We have B < B+c ,
i.e B <i B+c for some i. By Lemma 5 (3), B <i

1B ⊕c i. By Lemma 5 (2),
1B ⊕c i ⊆ B+c and thus 1B ⊕c i ≤ B+c (i.e. 1B ⊕c i < B+c or 1B ⊕c i = B+c),
and so B <i

1B ⊕c i ≤ B+c . Since B+c is the successor of B, we have B+c =
1B ⊕c i. It remains to show that i is the greatest element with B <i

1B ⊕c i,
i.e. 1B <i

1(1B ⊕c i). If 1B <j
1(1B ⊕c j) for i < j then Lemma 5 (1) yields

1(1B ⊕c j) <i
1(1B ⊕c i), i.e. 1B ⊕c j < 1B ⊕c i which is a contradiction to

1B ⊕c i = B+c < 1B ⊕c j (since B+c is the immediate of B).

Theorem 2 leads to the following algorithm.

INPUT: 〈X,Y, I〉, OUTPUT: Intc(I)

store(B)
while B 	= Y do

B := B+c

store(B)

The time complexity of computing from B the next crisply generated intent B+c

is O(|X| · |Y |2). Therefore, our algorithm has polynomial time delay complex-
ity [15] (generating crisply generated intents, one generates the successor B+c

of B in polynomial time O(|X| · |Y |2)). The time complexity of the algorithm is
thus O(|Intc(I)| · |X| · |Y |2).
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Remark 1. Note that in [8] we presented an algorithm for generating all formal
fuzzy concepts of B (X,Y, I). This algorithm is inspired by Ganter’s Next Closure
which is its particular case. Using this algorithm, we can generate Bc (X,Y, I)
in the following way: Generate all 〈A,B〉 ∈ B (X,Y, I) and for each such 〈A,B〉,
test by Lemma 1 whether 〈A,B〉 is crisply generated. Comprated to this, the
algorithm presented here generates Bc (X,Y, I) directly, going from one crisply
generated concept to the next one. We demonstrate the speed-up in Section 3.

2.4 Crisply Generated Fuzzy Concepts as Fixed Points of Fuzzy
Galois-Like Mappings

It is well-known that ordinary formal concepts 〈X,Y, I〉 are exactly the fixed
points of a Galois connection formed by (the concept derivation operators)
↑ : 2X → 2Y and ↓ : 2Y → 2X induced by I [19, 12]. Moreover, each Galois
connection between X and Y is induced by some relation I ∈ 2X×Y . In [2], this
fact was generalized to the setting of fuzzy logic: Call a fuzzy Galois connection
between X and Y any pair 〈↑, ↓〉 of mappings ↑ : LX → LY and ↑ : LY → LX

satisfying

S (A1, A2) ≤ S (A↑
2, A

↑
1) (6)

S (B1, B2) ≤ S (B↓
2 , B

↓
1) (7)

A ⊆ A↑↓ (8)
B ⊆ B↓↑, (9)

for each A,A1, A2 ∈ LX and B,B1, B2 ∈ LY . It was proved in [2] that given
〈X,Y, I〉, the pair 〈↑, ↓〉 defined by (1) and (2) is a fuzzy Galois connection and,
conversely, each fuzzy Galois connection is induced by some 〈X,Y, I〉 by (1)
and (2). The relationship between fuzzy Galois connections and fuzzy relations
between X and Y is one-to-one.

A natural question arises as to whether crisply generated fuzzy concepts
can be thought of as fixed points of suitable mappings, possibly axiomatically
definable. In the following, we present a positive answer. In fact, what we are
going to present is a special case of a more general case of so-called (fuzzy) Galois
connections with hedges [10]. However, to keep our discussion in the framework
of crisply generated concepts, we do not go to the more general notions of [10]
and present the results with proofs for our special case.

Consider mappings 	 : LX → LY and 
 : LY → LX resulting from 〈X,Y, I〉
by

A	(y) =
∧

x∈X

(A(x) → I(x, y)) (10)

and
B
(x) =

∧
y∈Y

(1B(y) → I(x, y)). (11)

Note that we have A	 = A↑ and B
 = (1B)↓ where ↑ and ↓ are defined by (1)
and (2). Now, denote by B (X, 1Y , I

)
the set of all fixed points of 〈	,
〉, i.e.

B (X, 1Y , I
)

= {〈A,B〉 ∈ LX × LY | A	 = B, B
 = A}.
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Theorem 3. B (X, 1Y , I
)

= Bc (X,Y, I), i.e. crisply generated fuzzy concepts
are exactly the fixed points of 	 and 
.

Proof. “⊆”: If 〈A,B〉 ∈ B (X, 1Y , I
)

then A	 = B and B
 = A, i.e. A↑ = B
and (1B)↓ = A. Therefore, 〈A,B〉 ∈ Bc (X,Y, I), by definition.

“⊇”: Let 〈A,B〉 ∈ Bc (X,Y, I), i.e. A↑ = B, B↓ = A, and A = D↓ for
some crisp D ⊆ Y . We need to verify A	 = B and B
 = A. By Lemma 1, it
clearly suffices to check (1B)↓ = A, i.e. B
 = A. As A = D↓ and B = B↓↑,
we need to verify D↓ = (1D↓↑)↓. But D↓ = (1D)↓ = (11D

↓↑)↓. Indeed, the first
equality follows from the fact that D is crisp and thus 1D = D. For the second
equality, (1D)↓ ⊆ (1(1D)↓↑)↓ follows from F ⊆ (1F ↑)↓ for F = (1D)↓ (easy),
and (1D)↓ ⊇ (1(1D)↓↑)↓ follows from D = 1D, from 1D ⊆ (1D)↓↑, and from the
fact that if E ⊆ F then 1E

↓ ⊇ 1F
↓ (just put E = D and F = (1D)↓↑). Hence,

〈A,B〉 ∈ B (X, 1Y , I
)
.

Now, we turn to the investigation of the properties of 	 and 
 and the
problem of axiomatization of these properties.

Lemma 6. 	 and 
 defined by (10) and (11) satisfy

S (A,B
) = S (1B,A	) (12)

(
⋃
j∈J

Aj)	 =
⋂
j∈J

A	
j (13)

for every A,Aj ∈ LX and B ∈ LY .

Proof. We have
S (A,B
) =

∧
x∈X

(A(x) → (
∧

y∈Y

1B(y) → I(x, y))) =

=
∧

y∈Y

∧
x∈X

(1B(y) → (A(x) → I(x, y))) =

=
∧

y∈Y

(1B(y) → (
∧

x∈X

A(x) → I(x, y))) = S (1B,A	),

proving (12). (13) is a consequence of properties of fuzzy Galois connections [2].

Definition 2. A pair 〈	,
〉 of mappings satisfying (12) and (13) is called a
c-Galois connection between X and Y .

The following are some consequences of (12).

Lemma 7. If 	 : LX → LY and 
 : LY → LX satisfy (12) then

(
⋃
j∈J

1Bj)
 =
⋂
j∈J

B

j (14)

B
 = (1B)
 (15)
{ a
/
x}	(y) = a → { 1/x}	(y) (16)

{ a
/
y}
(x) = a → { 1/y}
(x) (17)

for any B,Bj ∈ LY , x ∈ X, y ∈ Y , a ∈ L.
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Proof. (14): We show that S (A, (
⋃

i
1Bi)
) = 1 iff S (A,

⋂
i(

1B)

i ) = 1 for

each A ∈ LX . Using (12) we have S (A, (
⋃

i
1Bi)
) = S (1(

⋃
i
1Bi), A	) =

S ((
⋃

i
1Bi), A	). As a result, we have S (A, (

⋃
i
1Bi)
) = 1 iff S ((

⋃
i
1Bi), A	) =

1 iff for each i we have 1Bi ⊆ A	 iff for each i we have S (1Bi, A
	) iff for each

i we have S (A,B

i ) iff S (A,

⋂
i B



i ).

(15) is just (14) for |J | = 1.
(16) and (17) follow from 1b → { a

/
x}	(y) = a → { b

/
y}
(x) and { 1/x}	(y) =

{ 1/y}
(x) which we now verify. First, 1b → { a
/
x}	(y) = S ({ 1b

/
y}, { a

/
x}	) =

S ({1 b
/
y}, { a

/
x}	) = S ({ a

/
x}, { b

/
y}
) = a → { b

/
y}
(x) (here 1b = 1 for

b = 1 and 1b = 0 otherwise). For { 1/x}	(y) = { 1/y}
(x) just put a = b = 1
in the foregoing equality.

Lemma 8. Let 〈	,
〉 be a c-Galois connection. Then there is a fuzzy relation
I ∈ LX×Y such that 〈	,
〉 = 〈	I ,
I 〉 where 	I and 
I are induced by I by
(10) and (11).

Proof. Let I be defined by I(x, y) = { 1/x}	(y) = { 1/y}
(x). Then using (16),
it is straightforward to show A	 = A	I . Furthermore, using (14) and (15), and
(17) we get

B
(x) = 1B



(x) = (
⋃

y∈Y

{ 1B(y)/y})
(x) =

= (
⋃

y∈Y

1{ B(y)/y})
(x) = (
⋂

y∈Y

{ B(y)/y}
)(x) =
∧

y∈Y

{ B(y)/y}
(x) =

=
∧

y∈Y

1B(y) → { 1/y}
(x) =
∧

y∈Y

1B(y) → I(x, y) = B
I (x).

Next, we have the desired one-to-one correspondence between fuzzy relations
and c-Galois connections.

Theorem 4. Let I ∈ LX×Y be a fuzzy relation, let 	I and 
I be defined by
(10) and (11). Let 〈	,
〉 be a c-Galois connection. Then

(1) 〈	I ,
I 〉 satisfy (12) and (13).
(2) I〈�,�〉 defined as in the proof of Lemma 8 is a fuzzy relation and we have

(3) 〈	,
〉 = 〈	I〈�,�〉 ,

I〈�,�〉 〉 and I = I〈�I ,�I 〉.

Proof. Due to the previous results, it remains to check I = I〈�I ,�I 〉. We have
I〈�I ,�I 〉(x, y) = { 1/x}	I (y) =

∧
z∈X{ 1/x}(z) → I(z, y) = I(x, y), completing

the proof.

Coming back to conditions (6)–(9), one can easily see that they are in general
not satisfied by a c-Galois connection 	,
. The next lemma shows properties of
c-Galois connections which are analogous to (6)–(9).
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Lemma 9. For a c-Galois connection 〈	,
〉, we have

S (A1, A2) ≤ S (A	
2 , A	

1 ) (18)

S (1B1,
1B2) ≤ S (B


2 , B

1 ) (19)

A ⊆ A	
 (20)
1B ⊆ B
	 (21)

Proof. By direct verification.

2.5 Main Theorem for Bc (X, Y, I)

Now we present a version of main theorem of concept lattices for Bc (X,Y, I).
Due to the limited scope of the paper, we present only sketch of proof.

Note (see [6]) that for a fuzzy set E ∈ LU , ,E- is a subset of U × L defined
by ,E- = {〈u, a〉 ∈ U × L | a ≤ E(u)}. Conversely, for F ⊆ U × L, &F ' is
a fuzzy set in U defined by &F '(u) =

∨{a | 〈u, a〉 ∈ F}. Now, for a fuzzy
relation I ∈ LX×Y , define an ordinary relation I+ between X × L and Y by
〈〈x, a〉, y〉 ∈ I+ iff a ≤ I(x, y).

Theorem 5. The set Bc (X,Y, I) equipped with ≤ is a complete lattice where
infima and suprema are given by (4) and∨

j∈J

〈Aj , Bj〉 = 〈&(
⋃
j∈J

,Aj-)↑↓', &
⋂
j∈J

,1Bj-'〉 . (22)

Moreover, an arbitrary complete lattice V = 〈V,∧,∨〉 is isomorphic to some
Bc (X,Y, I) iff there are mappings γ : X ×L → V , µ : Y → V such that γ(X,L)
is
∨

-dense in V, µ(Y ) is
∧

-dense in V, and a ≤ I(x, y) iff γ(x, a) ≤ µ(y).

Proof. Sketch: Analogously as in [4], we can find a bijection between c-Galois
connections between X and Y , and ordinary Galois connections between X ×L
and Y . Under this bijection, I (fuzzy relation corresponding an c-Galois connec-
tion) corresponds to I+ (ordinary relation corresponding to a Galois connection)
and the corresponding c-Galois connection and Galois connection have isomor-
phic lattices of fixed points. One of them is our Bc (X,Y, I), the other one is
B (X × L, Y, I+). Now, B (X × L, Y, I+) is an ordinary concept lattice, and thus
obeys Wille’s Main Theorem [20]. Translating the Main Theorem to Bc (X,Y, I)
then gives our theorem.

Corollary 1. Bc (X,Y, I) is a
∧

-subsemilattice of B (X,Y, I).

Remark 2. Bc (X,Y, I) need not be a
∨

-subsemilattice of B (X,Y, I). One can
verify by taking X = {x1, x2}, Y = {y1, y2, y3}, and I(x1, y1) = 0.3, I(x1, y2) =
0.5, I(x1, y3) = 0.4, I(x2, y1) = 0.2, I(x2, y2) = 0.6, I(x2, y3) = 0.1.
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2.6 Crisply Generated Concepts and One-Sided Fuzzy Concepts

In [22], the authors deal with the following. Let 〈X,Y, I〉 be a fuzzy context (with
L = [0, 1]). Define mappings f : 2X → LX (assigning a fuzzy set f(A) ∈ LY of
attributes to a set A ⊆ X of objects) and h : LX → 2X (assigning a set h(B) ⊆
of objects to a fuzzy set B ∈ LY of attributes) by

f(A)(y) =
∧

x∈A

I(x, y) (23)

and
h(B) = {x ∈ X | for each y ∈ Y : B(y) ≤ I(x, y)}. (24)

The same definition was later “rediscovered” by Krajči [17]. Pairs 〈A,B〉 ∈
2X ×LY are called one-sided fuzzy concepts (A is a set, B is a fuzzy set) in [17].
By direct computation one can verify that 〈A,B〉 is a one sided fuzzy concept iff
it is of the form 〈A,B〉 = 〈1A′, B〉 for some fuzzy concept 〈A′, B〉 ∈ B (X,Y, I)
which is “crisply generated by extents”, i.e. such that for some L we have B = C↑

(and A′ = C↑↓) for some set C ⊆ X. Therefore, up to exchanging roles of
extents and intents, [22, 17] in fact deal with particular formal fuzzy concepts
(crisply generated by extents) from B (X,Y, I), only that instead of 〈A,B〉 they
consider 〈1A,B〉. As a consequence, our result presented in this paper apply in
an appropriate modification to one-sided fuzzy concepts of [22, 17].

3 Examples and Experiments

Tab. 1 describes economic indexes of selected countries, transformed to [0, 1]
to get a formal fuzzy context. Using minimum-based fuzzy logical operations,
the corresponding concept lattice B (X,Y, I) contains 304 formal concepts and
is depicted in Fig. 1. The corresponding set Bc (X,Y, I) of all crisply generated
fuzzy concepts contains 27 formal concepts and is depicted in Fig. 2. As we are
interested only in the reduction of the size of the concept lattice, we omit the
descriptions of formal concepts.
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Fig. 1. Concept lattice corresponding to data from Tab. 1

Next we show results of experiments demonstrating the factor of reduction.
That is, we are interested in the ratio r = |Bc (X,Y, I)|/|B (X,Y, I)| (the smaller,
the larger the reduction). Tab. 2 shows the values of r for 10 experiments
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Table 1. Economic indexes: data table with fuzzy attributes

1 2 3 4 5 6 7
1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Germany 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

attributes: 1 - high gross domestic product per capita (USD), 2 - high consumer price
index (1995=100) , 3 - high unemployment rate (percent - ILO), 4 - high electricity
production per capita (kWh), 5 - high energy consumption per capita (GJ), 6 - high
export per capita (USD), 7 - high import per capita (USD)
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Fig. 2. Crisply generated formal concepts corresponding to data from Tab. 1

(columns) run over randomly generated formal contexts (rows) with the number
of objects equal to the number of attributes (from 5 to 25 objects/attributes)
and with |L| = 11 (11 truth degrees). Moreover, we show average and dispersion
of r. We can see that the dispersion is low and that r decreases with growing size
of data. Further experiments need to be run to show in more detail the behavior
of r. In the second experiment, we randomly generated tables with 20 objects
and 20 attributes, |L| = 11 with minimum-based fuzzy conjunction, each object
with 10 attributes with a degree > 0 (and 10 attributes with a degree =0); of
the ten attribute with nonzero degrees, we varied the number of attributes, from
1 to 10 (rows), with degree = 1; columns represent experiments; we consider
average and dispersion of r, see Tab. 3. In the third experiment, we randomly
generated tables with 20 objects and 20 attributes, |L| = 11 with minimum-
based fuzzy conjunction, each object with varying number of attributes with a



282 R. Bělohlávek, V. Sklenář, and J. Zacpal

Table 2. Behavior of r (average Av, dispersion Var) in dependence on the size of input
data table (rows); columns correspond to experiments

1 2 3 4 5 6 7 8 9 10 Av Var
5 0.58 0.4 0.38 0.53 0.48 0.38 0.43 0.41 0.48 0.33 0.441 0.0733
6 0.31 0.31 0.38 0.43 0.38 0.32 0.43 0.42 0.36 0.38 0.372 0.0443
7 0.46 0.37 0.31 0.48 0.45 0.27 0.41 0.43 0.4 0.37 0.395 0.0635
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 0.09 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.1 0.11 0.099 0.0066
24 0.1 0.09 0.08 0.1 0.09 0.1 0.09 0.09 0.09 0.08 0.090 0.0079
25 0.08 0.07 0.09 0.08 0.09 0.09 0.08 0.07 0.09 0.08 0.081 0.0074

Table 3. Dependence of r (average Av, dispersion Var) on the number of 1’s in object
attributes (rows); columns correspond to experiments

1 2 3 4 5 6 7 8 9 10 Av Var
1 0.1 0.08 0.07 0.08 0.08 0.09 0.1 0.08 0.08 0.08 0.084 0.0100
2 0.09 0.1 0.11 0.11 0.08 0.09 0.1 0.08 0.09 0.09 0.094 0.0086
3 0.12 0.11 0.11 0.1 0.11 0.11 0.12 0.1 0.1 0.11 0.107 0.0084
4 0.12 0.13 0.11 0.14 0.14 0.13 0.13 0.12 0.14 0.14 0.130 0.0093
5 0.18 0.15 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.162 0.0095
6 0.18 0.21 0.17 0.17 0.2 0.2 0.2 0.18 0.2 0.22 0.193 0.0151
7 0.24 0.24 0.26 0.26 0.28 0.26 0.22 0.27 0.25 0.28 0.256 0.0193
8 0.36 0.33 0.34 0.36 0.35 0.35 0.33 0.34 0.37 0.35 0.347 0.0121
9 0.54 0.59 0.55 0.56 0.53 0.48 0.51 0.56 0.52 0.55 0.539 0.0298
10 1 1 1 1 1 1 1 1 1 1 1,000 0.0000

Table 4. Dependence of r (average Av, dispersion Var) on the number of nonzero
values in attributes (rows); columns correspond to experiments

1 2 3 4 5 6 7 8 9 10 Av Var
1 0.59 0.59 0.64 0.56 0.62 0.56 0.58 0.63 0.61 0.63 0.600 0.0273
2 0.55 0.55 0.47 0.49 0.59 0.43 0.51 0.47 0.55 0.44 0.504 0.0503
3 0.62 0.43 0.57 0.5 0.48 0.54 0.47 0.48 0.61 0.45 0.514 0.0642
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 0.06 0.07 0.08 0.07 0.08 0.07 0.07 0.08 0.06 0.05 0.067 0.0089
14 0.03 0.05 0.04 0.06 0.04 0.07 0.04 0.04 0.04 0.03 0.044 0.0113
15 0.04 0.05 0.06 0.07 0.05 0.04 0.06 0.08 0.05 0.07 0.058 0.0117

degree > 0 (the number varies from 1 to 15, rows); columns represent experi-
ments; we consider average and dispersion of r, see Tab. 4. Next, we randomly
generated input data tables with 20 objects and 20 attributes with varying |L|
for |L| = 3, 6, 11, 16, 21, 31 (rows), see Tab. 5; columns represent experiments;
we consider average and dispersion of r.

In the last experiment, we observed the speed-up of the algorithm described
in Section 2.3 compared to just using [8] and testing which concepts are crisply
generated, see Remark 1. We randomly generated several data tables with di-
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Table 5. Dependence of r (average Av, dispersion Var) on the number |L| of truth
degrees (rows); columns correspond to experiments

1 2 3 4 5 6 7 8 9 10 Av Var
3 0.36 0.34 0.34 0.34 0.33 0.3 0.34 0.42 0.33 0.36 0.346 0.0286
6 0.18 0.21 0.19 0.26 0.23 0.21 0.24 0.17 0.18 0.18 0.205 0.0312
11 0.17 0.23 0.16 0.21 0.17 0.18 0.2 0.17 0.19 0.22 0.187 0.0244
16 0.13 0.15 0.22 0.14 0.18 0.17 0.17 0.15 0.16 0.16 0.163 0.0220
21 0.14 0.18 0.15 0.15 0.15 0.15 0.16 0.13 0.13 0.16 0.150 0.0151
26 0.14 0.2 0.14 0.14 0.13 0.16 0.16 0.11 0.11 0.18 0.147 0.0280
31 0.17 0.14 0.13 0.1 0.15 0.14 0.13 0.15 0.16 0.21 0.147 0.0276

mensions 50 objects × 50 attributes to 70 objects × 70 attributes with |L| = 6
under a constraint that each object has 10 attributes with a nonzero degree and
4 of these equal 1. The graph in Fig. 3 demonstrates the speed-up in dependence
on the size of input data (50 to 70), i.e. the ratio T/Tc where T is the time
needed for computing the whole B (X,Y, I) and using Lemma 1 to test whether
each concept is crisply generated, and Tc is the time needed by the algorithm
from Section 2.3.

Fig. 3. Speed-up of algorithm from Section 2.3, see Remark 1
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3. Bělohlávek R.: Similarity relations in concept lattices. J. Logic Comput. 10(6):823–

845, 2000.
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Abstract. Concept graphs are mathematizations of asserting proposi-
tions consisting of (dyadic) concepts and objects. In order to take condi-
tions or modalities in consideration triadic concept graphs are introduced
as a straightforward generalization based on the basic notions of Triadic
Concept Analysis. Then concept implications are discussed and concep-
tual contents of triadic concept graphs are introduced. It turns out that
this approach can be reduced to a dyadic view; and the Basic Theorem
on Conceptual Contents is obtained as a consequence of that. Finally,
triadic concept graphs are generalized by introducing a subdivision, i.e.
concept graphs with a more complex “rhetoric structure” are considered.

Contents
1. Triadic Concept Graphs
2. Conceptual Contents
3. The Basic Theorems on Conceptual Contents
4. Concept Graphs with Subdivision

1 Triadic Concept Graphs

In this section we will recall some of the basic notions of Contextual Concept and
Judgment Logic ([Wi04]). For an overview about Contextual Logic, its philosoph-
ical roots and its aims see [Wi00]. Here, judgments are understood as assertional
combinations of concepts. Since the semantics should be based on Formal Con-
cept Analysis, formal contexts are extended to power context families in order
to express k-ary relation concepts (cf. [Wi02]):

Definition 1. A sequence �K := (K0,K1,K2, . . .) of contexts Kk := (Gk,Mk, Ik)
with Gk ⊆ (G0)k is called a power context family. The concepts of the contexts
Kk (k ≥ 1) are called relation concepts since their extents are relations on the
set G0. �

The elementary judgments which we consider have the form: An object (or a
sequence of objects) is in the extent of a concept (or relation concept). Concept

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 285–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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graphs represent asserting combinations of such elementary judgments; to make
it readable we use relational graphs as “rhetoric structure”.

Definition 2. A relational graph is a structure (V,E, ν) of two sets V and E
and a map ν : E → ⋃

k=1,2,... V
k. The elements of V and E are called vertices

and edges, respectively. An edge e linked by ν with k vertices is called k-ary – in
symbols: |e| := k. Furthermore let E(k) := {e ∈ E | |e| = k} and E(0) := V . �

An example of a relational graph is depicted in Figure 1. There are two
vertices (the rectangles) and a 2-ary edge (the ellipse); the map ν is represented
by the lines (with the numbers) between them. Now, we are able to define concept
graphs of power context families (cf. [Wi02]):

Definition 3. Let �K := (K0,K1,K2, . . .) be a power context family. A structure
G := (V,E, ν, κ, ρ) is called a concept graph of �K if:

– (V,E, ν) is a relational graph,
– κ : V ∪ E → ⋃

k=0,1,2,... B(Kk) such that κ(E(k)) ⊆ B(Kk) for all k ≥ 0,
– ρ : V → P(G0) \ {∅} is a map such that

• v ∈ V ⇒ ρ(v) ⊆ Ext(κ(v)),
• e ∈ E with ν(e) = (v1, . . . , vk) ⇒ ρ(e) := ρ(v1)×· · ·×ρ(vk) ⊆ Ext(κ(e)).

�

A concept graph can be understood as a relational graph with entries of a
power context family. The concept graph in Figure 1 represents the expression:
“The woman Ruth skies with the man Peter.” The underlying power context
family is given by Fig. 2.

Fig. 1. Dyadic concept graph
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Fig. 2. Dyadic power context family

In order to take conditions or modalities in our considerations we recall the
basic notions of Triadic Concept Analysis. For a motivating discussion of the
following definitions of triadic contexts and triadic concepts see [LW95].
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Definition 4. A triadic context is a structure K := (G,M,B, Y ) of three sets
G,M,B and a ternary relation Y between them, i.e. Y ⊆ G×M ×B. The ele-
ments of G,M , and B are called objects, attributes, and conditions, respectively.

�

For introducing triadic concepts we need some kinds of derivation operators
and, for defining them, it is useful to write K1,K2,K3 instead of G,M,B. We
define for Z ⊆ Ki ×Kj , Ai ⊆ Ki and {i, j, k} = {1, 2, 3} with i < j:

– Z(k) := {ak ∈ Kk | ak, ai, aj are related by Y for all (ai, aj) ∈ Z}
– A

(i,k,Ai)
j := A

(j,k,Aj)
i := {ak ∈ Kk | ak, ai, aj are related by Y for all ai ∈

Ai and aj ∈ Aj}
– A

(k)
k := {(ai, aj) ∈ Ki ×Kj | ai, aj , ak are related by Y for all ak ∈ Ak}

Thus, triadic concepts can be introduced as a natural generalization of dyadic
concepts:

Definition 5. A triadic concept of a triadic context K is defined as a triple
(A1, A2, A3) of subsets Ai ⊆ Ki (i ∈ {1, 2, 3}) with Ak = (Ai × Aj)(k) for
{i, j, k} = {1, 2, 3} with i < j . The sets A1, A2 and A3 are called extent, intent,
and modus of the concept c := (A1, A2, A3) and are denoted by Ext(c), Int(c),
and Mod(c). The set of all triadic concepts of a triadic context K is denoted by
T(K). �

The mathematical structure theory of T(K) is elaborated in [Wi95] and [Bi98].
Here, we only mention some simple properties of triadic concepts:

Suppose K := (K1,K2,K3) is a triadic context. Then for Xi ⊆ Ki and
Xk ⊆ Kk with {i, j, k} = {1, 2, 3} we set

Aj := X
(i,j,Xk)
i

Ai := A
(i,j,Xk)
j

Ak := A
(j,k,Aj)
i

Then bik(Xi, Xk) := (A1, A2, A3) is a triadic concept. Notice that, in general,
bik(Xi, Xk) 	= bki(Xi, Xk), i.e. in particular, triadic concepts are not determined
by their extent, intent or modus, but by two of these sets. Three special triadic
concepts are always given by o1 := b23(M,B) = b32(M,B), o2 := b13(G,B) =
b31(G,B), and o3 := b12(G,M) = b21(G,M).

Notice that a dyadic context K := (G,M, I) can be understood as a triadic
context Kt := (G,M, {b}, Y ) with only one condition b and Y := I×{b}; then the
map (A1, A2) �→ (A1, A2, {b}) is a bijection from B(K)\{(G,M)} to T(Kt)\{o3}.
Thus, the triadic theory can be understood as a generalization of the dyadic
theory.

Now, we introduce triadic power context families and triadic concept graphs
as generalizations of dyadic power context families and concept graphs, respec-
tively (cf. [Wi98], [GW00] and [SW03]):
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Definition 6. A sequence �K := (K0,K1,K2, . . .) of triadic contexts Kk := (Gk,
Mk, B, Yk) with Gk ⊆ (G0)k is called triadic power context family. The triadic
concepts of the contexts Kk (k ≥ 1) are called (triadic) relation concepts since
their extents are mathematical relations on the set G0. �
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(Ruth, Peter) × × ×
(Ruth, Henry) × × × × ×
(Ruth, John) × × ×

Fig. 3. Triadic power context family �K := (K0, K2)

Definition 7. Let �K := (K0,K1,K2, . . .) be a triadic power context family. A
structure G := (V,E, ν, κ, ρ) is called a (triadic) concept graph of �K if:

– (V,E, ν) is a relational graph,
– κ : V ∪ E → ⋃

k=0,1,2,... T(Kk) such that κ(E(k)) ⊆ T(Kk) for all k ≥ 0,
– ρ : V → P(G0) \ {∅} is a map such that

• v ∈ V ⇒ ρ(v) ⊆ Ext(κ(v))(= (Int(κ(v)) ×Mod(κ(v)))(1)),
• e ∈ E with ν(e) = (v1, . . . , vk) ⇒ ρ(e) := ρ(v1)×· · ·×ρ(vk) ⊆ Ext(κ(e))

(= (Int(κ(e)) ×Mod(κ(e)))(1)).
�

Remark: Concept graphs represent combinations of concepts which are linked
by common objects. More exactly: a relation concept c can only be linked (by
ν and κ) with concepts c1, . . . , ck of K0, if there is an object in Ext(c) with
components in the extents of c1, . . . , ck, which is mentioned in the concept graph.

An example of a concept graph of the triadic power context family �K :=
(K0,K2) of Fig. 3 is given in Fig. 4. Here, the triadic concepts are WOMAN:=
b0
23({woman}, B), MAN:= b0

23({man}, B) and SKI IN WINTER WITH := b2
23

({ski with}, {in winter}).

Fig. 4. Triadic concept graph
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2 Conceptual Contents

Now, we want to discuss the question: Which information is given by a triadic
concept graph? Obviously, there are the “triadic concept instances” (g, c) of
objects g and triadic concepts c coded directly in the concept graph. But more-
over, we assume that there is some “background information” given by “object
implications” and “concept implications” (coded in the underling power con-
text family). Here triadic concepts are identified by intent-modus-pairs. This
approach is introduced in [Wi02] for the dyadic case and in the following section
we generalize this (in the abovementioned sense) to the triadic case.

2.1 Triadic Implications

In the following sections we identify triadic concepts with their intent-modus-
pairs. First, we consider implications between triadic concepts: Let c, d be con-
cepts of a given triadic context K := (G,M,B, Y ), then

c → d in K : ⇐⇒ Ext(c) ⊆ Ext(d).

In the triadic context K2 of Fig. 3 we obtain for example the implications:

b23({ski with}, {in winter}) → b23({play football with}, {in summer})
and

b23({play chess with}, {in winter}) → b23({play football with}, {in summer}).
We compare this kind of implication with the triadic implications introduced in
[Bi98]; there K. Biedermann suggests for sets R,S ⊆ M and C ⊆ B the notion:

(R → S)C : ⇐⇒ (R × C)(1) ⊆ (S × C)(1).

It is easy to check the following two propositions:

Proposition 1. Let K := (G,M,B, Y ) be a triadic context and R,S ⊆ M, C ⊆
B. Then

(R → S)C ⇐⇒ b23(R,C) → b23(S,C)
⇐⇒ b32(R,C) → b32(S,C)
⇐⇒ b23(R,C) → b32(S,C)
⇐⇒ b32(R,C) → b23(S,C). �

Proposition 2. Let K := (G,M,B, Y ) be a triadic context with the concepts
(A1, A2, A3) and (D1, D2, D3). If A3 ⊆ D3, then

(A1, A2, A3) → (D1, D2, D3) ⇒ (A2 → D2)D3 .

If D3 ⊆ A3, then

(A2 → D2)A3 ⇒ (A1, A2, A3) → (D1, D2, D3). �
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However, for our purposes we need not only implications between concepts, but
between sets of concepts and between sets of objects:

Definition 8. Let K := (G,M,B, Y ) be a triadic context and D,F ⊆ T(K),
then D → F is a concept implication in K if

⋂
d∈D Ext(d) ⊆ ⋂

f∈F Ext(f).
Furthermore, for A,C ⊆ G : A → C is an object implication in K if A(1) ⊆ C(1).

�

For the “Basic Theorem of Conceptual Contents” (see section 3) the fol-
lowing lemma is essential because it reduces these “triadic object and concept
implications” to object and attribute implications of a dyadic context:

Lemma 1. For a triadic context K := (G,M,B, Y ) we consider the dyadic con-
text Kd := (G,P, I) wih P := T(K) and gIc : ⇐⇒ g ∈ Ext(c). Then, for
D,F ⊆ T(K), A, C ⊆ G it holds D → F in K if and only if DI ⊆ F I , and
A → C in K if and only if AI ⊆ CI .

Proof: Let D,F ⊆ T(K), then D → F ⇐⇒ ⋂
d∈D Ext(d) ⊆ ⋂

f∈F Ext(f) ⇐⇒
DI ⊆ F I .

Let A,C ⊆ G, let A → C, a ∈ AI and (m, b) ∈ Int(a) ×Mod(a), this implies
∀a ∈ A : (a,m, b) ∈ Y , hence (m, b) ∈ A(1). With A(1) ⊆ C(1) we obtain:
∀c ∈ C : (c,m, b) ∈ Y , and hence a ∈ CI . This implies A → C ⇒ AI ⊆ CI .

Conversely, let AI ⊆ CI , (m, b) ∈ A(1), and c := b23(m, b), this implies ∀a ∈
A : a ∈ Ext(c), hence ∀c ∈ C : c ∈ Ext(c), finally (m, b) ∈ C(1) This implies
AI ⊆ CI ⇒ A → C. �

Lemma 2. Suppose K := (G,M,B, Y ) is a triadic context. Then the concept
lattice of K(1) := (G,M ×B, Y (1)) with (g, (m, b)) ∈ Y (1) : ⇐⇒ (g,m, b) ∈ Y is
isomorphic to the concept lattice of the context Kd (of Lemma 1).

Proof: We consider the maps γd : G → B(Kd) and µd ◦ b23 : M × B → B(Kd).
Obviously, (g, (m, b)) ∈ Y (1) ⇐⇒ (g,m, b) ∈ Y ⇐⇒ γdg ≤ µdb23(b,m). With
the Basic Theorem on Concept Lattices (cf. [GW99]) it remains to show that
µd ◦ b23(M ×B) is

∧
-dense in B(Kd), i.e. for (A,C) ∈ B(Kd):⋂

{Ext(b23(m, b)) |∀a ∈ A : (a,m, b) ∈ Y } ⊆ A.

Let g 	∈ A, then ∃c ∈ C : g 	∈ Ext(c), then ∃(m, b) ∈ Int(c)×Mod(c) : (g,m, b) 	∈
Y , and hence g 	∈ ⋂{Ext(b23(m, b)) |∀a ∈ A : (a,m, b) ∈ Y }. �

Finally, we remark that for subsets A,F ⊆ T(K) the implication A → F holds
if and only if {(m, b) | ∃a ∈ A : (m, b) ∈ Int(a) × Mod(a)}(1) ⊆ {(m, b) | ∃f ∈
F : (m, b) ∈ Int(f) ×Mod(f)}(1).

2.2 Conceptual Contents

The implications of Definition 8 and Lemma 1 give rise to the closure system
C(K) on Simp(Kd) := {(g, c) ∈ G × T(K) | g ∈ Ext(c)}(= I) consisting of all
subsets X ⊆ Simp(Kd) with the following property:

A ×B ⊆ X, A → C, B → D ⇒ C ×D ⊆ X.
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Now, we are able to define the conceptual content of triadic concept graphs (cf.
[Wi04]):
Definition 9. The k-ary conceptual content (or Kk-conceptual content) Ck(G)
of a concept graph G := (V,E, ν, κ, ρ) of a triadic power context family �K :=
(K0,K1,K2, . . .) is defined as the closure of the set

{(g, c) | ∃u ∈ E(k) : g ∈ ρ(u), c = κ(u)}
with respect to the closure system C(Kk) (k = 1, 2, . . .). The 0-ary conceptual
content (or K0-conceptual content) C0(G) is defined as the closure of

{(g, c) | ∃u ∈ V : g ∈ ρ(u), c = κ(u)}∪
{(gi, o2) | ∃k ∃(g1, . . . , gk, c) ∈ Ck(G) : gi ∈ {g1, . . . , gk}}

(with o2 := (G0, (G0 ×B)(2), B)) with respect to the closure system C(K0). Then
the disjoint union

C(G) := C0(G)∪̇C1(G)∪̇C2(G)∪̇ · · ·
is called the (�K-)conceptual content of the concept graph G. �

The conceptual content of the triadic concept graph G of Fig. 4 is C(G) :=
C0(G) ∪ C2(G) with

C0(G) = {Ruth} × {WOMAN, o2, o3} ∪ {Peter} × {MAN, o2, o3} and

C2(G) = {(Ruth, Peter), (Ruth, John)} × {SKI IN WINTER WITH, PLAY
FOOTBALL IN SUMMER WITH, o2, o3}.

The conceptual contents of K are exactly those elements C := (C0, C1, C2, . . .)
of the closure system C(�K) for which (g1, . . . , gk, c) ∈ Ck implies (gi, o2) ∈
C0 (k = 1, 2, . . . ; i ∈ {1, 2, . . . , k}). Notice, that there is no informtion car-
ried by the instances (gi, o2). Furthermore, notice that the conceptual content is
based on the elementary judgments (g, c) and implications in the contexts Kk –
ignoring the relations between the contexts of the power context family.

Conceptual contents give rise to an information order on the class of concept
graphs of a given power context family:

Definition 10. For triadic concept graphs, G1 is defined to be less informative
(more general) than G2 (in symbols: G1

<∼ G2) if Ck(G1) ⊆ Ck(G2) for k =
0, 1, 2, . . .; G1 and G2 are called equivalent (in symbols: G1 ∼ G2) if G1

<∼ G2 and
G2

<∼ G1 (i.e., Ck(G1) = Ck(G2) for k = 0, 1, 2, . . .). The set of all equivalence
classes of concept graphs of a triadic power context family �K together with the
order induced by the quasi-order <∼ is an ordered set denoted by Γ̃ (�K). �

Proposition 3. Γ̃ (�K) is always a complete lattice. For a set {Gi | i ∈ I} of tri-
adic concept graphs Gi := (Vi, Ei, νi, κi, ρi) of �K the supremum of [Gi] (i ∈ I) is
given by [

⋃
i∈I Gi], where

⋃
i∈I Gi := (

⋃̇
i∈IVi,

⋃̇
i∈IEi,

⋃̇
i∈Iνi,

⋃̇
i∈Iκi,

⋃̇
i∈Iρi).

The infimum of [Gi] (i ∈ I) is [G] where G := (V,E, ν, κ, ρ) is given by
E(k) :=

⋂
i∈I Ck(Gi), ν(g1, . . . , gk, c) := ((g1, o2), . . . , (gk, o2)), κ(g, c) := c and

ρ(g, c) := {g}. �
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3 The Basic Theorems on Conceptual Contents

In section 1 triadic concept graphs are introduced as a generalization of dyadic
concept graphs. The conceptual contents of these graphs are based on triadic
object and concept implications. But in Lemma 1 these implications turn out to
“be dyadic”; thus it is not surprising that results of the dyadic theory carry over
to the triadic theory. In this section we discuss this phenomenon by the Basic
Theorems on Conceptual Contents.

3.1 Information Contexts of Lattices

The Basic Theorem (which we discuss in the next section) allows to represent
the Kk-conceptual contents independent of triadic concept graphs – as extents of
a (dyadic) “information context” Kinf (Kk) with Γ̃ ((Kk)) ∼= B(Kinf (Kk)). We
will deduce the Basic Theorem from a more general result about “information
contexts” of lattices (see Proposition 4) which we take over from [Wi03]. First,
we need the following definitions:

Definition 11. An implicational lattice context is defined as a formal context
(K,L,R) formed by complete lattices K and L satisfying
– a ≤K c in K, d ≤L b in L and (c, d) ∈ R imply (a, b) ∈ R,
– A ×B ⊆ R implies (

∨
K A,

∧
L B) ∈ R. �

Definition 12. Let (L,L,≤L) be an implicational lattice context. The implica-
tional lattice structure of (L,L,≤L) is defined as the ordered structure Simp(L) :=
(Simp(L),≤,

∨̃
) with Simp(L) := {(a, b) ∈ L2 | 0 <L a ≤L b} where the order ≤

and the partial supremum
∨̃

are fixed by
– (a, b) ≤ (c, d) :⇔ a ≤L c and d ≤L b,
–
∨̃

(A ×B) := (
∨

L A,
∧

L B) for A ×B ⊆ Simp(L).

In this structure, the implicational closure Cimp(X) of a subset X ⊆ Simp(L)
is the smallest order ideal of (Simp(L),≤) containig X closed under

∨̃
. The set

of all implicational closures of Simp(L) ordered by set inclusion is denoted by
C(Simp(L)). �

Definition 13. Let S(L) be the set of all subsets S of L\{0} for which S∪{0}
is a complete sublattice of the intervall [0,

∨
S] of L. Then for an implicational

lattice context (L,L,≤L), the corresponding conceptual information context shall
be defined as the formal context

Kinf (L) := (Simp(L),S(L), ∆̂)

with (x, y)∆̂S :⇔ [x, y] ∩ S 	= ∅. �

Proposition 4. For an implicational lattice context (L,L,≤L), the extents of
the corresponding conceptual information context Kinf (L) are exactly the impli-
cational closures of the implicational lattice structure Simp(L).

For the proof of this proposition see [Wi03], but notice that it is not sufficient
to take only the convex elements of S(L). �
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3.2 The Basic Theorems

In this section we will introduce information contexts corresponding to triadic
contexts and formulate the Basic Theorems on Conceptual Contents of triadic
concept graphs.

Definition 14. Let K := (G,M,B, Y ) be a triadic context and Kd := (G,P, I)
where P := T(K) and gIp :⇔ g ∈ Ext(p). The information context correspond-
ing to K is defined as the formal context

Kinf (K) := (Simp(Kd),S(B(Kd)), ∆̄)

with Simp(Kd) := I and (g, p)∆̄S :⇔ [γg, µp]∩S 	= ∅. The implicational context
structure of a triadic context K := (G,M,B, Y ) is then defined as the ordered
structure Simp(Kd) := (Simp(Kd),≤,

∨̃
), where the order ≤ and the partial supre-

mum
∨̃

are fixed by

– (g, p) ≤ (h, q) :⇔ γg ≤ γh and µq ≤ µp,
–
∨̃

(A ×B) := {(g, p) | g ∈ AII , p ∈ BII} for A ×B ⊆ Simp(Kd).

In this structure, the implicational closure Cimp(X) of a subset X ⊆ Simp(Kd)
is the smallest order ideal of (Simp(Kd),≤) containing X such that A × B ⊆
Cimp(X) implies

∨̃
(A×B) ⊆ Cimp(X). The set of all implicational closures of

Simp(Kd) ordered by set inclusion is denoted by C(Simp(Kd)). �

Now, we are able to formulate the main result about the conceptual contents
of triadic contexts K := (G,M,B, Y ) (which are understood as the conceptual
contents of the triadic concept graphs of the power conext family �K := (K)),
which is quite similar to its dyadic analogue in [Wi03].

Theorem 1. (Basic Theorem on K-Conceptual Contents of Triadic Con-
texts K) For a triadic context K := (G,M,B, Y ) with ∅(1)(1) = ∅, the extents
of the corresponding conceptual informaion context Kinf (K) are exactly the im-
plicational closures of the implicational context structure Simp(Kd); those impli-
cational closures are exactly the conceptual contents of K.

Remark to the proof: Since the proof is quite similar to its dyadic analogue
in [Wi03] here only some hints are given: In [Wi03] the set of all concept in-
stances of a dyadic context K := (G,M, I) is defined to be Simp(K) := {(g, b) ∈
G × B(K) | g ∈ Ext(b)}, hence a set of object-concept-pairs. Thus, to use the
result of Proposition 4 about Kinf (B(K)) for the proof of the dyadic Basic The-
orem one needs suitable maps ordering the relevant sets of concept-concept-pairs
to sets of object-concept-pairs. In the triadic case one has object-attribute-pairs
(cf. Lemma 1 and Definition 14) instead of object-concept-pairs. But, the treat-
ment of the attributes here works dually to the treatment of the objects in
[Wi03]. �

The Basic Theorem shall be extended to the general case of limited triadic
power context families. Let �K := (K0,K1, . . . ,Kn) be a triadic power context
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family with Kk := (Gk,Mk, B, Yk) (k = 0, 1, 2, . . . n). The conceptual informa-
tion context corresponding to �K is defined as the formal context

Kinf (�K) := Kinf (K0) + Kinf (K1) + · · · + Kinf (Kn).

An extent U of Kinf (�K) is said to be rooted if ((g1, . . . , gk), c) ∈ U always implies
(gi, o2) ∈ U for i = 1, . . . , k. Now, we are able to formulate the desired theorem:

Theorem 2. (Basic Theorem on �K-Conceptual Contents of Triadic Po-
wer Context Families �K) For a (limited) triadic power context family �K with
∅(1)k(1)k = ∅ for k = 0, 1, 2, . . ., the conceptual contents of the concept graphs
of �K are exactly the rooted extents of the corresponding conceptual information
context Kinf (�K).

Proof: The conceptual content of a concept graph G of �K := (K0,K1, . . . ,Kn) is
the disjoint union C(G) := C0(G)∪̇C1(G)∪̇ · · · ∪̇Cn(G) where Ck(G) is an extent
of Kinf (Kk) (k = 0, . . . , n). Therefore C(G) is an extent of Kinf (�K); this extent
is rooted as a direct consequence of the definition of C0(G). Conversely, let U be
a rooted extent of Kinf (�K). Then Uk := U ∩Ck(G) is an extent of Kinf (Kk) for
each k = 0, 1, . . . , n and hence an implicational closure of Simp(Kkd) by the Basic
Theorem on K-Conceptual Contents. This suggests the following construction of
a triadic concept graph (V,E, ν, κ, ρ) of �K:

E(k) := Uk, ν((g1, . . . , gk), c) := ((g1, o2), . . . , (gk, o2)),
κ(g, c) := c and ρ(g, c) := {g}. �

Theorem 1 and Theorem 2 can be understood as generalizations of the
dyadic Basic Theorems if one consider instead of a dyadic power context family
�K := (K0,K1,K2, . . .) the triadic �Kt := (Kt0,Kt1,Kt2, . . .) (see Definition 5 –
Definition 6).

4 Concept Graphs with Subdivision

In this section we will discuss a semantic approach to concept graphs with sub-
division. The meaning of the subdivision is to indicate in a larger concept graph
which parts of it “belong” to the same modus; and moreover to identify this
modus. First, we have to “extend” triadic power context families and relational
graphs (cf. [SW03]):

Definition 15. A triadic power context family with conceptual objects is de-
fined as a triadic power context family �K := (K0,K1,K2, . . .) with a partial map
ξ from the concept set G0 of the context K0 into the set T(K0) of the triadic con-
cepts of K0. The partial map ξ is called subdivision map of �K and the elements
of domξ are called conceptual objects. �

Definition 16. A relational graph with subdivision is a structure (V,E, ν, σ)
where (V,E, ν) is a relational graph and σ : V → P(V ∪ E) is a map such that
v /∈ σn(v) for all v ∈ V and n ∈ N (where σ(X) :=

⋃
w∈X∩V σ(w)). �
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Definition 17. Let �K := (K0,K1,K2, . . .) be a triadic power context family with
subdivision map ξ. Then a structure G := (V,E, ν, σ, κ, ρ) is called a triadic
concept graph with subdivision of �K if (V,E, ν, σ) is a relational graph with
subdivision, (V,E, ν, κ, ρ) is a triadic concept graph of �K and if, additionally,

– σ(w) 	= ∅ ⇒ |ρ(w)| = 1 and ρ(w) ⊆ domξ,
– v ∈ σ(w) ∩ V ⇒ ρ(v) ⊆ (Int(κ(v)) ×Mod(ξ(ρ(w))))(1),
– e ∈ σ(w) ∩ E with ν(e) := (v1, . . . , vk) ⇒ ρ(e) := ρ(v1) × · · · × ρ(vk) ⊆

(Int(κ(e)) ×Mod(ξ(ρ(w))))(1). �

The underlying power context family of the concept graph with subdivision
depicted in Fig. 5 is the triadic power context family �K of Fig. 3 extended
by the conceptual objects “winter” and “summer”, the attribute “season” and
the “self-referential” information, that the winter (summer) is a season in winter
(summer). The subdivision map ξ is given by “winter”�→ ({winter}, {season}, {in
winter}) =: “SEASON IN WINTER” and “summer”�→ ({summer}, {season}, {in
summer}) =: “SEASON IN SUMMER”.

Fig. 5. Triadic concept graph with subdivision

Notice, that in the suggested definition of concept graphs with subdivision
the “modus of the subdivision” is determined by the conceptual objects. This
idea is taken over from the approach in [Wi98]. Of course, other approaches are
conceivable. In our example the modi determined (via subdivision map) by the
conceptual objects are {in winter}, resp. {in summer}. More examples of concept
graphs with subdivision can be found in [Wi98], [GW00] and [SW03].

One can define conceptual contents of concept graphs with subdivision as
a generalization of contents of ordinary triadic concept graphs. To do this we
define for a context Kk of a triadic power context family with subdivision map
ξ object and concept implications:

Definition 18. Let Kk be a context of a triadic power context family �K :=
(K0,K1,K2, . . .) with subdivision map ξ. For A,C ⊆ Gk and D,F ⊆ P ξ

k :=
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{(c, d) | c ∈ T(Kk), c = d, or d ∈ im ξ} we say that A → C is an object impli-
cation in Kk if A(1)k ⊆ C(1)k and D → F is a concept implication in Kk (with
respect to ξ) if⋂

(d1,d2)∈D

(Int(d1) ×Mod(d2))(1) ⊆
⋂

(f1,f2)∈F

(Int(f1) ×Mod(f2))(1).
�

Lemma 3. Let Kk be a triadic context of a triadic power context family �K :=
(K0,K1,K2, . . .) with subdivision map ξ. We define the dyadic context Kξ

kd :=
(Gk, P

ξ
k , I

ξ
k) with gIξ

k(c, d) :⇔ g ∈ (Int(c) × Mod(d))(1). Then for A,C ⊆ Gk

the implication A → C is equivalent to C ⊆ AIξ
kIξ

k , and for B,D ⊆ P ξ
k the

implication B → D is equivalent to D ⊆ BIξ
kIξ

k .

Proof: The proof is almost equal to the proof of Lemma 1. �

So we get a closure system Cξ(Kk) on the set Simp(Kξ
kd) := Iξ

k . Then the
k-ary conceptual content Cξ

k(G) of a concept graph G := (V,E, ν, σ, κ, ρ) of a
triadic power context family �K := (K0,K1,K2, . . .) with subdivision map ξ is
defined as the closure of the set

{(g, c, c) | ∃u ∈ E(k) : g ∈ ρ(u), c = κ(u)} ∪
{(g, c, d) | ∃w ∈ V. ∃u ∈ E(k) ∩ σ(w) : g ∈ ρ(u), c = κ(u), d = ξ(ρ(w))}

with respect to the closure system Cξ(Kk) (k = 1, 2, . . .). Moreover, Cξ
0(G) is

defined as the closure of

{(g, c, c) | ∃u ∈ V : g ∈ ρ(u), c = κ(u)} ∪
{(g, c, d) | ∃w ∈ V. ∃u ∈ V ∩ σ(w) : g ∈ ρ(u), c = κ(u), d = ξ(ρ(w))} ∪

{(gi, o2, o2) | ∃k ∃(g1, . . . , gk, c, d) ∈ Cξ
k(G) : gi ∈ {g1, . . . , gk}}

with respect to the closure system Cξ(K0) and Cξ(G) := Cξ
0(G)∪̇Cξ

1(G)∪̇ · · ·.
The information context corresponding to Kk (with repect to ξ) is defined as

the formal context

Kinf (Kξ
k) := (Simp(Kξ

kd),S(B(Kξ
kd)), ∆̄)

with (g, p)∆̄S :⇔ [γg, µp] ∩ S 	= ∅. Moreover, we set

Kinf (�Kξ) := Kinf (Kξ
0) + Kinf (Kξ

1) + · · · + Kinf (Kξ
n)

for a limited power context family with subdivision map ξ. An extent U of
Kinf (�Kξ) is said to be rooted with respect to ξ if ((g1, . . . , gk), c, d) ∈ U always
implies (gi, o2, o2) ∈ U for i = 1, . . . , k and if for every Uk := U ∩Cξ(Kk) (k ≥ 0)
there is a generating subset Uk of Uk with: (g, c, d) ∈ Uk ⇒ (g, c, c) ∈ Uk. Now,
we obtain the following theorem:
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Theorem 3. For a (limited) triadic power context family �K with subdivision
map ξ with ∅(1)k(1)k = ∅ for k = 0, 1, 2, . . ., the conceptual contents of the con-
cept graphs with subdivision of �K are exactly the extents of the corresponding
conceptual information context Kinf (�Kξ) which are rooted with respect to ξ.

Proof: The conceptual content of a concept graph G of �K := (K0,K1, . . . ,Kn)
is the disjoint union Cξ(G) := Cξ

0(G) ∪ Cξ
1(G) ∪ · · · ∪ Cξ

n(G) where Cξ
k(G) is

an extent of Kinf (Kξ
k) (k = 0, . . . , n) with a generating subset Cξ

k(G) such that
[(g, c, d) ∈ Cξ

k(G) ⇒ (g, c, c) ∈ Cξ
k(G)] by the Basic Theorem on K-Conceptual

Contents and the definition of Cξ
k(G). Therefore Cξ(G) is an extent of Kinf (�K);

this extent is rooted with respect to ξ as a direct consequence of the definition of
Cξ

0(G). Conversely, let U be a rooted extent of Kinf (�K). Then Uk := U∩Cξ
k(G) is

an extent of Kinf (Kξ
k) for each k = 0, 1, . . . , n with a generating subset Uk with

[(g, c, d) ∈ Uk ⇒ (g, c, c) ∈ Uk] and hence an implicational closure of Simp(Kξ
kd)

by the Basic Theorem on K-Conceptual Contents. This suggests the following
construction of a triadic concept graph with subdivision (V,E, ν, σ, κ, ρ) of �K:

E(k) := Uk, ν((g1, . . . , gk), c, d) := ((g1, o2, o2), . . . , (gk, o2, o2)),
σ(h, o2, o2) := {(g, c, d) ∈ V ∪ E | c 	= d and ξ(h) = d},
σ(g, c, d) := ∅ if c 	= o2 or d 	= o2,
κ(g, c, d) := c and ρ(g, c, d) := {g}. �
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Abstract. What we propose here is to reduce the size of Galois lattices
still conserving their formal structure and exhaustivity. For that purpose
we use a preliminary partition of the instance set, representing the asso-
ciation of a “type” to each instance. By redefining the notion of extent
of a term in order to cope, to a certain degree (denoted as α), with this
partition, we define a particular family of Galois lattices denoted as Al-
pha Galois lattices. We also discuss the related implication rules defined
as inclusion of such α-extents and show that Iceberg concept lattices are
Alpha Galois lattices where the partition is reduced to one single class.

1 Introduction

Galois lattices (or concept lattices) are well-defined and exhaustive representa-
tions of the concepts embedded in a data set since they allow us to obtain every
subset of instances distinguishable according to the chosen attributes. However,
when dealing with real-world data sets the size of such a lattice can be too large
to be handled. Various techniques have been proposed to reduce the size of con-
cept lattices by eliminating part of the nodes (e.g. [7]). In particular, Iceberg
concept lattices [14, 17] represent the topmost part of a concept lattice w.r.t. a
global criterion of frequency: only nodes with an extent cardinality satisfying
a threshold according to the whole data set are kept. In this paper, we present
more flexible Galois lattices in which the number of nodes is controlled according
to a local criterion of frequency linked to a prior partition of the set of instances.

The partition is a set of basic classes which are clusters of instances sharing
the same basic type. For instance, in real data concerning the electronic catalog
of computer products C/Net (http://www.cnet.com), there are 59 different ba-
sic types (e.g. Laptops, HardDrives, NetworkStorage) for 2274 instances. Basic
classes are then used in order to add a local criterion of frequency to the notion
of extent as follows: an instance i now belongs to extα(T ), the α-extent of a
subset T of the set of attributes, when it belongs to ext(T ), the extent of T ,
(i.e. i has every of T’s properties), and when at least α % of the instances of the
basic class of i also belong to ext(T ). This new notion of α-extent is used in the

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 299–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI



300 V. Ventos and H. Soldano

Galois connection related to the family of Alpha Galois lattices. Alpha Galois
lattices were first introduced in [12] as a part of the system ZooM.

In comparison with concept lattices, Alpha Galois lattices are mainly char-
acterized by the following properties:

– For the same set of attributes, the same set of individuals, and for any value
of α, the Alpha Galois lattice Gα is coarser than the concept lattice G, i.e.
the set of nodes of Gα is a subset of the set of nodes of the concept lattice
G.

– G0 exactly is G, and G100 also is a concept lattice built from a set of instances
that each represents one basic class.

– The values of α define a total order on Alpha Galois lattices where the
Alpha Galois lattice induced by extα1 is coarser than the Alpha Galois lattice
induced by extα2 if α1 ≥ α2.

– When all individuals belong to a single basic class, the corresponding Alpha
Galois lattice is an Iceberg concept lattice where α

100 = minsupp.
– A property (i.e. an attribute) can belong to an intent of an Alpha Galois

lattice Gα even if it is not globally frequent. For instance, in G90 the “sup-
port” property will appear since in the HardDrives basic class, 92 % of the
instances of HardDrives were sold with support. Actually, this property is
not globally frequent (13 products out of 2274, i.e. 0.5 %) and so would not
apppear in the corresponding Iceberg concept lattice with minsupp = 0.9

– The inclusion of α-extent corresponds to particular implication rules, repre-
senting some kind of approximation of usual implication rules, that depends
on the selected partition of the instances.

The general framework of Galois lattices is given in section 2. In section 3,
we present Alpha Galois lattices illlustrated with a simple example. Section 4
presents experimental results on the C/net data set and discusses the ability
of such a representation to deal with exceptional data (α near 0 or near 100).
Section 5 first discusses Iceberg Alpha Galois lattices together with α-implication
rules, and then briefly addresses theoretical issues as the nature of the objects of
a formal context which concept lattice is isomorphic to an Alpha Galois lattice.
Finally, related work and future work are discussed in section 6.

2 Preliminaries and Definitions

Detailed definitions, results and proofs regarding Galois connections and lattices
may be found in [1, 2]. Other results concerning Galois lattices in the field of
Formal Concept Analysis can be found in [4]. However we need a more general
presentation than the one in [4] as our main goal is to construct Galois lattices
where the notion of extent is not the usual one. In the rest of the paper we
denote as Galois lattice the formal structure that we define hereunder and we
will denote as concept lattice the Galois lattice as presented in [4].We consider
in our presentation that the reader is familiar with the definitions of ordered
set and lattice. We also recall that a mapping w from an ordered set M to M
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is called a closure operator iff for any pair (x, y) of elements of M we have a)
x ≤ w(x) (extensity), b) if x ≤ y then w(x) ≤ w(y) (monotonicity), and c)
w(x) = w(w(x)) (idempotency). An element of M such that x = w(x) is called
a closed element of M w.r.t. w.

Definition 1 (Galois Connection). Let m1: P → Q and m2: Q → P be maps
between two ordered sets (P,≤P ) and (Q,≤Q). Such a pair of maps is called a
Galois connection if for all p, p1, p2 in P and for all q, q1, q2 in Q:

C1- p1 ≤P p2 ⇒ m1(p2) ≤Q m1(p1)
C2- q1 ≤Q q2 ⇒ m2(q2) ≤P m2(q1)
C3- p ≤P m2(m1(p)) and q ≤Q m1(m2(q))

The following simple example will be used in order to illustrate the different
notions presented in section 2 and in section 3.

Example 1. The two ordered sets are (L,
) and (P(I), ⊆). L is a language a
term of which is a subset of a set of attributes A = {t1, t2, t3,a3,a4,a5,a6,a7,a8}.
Here c1 
 c2 means that c1 ⊆ c2. I is a set of individuals = {i1,i2,i3,i4,i5, i6,i7,i8}.
Let int and ext be the two maps int: P(I) → L and ext: L → P(I) such that
int(e1) is the subset of attributes common to all the individuals in e1 and ext(c1)
is the subset of individuals of I which have all the attributes of c1. Example 1 is
fully described in Figure 1 where each line i represents the intent int({i}) of an
individual of I and each column j represents the extent ext({j}) of an attribute
of A.

Together with L and P(I), int and ext define a Galois connection.

Fig. 1. Example 1. Tab(i, j) = 1 if the jth attribute belongs to the ith individual

Definition 2 (Galois Lattices). Let m1: P → Q and m2: Q → P be maps
between two lattices (P,≤P ) and (Q,≤Q), such that (m1,m2) is a Galois connec-
tion.
Let G={ (p,q) with p an element of P and q an element of Q such that p=m2(q)
and q = m1(p)}
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Let ≤ be defined by: (p1,q1) ≤ (p2,q2) iff q1 ≤Q q2.
(G,≤) is a lattice called a Galois lattice. When necessary it will be denoted as
G(P,m1, Q,m2).
Example: In example 1, we have G={(c,e) | c ε L, e ε P(I), e = ext(c) and c =
int(e)}. Then (G, ≤) is a Galois lattice where ≤ is defined by: (c, e) ≤ (c1, e1)
iff e ⊆ e1 (which is equivalent to c ⊇ c1). The Galois lattice corresponding to
example 1 is presented in Figure 2.

Fig. 2. The Galois Lattice corresponding to example 1

In a Galois connection m1◦m2 and m2◦m1 are closure operators on (P,≤P )
and (Q,≤Q). As a consequence, a node of a Galois lattice is a pair of closed
elements of P and Q.
Example: In example 1, ext({a4}) = {i1, i3, i4}, int({i1, i3, i4}) = {a4, a6}.

The term {a4, a6} is therefore a closed term as int(ext({a4}) = {a4, a6}
Furthermore the functions m1 and m2 define equivalence relations on the

lattices P and Q as follows:

Definition 3 (Equivalence Relations on P and Q ). Let ≡P and ≡Q denote
the equivalence relations defined on P and Q by the mappings m1 and m2, i.e.
let p1, p2 be elements of P and q1, q2 be elements of Q:

p1 ≡P p2 iff m1(p1) = m1(p2), and q1 ≡Q q2 iff m2(q1) = m2(q2)

Lemma 1. Let p be an element of P, and q be an element of Q, then m2(m1(p))
is the greatest element of the equivalence class of ≡P containing p and m1(m2(q))
is the greatest element of the equivalence class of ≡Q containing q.

So, a characteristic property of Galois lattices is that each node (p, q) is a
pair of representatives of their respective equivalence classes.
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In our previous example, we used the language L, defined as the powerset
P(A) of a set of attributes A, as the first lattice, and the powerset P(I) of a set
of individuals I as the second lattice. Such a Galois lattice is known as a concept
lattice[4]. In concept lattices, a node (c, e) is a concept, c is the intent and e is
the extent of the concept. The relationship between I and A is expressed as the
formal context (I, A,R) where R ⊆ I × A is the binary relation such that iRa
if an only if the individual i has the attribute a. We have then int(e) = {a ∈
A | ∀i ∈ e, iRa} and ext(c) = {i ∈ I | ∀a ∈ c, iRa}. The Galois lattice presented
in Figure 2 is then the concept lattice defined by the formal context of Figure 1.

Concept lattices are interesting both from a practical point of view, as they
express in a rigorous way the two sides of a concept, and from a theoretical point
of view, as any complete lattice is isomorphic to a concept lattice [4].

3 Alpha Galois Lattices

In what follows we consider, with no loss of generality, L = P(A) and we start
with the concept lattice G(L, ext,P(I), int) as previously examplified. Then we
will discuss a variation on ext whose purpose is to obtain an equivalence rela-
tion ≡‘

L coarser than the original one (see definition 9) thus resulting in larger
equivalence classes on L and so on less nodes in the corresponding Galois lattice.

The new ext function relies on the association of a predefined type to each
individual of I. The corresponding clusters of instances, which form a parti-
tion of I are denoted as basic classes. The first idea is then to gather such
clusters rather than individuals (see [12]). For instance, let us assume that the
attributes t1, t2, t3 express the types of the individuals of example 1. These types
corresponds to three basic classes BC1, BC2, BC3 whose descriptions are the
following:

BC1={i1,i2}, int(BC1)= {t1,a3,a6}; BC2={i3,i4,i5}, int(BC2)= {t2,a6};
BC3={i6,i7,i8}, int(BC3)= {t3,a3,a6,a8}.

Let us consider the concept lattice built on a set of individuals {bc1,bc2,bc3},
that we call the prototypes of their respective basic classes, and that are such
that, for any index i, int(BCi) = int({bci}). This concept lattice is represented
in Figure 3 as a particular case of an Alpha Galois lattice, and is much smaller
than the original concept lattice.

Now, we propose an intermediate approach where the entities gathered can
be other subsets of I than either individuals or whole basic classes. This leads
to the definition of Alpha Galois lattices.

3.1 Alpha Definitions

Definition 4 (Alpha Satisfaction). Let α belong to [0,100]. Let e={i1, . . . , in}
be a set of individuals and T be a term of L. Then,

e α − satisfies T (e satα T ) iff | ext(T ) ∩ e | ≥ |e|.α
100

Since the Alpha satisfaction is defined according to a set of individuals and to
a term of the language L, we can use it to check whether at least α % of a basic
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class satisfies a term of L and add this constraint to isa, the classical membership
relation between individuals and terms. In what follows i isa T means i ∈ ext(T ).
We call this notion (membership relation plus Alpha satisfaction of the basic
class) the Alpha membership relation.

Definition 5 (Alpha Membership Relation). Let I be a set of individuals
and BC be a partition of I into a set of basic classes. Let BCl : I → BC be such
that BCl(i) is the basic class to which belongs i, and let T be a term of L, then:

i isaα T iff i isa T and BCl(i) satα T

Example (Example 1). Let T={a6,a8}, ext(T) = {i1,i3,i5,i6,i7,i8}. BC1
sat50 T since i1 isa T and | BC1 | =2. As a result i1 isa50 T . BC2 sat60
T since | ext(T ) ∩ BC2 |≥ |BC2|.60

100 . So we have i3 and i5 isa60 T . Finally
BC3 sat100 T since 100 % of the individuals of BC3 belong to the extent of T .
So we have i6, i7, and i8 isa100 T .

Finally, we use the Alpha membership relation to define the notion of extent
used in Alpha Galois Lattices.

Definition 6 (Alpha Extent of a Term). The α-extent of T in I w.r.t. the
set BC of basic classes is the following set:

extα(T ) = {i ∈ I | i isaα T}
Example (Example 1) : Let T={a6,a8}, then ext0(T)= ext(T) = {i1, i3,i5,
i6,i7,i8}, ext60(T)= {i3,i5,i6,i7,i8} and ext100(T)= {i6,i7,i8}.

The following proposition about the new Galois connection needs the defini-
tion of Eα, a subset of P(I) whose elements are made of sufficiently large parts
of basic classes.

Proposition 1. Let Eα be the following subset of P(I):
Eα = {e ∈ P(I) | ∀i ∈ e | e ∩BCl(i) | ≥ |BCl(i)|.α

100 }.
Then int and extα define a Galois connection on L and Eα.

Proof: The proof relies on theorem 1 given in the next section and is presented
as the proof of a corollary.

We can therefore define Galois lattices from this new Galois connection and
we called them Alpha Galois lattices.

Definition 7 (Alpha Galois Lattices). The Galois lattice G(L, extα, Eα, int)
corresponding to the Galois connection defined above is called an Alpha Galois
lattice and is denoted as Gα.

When α is equal to 0, Eα = P(I) and extα = ext. Therefore, the Alpha
Galois lattice is the concept lattice corresponding to the same attributes and
instances. When α is equal to 100, the nodes of the Galois lattice are only whole
basic classes gathered. As a consequence the Alpha Galois lattice is the concept
lattice obtained by considering as instances the prototypes of the basic classes.
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The Alpha Galois lattice G100 of Example 1 is represented in Figure 3. Figure
4 presents the topmost part of G60. Note that intents of the nodes of G100 are
also intents of nodes of G60 that in turn are all intents of nodes of the original
concept lattice G0 (see Figure 2).

Fig. 3. When α =100 the Alpha Galois lattice G100 of example 1 is much smaller than
the original concept lattice presented in Figure 2

{a6,a8}{i3,i5,i6,i7,i8}

{a6}{i1,i2, ... ,i8}

{t2,a6}{i3,i4,i5}

�t3,a3,a6,a8��i6,i7,i8� {t2,a4,a6}{i3,i4}

�a3,a6��i1,i2,i6,i7,i8�

Fig. 4. α = 60 : The topmost part of G60 of example 1. New nodes, w.r.t. G100 are
the lighter ones

Moreover, there exists a total order on Alpha Galois lattices defined in the
next section.

3.2 Alpha Galois Lattice Order

In [5] the authors give a formal view to the extension of formal concept analysis
to more sophisticated languages of terms and use the notion of projection as a
way to obtain smaller lattices by reducing the language. [12] independently uses
the same notion of projection with a similar scope and also introduce exten-
sional projections to modify the ext function. We recall hereunder the notion of
projection:

Definition 8 (Projection). Proj is a projection of an ordered set (M,≤) iff
for any pair (x,y) of elements of M:
x ≥ Proj(x) (minimality),
if x ≤ y then Proj(x) ≤ Proj(y) (monotonicity),
Proj(x) = Proj(Proj(x)) (idempotency).
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Applying first the mapping ext and then an extensional projection yields an
equivalence relation ≡′

L which is coarser than the original one, thus resulting in
larger equivalence classes on L [12].

Definition 9. Let ≡1
L be the equivalence relation defined on L by the mapping

ext1, and let ≡2
L be the equivalence relation defined on L by the mapping ext2,

then, ≡2
L is said coarser than ≡1

L iff for any pair (c1,c2) of elements of L we
have:
if ext1(c1) = ext1(c2) then ext2(c1) = ext2(c2).

The following theorem [12] has a corollary that proves the proposition 1:

Theorem 1 (An Extensional Order on Galois Connections).
Let int and ext define a Galois connection on L and E, and let proj be a

projection of E. Let E1 = proj(E) and ext1 = proj ◦ ext. Then:
1) int, ext1 define a Galois connection on L and E1.
2) The Galois lattice G1(L, ext1, E1, int) has the following property: for any

node g1 = (c, e1) in G1 there exists a node g = (c, e) in G(L, ext, E, int), with
the same intent c, such that e1=proj(e).

3) ≡1
L is coarser than ≡L.

We will say then that G1 is coarser than (or nested in) G and write G1 =
proj(G). Let (c,e) be a node of G, then proj(c,e) = (int ◦ proj(e), proj(e)) is the
projected node in G1.

Corollary 1. Let G(L, ext,P(I), int) be a Galois lattice. Let α ∈ [0, 100] and for
e ∈ P(I), let :

– projα(e) = e− {i | i ∈ e and | e ∩BCl(i) | < |BCl(i)|.α
100 }

– extα= projα ◦ ext and Eα = projα(P(I))

Then:
- int, extα define a Galois connection on L and Eα and G(L, extα, Eα, int)

is a Galois lattice coarser than G.

proof: In order to prove this corollary, we simply have to show that projα is a
projection: -projα(e) is included in e since we remove elements of e, so projα is
minimal. - If e is included in e′, every element of e removed when applying projα
on e′ will also be removed when applying projα on e, so projα is monotonic. -
finally, projα is idempotent since no more element of projα(e) can be removed
by applying again projα.

Furthermore, we can order the alpha extents according to the value of α: For
every pair (α1, α2) such that α1 ≤ α2, extα2 = projα ◦ extα1 with α = α2. As
a consequence, the value of α defines a total order on Alpha Galois lattices:

Proposition 2 (A Total Order on Alpha Galois Lattices). Let us denote
as ≡α the equivalence relation on L associated to extα. Then for every pair (α1,
α2) such that α1 ≤ α2, ≡α2

L is coarser than ≡α1
L .
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proof: projα is a projection for every value of α belonging to [0,100].
extα1=projα ◦ext with α = α1 and extα2=projα ◦extα1 with α = α2. According
to 3) of Theorem 1, ≡α2

L is then coarser than ≡α1
L .

Example: ≡100
L is coarser than ≡60

L which is in turn coarser than ≡0
L that is the

equivalence relation ≡L of the concept lattice.

The previous proposition is the basis to make successive refinements in Alpha
Galois lattices (see section 4).

There is also a partial order associated to the initial partition BC of I in basic
classes. Let us suppose that we substract some basic classes from I, and so from
BC, thus obtaining a reduced instance set I ′ together with a reduced partition
BC′. It is then easy to show (proof omitted here) that there is a projection proj
such that the corresponding E′

α simply rewrites as proj(Eα). As a consequence
we have the following property where we denote as GB

α the Alpha Galois lattice
built from the partition B.

Proposition 3 (A Partial Order on Alpha Galois Lattices). Let BC′ be a
subset of the set of basic classes BC, then the Alpha Galois lattice GBC′

α is coarser
than the Alpha Galois lattice GBC

α .

An interesting case is the one of the partition {I} in which we consider only
one single class, i.e. the case in which all individuals share the same type. The
corresponding Alpha Galois lattice is the topmost part of the concept lattice
defined by the same language L and the same set I of individuals. The lattice
then only contains nodes whose extents have a size greater than α

100 |I| (plus
the bottom node whose extent is empty). This structure has been previously
investigated and is denoted as an Iceberg (or frequent) concept lattice [14, 17]
where α

100 corresponds to the value of the support threshold minsupp.
Note that because of Proposition 3, the Iceberg lattice of any basic class BCi

of a partition BC is always coarser than the Alpha Galois lattice corresponding
to BC.

4 Experiments

The program ALPHA that computes Alpha Galois lattices relies on a straight-
forward top-down procedure in which nodes are generated as follows: a current
node intent c is specialized by adding a new attribute a, then int◦extα is applied
to c ∪ {a} in order to obtain a closed term; the corresponding node has then to
be compared to previous nodes in order to avoid duplicates.

We have experimented with ALPHA on a real dataset composed of 2274
computer products extracted from the C/Net catalog. Each product is described
using a subset of 234 attributes. There are 59 types of products and each product
is labelled by one and only one type.

In our first experiment we have built G100 using the whole data set (so prac-
tically restricted to 59 prototypical instances). Then we smoothly lowered the
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value of α and recomputed the corresponding Gα lattice. As we can see here-
under the number of nodes (and so the CPU time) exponentially grows from
211 concepts to 165369 as α varies from 100 to 91. This means that it is here
impossible to have a complete view of the data at the level of instances (α=0)
and that even relaxation of the basic class constraint (starting with α=100) has
to be limited:

Alpha 100 98 96 94 92 91
Nodes 211 664 8198 44021 107734 165369

Our second experiment concerns the part of G100 between the node whose
extent contains the 3 basic classes (Laptop (252 instances, 39 attributes in-
volved), Hard-drive(45 instances, 22 attributes), Network-storage(4 instances,
16 attributes)) and the Bottom node.

The new G100 contains now 5 nodes (to be compared to the maximum number
of 23 = 8 nodes). Here computation of Gα is performed for a set of values
α ∈ [0, 100] together with the corresponding Iceberg lattices (see Figure 5). We
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Fig. 5. Number of nodes vs Alpha values for Iceberg lattices and Alpha Galois lattices

are first interested in what happens with high values of α. Starting from G100,
new nodes appear as α slowly decreases. For instance at α = 99, a new node
appears under the G100 node standing for the basic class Laptop. The intent of
the new node now contains the attribute “network-card”. This is due to the fact
that most instances of the class Laptop do possess a network card. So by relaxing
the basic class constraint we get rid of the few, exceptional, instances of Laptop
found in the catalog and that were hiding this “default” property of Laptop in
G100. In the same way most hard-drives are sold with “support”. So at α = 92,
a new node representing hard-drives with “support” appears. Note that in this
case, the attribute “support” is infrequent when considering all the instances
(“support” appears in 13 products out of 301) and so would not be considered
in a Iceberg concept lattice, whereas it is frequent within the hard-drive class
(13 products out of 15) and so comes out in the Alpha Galois lattice G90. As a
summary, by slowly decreasing α from 100 we have a more accurate view of our
data by revealing properties that are relevant to at least some basic classes.
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Fig. 6. Number of nodes vs Alpha values for Iceberg lattices and Alpha Galois lattices

Now as α slowly grows from 0 to small values (say 10), some instances, whose
behavior is exceptional within their basic class w.r.t. some term t of L, will dis-
appear from the corresponding α-extent. These instances are exceptional as they
belong to the extent of the term t whereas very few instances of the same basic
class do belong to this extent. As a result some properties that are very infrequent
within some basic class will no longer be allowed to discriminate concepts. For
example, only few Laptops have the property “Digital-Signal-Protocol”, and so
when α = 6 , nodes whose intent contains the “Digital Signal Protocol” property
no more include instances of Laptop in their extent. As a result terms including
“Digital-Signal-Protocol” become equivalent whenever their extent only differed
because of Laptop instances, thus resulting on a smaller (and so simpler) lat-
tice. However a closer look to Figure 5 shows there can be a large number of
nodes even for high values of α. In this particular example this is due to the
fact that one basic class, namely Laptop, has a huge Iceberg lattice that invades
the Alpha Galois lattice (data not shown). An experiment with 24 basic classes
and 1187 objects (some large basic classes are removed thus resulting in a more
homogenous class size distribution) shows that the size of Alpha Galois lattices
can be really different from the one of Iceberg lattices (see also Figure 6) :

Alpha Values 100 80 50 30 0
Alpha Nodes 158 842 1493 1900 2202
Frequent Nodes 2 18 18 50 2202

5 Issues Related to the Alpha View of Data

5.1 Combining Global and Local Frequency Constraints: Frequent
Alpha Lattices

On one hand, in Iceberg concept lattices we apply a global frequency constraint
to the concept lattice: all nodes whose extents are small enough are eliminated
(i.e. sent to the bottom node). When the threshold is high this unfortunately
tends to eliminate many intents that, though globally infrequent, are frequent in
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some basic classes. On the other hand in Alpha Galois lattices we apply a local
frequency constraint in such a way that intents frequent in at least one basic
class appear in the lattice. However, a side effect is that an Alpha Galois lattice
may still be very large, especially when using small values of alpha. Our proposal
here is to combine these two constraints : we will only consider nodes whose α-
extent is large enough. Applying the global constraint allows to eliminate nodes
that are locally frequent on some basic classes, and so would be interesting, but
still represent few instances and so can be discarded when we want a simpler
view of the data.

The result of such a filter is again a Galois lattice. More precisely, for any
real number f with 0 ≤ f ≤ 1, consider the function projf on Eα such that
projf (e) = e whenever |e|

|I| ≥ f and projf (e) = ∅ otherwise. projf clearly is a
projection, and therefore Gf

α =projf (Gα) is a Galois lattice coarser than Gα.
More precisely it corresponds to the topmost part of Gα plus a bottom node.

We denote Gf
α as the Iceberg Alpha lattice associated to the instance set I, the

partition BC of I, the Alpha value α and the global frequency threshold f . The
corresponding α-implication rules (see next section) have a support greater than
f . Note that we will speak here of an α-support since the support is computed
using α-extents.

5.2 Alpha Implication Rules

Association rules, as usually defined in data mining, are implications whose truth
values are observed on a set of instances I. Each association rule has a support
value, i.e. the frequency of its antecedent part within the instance set I, together
with a confidence value. When its confidence value is 1, an association rule is
called an implication rule. When considering concept lattices, the partial order
induced on terms by the Galois connection can be related to a set of implication
rules. More precisely extI(T1) ⊆ extI(T2) means that the implication T1 → T2
holds for all instances of I. In such rules, T1 will be denoted as the left part
and T2 as the right part. In Iceberg concept lattices, the extent of a term is
redefined as empty whenever the term is infrequent in I, i.e., when its original
extent contains less than minsupp ∗ |I| instances of I. As a consequence the
corresponding implication rules all have a support greater than minsupp.

Association rules are efficiently constructed in two steps, first constructing
the Iceberg concept lattice corresponding to the instance set I. The intents of
the concepts of an Iceberg concept lattice are usually denoted as closed fre-
quent itemsets. Association rules are then built using closed frequent itemsets
[11, 18]. The basic idea is that, as mentioned before, a node in the concept lat-
tice corresponds to an equivalence class of terms, all sharing the same extent. In
particular, the intent of the node, i.e., the unique greatest term, has the same
extent as all the smallest terms (also called generators). We obtain then for each
node several implication rules whose left part are these generators, and whose
right part is the intent of the node. Part of the set of all these rules extracted
from the concept lattice produces the non-redundant Guigues-Duquenne basis
of implication rules [6]. For sake of clarity, the left part of each rule is sub-
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stracted from the right part. For instance, let the node be ({a, b, c}, {i1, i2, i3})
and suppose that the generators of the corresponding equivalence class are
{{a}, {b}} (this means that extI({a})= extI({b}) = {i1, i2, i3}). We obtain then
the implication rules {{a} → {a, b, c}, {b} → {a, b, c}} that are rewritten as
{{a} → {b, c}, {b} → {a, c}}.

Now, in Alpha Galois lattices, whenever extα(T1) ⊆ extα(T2) we will say that
the α-implication T1 →α T2 holds on the pair (I,BC). Because they are derived
from a Galois lattice, α-implication are transitive, monotonic and additive:

–If T1 →α T2 and T2 →α T3, then T1 →α T3
–If T1 →α T2 , and T1 ⊆ T, then T →α T2
–If T1 →α T2 and T3 →α T4, then T1 ∪ T3 →α T2 ∪ T4. Furthermore we have

the modus ponens as an inference rule:
If i isaα T1 and T1 →α T2, then i isaα T2
The Guigues-Duquenne basis of implication rules has been extended to rules

with a minimal support minsupp. Also the Luxenburger basis of association
rules [10] summarizes rules whose confidence is greater or equal to a minimal
confidence level minconf and has also been extended to rules with a minimal
support. Both extended bases are computed using the closed terms of the corre-
sponding Iceberg lattice [11, 13]. Hereunder we adapt definitions of support and
confidence to Alpha rules by changing extents to α-extents:

Definition 10. An α-association rule is a pair of terms T1 and T2, denoted as
T1 →α T2.

The support and confidence of an α-association rule r= T1 →α T2 are defined
as follows :

α-supp(r) = |extα(T1∪T2)|
|I|

α-conf(r) = |extα(T1∪T2)|
|extα(T1)|

The α-association rule r= T1 →α T2 holds on the pair (I,BC) whenever
α-supp(r) ≥ minsupp and α-conf(r) ≥ minconf .

Note that when we consider the implication rules derived from a Galois lat-
tice, the right part T2 of the rule is an intent and the left part T1 is smaller
than T2. As a consequence we have T1 ∪ T2 = T2 and the α-support rewrite
as |extα(T2)|

|I| . This means that the set of rules whose α-support is greater than
minsupp is obtained from the nodes of the Iceberg Alpha lattice Gminsupp

α . The
adaptation of the methods proposed in [11, 13] to compute these bases, start-
ing from the Iceberg lattice (or equivalently from the set of closed terms), is
straightforward (basically we simply have to compute α-extents rather than ex-
tents when adapting existing algorithms).

We would now emphasize by an example the meaning and usefulness of such
rules to handle exceptions when individuals are labelled with basic classes as
proposed in this paper. For this purpose, let us suppose that we have divided
animals (i.e. individuals) into basic classes as mammals, birds, insects and that
we search for general rules in the data. An intuitive rule is the following : an
animal that flies should have wings. This rule holds for birds (unflying birds, as
ostriches, do not contradict the rule) as well as for insects. The rule should also
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hold for mammals, that generally do not fly, but is falsified by a flying squirrel.
The Alpha approach benefits here from the fact that very few mammals fly (in
other words the antecedent part of the rule is infrequent within the basic class
to which belong the individual that falsifies the rule). When using α-extents,
the flying-squirrel is removed from the antecedent part of the rule. Here, a small
value of α is sufficient to obtain an α-implication rule expressing that flying
animals have wings. Of course greater values of α, namely close to 100, also
preclude falsifying the rule. However in the latter case α-implication rules express
something different: they apply to individual whenever the antecedent part is
common to most individuals of the same basic class. In our example, only birds
would be concerned with such a rule, as most of them fly, but not insects.

5.3 Theoretical Issues

A first question concerns what happens if we allow the basic classes to over-
lap. A natural modification of definition 5 consists then to require that at least
one of the basic classes to which belong the instance α-satisfies the term. Al-
pha membership is then defined as follows: : i isaα T iff i isa T and there
exists a basic class BC such that i ∈ BC and BC satα T . By accordingly
modifying the mapping projα (for each individual i in e there must be at least
one basic class BC such that i ∈ BC and | e ∩ BC |≥ |BC|.α

100 ) we again ob-
tain an extensional projection, and so a Galois connection and a Galois lattice.
The partial and total orders mentionned in section 3.2 are also preserved. A
second question concerns the relationship between Alpha Galois lattices and
formal concept analysis. To obtain a representation formal context [5] for an
Alpha Galois lattice Gα, i.e. a formal context whose concept lattice is isomor-
phic to an Alpha Galois lattice, we consider as objects particular subsets of the
basic classes. More precisely, for each basic class BCi we consider the small-
est elements of projα(P(BCi)) strictly greater than ∅. We denote as Iα the
set of all these subsets. For instance, when considering our example 1, we obtain
I60 = {{i1, i2}, {i3, i4}, {i4, i5}, {i3, i5}, {i6, i7}, {i7, i8}, {i6, i8}}. The incidence
relation Rα between the set Iα of objects and the set A of attributes is then de-
fined as follows : oRαa iff o ⊆ ext({a}). Let us denote as extIα

and intIα
the map-

pings of this formal context. In example 1 we have ext60({a8}) = {i3, i5, i6, i7, i8}
and ext60({a4}) = {i3, i4} and so ext60({a8, a4}) =proj60({i3})=∅. We also have
extI60({a8})= {{i3, i5}, {i6, i7}, {i7, i8}, {i6, i8}} and extI60({a4})= {{i3, i4}}
and so extI60({a8, a4}) = extI60({a8}) ∩ extI60({a4}) = ∅. Note that I0 is then
made of the singletons of I and I100 is the set of prototypes of the basic classes.
We refer to Iα as the set of the α − prototypes of BC. Clearly, we have for any
α-prototype o, intIα

({o}) = int(o) and more generally intIα
({o1, o2, ..., on}) =

int(o1 ∪ o2 ∪ ... ∪ on).

6 Related Work and Conclusion

Recent work in Knowledge Representation and Machine Learning investigates
Galois connections and lattices based on languages of terms more sophisticated
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than those used in concept lattices, so modifying the notion of intent of a con-
cept [4, 3, 9, 5]. We have shown here that by restricting the notion of extent of
a term with respect to a given partition of the instance set I, we also modify
the lattice of extents which is no longer P(I) and we obtain a new family of
Galois lattices. As mentioned above Iceberg concept lattices [17, 14] formally are
Alpha Galois lattices in which all individuals belong to the same basic class. Be-
sides, the implication rules related to Alpha-Galois lattices simply correspond to
inclusion of α-extents, and such α-implication can be extracted from the Alpha-
Galois lattices in the same way as implication rules are extracted from Iceberg
concept lattices. Note that α-implication rules inherit from the Galois lattice
structure properties (as transitiviy) unusual when dealing with “approximate”
rules. About the construction of Alpha Galois lattices, it should be interest-
ing to adapt efficient algorithms (e.g. [8]). Furthermore, as a consequence of
property 3, another way [16] to build Alpha Galois lattices is to first build the
iceberg lattices corresponding to each basic class and then combine them using
a subposition operator as previously proposed by [15] to efficiently build concept
lattices Note that this is the basis of the basic class incrementality of Alpha Ga-
lois lattices. We have also seen in 5.3 that the objects of a representation formal
context for an Alpha Galois lattice are the minimal subsets of the basic classes
that satisfy a cardinality constraint (we call them the α-prototypes of each basic
class). As a conclusion there is still much work to experiment and to investigate
theoretical issues and practical use of Alpha Galois lattices and corresponding
α-implication rules. However they represent a flexible tool to investigate data
and handle exceptions that are relative to a preliminary view of the data.

Acknowledgments. Many thanks to Nathalie Pernelle for its valuable contribution
to the work presented here, and to Philippe Dague for his reading of an earlier
draft of this paper.
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matique et Sciences Humaines, 29(113):35–55, 1991.

11. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

12. N. Pernelle, M-C. Rousset, H. Soldano, and V. Ventos. Zoom: a nested Galois
lattices-based system for conceptual clustering. J. of Experimental and Theoretical
Artificial Intelligence, 2/3(14):157–187, 2002.

13. Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal. In-
telligent structuring and reducing of association rules with formal concept analysis.
Lecture Notes in Computer Science, 2174:335–349, 2001.

14. Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal.
Computing iceberg concept lattices with titanic. Data and Knowledge Engineering,
42(2):189–222, 2002.

15. P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards
building Galois (concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.

16. V. Ventos and H. Soldano. Les treillis de Galois alpha ou De l?influence d?une
partition a priori des donneés. Revue d’Intelligence Artificielle, to appear, 2005.

17. K. Waiyamai and L. Lakhal. Knowledge discovery from very large databases using
frequent concept lattices. In 11th Eur. Conf. on Machine Learning, ECML’2000,
pages 437–445, 2000.

18. M. J. Zaki. Generating non-redundant association rules. Intl. Conf. on Knowledge
Discovery and DataMining (KDD 2000), 2000.



A Finite State Model for On-Line Analytical Processing
in Triadic Contexts

Gerd Stumme

Chair of Knowledge & Data Engineering, Department of Mathematics and Computer Science,
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Abstract. About ten years ago, triadic contexts were presented by Lehmann and
Wille as an extension of Formal Concept Analysis. However, they have rarely
been used up to now, which may be due to the rather complex structure of the
resulting diagrams. In this paper, we go one step back and discuss how traditional
line diagrams of standard (dyadic) concept lattices can be used for exploring and
navigating triadic data.

Our approach is inspired by the slice & dice paradigm of On-Line-Analytical
Processing (OLAP). We recall the basic ideas of OLAP, and show how they may be
transferred to triadic contexts. For modeling the navigation patterns a user might
follow, we use the formalisms of finite state machines. In order to present the
benefits of our model, we show how it can be used for navigating the IT Baseline
Protection Manual of the German Federal Office for Information Security.

1 Introduction

Concept lattices have proven their high potential for visualizing and exploring datasets
in many applications during the last 25 years. This success of Formal Concept Analysis
incited researchers to extend it to other types of knowledge representation. Among them
are for instances logical extensions, relational data, and power context families. One
of these extensions are triadic contexts, which were introduced ten years ago by Fritz
Lehmann and Rudolf Wille in [14]. They defined a triadic formal context as a quadruple
K := (G,M,B, Y ) where G, M , and B are sets, and Y is a ternary relation between
G, M , and B, i. e., Y ⊆ G × M × B. The elements of G, M , and B are called
(formal) objects, attributes, and conditions, resp, and (g,m, b) ∈ Y is read “object g
has attribute m under condition b. A triadic concept of K is a triple (A1, A2, A3) with
A1 ⊆ G, A2 ⊆ M , and A3 ⊆ B where A1 × A2 × A3 ⊆ Y such that none of its three
components can be enlarged without violating this condition.

Lehmann and Wille present an extension of the theory of ordered sets and (concept)
lattices to the triadic case, and discuss structural properties. This approach initiated
research on the theory of concept trilattices, which was followed by several researchers
(e. g., [1, 2, 3, 4, 5, 6, 8, 10, 11, 15, 16, 17, 18, 20, 21, 22]). Already in the first paper on
this topic, Lehmann and Wille elaborated also a visualization of concept trilattices in
triadic diagrams. But even though there are applications where the natural representation
of the data are triadic contexts, the visualization by triadic diagrams never made it into
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practice, and there exist only few visualizations of rather small concept trilattices. This
is probably due to the complex structure of the diagrams. In this paper, we go one step
back and discuss how traditional line diagrams of dyadic concept lattices can be used
for exploring and navigating triadic data.

The idea of deriving dyadic contexts from the triadic one is not new. Lehmann and
Wille present, for instance, in [14] the derived dyadic context K(1) := (G,M×B, Y (1))
with (g, (m, b)) ∈ Y (1) : ⇐⇒ (g,m, b) ∈ Y (marked by ‘

M

’ below), and its two
symmetric variations. In [8], the set B is used to define two modal operators (marked
by ‘∃’ and ‘∀’ below). We will use these derivation modes later, but will set them in a
common navigation framework.

Our approach for navigating triadic data is inspired by the slice & dice paradigm
of On-Line-Analytical Processing (OLAP). We present the basic ideas of OLAP in the
next section, and show how they may be transferred to triadic contexts. For modeling the
navigation patterns a user might follow, we use the formalisms of finite state machine
(see Section 3). In order to present the benefits of our model, we show in Section 4 how
it can be used for navigating the IT Baseline Protection Manual of the German Federal
Office for Information Security. As this model is only a first step to a comprehensive
navigation environment for triadic (and possibly other) data, many interesting research
questions remain open. They conclude the article.

2 On-Line Analytical Processing and Triadic Contexts

The expression On-Line Analytical Processing (OLAP) has been coined by E. F. Codd
et al in [7], and stands for the analysis of multi-dimensional data. We will first give a
short introduction in the main features of OLAP as far as they are needed in this paper,
before informally outlining how we adapt them to triadic contexts.

OLAP relies on the metaphor of a (high-dimensional) cube containing data. One
might for instance want to structure sales facts along the dimensions region, product
and time. These dimensions span a three-dimensional cube as shown in Fig. 1. The cube
is composed of cells, one for each combination of a region, a product, and a day. The
cell contains a numerical value indicating how many items of that product have been
purchased in the specific region on the given day.

Fig. 1. A data cube
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The analyst may ask queries like ‘Give me the sales facts for all products over all
days in Hessen’or ‘Give me the total number of items sold of product X in Hessen within
the whole time period’. Both queries reduce the dimensionality of the answer: the first
query returns a two-dimensional answer (the ‘slice’which is indicated in Fig. 1), while the
second query returns a one-dimensional answer. This reduction of the dimensionality
is known as slicing in OLAP. The second query applies additionally an aggregation
function as it sums up numbers of items. There are usually predefined hierarchies on
the dimensions along which the aggregation takes place. For instance, days may sum
up to months, and months to years. In this paper, however, we won’t make use of these
hierarchies.1 An additional feature of OLAP is dicing2 which rotates the data cube. This
is particularly useful if the results are presented by spreadsheets, as it allows to permute
rows and columns.

The association between OLAP data cubes and triadic contexts is now straight for-
ward. The latter can in fact be considered as an OLAP data cube with three dimensions
(G, M , and B), and the content of the cells represents the membership function of the
relation Y .

As in OLAP, we want to be able to dice. This means that we want to allow to use any
of the three sets as the set of objects at some point in time, depending on the task on hand.
Therefore, we will not fix the roles of the three sets in advance. Instead, we consider a
triadic context as symmetric structure, where all three sets are of equal importance. The
decision which of the sets is considered as object set, attribute set, and condition set,
resp., is made later by the user. For easier handling, we will therefore denote the triadic
context K := (G,M,B, Y ) alternatively by K := (K1,K2,K3, Y ) in the sequel. We
consider all (triadic) contexts in this paper to be finite.

We will usually not work on the full triadic context (K1,K2,K3, Y ). Instead, we
allow to focus on subsets of interest. Hence, for each of the three dimensions, we allow
to restrict the set Ki to any subset Xi we are currently interested in. Thus, the current
triadic context is just the sub-context (X1, X2, X3, Y ∩(X1×X2×X3)). This reduction
is inspired by the slicing operation in OLAP.

Dicing is modeled by a permutation on the set {1, 2, 3}, i. e., by an element σ of the
full symmetric groupS3. Such a permutation indicates that currentlyXσ(1) is considered
as set of objects, Xσ(2) as set of objects, and Xσ(3) as set of conditions.

The aggregation mode is determined by one of the four options ‘∃’, ‘∀’, ‘

G

’, and ‘

M

’.

– In the first case, we consider the concept lattice of the dyadic context

Kσ,∃
X1,X2,X3

:= (Xσ(1), Xσ(2), I)

with (xσ(1), xσ(2))∈I if and only if there exists xσ(3)∈Xσ(3) with (x1, x2, x3)∈Y .
– In the second case, we consider the concept lattice of the dyadic context

Kσ,∀
X1,X2,X3

:= (Xσ(1), Xσ(2), I)

with (xσ(1), xσ(2)) ∈ I if and only if for all xσ(3) ∈ Xσ(3) holds (x1, x2, x3) ∈ Y .

1 For a combination of these hierarchies with Formal Concept Analysis, see [19].
2 Here the terminology is diverging in the literature. In some papers this is called pivoting, while

‘dicing’ is used for ‘slicing’ with resulting slices of dimension 3 or higher.



318 G. Stumme

– In the third case, we consider the concept lattice of the dyadic context

Kσ,

G

X1,X2,X3
:= (Xσ(1) ×Xσ(3), Xσ(2), I)

with ((xσ(1), xσ(3)), xσ(2)) ∈ I if and only if (x1, x2, x3) ∈ Y .
– In the fourth case, we consider the concept lattice of the dyadic context

Kσ,

M

X1,X2,X3
:= (Xσ(1), Xσ(2) ×Xσ(3), I)

with (xσ(1)), (xσ(2), xσ(3))) ∈ I if and only if (x1, x2, x3) ∈ Y .

Concluding, the binary context (and its concept lattice) that we consider at a given
moment depends on the following selections:

– the choice of three subsets X1 ⊆ K1, X2 ⊆ K2, and X3 ⊆ K3,
– a permutation σ ∈ S3 , and
– the choice of the aggregation mode q ∈ {∃,∀, G

,

M}.

Up to now, we have discussed how single concept lattices can be derived from a
triadic context. In order to support navigation, however, we need a mechanism which
allows us to come from one concept lattice to the next. This will be discussed in the next
section. We make use of the model of a finite state machine. Single concept lattices will
correspond to states, while the navigation steps are captured by state transitions.

3 The Finite State Model

As said above, there are many binary contexts that can be derived from a triadic one. In
this section, we discuss how the navigation between them may go on. We model this by
a finite state machine.

We recall that a finite state machine is a model of computation consisting of a set of
states, a start state, an input alphabet, and a transition function that maps pairs of input
symbols and current states to a next state. Thus, it is a tuple A = (E,S, δ, s0) where
E is a finite set, the input alphabet, S is a finite set, the set of states, δ is the transition
function, i. e., a mapping from E×S to S, and s0 ∈ S is the start state. In our approach,
the contexts are considered as the states, and the navigation through the set of contexts
is modeled by the transition function.

Next, we give the formal definition of our finite state machine. Readers unfamiliar
with mathematical notations might first go to Section 4 in order to get a feeling for the
approach, before returning here.

As discussed in Section 2, the derivation of a binary context depends on a set of
choices. The combination of these choices makes up the state:

Definition 1. Let K := (K1,K2,K3, Y ) be a triadic context. A state is then a tuple

s := (X1, X2, X3, σ, q)

where X1 ⊆ K1, X2 ⊆ K2, and X3 ⊆ K3, σ ∈ S3 , and q ∈ {∃,∀, G

,

M}. The set of
all states of a triadic context is denoted by S(K), or simply by S if K is unambiguous
from the context.

For a given state s := (X1, X2, X3, σ, q), we let K(s) := Kσ,q
X1,X2,X3

, and B(s) :=
B(K(s)).
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We initialize our state machine with the start state

s0 := (K1,K2,K3, id,∃) .

This setting allows a first, global overview over the data, which may be refined later.
The initial choice of the existential quantifier for q follows the observation that this is
the most frequently used in applications for deriving a dyadic context.

The input alphabet E of the machine is given by

E := {slice(i, A) | i ∈ {1, 2, 3}, A ⊆ Ki}
∪{dice(σ) | σ ∈ S3}

∪{mode(∃),mode(∀),mode(

G

),mode(

M

)} .

Last but not least we define the transition function. We split up the definition into
three parts, corresponding to the three types of elements of the input alphabet listed
above.

Definition 2. Let s := (X1, X2, X3, σ, q) be a state, and e ∈ E. The transition function
δ is defined as follows. If e = slice(i, A) with i ∈ {1, 2, 3} and A ⊆ Ki, then
δ(s, e) := (X ′

1, X
′
2, X

′
3, σ, q) with X ′

i := A and X ′
j := Xj , for j 	= i.

For simplifying the navigation, one could restrict the set A to be a concept extent or
intent of some suitable concept lattice. Experiments with the example discussed below,
however, revealed the need for selecting arbitrary sets. Note that we also allow to enlarge
sets again, as there is no constraint saying that A has to be a subset of Xi. This allows to
extend sets again during the navigation process. In practice however, A often is a subset
of Xi. We discuss some properties of this case before continuing the definition of the
transition function.

Let A ⊆ Xi. If σ(1) = i or q =

G

and σ(3) = i, then the slice operation
reduces the current set of objects. The resulting concept lattice is thus isomorphic to a
∨-sub-semilattice of the previous one. If σ(2) = i or q =

M

and σ(3) = i, then the
slice operation reduces the current set of attributes, and the resulting concept lattice is
isomorphic to a ∧-sub-semilattice of the previous one. In all these cases, the information
presented in the lattice is thus reduced, just as a slicing operation in OLAP would do. In
the two remaining cases, however, the analogy to OLAP fails. If σ(3) = i and q = ∃,
then the binary relation of the current dyadic context decreases; if q = ∀ then the binary
relation increases. Simple examples show that there is no pre-determined relationship
between the current and the following lattice. In both situations the concept lattice can
either shrink or grow, depending on the constellation.

Definition 2 (contd.). If e = dice(σ′) with σ′ ∈ S3, then δ(s, e) := (X1, X2, X3, σ ◦
σ′, q).

We may denote the elements σ ∈ S3 by (123), (132), . . . , (321) where, e. g., (132)
means that the role of the object set remains unchanged while the attribute and the
condition sets interchange their roles. The transition dice(1, 2, 3) doesn’t do anything;
and the transition dice(2, 1, 3) interchanges the roles of objects and attributes. This
means that the concept lattice is turned upside down.
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Definition 2 (contd.). If e = mode(q) with q ∈ {∃,∀, G

,

M} then δ(s, e) := (X1, X2,
X3, σ, q).

In practice it turns out that the ‘∃’ mode is the mostly used one. The change from
either ‘∃’ or ‘∀’ to ‘

G

’ or ‘

M

’ can be considered as drill-down, since the resulting concept
lattice provides more detailed information. A change of mode in the other direction is a
roll-up, as the information becomes more summarized.

The definition of our finite state machine is now complete. Next we introduce two
additional shortcuts.

Definition 3. We let delG := slice(σ−1(1), {{x} ∈ Xσ−1(1) | {x}′ 	= ∅} and
delM := slice(σ−1(2), {x ∈ Xσ−1(2) | x′ 	= ∅}, where the derivation ·′ is computed
in the current dyadic context.

These two derived operators serve the following purpose. After a slice operation, one
usually also wants to prune the remaining sets to the relevant elements. For instance, if
one reduced the set of objects, then there may be some attributes which do not relate to
any of the remaining objects. In most cases, one may want to remove these attributes
(which would all be attached to the bottom concept), as they do not provide any further
insight. This removing of ‘superfluous’ attributes is performed by delM, while delG
removes all objects which are not covered by at least one attribute any more.

As known from basics about finite state machines, we can now extend the transition
function such that it applies not only to single symbols of the input alphabet, but also to
words. We denote the set of words over the input alphabet E by E∗, which includes the
empty word λ. The transition function δ is then recursively extended to δ∗:E∗ ×S → S
by δ∗(λ, s) := s, and δ∗((w, e), s) := δ∗(w, δ(e, s)), for w ∈ E∗ and e ∈ E.

An element w of E∗ can naturally be considered as a program (which is executed
from right to left). Its semantics is given by the function [[w]]:S → S which is given
by [[w]](s) := δ∗(w, s). Specifically, one can determine the current state of the system
by storing all previous interactions of the user as w ∈ E∗. The current state is then just
[[w]](s0). In an implementation of the framework, w may be shown as navigation history
to the user, and supports an ‘undo’ function or ‘back’ button.

4 Navigation Within the Triadic Information System

In this section, we show by an example, how our framework supports navigation in a
real world dataset. The IT Baseline Security Manual [9] of the German Federal Office
for Information Security provides a description of the threat scenario that is globally
assumed, standard security measures for typical IT systems, and detailed descriptions
of safeguards to assist with their implementation.3

The core data of the manual can be considered as a triadic context. We consider the
the possible threats as objects, the IT components as attributes, and the safeguards as

3 The online version of the manual can be found at http://www.bsi.de/gshb/ .
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Fig. 2. The top part of the concept lattice of the initial state

conditions.4 For presentation purposes, we restrict the example as follows. K1 :={Ex-
change of Data Media, . . . , Exchange/Outlook 2000} is the set of all ten data transmission
systems listed in Section 7 of [9], K2 is the set of all threats against at least one of the
data transmission systems, and K3 is set of all safeguards against at least one of these
threats for at least one of the data transmission systems.5 The top part of the concept
lattice of the start state is shown in Fig. 2. The names of the threats (which play the
role of objects at the moment) are omitted due to representation issues. From this initial
state, we will perform a series of navigation steps to illustrate the different features of
the model.

First we want to reduce the components to those which are currently used at our
research group. We perform thus the operations

op1: slice(1, {7.3 Firewall, 7.4 E-Mail, 7.5 WWW-Server, 7.6 Remote Access,
7.9Apache Webserver})

op2:delG .

The resulting concept lattice is shown in Fig. 3. The concept in the middle of the diagram
indicates for instance that the two threats ‘T 3.38 Errors in configuration and operation’
and ‘T 4.39 Software conception errors’ are the threats which are directed against all the
three components Firewall, WWW-Server, andApache Webserver. The two threats ‘T 5.2

4 Other assignments have been done in [8, 18, 22]. But as our approach considers all sets equiv-
alently, this assignment influences the start state only. Any initial arrangement can be reached
from any other by one dice operation.

5 This restricted scenario can also be reached by three consecutive slice operations within the
larger system that comprises all components, threads and safeguards discussed in the manual.
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Fig. 3. After slicing the set of components to Firewall, E-Mail, WWW-Server, Remote Access,
Apache Webserver

Manipulation of data and software’ and ‘T 5.28 Denial of services’ are directed against
these components, but they additionally concern the E-Mail system, as the lower right
concept indicates. The complete list of threats can be found at the website mentioned
above.

A major set of threats are deliberate attacks to the system. We now want to study
which of these attacks are potentially dangerous to the data transmission systems of our
research group. We perform thus the operation

op3: slice(2, X2∩{‘T 5.1 Manipulation or destruction of IT equipment or acces-
sories’,. . . , ‘T 5.111 Misuse of active content of E-Mails’})

(where X2 is the current set of objects) and obtain the line diagram in Fig. 4. The
diagram shows that there are many rather specific threats, as they are related to only one
component each.
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Fig. 4. After slicing the set of threats to the deliberate acts

Fig. 5. After slicing away all threats which are against single components

In order to analyze in more depth deliberate acts against combinations of components,
we prune away all deliberate acts against single components. The operation

op4:slice(2, {x ∈ X̃2|card({x}′) 	= 1})
(where X̃2 is the current set of objects) yields the concept lattice in Fig. 5. In the lattice,
we can for instance discover that there are four threats which endanger at the same
time firewalls and WWW servers: IP spoofing, DNS spoofing, manipulation of data or
software, and denial of services.

For studying which other components are threatened by denial of service attacks,
we could make use of the same diagram. Another option — which supports the more
natural way of reading from top to bottom — is to turn the diagram upside down first. As
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Fig. 6. After dicing (exchange of objects and attributes)

well-known in FCA, this is obtained by interchanging the roles of objects and attributes
on the context level:

op5:dice(2, 1, 3)

The result of the operation is shown in Fig. 6. The components threatened by denial of
service attacks are now exactly those which are listed below ‘T 5.28 Denial of services’
in the diagram. We see that not only firewalls and WWW servers are endangered by this
threat, but also the Apache web server and email systems.

What can now be done in order to protect the data transmission systems of our
research group against deliberate acts? This question can be approached by focusing on
the relation between threats and safeguards rather than between threats and components.
In other words, we have to interchange the role of components and safeguards:

op6:dice(3, 2, 1)

The result is shown in Fig. 6. The encoding of the safeguards can be found online
in [9]. The lattice is rather complex — which indicates that there is no easy solution for
protecting our IT environment.

For getting a better insight, we focus (first) on those safeguards which are related to
hard- and software:

op7:slice(3, {x ∈ X̃3|x = “S 4. . . . ”})
(where X̃3 is the current set of objects). This yields the concept lattice in Fig. 8. It shows
for instance that there is no hard- or software related safeguard against IP spoofing. This
threat has to be countered by other means. On the other side we discover that even with
only two safeguards, ‘S 4.95 Minimal operating system’ and ‘S 4.34 Using encryption,
checksums or digital signatures’, many of the listed threats can be countered.

Figure 8 doesn’t show in detail if a safeguard is designed against a threat for all
relevant components or just for specific ones. One could expect that the choice of a safe-
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guard is independent of the component. By drill-down, we can analyze this hypothesis.
Figure 9 shows the result of

op8:mode(

G

) ,

Fig. 7. After dicing (exchange of objects and conditions) again

Fig. 8. After slicing the safeguards to the hard- and software related ones
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Fig. 9. After drill-down to the components

i. e., the concept lattice
B([[op8, . . . , op1]](s0)) .

By comparing Figs. 8 and 9, we discover that this hypothesis is indeed almost true,
since the concept lattices are quite similar. However, there are some differences. For
instance, safeguard ‘S 4.33 Use of a virus scanning program while exchanging of data
media and data transmission’ is adequate against macro viruses and computer viruses for
email systems, while it protects web servers against computer viruses and manipulation
of data or software. At least, this is what the data provided by the IT baseline manual
indicate. One may now discuss if this is adequately modeling the situation. We, however,
will now leave this example, and return to a more general discussion on future research.

5 Conclusion and Outlook

In this paper, we integrated bits and pieces which were available for analyzing triadic
contexts by line diagrams of derived dyadic contexts, and set them into a navigation
framework. As this is only a first step, many interesting research questions remain open.
They include:

– Further development of automated drawing routines is important, as there are so
many potential concept lattices which can be derived from a triadic context that
one cannot create them all beforehand. (In this paper, we have made the layout
manually).

– The framework should be implemented and evaluated in more scenarios. This in-
cludes a concretization of the means of interaction by which the user can perform
the slice & dice operations.
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– How can techniques like conceptual scaling or iceberg lattices be exploited for more
sophisticated navigation means?

– Are there other aggregation modes? For instance, one might want to integrate power
scales [13] or relational scales [12].

– In OLAP, the dimensions carry an additional structure: Each dimension goes along
with a hierarchy along which aggregation is performed. On a small scale, such
hierarchies also exist in our IT example, by means of clustering each of the sets
of components, threats, and safeguards into different sections of the IT Baseline
Manual. How can these hierarchies be incorporated into the model?

– Relational databases are an important application domain which provides a lot of
interesting applications. From the perspective of Formal Concept Analysis, many-
valued contexts and multi-contexts are data structures closely related to relational
databases. How can the framework presented here be extended to incorporate them
as well?
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Abstract. In order to define a negation on formal concepts in Formal
Concept Analysis, the more general notions of semiconcepts and proto-
concepts were introduced. The theory of the resulting protoconcept and
semiconcept algebras is developed in Boolean Concept Logic as a part
of Contextual Logic. In this paper it is shown that each complete sub-
algebra of a semiconcept algebra is itself the semiconcept algebra of an
appropriate context. An analogous result holds for the complete subal-
gebras of protoconcept algebras. These contexts can be obtained from
the original context through partitions of the object and the attribute
set satisfying certain conditions. Characterizations of the complete sub-
algebras of semiconcept and protoconcept algebras in terms of contexts,
in terms of subsets, and through closed subrelations are given.

1 Introduction

Formal Concept Analysis developed as a mathematical theory of concepts is used
succesfully in the area of knowledge representation and knowledge processing.
The advantage of this approach lies in the close relation to conceptual human
thinking. Yet, while negations of concepts are common in human language and
human thinking (e.g. non-smoker, non-profit, non-fiction, NGO), negated con-
cepts generally cannot be represented in concept lattices. Boolean Concept Logic
is a theory that extends Formal Concept Analysis by introducing negations of
concepts. It is therefore a part of Contextual Logic whose aim is to mathematize
the philosophical logic with its doctrines of concepts, judgments, and conclusions
(for a brief introduction to Contextual Logic we refer to [Wi00b] or [DK03], an
overview over existing theories is given in [KV03]. For more detailed work on
Concept Logic see [VW03], [Vo03], [Vo04], recent work on Contextual Judgment
Logic can be found in [Da03], [Wi01]).

In Boolean Concept Logic, the negation of a concept is modeled by taking
set complements. Since formal concepts consist of two sets, the extent and the
intent, we distinguish two kinds of negation: Firstly, the operation ¬(A,B) :=
(G\A, (G\A)′) on the extent side, which will also be called “negation”. Secondly,
we define an operation (A,B) := ((M \B)′,M \B) on the intent side, which will
be called “opposition” of a formal concept (A,B) in a context K. This distinction

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 329–343, 2005.
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Fig. 1. The four elements and their attributes in greek philosophy

can already be found in ancient philosophical logic (c.f. [Wi00a]). The negation ¬
corresponds to those negations we think of when using words like “non-smoker”:
In an appropiate context (e.g. with all humans as objects and with at least the
attribute “smokes”) the word “non-smoker” refers to all objects that are not
in the extent of the concept generated by “smokes”. The opposition is best
illustrated in a context where the attribute set consists of pairs of attributes
that mutually exclude each other (i.e. for every such pair {m1,m2} we have
(g,m1) ∈ I ⇔ (g,m2) 	∈ I for every object g). The context given in Figure 1, for
example, has as attributes the dychotomic pairs “dry” ↔ “moist” and “cold”
↔ “warm”. The opposition ({water}, {moist, cold}) of the concept generated
by water yields the concept ({fire}, {dry, warm}), which is the opposite of this
element in ancient greek philosophy (cp. [Wi00a]).

As in general the set complement of an extent (intent) is not an extent (intent)
itself, the notion of formal concept is generalized to semiconcepts:

Definition 1. A semiconcept of a formal context K := (G,M, I) is a pair (A,B)
with A ⊆ G and B ⊆ M such that A′ = B or B′ = A. We denote the set of all
semiconcepts of a context K by H(K) and define on H(K) operations �, �, , ¬,
� and ⊥ by:

(A1, B1) � (A2, B2) := (A1 ∩A2, (A1 ∩A2)′)
(A1, B1) � (A2, B2) := ((B1 ∩B2)′, B1 ∩B2)

¬(A,B) := (G \A, (G \ A)′)
(A,B) := ((M \ B)′,M \B)

� := (G, ∅)
⊥ := (∅,M)

The set of all semiconcepts of a context K together with these operations is
called the semiconcept algebra of K and denoted by H(K).

The operations are called “meet” (�), “join” (�), “negation” (¬), “opposi-
tion” ( ), “all” (�) and “nothing” (⊥).
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In [KV03], an example is given that illustrates the higher expressiveness re-
sulting from these additional operations and its possible benefits in applications
of Formal Concept Analysis.

The aim of this paper is to contribute to the development of the algebraic
theory of semiconcept algebras and of the more general protoconcept algebras,
since a mathematical theory of these algebras is a prerequisite for their applica-
tion in knowledge representation and knowledge processing. We therefore focus
on the mathematical theory of the complete subalgebras. However, subalgebras
may be of practical interest for their own sake: Since semiconcept and proto-
concept algebras are more complex than concept lattices, a major problem is
that with increasing number of objects and attributes in a context, the number
of semi- and protoconcepts grows much faster than the number of concepts. In
cases where not all the information of the context is needed in all instances, a
restriction to appropriate subalgebras may be helpful. In this paper, a charac-
terization of the subalgebras of semiconcept algebras is presented that allows to
describe the subalgebras without calculating the semiconcepts of a context.

In the next section, basic definitions and results on semiconcept and protocon-
cept algebras are provided. We assume that the reader is familiar with the basic
notions of Formal Concept Analysis (a textbook on Formal Concept Analysis is
[GW99]). Section 3 contains the characterization of the complete subalgebras of
semiconcept algebras through partitions of the object and the attribute set. This
yields a criterion to decide whether a given subset of a semiconcept algebra is a
complete subalgebra. In Formal Concept Analysis the sublattices of concept lat-
tices correspond to closed subrelations of the incidence relation. In Section 4, it
is shown which closed subrelations correspond to complete subalgebras of semi-
concept algebras. The results of Section 5 are extended to complete subalgebras
of protoconcepts in Section 5. Finally, some perspectives for further research are
discussed in the last section.

2 Semiconcept and Protoconcept Algebras

In order to develop Boolean Concept Logic it is useful to introduce protoconcepts
as a generalization of semiconcepts:

Definition 2. A protoconcept of a formal context K := (G,M, I) is a pair
(A,B) with A ⊆ G and B ⊆ M such that A′ = B′′ or, equivalently, B′ =
A′′. We denote the set of all protoconcepts of a context K by P(K). On P(K)
the operations �, �, , ¬, � and ⊥ are defined as in Definition 1. The set
of all protoconcepts of a context K together with these operations is called the
protoconcept algebra of K and denoted by P(K).

Note that the result of any operation on protoconcepts is a semiconcept. Thus,
for a protoconcept algebra P(K) of a context K and a set of protoconcepts
P ⊆ P(K) \ H(K), the set P(K) \ P is a subalgebra of P(K). In particular,
H(K) is a subalgebra of P(K). In [Wi00a], a description of the equational class
generated by protoconcept algebras, the double Boolean algebras, is given:
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Theorem 1. A basis for all equations which are valid in all protoconcept alge-
bras is given by the following equations which are the equational axioms of the
so-called double Boolean algebras:

1a) (x � x) � y = x � y 1b) (x � x) � y = x � y
2a) x � y = y � x 2b) x � y = y � x
3a) x � (y � z) = (x � y) � z 3b) x � (y � z) = (x � y) � z
4a) x � (x � y) = x � x 4b) x � (x � y) = x � x
5a) x � (x y) = x � x 5b) x � (x y) = x � x
6a) x � (y z) = (x � y) (x � z) 6b) x � (y z) = (x � y) (x � z)
7a) ¬¬(x � y) = x � y 7b) (x � y) = x � y
8a) ¬(x � x) = ¬x 8b) (x � x) = x
9a) x � ¬x = ⊥ 9b) x � x = �
10a) ¬⊥ = � � � 10b) � = ⊥ � ⊥
11a) ¬� = ⊥ 11b) ⊥ = �

12) (x � x) � (x � x) = (x � x) � (x � x)

with the operations and defined as x y := ¬(¬x�¬y) and x y := ( x� y).

Semiconcept algebras even satisfy the stronger condition

x = x � x or x = x � x.

A double Boolean algebra satisfying this condition is called pure. For a double
Boolean algebra D and x ∈ D we define x� := x � x, x� := x � x, D� := {x ∈
D | x = x�}, D� := {x ∈ D | x = x�} and the pure subalgebra Dp of D as the
subalgebra over the set Dp := D� ∪ D�. For a context K, the semiconcepts of
type (A,A′) for A ⊆ G, i.e. those satisfying x = x�, are called �-semiconcepts.
Dually, the semiconcepts of type (B′, B) for B ⊆ M , i.e. those satisfying x = x�,
are called �-semiconcepts.

Note that for a double Boolean algebra D the set D� together with the
operations �, ,⊥, := ¬⊥ forms a Boolean algebra. Dually, the set D� together
with the operations ,�, := �,� forms a Boolean algebra.

On double Boolean algebras a quasi-order ! is defined by

x ! y :⇔ x � y = x� and x � y = y�.

For protoconcept algebras this definition yields an order, and (A1, B1) ! (A2, B2)
is equivalent to A1 ⊆ A2 and B2 ⊆ B1.

Example 1. Figure 2 depicts a context and its protoconcept algebra. The el-
ements represented by filled circles are formal concepts. The circles with the
upper half filled represent �-semiconcepts, those with the lower half filled rep-
resent �-semiconcepts.

Basic Theorems on semiconcept algebras and on protoconcept algebras were
established in [VW03]. In order to quote them here we have to introduce the
notions of contextual, fully contextual and complete double Boolean algebras: A

�- �
-
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(G,∅)

(23,b)(13,a)

(1,a)
(3,ab)

(13,ac)
(23,bc)

(G,c)

(∅,ab) (3,M)

(1,ac)

(∅,M)

(2,bc)

(12,c)
(2,b)

(12,∅)

1
2
3

a b c

Fig. 2. A context and its protoconcept algebra

double Boolean algebra D is called contextual if its quasiorder ! is antisymmet-
ric, i.e. the relation ! is an order on D. A contextual double Boolean algebra D
is said to be fully contextual if, in addition, for each x ∈ D� and y ∈ D� with
x� = y� there is a unique z ∈ D with z� = x and z� = y. The double Boolean
algebra D is called complete if and only if its Boolean algebras D� and D� are
complete.

Theorem 2 (The Basic Theorem on Semiconcept Algebras). For a con-
text K := (G,M, I), the semiconcept algebra H(K) is a complete pure double
Boolean algebra whose Boolean algebras H�(K) and H�(K) are atomic. The
(arbitrary) meet and join of H(K) are given by

�
t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋂
t∈T

At)′) and
⊔
t∈T

(At, Bt) = ((
⋂
t∈T

Bt)′,
⋂
t∈T

Bt).

In general, a complete pure double Boolean algebra D whose Boolean algebras D�
and D� are atomic, is isomorphic to H(K) if and only if there exist a bijection
γ̃ from G onto the set A(D�) of all atoms of D� and a bijection µ̃ from M
onto the set C(D�) of all coatoms of D� such that gIm ⇔ γ̃(g) ! µ̃(m) for all
g ∈ G and m ∈ M . In particular, for any complete pure double Boolean algebra
D whose Boolean algebras are atomic, we get D ∼= H(A(D�), C(D�),!), i.e., the
semiconcept algebras are up to isomorphism the complete pure double Boolean
algebras D whose Boolean algebras D� and D� are atomic.

Theorem 3 (The Basic Theorem on Protoconcept Algebras). For a con-
text K := (G,M, I), the protoconcept algebra P(K) of K is a complete fully con-
textual double Boolean algebra whose Boolean algebras H�(K) and H�(K) are
atomic. The (arbitrary) meet and join of P(K) are given by

�
t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋂
t∈T

At)′) and
⊔
t∈T

(At, Bt) = ((
⋂
t∈T

Bt)′,
⋂
t∈T

Bt).

In general, a complete fully contextual double Boolean algebra D whose Boolean
algebras D� and D� are atomic, is isomorphic to P(K) if and only if there
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exist a bijection γ̃ from G onto the set A(D�) of all atoms of D� and a bi-
jection µ̃ from M onto the set C(D�) of all coatoms of D� such that gIm ⇔
γ̃(g) ! µ̃(m) for all g ∈ G and m ∈ M . In particular, for any complete fully
contextual double Boolean algebra D whose Boolean algebras are atomic, we get
D ∼= P(A(D�), C(D�),!), i.e., the protoconcept algebras are up to isomorphism
the complete fully contextual double Boolean algebras D whose Boolean algebras
D� and D� are atomic.

Both basic theorems are poweful tools for the investigation of double Boolean
algebras and will be used several times in proofs about the structure of subalge-
bras.

3 Complete Subalgebras of Semiconcept Algebras

First, we show that every complete subalgebra of a semiconcept algebra is a semi-
concept algebra itself (Proposition 1). This is done by using the Basic Theorem
and the following lemma:

Lemma 1. Every complete subalgebra S of a complete atomistic Boolean algebra
B is atomistic.

Proof: For every atom a of B we set a′ :=
∧

([a) ∩ S). For two atoms a1, a2
of B we obtain a′

1 = a′
2 or a′

1 and a′
2 are incomparable: If we assume a′

1 > a′
2,

then a′
1 ∧ ¬a′

2 ∈ S and 0 < a′
1 ∧ ¬a′

2 < a′
1. Since B is atomistic, it follows

from a1 ≤ a′
1 = (a′

1 ∧ ¬a′
2) ∨ a′

2 that a1 ≤ a′
1 ∧ ¬a′

2 or a1 ≤ a′
2, which yields a

contradiction to the construction of a′
1.

We obtain that, for every atom a of B, the element a′ is an atom of S: If an
element x ∈ S satisfying 0 < x < a′ existed, then we would find an atom b of B
such that b ≤ x < a′ which would yield b′ < a′. Since B is atomic, we find for
every x ∈ S an atom a of B with a ≤ x, which implies a′ ≤ x. Hence S is atomic,
which is equivalent to atomistic in complete Boolean algebras (cp. [GP81]). �

Proposition 1. Every complete subalgebra S of a semiconcept algebra H(K) is
a semiconcept algebra itself.

Proof: Obviously every subalgebra of a pure double Boolean algebra is pure.
The preceeding lemma yields that S� and S� are atomic, hence we obtain from
Theorem 2 S ∼= H(A(S�), C(S�),!). �

Our goal is to derive for each subalgebra S of H(K) a context KS with S ∼=
H(KS). Proposition 2 establishes a link between certain partitions of G and M
and the subalgebras of H(K). After that, Theorem 4 gives a bijection between
the set of these partitions and the subalgebras. Finally, Corollary 1 yields a
criterion to decide whether a given subset of a semiconcept algebra is a complete
subalgebra.



Complete Subalgebras of Semiconcept Algebras and Protoconcept Algebras 335

Proposition 2. Let K := (G,M, I) be a context. If D is a complete subalgebra
of H(K) then:

1. Γ := {A ⊆ G | (A,A′) ∈ A(D�)} is a partition of G.
2. Θ := {B ⊆ M | (B′, B) ∈ C(D�)} is a partition of M .
3. For every A ∈ Γ the set A′ is a union of some classes of Θ.
4. For every B ∈ Θ the set B′ is a union of some classes of Γ .
5. D ∼= H(Γ,Θ, IΓ,Θ) with AIΓ,Θ B :⇔ B ⊆ A′

Proof: 1) As (A1, A
′
1) � (A2, A

′
2) = (∅,M) = ⊥ holds for atoms (A1, A

′
1),

(A2, A
′
2), we have A1 ∩ A2 = ∅ for all A1, A2 ∈ Γ . Moreover, {(A,A′) |

(A,A′) ∈ A(D�)} = = (G,G′), thus
⋃

A∈Γ A = G.
2) follows dually.
3) Suppose there is a class A ∈ Γ and a class B ∈ Θ such that ∅ 	= A′∩B 	= B.
Then (A,A′) ∈ D and (B′, B) ∈ D implies (A,A′)�(B′, B) = ((A′∩B)′, A′∩B) ∈
D. From B 	= A′ ∩ B 	= ∅ we obtain (B′, B) � ((A′ ∩ B)′, A′ ∩ B) � �, hence
(B′, B) was no coatom of D�. Since Θ is a partition of M , it follows that A′ is
a union of classes of Θ.

4) follows dually.
5) follows immediately from the Basic Theorem on semiconcept algebras. �

The previous proposition suggests, that pairs of partitions of the object and
attribute set which are linked as described in 3. and 4. of Proposition 2 are
very close to complete subalgebras of semiconcept algebras. This leads to the
following definition.

Definition 3. Let K := (G,M, I) be a context. A pair (Γ,Θ) consisting of a
partition Γ of G and a partition Θ of M is called a subalgebra generating pair
iff for all A ∈ Γ and B ∈ Θ

1. B ⊆ A′ or B ∩A′ = ∅
2. A ⊆ B′ or A ∩B′ = ∅.

For a subset A of a set B and a partition Ψ of B we say that A is saturated
by Ψ iff A is a union of classes of Ψ . Note that if, for a context K := (G,M, I),
the pair (Γ,Θ) is a subalgebra generating pair and A is saturated by Γ then
A′ is saturated by Θ. Dually, if B is a subset of M saturated by Θ then B′ is
saturated by Γ .

We introduce an order on the subalgebra generating pairs of a given context
K by:

(Γ1, Θ1) ≤ (Γ2, Θ2) :⇔ Γ1 ≤ Γ2 and Θ1 ≤ Θ2,

where P1 ≤ P2 for partitions P1, P2 of a set if and only if P1 is a refinement of
P2.

Now we have the means to prove the first main result of this paper:

�-
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Theorem 4 (Complete subalgebras of semiconcept algebras).
For a context K := (G,M, I)and partitions Γ and Θ on Gand M , respectively,
we define

H(Γ,Θ)(K) := {(A,B) ∈ H(K) | A is saturated by Γ and B is saturated by Θ}.

Then the map
φ : (Γ,Θ) �→ H(Γ,Θ)(K)

is a dual isomorphism between the ordered set of all subalgebra generating pairs
of K and the lattice of all complete subalgebras of H(K).

Proof: Let (Γ,Θ) be a subalgebra generating pair. Then � = (G, ∅) ∈
H(Γ,Θ)(K), ⊥ = (∅,M) ∈ H(Γ,Θ)(K). Moreover, for (A,B) ∈ H(Γ,Θ)(K) we have
(A,B)� = (A,A′) ∈ H(Γ,Θ)(K), since A is saturated by Γ and therefore A′ is
saturated by Θ. Likewise we obtain (A,B)� ∈ H(Γ,Θ)(K). It is easy to check that
(Ai, Bi) ∈ H(Γ,Θ)(K) for i ∈ I also yields that ¬(Ai, Bi), (Ai, Bi),�i∈I(Ai, Bi)
and

⊔
i∈I(Ai, Bi) are contained in H(Γ,Θ)(K). Thus every subalgebra generating

pair yields a complete subalgebra of H(K). Different subalgebra generating pairs
yield obviously different subalgebras and the previous proposition shows that we
find a subalgebra generating pair for every complete subalgebra of H(K), hence
the map φ is bijective.

Now suppose HΓ1,Θ1
(K) ⊆ HΓ2,Θ2

(K). Then the extents of the atoms of the
Boolean algebra H�(Γ1,Θ1)(K) are unions of extents of atoms of H�(Γ2,Θ2)(K),
hence Γ2 ≤ Γ1. Likewise we obtain Θ2 ≤ Θ1 and thus H(Γ1,Θ1)(K) ≤ H(Γ2,Θ2)(K)
implies (Γ1, Θ1) ≥ (Γ2, Θ2). Conversely, if (Γ1, Θ1) ≥ (Γ2, Θ2), then every A ⊆ G
saturated by Γ2 is also saturated by Γ1 and every B ⊆ M saturated by Θ2 is
also saturated by Θ1, which implies HΓ1,Θ1

(K) ⊆ HΓ2,Θ2
(K). Thus we have

HΓ1,Θ1
(K) ⊆ HΓ2,Θ2

(K) ⇔ (Γ1, Θ1) ≥ (Γ2, Θ2).

and therefore φ is a dual isomorphism. �

The preceeding theorem allows to identify subalgebras of semiconcept alge-
bras through their contexts. In addition, a description in terms of subsets of a
given semiconcept algebra may be derived.

Corollary 1. Let H(K) be the semiconcept algebra of a context K := (G,M, I).
A subset U ⊆ H(K) is a complete subalgebra of H(K) if and only if it fulfills the
following conditions:

1. U� := U ∩ H(K)� is a complete subalgebra of the Boolean algebra H(K)�.
2. U� := U ∩ H(K)� is a complete subalgebra of the Boolean algebra H(K)�.
3. For every atom a of U� and for every coatom c of U� holds either

a) a ! c or
b) a � c = � and a � c = ⊥.
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Fig. 3. A context

Fig. 4. The semiconcept algebra of the context in Figure 3

Proof: Let U be a subset of H(K) satisfying the conditions 1 to 3. We show
that ΓU := {A ⊆ G | (A,A′) is an atom of U�} and ΘU := {B ⊆ M | (B′, B) is
a coatom of U�} form a subalgebra generating pair of K. Conditions 1) and 2)
yield that ΓU and ΘU are partitions of G and M , respectively. Now, let A ∈ ΓU

and let B ∈ ΘU. Then (A,A′) is an atom of U� and (B′, B) is a coatom of U�.
Condition 3) yields that either (A,A′) ! (B′, B) which implies B ⊆ A′, or that
(A,A′) � (B′, B) = �, and thus B ∩ A′ = ∅. Analogously we obtain that B′ is
saturated by ΓU, hence (ΓU , ΘU) is a subalgebra generating pair. Since the classes
of ΓU and ΘU correspond to the atoms of U� and the coatoms of U�, respectively,
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Table 1. Subalgebra generating pairs

Nr. Partitions
1 Γ = {{VW, KPMG, AEG, Rütgers}}

Θ = {{duration of study, previous training, fields of study}, {final score}}
2 Γ = {{Rütgers}, {VW, AEG, KPMG}}

Θ = {{duration of study, previous training, fields of study}, {final score}}
3 Γ = {{AEG, Rütgers}, {VW, KPMG}}

Θ = {{previous training, fields of study}, {duration of study}, {final score}}
4 Γ = {{VW, Rütgers}, {AEG, KPMG}}

Θ = {{duration of study, previous training, fields of study}, {final score}}
5 Γ = {{Rütgers}, {VW, AEG}, {KPMG}}

Θ = {{duration of study, previous training}, {fields of study}, {final score}}
6 Γ = {{Rütgers}, {VW}, {AEG}, {KPMG}}

Θ = {{duration of study}, {previous training}, {fields of study}, {final score}}

1

2

34

5

6

Fig. 5. The lattice of subalgebras of the semiconcept algebra shown in Figure 4

the Basic Theorem on Semiconcept Algebras then yields H(ΓU, ΘU, IΓU,ΘU
) ∼= U.

Conversely, if U is a subalgebra of H(K) we obtain immediately that 1) and 2)
must be satisfied. Let a be an atom of U� and let b be a coatom of U�. From
b ! a � b ∈ U it follows that a � b = b (and thus a ! b) or a � b = �. Dually,
a ! a � b ∈ U� yields a ! b or a � b = ⊥. �

Example 2. For every context K := (G,M, I) the partitions corresponding to
the equivalence relations (g, h) ∈ Γ :⇔ g′ = h′ and (m,n) ∈ Θ :⇔ m′ = n′

form a subalgebra generating pair. The context (Γ,Θ, I(Γ,Θ)) is usually called
the clarified context of K.

Example 3. Figure 3 shows a subcontext of a context used in [GZ90], and Figure
4 the respective semiconcept algebra. Fig. 5 depicts its lattice of subalgebras.
The numbers correspond to subalgebra generating pairs as shown in Table 1.

The relation between subalgebra generating pairs and closed subrelations is
illustrated in the next section, while the generalization of Theorem 4 to proto-
concept algebras is given in Section 5.
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4 Complete Subalgebras and Closed Subrelations

In Formal Concept Analysis, closed subrelations of incidence relations correspond
to complete sublattices of the respective concept lattice. In this section we briefly
recall the definition of closed subrelations and two propositions from [GW99].
Then it is shown how every subalgebra generating pair of a context K yields a
closed subrelation of K. Moreover, the closed subrelations obtained in this way
are also characterized.

Definition 4. A relation J ⊆ I is called a closed relation of the context (G,M, I)
if every concept of the context (G,M, J) is also a concept of (G,M, I).

Note that if J is a closed subrelation of a context K := (G,M, I) then
B(G,M, J) is a complete sublattice of B(K). Conversely, for every complete sub-
lattice V of B(K) we find a closed subrelation J of K such that B(G,M, J) ∼= V
(cf. [GW99]).

Proposition 3 ([GW99]). A subrelation J ⊆ I is closed if and only if

XJJ ⊇ XJI

for each subset X ⊆ G and for each subset X ⊆ M .

Proposition 4 ([GW99]). The closed relations of a context (G,M, I) are pre-
cisely those subrelations J ⊆ I which satisfy the following condition:

(C) (g,m) ∈ I \ J implies (h,m) 	∈ I for some h ∈ G with gJ ⊆ hJ

as well as (g, n) 	∈ I for some n ∈ M with mJ ⊆ nJ .

For a given subalgebra generating pair of a context K, a closed subrelation of
K can be constructed such that the concept lattice contained in the subalgebra
is isomorphic to the sublattice obtained from the closed subrelation:

Proposition 5. Let K := (G,M, I) be a context and let (Γ,Θ) be a subal-
gebra generating pair of K. The relation J(Γ,Θ) :=

⋃{A × B | A ∈ Γ, B ∈
Θ and AI(Γ,Θ) B} is a closed subrelation of K and B(G,M, J) ∼= B(Γ,Θ, I(Γ,Θ)).

Proof: In the following we set J := J(Γ,Θ). First we show that J is a subre-
lation of I: From (g,m) ∈ J ⇔ [g]Γ IΓ,Θ [m]Θ ⇔ ∀h ∈ [g]Γ .∀n ∈ [m]Θ : hIn we
obtain (g,m) ∈ I.

We use Proposition 3 in order to prove that J is closed: For X ⊆ G we
find that XJ is saturated by Θ since XJ = (πΓ (X))J where πΓ denotes the
canonical projection G → Γ . For any class [m]Θ ∈ XJ we have [m]JΘ = [m]IΘ,
hence XJI = XJJ . Analogously, it is shown Y JI = Y JJ for Y ⊆ M and thus J
is a closed subrelation of I. The context (Γ,Θ, I(Γ,Θ)) is obtained from (G,M, J)
by clarification, which does not affect the concept lattice, hence B(G,M, J) ∼=
B(Γ,Θ, I(Γ,Θ)). �

The closed subrelations of a context obtained in this way from subalgebra
generating pairs can be described as those satisfying an even stronger condition
than Condition (C) given in Proposition 4:
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Fig. 6. a) A context b) A closed subrelation of the context

Proposition 6. The closed relations of a context K := (G,M, I) obtained from
subalgebra generating pairs of K satisfy the condition:

(C’) (g,m) ∈ I \ J implies (h,m) 	∈ I for some h ∈ G with gJ = hJ

as well as (g, n) 	∈ I for some n ∈ M with mJ = nJ .

Conversely, for every subrelation J ⊆ I of K satisfying (C’) there exists a sub-
algebra generating pair (ΓJ , ΘJ ) such that J = J(ΓJ ,ΘJ ).

Proof: Let (Γ,Θ) be a subalgebra generating pair of K, let J(Γ,Θ) be the
corresponding closed subrelation as above, and let (g,m) ∈ I \ J(Γ,Θ). It follows
that ([g]Γ , [m]Θ) 	∈ IΓ,Θ and thus m 	∈ [g]IΓ . Therefore there is an h ∈ [g]Γ with
(h,m) 	∈ I. Likewise we find an n ∈ [m]Θ with (g, n) 	∈ I.

Conversely, let J be a subrelation of I satisfying (C’). Proposition 4 imme-
diately yields that J is a closed subrelation. By setting ΓJ :=

⋃
g∈G Ag with

Ag := {h ∈ G | g′ = h′} and ΘJ :=
⋃

m∈M Bm with Bm := {n ∈ M | m′ = n′}
a subalgebra generating pair is obtained: Let A ∈ ΓJ . In order to prove that
AI is saturated by ΘJ we show AI = AJ . From J ⊆ I we obtain AJ ⊆ AI . If
m ∈ AI \ AJ then there exists a g ∈ A such that (g,m) ∈ I \ J . Condition (C’)
then yields an h ∈ A with (h,m) 	∈ I which is a contradiction to m ∈ AI . Thus
we have AI = AJ . Since obviously AJ is saturated by ΘJ , AI is saturated as
well. Dually we find that for every B ∈ ΘJ its derivation BI is saturated by ΓJ .

In order to show J = J(ΓJ ,ΘJ ), we first assume gJm. Then m ∈ [g]JΓJ
=

[g]IΓJ
⇔ [m]ΘJ

⊆ [g]IΓJ
⇔ [g]ΓJ

I(ΓJ ,ΘJ ) [m]ΘJ
and thus (g,m) ∈ J(ΓJ ,ΘJ ). Sec-

ondly, in the case (g,m) 	∈ I, it is clear that ([g]ΓJ
, [m]ΘJ

) 	∈ I(ΓJ ,ΘJ ). If (g,m) ∈
I \ J then condition (C’) yields m ∈ [g]IΓJ

, hence ([g]ΓJ
, [m]ΘJ

) 	∈ I(ΓJ ,ΘJ ).
Therefore we obtain J = J(ΓJ ,ΘJ ). �

The correspondence between subalgebra generating pairs and closed subre-
lations is not one-to-one. If we take for example the context presented in Fig.
6a) then Γ1 := {{1, 6}, {2, 3}, {4, 5}} and Θ := {{a, b}, {c, d}} form a subalgebra
generating pair. But the subalgebra generating pair Γ2 := {{1, 6}, {2, 3, 4, 5}}, Θ
is assigned to the corresponding closed subrelation J presented in Fig. 6b). In
general, for a subalgebra generating pair (ΓJ , ΘJ ) obtained from a closed sub-
relation J as in the proof of Proposition 6, the context (ΓJ , ΘJ , I(ΓJ ,ΘJ )) is
clarified, while J may be obtained also from subalgebra generating pairs (Γ,Θ)
where (Γ,Θ, I(Γ,Θ)) is not clarified. Yet, not every combination of equal lines
and rows of (G,M, J) will yield a subalgebra generating pair of (G,M, I): In our
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example there is no subalgebra generating pair with Γ3 := {{1, 6}, {2, 5}, {3, 4}}
as partition of G, although the lines 2, 3, 4 and 5 are identical in (G,M, J). If
such a subalgebra generating pair would exist, then the semiconcepts (25, bcd)
and (34, cd) would be elements of the generated subalgebra. But ((25, bcd) �

(34, cd)) � (25, bcd) = (6, bc) in contradiction to {1, 6} ∈ Γ3.

5 Complete Subalgebras of Protoconcept Algebras

The subalgebras of protoconcept algebras cannot be uniquely described through
subalgebra generating pairs. Yet, for a given subalgebra generating pair they
cannot vary too much. Remember that if K := (G,M, I) is a context and V ⊆
P(K)\H(K) then P(K)\V yields a complete subalgebra of P(K). In particular,
H(K) is a complete subalgebra. This result can immediately be extended to: If
K := (G,M, I) is a context and D a complete subalgebra of P(K) then the pure
subalgebra Dp ≤ D is a complete subalgebra of P(K) and of H(K). This can be
used to categorize the subalgebras of P(K) through the contained semiconcept
algebras.

Proposition 7. Let K := (G,M, I) be a context and (Γ,Θ) a subalgebra gener-
ating pair of K. We set

P(Γ,Θ)(K) := {(A,B) ∈ P(K) | A is saturated by Γ and B is saturated by Θ}.

Then P(Γ,Θ)(K) is a complete subalgebra of P(K) with

P
(Γ,Θ)

(K) ∼= P(Γ,Θ, I(Γ,Θ))

Proof: From Theorem 4 it follows that P(Γ,Θ)(K) ∩ H(K) is a complete pure
subalgebra of P(K). Moreover, for (A,B) ∈ P(Γ,Θ)(K) \H(K), we have (A,B)�,
(A,B)� ∈ H(Γ,Θ)(K) ⊆ P(Γ,Θ)(K). Since �i∈I(Ai, Bi) = �i∈I(Ai, Bi)� ∈
H(Γ,Θ)(K) and

⊔
i∈I(Ai, Bi) =

⊔
i∈I(Ai, Bi)� ∈ H(Γ,Θ)(K) we have that P

(Γ,Θ)
(K)

is a complete subalgebra of P(K). As P(K) is fully contextual, P(Γ,Θ)(K) is fully
contextual, too and Theorem 3 yields P

(Γ,Θ)
(K) ∼= P(Γ,Θ, IΓ,Θ). �

Now we have the means to describe the subalgebras of protoconcept algebras
similar to Theorem 4:

Theorem 5 (Complete subalgebras of protoconcept algebras). Let K :=
(G,M, I) be a context and let U be a complete subalgebra of P(K). Then there
is a subalgebra generating pair (Γ,Θ) of K with Up = H(Γ,Θ)(K). Moreover,
H(Γ,Θ)(K) ≤ U ≤ P

(Γ,Θ)
(K) holds in the lattice of subalgebras and the interval

[H(Γ,Θ)(K),P
(Γ,Θ)

(K)] is isomorphic to the powerset lattice of the set P(Γ,Θ)(K)\
H(Γ,Θ).

Proof: Since Up is a complete pure subalgebra of P(K), it is also a complete
subalgebra of H(K). Theorem 4 yields the subalgebra generating pair (Γ,Θ)
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with Up = H(Γ,Θ)(K). Suppose U 	⊆ P(Γ,Θ)(K). Then there exists a protoconcept
(A,B) in U for which A is not saturated by Γ or B is not saturated by Θ.

1) If A is not saturated by Γ then there is a C ∈ Γ such that ∅ 	= C ∩A 	= A.
Since (C,C′) ∈ H(Γ,Θ)(K) ⊆ U it follows that (C∩A, (C∩A)′) ∈ Up, thus (C,C ′)
is not an atom of Up and Up 	= H(Γ,Θ)(K).

2) Dually we obtain Up 	= H(Γ,Θ)(K) in the case that B is not saturated by Θ.

Thus we have H(Γ,Θ)(K) ≤ U ≤ P
(Γ,Θ)

(K). If P ⊆ P(Γ,Θ)(K)\H(Γ,Θ)(K) then
P(Γ,Θ)(K) \P is a subalgebra since the elements of P cannot be generated from
the other elements of P(Γ,Θ)(K)\P and of course H(Γ,Θ)(K) ⊆ (P(Γ,Θ)(K)\P ) ⊆
P(Γ,Θ)(K). �

Remark 1. Note that Corollary 1 also yields a criterion to decide whether a
given subset U of a protoconcept algebra P(K) is a complete subalgebra. Since
U∩H(K) must be a complete subalgebra of H(K) it has to satisfy the conditions 1
to 3 of Corollary 1. It can be easily seen that U is a subalgebra if, in addition, for
every p ∈ U \ H(K) the semiconcepts p� and p� are contained in U. Equivalent,
but closer to the preceeding theorem is the following condition:

4) For every p ∈ U \ H(K):

a) p � a = a or p � a = ⊥ for every atom a of U�

b) p � c = c or p � c = � for every coatom c of U�

In Theorem 4 and Theorem 5 of this paper we have thus shown how the
complete subalgebras of semiconcept algebras and of protoconcept algebras can
be characterized through partitions of the object and attribute sets of their
contexts. Moreover, their relation to the theory of closed subrelations has been
illustrated.

6 Further Research

This paper contributes to the development of an algebraic structure theory of
double Boolean algebras. After having found results on subalgebras and on con-
gruence relations (cf. [Vo03]), a next step is the investigation of homomorphisms
between double Boolean algebras.

A better understanding of the free double Boolean algebras is crucial for the
development of a Boolean Concept Logic. A first step was made in [Vo04]. This
approach will be further elaborated.
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Abstract. For representing different views and their connections, net-
works of formal contexts are considered which are coded by so-called
multicontexts. The coincidences between the network contexts of a mul-
ticontext give rise to a coherence network of concept lattices. It is the
aim of this paper to state and to prove the Basic Theorem on Coherence
Networks of Concept Lattices as an extension of the Basic Theorem on
Concept Lattices.
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1 Introduction

Formal contexts are the basic mathematical structures of Formal Concept Anal-
ysis. They allow to speak mathematically about formal objets, formal attributes,
and the binary relation which indicates when a formal object has a formal at-
tribute. This foundational setting was created for mathematizing concepts and
concept hierarchies by so-called formal concepts and concept lattices of formal
contexts (see [Wi82], [GW99]). Since data tables can be mathematized by formal
contexts, Formal Concept Analysis has found extensive applications, in partic-
ular in data analysis and knowledge processing (cf. [GWW87],[Wi92],[WZ94],
[Wi97], [SW00],[Wi00],[Wi02],[Ek04]).

Quite often, the object-attribute-relation is considered under different views
so that a representation by a single formal context is not sufficient. This has
led to generalizations of the notion of formal context. One approach is based on
the mathematization of the ternary relationship that an object has an attribute
under a certain condition. This approach, based on triadic contexts and derived

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 344–359, 2005.
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triadic concepts, has been elaborated under the heading Triadic Concept Analysis
(see [Wi95],[LW95], [Bi98],[WZ00],[DW00]).

The approach we discuss in this paper maintains the vivid dyadic setting, but
enables to represent different views and their connections by a network of formal
contexts coded in a so-called multicontext [Wi96]. In contrast to triadic contexts,
multicontexts are composed by formal contexts which may have different object
sets and different attribute sets. Those context sets might have some elements
in common, where elements could even be objects in one formal context and at-
tributes in another. The coincidences between the context sets of a multicontext
give rise to a coherence network of concept lattices which are derived from the
formal contexts of the multicontext. It is the aim of this paper to state and to
prove the so-called Basic Theorem on Coherence Networks of Concept Lattices
[Dö99] as an extension of the Basic Theorem on Concept Lattices [Wi82] which
is stated as follows (cf. [GW99]):

Basic Theorem on Concept Lattices. Let K := (G,M, I) be a formal
context. Then the set B(K) of all formal concepts of K ordered by the subconcept-
superconcept-relation is a complete lattice, called the concept lattice of (G,M, I),
for which infima and suprema can be described in the following way:∧

t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋃
t∈T

Bt)II),∨
t∈T

(At, Bt) = ((
⋃
t∈T

At)II ,
⋂
t∈T

Bt).

In general, a complete lattice L is isomorphic to B(K) if and only if there exist
mappings γ̃ : G −→ L and µ̃ : M −→ L such that γ̃G is supremum-dense in
L (i.e. L = {∨X | X ⊆ γ̃G}), µ̃M is infimum-dense in L (i.e. L = {∧X |
X ⊆ µ̃M}), and gIm ⇐⇒ γ̃g ≤ µ̃m for g ∈ G and m ∈ M ; in particular,
L ∼= B(L,L,≤).

2 Multicontexts and Coherence Mappings

First we generalize the notion of a formal context to that of a multicontext which
can be viewed as a network of formal contexts.

Definition 1. A multicontext of signature σ : P → I2, where I and P are non-
empty sets, is defined as a pair (SI , RP ) consisting of a family SI := (Si)i∈I

of sets and a family RP := (Rp)p∈P of binary relations with Rp ⊆ Si × Sj if
σp = (i, j). A multicontext (SI , RP ) of signature σ : P → I2 can be understood
as a network of formal contexts Kp := (Si, Sj , Rp) with σp = (i, j).

The common elements which emerge in different formal contexts induce a
coherence between the concept lattices of those formal contexts. Even with iden-
tical sets of objects and sets of attributes, the relation of distinct formal contexts
could vary from each other so that one could hardly see any coherence between
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them. Therefore the coherence within a network of formal contexts has to be
considered not only by the common elements, but also by the conceptual confor-
mity of the formal contexts. The following definition provides mappings which
respect these conceptual conformities (X �→ Xq denotes the derivation operators
of Kq).

Definition 2. Let (SI , RP ) be a multicontext, let Kp := (Si, Sj , Rp) and Kq :=
(Sk, Sl, Rq) be formal contexts of (SI , RP ), and let (A,B) be a formal concept
of Kp. Then there are four coherence mappings from B(Kp) to B(Kq) defined by

λpq(A,B) := ((A ∩ Sk)qq, (A ∩ Sk)q),
�pq(A,B) := ((B ∩ Sl)q, (B ∩ Sl)qq),
ϕpq(A,B) := ((B ∩ Sk)qq, (B ∩ Sk)q),
ψpq(A,B) := ((A ∩ Sl)q, (A ∩ Sl)qq).

The concept lattices of the formal contexts of (SI , RP ) together with all coherence
mappings form a coherence network of concept lattices, which shall be denoted
by N(SI , RP ).

The mapping λpq elucidates the conformity of the extents of the formal con-
texts Kp and Kq; the mapping �pq does the same for the intents. ϕpq delineates
the similarity of image extents and domain intents; ψpq works vice versa. Starting
from a concept lattice of special interest, the coherence mappings yield a partial
conceptual information about the image lattice that depend on the concepts of
the domain lattice. The richer the images of the coherence mappings, the more
related the corresponding concept lattices are. Clearly, the mappings λpq and
�pq are isotone and the mappings ϕpq and ψpq are antitone. Concatenations of
coherence mappings yield the following inequalities:

λpqλqpλpq(A,B) ≥ λpq(A,B),
�pq�qp�pq(A,B) ≤ �pq(A,B),
ϕpqψqpϕpq(A,B) ≥ ϕpq(A,B),
ψpqϕqpψpq(A,B) ≤ ψpq(A,B).

If the considered context sets coincide completely, we obtain even simpler in-
equalities:

λqpλpq(A,B) ≥ (A,B) if Si = Sk,

ρqpρpq(A,B) ≤ (A,B) if Sj = Sl,

ψqpϕpq(A,B) ≤ (A,B) if Sj = Sk,

ϕqpψpq(A,B) ≥ (A,B) if Si = Sl.

The listed inequalities are immediate consequences of the slightly stronger con-
ditions stated in the following proposition as valid in all multicontexts:
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Proposition 1. Let (SI , RP ) be a multicontext and let (A,B) ∈ B(Kp) with
p ∈ P . Then the following equations are valid:

λpq(A,B) = λpq((A,B) ∧ λqpλpq(A,B)),
�pq(A,B) = �pq((A,B) ∨ �qp�pq(A,B)),
ϕpq(A,B) = ϕpq((A,B) ∨ ψqpϕpq(A,B)),
ψpq(A,B) = ψpq((A,B) ∧ ϕqpψpq(A,B)).

Furthermore, λpq((A ∩ Sk)pp, (A ∩ Sk)p) = λpq(A,B) and

((A ∩ Sk)pp, (A ∩ Sk)p) ≤ λqpλpq((A ∩ Sk)pp, (A ∩ Sk)p).

Proof: The first equality may be verified as follows: The isotony of λpq yields the
inequality λpq(A,B) ≥ λpq((A,B)∧λqpλpq(A,B)). The dual inequality becomes
clear by (A∩Sk)qq = (A∩((A∩Sk)∩Si)∩Sk)qq ⊆ (A∩((A∩Sk)qq∩Si)pp∩Sk)qq.
The other inequalities follow analogously.

Since λpq(A,B) is defined as the formal concept ((A ∩ Sk)qq, (A ∩ Sk)q) and
(A∩Sk)pp ∩Sk = A∩Sk, it follows that λpq((A∩Sk)pp, (A∩Sk)p) = λpq(A,B).
Furthermore, (A ∩ Sk)pp = ((A ∩ Sk) ∩ Si)pp ⊆ ((A ∩ Sk)qq ∩ Si)pp yields ((A ∩
Sk)pp, (A ∩ Sk)p) ≤ λqpλpq((A ∩ Sk)pp, (A ∩ Sk)p).

For σp = (i, j), Kp := (Sj , Si, R
−1
p ) is the dual context of Kp and the map

(A,B) �→ (B,A) is an antiisomorphism from B(Kp) onto B(Kp). Using this
duality, all cohehrence mappings can be derived from one type of coherence
mappings:

Proposition 2. The mapping ϕpp (= ψpp) is an antiisomorphism from B(Kp)
onto B(Kp) and �pq = ϕqqλpqϕpp, ϕpq = λpqϕpp, ψpq = ϕqqλpq.

3 An Example

An interesting example of a multicontext is given by the data tables in the “IT-
Grundschutzhandbuch 1996” [IT96] issued by the “Bundesamt für Sicherheit in
der Informationstechnik”, an institution of the Federal Republic of Germany.
This example is a contextual section from the area of threats and counter-
measures. Threats and countermeasures are related if the measure is suitable
for averting the threat, for instance, a fire-extinguisher and a fire form a pair
of this relation. The multicontext of the “IT-Grundschutzhandbuch” portrays
these measures and threats that affect certain technical appliances. Since the
same threats threaten various appliances, there is a great deal of conformity
within the multicontext.

We take just two data tables from the handbook to illustrate the coherence
mappings. The two derived formal contexts K1 and K2 take into account mea-
sures and threats which affect data medium archives (Figure 1) and rooms for
technical infrastructure (Figure 2). The concept lattices are represented by line
diagrams. In this example the mappings λ12, �12, λ21 and �21 have non trivial
images. The effect of the coherence mappings are represented in the Figures 3
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and 4. For instance, in Figure 3 all concepts which have the same image under
λ12 are surrounded by the same area. The wide arrows show the correspond-
ing image. The following figure is done in the same way. What coherence is
elucidated by the coherence mappings λ12 and λ21?

For λ12 the measures “closed doors and windows” and “airconditioning” that
avert by themselves a certain combination of dangers concerning data medium
archives, play the same part in a room for technical infrastructure. Whereas
“supervision walks” and “smoking prohibition” lose this particular importance.
For “smoking prohibition” the reason is immediately recognizable. In K2 it is
among others only related to “fire”, while in K1 it has a special meaning because
of the threat “dust/dirt”. Concerning “supervision walks”, we can see that in
a room for technical infrastructure, this countermeasure is no longer a means
against water. Therefore, it does not form its own extension. The fact that
neighbours in B(K1) have the same image in B(K2) is not surprising. For two
concepts with disjointed extensions this is more interesting. In our example,
the threat “manipulation/destruction” of K2 that does not occur in K1 is the
reason for this phenomenon. Considering the mappings λ21, we see, alike λ12,
that the measures “closed doors and windows” and “airconditioning” maintain
their significance in the image lattice, and again some neighbours have the same
image under λ21. More interesting is that λ21 maps the concept generated by
the object “avoiding of water pipes” on the correspondig concept in B(K1).
Secondly, there are two bigger domain areas. The reason for the chain of three
concepts are objects that do not emerge in B(K1). For the domain area of six
concepts, we perceive that the extension of the concept, generated by “access
control” and “security doors”, is a coatom in B(K1).

4 Coherence Networks of Complete Lattices

The coherence networks of concept lattices consist of complete lattices and con-
necting coherence mappings. For clarifying the order-theoretic structure of those
networks, we have to determine characterizing properties of their structural con-
stituents. As preparation for defining coherence networks of complete lattices, we
first abstract the dual relationship between the concept lattices of the formal con-
texts Kp := (Si, Sj , Rp) and Kp := (Sj , Si, R

−1
p ), caused by the antiisomorphisms

δpp : (A,B) �→ (B,A) and δpp : (B,A) �→ (A,B), to the purely order-theoretic
level:

Definition 3. In a family LP of complete lattices, the lattices Lp and Lp with
p, p ∈ P are dual companions if there are designated antiisomorphisms δpp :
Lp → Lp and δpp : Lp → Lp with δpp = δ−1

pp . The family LP is called dyadic if
each of its lattices has one (and only one) dual companion in LP .

Now, we are ready to introduce the central abstract notion of this paper,
namely the notion of a coherence network of complete lattices:
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Definition 4. A coherence network of complete lattices is defined as a family
LP := (Lp)p∈P of complete lattices together with isotone mappings λ̂pq : Lp → Lq

and �̂pq : Lp → Lq satisfying

λ̂pqx = λ̂pq(x ∧ λ̂qpλ̂pqx) and
�̂pqx = �̂pq(x ∨ �̂qp�̂pqx) for all x ∈ Lp,

and antitone mappings ϕ̂pq : Lp → Lq and ψ̂pq : Lp → Lq satisfying

ϕ̂pqx = ϕ̂pq(x ∨ ψ̂qpϕ̂pqx) and
ψ̂pqx = ψ̂pq(x ∧ ϕ̂qpψ̂pqx) for all x ∈ Lp.

Furthermore, λ̂pp and �̂pp are the identity on Lp and, for each pair (Lp, Lp) of
dual companions in LP , ϕ̂pp (= ψ̂pp) and ϕ̂pp (= ψ̂pp) are the corresponding
designated antiisomorphism. For such a coherence network we use the denota-
tions m̂pq := (λ̂pq, �̂pq, ϕ̂pq, ψ̂pq), m̂P 2 := ((λ̂pq, �̂pq, ϕ̂pq, ψ̂pq)|(p, q) ∈ P 2), and
NP := (LP , m̂P 2). A coherence network of complete lattices is said to be dyadic
if its family LP := (Lp | p ∈ P ) of complete lattices is dyadic.

We will see that a coherence network N(SI , RP ) := ((B(Kp) | p ∈ P ),mP 2)
of concept lattices with mP 2 := ((λpq, �pq, ϕpq, ψpq) | (p, q) ∈ P 2) is a coherence
network of complete lattices as defined in Definition 4. For finding out how well
coherence networks of concept lattices can be order-theoretically characterized,
we need an adequate notion of isomorphism for coherence networks of complete
lattices as introduced by the next definition:

Definition 5. Two coherence networks of complete lattices N1
P := (L1

P , m̂
1
P 2)

and N2
P := (L2

P , m̂
2
P 2) are said to be isomorphic if there is a family of isomor-

phisms ιP := (ιp)p∈P (called a network isomorphism) so that, for all (p, q) ∈ P 2,
the following diagram schema commutes:

m̂1
pq

L1
p −→ L1

q

ιp ↓ ↓ ιq

L2
p −→ L2

q

m̂2
pq

i.e. ιqλ̂
1
pq = λ̂2

pqιp, ιq�̂
1
pq = �̂2

pqιp, ιqϕ̂
1
pq = ϕ̂2

pqιp, ιqψ̂
1
pq = ψ̂2

pqιp.

Proposition 3. Let (Lp, Lp) and (Lq, Lq) be pairs of complete lattices which are
pairs of dual companions with the designated antiautomorphisms δpp : Lp → Lp,
δpp : Lp → Lp, and δqq : Lq → Lq, δqq : Lq → Lq, respectively; furthermore, let
λ̂pq : Lp → Lq, λ̂pq : Lp → Lq, and λ̂pq : Lp → Lq be isotone mappings satisfying

λ̂pqx = λ̂pq(x ∧ λ̂qpλ̂pqx), λ̂pqx = λ̂pq(x ∧ λ̂qpλ̂pqx), λ̂pqx = λ̂pq(x ∧ λ̂qpλ̂pqx).
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Then, if we define �̂pq := δqqλ̂pqδpp, �̂qp := δppλ̂qpδqq, ϕ̂pq = λ̂pqδpp, ϕ̂qp =
λ̂qpδqq, ψ̂pq = δqqλ̂pq, ψ̂qp = δppλ̂qp, we obtain an isotone mapping �̂pq : Lp → Lq

satisfying
�̂pqx = �̂pq(x ∨ �̂qp�̂pqx)

and antitone mappings ϕ̂pq : Lp → Lq and ψ̂pq : Lp → Lq satisfying

ϕ̂pqx = ϕ̂pq(x ∨ ψ̂qpϕ̂pqx) and ψ̂pqx = ψ̂pq(x ∧ ϕ̂qpψ̂pqx).

Proof: The asserted equations can be proved as follows: �̂pq(x ∨ �̂qp�̂pqx) =
δqqλ̂pqδpp(x ∨ δppλ̂qpδqqδqqλ̂pqδppx) = δqqλ̂pqδpp(δppδppx ∨ δppλ̂qpλ̂pqδppx) =
δqqλ̂pqδppδpp(δppx ∧ λ̂qpλ̂pqδppx) = δqqλ̂pqδppx = �̂pqx,
ϕ̂pq(x∨ψ̂qpϕ̂pqx) = λ̂pqδpp(x∨δppλ̂qpλ̂pqδppx) = λ̂pqδpp(δppδppx∨δppλ̂qpλ̂pqδppx)
= λ̂pqδppδpp(δppx ∧ λ̂qpλ̂pqδppx) = λ̂pqδppx = ϕ̂pqx, and
ψ̂pq(x ∧ ϕ̂qpψ̂pqx) = δqqλ̂pq(x ∧ λ̂qpδqqδqqλ̂pqx) = δqqλ̂pqx = ψ̂pqx.

5 The Basic Theorem

In preparation of proving the Basic Theorem on Coherence Networks of Concept
Lattices, we offer a construction method for formal contexts which correspond
to complete lattices and connecting coherence mappings, by the following propo-
sition (improving Proposition 1 in [Wi96]):

Proposition 4. Let λ̂pq : Lp → Lq and λ̂qp : Lq → Lp be isotone mappings
between complete lattices which satisfy

λ̂pqx = λ̂pq(x ∧ λ̂qpλ̂pqx) and λ̂qpy = λ̂qp(y ∧ λ̂pqλ̂qpy);

furthermore, let Ĝp := {(x, y) ∈ λ̂pq ∪ λ̂−1
qp | y ≤q λ̂pqλ̂qpy} and Ĝq := {(x, y) ∈

λ̂pq ∪ λ̂−1
qp | x ≤p λ̂qpλ̂pqx}. Then, for the contexts K̂p := (Ĝp, Lp,!p) and K̂q :=

(Ĝq, Lq,!q) with (x, y) !p a :⇔ x ≤p a and (x, y) !q b :⇔ y ≤q b, there are
order isomorphisms ιp : B(K̂p) → Lp and ιq : B(K̂q) → Lq with ιqλpq = λ̂pqιp
and ιpλqp = λ̂qpιq. Additionally, we have λ̂pq

∨
π1A =

∨
π2(A ∩ Ĝq) for all

(A,B) ∈ B(K̂p).

Proof: In K̂p, an attribute a has the derivation

ap = {(x, y) ∈ λ̂pq ∪ λ̂−1
qp | x ≤p a and y ≤q λ̂pqλ̂qpy};

furthermore, since (x, y) ∈ λ̂pq implies y = λ̂pqx = λ̂pq(x ∧ λ̂qpλ̂pqx) = λ̂pq(x ∧
λ̂qpy) ≤q λ̂pqλ̂qpy and therefore (a, λ̂pqa) ∈ ap, we have app = [a)p := {x ∈ Lp |
x ≥p a}. Because of

⋂
t∈T [at)p = [

∨
t∈T at)p, all intents of K̂p are of the form [a)p

with a ∈ Lp. Thus, an order isomorphism ιp : B(K̂p) → Lp can be defined by
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ιp(ap, [a)p) := a for a ∈ Lp. Analogously, an order isomorphism ιq : B(K̂q) → Lq

can be defined by ιq(bq, [b)q) := b for b ∈ Lq.
For proving the asserted equalities, we use (x, y) !p a implies y ≤q λ̂pqa

for (x, y) ∈ Ĝp and a ∈ Lp; this implication can be verified as follows: for
(x, y) ∈ λ̂pq, since λ̂pq is isotone, x ≤p a and λ̂pqx = y imply y ≤q λ̂pqa and, for
(x, y) ∈ λ̂−1

qp , using the special assumption of the definition of Ĝp, x ≤p a and
λ̂qpy = x with y ≤q λ̂pqλ̂qpy yield

y = y ∧ λ̂pqλ̂qpy = y ∧ λ̂pqx ≤q λ̂pqa.

Now, for a := a∧ λ̂qpλ̂pqa, since λ̂pqa = λ̂pqa and (a, λ̂pqa) ∈ (ap∩Ĝq) and there-
fore (ap ∩ Ĝq)q = [λ̂pqa)q, we can conclude ιqλpq(ap, [a)p) = ιq((ap ∩ Ĝq)qq, (ap ∩
Ĝq)q) = ιq((λ̂pqa)q, [λ̂pqa)q) = λ̂pqa = λ̂pqιp(ap, [a)p) and so ιqλpq = λ̂pqιp;
analogously, we obtain ιpλqp = λ̂qpιq.

Finally, for (A,B) ∈ B(K̂p) with A = ap, we conclude λ̂pq

∨
π1A = λ̂pqa =

λ̂pqa ∈ π2(A ∩ Ĝq) and, because of (x, y) !p a ⇒ y ≤q λ̂pqa, even λ̂pqa =∨
π2(A ∩ Ĝq); hence λ̂pq

∨
π1A =

∨
π2(A ∩ Ĝq)

Now we are able to state and to prove the desired order-theoretic characteri-
zation of the coherence networks of concept lattices corresponding to multicon-
texts:

Basic Theorem of Coherence Networks of Concept Lattices.
For a multicontext (SI , RP ), the corresponding network (B((Kp) | p ∈ P ),mP 2)
is a coherence network of complete lattices. In general, a coherence network
NP := (LP , m̂P 2) of complete lattices is isomorphic to the coherence network
N(SI , RP ) := (B((Kp) | p ∈ P ),mP 2) of the concept lattices of a multicontext
(SI , RP ) with signature σ if and only if, for every formal context Kp of (SI , RP )
with σp = (i, j), there exist mappings γ̃p : Si → Lp and µ̃p : Sj → Lp such that
γ̃pSi is supremum-dense in Lp, µ̃pSj is infimum-dense in Lp, (si, sj) ∈ Rp ⇔
γ̃psi ≤p µ̃psj for all si ∈ Si and sj ∈ Sj, and, for all (p, q) ∈ P 2 with σp = (i, j),
σq = (k, l), and (A,B) ∈ B(Kp), the coherence mappings of NP satisfy∨

γ̃q(A ∩ Sk) = λ̂pq

∨
γ̃pA,

∧
µ̃q(B ∩ Sl) = �̂pq

∧
µ̃pB,∨

γ̃q(B ∩ Sk) = ϕ̂pq

∧
µ̃pB,

∧
µ̃q(A ∩ Sl) = ψ̂pq

∨
γ̃pA;

in particular, a dyadic coherence network NP := (LP , m̂P 2) of complete lattices
is isomorhic to the corresponding coherence network ((B(K̂p) | p ∈ P ),mP 2) of
concept lattices with a strict linear order < on P ,

Gp :=
⋃̇

p<q∈P
{(x, y, 1) | (x, y) ∈ λ̂pq ∪ λ̂−1

qp and y ≤q λ̂pqλ̂qpy}

∪̇
⋃̇

p>r∈P
{(y, x, 2) | (y, x) ∈ λ̂rp ∪ λ̂−1

pr and x ≤p λ̂rpλ̂prx},

(x, y, 1)!̄pa :⇔ x ≤p a, (y, x, 2)!̄pa :⇔ x ≤p a , and K̂p := (Gp, Lp, !̄p);
consequently, the coherence networks of concept lattices are up to isomorphism
the coherence networks of complete lattices.
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Proof: By Proposition 1, the corresponding network (B((Kp) | p ∈ P ),mP 2) of
a multicontext (SI , RP ) satisfies the defining equations of coherence networks of
complete lattices and, for λpq : B(Kp) → B(Kq) and (A,B) ∈ B(Kp), λpq((A ∩
Sk)pp, (A ∩ Sk)p) = λpq(A,B) and satifies the inequality

((A ∩ Sk)pp, (A ∩ Sk)p) ≤ λ̂qpλ̂pq((A ∩ Sk)pp, (A ∩ Sk)p);

analogous concepts exist for the other coherence mappings. Furthermore, λpp

and �pp are the identity on B(Kp) and, for each pair (B(Kp),B(Kp)) of dual
companions, ϕpp (= ψpp) and ϕpp (= ψpp) are the corresponding designated an-
tiisomorphism by Proposition 2. Altogether implies that (B((Kp) | p ∈ P ),mP 2)
is a coherence network of complete lattices.

Now, we show that the coherence networks N(SI , RP ) and NP are isomorphic
if we have mappings γ̃p and µ̃p (p ∈ P ) satisfying the conditions of the theorem.
By the Basic Theorem on Concept Lattices, the mappings γ̃p and µ̃p can be used
to define an isomorphism ιp from B(Kp) onto Lp by

ιp(A,B) :=
∨

si∈A

γ̃psi (=
∧

sj∈B

µ̃psj).

We prove that ιqλpq(A,B) = λ̂pqιp(A,B) is the consequence of
∨

γ̃q(A ∩ Sk) =
λ̂pq

∨
γ̃pA as follows:

ιqλpq(A,B) = ιq((A ∩ Sk)qq, (A ∩ Sk)q) =
∨

γ̃q(A ∩ Sk)qq

=
∨

γ̃q(A ∩ Sk) = λ̂pq

∨
γ̃pA

= λ̂pqιp(A,B).

For the mappings �̂pq, ϕ̂pq, and ψ̂pq, we similarly obtain

ιq�pq(A,B) = ιq((B ∩ Sl)q, (B ∩ Sl)qq) =
∧

µ̃q(B ∩ Sl)

= �̂pq

∧
µ̃pB = �̂pqιp(A,B),

ιqϕpq(A,B) = ιq((B ∩ Sk)qq, (B ∩ Sk)q) =
∨

γ̃q(B ∩ Sk)

= ϕ̂pq

∧
µ̃pB = ϕ̂pqιp(A,B),

ιqψpq(A,B) = ιq((A ∩ Sl)q, (A ∩ Sl)qq) =
∧

µ̃q(A ∩ Sl)

= ψ̂pq

∨
γ̃pA = ψ̂pqιp(A,B).

Hence, we can conclude that ιP := (ιp)p∈P is a network isomorphism.
Conversely, we assume that there is a network isomorphism ιP from N(SI , RP )

onto NP . Then the desired mappings γ̃p and µ̃p (p ∈ P ) can be defined by γ̃p :=
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ιp ◦ γp and µ̃p := ιp ◦µp, where γpg := ({g}pp, {g}p) and µpm := ({m}p, {m}pp).
The mappings γ̃p and µ̃p obviously satisfy the conditions of the Basic Theorem
on Concept Lattices for B(Kp) and Lp. Finally, we obtain∨

γ̃q(A ∩ Sk) =
∨

ιqγq(A ∩ Sk) = ιq
∨

γq(A ∩ Sk)

= ιq((A ∩ Sk)qq, (A ∩ Sk)q) = ιqλpq(A,B)

= λ̂pqιp(A,B) = λ̂pqιp
∨

γpA

= λ̂pq

∨
γ̃pA,

∧
µ̃q(B ∩ Sl) =

∧
ιqµq(B ∩ Sl) = ιq

∧
µq(B ∩ Sl)

= ιq((B ∩ Sl)q, (B ∩ Sl)qq) = ιq�pq(A,B)

= �̂pqιp(A,B) = �̂pqιp
∧

µpB

= �̂pq

∧
µ̃pB,

∨
γ̃q(B ∩ Sk) =

∨
ιqγq(B ∩ Sk) = ιq

∨
γq(B ∩ Sk)

= ιq((B ∩ Sk)qq, (B ∩ Sk)q) = ιqϕpq(A,B)

= ϕ̂pqιp(A,B) = ϕ̂pqιp
∧

µpB

= ϕ̂pq

∧
µ̃pB,

∧
µ̃q(A ∩ Sl) =

∧
ιqµq(A ∩ Sl) = ιq

∧
µq(A ∩ Sl)

= ιq((A ∩ Sl)q, (A ∩ Sl)qq) = ιqψpq(A,B)

= ψ̂pqιp(A,B) = ψ̂pqιp
∨

γpA

= ψ̂pq

∨
γ̃pA.

Thus, all conditions of the theorem are satisfied.
For a given dyadic coherence network NP := (LP , m̂P 2) of complete lattices

and the corresponding coherence network ((B(K̂p) | p ∈ P ),mP 2) of concept
lattices, we define mappings γ̃p : Gp → Lp and µ̃p := Lp → Lp by γ̃p(x, y, 1) :=
γ̃p(y, x, 2) := x and µ̃p(a) := a. The mappings γ̃p and µ̃p obviously satisfy
the conditions of the Basic Theorem on Concept Lattices for B(K̂p) and Lp;
therefore, there are isomorphisms ιp from B(K̂p) onto Lp (p ∈ P ) given by

ιp(A,B) :=
∨
g∈A

γ̃pg (=
∧
b∈B

µ̃pb).
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Finally, for (A,B) ∈ B(K̂p), we conclude with Proposition 4:

λ̂pq

∨
γ̃pA = λ̂pq

∨
π1A =

∨
π2(A ∩ Ĝq) =

∨
γ̃q(A ∩ Ĝq).

For the mappings ϕ̂pq, and ψ̂pq, we now obtain by using Proposition 3 and 4:
�̂pq

∧
µ̃pB=δqqλ̂pqδpp

∧
µ̃pB=δqqλ̂pq

∨
γ̃pB=δqq

∨
γ̃q(B ∩ Ĝq)=

∧
µ̃q(B ∩ Ĝq),

ϕ̂pq

∧
µ̃pB = λ̂pqδpp

∧
µ̃pB = λ̂pq

∨
γ̃pB = ∨γ̃q(B ∩ Ĝq),

ψ̂pq

∨
γ̃pA = δqqλ̂pq

∨
γ̃pA = δqq

∨
γ̃q(A ∩ Ĝq) =

∧
µ̃q(A ∩ Ĝq).

Thus, with the already proved part of the Basic Theorem, we obtain that the
(abstract) coherence network NP is isomorph to the (concrete) coherence net-
work ((B(K̂p) | p ∈ P ),mP 2). Since an arbitrary coherence network of complete
lattices can obviously be extended to a dyadic coherence network, it follows that
the coherence networks of concept lattices are up to isomorphism the coherence
networks of complete lattices.

6 Further Research

The Basic Theorem on Coherence Networks of Concept Lattice should be a use-
ful foundation for futher research and applications of the conceptual structures
and relationships in multicontexts. Some work has already been done and should
be enriched by using and integrating the Basic Theorem, namely the analysis of
formal methods for aggregating components of a multicontext [Wi96], the devel-
opment of a theory of many-valued multicontexts [Ga96], and the mathematical
structure theory of multicontexts and coherence networks of complete lattices
[Dö99]. Mainly, there are two direction which should stimulate further research:
concrete applications in conceptual data analysis and knowledge processing, and
a dyadic development of Contextual Logic on the modal level which might even
contribute to the relational database theory.
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Abstract. The purpose of this paper is to investigate the connection
between the theory of computation and Temporal Concept Analysis, the
temporal branch of Formal Concept Analysis.

The main idea is to represent for each possible input of a given algo-
rithm the uniquely determined sequence of computation steps as a life
track of an object in some conceptually described state space. For that
purpose we introduce for a given Turing machine a Conceptual Time Sys-
tem with Actual Objects and a Time Relation (CTSOT) which yields
the state automaton of a Turing machine as well as its configuration au-
tomaton. The conceptual role of the instructions of a Turing machine is
understood as a set of background implications of the derived context of
a Turing CTSOT.

1 Introduction: Computing as a Temporal Activity

Computing is usually understood as a temporal activity, starting with a certain
input which is transformed in several steps into the output of the computation.
Usually, the common mathematical representations of computations do not make
explicit its temporal aspects. For example, while the notion of time is employed
in nearly all informal descriptions of computations, it is usually not specified
in mathematical representations of computations. Similarly the notion of state
is often used only informally and not as a mathematical term in some specified
temporal theory. It is well-known that the notion of state is chosen as a primitive
notion in the definition of an automaton, but automata theory does not have an
explicit time representation [Arb70, Eil74, Mal74]. The notions of initial state,
final state and transition emphasize its temporal interpretation as well as the
notion of a successful path leading from an initial to a final state.

Clearly, the notion of state is also used in many other sciences, for example in
classical mechanics where the trajectories of particles seem to be quite similar to
the paths in automata theory. This similarity has been made explicit in Temporal

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 360–374, 2005.
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Concept Analysis by the introduction of the notion of state in a Conceptual
Time System (CTS) [Wol00a] and the notion of the life track of an object in a
Conceptual Time System with Actual Objects and a Time Relation (CTSOT)
[Wol02b].

It was shown in the Map Reconstruction Theorem in [Wol02b] that each
automaton is isomorphic to an automaton within a suitable CTSOT such that
the paths of the given automaton are mapped onto the life tracks of objects of
the CTSOT.

In the present paper we show that any Turing machine [Tur36, Loe76] can
be represented by a CTSOT together with a specified set of background implica-
tions interpreting the instructions of the given Turing machine. That temporal
representation preserves the state automaton of the given Turing machine as
well as its tape automaton (Theorem 1 in section 6).

2 Turing Machines

Alan M. Turing [Tur36, Tur36a] and simultaneously E.L. Post [Pos36] investi-
gated “computing machines” using simple mathematical models of a computer.
Turing wrote in the first section of his paper [Tur36]:

Quote 1:
We may compare a man in the process of computing a real number to
a machine which is only capable of a finite number of conditions q1, q2,
..., qR which will be called “m-configurations”. The machine is supplied
with a “tape”, (the analogue of paper) running through it, and divided
into sections (called “squares”) each capable of bearing a “symbol”. At
any moment there is just one square, say the r-th, bearing the symbol
S(r) which is “in the machine”. We may call this square the “scanned
square”. The symbol on the scanned square may be called the “scanned
symbol”. The “scanned symbol” is the only one of which the machine is,
so to speak, “directly aware”.

These “computing machines” are now well-known under the name “Turing
machines”. There are many slightly different formal definitions of Turing ma-
chines. We assume that the reader is familiar with the main ideas and standard
notions.

2.1 Definition of a Turing Machines

We first recall an often used definition of a Turing machine [Loe76, HU79]).

Definition 1. “Turing Machine”
A Turing machine is a tuple

T0 := (Q, q0, Γ,B,Σ, δ)

where Q is a finite set, called the set of states, q0 ∈ Q is called the initial
state, Γ is a finite set, called the set of tape symbols, B is an element of Γ ,
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called the blank; Σ is a subset of Γ \ {B}, called the set of input symbols;
δ is a partial mapping, called the next move function

δ : Q × Γ −→ Q × Γ × {L,O,R}
where {L,O,R} is a set of three elements called left, zero, and right, respec-
tively.

For the purpose of a mathematically clear temporal representation of Turing
machines we now introduce the notion of a “temporal Turing machine”.

2.2 Temporal Turing Machines

In the following definitions we introduce a “temporal Turing machine” as a
Turing machine together with a “temporal extension” which describes for each
element of a given set I of “input words” its “sequence of computing steps”
in form of a data table as indicated in Table 1 and Table 2. For that purpose
the “tape” and its “squares” are described by the group (Z,+) of integers; for
defining explicitly for each input word p the “time t after starting with input p”
we use the ordered monoid (N0,+,≤) of nonnegative integers; furthermore we
introduce for each “current input” (p, t) the current state σ(p, t) of the temporal
Turing machine, the current tape content τ(p,t), and the current head position
h(p, t). We also introduce an encoding mapping α and a decoding mapping ω.
That is done in the following definition.

Definition 2. “Temporal Extension of a Turing Machine”
Let T0 := (Q, q0, Γ,B,Σ, δ) be a Turing machine. The tuple

E := (I, (Z,+), (N0,+,≤), α, σ, τ, h, ω)

is called a temporal extension of T0 if the following conditions (1) − (8) hold:

(1 ) I is a subset of Σ∗, called the input set;

(2 ) (Z,+) is the group of integers; the elements of Z are interpreted as squares
on the tape; α is a mapping, called the encoding

α : I −→ ΓZ, p �→ α(p);

α(p) is called the encoded stream of the input p; the elements in ΓZ are
called streams;

(3 ) (N0,+,≤) is the monoid of non-negative integers; the elements of N0 are
interpreted as time granules; the partial mappings σ, τ , h, and ω together
with their domains are defined as follows: σ, τ , and h have a common domain
Dσ,τ,h, the domain of ω is denoted by Dω;
Dσ,τ,h :=

⋃{D(p)
σ,τ,h|p ∈ I};

Dω :=
⋃{D(p)

ω |p ∈ I};
for each p ∈ I the sets D

(p)
σ,τ,h and D

(p)
ω are defined inductively in (8):
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(4 ) σ is a partial mapping, called the state mapping

σ : I × N0 −→ Q, (p, t) �→ σ(p, t);

the state σ(p, t) is called the state of the Turing machine at (p, t) or at
time t after starting with input p;

(5 ) τ is a partial mapping, called the tape content

τ : I × N0 −→ ΓZ, (p, t) �→ τ(p, t);

the stream τ(p,t) := τ(p, t) is called the tape content at (p, t);
(6 ) h is a partial mapping, called the head position

h : I × N0 −→ Z, (p, t) �→ h(p, t);

the integer h(p, t) is called the head position at (p, t) and
v(p, t) := τ(p,t)(h(p, t)) the head value (or the scanned symbol) at (p, t);

(7 ) ω is a partial mapping, called the decoding

ω : ΓZ −→ Σ∗, s �→ ω(s).

(8.0 ) For any input p ∈ I :
– D

(p,0)
σ,τ,h := {(p, 0)};

– σ(p, 0) := q0,
– τ(p,0) := α(p),
– h(p, 0) := 0;

(8.1 ) For any input p ∈ I and for any time t ∈ N0 :
let (p, t) ∈ D− :⇔ (p, t) ∈ D

(p,t)
σ,τ,h and (σ(p, t), v(p, t)) /∈ Dδ;

let (p, t) ∈ D+ :⇔ (p, t) ∈ D
(p,t)
σ,τ,h and (σ(p, t), v(p, t)) ∈ Dδ;

STOP Condition:
(8.1.1 ) If (p, t) ∈ D−, then let

– D
(p)
ω := {τ(p,t)} and

– D
(p)
σ,τ,h := D

(p,t)
σ,τ,h ;

Next Step Condition:
(8.1.2 ) If (p, t) ∈ D+ and δ(σ(p, t), v(p, t)) =: (q′, a′, ∆) then

– D
(p,t+1)
σ,τ,h := D

(p,t)
σ,τ,h ∪ {(p, t + 1)} ;

– σ(p, t + 1) := q′,
– τ(p,t+1)(z) := τ(p,t)(z) if z ∈ Z \ {h(p, t)},
– τ(p,t+1)(z) := a′ if z = h(p, t);
– h(p, t + 1) := h(p, t) − 1 if ∆ = L,
– h(p, t + 1) := h(p, t) if ∆ = O,
– h(p, t + 1) := h(p, t) + 1 if ∆ = R.
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Definition 3. “Temporal Turing Machine”
A temporal Turing machine is a pair T := (T0,E) where T0 is a Turing machine
and E a temporal extension of T0.

Lemma 1. “Computing Time Lemma”
Let T := (T0,E) be a temporal Turing machine and p ∈ I.

(i) If s, t ∈ N0, (p, t) ∈ D−, s < t and (p, s) ∈ Dσ,τ,h,
then (p, s) ∈ D+ and (p, s + 1) ∈ Dσ,τ,h.

(ii) There exist at most one t ∈ N0 such that (p, t) ∈ D−.

Proof. (i) Let p ∈ I, s, t ∈ N0, (p, t) ∈ D−, s < t and (p, s) ∈ Dσ,τ,h, hence
(p, s) ∈ D

(p,s)
σ,τ,h. Assume that (p, s) ∈ D−, then D

(p)
σ,τ,h = D

(p,s)
σ,τ,h by (8.1.1), and

since s < t we obtain that (p, t) /∈ D
(p)
σ,τ,h contradicting (p, t) ∈ D−. Hence

(p, s) ∈ D+ which implies (p, s + 1) ∈ D
(p,s+1)
σ,τ,h by (8.1.2).

(ii) Assume that there exist s, t ∈ N0, s < t, (p, s) ∈ D−, (p, t) ∈ D−, then we
get a contradiction by (i).

Definition 4. “Computing Time and Output”
Let T := (T0,E) be a temporal Turing machine. We call the set
DT := {p|p ∈ I and ∃t (p, t) ∈ D−} the set of accepted words of T.
For any p ∈ DT there is exactly one t ∈ N0 satisfying (p, t) ∈ D− by Lemma 1.
That non-negative integer is called the computing time needed by the Turing
machine to process p and is denoted by tp. By (8.1.1, 8.0) (p, tp) ∈ Dσ,τ,h and
τ(p, tp) ∈ Dω. Hence ω(τ(p,tp)) ∈ Σ∗ and this word is called the output of p.
The mapping fT : DT −→ Σ∗ where fT(p) := ω(τ(p,tp)) is called the word
function of T.

In the next section we introduce for a temporal Turing machine two automata.

3 Automata of a Temporal Turing Machine

For any temporal Turing machine T := (T0,E) we define two automata, the state
automaton of the Turing machine T0 and the configuration automaton of
the temporal Turing machine T. First, we recall the definition of an automaton.

Definition 5. “Automaton”
A tuple A := (S, S(i), S(f), A, T ) is called an automaton if S is a set (of states),
S(i) and S(f) are subsets of S, called the set of initial and final states, respec-
tively. A is a set, called the set of actions (or labels) and T ⊆ S × A × S is
called the set of transitions of A.

Definition 6. “State Automaton”
Let T := (T0,E) be a temporal Turing machine. Then the tuple
As := (Ss, S

(i)
s , S

(f)
s , As, Ts) where
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Ss := σDσ,τ,h

S
(i)
s := {σ(p, 0)|p ∈ I}

S
(f)
s := {σ(p, tp)|p ∈ DT}

As := {v(p, t)|(p, t) ∈ Dσ,τ,h}
Ts := {(σ(p, t), v(p, t), σ(p, t + 1))|(p, t) ∈ D+}
is an automaton, called the state automaton of T.

The state automaton As represents the transitions within the set Q of states
of the Turing machine T0. Replacing in the previous definition σ by σ×τ ×h we
obtain the following definition of a “configuration automaton” which represents
the transitions between the “configurations” (σ×τ×h)(p, t) where (p, t) ∈ Dσ,τ,h.

Definition 7. “Configuration Automaton”
Let T := (T0,E) be a temporal Turing machine. Then the tuple
Ac := (Sc, S

(i)
c , S

(f)
c , Ac, Tc) where

Sc := (σ × τ × h)Dσ,τ,h

S
(i)
c := {(σ × τ × h)(p, 0)|p ∈ I}

S
(f)
c := {(σ × τ × h)(p, tp)|p ∈ DT}

Ac := {v(p, t)|(p, t) ∈ Dσ,τ,h}
Tc := {((σ × τ × h)(p, t), v(p, t), (σ × τ × h)(p, t + 1))|(p, t) ∈ D+

is an automaton, called the configuration automaton of T.

The following “6-shaped Path Lemma” describes the behavior of a temporal
Turing machine in the configuration automaton. Each input is processed either
in a “6-shaped path”(see a) or in a finite (b1) or infinite (b2) path without
repetitions.

Lemma 2. “6-shaped Path Lemma”
Let T := (T0,E) be a temporal Turing machine, p ∈ I,
D(p) := {(p, t)|(p, t) ∈ Dσ,τ,h}.
(a) If (σ × τ × h)|D(p) is not injective, then p /∈ DT and there exist exactly one

pair (rp, sp) ∈ N0 such that rp < sp and (σ×τ ×h)(p, rp) = (σ×τ ×h)(p, sp)
and rp and sp are minimal with respect to this condition.
Let D[p] := {(p, t)|0 ≤ t < sp}; then
(σ × τ × h)|D[p] is injective and
(σ × τ × h)D[p] = (σ × τ × h)D(p);

(b1) if (σ × τ × h)|D(p) is injective and p ∈ DT, then D(p) = {(p, t)|0 ≤ t ≤ tp};
(b2) if (σ × τ × h)|D(p) is injective and p /∈ DT, then (σ × τ × h)D(p) is infinite.

Proof. (a) Let p ∈ I. We assume that (σ × τ × h)|D(p) is not injective. Then
there exist r, s ∈ N0, r < s such that (σ × τ × h)(p, r) = (σ × τ × h)(p, s); then
there exists exactly one pair (rp, sp) ∈ N0 × N0 satisfying
(σ×τ×h)(p, sp) = (σ×τ×h)(p, rp) and rp < sp such that rp and sp are minimal
with respect to that condition.
Since v(p, r) = τ(p,r)(h(p, r)) = τ(p,s)(h(p, s)) = v(p, s)
we get {(p, r), (p, s)} ⊆ D+ by 8.1 and Lemma 1.
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Hence the sequence ((σ×τ×h)(p, t)|rp ≤ t ≤ sp) is a cycle of length cp := sp−rp

in the directed graph of the configuration automaton AC . Therefore (p, t) ∈ D+

for all t ∈ N0. Hence p /∈ DT and (σ×τ×h)|D[p] is injective and (σ×τ×h)D[p] =
(σ × τ × h)D(p).
(b1) Let (σ × τ × h)|D(p) be injective and p ∈ DT. By Lemma 1
D(p) = {(p, t)|0 ≤ t ≤ tp} and (σ × τ × h)D(p) is the set of vertices of a finite
path in the directed graph of the configuration automaton Ac.
(b2) Let (σ×τ×h)|D(p) be injective and p /∈ DT, then (σ×τ×h)D(p) is the set of
vertices of an infinite path in the directed graph of the configuration automaton
Ac.

Clearly, we could define several other automata of a temporal Turing machine,
for example a “state value automaton” using the mapping σ × v, but we will
discuss mainly the state and the configuration automaton in this paper. From
the following representation of temporal Turing machines in Temporal Concept
Analysis we will understand that these automata can be constructed easily from
a suitable conceptual time system.

That is prepared in the following section using a small example.

4 Example: A Simple Temporal Turing Machine

We construct a temporal Turing machine which computes for any given word w
over the alphabet Σ := {a, b} its first symbol f(w) [Loe76], p.43. For achieving
this, we start with the following simple idea for such a computation:

Start with the first symbol and preserve it, then delete all the following symbols
up to the last one.

We distinguish three stages of such a computation for an input word w:
S0 := checking the first position of the word w,
S1 := checking the second or a later position of the word w,
S2 := reaching the end of the word w.

Now, we construct a Turing machine T0 := (Q, q0, Γ,B,Σ, δ) for this com-
putation. According to the three stages we choose Q := {q0, q1, q2}, take q0 as
the initial state, Σ:= {a, b}, Γ := {a, b, B} and define
δ : Q × Γ −→ Q × Γ × {L,O,R} by:
(1) δ(q0, a) := (q1, a, R),
(2) δ(q0, b) := (q1, b, R),
(3) δ(q0, B) := (q0, B, O),
(4) δ(q1, a) := (q1, B, R),
(5) δ(q1, b) := (q1, B, R),
(6) δ(q1, B) := (q2, B, O).

To visualize a temporal extension of this Turing machine T0 we represent the
computation of the word ab in Table 1:



Turing Machine Representation in Temporal Concept Analysis 367

Table 1. A temporal representation of a computation

input time tape head position TM-state head value change output
ab 0 ...BabB... 0 q0 a (1)
ab 1 ...BabB... 1 q1 b (5)
ab 2 ...BaBB ... 2 q1 B (6)
ab 3 ...BaBB ... 2 q2 B STOP a

The input word ab is encoded at time granule 0 onto the tape as a stream
...BabB... where the first symbol is at square 0, the following symbols are placed
on the following squares, and the other squares are filled with blanks which is
indicated by dots in Figure 1. For time granule 0 the head position is at square
0 and the state of the Turing machine is chosen to be q0. Then the partial
mapping δ tells us the changes depending on the current state and the current
head value. In this case, instruction (1) in the definition of δ tells us, that the
Turing machine changes from state q0 to q1, and the head position from 0 to
1, since the head moves to the right. That determines the next row of Table 1
uniquely, if we repeat the input and increase the time value by 1. At time granule
3 the Turing machine is in the state q2 and stops since none of the instructions of
δ is applicable. From the current tape stream the result is obtained by applying
the map ω which is chosen to “omit all blanks”. In the following we restrict
ourselves to the set I≤2 of all words of {a, b}∗ of length smaller or equal 2. The
corresponding temporal extension E≤2 := (I≤2, (Z,+), (N0,+,≤), α, σ, τ, h, ω)
will be used as our leading example.

The tabular representation of the computation steps for each input word
p is the basis for the construction of Conceptual Time Systems with actual
Objects and a Time Relation (CTSOT) for a given temporal Turing machine.
This construction is explained in the next sections.

5 Temporal Concept Analysis

We assume that the reader is familiar with the basic notions in Formal Concept
Analysis [GaWi99]. In the following we also need the standard notions in Tem-
poral Concept Analysis [Wol02a, Wol02b]. The most important ones are recalled
in the next subsection.

5.1 Conceptual Time Systems with Actual Objects and a Time
Relation

The idea of a simple temporal data table which records for each time granule g
its “temporal meaning and the events happening at that time granule” in the
row of g is mathematically described in the following definition.

Definition 8. “Conceptual Time System”
Let T := ((G,MT ,WT , IT ), (Sm|m ∈ MT )) and C := ((G,MC ,WC , IC), (Sm|m ∈
MC)) be scaled many-valued contexts on the same object set G. Then the pair
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(T,C) is called a conceptual time system (CTS) on the set G of time gran-
ules. T is called the time part and C the event part of (T,C). The set of
object concepts of the derived context KT |KC of (T,C) is called the situation
space, the set of object concepts of KC is called the state space of (T,C). The
elements of the situation space are called situations, those of the state space
are called states.

To describe persons or particles or other objects which are commonly un-
derstood to be at each time granule in exactly one state we use the following
definition.

Definition 9. “CTSOT”
“conceptual time systems with actual objects and a time relation”
Let P be a set (of persons, or objects) and G a set (of time granules) and
Π ⊆ P×G. Let (T,C) be a conceptual time system on Π, and R̂ ⊆ Π×Π. Then
the tuple (P,G,Π,T,C, R̂) is called a conceptual time system (on Π ⊆ P×G)
with actual objects and a time relation, in short a CTSOT. For each object
p ∈ P the set pΠ := {g ∈ G|(p, g) ∈ Π} is called the time of p in Π. Then the
set Rp := {(g, h)|((p, g), (p, h)) ∈ R} is called the set of R-transitions of p.

In this paper we will take the input words of a temporal Turing machine
as the objects of a suitable CTSOT. Then the “computation way” of an input
can be represented as a “life track of an object” in the sense of the following
definition.

Definition 10. “life track of an object”
Let (P,G,Π,T,C, R̂) be a CTSOT, and p ∈ P . Then for any mapping f :
{p} × pΠ → X (into some set X) the set f = {((p, g), f(p, g))|g ∈ pΠ} is called
the f-life track of p in X.

The two most useful examples for such mappings are the object concept
mappings γ and γC of the derived contexts KT |KC and KC of the conceptual
time system (T,C, R̂) on Π, each of them restricted to the set {p}×pΠ of actual
objects. They are called the life track of p in the situation space and the
life track of p in the state space respectively.

In the following section we represent temporal Turing machines by CTSOTs.

6 CTSOT Representations of Temporal Turing Machines

We show that any temporal Turing machine can be represented by a CTSOT.
For the purpose of a flexible representation we even construct a class of “Turing
CTSOTs” of the given temporal Turing machine such that each Turing CTSOT
gives a specific insight into the behavior of the given Turing machine. For ex-
ample, we construct Turing CTSOTs which yield automata isomorphic to the
configuration automaton of the given temporal Turing machine.

For that purpose we have to choose the scales such that they preserve “all
the information” of the values of their many-valued attributes. The most simple,
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but often too rigid choice is a nominal scale, but for the purpose of separating
different values by different object concepts it is sufficient to choose “object
clarified” scales which are introduced in the following.

6.1 Object Clarified Scales

First we recall the well-known definition that a formal context (G,M,I) is called
object clarified if ∀g,h∈G (g↑ = h↑ ⇒ g = h). In the following we use the
notion gI := g↑ to distinguish several formal contexts.

Lemma 3.
Let ((G,M,W, I), (Sm|m ∈ M)) be a scaled many-valued context where Sm =
(Gm, Nm, Im). Let K = (G, {(m,n)|m ∈ M,n ∈ Nm}, J) be its derived context
where g J (m,n) :⇔ m(g)Imn. If Sm is object clarified for all m ∈ M , then

∀g1,g2∈G( (∀m∈M m(g1) = m(g2)) ⇔ γ(g1) = γ(g2) ).

Proof. The implication “⇒” is trivial by definition of the derived context. To
prove the converse, let γ(g1) = γ(g2), hence⋃{gJm

1 |m ∈ M} = gJ
1 = gJ

2 =
⋃{gJm

2 |m ∈ M}. Hence gJm
1 = gJm

2 for each
m ∈ M since gJm

1 = {(m,n)|m(g1)Imn}.
Therefore m(g1)Im = m(g2)Im , which yields m(g1) = m(g2) since Sm is object
clarified.

6.2 The Definition of a Turing CTSOT

Let T be a temporal Turing machine. To have a flexible notation for the intended
construction of the class of “Turing CTSOTs” of T we introduce a “set of rele-
vant mappings” of T, defined by MT := {time, α′, σ, τ, h,Ω, v, σ′, v′, χ} where
time : Dσ,τ,h −→ N0, time(p, t) := t;
α′ : Dσ,τ,h −→ Σ∗ where α′(p, t) := p;
σ, τ, h, v are the previously defined mappings, and Ω, σ′, v′, χ are partial map-
pings, described as mappings from Dσ,τ,h using the sign “/” as a “missing value”:
Ω : Dσ,τ,h −→ Σ∗ ∪{/}, Ω(p, tp) := ω(τ(p, tp)) if p ∈ DT, otherwise Ω(p, t) := /,
σ′ : Dσ,τ,h −→ σD+, σ′(p, t) := σ(p, t + 1), if (p, t + 1) ∈ D+, otherwise
σ′(p, t) := /,
v′ : Dσ,τ,h −→ vD+, v′(p, t) := v(p, t+1) if (p, t+1) ∈ D+, otherwise v′(p, t) := /,
χ : Dσ,τ,h −→ {L,O,R}, χ(p, t) := ∆ (where ∆ is the value ∈ {L,O,R} satisfy-
ing δ(σ(p, t), v(p, t)) = (q′, a′, ∆)) if (p, t + 1) ∈ D+, otherwise χ(p, t) := /.
The mappings σ′, v′, χ will be used to represent the instructions of δ as implica-
tions in the derived context of a suitable CTSOT.

Table 2 shows a typical outline of a CTSOT of a temporal Turing machine
where we have selected a subset MT := {time} as the set of attributes of the
time part and a subset MC := {σ, τ, h,Ω} as the set of attributes of the event
part.
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Table 2. An outline of a CTSOT of a Turing machine

current word time TM − state σ tape τ head position h output Ω

(p, 0) 0 σ(p, 0) τ(p, 0) h(p, 0) /
(p, t) t σ(p, t) τ(p, t) h(p, t) /

(p, t + 1) t + 1 σ(p, t + 1) τ(p, t + 1) h(p, t + 1) /
(p, tp) tp σ(p, tp) τ(p, tp) h(p, tp) ω(τ(p, tp))

Definition 11. “Turing CTSOT”
Let T0 := (Q, q0, Γ,B,Σ, δ) be a Turing machine and
E := (I, (Z,+), (N0,+,≤), α, σ, τ, h, ω) a temporal extension of T0. Let T :=
(T0,E) and MT := {time, α′, σ, τ, h,Ω, v, σ′, v′, χ} its set of relevant mappings.
Let S := (P,G,Π,T,C, R̂) be a CTSOT where T := ((Π,MT ,WT , IT ), (Sm|m ∈
MT )) and C := ((Π,MC ,WC , IC), (Sm|m ∈ MC)).
Then S is called a Turing CTSOT of T if the following conditions hold:

(a) P = I, G = N0, Π = Dσ,τ,h, R̂ = {((p, t), (p, t + 1))|(p, t) ∈ D+};
(b) MT ⊆ MT,

WT :=
⋃{mDσ,τ,h|m ∈ MT },

IT := {((p, t),m,m(p, t))|(p, t) ∈ Dσ,τ,h,m ∈ MT };
(c) MC ⊆ MT,

WC :=
⋃{mDσ,τ,h|m ∈ MC},

IC := {((p, t),m,m(p, t))|(p, t) ∈ Dσ,τ,h,m ∈ MC};
(d) All scales Sm (m ∈ MT ∪MC) are object clarified.

Definition 12. “The State Automaton of a Turing CTSOT”
Let T := (T0,E) be a temporal Turing machine, and S be a Turing CTSOT of
T, K := (KT ,KC) the derived context of S, γC the object concept mapping of
KC .
Let AS := (SS, S

(i)
S , S

(f)
S , AS, TS), where

SS := γCDσ,τ,h is the set of states of S,
S

(i)
S := γC{(p, 0)|p ∈ I},

S
(f)
S := γC{(p, tp)|p ∈ DT},

AS := vDσ,τ,h,
TS := {(γC(p, t), v(p, t), γC(p, t + 1))|(p, t) ∈ D+};
AS is an automaton, called the state automaton of the Turing CTSOT S.

The most interesting examples of Turing CTSOTs arise by the following
choices for (MT ,MC):

( 1) ({time}, ({σ, τ, h,Ω});
( 2) ({time}, {σ, τ, h});
( 3) ({time}, {σ});
( 4) ({time}, {σ, v, σ′, v′, χ}).
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Definition 13. “Automata Isomorphisms”
Let Aj := (Sj , S

(i)
j , S

(f)
j , Aj , Tj), (j ∈ {1, 2}) be automata. A pair (ι, κ) is called

an isomorphism from A1 to A2 if
(1) ι : S1 −→ S2 is a bijection and
(2) κ : A1 −→ A2 is a bijection such that
(3) ιS

(i)
1 = S

(i)
2 , ιS

(f)
1 = S

(f)
2 and

(4) ∀s, t ∈ S1 ∀a ∈ A1 ((s, a, t) ∈ T1 ⇔ (ι(s), κ(a), ι(t)) ∈ T2).

Theorem 1. “Turing CTSOT Theorem”
Let T := (T0,E) be a temporal Turing machine. Then

(1 ) the configuration automaton Ac of T is isomorphic to the state automaton
AS of any CTSOT S of T with event set MC = {σ, τ, h};

(2 ) the state automaton As of T is isomorphic to the state automaton AS of any
CTSOT S of T with event set MC = {σ}.

Proof. (1) Let T := (T0,E) be a temporal Turing machine and S be a CTSOT
of T with event set MC = {σ, τ, h}. To construct an isomorphism from Ac to

Fig. 1. A transition diagram of the concept lattice of the Turing CTSOT with event
set {σ, τ, h, Ω} of the temporal Turing machine (T0, E≤2) (from section 4) processing
on the set I≤2 of all words of length ≤ 2 over {a, b}. The head position has an ordinal
scale, the tape attribute τ is scaled lexicographically using the order “B < a < b”. The
cycle of length 1 generated by the empty word is not drawn
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AS we use Lemma 3 applied to the derived context KC of the CTSOT S which
yields that σ × τ × h and the object concept mapping γC of KC have the same
kernel. Hence there exist exactly one bijection ι : (σ × τ × h)Dστh −→ γCDσ,τ,h

satisfying ι ◦ (σ × τ × h) = γC .
We show that the pair (ι, κ), where κ is the identity on AS := vDσ,τ,h is an
isomorphism from the configuration automaton AC onto the state automaton
AS. Clearly, (1) and (2) in Def. 14 are satisfied. Condition (3) and (4) hold since
ι ◦ (σ × τ × h) = γC .
(2) The proof for the event set {σ} runs in the same way as for the event set
{σ, τ, h} in (1).

Figure 1 shows a transition diagram of the concept lattice of the derived
context of the event part of a Turing CTSOT for the temporal Turing machine
in the example in section 4 with the input set I≤2 and the event set {σ, τ, h,Ω}.

6.3 Instructions as Implications

To represent the instructions of δ of a given temporal Turing machine T as
valid implications of a formal context we construct a Turing CTSOT of T
with event set {σ, v, σ′, v′, χ} and take nominal scales for these event attributes
such that each value appears also as a scale attribute. Then each instruction
((q, a), (q′, a′, ∆)) of δ can be represented by the implication

({(σ, q), (v, a)}, {(σ′, q′), (v′, a′), (χ,∆)})
which is valid in the derived context KC .

Hence the “program” consisting of the instructions of a Turing machine can
be understood as a set of “background implications” in the derived context of
the event part of a Turing CTSOT.

7 Conclusion

We have shown that the methods of Temporal Concept Analysis can be used
to represent for a given Turing machine T and for any input p the sequence of
computation steps for p as a life track of p in the state space of a Turing CTSOT.
The automata of Turing CTSOTs yield the state automaton of a Turing machine
as well as its configuration automaton. The conceptual role of the instructions
of a Turing machine is understood as a set of background implications of the
derived context of a Turing CTSOT.
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Abstract. The development of a mathematical model for judgments un-
derstood as compositions of concepts and relations has been an important
branch of research in recent years. It led to the definitions of concept and
protoconcept graphs which are based on information contained in a power
context family, where incidence relations between objects (or tuples of
objects) and attributes are stored.

A theory of the information those graphs represent (called conceptual
content) has been developed for concept graphs in [PW99] and [Wi03].
In [HK04], an extension of this theory to protoconcept graphs not con-
sidering object implications (as it is done for concept graphs) has been
established. The first part of this paper concentrates on the investigation
of the protoconceptual content of protoconcept graphs respecting both
protoconceptual and object implications.

The second part compares the different structures of conceptual and
protoconceptual contents of a given power context family, showing how
more background information (using object implications and concepts
instead of protoconcepts) reduces the number of possible contents.

The third and final part analyzes how the different approaches can
be generalized. Here we will concentrate on the (generalized) conceptual
content of a formal context.
In each part an information context will be defined, which provides an
accessible representation of the lattice of (proto-)conceptual closures.

1 Introduction

Concept and protoconcept graphs are means to graphically represent relational
information, i. e. that an object or a tuple of objects is in a certain relation (or
is not for the case of protoconcept graphs). While the original reason for the
development of the theory of concept and protoconcept graphs is the aspect
of visualization and the support of rational communication (see [Wi97, Wi00b,
DK03]), we will concentrate here on the aspect of (proto-)conceptual content.

Different (proto-)concept graphs may represent the same information, result-
ing in a twofold problem: on the one hand, the problem of finding in the set
of graphs representing the same information one that is suited for the purpose

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 375–390, 2005.
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of rational communication; and, on the other hand, analyzing the structure of
representable information, i. e. of the (proto-)conceptual contents generated by
the graphs.

As seen in [PW99] the conceptual contents of concept graphs form a complete
lattice, and this remains true for the protoconceptual contents of protoconcept
graphs (see also [HK04]). For the case of conceptual contents Wille extended
in [Wi03] the notion of conceptual content and found a formal context having
the conceptual contents as extents. We adapted this approach in [HK04] with a
restricted notion of content – this restriction will be removed with the results in
Section 3.

As concepts are special protoconcepts and concept graphs are special pro-
toconcept graphs (up to isomorphism), we are interested in the relationship of
the resulting structures. Starting from protoconceptual contents without object
implications and gradually adding background information up to the case of con-
ceptual content with object implications we find that the set of possible contents
is reduced. We can identify the structure of contents of the case with more back-
ground information as substructure of the one with less background information.
This will be shown in Section 4.

All approaches, those for concept graphs and also the ones in [HK04] and in
this paper have much in common. In Section 5 an approach is presented, which
abstracts from the concrete cases allowing us to adapt the information context
for variants of implications for objects or (proto-)concepts. Section 6 ends the
paper with a conclusion.

2 Basic Definitions

In this section, we shortly recall the definitions for protoconcepts, protoconcept
graphs and conceptual contents. The adaption of the definition of conceptual
contents to protoconceptual contents (respecting object implications) will be
discussed in the following section. For a more detailed introduction to these
topics we refer the reader to [Wi00, Wi03] and [HK04].

A protoconcept (cf. [Wi00]) of K := (G,M, I) is defined as a pair (A,B) with
A ⊆ G and B ⊆ M such that AI = BII (which is equivalent to AII = BI). The
set P(K) of all protoconcepts of K is structured by the generalization order !,
defined by

(A1, B1) ! (A2, B2) :⇔ A1 ⊆ A2 and B1 ⊇ B2,

and by the following operations:

(A1, B1) � (A2, B2) := (A1 ∩A2, (A1 ∩A2)I)
(A1, B1) � (A2, B2) := ((B1 ∩B2)I , B1 ∩B2)

¬(A,B) := (G\A, (G\A)I)
� := (G, ∅) and (A,B) := ((M \ B)I ,M \B)

⊥ := (∅,M).

The set P(K) together with the operations �,�,¬, ,� and ⊥ is called the
algebra of protoconcepts of K and denoted by P(K). The operations are called

Hereth
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meet, join, negation, opposition, all and nothing. In this paper, we also need
some operations derived from these basic ones. For p, q ∈ P(K) we set

Semiconcepts are special protoconcepts, which fulfill the stronger condition
AI = B or BI = A. We define H(K) to be the set of all semiconcepts of K. For
any protoconcept (A,B), we have that (A,B)� := (A,B)�(A,B) = (A,AI) and
(A,B)� := (A,B) � (A,B) = (BI , B) are semiconcepts. To differentiate these
two types of semiconcepts, we set H�(K) to be the semiconcepts of the form
(A,AI) (the �-semiconcepts), and H�(K) to be the semiconcepts of the form
(BI , B) (the �-semiconcepts). Note that whenever an operation is performed,
we obtain a semiconcept. In particular, the result of the operations �,¬,⊥ is a
�−semiconcept, and any result of the operations �, ,� is a �−semiconcept. Fi-
nally, (formal) concepts are those protoconcepts, that are �- and �-semiconcepts
at once, i. e. with A = BI and B = AI .

Since concept and protoconcept graphs store relational information, the no-
tion of formal context was extended to a family of formal contexts in [Wi97]:

Definition 1. A power context family
−→
K := (Kk)k=0,1,2,... is a family of formal

contexts Kk := (Gk,Mk, Ik) such that Gk ⊆ Gk
0 for k ∈ N. The power context

family is said to be of limited type n ∈ N if
−→
K := (K0,K1, . . . ,Kn), otherwise

it is called unlimited.

Now, we can recall the definition of protoconcept graphs introduced in [Wi02]:
The underlying structure is a so-called relational graph, which is a triple (V,E, ν)
consisting of a set V of vertices, a set E of edges and a mapping ν : E →⋃

k=1,2,... V
k which maps each edge to the ordered tuple of its adjacent vertices.

If ν(e) = (v1, . . . , vk), then we say that the arity of e is k. The vertices are said
to have arity 0, i. e. we set E(0) := V . Moreover, let E(k) (k = 0, 1, . . .) be the
set of all k−ary edges.

Definition 2. A protoconcept graph of a power context family−→
K := (K0,K1, . . .) with Kk := (Gk,Mk, Ik) for k = 0, 1, 2, . . . is a structure
G := (V,E, ν, κ, �) for which

– (V,E, ν) is a relational graph,
– κ : V ∪E → ⋃

k=0,1,... P(Kk) is a mapping with κ(u) ∈ P(Kk) for all u ∈ E(k)

(k = 0, 1, . . .),
– � : V → P(G0) \ {∅} is a mapping with �+(v) := �(v) ∩ Ext(κ(v)) and

�−(v) := �(v) \ �+(v) satisfying for ν(e) = (v1, . . . , vk), that �+(vj) 	= ∅ for
all j = 1, . . . , k or �−(vj) 	= ∅ for all j = 1, . . . , k, and that �+(v1) × · · · ×
�+(vk) ⊆ Ext(κ(e)) and �−(v1) × · · · × �−(vk) ⊆ (G0)k \ Ext(κ(e)).

We canonically extend the mapping � from vertices to edges: For ν(e) =
(v1, . . . , vk), let �(e) := �+(e) ∪ �−(e) with �+(e) := �+(v1) × · · · × �+(vk) and
�−(e) := �−(v1) × · · · × �−(vk).

p q := ¬(¬p � ¬q) and p q := ( p � q),
:= ¬⊥ and := �.
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Before we turn to the definition of conceptual content of protoconcept graphs,
we recall some definitions for the case of concept graphs from [Wi03] (formally,
concept graphs can be identified with protoconcept graphs, where κ(u) ∈ B(Kk)
for all u ∈ E(k) and �−(v) = ∅ for all v ∈ V ). The concept graph con-
tains the information units (g, κ(u)) with u ∈ E(k) for k = 0, 1, 2, . . . and
g ∈ �(u). For a context Kk of the underlying power context family, we de-
fine Binst(Kk) := {(g, p) ∈ Gk × B(Kk) | g ∈ Ext(p)}, the set of possible
information units for Kk. The material inferences coded in the underlying power
context family (see [Wi02] and[Wi03]) are made explicit in the following way.
Let k = 0, 1, 2, . . ., A,C ⊆ Gk and B,D ⊆ B(Kk). Then we say

Kk satisfies A → C :⇐⇒ AIk ⊆ CIk (1)

and
Kk satisfies B → D :⇐⇒

∧
B ≤

∧
D in B(Kk) (2)

These implications give rise to a closure system C(Binst(Kk)), consisting of all
subsets Y which have the following property:

If A × B ⊆ Y and Kk satisfies both A → C and B → D, then C × D ⊆ Y (3)

Based on this, the k-ary conceptual content Ck(G) of a concept graph G is defined
as the closure of {(g, κ(u)) | u ∈ E(k) and g ∈ �(u)}, and the full conceptual
content C(G) of the graph is the disjoint union of all k-ary conceptual contents
for k = 0, 1, 2, . . ..

3 Protoconceptual Content of Protoconcept Graphs

In this section, we discuss how the equations (1)–(3) can be interpreted for the
case of protoconcept graphs, and investigate the structure of the resulting closure
system. To simplify writing, we will use K in the following instead of Kk.

The translation of the first definition poses no problem, we understand as
information units of a protoconcept graph the pairs (g, κ(u)) and (h,¬κ(u))
with u ∈ E(k), g ∈ �+(u) and h ∈ �−(u) for k = 0, 1, 2, . . .. Analogously to
Binst(K) we define Pinst(K) := {(g, p) | g ∈ Ext(p), p ∈ P(K)}. The object
implications in Equation (1) are independent from the notion of concept and
can therefore be accepted. However, in the Equation (2), we use an operation
in the concept lattice, and have to look for an alternative in the protoconcept
algebra. The solution proposed in [Wi02], which also has been applied in [HK04],
is to replace

∧
by , i. e. we have (with B,D ⊆ P(K)):

For concepts, the operation � in P(K) yields the same result as ∧ in the concept
lattice B(K). However, the operation � is defined on the extensional side and
also the information units are defined by objects. This led us to consider the

K satisfies B → D :⇐⇒�B ��D in P(K) (2�)

�
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operation as an alternative, which is (indirectly) defined on the intensional
side ((A,B) (C,D) = ((B ∪D)′, B ∪D):

By comparison, it is weaker in the sense, that for B ⊆ P(K) we have B !
B,1 or in other wordsB → D using (2 ) implies B → D using (2�) but not

vice-versa. Using (2�) we can therefore conclude more new information. For this
reason, the latter approach is not useful if we can calculate for all sets of
protoconcepts. However, if knowledge about I is not complete, the operation
might be interesting, as this operation is defined by the intensional side.

Now we turn to transforming Equation (3) for the case of protoconcepts. We
have to consider the problem that with A×B ⊆ Pinst(K), A → C and B → D it
might happen, that C×D 	⊆ Pinst(K). For instance, let g1, g2 ∈ G with gI

1 ⊆ gI
2 ,

then we have g1 → g2, but with p := ({g1}, gI
1) we get {g1} × {p} ⊆ Pinst(K),

g1 → g2 and (trivially) p → p, but {(g2, p)} = {g2} × {p} 	⊆ Pinst(K). This was
the reason we dropped object implications in [HK04].

In this paper, we extend this approach as follows. We will consider the closure
system of all subsets Y ⊆ Pinst(K), which fulfill the following condition:

If A × B ⊆ Y and if K satisfies both A → C and B → D,

then (C × D) ∩ Pinst(K) ⊆ Y
(3P)

The two alternatives (2�) and (2 ) for the protoconcept inferences lead to
different closure systems on Pinst(K). To denote each alternative, we will use
the symbols (�) and ( ). To treat both cases at once, we will use the symbol ∇.
Any statement making use of ∇ stands for both variants, replacing ∇ by � and

.
For a protoconcept graph G now we define the k-ary protoconceptual content

with respect to ∇ denoted by C
(k)
∇ (G) over the power context family

−→
K :=

(K0,K1, . . .) as the closure of {(g, κ(u)) | u ∈ E(k), g ∈ �+(u)} ∪ {(g,¬κ(u)) |
u ∈ E(k), g ∈ �−(u)} ⊆ Pinst(Kk) with respect to (3P) considering ∇. The
protoconceptual content C∇(G) of G is defined as the disjoint union of the k-ary
protoconceptual contents with respect to ∇ of G.

To investigate the structure of the closure system for the different variations
we will first investigate the protoconceptual contents in more detail. In the fol-
lowing, we will use the notation known from the incidence relation of formal
contexts, for instance, pY means the set of all objects g such that (g, p) is an
element of Y . If not otherwise mentioned, we assume that Y ⊆ Pinst(K) is a
protoconceptual content with respect to (3P).

1

K satisfies B → D :⇐⇒ B � D in P(K) (2 )

�

�

We have Ext(�B) =
T

Ext(B) ⊆ T

Ext(B)II =
T

Int(B)I = (
S

Int(B))I =
Ext( B) and Int(�B) = (

T

Ext(B))I ⊇ (
T

Ext(B)II)I = (
T

Int(B)I)I =
(
S

Int(B)II ⊇ S

Int(B) = Int( B) (Operations are considered element-wise, for
instance Ext(B)II = {Ext(b)II | b ∈ B}). Considering the case of B having only
one element shows that left and right side are not equal in general.
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In order to study the protoconceptual contents of a power context family, is
is enough to concentrate on semiconcepts. Even more, we only need to consider
either the �- or the �-semiconcepts:

Lemma 3. Let A ⊆ P(K). Then we have for the case (∇):

A →∇A and ∇A → A.

Remark 4. To unify the notation in the following, we will write p to denote the
�-semiconcept p�.

Proof. For p ∈ H∇ we have∇{p} = p∇ = p and therefore∇∇A =∇A . With
this, the assertion follows from (2∇). ��
Corollary 5. Let A ⊆ P(K). Then we have for the case (∇)

(∇A)Y =
⋂
a∈A

aY .

Proof. If (g,∇A) ∈ Y (⇔ g ∈ (∇A)Y ) then we have due to ∇A → A that

{g} × A ⊆ Y , i. e. (g, a) ∈ Y for all a ∈ A and therefore (∇A)Y ⊆ ⋂
a∈A aY . On

the other hand, if g ∈ aY for all a ∈ A, we have {g}×A ⊆ Y and with A →∇A

that (g,∇A) ∈ Y . ��

Corollary 6. Let p ∈ P(K). For (�) we have pY = pY
� = (Ext(p),Ext(p)I)Y

and for the case ( ) pY = pY
� = (Int(p)I , Int(p))Y .

Proof. Using Corollary 5 with A := {p} we get (∇{p})Y = pY
∇ = pY . ��

This shows that for a detailed investigation of the structure of the protocon-
ceptual contents we do not have to consider the full set of protoconcepts but
only the corresponding semiconcepts. The �- and �-semiconcepts each form a
complete atomic Boolean subalgebra of P(K), and every element of a complete
atomic Boolean algebra can be described as meet of the coatoms above it. We
will transfer this representation to our problem. However, while both H�(K) and
H�(K) are Boolean substructures, they are not isomorphic in general. To allow
a unified treatment, we fix some definitions:

Definition 7. Let K := (G,M, I) be a formal context. We set

D� := {(G \ {g}, (G \ {g})I) | g ∈ G} ⊆ H�(K)
D := {(mI , {m}) | m ∈ M} ⊆ H�(K)

Lemma 8. Let p ∈ P(G,M, I) and d ∈ D∇. Then there exists exactly one
gd ∈ G such that d = (G \ {gd}, (G \ {gd})I) and p → d ⇔ gd /∈ Ext(p).
In the case ( ) exists exactly one md ∈ M , such that d = (mI

d, {md}) and
p → d ⇔ md ∈ Int(p).
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Now, we can represent pY by means of the coatoms, hence the elements in
D∇:

Lemma 9. We have for every p ∈ P(K)

pY =
⋂

d∈D∇
p→d

dY

Proof. Let c := ∇{d ∈ D∇ | p → d}. For ∇ = �, we see by Lemma 8 that
Ext(c) =

⋂{Ext(d) | gd /∈ Ext(p)} =
⋂{G \ {g} | g /∈ Ext(p)}} = Ext(p).

For ∇ = we have analogously Int(c) =
⋃{{m} | m ∈ Int(p) = Int(p). By

Corollary 6 we get the assertion. ��

Lemma 10. Let p ∈ P(K) such that for some g ∈ G we have (g, p) ∈ Y . Then

(pY )II ∩ Ext(p) = pY

Proof. We have pY ×{p} ⊆ Y . We can easily see, that pY → (pY )II (as for any set
A ⊆ G we have A → A′′ because of A′ = A′′′). The implication p → p is obviously
correct, and consequently

(
(pY )II × {p})∩Pinst(K) = (

(
pY )II ∩ Ext(p)

)×{p} ⊆
Y . Hence we obtain (pY )II ∩Ext(p) ⊆ pY , while (pY )II ∩Ext(p) ⊇ pY is obvious.

��

Lemma 9 says, that the set pY is defined by the sets dY with d ∈ D∇.
Lemma 10 says that dY can be calculated from the concept extent it generates
(and is often equal). Combining these facts together, we get an easy way to
represent any protoconceptual content Y ⊆ Pinst(K). The following proposition
shows how to transform an arbitrary mapping from D∇ to concept extents into
a protoconceptual content of K.

Proposition 11. Let K be a formal context and ϕ : D∇ → Ext(K) be a map-
ping. Then the set

Y ϕ :=
⋃

p∈P(K)

Aϕ
p × {p}

with
Aϕ

p := Ext(p) ∩
⋂

d∈D∇
p→d

ϕ(d)

is a protoconceptual content of K.

Proof. For the case (�) we have p → d ⇔ �{p} � �{d} ⇔ p� � d� ⇔
Ext(p) ⊆ Ext(d). By the definition of D� we know there is some gd ∈ G such that
d = (G\{gd}, (G\{gd})I), so we have p → d ⇔ Ext(p) ⊆ G\{gd} ⇔ gd /∈ Ext(p).
The reasoning for the case ( ) is analogous. ��
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Proof. As Aϕ
p ⊆ Ext(p) it is easy to see that Y ϕ ⊆ Pinst(K). Now we will

prove that Y ϕ is closed under (3P). Let A,C ⊆ G and B,F ⊆ P(K) such that
A × B ⊆ Y ϕ and the inferences A → C and B → F hold in K.

Let f ∈ F and d ∈ D∇ with f → d. For the case (�) we know due to Lemma 8
that there exists some gd ∈ G such that gd /∈ Ext(f). Because of B → F we
know that�B !�F⇔ ⋂{Ext(b) | b ∈ B} ⊆ ⋂{Ext(f) | f ∈ F}. Therefore
there has to be some b ∈ B with gd /∈ Ext(b) ⇔ b → d. In the case ( ) we
reason analogously that there has to be some b ∈ B with md ∈ Int(b) ⇔ b → d.
This means that we have for each d ∈ D∇ with f → d some b ∈ B with
b → d, and we see A ⊆ Aϕ

b ⊆ ϕ(d). Moreover, from A → C we know that
AI ⊆ CI ⇒ C ⊆ CII ⊆ AII ⊆ ϕ(d)II = ϕ(d) (the latter equation holds because
ϕ(d) is an extent of K). Therefore Ext(f)∩C ⊆ Aϕ

f ⇔ (C×{f})∩Pinst(K) ⊆ Y ϕ.
This concludes the proof that we have (C × F) ∩ Pinst(K) ⊆ Y ϕ. ��

Moreover, every protoconceptual content may be obtained in this way:

Lemma 12. Let Y ⊆ Pinst(K) be a protoconceptual content of K with respect
to (3P). We define the mapping ϕY : D∇ → Ext(K) by ϕY (d) := (dY )II . Then
we have for the protoconceptual content Y ϕY as defined in Proposition 11

Y = Y ϕY .

Proof. As we know that Y and Y ϕY are both protoconceptual contents, it suffices
according to Lemma 9 to show that dY = dY ϕY for all d ∈ D∇. We have

dY ϕY = Aϕ
d = Ext(d) ∩ ϕ(d) = Ext(d) ∩ (dY )II = dY

according to Lemma 10. ��
This shows that any protoconceptual content can be represented by a cor-

responding mapping from D∇ into the concept extents of the formal context.
Instead of describing the protoconceptual contents directly, we will concentrate
on a good description of those mappings. We notice, that if ϕ,ψ are two of those
mappings, then ϕ ∩ ψ with (ϕ ∩ ψ)(d) = ϕ(d) ∩ ψ(d) is also a valid mapping
because extents are closed under intersection. We aim at fixing a small set of
mappings, such that every mapping can be represented as intersection of these
mappings. The images of the d are extents of the context which are always the
intersection of the extents of the attribute concepts. This immediately leads to
the following lemma:

Lemma 13. Let ϕ : D∇ → Ext(K) be an arbitrary mapping. For any d ∈ D∇
and any m ∈ M we set ϕm

d (e) := mI if e = d and ϕm
d (e) := G otherwise. Then

we have
ϕ =

⋂
{ϕm

d | (d,m) ∈ D∇ ×M,ϕ(d) ⊆ mI}.

Remark 14. The set D∇ × M in the above equation is not minimal. If m is a
reducible attribute, its extent is the intersection of the attributes above it. In a
doubly founded context, we have the notion of irreducible attributes (see [GW99,
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p. 32] for details) and M can be replaced by the set of irreducible attributes. In
particular, every finite context is doubly founded. Moreover, if for some d ∈ D∇
there exist two (irreducible) attributes m,n such that mI , nI ⊆ G \Ext(d), then
we have Y ϕm

d = Y ϕn
d . For instance, for the case (�) this happens if for some

g ∈ G both ∅ and {g} are extents of (irreducible) attributes. Therefore one of
the mappings ϕm

d , ϕn
d could be discarded. Finally, if for some d ∈ D∇ and some

(irreducible) attribute m we have mI = Ext(d), then Y ϕm
d = Pinst(K), so the

mapping ϕm
d could be discarded, too. For our purpose of a simple description

of the protoconceptual contents we will continue with the set D∇ × M , but it
could be replaced by smaller sets as mentioned in this remark.

Theorem 15 (Basic Theorem on Protoconceptual Contents of K).
The protoconceptual contents of K are exactly the extents of the protocon-

ceptual information context

Kinf
∇ (K) := (Pinst(K),D∇ ×M,∆)

with ((g, p), (d,m)) ∈ ∆ :⇔ If p → d then (g,m) ∈ I.

Proof. Let (d,m) ∈ D∇ × M be an arbitrary attribute of Kinf
∇ (K) and (g, p) ∈

Pinst(K). We have (g, p) ∈ Y ϕm
d ⇔ (p 	→ d or g ∈ mI) ⇔ ( If p → d then

(g,m) ∈ I) ⇔ (g, p) ∈ (d,m)∆. From this follows (d,m)∆ = Y ϕm
d . And because

the extents of the attribute concepts are closures in Pinst(K) we can conclude
that all extents of Kinf

∇ (K) – being intersections of these closures – are closures
too and therefore protoconceptual contents.

Now let Y ∈ C∇(Pinst(K)) be a protoconceptual content. In view of Lemma 12
and 13 we get that Y =

⋂{(d,m)∆ | (d,m) ∈ D∇ × M and (dY )II ⊆ mI} is an
extent of Kinf

∇ (K). ��
Based on this theorem, we now have an approach to describe the protocon-

ceptual contents of the protoconcept graphs of a given power context family.
Its proof is similar to the corresponding ones in [Wi03] and [HK04] but will be
shown in short form for the sake of completeness.

Let
−→
K := (K0,K1, . . . ,Kn) be a power context family with Kk := (Gk,Mk, Ik)

(k = 0, 1, . . . , n). The protoconceptual information context corresponding to
−→
K

with respect to ∇ is defined as the formal context

Kinf
∇ (

−→
K) := Kinf

∇ (K0) + Kinf
∇ (K1) + · · · + Kinf

∇ (Kn),

thus as the direct sum of the contexts Kinf
∇ (Kk) (k = 0, . . . , n). An extent U of

Kinf
∇ (

−→
K) is said to be rooted if for k = 1, . . . , n we have ((g1, . . . , gk), bk) ∈ U

implies (gj ,�(0)
∇ ) ∈ U for all j = 1, . . . , k with �(0)

� := (G0, G
I0
0 ) and �(0) :=

(G0, ∅). Rooted extents are needed in order to identify the graphs with certain
extents of the context Kinf

∇ (
−→
K). (An extent which is not rooted would correspond

to a graph which has an edge but is missing at least one of the adjacent vertices.)
Now we are able to formulate the desired theorem:
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Theorem 16 (Basic Theorem on Protoconceptual Contents of
−→
K).

For a power context family
−→
K of limited type n the protoconceptual contents of

the protoconcept graphs of
−→
K are exactly the rooted extents of the corresponding

conceptual information context Kinf
∇ (

−→
K).

Proof. From Theorem 15 follows that for any protoconcept graph G and all
k = 0, 1, . . . , n the closure C

(k)
∇ (G) is an extent of Kinf

∇ (Kk). Therefore, the set
C∇(G) = C

(0)
∇ (G)∪̇C(1)

∇ (G)∪̇ . . . ∪̇C(n)
∇ (G) is an extent of Kinf

∇ (
−→
K) = Kinf

∇ (K0)+
Kinf

∇ (K1) + . . .+ Kinf
∇ (Kn), which is by definition of C∇(G) rooted. Now, let U

be a rooted extent of Kinf
∇ (

−→
K). For all k = 0, 1, . . . , n the set Uk := U ∩ Gk

is an extent of Kinf
∇ (Kk), i. e. a protoconceptual content of Kk. We define a

protoconcept graph G := (V,E, ν, κ, �) with V := U0 and E :=
⋃

k=1,...,n Uk, and

the mappings are defined by ν ((g1, . . . , gk), pk) :=
(
(g1,�(0)

∇ ), . . . , (gk,�(0)
∇ )
)

(well-defined because U is rooted), κ (g, p0) := p0, κ ((g1, . . . , gk), pk) := pk and
� (g, p0) := {g} (we have �+ = �). It is easy to verify that this protoconcept
graph has U as protoconceptual content. ��

4 Comparison to Former Approaches

After the discussion of the protoconceptual content of protoconcept graphs re-
specting object implications, we will now compare this result to previous work
on protoconceptual and conceptual contents. The approaches have been basi-
cally the same: First, an information context Kinf (K) is constructed such that
the extents of this context are exactly the (proto-)conceptual contents (with re-
gard to the respective implications), then the information context Kinf (

−→
K) is

defined as direct sum of the information contexts of each single formal context.
Because the second step is virtually the same (with only minor adaptions), we
will concentrate on investigating how the definitions of the information context
in the first step differ.

Influence of Object Implications

The problem solved in [HK04] was very similar to the one approached in the last
section, the difference being that we did not consider object implications (the
problem which finally led to the approach taken in this paper) and we restricted
ourselves to protoconcept implications of the form (�). The information context
for protoconceptual contents without object implications of a formal context
K := (G,M, I) looks as follows:

Kinf
old (K) := (Pinst(K),M irr(K),∈)

where I(h) := {p ∈ P(K) | p � (G \ {h}, (G \ {h})I)} for h ∈ G and
M irr(K) := M irr

⊥ (K) ∪M irr
co (K) with

M irr
⊥ (K) := {Pinst(K) \ ({g} × P(K)) | g ∈ G} and

M irr
co (K) := {Pinst(K) \ ({g} × I(h)) | g, h ∈ G, g 	= h}.
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The main difference in the two approaches is the direction of the map-
ping.While the present one uses a mapping assigning sets of objects (namely
the attribute extents) to protoconcepts, the approach taken in [HK04] assigned
sets of protoconcepts (actually closures with respect to the protoconcept impli-
cations) to each object, otherwise the constructions are similar.

However, as the two problems are so close, there should be a possibility to
give a variant of our information context to match the case of protoconcept
implications without object implications. A closer look at our approach shows
that the extents we use for the objects sets are actually the closures generated
by the object implications. Thus, if we remove the object implications gained
by (2∇), the closure system on the object set changes. Even without any special
implications, we have still the trivial ones, that any set of objects implies itself
or a subset. Therefore, if we consider any arbitrary set as closure (i. e. the closure
system is just P(G)), we can follow the same steps. For the information context
of protoconceptual contents with object implications we used the fact, that every
extent can be described by the intersection of attribute extents. Likewise, we can
describe an arbitrary set of objects by an intersection of sets of the form G \ {g}
for g ∈ G. This leads to the following context:

Kinf
�→ (K) := (Pinst(K),D� ×G,∆−)

with ((g, p), (d, h)) ∈ ∆− :⇔ If p → d then g 	= h.

Lemma 17. The structure B(Kinf
� (K)) is isomorphic to a complete

∧
-sub-

semilattice of B(Kinf
�→ (K)).

Proof. Let (d,m) ∈ D� × M . It is easy see that (d,m)∆ = {(d, g) | g ∈ mI}∆−
.

Therefore, all attribute extents of Kinf
� (K) are extents of Kinf

�→ (K). The set
Pinst(K) is in both lattices the extent of the top concept. As the extent of
the meet of concepts is the intersection on the extents of the concepts and the
extent of the top concept of B(Kinf

�→ (K)) is the same as of the one in B(Kinf
� (K))

(for the infimum of the empty set), the assertion follows. ��
We see that adding information about object implications is reducing the set

of possible protoconceptual contents.

Protoconceptual and Conceptual Contents

In this part, we will compare our result with the result for conceptual contents
of concept graphs, i. e. using object implications on the object side, but only
concepts on the conceptual side.

In [Wi03] the information context is defined as

Kinf (K) := (Binst(K),Scon(B(K)), ∆̄)

with (g, b)∆̄S ⇐⇒ [γg, b]∩S 	= ∅, where Scon(B(K)) is the set of all convex
subsets S of B(K) \ {(∅, ∅II)} for which S ∪ {(∅, ∅II)} is a complete sublattice



386

of the interval [(∅, ∅II),
∨

S] of B(K). The corresponding theorem is however
restricted to formal contexts with M I = ∅.

To compare more easily the conceptual contents of the approach in [Wi03]
with the results in this paper, we provide a version more similar to ours. In
both approaches object implications are considered (and equally defined). The
approach taken with the protoconcepts can easily be transferred to the con-
cept case, considering the similarity of the operations∇ and

∧
for the (proto-)

conceptual implications and for the description of each (proto-)concept of the
algebra. Therefore, the argumentation done in Section 3 can be transferred to
the case of concepts. We have to define the set of describing concepts analogous
to D∇. As can be seen easily, the elements of D∇ are the

∧
-irreducible elements

in the algebra H∇. For the case of concepts, we will use the (irreducible) at-
tribute concepts (cf. Remark 14). The analog of the translation from mappings
to conceptual contents is defined in the following way: Let D be the set of (ir-
reducible) attribute concepts and ϕ : D → Ext(K) be a mapping from those
concepts to the set of extents of the formal context. Then we define

Y ϕ :=
⋃

c∈B(K)

Aϕ
c × {c}

with Aϕ
c := Ext(c) ∩

⋂
d∈D
c≤d

ϕ(d).

Please note, that for the case of single concepts we have c → d ⇔ c ≤
d. Instead of using the attribute concepts from D, we substitute them by the
attributes themselves for the information context. If md generates d, then we
have c ≤ d ⇔ m ∈ Int(c). This leads to the following information context:

Kinf
B (K) := (Binst(K),M ×M,∆B)

with ((g, c), (d,m)) ∈ ∆B :⇔ If d ∈ Int(c) then (g,m) ∈ I.
As the information contexts for protoconceptual and conceptual contents

have different object sets, it is helpful to establish a closer relation between the
two. As restricted to the set of concepts is equal to

∧
, we obtain the following

equalities

Lemma 18. For the case (�) we have that

– For any protoconceptual content X the set X ∩ Binst(K) is a conceptual
content,

– For any conceptual content Y we have Y ∆∆ ∩ Binst(K) = Y

Proof. Obviously, we have Y := X ∩ Binst(K) ⊆ Binst(K), therefore we have to
show that Y is closed under Equation (3). Let A,C ⊆ G and B,D ⊆ B(K) with
A → C and B → D. The latter is meant in the sense of concept implications,
however due to

∧
B ≤ ∧

D ⇔ (
⋂{Ext(b) | b ∈ B} ⊆ ⋂{Ext(d) | d ∈ D}) ⇔

B ! D it is also a protoconceptual implication, and as object implications

�

� �
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are the same we get C×D ⊆ X. Moreover, C×D ⊆ Binst(K) is obvious, proving
the first assertion.

Now let Y ∈ C(Binst(K)) be an arbitrary conceptual content. We know that
Y ∆∆ is a protoconceptual content and therefore Z := Y ∆∆ ∩ Binst(K) is a
conceptual content and we have Y ⊆ Z. Let B ⊆ B(K) and D ⊆ P(K). Then
we have for a protoconceptual implication B → D ⇔ ⋂{Ext(b) | b ∈ B} ⊆⋂{Ext(d) | d ∈ D}⇔ ∧

B ! D(the latter because both are H�-semiconcepts).
Therefore the set

YP :=
⋃

A×B⊆Y

AII × {p ∈ P(K) |
∧

B ! p}

is a protoconceptual content containing Y but no additional (g, c) ∈ Binst(K)
(otherwise Y were not closed under conceptual implications) and therefore YP ∩
Binst(K) = Y from which the second assertion follows. ��

For the case ( ) we have a different notion of implications, such that B →∧
B only if

⋃{Int(b) | b ∈ B} is a concept intent. While all protoconceptual
implications between sets of concepts translate into conceptual implications, the
reverse is not true for the case ( ). For this reason, we will concentrate on the
case (�) and get the following result:

Lemma 19. B(Kinf
B (K)) is isomorphic to a ∧-sub-semilattice of B(Kinf

� (K)).

Proof. It is easy to see that the mapping (A,B) �→ (A∆∆, A∆) for (A,B) is a
∧-preserving homomorphism from B(Kinf

B (K)) to B(Kinf
� (K)). By Lemma 18

we see that A∆∆
1 = A∆∆

2 ⇒ A1 = A∆∆
1 ∩Binst(K) = A∆∆

2 ∩Binst(K) = A2, i. e.
the mapping is injective. (The mapping actually preserves infima of arbitrary
non-empty sets.) ��

5 A More General Approach

In the previous section we have inspected the different structures of closure
systems resulting from various versions of implications on objects, concepts and
protoconcepts. Now we will try to generalize the approach taken in all those
cases. In each case we had implications on the objects (in the case of [HK04] we
assume the trivial implications) and also implications on the (proto-)concepts.
The latter implications were defined by operations on sets of (proto-)concepts.
Here we will abstract from those concrete definitions and investigate how the
closure systems of sets of instances vary with the closure systems on objects and
concepts.

Let LG ⊆ G × G and LA ⊆ A × A. In the following, we will refer to the
elements of A as concepts, but they are used as a primitive notion, i. e. there are
no assumptions with regard to their extent and intent. Therefore, A could be a
set of concepts or protoconcepts or even other mathematical objects.

For a pair (A,B) ∈ LG we write A → B (and analogous B → C for (B,C) ∈
LA). Both sets LG and LA are supposed to fulfill the so-called Armstrong axioms
(we will use the notation LG only):

�
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Definition 20 (Armstrong Axioms).
Let A,B,C ⊆ G, then

1. B ⊆ A ⇒ A → B
2. A → B ⇒ A ∪ C → B ∪ C
3. A → B and B → C ⇒ A → C

It can easily be seen that the implications considered in the previous concrete
examples all comply with these axioms. Next, we need a base set P ⊆ G×A which
corresponds to Binst(K) and Pinst(K) in the concrete approaches. A general
closure is defined as a subset Y ⊆ P such that for A,C ⊆ G and B,D ⊆ A with
A → C and B → D we have

If A × B ⊆ Y and A → C,B → D then (C × D) ∩ P ⊆ Y (3A)

In the following C(A) and C(B) will denote the closures of the sets A ⊆ G and
B ⊆ A with regard to LG and LA and C(LG) and C(LA) the set of these closures
respectively. We see that for any closure Y we have Y = P ∩⋃A×B⊆Y C(A) ×
C(B), i. e. any closure can be represented by the union of products of closures.
Using the notations of formal concept analysis, we get:

Lemma 21. Let Y ⊆ P ⊆ G × A be a general closure. Then

Y =
⋃

{Ext(c) × Int(c) | c ∈ B(G,A, Y )}.
Proof. By definition we have for any c ∈ B(G,A, Y ) that Ext(c) × Int(c) ⊆ Y ,
therefore the union is contained in Y . On the other hand, we have (g, c) ∈
({g}Y Y , gY ) ∈ B(G,A, Y ) and therefore Y is contained in the union. ��

However, not all closures necessarily appear as extent (or intent) of a concept
of B(G,A, Y ).

We are looking for a shorter description. We will apply the following Lemma,
which directly follows from the main theorem in formal concept analysis:

Lemma 22. Let B,D ⊆ A. Then we have (B ∪ D)Y = BY ∩ DY .

As we see, we have intersection on one side and union on the other. Let
D ⊆ C(LA) be a set of concept closures such that for all B ∈ C(LA) we have
B = C(

⋃{D ∈ D | B → D}), i. e. every closure is generated by a union of
elements from D.

In view of the above lemma it suffices to know for any D ∈ D the set
DY in order to calculate for any subset C ⊆ A the set CY =

⋂
c∈C cY =⋂

c∈C

⋂
D∈D,c→D DY . Hence we get the following result:

Lemma 23. Let ϕ : D → C(LG) be an arbitrary mapping. Then

Y ϕ := P ∩
⋃
c∈A

Aϕ
c × {c} with Aϕ

c :=
⋂

D∈D
c→D

ϕ(D)

is a general closure.
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Proof. As all Aϕ
c and D ∈ D are closures, we have A ⊆ Aϕ

c ⇔ C(A) ⊆ Aϕ
c and

B → D ⇔ C(B) → D and therefore

A× B ⊆ Y ϕ ⇔ A ⊆
⋂

c∈B

Aϕ
c ⇔ C(A) ⊆

⋂
c∈C(B)

Aϕ
c ⇒ P ∩ (C(A) ×C(B)) ⊆ Y ϕ.��

Further, for any closure Y it is easy to verify that for the mapping ϕY defined
by ϕY (D) := C(DY ) for D ∈ D we get Y = Y ϕY , i. e. the set of mappings from
D to C(LG) generate all general closures. Like the closures, the mappings are
closed under intersection, so we are looking for a subset of mappings generating
all others via intersection.

As the images are closures from C(LG), we can describe them by the
⋂

-
irreducible elements of C(LG). Let M ⊆ C(LG) be the set of these irreducible
closures, then we can generate all mappings from the mappings of the form ϕM

E

with (E,M) ∈ D×M defined by ϕM
E (D) := M if D = E and ϕM

E = G otherwise.
Therefore, this yields the following information context:

Theorem 24 (Basic Theorem on General Closures).
Let Kinf

A (P,LG,LA) := (P,D × M,∆A) with ((g, c), (D,M)) :⇔ (If c →
D then g ∈ M). Then the extents of the concepts in B(Kinf

A (P,LG,LA)) are
exactly the general closures with respect to (3A).

Remark 25. At a first look, the information context here seems to be more com-
plicated as the attributes are not pairs of elements as in the concrete approaches
but pairs of sets. The reason for this is of course, that the concrete examples
provide possibilities to simplify this part. If using object implications as defined
in (1) we can describe the

⋂
-irreducible closures of C(LG) = Ext(G,M, I) by the

(irreducible) attributes, i. e. for each N ∈ M exists an attribute m ∈ M such
that N = mI . If we do not use object implications, the

⋂
-irreducible elements

are of the form G \ {h} and allow a simpler representation.
On the (proto-)concept side we had in all cases that for any set of (proto-)

concepts B we have C(B) = C(∇B) with ∇ ∈ {�, ,∧} respectively. Therefore

we can replace the closure D ∈ D by the (proto-) concept∇D, again resulting in
a simplification of the representation. Finally, Lemma 8 also suggests to replace
the set D∇ of describing protoconcepts by G in the case (�) or by M otherwise.

6 Conclusion

The solution to the problem of protoconceptual contents respecting object im-
plications presented in Section 3 finalizes the approach started in [HK04]. The
influence of background knowledge on the resulting structure of contents has
been exemplified in Section 4.

The generalization of all cases as shown in Section 5 allows to be even more
flexible. For instance, it might be desirable to restrict the additional implications
on objects and (proto-)concepts in (1), (2) and (2)∇ to non-empty premises, as
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they are supposed to correspond to material implications (see [Wi02, Wi03]).
Using the results from the generalized approach we can see how this decision
influences the structure of contents.

While this approach is rather general with regard to the kind of object and
(proto-)concept implications, it does not allow implications between different
contexts, for instance “if ((g1, g2), c) ∈ Y then ((g1), d) ∈ Y for c ∈ B(K2) and
d ∈ B(K1)”. Of course, then we cannot restrict ourselves to the investigation
of contents of only one context but have to consider the whole power context
family. This seems to be an interesting area for further developing the notion of
(proto-)conceptual content of (proto-)concept graphs.
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Planarity of Lattices
An Approach Based on Attribute Additivity
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Abstract. Popular lattice drawing algorithms do not take planarity into
account and find plane diagrams mainly heuristically. We present a char-
acterization of planar lattices based on a theorem of Dushnik and Miller
[4] and the “left”-relation introduced by Kelly and Rival [6]. In particu-
lar, our work is helpful for drawing plane attribute additive diagrams.

1 Motivation

A lattice is planar if it admits a diagram with no edge crossings. There exist
algorithms for constructing such plane diagrams (see [3] for an overview), but
these do not use the lattice structure and treat the problem as a graph drawing
task. Our aim is to automatically construct plane diagrams of planar lattices.
Additionally we want to draw them attribute additively [7] since this convention
provides nice visualizations of lattices.

2 Introduction

Throughout the paper we assume finiteness. For easier notation we use the sym-
bols ≤ and < both for lattice order relations and the usual order on R.

2.1 Diagrams of Lattices

A lattice (V,≤) is often represented by a diagram. We draw a small circle for
each lattice element and a line for each pair v, w of lattice elements in neighbour
relation (i.e. v < w and there is no element z fulfilling v < z < w). Lattice
diagrams are drawn upward. We define, according to [6]:

Definition 1. Let V = (V,≤) be a lattice with the neighbour relation ≺. A
diagram (or representation [6]) pos(V) of V is the image of a mapping

pos : V ∪ ≺ �→ R2 ∪ P(R2)

meeting the following conditions for all v, w, z ∈ V.

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 391–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1. pos |V : v �→ pos(v) = (x(v), y(v)) ∈ R2 is an injection.
2. Whenever v < w holds then y(v) < y(w).
3. pos |≺ : vw �→ {(xvw(y), y) | y ∈ [y(v), y(w)]} ⊆ R2, where xvw is a con-

tinuous function with xvw(y(v)) = x(v) and xvw(y(w)) = x(w) for each pair
v ≺ w.

4. If pos(v) ∈ pos(wz) holds then v = w or v = z.

The elements of pos(V) := {pos(v) | v ∈ V} are called (diagram) points or
nodes, the elements of pos(≺) := {pos(vw) | v, w ∈ V, v ≺ w} are called
diagram edges.

Line diagrams are more common, here the diagram edges are just straight
line segments.

Definition 2. A line diagram (also called embedding [6], Hasse diagram [1] or
simply diagram [2]) of a lattice V is a diagram (as previously defined), where

pos(vw) = {t · pos(v) + (1 − t) · pos(w) | t ∈ [0, 1]}.
holds for all elements v ≺ w.

A lattice is planar if it possesses a plane line diagram, i.e. if no diagram edges
intersect [6].

2.2 Lattices and Planarity

In this subsection we give some lattice properties characterizing whether a lattice
is planar or not.

Definition 3. [4] The (order) dimension dim(P ) of an ordered set P is the
smallest cardinal number m such that ≤ is the intersection of m linear orders.

Definition 4. [4] A conjugate order Lc on an ordered set P = (P,≤) is a
relation meeting the following conditions (‖ denotes the incomparability relation
in P ).

1. Lc is a strict order
2. Lc ∪ L−1

c =‖.

Theorem 1. [4] Let P = (P,≤) be an ordered set. Then the following are equiv-
alent:

1. D(P ) ≤ 2
2. There exists a conjugate order Lc on P .

Sketch of proof: Together with Lc, also Rc := L−1
c is a conjugate order. It is easy

to show that Lc ∪ ≤ and Rc ∪ ≤ are linear orders, the intersection of which is
≤. On the other hand, if K ⊇ ≤ is a linear order on P then we can show that
K \ ≤ is a conjugate order.
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There is an exercise in [2] (p.32, ex. 7c) stating that a finite lattice V is planar
if and only if there exists a conjugate order on V. The “⇒” part was proved in
[6], see Corollary 1. For the “⇐” part we did not find a published proof, therefore
we shall give one in Theorem 3. The above-mentioned result was used to get the
well-known characterization.

Theorem 2. [1] A finite lattice is planar if and only if its order dimension is
at most two.

2.3 Diagrams and Planarity

This section discusses properties of plane diagrams (or, as stated in [6] the “geom-
etry of planar lattices”). In particular, a relation on diagram nodes is introduced
which indicates a node to be left (or dually right) of another. In case of plane
diagrams this relation can be understood as a conjugate order.

Definition 5. [6] Let V = (V,≤) be a lattice and ≺ its neighbour relation.
A maximal chain C is a sequence 0V = z0 ≺ z1 ≺ . . . ≺ zn = 1V of lattice
elements zi. In a diagram pos(V) we define the function xC : [y(0V), y(1V)] �→ R
corresponding to C by xC(y) = xzizi+1(y) if y ∈ [y(zi), y(zi+1)] holds for all
0 ≤ i ≤ n−1. Additionally we define pos(C) = {(xC(y), y) | y ∈ [y(0V), y(1V)]}.

This means that the function pos(C) is just the join of the sets pos(zizi+1)
as defined in Definition 1. The function xC is continuous.

Definition 6. [6] Let V = (V,≤) be a lattice and pos(V) a plane diagram of
it. Let λ∗ ⊆ V) × V be a relation defined by

v λ∗ w : ⇐⇒ ∃v∗ ∈ V : v, w ≺ v∗ and
xvv∗(m) < xwv∗(m),

where m := min{y(z) | z ∈ V, z ≺ v∗}.
Two diagrams are called similar if their respective λ∗ relations are the same.
The left-relation λ ⊆ V × V induced by pos(V) is defined by

v λw : ⇐⇒ v ‖ w and
∃v′ ≥ v, w′ ≥ w : v′, w′ ≺ (v ∨ w) with v′ λ∗ w′.

If v λw holds, we say v is left of w. Dually we define � := λ−1 and say w is
right of v.

It is shown in [6] that v λw is equivalent to the existence of a maximal chain
C � w, where x(v) < xC(y(v)) holds. This helps to prove the following.

Proposition 1. [6] Let V be a lattice and pos(V) a plane diagram. The relation
λ induced by pos(V) is a strict order. Additionally λ ∪ � = ‖ holds.

Sketch of proof: From v λw and wλv we can conclude that there are two maxi-
mal chains C � v and D � w such that pos(C) and pos(D) intersect “between”
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(in terms of the y-coordinate) pos(v) and pos(w). As pos(V) is plane, the inter-
section point represents a lattice element z fulfilling v < z < w in contradiction
to v and w be incomparable. By applying similar arguments we can show λ to
be transitive. Hence it is a strict order.

Corollary 1. Let V be a lattice with a plane diagram pos(V) and its induced
left-relation λ. Then λ is a conjugate order on V.

2.4 Attribute Additivity

When drawing lattices, most people tend to intuitively use (at least partially)
the convention of attribute additivity. This method is particularly useful for dis-
tributive (or ”nearly distributive”) lattices, as the resulting diagrams look like
they are drawn on an n-dimensional grid [8]. An example is given in Figure 1.

Definition 7. Let B(G,M, I) be a concept lattice. A line diagram

pos(B(G,M, I))

is attribute additive if there is a map vec : M �→ R2, such that the equation

pos(A,B) =
∑
m∈B

vec(m)

holds for all concepts (A,B) ∈ B(G,M, I).

� � �
vec(m1) vec(m3)vec(m2)

�

�

�∑3
i=1 vec(mi)

Fig. 1. In the left picture each attribute is mapped to a vector in R
2. This defines

(together with the covering relation of the lattice) already the coordinates of other
concepts, which are just the sum of all vectors of the attributes in the intent

3 The Left-Relation on Lattices

The characterization of plane diagrams by a left-relation λ is surprisingly intu-
itive. Comparable elements are understood to be situated below or above each
other and the incomparable ones left or right. If the diagram is plane then the
left-relation is a conjugate order. We will show in Theorem 3 that the converse
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holds as well. How can we find conjugate orders on a lattice (V,≤)? One way
mentioned in [1] is to observe, whether (V, ‖) is a comparability graph. Another
one can be derived from Definition 4 by looking for all conjugate relations1 L on
V and picking those, which are strict orders. Let v− denote the set of all lower
neighbours of an element v ∈ V. According to Definition 6 there are at most∏

v∈V |v−|! non similar diagrams. This is an upper bound for the number of con-
jugate relations, which can be realized in a diagram pos(V), i.e. for the induced
left-relation the equation λ = L holds. By our attribute additive approach we
can reduce the number of nonsimilar plane diagrams to |M |!, where M is the
set of ∧-irreducibles or alternatively in a concept lattice the set of attributes of
a reduced context2.

Definition 8. Let V be a finite lattice and M = M(V) be the set of its ∧-
irreducible elements. A strict order La ⊆ M × M is called a sorting relation if
the following condition holds for all elements m,n ∈ M :

m∗ = n∗ ⇐⇒ mLa n or nLa m.

The sorting relation just gives a relationship of ∧-irreducibles with common
upper neighbour. We extend it to the set of all pairs of incomparable elements.

Definition 9. Let V be a finite lattice with a given sorting relation La. For
arbitrary lattice elements v and w, we define

M(v, w) = {(v′, w′) ⊆ M ×M | v ≤ v′, w ≤ w′, v ‖ w′, w ‖ v′}.

We define the relation L ⊆ V × V as follows:

v Lw : ⇐⇒
{
v La w, v, w ∈ M, v∗ = w∗

∃(m,n) ∈ M(v, w) : mLn, else

L is called left-relation and R := L−1 is called right-relation on the lattice V.

Consider the picture on the right for an exam-
ple of calculating the left-relation on the de-
picted lattice for a given sorting relation. No-
tice that we are interested just in the underly-
ing lattice, not in the particular diagram used.
We assume m1 La m2, i.e. m1 Lm2. Consider
now the pair (m3, v1). We observe (m3,m2) ∈
M(m3, v1) and (m1,m2) ∈ M(m3,m2) and
conclude m3 Lv1.

m3 v1

m2m1

1 i.e. relations L fulfilling L ∪ L−1 = ‖.
2 We remind that every complete lattice is isomorphic to a concept lattice.
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Remark 1. Let (V,≤) be a finite lattice and M the set of its ∧-irreducible
elements. The following properties hold for all v, w ∈ V and m,n ∈ M :

1. (m,n) ∈ M(v, w) =⇒ m ‖ n
2. M(v, w) = ∅ ⇐⇒ v ≤ w or w ≤ v,
3. M(m,n) = {(m,n)} =⇒ m∗ = n∗,
4. (m,n) ∈ M(v, w) =⇒ (m,n) ≥ (v, w) (: ⇐⇒ m ≥ v and n ≥ w).
5. (m,n) ∈ M(v, w) ⇐⇒ (n,m) ∈ M(w, v)

We give as a first result that the above defined relation acts just on the
incomparable pairs of elements.

Lemma 1. For every left-relation from Definition 9, the identity L ∪ R = ‖
holds.

Proof. Comparable elements obviously never are in left-relation since they are
not in sorting relation and M(v, w) = ∅ holds.

Now let m and n be incomparable and ∧-irreducible. Suppose that neither
mLn nor nLm holds and that (m,n) is maximal with this property. Then the
elements are not in sorting relation and with Remark 1 we know that there exists
an element (m,n) < (m′, n′) ∈ M(m,n). Since (m,n) is maximal we conclude
(m′, n′) ∈ L ∪ R and with Definition 9 (m,n) ∈ L ∪ R which contradicts our
assumption.

Let v and w be arbitrary incomparable lattice elements. There exists a pair
of ∧-irreducibles (m1,m2) ∈ M(v, w). Since m1 and m2 are in left-relation, we
conclude with Definition 9 that (v, w) ∈ L ∪ R.

Now we want to show that every conjugate order is a left-relation. First we
need the following:

Lemma 2. Let V be a finite lattice and Lc be a conjugate partial order on V.
Then the following holds for all lattice elements v1, v2, w1, w2:

v1 Lc w1 and (v1, w1) ∈ M(v2, w2) =⇒ v2 Lc w2

Proof. Since M(v2, w2) 	= ∅, we know v2 ‖ w2 and with Definition 4 we conclude
either v2 Lc w2 or w2 Lc v2. We assume w2 Lc v2. Since (v1, w1) ∈ M(v2, w2) we
notice that v1 and w2 are incomparable. We conclude that either v1 Lc w2 and
v1 Lc v2, since Lc is transitive, or w2 Lc v1 and v2 Lc v1. Both cases lead to a
contradiction, since v1 and v2 are comparable.

Lemma 3. A conjugate order Lc on a finite lattice V is a left-relation on V.

Proof. Let Lc be a conjugate order on V. For every two incomparable ∧-irre-
ducibles m,n ∈ M either mLc n or nLc m holds. Hence there exists a sorting
relation La ⊆ Lc.

Let L be the left-relation generated by La. Assume L 	= Lc then we find a
maximal pair of elements (v, w) with v Lw and wLc v. On the one hand we find,
by applying Definition 9, a pair (m,n) ∈ M(v, w) with mLn. On the other hand
we know, by applying Lemma 2, that nLc m. This contradicts our assumption
of the maximality of (v, w) since (m,n) > (v, w).
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We can subsume the results of this section to the following:

Proposition 2. Let L be a relation on a finite lattice V. Then the following are
equivalent:

1. L is a conjugate order.
2. L is a left-relation and a strict order.

Proof. “1. ⇒ 2.” follows from Lemma 3.
“2. ⇒ 1.” follows from Lemma 1 and Definition 4.

Proposition 2 provides a possibility to calculate all conjugate orders: Compute
the left-relations from all possible sorting relations (at most |M |!) and check
whether they are strict orders.

4 The Left-Relation on Diagrams

Now we will define a left-relation on diagrams extending Definition 6 to arbitrary
(not necessarily plane) diagrams. This will help us to give a connection between
conjugate orders and plane diagrams.

Definition 10. Let V be a finite lattice and pos(V) a line diagram of it. The
sorting relation λa ⊆ M ×M induced by pos(V) is defined as follows 3

mλa n : ⇐⇒ m∗ = n∗ ∧ ϕ(pos(mm∗)) < ϕ(pos(nn∗)).

ϕ(n1)

ϕ(n2)

ϕ(n3)
n1 n2 n3

n6

n4 n5

λa m1 m2 m3 m4 m5 m6

m1 × ×
m2 ×
m3

m4 ×
m5

m6

Fig. 2. A diagram of a lattice with its sorting relation. The symbols ni label the
nodes of the ∧-irreducibles mi. The grey points represent the set of upper neighbours
of ∧-irreducibles

Every sorting relation λa in a diagram is a sorting relation on the underlying
lattice due to Definition 8 since just the ∧-irreducibles with common upper

3 ϕ(e) denotes the angle of the diagram line e, compare with Figure 2.
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neighbour are ordered strict and linear. Notice that two line segments pos(v1w)
and pos(v2w) do not have the same angle since this contradicts condition 4 of
Definition 1. Conversely every sorting relation La in a lattice can be realized
in a diagram. See Figure 2 for an example. Now we extend this relation to a
left-relation λ induced by the diagram.

Definition 11. Let V be a finite lattice and pos(V) a diagram of it. For a
maximal chain C,

Fl(C) := {(x, y) ∈ R2 | y ∈ [y(0V), y(1V)], x < xC(y)}
is the area left of pos(C) and dually Fr(p) the area right of pos(C). We define
the left- and the right-relation λ and � induced by pos(V) such that

v λw : ⇐⇒ (∃C � w : pos(v) ∈ Fl(C)) ∧ (v ‖ w)
v �w : ⇐⇒ (∃C � w : pos(v) ∈ Fr(C)) ∧ (v ‖ w)

holds for all elements v, w ∈ V.

The function xC(y) is continuous for every maximal chain, since its composing
diagram edges are. The equation λ ∪ � = ‖ holds4, as for each pair (v, w) of
incomparable lattice elements we find a maximal chain C � w and pos(v) is
not situated on pos(C) due to condition 4 of Definition 1. In case of plane
diagrams this definition is similar to Definition 6 (see [6], Prop. 1.6). In a plane
line diagram the restriction of λ to pairs of nodes of ∧-irreducibles with common
upper neighbour is equal to λa, i.e. for all m,n ∈ M holds the equivalence

m∗ = n∗ and mλn ⇐⇒ mλa n.

In Figure 3 we provide two examples for left-relations induced by diagrams.

a b e

c d

a b c d e

a λ λ λ

b λ

c λ λ

d λ

e

b a e

c d

c d b a e

c λ < λ λ

d < < <

b λ λ

a λ

e

Fig. 3. Two diagrams of the same lattice with their left-relations. The left one is not
plane and its left-relation not antisymmetric. The right one is plane and its left-relation
is a strict order. Notice that λ ∪ < is a linear order

After these preparations we come to the first result of our work. When having
a planar lattice with a conjugate order Lc, it gives us the possibility to actually
draw a plane diagram with the left-relation λ = L.

4 note that here  and λ−1 are not necessarily equal.
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Theorem 3. Let V be a finite lattice. The following statements are equivalent.

1. There exists a plane diagram pos(V) with the induced left-relation L.
2. L is a left-relation on V and a strict order.

Proof. “1. ⇒ 2.”: follows from Corollary 1 and Proposition 2.
“2. ⇒ 1.”: We define two relations L< := L∪ < and R< := R ∪ <. It is easy to
show (cf. proof of Theorem 1) that they are linear orders. Let the maps l and r
be embeddings of (V, L<) and (V, R<) into (R, <) and (R, >) respectively.

Let pos be a map assigning to each v ∈ V the point (r(v), l(v)) and to each
pair of neighbouring elements a straight line segment connecting them. By the
definitions of l and r we realize that pos meets the conditions 1, 2 and 3 of
Definition 1. We show now that no line segments cross which makes the image
of pos be a plane line diagram of V.

We assume that the diagram edges corresponding to
the elements v1 ≺ v3 and v2 ≺ v4 cross. Let (xi, yi)
be the coordinates of the node vi and (x5, y5) be the
coordinates of the intersection. Since r is order inversing
we conclude x3, x4 < x5 < x1, x2. Furthermore l is order
preserving, i.e. y1, y2 < y5 < y3, y4. It follows v2 <
v3 and v1 < v4 and therefore v1 ‖ v2 and v3 ‖ v4.
That means that v3 and v4 do not have an infimum in
contradiction to V being a lattice.

�

�
x

y

pos(v3)

pos(v4)

pos(v2) pos(v1)

Let λ be the induced left-relation by pos(V). We
finally show that λ = L holds. Let mLa n hold for
m,n ∈ M . Due to the definitions of r and l the in-
equalities x(m∗) < x(m) < x(n) and y(m) < y(n) <
y(m∗) hold. For the angles ϕm := ϕ(pos(mm∗)) and
ϕn := ϕ(pos(nn∗)) we get

tanϕm =
y(m) − y(m∗)
x(m) − x(m∗)

and tanϕn =
y(n) − y(m∗)
x(n) − x(m∗)

.

We conclude y(m) − y(m∗) < y(n) − y(m∗) < 0 and
0 < x(m) − x(m∗) < x(n) − x(m∗), hence tanϕm <
tanϕn and the angles are in the interval (π/2, π).

�

�
x

y

ϕm
ϕn

m

n

m∗

In this domain the function arctan is monotonous, so we conclude ϕm < ϕn,
i.e. mλa n. That means, the sorting relations of the lattice and its diagram are
the same. With Proposition 2 we conclude λ = L since the diagram is plane and
therefore λ is a conjugate partial order.

Corollary 2. A finite lattice V is planar if and only if there exists a left-relation
on V which is a strict order.
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5 The Left-Relation and Attribute Additivity

In the proof of Theorem 3 we gave a possibility to actually draw plane diagrams
of a planar lattice. Unfortunately these diagrams are not attribute additive,
which was our initial interest. By specifying the mappings l and r defined in the
proof of Theorem 3 we can reach this main goal. We consider reduced contexts
only.

Theorem 4. Every finite planar concept lattice possesses a plane attribute ad-
ditive diagram. Furthermore, is L a conjugate order on a finite concept lattice
B(G,M, I) there exists a plane attribute additive diagram with the left-relation
λ = L.

Proof. We define l and r in a recursive way. First we set

l(1B(G,M,I)) = r(1B(G,M,I)) = 0. (1)

For the point pos(µm) = (r(µm), l(µm)) of an attribute concept µm we set

l(µm) = l(C,D) − 1 ⇐⇒ µm ≺L<
(C,D), (2)

r(µm) = r(C,D) + 1 ⇐⇒ µm ≺R<
(C,D), (3)

where ≺L<
and ≺R<

are the neighbour relations of L< and R<. Let vecl(m) =
l(µm∗) − l(µm) and vecr(m) = l(µm∗) − l(µm). For all other concepts (A,B)
we set

pos(A,B) = (r(A,B), l(A,B)) =
∑
m∈B

(vecr(m), vecl(m)). (4)

We notice that we can apply a diagram point to each concept, in particular is
<⊆ L<, R<, i.e. for an arbitrary concept (A,B) the coordinates pos(µm) of the
attributes m in its intent can be calculated before pos(A,B). The equation (4)
assures the resulting diagram to be attribute additive. We have to show that l
and r are embeddings. Since we consider linear orders only it is enough to show
that

(A,B) ≺L<
(C,D) =⇒ l(A,B) < l(C,D) and (5)

(A,B) ≺R<
(C,D) =⇒ r(A,B) > r(C,D) (6)

holds for all concepts (A,B), (C,D) ∈ B(G,M, I). These implications are sat-
isfied for (A,B) being an attribute concept by the equations (2) and (3). Let
(A,B) be a concept which is no attribute concept (i.e. not ∧-irreducible) and
(A,B) ≺L< (C,D).

1. If (A,B) < (C,D) holds then D ⊆ B, i.e.

l(A,B) =
∑
m∈B

vecl(m) <
∑

m∈D

vecl(m) = l(C,D)

since vecl(m) < 0 holds for all attributes m.
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2. Let (A,B)L(C,D) hold. Since (A,B) has at least
two upper neighbours (A1, B1)L(A2, B2) we con-
clude (A,B) ≺L<

(C,D)L<(A1, B1)L<(A2, B2).
Since L is transitive we conclude (C,D) < (A1, B1)
(and not (C,D)L(A1, B1)) and (C,D) < (A2, B2).
This is a contradiction, since in this case (A,B)
and (C,D) have no supremum.

(A1, B1) (A2, B2)

(A,B)
(C,D)

Hence the implications (5) and (by applying similar arguments) (6) hold. With
the proof of Theorem 3 we conclude that the constructed diagram is plane and
possesses the left-relation λ = L.

Finally we want to give an example on how
to create a plane attribute additive diagram
out of a conjugate order. Consider the lattice
on the right (do not be confused to see a di-
agram, we are just interested in the underly-
ing lattice). The nodes labeled with a, . . . , f
are attribute concepts. In Figure 4 you can
see the appropriate L< and R< relations. The
relations l and r are, due to the described con-
struction, calculated “from right to left” in the
table.

0

e w x f

c v d

a b

1

L< 0 e w c x v a f d b 1
l −12 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

vecl −2 −3 −4 −1 −1 −1
R< 0 f x d w v b e c a 1
r 12 9 8 7 6 5 4 3 2 1 0

vecr 2 3 4 1 1 1

�

�l

r
0

-2

-4

-6

-8

-10

2 4 6 8 10

Fig. 4. A plane attribute addititive diagram constructed out of a conjugate order L as
described in the proof of Theorem 4. The maps vecl and vecr actually have attributes
m as arguments and no attribute concepts µm, however we identified both for easier
notation

6 Results and Further Work

By introducing the left-relation we have shown that the relationship of ∧-irredu-
cibles indeed provides an instrument to characterize whether the lattice under
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consideration is planar. Unfortunately an efficient algorithm for finding those
relations which are strict orders, is not developed yet. Even if we find an polyno-
mial algorithm, it is hard to make it quicker than existing planarity algorithms.

This is due to the fact that a planar lattice has at most
( |M | + 1

2

)
+1 elements.

However, the quickness is not a very important factor, when the considered lat-
tices are small. Diagrams are considered to lose their readability, when exceeding
a size of 50 nodes [7].

We gave a possibility to actually construct a plane attribute additive diagram
by construction of the maps l and r in the proof of Theorem 4. If the resulting
diagrams are not nicely drawn it is possible to employ adequate force directed
placement methods [3, 5] to improve the drawing without changing λ (see [9]).

It would be interesting to find all plane diagrams of a lattice up to homeo-
morphisms. It seems that such a classification is very much related to similarity
(see Definition 6).

Finally we would like to characterize planar concept lattices by their under-
lying contexts. So called Ferrers-Relations have been observed already [7], but
no quick algorithms have been developed yet.
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Abstract. In [8], Vogt used so-called bialgebraic contexts to represent
the lattice Sub(L) of all sublattices of a finite distributive lattice L as the
substructure lattice of an appropriately defined finite (universal) algebra,
based on Rival’s description (see [4] and [5]) by means of deleting suitable
intervals from L. We show how to extend Vogt’s context in order to obtain
a conceptually simpler description of Sub01(L) - the lattice of all 0-1-
preserving sublattices of L - by means of quasiorders and an associated
total binary operation on J(L)2, the set of all pairs of non-zero join-
irreducibles of L. Our approach is based on Birkhoff- resp. Priestley-
duality, a standard reference is [1].

1 Introduction

In the fall of 1974, when we both were visiting at Caltech, Ivan Rival initiated
me to the structure theory of distributive lattices by explaining one of his then
favourite results: Given a finite distributive lattice L, a nonempty subset S ⊆ L
is a sublattice of L iff S can be obtained from L by deleting some collection of
intervals [j,m] where j is join-irreducible or 0 and m is meet-irreducible or 1 (see
[4] and [5]). Obviously, this description allows us to compute systematically all
sublattices of L and thus to determine the substructure lattice of L. As rather
small examples already show, the structure of this lattice may be surprisingly
complex, and quite a number of papers have been devoted to its study. A good
source is [3] and its bibliography.

Rival’s characterization of sublattices may be phrased as follows: Membership
of an element x ∈ L in some sublattice of L is equivalent to non-membership
of x in some collection of special intervals in L. Writing D(L) for the collection
of all nonempty intervals of the type considered, let KL be the formal context
(L,D(L), /∈). It follows at once that the extents of KL are just the sublattices
of L, while the intents are those subsets B ⊆ D(L) closed under the closure
operator given by σ(B) := {[j,m] ∈ D(L); [j,m] ⊆ ⋃

B}. Consequently, the
substructure lattice of L is dually isomorphic to the lattice of all closed sets
of the closure system (D(L), σ). It is the purpose of this note to replace this

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 403–407, 2005.
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description by the lattice of all subalgebras of a (universal) algebra naturally
connected with L.

Unless otherwise stated, L will always denote a finite distributive lattice with
bounds 0 and 1 (freely confounded with its carrier set), operations ∧ and ∨ and
order relation ≤. We denote by J(L) the set of all join-irreducible elements of
L (excluding 0) and by M(L) the set of all meet-irreducibles (excluding 1). For
x ∈ L we write ↓x for {y ∈ L, y ≤ x}, and similarly ↑x for {y ∈ L, y ≥ x}.
Without loss of generality but some gain in the smoothness of presentation,
we will only consider 0-1-sublattices of L in section 3: Writing Sub(L) resp.
Sub01(L) for the lattice of all sublattices resp. of all 0-1-sublattices of L, we
have Sub(L) ∼= Sub01(0′ ⊕L⊕ 1′) with 0′ < x < 1′ for all x ∈ L. A quasiorder Q
on a set X is a reflexive and transitive binary relation X; given such Q, a subset
of D ⊆ X is called a Q-down-set iff x ∈ X, d ∈ D and (x, d) ∈ Q jointly imply
that x ∈ D (so, in particular, ↓x is a ≤-down-set in L).

2 Bialgebraic Contexts

In order to represent the subalgebra lattice of a given algebra by that of another
(hopefully simpler) algebra, Vogt introduced so-called bialgebraic contexts, im-
plicitly in [7] and explicitly in [8], and used them to describe - in [8] - the lattice
Sub(L) of general sublattices of L. We briefly summarize the idea and main
results of [8]:

A context K = (G,M, I) is called bialgebraic provided the object set G as
well as the attribute set M are carriers of algebras (G,FG) resp. (M,FM ) such
that the extents of K coincide with the (carriers of) the subalgebras of (G,FG)
and the intents of K with the (carriers of) the subalgebras of (M,FM ). Note that
there is no formal condition linking the types of FG resp. FM (although this may
be desirable in a concrete application), and that the fundamental operations in
of FG resp. FM are allowed to be partial.

Looking at the formal context KL defined in section 1, we see that it is
algebraic on the object half while for the attribute half we have the explicitly
given closure operator σ describing the intents. What is missing in order to
make KL bialgebraic is thus a bunch of (possibly partial) operations defined on
D(L) such that the σ-closed subsets of KL are exactly those closed under these
operations. Finding such operations - in fact, a single partial binary operation
will do in the end - takes the major part of [8].

Since the intents of KL are exactly the subsets of D(L) respecting all attribute
implications of KL, Vogt considers the latter as multioperations on D(L) and ex-
tracts from them the sought partial operation(s). The highly nontrivial key step
consists in proving that each implication in the canonical minimum Duquenne-
Guiges base for (the implications of) KL may be simplified in such a way that
the resulting set of implications has premises of cardinality at most two and
all conclusions are singletons. These conclusions are then considered as the im-
ages of their premises under a single partial operation ∗ : D(L)×D(L) −→ D(L),
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defined by cases, and the intents of KL coincide with the ∗-closed subsets of
D(L).

3 A Simple Bialgebraic Context for Sub01(L)

One of the distinctive features of finite distributive L lattices is the following
relationship between J(L) and M(L): Given j ∈ J(L), there is a unique maximal
element j in {x ∈ L; x � j} and j ∈ M(L), and analogously, given m ∈ M(L),
there is a unique minimal element m in {x ∈ L; x � m} and m ∈ J(L). We call
j and j resp. m and m conjugates. It follows L is the disjoint union of ↑ j and ↓ j
resp. of ↓m and ↑m, for any j ∈ J(L) resp. m ∈ M(L) (this is why we insisted
on 0 /∈ J(L) and 1 /∈ M(L)).

Using conjugate elements, comparabilities and non-comparabilities between
join-irreducibles and meet-irreducibles may be translated into such involving
only one type of irreducibles: It immediately follows from the definitions above
that, e.g., j � m iff m ≤ j and j ≤ m iff m � j. Hence, given any j ∈ J(L)
and m ∈ M(L), the interval [j,m] is empty iff m ≤ j resp. nonempty iff m � j.
Finally, for any x ∈ L, we have x /∈ [j,m] iff (x � j or x � m) iff (x ≥ j implies
x � m) iff (x ≥ j implies x ≥ m).

This leads us to set up a new formal context K′
L as follows: Let G := L, M :=

J(L)2 and define incidence I between x ∈ G and (j1, j2) ∈ M by (x I (j1, j2) iff
x ≥ j2 ⇒ x ≥ j1 (read as “x respects (j1, j2)”).

How does K′
L compare with KL? Introducing conjugates, replace (j1, j2) by

the pair (j2, j1) and consider the latter to represent the interval [j2, j1]. Now
for any x ∈ L, we have x /∈ [j2, j1] iff (x ≥ j2 implies x � j1) iff (x ≥ j2
implies x ≥ j1) iff x respects (j1, j2). However, attributes of KL were restricted
to the nonempty intervals of the type under consideration; for these, incidence
in K′

L thus coincides with that in KL. But [j2, j1] = ∅ iff j1 ≤ j2, in which case
every x ∈ L will respect (j1, j2). Summing up, the cross table of K′

L may be
obtained from that of KL by adding a full column for each pair (j1, j2) with
j1 ≤ j2, representing a particular instance of the empty interval (making K′

L a
very unclarified context). But it follows at once that the concept lattices of K′

L

and KL are canonically isomorphic, and so the extents of K′
L, ordered by set

inclusion, still form a copy of the lattice Sub01(L). It remains to identify the
intents of K′

L.

Claim 1. The intents of K′
L are the quasiorders on J(L) extending (the restric-

tion to J(L) of) ≤.

Proof: Consider A ⊆ L and x ∈ A. Assume x respects (j1, j2) and (j2, j3).
Hence x ≥ j3 implies x ≥ j2 implies x ≥ j1, so x respects (j1, j3) and A′ is
transitive. Certainly x respects (j1, j2) whenever j1 ≤ j2, so A′ contains ≤|J(L).

We have to show that every quasiorder Q on J(L) extending ≤ is an intent.
Writing x̂ for {j ∈ J(L); j ≤ x}, we have L ∼= ({x̂; x ∈ L},⊆) by (finite)
Birkhoff duality. Now x respects (j1, j2) iff x ≥ j2 ⇒ x ≥ j1 iff j2 ∈ x̂ ⇒ j1 ∈ x̂.
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Hence, x respects all (j1, j2) ∈ Q iff (j1, j2) ∈ Q and j2 ∈ x̂ jointly imply that
j1 ∈ x̂; in other words, iff x̂ is a Q-down-set (and thus a ≤-down-set, fortiori).
Hence, Q′ ∼= ({Q-down-sets in J(L)},⊆).

Assume now that (j1, j2) ∈ Q′′, that is, every Q-down-set respects (j1, j2).
In particular, the Q-down-set ↓Q j2 = {j ∈ J(L); ((j, j2) ∈ Q} respects (j1, j2).
As j2 ∈↓Q j2, this implies j1 ∈↓Q j2, that is, (j1, j2) ∈ Q. Hence Q′′ ⊆ Q and
thus Q = Q′′ as desired.

�

Write Q≤(L) for the lattice of all quasiorders (under set inclusion) on J(L)
extending ≤|J(L). Then we have

Corollary 2. Sub01(L) is dually isomorphic to Q≤(L).

This description of Q≤(L) is contained, in a general form covering arbitrary
distributive lattices, in [6].

It is now straightforward to convert K′
L into a bialgebraic algebraic context.

Define  : J(L)2 × J(L)2 −→ J(L)2 by

(j1, j2)  (j′
1, j

′
2) =

{
(j1, j′

2) if j2 = j′
1

(j1, j2) if j2 	= j′
1

and let cjj′ be the nullary operation on J(L)2 taking constant value (j, j′). It is
immediate that a subset B ⊆ J(L)2 is a quasiorder on J(L) iff B is closed under
 and cjj for all j ∈ J(L), and a quasiorder extending ≤|J(L) iff B is closed
under  and cjj′ for all j, j′ ∈ J(L) with j ≤ j′. So our result may be phrased
as follows:

Proposition 3. The triple ((L;∧,∨, 0, 1), (J(L)2;  , (cjj′)j≤j′), “respects′′) is a
bialgebraic context whose concept lattice is isomorphic to Sub01(L) and dually
isomorphic to Q≤(L).

Proposition 3 fills a gap in [6] where the connection between Vogt’s work
and a couple of other representations of Sub01(L) was left open. Also, it seems
likely that combining the vast resources of algorithms available for concept anal-
ysis with those developed for transitive closure, one might obtain an efficient
algorithm for actually computing Sub01(L) resp. Sub(L).

It is interesting to compare Vogt’s ∗ and the operation  above in hindsight:
Replacing intervals of type [j,m] by pairs (m, j) ∈ J(L)2, Vogt’s ∗ translates into
a partial operation on the set IncJ(L) of all incomparable pairs in J(L)2. A subset
B ⊆ IncJ(L) is then obviously closed under ∗ iff it has the form B = IncJ(L) ∩Q
for some quasiorder ≤⊆ Q ⊆ J(L)2. So ∗ must simulate the effects of transitive
closure on IncJ(L)∪ ≤ |J(L) restricted to IncJ(L) without using ≤ |J(L) – which
explains the somewhat involved definition of ∗ in [8].
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4 Beyond Finiteness

In an infinite distributive lattice (still with 0 and 1) prime ideals take over the
rôle of join-irreducible elements which no longer need exist. Let XL be the set
of all prime ideals in L. A topology τL on XL is defined by taking all sets of
type {P ∈ XL; x ∈ P} and of type {P ∈ XL; x /∈ P} for x, y ∈ L as an (open)
subbase. Finally, order XL by set inclusion ⊆. The triple (XL, τL,⊆) is called
the Priestley space of L and the main theorem of Priestley duality says that L
is isomorphic to the lattice of all clopen ⊆-down-sets.

Accordingly, a context K′
L is defined by G := L and M := X2

L with incidence
I between x ∈ G and (P1, P2) ∈ M given by (x I (P1, P2) iff x /∈ P2 ⇒ x /∈ P1
(read as “x respects (P1, P2)”). Note that this definition includes the finite case:
If L is finite, its prime ideals are of the form ↓m for m ∈ M(L), or equivalently,
L\ ↑j for j ∈ J(L). But x /∈ L\ ↑j is the same as x ≥ j, so incidence reduces to
that considered in section 3.

It is not hard to see that the extents of K′
L still are the 0-1-sublattices of

L and that the intents are quasiorders on XL extending ⊆. However, not every
quasiorder on XL containing ⊆ is an intent. Indeed, let Q be such a quasiorder.
It is shown in [6–Prop. 3.4] that Q represents a 0-1-sublattice of L iff Q is “τL-
separated” (or equivalently, iff τL is “totally quasiorder-disconnected”), meaning
that whenever (P1, P2) /∈ Q there exist a τL-clopen Q-down-set in the Priestley
space (XL, τL,⊆) such that P2 ∈ Q but P1 /∈ Q. So what is missing in order
to make K′

L a bialgebraic context also in this case is a bunch of continuous
operations on XL such that, given S ⊆ X2

L containing ⊆, the closure of S under
these operations is just the smallest τL-separated quasiorder on XL.
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1 Introduction

A lattice L with 0 is pseudocomplemented if for each x ∈ L there is an element
x∗ ∈ L (called the pseudocomplement1 of x) such that

x ∧ y = 0 ⇐⇒ y ≤ x∗.

In this case, x �→ x∗ defines a unary operation on L, called pseudocomplementation,
which is automatically antitone and square extensive, i.e., which satisfies

x ≤ y ⇒ y∗ ≤ x∗ and x ≤ x∗∗

for all x, y ∈ L. These two properties together imply the join de Morgan law

(x ∨ y)∗ = x∗ ∧ y∗.

In fact, we get

Proposition 1. If L is pseudocomplemented, then(∨
X
)∗

=
∧

{x∗ | x ∈ X},
whenever

∨
X exists in L.

Proof. From x ∈ X we infer x ≤ ∨
X and thus (

∨
X)∗ ≤ x∗. Therefore (

∨
X)∗

is a lower bound of {x∗ | x ∈ X}. Conversely let y be a lower bound of {x∗ |
x ∈ X}, i.e., y ≤ x∗ for all x ∈ X. Then y∗ ≥ x∗∗ ≥ x for all x ∈ X and thus
y∗ ≥ ∨

X. From this we get y ≤ y∗∗ ≤ (
∨
X)∗. This proves that (

∨
X)∗ is the

greatest lower bound of {x∗ | x ∈ X}. �

� Supported in part by the Gesellschaft von Freunden und Förderern der TU Dresden.
1 The pseudocomplement of x (if it exists) is its greatest semicomplement.
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This proposition offers an easy way to prove pseudocomplementedness: it
suffices to exhibit a join-dense set J of elements with pseudocomplement. The
pseudocomplement of any other element x is then obtained as the meet of the
pseudocomplements of those elements in J which are below x.

For complete lattices there is a simple and rather obvious condition for having
a pseudocomplement:

Proposition 2. Let x be an element of a complete lattice L. Then

x∗ exists ⇐⇒ x ∧
∨

{y ∈ L | x ∧ y = 0} = 0.

If x∗ exists then
x∗ =

∨
{y ∈ L | x ∧ y = 0}.

Pseudocomplemented lattices, also known as p-algebras, have been widely
investigated. One of the general sources is the survey by Katriňák [Ka80],
but also the books by Balbes and Dwinger [BD74] and Grätzer [Gr71] for
the distributive case. Varieties of distributive p-algebras have been described
by Lee [Lee70]. The free algebras in these varieties can be used for modeling
inconsistent information in databases, see Schmid [Sc88], Sofronie-Stokkermans
[So98]. Generalized notions of negation have been studied in [Kw04].

2 Pseudocomplemented Closure Systems

For a concept lattice, being pseudocomplemented is naturally expressed in terms
of the closure system of extents. We therefore formulate our observations in the
language of closure systems. Let E be a closure system on a set G, and let

A �→ A′′

be the corresponding closure operator. For simplicity we assume Ø′′ = Ø and
g′′ = h′′ ⇒ g = h; these are merely technical conditions. The closure system E is
called pseudocomplemented if each closed set has a pseudocomplement.

Proposition 3. A closed set A ∈ E has a pseudocomplement A∗ if and only if

A ∩ {g ∈ G | A ∩ g′′ = Ø}′′ = Ø.

In this case,
A∗ = {g ∈ G | A ∩ g′′ = Ø}.

If {g ∈ G | A ∩ g′′ = Ø} is closed, then it is the pseudocomplement of A.

Proof. The first claim is the same as in Proposition 2 with A in the rôle of x,
except that we have simplified the right hand side:∨

{B ∈ E | A ∩B = Ø} =
(⋃

{B ∈ E | A ∩B = Ø}
)′′

= {g ∈ G | A ∩ g′′ = Ø}′′,
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the latter equality being true since g is contained in some closed set B with
A ∩B = Ø iff A ∩ g′′ = Ø.
For the second claim, Proposition 2 yields

A∗ = {g ∈ G | A ∩ g′′ = Ø}′′.

But if A ∩ {g ∈ G | A ∩ g′′ = Ø}′′ = Ø, then

{g ∈ G | A ∩ g′′ = Ø}′′ = {g ∈ G | A ∩ g′′ = Ø}.

The third claim is now immediate. �

It is not necessary to verify the condition of Proposition 3 for every closed set.
Let us call a subset C ⊆ E co-initial, if every nonempty closed set in E contains
a nonempty set from C. The set {g′′ | g ∈ G} of one-generated closed sets is
always co-initial. A closure system is called atomic, if the set of its one-element
closures (“atoms”) is co-initial. The atoms must be part of any co-initial set.

Proposition 4. If C is co-initial in E and every C ∈ C has a pseudocomplement,
then E is pseudocomplemented.

Proof. Suppose A ∈ E has no pseudocomplement. Then, by Proposition 3,

X := A ∩ {g ∈ G | A ∩ g′′ = Ø}′′ 	= Ø.

Since C is co-initial, we find some non-empty C ∈ C with C ⊆ X. C ⊆ A implies
that

{g ∈ G | A ∩ g′′ = Ø}′′ ⊆ {g ∈ G | C ∩ g′′ = Ø}′′,

and therefore
C ∩ {g ∈ G | C ∩ g′′ = Ø}′′ = C 	= Ø,

which means that C also has no pseudocomplement. �

Finite closure systems are atomic. Proposition 4 is then another version of a
result by Chameni Nembua and Monjardet which states that “finite lattices are
pseudocomplemented if and only if all its atoms have pseudocomplements” [CM93].

A variant of Proposition 3 is the following:

Proposition 5. If C is co-initial in E then E is pseudocomplemented if for each
C ∈ C the set

{g ∈ G | C ∩ g′′ = Ø}
is closed.

A set T ⊆ G is a transversal of the closure system E iff every nonempty closed
set contains some element of T :

T transversal : ⇐⇒ T ∩ E 	= Ø for all E ∈ E \ {Ø}.
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If T is a transversal then
C := {t′′ | t ∈ T}

is co-initial. The set G is always a transversal. If the closure system is atomic,
then Gmin := {g ∈ G | g′′ = {g}} is a transversal, and is contained in every
transversal of E . The elements of Gmin will also be referred to as atoms.

Now let E be a closure system on G with a fixed transversal T . For subsets
A ⊆ G we define

s(A) := {t ∈ T | ∃g∈A t ∈ g′′}.
Note that s({g}) = g′′ ∩ T and s(A′′) = A′′ ∩ T .

Proposition 6. The operator [·] defined on subsets of G by

[A] := {g ∈ G | s({g}) ⊆ s(A)}

is a closure operator.

Proof. It is obvious from the definition that the operator is monotone and
extensive. To prove idempotency, we must show that s([A]) = s(A). If t ∈ s([A]),
then there is some h ∈ [A] such that t ∈ s({h}). But h is in [A] iff s({h}) ⊆ s(A).
Therefore t ∈ s(A). �

Proposition 7. A ∈ E has a pseudocomplement iff [T \ A] is in E.

Proof. We know from Proposition 3 that A∗ exists iff {g | g′′ ∩A = Ø} is closed.
We find that

g′′ ∩A = Ø ⇐⇒ g′′ ∩A ∩ T = Ø
⇐⇒ s(g) ∩A = Ø
⇐⇒ s(g) ⊆ T \ A

⇐⇒ g ∈ [T \ A].

�

Combining this with Proposition 4 we get

Theorem 1. The closure system E with transversal T is pseudocomplemented
iff all sets

[T \ t′′], t ∈ T,

are closed in E.

In the atomic case we can say more about the closure operator [·]. A silent
assumption is that in the atomic case the closure operator [·] is always defined
with respect to the transversal Gmin, unless explicitely stated otherwise.

Proposition 8. If E is atomic and if for each a ∈ Gmin the set [Gmin \ {a}] is
closed in E, then each set [A] is closed in E.
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Proof. Note that [Gmin \ {a}] ∩ Gmin = Gmin \ {a} for all a ∈ Gmin. We will
prove that

[A] =
⋂

a∈Gmin\A

[Gmin \ {a}].

We denote the set of atoms in [A] by Amin, thus

Amin := [A] ∩Gmin.

It follows from the definition of [·] that [A] = [Amin]. We therefore have to show
that

[Amin] =
⋂

a∈Gmin\Amin

[Gmin \ {a}].

It is clear that [Amin] is included in
⋂

a∈Gmin\Amin
[Gmin \{a}]. To prove equality,

consider an element h ∈ G which is not in [Amin]:

h /∈ [Amin] ⇒ s({h}) 	⊆ s(Amin) = Amin

⇒ ∃a∈Gmin\Amin a ∈ s({h})
⇒ ∃a∈Gmin\Amin h /∈ [Gmin \ {a}]
⇒ h /∈

⋂
a∈Gmin\Amin

[Gmin \ {a}].

�

Together with Theorem 1 this yields

Theorem 2. An atomic closure system E is pseudocomplemented if and only if
each set [A] is closed in E.

We close the section with a simple observation:

Proposition 9. If E is atomic and A ∈ E is closed then

A ⊆ [A ∩Gmin].

Proof. If g ∈ A then s({g}) ⊆ A ∩Gmin, therefore g ∈ [A ∩Gmin]. �

3 Atomic Concept Lattices

We now apply our findings to concept lattices (see [GW99] for basic notions).
To keep things simple, we restrict to the case that the lattice B(G,M, I) under
consideration is atomic (which means that the closure system of extents is
atomic). Later we shall also assume that B(G,M, I) is doubly founded, in order
to have the arrow-relations at hand. These conditions include all finite lattices.
Moreover we suppose w.l.o.g. that the formal context (G,M, I) is clarified with
M ′ = Ø. As a corollary to Theorem 2 we get
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Corollary 1. An atomic concept lattice is pseudocomplemented if and only if
for each A ⊂ G the subset [A] is an extent.

We already know that we can restrict to sets of the form [Gmin \ {a}]. When are
those extents?

Proposition 10. If [Gmin \ {a}] is an extent and a ∈ Gmin, then there is an
attribute m ∈ M such that m′ = [Gmin \ {a}].
Proof. Note that a /∈ [Gmin \ {a}]. If [Gmin \ {a}] is an extent, then

[Gmin \ {a}] =
⋂

[Gmin\{a}]⊆m′
m′,

and at least one of these attributes cannot be incident with a. Let ma be such
an attribute. By Proposition 9,

m′
a ⊆ [m′

a ∩Gmin] ⊆ [Gmin \ {a}],
thus

m′
a = [Gmin \ {a}].

�

Proposition 11. An atomic concept lattice is pseudocomplemented if and only
if for each atom a there is some attribute ma such that

– ma is incident with all atoms except a.
– a /∈ n′ implies n′ ⊆ m′

a.

Proof. We know from Proposition 10 that in the pseudocomplemented case
there is an attribute ma with m′

a = [Gmin \ {a}]. Let n be an attribute with
a /∈ n′, then h ∈ n′ implies

s({h}) ⊆ n′ ∩Gmin ⊆ Gmin \ {a}.
Therefore n′ ⊆ m′

a.
Conversely let ma be an attribute satisfying the two conditions of the

proposition, and let h /∈ m′
a. Each attribute n of h satisfies n′ 	⊆ m′

a (because
h ∈ n′) and thus a ∈ n′ (because of the second condition). Therefore a ∈
h′′ and thus h /∈ [Gmin \ {a}]. Consequently [Gmin \ {a}] ⊆ m′

a. Equality
follows from Proposition 9, and the existence of a pseudocomplementation from
Proposition 8. �

Theorem 3. Let B(G,M, I) be atomic and doubly founded. Then B(G,M, I)
is pseudocomplemented if and only if the following condition holds for all g ∈ G:

If g↙n for all n /∈ g′ and g↗m then

– if h↙m then g′ = h′, and
– if g↗n then n′ = m′.
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Proof. Let us first rephrase the condition: g↙n for all n /∈ g′ is equivalent to g
being an atom. If the context is clarified, as we may assume w.o.l.g., then g′ = h′

is the same as g = h and m′ = n′ is the same as m = n. Then the condition
simplifies to the following:

For each atom g there is a unique attribute m with g↗m, and g is the
only object with g↙m.

Suppose B(G,M, I) is pseudocomplemented. By Proposition 11 there is for each
atom a an attribute ma with m′

a = [Gmin \ {a}]. It is clear that a↗ma holds,
and since a /∈ n′ implies n′ ⊆ m′

a there cannot be another attribute n with
a↗n. Suppose h↙ma for some h 	= a. Then h /∈ m′

a = [Gmin \ {a}], and thus
a ∈ s({h}), which implies h′ ⊆ a′ and thereby contradicts h↙ma.

For the other direction we presuppose the condition of the theorem. Let a be
an atom and let m be the unique attribute with a↗m. Then the two conditions
of Proposition 11 are satisfied, which can be seen as follows: If g is any atom
with g /∈ m′ then g↙m is implied and the condition forces g = a. Thus m is
incident with all atoms except a. If n is an attribute with a /∈ n′, then there
must be some attribute ñ with n′ ⊆ ñ′ and a↗ ñ. According to the condition,
this attribute must be m, and consequently n′ ⊆ m′. �

The arrow configuration described in Theorem 3 is displayed in Figure 1. The
subcontext (Gmin, {ma | a ∈ Gmin}) is a contranominal context, with exactly
one double arrow in each row and column and crosses elsewhere. The rows of
the atoms Gmin contain no empty cells (arrowless non-incidences) and no upward
arrows except for the double arrows mentioned. The columns corresponding to
the attributes {ma | a ∈ Gmin} have no other downward arrows.

It is evident from Figure 1 that the subcontext (Gmin, {ma | a ∈ Gmin}) is
arrow closed and therefore compatible. This leads to our final theorem:

↙

�= ↙ ↗Gmin

{ma | a ∈ Gmin}

Fig 1. Arrow configuration in the context of an atomic pseudocomplemented
concept lattice

.
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Theorem 4. An atomic doubly founded complete lattice L is pseudo-
complemented if and only if there is a complete homomorphism of L onto a
Boolean lattice, mapping atoms to atoms.

Proof. What the theorem expresses is that the configuration displayed in Figure 1
is characteristic for such lattices. It is apparent from this figure that the condition
must be fulfilled in the pseudocomplemented case.

For the converse, suppose that L admits a complete homomorphism ϕ onto
(P(Gmin),⊆), mapping atoms to atoms. Necessarily then 0 is the only element
mapped to 0. Let a be an atom and let b denote the largest element of the
congruence class ϕ−1(¬ϕ(a)). Then

x ≤ b ⇐⇒ ϕ(x) ≤ ϕ(b)
⇐⇒ ϕ(x) ≤ ¬ϕ(a)
⇐⇒ ϕ(x) ∧ ϕ(a) = 0
⇐⇒ x ∧ a = 0.

Therefore b is the pseudocomplement of a. Every atom has a pseudocomplement,
and it thus follows from Proposition 4 that L is pseudocomplemented. �

Our result is related to a celebrated theorem by Glivenko (1929, see [CG00]):
Let L be a p-algebra. The operation x �→ x∗∗ is a closure on L. The set

S(L) := {x ∈ L | x = x∗∗}
of closed elements is called the skeleton of L. The operation ⊕ defined by
x ⊕ y := (x∗ ∧ y∗)∗ turns S(L) := (S(L),∧,⊕,∗ , 0, 1) into a Boolean algebra
(this is due to O. Frink (1962)). The Glivenko mapping is given by

g : L → S(L)
x �→ x∗∗.

If a is an atom of L, then g(a) is an atom of S(L) since g(a) is the smallest
closed element above a. Thus g maps atoms onto atoms. Moreover

g(x ∨ y) = (x ∨ y)∗∗ = (x∗ ∧ y∗)∗ = (g(x)∗ ∧ g(y)∗)∗ = g(x) ⊕ g(y)

Note that

g(x ∧ y) = (x ∧ y)∗∗ = x∗∗ ∧ y∗∗ = g(x) ∧ g(y) (Glivenko, 1929 see [CG00])

The Glivenko mapping realizes a homomorphism of Theorem 4. The corresponding
Boolean algebra is isomorphic to the skeleton of the pseudocomplemented lattice.
Theorem 4 adds a converse to Glivenko’s result.

4 Conclusion

A simple arrow configuration (see Figure 1) characterizes pseudo-
complementedness of doubly founded concept lattices.

It leads to a characterization of atomic doubly founded pseudocomplemented
lattices.
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Peñas, Anselmo 49
Phoophakdee, Benjarath 1
Priss, Uta 21

Renaud, Y. 235
Rome, Jayson E. 33
Rouane, Mohamed H. 192

Salem, Saeed 1
Schmid, Jürg 403
Schoolmann, Lars 285
Sigayret, Alain 208
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