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Preface 

The 3rd Workshop on Formal Approaches to Agent-Based Systems (FAABS-III) was 
held at the Greenbelt Marriott Hotel (near NASA Goddard Space Flight Center) in 
April 2004 in conjunction with the IEEE Computer Society. 
     The first FAABS workshop was help in April 2000 and the second in October 
2002. Interest in agent-based systems continues to grow and this is seen in the wide 
range of conferences and journals that are addressing the research in this area as well 
as the prototype and developmental systems that are coming into use. 
     Our third workshop, FAABS-III, was held in April, 2004. This volume contains 
the revised papers and posters presented at that workshop. 
     The Organizing Committee was fortunate in having significant support in the 
planning and organization of these events, and were privileged to have world-
renowned keynote speakers Prof. J Moore (FAABS-I), Prof. Sir Roger Penrose 
(FAABS-II), and Prof. John McCarthy (FAABS-III), who spoke on the topic of self-
aware computing systems, auguring perhaps a greater interest in autonomic 
computing as part of future FAABS events. 
     We are grateful to all who attended the workshop, presented papers or posters, and 
participated in panel sessions and both formal and informal discussions to make the 
workshop a great success. Our thanks go to the NASA Goddard Space Flight Center, 
Codes 588 and 581 (Software Engineering Laboratory) for their financial support and 
to the IEEE Computer Society (Technical Committee on Complexity in Computing) 
for their sponsorship and organizational assistance. 
     Springer once again undertook to publish the proceedings, for which we are 
grateful. We hope that the reader will find it a useful compilation of the state of the art 
in formal methods, agent-based technologies, and their intersection. 

October 2004       Greenbelt, MD  
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Ecology Based Decentralized Agent
Management System

Maxim D. Peysakhov, Vincent A. Cicirello, and William C. Regli

Department of Computer Science, Drexel University,
Philadelphia PA 19104

Abstract. The problem of maintaining a desired number of mobile
agents on a network is not trivial, especially if we want a completely
decentralized solution. Decentralized control makes a system more ro-
bust and less susceptible to partial failures. The problem is exacerbated
on wireless ad hoc networks where host mobility can result in significant
changes in the network size and topology. In this paper we propose an
ecology-inspired approach to the management of the number of agents.
The approach associates agents with living organisms and tasks with
food. Agents procreate or die based on the abundance of uncompleted
tasks (food). We performed a series of experiments investigating prop-
erties of such systems and analyzed their stability under various condi-
tions. We concluded that the ecology based metaphor can be successfully
applied to the management of agent populations on wireless ad hoc net-
works.

1 Introduction

In a typical agent based system, a number of mobile agents cooperate to achieve
a desired goal. The efficiency of the agent system in reaching the goal, and the
completeness of the result depends on the number of agents in the system. Too
few agents will not achieve the full potential of parallelism and will lead to
decreased system efficiency. Too many agents can overburden the system with
unnecessary overhead, and may also result in significant delays. The task of
finding the optimal number of agents required to achieve the desired effect is
difficult and problem-specific. In this paper, we propose an ecosystem-inspired
approach to this problem. Similar to a real ecosystem, our solution exhibits
properties of emergent stability, decentralized control, and resilience to possible
disturbances. In our work, we propose to solve the technical problem of agent
management using an ecological metaphor.

In Section 2 we describe the current state of research in the fields of sim-
ulated ecosystems and multi-agent control and stability. Section 3 introduces
the problem of managing the number of agents populating a physical network
and also explains a proposed solution. Lastly, Section 4 demonstrates the initial
experimental results and conclusions.

M.G. Hinchey et al. (Eds.): FAABS 2004, 3228, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Related Work

2.1 Simulated Ecology

The majority of ecology-inspired systems are used to answer some question about
real world ecosystems and its properties. For example, the RAM system has been
used to study mosquito control [23]. There are two major approaches to simu-
lating an ecosystem [6]. One is a species-based view of the system, where large
classes of individuals interact in the simulation (i.e., modeling the dynamics of
interaction of species rather than the interaction of individuals). Evolutionary
game theory (e.g., [1] [18] [17]) and dynamical systems (e.g., [9] [15] [14]) are two
approaches that often take the species-based view. The second approach is to
simulate individuals and their interactions, a bottom up approach to construc-
tion of the ecological simulator.

We are most interested in individual-based simulations, since they are usu-
ally built with software agents. An example of an individual-based approach
to ecosystems is a simulated habitat populated with synthetic organisms
(agents) [19]. Often such systems are used to study the evolution (and co-
evolution) of different species and testing their interactions and emergent be-
havior. Genetic Algorithms [8] and Genetic Programming [10] engines can be
used in conjunction with synthetic ecosystems to allow species to evolve over
time. Some of the most well known examples of synthetic ecosystems of this
type are Evolve 1, 2 and 3 [4] [5] [21], “Artorg world” [3] and LAGER [19].

With this approach, global trends in the behavior of the system may emerge
as a result of the low-level interactions of individual agents. The emergent behav-
ior observed in an ecosystem may not be obvious given the individual behaviors
of agents.

2.2 Agent System Stability

Service Replication. An increasing number of researchers are investigating
the problems of reliability, robustness, and stability of multi-agent systems
(MAS). Most approaches toward improving system robustness revolve around
the replication of agents and/or services on the MAS network. This direction
has been taken by [7], [12], [16] and several others. Existing approaches focus on
the methodology of agent/service replication.

Probabilistic Models. Another approach is the application of probabilistic
models to the prediction of agent system stability and robustness. This research
assumes some uncertainty in agent behavior or the agent’s environment, and pro-
poses mechanisms for estimating, evaluating and hopefully improving stability of
agent systems. One of the first researchers to analyze probabilistic survivability
in an MAS is Kraus in [11]. In that paper Kraus proposed a probabilistic model
of MAS survivability based on two assumptions: (1) global state of the network
is known at all times; and (2) the probabilities of host or connection failure are
known. An alternative approach was proposed in [20, 2], where agents reason
about the state of the network and security (insecurity) of their actions.
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3 Problem Formulation

3.1 Motivation

In a typical dynamic ad hoc network there is limited, variable bandwidth between
hosts, and the memory and CPU on each host is constrained. Given this dynamic
and resource constrained environment, it is impractical to prescribe any pre-
computed solution.

The solution we propose for such networks is to create a system that can
control the number of agents dynamically, adapting to the ever-changing envi-
ronment. In order to work in the context of an agent based system, a control
system should be distributed and decentralized. By distributed, we mean that the
system should be able to use the underlying network to parallelize problem solv-
ing on multiple hosts. By decentralized, we mean that the system should avoid
reliance on a single node, and should allow each agent to act independently.
The emergent behavior resulting from the individual localized control decisions
ideally will yield an optimal, or near-optimal, solution at the global level.

3.2 Approach

Large ecosystems usually have several attractive qualities (such as dynamic de-
centralized control, self regulation, no single point of failure, robustness, and
stability) that we require for our system. We propose a solution to the prob-
lem of determining the number of agents appropriate for a task at hand that is
inspired by large ecosystems:

1. Each task in our system is associated with food.
2. Agents which successfully complete a task collect the associated food points.
3. Agents consume food points over time to sustain their existence.
4. Agents that exhaust their supply of food die.
5. An abundance of food can cause a new agent to spawn.

By this analogy, tasks can be thought of as plant life growing at some rate.
Agents are associated with herbivore animals that perform tasks, therefore eating
all the food provided by successfully completing a task. Upon completion of a
task, an agent is forced to migrate to look for more food (tasks to complete).
As time passes, agents consume food according to a predefined consumption
function, analogous to a metabolic rate of an animal. Agents unable to find
enough food (tasks) to sustain their existence over time will exhaust their food
resources and will be terminated. Large amounts of food collected by a single
agent or accumulated in a single location can force a new agent to spawn at
this location. Agents procreate by division similar to a cell mitosis. However,
this approach makes it impossible for the system to recover from a state with
no agents. Therefore, we also allow tasks the ability to spawn a servicing agent
whenever a certain threshold of accumulated food supply is reached. This control
metaphor allows the system to dynamically adjust to the environment, while
avoiding centralized control.
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3.3 Formal Model

The set H denotes the set of producers h where h ∈ H, with the production rate
defined by a function Fh(t) for each individual producer h. The set A defines the
set of consumers a (a ∈ A), and each consumer has a predefined consumption
function fa(t). The dynamic system of H producers and A consumers is consid-
ered to be in an equilibrium state over some period of time from t1 to t2, if and
only if the amount of food produced during that period of time is equal to the
amount of food consumed during that same period of time. This relationship
can be expressed as:

∑
h∈H

∫ t2

t1

Fh(t) dt =
∑
a∈A

∫ t2

t1

fa(t) dt

At the simplest level, these principles can be modeled by a dynamic system of
homogeneous producers and homogeneous consumers with constant production
and consumption rates, c and d respectively. The equations below define the
equilibrium state for this simple example:

∑
h∈H

∫ t2

t1

Fh(t) dt =
∑
a∈A

∫ t2

t1

fa(t) dt

∑
h∈H

∫ t2

t1

c dt =
∑
a∈A

∫ t2

t1

d dt

|H| × c× (t2 − t1) = |A| × d× (t2 − t1)

|A| = |H| c
d

This is essentially a species-based analysis of our individual-based ecological
control system.

4 Experimental Results

4.1 System Setup

In order to confirm our conclusions we implemented a series of experiments us-
ing a discrete event simulation. The control flow of an ecology based agent is
shown in Figure 1(a). According to this control flow diagram, an agent first
decreases it’s internal food bank by fa(t) for each second that elapsed since
the last decrement. Then, the agent completes the task and collects all food
points associated with that task. Based on its current food resources, the agent
may decide to die or to reproduce. Lastly, the agent migrates to another ran-
dom host looking for food. We experimented with different ways for an agent
to decide when to reproduce. We chose a fuzzy threshold method. Given the
threshold value r, the probability of an agent reproducing is 0 if the amount
of food is less then r − r

2 . The probability of an agent reproducing is 1 if the
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Fig. 1. Agents life cycle (a) and probability of reproduction based on the food level (b)

food level exceeds r + r
2 . And the probability of reproducing grows linearly be-

tween these two points. A plot of the probability of reproducing is shown in Fig-
ure 1(b). The threshold needs to be fuzzy to avoid undesirable oscillations in the
system.

If a small number of agents is desired on the network, it is possible for the
system to go into an extinction mode — state with no agents on the network. In
order to recover from this situation, we enable hosts to spawn new agents. The
same fuzzy threshold rules apply to hosts as to agents. All of the experiments
were performed on the completely connected network of statically placed hosts.
All hosts grow food at the rate 1 unit per iteration. All experiments start with
a single agent with initial food bank of 500 units. The reproduction threshold
r was set to 800 resulting in 800 ± 400 range for hosts and agents. Additional
experiments were performed using the real agent system EMAA [13] over a wired
local area network.

4.2 System Behavior over Time

In this section, we investigate the changes in the number of agents over time.
The consumption rate is set to 5 food units per iteration for all agents. Each
experiment consists of 15 trials. A single trial consists of initializing the system
and running it for 90,000 iterations. The number of agents is recorded every 10
iterations. Data is averaged across all trials to obtain the plots.
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Constant Number of Hosts. Experiments were repeated for graphs of 35, 23,
15 and 8 hosts on the Figure 2 (top to bottom). Horizontal bold lines represent the
targeted number of agents 7.0, 4.6, 3.0 and 1.6 respectively and the actual num-
ber of agents on the system is plotted by the thinner lines. It is easy to see that
in all of the experiments, the actual number of agents oscillates close to the target
value, however oscillations are somewhat higher for the network of 8 hosts. Figure 3
demonstrates the actual distribution of the numbers of agents during the exper-
iments for 8 (a), 15 (b), 23 (c) and 35 (d) hosts with a normal distribution curve
fitted to the data. Distribution is close to normal for all experiments but the one
with 8 hosts. Such system behavior can be explained by the fact that the system
with the small number of agents is prone to extinction of the population. Whenever
the system recovers, it usually overshoots the targeted number of agents and os-
cillates for a while. These oscillations are repeated every time the system goes into
extinction mode. More detailed analysis of this phenomenon is given in Section 4.3.

Hosts

35

23

15

8

Agents

7

4.6

3

1.6

Time

Fig. 2. System behavior over time

0 6 842

(a)

0 6 10 12 14842

(b)

1 4 75 632

(c)

6 10842

(d)

Fig. 3. Distribution of the number of agents for the network sizes of 8 (a), 15 (b), 23
(c) and 35 (d) hosts
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4.6

3
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Fig. 4. System behavior over time (a) and Standard deviation (b)

Changing Number of Hosts. During this test we observed the system’s abil-
ity to react to rapid unplanned changes in the number of hosts. Experiment was
setup identically to the one described in Section 4.2 except that the number of
hosts was changed every 30,000 iterations without reinitializing the system. The
number of hosts was changed from 23 to 15 to 8 and back to 35 hosts. We feel
that such drastic changes in the number of hosts approximate the process of
islanding and merging in wireless mobile networks of lightweight devices carried
on foot by police or military units. Whenever the hosts were shut down all of the
agents on these hosts and agents traveling to these hosts were also shut down.
Whenever brought back on line, hosts initially had no food or agents on them.
That type of change introduces a high level of disturbance into the system. The
number of agents over time is plotted in Figure 4(a). The bold red line repre-
sents the target number of agents at any given moment. The black thinner line
shows the actual number of agents. One can see that the actual number of agents
follows closely the target number in all segments of the plot except for the one
that corresponds to 8 hosts.

The standard deviation of the number of agents is plotted in Figure 4(b).
Standard deviation peaks when we change the number of hosts on the network
due to the highly disruptive nature for the agent community of shutting down
(or starting up) several hosts. Also standard deviation is higher at the segment
corresponding to 8 hosts. We believe that such high standard deviation is caused
by temporary extinction of agents and the oscillations that occur during recovery
from it.

4.3 Dependency Between the Number of Agents and the Number
of Hosts

In this Section, a single trial consisted of 100,000 iterations of the simulator.
The number of agents is recorded every iteration and averaged across the trial
to obtain a single data point. Trials were repeated for networks of sizes 3 to 35
hosts (odd numbers of hosts only). Experiments are plotted in Figure 5(a) with
consumption rates set to be 3 times, 5 times and 7 times the production rate from
top to bottom. Although all 3 graphs appear to be linear, they are composed
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Fig. 5. Dependency between number of agents and number of hosts (a), between num-
ber of hosts and standard deviation (b), number of agents and standard deviation (c)

of 16 independently obtained data points. The experiment confirms that the
system does what it is designed to do, namely maintain the given average ratio
of hosts to agents, despite dynamic changes in the number of hosts. Figures 5(b)
and 5(c) show the standard deviation of the number of agents in terms of the
number of hosts and the number of agents respectively for all 3 experiments.
Styles and colors of the plots correspond to the ones in figure 5(a). Although
each is unique, the overall shape of the plots is similar. After the initial hump
associated with the extinction mode and recovery from it, the plots level off in
the area of 3 – 4 agents and then increase slightly. The linear increase can be
explained by the linear increase in the number of agents. The only disturbance
to that scheme is the point with target value of exactly 1 agent. For such systems
it is possible to sustain a single agent for the duration of the whole experiment
without ever going into the extinction mode resulting in no variance in the data.

4.4 Dependency Between the Number of Agents and the Link
Quality

This set of experiments was set up exactly as the one described in Section 4.3
except that the changing parameter was link quality. A link of 100% quality
implies that no artificial delay is introduced and migration only takes one it-
eration. Link of 0% quality means that maximum possible delay is introduced
and migration takes 16 iterations (in simulator time). Figure 6(a) shows the
target number of agents, actual number of agents and standard deviation of the
number of agents changing based on the link quality. Although the actual num-
ber of agents slightly increases with decrease in link quality, it remains within
10% of the target value. Standard deviation however increases significantly as
the speed of communication decreases. Some improvement of standard deviation
at extremely low speeds can be explained by consistently poor performance of
the system. Figure 6 (b) and (c) show the actual distribution of the number of
agents for 10% and 90% respectively. The distribution for the higher link speeds
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Fig. 6. Dependency between number of agents and standard deviation from liq speed
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is more compact and closer to normal. Such behavior of the system can be ex-
plained by the fact that at the lower values, agents cannot move from one host
to another fast enough to collect enough food to sustain their existence. This
causes extinction of agents and forces the system to re-stabilize after it recovers
from the state with no agents.

5 Future Work and Conclusions

5.1 Future Work

In the future we are planning several extensions to this work.

1. We are planning more extensive set of live experiments utilizing the Secure
Wireless Agent Testbed (SWAT) [22].

2. We would also like to create a more detailed mathematical model of such
systems to be able to predict and control the emergent behavior of an agent
system. This model should be used for parameter fine tuning, something that
was done manually during current experiments.

3. We are also planning to introduce an on-line system for tuning such param-
eters as consumption and production rates, thresholds and fuzzy intervals,
etc. Some of the techniques we are planning to try include machine learning,
swarm based techniques and genetic algorithms.

4. It would be interesting to expand the model from plant — herbivore system
to plant — herbivore — carnivore. That extension will allow us to create
more complicated food chains resulting in more elaborate control over the
populations of different types of agents.

All of these techniques promise to improve on the current research and provide
a more stable decentralized ways to control the number of agents on a wireless
ad hoc network.
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5.2 Conclusions

This paper developed an ecology-based model for managing the number of agents
on ad hoc wireless networks. We have discovered that an ecosystem based model
can provide decentralized distributed robust control of agents in dynamic and
uncertain network environments. Our approach involves a novel exploitation of
properties of ad hoc networks, enabling mobile agents to automatically adapt
to changes that affect their communication and migration. The capability to
dynamically adjust to the state of their network provides new possibilities for
stable MAS.
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Abstract. Norms specifying constraints over institutions are stated in
such a form that allows them to regulate a wide range of situations over
time without need for modification. To guarantee this stability, the for-
mulation of norms need to abstract from a variety of concrete aspects,
which are instead relevant for the actual operationalization of institu-
tions. If agent institutions are to be built, which comply with a set of
abstract requirements, how can those requirements be translated in more
concrete constraints the impact of which can be described directly in the
institution? In this work we make use of logical methods in order to pro-
vide a formal characterization of the translation rules that operate the
connection between abstract and concrete norms. On the basis of this
characterization, a comprehensive formalization of the notion of institu-
tion is also provided.

1 Introduction

Electronic institutions, such as auctions and market places are electronic coun-
terparts of institutions that are established in our societies. They are established
to regulate interactions between parties that are performing some transaction
(see [6] for more details on the roles of institutions). Interactions are regulated
by incorporating a number of norms in the institution which indicate the type
of behavior each of the parties in the transaction should adhere to within that
institution. The main concern of this work is to investigate what formal relation
could be specified which accounts for how (abstract) norms can be incorporated
in the (concrete) procedures constituting the institution, in such a way that
agents operating within the institution either operate in accordance with those
norms, or may be punished as they violate them.

That this relation is more complicated than just adding some constraints on
the actions in the institution can be seen from the following example. The norm
“it is forbidden to discriminate on the basis of age” can be formalized in deontic
logic as “F(discriminate(x,y,age))” (stating that it is forbidden to discriminate
between x and y on the basis of age). The translation of this formula would
get down to something like that the action “discriminate(x,y,age)” should
not occur. However, it is very unlikely that the agents operating within the
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institution will explicitly have such an action available. The action actually states
something far more abstract. We claim that the level on which the norms are
specified is more abstract and/or general than the level on which the processes
and structure of the institution are specified. From an institutional standpoint
norms need, in order to be incorporated in the institution itself, to be therefore
“translated” to a level in which their impact on the institution can be described
directly. A formal account of these “translation rules” constitutes the central
aim of this work.

The work is organized in accordance with the following outline. In Section 2
some preliminaries about the notions of norms, normative systems and institu-
tions are set forth; in Section 3 the issue addressed is made concrete by means
of two examples, and our line of analysis of the problem is stated; in Section 4 a
formal framework is proposed, which allows for formal definitions of the notions
of abstract and concrete norms, and of translation rules; in Section 5 these defi-
nitions are used in order to provide a formal account of the notion of institution
itself able to cope with the issue of abstractness of norms; in Section 6 this formal
notion is shown to be embeddable in various formal argumentation systems, thus
enabling the possibility of articulate institutional reasoning patterns; finally, in
Section 7, some conclusions are drawn.

2 Some Preliminaries

The first concept to introduce is the concept of norm. As we will see later in
Section 2.2, institutions are defined in terms of norms, which are therefore the
basic building block, so to say, of our work. With the term norm we intend what-
ever in general indicates something ideal and which, consequently, presupposes
a distinction between what is ideally the case and what is actually the case. In
natural language norms are usually, but not always, expressed by locutions such
as: “it is obligatory”, “it is forbidden”, “it is permitted”, etc..

In this paper we will assume norms to be conditional, because that is the form
in which they mostly appear in statutes and regulations governing institutions.
In conditional norms we recognize the condition of application of the norm, and
its normative effect, i.e. the normative consequence the norm subordinates to
its condition: “under condition A, it is obligatory (respectively, permitted or
prohibited) that B”

Another important concept we will come to take into consideration, though
not in detail, is the concept of procedure. Here a procedure is seen as an
algorithm-like specification describing how a certain activity is carried out. The
difference between a norm and a procedure is of extreme relevance for our pur-
poses (see Section 2.2): a norm states that something ought to be the case under
certain conditions, while a procedure describes only a way of bringing some-
thing about; semantically, norms incorporate a concept of ideality, whereas for
procedures it is instead central a notion of transition.
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2.1 Normative Systems

In [14] normative systems are defined as follows:

“a normative system is any set of interacting agents whose behavior can
[. . . ] be regarded as norm directed”.

According to this view, a normative system is thus a norm directed agency.
In this sense, a set of norms meant to direct an agency constitutes a form of (nor-
mative) specification of that agency; in other words, a set of norms addressed
to a given agency determines that agency as a normative system. As such, nor-
mative systems are therefore amenable of formal description in terms of logical
theories containing normative expressions1.

There is wide agreement upon the fact that all normative systems of high
complexity, like for example legal systems, cannot be regarded simply as sets
of norms ([14, 13]). Besides norms, they consist also of definitional components
yielding a kind of contextual definition: “A means (counts as) B in context
i”. An example: “signing form 32 counts as consenting to an organ donation,
in the context of Spanish transplant regulation [26]2”. Normative components
of this type are known in legal and social theory as constitutive norms, while
purely normative components, i.e. what we called norms, are known as regulative
norms (see for example [12, 19, 25]). Both these components will be logically
represented (Section 4) by means of rules: regulative norms via rules having
a deontic consequent normative rules; constitutive norms via translation rules.
Concepts introduced are recapitulated in Table 1.

Table 1. Normative systems’ components

COMPONENTS regulative norms constitutive norms
REPRESENTATION normative rules translation rules

2.2 Institutions

The term institution is quite ambiguous. Following [17] we distinguish two senses
of the term, which are of significance for our purposes.

– First, an institution can be seen a the set of agents with specific roles, private
and common objectives, the activities of which are procedurally determined.
We speak in this case about institutions seen as organizations. As an ex-
ample, the agents operating Utrecht Hospital, and the set of procedures
according to which their activity is planned, constitute an organization.

– Second, an institution can be seen as the set of norms (constitutive and
regulative) an organization can instantiate implementing them. We use in

1 This is precisely how normative systems are conceived in [1], where they are analyzed
as sets of sentences deductively connecting normative conditions to normative effects.

2 These examples have been chosen on the basis of work carried out on the regulations
from which they are excerpted.
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this case the term institutional form. In this sense the set of regulations
holding at Utrecht Hospital defines an institutional form. Also the set of
regulations concerning hospitals in The Netherlands defines an institutional
form, namely a general institutional form, say, “hospital”. The organization
of Utrecht Hospital instantiates both these institutional forms.

This distinction between organizations and institutional forms lies in the
aforementioned distinction between norms and procedures. While analyzing in-
stitutions as organizations emphasizes the procedural aspects involved in oper-
ating institutions, an analysis of them in terms of institutional forms stresses
instead the normative nature of institutions specifications. This last perspective
on institutions is the one underpinning the analysis of abstract and concrete
norms that will be carried out in the next sections. Viewing institutions as insti-
tutional forms, that is to say, as sets of constitutive and regulative norms, allows
for an application of a normative system perspective ([13, 14]) to their analysis
and will lead, in Section 5, to a formal definition of institutions as sets of rules3.

It is instructive to spend still some more words on the distinction proposed.
The relation between these two conceptions of institutions constitutes a very
interesting issue, which is also of definite relevance in relation with the general
problems addressed here. What is at stake is the understanding of how an or-
ganization implements an institutional form, or in other words, how can a set
of procedures implement a set of norms, what is the formal link between norms
and procedures. Answering these questions would lead to a deeper understanding
of the variety of aspects characterizing institutionalized agencies. This problem
forms nevertheless a separate issue, which will not be explicitly dealt with in the
present paper4.

3 Abstractness of Norms

3.1 Abstract Norms and Concrete Norms

The issuing of norms, as it appears in various statutes or regulations specifying
constraints over institutions, has the characteristic of stating norms in such a
form that allows them to regulate a wide range of situations and to be stable for
a long period of time. The vaguer or abstract norms are, the easier it becomes to
keep them stable. The downside of this stability is that normative formulations
seem to be less well defined. In law it is even an explicit task of the judges to
interpret the law for specific situations and determine whether someone violated
it or not.

It is our thesis that abstract and concrete notions are described within differ-
ent ontologies. Concrete norms are described in terms of the concepts that are

3 The formal analysis of organizations, i.e. procedural description of agencies, is there-
fore left aside in this work. In what follows we will use the terms institution and
institutional form interchangeably.

4 See [7] for some first thoughts on this topic.
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used to specify (possible) procedural descriptions of the concrete institutions.
Abstract levels are instead described using a more general ontology.

In order to precisely illustrate the problem we are concerned with, we discuss
two examples. The first one is taken from the Dutch regulation about personal
data treatment within police registers ([8]). In the mentioned regulation the
following norm is stated: “the inclusion of personal data in a severe criminality
register occurs only when it concerns: a) suspect of crimes; b) etc.” (Article 13a).
This norm states that, under certain conditions, personal data may be included
in a specific kind of police register. Suppose now that an electronic institution
for that register has to be built which fully complies with the norms regulat-
ing the use of that register ([5]). The following question comes naturally about:
“what can be concretely included in the register”, that is “what is classified to be
personal data in the context of [8]”? That this is more than just a definitional
issue can be seen from the fact that more data may be included as they regard
suspects and less as they regard persons which are indirectly connected with a
crime: the notion of personal data varies. These “variations” are specified in the
model regulations on police registers ([16]).
The second example is instead taken from the Spanish regulation on organ trans-
plantation ([26]): “a living donor must consent before a transplantation may take
place” (Article 9). An analogous question can be raised: “what is understood as
consent in the context of [26]”? This example shows that abstraction takes place
over data (first example) as well as over actions. The consent action can be im-
plemented by signing form 32 within the context of the transplant regulation in
Spain. However, this way of implementing consent is only “valid” within that
context.

On what basis are we entitled to consider the above translations as complying
with the abstract ones? Signing a form seems a reasonable implementation of
giving consent, whereas we would probably not accept wearing a red hat as a
way of implementing consent. What does the connection between abstract and
concrete normative formulations consist of, from a formal point of view? This is
the central question we are here addressing.

3.2 Connecting Abstract and Concrete Norms

The model regulation on severe criminality registers ([16]) is explicitly conceived
to lead to an application of the law in the context of the usage of severe criminal-
ity registers. The following norm is stated: “[In a severe criminality register] the
following kinds of data can at most be included: financial and corporate data; data
concerning nationality; etc.” (Article 6). Basically, this article provides the list
of data that are allowed to be included in the register, and it therefore consists
of a concrete version of Article 13a cited in Section 3.1. Such a “translation”, as
we called it, is possible because an interpretation of the notion of personal data
occurring in Article 13a, is somehow presupposed: “personal data are financial
and corporate data; data concerning nationality; etc.”. This rule, defining the
notion of personal data within the context of the usage of severe criminality
registers, states that if something is a datum concerning the nationality of, for
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instance, a suspect, then this datum is a personal datum and it can therefore be
legally included in the register. We claim these rules to constitute the connection
between abstract and concrete norms.

In this example, being a personal datum is an abstract fact exactly because
something can be a personal datum in many ways, depending on the context:
in the context of the regulation of severe criminality registers, data as specified
in Article 6 count as personal data, but within a different context, for example
in the regulation about so called provisional police registers, something else can
count as a personal datum. Abstract constraints are stable and hold for many
situations because they are made concrete in several, possibly different, ways.
The contextual nature of these translation rules led us to the logical framework
we are going to expose in Section 4.

To understand this contextual nature of institutions it seems useful to see
them as regulating facts that hold on specific levels of abstractness: concrete
levels are the levels on which facts hold that can be directly handled by the
procedures an institution is organized through (something is a datum concern-
ing nationality); abstract levels are the levels on which more abstract facts hold
(something is a personal datum), and to which many more concrete levels can
be seen to converge via translation rules. We therefore understand institutions
as sets of norms and translation rules which regulate facts holding on levels of
abstractness5. Such a perspective also shows how more particular institutions,
such as the ones operating severe criminality registers, are nested in more gen-
eral ones, such as the one regulating the use of police registers in general. This
nesting takes place through the abstractness layering. Picture 1 below provides
a graphical account of the intuitions just exposed.

Analogous considerations may be carried out in relation with the second
example mentioned in Section 3.1.

4 Formal Framework

4.1 A Logic for Levels of Abstractness

Before presenting a proposal to formally capture the notion of level (context)
we have in mind, it is necessary to identify, in further detail, the features of this
concept that we would like to be able to express in our formalism.

1. In our view, levels constitute a structure ordered according to the relation
“i is strictly less abstract than j”. This relation is, reasonably, irreflexive,
asymmetric and transitive. Moreover, it seems intuitive to assume it to be
partial. There might be levels i and j both strictly less abstract than a given
level k, but such that they remain unrelated with respect to each other6.

2. Levels are such that what holds in a level holds irrespectively of the level
from which that fact is considered: if at level i the donor expresses his/her

5 See section 2.
6 Notice that these are precisely the properties also of the conventional generation

relation analyzed in [10].
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consent, then at level j it holds that at level i the donor expresses his/her
consent and vice versa.

3. No inconsistency holds at any level, levels are coherent.
4. Finally, there exists a trivial “outermost level”, representing the absence of

context, that is, the level of logical truths.

To capture these features we use a multi modal logic KD45i−j
n ([15]) which

corresponds to a propositional logic of n contexts (PLC) with: consistency prop-
erty (corresponding to feature 3), flatness property (feature 2), outermost context
(feature 4) and total truth assignments (see [18, 4, 3])7.

Language. The alphabet of language LL for levels of abstractness expands the
language for propositional logic and contains the following sets of symbols: the
set of logical connectives {¬,∧,∨,→}; the set of propositional constants P; and
the set of modal operators {�i}i∈L where L is the set of indexes denoting levels
of abstractness, and ||L|| = n, that is to say, there are as many modal operators
as levels of abstractness. The set of well formed formulas F is then defined as
follows:

7 We deemed a multi modal formalism to be better readable than a propositional
context logic one. This is the reason why we chose for using a modal logic formulation
instead of a contextual logic one. The correspondence result we claimed is guaranteed
by results proved in [3]. A word must be spent also about the use of propositional
context logic with total truth assignments. In fact, partial truth assignments are one
of the most relevant features of context logics as introduced in [4, 3]. However, it has
been proved in [18] that every propositional context logic system with partial truth
assignments is equivalent to one with total truth assignments. For this reason this
aspect has been here disregarded.
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F := P ∪ (¬F) ∪ (F ∧ F) ∪ (F ∨ F) ∪ (F → F) ∪ (�iF).

By means of this language it is possible to express statements about what
holds on a level (in a context) via modal formulas.

Semantics. As a semantics for this system we can use very simple models
M = (W, L, <, c, v) such that for every level of abstractness (or context) i ∈ L
function c associates a non-empty subset of W (c : L −→ Pow+(W )), v is the
usual valuation function assigning truth values to propositions in worlds. Order-
ing < ⊆ L × L is an irreflexive, asymmetric and transitive ordering on L, the
intuitive reading of which is: i < j means that i is less abstract than j (feature
1). Using these models we can define the semantics of the levels of abstractness
as follows:

M, w � �iA iff ∀w′ ∈ c(i) : M, w′ � A

We omit here the obvious clauses for satisfaction of propositional formulas.
Notice that the truth value of �iA does not depend on the world where it
is evaluated. This reflects the intuition that whether A is true at level i does
not depend on the place from which you evaluate it. It only depends on the
truth of A in that specific level (in this precisely consists the aforementioned
flatness property corresponding to feature 3). With respect to the other re-
quirements, we have that: feature 2) is guaranteed by the fact that c delivers
non-empty subsets of W , and feature 4) is guaranteed by the fact that there
can be worlds not belonging to any c(i)8. Noticeably, this semantics imple-
ments in a straightforward way the thesis developed in context modeling ac-
cording to which contexts can be soundly represented as sets of possible worlds
([27]).

A final aspect worth stressing is that the ordering of the levels does not play
any role in the semantics. One could imagine that the ordering on L imposes an
ordering on the sets Wi. E.g. i < j ⇒ Wi ⊆Wj . This would imply the following
validity: �jA → �iA iff i < j i.e. a kind of inheritance from more abstract
levels to more concrete levels. We have chosen not to include this property be-
cause it would impose many restrictions on the relation between levels, which
are not really necessary. We will come back to this point later on in Section 5
where we will indicate some ideas about more subtle relations between levels of
abstractness.

Axiomatization. KD45i−j
n is obtainable via the following axioms and rules

schemas:

8 It is instructive to notice that this semantics is equivalent with a more standard
relational semantics for KD45i−j

n given in terms of Kripke models with a fam-
ily of accessibility relations {Ri}i∈L which are serial, transitive, and i-j euclidean
(wRiw

′, wRjw
′′ ⇒ w′Riw

′′). The proof can be obtained once the family {Ri}i∈L is
defined to be such that wRiw

′ iff w′ ∈ c(i). The whole proof is worked out in [15].
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(P ) all tautologies of propositional calculus
(K) �i(A → B) → (�iA → �iB)
(D) ¬�i⊥

(4i−j) �iA → �j�iA

(5i−j) ¬�iA → �j¬�iA

(MP ) A, A→ B / B

(N) A / �iA

The system at issue is then a multi modal homogeneous KD45 with the two
interaction axioms 4i−j and 5i−j9. This axiomatization is sound and complete
with respect to the semantics presented (see [15]).

4.2 A Logic for Translation Rules

Informally, A counts as B iff A at a level i determines the truth of B at a level
j, where i < j (see Section 3.2).

Theoretically, our proposal consists in understanding translation rules as
bridge rules in the sense of theory of contexts (see for example [18]). Translation
rules connect truth among different levels of abstractness, and more precisely
from more concrete to more abstract levels. In addition, we consider translation
rules to be defeasible. The reason for this choice is that different translation rules
could have contradictory consequents, and therefore the antecedent of a trans-
lation rule cannot be strenghtened: “signing form 32 counts as consenting for
organ donation” but “signing form 32 while being under threat does not count
as consenting for organ donation”.

To model this notion of translation rule we make use of normal prioritized
default logic ([2]) defining a normal prioritized default theory TT on the system
KD45i−j

n for language LL:

T = (F, DT ,≺T )

where F is a (possibly empty) set of assumptions, DT is a set of defaults, ≺T

is a priority ordering on defaults of DT . By means of this logical machinery the
following definition of translation rule can be stated:

Definition 1. (Translation Rules)
A translation rule is a default rule of this form:

�iA � �jB with i < j.

Here “�iA � �jB” is a shorthand for �iA : �jB/�jB, i.e. a normal default, the
meaning of which is that the truth of B can be derived on level j from the truth

9 Instead of 4i−j , it would be sufficient to assume a simple 4 axiom: �iA → �i�iA
(see [15]).
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of A at level i if the truth of B on level j does not result in an inconsistency. This
account has several advantages: it has a clear theoretical grounding on context
theory; it has a neat semantics; it enables easy non monotonic derivations; it
can rely on a broadly investigated logic. Thus, the fact that “signing form 32”
is a way of “consenting for organ donation” in a certain hospital can now be
formally represented as:

�i signing form 32 � �j consent

where i is a more concrete level of abstraction within the institution of “hospital”
than j.

In order to deal successfully with defeasibility we also introduced in definition
1 explicit prioratization ordering ≺T on the set of defaults:

d1 : �iA � �jB

d2 : �i(A ∧ C) � �j¬B

One prioratization criterion is that more specific defaults have the precedence
according to a strict partial ordering. So, this means d2 ≺T d1.

Note that this prioritization orders only conflicting defaults such that either
the prerequisites of the first imply the prerequisites of the second or vice versa. It
does not supply a tool for deciding among conflicting defaults the prerequisites
of which are logically unrelated. It may be useful, for example, to include a
prioritization based on concreteness of the antecedent. This can be used in the
following case:

d1 : �iA � �jB

d2 : �kA � �j¬B

k < i

obtasining that d2 ≺ d1.
We deem important to stress that specificity and concreteness are only two

of the many ways of deciding about conflicting defaults. In normative reason-
ing especially, conflicts are often decided on the basis of authority hierarchies
subsisting on norms, or on the basis of the time of their enactment ([21]). More-
over, conflicts between priority ordering themselves can arise. The specificity and
concreteness criteria should therefore only be seen as an exemplification of this
range of possible criteria.

4.3 A Logic for Normative Rules

Having defined levels of abstractness and their relations in the previous sections,
we now turn to defining the norms themselves that operate on levels. To do this,
we have to: first, enable a representation of deontic notions within the framework
defined in Section 4.1; then, introduce suitable rules to model the conditional
aspect of norms, which has been stressed in Section 2.

Let us focus on the first point. To handle deontic notions (obligation, per-
mission, prohibition), the standard deontic logic system KD (see [28]) suffices
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our needs here. We can therefore define a fusion10 KD⊗KD45i−j
n on a common

language LLO containing the language for expressing the abstractness layering
LL, and the language of standard deontic logic LO.
Language. The language is a propositional logic language the alphabet of which
is expanded with an O-operator and a set of indexed �i-operators. The set of
well found formulas F is defined as follows:

F := P ∪ (¬F) ∪ (F ∧ F) ∪ (F ∨ F) ∪ (F → F) ∪ (�iF) ∪ (�iO(F))

Note that we allow deontic modalities to operate only within �k-formulas and
we do not allow deontic operators to have �k formulas in their scope if they
are not under the scope of another �k-operator. This expressive limitation is
dictated by the fact that we do not want deontic operators to occur if not in the
scope of a �k-operator. This to capture the idea according to which normative
consequences of certain conditions are supposed to be always holding at certain
levels of abstractness: normative consequences are always localized.
Semantics. Semantics for LLO is given on structures M = (W, L, <, c, R, v)
such that (W, L, <, c, v) is a model for LL (see Section 4.1), and (W,R, v) is a
model for LO with R being a serial accessibility relation on W . We omit here
the obvious clauses for satisfaction of propositional formulas. The semantics of
�k-operators remains the same described in Section 4.1. As to the semantics for
the O-operator we use the usual clause obtaining the following expanded clause
for formulas in �iO(F):

M, w � �iO(A) iff ∀w′ ∈ c(i),∀w′′ ∈W : R(w′, w′′) ⇒ M, w′′ � A

Permission (P -operator) and prohibition (F -operator) can be defined in terms
of obligation: P (A) ≡ ¬O(¬A) and F (A) ≡ O(¬A).

Axiomatization. Logic KD⊗KD45i−j
n can be easily axiomatized by the union

of the set of axioms for KD45i−j
n and the set of axioms for KD. Axiomatization

KD45i−j
n (Section 4.1) should thus be extended as follows:

(P ) all tautologies of propositional calculus
(K�) �i(A → B) → (�iA → �iB)
(D�) ¬�i⊥
(4i−j

� ) �iA → �j�iA

(5i−j
� ) ¬�iA → �j¬�iA

(MP ) A, A→ B / B

(N�) A / �iA

(KO) O(A → B) → (OA→ OB)
(DO) ¬O⊥
(NO) A / OA

10 For a detailed exposition of the concept of fusion we refer to [9]. Intuitively, a fusion
of two logics is the simple join of them.
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Notice that no interaction axioms between �i and O operators are stated. As
proved in [9], fusions of systems preserve soundness and completeness, therefore
system KD ⊗ KD45i−j

n is sound and complete with respect to the semantics
presented.

To enable a representation of the aspect of conditionality of norms, and then
of normative rules, we make again use of normal prioritized default logic defin-
ing a normal prioritized default theory TN on the system KD ⊗ KD45i−j

n for
language LLO:

TN = (F, DN ,≺N )

where F is a (possibly empty) set of assumptions, DN is a set of defaults, ≺N

is a priority ordering on defaults of DN . By means of this logical machinery the
following definition of normative rules can be stated:

Definition 2. (Normative Rules)
A normative rule is a default rule of the form:

�iA � �jOB with i < j.

Here “�iA � �jOB” is a shorthand for �iA : �jOB/�jOB, i.e. a normal
default, the meaning of which is that the truth of OB can be derived on level j
from the truth of A at level i if the truth of OB on level j is not leading to an
inconsistency.

Conditional permission and prohibition are easily defined by replacing the
O-operator by the P and F operators respectively. All remarks underlined in
Section 4.2 about prioritizing defaults formalizing translation rules hold also for
defaults formalizing normative rules. Given the above definition we can represent
the norm that consent is required in order to perform a transplantation, as
follows:

�i consent � �iP transplant

At this point, it is worth remarking that translation rules and normative rules
share the same type of defeasibility. This representational choice captures an
important analogy which we deem to subsist between the two types of rules
composing institutions:

– Translation rules connect truth on a level to truth on a more abstract level,
and this connection takes place in a defeasible way.

– Normative rules connect truth on a level to ideality on another, possibly the
same, level, and also this connection takes place defeasibly.

That connection is what they share and what we represented here by means of
normal defaults 11.

Within this framework, definitions of abstract and concrete normative rules,
representing respectively abstract and concrete norms, can be also stated:

11 In this respect, our approach is close to the proposal in [11], though we carried it
out by means of different formal tools.
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Definition 3. (Concrete Normative Rules)
A concrete normative rule is a default �iA � �jO (B) s.t. there is no default
�hC � �kD with h < k s.t. A ≡ D and i = k or B ≡ D and j = k.

Definition 4. (Abstract Normative Rules)
An abstract normative rule is a normative rule which is not concrete.

In the next section we put this articulate framework at work, providing the
reader with an example.

4.4 An Example

The example we are going to model is chosen again from [8, 16].

Example 1. (Personal data in severe criminality registers)
Part of the abstract norm “the inclusion of personal data in a severe criminal-
ity register occurs only when it concerns: a) suspect of crimes; b) etc.” can be
modeled as follows:

�a(personal(datum) ∧ suspect(datum)) � �cP include(datum)

Part of the concrete norm “personal data are financial and corporate data; data
concerning nationality; etc.” might be represented as follows:

�c(nationality(datum) ∧ suspect(datum)) � �cP include(datum)

The translation rule “personal data are financial and corporate data; data con-
cerning nationality; etc.” is representable as follows:

�cnationality(datum) � �a personal(datum)

where c < a.

The first norm is more abstract because it operates between level a and level c.
The second one is instead more concrete. The connection among the two of them
is expressed by the translation rule connecting c to a with respect to the states
of affairs nationality(datum) and personal(datum)12. It may be worth noticing
a reasoning pattern straightforwardly available on the basis of this representa-
tion: assuming �c(nationality(datum) ∧ suspect(datum)), by means of default
�cnationality(datum) � �apersonal(datum) and validities for �, we can in-
fer �a(personal(datum) ∧ suspect(datum)); we can then infer the normative
consequence �cP include(datum) by means of default �a(personal(datum) ∧
suspect(datum)) � �cP include(datum)13.

12 Notice that we presupposed the state of affairs include(datum) to be a concrete one.
13 Notice that this argument is nothing but a normal defaults proof.
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5 Institutions Defined Formally

On the basis of the formal analysis just presented we are now in a position
to provide a formal definition of the concept of institution in terms of default
theories. However, before getting to this, a related issue should be considered,
that is: how to rigorously relate institutions and levels of abstractness. In other
words, at what level of abstractness does the institution end? If one includes
only the levels explicitly specified for the institution, then the norms possibly
coming from more abstract levels would not come to belong to the institutional
theory. I.e. if i < j and j is a level that does not belong to the institution then
the norms operating on level j also are not “inherited” by the institution. On
the other hand, incorporating all levels of abstractness connected to the levels
explicitly defined within the institution would include the complete layering in
which the institution is merged.

We therefore choose to propose two definitions, one corresponding to an “ex-
plicit” view on institutional theories and one corresponding to the “implicit”
one.

Let us consider the default theory T = (F, DN ∪ DT ,≺N ∪ ≺T ), i.e., a
default theory for both translation and normative rules, and let L be the set
of abstractness levels and < their ordering. Let then LI be the set of levels of
abstractness on which institution I works. Let then <LI

be the sub-ordering of
< on LI . The following definitions can be stated.

Definition 5. (Explicit Institutional Theories)
An explicit institutional theory Iexpl is defined as a triple (NI , TI ,≺I) where:

NI ≡
⋃

i∈LI

Ni

with Ni ≡ {�iA � �jO B | �iA � �jO B ∈ DN & j ∈ LI}. And where:

TI ≡
⋃

i∈LI

Ti

with Ti ≡ {�iA � �jB | �iA � �jB ∈ DT & j ∈ LI}. The third element
of the triple consists in the prioritization ordering ≺I⊆≺N ∪ ≺T on defaults in
NI and TI .

Intuitively, an institution is described as the set of all normative and translation
rules defined between the levels explicitly belonging to that institution.

Definition 6. (Implicit Institutional Theories)
An implicit institutional theory Iimpl is defined as a triple (N∗I , C∗I ,≺ ∗I)
where:

N∗I ≡ NI ∪
⋃
k∈L

Nk
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with Nk ≡ {�kA � �lO B | �kA � �lO B ∈ DN & ∃j ∈ LI , j < k}. And
where:

T∗I ≡ TI ∪
⋃
k∈L

Tk

with Nk ≡ {�kA � �lB | �kA � �lB ∈ TN & ∃j ∈ LI , j < k}. The third
element of the triple consists in the prioritization ordering ≺ ∗I ⊆≺N ∪ ≺T on
defaults in N∗I and T∗I .

Intuitively, an implicit theory of an institution I is nothing but a sort of clo-
sure of the explicit theory Iexpl of I along the abstractness ordering <, leading
the explicit theory to incorporate every normative and translation rules defined
between more abstract levels than the levels explicitly belonging to I. From def-
initions 5 and 6 obviously follows that: NI ⊆ N∗I and TI ⊆ T∗I . Let us consider
now a simple example excerpted again from [26].

Example 2. (Rules inheritance within institutions)
In order to extract an organ from a living donor each hospital in Spain ought to
ascertain the legal age of the donor. The state of affairs legal age is not a concrete
one; let the level of abstractness it holds on to be s3. The institution “hospital in
Spain” IS inherits a rule from Spanish general law according to which legal age
supervenes on being eighteen years old. Neither this last state of affairs can
be properly seen as concrete; let its level be s2. Then the institution “Valencia
hospital” IV contains another rule according to which being eighteen years old
supervenes on ID testifies legal age. This can be deemed as concrete; let its
level be s1. We then have three ordered levels and two institutions constituted
by rules operating on those levels. One institution is general, namely IS , and it
works between levels s1, s2 and s3, the other one, namely IV , is more particular
and it operates between s1 and s2.
Theory Iexpl

S would be a triple (NS , TS ,≺S) such that:

�s1extract � �s2O (being eighteen years old) ∈ NS ,
�s2being eighteen years old � �s3 legal age ∈ TS

Theory Iexpl
V would instead be a triple (NV , TV ,≺V ) such that, basically:

�s1 (ID testifies legal age) � �s2(being eighteen years old) ∈ TV .

To understand the sense of this rule in the context of IV it is necessary to
consider the explicit account Iimpl

V of this institution: (N∗V , C∗V ,≺ ∗V ). We
then obtain what follows:

�s1extract � �s2O (being eighteen years old) ∈ N∗V ,
�s2being eighteen years old � �s3 legal age ∈ T∗V

This means that Iimpl
V and Iexpl

S share something: in this case N ∗V ∩NS �= ∅ and
T ∗V ∩TS �= ∅. This exactly shows how IV inherits rules from IS , and more no-
ticeably how IV concretizes norms belonging to IS by means of translation rules.
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6 Reasoning with Institutional Theories

In this section we show how our formal approach to institutions, that led to
Definitions 5 and 6, can be straightforwardly merged in formal argumentation
frameworks specifically developed to account for legal reasoning, such as [24,
20, 22]. This will display some guidelines on how to enable articulate reasoning
patterns within our approach.

Logical systems for argumentation formalize “a particular group of patterns
of inferences, namely those where arguments for and against a certain claim are
produced and evaluated, to test the tenability of the claim” ([23]). In [24] an
argumentation framework is presented, which is based on normal default logic
and which accounts for reasoning with both what we called, in Section 2, reg-
ulative and constitutive norms of normative systems. Within this setting, the
central concept on which the argumentation system is based is the concept of
deontic context, that is, a set of facts on which the set of default rules can be
applied inferring the relevant normative consequences to that set of facts. In that
work, anyway, no attention is given to the issue of abstractness and concreteness
of norms, and consequently the logic on which default theories are built upon
is just a standard deontic logic system KD. Defaults are therefore rules of this
type: A � B and A � O B. If we assume the multi-modal system exposed in
Section 4.3 as the logic on which to apply normal defaults, and recalling Defini-
tions 5 and 6, this useful notion can be adapted to our approach and modified
as follows.

Definition 7. (Institutional Contexts)
An explicit institutional context Iexpl = (F, Iexpl) consists of a set F of propo-
sitional sentences on a language LLO, and an explicit institutional theory Iexpl.
An implicit institutional context Iimpl = (F, Iimpl) consists of a set F of propo-
sitional sentences on a language LLO, and an implicit institutional theory Iimpl.

By means of these notions of institutional contexts, scenarios in which an in-
stitution I is made operative on the set of facts F can be formalized: through the
rules of which institution I consists normative consequences at different levels of
abstractness can be defeasibly established from F . The whole formal argumenta-
tion machinery exposed in [24] can then be put at work on institutional contexts
instead of on deontic contexts, thus providing definitions of the notions of: argu-
ment, conflict and defeat relations between arguments, and justified, defensible
and overruled arguments14.

Analogous observations can be carried out in relation with the argumentation
framework for legal reasoning presented in [20, 22], which is also based on normal
default logic and therefore, in principle, perfectly suitable to handle our notion
of institutional theory.

14 For an exhaustive account of the role of these concepts in argumentation logics we
refer to [23].
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7 Conclusions and Future Work

In this work we discussed the problem of incorporating abstract norms into
institutions that regulate the interactions between agents. We have shown by
means of several examples that the level of abstraction of the norms is different
from that of the procedures operating the institution. For this reason it does not
suffice to just formalize the norms and procedures and then validate or verify the
procedures against the norms. We therefore proposed to use explicit translation
rules (formalized by normal defaults), corresponding to the so-called constitutive
rules in legal and social theory, to formally characterize this translation. In order
to capture the idea of a translation from the abstract level to the concrete level we
chose to represent those levels explicitly, modeling them as contexts. Translation
rules played then a kind of bridging role between levels/contexts.

Two research lines are particularly worth investigating in order to further
develop the results presented here. First, as underlined in Section 2.2, an ad-
equate understanding of the relation of implementation of a set of norms via
a set of procedures deserves an accurate analysis in order to fully understand
how norms are translated to an operational dimension, and therefore how insti-
tutions are instantiated by specific organizations. Secondly, although the logical
formalism proposed gives the tools to describe the relations between norms on
different abstraction levels, it does not in itself account for the restrictions which
apply to this relation. As already noticed in Section 3.1, “wearing a red hat”
is probably not acceptable as an implementation of “consenting for organ do-
nation”, or analogously the “daily temperature” can not count as a “personal
datum”. We intend to use formal ontological descriptions to account for this
kind of restrictions constraining translation rules.
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Abstract. This paper defines a possible semantics for deadline obliga-
tions. Also, we make explicit several choices to be made in defining the
semantics of deadline obligations. We characterize deontic deadline oper-
ators in CTL, minimally extended with propositional violation constants.
The advantage of this reduction approach is that formal reasoning can
be performed in CTL.

1 Introduction

A normative system is defined as any set of interacting agents whose behav-
ior can usefully be regarded as norm-directed [9]. Most organizations, and more
specifically institutions, fall under this definition. Interactions in these normative
systems are regulated by normative templates that describe desired behavior in
terms of deontic concepts (obligations, prohibitions and permissions), deadlines,
violations and sanctions. Agreements between agents, and between an agent and
the society, can then be specified by means of contracts. Contracts provide flex-
ible but verifiable means to integrate society requirements and agent autonomy,
and are an adequate means for the explicit specification of interactions [14].
From the society perspective, it is important that these contracts adhere to the
specifications described in the model of the organization. If we want to automate
such verifications, we have to formalize the languages used for contracts and for
the specification of organizations.

In [13] we presented the logic LCR, which is based on deontic temporal logic.
LCR is an expressive language for describing interaction in multi-agent systems,
including obligations with deadlines. Deadlines are important norms in most
interactions between agents. Intuitively, a deadline states that an agent should
perform an action before a certain point in time. The obligation to perform the
action starts at the moment the deadline becomes active. E.g. when a contract
is signed or approved. If the action is not performed in time a violation of the
deadline occurs. It can be specified independently what measure has to be taken
in this case.

In previous work, we have advocated the use of declarative deadline specifi-
cations, as it facilitates the check for compliance to a deadline and enables rea-
soning about norms before the planning process determines the next sequence
of actions [5]. In this paper we investigate the deadline concept in more de-
tail.
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The paper is organized as follows. Section 2 defines the variant of CTL we
use. In section 3, we discuss the basic intuitions of deadlines. Section 4 presents a
first intuitive formalization for deadlines. In section 5, we look at a more complex
model for deadlines trying to catch some more practical aspects. Finally, in
section 6 we present issues for future work and our conclusions.

2 Preliminaries: CTL

The reader can find the definitions for the branching time logic CTL in the
literature (e.g. [3, 7, 4]). But, since we need a specific variant of the until operator,
we define CTL here explicitly.

Well-formed formulas of the temporal language LCTL are defined by:

ϕ, ψ, . . . := p | ¬ϕ | ϕ ∧ ψ | Eα | Aα
α, β, . . . := ϕUeψ | Xϕ

where ϕ, ψ represent arbitrary well-formed formulas, and where the p are
elements from an infinite set of propositional symbols P. Formulas α, β, . . . are
called ‘path formulas’. We use the superscript ‘e’ for the until operator to denote
that this is the version of ‘the until’ where ϕ is not required to hold for the point
where ψ, i.e., the point where φ is excluded. However, the present state is not
excluded, which means that our until operator is reflexive. This gives us the
following informal meanings of the until operator:

E(ϕUeψ) : there is a future for which eventually, at some point m, the condi-
tion ψ holds, while ϕ holds from now until the moment before m

We define all other CTL-operators as abbreviations. Although we do not use
all of the LTL operators X, F , and G in this paper, we give their abbreviations
(in combination with the path quantifiers E and A) in terms of the defined op-
erators for the sake of completeness. We also assume the standard propositional
abbreviations.

EFϕ ≡def E(�Ueϕ) AGϕ ≡def ¬EF¬ϕ
AFϕ ≡def A(�Ueϕ) EGϕ ≡def ¬AF¬ϕ
A(ϕUψ) ≡def A(ϕUe(ϕ ∧ ψ)) E(ϕUψ) ≡def E(ϕUe(ϕ ∧ ψ))

The informal meanings of the formulas with a universal path quantifier are as
follows (the informal meanings for the versions with an existential path quantifier
follow trivially):

A(ϕUψ) : for all futures, eventually, at some point the condition ψ will hold,
while ϕ holds from now until then

AXϕ : at any next moment ϕ will hold
AFϕ : for all futures, eventually ϕ will hold
AGϕ : for all possible futures ϕ holds globally
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A CTL model M = (S,R, π), consists of a non-empty set S of states, an
accessibility relationR, and an interpretation function π for propositional atoms.
A full path σ in M is a sequence σ = s0, s1, s2, . . . such that for every i ≥ 0,
si is an element of S and siRsi+1, and if σ is finite with sn its final situation,
then there is no situation sn+1 in S such that snRsn+1. We say that the full
path σ starts at s if and only if s0 = s. We denote the state si of a full path
σ = s0, s1, s2, . . . in M by σi. Validity M, s |= ϕ, of a CTL-formula ϕ in a world
s of a model M = (S,R, π) is defined as:

M, s |= p ⇔ s ∈ π(p)
M, s |= ¬ϕ ⇔ not M, s |= ϕ
M, s |= ϕ ∧ ψ ⇔ M, s |= ϕ and M, s |= ψ
M, s |= Eα ⇔ ∃σ in M such that σ0 = s and M, σ, s |= α
M, s |= Aα ⇔ ∀σ in M such that σ0 = s it holds that M, σ, s |= α
M, σ, s |= Xϕ ⇔ M, σ1 |= ϕ
M, σ, s |= ϕUeψ ⇔ ∃n > 0 such that

(1) M, σn |= ψ and
(2) ∀i with 0 ≤ i < n it holds that M, σi |= ϕ

Validity on a CTL model M is defined as validity in all states of the model. If
ϕ is valid on a CTL model M , we say that M is a model for ϕ. General validity
of a formula ϕ is defined as validity on all CTL models. The logic CTL is the
set of all general validities of LCTL over the class of CTL models.

3 Basic Choices for the Formalization of Deadlines

In this section we study some choices to make when developing a formal model for
deadlines. The deontic aspect of deadlines is formalized by introducing a set A of
agent identifiers and a propositional constant V iol(a) for each a ∈ A in LCTL.
The general idea is that the violation condition holds (i.e., the propositional
constant V iol(a) is true) at those moments where agent a violates a deontic
deadline. This enables us to reason about violations explicitly, and about what
to do if they occur, which is a distinctive feature of deontic reasoning. We model
deadline conditions as propositions. This seems a reasonable choice given that
we do not want to model a deadline in a logic of explicit time (real time). Our
view is more abstract, and a deadline is simply a condition true at some point
in time. We use the symbols δ and γ to denote deadline propositions.

Although the basic idea of a deadline is very simple it appears that the
details are intricate. We suggest that one of the reasons is that in order to
model deadlines, we need to model a causal relation between non-fulfilment of an
obligation and, so called, ‘violation conditions’. Causal relations are notoriously
hard to formalize. Figure 1 pictures the situation.

The figure shows several possible futures from a point where a deadline is in
force. In some futures the required action does not take place and a violation
results after the deadline is reached. For other futures, the action does take place
before the deadline is reached, and no violations appear after the action.
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Fig. 1. The semantics of deadlines

We denote a deadline for agent a saying that it is obliged to achieve the
condition ρ before δ holds, by the formula Oa(ρ ≤ δ). We will give a formal
definition of the semantics of this formula after, in the next sections, we have
discussed some basic choices to make.

3.1 Do Obligations Persist After the Deadline?

A first distinction we make is between deadline obligations that are discharged
by a failure to meet the deadline, and deadline obligations where the obligation
is not discharged at the deadline. For a deadline of the first type it makes no
sense to perform the action after the deadline passes. E.g., submitting a paper
after the deadline of a conference has no effect. An example of the second type
is the situation where one has to pay a fine for some traffic offense by the end
of the month. Also when one does not pay, the obligation to pay persists (see
also the work of Brown on ‘standing obligations’ [2]). Yet another category are
the ‘repetitive obligations’, where the same deadline obligation is repeated over
a period of time. For example monthly mortgage payments.

3.2 What if the Deadline Is Never or Immediately Met?

We first consider the case where δ equals ⊥. Clearly, ⊥ is a condition that will
be never met. A natural question is, whether it is actually possible to have a
deadline obligation for a deadline that never occurs. One could choose to say that
this is impossible, which leads to the optional property (1) |= ¬Oa(ρ ≤ ⊥). This
is the case for our deadline definition is section 5, because, in the definition given
there, we assume that a deadline obligation can only be in force if the deadline
condition actually occurs at some point in the future. Another possibility is to
say that for any condition ρ such an obligation is actually always valid, but void,
i.e, without any ‘force’. This corresponds to the property (2) |= Oa(ρ ≤ ⊥). Such
obligations can be considered void, because they cannot be violated; since the
deadline never occurs, there will never be a point in time where non-compliance is
evaluated. It might be argued that a similar situation occurs in standard deontic
logic [15], where we have |= O�, which corresponds with the void obligation for
a tautology (also something that can never be violated). Our formalization in
section 4 satisfies this property.
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Obviously, the third possibility is that neither property (1), nor property (2)
is satisfied. For instance, one could argue that an obligation for a deadline that
never occurs, i.e., Oa(ρ ≤ ⊥), is not void, but should be interpreted as follows:
the impossibility of the deadline condition means that the deadline is ill-defined,
but this does not imply that the agent is free to postpone his duty forever: he
has to comply at some future point anyway (where that point can be arbitrarily
far in the future). The corresponding formula is: (3) |= Oa(ρ ≤ ⊥) → AFρ.

Now consider the case where δ equals �. This means that the deadline con-
dition is met trivially, in the current state. One possible view is that in this case,
we can still comply to the obligation by ensuring that also ρ is met in the current
state. The corresponding property is: (4) |= Oa(ρ ≤ �) → V iol(a) ∨ ρ.

Alternatively, we might argue that it is impossible to comply to a deadline
for which the deadline condition is true now. For an agent, it takes some time
to decide whether or not to comply, and to bring about the condition ρ the
obligation is concerned with. Then, if the deadline condition is true now, there is
no time left for this process, and the agent will inevitably violate the obligation.
In our definitions of section 4 and 5, we take this aspect into account. The
corresponding property is (5) |= Oa(ρ ≤ �) → V iol(a), which is satisfied by
the deontic deadline definition in sections 4 and 5. Note that under this view,
the violation is not avoided if accidentally the condition ρ is true in the present
state. This is because under this view, conditions are linked to agents that bring
them about, which is a decision they make in the previous state, as we explain
later on.

Finally one short comment about the thought that we have to account for
the situation that a deadline condition might have been true in the past. Clearly
we do not have to consider this situation, because it is impossible to have an
obligation to do something before something that occurred in the past.

3.3 What if the Accomplishment Is Accidentally, Never or
Trivially Achieved?

First we address the question whether it counts as compliance to a deadline
obligation when the condition that is obliged occurs ‘accidentally’. It is possible
that the state ρ occurs without any effort or intention of the agent for whom
the obligation holds. E.g. if a person is obliged to write the introduction of a
paper, fails to do so, but a co-author writes the introduction (because he is
tired of waiting for that person). Did the person fulfill his obligation or not? If
obligations are personal, should it not be the case that also the achievements
ρ are personal? After all, we do not want that if another agent, or ‘nature’,
brings about the achievement, the agent with the obligation has complied. We
encounter a basic choice to make here. If we do not want our obligations to be
personal, we do not have to personalize the achievements. But, if we do want
our obligations to be personal, we somehow have to link achievements to agents.
There is a vast amount of literature about personalizing the achievement of
conditions [10, 1, 8, 6]. Usually, such theories are called ‘logics of action and/or
agency’. Inspired by the work of Pörn [10], we use the stit operator Eaρ, to
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denote that agent a achieves condition ρ. A difference with the stit operator of
Pörn is that in our temporal setting, performing a ‘seeing to it’ action takes one
time-step. That is, our stit-operator obeys |= Eaρ → Xρ, and not |= Eaρ → ρ,
which holds for most other agency operators.

Our next question concerns the case where the achievement can never be
reached. For instance, one might think of a personal obligation for a condition not
under control of an agent. An example is the condition ⊥. Again, a first option
is to say that obligations of the form Oa(⊥ ≤ δ) are impossible or inconsistent.
After all, it seems reasonable to take the position that one can never be obliged
to achieve the impossible. This leads to the optional property (6) |= ¬Oa(⊥ ≤
δ), which is similar to standard deontic logic’s D-axiom ¬O⊥ [15]. However,
we might also take the position that one can have an obligation to achieve
the impossible. But, since Oa(⊥ ≤ δ) expresses that we have to achieve the
impossible before the deadline condition δ occurs, we have to conclude that this
leads to the view that there will certainly be a violation whenever δ occurs
for the first time. This leads to the optional property: (7) |= Oa(⊥ ≤ δ) →
¬E(¬δUe(δ ∧ ¬V iol(a))).

Finally we consider the case where the accomplishment is �. How to deal with
this situation depends on whether we consider the obligation to be personal or
not. As discussed, for the personal case, we have to use an agency operator.
In most logics of agency, � cannot be achieved by any agent (|= ¬Ea�). This
motivates the optional property (8) |= ¬Oa(� ≤ δ). However, if obligations are
not personal, this is not necessarily intuitive. At this point we might not want
to digress from standard deontic logic, where the obligation for a tautology is
always valid. Thus we have the optional property (9) |= Oa(� ≤ δ).

4 A Simple Formalization

After having discussed some choices for modelling deadlines in the previous
section we will present a first logical formalization.

As mentioned, Eaρ indicates that the agent a sees to it that ρ becomes true. If
Eaρ is true at some point in time, then ρ is true at the next point in time. We use
the symbols ρ and σ for propositions that embody some kind of accomplishment
being established before a deadline condition occurs.

Let M be a CTL model, s a state, and σ = σ0, σ1, σ2, . . . a full path in M .
A straightforward modal semantics for the operator Oa(ρ ≤ δ) is then defined
as follows:

M, s |= Oa(ρ ≤ δ) ⇔ ∀σ with σ0 = s,∀j :
if M, σj |= δ
and ∀i with 0 ≤ i < j : M, σi |= ¬Eaρ,
then M, σj |= V iol(a)

This says: if at some future point the deadline occurs, and until then the
result has not yet been achieved, then we have a violation at that point. This
semantic definition is equivalent to the following definition as a reduction to
CTL:
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Oa(ρ ≤ δ) ≡def ¬E(¬Eaρ Ue(δ ∧ ¬V iol(a)))

This formula just expresses the negation of the situation that should be ex-
cluded when a deontic deadline is in force. In natural language this negative
situation is: ‘δ becomes true at a certain point, the achievement has not been
met until then, and there is no violation at δ’. This shows that it is fairly easy
to show the equivalence of the semantic definition and the definition in terms of
CTL (details left to the reader). The above defined deadline operator persists
after reaching the deadline, and satisfies properties 2, 5, and 7 discussed in the
previous section.

However, despite the nice properties and the simple and elegant represen-
tation of the concepts, the definition does not cover the intuitions of figure 1
completely. This becomes apparent when we look at a situation in which an
agent a achieves ρ before a certain condition δ becomes true. Whenever this
appears to be true it follows that a has the obligation to achieve ρ. I.e., the fact
that an agent will achieve something implies that he is obliged to achieve it.

We suggest that the source of this problem might be that we have failed to
formalize the ‘causal link’ that intuitively relates failures to comply to the obli-
gation and occurrences of the violation condition. In the truth condition above,
we have only dealt with one direction of the implicative relation between non-
compliance and violation: we have captured that when there is non-compliance,
there is also a violation. But we have failed to capture a reverse implicative
direction saying that only if there is non-compliance there can be violations.

In the next section we will propose an extended definition that tries to es-
tablish this causal link between non-achievements and violations.

5 The Causal Approach

In [13] we have already attempted to capture some aspects of the causal link
between non-achievement and violations. However that formalization did not
force the condition that there can never be a violation of the obligation before
the deadline condition holds. It also allows situations where ρ is achieved while
there is still a violation after the deadline condition. Somehow we have to ‘close’
the possible worlds in a way that either we have the achievement and no violation
after that or a violation and no achievement before the deadline. In this way we
approach most closely that the achievement of ρ causes the ¬V iol(a).

The definition given below differs from the one in section 4 on three important
points. First of all, for a deadline obligation to be valid, it now requires that the
deadline condition actually occurs at some point in the future. A second crucial
difference is that we strengthen the ‘if’ construction in the truth condition to
an ‘if-and-only-if’ condition, by which we attempt to capture the causal relation
between non-compliance and violation. This ‘if-and-only-if’ condition takes the
form of a disjunction (the ‘or’ in the truth condition below) saying that either
Eaρ holds (in time), meaning that there is compliance, or Eaρ does not hold
before δ, in which case there is non-compliance. Note that the disjunction is
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exclusive, because either ρ is achieved or not, but not both. Finally, we require
violations to persist ones they have occurred, and we require non-violations
to persist when the achievement is accomplished in time, or if no deadline or
achievement condition has yet occurred.

M, s � Oa(ρ ≤ δ) iff ∀σ with σ0 = s : ∃j > 0 :
M, σj |= δ and ∀0 ≤ k < j : M, σk � ¬V iol(a) ∧ ¬δ and
(∃0 ≤ k < j : M, σk � Eaρ ∧AG¬V iol(a) or
(∀0 ≤ k < j : M, σk � ¬Eaρ and M, σj � AG V iol(a)))

We can express this semantic definition in terms of a CTL formula as well:

Oa(ρ ≤ δ) ≡def A(
(¬V iol(a) ∧ ¬δ)Ueδ∧
(¬δUe(¬δ ∧ Eaρ ∧AG¬V iol(a))∨
(((¬Eaρ ∧ ¬δ)Ue(δ ∧AG V iol(a))))))

The lines of the formula correspond to the lines of the truth condition. The
second line expresses that δ becomes true at a specific point in the future, that
we consider the first time this happens, and that there cannot be a violation
of the obligation until then. The third line expresses one side of the exclusive
disjunction, saying that Eaρ occurs before the first δ, and that there cannot be a
violation afterwards. The fourth line expresses the other side of the disjunction,
saying that Eaρ has not occurred before the first δ, and that starting from the
point where δ, violations persist forever. The latter condition expresses that the
information that the obligation is violated, is preserved.

In the above definition, the obligation is always discharged by the occurrence
of a deadline condition. So, for this variant, the obligation does not persist until
after the deadline. Furthermore, the definition obeys the properties 1, 5 and 7
of section 3.

6 Practical Aspects of Deadlines

In this section we briefly discuss a few aspects that start playing a role when
looking at more concrete aspects of deadlines.

The first aspect is the violation constant. In this paper the V iol constant
has only one parameter, the agent a. However, we would actually like to tie the
violation to a specific obligation incurred at a specific moment in time. This
is necessary to distinguish two obligations for the same agent that might only
differ in the timing. E.g. the obligation to pay the rent before the end of the
month occurs every month. But each month it is a different obligation. This
can be achieved through the addition of a unique identifier for each obligation.
This definition provides a very operational means to deal with violations, as it
gives explicit information about what has caused the violation and can therefore
enable to reason about what are the consequences and sanctions related to the
violation.
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However, at the same time this unique identifier would eliminate any logical
relations between obligations that are connected. E.g. someone might have an
obligation to pay a conference fee while (due to budget restrictions that became
clear only later) it is from now on prohibited to pay for any conference. The
two norms relate to the same person and have opposite effects on the action
of paying. However, if each would be modelled with a violation constant with
a different identifier they could not be related and the intuitive contradiction
between the two would not exist.

As a solution to this problem we could introduce violations that have the
same parameters as the obligations to which they are linked. In this way it
becomes possible to specify logical relations between violations of which the
actor, the deadlines and the situation to be achieved are related. However, this
has as consequence that the violations are now also modal operators!

A second point that comes up right away is which logical relations should
hold between the violations? Do we have

(Va(ρ < δ) ∧ (ρ′ → ρ)) −→ Va(ρ′ < δ)

and/or
(Va(ρ < δ) ∧ (δ′ → δ)) −→ Va(ρ < δ′)

Of course these properties are directly coupled to the properties that we
would like to have for the obligation operator. A complete investigation into this
issue warrants a separate paper and therefore will not be pursued here. However
we would like to point to [11] for some related work in this area.

Closely related to the above item is the point that we made violations (and
non-violations) persistent over time. Once a deadline is violated, this violation
will never disappear again. This seems a bit contradictory to common practice
where sanctions are defined as obligations, conditional on the occurrence of a
violation, in order to make it possible for violations to be redeemed. So, we make
a difference between a violation that has not been ”made up for” yet and one for
which a sanction has been exercised already. This aspect could be modelled by
not having the violation persistent, but have an axiom that triggers a sanction
(obligation) whenever a violation occurs.

A second item that is important in practice is that obligations are often
conditional and/or repeated. The above example on paying the rent is a very
typical case of a repeated obligation. The whole obligation to pay rent, however,
can be made conditional on the fact that the house is properly maintained by the
owner. Related to this aspect is that more temporal conditions can be specified
for the achievement. E.g. the salary should be paid between the 25th and the
end of each month.

Although we represent the deadline condition as a proposition in this paper,
often it contains a relative temporal expression such as ”the book should be paid
within one week after delivery”. In order to express this type of conditions one
should have a more powerful language in which explicit reference to time can be
made.
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A last item to mention here is the use of discrete time in our model. This is
particularly important to decide on the exact moment when a violation arises.
In a model with continuous time the achievement of a fact (an action) has to
have a duration (whereas the achievement in our model is always in one time
step). So the definition of Eaρ has to be changed. On the other hand we can in
this model with continuous time determine a violation before the deadline if it is
impossible to achieve the required state before the deadline condition anymore.

7 Conclusions

In this paper we have shown that the use of a violation constant is in principle
enough powerful to account for the deontic aspect of the deadlines. Of course a
temporal logic is needed to account for the temporal aspects. Finally we used
the stit operator Ea to relate the achievement of a state to an agent. This is
important, because we consider the deadlines to be directed towards an agent
and thus this agent has the responsibility to fulfill it. We do not use dynamic
logic to model explicit actions in order to keep the model as abstract as possible.
However, an obvious connection between the operator presented and dynamic
logic can be made through the use of Segerberg’s bringing it about operator [12].

We have also shown that a correct definition of deadlines in the formalism
requires a modelling of the intuitive causal relation between the occurrence of the
action before the deadline and the violation state. This causal relation makes the
formal definition of a deadline quite complicated, although the simple intuitive
picture of the semantics (given in section 2) is still valid.
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Abstract. The problem of MAS reliability is approached through representing 
the functioning of a MAS as a system of logical implications, and then inter-
preting this system as a game of deterrence. The game solutions provide indica-
tors for the agent’s reliability, and enable in case of an agent’s failure, to select 
a search direction for determining the origin of the failure. The MAS reliability 
is increased by duplicating some agents. The impact of the duplicate’s position-
ing in the MAS is analysed on a particular case.  

1   Introduction 

Multi-agent systems are comprised of several entities, organized to work together in 
order to collectively solve problems. A system’s failure may occur because of one 
component’s failure, which propagates throughout the agent network. Conversely, the 
occurrence of a particular agent’s failure may have different reasons.   

First, the source of an agent failure may be internal, i.e. occur because one of its 
elements doesn’t work properly. It is then possible to, either remove the agent from 
the system and physically replace it by an equivalent one, or simply by-pass it, the 
taskflow running through some alternate device or agent. 

This would be the case for instance if two similar agents work in parallel, their 
workloads being shared. Assume that agent A breaks down. If the work load has been 
properly dimensioned on the basis of both the total inflow and, say, the probability of 
an agent failure, then agent B can add to its own load, agent’s A load, at the possible 
cost of some delay. 

But the source of the agent failure may also be external, i.e. one of the neighbour-
ing agents at least, doesn’t function properly. If the neighbouring agent failure comes 
itself  from the failure of an agent which is neighbour to this neighbouring agent, 
finding the ultimate source of the system’s failure, implies developing some recursive 
process, and hence building some causality chain. 

An interesting case is the one when failure derives from a specific state of the 
agent, incompatible with given states of neighbouring agents. 

This is of course just a particular case of the more general inference problem, that 
has been addressed using different techniques like finite state machines, cognitive 
maps, qualitative probabilistic networks, or structural analysis [1,2,6].   
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In line with our previous developments on multi-agent systems, we propose here to 
model inference by using the game of deterrence approach in the fuzzy case. 

On the one hand, this approach will match the finite state machine approach, while 
on the other it will provide an inference system that will give an assessment of the 
role of a particular agent in the well- functioning, or on the opposite ill-functioning of 
another agent. 

We shall begin by recalling some basic games of deterrence definitions before as-
sociating these games, through graphs of deterrence, with systems of logical implica-
tions.  

We shall then see how introducing fuzziness in the strategies playabilities leads to 
the development of an inference network, such that each node is associated with an 
inference value, based on the playability index associated with that node.  

The method will be illustrated with two examples. The first one will consider the 
elementary case, where no internal failure occurs. The second, generalizing the first 
one, will introduce the possibility of internal failures.  

Eventually, we shall propose on a particular example of Multi-Agent System, a 
straightforward method to find the origin of an agent’s failure.  

2   Deterrent Agents and Games of Deterrence 

Deterrent agents can only distinguish between two states of the world: acceptable 
(noted 1) and unacceptable ones (noted 0). All that they want is to be in an acceptable 
state. 

If they have a strategy that guarantees them an acceptable situation, whatever the 
other agents do, they should by all means play it because it is safe. But this is not 
always the case. Sometimes selection of a strategy could put them in an unacceptable 
situation if other agents would select some particular strategies. In that case the strat-
egy is clearly dangerous. But that does not mean that it is not playable. Suppose for 
instance that Erwin and Roger are agents such that, when Erwin and Roger select the 
strategic pair (e,r), Erwin gets a 0, and Roger’s strategy r is not playable. Then, e is 
playable albeit dangerous. We shall say that e is positively playable. 

In the case where Erwin has no positively playable strategy since he has to take a 
decision, any strategy will do, albeit poorly. We shall then say that such a strategy is 
playable by default. A strategy neither positively playable nor playable by default will 
be termed not playable. 

Moreover, we shall say that Erwin’s strategy e is deterrent vis-à-vis Roger’s strat-
egy r if the three following conditions apply : 

1) e is playable 
2) implementation of strategic pair (e,r) leads to an unacceptable situation for Roger 
3) Roger has an alternative strategy r’ which is positively playable 

It has been shown [3] that a strategy r of Roger is not playable if and only if there 
is a strategy e of Erwin deterrent vis-à-vis r. 

Let us illustrate these concepts with the following elementary example.  
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 r1 r2 

e1 (1,1) (1,1) 

e2 (1,1) (1,0) 

 
We see that both strategies of Erwin and strategy r1 of Roger are safe, while r2 is 

dangerous. Furthermore e2 is deterrent vis-à-vis r2, which is thus not playable. 
Now it has been shown [ibid] that every matrix game of deterrence can be associ-

ated with a bipartite graph such that, if (e,r) is a strategic pair, then there is an arc of 
origin e (resp.r) and extremity r (resp.e) if and only if the outcome of Roger (resp. of 
Erwin) is 0. 

3   Associating a System of Logical Implications with a Game of 
Deterrence 

Causality problems analysis usually resorts to an oriented graph representation such 
that, given an arc linking two concepts, its origin is a causal factor of its extremity. 

 We propose here to revisit the problem by bridging causality with games of deter-
rence, through the common graph approach. 

3.1   Logical Representation of a Game of Deterrence  

Given a two player game of deterrence, let us consider the following set of logical 
formulae : 

1) A finite set of propositions ζ(s) indicating that a strategy s is a playable strategy 
2) A finite set of propositions J(s) indicating that a strategy s is a positively 

playable strategy 

Only a particular set S of formulae will be used for this representation: 

(i) propositions and negations of propositions as defined above; 
(ii) logical implication built on these elementary formulae. 

3.2   Non Fuzzy Graph of Deterrence and Representation of a Logical System  

To build the graph associated with a given set S of formulas, consider the following 
implication P  ¬Q, denoted by N(P,Q)   

With each subset S1 of formulas, we can associate a bipartite graph defined as fol-
lows : 

1. the graph vertices are propositions or negations of propositions 
2. arcs are pairs of formulas (P,Q) such that N(P,Q) is true 
3. If P → Q denotes the arc of origin P and extremity Q,  
       then P → Q iff P  ¬Q .  
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Then, as P  Q writes N(P, ¬Q), P  Q can be  represented by the path  
P → ¬ Q → Q iff  P => Q is true (since obviously ¬Q => ¬Q is true). 
As ¬ Q and Q are both vertices of the graph, and hence represent two strategies, 

we must add a consistency condition which discards the game of deterrence solutions 
for which both strategies are playable. This condition will provide a safe strategy for 
player II, implying that  ¬ Q is not playable, and that Q is. 

This can be done by adding to the set S1, the proposition ¬ (¬ Q . Q) called first 
order consistency condition for Q, which defines a vertex with neither predecessor 
nor successor in the graph.  

We can then associate with the set S1’ = S1 ∪ {¬ (¬ Q , Q)} a  matrix game of de-
terrence G with two abstract players I and II such that : 

1. {P,Q} is the strategic set of  player I 
2. {¬ (¬ Q , Q), ¬ Q} is the strategic set of player II 
3. The graph here above is the graph of deterrence of G 
4. with every strategic pair (X,Y) we associate the binary outcome pair 

(a(x,y),b(x,y)) such that a(x,y) = 1 (resp. b(x,y) = 1) unless there is an arc of 
origin Y (resp X) and extremity X (resp Y). 

In other words, implication  P  Q is equivalent to the above game of deterrence. 
This conclusion can be extended straightforwardly to any set of bivalent implications. 

3.3   Fuzzy Graph Representation of a Logical System 

Similarly, for every set ψL of propositions of a bivalent logical system L, there exists a 
unique fuzzy matrix game of deterrence G such that ψL is the logical representation of G.  

Indeed, the construction procedure introduced above is still valid, since the only 
difference between fuzzy and non fuzzy matrix games of deterrence lies in the  
domains of playability and positive playability indices, the matrices being the same.  

The correspondence between ψL and G is derived from the matrix, with the excep-
tion of the consistency condition, which does not provide here a safe strategy for 
player II, but a circuit or more generally a graph with no paths (i.e. no roots). 

Such a consistency condition, which will be called the second order consistency 
condition for Q, must ensure absence of contradiction on the one hand, and the possi-
bility of non binary values for positive playability indices on the other. 

Consider  for  instance : {N(¬ (¬ Q . Q), (¬ Q . Q)) ; N((¬ Q . Q)}, ¬ (¬ Q . Q))}, 
which, in terms of graph representation, is equivalent to the circuit :  

¬ (¬ Q . Q) ↔ (¬ Q . Q) 

This second order condition introduces not one, but two extra strategies that are  
adjacent vertices of a graph of deterrence. Therefore, we need to allocate each one of 
them to a different player. 

For the sake of simplicity, let us denote (¬ Q . Q) by a, and ¬ (¬ Q . Q) by a’. 
It is clear that on the circuit J(a) = (1-J(a’))v and J(a’) = (1-J(a))v, where v = 1-jII 

and jII  is the index of playability by default of player II1.  

                                                           
1 i.e. jII = 1 if positive playability indices of all strategies of player II equal 0. 
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Solving this elementary system of two equations leads straightforwardly to : 

J(a) = J(a’) = v / (1+v) 

Consequently, a and a’, having the same positive playability, may be associated 
with either player, provided of course that both are not allocated to the same player. 

It stems from the demonstration here above that this result does not depend on 
which particular strategy has been selected to build the second order consistency 
condition. In turn, this means that a variety of such conditions can be chosen, depend-
ing on the particular case under consideration.  

It also means that with each vertex X, which is not a root of the graph, we shall as-
sociate a second order consistency condition for X, defined by a circuit comprised of 
two strategies, the positive playability value of which is v/(1+v). 

3.4   Example 

Let us consider for instance the logical system defined by : P  Q  R 
The set of propositions can be translated into the following graph: 

P → ¬ Q → Q → ¬R → R   ;  ¬ (¬ Q . Q) ↔ (¬ Q . Q)   ;  ¬ (¬ R . R) ↔ (¬ R . R) 

It can  be shown that there is a unique non binary solution for which : 

J(P) = 1  ; J(¬ Q) = 0  ;  J(Q) = .81  ;  J(¬R) = .16  ;  J(R) = .68; 
J(¬ (¬ Q . Q)) = J(¬ Q . Q) = J(¬ (¬ R . R)) = J(¬ R . R) = .45  

To analyze the exact meaning of these positive playability indices associated with 
logical propositions, we need to come back to the meaning of positive playability 
indices associated with strategies. 

More precisely, let us consider the case of a path. It has been shown  that [4] : 

– positive playability indices of strategies of odd rank decrease with the rank 
– positive playability indices of strategies of even rank increase with the rank 
– when the length of the path tends toward the infinite, the value of the positive 

playability index tends toward .5 

The interpretation is quite straightforward. Given that the root is the only safe 
strategy for player I, the “likelihood” of player I selecting the root is very big. There-
fore, the “likelihood” of player II selecting strategy 2 can be considered negligible. In 
turn, this means that the “likelihood” of player 1 selecting strategy 3, while being 
smaller than for the root (after all, selecting the root presents absolutely no danger, 
and it is the only strategy which displays this property), can be quite large. In turn, the 
“likelihood” of player II selecting strategy 4, although small (because the likelihood 
of player I selecting strategy is large), is bigger than the “likelihood” of player II 
selecting strategy 2, and so on. 

How does this translate in the case where strategies are logical propositions ?  
The almost trivial idea that immediately comes to mind is that the above three- 

proposition system is nothing more than a causality chain. Consequently, if we limit 
the reasoning to the path once again (discarding the consistency conditions), the value 
of the playability index for the vertices of odd rank somehow describes the “inference 
value” of the root with respect to the other vertices.  
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Considering the vertices of even rank, which represent the negations of the propo-
sitions associated with the vertices of odd rank that follow, we can say the same. 

In more explicit terms : 

– the effect of  P on the occurrence of Q can be measured by J(Q), which in the 
above case equals .81 

– the effect of  P on the non-occurrence of ¬Q, can be measured by 1- J(¬Q), 
which in the above case equals 1. 

The difference between these two values comes from the fact that ¬Q and Q are 
vertices associated with different ranks on the graph. Although it might look weird at 
first glance, it seems that for Q to occur, it is not enough that P does, but one must 
moreover state that ¬Q doesn’t.            

4   Application to MAS Reliability : Example 1 

As already stated, a failure at an agent level can diffuse throughout the network, caus-
ing the failure of other agents, and possibly of the entire system. 

Moreover, it can happen that partial but simultaneous failure of different agents 
may generate identical phenomena. 

To avoid that, one usually resorts to a two step method : 

1) analyze the effect of the particular agent failure on the system 
2) redesign the system to improve its global reliability 

We propose to revisit that method, with the help of the above results. 

4.1   Example 1: The Three Agent System with no Internal Failure 

First, considering an agent network means considering an inference network. 
To give an elementary illustration, let us consider for instance an information line, 

with three agents, p, q and r, such that p transforms some input, then passes the trans-
formed input to agent q, which does the same with agent r. It is clear that agent r, in 
order to be able to fulfil its task, needs to get the result of agent q’s work, which in 
turn requires the data transformed by agent p. 

Let P, Q and R be three logical bivalent propositions defined as follows: 

P : agent p functions properly 
Q : agent q functions properly 
R : agent r functions properly 

Let us assume that : P  Q  R, which means that q and r never know any inter-
nal failure. 

It stems from the previous paragraph that this double implication is equivalent to 
the graph 

P → ¬ Q → Q → ¬R → R  ;  ¬ (¬ Q . Q) ↔ (¬ Q . Q)  ;  ¬ (¬ R . R) ↔ (¬ R . R) 

associated to a fuzzy matrix game of deterrence, such that there is a unique non binary 
solution defined by :   
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J(P) = 1  ; J(¬ Q) = 0  ;  J(Q) = .81  ;  J(¬R) = .16  ;  J(R) = .68; 
J(¬ (¬ Q . Q)) = J(¬ Q . Q) = J(¬ (¬ R . R)) = J(¬ R . R) = .45  

As already stated, the value of the positive playability index associated with a ver-
tex located on the path can be interpreted as an “inference value” of the root with 
respect to the vertex under consideration. 

More specifically, if we consider the vertices of odd rank, the positive playability 
index indicates how the well-functioning of agent p influences the well-functioning of 
agents q and r 

In other words, J(X) indicates the “likelihood” of agent x functioning properly, 
given : 

– the system’s structure 
– that the agent associated with the root functions properly. 

These two elements define the information scheme on which the likelihood is 
based.  

Hence with a different information scheme, the likelihood may take a different 
value. 

In particular, J(X) = 1 is associated with a specific information scheme, for which 
X may be considered as a root of the sub-graph derived from the original graph, by 
deleting all predecessors of X. 

4.2    Exploiting Information About Agents’ Playability 

Assume that J(X) = 1. 
It stems from the playability equations that J(¬X) = 0, which implies that if Y is a 

direct predecessor of ¬X on the original graph, J(Y) = 1, which implies in turn that 
J(¬Y) = 0, and so on. 

So, if we assume for instance that J(R) = 1,  then J(Q) = J(P) = 1. 
At first sight, this conclusion seems to contradict the results obtained when assess-

ing the values of positive playability indices, for it was found that no other vertex than 
the root could be associated with a positive playability index equal to 1. But in reality 
this contradiction is only apparent, since one should remember that any playability 
system always has an integer solution (i.e. there is always a distribution of integer 
values of the positive playability indices satisfying the playability system). 

Now, given the initial double implication which discards the possibility of  agents’ 
internal failures, the above conclusion becomes trivial: It just states that for the last 
agent to function properly, all agents that are predecessors of this last agent (here p 
and q) must function properly.  

Conversely, if agent x doesn’t function properly, proposition X is not true, and, be-
cause propositions considered here are bivalent, proposition ¬X is true. 

In other words, proposition ¬X can be associated with J(X) = 0 
But on the other hand, by the construction method developed here above, ¬X is a 

vertex of the graph of deterrence, and it is the only adjacent predecessor of X on this 
graph, which means that either j(¬X) = 1 (v = 0) or J(¬X) = 1. 

In the first case, all strategies of player II, and especially all strategies of type ¬X, 
are playable by default, with the consequence that no strategy of player I, except for 
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the root, is playable. Hence the system can never work. Therefore this case can be 
discarded, for it has no interest (this is precisely the reason why we have introduced a 
second order consistency condition enabling fuzzy playabilities). 

So let us examine the case where J(¬X) = 1. 
By using the same backward induction as above, one comes to the conclusion that 

agent p does not work, which simply states the double implication : ¬R  ¬Q  ¬P, 
strictly equivalent to the original double implication. 

On the whole, in the very elementary example considered here, the only possible 
source of failure of agent r, or of agent q, is the failure of agent p, and the source of 
failure of an agent can be derived from the graph structure. 

We shall now apply these conclusions to more complex cases. 

5   Introducing the Possibility of Internal Failures: Example 2 

5.1   Graph Structure and Solution of the Playability System 

Everything else being equal, let us relax the assumption of no internal failure. 
This means that now the cause of failure of agent x can be: 

– either an internal failure 
– or a failure of one of agent x predecessors 

Of course, the above double implication between P, Q and R is no longer valid. 
To represent the MAS by a system of logical implications, we need to introduce 

propositions describing states of internal failure for each agent, (with a possible ex-
ception for the root).  

So let us introduce the proposition Ix : “there is an internal failure of agent x”. 
Agent x will function properly if and only if y functions properly and there is no 

internal failure of x, which writes :  X  Y ∧ ¬ Ix, or : ¬Y ∨ Ix  ¬X 
It can be noticed that in the graph of deterrence representation of a bivalent logical 

system, the logical operator ∨ is equivalent to two arrows pointing at the same vertex.  
So, the above implication can be represented by :  

¬Y    X  ¬ X 
    ↑  
    Ix   

To avoid Ix being a root of the graph, which would mean that agent x would always 
have an internal failure, we need to introduce the possibility of no internal failure, and 
write that ¬ Ix and Ix cannot occur simultaneously, which also gives the second order 
consistency condition associated with agent x. 

The structure of the graph around X becomes : 

…   Y      ¬Y     X    ¬X … 
 ↑ ↑ 
 Iy ↔ ¬Iy  Ix ↔ ¬Ix 
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The graph of deterrence representing the MAS is then the following : 

P      ¬P     Q    ¬Q     R    ¬R 
 ↑ ↑ 
 Iq ↔ ¬Iq  Ir ↔ ¬Ir 

The reason why there is no consistency condition associated with P is two fold : 

– just as in the previous example, we try to assess how the proper functioning of 
p affects the proper functioning of the MAS other agents 

– were it not the case, the consistency condition would be partially redundant 
with proposition P, because agent p has no predecessor in the MAS 

The players strategic sets are : 

– for player I : P,Q, ¬Iq, ¬Ir, and R 
– for player II : ¬P, Iq, ¬Q, Ir, and ¬R 

The playability system writes: 

J(P) = 1 ; J(¬P) = 0  ;  J(Q) = [1-J(¬P)][1-J(Iq)]v ;  J(¬Q) = [1-J(Q)]v 
J(R) = [1- J(¬Q)][1-J(Ir)]v;  J(¬R) = [1-J(R)]v 
J(Iq) =  [1-J(¬Iq)]v ; J(¬Iq) = [1-J(Iq)]v; J(Ir) =  [1- J(¬Ir)]v; J(¬Ir) = [1-J(Iq)]v ;.      
1-v = (1- J(¬P)] [1- J(¬Q)][1- J(¬R)][1- J(Iq)][1- J(Ir)] 

We know that  J(Iq) = J(¬Iq) =  J(¬Ir) =  J(¬Ir) =  v /[1+v]  
This means that the likelihood of an internal failure is the same for agent q and 

agent r (or more generally, for any subsequent agent in the MAS). Of course this 
result is associated with a particular state of information, for which the only thing 
known about the MAS is its structure : no difference being made between the agents, 
it is only natural that the likelihood of their internal failure is the same. 

Then : J(Q) =  J(¬ Q) = v/[1+v] ; J(R) = v/[1+v]2
  ; J(¬R) = v[1 – [v / (1+v)2]], 

And 1 –v = [1/(1+v)]3[1 - v[1 – [v / (1+v)2]]] = [1+v-v3] / [1+v]5 

One can show that this equation has a single non binary solution : v= .973. 
The playability system’s solution is then:  

J(P) = 1 ; J(¬P) = 0  ; 
J(Iq) = J(¬Iq) = J(Q) = J(Ir) =  J(¬Ir) = J(¬ Q) = .493  
J(R) = .25 ;  J(¬R) = .73.      

5.2   Interpretation and Generalization 

The likelihood of internal failure is the same for the two agents Q and R, about .5, 
which simply states that in absence of further information, internal failure and well-
functioning are equally likely. 

The properties found in the case with no failure are still valid : 

– positive playability of vertices with odd rank decrease with the rank 
– positive playability of vertices with even rank increase. 
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The main difference with the no internal failure case is the magnitude of the varia-
tion, which is much greater in the present case. 

This greater magnitude stems precisely from the possibility of internal failure : the 
likelihood of an agent x functioning properly sharply decreases with the distance of X 
from the root, since the proper functioning of x now requires two conditions, while 
only one was required in the case of no internal failure. 

This conclusion can be generalized. Let us consider a MAS comprised of N agents 
x1,x2, ..xn, positioned in line. 

The expression of the positive playability in terms of v : 

– is the same for X2 than for Q in the previous example 
– is the same for X3 than for R in the previous example 

It follows that J(X3) ≤ J(X2) 
Since J(¬X2) = [1-J(X2)]v, and J(¬ X3) = [1-J(X3)]v, we can then conclude that  
J(¬X3) ≥ J(¬X2) 
Furthermore, J(X3) = [v/(1+v)][1- J(¬X2)] and J(X4) = [v/(1+v)][1- J(¬X3)] 
It then stems from the inequality here above that J(X4) ≤ J(X3) 
More generally given two agents xk and xk+1 on the MAS, such that: 

– xk+1 is the immediate successor of xk 
– J(Xk) ≤ J(Xk+1), 

by using the same method, one can show that: 

– J(¬Xk+1) ≥ J(¬Xk) 
– J(Xk+1) ≤ J(Xk+2) 

Where xk+2 is the immediate successor of xk+1 on the MAS 
Whence, the conclusion. 

5.3   Finding the Origin of a Network Dysfunction 

Consider for instance that agent r doesn’t function properly, i.e. that J(R) = 0. 
We know that there are two possible reasons for that : either there is an internal 

failure, or the predecessor q of r doesn’t function properly itself. 
Given the elementary case under consideration, such a conclusion is obvious. Nev-

ertheless, it is of interest to note that one can come to such a conclusion by looking at 
the correspondence between the graph of deterrence and the system of logical impli-
cations with which it is associated. 

Indeed, the graph structure around R is : 

                                            Q    ¬Q     R    ¬R 
                                                                      ↑ 
                                                                      Ir ↔ ¬Ir 

which translates into the implication Q ∧ ¬Ir  R, equivalent to ¬R  ¬Q ∨Ir  
Because here, Q and ¬Ir play a similar role (i.e. both are simultaneously needed for 

R to be true, and J(Ir) = J(¬ Q) = .493), there is no particular direction toward which 
one should look first to see the origin of the ill-functioning of R. 

We shall see in the sequel that it might not always be the case. 
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6   Increasing the System’s Reliability 

The second stage of the method consists of redesigning the graph in order to increase 
the playability indices values of nodes with odd rank. 

The new graph must satisfy some requirements with respect to the agent network. 
Thus, in the above example, there must be a way to go from agent p to agent q, and 

from agent q to agent r. At the same time, it would be meaningless to draw a direct 
“path” from agent p to agent r, since the latter needs the result of agent q’s work to 
fulfil its own task. This means that in the example under consideration, it seems that 
no “redesign” is possible.  

Of course this conclusion does not apply to more complex systems, in particular, 
systems in which some of the agents can work in parallel.  

6.1    Graph Representation of Agents’ Parallelism 

Let us assume that agents p, q and r are substitutable, and that in order to increase the 
system’s reliability, we add another agent x that can replace any one of the three. 
Assume furthermore that only one agent can be added for reasons say, of available 
place (this could be the case for a system embarked on a space flight). 

The question is then, where should x be positioned ?  
To answer, we first need to give an interpretation of the parallelism between agents 

x and y in terms of the graph of deterrence.  
What is meant here by parallelism is that if agent x or agent y functions properly, 

then the system comprised of these two agents will function properly. So the proper- 
functioning of this system can be associated with proposition X∨Y, and conversely, 
the ill-functioning of the system can be associated with ¬X ∧ ¬Y 

In turn, this means that the graph of deterrence structure around X and Y is  

                                                                        X      
                                                                             ↓ 

         Y     ¬X  ∧ ¬Y  

6.2   Duplicating the Root 

Let us first assume that x is parallel to p.  The network is then the following : 

                                                  X      
                                                   ↓ 

         P     ¬X  ∧ ¬P  Q    ¬Q     R    ¬R 
                                                                    ↑                       ↑ 
                                                                    Iq ↔ ¬Iq            Ir ↔ ¬Ir 

X has the same positive playability as P in the graph associated with the previous 
MAS, while ¬X ∧ ¬P has the same positive playability as ¬P in the graph associated 
with the previous MAS. So, J(¬X ∧ ¬P) = 0. 
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It follows that J(Q) can be expressed by the same function of v as in the previous 
case, and, because  J(¬X) = 0, v has the same value as previously. Consequently, it 
stems from the graph structure that the same goes with the positive playabilities of the 
remaining vertices.  

On the whole, putting agent x in parallel with agent p does not affect the well-
functioning of agents located further down the MAS. The reason for this stems di-
rectly from the assumption of agent x’s well-functioning : P is the root of the graph of 
deterrence, which means that agent p is assumed to always function properly, in 
which case there is no interest to duplicate this agent. 

6.3   Duplicating Agent Q 

So let us consider now that x is parallel to Q.  The corresponding graph is:  

                                                       Ix ↔ ¬Ix 
                                                       ↓ 
                                                   X  ⎯⎯⎯     
                                                                       ↓ 

         P     ¬P   Q    ¬X  ∧ ¬Q     R    ¬R 
                                                         ↑                                  ↑ 
                                                         Iq ↔ ¬Iq                      Ir ↔ ¬Ir 

We can see from the graph structure that the positive playability of P, ¬P, Q, Iq, 
¬Iq, Ir, and ¬Ir are the same as in the case with no duplicate. 

Ix, and ¬Ix have the same positive playability as Iq, while X has the same positive 
playability as Q : J(X) = v/(1+v) 

Furthermore, J(¬X ∧ ¬Q) = v/(1+v)2   
For the sake of simplicity, let us momentarily denote J(¬X ∧ ¬Q) by w. 
Then : J(R) = [v/(1+v)][1-w], and 1- J(R) = [1+vw]/[1+v] 
Similarly, J(¬R) = v[1-J(R)] = [v/(1+v)][1+vw], and 1- J(¬R) = [1-v2w]/[1+v] 
 
And 1-v = [1-J(¬P)] [1-J(¬X∧¬Q)] [1-J(¬R)] [1-J(Iq)] [1-J(Ix)] [1-J(Ir)] 
              = [1-w][(1-v2w)/(1+v)] / [1+v]3 = [1-w][1-v2w] / [1+v)4 

                                          
Replacing w with its value in terms of v, and solving the equation, leads to v = 

.971, which implies w = .25 and J(R) = .37, J(¬R) = .612 
So, putting agent x in parallel with Q increases the positive playability of R by 

nearly 50%. 

6.4   Variation of the Positive Playability Along the Graph 

One can easily show that the positive playability variation properties still hold for the 
vertices located along the “spinal cord” (i.e. the main path) of the graph. 

Indeed, let us again consider a MAS originally comprised of n agents, and then add 
an agent x, positioned parallel to agent x2. 
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It stems from above that :  
J(X3) = [v/1+v][1- J(¬X ∧ ¬X2)], and  J(¬X3) ≥ J(¬X ∧ ¬X2). 
Furthermore, J(X4) = (v/1+v)[1-J(¬X3)]. 
It follows that J(X4) ≤ J(X3).  
We then know from the above paragraph, that for all k ≥ 3 : 

– J(¬Xk+1) ≥ J(¬Xk) 
– J(Xk+1) ≤ J(Xk+2) 

where xk+2 is the immediate successor of xk+1 on the MAS. 

6.5   Origin of a Network Dysfunction 

Let us consider once more that agent r doesn’t function properly. We see from the 
graph that this situation can be associated with the implication ¬R  (¬Q∧¬X) ∨Ir. 

Since all agents are equivalent by assumption, the time needed to check the well-
functioning of an agent is the same, no matter the agent. Let us take this time as the 
unit of time. It means that looking in the direction of R’s internal failure takes one 
unit of time, while looking in the alternative direction (i.e. ill functioning of Q and of 
X) takes two units. 

Let us consider, in line with the assumptions about the available information, that 
the probability of having any one of the three agents not function properly is the 
same, and furthermore, for the sake of simplicity, let us consider that only one agent 
doesn’t function properly. 

One can easily establish that whatever the direction selected first, the mean time 
required to find the origin of the failure is the same. 

Consequently, with no information available (which means that the likelihood of 
each one of the three propositions is the same), there is no rationale to select one di-
rection of research over another2. 

On the contrary, if we take into account the “structural” information derived from 
the graph of deterrence, since J((¬Q∧¬X) = .25, while J(Ir) = .49,  the likelihood of 
occurrence of Ir is greater than the likelihood of  ¬Q∧¬X, and hence, it seems prefer-
able to begin by looking at R’s possible internal failure.  

On the whole, we see that the graph of deterrence representation of the MAS pro-
vides extra information, which can be used to select a direction of research for deter-
mining the origin of the network’s dysfunction. 

7   Positioning the Duplicate 

We have seen in the above paragraph that the exact positioning of the duplicate im-
pacts R’s playability. So can we optimize the positioning of the duplicate ? 

To answer, we need to define what we mean by “optimize”. 
 

                                                           
2 The values of the mean time required to find the origin of the problem are directly derived 

from the assumption that there is only one agent that doesn’t function properly, which means 
that only two checks need to be made in both cases. 
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At first sight, two different meanings can be envisaged: 

– maximize the reliability of the last agent (just as in the above example) 
– maximize the reliability of all agents. 

If, in theory, the second goal is the most desirable one, it is not certain that it can 
be reached, in which case it will be necessary to consider the optimization problem as 
a multi-criteria one, or as an N-player non cooperative game of Nash.  

Now, considering the first meaning, the fact that the last vertex of odd rank has the 
smallest positive playability (among vertices of odd rank), implies that maximizing 
the latter amounts to increasing a positive playability “threshold”. This is certainly not 
equivalent to optimizing the positive playability of all vertices of odd rank, but this is 
already a step in the right direction. Therefore, for the sake of simplicity, we shall 
hereby restrict our attention to that first meaning. 

In the MAS without duplicate, J(X2) = v/(1+v). 
For the sake of simplicity, let us denote this expression by a. It follows that: 

J(¬X2) = v[1-a] ; J(X3) = a-av+a2v ;  
J(¬X3) = v[1-a][1+av] = v[1-a][1-a2v2] / (1-av] 

Let us assume that J[¬Xk] = v[1-a][1-ak-1vk-1] / [1-av]. 
Then J(Xk+1) =  a[1-J(¬ Xk)] =  a-av+a2v-a2v2+…-ak-1vk-1+akvk-1 

Whence J(¬Xk+1) = v[1-J(Xk+1] = v[1-a][1+av+a2v2+… ak-1vk-1]  
     = v[1-a][1-akvk] / [1-av]. 

Suppose now that a duplicate X is introduced in the MAS, and positioned in paral-
lel with Xk. We know that J(X) = J(Xk), which implies J(¬Xk∧¬X) = v[1-J(Xk)]

2, and 
J(Xk+1) = a[1- J(¬Xk∧¬X)].  

Again, for the sake of simplicity, let us denote J(Xk+1) by b. 
J(¬Xk+1) = v[1-b]  ; J(Xk+2) = a-av+avb ; 
J(¬Xk+2) = v[1-a+av-avb] = v[1-a+av-a2v+a2v-avb] = v[1-a][1+av] + av2[a-b] 
               = v[1-a][1-a2v2] / (1-av] + av2[a-b] 

Just as above, it can be shown with some elementary algebraic computation that 
more generally, J(¬Xk+i) = v[1-a][1-aivi] / (1-av] + ai-1vi [a-b]. 

Let us then consider that k+i = n-1 

Then : J(¬Xn-1) = v[1-a][1-an-k-1vn-k-1] / (1-av] + an-k-2vn-k-1[a-b] 

It follows that the positive playability of the last agent writes: 

J(Xn) = a[1-[ v[1-a][1-an-k-1vn-k-1] / (1-av) + an-k-2vn-k-1[a-b]] 

Let us take for instance a MAS comprised of five agents x1,x2…x5. 
The reasoning developed in the three agent case still applies, and shows that posi-

tioning the duplicate at the root level does not impact the positive playability associ-
ated with the proper functioning of the last agent. 

Similarly, one can disregard positioning the duplicate at the level of the last agent, 
since such positioning would not impact the functioning of the last agent. 

What remains is to consider positioning the duplicate in parallel with agent 2, agent 
3 and agent 4, respectively. 
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To do that, all we need is to compute the positive playability in each one of the 
three corresponding cases. 

The results are given in the array here below : 

k 2 3 4 
v .99 .94 .997 

J(X5) .18 .32 .49 

We see that the positive playability of X5 increases significantly with k, the high-
est value being obtained when the duplicate is positioned parallel to X4, that is just 
before X5.  

Now if we consider that agent x5 provides the general output of the MAS, it means 
that the duplicate should be positioned as near from the output as possible. 

Of course, this result has been obtained in the case of a particular example. Its gen-
eralization still needs to be explored. 

8   Conclusions 

In this paper we have used a three layer approach to analyze multi-agent systems. 
The first layer is the MAS itself. Each agent of the MAS has been associated with 

logical propositions. The set of these propositions has then been structured with the 
help of appropriate implications (layer 2). In turn, we have shown that with this sys-
tem of implications, we can associate the graph of a game of deterrence (layer3), the 
vertices of which are the propositions of layer 2. This graph represents an inference 
scheme in which “inference values” are given by the positive playability indices asso-
ciated with its vertices. 

Three applications are in the developing process : 

1) Determination of the graph associated with a given MAS 
2) Possible selection of a first direction to explore in order to minimize the time 

necessary to find the origin of a network dysfunction 
3) Optimal positioning of a duplicate agent, in order to maximize the network’s 

reliability. 

These applications and the corresponding properties have been developed in the 
framework of an elementary MAS. Extending these applications and properties could 
pave the way for designing a MAS while simultaneously taking into account reliabil-
ity problems, and building efficient redundancy subsystems. 
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Abstract. The Cognitive Agent Architecture (Cougaar) is one of the
most sophisticated distributed agent architectures developed today. As
part of its research and evolution, Cougaar is being studied for applica-
tion to large, logistics-based applications for the Department of Defense
(DoD). Anticipating future complex applications of Cougaar, we are in-
vestigating the Model Driven Architecture (MDA) approach to under-
stand how effective it would be for increasing productivity in Cougar-
based development efforts. Recognizing the sophistication of the Cougaar
development environment and the limitations of transformation tech-
nologies for agents, we have systematically developed an approach that
combines component assembly in the large and transformation in the
small. This paper describes some of the key elements that went into the
Cougaar Model Driven Architecture approach and the characteristics
that drove the approach.

1 Introduction

Software development can be thought of as the evolution of abstract require-
ments into a concrete software system. Starting with requirements that must be
refined and elaborated, the system’s evolution is achieved through a successive
series of transformations. For non-trivial systems, this can be complex, time con-
suming, and prone to errors as software engineers work together to develop the
requisite components, assemble them, and verify that they meet specifications.
Model Driven Architecture (MDA), also known as Model Driven Development,
represents an emerging approach for organizing this evolution and its resulting
artifacts. Through a successive series of computational independent, platform
independent and platform specific model transformations, MDA facilities gener-
ation of software systems.

With the relentless advancement of technology, complexity and integration
issues often dominate modern computing. To respond to the sheer volume of
software and consequential complexity, the software community has increasingly
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embraced architecture principles. Software architecture provides a framework
to understand dependencies that exist between the various components, con-
nections, and configurations reflected in the requirements. Some situations lend
themselves to what is called an agent-based architecture.

As software grows in complexity and autonomy, manifold dependencies be-
tween critical elements of software increasingly drive many software architec-
tures. Agent-based software systems address this complexity particularly where
components may have autonomous properties (i.e., complex information and
task-intensive situations) and require mechanisms to control these and other
properties in a predictable way. The task orientation coupled with intelligent
agents provides a strategic and holistic environment for designing large and
complex computer-based systems.

This research concentrates on understanding and applying the MDA ap-
proach in an Agent-Based Architecture — specifically, Cougaar. The goal is
to explore ways to use MDA to facilitate domain and software engineering staff
developing Cougaar applications, to move up and program at the higher level,
the domain level. We investigate how to compose Cougaar components into a
General Cougaar Application Model (GCAM) and develop a General Domain
Application Model (GDAM) for specifying and generating software applications.
While the scope of this research focuses on the establishment of the GCAM and
GDAM, it also provides example recipes for transforming the models into rele-
vant software artifacts such as requirements, design, code, and test documents.

1.1 Agent Based Systems

While there are several definitions for software agents [1],we simply define an
agent as a software entity that perceives its environment and responds through
action(s) or tasks to fulfill a designed purpose. This broad definition covers a wide
range of software agents, where agent types are characterized by properties, such
as autonomous, interactive, adaptive, sociable, cooperative, competitive, proac-
tive, intelligent, and mobile. By combining these properties in different ways,
researchers have defined different agent types and, depending on the criteria,
organized these agent types into taxonomies.

An “agent system is a platform on which agents are deployed”[2]. Software
agent systems, also known as frameworks, need not be large systems, requir-
ing enterprise-class machines to execute. Some agent systems are characterized
by a large footprint and require considerable resources to execute. Others are
lightweight and can execute in an embedded architecture.

A general agent platform architecture consists of three major components:
a platform manager, an advertisement registry and a set of agents. Key char-
acteristics of this general agent platform are that (a) there is some mechanism
by which agents are managed (i.e., created, deleted, suspended, resumed, etc.),
registered and also discovered by other agents; and (b) there is a communica-
tion mechanism. The platform manager is responsible for managing the agents,
handling operations such as the creation, deletion, suspension and resumption
of agents. The advertisement registry contains descriptions of the agents in the
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system and facilitates discovery of those agents. Implied in this architecture is
that agents can communicate with each other, with the platform manager and
with the advertisement registry.

Some interesting examples of software agent systems include Grasshopper [3],
JACK [4], Cougaar [5], and JADE [6]. There are also several more agent sys-
tems that are compliant with Foundation for Intelligent Physical Agents (FIPA)
specifications [7].

1.2 Cougaar

The Cognitive Agent Architecture (Cougaar) is an open source, distributed agent
architecture [8] resulting from over eight years of research and development,
and over $150 million investment by the Defense Advanced Research Projects
Agency (DARPA) under the Advanced Logistics Program (ALP) and the Ul-
tra*Log program [9]. Cougaar is a Java-based architecture for the construction
of large-scale distributed agent-based applications characterized by hierarchical
task decompositions. ALP demonstrated the feasibility of using advanced agent-
based technology to carryout rapid, large scale, distributed logistics planning.
Ultra*Log is developing information technologies to enhance the survivability of
these distributed agent-based systems operating in extremely chaotic environ-
ments. Over the last four years, fault tolerance, scalability and security have
become the focus of evolving this platform for more robust applications.

The Cougaar environment enables developers to build intelligent applications
that can recognize and accept high level tasking, determine suitable processes
and activities, and allocate appropriate resources to complete the tasking. From
an information systems workflow perspective, Cougaar agents can accomplish
various tasks based on the functional business processes with which they are
configured.

Cougaar agents are organized into a society that collectively solve(s) prob-
lem(s). A society can encompass one or more communities of agents that share
functional purpose or organizational commonality. A Cougaar node refers to a
single Java Virtual Machine (JVM) running on a single server that contains one
or more agents. A society may be deployed across several nodes. Agents on the
same node may compete for resources including CPU, the memory pool, disk
space, and network bandwidth.

Figure 1 illustrates the Cougaar agent structure consisting primarily of a
blackboard and, a set of plugins and logic providers that are referentially uncou-
pled. The blackboard is a container of objects that adheres to publish/subscribe
semantics. Plug-ins provide business logic. Logic providers translate both incom-
ing and outgoing messages. When an agent receives a message, it publishes it
to the blackboard where a logic provider observes its addition and transforms it
into an object that plugins work on. Plugins publish/remove objects, or publish
changes to existing objects. Plugins create subscriptions to get notified when
objects of its interest are added, removed or changed in the blackboard.

Agents collaborate with other agents, however they do not send messages
directly to each other. Instead, a task is created. Each task creates an “infor-
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Fig. 1. Cougaar Agent Structure [8]

mation channel” flowing through the society, for requirements passing down and
responses going back. In order to send an object or resource, to another agent,
the developer must first associate the object or resource with the task. Cougaar
uses the concept of asset to represent objects or resources used by task. Only
instances of the Asset class can be associated with the task (i.e., all multi-agent
objects must be defined as assets).

Once the task is created, then the task to be allocated must be located. This
is typically accomplished by creating a subscription that examines the roles
or property groups of organizations in the local blackboard. Once the proper
organization is found, the task containing the object to be sent to the other agent
is allocated to that organization by creating an allocation and publishing it to
the blackboard. The Cougaar communication infrastructure then ensures that
the task is sent to the specified organization and the specified agents blackboard.

A relationship between two agents can either be a superior/subordinate or
customer/provider relationship. The superior/subordinate relationship supports
long-standing transactions where a superior gives high-level tasks to the sub-
ordinate, which then performs the task and then reports aggregate and trend
information back to the superior on a periodic basis. Cougaar supports dynamic
re-planning and execution monitoring, based on these aggregate/trend infor-
mation. A customer/provider relationship on the other hand is for task-order
services between agents on a peer-to-peer basis and may result in large scale
discrete data flows between the agents.

1.3 Model Driven Architecture

In some sense, MDA is a natural progression from previous advances in com-
puter science. Using models in the development of a system has been practiced
for decades, and even for centuries in other engineering disciplines (e.g., Building
Architecture). Perhaps the most telling transition in mindset is how modeling
in MDA takes a model (typically an abstraction of a reality) and creates an exe-
cutable form through a series of predictable transformations. Since the computer
uses a conceptual medium developed by a software engineer (i.e., a model or se-
ries of models), transforms now make abstractions of the real world accessible
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and even executable on a computer. In this sense, models are no longer simply
an aid in understanding — the model can now become something much more
concrete.

Like other engineering disciplines, software architecture helps us deal with
the inherent complexities of building today’s software systems. Systematically,
separating concerns, formalizing the interfaces through standards and the like,
provides better leverage for developing and evolving the software we employ.
Software architecture — the structure or structures of the system, which en-
compass software components, their externally visible properties, and the rela-
tionships among them[10] — addresses the aforementioned growing complexity
by providing a structure for thinking about and communicating key relation-
ships between components, whether they are commercial-off-the-shelf software
(COTS), middleware, or custom developed.

MDA endeavors to achieve high portability, interoperability, and reusability
through architectural separation of concerns. In some respects, MDA is an ad-
vanced perspective on well-known essential systems development concepts prac-
ticed over the years (albeit frequently practiced poorly). MDA hinges on the
long-established concept of separating the operational specification of a system
from the details of how that system implements those capabilities on its respec-
tive platform(s). That is, separate the logical operational models (external view)
from the physical design for the platform implementation.

Starting with an often abstract computation independent model (CIM) such
as a business process workflow or functional description, the platform indepen-
dent model (PIM) is derived through elaborations and mappings between the
original concepts and the PIM renderings. Once the PIM is sufficiently refined
and stable, further platform specific models (PSM) are derived through a se-
ries of elaborations and refinements into a form that can be transformed into a
completed operational system.

The CIM layer is where vernacular specific to the problem domain is defined,
where constraints are placed on the solution, and where specific requirements
reside. Artifacts in the CIM layer focus largely on the system requirements and
their environment to provide appropriate vocabulary and context (e.g., domain
models, use case models, conceptual classes). The CIM layer contains no process-
ing or implementation details. Instead, it conveys non-functional requirements
such as budgetary constraints, deployment constraints, and performance con-
straints as well as functional constraints.

The PIM provides the architecture, the execution plan, but not the execution
of the plan in a tangible form. Beyond high level services, the problem domain
itself must be modeled from a processing perspective. The PIM is where the
logical components of the system, their behaviors, and interactions are modeled.
PIM artifacts focus on modeling what the system should do from an external or
logical perspective. Structural and semantic information on the types of compo-
nents and their interactions (e.g., design classes, interaction and state diagrams)
are rendered in UML, the defacto modeling language for MDA.
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Mapping from the PIM to the PSM, is a critical element of the MDA ap-
proach. The mappings from platform independent representations to those that
implement the features or functions directly in the platform specific technolo-
gies are the delineation point where there is considerable leverage in MDA. This
mapping allows an orderly transition from one platform to another. But the
utility does not stop there. Like the PIM, there is the opportunity to have lay-
ers within the PSM to produce intermediate-transformations on the way to the
executable system. These models can range from detailed behavior models to
physical source code used in the construction of the system.

Direct PIM to PSM mappings are only possible in relatively simple situa-
tions today. Today’s modeling languages are not sufficient to express all possible
processing mechanisms. While UML 2.0 is attempting to address this limitation,
it’s too early to measure its impact. Therefore, in this research effort, we have
attempted to glean the the benefits of the MDA approach while avoiding, to the
extent possible, its inherent limitations.

The MDA approach specifies a system independently of the platform that
supports it, specifies the platform(s), chooses platforms for the system, and trans-
forms the system specification into those for particular platforms. While this ap-
proach is still evolving, we are encouraged by its progress and skeptical of some
claims made by proponents. Therefore, we have adopted an approach that incor-
porates the more stable concepts supported by tool technology and delayed oth-
ers that are still in question as far as implementation potential in the next year.

2 Cougaar Model Driven Architecture

The objective of this research project is to improve the productivity of Cougaar
system developers by applying Object Management Groups MDA approach. The
productivity enhancement is achieved by automatic generation of partial sets of
software artifacts such as requirements, design, code and test cases. While tech-
nologically, this has not been accomplished before, the Cougaar Model Driven
Architecture (CMDA) Project endeavors to inspire solutions toward fully auto-
mated generation of software artifacts.

The CMDA system simplifies Cougaar-based application development by pro-
viding two important abstraction layers namely Generic Domain Application
Model (GDAM) and Generic Cougaar Application Model (GCAM). The GDAM
represents the PIM and encompasses the representation of generic agent and do-
main specific components found in the domain workflow. The GCAM layer, upon
which the GDAM layer is built, reflects the PSM or Cougaar architecture, its
specifications and environment. The user specifies the workflow of the intended
Cougaar system using workflow components and the system is then detailed
using GDAM and GCAM models.

CMDA approach uses a combination assembly and transform approaches to
assemble components specified in GDAM and GCAM models and then trans-
form them into intended Cougaar-based systems. The GDAM and GCAM en-
gines assemble the respective models and the transform engine parses through
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Fig. 2. Basic CMDA Approach

the assembled set of models to produce the actual software artifacts such as
requirements, design, code and test cases.

Figure 2 depicts how all the pieces fit together conceptually. The CIM is
realized through the GDAM/PIM, which is realized through the GCAM/PSM.
While this is not a fully implemented MDA approach in every detail, it does
conceptually reflect the key principles.

To a large extent, the CMDA systems capabilities are dependent on the effec-
tiveness and efficiency of the transformation process. The transformer generates
the system requirements by parsing mostly components present in the workflow
layer, as the system’s flow of execution and related constraints are described
at that layer. While generating the requirements, the transformer also exam-
ines the components in the GDAM layer. Such examination is warranted due
to the influence or tailoring some GDAM components have on the requirements
that are being generated. Further it should be noted that the requirements,
which are generated automatically, are partial in nature. The low-level design
of the intended Cougaar system is to be elicited from the assembled GCAM
components. The low-level design encompasses the GCAM model of the system,
which includes (but is not limited to) UML class diagrams, sequence diagrams,
state transition diagrams and deployment diagrams. The code and test cases are
generated and/or assembled from the GCAM model, whose model representa-
tion will be in a suitable representation that provides the required completeness
and correctness.

2.1 Formal Method Approach Selection

Cougaar is a highly complex system that implements concepts such as “time
phased locality of reference” and “managed inconsistency.” Hence, testing and
finding errors using traditional testing methods such as testing for all possible
states or artificially reducing the states by discerning selection, may be grossly
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inadequate. In such complex systems, formal methods are the chosen meth-
ods to assure correct operation [11]. Formal methods, whose underlying basis is
mathematical notations and techniques, offer capabilities to fully specify the sys-
tem using mathematical models. The completeness and correctness of the system
is verified by validating the equivalent mathematical model of the system. How-
ever for most applications, due to time constraints, it is not advisable or even
economically feasible to apply formal methods to fully specify the entire system.
Frequently in real-world projects, formal methods are applied to a small subset
of components that have the necessity for formal treatment [11].

The transformation processes for the CMDA system encompass significant
challenges. While researchers have conducted transformations before, we are yet
to come across any example that has attempted to perform transformations to
this scale or depth. While other parts of the system such as mapping between
GCAM and GDAM components are significantly difficult, the transformation is
beset with some interesting challenges. The transformation challenges include:

1. Difficulties arising due to correctness and completeness errors in the input
model,

2. Need for accurate depiction of the complex input model in the generated
software artifacts (verifiability), and

3. Need to provide consistent output when repeated transformations (with same
input) are performed.

These are particularly important for the portions of the CMDA system where
equivalence and rewrite rules are applied. The degree to which these challenges
are not met are proportional to the degree to which “human in the loop”
will be necessitated. A major decision taken while deciding on the transfor-
mation approach was on adopting the assembly approach or synthesis approach.
Given the complexities involved, it was decided to follow a combined assem-
bly/transformation approach - thereby leveraging the simplicity of assembly ap-
proach and the efficiency of transformation approach. Further, the existence
of many-to-many or at the least many-to-one mapping between components in
two different levels makes a purely synthesis approach very difficult and highly
error prone. In particular, the many-to-many mapping relationships between
GDAM and GCAM components could result in a complex and unwieldy system,
if synthesis approach or fully automated software artifact generation technique
is used.

The following were identified as the key transformation requirements for the
CMDA system.

1. Assembling the systems intended external behavior, specified using the work-
flow and GDAM semantics, into English requirement statements,

2. Assembling the system design represented using GDAM and GCAM com-
ponents into system design in UML representation,

3. Generating code and test cases from the GCAM model by means of assembly
approach,

4. Verification and validation of code generated.
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3 Formal Methods

Formal methods, a combination of specification language and formal reasoning,
can be classified into three categories: (1) Mainstream formal methods, (2) The-
orem provers and (3) Customized formal methods. A brief description of the
three categories is given in this section to give a flavor of the decision space
available for the CMDA system.

Mainstream formal methods use rigorous mathematical models to specify the
system. The foundations for mainstream models are usually based on set the-
ory and first order predicate calculus. Examples of mainstream formal methods
capabilities include Z, B, CSP, VDM, RAISE.

Theorem provers use rigorous mathematical proofs to describe software sys-
tems. Examples theorem provers include Nqthm, PVS, OBJ, and Isabelle. While
theorem provers can be very effective, they may suffer poor usability, unintuitive
development environments and graphical user interfaces. Further, development
of systems using theorem provers can be difficult.

Custom formal methods are essentially extensions and adaptations of main-
stream formal methods and theorem provers. Examples of these include VDM++,
Temporal PetriNets, and Timed CSP. Formal methods are extended to support
specific development paradigm such as object-oriented systems. Hybrid formal
methods, a type of custom formal methods, are formed by combining two or
more different types of formal methods.

3.1 Formal Methods in Transformation

The capabilities of the formal methods were understood by conducting an in-
depth survey on some of the important formal methods that were used for spec-
ifying agent-based systems. Table 3.1 depicts the representative formal methods
surveyed based on their Object-Oriented (OO) modeling support, usability, tool
support and concurrency support. The rows of the table lists the different formal
methods that were surveyed ranked in the increasing order of preference for the
CMDA system. The columns of the table indicate the comparison criteria with
decreasing order of importance (as far as CMDA system is concerned) as one
move from left to right. The criteria were selected keeping in mind the trans-
formation requirements, which necessitate representation notations that have
adequate support for representing components and their constraints, scalabil-
ity to represent large and complex systems and tool support for the assembly
approach.

The support for representing objects is the most important selection crite-
rion as Cougaar is an object-oriented system. The OO support criterion includes
ability to represent objects and their constraints such as pre-conditions and post-
conditions. The tool support is another important criterion for selection since
CMDA is to be interfaced with eclipse IDE platform. The tool support should
include GUI interfaces to perform consistency checks, type checking and code
generation. The usability criterion gives an indication on the amount of diffi-
culty in learning and using the formal method, with a good rate indicating that
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Table 1. Comparison of Candidate Formal Methods [12]

Name OO Support Tool Support Usability Scalable Concurrency Formal Basis
X-machines Yes Very Poor Poor No No Yes (Formal Lang)

WSCCS Yes Poor Poor Limited Yes Yes (Process Algor.)
B Yes Average Good Yes No Yes (Set theory)

Z variants Yes Average to Good Average Yes No Yes (Set t./Pred. C.)
CSP Yes Good Average Yes Yes Yes (Algebraic)

Petri Nets Yes Average Good No Yes Yes
VDM++ Yes Good Good Yes Yes Yes (Set theory)

UML Yes Good Good Yes Yes No

the methods syntax are similar to popular programming languages and easy to
learn. The scalability criterion is the fourth important criterion that indicates
whether the representation is scalable enough to support complex Cougaar sys-
tems. Formal basis criterion, the least important one, provides insights into the
richness of the formal methods to describe the system completely and correctly.

As indicated in the Table 3.1, among formal methods, VDM++ appears to
possess all of the important characteristics required by CMDA system. Some of
the other prospective formal methods include CSP and Petri Nets. While CSP
does support OO representations and has good tool support, the usability of
CSP method is only average. As for Petri Nets, scalability of Petri net models is
a major issue. Although VDM++ satisfies the criteria requirements of CMDA
system, the time constraints imposed by the project schedule might not permit
complete formalization of Cougaar system. Hence, the most apt implementa-
tion approach for CMDA system might be to combine the UML and VDM++
methods to exploit the advantages of both methods.

3.2 Vienna Development Method (VDM)

The Vienna Development Method [13] is a notation and set of techniques for
formally specifying object-oriented systems (with concurrent and real-time be-
havior) including modeling the systems, analyzing those models and progressing
to detailed design and coding. VDM has its origins in the work of the IBM
Vienna Laboratory in the mid-1970s. VDM, one of the most popular and fre-
quently used formal methods, is also one of the few that has ISO Standards for
its specification language - VDM-SL, Meta-IV [14]. VDM++ is an extension of
the VDM which support object oriented modeling. In this subsection, we outline
VDM++ details on performance against the criteria for selection.

Advantages
The advantages of using VDM++ for this project include:
Usability : One key hindrance in using formal methods is the lack of support
for programming language like semantics. VDM++ provides a programming
language like semantics, thereby enhancing the usability of the method among
developers. Further, VDM++ can be used in varying depths from specifying the
requirements more correctly and completely, and to develop models for analysis
and for implementing the system.
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Applicability : Unlike most formal methods that evolved from academic world,
VDM method was developed by the industry for solving real world problems.
Hence VDM and its extension, VDM++, are used extensively and successfully
to solve industrial problems.
OO Modeling Support : VDM++ is designed with OO modeling in mind. Hence
the language can be used to model object oriented system, like Cougaar, without
any modifications. The language also supports multiple inheritance and provides
mechanisms to specify constraints on data and operations. The support for OO
modeling is one of the biggest advantages for using VDM++.
Tool Support : VDM has extensive tool support. The class of tools available for
VDM includes (1) VDM through Picture (VtP) by IDE: to input/edit formal
specifications, to specify requirements using pictures or graphics (2) SpecBox:
to print formal specifications captured automatically, to check specifications for
grammatical correctness and for specifications completeness (3) Delft VDM SL:
to check specifications for grammatical correctness and for specifications com-
pleteness (4) mural for proof support, (5) VDM domain Compiler for automated
code generation and (6) transformation tools for converting UML models to
VDM and vice versa [15, 16]. Further, IFAD VDM++ Toolbox is a set of tools
designed to support VDM++. The toolbox provides a number of features that
include checker to validate syntax and type, test coverage and statistics tool,
and C++, Java code generators. Further, the toolbox provides APIs that allow
programs to access and modify the running instance of VDM++ models inside
the toolbox. This helps easier interfacing with the Eclipse IDE.

Disadvantages
Mathematical Foundation: VDM++ is based on mathematical notations. There-
fore, many domain experts and system developers may not like to encode sys-
tem specifications using VDM++ language semantics. The disadvantage can be
mitigated by developing wrappers that will hide the complexity of VDM++
semantics.
Time Constraints: Even for formal methods experts, large system development
with VDM++ would be a lengthy endeavor. The modeling of GCAM components
in VDM++ will be time consuming and difficult. Hence, modeling the entire
Cougaar system using VDM++ has to be avoided.

3.3 VDM++ Toolbox and CMDA

The VDM++ Toolbox, developed by IFAD, is a set of tools that supports the
object-oriented VDM++ extension of VDM-SL. The toolbox, which is part of
the VDMTools, differs from most other CASE tools for formal methods in the
way the functional aspects of a specification are analyzed. Some of the features of
the VDMTools are Specification Manager, Pretty Printer, Syntax Checker, Test
Coverage and Statistics Tool, Type Checker, Dependency Browser, Interpreter
and Debugger, Dynamic Link Facility, Couplings to Third-party Tools, and Java
Code Generator.
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The features of the VDM Tools planned to be used for the CMDA system
include Rose-VDM++ link to convert UML into VDM++, VDM++ to Java
code generator, Syntax and Type checker and Test Coverage and Statistics Tool.

In the next section, we discuss the use of VDM++ and UML in the CMDA
approach emphasizing the transformation implications.

4 CMDA Transformation Approach

The transformation challenges detailed above entails using multiple representa-
tions to represent the CDMA system components. The representation that we
believe, best addresses the challenges is a combination of UML and VDM++.
The CMDA project intends to build a developer environment that will offer
developers components, which can be aggregated to represent the system in
workflow, GDAM and GCAM levels. Each of the components named as Work-
flow Beans, GDAM Beans and Cougaar Beans respectively (in synonym with
Java beans concept) will contain sections of software artifacts and related infor-
mation pertaining to that bean. Some example sections of the software artifacts
that beans contain include:

1. Requirements model from which the transformer gleans the partial set of
requirements,

2. Design model from which the systems design model is assembled by the
transformer,

3. References to the lower level beans or links to Java code which can implement
the bean. These references are traversed by the transformer while assembling
the systems code and

4. Test case fragments that contain information on how to assembly the unit
test cases for the beans.

Further, the bean contains documentation information such as description
about the bean, and constraints pertaining to data, operation and connections
with other beans. The constraints may be divided into two groups: (1) Port
constraints, detailing constraints on input ports of the bean, and (2) Role con-
straints, detailing the restrictions the bean has on the roles or services the bean
provides or supports.

The contents and size of the sections and information in a bean are influenced
by the abstract layer to which the bean belongs. For example, a GDAM beans
requirement section will be larger than the requirement section of the Cougaar
bean, while the code section of a GDAM bean might be pointer to the Cougaar
beans or code that can implement the GDAM bean in Cougaar. The models
in the design model section of each bean will be represented using UML while
the VDM++ representation will be used to delineating connector and other
constraint information. The code section will contain links to Java code libraries
at GCAM level and pointers to lower levels in rest of the abstraction layers.
The requirements might be a combination of XPDL, text and UML diagram
while the constraints also contain mapping (or connection) information that are
mostly rule based with some formalizations applied.
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The workflow of the CMDA system starts with developer assembling the
system by picking the right workflow bean components and connecting them to
represent the workflow. The constraints pertaining to connection are encoded in
the beans and developers are shown a detailed error message when they try to
connect two dissimilar components. Once the workflow of the system is build, it
could be verified for consistency. The developer is then shown a list of GDAM
beans that can be chosen to map a particular workflow bean. The expert system
will list only related GDAM beans based on the constraints specified by the
developer at the workflow level. The rationale to allow developers chose the
right component is to allow developers make design decisions with the system
assisting them (by showing a list of possible solutions and patterns).

The GDAM beans are mapped into Cougaar beans in a similar fashion. In
all layers, as and when required, the developer will input necessary information
to satisfy the completeness and correctness of bean component. The usability
of the system can be improved by developing wrappers that would mask the
semantics complexities of the representation language. Once the models are built,
the transformation engine will traverse through the beans at each level and
generate the software artifacts based on predefined transformation rules.

Fig. 3. CMDA System Abstraction Layers

Figure 3 delineates all the abstract layers that lie above the Java code. The
GCAM layer, which has the largest number of components. The width of the
boxes represents the extent to which the application can be represented by the
layer. The ability to capture and/or implement the intended application’s re-
quirements increases as one progress through the layers, with the Java layer
having the capability to implement all the requirements. The workflow is to be
described using XPDL standard, defined by the Workflow Management Coali-
tion, which provides a formal model for expressing executable processes that
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addresses all aspects of enterprise business processes. XPDL was chosen because
the language focuses on issues relevant to the distribution of work and work-
flow processes than defining web services as in other standards such as BPML
and BPEL.

The solid arrows moving upwards from the Java layer through the GDAM
layer represent the composition of more concrete components to satisfy the do-
main level abstraction specified by the user. The dashed/transparent arrows
pointing up to the domain application layer from the other layers depict the al-
ternative components that can be obtained when a suitable GDAM component
is not available. The values on the dashed/transparent arrow indicate the pro-
jected amounts of components from the various alternatives in the development
environment.

5 Conclusions

Software development can be thought of as the evolution of abstract require-
ments into a concrete software system through a series of transformations and
refinements. Even in moderately complex systems, this transformation is often
too involved for fully automated means.

MDA provides a systematic way of capturing details during elaboration and
refinement through the mapping from CIM to PIM, PIM to PSM and ulti-
mately rendered as an executable software system. MDA as currently defined
appears to have utility if used in moderation. However, for CMDA, it is not
a panacea by any stretch. It still requires considerable work and strategic
application.

Cougaar is complex requiring considerable mappings and transforms. For this
reason, we chose an assembly centric approach with simple formalisms to start.
The CMDA approach has substantial transformation challenges in generating
software artifacts such as requirements, design, code, and test cases automati-
cally. The artifacts are generated from models assembled using components or
beans belonging to two abstract layers namely GDAM (abstracts the domain
and generic agent system) and GCAM (abstracts the Cougaar system). A bean
will contain nuggets of requirement, design, code, test and documentation de-
tails pertaining to that component along with transformation information. The
CDMA system combines assembly approach with transformations in small con-
cept to generate the artifacts.

A comparison study of formal methods was conducted to identify the suitable
language representation for the GCAM and GDAM components. The selection
criteria for the comparative study included criteria such as object-oriented sup-
port, usability and tool support. The study concluded that the complexity of the
system, coupled with the need for completeness and correctness compels using a
hybrid language representation (combination of UML and VDM++) to achieve
transformations. The transformation engine will generate the required software
artifacts, from the GDAM and GCAM models assembled by the developers, by
parsing the various sections and portions in the beans.
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Abstract. To support the development of flexible and reusable MAS, we have 
built a framework designated MAS-CF. MAS-CF is a component framework 
that implements a layered architecture based on contextual composition. 
Interaction rules, controlled by architecture mechanisms, ensure very low 
coupling, making possible the sharing of distributed services in a transparent, 
dynamic and independent way. These properties propitiate large-scale reuse, 
since organizational abstractions can be reused and propagated to all instances 
created from a framework. The objective is to reduce complexity and 
development time of multi-agent systems through the reuse of generic 
organizational abstractions.  

1 Introduction 

The characteristics and expectations of new application domains surrounding 
distributed systems have lead to the development of dynamic and evolving structures. 
After the advent of the Internet and with the recent emergence of new technologies, 
the application domain of MASs is expanding and nowadays it is used in many areas, 
such as e-business, web-services, knowledge management and now enterprise 
information systems [Faulkner2001, Griss2003, Adam2004, Giorgini2004]. Agent 
technology represent an extraordinary opportunity for information systems and 
corporate applications, because agents must be capable of managing and organizing 
information, recognizing personal tastes and making increasingly important decisions 
on behalf of their owners.  

Nevertheless, the development of multi-agent systems is not trivial. To avoid the 
task of designing each new system, we need tools to help in the MAS construction, 
and by extension it is desirable to also have tools for reusing previous designed 
architectures and their relationships. There is a considerable research effort towards 
the development of frameworks for agent-based systems [Sycara1999, 
Wooldridge2000, Evans2001, Bellifemine2001]. Each framework has different 
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application specific particularities, such as social capabilities, reasoning, flexibility 
for dynamic compositions, interoperability and so on. 

Most approaches, however, focus on the reuse of application-specific concepts at 
the analysis, design and implementation levels (roles, protocols, agent architectures). 
Little research is conducted towards generic (i.e, application-independent) models 
[Faulkner2001, Zambonelli2002, Holvoet2003, Griss2003]. There is a large potential 
of reusing generic “organizational abstractions” – such as structures and patterns – for 
generic (i.e, application-independent) models [Zambonelli2002]. Reuse of generic 
software is recognized within the object-oriented community and has lead to the 
concepts such as design patterns and frameworks [Pree1999,  Fayad1999].  

The main focus of our work is the reuse of abstractional organizations applied to the 
development of multi-agent systems. Reuse an abstract architecture allow us not only to 
reuse the design and the implementation of the architectural software, but also the reuse of 
important individual agent properties, such as interaction, adaptation and collaboration, 
which can be completely or partially resolved at the architectural level. On the other hand, 
by freeing the developer from the task of implementing these complex properties on the 
agent, the work becomes simpler and can be better focused on the maintenance of the 
knowledge structure and on the learning capabilities of the agent. 

This paper is structured as follows: the next section briefly describes the state-of-
the art regarding agents and multi-agent systems. Section 3 describes the abstract 
architectural model, the communication model and interface specification. Section 4 
describes the interaction model, formalized by means of service ontology. Section 5 
describes how the architecture behavior has been formalized and how the 
specifications are being stored and transformed into reliable code. Related works are 
discussed in Section 6 and Contributions are listed in Section 7.  

2 Agent and Multi-agent Systems 

We have examined and identified through the literature the essential aspects surrounding 
agent-based technology. This section briefly presents some important concepts that will 
be used on the course of this work, namely agents and multi-agent systems.  

2.1 Agents 

There is no universally accepted definition of the term agent. Part of the difficulty to 
define agent arise from the fact that for different domains of applications, the 
properties associated with the agent concept assumes different levels of importance. 
There are many types of software agents with different characteristics such as 
mobility, autonomy, collaboration, persistence and intelligence.  

The behavior of an agent depends on, and is affected by, the incorporated agency 
properties: interaction, adaptation, autonomy, learning, mobility and collaboration. 
Such properties were based on previous studies [Kendall1999, OMG2000, 
Garcia2001]. We have use the properties as follows, based on [Garcia2001]: 

• Interaction: an agent communicates with the environment and other agents by 
means of sensors and effectors. These are available via the agent’s provided and 
required interfaces; 

• Adaptation: an agent should adapt its state and behavior according to new 
environmental conditions; 
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• Autonomy: an agent has its own control thread and can accept or refuse a 
request; in other words, by autonomy we understand the capacity of the agent to 
execute its activities without human intervention; 

• Learning: an agent can learn on previous experience while interacting with its 
environment; 

• Mobility: an agent is able to transport itself from one environment to another to 
achieve its goals; 

• Collaboration: an agent can cooperate with other agents in order to achieve its 
goals and the system goals. 

According OMG [OMG2000], autonomy, interaction and adaptation can be 
considered as fundamental properties of software agents, while learning, mobility and 
collaboration are neither a necessary nor sufficient condition for agenthood. There are 
several types of software agents, including information agents, user agents, interface 
agents and mobile agents. Each agent type has different application specific 
capabilities and agency properties. In order to have autonomy, an agent must possess 
a certain degree of intelligence allowing it to survive in a dynamic and heterogeneous 
environment [Correa1994]. Therefore, there is general consensus that autonomy is 
one of the central properties to the notion of agent. 

2.2 Multi-agent Systems 

There are several different ways to organize multi agent systems. In any given case, 
the best way depends on the purpose and objectives of the system, thus there are 
several types of multi-agent systems, each with its own particularities such as social 
capabilities, reasoning, interoperability and so on. Jennings [Jennings1996] proposes 
a framework that provides a structure to analyze and classify the activities of multi-
agent systems according to two different perspectives: (i) the agent perspective: 
focuses on the characteristics of the agent involved with the MAS, such as internal 
architecture, structure and maintenance of knowledge, and abilities of reasoning and 
learning; (ii) the group perspective: includes group aspects such as organization, 
coordination, interaction and negotiation. 

In MESSAGE [Evans2000], MAS architecture is defined through an organizational 
model, focused on the structure of the organization and the relationship between the 
agents it contains. The organizational model also describes mechanisms for conflict 
resolution and rules that enable agent groups to function as a unit serving a common 
purpose. Agents are identified based on a goal-oriented model, where organizational 
goals are decomposed and associated with tasks. Goal decomposition is carried out 
recursively, until the tasks associated with the goal can be completely fulfilled by an 
isolated agent or in collaboration with other agents. Agents are connected by 
organizational relationships (such as superior-subordinate and client-provider), 
proceedings of control management, workflows and interactions. Internal architecture 
and maintenance of the knowledge structure applies an approach similar to BDI 
(Beliefs, Desires, Intentions). 

On the design of interoperable agents, JADE [Bellifemine2001] is a framework 
focused on interoperability based on the standardization of the language of 
knowledge. JADE can be considered an agent middleware that implements a platform 
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and a development framework. The interaction model is implemented according to 
FIPA [FIPA2000] protocols. FIPA provides a standard language of communication 
based on protocols, an ontology necessary for the interaction between the agents from 
the system and from other systems. JADE provides an API to organize the system 
starting with a set of generic system services and agents. Services are transported 
through an interface mechanism to send/receive messages to/from other agents.  

RETSINA [Sycara1999] focuses the agent architecture in a software infrastructure 
that allows heterogeneous agents to interact on the Internet. The RETSINA 
framework provides an abstract basic agent architecture consisting of, and integrating 
with, reusable modules and each module of an agent operates asynchronously. The 
RETSINA definition of multi-agent systems is driven by the vision that 
heterogeneous agents that autonomously organize their own social structures should 
populate multi-agent societies. 

The descriptions show different ways to organize MAS. Nevertheless, most 
approaches focus the reuse in specific application concepts and on the individual 
properties of the agent, such as protocols, roles and internal architecture. Little 
research on the domain of multi-agent systems has been conducted emphasizing the 
reuse of generic organizational abstractions [Faulkner2001, Zambonelli2002, 
Holvoet2003, Griss2003].  

3 The Architectural Model 

In this section we present the main models that compose the framework architecture, 
thus, the abstract model, the structural model, the interface model and the logic model 
are described and commented. 

3.1 The Abstract Model 

The architecture of a multi-agent system can naturally be viewed as an organized 
computational society of individuals. For this reason, organizational abstractions 
should play a central role in the analysis and design of such systems. Zambonelli and 
Wooldridge [Zambonelli2002] state that “the introduction of high-level organizational 
abstractions can lead to cleaner and more manageable and reusable MAS design.” Also 
according to Zambonelli, the organizational abstractions facilitate the design process 
because it leads to a cleaner separation between the component level (i.e., intra-agent) 
and system-level (i.e., intra-system). Holvoet [Holvoet2003] argue that “programming 
in the large” for reactive MASs should imply a reuse method that allows two things: (i) 
to describe MASs in an abstract, application-independent way and (ii) to reuse such 
abstract multi-agent system through application-specific adoptions.  

In order to address these necessities, a few basic requisites of the model must be 
introduced. First we define MAS from an organizational view as a set of autonomous 
agents (possibly pre-existent) which common objective is the solution of a given 
problem [Jennings1996]. Nevertheless, the designer does not have to be focused on 
the solution of a specific problem. New problems may arise in the context of the 
MAS, and the society must be able to solve these new problems in collaboration. This  
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can be achieved through the inclusion of new agents building compositions with pre-
existing agents or by replacing obsolete agents. Therefore, the abstract model must 
provide an architecture that facilitates the inclusion of new agents at any given 
moment as new problems arise. 

During the analysis phase, an understanding of the system and its structure can 
be done. In our case, this understood is captured in the system’s organization, via 
architectural model. We view a organization as a collection of agents that provide 
and perform services, and take part in systematic, institutionalized patterns of 
interactions with other agents regulated by the architecture. Departing from the 
goals of the organization, services can be identified and allocated to new agents or 
to pre-existing ones. 

3.2 Proposed Architecture 

Our architecture was designed supported by the basic concepts present in component 
frameworks [Szyperski2002]. A component framework is a set of interfaces and 
interaction rules that govern how components “plugged into” the framework may 
interact. In particular, a component framework forms a framework that composes 
instances not based on directly declared connections or derivations (such as 
inheritance of a class framework), but based on the creation of contexts and the 
placement of instances in appropriate contexts [Szyperski2002]. Beyond the similar 
names, almost identical visions and superficially similar construction principles, 
component frameworks are very different from class frameworks [Bosch1999, 
Fayad1999] since the inheritance implementation is not commonly used between a 
component framework and the interfaces it supports.  

Figure 2 illustrates the two main parts that compose our structural model: System 
and Infrastructure. System defines a structural model for the domain-specific MASs. 
We define domain according to [Sodhi2000, Tracz1994] as the space of the problem 
for a family of applications with similar requirements. Infrastructure defines a part 
that contains components that provide generic services, such as database access, 
translation services, HTTP services, GUI builders and others.  
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Fig. 2. The MAS-CF generic architecture 
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System can be seen in the left side of the Figure 2. It defines a three-tier architecture 
composed by the elements Domain, MAS and Agent. Domain is a component system, 
MAS is a component framework, and Agent is an abstract model for the instances 
plugged on the MAS. The Domain tier implements a set of rules of interaction that 
allows the communication and the sharing of services between different MAS and 
allows the communication between systems located in different domains. Different 
MAS located in a given domain can be plugged on the tier Domain. Note that tiers are 
described side by side with each other, while layers sit on top of each other. Traditional 
class framework merely structure individual components, independent of the 
placement in a tiered architecture. In the same way that MASs can be plugged on the 
Domain tier, agents can be plugged on the MAS tier. 

Represented on the right side of the Figure 2, Infrastructure is a two-tier 
architecture where the Infra is a component framework and the generic Infra 
Components are instances of the Infra component framework. The communication 
between the System and Infrastructure is supported by an ontology, which describes 
the services and how they can be accessed. Details will be shown in the Section 4. 

3.3 Communication Model 

Based on fundamental principles present in component frameworks, we have defined 
the communication model considering that the exchange of information between 
agents will be implemented as connections between agents and the architecture. The 
objective is to allow the sharing and distribution of services in a transparent, 
independent and autonomous way. An agent or component is visible to the 
architecture and can communicate generating events, which trigger connections rules 
in the architecture. The communication is indirect, via a component framework that 
mediates and regulates component interactions. Figure 3 shows the communication 
model on the proposed architecture. 
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Fig. 3. The communication model 
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We use similar notation to SOFA [Plasil2002] to describe the communication 
between interfaces. Three different types of connections are distinguished: (i) 
delegate: a connection between a provided interface of a component and a provided 
interface of a subcomponent; (ii) subsume: a connection between a required interface 
of a subcomponent and a required interface of a component and (iii) bind: a 
connection between a required-interface and a provided-interface between two 
subcomponents. We have considered that the information flow between connections 
in bi-directional. The Java Virtual Machine places call returns in a stack. After the 
execution of an event, the system returns to the caller. 

Services requests arrive from the environment through the interface DomainIn. 
These requests are decoded by the DomainController — which acts as an abstract 
factory [Gamma1995] — and are sent by the service to the responsible agent. Just as 
the DomainController, MASController and InfraController work as abstract 
factories. They encapsulate knowledge about which concrete classes are used for the 
system, and conceal the way that the instances of these classes are created and joined. 
It permits the configuration of the system with agents "product" that can vary widely 
in structure and functionality. As seen in the previous subsection, the concept of 
component framework can be applied in such a way that component frameworks are 
themselves components “plugged” into higher-tier component frameworks. Thus, by 
construction, a component framework accepts the insertion of instances at run-time. 
Agents and Infra Components can be dynamically registered and plugged on the 
framework. 

3.4 Interface Model 

One of the main ideas underlying frameworks is that semi finished components can be 
represented by abstract classes. Their purpose is to standardize the class interface for 
all instances or subclasses. Subclasses and instances can only augment the interface, 
and not change the names and parameters of methods defined in a superclass 
[Pree1999]. The term contract [Pree1999, Szyperski2002] is used for this 
standardization property: instances of subclasses of a class A support the same 
contract as supported by instances of A. A contract is a specification attached to an 
interface that mutually binds the client and the providers (implementers) of that 
interface. Thus, the semi-finished or ready-to-use components and agents of our 
framework can be implemented based on the contract of the abstract class.  

On the lowest level tiers, the abstract class Agent provides two interfaces: a 
provided interface designated AgentIn and a required interface designated AgentOut. 
AgentIn provides a channel of communication through which agents can absorb 
events and is a flexible hot-spot [Pree1999]. The AgentOut interface establishes a 
communication channel from where services from other systems, agents or 
components may be requested. To this end, it is only necessary to agree to the 
contract established by the interface. The AgentOut interface is a frozen-spot. Note 
that Agent here represents a generic term. In practice, the interface assumes as prefix 
the name of the agent and as suffix the expressions In and Out. The two interfaces are 
encapsulated into the semi-finished abstract class Agent when instanced through the 
framework. The basic syntax of the contract is as follows:  

public void AgentIn(String service, Vector in, Vector out)     sensors 
public void AgentOut(String service, Vector in, Vector out)   effectors 
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The parameter service (String) defines the name of the requested service. The 
parameters possess semantic meaning similar to IDL CORBA. They can be of type in 
(flow from client to object) or out (flow from object to client). The operation result, 
whenever there is one, is essentially a distinguished out parameter. The specification 
of highly structured messages introduces a level of complexity, since the parameters 
frequently represent complex types or data structures, such as vectors of objects. The 
type Vector used on the in and out parameters make possible to use heterogeneous 
types of fields, such as Objects, arrays, Strings, and so on.  

For the components of the Infra tier, only the provided-interface is instanced. 
Contrary to agents, components do not communicate among each other. As 
independent processing units, they do not request external services from other 
components or agents. 

3.5 Logical Model 

The UML provides the package mechanism [Larman1997] for the purpose of 
illustrating groups of elements or subsystems. Such a diagram may be called an 
architecture package design. A package defines a nested name space, so elements 
with the same name may be duplicated within different packages. Graphically, a 
package is shown as a tabbed folder; subordinate packages or classes may be within 
it. Figure 4 illustrates a more detailed breakdown of common packages in the 
architecture of the framework. 

MAS_a

(from Logical View)
+ MAS_a

- MASController
+ IMASCreator
- MASParser

<<layer>>

Domain
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Fig. 4. Architectural units expressed in terms of UML packages 
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The framework contains a set of five packages: Domain, MAS, Infra, Library and 
MCFTools. Inside each package the encapsulated classes are listed. The three 
packages shown on the top represent the main tiers of the framework: Domain, MAS 
and Infra. Note that the three packages contain classes with the suffixes Controller, 
Creator and Parser. As seen on previous sections, the classes sporting the suffix 
Controller represent abstract factories, responsible for the dynamic creation of 
instances. The Creator interfaces (starting with the letter I) define a standard signature 
for the instances that can be created dynamically, establishing a plug-and-play 
structure. The classes sporting the Parser suffix implement programs that parse 
service catalogs (detailed in the next section) to retrieve the specification of the agent 
or component responsible for the execution of the service. When the agent is 
retrieved, it is delivered in the form of a String from the Parser class to the Controller 
class, which implements a factory method [Gamma1995] for the dynamic creation of 
instances. 

The two packages shown bellow on Figure 4, Library and MCFTools, supply 
generic support services to the main packages of the framework. Library contains 
some classes that supply important generic services to the programs that control the 
interaction flux and the synchronism between processes. The classes setState and 
getState are responsible for the synchronism between processes. Class setState 
(producer) stores in a hashtable the next state for the action to be executed during the 
transition. The data is indexed based on a ID created for each instance, and associated 
to the state and corresponding action. Class getState (consumer) whenever called 
upon, retrieves the state stored in the hashtable and delivers to the process the instance 
and the action to be executed.  

The MCFTools package provides a public interface to support the tasks of 
instancing the architecture and the elements, along with the necessary support for the 
specification of the service catalog. To this end, it makes a set of GUI classes 
available, such as MCFMenu, MCFGeGui, MCFSeGui. MCFMenu is the class that 
provides a common interface to a group of other components of the package and 
system, implementing a pattern facade [Gamma1995, Larman1997]. The disparate 
elements may be the classes in a package, a framework or a subsystem (local or 
remote). Along with the GUI classes, the package maintains a class called 
MCFParser that captures (when the architectural elements are instanced) the 
specifications described by the GUIs and stores it in the XML file. Finally, the 
MCFGenerator class is responsible for code generation, working inside the standards 
established by the standard code structure used by the framework (as per Section 5.2) 

4 Interoperability  

Consider the high level component Infra. New components, which implement generic 
services, can be plugged at run time; new services must be available to agents at run 
time. How to make new services available to the agents? How to allow agents to 
interact with each other without knowing in advance which services are available? 
The representations of the architecture were not sufficient to serve as a listing of all 
services provided. When a new agent is registered or instantiated by the framework, 
its services are registered in a XML ontology in the form of a services catalog.  
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The use of ontology serves us as a formal specification of the catalog of services 
provided. Every agent/component operating within the System or Infra part must 
abide to the specifications dictated by the services ontology. The same is true for 
components. Figure 5 shows how services registered on the catalog may be accessed 
through the controller components present on the layers. Different components access 
specific sections of the catalog and obtain information such as component instances, 
location of services and descriptions of the communication protocols. 
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Controller MAS

Controller

Infra
Controller MAS

Controller

Domain Infra
MAS1 MASn...

XML
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_________________________________________________________________ 

Fig. 5. Relationship between components and XML ontology 

List 1 shows an example of how a services catalog can be structured in the form of 
an ontology. The tags name and description supply basic information about services 
provided by agents or by components. The initiator tag indicated the agent 
responsible for the execution of the service and the path tag indicates the physical 
location of the agent. It may be a physical address or a URL. The type tag indicates 
the type of protocol being used by the agent to deliver the message, initiate a 
conversation or supply a service. 

 

 

List 1 -  XML specification of the catalog of services 

The Initiator is the agent responsible for starting the execution of the service. The 
Type indicates the type of protocol used to deliver the message and to supply a speech 
act or a service. In this case, all tags are automatically retrieved from the specification 
and stored in XML format. Also present are the name and description tags, which 
supply basic information about the service. The XML catalog is critical to the system 
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and during use a working copy is made to ensure system reliability. If the working 
copy fails a new copy is reconstituted from the original. Besides, the information 
contained on the XML catalog can be reconstituted from the interfaces on the original 
XML system specification through the use of special tools. 

Semantic heterogeneity is one of the chief focus of any multi-agent system, this 
heterogeneity expresses the issue that any two interoperating agents must be certain 
when using a vocabulary of terms, or translations thereof, that they are using the same 
concepts with the same relevant inferences of relations as the other communicating 
agent [Sycara2003]. Two heterogeneous interoperating agents must be certain when 
using a vocabulary of terms or translations (FIPA to MAS-MF, for example) that they 
are using the same concepts with the same relevant inferences of relations as the other 
communicating agent. We argue that ontology, commonly defined in the literature as 
a specification of a conceptualization, is the representation that will provide this 
requirement [Gruber1998]. 

A conceptualization can be concretely implemented, for example, in a software 
component. Different types of ACL (Agent Communication Language) can be 
identified via Type tag and services are provided by adapter components to translate 
the MAS-CF messages to/from KQML [Finin1997], FIPA, UCL  [Montesco2001] 
and other ACLs. It decodes the calls that arrive from the environment and identifies 
the language spoken by the agent, for example KQML or FIPA. These components 
can be registered and plugged into the Infra tier. 

5 Describing and Transforming the Specifications  

In this section we describe how the behavior of the framework is formalized through 
the use of FTS (Finite Transition System) [Arnold1994]. In the sequence, we show 
how the specification is described and transformed into reliable code. 

5.1 The Behavior of the Framework 

Most work on the semantics of parallel, communicating, concurrent or interacting 
processes is based on the concept of automaton. More generally, a finite state 
automaton formed of states and labeled transitions between those states, can describe 
a system whose state evolves over time [Arnold1994]. An agent is a computational 
entity handling sequences of events. To handle events, agents can emit events, absorb 
events, and process internal events [Plasil2002]. Method calls on interfaces turn into 
event, and the architecture’s behavior is modeled via the event sequences (traces) on 
the architecture. The behavior of the architecture can be approximated and 
represented by FTS. A transition system consists of a set of possible states for the 
system and a set of transitions  - or state changes – which the system can effect 
[Arnold1994].  

The previously presented architecture (Figure 3) can be described as a concurrent 
FTS, as shown in Figure 6. The figure shows each tier represented as a FTS, working 
concurrently with other tiers. The label  indicates the target action or event, when the  indicates the target action or event, when the 
state triggers the transition. The set represented by the states {S1, S2} encapsulate the 
provided- and required-interfaces DomainIn and DomainOut of the Domain tier, 
respectively. In a similar way, the set {S4, S5}, {S11, S12} and  {S81} compose the 
provided- and required-interfaces of the MAS, Agent and Infra tiers respectively. The 
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states S3, S6, resp. S82 represent a set of nested states composed by the classes with the 
suffixes Controller, Creator and Parser of the Domain, MAS and Infra tiers, as seen 
on section 3.5. 
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23 !serv 
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27 ! in 

 
_________________________________________________________________ 

Fig. 6. The architectural model as FTS 

Asynchronous behavior between states is represented through self-transition. A 
self-transition may represent a, asynchronous communication channel between two 
tiers ((S1 to S4, for example) or a recursive decomposition to nested states, as seen on 
S3, S6 e S11.  On the expressions that label the transitions, the character  represent the 
target action to be executed by the transition. The suffixes {!, ?} represent the action 
emitted or absorbed. Besides actions, variables are also described. Basically, the 
variables represent services (serv), instances (mas, agt, and comp) and results or data 
(res) modified by the states or processes. 

In run-time, the program directs the flow via switch for the current state, evaluates 
the predicates and changes for the target state, performing the associated action. This 
can be seen in the code fragment presented on Figure 7 of the next subsection. ECA 
rules specifies how the architecture receives messages from the environment and from 
agents, how it verifies the service, direct services, sends messages and create 
instances of the architectural entities. The synchronism between tiers (considered as 
concurrent processes) is provided through CCS (Calculus for Communicating 
Systems) [Milner1985] expressions.  
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CCS expressions generate a set of traces over the architecture and the agents 
establish the restrictions, the sequence of execution and the synchronism between the 
concurrent tiers. The basic operators are the classic regular expressions sequence, 
alternative and repetition. The enhanced operators provide a notation to describe 
concurrency, using the known operators or-parallel, and-parallel and restriction. 
Several transitions can have the same source and target, i.e., the product mapping is 
not necessarily injective. The sequence of actions S(c) = ((t

1
) ((t

2
) is called the trace 

of the path. Intuitively, the label of a transition indicates the action or the event, 
which triggers the transition. 

5.2 Code Generation 

When instancing MASs, agents or Infra components, the specifications captured and 
stored in XML file are transformed into reliable code using parser and generator 
programs. The parsers can read the specifications from the XML file using the 
standard XML document object model (DOM). DOM essentially maps every element 
of an XML document to an object. Such an object has methods to access the 
element’s attributes, and DOM also supplies methods to navigate through documents 
and to locate the parent element and enumerate the child elements. After being parsed 
through the DOM, the information is supplied to the generator program, which 
transforms the parsed information into source code based on templates of MAS-CF 
entities.  

During the implementation phase, code generation occurs at two separate times. 
First upon the instantiation of the architectural elements by the framework, when the 
code of the structural model is automatically generated. At this stage, the MAS (if it 
has not been instantiated), the agents and the internal layers of the agents can be 
instantiated. Afterwards, only the abstract method of semi-finished component can be 
implemented or plugged. Thus, the implementation of the internal architecture of the 
agent becomes independent from the framework. The internal implementation of the 
agents is free, and therefore any type of agent architecture or implementation model 
may be used. 

In the design of rational agents, the role played by attitudes such as beliefs, desires 
(or goals) and intentions have been well recognized in the AI and agents literature. 
Systems and formalisms that give primary importance to intentions are often referred 
to as BDI (Belief, Desire, Intention) architectures. BDI-like architectures model the 
agent’s behavior using a set of mental categories evolving in a mental cycle that 
allows the agent to make decisions and to act on the environment. These architectures 
raise from the process of deciding, moment by moment, which action to take towards 
its objectives.  

Figure 7 shows a partial view of the generated Java code for the Mas (here Mas is 
an instance of the abstract model MAS) class. The interface MasIn (line 32), the 
parameters and the pre-condition (line 34) are supplied from the specification of the 
interface and the remaining items - states, transitions and actions - can be retrieved 
from the XML service specification. On line 36, the method run() of the library class 
getState retrieves the current state of this specific instance. Line 38 performs the 
transition via switch for the case that corresponds to the current state. Inside each 
case, the method instanciaAgent() of the abstract factory MasController is called and 
returns the instance responsible for forwarding or executing the requested service. On 
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line 44, the target state is defined and stored using the method run() of our library 
class setState (line 45). On line 46, the agent returned in the frame instance performs 
the action associated with the transition. 

states

interface 

pre condition

current  state

transition

target state 

action

 
__________________________________________________________________ 

Fig. 7. Partial view of the generated code for the Mas class 

The code of the Mas class presented above is almost completely frozen (except 
the name of the interface In - MasIn - on line 32, the name of the interface Out – 
MasOut - and the class name are hot-spots). It is completely generated when 
elements of the framework are instanced for the first time. The same happens for 
the classes Domain (through which different domains can be instanced) and Infra. 
The framework also generate the code for the abstract classes Agent and 
Component every time new agents or components are instanced. Specific 
implementation can be added on the hot-spots provided by the abstract classes of 
the last level. 

We argue that the reuse of organizational abstractions, as well as the interaction 
facilities provided by the architecture reduces the complexity and facilitates the 
development of the cognitive capacities of the agents (learning and autonomy), 
since complex properties such as interaction, adaptation and collaboration can be 
addressed separately by the architecture. In this fashion, agent implementation can 
be better focused on the maintenance of its structures of knowledge gathering and 
on its mechanisms of learning. 
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6 Discussion and Related Works 

The concept of connection as an architectural entity was established on the first 
ADLs, such as Darwin [Magee1997], UniCon [Shaw-Garlan1996], Wright 
[Allen1997] and  ACME [Garlang1997] among others. The idea is to deal with 
aspects and system qualities in connectors, not in components. According to 
Szyperski [Szyperski2002], one of the problems with these approaches is that by 
introducing a pure connection-oriented approach, all components are restricted to only 
interact with other components if appropriately connected. On the other hand, a 
connector, when detailed, can easily heave substantial complexity and display a need 
to be partitioned into components itself. Thus, “connectors” turn into regular 
components and no special actions can be performed on the connections as such.  

The concept of explicit connector has been loosing ground as time passes. Some 
ADLs, such as Rapide, have a very weak notion of connectors. Connections are 
specified with bindings between the provided service of a component and the required 
service of another component. Faulkner [Faulkner2001] proposed an ADL for multi 
agent systems using a similar concept. In his approach, Faulkner uses components, 
interfaces and services as architectural entities, without connectors. Connections are 
implemented as bindings between provided interfaces and services. Szyperski 
[Szyperski2002] states “contextual component frameworks can be used to reintroduce 
the intercepting behavior of connectors, but this time at the level of context 
boundaries.” Contexts provide the generic-aspects, while components and/or agents 
provide the non-generic aspects of contexts by parametrizing generic contexts.  

Our approach has a very weak notion of connector. The interaction rules are 
managed and performed by the architecture, resulting in calls to the other agents and 
services inside or outside of the organization. Its semantics consists of the rules 
defining the subtype (and supertype) relationship between tiers, and the services 
ontology providing the necessary mechanisms to interoperability support. Wooldridge 
[Wooldridge2000] states that agents are not built considering the existence of other 
specific agents; the idea is that interdependencies are likely to be reduced to make the 
system more flexible and reusable. 

The preference for implicit connections, as opposed to explicit ones, is one of the 
key points in our approach, using a very weak notion of connector. Interaction rules 
are regulated and executed by the architecture, resulting in calls to other agents and 
components inside and outside the organization. The semantics consists of rules 
defining the relationship between superior and inferior layers and the ontology service 
providing support mechanisms necessary to interoperability. We share a concept 
introduced in [Wooldridge2000], whereas agents should not be built assuming the 
existence of other specific agents; the idea is that interdependencies may be reduced 
to make the systems more flexible and reusable. 

Current frameworks for multi-agent systems such as JADE [Bellifemine2001], 
RETSINA [Sycara1999, Sycara2003], MESSAGE [Evans2002] and ZEUS 
[Azarmi2000] work with a structure much more focused on the individual properties 
of agents than on MAS architecture. These approaches provide an implementation 
that reinforces only partially the rules of interaction in the architecture. Unlike most 
frameworks for multi-agent systems, our framework focuses on the reuse of generic 
abstractional organizations instead on the individual agent properties such as roles, 
protocols and internal architecture. 
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7 Contribution and Practical Results 

Our key contribution is to describe a MAS in an abstract and application-independent 
way, allowing large-scale reuse of the abstractional organizations. We were able to 
show, throughout the work, the support to architectural principles and the use of 
contextual compositions, allowing the reinforcement or solution at an architectural 
level, of some of the fundamental agency properties cited on Section 2 such as 
interaction, adaptation and collaboration. This makes the implementation of the 
agent much simpler since such aspects are addressed separately from the object’s 
functional implementation. The following properties were directly or indirectly 
addressed at an architectural level: 

• interaction: the rules of interaction established by the communication model 
forcing the instance of an agent to communicate via a control mechanism of 
the architecture makes possible the distribution and sharing of services in a 
transparent and independent way.  

• adaptation: the abstract factories of the Domain, MAS and Infra tiers allow 
new agents or new version of agents replacing obsolete ones to be easily 
“plugged” in our framework, ensuring high flexibility and adaptability since 
the agents can easily adapt its state and behavior in run-time to new 
environment conditions. 

• collaboration: the formalization of services through ontologies and catalogs 
communicate the semantics of the services provided by the agents and 
generic components, facilitating the assembly of composition and 
collaboration between agents via required- and provide-services. Forcing all 
agents to use a common vocabulary defined in one or more shared ontologies 
is an oversimplified solution especially when these agents are designed and 
deployed independently from each other.  

Reusing an abstract architecture allows the reuse of not only architectural software 
design and implementation, but also of some agent properties that can be controlled 
via architecture mechanisms. Those benefits allow large-scale reuse reducing the time 
of system development and for system readiness. 

We have instantiated a medical application for behavioral therapy using our 
framework. We were able to verify the facilities provided by the framework and at the 
same time evaluate certain non-functional requirements such as applicability, 
usability and performance among others. The system, called MAS-CF Therapp 
[Caminada2004] provides services for a larger application that uses Virtual Reality on 
the therapy of autistic children and children with a psychosis diagnosis. The system 
works in a distributed web environment, through the HTTP and TCP/IP protocols 
using Java/JSP/Servlet technology in conjunction with a Java/Tomcat server.  

For the first time our MAS-CF framework could be evaluated in a real world 
application. From the viewpoint of practical applicability and use of the described 
techniques, the following could be evaluated:   

• the contextual paradigm tiers of MAS-CF; 
• the interaction model used by the framework; 
• the viability of using MAS as well as the interaction with Virtual Reality 

techniques in such a way as to aid and support behavior therapy. 
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During the development process we could verify the advantages provided by the 
MAS-CF framework. The implementation of the agents was widely facilitated since 
the development was concentrated solely on the services provided and the 
relationships between layers necessary to providing these services. More concrete 
results will be obtained from future applications to be instantiated. 
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Abstract. One key issue in multi-agent systems (MAS) is their ability to inter-
act and exchange information autonomously across applications. To secure 
agent interoperability, designers must rely on a communication protocol that al-
lows software agents to exchange meaningful information. In this paper we pro-
pose using ontologies as such communication protocol. Ontologies capture the 
semantics of the operations and services provided by agents, allowing inter-
operability and information exchange in a MAS. Ontologies are a formal, ma-
chine processable, representation that allows to capture the semantics of a do-
main and, to derive meaningful information by way of logical inference. In our 
proposal we use a formal knowledge representation language (OWL) that trans-
lates into Description Logics (a subset of first order logic), thus eliminating  
ambiguities and providing a solid base for machine based inference.The main 
contribution of this approach is to make the requirements explicit, centralize the 
specification in a single document (the ontology itself), at the same that it pro-
vides a formal, unambigous representation that can be processed by automated 
inference machines. 

1 Introduction 

The anchor of our research is the multi agent architectural framework proposed in 
[Haendchen03]. So far we have analyzed the architectures of several multi agent plat-
forms, notably MESSAGE [Evans00], ZEUS [Azarmi00], JADE [Vitaglione02] and 
proposed a framework whose innovative structural model overcomes most flexibility 
shortcomings of other platforms at the same time that  promotes large scale architec-
tural reuse. The Agent Framework is described in detail in [Haendchen03, Haend-
chen04].  

In the elaboration process of the Agent framework, we have identified the need for 
a reference model that centralized the requirements for the services pro-
vided/requested by agents operating within our domain in a meaningful way. The 
initial service specification was written in XML. The document was structured to 
reflect the MAS architecture hierarchy, i.e., each section corresponded to one of its 
architectural layers. Although highly structured, this document did not provide any 
further semantics to aid either the understanding, verification or validation of the 
specification. Agents could only interact if they shared the exact same specification. 
No negociation was possible, for the semantics of the services can not be fully 
expressed in XML. 
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We decided to migrate to a more expressive representation. Ontologies were the 
natural choice, as they are becoming the standard for information interoperability on 
web [Goméz-Peréz04]. With the adoption of a ontological representation it was pos-
sible to formalize terms used in the previous XML service specification, i.e, services, 
objects, agents and components present in the architecture and the desired ways in 
which they should interact. In addition to the required syntax, the ontology specifica-
tion was enriched with semantic content, thus allowing automatic verification, valida-
tion with users, and the possibility of negotiating with agents using different service 
specifications. Different ontologies can be negotiated through the processes of align-
ment, mapping or merging [McGuiness02, Bouquet03, Breitman03b]. This problem is 
defined as semantic coordination and can be described as the situation in which all 
parties have an interest in finding an agreement on how to map their models but given 
that there is more than one possibility, the right one (or a sufficiently good one) must 
be chosen [Bouquet03]. 

An ontology serves as the service specification of an agent operating in the do-
main, and will be used in making ontological commitments among other software 
agents [Fensel01]. An ontological commitment is an agreement to use a vocabulary in 
a way that is consistent with respect to the theory specified by the ontology, i.e., an 
agreement on what local  models are about to achieve user goals  [Bouquet03]. We 
build agents that commit to our ontology. Conversely we design ontologies in order to 
share knowledge with and among these agents [Gruber93]. The ontology concentrates 
the desired behaviors and service descriptions in a single document. It serves both as a 
specification and the reference model to which the agents operating in the domain 
should comply to.   

The rest of the paper is divided as follows: in the next section we briefly introduce 
the ontology definition and representation language we adopted in the context of our 
research. In section 3 we describe the context of our MAS. In section 4 we show an 
example of our approach. In section 5 we briefly describe the lessons learned from 
this experience and, finally in section 6 we provide our conclusion remarks and future 
work.  

2 Ontology 

In order to secure interoperability among autonomous agents, a protocol in which to 
exchange the necessary information to support this process is required. We argue that 
ontology, commonly defined in the literature as a specification of a conceptualization, 
is the representation that will provide this requirement [Gruber98]. On one hand  
ontologies are expressive enough to capture the essential attributes present in MAS, in 
terms of their classes and relationships. On the other hand, ontologies provide the 
necessary formality in which to perform automated inference and model checking. 
According to Tim Berners Lee, ontologies will allow machines to process and  
integrate Web resources intelligently, enable quick and accurate web search, and 
facilitate communication between a multitude of heterogeneous web-accessible agents 
[Berners-Lee01]. 

We adopt the ontology structure O proposed by Maedche [Maedche02]. According 
to the author, an ontology can be described by a 5-tuple consisting of the core 
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elements of an ontology, i.e., concepts, relations, hierarchy, a function that relates 
concepts non-taxonomically and a set of axioms.  The elements are defined as fol-
lows: 

O : =  {C, R, HC, rel, AO} consisting of : 

• Two disjoint sets, C (concepts) and R (relations) 

• A concept hierarchy, HC: HC is a directed relation HC ⊆ C x C which is 
called concept hierarchy or taxonomy. HC (C1, C2) means C1 is a subcon-
cept of C2 

• A function rel : R → C x C that relates the concepts non taxonomically 
• A set of ontology axioms AO, expressed in appropriate logical language. 

Most existing ontology representation languages can be mapped to this structure, 
e.g. RDF, Oil and DAML, but there seems to be a consensus to adopt OWL as the de 
facto language to represent ontologies. OWL is being developed by the W3 consor-
tium as an evolution of the DAML standard [Hjem01, Hendler00, McGuiness03]. The 
OWL Web Ontology Language is designed for use by applications that need to proc-
ess the content of information instead of just presenting information to humans. OWL 
facilitates greater machine interpretability of Web content than that supported by 
XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along 
with a formal semantics. The OWL specification comprises three increasingly-
expressive sublanguages: OWL Lite, OWL DL, and OWL Full. OWL Lite supports 
classification hierarchies and simple constraints, e.g., cardinality. It is intended as 
quick migration path from taxonomies and thesauri, i.e., that are free from axioms or 
sophisticated concept relationships. OWL DL supports "expressiveness while retain-
ing computational completeness (all conclusions are guaranteed to be computed) and 
decidability (all computations will finish in finite time)" [McGuinees03]. DAML+OIL 
is equivalent, in terms of expressiveness, to OWL DL. Finally, OWL Full supports 
maximum expressiveness. According to the W3 consortium, it is unlikely that any 
reasoning software will be able to support complete reasoning for every feature of 
OWL Full.  

The existence of a large repository of ontologies also influenced our decision to 
migrate to OWL as the ontology representation language used in our projects. In table 
I we show the mapping between the nomenclature used by the O ontology model and 
the one adopted by OWL.  

OWL provides the modeling primitives used in frame based systems, i.e., concepts 
(or classes), the definition of its superclasses and attributes. Relations are also de-
fined, but as independent entities, properties, instead of class attributes. The primi-
tives provide expressive power and are well understood, allowing for automated in-
ference. The formal semantics are provided  by Description Logics (DL). DLs also 
known as terminological logics, form a class of logic based knowledge representation 
languages, based on the primitives above [Horrocks02]. DLs  attempt to find a frag-
ment of first order logic with high expressive power which still has a decidable and 
efficient inference procedure [Newell82, Heinsohn94]. FaCT is a working example of 
a system that provides reasoning support (i.e., consistency and subsumption checking) 
to OWL-encoded ontologies [Horrocks01].     
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Table 1. Terminology mapping between the O ontology structure and the ontology language 
OWL 

O  Ontology Structure OWL 
C Concept Class 
R Relation Property 
Hc concept hierarchy Subsumption relationship: 

SubClassOf 

rel function that relates the con-
cepts non taxonomically 

Restriction 

AO Axiom Axiom  

An OWL ontology is a sequence of axioms and facts, plus references to other on-
tologies, which are considered to be included in the ontology. OWL ontologies are 
web documents, and can be referenced by means of a URI. Ontologies also have a 
non-logical component that can be used to record authorship, and other non-logical 
information to be associated with an ontology [OWL, McGuiness03]. 

In the next section we present the MAS Framework we have been experimenting 
with and relate the construction process of its service ontology.  

3 MAS Framework 

Agent-oriented software engineering extends the conventional components’ develop-
ment approach, leading to the construction of more flexible and component-based 
MASs [Griss03], emphasizing reuse, low-coupling, high-cohesion and support for 
dynamic compositions. Rapid and problem-specific system construction can be at-
tained through the use of model-driven development and reuse techniques in order to 
achieve a more flexible, adaptable, robust and self-managing application. These prop-
erties can be constituted by the combination of several technologies, such as compo-
nent-based software engineering [Griss03,24,38], frameworks [Bosh99, Fayad99, 
Pree99, Roberts98], design patterns [Gamma95, Larman98],  rule-based systems 
[Gelfond93, Paton95, Yu00] and now ontologies [Fensel03, Berners-Lee01, 
Hendler01]. The MAS Framework architecture comprises five layers: Domain, Multi 
Agent System (MAS), Agent, Module and Class. Figure 1 depicts the Framework 
architecture. Note that the Module and Class layers are located inside each agent, the 
modules are represented in Figure 1 by the circles labeled S30, S40, S50 and S51 (the 
classes are not represented in the Figure. They are internal parts of the modules). Note 
that there are two ontologies in the architecture, illustrated by circles S4, and S9. The 
first one, S4 is the upper ontology and contains the specification of shared domain 
services, i.e., infrastructure, interface and communication services that will always be 
instantiated by our Framework. This ontology was built by experts and is part of im-
plementation of the Framework. The second ontology, located at the MAS level,  
illustrated by circle S9 in Figure 1, represents the agent specific ontology. It contains 
hot spots where particular application services are to be specified during the Frame-
work instantiation process. As a consequence of the multi layered architecture of the 
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Framework, application services are specified under the domain level, i.e., as leaves 
of the upper ontology. For all practical purposes, the agent specific ontology is a 
composition of the upper ontology (top levels) with the addition of the specification 
of application specific services at the bottom levels (MAS and agent).   

Each MAS centralizes its service specification in a single document (represented 
by the circle labelled S9 in Figure1). In our architecture, agents preferentially receive 
services requirements through a single interface, instead of interacting directly with 
one another, using multiple interfaces. This communication is done  using highly 
structured messages composed using the terminology formalized by the service 
ontology. This way, both the syntax required by the interface specification and the 
semantics associated to the terms used in the service request are now available. 
Providing clear semantics of of the terms in use, helps maintain clarity and 
transparency of the specification. It serves as an aid to the ontology validation process 
and also as a guide to non expert users in the processof including new service 
specifications at the agent layer. 

 

s1 s3 

s4 

s2 
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s11 s10 s12 
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 Abstract Factory 
 Security 
 Service Ontology 
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 Others Agent modules 
 Infra services 
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Agent 
specific 
ontology 
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Fig. 1. MAS Framework Architecture 

The syntax of the services provided by each agent, and how they can be accessed, 
is provided by the interface specification.  Thus, an essential part of the process is 
defining a syntactic description of each interface and how the services can be 
accessed. The aim of the service specification ontology is to identify the services 
associated with each agent, specifying the main properties of these services. For each 
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service that may be performed by an agent, it is necessary to document its properties. 
In particular we must identify inputs, outputs, pre-conditions, post-conditions, 
parameters, states, transitions and rules. 

Initially we used an XML document to serve as the service specification. It 
contained descriptions of the services provided and interface parametrization. 
Although structurally sound, the XML document was found semantically weak and 
unfitting to describe some aspects of the service specification, e.g., rules and states. 
Migrating to an ontological respresentation was a natural move. 

We had to question ourselves whether it was possible to express all the necessary 
information in the MAS service specification using the available ontology languages. 
As presented in section 2, the current W3C recommendation language for ontology 
modelling is OWL, the evolution of previous efforts in finding a standard ontology 
language. OWL comprises three different languages, the choice of which should be 
based in the level of expressiveness desired for the ontology in question. The first 
language, Lite OWL, was definetively not expressive enough to capture the necessary 
information present in the service specification. Our choice was between OWL-DL 
and Full OWL. The later, although allowing for maximum expressiveness, does not 
guarantee the possibility of automatic reasoning in computable time [OWL]. In our 
case, the use of inference to help verify overall specification consistency is very 
important, so we chose OWL-DL as the preferred language. The last ensures 
decidability and the existence of an efficient inference mechanism for the language 
[McGuiness03]. This choice, however, came with an additional modelling overhead. 
OWL-DL does not directly provide some modelling primitives, e.g., class attibutes 
and an-ary relationships. Those can be obtained by means of some workarounds . This 
is common practice in the mark up language community. Assuncíon Gómez-Pérez, 
Mariano Fernández-López and Oscar Corcho published a table of the most common 
workarounds (partially reproduced in Table II) [Gómez-Pérez04]. 

We build ontologies using the lexicon based ontology construction process pro-
posed in [Breitman03]. This process is influenced by our background in requirements 
engineering and system specification and uses the Extended Lexicon of the Language 
(LEL) [Breitman03c, Leite93], referred to as Lexicon from here on, as the starting 
point. We initiate the process by building a Lexicon that captures the vocabulary of 
our application, i.e., the basic concepts and the relationships that bind them together 
in an informal way (using natural language). The Lexicon models a series of defini-
tions of the services, objects, agents and components, present in the MAS architec-
ture, and the desired ways in which they should interact. Such definitions evolve from 
an informal, natural language lexical representation to a formal, machine processable, 
ontological representation through the application of the lexicon-to-ontology mapping 
rules defined in [Breitman03]. 

The Lexicon represents domain information obtained with the help of well known 
elicitation techniques, e.g. questionnaires, observation, structured meetings. It cap-
tures both the denotation and connotation of important domain concepts. Differently 
from usual dictionaries, that capture the meaning (denotation) of an entry, the Lexicon 
also captures its connotation, i.e., the behavioral response or impacts that a lexicon 
entry might have in defining other entries [Leite93].  
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Table 2. Markup Language Workarounds [Goméz-Peréz04] 
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To build the service specification Lexicon we started with the elicitation of impor-
tant domain1 concepts. Those were present in the XML specification, but were not 
defined to satisfaction. To elicit their meaning, we applied questionnaires and struc-
tured interviews with domain experts, i.e., the software engineers involved in the 
construction of the first specificatio In Figure 2 we show an example of a lexicon 
entry. We depict the Advisor entry.   The Lexicon elicitation and construction process 
is fully described in [Breitman03]. 

To generate the formal ontology we applied the process proposed by Breitman & 
Leite to the newly built Lexicon. This process consists of a set of rules that map Lexi-
con entries into the five ontological elements proposed by Maedche, described in 
section 2. 
 

                                                           
1 Please note that we use the term domain in the broad sense, signifying the application domain 

as a whole. In this case, our domain is the entire multi agent framework, for which we intend 
to build a service specification, as opposed to its top layer that is incidentally named domain 
as well. 
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Fig. 2. Screen snapshot of the Lexicon entry Advisor in the C&L tool  

Lexicon entries are typed in one of subject, object, verb or situation. Depending on 
the type a different set of rules is applied to the Lexicon entry and will result in its 
mapping to either an ontology concept or property. The notion of a Lexicon entry is 
mapped into the description of its correspondent ontology concept.  Its behavioral 
responses serve as an aid in the identification of ontology properties, concept restric-
tions and non taxonomical relationships among ontology concepts. Axioms come 
from the identification of disjoint or generalization relationships held among Lexicon 
entries. The lexicon based ontology construction process is described in detail in 
[Breitman03]. This process is supported by C&L, an Open Source tool that automates 
great part of the lexicon to ontology mapping process. Some design decisions have to 
be taken by the software engineer and can not be fully automated [Breitman03c]. The 
tool also provides automated support for the creation and management of Lexicons 
[Felicíssimo04]. In Figure 3 we show the upper service ontology. 

In this section we described the construction of the upper service ontology. 
Specific services provided by the agents are specificied in the application ontology, 
located at the MAS level, as shown in Figure 1. As mentioned before, it is a direct 
consequence of the multi layer architecture of the Framework that  specific agent 
services are specified as leaves, i.e., placed under the lowest levels of the upper 
ontology. Evidently, those services are particular to each implementation and can not 
be provided by the upper ontology. Those specifications must be included by a 
software engineer, as part of the implementation of  the MAS itself, and vary case by 
case. In the next section we exemplify our approach. 

 
 

Notion

Behavioral response 
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Fig. 3. Upper service ontology 

4 Academic Control System: An example 

To exemplify our approach we chose an academic control system MAS that tracks the 
undergraduate student advisement process. We focus on the services provided by the 
Advisor agent, as illustrated in Figure 4. 

In the advising process, a student fills out a registration form with his/her name, 
student ID, the current semester and the details of the course he/she would like to 
take. After sending the request, the student receives the final results, either an 
enabling password or the justification  for denying the request. The Advisor has the 
function of taking the student request and to conduct preprocessing, validating the 
student, verifying the syntactic aspects, checking the viability of the schedule, to 
direct the request result for the student or providing a request status. 
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Fig. 4. System generic architecture as proposed in [Haendchen03], instantiated to the academic 
control MAS example 
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The agent Chair can make a slot available whenever the class is full, and the agent 
Instructor can dismiss pre-requisites for a course.  The instructor and chair agents 
exchange messages with human agents through well-defined and well-structured e-
mail messages. The advisor receives the request and verifies syntactic aspects, if the 
student has the prerequisites to the intended courses and checks to see if there are 
vacancies in the desired classes. If these conditions are met, the advisor authorizes the 
request by signing it and gives the student the registration password needed to register 
for the course. If these conditions are not met, the advisor directs the request accord-
ing to the arguments of the event to the student, instructor or to the chair. While  
the process is under way, the student can ask the advisor for information about the  
progress of the request by e-mail. In any case, the advisor returns the request to the 
student via e-mail, specifying the result. Based in this information we modeled  
the Lexicon of the services provided by the system.  In the academic control MAS 
case we used interviews and observation techniques to help elicit lexical information 
from the domain.  

Through a series of refinements, the academic control Lexicon was mapped to its 
formal ontology. This process was semi automated, for some human input is neces-
sary at specific decision points. The C&L open source tool automates this process and 
was used to support the construction of the academic system ontology [Silva03].  

 

Fig. 5. The ontology concept domain_out  implement using the OilEd tool  

In Figure 5 we show a screen snapshot of the ontology of services provided by the 
academic control system. We focus on the the domain_out interface. Please note that, 



102 K.K. Breitman et al. 

 

however some restrictions are defined at concept level, there is a great number of 
other restrictions inherited by its super classes (see the restriction box in the lowest 
right corner of Figure 5). The super class of class domain_out is indicated by Classes 
box, namely domain_required2.) The ontology was implemented using the OilEd, a 
freeware tool for ontology editon developed at the University of Manchester, that 
exports to the chosen OWL format [Berchofer01].  

We took special care to ensure overall model quality. We have validated the Lexicon 
with the users and verified using inspections [Kaplan00]. The ontology was verified 
using the FaCT (fast classification of terminologies) inference engine, publicly available 
at [FaCT04]. The reasoning services provided by this tool include inconsistency 
detection, determining subsumption and equivalence (among classes) relationships. 

In Figure 6 we illustrate an inconsistency identified with the aid of of the inference 
mechanism. The ontology has axiom that states that the classes MAS Security 
Checking an Domain Security Checking are disjoint, i.e., their intersection is empty. 
This is is illustrated by the panel in left, that contains the list of axioms for the 
Academic Control ontology. In the right most panel we depict the ontology, as it was 
being built. In this process we specified a restriction in which a state would only be 
reached in the event that both MAS Security Checking an Domain Security Checking 
were activated.  

 

Fig. 6. Inconsistency in class domain_out 

                                                           
2 The # symbol that appears as a suffix of the classes indicates the namespace of the class, i.e., 

the name of ontology where the specification of the class resides. OWL and similar mark up 
languages do not require that all concepts in the ontology are specified in the same document. 
By using the namespace mechanism, it is possible to reuse concepts defined in other  
ontologies, provided that a valid path to that document is given.  
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This situation is an impossibility, for the classes are forcibly (as explicited by the 
axiom in the left pane) disjoint. During the construction of the ontology this fact 
passed noticed by the designers. The consequences this error may bring  to the 
implementation of the MAS are very serious, for   that may cause the agent to halt or 
to enter a dead loop state. This fault was automatically detected with the use of the 
reasoner, as illustrated in Figure 7. We depict three panes; In the first one we show 
the interface to the FaCT reasoner. This tool is built in common Lisp and makes 
inferences over a description logic representation of the ontology. The ontology 
editor, OilEd translates the ontology to SHIQ (-----a description logic language 
dialect) and sends to the reasoner using a CORBA interface. On the second pane, 
middle one, we depict the log of the reasoning process. We enphasize that the class 
domain_out is unsatisfiable, but note that the reasoner also checks for errors in 
subsumption relationships and class instances. The third pane, rightmost, illustrates 
the graphical display of the inconsistency in the OilEd tool. Similarly to this case, the 
reasoner helped us detect other inconsistencies in the ontology. We also performed 
manual verification, using a process very similar to software walkthroughs: we 
gathered a group of three designers and revisited the material during a planned 
meeting. The chief designer of the ontology served as group mediator and conducted 
the meeting. The errors found we mostly sintactical, e.g., classes, properties and 
restrictions wrongly named or typos. A few inconsistencies such as the one illustrated 
in Figure 6 were also found. We noticed that the inheritance mechanism makes it very 
hard to identify inconsistencies when they are the result of  a composition of 
restrictions that appear in different levels, i.e., one was defined at class level and the 
other was inherited from a super class. It is important to note that all of this type of 
inconsistencies were also detected by the reasoner in a later moment. We concluded 
that manual verification is worthwhile, for it helps identify problems that could not be 
otherwise detected. Practitioner should, however, focus in the terminology, usage and 
validation of ontological terms. Inconsistencies are more sistematically detected with 
the aid of an automatic reasoner.  

The reasoner was also useful in the identification of a group of classes that partook 
a similar setting. To illustrate this situation we present the example of class alert 
condition. This class, as illustrated in Figure 7, is defined if two of its restrictions are 
true, namely in!= null and security_check = 7) . We defined this class in 
the ontology of the type SameClassAs, i.e., this is a necessary and sufficient condition 
to define any other class that possesses those requirements as a similar to class alert 
condition)  

Class domain_out of the Academic Control ontology is an example of a class that 
fullfills this requirement. We depict this class and its restrictions in Figure 8 as 
follows. Note that one of the restrictions was specified among the class natural 
restrictions, the second came as an inherited restriction from its super class, 
domain_required. This mechanism is very interesting to help ensure that some 
conditons are met across the ontology.  
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Fig. 7. Class alert condition 

 

Fig. 8. Class domain_out, local and inherited restrictions 
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As an illustration we also show the OWL code for the Domain_out class in  
Table 3. Note the similarity to XML, and the fact that the language uses RDF con-
structors, e.g., subClassOf. This is intentional and is a direct consequence of  the 
“wedding cake” architecture for ontology languages proposed by Tim Berners-Lee 
[Fensel03]. This model reflects the evolution of ontology mark up languages. Each 
new gain in semantics resulted in the construction of a new language layers, put on 
top a XML basis. The first layer was RDF, followed by RDF Schema. Because those 
were not expressive enough, a new wave of languages, including DAML, OIL and 
now OWL was proposed and put on top of the RDF layer. The result is that an OWL 
document contains OWL specific markup as well as primitives imported from layers 
below, e.g., rdfs: label.  

Table 3. Example of OWL code for the domain_out class (partially represented) 

<owl:Class rdf:about="file:/C:/Documents/AcademicAplications.owl#domain_out"> 
        <rdfs:label>domain_out</rdfs:label> 
        <rdfs:comment><![CDATA[]]></rdfs:comment> 
        <oiled:creationDate><![CDATA[2004-04-
18T22:20:56Z]]></oiled:creationDate> 
        <oiled:creator><![CDATA[Karin]]></oiled:creator> 
        <rdfs:subClassOf> 
            <owl:Clas 
rdf:about="file:/C:/OilED/ontologies/AcademicAplications.owl#domain_required"/> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty 
rdf:resource="file:/C:/Documents/Karin/AcademicAplications.owl#public"/> 
                <owl:hasClass> 
                    <owl:Thing/> 
                </owl:hasClass> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty 
rdf:resource="file:/C:/Documents/Karin/AcademicAplications.owl#void"/> 

We must finally remark  that a great level of ontology reuse is achieved as a result 
of our multi level Framework architecture. Generic services provided by every MAS 
are specified by the upper ontology and need not be specified again. The only services 
that require a specification effort are those particular to the agent in question. Even so, 
some of the inputs, pre and post conditions may be inherited from the super class 
under which the service is to be specified.  The reuse of specifications not only  
reduces overall effort, but also serves to ensure quality because we are making use of  
a specification that was built by experts (less prone to mistakes), was verified by 
inspection, and has been tested in other applications3.  

                                                           
3 It is important to note that the upper ontology is continuously being refined as a result of 

reports from practitioners.  
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5 Lessons Learned 

The evolution from the XML service specification to an OWL ontology was an over-
all positive experience. Our initial concerns related to the power of the ontology rep-
resentation to convey specification details were lifted as we were able to model every 
concept in the service specification in the ontology. During this process some work-
arounds were needed, specially to formalize attributes such as function parameters 
and transitions.  

The use of the FaCT reasoner  helped verify the ontology and improve its overall 
quality. Automatic verification helped detect: inconsistencies (pre and post condi-
tions, parameters, undesireable situations), errors, and some omission. Additional 
verification mechanisms will have to be used, as strings (e.g. Regular expressions) are 
processed as a block by the reasoner. 

 Our experience in building the service ontologies to support our MAS communi-
cation exchange has shown that this task is a very complex one. Despite the existence 
of methods to support ontology construction, it still remains more of a craft than a 
science [Fernandez-Lopez97, Gruninger95, Noy01-b, Sure03, Ushold96, Breit-
man03]. The decisions that have to be taken during this process, e.g., decide whether 
a concept should be mapped into a class or property, are very difficult and require 
expertise in concept modeling. By the same rule, the workarounds that have to be 
used in order to represent relevant specification concepts in the ontological represen-
tation are not trivial. It requires the ability to identify such concepts and to engender a 
workaround that maximizes the power of expression of the ontology.  

Finally tool support for visualizing ontologies is still very poor. For ontology edi-
tion we have been using OilEd and Protégé [Berchofer01, Noy01]. Both tools fulfill 
our current editing requirements and have proven very reliable and easy to use. Our 
main concern today is the need for a tool that allows for a better visualization of the 
ontology, to help in the validation process4.  

6 Conclusion 

In this paper we propose to using ontologies as a means to capture and publish the 
specifications of the services provided by the agents in a MAS. The ontology makes 
the requirements explicit, centralizes the specification in a single document, at the 
same that it provides a formal, unambigous representation that can be processed by 
automated inference machines [Sowa00]. The main contribution of this approach is to 
put in practice a standardized reference model when specifying new agents, compo-
nents and object behavior in a MAS. We showed the feasibility of the approach by 
means of an example in which we constructed an ontology that specified the services 
provided within an academic control MAS.  

The change from an XML representation to a OWL resulted in real quality gain for 
the service specification. The current ontological representation is more reliable, for it 

                                                           
4 Both OilEd and Protégé provide visualization plug-ins. Those are static drawings of the ontol-

ogy, usually too big and cumbersome. Neither plug in provides the necessary functionality 
required in the validation process.  
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can be automatically verified. Consistency is thus guaranteed by automatic inference. 
Furthermore Results from our analysis process (verification and validation) confirm 
that the OWL specification is more consistent and error free than the previous  XML 
one. 

The use of ontologies opens the possibility of interfacing with other MAS envi-
ronments. As envisioned by James Hendler, the web of the future will be composed of 
a multitude of websites, network services and databases, each operating with its own 
local and contextualized ontology [Hendler01]. There is an ongoing effort to support 
the integration and alignment of different ontologies, in order to support communica-
tion and services exchange [Breitman03-d, Bouquet03, McGuiness02]. The ability to 
align different ontologies will make it possible to probe and request services in truly 
open ended environments, such as the web [Heflin01].  

We are currently experimenting with semantic coordination of MAS ontologies.. 
We have developed a mechanism to align two different ontologies, CATO, that is 
publicly available in internet [Felicíssimo04]. We are using this mechanism to help 
integrate MAS operating in the health care domain. Our current experiment is trying 
to integrate services provided by a multi agent system used for the diagnoses and 
treatment of altistic children to similar health care multi agent systems. Our intention 
is to use the integration process to negotiate among different MAS thus providing new 
services that were not initially available, e.g., we are currently trying to align our 
MAS to the Retsina Calendar Agent as to provide appointment services.  

The service specification ontology serves us in two ways. Externally of our 
Framework, the ontology communicates the semantics of the services provided by 
agents of our domain, thus allowing for exchanges among different MAS and interac-
tion with other agents in Open Ended environments, such as the World Wide Web. 
Internally to our Framework structural, the ontology serves as a formal specification 
of the catalog of services provided. Every agent/component operating within our 
structural model must abide to the specifications dictated by the domain services 
ontology. The same is true to components and objects. 

Future work includes the investigation of a visualization mechanism that would 
allow for the separation and display of services provided by each layer. The user 
interface of this mechanism will be inspired in the vision mechanisms of relational 
databases. At the same time we are considering the development of new plug ins that 
implement additional verification routines (e.g. lexical and syntactic analysers for 
strings – parameters, regular expressions), that are not currently covered by the infer-
ence mechanisms.  
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Abstract. The task addressed here is a dynamic search through a bound-
ed region, while avoiding multiple large obstacles, such as buildings. In
the case of limited sensors and communication, maintaining spatial cov-
erage – especially after passing the obstacles – is a challenging problem.
Here, we investigate two physics-based approaches to solving this task
with multiple simulated mobile robots, one based on artificial forces and
the other based on the kinetic theory of gases. The desired behavior is
achieved with both methods, and a comparison is made between them.
Because both approaches are physics-based, formal assurances about
the multi-robot behavior are straightforward, and are included in the
paper.

1 The Sweeping and Obstacle Avoidance Task

The task being addressed is that of sweeping a large group of mobile robots
through a long bounded region (a swath of land, a corridor in a building, a
city sector, or an underground passageway/tunnel), to perform a search, i.e.,
surveillance. This requires maximum coverage. The robots (also called “agents”)
are assumed to lack any active communication capability (e.g., for stealth), and
to have a limited sensing range for detecting other agents/objects. It is assumed
that robots near the corridor boundaries can detect these boundaries, and that
all robots can sense the global direction that they are to move. As they move,
the robots need to avoid large obstacles (e.g., buildings). This search might be
for enemy mines, survivors of a collapsed building or, alternatively, the robots
might be patrolling the area. It is assumed that the robots need to keep moving,
because there are not enough of them to view the entire length of the region
at once. In other words, the robots begin scattered randomly at one end of the
corridor and move to the opposite end (considered the goal direction). This is a
“sweep.” Once the robots get to the far end of the corridor, they reverse their
goal direction and sweep again. Finally, if stealth is an issue then we would
like the individual robot movements to be unpredictable to adversaries. It is
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conjectured that the behavior of a gas is most appropriate for solving this task,
i.e., each robot is modeled as a gas particle.

2 Prior Approaches

There are many different methods for controlling groups of autonomous agents
(swarms). Balch and Arkin [1] present a very popular approach – using behavior-
based techniques. Behavior-based control uses a layered architecture based on
arbitration between a suite of behaviors, such as avoidance, exploration, and
planning. Although this technique has been successful in maintaining agent for-
mations while going around obstacles, unfortunately it requires a lot of active
communication and, typically, it requires small groups of heterogeneous agents
that have prespecified roles. Fredslund and Matarić [2] present another behavior
based technique using local interactions to create formations and avoid obstacles.
This approach has already been ported to robots and experimental results show
its successes at avoiding obstacles that are roughly the same size as the robots
themselves. However, no solution is presented for the challenging case where the
obstacle is the size of a city building.

Other research uses ethological models such as ants or bees to control the
robots. In one such study [3], agents are modeled as individual ants in the colony.
In this study, the robots leave long-term traces in the environment and require
directed graphs to be imposed onto the terrain.

The approaches to swarm control that are of interest to us are rooted in
physics. Spears and Gordon [4] have provided a technique called physicomimet-
ics for controlling large groups of agents (modeled as particles), using virtual
physics-based forces to move the agents into a desired formation, e.g., a hexag-
onal lattice. This technique scales well to large groups of agents and uses only
local interactions. Using physicomimetics, agent swarms do a very nice job of
staying in formation and avoiding obstacles, without the need for active com-
munication, long-range sensing, or prespecified roles [5]. Nevertheless, a problem
still exists when the agents are presented with a very large obstacle, e.g., a build-
ing in a city. As the agents move around the obstacle, they are unable to detect
the agents that have chosen to move around the other side of the obstacle. Be-
cause of this, they are never able to regroup and leave an exposed and uncovered
area downstream of the obstacle. The problem is that physicomimetics has tra-
ditionally been run in a mode that mimics the behavior of a crystalline solid.
Yet solids are rigid and do not expand to fill/cover a region. This is the reason
for investigating a gas approach to physicomimetics. The approach of Decuyper
and Keymeulen [6] shows that a fluid metaphor works for solving arbitrarily
complex mazes. The idea behind this research is that particles in a fluid auto-
matically adapt to changes in the environment because of the fluid’s dynamics.
The research of Decuyper and Keymeulen has proven that the fluid metaphor is
effective, but their approach requires a global grid in order to compute the fluid
flow through the system. Our research, on the other hand, applies this same fluid
metaphor, but using only local interactions.
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3 Motivation for Gas Models

Both liquids and gases are considered fluids, but this paper focuses on gases.
Gases offer excellent coverage, unpredictability of particle locations, and they
can be bounded. In general, fluids (gases and liquids) are able to take the shape of
their container and therefore are well suited to avoiding obstacles. Fluids are also
capable of squeezing through narrow passages and then resuming full coverage
when the passage expands. With gases, if we model a container, the gas will
eventually diffuse throughout the container until it reaches an asymptotic state.
Because gases have this property but liquids do not, gases are a more natural
way to think of how to get particles around an obstacle, and why we chose to
model a gas. Once the particles have moved around an obstacle, fluids have the
ability to regroup. For example, consider releasing a gas from a container at the
top of a room with obstacles. The gas inside the container is slightly heavier than
the surrounding air. As the gas slowly falls to the ground, it separates around
obstacles and expands back to cover areas under the obstacles.

Agents capable of mimicking fluid flow will be successful at avoiding obstacles
and moving around them quickly. By mimicking gas flow in particular, the agents
will be able to distribute themselves throughout the volume once they have
navigated around the obstacle.

This article presents two formal gas models to solve the problem described
above, and then compares them. The first approach is physicomimetics, also
called artificial physics (AP). The second is kinetic theory (KT), which models
virtual inter-particle and particle-wall collisions. Both of these approaches are
amenable to straightforward physics analyses for providing behavioral assurances
of the robot collective [7], [8].

4 The Physicomimetics Approach

Spears and Gordon [4] have created the artificial physics (AP) framework to
control groups of autonomous agents. The goal of AP is one of reducing the
potential energy of a system. Each agent in the system experiences a repulsive
force from other agents that are too close, and an attractive force from other
agents that are too far away. These forces, which are based on Newtonian physics,
do not really exist in a physical sense, but the agents react to them as if they were
real. Each agent can be described by a position vector x and a velocity vector
v. Time is maintained with the scalar variable t. The simulation can be run in
either 2D or 3D (to model swarms of micro-air vehicles). Agents in the system
update their position, x, in discrete time steps, Δt. At each time step, each
agent updates its velocity, v, based on the vector sum (resultant) of all forces
exerted on it by the environment, which includes other agents within visibility
range, as well as repulsive forces from obstacles and attractive forces from goals.
This velocity, v, determines Δx, i.e., the next move of the agent. In particular,
at each time step, the position of each particle undergoes a perturbation Δx.
This perturbation depends on the current velocity, i.e., Δx = vΔt. The velocity
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of each particle at each time step also changes by Δv. The change in velocity
is controlled by the force on the particle, i.e., Δv = FΔt/m, where m is the
mass of that particle and F is the force on that particle. Note that this is the
standard, Newtonian F = ma equation.

By setting system parameters in AP, we can mimic solid, liquid, or gas states,
as well as phase transitions between these states [7]. Traditionally, AP models a
solid. To model a gas with AP, all agents experience purely repulsive forces from
other agents as well as from obstacles and the side boundaries of the corridor.1

Although AP was not designed to be an exact model of a gas, we have found
that its behavior does a good job of mimicking a gas.

5 The Kinetic Theory Approach

There are two main methods for modeling fluids: the Eulerian approach, which
models the fluid from the perspective of a finite volume fixed in space through
which the fluid flows (typically the method of computational fluid dynamics), and
the Lagrangian approach, in which the frame of reference moves with the fluid
volume (typically the kinetic theory approach) [9]. Because we are constructing
a model from the perspective of the agents, we choose the latter. Kinetic theory
(KT) is typically applied to plasmas or gases, and here we model a gas. This
overview of KT borrows heavily from Garcia [10].

When modeling a gas, the number of particles is problematic, i.e., in a gas
at standard temperature and pressure there are 2.687× 1019 particles in a cubic
centimeter. A typical solution is to employ a stochastic model that calculates and
updates the probabilities of where the particles are and what their velocities are.
This is the basis of KT. One advantage of this model is that it enables us to make
stochastic predictions, such as the average behavior of the ensemble. The second
advantage is that with real robots, we can implement this with probabilistic
robot actions, thereby avoiding predictability of the individual agent.

In KT, particles are treated as possessing no potential energy (i.e., an ideal
gas), and collisions with other particles are modeled as purely elastic collisions
that maintain conservation of momentum. Using some of the formulas for ki-
netic theory, we can obtain useful properties of the system. If we allow k to be
Boltzmann’s constant, such that k = 1.38 × 10−23 J/K, m to be the mass of
the particle, and T to be the temperature of the system, then we can define the
average speed of any given particle (in 3D) as,

〈v〉 =
∫ ∞

0
vf(v)dv =

2
√

2√
π

√
kT

m

where f(v) is the probability density function for speed.
Another property we can define for KT is the average kinetic energy of the

particles:

1 A frictional force is also included in the AP solid model, but is excluded in gas AP.
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〈K〉 = 〈1
2
mv2〉 =

3
2
kT

Using KT, we are able to model different types of fluid flow. For our simula-
tions, we modeled 2D Couette flow. The original code for this one-sided Couette
flow is a translation of code from Garcia [10] to the Java programming language.
Figure 1 shows a schematic for this one-sided Couette flow, where we have a
fluid moving between two walls – one wall moving with velocity vwall, and the
other stationary. Because the fluid is a Newtonian fluid and has viscosity, we see
a linear velocity profile across the system. Fluid deformation occurs because of
the sheer stress τ , and wall velocity is transferred because of molecular friction
on the particles that strike the wall. On the other hand, the particles that strike
the non-moving wall will transfer some of their velocity to it. This does not
cause the wall to move, since in a Couette flow the walls are assumed to have
infinite length and therefore infinite mass. We chose a Couette flow so that we
can introduce energy into the system and give the particles a direction to move.
This effect is similar to AP modeling a goal force.

Fig. 1. Schematic for a Couette flow

The main differences between AP and KT are: (1) AP deals with forces. KT
deals only with the resulting velocity vectors. (2) With the current force law used
by AP, interactions are “soft collisions,” i.e., repulsive forces cause small devi-
ations in agent velocities. In KT, collisions cause radical, probabilistic changes
in agent velocities. (3) For a given set of starting locations, AP is deterministic,
whereas KT is stochastic.

6 Implementation

We created a 2D simulation world with a pair of corridor walls (which can be
considered Couette walls), obstacles, and agents (modeled as gas particles). The
fluid flow is unsteady with no turbulence, i.e., unsteady laminar flow.

First, we describe our AP gas approach, in which motion is due to attractive
and repulsive forces. Recall that AP uses virtual Newtonian force laws. The force
law used is:
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F = |F | = Gm1m2

r2 (1)

where G is a gravitational constant2, m1 and m2 are the masses, and r is the
distance between the agent and another object/agent. For a robotic implementa-
tion, there is a maximum possible force, Fmax, i.e., F ≤ Fmax always. The value
of Fmax used in our simulations is 1.5. The parameter G is set at initialization of
the program. To maintain a desired distance, R, between agents in an AP solid,
this force is repulsive if r < R and attractive if r > R. For an AP gas, the force
is always repulsive. Each agent has one sensor to detect the range and bearing to
nearby agents, and one effector to move with velocity v. To make the simulation
a realistic model of robots, agents can only detect other agents/objects within a
limited range, namely, 1.5R. Our implementation assumes R = 50.

The corridor and obstacle wall forces are purely repulsive. For AP, the large-
scale fluid motion is driven by an attractive goal force at one end of the corridor.
Different force constants, G, are allowable for inter-agent forces and agent-wall
forces. However, this paper assumes the same G, namely, 1,200. Note that if the
forces for avoidance of an obstacle are equal to the attractive forces felt by the
goal, the particles reach a stagnation point at the intersection with the obstacle
– because all of the forces felt by the particle are in balance. To overcome this
situation, when a particle experiences a repulsive force from an obstacle or wall
that is the same in magnitude but in the opposite direction of the goal force, the
particle translates this into a tangential repulsive force. When choosing an angle
for the tangential force we must be careful to keep the particle from reaching
a stagnation point and keep the particle from moving through the obstacle.
Rotating the angle by 45◦ produces this result nicely. In particular, if the angle
of the force is 180◦ then the angle for this force becomes 135◦ or 225◦, depending
on the direction chosen by the robot.

In parallel with the AP approach, we have also implemented the KT approach.
Our KT approach models a modified (two-sided) Couette flow in which both Cou-
ette walls are moving in the same direction with the same speed. We invented this
variant as a means of propelling all agents in a desired general direction, i.e., the
large-scale fluid motion becomes that of the walls. Particle velocities start ran-
domly and remain constant, unless collisions occur. (Note that with actual robots,
collisions would be virtual, i.e., they would be considered to occur when the agents
get too close. Wall motion would also be virtual.) The system updates the world
in discrete time steps, Δt. We choose these time steps to occur on the order of the
mean collision time for any given agent. Each agent can be described by a position
vector x and a velocity vector v. At each time step, the position of every agent is
reset based on how far it could move in the given time step and its current velocity:

x ← x + vΔt .

This is done for every agent in the system, and positions are updated re-
gardless of walls and obstacles as well as other agents. Once the current agent’s

2 G is not related to actual gravity (which is purely attractive), but is a force constant
used in the system.
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position has been updated, a check is performed to see if that agent has moved
through a wall (including an obstacle wall), in which case the position needs to
be reset as if a collision occurred. If the agent strikes a moving wall, then some
of the energy from the wall is transferred to the agent. This effect models the
molecular friction of the fluid and speeds up the agent. The agent’s position is
reset as a biased Maxwellian distribution, based on where the agent strikes the
wall and how far the agent would have been able to move if the wall were not
there. On actual robots, wall collision detection will be done prior to moving. If
the robot will intersect with the wall on its next move, then it determines its new
position based on a collision, rather than actually colliding with the wall. Once
all agents have moved and their positions have been reset based on collisions
with the walls, inter-agent collisions are processed. The number of collisions in
any given region is a stochastic function of the number of agents in that region
(see [10] for details). This process continues indefinitely or until a desired state
has been reached.

We have just described the KT approach to modeling Couette flow, modi-
fied with a two-sided Couette. We next introduce obstacles into the world, and
consider different methods for modeling interactions with obstacle walls.

For one, we could use a KT approach that treats the obstacle boundaries as
stationary walls, and processes collisions the same as is done with Couette walls.
Unfortunately, in the pure KT approach, agents do not perceive the location of
an obstacle until they have collided with it. When colliding with an obstacle,
the velocity of the particle off the obstacle is distributed Maxwellian in the goal
direction and Gaussian in the lateral direction (i.e., orthogonal to the longitudi-
nal goal direction). This produces excellent results when steady state is reached.
A problem arises, however, since we are not modeling a steady state fluid flow.
If we were given a steady flow, agents in the system would collide with other
agents coming down the flow and through collisions would be pushed around
the obstacle. Since flow is unsteady, one of the last agents in the system (i.e.,
upstream from all the other agents) could strike an obstacle and end up going
in the opposite direction with no mechanism to turn it around.

The traditional AP (solid) approach to obstacle avoidance does extremely well
at navigating around obstacles. Unfortunately, the AP solid approach does not
maintain a good coverage of the environment once the particles have navigated
around the obstacle. Figure 2 shows this in simulation. However, the AP gas
approach (with repulsion only) is able to navigate around obstacles and retain
good coverage, see Fig. 2. A question remains, nonetheless, as to whether we
could do even better by combining AP and KT.

To address this question, we created a hybrid AP/KT algorithm, in which
wall collisions generate large-scale motion, AP repulsive forces enable obstacle
avoidance, and KT is responsible for agent-agent interactions. By treating the
obstacle as a repulsive force, the agents softly bounce off the obstacle walls. This
force causes the agent to turn, thereby allowing more particles to make it around
the obstacle. Since the particles turn softly, they are more likely to hit one of the
moving walls and continue in the direction of the flow until they have made it
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A.

B.

Fig. 2. AP controllers perform a sweep. A. AP solid B. AP gas

around the obstacle. We are able to achieve an even distribution of particles past
the obstacle with this hybrid, as well as increase the number of particles that
make it past in a shorter amount of time. Figure 3 shows the hybrid approach.
Note that numerous alternative hybrids of AP and KT are possible; investigation
of these others will be a topic for future research.

7 Experimental Results

To discover the strengths and weaknesses of each of our four methods (AP solid,
AP gas, KT gas, and the AP/KT gas hybrid), we ran numerous empirical ex-
periments with the simulator. Typical results are shown in Figures 2 and 3.
In these figure, particles begin at the top and move to the bottom (which is the
goal direction). The y-axis is vertical and the x-axis is horizontal. Our starting
point was the AP solid approach to obstacle avoidance. Agent formations stayed
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A.

B.

Fig. 3. KT controllers perform a sweep. A. KT B. AP/KT hybrid

intact with this approach, but coverage was very poor. AP gas yielded results
far better than AP solid for coverage behind the obstacles (Fig. 2).

Like AP gas, pure KT has yielded excellent coverage. However, problems arose
with KT because of the unsteady fluid flow, as discussed above. Furthermore,
because of the unsteady nature of the flow, it typically took longer for the entire
group of KT particles to get around all of the obstacles (if they were able to do
so) than for AP particles to get around the obstacles.

Recall that the hybrid AP/KT approach avoids stagnation points. Other
difficulties arise for the AP/KT method. One difficulty arises when two obstacles
are very close together, i.e., sufficiently close that the forces exerted from them
are able to dominate the goal forces and inter-particle forces. This leaves us with
unexplored areas inside our corridor of obstacles (Fig. 4). All methods using
force laws had problems dealing with this situation.

We have also encountered another potential problem for the KT approaches.
The problem does not appear to be due to agent-agent interactions. Rather,
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Fig. 4. Obstacle field that has a narrow corridor within. The force-based methods will
be unable to explore this area

the problem arises when trying to address both the large-scale movement and
avoidance of multiple obstacles. We notice this when the obstacle density is
increased between the walls. Because the KT methods use collisions with Couette
walls for propulsion in a goal direction, the width of the region between these
walls determines the coverage of the world. In particular, if the walls contain a
group of obstacles several layers abreast, we cannot guarantee that the central
region of the Couette, far from the walls, will be covered by the agents. The pure
AP models do not have this problem.

In summary, AP solid has very poor coverage, whereas all of the gas models
produce excellent coverage, which reaffirms our motivation for choosing gas mod-
els. AP and AP/KT hybrid are better than KT for navigating around obstacles,
although they have greater difficulty navigating through narrow corridors.

8 Theoretical Predictions

One of the key benefits of using a physics-based multi-agent system is that exten-
sive theoretical (formal) analysis tools already exist for making predictions and
guarantees about the behavior of the system. Furthermore, such analyses have
the added benefit that their results can be used for setting system parameters
for achieving desired multi-agent behavior. The advantages of this are enormous
– one can transition directly from theory to a successful robot demo, without
all the usual parameter tweaking. For an example of such a success (using AP
solid), see [5]. To demonstrate the feasibility of applying physics-based analysis
techniques to physics-based systems, we make predictions that support some of
our claims regarding the suitability of gas models for our surveillance task.

Before describing the experiments, let us first present the metric used for
measuring error between the theoretical predictions and the simulation results.
Relative error is used, which is defined as:

| theoretical − actual |
theoretical
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For each experiment, one parameter was perturbed (eight different values of the
affected parameter were chosen). For each parameter value, 20 different runs
through the simulator were executed, each with different random initial agent
positions and velocities. The average relative error (over the 20 runs) and the
standard deviation from the average were determined from this sample.

Next, consider the experiments. Recall that our objectives are to sweep a
corridor and to avoid obstacles along the way. A third objective for the swarm
of agents is that of coverage. We define two types of coverage: longitudinal
(in the goal direction) and lateral (orthogonal to the goal direction). Longi-
tudinal coverage can be achieved by movement of the swarm in the goal di-
rection; lateral coverage can be achieved by a uniform spatial distribution of
the robots between the side walls. The objective of the surveillance task is
to maximize both longitudinal and lateral coverage in the minimum possible
time. The number of particles, initial distribution of particles, and termina-
tion criterion are determined individually for each experiment, based on earlier
studies.

To measure how well the robots achieve the task objective, we observe:

1. The distribution of velocities of all agents in the corridor. This is a
measure of both sweep time and total coverage (i.e., a wide distri-
bution typically implies greater coverage of the corridor length and
width).

2. The degree to which the spatial distribution of the robots matches
a uniform distribution. This is a measure of lateral coverage of the
corridor

3. The average agent speed (averaged over all agents in the corridor).
This is a measure of total coverage.

Measurement of each of these three aspects of the system (velocity distribution,
spatial distribution, average speed) corresponds to each of our three experiments.
Recall (above) that for each experiment, we vary the value of one parameter. The
reason for varying such parameter values is to allow a system designer to optimize
the design – by understanding the tradeoffs involved. In other words, we have
observed that there is a tradeoff between the degrees of longitudinal coverage,
lateral coverage, and sweep speed – greater satisfaction of one can lead to reduced
satisfaction of the others, making this a Pareto-optimization task. By varying
parameter values and showing the resulting velocity and spatial distributions
and average speed, a system designer can choose the parameter values that
yield desired system performance. Finally, why show both theory and simulation
results for each experiment and each parameter value? Our rationale is that it
is far easier for a system designer to work with the theory when deciding what
parameter values to choose for the system. The designer can do this if the theory
is predictive of the system. In our experimental results below, we show that the
theory is indeed predictive of experimental results using our simulation.

For the sake of simplicity, in these experiments we use a subtask of our
complete surveillance task. None of the experiments involve obstacles. For the
first experiment, the agents are placed uniformly along the beginning of a long
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corridor and allowed to perform one sweep. In the second experiment, the agents
are placed in a square container in an initially tight Gaussian distribution and
allowed to diffuse to an asymptotic state. For the final experiment, the agents are
placed at the beginning of a long corridor once again, and allowed to run for a
predetermined number of time steps, after which the average speed is measured.
In the second and third experiments, there is no goal force or wall movement,
and therefore there is no directed bulk movement (transport) of the swarm.

8.1 Experiment 1: Velocity Distribution

The first theoretical prediction for our system is devoted to longitudinal coverage
and sweep speed via movement. The theory predicts the velocity distribution for
each of the approaches, AP and KT. It is assumed that fluid flow is in the
y-direction (downward toward the goal), as in Fig. 2.

Recall that the AP approach is an implementation of F = ma. Assuming
Fy = g, where g is the magnitude of the goal force, which is constant for all
particles and is strictly in the goal direction, and assuming m = 1 (which is
assumed throughout this paper), we have the following derivation (where vy is
the magnitude of the velocity in the y-direction, and vx is assumed to be 0):

g =
dvy

dt

g · dt = dvy

g

∫
dt =

∫
dvy

g · t = vy

vy = gt

This shows that the velocity in the direction of the goal is just the force of the
goal times the amount of time that has elapsed. We set up an experiment using
this theoretical formula to determine the relative error for our experiments. The
experiment placed 500 agents in the simulator and terminated in 100 time steps,
since by this time the agents reach the maximum velocity that can be achieved
on real robots. The parameter being varied is the goal force. The results are
plotted in Fig. 5, and the relative error is roughly 1%.

For KT, a traditional one-sided Couette drives the bulk swarm movement.
The complete derivation for the velocity profile of a Couette flow can be found
in [9] (pages 417–420), but here we present a more concise version.

For steady, 2D flow with no external forces, there is a classical “Governing
Equation” that predicts the y-direction momentum of the fluid. This Governing
Equation is:

ρvy
∂vy

∂y
+ ρvx

∂vy

∂x
= −∂P

∂y
+

∂τyy

∂y
+

∂τxy

∂x
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Fig. 5. Relative Error for Goal-Velocity (Prediction 1)

where ρ is the fluid density, vx and vy are the x- and y-components of velocity,
P is the fluid pressure, and τyy and τxy are the normal and shear stresses,
respectively. We can use this equation for momentum to derive the velocity.
However, first we need to specialize the equation for our particular situation.
For Couette flow, the equation becomes:

0 =
∂

∂x
(μ

∂vy

∂x
)

where μ is the fluid viscosity. Assuming an incompressible, constant temperature
flow with constant viscosity, this becomes:

∂2vy

∂x2 = 0 (2)

Equation 2 is the Governing Equation for steady, 2D, incompressible, constant
temperature Couette flow. Integrating twice with respect to x to find vy, we get:

vy = c1x + c2 (3)

We can solve for c1 and c2 from the boundary conditions. In particular, at
the stationary Couette wall (x = 0), vy = 0, which implies that c2 = 0 from
Equation 3. At the moving wall (x = D), vy = vwall, where D is the Couette
width and vwall is the velocity of the moving wall, which is in the y-direction
(toward the goal). Then c1 = vwall/D from Equation 3.

Substituting these values for c1 and c2 back into Equation 3, we get:

vy

vwall
=

x

D

This is a linear profile.
We set up an experiment to measure the relative error generated by our

simulation, with each particle behaving as if it were part of a one-sided Couette
flow. Each experiment contained 3,000 particles, and ran for 50,000 time steps.
When determining the error, we divided the world into seven discrete cells. For
each cell, we determined the average velocity of the particles located in that cell.
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The relative error was averaged across all cells and plotted in Fig. 5 for eight
different wall speeds. One can see that the error is below 20%, with a reduction
in error for KT as the wall speed is increased. Note that the original algorithms
from Garcia [10] also have error between theory and simulation that is slightly
below 20%. Reasons for this discrepancy between theory and simulation are
elaborated in the discussion section below. When determining the longitudinal
coverage via swarm movement, we are able to predict very accurately for both
algorithms in the simple scenario, except at slow wall speeds for KT.

8.2 Experiment 2: Spatial Distribution

For the second experiment, we predict the lateral coverage via the spatial distri-
bution. For this experiment, there is neither a goal direction nor obstacles. The
agents’ task is to diffuse throughout the system. The theory for each approach
in gas formation predicts a uniform distribution throughout the system. For
the experimental setup, we measured the distance from the uniform distribution
once the gas reached an asymptotic state. Therefore, we divided our system into
discrete cells and counted the number of particles in each cell. Theory predicts
that the number of particles in each cell should be n/c, where n is the total
number of particles and c is the total number of grid cells that cover our system.
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Fig. 6. Relative Error for Uniform Distribution (Prediction 2)

Our experimental system serves as a simple container to hold a gas. The
gas should diffuse within the container until it reaches an asymptotic state and
contains equal numbers of particles in each cell. We allowed the system several
thousand time steps, starting from a tight Gaussian distribution about the center
of the container, to reach this state and then measured the number of particles in
each cell. This measurement was averaged over many time steps, since particles
were still moving through the system and diffusion did not imply particles ceased
to move. Both experiments were the same for AP and KT, and the results can
be found in Fig. 6. In both cases, the parameter being varied is the number of
particles. Once again, we are able to predict the spatial distribution with relative
error less than 20%.
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There is a noticeable downward trend for the relative error in the AP system
as more particles are added to the system. Recall that in AP we use forces to
affect other particles as well as forces from the walls to keep the particles inside
the simulation. This requires that particles have a desired radius such that when
another particle enters this radius, it is repelled away. As more particles are
added to the simulation, the space is filled with particles that are constantly
pushing each other away and moving into the only formation that will allow
them all to fit, which is a uniform distribution.

8.3 Experiment 3: Average Speed

For the third experiment, we predict the average speed of the particles in the
system. The average speed of the particles serves as a measure of how well the
system will be able to achieve complete coverage, because higher speed implies
greater coverage. The derivation for AP’s prediction of average speed begins
with a theoretical formula for AP system potential energy (PE) from [11]. This
theory assumes that the particles start in a cluster of radius 0. There are two
different situations, depending on the radial extent to which Fmax dominates
the force law F = ma. Recall that agents use Fmax when F > Fmax. This
occurs when G

r2 > Fmax or, equivalently, r ≤
√

G
Fmax

≡ R′. The first situation
is when Fmax is used only at close distances, i.e., when 0 ≤ R′ ≤ 1.5R. The
second situation occurs when R′ > 1.5R. Here we assume the first situation, i.e.,
a low value of G is used such that G ≤ Fmax(1.5R)2, and Fmax is only used at
close distances. Because we are using AP gas, there is no friction and all forces
are repulsive. We begin with a two-particle system. In this case, the formula is
the sum of two integrals. The first represents the force felt by one particle as it
approaches another, from a distance of 1.5R to R′. The second is the force Fmax

that is experienced when 0 ≤ r ≤ R′. Then, using R′ as defined above, with r
the inter-agent distance, we have (V is the standard symbol for PE):

PE = V =
∫ R′

0
Fmaxdr +

∫ 1.5R

R′

G

r2 dr

= FmaxR′ + G

∫ 1.5R

R′
r−2dr

= FmaxR′ + G(−r−1)|1.5R
R′

= FmaxR′ + G

(
− 1

1.5R
+

1
R′

)

=
√

GFmax + G

(√
Fmax

G
− 1

1.5R

)
because R′ =

√
G

Fmax

=
√

GFmax +
√

GFmax −
(

G

1.5R

)

= 2
√

GFmax −
(

G

1.5R

)
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Now we generalize V to N particles. VN is our abbreviation for total potential
energy, and

VN =
N−1∑
i=0

iV =
V N(N − 1)

2

Note that all the potential energy transforms into kinetic energy (since there is
no friction energy dissipation), i.e., VN → KE. Also, the total kinetic energy,
KE, is equal to 1

2

∑N
i=1 (v(i))2, assuming m=1 and v(i) is the speed of particle i.

This formula for KE is equal to N
2 〈v2〉, where 〈v2〉 is the average of the particle

speeds squared.
Setting VN = KE, we get:

V N(N − 1)
2

=
N

2
〈v2〉

V (N − 1) = 〈v2〉
Substituting for V we get

〈v2〉 = V (N − 1) = (N − 1)
[
2
√

GFmax −
(

G

1.5R

)]

From [12], we know that the relationship between 〈v〉 and 〈v2〉 is the following:

〈v〉 =
√
〈v2〉 − σ2

where σ2 is the variance of the velocity distribution. However, because the vari-
ance of the velocity distribution is not typically available when making a the-
oretical prediction, one approximation (which is an upper bound on the true
theoretical formula because it assumes 0 variance) that we can use is:

〈v〉 ≈
√
〈v2〉 =

√
(N − 1)

[
2
√

GFmax −
(

G

1.5R

)]

Using this equation for AP, we ran through the experiments (starting with
the particles in a tight cluster to match the theory), allowed the gas to reach an
asymptotic state, and measured the relative error. For each experiment, there
were 100 agents in the system. The total number of time steps required to reach
this asymptotic state is different for each value of G since it requires that the
agents are no longer interacting with each other. This terminating state can be
found when all the agents have ceased to change their velocity. The parameter
being varied is the gravitational force, G. As seen in Fig. 7, the error is less than
6%. Furthermore, if the system designer has any clue as to what variance to
expect in speeds, the theoretical prediction will be greatly improved.

In addition to verifying the formula for 〈v〉, we also verified the predictive-
ness of the formula above for 〈v2〉, which is precise because it does not involve
variance. The relative error in this case is less than 0.07% for all values of G,
which is extremely low.
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Fig. 7. Relative Error for Average Speed (Prediction 3)

We next show how we derive a KT formula for average speed by modifying
the derivation for 3D 〈v〉 in [10] to a 2D formula for 〈v〉 (so it applies to our
simulation). Assuming a system in thermodynamic equilibrium (since there is
no bulk transport), with velocity components within the ranges vx + dvx and
vy + dvy, and k is Boltzmann’s constant, m is the particle mass, v is the mag-
nitude of the particle velocity (i.e., the particle speed), and T is the initial
system temperature (a simple, settable system parameter), then the probabil-
ity, f(vx, vy)dvxdvy, that a particle has velocity components in these ranges is
proportional to e(−mv2/2kT )dvxdvy. In particular, we have:

f(vx, vy)dvxdvy = Ae(−mv2/2kT )dvxdvy = Ae(−mvx
2/2kT )e(−mvy

2/2kT )dvxdvy

because v2 = vx
2 + vy

2, and A is a normalization constant that is fixed by the
requirement that the integral of the probability over all possible states must be
equal to 1, i.e., ∫ ∞

0
f(vx, vy)dvxdvy = 1

Therefore,

A =
1∫ ∞

0 e(−mvx
2/2kT )dvx

∫ ∞
0 e(−mvy

2/2kT )dvy

To simplify the expression for A, we can use the fact (from pages 40-46 of [13])
that: ∫ ∞

0
e(−mvx

2/2kT )dvx =

√
2πkT

m

and then do likewise for vy. Therefore:

f(vx, vy)dvxdvy =
( m

2πkT

)
(e(−m(vx

2+vy
2)/2kT ))dvxdvy

where m
2πkT is A.
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Note, however, that f(vx, vy)dvxdvy is a probability for a velocity vector, but
we want average speed. To get average speed, the math is easier if we go from
Cartesian to polar coordinates. In particular, to go from velocity to speed, we
integrate over all angles.

In polar coordinates, 2πvdv is the area of extension (annulus) due to Δv. In
other words, the area of an annulus whose inner radius is v and outer radius is
v + dv is 2πvdv. Then the Maxwell-Boltzmann distribution of speeds, f(v)dv, is
obtained by integrating the velocity distribution, f(vx, vy)dvxdvy, over all angles
from 0 to 2π. This integration yields:

f(v)dv = 2πv
( m

2πkT

)
(e(−mv2/2kT ))dv

Canceling terms, the right-hand side becomes:

= v
( m

kT

)
(e(−mv2/2kT ))dv

Because 〈v〉 is an expected value,

〈v〉 =
∫ ∞

0
vf(v)dv =

m

kT

∫ ∞

0
v2(e(−mv2/2kT ))dv

From [14](page 609), we know that
∫ ∞
0 e−ax2

x2dx = 1
4

√
πa− 3

2 . Substituting v
for x and m

2kT for a, we get:

〈v〉 =
( m

kT

)
I(2) =

1
4

√
8πkT

m

Once again, we set up an experiment to measure the actual average speed of
the particles in the system. We allowed the system to converge to an asymptotic
state for 50,000 time steps measuring the average speed. For each of the 500
particles in the system, we found the average speed, 〈v〉. This speed was used to
find the relative error for the system. Since temperature drives changes in speed,
we varied the temperature. Note that by setting T , a system designer can easily
achieve desired behavior. The results can be found in Fig. 7 for the different
temperatures. Our ability to predict the average speed of the particles is shown,
by errors less than 10%.

9 Theoretical Predictions: Discussion

We are capable of predicting three different properties of the system, all of which
affect coverage, with an accuracy of less than 20% error, and most with error
less than 10%. A 10% error is low for a theoretical prediction.

By looking at the relative error graphs of both the AP and KT approaches,
one notices that the AP error is always lower than that of KT (except in the
case of 〈v〉, where the AP formula is a rough approximation). In fact, only
KT gets 20% errors – AP errors are always substantially lower than 20%. Our
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rationale for AP having lower errors between theory and simulation is that AP
uses a deterministic agent-positioning algorithm, whereas KT uses a stochastic
algorithm for updating particle positions. Therefore, AP predictions are precise,
whereas KT predictions are only approximate. Furthermore, as stated in [10],
Monte Carlo simulations such as KT need very long runs and huge numbers of
particles to acquire enough statistical data to produce accurate (theoretically
predictable) results. We cannot guarantee this, since we are developing control
algorithms for robotic swarms with a few to a few thousand robots. Therefore,
our experiments show a higher error than desired for a Monte Carlo method but
they are realistic for real-world swarms.

In conclusion, there appears to be a tradeoff. AP systems are more predictable
– both on the macroscopic swarm level and on the level of individual agents.
Therefore, if swarm predictability is a higher priority, then AP is preferable. On
the other hand, if it is important that individual agents not be predictable (e.g.,
to an enemy), then KT is preferable.

10 Future Work

The next step is to develop a theory for the full surveillance task. Once this
theory is complete, experiments need to be run to test all approaches: AP, KT,
and various AP/KT hybrids. We plan to run numerous experiments to measure
coverage versus time and determine which of the algorithms outperforms the
others. Once that is complete, the next step is to port these approaches to
our laboratory mobile robots. The solid AP approach has already been ported.
Transitioning to AP gas will be straightforward. We will need to determine, using
a more realistic robot simulator, how difficult (or easy) it will be to port KT to
the actual robots.
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Abstract. This paper summarizes a novel framework, called “physi-
comimetics,” for the distributed control of large collections of mobile
physical agents in sensor networks. The agents sense and react to virtual
forces, which are motivated by natural physics laws. Thus, physicomimet-
ics is founded upon solid scientific principles. Furthermore, this frame-
work provides an effective basis for self-organization, fault-tolerance, and
self-repair. Examples are shown of how this framework has been applied
to construct regular geometric lattice configurations (distributed sensing
grids). Analyses are provided that facilitate system understanding and
predictability, including a quantitative analysis of potential energy that
provides the capability of setting system parameters based on theoretical
laws. Physicomimetics has been implemented both in simulation and on
a team of seven mobile robots.

1 Introduction

The focus of our research is to build sensor network systems, specifically, to de-
sign rapidly deployable, scalable, adaptive, cost-effective, and robust networks
(i.e., swarms, or large arrays) of autonomous distributed mobile sensing agents
(e.g., robots). This combines sensing, computation and networking with mo-
bility, thereby enabling deployment, assembly, reconfiguration, and disassembly
of the multi-agent collective. Our objective is to provide a scientific, yet prac-
tical, approach to the design and analysis (behavioral assurance) of aggregate
sensor systems.

Agent vehicles could vary widely in type, as well as size, e.g., from nanobots
to micro-air vehicles (MAVs) and micro-satellites. Agents are assumed to have
sensors and effectors. An agent’s sensors perceive the world, including other
agents, and an agent’s effectors make changes to that agent and/or the world,
including other agents. It is assumed that agents can only sense and affect nearby
agents; thus, control rules must be “local.” Desired global behavior emerges from
local agent interactions.

This paper summarizes our physicomimetics framework for robot control. A
theoretical analysis of potential energy is then provided, allowing us to properly
set system parameters a priori. Finally, results of a multi-robot implementation
are presented.

M.G. Hinchey et al. (Eds.): FAABS 2004, 3228, pp. 131–145, 2005.
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2 Relation to Alternative Approaches

System analysis enables both system design and behavioral assurance. Here, we
adopt a physics-based approach to analysis. We consider this approach to fit
under the category of “formal methods,” not in the traditional sense of the term
but rather in the broader sense, i.e., a formal method is a mathematical tech-
nique for designing and/or analyzing a system. The two main traditional formal
methods used for this purpose are theorem proving and model checking. Why do
we use a physics-based method instead of these more traditional methods? The
gist of theorem proving (model checking) is to begin with a theorem (property)
and prove (show) that it holds for the target system. But what if you don’t
know how to express the theorem or property in the first place? For example,
suppose you visually observe a system behavior that you want to control, but
you have no idea what causes it or how to express your property in concrete,
logic-based or system-based terms? In particular, there may be a property/law
relating various system parameters that enables you to predict or control the
observed phenomenon, but you do not understand the system well enough to
write down this law.

For such a situation, the traditional, logic-based formal methods are not di-
rectly applicable. One potentially applicable approach is empirical, e.g., machine
discovery. We have chosen a theoretical (formal) physics-based approach because:

– Empirical techniques can tell you what happens, but not why it happens.
Causal explanations are easier to understand, apply, build upon, and gener-
alize.

– If a physics-based analysis technique is predictive of a system built on physics-
based principles, then this analysis provides formal verification of the cor-
rectness of the system implementation. No such claims can be made for
empirical results.

– Finally, and most importantly, it is possible to go directly from theory to a
successful robot demo, without the usual extensive parameter tweaking! We
have already demonstrated such successes with our theories [1].

3 The Physicomimetics Framework

In our physicomimetics framework, virtual physics forces drive a multi-agent
system to a desired configuration or state. The desired configuration (state) is
the one that minimizes overall system potential energy. We also refer to our
framework as “artificial physics” or “AP”.

At an abstract level, physicomimetics treats agents as physical particles. This
enables the framework to be embodied in vehicles ranging in size all the way from
nanobots to satellites. Particles exist in two or three dimensions and are consid-
ered to be point-masses. Each particle i has position x = (x, y, z) and velocity
v = (vx, vy, vz). We use a discrete-time approximation to the continuous behav-
ior of the particles, with time-step Δt. At each time step, the position of each
particle undergoes a perturbation Δx. The perturbation depends on the current



A Formal Analysis of Potential Energy in a Multi-agent System 133

velocity, i.e., Δx = vΔt. The velocity of each particle at each time step also
changes by Δv. The change in velocity is controlled by the force on the particle,
i.e., Δv = FΔt/m, where m is the mass of that particle and F is the force on
that particle.1 A frictional force is included, for self-stabilization. This force is
modeled as a viscous friction term, i.e., the product of a viscosity coefficient and
the agent’s velocity (independently modeled in the same fashion by [2]).

The time step Δt is proportional to the amount of time the robots take
to perform their sensor readings. A parameter Fmax is added, which restricts
the amount of acceleration a robot can achieve. A parameter Vmax restricts
the velocity of the particles. Collisions are not modeled, because AP repulsive
forces tend to avoid collisions. Also, we do not model the low-level dynamics of
the actual robot. We consider AP to be an algorithm that will determine “way
points” for the actual physical platforms. Lower-level software can steer between
way points.

Given a set of initial conditions and some desired global behavior, we define
what sensors, effectors, and force F laws are required such that the desired
behavior emerges.

4 Designing Lattice Formations

The example considered in this section was inspired by an application which
required a swarm of MAVs to form a hexagonal lattice, thus creating an effective
antenna [3].

Since MAVs (or other small agents such as nanobots) have simple sensors
and primitive CPUs, our goal was to provide the simplest possible control rules
requiring minimal sensors and effectors. Creating hexagons appears to be rather
complicated, requiring sensors that can calculate range, the number of neighbors,
their angles, etc. However, it turns out that only range and bearing information
are required. To see this, recall that six circles of radius R can be drawn on the
perimeter of a central circle of radius R. Figure 1 illustrates this construction.
If the particles (shown as small circular spots) are deposited at the intersections
of the circles, they form a hexagon with a particle in the middle.
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Fig. 1. How circles can create hexagons

1 F and v denote the magnitude of vectors F and v.
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Fig. 2. The force law, when R = 50, G = 1200, p = 2 and Fmax = 1

We see that hexagons can be created via overlapping circles of radius R. To
map this into a force law, each particle repels other particles that are closer than
R, while attracting particles that are further than R in distance. Thus each parti-
cle can be considered to have a circular “potential well” around itself at radius R
– neighboring particles will want to be at distance R from each other. The inter-
section of these wells is a form of constructive interference that creates “nodes” of
very low potential energy where the particles will be likely to reside. The particles
serve to create the very potential energy surface to which they are responding!2

With this in mind we defined a force law F = Gmimj/rp, where F ≤ Fmax

is the magnitude of the force between two particles i and j, and r is the range
between the two particles. The variable p represents a user-defined power, which
can range from -5.0 to 5.0. When p = 0.0 the force law is constant for all ranges.
Unless stated otherwise, we assume p = 2.0 and Fmax = 1 in this paper. The
“gravitational constant” G is set at initialization. The force is repulsive if r < R
and attractive if r > R. Each particle has one sensor that can detect the range
and bearing to nearby particles. The only effector is to be able to move with
velocity v ≤ Vmax. To ensure that the force laws are local, particles have a visual
range of 1.5R.

Figure 2 shows the magnitude of the force, when R = 50, G = 1200, p = 2,
and Fmax = 1 (the system defaults). There are three discontinuities in the
force law. The first occurs where the force law transitions from Fmax to F =
Gmimj/rp. The second occurs when the force law switches from repulsive to
attractive at R. The third occurs when the force goes to 0.

The initial conditions are a tight cluster of robots, that propel outward (due
to repulsive forces) until the desired geometric configuration is obtained. This is
simulated by using a two dimensional Gaussian random variable to initialize the
positions of all particles. Velocities of all particles are initialized to be 0.0, and
masses are all 1.0 (although the framework does not require this).

2 The potential energy surface is never actually computed by the robots. It is only
computed in the simulation for visualization/analysis.
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Fig. 3. Agents can form hexagonal and square lattices

Using this force law, AP successfully forms hexagonal lattices, with a small
number of agents or hundreds. Square lattices are also easily obtained [4,1]. For
a radius R of 50, a gravitational constant of approximately G = 1200 provides
good results. The issue of how to set G, given other system parameters, is the
focus of the analysis in this paper.

5 Energy Analysis

Because our force law is conservative (in the physics sense), the AP system should
obey conservation of energy – if it is implemented correctly. Furthermore, as we
shall see, the initial potential energy of the system in the starting configuration
yields important information concerning the dynamics of the system.

First, we measured the potential energy (PE) of the system at every time
step, using the path integral V = −

∫
s
F • ds.3 This can be thought of as the

amount of work required to push each particle into position, one after another,
for the current configuration of particles. Because the force is conservative, the
order in which the particles are chosen is not relevant. Then we also measured
the kinetic energy (KE) of the particles (mv2/2). Finally, since there is friction
we also must take into account that energy as well, which we can consider to be
heat energy. If there is no friction, the heat energy is zero.

Figure 4 illustrates an example of the energy dynamics of the AP system. As
expected, the total energy remains constant over time. The system starts with
only PE. Note that the graph illustrates one of the foundational principles of
the AP system, namely, that the system continually evolves to lower PE, until
a minimum is reached. This reflects a form of stability of the final aggregate
system, requiring work to move the system away from desired configurations
(thus increasing PE).

As the system evolves, the PE is converted into KE and heat, and the particles
exhibit maximum motion, which is not very large (see Figure 4). Finally, however,
the particles slow, and only heat remains. Note also that PE is negative after
a certain point. This illustrates stability of individual particles (as well as the

3 V is the traditional notation for potential energy.
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1300. In this example p = 2. The arrows show the values of Gopt and Gmax, respectively

collective) – it would require work to push individual particles out of these
configurations. Hence this graph shows how the system would be resilient to
moderate amounts of force acting to disrupt it, once stable configurations are
achieved.

We have found that the initial configuration PE indicates important proper-
ties of the final evolved system, namely how well it evolves and the size of the
formation. Intuitively, higher initial PE indicates that more work can be done
by the system – and the creation of bigger formations requires more work. We
have also observed that higher initial PE is correlated with better formations.
Apparently there is more energy via momentum to push through local optima
to global optima.

For example, consider Figure 5, which shows the PE of the initial configura-
tion of a 200 particle system (when p = 2), for different values of G. In the figure,
Gopt is the value of G at which the PE is maximized, and Gmax is the largest
useful setting of G (i.e., above Gmax all forces are equal to Fmax). Interestingly,
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PE is maximized almost exactly at the range of values of G (around 1200 to
1400) that we have found empirically to yield the best structures.

We now compute a general expression for when PE is maximized. To find
this expression for Gopt, we first need to calculate the potential energy, V . For
simplicity, we begin by calculating the potential energy of a two particle system
where the two particles are very close to each other.

It will be necessary to consider three different situations, depending on the
radial extent to which Fmax dominates the force law F = G/rp. Recall that
agents use Fmax when F ≥ Fmax. This occurs when G/rp ≥ Fmax or, equiv-
alently, when r ≤ (G/Fmax)1/p ≡ R′. The first situation occurs when Fmax is
used only when the other particle is at close range, i.e., when 0 ≤ R′ ≤ R. The
second situation occurs when R ≤ R′ ≤ 1.5R. The third situation occurs when
Fmax is always used, i.e., when R′ > 1.5R. In this situation the force law is
constant (Fmax) and V remains constant with increasing G.

Let us now compute the PE for the first situation. It will be necessary to
calculate three separate integrals for this situation. The first will represent the
attractive force felt by one particle as it approaches the other, from a range of
1.5R to R. The second is the repulsive force of F = G/rp when r < R and
F < Fmax. The third represents the range where the repulsive force is simply
Fmax. Then:

V = −
∫ 1.5R

R

G

rp
dr +

∫ R

R′

G

rp
dr +

∫ R′

0
Fmax dr

Note that the first term is negative because it deals with attraction, whereas
the latter two terms are positive due to repulsion. Solving and substituting for
R′ yields:

V =
(2R1−p − (1.5R)1−p)G

(1− p)
− pG1/p

(1− p)Fmax
(1−p)/p

The derivation of the second and third situations is similar (see Appendix
for full derivations). The first situation occurs with low G, when G ≤ FmaxRp.
The second situation occurs with higher levels of G, when FmaxRp ≤ G ≤
Fmax(1.5R)p. The third situation occurs when G ≥ Fmax(1.5R)p. In the third
situation the PE of the system remains constant as G increases even further.
Thus the maximum useful setting of G is Gmax = Fmax(1.5R)p. We can see
this in Figure 5 (which represent the full curves over all three situations), where
Gmax = 5625.

We next generalize to N particles for V (denoted VN ). Note that we can
build our N particle system one particle at a time, in any order (because forces
are conservative), resulting in an expression for the total initial PE:

VN =
N−1∑
i=0

iV =
V N(N − 1)

2

with V defined above for the 2-particle system.
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Now that we have a general expression for the potential energy, VN , to find
the expression for Gopt we need to find the value of G that maximizes VN .
First, we need to determine whether the maximum occurs in the first or second
situation. It is easy to show that the slope of the PE equation for the second
situation is strictly negative; thus the maximum must occur in the first situation.
To find the maximum, we take the derivative of the VN for the first situation
with respect to G, set it to zero, and solve for G. The resulting maximum is at:

Gopt
� = FmaxRp[2− 1.51−p]

p/(1−p)

Note that the value of Gopt does not depend on the number of particles, which
is a nice result. This simple formula is surprisingly predictive of the dynamics
of a 200 particle system. For example, when Fmax = 1, R = 50, and p = 2,
Gopt = 1406, which is only about 7% higher than the value shown in Figure 5.
Similarly, when p = 3, Gopt = 64, 429, which is very close to observed values.
The difference in values stems from the fact that in our simulation we have
initial conditions specified by a two-dimensional Gaussian random variable with
a small variance σ2, whereas our mathematical analysis assumes a variance of
zero. Despite this difference, the equation for Gopt works quite well.

As described in [4], we have also had success in creating square lattices.
Performing a similar potential energy analysis yields a Gopt of:

Gopt
� = FmaxRp

[√
2(N − 1)(2− 1.31−p) + N(2− 1.71−p)√

2(N − 1) + N

]p/(1−p)

Note that Gopt actually depends on the number of particles N , which is the
first time we have seen such a dependency. It occurs because we use two “species”
of particles to create square lattices, which have different sensor ranges. However,
because this difference is not large, the dependency on N is also not large. For
example, with R = 50 and Fmax = 1, then when p = 2 and there are 200 total
particles, Gopt = 1466. With only 20 particles Gopt = 1456. Similarly, when
p = 3 we obtain values of Gopt = 67, 330 and Gopt = 66, 960 respectively (for
200 and 20 particle systems).

6 Experiments with a Team of Robots

For our experiments, we used seven robots from the KISS Institute for Practi-
cal Robotics. For detecting neighboring robots, Sharp GP2D12 IR sensors are
mounted, providing a 360 degree field of view, from which object detection is
performed. The output is a list that gives the bearing and range to all neighbor-
ing robots. Once sensing and object detection are complete, the AP algorithm
computes the virtual force felt by that robot. In response, the robot will turn
and move to some position. This cycle of sensing, computation and motion con-
tinues until we shut down the robots or they lose power. The AP code is simple
to implement. It takes a robot neighbor list as input, and outputs a turn and
distance to move.
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The goal of the first experiment was to form a hexagon with seven robots.
Each robot ran the same software. The desired distance R between robots was
23 inches. Using the theory we chose a G of 270 (p = 2 and Fmax = 1). The
beginning configuration was random. The final configuration was a hexagon. The
results are consistent, achieving the same formation ten times in a row with the
same starting conditions and taking approximately seven cycles on average. For
all runs the robots were separated by 20.5 to 26 inches in the final formation,
which is only slightly more error than the sensor error.

For our second experiment we placed four photo-diode light sensors on each
robot, one per side. These produced an additional force vector, moving the robots
towards a light source (a window).4 The results are shown in Figure 6, and were
consistent over ten runs, achieving an accuracy comparable to the formation ex-
periment above. The robots moved about one foot in 13 cycles of the AP algorithm.

Fig. 6. Seven robots get into formation, and move toward the light

7 Summary, Related and Future Work

This paper presents a novel analysis of AP, focusing on potential energy. This
analysis provides us with a predictive technique for setting important parameters
in the system, thus enabling a system user to create (with good assurance) large
formations. This static analysis combines many important parameters of the
system, such as G, R, p, Fmax, and sensor range. It also includes the geometry
of the formations in a natural fashion. The parameter N was included as well,

4 The reflection of the window on the floor is not noticed by the robots and is not the
light source.
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but it turns out to be of little relevance for our most important results. This is
a nice feature, since our original motivation for the AP approach was that we
wished it to scale easily to large numbers of agents. To include the other relevant
dynamic parameters such as Δt, Vmax and friction will require a more dynamic
analysis.

The work that is most related consists of other theoretical analyses of swarm
systems. Our comparisons are in terms of the goal and method of analysis. There
are generally two goals: stability and convergence/correctness. Under stability
is the work by [5, 6, 7]. Convergence/correctness work includes [5]. Other goals
of theoretical analyses include time complexity [8], synthesis [9], prediction of
movement cohesion [5], coalition size [6], number of instigators to switch strate-
gies [10], and collision frequency [11].

Methods of analysis are also diverse. Here we focus only on physics-based
analyses of physics-based swarm robotics systems. We know of four methods.
The first is the Lyapunov analysis by [7]. The second is the kinetic gas theory
by [11]. The third is the minimum energy analysis by [9]. The fourth develops
macro-level equations describing flocking as a fluid-like movement [12].

The capability of being able to set system parameters based on theoretical laws
has enormous practical value. To the best of our knowledge, the only analyses
mentioned above that can be used to set system parameters are those of [6,10,12].
The first two analyses are of behavior-based systems, while the latter is of a
“velocity matching” particle system.

In the long run, we’d like to design and analyze virtual worlds based on AP.
The theoretical results being developed here would formalize the multi-robot
motions in such a virtual world, which would then influence the coordination of
actual robots.
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Appendix: Derivation of Potential Energy Analysis

Hexagonal Formations

In this appendix are details for computing the general expression for PE, and
where it is maximized. For simplicity, we begin by calculating the potential
energy of a two particle system where the two particles are very close to each
other.

It will be necessary to consider three different situations, depending on the
radial extent to which Fmax dominates the force law F = G/rp. Recall that
agents use Fmax when F ≥ Fmax. This occurs when G/rp ≥ Fmax or, equiv-
alently, when r ≤ (G/Fmax)1/p ≡ R′. The first situation occurs when Fmax is
used only when the other particle is at close range, i.e., when 0 ≤ R′ ≤ R. The
second situation occurs when R ≤ R′ ≤ 1.5R. The third situation occurs when
Fmax is always used, i.e., when R′ > 1.5R. In this situation the force law is
constant (Fmax) and V remains constant with increasing G.

First Situation: Let us now compute the PE for the first situation. It will be
necessary to calculate three separate integrals for this situation. The first will
represent the attractive force felt by one particle as it approaches the other,
from a range of 1.5R to R. The second is the repulsive force of F = G/rp when
r < R and F < Fmax. The third represents the range where the repulsive force
is simply Fmax.5 Then:

V = −
∫ 1.5R

R

G

rp
dr +

∫ R

R′

G

rp
dr +

∫ R′

0
Fmax dr

5 Throughout our theoretical results we assume that p �= 1.0, which is reasonable since
we typically do not run AP with that setting.
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Note that the first term is negative because it deals with attraction, whereas
the latter two terms are positive due to repulsion. Then:

V = − Gr1−p

(1− p)

∣∣∣∣
1.5R

R

+
Gr1−p

(1− p)

∣∣∣∣
R

R′
+ Fmaxr|R

′

0

Expanding yields:

V = −G(1.5R)1−p

(1− p)
+

GR1−p

(1− p)
+

GR1−p

(1− p)
− G(R′)1−p

(1− p)
+ FmaxR′

Substituting for R′ yields:

V =
G

(1− p)

[
2R1−p − (1.5R)1−p −

(
G

Fmax

) 1−p
p

]
+ Fmax

(
G

Fmax

) 1
p

Finally, simplification yields:

V =
(2R1−p − (1.5R)1−p)G

(1− p)
− pG1/p

(1− p)Fmax
(1−p)/p

(1)

Second Situation: The derivation of the second and third situations is similar.
For the second situation:

V = −
∫ 1.5R

R′

G

rp
dr −

∫ R′

R

Fmax dr +
∫ R

0
Fmax dr

Then:

V = − Gr1−p

(1− p)

∣∣∣∣
1.5R

R′
− Fmaxr|R

′

R + Fmaxr|R0

Expanding yields:

V = −G(1.5R)1−p

(1− p)
+

G(R′)1−p

(1− p)
− FmaxR′ + FmaxR + FmaxR

Substituting for R′ and simplifying yields:

V =
G

(1− p)

[(
G

Fmax

) 1−p
p

− (1.5R)1−p

]
+ Fmax

[
2R−

(
G

Fmax

) 1
p

]
(2)

Third Situation: For the third situation:

V = −
∫ 1.5R

R

Fmax dr +
∫ R

0
Fmax dr

Then:
V = −Fmaxr|1.5R

R + Fmaxr|R0
V = −Fmax(1.5R) + FmaxR + FmaxR

V =
FmaxR

2
(3)
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Generalization to N Particles: We next generalize to N particles for V
(denoted VN ). Note that we can build our N particle system one particle at a
time, in any order (because forces are conservative), resulting in an expression
for the total initial PE:

VN =
N−1∑
i=0

iV =
V N(N − 1)

2

with V defined above for the 2-particle system.

Optimum Value for G: Now that we have a general expression for the po-
tential energy, VN , we need to find the value of G that maximizes VN . First, we
need to determine whether the maximum occurs in the first or second situation.
It is trivial to show that the slope of the PE equation for the second situation
is strictly negative; thus the maximum must occur in the first situation. To find
the maximum, we take the derivative of VN for the first situation with respect
to G, set it to zero, and solve for G. The constant N(N − 1)/2 does not effect
this computation:

dVN

dG
=

(2R1−p − (1.5R)1−p)
(1− p)

− G(1−p)/p

(1− p)Fmax
(1−p)/p

= 0

Hence:
(2R1−p − (1.5R)1−p)

(1− p)
=

G(1−p)/p

(1− p)Fmax
(1−p)/p

Solving for G yields:

Gopt
� ≡ G = FmaxRp[2− 1.51−p]

p/(1−p)
(4)

Note that the value of Gopt does not depend on the number of particles.

Square Formations

As described in [4], we have also had success in creating square lattices. The
success of the hexagonal lattice hinged upon the fact that nearest neighbors are
R in distance. This is not true for squares, since if the distance between particles
along an edge is R, the distance along the diagonal is

√
2R. Particles have no

way of knowing whether their relationship to neighbors is along an edge or along
a diagonal.

Suppose each particle is given another attribute, called “spin”. Half of the
particles are initialized to be spin “up”, whereas the other half are spin “down”.

Consider the square depicted in Figure 7. Particles that are spin-up are open
circles, while particles that are spin-down are filled circles. Particles of unlike
spin are distance R from each other, whereas particles of like spin are distance√

2R from each other. This “coloring” of particles extends to square lattices, with
alternating spins along the edges of squares, and same spins along the diagonals.
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��� �
Fig. 7. Square lattices can be formed by using particles of two “spins”. Unlike spins
are R apart while like spins are

√
2R apart

We use the same force law as before: F = Gmimj/rp. However, r is renormalized
to r/

√
2 if two particles have the same spin. Once again the force is repulsive if

r < R and attractive if r > R. To ensure that the force law is local, particles
cannot see other particles that are further than cR, where c = 1.3 if particles
have like spin and 1.7 otherwise.

A similar potential energy analysis can be performed if one views the process
as occurring in three stages: (1) compute the PE of clustering N spin-up parti-
cles together, (2) compute the PE of clustering N spin-down particles, and (3)
compute the PE of combining both clusters.

Again, as with the hexagon formations, three situations can arise. Since the
maximum PE again occurs with the first situation, we focus only on this situation
for the remainder of the analysis.

First Situation for Spin-Up Particles: First, compute the PE of the initial
configuration of two spin-up particles. When particles of like spin interact, r is
renormalized by

√
2, and their sensor range is 1.3R. Thus:

V = −
∫ 1.3

√
2R

√
2R

G

(r/
√

2)
p dr +

∫ √
2R

√
2R′

G

(r/
√

2)
p dr +

∫ √
2R′

0
Fmax dr

Then:

V = −(
√

2)p Gr1−p

(1− p)

∣∣∣∣
1.3

√
2R

√
2R

+ (
√

2)p Gr1−p

(1− p)

∣∣∣∣
√

2R

√
2R′

+ Fmaxr|
√

2R′

0

Expanding yields:

V =− (
√

2)p G(1.3
√

2R)
1−p

(1− p)
+ 2(

√
2)p G(

√
2R)

1−p

(1− p)

− (
√

2)p G(
√

2R′)
1−p

(1− p)
+ Fmax

√
2R′

Substituting for R′ and simplification yields:

V =
√

2

[
(2R1−p − (1.3R)1−p)G

(1− p)
− pG1/p

(1− p)Fmax
(1−p)/p

]

Generalization to N Particles: The computation for V is very similar to
that for the hexagonal lattice, differing only by a constant factor of

√
2 and the

sensor range. We now generalize to N spin-up particles:
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VN =
V N(N − 1)

2

Aggregating all Particles: The computation for spin-down particles is iden-
tical. We now combine the two clusters of N spin-up and N spin-down particles:

VN+N = VN + VN −
∫ 1.7R

R

GN2

rp
dr +

∫ R

R′

GN2

rp
dr +

∫ R′

0
FmaxN2 dr

Then:

VN+N = V (N − 1)N − GN2r1−p

(1− p)

∣∣∣∣
1.7R

R

+
GN2r1−p

(1− p)

∣∣∣∣
R

R′
+ FmaxN2r

∣∣R′

0

Expanding yields:

VN+N = V (N−1)N−GN2(1.7R)1−p

(1− p)
+

2GN2R1−p

(1− p)
−GN2(R′)1−p

(1− p)
+FmaxN2R′

Simplifying and substituting for R′ yields:

VN+N = V (N − 1)N + N2

[
(2R1−p − (1.7R)1−p)G

(1− p)
− pG1/p

(1− p)Fmax
(1−p)/p

]

To determine the value of G for which PE is maximized, we take the derivative
of VN+N with respect to G, set it to zero, and solve for G:

dVN+N

dG
= (N − 1)N

√
2

[
(2R1−p − (1.3R)1−p)

(1− p)
− G(1−p)/p

(1− p)Fmax
(1−p)/p

]
+

N2

[
(2R1−p − (1.7R)1−p)

(1− p)
− G(1−p)/p

(1− p)Fmax
(1−p)/p

]
= 0

Hence:

(N − 1)N
√

2

[
(2R1−p − (1.3R)1−p)

(1− p)
− G(1−p)/p

(1− p)Fmax
(1−p)/p

]
=

−N2

[
(2R1−p − (1.7R)1−p)

(1− p)
− G(1−p)/p

(1− p)Fmax
(1−p)/p

]

Solving for G and simplifying yields:

Gopt
� ≡ G = FmaxRp

[√
2(N − 1)(2− 1.31−p) + N(2− 1.71−p)√

2(N − 1) + N

]p/(1−p)

(5)

Note that in this case Gopt depends on the number of particles N . It occurs
because of the weighted average of different inter-species and intra-species sensor
ranges. However, because this difference is not large, the dependency on N is
also not large (and approaches zero as N increases to infinity).
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Abstract. This paper presents a rigorous evaluation of a novel, dis-
tributed chemical plume tracing algorithm. The algorithm is a combi-
nation of the best aspects of the two most popular predecessors for this
task. Furthermore, it is based on solid, formal principles from the field of
fluid mechanics. The algorithm is applied by a network of mobile sensing
agents (e.g., robots or micro-air vehicles) that sense the ambient fluid
velocity and chemical concentration, and calculate derivatives. The algo-
rithm drives the robotic network to the source of the toxic plume, where
measures can be taken to disable the source emitter. This work is part of
a much larger effort in research and development of a physics-based ap-
proach to developing networks of mobile sensing agents for monitoring,
tracking, reporting and responding to hazardous conditions.

1 Introduction

The objective of this research is the development of an effective, efficient, and
robust distributed search algorithm for a team of robots that must locate an
emitter that is releasing a toxic chemical gas. The basis for this algorithm is a
physics-based framework for distributed multi-agent control [1]. This framework,
called physicomimetics or artificial physics (AP), assumes several to hundreds of
simple, inexpensive mobile robotic agents with limited processing power and a
small set of on-board sensors. Using AP, the agents will configure into geometric
lattice formations that are preserved as the robots navigate around obstacles to
a source location [2].

In this paper, we present a novel algorithm for chemical plume tracing (CPT)
that is built upon the AP framework. The CPT task consists of finding the
chemical, tracking the chemical to its source emitter and, finally, identifying the
emitter. Here, we focus on the latter two subtasks. Our CPT algorithm combines
the strengths of the two most popular chemical plume tracing techniques in use
today. Furthermore, it is founded upon solid theoretical (formal) principles of
fluid dynamics, which will make further analysis and improvement possible. Our
algorithm assumes an AP-maintained lattice which acts as a distributed com-
putational fluid dynamics (CFD) grid for calculating derivatives of flow-field
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variables, such as fluid velocity and chemical concentration. This paper consists
of a formal study of the effectiveness of our novel algorithm, including compar-
isons with the two most popular alternatives on which it is built. To supplement
the discussion of the underlying theory, we include results from software simula-
tions that implement the theoretical scenarios we present, and include realistic
elements of measurement discretization.

2 Motivation

The authors’ goal is to design a search algorithm that scales well to a large
number of robots, ranging perhaps from ten agents to a thousand and beyond.
In order to achieve this goal, two things are necessary: a formal theory upon
which the algorithm is based, and a suitable task that can be used to test the
algorithm. The task of chemical plume tracing has posed problems for a number
of years in a variety of manufacturing and military applications. In light of
the current national concern with security and the possibility of a chemical
terrorist attack, several private and government agencies have expressed interest
in updating current techniques used to track hazardous plumes, and improving
the search strategies used to locate the toxin emitter [3, 4, 5, 6].

Because the physicomimetics framework relies on application of virtual forces
to construct and maintain the robotic lattice, physics is the natural choice for
the theoretical foundation of our work. In particular, the well-studied field of
fluid physics and mechanics is well-suited for the development and validation of
our algorithms.

There is another advantage of using a physics-based foundation. Computa-
tional fluid mechanics requires computational meshes for sampling and process-
ing of flow-field variable values. The lattice arrangements that emerge naturally
from the physicomimetics framework can be used as computational meshes, thus
forming a massively parallel system, capable of performing complex computa-
tions in real time, with the added benefit of resilience to failure, and ability to
adjust when the environment characteristics change. The natural synergy be-
tween the different system components translates directly into an improved per-
formance of the system. For instance, the construction of hexagonal formations
requires the least amount of communication and sensor information within the
agent control framework [7]; at the same time, a hexagonal lattice was shown [8]
to have superior boundary characteristics for solving an important class of fluid
mechanics problems.

3 Related Work

Current research in the field has been inspired by biological olfactory systems
of lobsters and moths [9, 10, 11, 12]. The base requirement for any system that
attempts to trace a chemical plume is of course the ability to sense the presence
of the chemical agent, as well as its concentration. The best understood and
most widely applied approach is that of chemotaxis, which consists of following
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a local gradient of the chemical concentration within a plume [13, 14, 11]. While
chemotaxis is very simple to perform, it frequently leads to locations of high
concentration in the plume that are not the source, such as a corner of a room.
Furthermore, we have a proof, which we omit here due to space limitations, that
a chemotaxis search strategy is likely to fail near the emitter’s location, due
to the fact that for a typical time-varying Gaussian plume density profile, the
gradient goes to zero near the distribution’s peak.

To overcome this problem, another common approach, called anemotaxis, has
been developed. An anemotaxis-driven agent measures the direction of the fluid’s
velocity and navigates “upstream” within the plume [15, 14]. Such a strategy is
successful in problems where the flow has no large-scale turbulence. In general,
we do not have the luxury of assuming this type of airflow. On the contrary, the
airflow could have large turbulent eddies that curl and circulate, thus creating
a region where traveling upwind will result in a cycle, causing the anemotaxis
technique to fail.

Early results from applying the solution of fluid dynamic problems to robotic
systems are reported by Keymeulen and Decuyper [16, 17, 18]. In this work, a
highly simplified model of fluid flow was used successfully in simulation to nav-
igate a single robot in a semi-dynamic environment; the approach was inspired
by the fact that fluid flow is a good model of the iterative, local-to-global route
finding task optimization, since the local pressure fields that are responsible for
the existence of the stable optimal path are void of local minima. In the devel-
opment of their approach, Keymeulen and Decuyper relied on the concepts of
a fluid source and sink, which they used to specify the robot’s initial and goal
locations. In the present work, we also base our method’s development on these
two concepts, and extensively utilize both mathematical and physical properties
of these two entities in the verification of our algorithm.

Work by Balkovsky and Shraiman [19] on the subject of statistical analysis of
the plume is also relevant. They develop a probability density function having a
Gaussian form, and use it to develop a simplified model of the chemical plume,
which is then traversed using an algorithm that takes the probability of the
source’s location into account. In the development of their algorithm, several
assumptions were made regarding the type of the flow that the agent is expected
to search. In our work we do not assume a particular flow-field, but rather
establish several general categories of fluid flow and prove mathematically that
our algorithm performs well in these broad and important categories.

Research by Parunak and Brueckner [11] makes a case for analysis of the self-
organization property in multi-agent systems from the standpoint of entropy and
the Second Law of Thermodynamics. They develop an analogy between entropy
in the context of a system’s energetic quality and informational disorder, and
show how understanding and management of system entropy can be used to
analyze a multi-agent system. They illustrate the idea by solving an agent coor-
dination problem with the use of simulated randomly-diffusing pheromones. Our
work complements their thermodynamic approach by looking at the conserva-
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tion properties of matter, and improves it by providing a more realistic model
of information flow within a system.

A promising approach to tracking and localizing a target with soft real-time
constraints is discussed in Horling, et. al. [20]. The major contribution of their
work is a radar network capable of operating under real-world conditions with
realistic restrictions of noisy communication channels, limited sensory capabili-
ties, and restricted computational power. The system however, only allows for
fixed sensors and makes use of partially centralized sector and target manager
agents, introducing local points of failure. In our approach, decisions are made
in a fully decentralized manner, improving robustness of the entire system. In
addition, our framework places no restriction on mobility of either the plume or
the tracking agents.

Also of interest is the work of Polycarpou et al. [21], where the notion of
artificial potential fields is used to find the goal object (an attractor) while
avoiding obstacles (repellents). In order to apply potential fields, they create a
map of the environment and the agents then are able to compute virtual forces
based on the knowledge of the environment. However, such global maps are
costly to build and mapping errors are a significant problem. The strategy we
are proposing does not require environment mapping, and works well with the
local information obtained in a highly distributed manner by the agents.

4 Computational Fluid Dynamics

Our approach makes use of the methods and concepts developed in the con-
text of computational fluid dynamics (CFD), so a brief review of the relevant
material will be useful. Flow of fluids is governed by three fundamental laws:
the conservation of mass, conservation of momentum (Newton’s Second Law),
and the conservation of energy [22, 23]. There is also an equation that captures
turbulent effects [24], but for simplicity we omit it here. Collectively, these equa-
tions are known as the Governing Equations. Equations that describe theoretical
inviscid flows are also known as the Euler equations, while the more complex
real viscous flows are described by the Navier-Stokes equations. These equations
come in several forms, but we will focus on the conservation form, which is based
on the time analysis of a differential volume spatially fixed in the flow field [23].
For instance, the simplest equation, the conservation of mass, is written as

−∂ρ

∂t
= ∇ · (ρV) (1)

Here, ρ denotes the mass density of the chemical, V is the fluid’s velocity (col-
lectively, ρ and V are known as the flow-field variables), and t denotes time.
For any real flow of practical interest, an analytical solution of the Govern-
ing Equations is impossible to obtain, due to the inherent non-linearity of the
fluid dynamic systems. Thus, one CFD approach replaces the continuous partial
derivatives with the corresponding discretized finite-difference approximations,
and computes the unknown flow-field variables using a computational grid which



150 D. Zarzhitsky et al.

spans the region of interest. Our algorithm takes advantage of the lattice forma-
tions formed by our robotic agents to simulate the computational grid, thereby
allowing the agents to perform a sophisticated analysis of the flow and make
navigational decisions based on this analysis.

Other discretization methods, of which finite-volume and finite-element are
best known, are also applicable to the AP-driven robotic lattices. However, in
this paper, we only make use of the finite-difference discretization method be-
cause of its simple derivation from the Taylor-series expansion of partial deriva-
tives [22]. For brevity and greater focus, we also ignore the interesting problem
of boundary conditions, and focus on a theoretically limitless domain. Since we
are interested in the problem of emitter localization, this simplification does not
have a significant impact on the solution, as long as the region in which plume
tracing is performed does not have walls nor obstacles. This limitation will be
addressed in the later stages of our research.

The work presented in the following sections deals with the development of
our physics-based solution to the chemical plume tracing task. It assumes a lat-
tice of mobile agents with a limited, local view of the plume. The early theoretical
results have been verified in simulation, and more complex flow configurations
are currently being investigated.

5 Our Fluxotaxis Algorithm

The RHS of (1) represents the divergence of mass flux within the differential
volume. Divergence plays a key role in the proposed algorithm; it is therefore
helpful to briefly review the basics. Divergence is a convenient way to quantify
the change of a vector field in space. Although our approach is applicable to
3D geometries, for greater simplicity, we express the mass flux divergence in 2D
Cartesian coordinates as

∇ · (ρV) = u
∂ρ

∂x
+ ρ

∂u

∂x
+ v

∂ρ

∂y
+ ρ

∂v

∂y
(2)

where
V = uî + vĵ (3)

and î and ĵ are unit vectors in the x and y coordinate directions, respectively.
If at some spatial point location P , ∇ · (ρV) > 0, then it is said that point P
is a source of ρV, while ∇ · (ρV) < 0 indicates a sink of ρV. It helps to point
out that the product ρV is called the mass flux [23], and represents the time
rate of change of mass flow per unit area; dimensional analysis shows that ρV is
simply mass/(area·time). The role of this quantity in the CPT task can be better
understood with the aid of the Divergence Theorem [25] from vector calculus:∫

W

∇ · (ρV)dW =
∮

S

(ρV) · dS (4)

This equation, where W is the control volume and S is the bounding surface of
the volume, allows us to formally define the intuitive notion that a control volume



Agent-Based Chemical Plume Tracing Using Fluid Dynamics 151

containing a source (e.g., emitter) will have a positive mass flux divergence, while
a control volume containing a sink will have a negative mass flux divergence.
This result serves as our basic criterion for theoretically identifying a chemical
emitter. To the best of our knowledge, previous criteria for emitter identification
are purely heuristic, e.g., [14]. Our method is the first with a solid theoretical
basis.

Furthermore, this result is also the basis of our novel plume tracing algorithm,
which we call fluxotaxis. With fluxotaxis, the robotic lattice will compute the
local divergence of mass flux, and will follow its gradient (the direction of steepest
increase). Mathematically, the gradient being followed is:

∇(∇ · ρV) = ∇(u
∂ρ

∂x
+ ρ

∂u

∂x
+ v

∂ρ

∂y
+ ρ

∂v

∂y
) (5)

Each individual robot independently calculates this flux gradient (5). Due to the
virtual cohesive forces holding the lattice together, the whole lattice will move in
the flux gradient direction determined by the majority (with no explicit voting).

From (2) it is clear that the fluxotaxis algorithm combines information about
both velocity and chemical density, and the fact that it also encapsulates the
notion of mass flux, as demonstrated in (4), provides assurance that we will
find the emitter as opposed to a local density maximum. The following section
presents several formal proofs in support of this statement.

6 Fluxotaxis Theory

Our ultimate objective is to invent a foolproof mathematical formula that the
robotic lattice can use to guide it to a chemical source. To date, the fluxotaxis
formula is our best candidate, although it is not foolproof. With our objective
in mind, we are currently beginning an in-depth study of the strengths and
weaknesses of the fluxotaxis technique. Through such an analysis, we anticipate
discovering a variant of the fluxotaxis method that will satisfy our objective.

In this section, we prove a sequence of lemmas that begin to elucidate the
strengths of the fluxotaxis strategy as a local guide to the location of the chemical
emitter. In subsequent papers, we will also explore and rectify its weaknesses.
Here, we present initial versions of lemmas that have restrictive (albeit realistic)
assumptions; future versions will relax these assumptions. We limit ourselves to
lemmas because the final theorem is the complete navigation strategy that we
intend to develop. Each of the following lemmas looks at a realistic scenario and
demonstrates the performance of a fluxotaxis-managed, 1D robotic swarm.

All of these lemmas assume a local coordinate system shared by all of the
robots in the robotic lattice. Such a shared coordinate system is achievable via
local communication accompanied by coordinate transformations [2, 26]. The
lemmas in this section assume a single coordinate axis for simplicity; generaliza-
tion to 2D is expected to be straightforward, due to symmetries, and has already
been verified in software simulations.
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6.1 Fluxotaxis in Constant Velocity

Constant Velocity Lemma 1. Assume that the following conditions hold:

1. Chemical plume has a general Gaussian distribution ρ(x) = κe−(x−c)2 , cen-
tered at x = c.

2. Lattice position x0 is such that xL < x0 < xR, where xL, xR are solutions to
∂2ρ(x)/∂x2 = 0 (see Fig. 1); this implies that ∂2ρ(x)/∂x2 < 0 in the region
of interest.

3. V is constant in magnitude throughout the flow, except right at the emitter
(x = c), and is an outward radial vector.

Fig. 1. The Gaussian chemical density distribution and the radial outflow velocity
profile used in the Constant Velocity Lemma 1. The shaded area indicates the region
where plume tracing is carried out by the fluxotaxis agents, and the arrow at x = c

marks the location of the chemical emitter

W.l.o.g., assume the existence of Pemt and Pfar such that Pemt is closer to the
emitter than Pfar. Then execution of one step of the fluxotaxis algorithm implies
that the agent lattice moves closer to the emitter, or equivalently[

u
∂ρ

∂x
+ ρ

∂u

∂x

]
far

<

[
u

∂ρ

∂x
+ ρ

∂u

∂x

]
emt

(6)

Proof. The problem is symmetric with respect to the emitter’s location (x = c);
thus it is sufficient to prove the case where xL < Pfar < Pemt < c. Because V is
constant, ∂u/∂x = 0, and (6) simplifies to[

u
∂ρ

∂x

]
far

<

[
u

∂ρ

∂x

]
emt

Since u is a negative constant, the inequality can be simplified to[
∂ρ

∂x

]
far

>

[
∂ρ

∂x

]
emt

Grouping like terms gives

0 >

[
∂ρ

∂x

]
emt

−
[

∂ρ

∂x

]
far
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Fig. 2. Simulation results for the Constant Velocity Lemma 1. Individual agents are
shown as black boxes with the white × in the middle, and the time trace of the two
independent agent lattices is shown with boxed numbers indicating the location of the
lattice at a given time step. The Lemma holds for any initial lattice configuration, and
fluxotaxis successfully locates the chemical emitter

This is true because, by assumption 2,

0 >
∂2ρ

∂x2 ��

Results of a software simulation for this lemma are shown in Fig. 2. In the
figure, light-colored areas denote large values, and dark-colored areas correspond
to small values. The location of the chemical emitter is marked by the triangle
symbol. The initial positions of two separate agent lattices are at the outer edges
of the environment, to the left and right of the emitter. During execution of the
fluxotaxis algorithm, each agent (shown as a black box with a white × in the
middle) computes the divergence of the mass flux using (2), with the partial
derivatives replaced by the second-order accurate central difference approxima-
tion [27]. This value is recorded by the simulator for analysis purposes, and is
displayed along with the final agent positions in the screen shot. Observe that
the resulting divergence “landscape” has a global peak which coincides with the
location of the emitter, and does not have any local maxima that could trap or
mislead the agents. There is a small gap in the computed divergence plot near
the emitter because the agents had terminated their search upon reaching the
emitter. Each simulated agent (the black box) corresponds to one of the ref-
erence points (Pemt or Pfar) in the Lemma’s proof and, just as in the Lemma,
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Fig. 3. Agent lattice coordinate axis orientation and the chemical source location in
the Divergence Lemma 1

there are two agents per lattice. In this simulation, both agent lattices correctly
moved toward the emitter in the center. In the proof of the Constant Velocity
Lemma 1, we only considered the case where the lattice was to the left of the
emitter; however, a similar proof can be given for the symmetric case, where the
lattice starts out on the right side of the emitter, and the simulation in Fig. 2
demonstrates that the algorithm works regardless of the initial position of the
agent lattice with respect to the chemical source.

6.2 Fluxotaxis at Source and Sink

Divergence Lemma 1. Fluxotaxis technique will advance the agent lattice to-
ward a chemical source.

Proof. As before, assume a general Gaussian chemical plume distribution.
W.l.o.g., assume the existence of two points Pemt and Pfar, such that Pemt is
closer to the source than Pfar (see Fig. 3). Two cases result, based on the ori-
entation of the lattice coordinate axis. (V is at the bottom of Fig. 3, below
the axis.)

Case I assumes that the direction of the lattice coordinate axis is opposite to
the direction of the fluid flow, and thus

1. ∂2u/∂x2 ≥ 0
2. ∂u/∂x > 0; thus 0 ≥ uemt > ufar
3. ∂2ρ/∂x2 ≤ 0
4. ∂ρ/∂x > 0 and therefore ρemt > ρfar

We need to prove that the agent will move toward the source, or[
u

∂ρ

∂x
+ ρ

∂u

∂x

]
far

<

[
u

∂ρ

∂x
+ ρ

∂u

∂x

]
emt

(7)

Assumptions 1 and 3 imply[
∂u

∂x

]
far
≤

[
∂u

∂x

]
emt

and
[

∂ρ

∂x

]
far
≥

[
∂ρ

∂x

]
emt

Together with assumptions 2, 4, and algebraic rules, Case I holds. ��
Case II is with the lattice coordinate axis in the same direction as the fluid
flow, so that both uemt and ufar are non-negative (see Fig. 3), and the previous
assumptions become
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1. ∂2u/∂x2 ≤ 0
2. ∂u/∂x > 0; thus 0 ≤ uemt < ufar
3. ∂2ρ/∂x2 ≤ 0
4. ∂ρ/∂x < 0 and therefore ρemt > ρfar

The agent will turn around and move toward the source if (7) holds. From
assumption 1 we conclude [

∂u

∂x

]
far

<

[
∂u

∂x

]
emt

Similarly, assumption 3 yields[
∂ρ

∂x

]
far

<

[
∂ρ

∂x

]
emt

Algebraic application of the remaining assumptions shows that (7) holds. ��

Fig. 4. Simulation of a fluxotaxis-driven lattice (represented by black boxes) in the
vicinity of a chemical source from the Divergence Lemma 1. The time trace, denoted
by the numbered boxes, shows the location of each of the two different agent lattices
at sequential time steps in the simulation. Both lattices correctly converge on the true
location of the chemical emitter

Software simulation of this Lemma’s configuration for both cases is shown
in Fig. 4. As before, the fluxotaxis-driven lattice (represented by black boxes
marked with the white × symbol) begins at the outer edges of the simulated
world, and moves in toward the emitter, denoted by the triangle in the center.
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Fig. 5. Location of the chemical sink and the two possible agent coordinate axis ori-
entations in the Divergence Lemma 2

The direction of motion is determined by the gradient of the divergence of the
mass flux, which is computed locally by each agent using a central difference
approximation of the partial derivatives in (2), and as can been seen from the
divergence plot, has the maximum value near the emitter’s location. Similar to
the previous simulation, the divergence value right at the emitter is not computed
by the lattice, since the search terminates as soon as the emitter is found. Two
fluxotaxis lattices are shown in the screen shot, and as expected, both of them
successfully navigate toward the chemical source. As this figure illustrates, the
initial position of a lattice with respect to the emitter does not impede the
agents’ ability to correctly localize the emitter.

Divergence Lemma 2. Fluxotaxis-controlled agents will move away from a
chemical sink (see Fig. 5).

Proof. As before, assume a general Gaussian chemical plumedistribution.W.l.o.g.,
assume the existence of two points Psnk and Pfar, such that Psnk is closer to the
sink than Pfar (see Fig. 5). To prove that the agents will move away from the
sink, we must show [

u
∂ρ

∂x
+ ρ

∂u

∂x

]
snk

<

[
u

∂ρ

∂x
+ ρ

∂u

∂x

]
far

(8)

Two cases result, based on the orientation of the lattice coordinate axis.(V
is at the bottom of Fig. 5, below the axis.)

Case I occurs when the lattice coordinate axis points in the opposite direction
to the fluid flow, so that both usnk and ufar are negative (see Fig. 5). For this
case, the assumptions are

1. ∂2u/∂x2 ≥ 0
2. ∂u/∂x < 0; thus 0 ≥ usnk > ufar

3. ∂2ρ/∂x2 ≤ 0
4. ∂ρ/∂x < 0 and therefore ρsnk > ρfar

The agent will continue moving away from the sink if (8) is true. From as-
sumption 1 we observe that [

∂u

∂x

]
snk
≤

[
∂u

∂x

]
far
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Fig. 6. Simulated performance of the fluxotaxis algorithm within the chemical sink
from the Divergence Lemma 2. As stated in the proof and visualized in the last time-
step diagram, the robust fluxotaxis method forces the agent lattice out of the sink,
even if the lattice starts out directly in the center of the sink, where the chemical
concentration is at a local maximum. The robust physical foundation of the fluxotaxis
algorithm allows it to outperform the simpler chemotaxis CPT strategy

Likewise, assumption 3 implies[
∂ρ

∂x

]
snk
≥

[
∂ρ

∂x

]
far

The remaining assumptions with algebraic simplification prove that (8) is true.
��

Case II is when the direction of fluid flow and the lattice coordinate axis are
the same, so that

1. ∂2u/∂x2 ≤ 0
2. ∂u/∂x < 0; thus 0 ≤ usnk < ufar
3. ∂2ρ/∂x2 ≤ 0
4. ∂ρ/∂x > 0 and therefore ρsnk > ρfar

From assumptions 1 and 3 we conclude that[
∂u

∂x

]
snk
≤

[
∂u

∂x

]
far

and
[

∂ρ

∂x

]
snk
≤

[
∂ρ

∂x

]
far

Algebraic simplification using assumptions 2 and 4 proves Case II. ��
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Simulation results for this lemma are presented in Fig. 6. Confirming the
theoretical results just obtained, the high-density chemical build-up in the cen-
ter of the environment does not fool the fluxotaxis algorithm, which correctly
avoids the local spike in the density by directing the agents (again represented
by black boxes) to the outer edge of the tracing region, where as can be seen
from the divergence plot, the maximum mass flux divergence occurs. The Di-
vergence Lemma 2 proves that a fluxotaxis-driven agent lattice will escape from
a sink. However, a simple chemotaxis strategy is easily fooled by sinks, since
by definition of a sink, ∂ρ/∂x > 0 going into the sink. The fluxotaxis scheme
is more robust in this case because it looks at the second order partial of ρ,
and also takes the divergence of velocity into account. This simulation provides
an example of how effectively the fluxotaxis technique merges the chemotaxis
and anemotaxis CPT methods into a physically sound algorithm with valuable
self-correcting properties.

7 Summary and Future Work

In this paper, we presented a new chemical plume tracing algorithm called flux-
otaxis, that combines key strengths of chemotaxis and anemotaxis - the two
most popular plume tracing methods. We showed that the fluxotaxis algorithm
has been developed from the fundamental physical principles of fluid flow, and
that it is able to overcome a major flaw of chemotaxis. We also built a formal
mathematical tool set that we will employ to further improve the algorithm.
In particular, we plan to soon extend the basic fluxotaxis approach outlined
here to handle turbulent eddies, thus overcoming a major flaw of anemotaxis.
To experimentally confirm our theoretical results, we will implement the algo-
rithm on a massively distributed system of simple robotic agents currently under
development for the task of toxic chemical plume emitter localization.

The most important contribution of our work is the development of a mobile
robotic swarm control algorithm that can be analyzed with formal methods, such
that the agents’ behavior can now be mathematically predicted and guaranteed.
Some of our work is relevant to the design and evaluation of artificial worlds, as it
develops and refines methods for emulation of real-world physics in a simulated
environment. The distributed nature of the CFD computations performed by
the robotic swarm may also be of interest to the community. The contribution
of this research is interdisciplinary and has a wealth of applications in domains
other than the chemical plume tracing we discussed in this paper.
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Abstract. The design of reactive systems must comply with logical cor-
rectness (the system does what it is supposed to do) and timeliness (the
system has to satisfy a set of temporal constraints) criteria. In this pa-
per, we propose a global approach for the design of adaptive reactive
systems, i.e., systems that dynamically adapt their architecture depend-
ing on the context. We use the timed automata formalism for the design
of the agents’ behavior. This allows evaluating beforehand the properties
of the system (regarding logical correctness and timeliness), thanks to
model-checking and simulation techniques. This model is enhanced with
tools that we developed for the automatic generation of code, allowing
to produce very quickly a running multi-agent prototype satisfying the
properties of the model.

Keywords: Agent oriented software engineering, formal models, agent
oriented programming.

1 Introduction

Real-time reactive systems are defined through their capability to continuously
react to the environment while respecting some time constraints. In a limited
amount of time, the system has to acquire and process data and events that char-
acterize its temporal evolution, make appropriate decisions and produce actions.
Thus, the robustness of the system relies on its capability to present appropriate
outputs (logical correctness) at an appropriate date (timeliness). Such applica-
tions are often critical. Their hardware and software architectures have to be
specified, developed and validated with care. Then, they are set in order for the
system to have a determinist and predictable behavior. The interest of multi-
agent systems in this context may be considered as limited, especially because of
autonomy and proactivity properties generally attributed to agents. In fact, the
decision step in real-time systems is very often hidden and examples of usages
of multi-agent paradigm in the real-time context [3, 18] exploit the distributed
aspects of multi-agent systems much more than the autonomy aspects.

In this paper, we aim at addressing systems in which time constraints are
neither critical (obtaining a response a little bit later than specified is accept-
able) nor strict (when a normal delay of response is exceeded, the result is not
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immediately worthless but its value decreases more or less quickly with time).
Another characteristic of such systems is the variability and unpredictability
of treatments to process and their priority, but also of the availability of ac-
tive entities (processors) in charge of processing. In such a context of dynamic
scheduling in distributed systems, there is no solution yet capable to guarantee
the respect of timing constraints. Our purpose is then to design this scheduling
so as to optimize the compromise between the respect of logical correctness and
timeliness, possibly by loosening some constraints when all of them cannot be
satisfied simultaneously.

More precisely, rather than scheduling in its classical understanding, our con-
cern here is the problem of adaptive reconfiguration of the processing chain
during the execution. This reconfiguration can occur according to the available
resources (sensors, processors, effectors), to the wished logical correctness, to the
measured timeliness and to the events occurring in the environment. But, instead
of doing this in a centralized manner, the agents will need to control the recon-
figuration themselves, in addition to their normal activity of data processing.

Our objective here is to propose a complete approach, from a software engineer-
ing point of view, for the design of adaptive multi-agent systems. It covers all stages
of software life cycle, from an abstract specification of the application architecture
to a testable implementation, including formal verification of properties and simu-
lation. The method is based on the formalism of timed automata [1], which allows
to express systems as a set of concurrent processes satisfying some time constraints
(section 3). We show that this formalism may be used in order to model a multi-
agent system from the angle of data processing as well as that of dynamic treat-
ment chain reconfiguration (section 4). Then, we show how model-checking and
simulation may be used to verify selected properties of the system and analyze a
priori its behavior (section 5). Finally, we address the problem of semi-automated
translation from a timed automata specification to executable agents (section 6).
But before giving more details about this work, it is necessary to give some words
of explanation about our target application and its specificities.

2 Target Application and Objectives

The context in which we develop our approach is the project that we call Dance
with Machine [12]. This project aims at staging a real-time dialogue between a
human dancer-actor and a multimodal multimedia distributed cognitive system.
The role of the latter is to achieve in real-time the captation and analysis of the
performance of the dancer, and to build a multimedia answer to it. This answer
may consist in visual animations projected on screens around the dancer, musical
sequences, or actions by robots or other physical objects. We consider this ap-
plication as a metaphorical transposition of the kind of interactions that we may
forecast between human users and communicating objects. This is called Ambient
Cognitive Environments (ACE), i.e., physical environments in which perception,
processing and action devices have to organize dynamically and in a cooperative
way in order to provide users with natural interaction and extended services.
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Fig. 1. Global architecture of the processing chain in the project “Dance with Ma-
chine”

The computerized setup is composed of a set of processors equipped with com-
munication capabilities. They may also be connected to sensors (video cameras,
biometric sensors, localization sensors, etc.) or effectors (screens, loudspeakers,
engines, etc.). Each processor may run one or several agents, each of them being
specialized for a specific kind of treatment. Data retrieved from the sensors must
be handled by several agents before being converted into actions. Agents’ work
is to analyze, synthesize and transform the data that they get. Data produced by
an agent are then transmitted to other agents in order to continue the processing.
The data are finally used to generate pictures, sounds or actions, either when the
analysis is precise enough, or when the available time is too limited. Figure 1
shows a very simplified view of this process. Only one perception modality is
represented, which corresponds to a video camera.

The use of agents in this context is justified by the distributed nature of
the application (captation, processing and action are distributed among several
objects and processors). But the main reason why we use agents is to make
the whole system adaptive in various contexts: when components are added
or removed, when the global behavior of the system must change, or when time
constraints are not met by the system. The main time constraint that the system
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should respect is the latency, i.e., the time between the acquisition of data by
sensors, and the production of corresponding actions by the system, under one
form or another. This latency should of course be kept as low as possible so that
the reaction of the system seems instantaneous (at least very quick). On the
other hand, the analysis of the dancer’s performance should be kept as precise
and thorough as possible. These two constraints are potentially contradictory
since a precise and thorough analysis can take significantly more time than a
rough and superficial one. The quality of an analysis can be measured along two
complementary dimensions: the precision (for the measure of a parameter of the
performance) and the thoroughness (when optional treatments are possible, a
superficial processing will be limited to what is compulsory).

Our main purpose is to allow a very quick evaluation of various strategies in
the control of the processing chain, in order to produce an efficient agent-based
implementation of the system. We achieve it using a formal model of the sys-
tem along with tools that we developed to automate the implementation of a
functional prototype. Model-checking allows to verify that the systems complies
to the specified constraints (latency, non-blocking, sequentiality of treatments,
etc.). Simulation, for its part, allows to evaluate the quality of the compromise
between logical correctness (is the quality of processing satisfactory?) and time-
liness (does the system comply to time constraints?).

3 Introduction to Timed Automata

Real-time systems may be specified using numerous dedicated methods and for-
malisms. Most of them are graphical semi-formal notations allowing a state ma-
chine representation of the behavior of the system. Among the most popular
formalisms, we may quote Grafcet [7], SA/RT [17], Statecharts [8], UML/RT
[5]. Such visual representations do not enable to verify the properties of systems
and it is necessary to associate a formal semantics to them, based in general
on process algebras [9], Petri nets [6] or temporal logics [15]. Proposing a new
formalism is not our intention here. On the contrary, we prefer to examine the
potential benefit of real-time specification and verification techniques in the de-
sign and the programming of agent-based reactive systems. We chose for this
purpose to use timed automata [1]. This formalism has the advantage to be
relatively simple to manipulate and to possess adequate expressivity in order
to model time constrained concurrent systems. Moreover, there exists for this
model powerful implemented tools (e.g., UPPAAL [13]) allowing model-checking
and simulation.

3.1 Standard Model

A timed automaton is a finite state automaton provided with a continuous time
representation through real-valuated variables, called clocks, allowing to express
time constraints. Generally, a timed automaton is represented by an oriented
graph, where the nodes correspond to states of the system while the arcs corre-
spond to the transitions between these states. The time constraints are expressed
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x <= 3

x >= 2
x := 0

Fig. 2. Example of a timed automaton, where x is a clock. The guard x ≥ 2 and the
invariant x ≤ 3 imply that the transition will fire after 2 and before 3 time units passed
in the state

through clock constraints and may be attached to states as well as to transi-
tions. A clock constraint is a conjunction of atomic constraints which compare
the value of a clock x, belonging to a finite set of clocks, to a rational constant
c. Each timed automaton has a finite number of states (locations), one of them
being distinguished as initial. In each state, the time progression is expressed
by a uniform growth of the clock values. In that way, in a state at each instant,
the value of the clock x corresponds to time passed since the last reset of x.
A clock constraint, called an invariant, is associated to each state. It has to be
satisfied in order for the system to be allowed to stay in this state. Transitions
between states are instantaneous. They are conditioned by clock constraints,
called guards, and may also reset some clocks. They may also carry labels al-
lowing synchronization. An example of timed automaton and a corresponding
possible execution is shown in figure 2.

The behavior of a complex system may be represented by a single timed
automaton being a product of a number of other timed automata. The set of
states of this resulting automaton is the Cartesian product of states of the com-
ponent automata, the set of clocks is the union of clocks, and similarly for the
labels. Each invariant in the resulting automaton is the conjunction of the in-
variants of the states of the component automata, and the arcs correspond to
the synchronization guided by the labels of the corresponding arcs.

3.2 Extensions in UPPAAL

We use UPPAAL for our modelling; a detailed presentation of this tool may be
found in [13]. We remind here only the main characteristics and extensions with
respect to the standard model [1]. In UPPAAL, a timed automaton is a finite struc-
ture handling, in addition to a finite set of clocks evolving synchronously with time,
a finite set of integer-valuated and Boolean variables. A model is composed of a
set of timed automata, which communicate using binary synchronization through
transition labels and a syntax of emission/reception. By convention, a label k! in-
dicates the emission of a signal on a channel k. It is supposed to be synchronized
with the signal of reception, represented by a complementary label k?. Absence of
synchronization labels indicates an internal action of the automaton. The execu-
tion of the model starts in the initial configuration (corresponding to the initial
state of each automaton with all variable values set to zero), and is a succession of
reachable configurations. The configuration change may occur for three reasons:
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– by time progression corresponding to d time units in the states of the com-
ponents, provided that all the state invariants are satisfied. In the new con-
figuration, the clock values are increased by d and the integer variables do
not change;

– by a synchronization if two complementary actions in two distinct compo-
nents are possible, and if the corresponding guards are satisfied. In the new
configuration, the corresponding states are changed and the values of clocks
and of integer variables are modified according to the reset and update in-
dications;

– by an internal action if such an action of a component is possible, it may be
executed independently of the other components: the state and the variables
of the component are modified as above.
Another peculiarity of UPPAAL, useful in expressing a kind of synchronicity

of moves, is the notion of “committed” states, labelled in the figures by a special
label C; see, for instance, the state Choice in the first automaton of figure 5.
In such a state, no delay is permitted. This implies an immediate move of the
concerned component. Thus, two consecutive transitions sharing a committed
state are executed without any intermediate delay.

UPPAAL allows simulating systems specified in this way, detecting deadlocks
and to verify, through model-checking, various reachability properties. Typically,
it can answer the questions like “starting from its initial state, does the system
reach a state where a given property is satisfied?”, “starting from its initial
state, is a given property always true?”, or “starting from its initial state, can
the system reach a given state in a given delay?”.

4 Modelling a Decentralized Reactive System

As stated earlier, timed automata allow to model systems as a set of concurrent
processes. We will detail gradually in the sequel the way they may be applied
to our case study. The behavior of our agents consists in receiving and pro-
cessing input data in order to generate and send new outputs. The processing
has a duration, considered as fixed, and has to be performed repeatedly. The
corresponding model is shown in figure 3.

Initially, the agent is waiting for new data in the state Idle. It starts processing
on reception of the signal WorkForAgentN passing to the state Processing. It

Idle Processing

agent_clk <= max_time

agent_clk >= min_time
WorkForAgentN1!

WorkForAgentN?
agent_clk := 0

WorkForAgentN?
lost_data++

Fig. 3. A model of a simple agent
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Idle Processing

agent_clk <= max_time

Buffer
agent_clk <= max_time

WorkForAgentN?
agent_clk := 0 WorkForAgentN?

agent_clk >= min_time
WorkForAgentN1!
agent_clk := 0

agent_clk >= min_time
WorkForAgentN1!

WorkForAgentN?
lost_data++

Fig. 4. A model of an agent with a buffer

Idle
Choice Processing

Buffer

ControllerWorkForAgentN?
agent_clk := 0

Free?

WorkForAgentN?
agent_clk := 0,
lost_data++

Free?

WorkForAgentN?
agent_clk := 0

Control! EndControl?

Idle Choice EndChoice

Control?

condition_on_agent_clk
WorkForModule1!

!condition_on_agent_clk
WorkForModule2!

EndControl!

Module1Idle Module1Processing

module_clk <= max_time
Module1Free

WorkForModule1?
module_clk := 0

WorkForAgentN1!
module_clk >= min_timeFree!

Module2Idle Module2Processing

module_clk <= max_time
Module2Free

WorkForModule2?
module_clk := 0

WorkForAgentN1!
module_clk >= min_timeFree!

Fig. 5. A model composed of a generic agent, a controller module and two treatment
modules
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comes back to the state Idle at the end of its treatment, which takes a time
comprised between min time and max time. The following agent is informed
then (through the synchronisation on the channel WorkForAgentN1 ), that it
can start processing.

This simple model presents however the following drawback: if a new treat-
ment request comes to an agent when it is already processing, the corresponding
data is lost. The number of such events is counted by incrementing the variable
lost data. Nevertheless, the loop at the state Processing is necessary to avoid
deadlocks which may occur if the situation described above happens. A solu-
tion can be to introduce an additional state playing the role of a buffer (see
figure 4).

Now, if a new request arrives to the agent while it is in the state Processing, it
passes to the state Buffer. Then, it comes back to the state Processing at the end
of the treatment, in order to start a next one. If a new request comes when the
agent is already in the state Buffer, then the corresponding data is lost. At this
stage, we shall still take into account the fact that a few modules (corresponding
to various precisions of the processing) are available and may be used to analyze
the dancer’s posture. A first approach consists in duplicating the agent in charge
of the corresponding treatment by associating to each copy a different duration
constant. However, when a new data is available, it is transmitted to one of the
agents chosen in a non-deterministic way. Thus, it is necessary to incorporate
in the agent a controller responsible for choosing between different treatment
modules. This solution is represented in figure 5.

When some data is ready to be processed, the controller module passes in
the state Choice. The agent chooses to execute a treatment module depending
on the value of the boolean expression condition on agent clk. When the chosen
module achieves processing, it informs about it the next agent in the processing
chain, then it informs the controller by sending the signal Free.

5 Verification and Simulation

The controller presented in the previous section needs of course to be instanti-
ated by fixing explicitly the criteria determining the choice between treatment
modules. We present three different strategies that may be considered and ad-
dress verification and simulation experiences which may be accomplished for
some interesting properties. The particular context considered for this study is
explained in figure 6.

The extraction agent produces an image every 50 ms, which has to be treated
by the agent in charge of the analysis. This treatment should be performed either
by a module capable to accomplish a complete analysis or by a module which
can do only a partial one but taking less time (ttreatment2 < ttreatment1). The
controller has to be designed in such a way that it could be possible to conciliate
two potentially contradictory criteria: analyzing all images or, in other words,
avoiding loosing too many of them (timeliness) and performing a maximum of
complete analyzes (logical correctness).
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Fig. 6. A simplified scheme of the processing chain

5.1 Different Strategies of Choice

The first proposal is not really a strategy but we give it as a reference. It consists
only in systematically alternating the two treatment modules.

In order to minimize the loss of images, the idea is to anticipate, when the
agent performs the choice (tchoice), the date when the agent will receive a new
image to analyze while it has already an image in its buffer and has not termi-
nated its current analysis (tloss). This is possible since the frequency of arrivals
of new images is constant. Thus, in the second strategy, the module 1 will be
chosen if and only if ttreatment1 < tloss − tchoice.

In order to maximize the number of complete analyzes, one can loosen the
previous constraint by allowing to use the module 1 even if its execution will
necessarily entail a loss of an image. In the third strategy, the module 1 will be
chosen if and only if ttreatment1 < (tloss − tchoice) ∗ coef , where coef fixes the
limits of allowance.

5.2 Results

For each strategy, it is possible to check with UPPAAL that the system satisfies
certain properties. In particular, we checked that:

– there is no deadlock: A[ ] not deadlock;
– there is no image lost: A[ ] lost data == 0;
– the ratio of the choice of module 1 is grater than a given threshold:

A[ ] (nb1 * 100 / (nb1 + nb2 + lost data)) > 50).

Moreover, it is possible to simulate the system during a given number of
cycles and to check experimentally the ratio of lost images and images which
could be analyzed completely versus treatment times ttreatment1 and ttreatment2 ,
as shown in figure 7.

Model-checking techniques allow to verify formally and automatically if some
properties of the system, considered as important, are satisfied in all possible sys-
tem evolutions. On the other hand, simulation permits to obtain some empirical
evaluation of performances of the system in terms of logical correctness and
timeliness, depending on the characteristics of treatment modules and on the
applied strategy. This allows also envisaging a supplementary control level for
the agent in charge of the image analysis. This corresponds to a kind of “meta-
strategy” which could adapt dynamically the strategy of choice depending on
various constraints and fixed objectives.
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Fig. 7. The ratio of images analyzed with the module 1 (on the left) and the ratio of
lost images (on the right), obtained for the second strategy and various values of time
of treatment for modules 1 and 2. On the bottom, a comparison of the three strategies
for ttreatment1 = 80ms and coef= 1.25, for various values of ttreatment2

6 Automated Code Generation

After having validated the model of the multi-agent system, both formally and
experimentally, the next stage of development corresponds to translating it into
an executable prototype. In order to do so, a naive idea could consist in imple-
menting each timed automaton by a thread, since they are models of concurrent
processes. Nevertheless, for a same agent modelled by several automata, it could
involve several synchronization and lead to decline sensibly its performances,
which could be awkward for a reactive system. Thus, a first step consists in per-
forming first a synchronized product of all automata describing the same agent
in order to transform it next into a skeleton of an application. The compiler that
we developed produces this synchronized product by performing also a number
of optimizations in order to minimize the size of the resulting automaton. Each
agent is modelled consequently by a unique timed automaton, which can be
translated into an executable form in several steps. First, only the finite state
automaton aspects of the given timed automaton are considered. The states
where it is necessary to let the time progress are assumed to correspond to some
treatments. Our compiler translates it in terms of a state in which the agent does
a break (which is supposed to be replaced by the corresponding treatment mod-
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ule when it is available). Finally, the synchronization signals between automata
are associated to communications between the corresponding agents.

7 Conclusion

We presented in this paper a complete approach, from the software engineer-
ing point of view, for the modelling of adaptive real-time systems based on the
multi-agent paradigm. The usage of timed automata specification and verifica-
tion techniques played here a central and unifying role. We showed how this
formalism, thanks to its capabilities to model concurrent processes having time
constraints, can be adapted in order to represent multi-agent systems. Moreover,
we demonstrated that it could be possible to model in a modular way an agent
controller, capable to make decisions depending on some fixed objectives.

The advantage one can take from this formal specification is twofold: First,
it is possible to check the model against various kinds of deadlock (or timelock)
and more generally, against any property coming from a non-respect of time con-
straints, and avoid this way some problems at a very early stage of development.
Second, it is worthwhile to take advantage of timed automata representation of
the system in order to generate automatically application skeletons. To do so, we
developed a specific compiler which, taking an XML representation of the timed
automata specification, produces a skeleton based on the JADE multi-agent
platform [4]. This prototype is finally used to validate choices made previously,
during modelling and implementation, and to review and modify some of them
if necessary.

Finally, the general purpose of this work consists in exploiting the approach
described in this paper, the design patterns and the composition tools, in order to
facilitate the design of an entire system. These design patterns could be coupled
with machine learning techniques for the exploration of parameter spaces, in
order to optimize agent behaviors when the model becomes more complex. Also,
it would be interesting to develop an experimental protocol in order to validate,
on the real prototype, the properties observed on the model. In this context, the
presented work, even if it is at a preliminary stage, demonstrates however the
feasibility of this approach and allows to foresee favorably the development of
powerful and complete tools dedicated to the implementation of reactive multi-
agent systems.
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Abstract. Rigorous Verification and Validation (V& V) techniques are
essential for high assurance systems. Lately, the performance of some of
these systems is enhanced by embedded adaptive components in order
to cope with environmental changes. Although the ability of adapting
is appealing, it actually poses a problem in terms of V&V. Since uncer-
tainties induced by environmental changes have a significant impact on
system behavior, the applicability of conventional V& V techniques is
limited. In safety-critical applications such as flight control system, the
mechanisms of change must be observed, diagnosed, accommodated and
well understood prior to deployment.

In this paper, we propose a non-conventional V&V approach suitable
for online adaptive systems. We apply our approach to an intelligent
flight control system that employs a particular type of Neural Networks
(NN) as the adaptive learning paradigm. Presented methodology con-
sists of a novelty detection technique and online stability monitoring
tools. The novelty detection technique is based on Support Vector Data
Description that detects novel (abnormal) data patterns. The Online
Stability Monitoring tools based on Lyapunov’s Stability Theory detect
unstable learning behavior in neural networks. Cases studies based on
a high fidelity simulator of NASA’s Intelligent Flight Control System
demonstrate a successful application of the presented V&V methodology.

1 Introduction

The use of biologically inspired soft computing systems (neural network, fuzzy
logic, AI planners) for online adaptation to provide adequate system function-
ality in changing environments has revolutionized the operation of realtime au-
tomation and control applications. In the instance of a safety-critical adaptive
flight control system, these changes in the environment can be, for example, a
stuck stabilator, broken aileron and/or rudder, sensor failure, etc. Stability and
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safety are two major concerns for such systems. In recent years, NASA con-
ducted series of experiments evaluating adaptive computational paradigms for
providing fault tolerance capabilities in flight control systems following sensor
and/or actuator failures. Experimental success suggest significant potential for
developing and deploying such fault tolerant controllers for futuristic airplanes
[1, 2, 3, 4].

The non-probabilistic evolving functionality of realtime controllers, through
judicious online learning, aid the adaptive system (aircraft) to recuperate from
operational damage (sensor/actuator failure, changed aircraft dynamics: broken
aileron or stabilator, etc). This adds an additional degree of complexity and sys-
tem uncertainty. Since it is practically impossible to estimate and analyze before-
hand all possible issues relative to adaptive system’s safety and stability, these
systems require a non-conventional, sophisticated V&V treatment. While adap-
tive systems in general are considered inherently difficult to V&V, system uncer-
tainties coupled with other real time constraints make existing traditional V&V
techniques practically useless for online adaptive systems and implementation of
a non-conventional V&V technique a challenging task [5, 6]. This (in)ability to
provide a theoretically valid and practically feasible verification and validation
remains one of the critical factors limiting wider use of neural networks based
flight controllers [5, 6, 7].

We propose a non-conventional V&V approach and derive a validation method-
ology suitable for online adaptive systems. We apply our approach to an adap-
tive flight control system that employs Neural Networks (NN) as the adaptive
learning paradigm. Presented V&V methodology consists of an online novelty
detection technique and online stability monitoring tools. The novelty detection
technique is based on Support Vector Data Description (SVDD) in order to de-
tect novel (abnormal) data patterns. As a one-class classifier, the support vector
data description is able to form a decision boundary around the learned data
domain with very little or even zero knowledge outside the boundary. The online
stability monitoring tools based on Laypunov stability theory are designed to
detect unstable (unusual) NN behavior. The underlying mathematics of the on-
line monitoring tools is a rigorous mathematical stability verification technique.
This technique emphasizes the need for a precise stability definition for adaptive
systems and reasons about the self-stabilizing properties of the adaptive neural
network within the control system’s architecture.

1.1 Paper Overview

We propose a V&V framework that is suitable for online adaptive systems in
Section 2. The presented validation approach requires an understanding of two
complementary novelty detection and stability analysis techniques that are dis-
cussed in detail in Sections 3 and Section 4. In Section 5, test cases and simula-
tion results describing the operational behavior of the online novelty and stability
analysis are discussed in detail. We conclude the paper with a brief discussion on
the prospects of the presented V&V approach for other online adaptive systems
in Section 6.
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2 A V&V Framework

One of the goals of our V&V and safety assurance approach is to ensure the
correct diagnosis followed by blocking/permitting of novel (abnormal or unreli-
able) data from entering the online adaptive component, the neural network. We
propose to use novelty detectors and safety monitors as online filters [8]. Figure 1
illustrates the V&V framework. The SVDD data analysis technique is capable of
detecting anomalies in the neural network’s inputs and outputs. Safety monitors
disallow the propagation of unsafe controller gains (adjustments) from entering
the controller. It is evident that such a device must require a wide range of
system (aircraft) domain-knowledge. Therefore, we seek to define a control error
adjustment and detection technique suitable for alerting from anomalous, unsta-
ble, and eventually unsafe aircraft behavior if the outputs from neural network
adaptation were to enter the controller.

Fig. 1. Adaptive Flight Control System’s V&V Framework

Another key step of the validation framework is the runtime stability monitor.
Its goal is to determine whether, under given flight conditions, the neural net-
work converges, i.e., if its state transition trajectories lead to a stationary state.
The online monitor is complemented by mathematical stability proofs [9] that
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can define its engagement or disengagement. In other words, to preserve com-
putational resources the online monitor may not be engaged in flight conditions
that are considered to be a priori safe.

3 Novelty Detection Technique

In general, novelty detection techniques require beforehand knowledge of both
nominal and off-nominal flight domains. However, for the validation of NN in
online adaptive systems, it is impossible to anticipate all possible adverse en-
vironmental conditions and/or failure modes. Under flight failure scenarios, the
performance of most regular classification models deteriorate due to restrictions
in their generalization capabilities and low quality data. As a one-class clas-
sification tool, Support Vector Data Description (SVDD) technique is derived
from Support Vector learning theory by Tax et. al. [10, 11]. Differing from gen-
eral support vector classifiers that decide the maximum margin hyperplane to
separate two classes, SVDD method tries to find an optimal decision boundary
for a given data set. Thus, it provides the best possible representation of the
target-class and offers inferences that can be used to detect the outliers from the
nominal feature space. This, for our validation purposes, can be defined as the
“safe region”, relating to nominal flight conditions.

SVDD is developed from the concept of finding a sphere with the minimal
volume to contain all data [12, 13, 14]. Given a data set S consisting of N exam-
ples xi, i = 1, .., N , the SVDD’s task is to minimize an error function containing
the volume of this sphere. With the constraint that all data points must be
within the sphere, which is defined by its radius R and its center a, the objec-
tive function can be translated into the following form by applying Lagrangian
multipliers,

L(R, a, αi) = R2 −
∑

i

αi{R2 − (x2 − 2axi + a2)}

where αi > 0 is the Lagrange multiplier. L is to be minimized with respect to
R and a and maximized with respect to αi. By solving the partial derivatives of
L, we also have: ∑

i

αi = 1;

and
a =

∑
i

αixi,

which gives the Lagrangian with respect to αi:

L =
∑

i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj)

where αi ≥ 0 and
∑

i αi = 1.
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Fig. 2. SVDD with different distances from the center

In the solution that maximizes L, a large portion of αi’s become zero. The
rest of αi’s are greater than zero and their corresponding objects are those called
support objects. They lie on the boundary that forms a sphere that contains the
data. Hence, object z is accepted by the description when:

‖z − a‖2 = (z −
∑

i

αixi)(z −
∑

i

αixi) ≤ R2.

Real world systems usually produce multi-dimensional highly nonlinear data
that are inseparable by a linear discriminant. This makes the data description
harder to obtain. Similar to the Support Vector Machine (SVM) [10], by replacing
some kernel function K(x, y) with the product of (x, y) in the above equations,
we are able to map our data from a high dimensional space onto a Hilbert space,
which is also referred to as the “feature space”. In the feature space, objects can
be classified with lower complexity. Selecting the well-known Gaussian kernel
function, where K(x, y) = exp(−‖x− y‖2/s2), we now have:

L = 1−
∑

i

α2
i −

∑
i	=j

αiαjK(xi, xj).

The formula of checking object z now becomes:

1− 2
∑

i

αiK(z, xi) +
∑
i,j

αiαjK(xi, xj) ≤ R2.

Since the SVDD is used as a one-class classifier, in practice, there are no
actual outliers well defined other than those randomly drawn from the rest of
the space outside the target class. However, by applying the SVDD method,
we can obtain a relatively sound representation of the target class. To detect
outliers, a more precise criteria should be inferred from empirical testing or
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pre-defined thresholds. By setting the boundaries to a certain distance from
the center, Figure 2 illustrates the different boundaries with respect to different
parameter settings. A rule of thumb here is that the greater the value of the
distance from the center, the rougher the boundary. Therefore, the number of
the outliers that can be detected decreases. In practice, a pre-defined threshold
can be used as the furthest distance of a data point from the center, which the
system can tolerate. Such pre-defined thresholds need sufficient testing within
each specific data domain.

4 Online Monitoring

Self-organizing neural networks, introduced by Kohonen [15] and modified by
several others [17, 18, 19] over the last twenty years, offer topology-preserving
adaptive learning capabilities that can, in theory, respond and learn to abstract
from a much wider variety of complex data-manifolds, the type of data encoun-
tered in an adaptive flight control system.

The adaption of neural networks can successfully model the topology and
abstract the information from data patterns that have a predictable structure.
However, during online adaptation, the data patterns may be presented to the
network at a varying sampling rates. The presented data can exhibit pathological
dimensional stratification, such as uniformity or functional discontinuities. It
has been observed (experimentally) that under these circumstances, the neural
network encounters difficulties in learning and abstracting information from the
presented data, eventually leading to a deteriorating network performance. In
such cases the neural network might fail in its primary goal “to successfully learn
and provide a better estimate of the learnt parameters to the flight controller”.
This degradation in the network’s performance is depicted in a loss of its self-
stabilizing properties. The goal of an online stability monitor is to capture and
analyze the self-stabilizing properties of the network in the hope that it will be
able to detect unstable neural network behavior and warn the pilot/system of
the imminent threat to the controller.

The construction of an online stability monitor is based on rigorous mathemat-
ical stability analysis methodology, Lyapunov’s direct method [16]. According to
this method, a system is said to be stable near a given solution one can construct
a Lyapunov function (scalar function) that identifies the regions of the state space
over which such functions decrease along some smooth trajectories near the solu-
tion. In the discrete sense, Lyapunov stability can be defined as follows:

Definition 1. Lyapunov Stability
If there exists a Lyapunov function, V : R

O → R, defined in a region of state
space near a solution of a dynamical system such that

1. V (0) = 0
2. V (x) > 0 : ∀x ∈ O, x �= 0
3. V (x(ti+1))− V (x(ti)) = ΔV (x) ≤ 0 : ∀x ∈ O

then the solution of the system is said to stable in the sense of Lyapunov.
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x = 0 represents a solution of the dynamical systems and R
O, O represent the

output space and a region surrounding this solution of the system respectively.
According to the above definition a system is stable if all solutions of the

state that start nearby end up nearby. A good distance measure of nearby must
be defined by a Lyapunov function (V ) over the states of the system. By con-
structing V , we can guarantee that all trajectories of the system converge to a
stable state. The function V should be constructed keeping in mind that it needs
be scalar (V ∈ R) and should be non-increasing over the trajectories of the state
space. This is required in order to ensure that all limit points of any trajectory
are stationary.

Definition 2. Asymptotic Stability (AS)
If in addition to conditions 1 and 2 of Definition 1, the system has a negative-
definite Lyapunov function

ΔV (x) < 0 : ∀x ∈ O (1)

then the system is Asymptotically Stable.

Asymptotic stability adds the property that in a region surrounding a so-
lution of the dynamical system trajectories are approaching this given solution
asymptotically.

Definition 3. Global Asymptotic Stability (GAS)
If in addition to conditions 1 and 2 of Definition 1, the Lyapunov function is
constructed such that,

lim
t→∞ V (x) = 0 (2)

over the entire state space then the system is said to be Globally Asymptotically
Stable.

A notable difference between AS and GAS is the fact that GAS implies any
trajectory beginning at any initial point will converge asymptotically to the
given solution, as opposed to AS where only those trajectories beginning in the
neighborhood of the solution approach the solution asymptotically. The types of
stability defined above have increasing property strength.

Global Asymptotic Stability =⇒ Asymptotic Stability =⇒ Lyapunov Stability.

The reverse implication does not necessarily hold as indicated by the Venn
diagram of Figure 3. Thus a strict Lyapunov function should force every tra-
jectory to asymptotically approach an equilibrium state. Even for non-strict
Lyapunov functions, it is possible to guarantee convergence by LaSalle’s invari-
ance principle. In mechanical systems a Lyapunov function is considered as an
energy minimization term. In economic and finance evaluations it is considered
as a cost-minimization term, and for computational purposes it can be consid-
ered as an error-minimization term. Figure 4 shows a Lyapunov function for
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Fig. 3. Relative strengths of Stability

the NN operation where the decreasing cylinder radii indicate a converging, sta-
ble operation. The online stability monitor essentially computes Lyapunov and
Lyapunov-like functions (similar to the one shown in Figure 4) based on the cur-
rent states of the neural network learner and analyze each function to evaluate
the overall network stability. Thus, online stability monitoring complements an-
alytical stability analysis techniques by being being able to detect system states
that deviate away from stable equilibria in real-time.

Fig. 4. A converging Lyapunov-like function

5 Case Study

The knowledge gained through the design and evaluation of new control schemes
is of direct use in performance verification and validation. Proper experimenta-
tion is required to justify realism and applicability of the proposed techniques
into actual practice.
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5.1 The Intelligent Flight Control System

The Intelligent Flight Control System (IFCS) was primarily developed by NASA
as a novel flight control system with the primary goal to “flight evaluate con-
trol concepts that incorporate emerging soft computing algorithms (NN or AI
techniques) to provide an extremely robust aircraft capable of handling multiple
accident and/or an off-nominal flight scenario” [1, 2, 7].

Fig. 5. The Intelligent Flight Control System

The diagram of Figure 5 shows the architecture of the IFCS using Dynamic
Cell Structure (DCS) neural network, referred to as the Online Learning Neu-
ral Network (OLNN). The control concept can be briefly described as follows.
Notable discrepancies from the outputs of the the Baseline (Pre-trained) Neural
Network (PTNN) and the Real-time Parameter Identification (PID), either due
to a change in the aircraft dynamics (loss of control surface, aileron, stabilator)
or due to sensor noise/failure, are accounted by the Online Learning Neural Net-
work. The primary goal of OLNN is to learn online and provide a better estimate
for future use of these discrepancies, commonly known as Stability and Control
Derivative errors. The critical role played by the online learning neural network
in fine-tuning the control parameters and providing a smooth control adjust-
ments is the motivation for the need for a practical, nonconventional validation
methodology.

Major advances in the development of modern control laws have generated
the need for developing very detailed and sophisticated simulation environments
for R&D purposes. Novel techniques for adaptive flight control achieves maturity
through extensive experimentation in simulated environments. Figure 6 shows
the interface of the IFCS F-15 simulator developed by the WVU research team.
The control framework of the simulator is based on the IFCS architecture, shown
in Figure 5. Through the high fidelity simulator, we are able to collect valuable
data representing nominal flight conditions as well as some failure scenarios.



182 S. Yerramalla et al.

Fig. 6. NASA-WVU F-15 Simulator

5.2 Flight-Data Description

The simulation data depicts nominal and off-nominal flight conditions of ap-
proximately 10 seconds of flying time corresponding to 200 frames of data at the
simulation rate of 20Hz. A data frame is a point in a seven-dimensional space
corresponding to 4 sensor readings (independent variables) and 3 stability and
control derivative errors from PID and PTNN (dependant variables). The NN
tested here is the DCS − Cz network, one of the five DCS-subnetworks of the
IFCS. The independent variables are Mach number (the ratio of the speed of
the aircraft to the local speed of sound), alpha (aircraft’s angle of attack) and
altitude of the aircraft. The dependent variable are three stability and control
derivative errors generated by the difference between PID and PTNN.

In the following sections, we first present novelty detection results using
SVDD on the NN training data. Online stability monitoring results for NN
learning are described next. Both tools are tested on two failure mode data sets
obtained from the simulator. The two specific types of failures induced in the
IFCS simulator are control surface failures (stuck aileron, stabilator) and loss
of control surface. A control surface failure (locked left stabilator, stuck at +3
Degree) is simulated into the system at the 100th data frame. In another simu-
lation, a loss of control surface (50% missing surface of right aileron) failure is
also induced at the 100th data frame.

5.3 Novelty Detection Using SVDD

We first simulate one run of nominal flight conditions of 40 seconds with a seg-
ment of 800 data points saved. After running SVDD on the nominal data, we
obtain a sound data description of nominal flight conditions. The data descrip-
tion is then used to detect novel data that falls outside the boundary. The crosses
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Fig. 7. Novelty detection results using SVDD on control surface failure simulation data.
(a): SVDD of nominal flight simulation data is used to detect novelties. (b): Novelty
measures returned by SVDD tool for each testing data point
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Fig. 8. Novelty detection results using SVDD on loss of control surface failure simula-
tion data. (a): SVDD of nominal flight simulation data is used to detect novelties. (b):
Novelty measures returned by SVDD tool for each testing data point

in Figure 7(a) and Figure 8(a) represent the nominal data points on which the
boundary is found by SVDD.

We then use the boundary formed by SVDD to test on failure mode simu-
lation data. Novelty detection results for control surface failure simulation data
and loss of control surface failure simulation data are shown in Figure 7 and Fig-
ure 8 respectively. Circles in Figure 7(a) and Figure 8(a) represent failure mode
simulation data. In the plot of Figure 8(a), depicting the loss of control surface
failure, a large portion of failure mode data falls outside the boundary. The loss
of control surface failure indicates a more substantial damage than the stuck-at
type of failure. Consequently, the data points in Figure 8(a) fall further outside
the nominal data boundary than the data points in Figure 7(a). The novelty
measures shown in Figure 7(b) and Figure 8(b) are probability-like measures
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computed for each data point based on the distance from the SVDD boundary
formed on the nominal flight condition data. Correspondingly, in plots of Figure
7(b) and Figure 8(b), we can see that the novelty measures of loss of control sur-
face failure data after 100th data frame are larger than those of control surface
failure data. In both figures, after the 100th point, when failures occurred, SVDD
detects the abnormal changes and returns with the highest novelty measures.
This demonstrates the reasonably effective and accurate detection capabilities
of our SVDD detector.

5.4 Online Stability Monitoring

Described novelty detection mechanisms provide an independent approach to re-
liable failure detection, thus enhancing the ability of the system analyst to eval-
uate the mechanisms in charge of the activation adaptive component(s). Online
stability monitors serve the purpose of evaluating whether adaptive subsystem
provide adequate accommodation capabilities that address specific environmen-
tal conditions. In other words, the monitors track the adaptation process and
continually evaluate the difference between the current state abstraction pro-
vided by the learning device (DCS neural network in our case study) and its
desired goal.

Adaptive systems are associated with uncertainty, many degrees of freedom
and high noise-level in real flight conditions. Due to their complexity, we may
not always be able to check to see if each dimension of the input data is ef-
fectively abstracted and represented by the neural network. Lyapunov theory
provides the tool to collapse the multidimensional evaluation criteria into one or
a few meaningful bounded functions. The data sets being modeled in the case
study represent short data sequences for one out of five neural networks in the
intelligent flight control system. We constructed four Lyapunov-like functions
to reduce the need for checking effective learning by each dimension. Rather
than looking onto several dozen graphs, the adequacy (stability) of learning can
be assessed from the analysis of these four graphs, representing the Lyapunov
functions.

The four Lyapunov-like functions are specific for the DCS neural network
of the Intelligent Flight Control System. Their formal description would require
detailed presentation of the DCS learning algorithm, which is outside of the scope
of this paper. In general terms, the DCS network is a so called self-organizing
map. Self-organizing maps evolve their topology to reflect as closely as possible
the topological characteristics of the data set being approximated. Therefore, by
measuring euclidian distances within the evolving network and comparing them
with actual distances in the training data set, we may derive the measure of
the goodness of approximation. The four Lyapunov like functions were defined
because they evaluate different aspects of DCS adaptation: the Kohonen’s rule
and the competitive Hebbian rule [19, 20]. Furthermore, we noticed that these
four functions react with different intensities to different training data sets. Given
that these data sets represent actual aircraft failure scenarios, selected Lyapunov-
like functions complement each other.
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Fig. 9. Online Monitors: Pre-control Surface Failure

As the neural network starts to adapt to the presented failure mode data, the
run-time monitor is engaged. It continually monitors the behavior of the neural
network. Figure 9 shows the plots of the four Lyapunov-like monitors before a
control surface failure (locked left stabilator, stuck at +3 Degree) is induced into
the system, and before it propagates into the neural network. Figure 9 shows
no predominant spikes in the individual monitors, indicating the lack of intense
adaptation in nominal conditions. Because the neural network does not attempt
to change the control input to the flight control system, its output bears very
limited overall system risk during this period.

Figure 10 shows the plots of the four Lyapunov-like monitors after the control
surface failure (locked left stabilator, stuck at +3 Degree) is induced into the
system and after the failure propagates into the neural network. Figure 11 shows
the plots of the four Lyapunov-like monitors after the loss of control surface (50%
missing surface of right aileron) is simulated into the system and after the failure
propagates into the neural network. The plots show a predominant spike at time
frame 100 (the time of the failure). The spikes indicate the successful detection
of the unusual (failed) environmental condition by monitoring the internals of
the neural network. In the short term, the neural network undergoes a significant
degree of adaptation. The high values of the Lyapunov-like functions indicate
that the neural network needs additional time (and learning cycles) to faithfully
represent its newly arrived (in real-time) input data set. During this period, the
confidence on neural network’s output diminishes drastically, i.e., the network is
not providing the desirable failure accommodation. But, Within the next 50 or
so frames in Figure 10, the values of Lyapunov-like monitors approach 0, indi-
cating that the failure has been accommodated through adaptation. The failure
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Fig. 10. Online Monitors: Post-control Surface Failure

accommodation delay is longer in Figure 11, an expected indication of the se-
vere failure condition (the loss of a control surface). At this point, a verification
and validation engineer needs to assess the adequacy of the failure accommoda-
tion mechanism with respect to the overall system safety requirements, evaluate
alternative designs, and prepare suitable V&V recommendations to the safety
board.

6 Conclusions

We developed a non-conventional approach for validating the performance ad-
equacy of the neural network embedded in an online adaptive flight control
system. The validation framework consists of

– Online filters (novelty detectors) that check the validity of inputs and control
outputs, and

– Runtime stability monitors that examine the stability properties of the neu-
ral network adaptation.

Experimental results from the data collected on an F-15 aircraft flight simulator
show that:

1. SVDD can be adopted for defining nominal performance regions for the
given application domain. Our techniques provided successfully automated
separation between faulty behaviors and normal system events in real-time
operation.
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Fig. 11. Online Monitors: Post-Loss of Control Surface Failure

2. Based on the originally developed concept of Lyapunov-like functions applied
for the first time to neural network learning, the online stability monitors
have shown a successful realization of convergence tracking of adaptation
error towards a stable (or unstable) and safe (or unsafe) state in the adaptive
flight control system.

We conclude that the proposed methodology provides a good approach for
validating online adaptive system’s safety, stability and performance. The ob-
served efficiency and scalability of both methods give us the expectation that
the proposed V&V method can be successfully applied to other types of online
adaptive learners.
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Abstract. We present an approach to the problem of verification of
epistemic properties in multi-agent systems by means of symbolic model
checking. In particular, it is shown how to extend the technique of un-
bounded model checking from a purely temporal setting to a temporal-
epistemic one. In order to achieve this, we base our discussion on in-
terpreted systems semantics, a popular semantics used in multi-agent
systems literature. We give details of the technique and show how it can
be applied to the well known train, gate and controller problem.
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1 Introduction

Verification of reactive systems by means of model-checking techniques [3] is
now a well-established area of research. In this paradigm one typically models
a system S in terms of automata (or by a similar transition-based formalism),
builds an implementation PS of the system by means of a model-checker friendly
language such as the input for SMV or PROMELA, and finally uses a model-
checker such as SMV or SPIN to verify some temporal property φ the system:
MP |= φ, where MP is a temporal model representing the executions of PS .
As it is well known, there are intrinsic difficulties with the naive approach of
performing this operation on an explicit representation of the states, and refine-
ments of symbolic techniques (based on OBDD’s, and SAT [1] translations) are
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being investigated to overcome these hurdles. Formal results and corresponding
applications now allow for the verification of complex systems that generate tens
of thousands of states.

The field of multi-agent systems (MAS) has also recently become interested
in the problem of verifying complex systems. In MAS the emphasis is on the
autonomy, and rationality of the components, or agents [22]. In this area, modal
logics representing concepts such as knowledge, beliefs, intentions, norms, and
the temporal evolution of these are used to specify high level properties of the
agents. Since these modalities are given interpretations that are different from
the ones of the standard temporal operators, it is not straightforward to ap-
ply existing model checking tools developed for standard Linear Temporal Logic
(LTL) (or Computation Tree Logic, CTL) temporal logic to the specification of
MAS. One further problem is the fact that the modalities that are of interest
are often not given a precise interpretation in terms of the computational states
of the system, but simply interpreted on classes of Kripke models that guaran-
tee (via frame-correspondence) that some intuitive properties of the system are
preserved1. This makes it hard to use the semantics to model any actual com-
putation performed by the system [21]. For the case of knowledge, the semantics
of interpreted systems [8], popularized by Halpern and colleagues in the 90’s,
can be used to give an interpretation to the modalities that maintains the tradi-
tional S5 properties, while, at the same time, is appropriate for model checking
[9]. Indeed, a considerable amount of literature now exists on the application
of interpreted systems and epistemic logic to the application areas of security,
modelling of synchronous, asynchronous systems, digital rights, etc. It is fair to
say that this area constitutes the most thoroughly explored, and technically ad-
vanced sub-discipline among the formal studies of multi-agent systems available
at the moment.

1.1 State of the Art and Related Literature

The recent developments in the area of model checking MAS can broadly be
divided into streams: in the first category standard predicates are used to inter-
pret the various intensional notions and these are paired with standard model
checking techniques based on temporal logic. Following this line is for example
[23] and related papers. In the other category we can place techniques that make
a genuine attempt at extending the model checking techniques by adding other
operators. Works along these lines include [19, 20, 12, 17, 16, 15, 14, 10].

In [19] local propositions are used to translate knowledge modalities on LTL
structures. Once this process is done, the result can be fed into a SPIN model
checker. Unfortunately, in this approach local propositions need to be computed
by the user.

1 For example, in epistemic logic it is customary to use equivalence models to interpret
a knowledge modality K so that it inherits the properties of the logical systems S5
[2]; in particular axioms T, 4, and 5 (which are considered to be intuitively correct
for knowledge) result valid.
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These works were preceded by [12], where van der Meyden and Shilov pre-
sented theoretical properties of the model checking problems for epistemic lin-
ear temporal logics for interpreted systems with perfect recall. In particular, it
was shown that the problem of checking a language that includes “until” and
“common knowledge” on perfect recall systems is undecidable, and decidable
fragments were identified.

In [17, 16, 15] an extension of standard temporal verification via model check-
ing on obdd’s to epistemic and deontic operators is presented and studied.

In [14, 10] an extension of the method of bounded model checking (one of the
main SAT-based techniques) to CTLK a language comprising both CTL and
knowledge operators, was defined, implemented, and evaluated. While prelimi-
nary results appear largely positive, any bounded model checking algorithm is
mostly of use when the task is either to check whether a universal CTLK for-
mula is actually false on a model, or to check that an existential CTLK formula
is valid. This is a severe limitation in MAS as it turns out that many of the
most interesting properties one is interested in checking actually involve univer-
sal formulas. For example, in a security setting one may want to check whether
it is true that forever in the future a particular secret, perhaps a key, is mutually
known by two participants.

1.2 Aim of This Paper

The aim of this paper is to contribute to the line of SAT-based techniques, by
overcoming the intrinsic limitation of any bounded model checking algorithm,
and provide a method for model checking the full language of CTLK. The SAT-
based method we introduce and discuss here is an extension to knowledge and
time of a technique introduced by McMillan [11] called unbounded model checking
(UMC). A byproduct of the work presented here is the definition of fixed point
semantics for a logic CTLpK, which extends CTLK by past operators.

Like any SAT-based method, UMC consists in translating the model checking
problem of what is in this case a CTLpK formula into the problem of satisfia-
bility of a propositional formula. UMC exploits the characterization of the basic
modalities in terms of Quantified Boolean Formulas (QBF), and the algorithms
that translate QBF and fixed point equations over QBF into propositional for-
mulas. In order to adapt UMC for checking CTLpK, we use three algorithms.
The first one, implemented by the procedure forall [11] (based on the Davis-
Putnam-Logemann-Loveland approach [4]) eliminates the universal quantifier
from a QBF formula representing a CTLpK formula, and returns the result in
conjunctive normal form (CNF). The remaining algorithms, implemented by the
procedures gfp and lfp calculate the greatest and the least fixed points for the
modal formulas in use here. Ultimately, the technique allows for a CTLpK for-
mula α to be translated into a propositional formula [α](w) 2 in CNF, which
characterizes all the states of the model, where α holds.

2 Note that w is a vector of propositional variables used to encode the states of the
model.
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For the case of CTL it was shown by McMillan [11] that model checking via
UMC can be exponentially more efficient than approaches based on BDD’s in
two situations:

– whenever the resulting fixed points have compact representations in CNF,
but not via BDD’s;

– whenever the SAT-based image computation step proves to be faster than
the BDD-based one.

Although we do not prove it here, we expect a similar increase in efficiency
for model checking of CTLpK over interpreted systems.

The rest of the paper is structured in the following manner. Section 2 in-
troduces interpreted systems semantics, the semantics on which we ground our
investigation. The logic CTLpK is defined in Section 3. Section 4 summarize the
basic definitions that we need for CNF and QBF formulas, and fixes the notation
we use throughout the paper. A fixed point characterization of CTLpK formulas
is presented in Section 5. The main idea of symbolic model checking CTLpK is
described in section 6, where algorithms for computing propositional formulas
equivalent to CTLpK formulas are also given. Two examples on the use of the
algorithms of this paper are given in Section 7. Preliminary experimental results
are shown in Section 8, whereas conclusions are given in Section 9.

2 Interpreted Systems Semantics

Any transition-based semantics allows for the representation of temporal flows
of time by means of the successor relation. For example, UMC for CTL uses
plain Kripke models [11]. To work on a temporal epistemic language, we need to
consider a semantics that allows for an automatic representation of the epistemic
relations between computational states [21]. The mainstream semantics that
allows to do so is the one of interpreted systems [8].

Interpreted systems can be succinctly defined as follows (we refer to [8] for
more details). Assume a set of agents A = {1, . . . , n}, a set of local states Li and
possible actions Acti for each agent i ∈ A, and a set Le and Acte of local states
and actions for the environment. The set of possible global states for the system
is defined as G = L1× . . .×Ln×Le, where each element (l1, . . . , ln, le) of G rep-
resents a computational state for the whole system (note that, as it will be clear
below, some states in G may actually be never reached by any computation of the
system). Further assume a set of protocols Pi : Li → 2Acti , for i = 1, . . . , n, repre-
senting the functioning behaviour of every agent, and a function Pe : Le → 2Acte

for the environment. We can model the computation taking place in the system
by means of a transition function t : G×Act→ G, where Act ⊆ Act1×. . .×Actn×
Acte is the set of joint actions. Intuitively, given an initial state ι, the sets of pro-
tocols, and the transition function, we can build a (possibly infinite) structure
that represents all the possible computations of the system. Many representa-
tions can be given to this structure; since in this paper we are only concerned
with temporal epistemic properties, we shall find the following to be a useful one.
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Definition 1 (Models). Given a set of agents A = {1, . . . , n}, a temporal
epistemic model (or simply a model) is a pair M = (K,V) with K = (G, W, T,∼1,
. . . ,∼n, ι), where

– G is the set of the global states for the system (henceforth called simply
states);

– T ⊆ G×G is a total binary (successor) relation on G;
– W is a set of reachable global states from ι, i.e., W = {s ∈ G | (ι, s) ∈ T ∗}3,
– ∼i ⊆ G × G (i ∈ A) is an epistemic accessibility relation for each agent

i ∈ A defined by s ∼i s′ iff li(s′) = li(s), where the function li : G → Li

returns the local state of agent i from a global state s; obviously ∼i is an
equivalence relation,

– ι ∈W is the initial state;
– V : G −→ 2PVK is a valuation function for a set of propositional variables
PVK such that true ∈ V(s) for all s ∈ G. V assigns to each state a set of
propositional variables that are assumed to be true at that state.

Note that in the definition above we include both all possible states and the
subset of reachable states. The reason for this follows from having past modalities
in the language (see the next section), which are defined over any possible global
state so that a simple fixed point semantics for them can be given. Still, note that,
if required, it is possible to restrict the range of the past modalities to reachable
states only by insisting that the target state is itself reachable from the initial state.

By |M| we denote the number of states of M, by IN = {0, 1, 2, . . .} the set of
natural numbers and by IN+ = {1, 2, . . .} the set of positive natural numbers.

Epistemic Relations. When we consider a group of agents, we are often interested
in situations in which everyone in the group knows a fact α. In addition to this it
is sometimes useful to consider other kinds of group knowledge. One of these is
the one of common knowledge. A group of agents has common knowledge about α
if everyone knows that α, and everyone knows that everyone knows α, and every-
one knows that everyone knows that everyone knows that α, and so on. For exam-
ple common knowledge is achieved following information broadcasting with no
faults. A different notion is the one of distributed knowledge (sometimes referred
to as “implicit knowledge”, or “wise-man” knowledge). A fact α is distributed
knowledge in a group of agents if it could be inferred by pooling together the
information the agents have. We refer to [8] for an introduction to these concepts.

Let Γ ⊆ A. Given the epistemic relations for the agents in Γ , the union
of Γ ’s accessibility relations defines the epistemic relation corresponding to the
modality of everybody knows: ∼E

Γ =
⋃

i∈Γ ∼i. ∼C
Γ denotes the transitive closure

of ∼E
Γ , and corresponds to the relation used to interpret the modality of common

knowledge. Notice that from reflexivity of ∼E
Γ follows that ∼C

Γ is, in fact, the
transitive and reflexive closure of ∼E

Γ . The relation used to interpret the modal-
ity of distributed knowledge is given by taking the intersection of the relations
corresponding to the agents in Γ .

3 T ∗ denotes the reflexive and transitive closure of T .
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Computations. A computation in M is a possibly infinite sequence of states
π = (s0, s1, . . .) such that (si, si+1) ∈ T for each i ∈ IN. Specifically, we assume
that (si, si+1) ∈ T iff si+1 = t(si, acti), i.e., si+1 is the result of applying the
transition function t to the global state si, and a joint action acti. All the com-
ponents of acti are prescribed by the corresponding protocols Pj for the agents
at si. In the following we abstract from the transition function, the actions, and
the protocols, and simply use T , but it should be clear that this is uniquely de-
termined by the interpreted system under consideration. Indeed, these are given
explicitly in the example in the last section of this paper. In interpreted systems
terminology a computation is a part of a run; note that we do not require s0
to be an initial state. For a computation π = (s0, s1, . . .), let π(k) = sk, and
πk = (s0, . . . , sk), for each k ∈ IN. By Π(s) we denote the set of all the infinite
computations starting at s in M.

3 Computation Tree Logic of Knowledge with Past
(CTLpK)

Interpreted systems are traditionally used to give a semantics to an epistemic
language enriched with temporal connectives based on linear time [8]. Here we
use Computation Tree Logic (CTL) by Emerson and Clarke [7] as our basic
temporal language and add an epistemic and past component to it. We call the
resulting logic Computation Tree Logic of Knowledge with Past (CTLpK).

Definition 2 (Syntax of CTLpK). Let PVK be a set of propositional variables
containing the symbol true. The set of CTLpK formulas FORM is defined
inductively by using the following rules only:

• every member p of PVK is a formula,
• if α and β are formulas, then so are ¬α, α ∧ β and α ∨ β,
• if α and β are formulas, then so are AXα, AGα, and A(αUβ),
• if α is formula, then so are AYα and AHα,
• if α is formula, then so is Kiα, for i ∈ A,
• if α is formula, then so are DΓ α, CΓ α, and EΓ α, for Γ ⊆ A.

The other modalities are defined by duality as follows:

– EFα
def
= ¬AG¬α, EPα

def
= ¬AH¬α, EZα

def
= ¬AZ¬α, for Z ∈ {X, Y },

– Kiα
def
= ¬Ki¬α, DΓ α

def
= ¬DΓ¬α, CΓ α

def
= ¬CΓ¬α, EΓ α

def
= ¬EΓ¬α.

Moreover, α ⇒ β
def
= ¬α ∨ β, α ⇔ β

def
= (α ⇒ β) ∧ (β ⇒ α), and false

def
=

¬true. We omit the subscript Γ for the epistemic modalities if Γ = A, i.e., Γ
is the set of all the agents. As customary X, G stand for respectively “at the
next step”, and “forever in the future”. Y, H are their past counterparts “at the
previous step”, and “forever in the past”. The Until operator U, precisely αUβ,
expresses that β occurs eventually and α holds continuously until then.
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Definition 3 (Interpretation of CTLpK). Let M = (K,V) be a model with
K = (G, W, T,∼1, . . . ,∼n, ι), s ∈ G a state, π a computation, and α, β formulas
of CTLpK. M, s |= α denotes that α is true at the state s in the model M. M is
omitted, if it is implicitly understood. The relation |= is defined inductively as
follows:

s |= p iff p ∈ V(s),
s |= ¬α iff s �|= α,
s |= α ∨ β iff s |= α or s |= β,
s |= α ∧ β iff s |= α and s |= β,
s |= AXα iff ∀π ∈ Π(s) π(1) |= α,
s |= AGα iff ∀π ∈ Π(s) ∀m≥0 π(m) |= α,
s |= A(αUβ) iff ∀π ∈ Π(s) (∃m≥0 [π(m) |= β and ∀j<m π(j) |= α]),
s |= AYα iff ∀s′ ∈ G (if (s′, s) ∈ T, then s′ |= α),
s |= AHα iff ∀s′ ∈ G (if (s′, s) ∈ T ∗, then s′ |= α),
s |= Kiα iff ∀s′ ∈W (if s ∼i s′, then s′ |= α),
s |= DΓ α iff ∀s′ ∈W (if s ∼D

Γ s′, then s′ |= α),
s |= EΓ α iff ∀s′ ∈W (if s ∼E

Γ s′, then s′ |= α),
s |= CΓ α iff ∀s′ ∈W (if s ∼C

Γ s′, then s′ |= α).

Definition 4. (Validity) A CTLpK formula ϕ is valid in M (denoted M |= ϕ)
iff M, ι |= ϕ, i.e., ϕ is true at the initial state of the model M .

Notice that the past component of CTLpK does not contain the modality
Since, which is a past counterpart of the modality Until denoted by U. Extend-
ing the logic by Since is possible, but complicates the semantics, so this is not
discussed in this paper.

4 Formulas in Conjunctive Normal Form and Quantified
Boolean Formulas

In this section, we shortly describe Davis-Putnam-Logemann-Loveland approach
[4] to checking satisfiability of formulas in conjunctive normal form (CNF), and
show how to construct a CNF formula that is unsatisfiable exactly when a propo-
sitional formula α is valid. Having done so, we apply these two methods to com-
pute a propositional formula equivalent to the quantified boolean formula ∀v.α,
where v is a vector of propositions. In order to do this we first give some basic
definitions. The formalism in this section is from [11] and is reported here for
completeness.

Let PV be a finite set of propositional variables. A literal is a propositional
variable p ∈ PV or the negation of one: ¬p, p ∈ PV. A clause is a disjunction
of a set of zero or more literals l[1] ∨ . . . ∨ l[n]. A disjunction of zero literals is
taken to mean the constant false. A formula is in a conjunctive normal form
(CNF) if it is a conjunction of a set of zero or more clauses c[1] ∧ . . . ∧ c[n]. A
conjunction of zero clauses is taken to mean the constant true. An assignment
is a partial function from PV to {true, false}. An assignment is said to be
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total when its domain is PV. A total assignment A is said to be satisfying for
a formula α when α(A) = true, i.e., the value of α given by A is true (under
the usual interpretation of the boolean connectives). We equate an assignment
A with the conjunction of a set of literals, specifically the set containing ¬p for
all p ∈ dom(A) such that A(p) = false, and p for all p ∈ dom(A) such that
A(p) = true.

For a given CNF formula α and an assignment A, an implication graph
IG(A, α) is a maximal directed acyclic graph (V, E), where V is a set of ver-
tices, and E is a set of edges, such that:

– V is a set of literals,
– every literal in A is a root,
– for every vertex l not in A, the CNF formula α contains the clause

cl(l, A, α)
def
= l ∨

∨
m∈{l′∈V :(l′,l)∈E} ¬m,

– for all p ∈ PV, V does not contain both p and ¬p.

Notice that the above conditions do not uniquely define the implication graph.
We denote by Aα the assignment induced by the implication graph IG(A, α), i.e.,
Aα =

∧
v∈V v, where V is a set of vertices of IG(A, α). Observe that Aα is an

extension of A. Furthermore, α ∧A implies Aα.
Given two clauses of the form c[1] = p ∨ C1 and c[2] = ¬p ∨ C2, where C1

and C2 are disjunctions of literals, we say that the resolvent of c[1] and c[2] is
C1 ∨ C2, provided that C1 ∨ C2 contains no contradictory literals, i.e., it does
not contain a variable p and its negation ¬p. If this happens, the resolvent does
not exist. Note that the resolvent of c[1] and c[2] is a clause that is implied by
c[1] ∧ c[2].

CNF formulas satisfy useful properties to check their satisfiability. Indeed,
notice that a CNF formula is satisfied only when each of its clauses is satisfied
individually. Thus, given a CNF formula α and an assignment A, if a clause
in α has all its literals assigned value false, then A cannot be extended to a
satisfying assignment. A clause that has all its literals assigned to value false
is called a conflicting clause. We also say that a clause is in conflict when all
of its literals are assigned the value false under Aα. If there exists a clause in
α such that the all but one of its literals have been assigned the value false,
then the remaining literal must be assigned the value true for this clause to
be satisfied. In particular, in every satisfying assignment which is an extension
of the assignment A, the unassigned literal must be true. Such an unassigned
literal is called unit literal, and the clause it belongs to is called a unit clause.

There are several algorithms for determining satisfiability of CNF formulas.
Here, we use the algorithm proposed by Davis and Putnam and later modified
by Davis, Logemann and Loveland [4]. The algorithm is based on the methods of
Boolean constraint propagation (BCP) and conflict-based learning (CBL) and it
is aimed at building a satisfying assignment for a given formula α in an incremen-
tal manner. The BCP technique is the most important part of the algorithm; it
determines a logical consequence of the current assignment by building an impli-
cation graph and detecting unit clauses, and conflicting clauses. When a conflict
is detected, as we mentioned above, the current assignment cannot be extended
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to a satisfying one. In this case, the technique of conflict-based learning is used
to deduce a new clause that prevents similar conflicts from reoccurring. This
new clause is called a conflict clause and is deduced by resolving the existing
clauses using the implication graph as a guide.

The following is a generic conflict-based learning procedure that takes an
assignment A, a CNF formula α, and a conflicting clause c and produces a
conflict clause by repeatedly applying resolution steps until either a termination
condition T is satisfied, or no further steps are possible. We elaborate on the
condition T below when we discuss how the procedure deduce is used by the
procedure forall.

procedure deduce(c, A, α),
while ¬T and exists l ∈ c such that ¬l �∈ A

let c = resolvent of cl(¬l, A, α) and c
return c

The resulting clause c is implied by α. Thus it can be added to α without
changing its satisfiability.

In the following we show a polynomial-time algorithm that, given a proposi-
tional formula α, constructs a CNF formula which is unsatisfiable exactly when
α is valid. The procedure works as follows. First, for every β subformula of
the formula α (including α itself) we introduce a distinct variable lβ . If β is a
propositional variable, then lβ = β. Next we assign a formula CNF(β) to every
subformula β according to the following rules:

• if β is a variable then CNF(β) = true,
• if β = ¬φ then CNF(β) = CNF(φ) ∧ (lβ ∨ lφ) ∧ (¬lβ ∨ ¬lφ),
• if β = φ ∨ ϕ then CNF(β) = CNF(φ) ∧ CNF(ϕ) ∧ (lβ ∨ ¬lφ) ∧ (lβ ∨ ¬lϕ) ∧

(¬lβ ∨ lφ ∨ lϕ),
• if β = φ ∧ ϕ then CNF(β) = CNF(φ) ∧ CNF(ϕ) ∧ (¬lβ ∨ lφ) ∧ (¬lβ ∨ lϕ) ∧

(lβ ∨ ¬lφ ∨ ¬lϕ),
• if β = φ → ϕ then CNF(β) = CNF(φ) ∧ CNF(ϕ) ∧ (lβ ∨ lφ) ∧ (lβ ∨ ¬lϕ) ∧

(¬lβ ∨ ¬lφ ∨ lϕ).

It can be shown [11] that the formula α is valid when the CNF formula
CNF(α)∧¬lα is unsatisfiable. This follows from the fact that there is a unique
satisfying assignment A′ of CNF(α) consistent with A such that A′(lα) = α(A).

In our method, in order to have a more succinct notation for complex op-
erations on boolean formulas, we also use Quantified Boolean Formulas (QBF),
an extension of propositional logic by means of quantifiers ranging over proposi-
tions. In BNF: α ::= p | ¬α | α∧α | ∃p.α | ∀p.α. The semantics of the quantifiers
is defined as follows:

• ∃p.α iff α(p ← true) ∨ α(p ← false),
• ∀p.α iff α(p ← true) ∧ α(p ← false),

where α ∈ QBF, p ∈ PV and α(p ← ψ) denotes substitution with the formula
ψ of every occurrence of the variable p in formula α.
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We will use the notation ∀v.α, where v = (v[1], . . . , v[m]) is a vector of
propositional variables, to denote ∀v[1].∀v[2] . . .∀v[m].α. Moreover, let α(w) be a
QBF formula over the propositional variables of the vector w = (w[1], . . . , w[m]).

What is important here, is that for a given QBF formula ∀v.α, we can con-
struct a CNF formula equivalent to it by using the algorithm forall [11].

procedure forall(v, α), where v = (v[1], ..., v[m]) and α is a propositio-
nal formula
let φ = CNF(α) ∧ ¬lα, χ = true, and A = ∅
repeat

if φ contains false, return χ
else if some c in φ is in conflict

add clause deduce(c, A, φ) to φ
remove some literals from A

else if Aφ is total
choose a blocking clause c′

remove literals of form v[i] and ¬v[i] from c′

add c′ to φ and χ
else

choose a literal l such that l �∈ A and ¬l �∈ A
add l to A

The procedure works as follows. Initially it assumes an empty assignment
A, a formula χ to be true and φ to be a CNF formula CNF(α) ∧ ¬lα. The
algorithm aims at building a satisfying assignment for the formula φ, i.e., an
assignment that falsifies α. The search for an appropriate assignment is based
on the Davis-Putnam-Logemann-Loveland approach. The following three cases
may happen:

– A conflict is detected, i.e., there exists a clause in φ such that all of its literals
are false in Aφ. So, the assignment A can not be extended to a satisfying
one. Then, the procedure deduce is called to generate a conflict clause, which
is added to φ, and the algorithm backtracks, i.e., it changes the assignment
A by withdrawing one of the previously assigned literals.

– A conflict does not exist and Aφ is total, i.e., the satisfying assignment is
obtained. In this case we generate a new clause which is false in the current
assignment Aφ and whose complement characterizes a set of assignments
falsifying the formula α. This clause is called a blocking clause and it must
have the following properties:
• it contains only input variables, i.e., the variables over which the input

formula α is built,
• it is false in the current assignment,
• it is implied by lα ∧ CNF(α).

A blocking clause could be generated using the conflict-based learning proce-
dure, but we require the blocking clause to contain only input variables. To
do this we use an implication graph, in which all the roots are input literals.
Such a graph can be generated in the following way. Let Aφ be a satisfying
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assignment for φ, A′ = Aφ ↓ V , i.e., A′ is the projection of Aφ onto the input
variables and let φ′ = CNF(α)∧χ. It is not difficult to show that A′

φ′ = Aφ,
i.e., both the graphs IG(A′, φ′) and IG(A, φ) induce the same assignments.
Furthermore, the variable lα is in conflict in IG(A′, φ′), since φ contains the
clause ¬lα. Thus, a clause deduce(lα, A′, φ′) is a blocking clause providing
that it contains only input variables, what can be ensured by a termination
condition T .
Next, in order to quantify universally over the variables v[1], . . . , v[m], the
blocking clause is deprived of the variables either of the form v[i] and the
negation of these. This is sufficient as the blocking clause is a formula in CNF.
Then, what remains is added to the formulas φ and χ and the algorithm
continues, i.e., again finds a satisfying assignment for φ.

– The first two cases do not apply. Then, the procedure makes a new assign-
ment A by giving a value to a selected variable.

On termination, when φ becomes unsatisfiable, χ is a conjunction of the
blocking clauses and precisely characterizes ∀v.α.

Theorem 1. Let α be a propositional formula and v = (v[1], . . . , v[m]) be a
vector of propositions, then the QBF formula ∀v.α is logically equivalent to the
CNF formula forall(v, α).

The proof of the above theorem follows from the correctness of the algorithm
forall (see [11]).

Example 1. We illustrate in a quite detailed way (as performed by a solver) some
basic operations of the procedure forall. To make it simple, we explain these
operations for a formula in CNF. So, let φ = (¬v1) ∧ (v1 ∨ v4 ∨ ¬v5) ∧ (¬v2 ∨
v3)∧ (v4 ∨ v5) and assume that φ = CNF(α)∧¬lα for some formula α. The aim
of the procedure forall(v1, α) is to find a formula in CNF equivalent to ∀v1.α.
We will only show how one blocking clause is generated and added to φ and
χ. Notice that at the start of the procedure the assignment of v1 is implied as
this variable is the only literal in a clause of φ and must be followed in order
for the clause to be satisfied. Thus, we have A = {¬v1}. Now, the algorithm
decides the assignment for another unassigned variable, say A(v2) = true. This
implies the assignment of v3, namely A(v3) = true, so that the clause (¬v2∨v3)
is satisfied. Next, an assignment A(v4) = false is decided, but notice that this
implies both v5 (because of the clause (v4 ∨ v5)) and ¬v5 (because of the clause
(v1∨v4∨¬v5)) – a conflict. The implication graph is analysed (several algorithms
can be applied [13]) and a learned clause (v1 ∨ v4) is generated and added to
the working set of clauses (i.e., φ). Notice, that the variables v2 and v3 are not
responsible for this conflict. The learned clause greatly reduces the number of
assignments to be examined as the partial assignment {¬v1,¬v4} is excluded
from the future search irrespectively on valuations of the remaining variables.
Next, the algorithm withdraws from the assignment of v4. Notice that the learned
clause implies A(v4) = true. Thus, a satisfying assignment that is found is
Aϕ = {¬v1, v2, v3, v4, v5}.
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A blocking clause (v1 ∨ ¬v4) is generated and the literal v1 is removed from
this clause. We obtain the blocking clause c′ = (¬v4) and c′ is added to φ and χ.
The procedure keeps on going until φ does not contain false.

5 Fixed Point Characterization of CTLpK

In this section we show how the set of states satisfying any CTLpK formula
can be characterized by a fixed point of an appropriate function. We follow and
adapt, when necessary, the definitions given in [3].

Let M = ((G, W, T,∼1, . . . ,∼n, ι),V) be a model. Notice that the set 2G of
all subsets of G forms a lattice under the set inclusion ordering. Each element
G′ ⊆ Q of the lattice can also be thought of as a predicate on G, where the
predicate is viewed as being true for exactly the states in G′. The least element
in the lattice is the empty set, which corresponds to the predicate false, and
the greatest element in the lattice is the set G, which corresponds to true. A
function τ mapping 2G to 2G is called a predicate transformer. A set G′ ⊆ G is
a fixed point of a function τ : 2G → 2G if τ(G′) = G′.

Whenever τ is monotonic (i.e., when P ⊆ Q implies τ(P ) ⊆ τ(Q)), τ has
a least fixed point denoted by μZ.τ(Z), and a greatest fixed point, denoted
by νZ.τ(Z). When τ is monotonic and

⋃
-continuous (i.e., when P1 ⊆ P2 ⊆

. . . implies τ(
⋃

i Pi) =
⋃

i τ(Pi)), then μZ.τ(Z) =
⋃

i≥0 τ i(false). When τ is
monotonic and

⋂
-continuous (i.e., when P1 ⊇ P2 ⊇ . . . implies τ(

⋂
i Pi) =⋂

i τ(Pi)), then νZ.τ(Z) =
⋂

i≥0 τ i(true) (see [18]).
In order to obtain fixed point characterizations of the modal operators, we

identify each CTLpK formula α with the set 〈α〉M of states in M at which this for-
mula is true, formally 〈α〉M = {s ∈ G | M, s |= α}. If M is clear from the context
we omit the subscript M. Furthermore, we define functions AX, AY, Ki, EΓ , DΓ

from 2G to 2G as follows:
– AX(Z) = {s ∈ G | for every s′ ∈ G if (s, s′) ∈ T, then s′ ∈ Z},
– AY(Z) = {s ∈ G | for every s′ ∈ G if (s′, s) ∈ T, then s′ ∈ Z},
– Ki(Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼ s′, then s′ ∈ Z},
– EΓ (Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼E

Γ s′, then s′ ∈ Z},
– DΓ (Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼D

Γ s′, then s′ ∈ Z}.

Observe that 〈Oα〉 = O(〈α〉), for O ∈ {AX, AY, Ki, EΓ , DΓ }. Then, the
following temporal and epistemic operators may be characterized as the least
or the greatest fixed point of an appropriate monotonic (

⋂
-continuous or

⋃
-

continuous) predicate transformer.

– 〈AGα〉 = νZ.〈α〉 ∩AX(Z),
– 〈A(αUβ)〉 = μZ.〈β〉 ∪ (〈α〉 ∩AX(Z)),
– 〈AHα〉 = νZ.〈α〉 ∩AY(Z),
– 〈CΓ α〉 = νZ.EΓ (Z ∩ 〈α〉)

The first three equations are standard (see [6], [3] ), whereas the fourth one
is defined analogously taking account that ∼C

Γ is the transitive, and reflexive
closure of ∼E

Γ .
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6 Symbolic Model Checking on CTLpK

Let M = (K,V) with K = (G, W, T,∼1, ...,∼n, ι). Recall that the set of global
states G = ×n

i=1Li is the Cartesian product of the set of local states (without
loss of generality we treat the environment as one of the agents).

We assume Li ⊆ {0, 1}ni , where ni = #log2(|Li|)$ and let n1 + . . . + nn = m,
i.e., every local state is represented by a sequence consisting of 0’s and 1’s.
Moreover, let Di be a set of the indexes of the bits of the local states of each
agent i of the global states, i.e., D1 = {1, . . . , n1}, . . . , Dn = {m−nn+1, . . . , m}.

Let PV be a set of fresh propositional variables such that PV ∩ PVK = ∅,
FPV be a set of propositional formulas over PV, and lit : {0, 1} × PV → FPV
be a function defined as follows: lit(0, p) = ¬p and lit(1, p) = p. Furthermore,
let w = (w[1], . . . , w[m]), where w[i] ∈ PV for each i = 1, . . . , m, be a global
state variable. We use elements of G as valuations4 of global state variables in
formulas of FPV . For example w[1] ∧ w[2] evaluates to true for the valuation
q = (1, . . . , 1), and it evaluates to false for the valuation q = (0, . . . , 0).

Now, the idea consists in using propositional formulas of FPV to encode sets
of states of G. For example, the formula w[1] ∧ . . . ∧ w[m] encodes the state
represented by (1, . . . , 1), whereas the formula w[1] encodes all the states, the
first bit of which is equal to 1.

Next, the following propositional formulas are defined:

– Is(w) :=
∧m

i=1 lit(si, w[i]).
This formula encodes the state s = (s1, . . . , sm) of the model, i.e., si = 1 is
encoded by w[i], and si = 0 is encoded by ¬w[i].

– H(w, v) :=
∧m

i=1 w[i] ⇔ v[i].
This formula represents logical equivalence between global state encodings,
representing the fact that they represent the same state.

– T (w, v) is a formula, which is true for a valuation (s1, . . . , sm) of
(w[1], . . . , w[m]) and a valuation (s′

1, . . . , s
′
m) of (v[1], . . . , v[m]) iff

((s1, . . . , sm), (s′
1, . . . , s

′
m)) ∈ T .

Our aim is to translate CTLpK formulas into propositional formulas. Specif-
ically, for a given CTLpK formula β we compute a corresponding propositional
formula [β](w), which encodes those states of the system that satisfy the for-
mula. Operationally, we work outwards from the most nested subformulas, i.e.,
the atoms. In other words, to compute [Oα](w), where O is a modality, we work
under the assumption of already having computed [α](w). To calculate the ac-
tual translations we use either the fixed point or the QBF characterization of
CTLpK formulas. For example, the formula [AXα](w) is equivalent to the QBF
formula ∀v.(T (w, v) ⇒ [α](v)). We can use similar equivalences for formulas
AYα,Kiα,DΓ α,EΓ α. More specifically, we use the following three basic algo-
rithms. The first one, implemented by the procedure forall, is used for formulas
Oα such that O ∈ {AX, AY, Ki, DΓ , EΓ }. This procedure eliminates the univer-
sal quantifier from a QBF formula representing a CTLpK formula, and returns

4 We identify 1 with true and 0 with false.
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the result in a conjunctive normal form. The second algorithm, implemented by
the procedure gfpO, is applied to formulas Oα such that O ∈ {AG, AH, CΓ }.
This procedure computes the greatest fixed point. For the formulas of the form
A(αUβ) we use a third procedure, called lfpAU , which computes the least fixed
point. In so doing, given a formula β we obtain a propositional formula [β](w)
such that β is valid in the model M iff the conjunction [β](w)∧Iι(w) is satisfiable,
i.e., ι ∈ 〈β〉. Below, we formalize the above discussion.

Definition 5 (Translation for UMC). Given a CTLpK formula ϕ, the propo-
sitional translation [ϕ](w) is inductively defined as follows:

• [p](w) :=
∨

s∈〈p〉 Is(w), for p ∈ PVK,
• [¬α](w) := ¬[α](w),
• [α ∧ β](w) := [α](w) ∧ [β](w),
• [α ∨ β](w) := [α](w) ∨ [β](w),
• [AXα](w) := forall

(
v, (T (w, v) ⇒ [α](v))

)
,

where [α](v) denotes [α](w)(w ← v)5 ,
• [AYα](w) := forall

(
v, (T (v, w) ⇒ [α](v))

)
,

• [Kiα](w) := forall
(
v, ((Hi(w, v) ∧ ¬ gfpAH(¬Iι(v))) ⇒ [α](v))

)
,

• [DΓ α](w) := forall
(
v, ((

∧
i∈Γ Hi(w, v) ∧ ¬ gfpAH(¬Iι(v))) ⇒ [α](v))

)
,

• [EΓ α](w) := forall
(
v, ((

∨
i∈Γ Hi(w, v) ∧ ¬ gfpAH(¬Iι(v))) ⇒ [α](v))

)
,

• [AGα](w) :=gfpAG([α](w)),
• [A(αUβ)](w) :=lfpAU ([α](w), [β](w)),
• [AHα](w) :=gfpAH([α](w)),
• [CΓ α](w) :=gfpCΓ

([α](w)).

The algorithms gfp and lfp are based on the standard procedures computing
fixed points.

procedure gfpAG([α](w)), where α is a CTLpK formula
let Q(w) = [true](w), Z(w) = [α](w)
while ¬(Q(w) ⇒ Z(w)) is satisfiable

let Q(w) = Z(w),
let Z(w) =forall(v, (T (w, v) ⇒ Z(v))) ∧ [α](w)

return Q(w)

The procedure gfpAH is obtained by replacing in the above forall(v, (T (w, v)⇒
Z(v))) with forall(v, (T (v, w) ⇒ Z(v))).

procedure gfpCΓ
([α](w)), where α is a CTLpK formula

let Q(w) = [true](w),
Z(w) =forall

(
v, ((

∨
i∈Γ Hi(w, v) ∧ ¬gfpAH(¬Iι(v))) ⇒ [α](v))

)
while ¬(Q(w) ⇒ Z(w)) is satisfiable

let Q(w) = Z(w),

5 Note that by α(w)(w ← v) we formally mean [α](w)(w[1] ← v[1]) · · · (w[m] ← v[m]),
where v = (v[1], . . . , v[m]) is a vector of propositional variables.
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let Z(w) =forall(v, (
∨

i∈Γ Hi(w, v) ∧ ¬gfpAH(¬Iι(v)) ⇒ (Z(v) ∧ [α](v))))
return Q(w)

procedure lfpAU ([α](w), [β](w)), where α, β are CTLpK formulas
let Q(w) = [false](w), Z(w) = [β](w)
while ¬(Z(w) ⇒ Q(w)) is satisfiable

let Q(w) = Q(w) ∨ Z(w),
let Z(w) =forall(v, (T (w, v) ⇒ Q(v))) ∧ [α](w)

return Q(w)

We now have all the ingredients in place to state the main result of this
paper: modal satisfaction of a CTLpK formula can be rephrased as propositional
satisfaction of an appropriate conjunction. Note that the translation is sound and
complete (details of the proof are not given here).

Theorem 2 (UMC for CTLpK). Let M be a model and ϕ be a CTLpK formula.
Then, M |= ϕ iff [ϕ](w) ∧ Iι(w) is satisfiable.

Proof. Notice that Iι(w) is satisfied only by the valuation ι = (ι1, . . . , ιm) of
w = (w[1], . . . , w[m]). Thus [ϕ](w) ∧ Iι(w) is satisfiable iff [ϕ](w) is true for the
valuation ι of w. On the other hand for a model M, M |= ϕ iff M, ι |= ϕ, i.e.,
ι ∈ 〈ϕ〉. Hence, we have to prove that ι ∈ 〈ϕ〉 iff [ϕ](w) is true for the valuation
ι of w. The proof is by induction on the complexity of ϕ. The theorem follows
directly for the propositional variables. Next, assume that the hypothesis holds
for all the proper sub-formulas of ϕ. If ϕ is equal to either ¬α, α ∧ β, or α ∨ β,
then it is easy to check that the theorem holds.

For the modal formulas, let P be a set of states and αP (w) a propositional
formula such that αP (w) is true for the valuation s = (s1, . . . , sm) of w =
(w[1], . . . , w[m]) iff s ∈ P . Note that given any P , αP is well defined: since the
set G of all states is finite, and one can take

∨
s∈P Is(w) as αP (w). Consider ϕ

to be of the following forms:

• ϕ = AYα. We will prove that ι ∈ 〈AYα〉 iff the formula [AYα](w) is true for
the valuation ι of w.
First we prove that:
(*) s ∈ AY(P ) iff the formula ∀v.(T (v, w) ⇒ αP (v)) is true for the valuation
s of w.
s ∈ AY(P ) iff s ∈ {s′ ∈ G| for every s′′ ∈ G if (s′′, s′) ∈ T , then s′′ ∈ P}.
On the one hand, (s′′, s′) ∈ T iff T (v, w) is true for the valuation s′ of w and
the valuation s′′ of v. Moreover, s′′ ∈ P iff the formula αP (v) is true for the
valuation s′′ of v. Thus s ∈ AY(P ) iff the formula T (v, w) ⇒ αP (v) is true
for the valuation s of w and every valuation s′′ of v. Hence, s ∈ AY(P ) iff
the QBF formula ∀v.(T (v, w) ⇒ αP (v)) is true for the valuation s of w.
Therefore, ι ∈ 〈AYα〉 iff ι ∈ AY(〈α〉) iff (by the inductive assumption and
(*)) the formula (∀v.(T (v, w) ⇒ [α](v))) is true for the valuation ι of w iff
(by Theorem 1) the propositional formula forall(v, T (v, w) ⇒ [α](v)) is true
for the valuation ι of w iff [AYα](w) is true for the valuation ι of w.
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• ϕ = AXα. The proof is analogous to the former case.
• ϕ = AHα We will show that ι ∈ 〈AHα〉 iff formula [AHα](w) is true for the

valuation ι of w.
First we prove that:
(*) s ∈ νZ.P ∩AY(Z) iff the formula gfpAH(αP (w)) is true for the valuation
s of w.
Let τ(Z) = P ∩ AY(Z), then s ∈ νZ.τ(Z) iff s ∈

⋂
i≥0 τ i(G) (as s ∈⋂

i≥0 τ i(true)). Thus, s ∈ νZ.τ(Z) iff s ∈ τ i(G) for the least i such that
τ i(G) ⊆ τ i+1(G) since for every i ≥ 0 we have τ i+1(G) ⊆ τ i(G). On the other
hand, s ∈ τ(Z) iff formula αP (w)∧∀v.(T (v, w) ⇒ αZ(v)) is true for the val-
uation s of w iff (by Theorem 1) formula αP (w)∧forall(v, T (v, w) ⇒ αZ(v))
is true for the valuation s of w.
Let Z0(w) = αP (w) and Zi(w) = αP (w) ∧ forall(v, (T (v, w) ⇒ Zi−1(v)))
for i > 0. Notice that s ∈ τ i(G) iff Zi(w) is true for the valuation s
of w. Moreover, Qi(w) = Zi−1(w) and Zi(w) = Zi(w) are invariants of
the while-loop of the procedure gfpAH(αP (w)). Hence on the termination,
when Qi0(w) ⇒ Zi0(w), where i0 is the least i such that Qi(w) ⇒ Zi(w),
gfpAH(αP (w)) = Qi0(w) is a formula that is true for the valuation s of w iff
s ∈ νZ.τ(Z).
Therefore, ι ∈ 〈AHα〉 iff ι ∈ νZ.〈α〉∩AY(Z) iff (by the inductive assumption
and (*)) the propositional formula gfpAH([α](w)) is true for the valuation ι
of w iff propositional formula [AHα](w) is true for the valuation ι of w.

• ϕ = AGα | CΓ α | A(αUβ). The proof is analogous to the former case.
• ϕ = Kiα. In order to show that ι ∈ 〈Kiα〉 iff formula [Kiα](w) is true for

the valuation ι of w, first we prove that:
(*) s ∈ Ki(P ) iff the formula ∀v.(¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒ αP (v)) is
true for the valuation s of w.
To this aim we prove the following two facts:
(**) (ι, s′′) ∈ T ∗ iff ¬gfpAH(¬Iι(v)) is true for the valuation s′′ of v.
Observe that s′′ ∈ G\{ι} iff ¬Iι(v) is true for the valuation s′′ of v. On the
other hand (ι, s′′) �∈ T ∗ iff s′′ ∈ νZ.(G\{ι}) ∩ AY(Z). Hence (ι, s′′) ∈ T ∗ iff
s′′ �∈ νZ.(G\{ι}) ∩AY(Z) iff gfpAH(¬Iι(v)) is false for the valuation s′′ of v
iff ¬gfpAH(¬Iι(v)) is true for the valuation s′′ of v.
(***) s′ ∼i s′′ iff Hi(w, v) is true for the valuation s′ of w and the valuation
s′′ of v.
s′ ∼i s′′ iff li(s′) = li(s′′) iff

∧
j∈Di

s′
j = s′′

j iff formula
∧

j∈Di
w[j] ⇔ v[j] is

true for the valuation s′ of w and the valuation s′′ of v iff Hi(w, v) is true
for the valuation s′ of w and the valuation s′′ of v.
Thus by (**) and (***), s ∈ Ki(P ) iff for the valuation s of w and every
valuation s′′ of v formula ¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒ αP (v) is true iff
the QBF formula ∀v.(¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒ αP (v)) is true for the
valuation s of w.
Therefore, ι ∈ 〈Kiα〉 iff ι ∈ Ki(〈α〉) iff (by the inductive assumption and
(*)) the formula ∀v.(¬gfpAH(¬Iι(v)) ∧Hi(w, v) ⇒ [α](v)) is true for the
valuation ι of w iff (by Theorem 1) the propositional formula
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forall(v, (¬gfpAH(¬Iι(v))∧Hi(w, v) ⇒ [α](v))) is true for the valuation ι of
w iff [Kiα](w) is true for the valuation ι of w.

• ϕ = DΓ α | EΓ α. The proof is analogous to the former case.

6.1 Optimizations of Algorithms

In our implementation we apply some optimizations to the fixed point computing
algorithms described above. Precisely, we compute [AGα](w) and [AHα](w) by
using the following frontier set simplification method [11]. Define the formula
(∀v.α) ↓ δ, representing some propositional formula such that δ ∧ (∀v.α) ↓ δ is
equivalent to δ ∧ ∀v.α. The formula (∀v.α) ↓ δ is computed using the procedure
forall with a slight modification. Next, we compute [AGα](w) as the conjunction
of the following sequence: Z1(w) = [α](w), Zi+1(w) = (∀v.(T (w, v) ⇒ Zi(v))) ↓∧i

j=1 Zj(w). The sequence converges when
∧i

j=1 Zj(w) ⇒ forall(v, (T (w, v) ⇒
Zi(v))), in which case Zi+1(w) is the constant true. The procedure fssmAG for
computing [AGα](w) is as follows.

procedure fssmAG([α](w)), where α is a CTLpK formula
let Z(w) = Q(w) = [α](w)
while Z(w) �= true

let Z(w) = (∀v.(T (w, v) ⇒ Z(v))) ↓ Q(w)
let Q(w) = Q(w) ∧ Z(w)

return Q(w)

The procedure fssmAH for computing [AHα](w) is obtained by replacing in
the above (∀v.(T (w, v) ⇒ Z(v))) ↓ Q(w) with (∀v.(T (v, w) ⇒ Z(v))) ↓ Q(w).
Similar procedure can be obtained for computing formulas [CΓ α](w).

7 Example of Train, Gate and Controller

In this section we exemplify the procedure above by discussing the scenario of
the train controller system (adapted from [20]). The system consists of three
agents: two trains (agents 1 and 3), and a controller (agent 2). The trains, one
Eastbound, the other Westbound, occupy a circular track. At one point, both
tracks pass through a narrow tunnel. There is no room for both trains to be
in the tunnel at the same time. Therefore the trains must avoid this to hap-
pen. There are traffic lights on both sides of the tunnel, which can be either
red or green. Both trains are equipped with a signaller, that they use to send
a signal when they approach the tunnel. The controller can receive signals from
both trains, and controls the colour of the traffic lights. The task of the con-
troller is to ensure that the trains are never both in the tunnel at the same
time. The trains follow the traffic lights signals diligently, i.e., they stop on
red.

We can model the example above with an interpreted system as follows. The
local states for the agents are:
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Fig. 1. The local transition structures for the two trains and the controller

• Ltrain1 = {away1, wait1, tunnel1},
• Lcontroller = {red, green},
• Ltrain2 = {away2, wait2, tunnel2}.

The set of global states is defined as G = Ltrain1 × Lcontroller × Ltrain2 .
Let ι = (away1, green, away2) be the initial state. We assume that the local
states are numbered in the following way: away1 := 1, wait1 := 2, tunnel1 := 3,
red; = 4, green := 5, away2 := 6, wait2 := 7, tunnel2 := 8 and the agents are
numbered as follows: train1 := 1, controller := 2, train2 := 3. Thus we assume
a set of agents A to be the set {1, 2, 3}.

Let Act = {a1, ..., a6} be a set of joint actions. For a ∈ Act we define the
preconditions pre(a), postconditions post(a), and the set agent(a) containing
the numbers of the agents that may change local states by executing a.

• pre(a1) = {1}, post(a1) = {2}, agent(a1) = {1},
• pre(a2) = {2, 5}, post(a2) = {3, 4}, agent(a2) = {1, 2},
• pre(a3) = {3, 4}, post(a3) = {1, 5}, agent(a3) = {1, 2},
• pre(a4) = {6}, post(a4) = {7}, agent(a4) = {3},
• pre(a5) = {5, 7}, post(a5) = {4, 8}, agent(a5) = {2, 3},
• pre(a6) = {4, 8}, post(a6) = {5, 6}, agent(a6) = {2, 3}.

In our formulas we use the following two propositional variables in−tunnel1
and in−tunnel2 such that in−tunnel1 ∈ V(s) iff ltrain1(s) = tunnel1, in−tunnel2
∈ V(s) iff ltrain2(s) = tunnel2, for s ∈ G.

We now encode the local states in binary form in order to use them in the
model checking technique. Given that agent train1 can be in 3 different lo-
cal states we shall need 2 bits to encode its state; in particular we shall take:
(0, 0) = away1, (1, 0) = wait1, (0, 1) = tunnel1. Similarly for the agent train2:
(0, 0) = away2, (1, 0) = wait2, (0, 1) = tunnel2. The modelling of the lo-
cal states of the controller requires only one bit: (0) = green, (1) = red. In
view of this a global state is modelled by 5 bits. For instance the initial state
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ι = (away1, green, away2) is represented as a tuple of 5 0’s. Notice that the first
two bits of a global state encode the local state of agent 1, the third bit encodes
the local state of agent 2, and two remaining bits encode the local state of agent
3. We represent this by taking: D1 = {1, 2}, D2 = {3}, D3 = {4, 5}.

Let w = (w[1], ..., w[5]), v = (v[1], ..., v[5]) be two global state variables. We
define the following propositional formulas over w and v:

• Iι(w) :=
∧

j∈D1∪D2∪D3
¬w[j],

this formula encodes the initial state,
• Hi(w, v) :=

∧
j∈Di

w[j] ⇔ v[j],
the formula Hi(w, v), where i ∈ A, represents logical equivalence between
local states of agent i at two global states represented by variables w and v,

• p1(w) := ¬w[1] ∧ ¬w[2], p2(w) := w[1] ∧ ¬w[2], p3(w) := ¬w[1] ∧ w[2],
p4(w) := w[3], p5(w) := ¬w[3], p6(w) := ¬w[4]∧¬w[5], p7(w) := w[4]∧¬w[5],
p8(w) := ¬w[4] ∧ w[5],
the formula pj(w), for j = 1, . . . , 8, encodes a particular local state of an
agent.

For a ∈ Act, let Ba :=
⋃

i∈A\agent(a) Di be the set of the labels of the bits
that are not changed by the action a, then

• T (w, v) :=
∨

a∈Act

( ∧
j∈pre(a) pj(w)∧

∧
j∈post(a) pj(v)∧

∧
j∈Ba

(w[j] ⇔ v[j])
)
∨

(
∧

a∈Act

∨
j∈pre(a) (¬pj(w)) ∧

∧
j∈D1∪D2∪D3

(w[j] ⇔ v[j])).
Intuitively, T (w, v) encodes the set of all couples of global states s and s′

represented by variables w and v respectively, such that s′ is reachable from
s, i.e., either there exists a joint action which is available at s and s′ is the
result of execution a at s or there is not such an action and s′ equals s. Notice
that the above formula is composed of two parts. The first one encodes the
transition relation of the system whereas the second one adds self-loops to
all the states without successors. This is necessary in order to satisfy the
assumption that T is total.

Consider now the following formulas:

• α0 = ¬AX(¬in−tunnel1),
• α1 = AG(in−tunnel1 ⇒ Ktrain1(¬in−tunnel2)),
• α2 =AG(¬in−tunnel1⇒(¬Ktrain1in−tunnel2 ∧ ¬Ktrain1(¬in−tunnel2))),

where in−tunnel1 (respectively in−tunnel2) is a proposition true whenever the
local state of train1 is equal to tunnel1 (respectively the local state of train2 is
equal to tunnel2).

The first formula states that agent train1 may at the next step be in the
tunnel. The second formula expresses that when the agent train1 is in the tunnel,
it knows that agent train2 is not in the tunnel. The third formula expresses that
when agent train1 is away from the tunnel, it does not know whether or not
agent train2 is in the tunnel.

As discussed above, the translation of propositions in−tunnel1 and
in−tunnel2 is as follows:
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• [in−tunnel1](w) = ¬w[1] ∧ w[2],
• [in−tunnel2](w) = ¬w[4] ∧ w[5].

Next, we show how to translate the formula α0:

[α0](w) = [¬AX(¬in−tunnel1)](w) = ¬[AX(¬in−tunnel1)](w).

The formula [AX(¬in−tunnel1)](w) is computed as follows:
[AX(¬in−tunnel1)](w) = forall(v, T (w, v) ⇒ [¬in−tunnel1](v)) =
forall(v, T (w, v) ⇒ (¬(¬v[1] ∧ v[2]))) = forall(v, T (w, v) ⇒ (v[1] ∨ ¬v[2])).

Consequently [α0](w) = ¬forall(v, T (w, v) ⇒ (v[1]∨¬v[2])) and [α0](w)∧ Iι(w)
= ¬forall(v, T (w, v) ⇒ (v[1]∨¬v[2]))∧Iι(w) = ((w[1]∧¬w[2]∧¬w[3])∨(¬w[1]∧
w[2] ∧ ¬w[3] ∧ ¬w[5]) ∨ (¬w[1] ∧ w[2] ∧ w[3] ∧ ¬w[4]) ∨ (¬w[1] ∧ w[2] ∧ ¬w[3] ∧
¬w[4] ∨ w[5])) ∧ Iι(w) = false. Therefore α0 is not valid in the model.

But, both the formulas α1 and α2 are valid in the model since
[α1](w) ∧ Iι(w)=true ∧ Iι(w)= ¬w[1] ∧ ¬w[2] ∧ ¬w[3] ∧ ¬w[4] ∧ ¬w[5] and
[α2](w)∧Iι(w)= (¬w[1]∨¬w[2])∧Iι(w)= ¬w[1]∧¬w[2]∧¬w[3]∧¬w[4]∧¬w[5].

This corresponds to our intuition.

8 Preliminary Experimental Results

In this section we describe an implementation of the UMC algorithm and present
some preliminary experimental results for selected benchmark examples.

Our tool, unbounded model checking for interpreted systems, is a new module
of the verification environment VerICS [5]. The tool takes as input an interpreted
system and a CTLpK formula ϕ and produces a set of states (encoded symbol-
ically), in which the formula holds. The implementation consists of two main
parts: the translation module and the forall module. According to the detailed
description in former sections, each subformula ψ of ϕ is encoded (by the trans-
lation module) by a QBF formula which characterizes all the states at which
ψ holds. In case of checking a modal formula, the corresponding QBF formula
is then evaluated by the forall module, which is implemented on the top of the
SAT solver Zchaff [13]. The whole tool is written in C++ making intensive use
of STL libraries.

The tests presented below have been performed on a workstation equipped
with the AMD Athlon XP+ 2400 MHz processor and 2 GB RAM running under
Linux Redhat. For each of the results we present the time (in seconds) used by
VerICS and Zchaff, and give RAM (in kB) consumed during the computation.

8.1 Train, Gate and Controller - Example Parameterized

The first example we have tested is the train, gate and controller system pre-
sented in Section 7. In order to show how the algorithm copes with the com-
binatorial explosion, this example is parameterized with the number of trains
N . For a given N ∈ {2, 4, 6}, we have generalized the property α2 of Section
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Table 1. Experimental results for Train-Gate-Controller

α2(N)
N CNF clauses UMC-mem UMC-time SAT-time
2 557 2260 kB 0.12 s 0.01 s
4 5214 8376 Mb 1.51 s 0.01 s
6 58489 64 MB 46.55 s 0.01 s

7 to N trains: α2(N) = AG(¬in−tunnel1 ⇒ (¬Ktrain1

∧
i=2..N ¬in−tunneli ∧

¬Ktrain1

∨
i=2..N in−tunneli)).

The results (time and memory consumption) are presented in the Table 1.
SAT-time denotes the amount of time necessary to determine by means of un-
modified Zchaff whether the obtained set of states contains an initial state (this
is a SAT problem).

8.2 Attacking Generals

The second analyzed example is a scenario of the coordinated attack problem,
often discussed in the area of MAS, distributed computing as well as epistemic
logic. It concerns coordination of agents in the presence of unreliable communi-
cation. It is also known as the coordinated attack problem [8].

For the purpose of this paper, we choose a particular joint protocol for the
scenario and verify the truth and falsehood of particular formulas that capture
its key characteristics. The variant we analyse is the following (for more detailed
protocol description we refer to [10]) :

After having studied the opportunity of doing so, general A may issue a
request-to-attack order to general B. A will then wait to receive an ac-
knowledgment from B, and will attack immediately after having received
it. General B will not issue request-to-attack orders himself, but if his
assistance is requested, he will acknowledge the request, and will attack
after a suitable time for his messenger to reach A (assuming no delays)
has elapsed. A joint attack guarantees success, and any non-coordinated
attack causes defeat of the army involved (Fig. 2).

Figure 2 presents three scenarios for the agents involved in the coordinated
attack problem. The rounded boxes represent locations (local states), while the
arrows denote transitions between locations. The beginning location for each
agent is in bold. The transitions sharing labels are executed simultaneously (i.e.,
synchronize). The local states for the agents are listed below:

• LGeneralA = {waitA, orderA, ackA, winA},
• LGeneralB = {waitB , orderB , readyB , winB , failB},
• LEnvironment = {waitE , orderE , ackE , ack lostE}.

In our formulas we use the following propositional variables: attackA and
attackB meaning that corresponding General has made the decision of attack-
ing the enemy, successA and successB meaning the victory of each General
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Fig. 2. The attacking generals scenarios

and finally failB which denotes the defeat of General B (and both Gener-
als). For s ∈ G:

• attackA ∈ V(s) iff lGeneralA(s) ∈ {winA, ackA}
• successA ∈ V(s) iff lGeneralA(s) ∈ {winA}
• attackB ∈ V(s) iff lGeneralB (s) ∈ {orderB , winB , readyB , failB}
• successB ∈ V(s) iff lGeneralB (s) ∈ {winB}
• failB ∈ V(s) iff lGeneralB (s) ∈ {failB}

Below we present some properties we test for the coordinated model problem.
Results of the tests are listed for each property in the same way as in the previous
example.

• β1 = AG(attackB ⇒ KAKBattackA)
• β2 = EF(C{AB}(attackA ∧ attackB))

The property β1 states that if the general B decides to attack, then the
general A knows that B knows that A will attack the enemy. The property β2
expresses that there is a possibility of achieving common knowledge about the
decision of attacking the enemy. The experimental results for this example are
given in the Table 2.

9 Conclusions

Verification of multi-agent systems is quickly becoming an active area of research.
In the case of model checking, plain temporal verification is not sufficient because

Table 2. Experimental results for the coordinated attack problem

Property CNF clauses UMC-memory UMC-time SAT-time
β1 917 1488 kB 1.08 s 0.02 s
β2 971 2300 kB 1.54 s 0.01 s
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of the variety of modalities that are commonly used to specify multi-agent sys-
tems. In this paper we have extended the state-of-the-art of the area by providing
a model checking theory to perform unbounded model checking on a temporal
epistemic language interpreted on interpreted systems. This surpasses the pos-
sibilities available already with other SAT-based approaches, namely bounded
model checking, in that it is possible to check the full CTLK language, not just
its existential fragment.

It should be noted that our tool provides only a preliminary implementation
of UMC. The major problem we found was that blocking clauses are defined
only over input variables V . This often seemed to be a too finer description
and lead to generating exponentially many clauses (as can be seen in Table 1).
We have found that the Alternative Implication Graph IG(A′, φ′) usually gives
shorter blocking clauses only for simple formulas, while formulas encoding “real”
UMC problems produce clauses over all literals of V . In future work we shall
investigate the conjecture of K. McMillan stating that by allowing in blocking
clauses literals corresponding not only to state vectors, but also to subformulas,
one could obtain a dramatic improvement in performance.
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Abstract. We present an algorithm for model checking temporal-
epistemic properties of multi-agent systems, expressed in the formalism
of interpreted systems. We first introduce a technique for the translation
of interpreted systems into boolean formulae, and then present a model-
checking algorithm based on this translation. The algorithm is based on
obdd’s, as they offer a compact and efficient representation for boolean
formulae.

1 Introduction

Theoretical investigations in the area of multi-agent systems (MAS) have tra-
ditionally focused on specifications. Various logics have been explored to give
formal foundations to MAS, particularly for mental attitudes [1] of agents, such
as knowledge, belief, desire, etc. To consider the temporal evolution of these at-
titudes, temporal logics such as CTL and LTL [2] have been included in MAS
formalisms, thereby producing combinations of temporal logic with, for example,
epistemic, doxastic, and deontic logics.

Although it is important to investigate formal tools for specifying MAS, the
problem of verification of MAS must also be taken into account to ensure that
systems behave as they are supposed to. Model checking is a well-established
verification technique for distributed systems specified by means of temporal
logics [3, 2]. The problem of model checking is to verify whether a logical for-
mula ϕ expressing a certain required property is true in a model M representing
the system, that is establishing whether or not M |= ϕ. This approach can also
be applied to MAS, where in this case M is a semantical model representing
the evolutions of the MAS, and ϕ is a formula expressing temporal-intentional
properties of the agents. Recent work along these lines includes [4], in which
Wooldridge et al. present the MABLE language for the specification of MAS. In
this work, modalities are translated as nested data structures (in the spirit of [5]).
Bordini et al. [6] use a modified version of the AgentSpeak(L) language [7] to
specify agents and to exploit existing model checkers. For verification purposes,
both the works of Wooldridge et al. and of Bordini et al. translate the MAS
specification into a SPIN specification [8] to perform the verification. The works
of van der Meyden and Shilov [9], and van der Meyden and Su [10], are concerned
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with verification of interpreted systems. They consider the verification of a par-
ticular class of interpreted systems, namely the class of synchronous distributed
systems with perfect recall. An algorithm for model checking is introduced in the
first paper using automata, and [10] suggests the use of obdd’s for this approach.

The aim of this paper is to present an algorithm for model checking epistemic
and temporal properties of interpreted systems [11]. This differs from previous
work by treating all the modalities explicitly in the verification process. We
focus on temporal-epistemic model checking because the verification of epistemic
properties (and their temporal evolution) is crucial in many scenarios, including
communication protocols and security protocols.

Interpreted systems are a formalism for representing epistemic properties
of MAS and their evolution with time. The algorithm that we present does
not involve the translation into existing model checkers, it is fully symbolic,
and it is based on boolean functions. Boolean functions can be represented and
manipulated efficiently by means of obdd’s, as it has been shown for CTL model
checking [12].

The rest of the paper is organised as follows: in Section 2 we briefly review
obdd’s-based model checking and the formalism of interpreted systems. In Sec-
tion 3.1 we present the translation of interpreted systems into boolean formulae,
while in Section 3.2 we introduce an algorithm based on this translation. We pro-
vide a proof of the correctness of the algorithm in Section 3.3. We conclude in
Section 4.

2 Preliminaries

2.1 CTL Model Checking and obdd’s

Given a model M and a formula ϕ in some logic, the problem of model checking
involves establishing whether or not M |= ϕ holds. Tools have been built to per-
form this task automatically, where M is a model of some temporal logic [3, 2, 8].
SMV [12] and SPIN [8] are two well-known model checkers; in these tools the
model is given indirectly by means of a program P . It is not efficient to build
explicitly the model M represented by P , because M has a size which is expo-
nential in the number of variables of P (this fact is known as the state explosion
problem). Instead, various techniques have been developed to perform symbolic
model checking, which is the problem of model checking where the model M is
not described or computed in extension. Techniques for symbolic model checking
mostly use either automata [8], or obdd’s [13] for the representation of all the
parameters needed by the algorithms. For the purpose of this paper, we will only
consider symbolic model checking of the temporal logic CTL using obdd’s [14].

CTL is a logic used to reason about the evolution of a system represented as a
branching path. Given a countable set of propositional variables P = {p, q, . . .},
CTL formulae are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ)
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Fig. 1. obdd representation for a ∧ (b ∨ c)

where the temporal operator X means in the next state, G means globally and U
means until. Each temporal operator is pre-fixed by the existential quantifier E.
Thus, for example, EG(ϕ) means that “there exists a path in which ϕ is globally
true”. Traditionally, other operators are added to the syntax of CTL, namely
AX, EF, AF, AG, AU (notice the “universal” quantifier A over paths, dual of
E). These operators can be derived from the operators introduced here [2]. The
semantics of CTL is given via a model M = (S, R,V, I) where S = {s0, s1, . . .}
is a set of states, R ⊆ S × S is a binary relation, V : P → 2S is an evaluation
function, and I ⊆ S is a set of initial states. A path π is a sequence of states
π = {s0, s1, . . .} such that s0 ∈ I and ∀i, (si, si+1) ∈ R. A state si in a path π is
denoted with πi. Satisfaction in a state is defined inductively as follows:

s |= p iff s ∈ V(p),
s |= EXϕ iff there exists a path π such that πi = s and πi+1 |= ϕ,
s |= EGϕ iff there exists a path π such that πi = s and πi+j |= ϕ

for all j ≥ 0.
s |= E(ϕUψ) iff there exists a path π such that πi = s and a k ≥ 0 such

that πi+k |= ψ and πi+j |= ϕ for all 0 ≤ j < k.

obdd’s (Ordered Binary Decision Diagrams) are an efficient representation
for the manipulation of boolean functions. As an example, consider the boolean
function a∧(b∨c). The truth table of this function would be 8 lines long. Equiv-
alently, one can evaluate the truth value of this function by representing the
function as a directed graph, as exemplified on the left-hand side of Figure 1. As
it is clear from the picture, under certain assumptions, this graph can be simpli-
fied into the graph pictured on the right-hand side of Figure 1. This “reduced”
representation is called the obdd of the boolean function.

Besides offering a compact representation of boolean functions, obdd’s of
different functions can be composed efficiently: in [13] algorithms are provided
for the manipulation and composition of obdd’s.

The idea of CTL model checking using obdd’s is to represent states of the
model and relations by means of boolean formulae. A CTL formula is iden-
tified with a set of states, i.e. the states of the model satisfying the formula.
As set of states can be represented as a boolean formula, each CTL formula can
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be characterised by a boolean formula. Thus, the problem of model checking
for CTL is reduced to the construction of boolean formulae. This is achieved
by composing obdd’s, or by computing fix-points of operators on obdd’s; we
refer to [2] for the details. By means of this approach large systems have been
checked, including hardware and software components.

2.2 Interpreted Systems

An interpreted system is a semantic structure representing the temporal evolu-
tion of a system of agents. Each agent i (i = {1, . . . , n}) is characterised by a set
of local states Li and by a set of actions Acti that may be performed. Actions
are performed in compliance with a protocol Pi : Li → 2Acti ; notice that this
definition allows for non-determinism. A tuple g = (l1, . . . , ln) ∈ L1 × . . . , Ln,
where li ∈ Li for each i, is called a global state and gives a snapshot of the sys-
tem. Given a set I of initial global states, the evolution of the system is described
by n evolution functions1: ti : L1 × . . . × Ln × Act1 × . . . × Actn → Li In this
formalism the environment in which agents “live” is usually modeled by means
of a special agent E; we refer to [11] for more details.

The set I, ti and the protocols Pi generate a set of runs. Formally, a run π
is a sequence of global states π = (g0, g1, . . .) such that g0 ∈ I and, for each pair
(gj , gj+1) ∈ π, there exists a set of actions a enabled by the protocols such that
t(gj , a) = gj+1. G ⊆ (L1 × . . .× Ln) denotes the set of reachable global states.

Given a set of agents A = {1, . . . , n} with corresponding local states, pro-
tocols, and transition functions, a countable set of propositional variables P =
{p, q, . . .}, and a valuation function for the atoms V : P → 2G, an interpreted
system is a tuple IS = (G, I, Π,∼1, . . . ,∼n,V). In the above G is the finite set
of reachable global states for the system, I ⊆ G is the set of initial states, and
Π is the set of possible runs in the system. The binary relation ∼i, i ∈ A, is
defined by g ∼i g′ iff li(g) = li(g′), i.e. if the local state of agent i is the same
in g and in g′. Some issues arise with respect to the generation of the reachable
states in the system given a set of protocols and transition relations; since they
do not influence this paper we do not report them here.

Interpreted systems semantics can be used to interpret formulae of a temporal
language enriched with epistemic operators [11]. Here we assume a temporal tree
structure to interpret CTLK formulae [15]. The syntax of CTLK is defined in
terms of a countable set of propositional variables P = {p, q, . . .} and using the
following modalities:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | Kiϕ

The modalities AX, EF, AF, AG, AU are derived in the standard way. Fur-
ther, given a set of agents Γ , two group modalities can be introduced: EΓ ϕ and
CΓ ϕ denote, respectively, that every agent in the group knows ϕ, and that ϕ is
common knowledge in the group (see [11] for details).

1 This definition is equivalent to the definition of a single evolution function t as in [11].
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Given an interpreted system IS , a global state g, and a formula ϕ, the se-
mantics of CTLK is defined as follows:

IS , g |= p iff g ∈ V(p),
IS , g |= ¬ϕ iff g �|= ϕ,
IS , g |= ϕ1 ∨ ϕ2 iff g |= ϕ1 or g |= ϕ2,
IS , g |= EXϕ iff there exists a run π such that

πi = g for some i, and πi+1 |= ϕ,
IS , g |= EGϕ iff there exists a run π such that

πi = g for some i, and πj |= ϕ for all j ≥ i.
IS , g |= E(ϕUψ) iff there exists a run π such that

πi = g for some i, and a k ≥ 0 such that πi+k |= ψ
and πj |= ϕ for all i ≤ j < i + k,

IS , g |= Kiϕ iff ∀g′ ∈ G, g ∼i g′ implies g′ |= ϕ
IS , g |= EΓ ϕ iff ∀g′ ∈ G, g ∼E

Γ g′ implies g′ |= ϕ
IS , g |= CΓ ϕ iff ∀g′ ∈ G, g ∼G

Γ g′ implies g′ |= ϕ

In the definition above, πj denotes the global state at place j in run π. Other
temporal modalities can be derived, namely AX, EF, AF, AG, AU . We write
IS |= ϕ if, for every global state g ∈ G, IS , g |= ϕ. We refer to [11, 15] for more
details.

3 A Model Checking Algorithm for CTLK

The main idea of this paper is to use algorithms based on obdd’s to verify tem-
poral and epistemic properties of multi-agent systems, in the spirit of traditional
model checking for temporal logics. To this end, it is necessary to encode all the
parameters needed by the algorithms by means of boolean functions, and then
to represent boolean functions by means of obdd’s. As this last step can be
performed automatically using software libraries that are widely available, in
this paper we introduce only the translation of interpreted systems into boolean
formulae (Section 3.1). In Section 3.2 we present an algorithm based on this
translation for the verification of CTLK formulae.

3.1 Translating an Interpreted System into Boolean Formulae

The local states of an agent can be encoded by means of boolean variables (a
boolean variable is a variable that can assume just one of the two values 0 or
1). The number of boolean variables needed for each agent is nv(i) = #log2|Li|$.
Thus, a global state can be identified by means of N =

∑
i

nv(i) boolean variables:

g = (v1, . . . , vN ). The evaluation function V associates a set of global states
to each propositional atom, and so it can be seen as a boolean function. The
protocols, too, can be expressed as boolean functions (actions being represented
with boolean variables (a1, . . . , aM ) similarly to global states).

The definition of ti in Section 2.2 can be seen as specifying a list of conditions
ci,1, . . . , ci,k under which agent i changes the value of its local state. Each ci,j
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relates conditions on global state and actions with the value of “next” local
state for i.

ti = ci,1 ∨ . . . ∨ ci,k

We assume that the last condition ci,k of ti prescribes that, if none of the
conditions ci,j(j < k) is true, then the local state for i does not change. This
assumption is key to keep compact the description of an interpreted system, as
in this way only the conditions that are actually causing a change need to be
listed.

The algorithm presented in Section 3.2 requires the definition of a boolean
function Rt(g, g′) representing a temporal relation between g and g′. Rt(g, g′)
can be obtained from the evolution function ti as follows. First, we introduce a
global evolution function t:

t =
∧

i∈{1,...,n}
ti =

∧
i∈{1,...,n}

(ci,1 ∨ . . . ∨ ci,ki)

Notice that t is a boolean function involving two global states and a joint action
a = (a1, . . . , aM ). To abstract from the joint action and obtain a boolean function
relating two global states only, we can define Rt as follows:

Rt(g, g′) iff ∃a ∈ Act : t(g, a, g′) is true and each local action ai ∈ a is
enabled by the protocol of agent i in the local state li(g).

The quantification over actions above can be translated into a propositional
formula using a disjunction (see [12, 3] for a similar approach to boolean quan-
tification):

Rt(g, g′) =
∨

a∈Act

[(t(g, a, g′) ∧ P (g, a)]

where P (g, a) is a boolean formula imposing that the joint action a must be con-
sistent with the agents’ protocols in global state g. Rt gives the desired boolean
relation between global states.

3.2 The Algorithm

In this section we present the algorithm SATCTLK to compute the set of global
states in which a CTLK formula ϕ holds, denoted with [[ϕ]]. The following are
the parameters needed by the algorithm:

– the boolean variables (v1, . . . , vN ) and (a1, . . . , aM ) to encode global states
and joint actions;

– the boolean functions Pi(v1, . . . , vN , a1, . . . , aM ) to encode the protocols of
the agents;

– the function V(p) returning the set of global states in which the atomic
proposition p holds. We assume that the global states are returned encoded
as a boolean function of (v1, . . . , vN );

– the set of initial states I, encoded as a boolean function;
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– the set of reachable states G. This can be computed as the fix-point of the
operator τ = (I(g)∨∃g′(Rt(g′, g)∧Q(g′)) where I(g) is true if g is an initial
state and Q denotes a set of global states. The fix-point of τ can be computed
by iterating τ(∅) by standard procedure (see [12]);

– the boolean function Rt to encode the temporal transitions;
– n boolean functions Ri to encode the accessibility relations ∼i (these func-

tions are easily defined using equivalence on local states of G).
– the boolean function RΓ

E to encode ∼Γ
E , defined by RΓ

E =
∧

i∈Γ

Ri.

The algorithm is as follows:

SATCTLK(ϕ) {
ϕ is an atomic formula: return V(ϕ);
ϕ is ¬ϕ1: return G \ SATCTLK(ϕ1);
ϕ is ϕ1 ∧ ϕ2: return SATCTLK(ϕ1)∩

SATCTLK(ϕ2);
ϕ is EXϕ1: return EXCTLK(ϕ1);
ϕ is E(ϕ1Uϕ2): return EUCTLK(ϕ1, ϕ2);
ϕ is EGϕ1: return EGCTLK(ϕ1);
ϕ is Kiϕ1: return KCTLK(ϕ1, i);
ϕ is EΓ ϕ1: return ECTLK(ϕ1, Γ );
ϕ is CΓ ϕ1: return CCTLK(ϕ1, Γ );
}

In the algorithm above, EXCTLK , EGCTLK , EUCTLK are the standard
procedures for CTL model checking [2] in which the temporal relation is Rt

and, instead of temporal states, global states are considered. The procedures
KCTLK(ϕ, i) and ECTLK(ϕ, Γ ) and CCTLK(ϕ, Γ ) are presented below.

KCTLK(ϕ, i) {
X = SATCTLK(¬ϕ);
Y = {g ∈ G|Ki(g, g′) and g′ ∈ X}
return ¬Y;
}

ECTLK(ϕ, Γ ) {
X = SATCTLK(¬ϕ);
Y = {g ∈ G|RE

Γ (g, g′) and g′ ∈ X}
return ¬Y;
}
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CCTLK(ϕ, Γ ) {
X = SATCTLK(ϕ);
Y = G;
while ( X != Y ) {

X = Y;
Y = {g ∈ G|RE

Γ (g, g′) and g′ ∈ Y and g′ ∈ SATCTLK(ϕ)}
} return Y;
}

The procedure CCTLK(ϕ, Γ ) is based on the equivalence [11]

CΓ ϕ = EΓ (ϕ ∧ CΓ ϕ)

which implies that [[CΓ ϕ]] is the fix-point of the (monotonic) operator τ(Q) =
[[EΓ (ϕ ∧ (Q))]]. Hence, [[CΓ ϕ]] can be obtained by iterating τ(G).

Notice that all the parameters can be encoded as obdd’s. Moreover, all the
operations inside the algorithms can be performed on obdd’s as presented in [13].

To check that a formula holds in a model, it is enough to check whether or
not the result of SATCTLK is equivalent to the set of reachable states.

3.3 Correctness of the Algorithm

The algorithm presented in Section 3.2 is sound and complete.

Theorem 1. For every CTLK formula ϕ, IS |= ϕ iff SATCTLK(ϕ) ≡ G. (i.e.
iff the set of states computed by the algorithm is the set of reachable states G).

Proof. (=>): by induction on the structure of ϕ. We consider here the epistemic
operators (a proof for the temporal operators can be found in [2]). Let ϕ = Ki(ψ)
and let IS , g |= Ki(ψ). This means that IS , g′ |= ψ for all g′ ∈ G s.t. g ∼i g′.
By the induction step, g′ ∈ [[ψ]]; also we have Ri(g, g′) by definition of Ri. This
implies that g ∈ [[Ki(ψ)]], i.e. g ∈ [[ϕ]]. The proof for EΓ is similar. The proof of
correctness for common knowledge follows from the correctness of the fix-point
characterisation of CΓ [11].

(<=): straightforward, as the induction steps above are symmetrical. ��

4 Conclusion

Temporal logic model checking using obdd’s [12] is one of the most successful
techniques for the verification of distributed systems. In the last decade, this
methodology has been used for the verification of both software and hardware
components.

In this paper we have presented an algorithm for the verification of temporal-
epistemic properties based on the manipulation of boolean functions. The method-
ology presented here encodes directly a MAS (specified in the formalism of in-
terpreted systems) by means of boolean formulae; then, the algorithm allows for
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the (fully symbolic) verification of temporal-epistemic properties. Moreover, the
algorithm allows for the verification of two group modalities (EΓ and CΓ ) and
is not restricted to a particular class of interpreted systems, nor to a particular
class of formulae. We are currently implementing the algorithm and in the future
we aim at testing epistemic and temporal properties of various scenarios from
the MAS literature. This will help in evaluating the efficiency of the algorithm.

References

1. McCarthy, J.: Ascribing mental qualities to machines. In Ringle, M., ed.: Philo-
sophical Perspectives in Artificial Intelligence. Humanities Press, Atlantic High-
lands, New Jersey (1979) 161–195

2. Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, Cambridge, England (2000)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge, Massachusetts (1999)

4. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model checking multi-
agent systems with MABLE. In Gini, M., Ishida, T., Castelfranchi, C., Johnson,
W.L., eds.: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’02), ACM Press (2002) 952–959

5. Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems.
Journal of Logic and Computation 8 (1998) 401–423

6. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’03). (2003)

7. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
Lecture Notes in Computer Science 1038 (1996) 42–58

8. Holzmann, G.J.: The model checker spin. IEEE transaction on software engineering
23 (1997)

9. van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems
with perfect recall. FSTTCS: Foundations of Software Technology and Theoretical
Computer Science 19 (1999)

10. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining
cryptographers. Submitted (2002)

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press, Cambridge, Massachusetts (1995)

12. McMillan, K.: Symbolic model checking: An approach to the state explosion prob-
lem. Kluwer Academic Publishers (1993)

13. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers (1986) 677–691

14. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. Information and Computation 98 (1992)
142–170

15. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via model checking. Fundamenta Informaticae 55 (2003) 167–185



Formal Consistency Verification of Deliberative
Agents with Respect to Communication

Protocols

Jaime Ramı́rez and Angélica de Antonio

Technical University of Madrid, Madrid, Spain
{jramirez, angelica}@fi.upm.es
http://decoroso.ls.fi.upm.es

Abstract. The aim of this paper is to show a method that is able to
detect inconsistencies in the reasoning carried out by a deliberative agent.
The agent is supposed to be provided with a hybrid Knowledge Base
expressed in a language called CCR-2, based on production rules and
hierarchies of frames, which permits the representation of non-monotonic
reasoning, uncertain reasoning and arithmetic constraints in the rules.
The method can give a specification of the scenarios in which the agent
would deduce an inconsistency. We define a scenario to be a description
of the initial agent’s state (in the agent life cycle), a deductive tree of rule
firings, and a partially ordered set of messages and/or stimuli that the
agent must receive from other agents and/or the environment. Moreover,
the method will make sure that the scenarios will be valid w.r.t. the
communication protocols in which the agent is involved.

1 Introduction

The purpose of this paper is to show a method to verify the consistency of the
reasoning that a deliberative agent can perform. We assume the agent to com-
prise a knowledge base (KB) expressed in a knowledge representation formalism
called CCR-2.

The CCR-2 formalism is valid to represent hybrid KBs that combine pro-
duction rules with hierarchies of frames. This formalism allows us to repre-
sent non-monotonic reasoning, uncertain reasoning, and arithmetic constraints
in the rules.

We assume that the agent whose reasoning is checked needs to carry out a
reasoning process for deciding its next action according to its goals. The agent’s
knowledge can fall into three different categories: acquired knowledge, innate
knowledge or deduced knowledge. The acquired knowledge is made up of ac-
quired facts, that is, information coming from its perception or requested to
other agents; the innate knowledge is made up of knowledge that the agent
knows since the beginning of its life; and the deduced knowledge is formed by
the facts deduced by firing rules. It is clear that, as the reasoning process evolves,
the agent may obtain contradictory acquired facts from different sources w.r.t.
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previously acquired facts. In this case, the new knowledge would replace the
obsolete knowledge. However, the agent should not be allowed to deduce a set
of contradictory facts from the acquired facts and the innate facts.

The proposed method finds scenarios in which the agent would deduce an
inconsistency. A scenario consists of a description of the initial agent’s state (in
the agent life cycle), a deductive tree of rule firings, and a partially ordered set of
messages and/or stimuli (expressed as schemas) that the agent must receive from
other agents and/or the environment to achieve the execution of the deductive
tree. A scenario permits the execution of a deductive tree of rule firings that will
deduce a set of semantically contradictory facts. We assume the agent’s state
to be a set of innate facts, acquired facts (from the sources mentioned above)
and/or deduced facts, that is, it is a Fact Base (FB). Basically, the partially
ordered set of messages and/or stimuli schemas, included as part of a scenario,
will represent precedence dependencies between the messages/stimuli required
in the reasoning. This set will be checked w.r.t. the communication protocols in
which the verified agent is involved, so as to warrant the precedence dependencies
can be satisfied by the specification of the communication protocols.

Some methods or tools designed to detect inconsistencies in a Knowledge Base
System (KBS) (mostly rule-based systems) build a model of the KBS (Graph,
Petri Net, etc.), and execute the model for each valid input, in order to identify
possible inconsistencies during the reasoning process. This approach in many
cases turns to be computationally very costly. Thus, we decided to adopt another
approach in which the starting point is one of the inconsistencies that might be
possibly deduced by the verified KBS, and the goal is to compute a description
of the scenarios in which the KBS included in the agent would deduce that
inconsistency. This approach takes some ideas from the ATMS designed by de
Kleer [1], since it uses the concept of label as a way to represent a description
of a set of FBs. Other methods for verifying rule-based systems that follow a
similar approach were proposed in [2] [3] [4] [5] [6] [7] [8].

Section 2 explains some points related to the agent’s KB and inconsistencies
that are verified by this method, and the hypotheses that will be assumed in the
operation of the method. In section 3 it is described how this method specifies
the way in which an agent deduces an inconsistency, if possible. In section 4, the
procedure for detecting an inconsistency is explained, and in section 5, a small
example of application is shown. We end with some conclusions about our work,
and some future works that will be derived from this work.

2 Scope

Our method receives as inputs a CCR-2 KB (the agent’s KB), a classification of
the possible facts that the agent can manage, an Integrity Constraint (IC) to be
checked, and a set of communication protocol specifications.

CCR-2 (also called GKR) [9] supports the representation of production rules
and a high number of object types in the FB: frame classes and instances, re-
lationships, propositions, attribute values and attribute identifiers. A rule’s an-
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tecedent in CCR-2 is a Disjunctive Normal Form (DNF) formula made up of
literals. A literal is an atom, a negated atom or a linear arithmetic inequation
over attribute values and/or certainty factors. An atom states something about
some object in the FB. In CCR-2 a rule’s consequent contains a list of actions
that can modify the state of an object, create or destroy objects while execut-
ing the KB system included in the agent. This last characteristic allows us to
represent some types of non monotonic reasoning. As it is possible to declare
variables as relationships and propositions in the rules, the antecedent of a rule
is a second order logic formula. Nevertheless, the actions of the rules can not
change the type of a relationship or a proposition, therefore CCR-2 supports a
limited representation of the second order logic. Moreover, uncertain reasoning
can be represented in CCR-2 by associating certainty factors to attribute values,
to tuples in a relationship or to propositions.

The CCR-2 KBs can use two kinds of management of the negation: closed
world assumption (CWA) or 3-valued logic. The kind of negation management
determines: when a fact can be considered true or false; what is the effect of the
actions; how the facts and actions can be chained during the KBS execution; and
which pairs of actions are contradictory. For instance, in the 3-valued logic there
are three truth values: true, false and unknown; while a fact will be false if its
negation appears in the FB, a fact will be unknown if neither it nor its negation
appear in the FB; moreover, the action Add(¬p) deduces the fact ¬p, and the
pair of actions Add(p) and Add(¬p) are contradictory. It must be highlighted
that the action Add(¬p) cannot be employed under CWA.

The rules are assumed to execute with forward chaining or backward chaining
under conflict set resolution. The rules are structured in groups whose activation
or inhibition is controlled by metarules. When a rule is fired, we assume the
sequential execution of all the actions belonging to the consequent of the rule.

We assume that two kinds of facts can appear during the agent’s execution:
static facts and dynamic facts. A static fact is a fact whose truth value changes
neither from true to false nor from false to true during the reasoning process,
whereas the truth value of a dynamic fact actually may change those ways. In this
sense, some acquired facts will be dynamic facts. Moreover, facts representing
innate knowledge are assumed to be static. The method needs to know both
whether a literal is static or dynamic, and whether a literal is acquired, innate
or deduced, so a classification must be provided.

2.1 Defining Inconsistencies: Integrity Constraints

An IC defines a consistency criterion over input data, output data or input and
output data. The IC form is:

∃x1 ∈ T1∃x2 ∈ T2...∃xn ∈ Tn∃()xn+1 ∈ Tn+1∃()xn+2 ∈ Tn+2...∃xn+m ∈ Tn+m

A ⇒ ⊥
where A is a second order logic formula in DNF that includes conditions over
whatever types of CCR-2 objects. Each literal in A has an associated scope,
which specifies whether the literal is related to input data (acquired literal or
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innate literal), or output data (deducible literal). For the variables in A, two
kinds of quantifiers can be employed: the existential quantifier (with the classical
meaning) and the restricted existential quantifier (denoted as ∃()x).

An IC ∃x ∈ T (A(x) ⇒ ⊥) is violated if at least one object in the class
T that is included in the FB satisfies the conditions imposed over the
variable x in the formula A.
An IC ∃()x ∈ T (A(x) ⇒ ⊥) is violated if every object in the class T
that is included in the FB satisfies the conditions imposed over the
variable x in the formula A and only those conditions.

This semantics for the restricted existential quantifier permits the detection
of knowledge gaps. Lets see an example of an IC with a restricted existential
quantifier:

∃()x ∈ PATIENT
Is Ill(x, FLU), (x.Fever = high) ⇒ ⊥

Clearly, having a high fever is not enough to deduce that a patient has flu.
So, if a KBS can violate this IC, it is likely that there is a knowledge gap in the
KB, that is, the KBS needs more rules.

2.2 Specifying Interaction with the Environment and Other
Agents

Nowadays, different notations can be employed to specify communication proto-
cols: AUML interaction diagrams1 or state machines as in [10]. For the purpose
of the proposed method, state machines are more suitable as the checking of
the scenarios w.r.t. the protocols must be automated. Hence, a state machine
view for the verified agent must also be supplied as an input to our method.
Each state transition of the state machine owns a label that describes how the
messages/stimuli that fire the transition are. This label is expressed in terms of
message/stimulus schemas.

In addition to the state machine, a correspondence between message/stimulus
schemas and acquired literals must be supplied. If a message/stimulus schema
corresponds to a set of acquired literals {li}i=1,..,n, any message/stimulus that
matches that schema contains a model for the formula ∃x1∃x2...∃xn(

∧
i=1,...,n li)

where x1, x2, ..., xn are all the free variables in
∧

i=1,...,n li. This latter formula
can be also viewed as a query.

2.3 Assumed Non-monotonic Reasoning

CCR-2 rules can introduce new facts in the agent’s state, but they can also delete
already existing facts. This provides the agent’s designer with the capability of
building agents with non-monotonic reasoning. So, we could find production

1 http://www.auml.org/
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rules of the form p → Del(p) under CWA. This kind of rules (when p is assumed
to be provided) are not admissible in a RB from the point of view of classical
logic or default logic [11], since they are logical inconsistencies. However, if we
examine these rules from the point of view of temporal logic [12], and we rewrite
them as ¬p atnext p (where the intended meaning for the operator atnext is: ¬p
holds at the next time point that p holds), then these rules should be perfectly
admissible in a RB. From our perspective, production rules should be interpreted
as rules of the form ¬p atnext p. If we admit rules of the form ¬p atnext p, we
situate ourselves quite far from the concept of inconsistency as defined in other
works, so we are going to clarify the meaning of inconsistency in this work:

A deductive tree T that deduces a pair of facts F and F ′ is consistent iff:

(a) T does not contain a set of contradictory static facts, or
(b) the deductive subtree of T that deduces F does not deduce F ′ in

the end, and vice versa.

This definition implies that the deductive subtree that deduces a fact F
must not deny the other fact F ′ that must hold at the same time than F , and
vice versa.

When the agent executes a reasoning process, a deductive tree is evaluated
and a sequence of rules is fired. A deductive tree defines a partial order for rule
firings, so many sequences correspond to a certain deductive tree. The definition
showed above is not more than a structural property to be fulfilled by the de-
ductive trees built by the agent that we want to verify using our method. We
will call this property Tree Consistency(dt) where dt is a deductive tree that
is a tree of rule firings defined recursively by means of the constructor tree and
the constant NIL TREE (empty tree). As our method will simulate the agent’s
reasoning, it will discard any deductive process that implies the creation of an
invalid deductive tree. Next, we will define this property formally:

Tree Consistency(dt) ≡ Tree Consistency Aux1(Boundary(dt))
∧ Tree Consistency Aux2(dt, ∅)

Tree Consistency Aux1(B) ≡
¬(∃is ∈ INCONSISTENT SETS is ⊂

⋃
r∈B Assumed Facts(r))

Tree Consistency Aux2(dt, scope) ≡ (dt = NIL TREE)∨
∃r∃a1,∃a2...∃an(dt = tree(r, (a1, a2, ..., an)),

scope in rule = scope \Deduced Facts(r),
¬((∃f ∈ scope in rule, ∃f ′ ∈ Assumed Facts(r), (f = ¬f ′))∨
(∃f ∈ Deduced Facts(r),∃f ′ ∈ scope, (f = ¬f ′))),

T ree Consistency Aux2(a1, scope in rule ∪Assumed Facts(r)),
T ree Consistency Aux2(a2, scope in rule ∪Assumed Facts(r)),

.......................................
T ree Consistency Aux2(an, scope in rule ∪Assumed Facts(r)))

where INCONSISTENT SETS is the set of the different inconsis-
tencies to be considered, the function Boundary(dt) returns the set of



Formal Consistency Verification of Deliberative Agents 227

Fig. 1. Example of an invalid deductive tree

rule firings that are leaves of the tree dt, the function Deduced Facts(r)
returns the facts deduced by the rule firing r and the function
Assumed Facts(r) returns the static facts that must hold to permit
the rule firing r.

In the definition above, the property Tree Consistency Aux1 specifies the
condition (1) in the definition of consistent deductive tree above, and the prop-
erty Tree Consistency Aux2 specifies the condition (2).

Lets see an example of an inconsistent RB. Lets take the production rules
R1: r, s → Del(p);R2: t → Add(p);R3: ¬p → Add(q) under CWA. In the figure
1 we can see the deductive tree for the conjunction p ∧ q that is supposed to be
the antecedent of another rule. The facts p and q are deducible and all the other
facts are non-deducible. Obviously (see rule R3), in order to deduce q, ¬p must
be deduced beforehand, and after having deduced ¬p it is not possible to deduce
p. This example deserves an additional comment. If we assume that the rules are
executed with forward chaining and we fire them in the sequence [R1, R3, R2]
then the facts p and q will be both true in the final FB. However, if the rules
are fired in the following sequence [R2, R1, R3] then the facts ¬p and q will be
present in the final FB. With the first sequence, the fact q was deduced first, and
then the fact p; with the second sequence the facts were deduced the other way
round. Our definition of inconsistency includes situations like this one, when the
truth values of the goal facts depend on the order in which they are deduced.

Lets see an example of aRB that is consistent according to our definition, but in-
consistent according to other definitions. Lets take the production rules R1: n, u →
Add(q);R2: s,¬q → Add(q);R3: q, m, t → Del(p);R4: v → Del(q) under CWA.
In the figure 2 we can see the deductive tree for the conjunction ¬p∧ q that is sup-
posed to be the antecedent of another rule. We want to deduce the¬p and q, and all
the other facts are non-deducible. We can see that there are six different sequences
of rules that correspond to the deductive tree of the figure 2. However, among them,
only three sequences are feasible ([R4, R2, R1, R3], [R1, R3, R4, R2] and [R1, R4,
R2, R3]), and all of these three sequences deduce the same truth values for p and q.
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Fig. 2. Example of a valid deductive tree

According to the above definition of inconsistency, it is clear that the proposed
method will not be able to verify some non-monotonic KBS. In particular, all
the KBS whose deductive trees do not follow the consistency definition exposed
above, for instance, the planners of STRIPS type.

3 Requirements for Getting an Inconsistency: Scenario

The aim of the proposed method, as it was explained in the section 1, will be
to compute scenarios for an inconsistency described by an IC. Each scenario
is formed by a description of the initial agent’s state, a deductive tree of rule
firings, and a partially ordered set of messages and/or stimuli. The proposed
method will construct an object called subcontext to specify how the initial
agent’s state must be and which deductive tree must be executed in order to
yield an inconsistency. There may be different initial agent’s states and different
deductive trees that lead to the same inconsistency. All the different ways to
violate a certain IC will be specified by means of an object called context. Thus,
a context will be composed of n subcontexts. In turn, a subcontext is defined as
a pair (environment, deductive tree) where an environment is made up of a set
of metaobjects, and a deductive tree is a tree of rule firings.

A metaobject describes the characteristics that one object which can be
present in the agent’s state should have. For each type of CCR-2 object there
will be a different type of metaobject: metaproposition, metaframe, metarela-
tionship, metaattribute and metaid-attribute. In order to describe a CCR-2 ob-
ject, a metaobject must include a set of constraints on the characteristics of
the CCR-2 object. Some CCR-2 objects may include references to other CCR-2
objects (for example, a frame instance can have references to attributes and a
relationship can include tuples of references to frame instances), so the coun-
terpart metaobjects will contain references to other metaobjects. In the table
below, the attributes of each type of metaobject are shown. The value of these
attributes will represent the constraints described by each metaobject.
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CCR-2 Object Metaobject Attributes of the Metaobject
Frame Metaframe (identifier, is restricted exist, instance of,

subclass of, metaattributes, metarelationships)
Attribute Metaattribute (identifier, is restricted exist, metaframe,

metaid-attributes, value conditions, cf conditions)
Id-Attribute Metaid-attribute (identifier, is restricted exist)
Relationship Metarelationship (identifier, is restricted exist,

type, tuples, conditions for each tuple)
Proposition Metaproposition (identifier, is restricted exist,

type, truth value, conditions)

Given that certain constraints expressed as arithmetic inequations can affect
the attribute values and the certainty factors associated with CCR-2 objects,
a different kind of metaobject called condition will represent them. Conditions
will also appear in environments, together with metaobjects, and they will be
referenced from and contain references to the metaobjects that participate in
them. Considering the references among metaobjects and conditions, there can
be one or more networks of metaobjects and conditions in one environment.
Figure 3 illustrates an example of an environment describing a FB in which the
formula ¬Has(X, Water) ∧ X.temperature � 80 is true, where the variable X
is declared as an instance of the frame Car. If there exists a CCR-2 object in the
FB, for each metaobject in the environment, that satisfies all the requirements
imposed on it, then the given formula will hold in the FB.

Fig. 3. Environment
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3.1 Temporal Labels and Constraints

A goal h is a pair (l, A) where l is a literal and A is a set of metaobjects associ-
ated with the object names and variables in l, that specifies the FBs in which the
literal l is satisfied. Moreover, a goal (l, A) is static/dynamic/deducible/acquired/
innate iff the literal l is static/dynamic/deducible/acquired/innate.

For the purpose of executing a deductive tree, it may be required that a
dynamic acquired fact f holds in a rule, and later on, that the fact ¬f holds
in another rule. This situation may yield an apparently contradictory environ-
ment. To determine if it is a real contradiction, temporal labels will be asso-
ciated with some constraints included in the goals (l, A) and (l′, A′) that en-
tail f and ¬f respectively, to represent that these constraints must be satisfied
in different rule firings (or moments). Each temporal label associated with a
constraint identifies the rule firing where the constraint must be satisfied, and
specifies that the constraint comes from a dynamic acquired fact. From these
labels, the method will specify, as part of the resulting scenario, that a mes-
sage/stimulus that matches schema M and allows literal l to hold must be
received before a message/stimulus that matches schema M ′ and allows lit-
eral l′ to hold is received, formally M < M ′. Temporal constraints, like the
one stated in the previous sentence, will define a partially ordered set of mes-
sages and/or stimuli schemas, in which the relationship < expresses temporal
precedence.

For each static acquired literal included in the KB, it will be required to
produce a temporal constraint to establish that the message/stimulus (according
to a schema) allowing the static acquired literal to hold must be received before
the end of the deductive process. Consequently, to permit the proposed method
to obtain the proper temporal constraints later, some temporal labels must also
be associated with the constraints derived from static acquired literals. Besides,
these labels must specify that the constraints have been obtained from a static
acquired fact.

Moreover, the method has to generate temporal constraints to establish
that some messages/stimuli allowing static acquired literals to hold must be
received before the message/stimulus that allows a certain dynamic acquired
literal to hold. Lets see the conditions in which these temporal constraints must
be generated. Let (R1, R2, ..., RN) be the sequence of rules that are fired as
a result of evaluating a deductive tree according to the control mechanisms.
Let Ri s.t. 1 � i < N be a rule whose antecedent requires the dynamic ac-
quired literal Ld to hold, and let M be a message/stimulus schema that en-
tails Ld; let Rj s.t. i < j � N be a rule whose antecedent requires the dy-
namic acquired literal ¬Ld to hold, and let M ′ be a message/stimulus schema
that entails ¬Ld. Then, it is clear that any message/stimulus schema M1 that
entails a static acquired literal Ls belonging to the antecedent of a rule Rk
s.t. i � k < j must satisfy M1 < M ′. The rationale for generating these
temporal constraints will become clearer in the section 5 when an example is
shown.
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4 Description of the Method

Computing the scenarios associated with an IC requires three steps:
1. Computing the context associated with the IC without taking into account

the control mechanisms, and considering all the rules to form a unique
group.

2. Computing the scenarios from the context associated with the IC and the
control mechanisms.

3. Discarding invalid scenarios w.r.t. the communication protocols.

4.1 Computing the Context Associated with the IC

Basically, the first step can be divided into two phases. In the first phase, the
AND/OR decision tree associated with the IC is expanded following a backward
chaining simulation of the real rule firings. The leaves of this tree are rules that
only contain acquired facts in their antecedents. At this point, the difference be-
tween a deductive tree and a AND/OR decision tree should be explained. While
a deductive tree can be viewed as one way and only one way for achieving a cer-
tain goal (that is, for deducing a bound formula or for firing a rule), an AND/OR
decision tree comprises one or more deductive trees, therefore it specifies one or
more ways to achieve a certain goal. During the first phase, metaobjects are built
and propagated from a rule to another one. In this propagation, some constraints
are added to the metaobjects due to the rule literals and the declaration part
of the rules/IC, and some constraints are removed from the metaobjects due to
the rule actions. In addition to the metaobjects, a set of assumed propositions
and tuples (SAPT) are propagated and updated.

In the second phase, the AND/OR decision tree is contracted by means of
context operations, and metaobjects associated with non-deducible facts and
conditions associated with inequations are inserted in the subcontexts. Lets de-
fine the following contexts operations: creation of a context, concatenation of a
pair of contexts and combination of a list of contexts.

Contexts Operation
a) Creation: a context with an unique subcontext is created from a non-deducible
goal g = (l, A) and a rule r: C(g, r) = {(E, NIL TREE)} where the environ-
ment E comprises all the metaobjects included in g. The rule r must be a rule
that comprises the literal l in its antecedent. If the literal l is not innate (so it
is related to a message/stimulus), some constraints of the metaobjects must be
labelled with a temporal label indicating that these constraints must be satisfied
at least in the firing of the rule r; in particular, constraints that state the truth
value of a metaproposition, and constraints that state the truth value of a tuple
in a metarelationship. The literal l will hold in any agent’s state that satisfies
all the constraints specified in E.
b) Concatenation of a pair of contexts: let C1 and C2 be a pair of contexts and
Conc(C1, C2) be the context resulting from the concatenation, then:
Conc(C1, C2) = C1 ∪ C2.
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c) Combination of a list of contexts: Let C1, C2, ..., Cn be the list of contexts, and
Comb(C1, C2, ..., Cn) be the context resulting from the combination. The form
of this resulting context is: Comb(C1, C2, ..., Cn) ={(Ek1 ∪ Ek2... ∪ Ekn, DTk1 ∗
DTk2... ∗DTkn) s.t. (Ei, DTi) ∈ Ci}

c.1) Union of environments (Ei ∪Ej): this operation consists of the union of
the sets of metaobjects Ei and Ej . After the union of two sets, it is necessary
to check whether any pair of metaobjects can be merged. A pair of metaob-
jects will be merged if they contain a pair of constraints c1 and c2 respectively
such that c1 and c2 specify the same name. As a result of this fusion, the
new metaobject could be invalid if it contains contradictory constraints not
coming from dynamic acquired facts. In this case, the resulting environment
will be invalid, and it will be discarded. Finally, if the resulting environment
represents an invalid initial agent state, then this environment will also be
discarded. Moreover, after the union of two environments, it is also necessary
to check whether the resulting set of conditions can be satisfied or, in others
words, whether the resulting set of conditions is feasible.
c.2) Combination of deductive trees (DTi ∗DTj): let DTi and DTj be deduc-
tive trees, then DTi ∗DTj is the deductive tree that results from constructing
a new tree whose root node represents an empty rule firing, and whose two
subtrees are DTi and DTj .
Basically, the creation operation is employed to work out the context associ-

ated with a non-deducible goal; the combination operation is employed to work
out the context associated with a conjunction of literals from the contexts as-
sociated with the literals; and the concatenation operation is employed to work
out the context associated with a disjunction from the contexts associated with
the formulas involved in the disjunction.

These two phases are explained in detail in [13]. However, there are some
differences between the current step and the process explained in [13]. These
differences are related mainly to the context operations and the treatment of
acquired facts and deductive trees. In [13] is explained a method for verifying an
isolated KB System, so acquired facts are not considered, and the KB System is
assumed to deal only with innate knowledge (external facts in [13]), and deduced
knowledge.

4.2 Computing the Scenarios

In the second step of the method, a different scenario is derived from each sub-
context in the context associated with the IC by adding a partially ordered set
of messages and/or stimuli to the subcontext. In this step, some subcontexts
may be discarded if they are impossible w.r.t. the control mechanisms. The par-
tial order on the message/stimulus schemas reflects the temporal constraints
derived from the control mechanisms and the deductive tree. These temporal
constraints are generated as it was explained in the section 3. It may happen
that more than one message/stimulus schema entails the same literal, so this
aspect must be taken into account in building the temporal constraints to be
added to the partially ordered set.
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4.3 Discarding Invalid Scenarios w.r.t. the Communication
Protocols

In the previous steps, some scenarios have been computed for an IC. However,
it may happen that some scenario obtained in the previous step describes im-
possible sequences of messages or stimuli w.r.t. the communication protocols. In
order to check this, at least one path that satisfies all the temporal constraints
must be found in the state machine. The first state of this path must be the
state in which the agent begins its reasoning process.

5 Example of Application

In this section we will show how the method can be applied to a small example.
We will assume a deliberative agent that executes the sequence of rules that
appears in the figure 4. For the sake of clarity and conciseness, the rules and the
IC of this example are not represented in the CCR-2 format, and all the facts
are propositional. In this example, the facts q and ¬q are dynamic acquired facts
entailed by the messages M and M ′ respectively, whereas the fact ¬r is a static
acquired fact entailed by the stimulus S. Moreover, the fact s belongs to the
agent’s innate knowledge, and the facts t and p are deducible.

Fig. 4. Example with an IC and two rules

The method begins expanding the AND/OR decision tree. First of all, it is
necessary to bind each variable of the IC and each referenced object to a metaob-
ject. Some constraints are derived from each IC literal, and they are added to the
metaobjects (in this case, metapropositions). The resulting metapropositions are:

PROP1 = (id→ s, truth value → true)
PROP2 = (id→ t, truth value → true)

In addition to the metaobjects, the SAPT is created. This set contains the
names of the propositions included in the IC and the tuples of relationships
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whose names appear in the IC that are not associated with dynamic acquired
facts. So, initially, SAPT = {s, t}, because neither the fact s nor the fact t are
dynamic acquired facts. The aim of the SAPT is to warrant the consistency of
the non-monotonic reasoning in the sense explained in the section 2, concretely
the second point of the consistency definition in section 2. The SAPT plays the
role of the scope parameter in the definition of the Tree Consistency property.
Unluckily, the metaobjects alone cannot warrant the consistency in all the cases.
For example, if the SAPT is not used in the example of the section 2 (see figure
1), the inconsistency would not be detected in the simulation of the agent’s
execution, and that deductive tree would not be discarded.

Obtaining the context of an IC implies obtaining the context associated with
each literal included in the IC. If it corresponds to a non-deducible goal, its con-
text is created (see Creation Operation in section 4.1). In order to compute the
context of a deducible goal, the method has to generate the contexts associated
with all the rules that deduce the goal (conflict set), and then it has to concate-
nate them (in the contraction phase). To decide whether a rule deduces a goal,
it is needed to check whether there exists any action in the rule that is unifiable
with the goal. In the example of the figure 4, the IC comprises an innate literal
(input literal) and a deducible literal (output literal). So, the method finds a
rule (R2) to deduce the deducible literal.

In general, a CCR-2 rule premise contains a list of conjunctions joined by
disjunction operators. Hence, to compute the context of a rule it is needed to
calculate the context of each conjunction, and then they have to be concatenated
(in the contraction phase). In order to compute the context of a conjunction, it
is required to compute the context of each literal included in the conjunction. A
pre-processing similar to that of an IC is performed over each conjunction before
computing the contexts of the included literals. As a result of this, new metaob-
jects and conditions appear and some constraints are added to the metaobjects.
In the rule R2, the metapropositions PROP3(p) and PROP4(¬q) are created.

The rule R2 contains only one conjunction with two literals p and ¬q. While
p is a deducible fact, ¬q is a dynamic acquired fact. In this example, the rule
R1 can be employed to deduce the fact p. In the rule R1, the metapropositions
PROP5(q) and PROP6(¬r) are created.

The SAPT propagated from the IC is updated while processing the rule R2,
so now SAPT = {s, p}, since t is deleted by the action of the rule R1, and ¬q is
a dynamic acquired fact. If the antecedent of the rule R2 had comprised the fact
¬s, a conflict would have been detected when updating the SAPT, and the rule
R2 would have been discarded. Finally, the SAPT in the rule R1 is SAPT = {s}.

Once the AND/OR decision tree has been expanded completely, the tree is
contracted by using the context operations, and the constraints generated for
the non-deducible goals (inside the metaobjects) are propagated forward from
the leaves of the AND/OR decision tree to the IC. Thus, all these constraints
are collected in the context associated with the IC. In the example, the contexts
associated with the non-deducible facts s, q, ¬r and ¬q are created, and next,
the necessary combination operations are carried out until the context associated
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Fig. 5. Fragment of the Agent’s State Machine

with the IC is computed. Every time a context is obtained from a combination
operation in a rule R, this rule R is added to each deductive tree of the context
as the new root node.

It is worth mentioning that while computing Comb(C(p), C(¬q)) in the rule
R2, an apparent conflict is detected between the metapropositions PROP4 and
PROP5, as they require different truth values for the same proposition q. How-
ever, there is no contradiction, since the facts q and ¬q are dynamic acquired
facts, that is, the contradictory facts may hold in different moments. Hence, these
metapropositions are merged, and the new metaproposition PROP7 is yielded:

PROP7=(id→q, truth value→{true(R1, dynamic), false(R2, dynamic)})

After applying the first step of the method, the resulting context associated
with the IC is: C(IC)= {({PROP1, PROP6, PROP7}, tree(R1, [tree(R2,nil)])
)}, where these metapropositions are defined as:

PROP7 = (id→q, truth value→{true(R1, dynamic),false(R2, dynamic)})
PROP6 = (id→ r, truth value → false(R1, static))
PROP1 = (id→ s, truth value → true)

Next, in the second step, according to the control mechanism, it is determined
that this deductive tree is evaluated by firing the sequence of rules [R1, R2].
Taking this into account, the following temporal constraints are derived from
the metapropositions: M < M ′, because the message M must be received before
the message M ′, in order to allow the fact q to hold first, and then to allow the
fact ¬q to hold later; and S < M ′, because the stimulus S must be received
before the message M ′, since, otherwise, the rule R1 will not be able to be fired
before the rule R2. Thus, the partially ordered set is {M < M ′, S < M ′}, and
the scenario is (C(IC), {M < M ′, S < M ′})

Finally, in the third step, the scenario is checked w.r.t. the agent’s state
machine, which describes the agent behaviour. We can see a fragment of this
state machine in the figure 5. The reasoning process is supposed to begin in the
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state q0. It is clear that there is a path that satisfies all the temporal constraints
imposed in the scenario, so the scenario is consistent with the state machine.

6 Conclusion

In this paper, a formal method to verify the consistency of the reasoning process
of a deliberative agent w.r.t. communication protocols has been presented. To
the best of our knowledge, there is no other method or tool that also addresses
this kind of verification. It is also noteworthy that the agent to be verified encom-
passes a hybrid KB that permits the representation of non-monotonic reasoning
and arithmetic constraints.

7 Future Work

Mainly, there are two aspects of the proposed method that we want to improve:
first, the validation of the deductive tree w.r.t. control mechanisms, more con-
cretely, w.r.t. metarules; and second, the deletion of redundancy in the sets of
temporal constrains by taking into account transitive dependencies and other
aspects.

Moreover, we are working on the adaptation of the proposed method so that
it can be applied to verify agents whose knowledge domain is expressed in a wide
known ontology like OWL2.
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Abstract. Understanding and using the data and knowledge encoded in seman-
tic web documents requires an inference engine. F-OWL is an inference engine 
for the semantic web language OWL language based on F-logic, an approach to 
defining frame-based systems in logic.  F-OWL is implemented using XSB and 
Flora-2 and takes full advantage of their features.  We describe how F-OWL 
computes ontology entailment and compare it with other description logic based 
approaches. We also describe TAGA, a trading agent environment that we have 
used as a test bed for F-OWL and to explore how multiagent systems can use 
semantic web concepts and technology. 

1   Introduction 

The central idea of the Semantic Web [Berners-Lee 2001] is to publish documents on 
the World Wide Web defined and linked in a way that make them both human 
readable and machine understandable. Human readable means documents in the 
traditional sense which are intended for machine display and human consumption. 
Machine understandable means that the data has explicitly been prepared for machine 
reasoning and reuse across various applications. Realizing the semantic web vision 
requires well defined languages that can model the meaning of information on the 
Web as well as applications and services to publish, discover, process and annotate 
information encoded in them. This involves aspects from many areas, including 
knowledge representation and reasoning, databases, information retrieval, digital 
libraries, multi-agent systems, natural language processing and machine learning. The 
Web Ontology Language OWL [Patel-Schneider, 2003] is part of the growing stack 
of W3C recommendations related to the Semantic Web. OWL has its origins in 
DAML+OIL [Hendler 2000] and includes a set of three increasingly complex sub-
languages: OWL-Lite, OWL-DL and OWL-Full. 

OWL has a model-theoretic semantics that provides a formal meaning for OWL 
ontologies and instance data expressed in them.  In addition, to support OWL-Full, a 
second model-theoretic semantics has been developed as an extension to the RDF's 
semantics, grounding the meaning of OWL ontologies as RDF graphs. An OWL  
inference engine’s core responsibilities are to adhere to the formal semantics in  
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processing information encoded in OWL, to discover possible inconsistencies in 
OWL data, and to derive new information from known information. A simple exam-
ple demonstrates the power of inference: Joe is visiting San Francisco and wants to 
find an Italian restaurant in his vicinity. His wireless PDA tries to satisfy his desire by 
searching for a thing of type restaurant with a cuisineType property with the value 
Italian.  The goodPizza restaurant advertises its cuisine type as Pizza. These cannot be 
matched as keywords or even using a thesaurus, since Italian and Pizza are not 
equivalent in all contexts. The restaurant ontology makes things clearer: Pizza rdfs: 
SubClassOf  ItalianCuisine. By using an inference engine, Joe’s PDA can success-
fully determine that the restaurant goodPizza is what he is looking for. F-OWL, an 
inference engine for OWL language, is designed to accomplish this task.  

In the next section, we outline the functional requirement of the OWL inference 
engine.  Section three describes F-OWL, the OWL inference engine in Frame Logic 
that we have developed.  Section four explained how F-OWL is used in a multi-agent 
test bed for trading agents. Chapters five and six conclude this paper with a discussion 
of the work and results and an outline of some potential future research. 

2   OWL Engine 

An inference engine is needed for the processing of the knowledge encoded in the se-
mantic web language OWL. An OWL inference engine should have following features: 

• Checking ontology consistency. An OWL concept ontology (e.g., terms de-
fined in the “Tbox”) imposes a set of restrictions on the model graph. The 
OWL inference Engine should check the syntax and usage of the OWL terms 
and ensure that the OWL instances (e.g., assertions in the “Abox”) meet all of 
the restrictions. 

• Computing entailments. Entailment, including satisfiability and subsumption, 
are essential inference tasks for an OWL inference engine.  

• Processing queries. OWL inference engines need powerful, yet easy-to-use, 
language to support queries, both from human users (e.g., for debugging) and 
software components (e.g., for software agents). 

• Reasoning with rules. Rules can be used to control the inference capability, to 
describe business contracts, or to express complex constrictions and relations 
not directly supported by OWL. An OWL inference engine should provide a 
convenient interface to process rules that involve OWL classes, properties and 
instance data. 

• Handling XML data types. XML data types can be used directly in OWL to 
represent primitive kinds of data types, such as integers, floating point num-
bers, strings and dates. New complex types can be defined using base types and 
other complex types. An OWL inference Engine must be able to test the satis-
fiability of conjunctions of such constructed data types.  

The OWL language is rooted in description logic (DL), a family of knowledge rep-
resentation languages designed for encoding knowledge about concepts and concept 
hierarchies. Description Logics are generally given a semantics that make them sub-
sets of first-order logic. Therefore, several different approaches based on those logics 
have been used to design OWL inference engines: 
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• Using a specialized description logic reasoner.  Since OWL is rooted in de-
scription logic, it is not surprising that DL reasoners are the most widely used 
tools for OWL reasoning. DL reasoners are used to specify the terminological hi-
erarchy and support subsumption. It has the advantage of being decidable. Three 
well-known systems are FaCT [Horrocks, 1999], Racer [Haarslev 2001] and 
Pellet. They implement different types of description logic. Racer system  
implements SHIQ(D) using a Tableaux algorithm. It is a complete reasoner for 
OWL-DL and supports both Tbox and Abox reasoning.  The FaCT system  
implements SHIQ, but only support Tbox reasoning.  Pellet implements SHIN(D) 
and  includes a complete OWL-lite consistency checker supporting both Abox 
and Tbox queries.  

• Using full first order logic (FOL) theorem prover.  OWL statements can be 
easily translated into FOL, enabling one to use existing FOL automated theorem 
provers to do the inference. Examples of this approach include Hoolet (using the 
Vampire [Riazanov, 2003] theorem prover) and Surnia (using Otter theorem 
prover).  In Hoolet, for example, OWL statements are translated into a collection 
of axioms which is then given to the Vampire theorem prover for reasoning.  

• Using a reasoner designed for a FOL subset. A fragment of FOL and general 
logic based inference engine can also be used to design the OWL inference  
engine. Horn Logic is most-widely used because of its simplicity and availability 
of tools, including Jena, Jess, Triple and F-OWL (using XSB). Other logics, like 
higher-order logic in F-OWL (using Flora), can also be used.  

As the following sections describe, F-OWL has taken the third approach.  An ob-
vious advantage is that many systems have been developed that efficiently reason 
over expressive subsets of FOL and are easy to understand and use.   

3   F-OWL 

F-OWL is a reasoning system for RDF and OWL that is implemented using the XSB 
logic programming system [Sagonas, 1994] and the Flora-2 [Kifer, 1995] [Yang 
2000] extension that provides an F-logic frame-based representation layer.  We have 
found that XSB and Flora-2 not only provide a good foundation in which to imple-
ment an OWL reasoner but also facilitate the integration of other reasoning mecha-
nisms and applications, such as default reasoning and planners. 

XSB is a logic programming system developed at Stony Brook University. In 
addition to providing all the functionality of Prolog, XSB contains several features 
not usually found in Logic Programming systems, including tabling, non-stratified 
negation, higher order constructs, and a flexible preprocessing system.  Tabling is 
useful for recursive query computation, allowing programs to terminate correctly in 
many cases where Prolog does not. This allows, for example, one to include “if and 
only if” type rules directly.   XSB supports for extensions of normal logic programs 
through preprocessing libraries including a sophisticated object-oriented interface 
called Flora-2. Flora-2 is itself a compiler that compiles from a dialect of Frame 
logic into XSB, taking advantage of the tabling, HiLog [Chen 1995] and  
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well-founded semantics for negation features found in XSB. Flora-2 is implemented 
as a set of run-time libraries and a compiler that translates a united language of F-
logic and HiLog into tabled Prolog code. HiLog is the default syntax that Flora-2 
uses to represent function terms and predicates. Flora-2 is a sophisticated object-
oriented knowledge base language and application development platform. The pro-
gramming language supported by Flora-2 is a dialect of F-logic with numerous 
extensions, which include a natural way to do meta-programming in the style of 
HiLog and logical updates in the style of Transaction Logic. Flora-2 was designed 
with extensibility and flexibility in mind, and it provides strong support for modular 
software design through its unique feature of dynamic modules. 

F-OWL is the OWL inference engine that uses a Frame-based System to reason 
with OWL ontologies. F-OWL is accompanied by a simple OWL importer that reads 
an OWL ontology from a URI and extracts RDF triples out of the ontology. The  
extracted RDF triples are converted to format appropriate for F-OWL’s frame style 
and fed into the F-OWL engine. It then uses flora rules defined in flora-2 language to 
check the consistency of the ontology and extract hidden knowledge via resolution.  

A model theory is a formal theory that relates expressions to interpretation. The 
RDF model theory [Hayes 2003] formalizes the notion of inference in RDF and pro-
vides a basis for computing deductive closure of RDF graphs. The semantics of OWL, 
an extension of RDF semantics, defines bindings, extensions of OWL interpretations 
that map variables to elements of the domain:  

• The vocabulary V of the model is composed of a set of URI’s.  
• LV is the set of literal values and XL is the mapping from the literals to LV.  
• A simple interpretation I of a vocabulary V is defined by: 

• A non-empty set IR of resources, called the domain or universe of I.  
• A mapping IS from V into IR 
• A mapping IEXT from IR into the power set of IR X (IR union LV) i.e. the 

set of sets of pairs <x,y> with x in IR and y in IR or LV. This mapping 
defines the properties of the triples. IEXT(x) is a set of pairs which iden-
tify the arguments for which the property is true, i.e. a binary relational 
extension, called the extension of x.  

Informally this means that every URI2 represents a resource that might be a page 
on the Internet but not necessarily; it might also be a physical object. A property is a 
relation; this relation is defined by an extension mapping from the property into a set. 
This set contains pairs where the first element of a pair represents the subject of a 
triple and the second element represents the object of a triple. With this system of 
extension mapping the property can be part of its own extension without causing 
paradoxes.  

Take the triple:goodPizza :cuisineType :Pizza from the pizza restaurant in the 
introduction as example.  In the set of URI’s there will be terms (i.e., classes and 
properties) like: #goodPizza, #cuisineType, #pizza, #Restanrant, #italianCuisine, etc. 

                                                           
2 The W3C says of URIs: “Uniform Resource Identifiers (URIs, aka URLs) are short strings 

that identify resources in the web: documents, images, downloadable files, services, elec-
tronic mailboxes, and other resources.” By convention, people understand many URIs as  
denoting objects in the physical world. 
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These are part of the vocabulary V.  The set IR of resources include instances that 
represent resources on the internet or elsewhere, like #goodPizza, , etc. For example 
the class #Restanrant might represent the set of all restaurants. The URI refers to a 
page on the Internet where the domain IR is defined.  Then there is the mapping IEXT 
from the property #cuisineType to the set {(#goodPizza, #Pizza),(#goodPizza, 
#ItalianCuisine)} and the mapping IS from V to IR: :goodPizza  #goodPizza, 
:cuisineTYpe  #cuisineType. 

A rule A B is satisfied by an interpretation I if and only if every binding that sat-
isfies the antecedent A also satisfies the consequent B. An ontology O is satisfied by 
an interpretation I if and only if the interpretation satisfies every rules and facts in the 
ontology. A model is satisfied if none of the statements within contradict each other. 
An ontology O is consistent if and only if it is satisfied by at least one interpretation. 
An ontology O2 is entailed by an ontology O1 if and only if every interpretation that 
satisfies O1 also satisfies O2. 

One of the main problems in OWL reasoning is ontology entailment. Many 
OWL reasoning engines, such as Pellet and SHOQ, follow an approach suggested 
by Ian Horrocks [Horrocks 2003]. By taking advantage of the close similarly 
between OWL and description logic, the OWL entailment can be reduced to 
knowledge base satisfiability in the SHOIN(D) and SHIF(D).  Consequently, 
existing mature DL reasoning engines such as Racer [Haarslev 2001] can provide 
reasoning services to OWL. Ora Lassila suggested a “True RDF processor” 
[Lassila 2002] in his implementation of Wilbur system [Lassila 2001] in which 
entailment is defined via the generation of a deductive closure from an RDF graph 
composed of triples. The proving of entailment becomes the building and search-
ing of closure graph.  

With the support of forward/backward reasoning from XSB and frame logic from 
Flora, F-OWL takes the second approach to compute the deductive closure of a set of 
RDF or OWL statements. The closure is a graph consisting of every triples <subject, 
predicate, object> that satisfies {subject, object }  IEXT(I(predicate)). This is  
defined as:   

<subject,predicate,object>  KB ⇔  {subject,object}  IEXT(I(predicate)) 

Where KB is the knowledge base, I(x) is the interpretation of a particular graph, 
and IEXT(x) is the binary relational extension of property as defined in [Hayes 2002]. 

F-OWL is written in the Flora-2 extension to XSB and consists of the following 
major sets of rules:  

• A set of rules that reasons over the data model of RDF/RDF-S and OWL; 
• A set of rules that maps XML DataTypes into XSB terms; 
• A set of rules that performs ontology consistency checks; and 
• A set of rules that provides an interface between the upper Java API calls to the 

lower layer Flora-2/XSB rules. 

F-OWL provides command line interface, a simple graphical user interface and a 
Java API to satisfy different requirements. Using F-OWL to reason over the ontology 
typically consists of the following four steps: 
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• Loading additional application-related rules into the engine;  
• Adding new RDF and OWL statements (e.g., ontologies or assertions) to the en-

gine. The triples (subject, predicate, object) on the OWL statements are translated 
into 2-ply frame style: subject(predicate, object)@model; 

• Querying the engine. The RDF and OWL rules are recursively applied to gener-
ate all legal triples. If a query has no variables, a True answer is returned when  
an interpretation of the question is found. If the question includes variable, the 
variables is replaced with values from the interpretation and returned; 

• The ontology and triples can be removed if desired. Else, the XSB system saves 
the computed triples in indexed tables, making subsequent queries faster. 

4   F-OWL in TAGA 

Travel Agent Game in Agentcities (TAGA) [Zou 2003] is a travel market game 
developed on the foundation of FIPA technology and the Agentcities infrastructure. 
One of its goals is to explore and demonstrate how agent and semantic web technology 
can support one another and work together.  

TAGA extends and enhances the Trading Agent Competition scenario to work in 
Agentcities, an open multiagent systems environment of FIPA compliant systems. 
TAGA makes several contributions: auction services are added to enrich the Agent-
cities environment, the use of the semantic web languages RDF and OWL improve 
the interoperability among agents, and the OWL-S ontology is employed to support 
service registration, discovery and invocation. The FIPA and Agentcities standards 
for agent communication, infrastructure and services provide an important foundation 
in building this distributed and open market framework. TAGA is intended as a 
platform for research in multiagent systems, the semantic web and/or automated  
trading in dynamic markets as well as a self contained application for teaching and 
experimentation with these technologies. It is running as a continuous open game at 
http://taga.umbc.edu/ and source code is available on Sourceforge for research and 
teaching purposes. 

The agents in TAGA use OWL in various ways in communication using the FIPA 
agent content language (ACL) and also use OWL-S as the service description  
language in FIPA’s directory facilitators. Many of the agents in the TAGA system 
use F-OWL directly to represent and reason about content presented in OWL. On 
receiving an ACL message with content encoded in OWL, a TAGA agent parses the 
content into triples, which are then loaded into the F-OWL engine for processing.  

When an agent receives an incoming ACL message, it computes the meaning of the 
message from the ACL semantics, the protocols in effect, the content language and the 
conversational context. The agent’s subsequent behavior, both internal (e.g., updating 
its knowledge base) and external (e.g., generating a response) depends on the correct 
interpretation of the message’s meaning. Thus, a sound and, if possible, complete un-
derstanding the semantics of the key communication components (i.e., ACL, protocol, 
ontologies, content language, context) is extremely important.   In TAGA, the service 
providers are independent and autonomous entities, which making it difficult to  
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enforce a design decision that all use exactly the same ontology or protocol. For 
example, the Delta Airline service agent may have its own view of travel business and 
uses class and property terms that extend an ontology used in the industry. This  
situation parallels that for the semantic web as a whole – some amount of diversity is 
inevitable and must be panned for lest our systems become impossibly brittle. 

Many of the agents implemented in TAGA system use F-OWL to represent and 
reason about the message content presented in RDF or OWL.  Upon receiving an 
ACL message with content in RDF or OWL, a TAGA agent parses the content into 
triples, which are then loaded into the FOWL engine for processing.  

The message’s meaning (communicative act, protocol, content language, ontologies 
and context) all play a part in the interpretation. For example, when an agent receives a 
query message that uses the query protocol, the agent searches its knowledge base for 
matching answers and returns an appropriate inform message. TAGA uses multiple 
models to reflect the multiple namespaces and ontologies used in the system. The agent 
treats each ontology as an independent model in the F-OWL engine.  

F-OWL has many usages in TAGA, including the following. 

• As knowledge base. Upon receiving an ACL message with content encoded in 
OWL, agents in TAGA parse the content into triples and feeds them into their  
F-OWL engine. The information can be easily retrieved by submitting queries in 
various query languages. 

• As reasoning engine.  The agent can answer more questions with the help of 
F-OWL engine, for example, the restaurant can answer the question “what is  
the average price of a starter” after it understands that “starter” is sameAs  
“appetizer”. 

• As a service matchmaker. FIPA platforms provide a directory facilitator service 
which matches service requests against descriptions of registered services. We 
have extended this model by using OWL-S as a service description language.   
F-OWL manages the service profiles and tries to find the best match based on  
description in the service request.   

• As an agent interaction coordinator. The interaction protocol can be encoded 
into an ontology file using OWL language. F-OWL will advise the agents what to 
respond based on received messages and context. 

5   Discussion 

This section describes the design and implementation of F-OWL, an inference engine 
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking of the knowledge base, extracts hidden 
knowledge via resolution and supports further complex reasoning by importing rules. 
Based on our experience in using F-OWL in several projects, we found it to be a fully 
functional inference engine that was relatively easy to use and able to integrate with 
multiple query languages and rule languages. 

There have been lots of works on the OWL inference engine, from semantic web 
research community and description logic community. The following table compares 
F-OWL with some of them: 
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Table 1. Comparison of F-OWL and other OWL Inference Engine 

 F-OWL Racer FaCT Pellet Hoolet Sur-
nia 

Tri-
ple 

Logic Horn, 
Frame, 
Higher 
Order 

Descrip
tion 

Logic 

DL DL Full FOL 
Full 
FOL 

Horn 
Logic 

Support OWL-Full 
OWL-

DL 
OWL-

DL 
OWL-DL OWL-DL 

OWL
-Full 

RDF 

Based on  XSB/Flor
a 

Lisp Lisp Java Vampire Otter XSB 

XML 
Datatype 

Yes Yes No Yes No No No 

Decidable  No Yes Yes Yes No No Yes 
Complete 
consis-
tency 
checker 

No 
Yes 

(OWL-
Lite) 

Yes 
Yes(OWL

-Lite) 
No No No 

Interface  Java, 
GUI, 

Command 
Line 

DIG, 
Java, 
GUI 

DIG, 
Com-
mand 
Line 

DIG, Java Java 
Py-
thon 

Java 

Query 
Frame 
style, 

RDQL 

Racer 
query 
lan-

guage 

 RDQL   
Horn 
logic 
style 

Known 
Limita-
tion 

Poor 
scaling 

 
No 

Abox 
support 

 
Poor 

scaling 

Poor 
scal-
ing 

Only 
sup-
port 
RDF 

The first thing to notice in Table 1 is that the description logic based system can 
only support reasoning over OWL-Lite and OWL-DL statements but not OWL-Full.  
OWL-Full is a full extension of RDF, which needs the supporting of terminological 
cycle. For example, a class in OWL-Full can also be an individual or property. The 
cyclic terminological definitions can be recognized and understood in horn logic or 
frame logic system. 

Table 1 shows that only three DL-based owl inference engines, which are all use a 
Tableau based algorithms [Baader 2000], are decidable and support complete consis-
tency checking (at least in OWL-Lite). However, [Balaban 1993] argues that DL only 
forms a subset of F-Logic. The three kinds of formulae in the description logic can be 
transformed into first class objects and n-ary relationships. F-Logic is able to provide 
a full account for DL without losing any semantics and descriptive nature. We under-
stand that our current F-OWL approach is neither decidable nor complete. However, a 
complete F-Logic based OWL-DL reasoner is feasible.  
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The table also shows that F-OWL system doesn’t scale well when dealing with 
large datasets, because of the incompleteness of the reasoner. Actually, none of the 
OWL inference engines listed here scales well when dealing with the OWL test case 
wine ontology3 which defines thousands of classes and properties and a relatively 
modest number of individuals. Further research is needed to improve the performance 
and desirability. 

Comparing with other OWL inference engines, F-OWL has several unique  
features: tabling, support for multiple logical models or reasoning, and a pragmatic 
orientation. 

Tabling. XSB’s tabling mechanism gives F-OWL the benefits of a forward chaining 
system in a backward chaining environment. The triples in a model are computed 
only when the system needs to know whether or not they are in the model.  Once it is 
established that a triple is in the current model, it is added to the appropriate table, 
obviating the need to prove that it is in the model again.  This mechanism can have a 
significant impact on the system’s performance. While the first few queries may take 
a long time, subsequent queries tend to be very fast.  This is an interesting compro-
mise between a typical forward-only reasoning system and backward-only reasoning 
systems. 

Multiple Logics. F-OWL supports Horn logic, frame logic and a kind of higher-order 
logic; all inherited from the underlying XSB and Flora substrates. Working together, 
these logic frameworks improve F-OWL’s performance and capabilities. For exam-
ple, the F-logic supports non-monotonic (default) reasoning. Another example is 
higher-order logic. The semantics of higher-order logics, in general, are difficult and 
in many cases not suitable for practical applications.  XSB’s Hilog, however, is a 
simple syntactic extension of first-order logic in which variables can appear in the 
position of a predicate.  In many cases, this simplifies the expression of the state-
ments, rules and constraints, improving the writability and readability of F-OWL and 
associated programs. 

Pragmatic Approach. The aim of F-OWL system is to be a practical OWL reasoner, 
not necessary a complete OWL reasoner. So F-OWL system provides various inter-
face to access the engine and supports multiple query and rule languages. 
    In the open web environment, it is generally assumed that the data are not complete 
and not all facts are known. We will research how this fact affects the implementation 
of inference engine. In the semantic web an inference engine may not necessarily 
serve to generate proofs but should be able to check proofs. We will work on using  
F-OWL to resolve trust and proof in semantic web.  

In a stand-alone system inconsistencies are dangerous but can be controlled to a 
certain degree. However, controlling the inconsistencies in the Semantic Web is a lot 
more difficult. During the communication, ontology definition origin from other 
agents, who is unknown beforehand, may be asserted. Therefore special mechanisms 
are needed to deal with inconsistent and contradictory information in the Semantic 
Web. There are two steps: detecting the inconsistency and resolving the inconsistency. 

                                                           
3  The wine ontology is used as a running example in the W3C's OWL Web Ontology Language 

Guide and is available at http://www.w3.org/TR/owl-guide/wine.owl. 
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The detection of the inconsistency is based on the declaration of inconsistency in 
the inference engine. The restriction, which imposes the possible values and relation 
that the ontology elements can have, leads to the inconsistency. For example, 
owl:equivalentClass: imposes a restriction on the resource which the subject is same 
class as. owl:disjointWith  imposes a restriction on the resource which the subject 
is different from. The triples (a owl:equivalentClass b) and (a owl:disjointWith b) 
is not directly lead to an inconsistency until applying the detection rule: 
(A owl:equivalentClass B) & (A owl:disjointWith B) inconsistency.  

When inconsistencies are detected, Namespaces can help tracing the origin of the 
inconsistencies. John posted “all dogs are human” at his web site, while “all dogs are 
animal” appears in daml.org’s ontology library. It is clear that the second is more 
trustable. Every web site are identified and treated unequivocally in the semantic web. 
The inference engine contacts trust system to evaluate the creditability of the name-
spaces. [Klyne 2002] and [Golbeck 2003] enlist lots of works and brilliant ideas about 
how to maintain the trust system in the semantic web. Once having the trust evalua-
tion result, the agent could take three different actions: (a) accept the one suggested 
by the inference engine; (b) reject both as none of them is trustable; (c) ask the human 
user to select.  

6   Conclusion 

This paper describes the design and implementation of F-OWL, an inference engine 
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking, extracts hidden knowledge via resolu-
tion and supports further complex reasoning by importing rules. While using it in 
TAGA user case, we find that F-OWL is a full functional inference engine and easy to 
use with the support of multiple query languages and rule languages. 

In the open web environment, it is generally assumed that the data are not complete 
and not all facts are known. We will research how this fact affects the implementation 
of inference engine. In the semantic web an inference engine may not necessarily 
serve to generate proofs but should be able to check proofs. We will work on using  
F-OWL to resolve trust and proof in semantic web in the future. 
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Abstract. The Model Driven Architecture (MDA) approach uses a
platform-independent model to define system functionality, or require-
ments, using some specification language. The requirements are then
translated to a platform-specific model for implementation. An agent
architecture based on the human cognitive model of planning, the Cog-
nitive Agent Architecture (Cougaar) is selected for the implementation
platform. The resulting Cougaar MDA prescribes certain kinds of models
to be used, how those models may be prepared and the relationships of
the different kinds of models. Using the existing Cougaar architecture,
the level of application composition is elevated from individual compo-
nents to domain level model specifications in order to generate software
artifacts. The software artifacts generation is based on a metamodel.
Each component maps to a UML structured component which is then
converted into multiple artifacts: Cougaar/Java code, documentation,
and test cases.

1 Introduction

Agent-based systems provide a foundation for development of large scale
applications like logistics management, battlefield management, supply-chain
management, to mention some. An example of agent-based systems is Cougaar
(Cognitive Agent Architecture). Cougaar provides a software architecture for
distributed agent-based applications in domains characterized by hierarchical
decomposition, tracking of complex tasks, generation and maintenance of dy-
namic plans [1, 2].

The ability to develop very complex applications comes with a price. It takes
a lot of effort and learning in order to have complete understanding and ability
to effectively use such agent-based systems. A domain expert must closely col-
laborate with the developer in order to fully utilize an agent-based system for a
particular domain. It is very unlikely that a domain expert will have sufficient
understanding of the underlying agent-based system.

A Model Driven Architecture (MDA) based approach can be used to au-
tomatically generate software artifacts and to significantly simplify application
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development [3, 4, 5]. The domain expert can specify requirements in a familiar,
platform-independent format that hides platform-specific details.

The MDA approach can be used for developing applications using the Cougaar
agent-based architecture. Cougaar components can be composed into a General
Cougaar Application Model (GCAM) and develop a General Domain Applica-
tion Model (GDAM) for specifying and automatically generating software appli-
cations. This approach is discussed in the paper.

The remainder of the paper is organized as follows. Section 2 briefly describes
Cougaar and its capabilities. Section 3 describes the use of the MDA approach for
Cougaar-based applications. Section 4 discusses the Cougaar-based MDA model
while Section 5 describes the implementation. Section 6 concludes the paper.

2 Cougaar Agent-Based System

Cougaar is a “large–scale workflow engine built on a component-based dis-
tributed agent architecture” [1]. It is deployed as a society of agents, which
communicate and work together to solve a problem. A Cougaar society is a set
of agents running on one or more interconnected computers, all working together
to solve a common class of problems. The problem may be partitioned into sub-
problems, in which case the responsible subset of agents is called a community.
A society may have one or more communities within.

The relationship between societies, communities, and agents is not a strict
one, a society may directly contain both agents and communities. While a society
has a real-world representation, a set of computers running a Cougaar system,
a community is only notational in nature.

A Cougaar agent is a first-class member of a Cougaar Society [1] and it
contains a Blackboard and one or more Plugins. While the specific purpose of
any agent is chosen by the system developer; the objective is for a single agent
to represent a single organizational entity or a part thereof.

At the most basic level, an agent consists of two parts: a Blackboard and a set
of Plugins (Figure 1). The former is a container of objects, with a subscription-
based change notification mechanism; the latter is a set of responders to these
notifications, with the ability to change the contents of the Blackboard.

The Blackboard serves as the communications backbone connecting the Plu-
gins together. More importantly, it serves as the entry point for any incoming
messages to the agent as a whole, which are then picked up by the Plugins for
handling. All instance-specific behavior of the agent is implemented within the
Plugin. A Plugin listens to add, remove, and change events on the Blackboard.
Evaluating the objects involved in the event, the Plugin may respond by per-
forming some computation, changes to the Blackboard, or some external work.

A Cougaar Node conceptually encapsulates a set of agents. Agents can collab-
orate with other agents in the same Node or with agents in other Nodes. However,
it is not a direct collaboration. Instead, Cougaar Tasks are allocated to Cougaar
Organizations, which are representations of agents in the local Blackboard.
The subscription mechanism allows agents to use Tasks to exchange messages
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Fig. 1. Cougaar Agent Structure [1]

(objects). The Cougaar communication infrastructure then ensures that the Task
is sent to the destination Organization’s (i.e. agent’s) Blackboard.

3 Cougaar Model Driven Architecture (CMDA)

The MDA approach advocates converting a Platform Independent Model (PIM)
into a Platform Specific Model (PSM) through a series of transformations, where
the PIM is iteratively made more platform specific, ending in the PSM. The
PIM is used to represent a system’s business functionality without including any
technical aspects. The PIM allows Subject Matter Experts (SMEs) to work at
the domain layer. However the current technologies may not offer the required
richness to implement the complex transformation rules. For example, the Uni-
fied Modeling Language (UML), the foundation for MDA, lacks in the required
precision and formalization.

While the development of PIM and PSM UML models might be easy, a blind
adaptation of the MDA approach might create problems during the develop-
ment of mapping rules and transformations. It should be noted that the MDA
approach advocates for a Computational Independent Model (CIM) that needs
to be transformed into a PIM. Since UML uses different representations for each
of the models, the translation between models is more like translation between
natural languages, the mappings are not necessarily exact. Further, while the
learning curve associated with UML is fairly low, the SMEs nevertheless need
to learn a new technical language and need to “move” out of their work envi-
ronment.

The productivity of Cougaar system developers can be improved by using the
MDA approach. The Cougaar MDA (CMDA) attempts to provide fully auto-
mated generation of software artifacts and simplifies Cougaar-based application
development by providing two important abstraction layers. The first layer is the
Generic Domain Application Model (GDAM) layer. The GDAM represents the
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Fig. 2. Basic CMDA Approach

PIM and encompasses the representation of generic agent and domain specific
components found in the domain workflow. The second layer, Generic Cougaar
Application Model (GCAM) reflects the PSM or Cougaar architecture. The user
specifies the intended Cougaar system using workflow paradigm and the system
is then refined using GDAM and GCAM models.

The GDAM layer implements the PIM based on a representation that SMEs
are comfortable with and results in a proper mapping to the PSM. The goal
is to make this mapping as automated as possible, while having human-in-the-
loop as a fallback mechanism to correct any mapping imperfections. The initial
versions of the tool might force the developers to fine-tune the generated PSM
to a certain extent, but it is hoped that as the tools and algorithms advance,
such fine-tuning would be less and less necessary.

The GDAM layer specifies the structure and semantic information that the
tool uses to ensure that the developer has annotated the GDAM model properly.
Furthermore, the layer provides all information required by the tool to produce
a more specific but still platform-independent PIM that includes details of de-
sired semantics, and guides choices that the approach/tool will have to make
(Figure 2).

In order to develop a tool based on the proposed approach, the following
assumptions and constraints were formulated after detailed research.

– Fully automated software artifacts (requirements, design document, code,
and test cases) generation is a desirable goal.

– The generated requirements are partial in nature.
– The validation of generated code and the generation of test cases are of lower

priority.
– The development of tools and implementation mechanisms are of lower pri-

ority than formulating the “recipes” for transformations.
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– The intended users of the system are developers and subject matter experts.
– The developer should be fully aware of the Cougaar system, its capabilities,

and constraints.
– The SMEs should have sufficient knowledge about the domain and a basic

understanding of the requirements of the intended system.

3.1 GDAM Layer

The General Domain Application Model (GDAM) can be conceptually thought
to be similar to various programming language libraries such as MFC or Swing.
The libraries abstract and modularize the commonly used functions, thereby
helping Subject Matter Experts (SMEs) to focus on encoding business logic.
However, the abstractions achieved by class libraries, which are written in an
implementation language, are limited by the capabilities of the language. Fur-
ther, SMEs have to work at the implementation language level.

The genesis of the GDAM layer can be traced to the need to allow SMEs to
develop systems at the domain layer using current technologies and simple trans-
formation rules. In short, GDAM allows SMEs to represent the specifications of
the system in a platform-independent, domain-specific language that can be
transformed, without losing information, into specifications of how applications
will be implemented in the Cougaar platform. Further, GDAM provides a set
of components and patterns representing the different kinds of generic domain
elements that can be assembled to specify the application.

There are two, potentially conflicting, implications of the GDAM function-
ality. First, SMEs should be allowed to capture their domain knowledge and
application requirements in a manner that is computationally independent. Sec-
ond, there should be a well defined structure and relationships among require-
ments to allow for an automatic and mechanic transformation of the require-
ments/constraints into an internal, platform independent, GDAM representation
that can be later transformed into a platform specific GCAM representation. To
reduce this potential conflict, the following decisions were made:

– The transformation between the computational independent and platform
independent representations should be a lightweight one. In other words, the
platform independent transformation should subsume computational inde-
pendent representation thus requiring only a simple transformation between
the two.

– The business logic, i.e. the “semantic” of the application must be embedded
within the computational independent representation enforce constraints.
The constraint language must be simple and easily transformed into code
that can be integrated within the platform.

– The configuration and deployment of the application is treated separately
from the application requirements because that is inherently platform spe-
cific. While every effort will be made to make it as generic as possible, some
platform specific information may be necessary.

– User interactions and user interface represent a separate challenge. Auto-
matic or semi-automatic user interface generation based on the application
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requirements is not a unique one, i.e. there can be many different user inter-
face designs. Such designs can be customized based on the SMEs preferences.
While this effort is outside of the scope of the project, some considerations
will be provided for possible future research.

The development of GDAM is an iterative and evolutionary process. In ad-
dition to the general system wide assumptions, the following assumptions are
specific to the GDAM layer.

– The current scope is restricted to the development of some of the indispens-
able generic domain components that pertain to the logistics domain.

– The GDAM components development is an evolutionary process and it is
not expected or possible to develop each and every GDAM component.

– The developer and the SME will work together, sitting side-by-side if re-
quired, while developing the GDAM model of the intended system.

– Developers will collaborate with subject matter experts to develop and up-
date the system with GDAM components that are required and not available.

3.2 GCAM Layer

The GCAM is an abstraction layer above the Cougaar code that represents an
application’s design. Therefore, the GCAM hides the Cougaar code implemen-
tation while providing a platform specific “environment.” One of the important
issues is a separation between the GDAM and the GCAM levels. The GDAM
level represents requirements and the GCAM level represents design. Each level
performs one mapping. The GDAM level maps from requirements to design
which then serves as input to the GCAM level. The GCAM level then maps
from the provided design to code. Therefore, the GCAM level is taking as an
input the design (GCAM representation) that contains constraints, references
to the GCAM components, etc. A repository of components contains detailed
descriptions of individual GCAM components in a form of “beans.” The GCAM
engine is assembling the code segments of the GCAM components from the
repository and augments them with code generated from constraints and other
design information. The resulting code, combined with the configuration infor-
mation, provides a developed application.

In addition to the general system-wide assumptions, the following assump-
tions are specific to the GCAM layer. The GCAM is essentially a design level
representation of the Cougaar system.

– As the Cougaar system is revised, the revisions will be reflected in the GCAM
layer.

– The developers will write Cougaar code to encode details that cannot be
represented using GCAM components.

– The code generated by the system is not intended to be modified by develop-
ers. The code generator is optimized for runtime performance and simplicity.

– The GCAM engine does not have optimization capabilities and hence the
generated code might not be as efficient as manually written code. The
GCAM engine does not support model debugging capabilities.
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4 CMDA Model

The GDAM requirements necessitated the development of a model representa-
tion that is both versatile (to represent domain information) and familiar (to
the SMEs and developers). Based on studies conducted, there is enough confi-
dence to choose workflow as the medium to represent the generic domain model.
Workflow is familiar to both SMEs and developers and charts out the working
mechanism of the intended system. Further, the structure of the workflow (essen-
tially boxes and arrows) is both generic (to represent most domain information)
and extensible (to support addition and modifications of GDAM components).
However, it should be noted that workflow does not capture all the requisite
information. The information that is not captured includes:

– Deployment and configuration information,
– Information pertaining to GUI such as screen layout and user interactions,
– Domain and system level constraints, and
– Business rules.

It is necessary to develop and refine the software artifact generation mecha-
nism based on the information that is captured using workflow. Information that
cannot be represented using workflow can be captured either by extending the
workflow model (to record domain and system wide constraints) or by creating
“threads” that will “run” in parallel to the workflow thread.

Fig. 3. Threads

Figure 3 shows the different threads that exist in the developed tool. The
threads are designed to capture information pertaining to (1) workflow, (2) GUI
layout, and (3) deployment. While the structure and semantics of the workflow
thread are known, the details about the GUI and deployment threads are being
worked out. The GDAM model representation consists of the Task model for
GUI, Workflow model for Agent code and deployment model for deployment
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code. The models are transformed into corresponding XML representations by
the GDAM engine. The GCAM engine reads in the XML, aggregates and corre-
lates the information to produce the code artifacts. Higher priority is assigned
to developing and refining the workflow thread.

4.1 Domain Components Presented in Cougaar

The Cougaar system provides mechanisms to encode domain knowledge directly
in the code. The domain that Cougaar implement is the planning domain for
which the generic-domain components present in the Cougaar were identified.
As the project moves forwards, more detailed study will be performed. The two
important domain components found in the Cougaar were the task component
and the asset component.

Cougaar defines a task as “A requirement or request from one agent to an-
other to perform or plan a particular operation.” The tasks are implemented
in the planning domain library and are used by agents to let another agents
perform a job or plan the execution of a job.

Cougaar defines an asset as “Resources assigned to the task.” Any asset
instance will have two key attributes: (1) a reference to its prototype and (2) a
reference to the item identification property group. Assets are also implemented
in the planning domain library.

4.2 GDAM Representation

Current Cougaar application development practices were analyzed and used to
define the GDAM representation. The workflow model is the computational
model used by Cougaar developers. Some of its functionality has been already
incorporated in the Cougaar based code. As a consequence, the workflow model
and its underlying XML Processing Description Language (XPDL) format have
been selected as for specifying application requirements [6]. The underlying plat-
form independent GDAM model subsumes the workflow model by using the
basic components of the workflow model as templates for the part of GDAM
components.

XPDL, defined by Workflow Management Coalition (WfMC), provides a
framework for implementing business process management and workflow en-
gines, and for designing, analyzing, and exchanging business processes. Further,
XPDL is extensible and versatile to handle information used by a variety of
different tools.

While XPDL provides excellent mechanisms to define and record workflow
processes, certain customization was needed. The customizations include:

– Type Declarations: The type declarations were used to define the assets
at the domain level. The SMEs will define and declare the primitive types,
PropertyGroups (PGs) and assets using type declarations. The primitive
types or elements within a PG were recorded as basic type in XPDL. The
basic types were then grouped into a record type, which will represent the
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PG. The PGs are then grouped into a record to form the asset. The type
declarations in XPDL provide all the capabilities required to define an asset.

– Abstractions: The generic notations of XPDL were abstracted to repre-
sent Cougaar concepts. The agents were represented using participants and
the behavior of the agents was described using activities. The transitions
represented the tasks generated by agents.

– Constraint enforcement: The condition tags present in the XPDL was ex-
tended to support constraint representations. While XPDL has many useful
features, it lacks some of the required structure and constraint capabilities.
As a consequence, the Object Constraint Language (OCL) is selected to
capture this information [7]. The OCL constraints are includes in the XPDL
as pre- and post- conditions thus eliminating free-text constraints from the
original XDPL format.

– Extended attributes: The extended attributes section was used to describe
Cougaar specific semantics such as tasks, assets, and allocations.

It should be noted that care was taken to extend the XPDL without breaking
the XML structure defined by the WfMC. This was done to allow the XPDL file
to be loaded in any standard workflow editor that supports XPDL.

4.3 GDAM Components

The current structure and semantics of GDAM components have provision to
specify constraints (pre and post conditions), documentation section, need revi-
sions to incorporate fragments of design diagrams, mapping criteria. The work-
flow component describes the participant, activity and transition elements.

The participant component which is used to represent Agent is defined in
XPDL under the participants tag. Each participant has two attributes: ID (unique
Id used to reference the participant within the workflow model) and Name (user
specified name, which need not be unique). The participant component also con-
tains the tag ParticipantType which is used by XPDL to identify the type of
participant.

The activity component is used to describe the behavior. The activity compo-
nent, described inside Activities tag, consist of two attributes: ID (unique Id used
to reference the activity within the workflow model) and Name (user specified
name, which need not be unique). The activity component provides details about
a particular behavior, which are mapped into Plugins during transformations.
The Activity component has a performer tag to identify which Agent’s behavior
is being defined, a transition restrictions tag to reference the constraints of a
particular Task, and an extended attribute namely asset, to identify the asset
used by the activity. An activity component can occur more than once in the
workflow model. The first occurrence of activity component is mapped into a
new Plugin and subsequent occurrences result in appending the Plugin’s behav-
ior. The Plugin’s behavior is appended by appending the subscription and action
subsets of the Plugin.

The asset component is used to describe the resources attached to tasks. The
asset component is described using XPDL’s type declarations. The primitive
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types or elements within a PG were recorded as a basic type in XPDL. The
basic types were then grouped into a record type, which will represent the PG.
The PGs are then grouped into a record to form the asset. The TypeDeclaration
tag, consist of two attributes: ID (unique Id used to reference the type within
the workflow model) and Name (user specified name, which need not be unique).
The TypeDeclaration also lists whether the type is basic type or record type. If
the type is a record, the members of the record are listed.

5 CMDA Implementation

The graphical user interface (GUI) for the developed CMDA tool has been im-
plemented as an editor using the Eclipse IDE [8, 9]. The editor allows editing
and validation of XPDL data in both text and graphical formats. The XPDL is
loaded into the editor, with the workflow displayed. The editor connects to the
repository of components. The user drags components from a palette (represent-
ing what’s available in the repository) assigning the activity to a new instance
of the component, which can have all its properties set in a GUI. The editor
shows any validation errors detected by the validating compiler. The instanti-
ation data (component name and property values) are stored in the XPDL as
extended attributes. The editor also shows a set of available resources, which
can be assigned to each activity. As these resources are assigned, they are stored
in the XPDL as extended attributes. Completed requirements include a fully
defined components with parameters, roles, and deployment data.

Since the entire system is a component itself, with deployment information
added, the editor is used to edit any inner component as well. The components
are defined in a UML-like XML-based language [10] where an XML schema
is defined for specifying components that can be automatically converted to an
EMF [11] model. Eclipse’s EMF is a modeling system similar to the Meta-Object
Facility (MOF) [11]. Those similarities enable the use of EMF and the related
tools for easy conversion to a UML representation. The UML representation, in
addition to documentation generation, provides a better understanding of the
application under development.

The characteristics of the metamodel are determined from the parameteri-
zation of Cougaar components, related constraints and properties. Components
must define properties that can be queried and derived. Interconnected compo-
nents work together as agents and societies of agents. Composition of components
is specified using graphs describing interconnected and configured components.
The graphs can be saved and reused.

Generation of Cougaar/Java code, documentation, requirements, and test
cases depends on components that must provide information for artifact genera-
tion Deployment of components requires assignment of hosts and other computa-
tional, storage, or other type of resources while maintaining Java compatibility.

Each component maps to a UML structured component with template pa-
rameters (Figure 4). The compiler validates components and generates artifacts.
The validation insures that the component is valid and is suitable for artifact
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Fig. 4. Component

generation. Artifact generation creates Java code, documentation, test cases, and
requirements data.

Components have named parameters that are defined like a very small subset
of an XML schema [12]. Parameters specify a name attribute, which is matched
when given a value. Parameters may also define a parent parameter, thus allow-
ing sets of parameters and a cardinality. This allows variable numbers of sets of
parameters, giving a reasonable configuration language for components.

The metamodel directly provides constraint data through constraints given
in the component definition, and implicitly through the typed connections and
defined restrictions on the various metamodel elements. The compiler verifies
constraints to assure that a valid system can be generated.

The compiler considers the entire system as one top level component. The
components are grouped into a tree of instantiations (component names coupled
with values for all of their parameters) that is traversed by the compiler. The
compiler calls the relevant profile mapping at each node to generate correspond-
ing artifacts. The profile mappings use either an XML tree for the component
definition or a set of EMF objects representing them in memory. The former is
the serialized form of the latter. Extensible Stylesheet Language (XSL) Trans-
formations (XSLT) [13] or Eclipse’s Java Emitter Template (JET) [14, 15] are
then used to generate the artifacts.

Components can specify roles, named interconnections with other compo-
nents, that specify data types sent and received over them. Roles are special
types of parameters which are fully initialized only with references to other
component instances. They also cannot have inner roles or any such hierarchy.

Deployment data is considered a special type of non-hierarchical parameter.
Deployment data are not fixed values. They are expression usable for deriving
the value when the system is deployed.

Components can specify inner member components to define the inner struc-
ture. These member components are initialized and connected together. Their
parameters, connections, and deployment information have static values or OCL
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expressions [7] based on the component’s parameter data. OCL expressions pro-
vide additional information to object-oriented models, including constraints,
queries, referencing values, stating conditions and business rules. Each value
is expressed using OCL constants or using OCL expressions that allow their
derivation. The component can define its properties as the values of properties
in its member components, possibly with some modification and renaming.

While the definitions immediately provide useful descriptions of the system,
they do not directly provide code, test cases, etc. The compiler, in some cases,
needs “help” from the component definitions to create code, test cases, and re-
lated artifacts. Each component specifies the name of a Profile Mapping that
links the component to a set of definitions for how the artifacts are gener-
ated. Each profile mapping handles different categories of components, such as
Cougaar Plugins, Agents, or Societies.

6 Conclusions

Cougaar is complex requiring considerable mappings and transforms. MDA pro-
vides a systematic way of capturing requirements and mapping them from PIM
to PSM and ultimately to the code level. The developed CMDA framework is an
MDA based approach for the Cougaar agent-based architecture. It enables au-
tomatic transformation of the application requirements, expressed in the XPDL
format, into a platform-independent, GDAM representation. The artifacts are
generated from models assembled using components that contain information re-
lated to requirement, design, code, test and documentation details for that com-
ponent, along with transformation information. Platform-specific GCAM com-
ponents are derived from the metamodel and then converted into Cougaar/Java
code. The CMDA combines assembly approach with transformations to generate
the artifacts. While the CMDA-based approach uses the Cougaar architecture,
it is applicable to other agent-based architectures.
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Abstract. Autonomic Computing (AC), a self-managing systems initiative 
based on the biological metaphor of the autonomic nervous system, is 
increasingly gaining momentum as the way forward in designing reliable 
systems.  Agent technologies have been identified as a key enabler for 
engineering autonomicity in systems, both in terms of retrofitting autonomicity 
into legacy systems and designing new systems.  The AC initiative provides an 
opportunity to consider other biological systems and principles in seeking new 
design strategies.  This paper reports on one such investigation; utilizing the 
apoptosis metaphor of biological systems to provide a dynamic health indicator 
signal between autonomic agents. 

1   Introduction 

One of the great things about being involved in the early days of development of a 
new paradigm is having the opportunity to look again at how things are done, and 
contemplate approaches not normally considered before the paradigm beds down into 
its evolutionary path. 

Autonomic Computing is based on the biological metaphor of the Autonomic 
Nervous System (ANS) [1], taking the ANS as inspiration to achieve self-managing 
systems without ‘conscious effort’ from the user. IBM’s initial set of self-properties 
(self-CHOP, configuration, healing, optimisation and protection) have been 
expanded to include many self-* properties leading to the adoption of the term 
selfware. 

Biological systems inspire systems design in many other ways – reflex reaction and 
health signs [2, 3], nature-inspired systems (NIS) [4] – hive and swarm behaviour, fire 
flies, etc., for example. 

At this stage in the emerging field of Autonomic Computing we are seeking 
inspiration for new approaches from (obviously, pre-existing) biological mechanisms.  
An obscure mechanism which is discussed in this paper is Apoptosis – the approach 
for cell self-destruction, which at first sight may seem a metaphor too far. 
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2   Biological Apoptosis 

The biological analogy of autonomic systems has been well discussed in the literature.  
While reading this the reader is not consciously concerned with his1 breathing rate or 
how fast his heart is beating.  Achieving the development of a computer system that 
can self-manage without the conscious effort of the user is the vision and ultimate 
goal [5].  Another typical biological example is that the touching of a sharp knife 
results in a reflex reaction to reconfigure the area in danger to a state that is out of 
danger (self-protection, self-configuration, and, if damage is caused, self-healing) [6]. 

If one cuts oneself and starts bleeding, good training results in washing the finger, 
applying a bandage and carrying on with one’s tasks without any further conscious 
thought.   Yet, often, the cut will have caused skin cells to be displaced down into 
muscle tissue [7].  If they survive and divide, they have the potential to grow into a 
tumour.  The body’s solution to dealing with this situation is cell self-destruction 
(with mounting evidence that cancer is the result of cells not dying fast enough, rather 
than multiplying out of control, as previously thought). 

It is believed that a cell knows when to commit suicide because cells are 
programmed to do so – self-destruct (sD) is an intrinsic property.  This sD is delayed 
due to the continuous receipt of biochemical retrieves.  This process is referred to as 
apoptosis [8], meaning ‘drop out’, used by the Greeks to refer to the Autumn 
dropping of leaves from trees; i.e., loss of cells that ought to die in the midst of the 
living structure.  The process has also been nicknamed ‘death by default’ [9], where 
cells are prevented from putting an end to themselves due to constant receipt of 
biochemical ‘stay alive’ signals (Figure 1).  

 

Fig. 1. Turning off the self-destruct sequence - cell receives ‘stay alive’ signal 

Further investigations into the apoptosis process [10] have discovered more details 
about the self-destruct programme. Whenever a cell divides, it simultaneously 
receives orders to kill itself. Without a reprieve signal, the cell does indeed self-
destruct. It is believed that the reason for this is self-protection, as the most dangerous  

                                                           
1 Throughout this paper, for “his”, read “his/her”. 

Stay 
Alive 
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time for the body is when a cell divides, since if just one of the billions of cells locks 
into division the result is a tumour, while simultaneously a cell must divide to build 
and maintain a body.  

The suicide and reprieve controls have been compared to the dual-key on a nuclear 
missile [7].  The key (chemical signal) turns on cell growth but at the same time 
switches on a sequence that leads to self-destruction.  The second key overrides the 
self-destruct [7]. 

3   Autonomic Computing and Agents 

Autonomic Computing is dependent on many disciplines for its success; not least of 
these is research in agent technologies.  At this stage, there are no assumptions that 
agents have to be used in an autonomic architecture, but as in complex systems there 
are arguments for designing the system with agents  [11], as well as providing inbuilt 
redundancy and greater robustness  [12], through to retrofitting legacy systems with 
autonomic capabilities that may benefit from an agent approach  [13].   

 
Fig. 2. Autonomic Element (agent or other) consists of a managed component and an autonomic 
manager.  Control loops with sensors (self-monitor) and effectors (self-adjuster) together with 
system knowledge and planning/adapting policies allow the autonomic element to be self-aware 
and to self-manage.  A similar scheme facilitates environment awareness (allowing self-
managing if necessary, but without the immediate control to change the environment – this is 
effected through communication with other autonomic managers that have the relevant 
influence, through reflex or event messages) 

Emerging research suggests that the autonomic manager may be an agent itself, for 
instance, an agent termed a self-managing cell (SMC)  [14], containing functionality 
for measurement and event correlation and support for policy-based control.   
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Essentially, the aim of autonomic computing is to create robust dependable self-
managing systems [15].  To facilitate this aim, fault-tolerant mechanisms such as a 
heart-beat monitor (‘I am alive’ signals) and pulse monitor (urgency/reflex signals) 
may be included within the autonomic element (Figure 2) [2, 16].  The notion behind 
the pulse monitor (PBM) is to provide an early warning of a condition so that 
preparations can be made to handle the processing load of diagnosis and planning a 
response, including diversion of load.  Together with other forms of communications 
it creates dynamics of autonomic responses [17] – the introduction of multiple loops 
of control, some slow and precise, others fast and possibly imprecise, fitting with the 
biological metaphor of reflex and healing [2]. 

The major motivating factor for formal approaches to agent-based systems is to 
prevent race conditions and undesirable emergent behaviour.  In this situation, Self-
Destruction of the agent may be viewed as a last resort situation to prevent further 
damage; in other situations, such as security of the agent, Self-Destruction may be 
used as an intrinsic part of the process. 

Agent destruction has been proposed for mobile agents to facilitate security 
measures [18].  Greenberg et al. highlighted the situation simply by recalling the 
situation where the server omega.univ.edu was decommissioned, its work 
moving to other machines.  When a few years later a new computer was assigned the 
old name, to the surprise of everyone,  email arrived, much of it 3 years old [19].  The 
mail had survived ‘pending’ on Internet relays waiting for omega.univ.edu to 
come back up.  

Greenberg encourages consideration of the same situation for mobile agents; these 
would not be rogue mobile agents – they would be carrying proper authenticated 
credentials.  This work would be done totally out-of-context due to neither abnormal 
procedure nor system failure.  In this circumstance the mobile agent could cause 
substantial damage, e.g., deliver an archaic upgrade to part of the network operating 
system resulting in bringing down the entire network. 

Misuse involving mobile agents comes in the form of:  

• misuse of hosts by agents,  
• misuse of agents by hosts, and  
• misuse of agents by other agents.   

From an agent perspective, the first is through accidental or unintentional situations 
caused by that agent (race conditions and unexpected emergent behaviour), the later 
two through deliberate or accidental situations caused by external bodies acting upon 
the agent.  The range of these situations and attacks have been categorised as: 
damage, denial-of-service, breach-of-privacy, harassment, social engineering, event-
triggered attacks, and compound attacks.  

In the situation where portions of an agent’s binary image (e.g., monetary 
certificates, keys, information, etc.) are vulnerable to being copied when visiting a 
host, this can be prevented by encryption.  Yet there has to be decryption in order to 
execute, which provides a window of vulnerability [19].  This situation has similar 
overtones to our previous discussion on biological apoptosis, where the body is at its 
most vulnerable during cell division. 
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4   Autonomicity in NASA Missions 

New paradigms in spacecraft design are leading to radical changes in the way NASA 
designs spacecraft operations [20]. Increasing constraints on resources, and greater 
focus on the cost of operations, has led NASA to utilize adaptive operations and move 
towards almost total onboard autonomy in certain classes of mission operations [21, 
22].  

NASA missions, particularly those to deep space, where manned craft will not at 
present be utilized, are considering the use of almost wholly autonomous decision-
making to overcome the unacceptable time lag between a craft encountering new 
situations and the round-trip delay (of upwards of 40 (earth) minutes) in obtaining 
responses and guidance from mission control.     

More and more NASA missions will, and must, incorporate autonomicity as well 
as autonomy [23, 27]. 

4.1   Previous Missions 

Two of the first notable missions to use autonomy are DS1 (Deep Space 1) and the 
Mars Pathfinder [24].  

The Beacon Monitor concept, first used in the DS1 mission work [25] automates 
the routine task of health monitoring and transfers the process of monitoring from 
ground to the spacecraft [16].  With beacon monitoring, the spacecraft sends a signal 
to the ground that indicates how urgent it is to track the spacecraft for telemetry.   

This concept involved a paradigm shift for NASA from its traditional routine 
telemetry downlink and ground analysis, to onboard health determination and 
autonomous data summarization [25].  

In terms of high-level concepts, the beacon monitor is analogous to the heartbeat 
monitor, but with the addition of a tone to indicate the degree of urgency involved: 
nominal, interesting, important, urgent and no tone [26]. 

Some long-term drawbacks of this approach have been discovered.  Since one of 
the primary goals of beacon monitoring was to reduce the amount of data sent to the 
ground (achieved by eliminating the download of telemetry data), operators lost the 
ability to gain an intuitive feel for the performance and characteristics of the craft and 
its components, as well as losing the ability to run the data through simulations [20].  

 As such, to fully benefit from beacon monitoring, the fast loop of real-time health 
assessment must be supplemented by a slow loop to study the long-term behaviour of 
the spacecraft.  This engineering data summarization is where the spacecraft creates a 
second set of abstractions regarding the sensor telemetry, which is then sent back to 
ground to provide the missing context for operators.   

This dual approach has conceptually much in common with the reflex and healing 
approach [2, 16]. 

4.2   A Future Mission 

The Autonomic Computing initiative has been identified by NASA as having 
potential to contribute to their goals of autonomy and cost reduction in future space 
exploration missions [22, 23, 27].   
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ANTS, Autonomous Nano-Technology Swarm, is a mission that will launch 
sometime between 2020 and 2030 (“any day now” in terms of NASA missions).   The 
mission is viewed as a prototype for how many future unmanned missions will be 
developed and how future space exploration will exploit autonomous and autonomic 
behaviour.    

The mission will involve the launch of 1000 pico-class spacecraft swarm from a 
stationary factory ship, on which the spacecraft will be assembled.  The spacecraft 
will explore the asteroid belt from close-up, something that cannot be done with 
conventionally-sized spacecraft.    

As much as 60% to 70% of the spacecraft will be lost on first launch as they enter 
the asteroid belt.   The surviving craft will work as a swarm, forming smaller 
groupings of worker craft (each containing a unique instrument for data gathering), a 
coordinating ruler, that will use the data it receives from workers to determine which 
asteroids are of interest and to issue instructions to the workers and act as a 
coordinator, and messenger craft which will coordinate communications between the 
swarm and between the swarm and ground control.   Communications with earth will 
be limited to the download of science data and status information, and requests for 
additional craft to be launched from earth as necessary.  

A current project (FAST) is studying advanced technologies for the verification of 
this incredibly complex mission; the reader is directed to [22, 27] for a more detailed 
exposition of the ANTS mission and the FAST (Formal Approaches to Swarm 
Technologies) project. 

5   The Role of Apoptosis 

The discussions so far have established the concepts of: 

• Heart-Beat Monitor (HBM) I am alive: a fault-tolerant mechanism which may 
be used to safeguard the autonomic manager to ensure that it is still functioning 
by periodically sending ‘I am alive’ signals. 

• Pulse Monitor (PBM) I am healthy: extends the HBM to incorporate 
reflex/urgency/health indicators from the autonomic manager representing its 
view of the current self-management state.  The analogy is with measuring the 
pulse rate instead of merely detecting its existence. 

• Apoptosis Stay alive: a proposed additional construct used to safeguard the 
system and agent; a signal indicates that the agent is still operating within the 
correct context and behaviour, and should not self-destruct. 

The title of this paper (purposely) raises the question of whether there is a role for the 
apoptosis metaphor within the development of autonomic agents.   Additionally, in 
the introduction, we prompted the consideration of whether perhaps it is a metaphor 
too far.   

Section 3 clearly highlights the general problem of agent security, whether from 
the agent’s or host’s perspective.  In terms of generic contribution to autonomic 
agents development, with many security issues the lack of an agreed standard 
approach to agent-based systems prohibits further practical development for generic 
autonomic systems.  As such, the proposal can only be ‘put out there’ as a concept. 
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Of course, within NASA missions, such as ANTS, we are not considering the 
generic situation.  Mission control and operations is a trusted private environment.   
This eliminates many of the wide range of agent security issues discussed earlier, just 
leaving the particular concerns; is the agent operating in the correct context and 
showing emergent behaviour within acceptable parameters, where upon apoptosis can 
make a contribution. 

For instance, in ANTS, suppose one of the worker agents was indicating incorrect 
operation, or when co-existing with other workers was the cause of undesirable 
emergent behaviour, and was failing to self-heal correctly.  That emergent behaviour 
(depending on what it was) may put the scientific mission in danger.   Ultimately the 
stay alive signal from the ruler agent would be withdrawn.   

If a worker, or its instrument, were damaged, either by collision with another 
worker, or (more likely) with an asteroid, or during a solar storm, a ruler could 
withdraw the stay alive signal and request a replacement worker (from Earth, if 
necessary).    If a ruler or messenger were similarly damaged, its stay alive signal 
would also be withdrawn, and a worker would be promoted to play its role. 

All of the spacecraft are powered by batteries that are recharged by the sun using 
solar sails [22, 27].   Although battery technology has greatly advanced, there is still a 
“memory loss” situation, whereby batteries that are continuously recharged eventually 
lose some of their power and cannot be recharged to full power.    After several 
months of continual operation, each of the ANTS will no longer be able to recharge 
sufficiently, at which point their ‘stay alive’ signals will be withdrawn, and new craft 
will need to be assembled or launched from Earth. 

6   Conclusions 

Autonomic Computing [1] has been gaining ground as a significant new paradigm to 
facilitate the creation of self-managing systems to deal with the ever increasing 
complexity and costs inherent in today’s (and tomorrow’s) systems. 

In terms of the Autonomic Computing initiative, agent technologies have the 
potential to become an intrinsic approach within the initiative [28], not only as an 
enabler (e.g. ABLE agent toolkit [29]), but also in terms of creating autonomic agent 
environments. 

Formal approaches to agent-based systems [30, 31] have a primary focus of 
identifying race conditions, highlighting undesirable emergent behaviour, and 
verifying the correctness of systems that are far too complex to ever test correctly.   
However, the practicality of mobile agents is predicated on the existence of realistic 
security techniques [19]. 

We have described the Heart-Beat Monitor (HBM) and Pulse Monitor (PBM) and 
proposed a logical addition which has an analogy from biological systems, Apoptosis 
and Self-Destruct, which we believe will be valuable in future autonomic systems. 
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Abstract. Emergent agents, those agents whose local interactions can cause un-
expected global results, require a method of modeling that is both dynamic and 
structured. Petri Nets, a modeling tool developed for dynamic discrete event 
system of mainly functional agents, provide this, and have the benefit of being 
an established tool.  We present here the details of the modeling method here 
and discuss how to implement its use for modeling agent-based systems. 

1   Introduction 

Petri Nets have been used extensively in the modeling of functional agents, those 
agents who have defined purposes and whose actions should result in a known out-
come.  However, emergent agents, those agents who have a defined structure but 
whose interaction causes outcomes that are unpredictable, have not yet found a mod-
eling style that suits them.  A problem with formally modeling emergent agents that 
any formal modeling style usually expects to show the results of a problem and the 
results of problems studied using emergent agents are not apparent from the initial 
construction. However, the study of emergent agents still requires a method to ana-
lyze the agents themselves, and have sensible conversation about the differences and 
similarities between types of emergent agents.  We attempt to correct this problem by 
applying Petri Nets to the characterization of emergent agents.  In doing so, the emer-
gent properties of these agents can be highlighted, and conversation about the nature 
and compatibility of the differing methods of agent creation can begin. 

1.1   Petri Nets 

Petri Nets are a graphical modeling tool used mainly to analyze manufacturing proc-
esses.  The main strength of using Petri Nets lies in the fact that they can handle con-
currency of events. For complex modeling the ability to allow several events to occur 
simultaneously and still analyze their effects on each other is a necessity.  The classic 
Petri Net consists of four objects: places, transitions, directed arcs and tokens.  A 
place is a state of existence for a model.  Consider a traffic light which has three 
states, each of which indicates a different situation; red says stop, yellow indicates 
caution, and green allows forward motion.   Each of these three states would be con-
sidered a place in a Petri Net.  Places are usually denoted by a circle.  Transitions are 
the means by which the different places are reached.  This would be the light chang-
ing from red to yellow, yellow to green, etc. You must go through a transition in order 
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to reach a place.  Transitions take the form of a square, or a straight line.  The directed 
arc links the places to the transition.  If one must change from red to yellow, there 
would be an arc linking the place “red” to the transition “changing from red to yel-
low,” and another linking this transition to the place “yellow.”  The token is the means 
by which the Petri Net is made active.  It indicates at which place in the Petri Net the 
current process is, and allows for restrictions on the activity of the processes.  If there 
were two traffic lights at an intersection the tokens would indicate which is green, 
which is red, and ensure that only one was green at any given time.  Below is the 
traffic light example shown as a Petri Net (1).   

 

Fig. 1. This represents two traffic lights.  The tokens in Green 1 and Red 2 show that the left 
traffic light is green currently, and the right one, red.  Notice that both tokens have to be in spot 
X for the light to change.  This is true of many actual traffic systems, where all lights at an 
intersection are briefly red before one turns green 

This process of putting the Petri Net into action is referred to as firing.  Each token 
allows for a single firing, which causes a token to move from place, through a transi-
tion, into another place.  In order for a particular transition to be enabled, all of the 
places who have a directed arc leading to that transition must have a token.  In the 
case above, the X place creates the situation where both lights must be red for one to 
turn green. 
    The model above is an example of a Petri Net that describes a well-defined system, 
with predictable results, and no emergent properties.  Below we describe how this tool 
can be applied in a situation where emergence generates the interesting result.   

2   Emergent Agent Modeling 

We create a formal model of a classic agent-based model, the Schelling model of 
spatial segregation.  In this model, there are two types of agents.  Each agent has a 
threshold level for the number of similar agents they wish to have in their ‘neighbor-
hood’, although no agent has a particular preference for segregation.  When chosen by 
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random, each agent takes an accounting of the percentage of each agent type in their 
neighborhood, and if the percentage of dissimilar agents is too high, they will move to 
another location.  Although simple, the model’s results stem from the emergent prop-
erties of the heterogeneous agents.  Although this is not a detailed model, there are 
still many choices a researcher must make when programming the simulation, such as 
the type of neighborhood the agents live in, how the thresholds are determined, the 
method of location switching, etc.  Each model has characteristics in common, how-
ever, and it is these characteristics that should be included in formal specification of 
the model.  Below is a Petri Net model of the basic characteristics that should be in-
cluded in every Schelling simulation, regardless of the individual choices made by the 
researchers.   

 

Fig. 2. A Petri Net of the Schelling model of spatial segregation [2].  Here, an agent has a cer-
tain threshold of similar agents they want in their “neighborhood”.  If that percentage falls 
beneath their threshold, they will choose to move.  The Petri Net shows the basic model, with-
out requiring knowledge of the specific parameters 

Given this model of the process that the researcher is trying to analyze, and the 
specifics of the choices that she made in the design process, the original results should 
be replicable.  In addition there is no need for every researcher to utilize the same 
programming language or software package in order to understand the workings of 
the model.  Petri Nets are dynamic which makes them ideal for analyzing the structure 
of agent-based models, whose results usually rely on the dynamic interactions of their 
component parts.   

3   Conclusion 

These Petri Net models do not replace the agent-based model itself.  The emergent 
nature of many agent-based results still requires a full computational simulation to be 
created.  However, they do provide a method by which two modelers can discuss a 
single problem without being distracted by the particulars of their individual models.  
Since Petri Nets are mathematically based, issues of the efficiency of the model can 
also be analyzed.  Finally, there is already an established body of work in the field of  
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Petri Nets, which prevents agent-based modelers from having to invent new systems 
of analysis.  Just as economics and other fields adapted calculus for their own uses, 
agent-based modelers in all disciplines can use this technique. 
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Abstract. In order to build massive multi-agent systems, considered as
complex and dynamic systems, one needs a method to analyze and con-
trol the system. We suggest an approach using morphology to represent
and control the state of large organizations composed of a great num-
ber of light software agents. Morphology is understood as representing
the state of the multi-agent system as shapes in an abstract geometrical
space, this notion is close to the notion of phase space in physics.

1 Introduction

With the advent of new computer technologies new large-scale systems are now
possible. However, methods for actually building such complex system are less
frequently proposed. Existing common approaches include : ”manual tuning”,
emergence-based theory approaches, genetic approaches.

Manual tuning is only feasible for a couple of agents. It is impracticable for
bigger organizations.

Emergence-based theories seek the understanding of the requirements at the
microscopic level (the agent) in the hope that the macroscopic (the system)
level will eventually behave appropriately. Many of these theories suggest that
the agents composing the system have to be cooperative : resolving local conflict
is sufficient to yield a proper global behavior (eg [3]). This hypothesis seems too
restrictive[2] ; natural self-adaptive systems composed of many entities are not
all locally-cooperative.

Agent genetic approaches, which include non-necessarily cooperative agents
(eg [5]), seem to be promising. However, they lack of the ability of analyzing and
understanding the system. It is difficult to understand how the system works by
only relying on the fitness function.

In order to build such a system one has to be able to analyze, maintain and
control the behavior of the system. Deep understanding of the system workings is
needed. And for such a system to be auto-adaptive, it needs to observe, analyze
and control itself [4].
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Our proposal. For a system to be self-regulated, it has to have the ability to
consider its internal state. We propose a way of describing the state of the agent
organization in a problem-independent manner, by projecting the state of the
agent organizations in an abstract geometrical space from various measurements
made at the agent level (this is similar to the approach in physics as with phase-
space), and letting the system access this representation in order to control itself.
The underlying hypothesis is that the shapes representing the system’s state are
correlated to the system’s behavior.

We describe the model, highlighting the important points, and then present
an example of application of such an architecture applied to agent population
control. We also discuss the advantages and current limitations based on the
experiments with the implemented model.

2 Description of the Approach

2.1 Hypothesis

We seek to correlate the micro-level behavior (agent) with the macro-level be-
havior (organization) using a generic approach (morphology). The hypothesis
is that the shapes should be correlated to the system’s behavior, and that it
is possible to attract the system toward another state using the morphological
description if the system fails to behave appropriately.

2.2 General Description

The system is composed of three main organizations : the aspectual organization
that represents a phenomena ; the morphological organization which describes
the state of the aspectual organization in a geometrical way ; and the analysis
organization controlling the aspectual organization relying on the description
given by the morphological organization and following the guidelines provided
by the system designer. A more detailed description can be found in [1].

2.3 Aspectual Organization

The aspectual organization, composed of many agents, represents a phenomena
we want to study. This is the organization we seek to analyze and control. The
term “aspectual” comes from the original agentification method proposed in [1].

In order to evaluate the system’s state, the aspectual agents compute a value,
called the ”aspectual vector”, as they run. This vector is a collection of values
describing the agent’s organizational state and its activity. The exact nature of
these measures depend on the structure of the agent.

2.4 Morphological Organization

The whole collection of aspectual vectors make up the aspectual landscape of
the aspectual organization which is then analyzed by the morphological agents.



Massive Multi-agent Systems Control 277

Morphological agents attempt to describe what is happening in the aspectual
organization in a geometrical way. The description does not take into account the
ontology previously established : there is no semantics in the morphology space.
Morphology space is only concerned with the activity and the organizational
state of the agents. It points out structure, shapes, recurrent features, similari-
ties, oppositions, dominant or recessive features. . . If we consider the aspectual
measure as a mapping from a subset of the agent organizational state space to a
numerical space (possibly multi-dimensional) ; the reciprocal is a function that
modifies the agent behavior according to some target value so that the resulting
aspectual vector of the agent would conform to that target value.

2.5 Analysis Organization

By using a proper way of computing the morphology, the shapes revealed by the
morphology are correlated to the system’s behavior. We intend to exploit this
correlation.

The analysis agents use the morphological description to examine the as-
pectual organization and to orientate the system accordingly to some generic
guidelines instructed by the designer (for example : “global variable X of the
system should be around value Y”. . . ). This is achieved by classifying and learn-
ing the morphology : as the system runs, typical shapes in the morphological
spaces are revealed, these shapes are correlated to the system’s behavior and cat-
egorized appropriately. Analysis agents can, following the designer’s guidelines,
influence the aspectual organization, either by direct injunctions on it, or by se-
lecting appropriate shapes (learned from the system’s past activity) and telling
the morphological agents that this particular shape would be more appropriate
than the current shape.

3 Example

We have developed an example using this approach in the context of agent
population size control. The goal of this example is to illustrate how the global
behavior of the system is correlated with its morphological description and how
it is possible to exploit this correlation to control the system.

3.1 Aspectual Agents

The aspectual organization is subjected to population control. Aspectual agents
reside in a common environment where they “see” each other and from which
they can extract some “energy” in order to survive.

Agents have some limited social skills : an agent can ask another agent to
give it some energy. The asked agent can either cooperate or refuse. In the event
of refusal, the asker “fights” the non cooperative agent. A fight results in the
loss of energy from both antagonists, however the initiator of the fight looses
less energy than the other one (simulating the benefit of initiating the attack).
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If the energy level of an agent drops below zero, the agent “dies” and is
removed from the organization. If an agent collects enough energy it can clone,
yielding another agent. Removal and cloning of agents enables the organization
to change in size.

The behavior of each aspectual agent is parameterized a variable, called its
“eagerness”, it influences the agent’s behavior in its choice on whether to attack
or not other agents. This parameter can be updated by the agent itself when it
receives a recommendation from the morphological agents.

3.2 The Morphology

To analyze the system, we chose to use only one characteristic of the agent’s
organizational state : its “supremacy”. The idea of this measure is to relate the
position of the agent within the organization : whether the agent is or not in
a comfortable position. This is correlated to its energy level : the more energy
the agent has, the more likely it is to survive. Hence, we chose to compute the
agent’s supremacy as equal to its energy level.

The shapes used to describe the organization’s state are normalized and
mean-centered histograms representing the agents’ state distribution according
to their supremacy. Histograms have the advantage of being easily comparable.
It is possible to formulate a “reciprocal” of this mapping. An aspectual agent
that is asked to change its vector value will try to do so by modified some of its
variables (its eagerness) that alter its behavior accordingly.

3.3 The Analysis and Control

One analysis agent is used to control the system. This agent learns and classifies
the histograms computed by the morphological agent. It can also directly know
the actual number of agent in the aspectual organization, so it is able to deter-
mine, accordingly to rules defined by the system designer if the system is in a
“good” or “bad” state and classify the corresponding shape properly (figure 1).

In this example, when the system behaves correctly there is no feedback.
But when the population size is out of bounds, the analysis agent asks the
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Fig. 1. The left figure shows the system when it is considered as fine. The right figure
shows when the system is needs adjustment
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morphological agent compute the appropriate feedback corresponding to the
difference between the “good” and “bad” histograms.

3.4 Results and Discussion

The limitation of space does not permit us to discuss in details the results of all
the simulations but we will mention the essential.

Figure 2 sums up the results of two tests : one without control and the
other with control. The instantaneous error rate is a pseudo-distance of the
population curve to the closest threshold (if the population curve is in-between
both thresholds, the instantaneous error rate is zero). The error rate is the sum
of all the instantaneous error rate in one 1000-cycles run. The average error rate
for an analysis agent (if any) is computed over 10 such 1000 cycles run.

The reference test was done without control, it consisted of 500 tests. The
other series of tests was done with control, over 200 tests (the difference of the
number of tests is due to available time, the ones with control took longer to
compute). In both cases the target population size was 50 agents with a margin
of 0.2 (lower threshold and upper threshold are 40 and 60 respectively).

Figure 3 displays a couple of examples of the system’s behavior, with and
without control. These curves give a more palpable, qualitative, appreciation of
control performance.
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In most cases (85%) the control improves the system’s behavior. However, the
histograms reveal that in 15% of the cases it does worse. One possible explanation
is that, in some cases, the initial configuration of the aspectual organization (ie
when the analysis agent has learned nothing yet) does not permit the analysis
agent to “discover” adequate shapes, and then learns inappropriately, thus badly
controlling the population size.

We also have noted that in some cases, only less than half of the aspec-
tual agents needed to comply with the morphological injunctions, so that the
population level was maintained at an appropriate value.

Developing more elaborated morphological analyzes (augmenting the aspec-
tual vector with other aspects of the agent’s behavior and using trajectories
by introducing the time dimension in the morphological space) and using more
appropriate learning mechanisms would allow finer control of the system.

4 Conclusion

We seek to develop a general method to analyze and control multi-agent system,
and to make them self-adaptive. We briefly described the model based on the
morphology approach of representing the system’s state. This representation is
available to the system in order to make it self-adaptive.

We illustrated the workings of the system with a simple example consisting
in population control. Shapes used in this example were histograms represent-
ing the relative distribution of one of the agent’s properties. A simple learning
mechanism permitted to outline and exploit a correlation between the micro-level
behavior with macro-level behavior.

Other interests include developments of more elaborate morphology descrip-
tions and understanding the needed properties of such description in order to be
useful (toward formalization ?).
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Abstract. This work aims to introduce a new concept for incorporating fuzzy 
sets in hybrid deliberative/reactive paradigm. After a brief review on basic 
issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, 
which enables the agents to proceed and extract their behavior through 
quantitative numerical and qualitative knowledge and to impose their decision 
making procedure via fuzzy rule bank, is discussed. Next an example performs 
a more applied platform for the developed approach and finally an overview of 
the corresponding agents architecture enhances agents logical framework.  

1   Introduction 

The definition of the agents world could be based on their social rules, 
communication cooperation and negotiation between them and their pursuance to 
achieve the defined (pre-given) goals. The central concerns on this area refer from 
one side to the individual design aspects for developing the design task and leading to 
an improved behavior and from another side to their social rules, cooperation of the 
individuals, and consideration based on the relationship between individual and 
overall social behaviors. The design aspect should be suitable for time constraint 
environment and interactions with environment in order to make agents capable to 
reconfigure and recover from changes due to environment and satisfy other flexible 
design criteria. Intelligent agents acquire information from the world interface and are 
able to perform tasks which are supposed to meet deadline on average [2]. 

In heterogonous approach the agents may differ from each other to ensure multi 
robot coordination. Self regulation agents concept is embedded within the 
environment and their autonomous action meets the design objectives. Part of the 
problem from individuality point of view refers to path planning and navigation, 
which implies the complexity of the problem and represents the physical limitations 
of robot platform. 

In a human-based model of agents there is a close dependent between the 
deliberation, reaction and decision making and the agents relationship functional 
structure models these criteria [8]. If we face the unstructured or local environment 
the reactive planning is the most appropriate execution meanwhile in a knowledge 
rich environment (global/open world) a hierarchical paradigm works better based on 
deliberation process of global information and agent specific abstraction. Deliberation 
functions could not extend independently of reactive behavior and vice versa. Hybrid 
architectures benefit both concepts of reactive and deliberative paradigm [5]. 
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2   Incorporation of Fuzziness into Hybrid Paradigm 

As stated above the agents should have some reactive design-base due to changes in 
environment, which in turn may effect and result in some limitation in the agents 
(local) goals and deliberation paradigm, which through reasoning procedure and 
intention tend to lead to action to achieve the goals (mean-ends). Therefore we need 
to balance between goal directed (deliberative) and reactive paradigm. Fuzzy 
approach can perform a suitable area for considering both these aspects, through 
which our decision function is a fuzzy one which proceeds the action design choice 
influenced by history and reconsideration and makes the agents enable to develop 
cognitive functions for evolution of intelligence. 

Deliberation and reactivity face with problems of multiple conflicting criteria and 
multiple objectives. With incorporation of fuzziness into hybrid paradigm we can 
make decisions with vague, uncertain and inexact objects and extract the human 
knowledge in planning architecture without articulating an application-based world 
model and prepare a determinative interpretation from probability and randomness. 
Fuzzy approach profits knowledge representation about how the agents represent their 
world, plan and solve problems in close/open world and is appropriate to experiment 
on bold (never reconsider) to cautious (constantly reconsider) agents, since the 
decision procedure attempts to degree.  

2.1    Development of the Concept of FHDRP 

The decision making strategy will be based on a deliberation-reaction fuzzy rule bank 
with strategy acquisition in extracting the fuzzy rules incorporating with real time 
reasoning [3,4,6] (we can learn the fuzzy rules from experiences with numerical 
and/or linguistic sample data with enhancing the system profiting the ability of 
learning-base systems such as neural networks.). 

The fuzzy deliberative/reactive rule bank could be defined as follow:  

- .,...,2,1),,,(: niACXFRB iii =   

Where: 

-Deliberation state conditions: { }imiii XXXX ,...,, 21= .  

With deliberation fuzzy set: ( ){ },)(, Ω∈= XXmXD D   is the universe of 

the deliberations. 

-Reaction state conditions: { }isiii CCCC ,...,, 21= .       

With reaction fuzzy set: ( ){ },)(, Ψ∈= CCmCR R   is the universe of the 

reactions. 

-Action through deliberation and reaction: { }ikiii AAAA ,...,, 21= .  

With action fuzzy set: ( ){ },)(, Γ∈= AAmAA
CAC   is the universe of the 

actions. 
The fuzzy hybrid paradigm can be defined as the projection: 
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.CARD →×  Where D is deliberation, R is reaction and CA  is action power set. 

The i-th fuzzy rule seems like: 

If  ( 1iX  is 1xf  and  2iX  is 2xf   … and inX  is xnf ) and if ( 1iC  is 1cf and 2iC  

is 2cf  … and  isC  is csf ) then iA  is aif . 

So the behavior could be written as: RRRBeh ××⊆ ,  ordering on R and could 
be defined as:   

– { }Ciii AARCDXACXBeh ∈∈∈= ,,),,( ,  or  

– 
P

i

RBeh
1=

= 1iX ×  2iX  ×  …× inX × 1iC × 2iC ×…× isC × 1iA × 2iA ×…× ikA . 

The parallel associative inference will fire each fuzzy rule in parallel but to 
different degrees. 

As a traditional defuzzifier approach the max-height method can be used: 

– )(max)(
1

max iA

p

i
A AmAm

CC =
= . 

The defuzzification procedure can be completed with the priority rule or the 
subsumption theory developed by Brooks [1]. Therefore we get the inhibition relation 
in the hierarchy as follow:  

∈),( jiji AAifAA , and we read it:  

jiji AthanhierarchieinlowerisAorAinhibitsA . 

2.2    Example 

As an example (modified from [7] and [8]):  
Suppose the objective is to collect samples in an indoor environment of a 

particular type in a predefined place. The location of the samples is not known. A 
number of autonomous swarm agents are for this problem available which can go 
around and collect the samples. Furthermore the terrain is full of obstacles. This 
organized team of robots can in turn negotiate and cooperate together and divide up 
the task collaborating with a common coordinator and the individuals have 
autonomous decisions and navigations.  

In this problem we face with a mix of path and deliberation/reaction planning and 
we need a path planning algorithm (for further detail see next section) as well, which 
sufficiently represents the terrain. 

We could extract some fuzzy deliberation/reaction rules considering agents 
specific criteria and agents cooperation, for example: 

– Deliberation (if there are more samples in one direction, Move-to-that-direction) 
and Reaction (if near a sample and obstacles or other agents are far, Speed-up-
towards-the-sample). 
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– Deliberation (if the obstacle is far, Choose-the-up-gradient-direction-toward-the-
sample, Move-to-sample) and Reaction (if the obstacle is very close, Change-the-
direction). 

– Deliberation (if your partner is closer than you to a sample and there are fewer                 
obstacles in his way, Communicate-with-your-partner and Let-him-to-pick-it-up). 

– Deliberation (if another agent near you has more frustration, Go-in-his-direction 
and Pick-up-the-sample). 

– Deliberation (if many other agents in one direction, Choose-another-direction) 
and Social rule (if another agent near you Wait or Turn-to-the-left). 

And so on. 
We can interpret for all of the linguistic notions mentioned above, which can not 

be exactly described, such as: more, near, far, close, few,… the corresponding fuzzy 
sets and with defining the degree of indeterminacy articulate numerical data structure 
for partial occurrence of events or relations and have a quantitative interpretation 
from probability and randomness. 

Finally pure reactive rules such as: Avoid-obstacle, finding a sample Take-it and 
carrying samples and at the base Drops-the-samples have the most priority and 
complete the decision procedure with inhibition characteristics.  

3   FHDRP Control Architecture of the Agents  

The design-base is appropriate for real time execution and the state hierarchy 
develops a layered intelligent structure, whereby each layer could be interpreted as 
software agent or function in order to develop logic based concepts of robots and 
assure a modular construction for replaning and adapting the configuration. 

The control strategy suggested and the proactive behavior could be based on 
supervisory control on agent level. Coordinated decision must be suitable for 
application specific behavior on user level program embedded in the controller at run 
time. Application specific information, control algorithm and planning strategy 
specify the agent code. We should define the optimal in favor of our data base, rule 
base and changes that will occur in the environment. 

The approach (fig. 1) is based on SENSE then PLAN ACT, whereby the sensed 
information goes through planning layer and by means of directives translates to 
actuator commands on a hierarchical paradigm. One of the inputs to the systems will 
be sequences of environment states or percepts through which the control rules will 
extract some deliberative/reactive behaviors. Action rules translate to the effectors via 
corresponding sensor system through pattern of motor schema action. The developed 
concept is applicable to both local and cooperative planning.  

The fuzzy approach develops the social ability and satisfies the abilities due to 
uncertainty in the world model and provide a balance between goal directing and 
reactivity and interactions between the agents in order to coordinate and control them, 
using Quantitative numerical and qualitative knowledge. Fuzzy rules consider 
attention, reasoning, and information collection. We need real time processor to 
proceed with fuzzy reasoning about the global state to select the best behavior.   

The behavioral manager plans which behavior to use in order to progress to the 
goal and there are assumptions mappings from global data structure (sensory inputs) 
to behavior generation. 
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Behaviors are inherently parallel and distributed and the goal directed approach is 
a sequence of generic behavior and updating the behavior. 

Sequencer as in the general hybrid architecture generates the set of behaviors, 
adapts it with managerial style and subdivides the deliberation based on the control 
scope and enables the system to develop a behavior based control for coordinating 
planful activities with real time behavior for dynamic positioning, navigation 
(behavior based opportunity to change direction of navigation) and considering the 
goals, resources and timing constraints. 
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Fig. 1. FHDR Control architecture of agents 

Cartographer is responsible for information collection (data structure) and path 
planning. Physical location of agents and the coordinated control program will be part 
of global knowledge and shared data structure. To find the optimal path in the 
configuration space, event noticeable by reactive system would trigger event-driven 
replaning. 

Path generation algorithm will generate a pre completed path with a hill climbing 
algorithm to reach to the target position, where the target position is given by the 
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strategy system and behavioral controlling of the moving direction of the agent is 
based on the direction of the target point and agent actual coordinates [6].  

If an obstacle blocks the path, the path is replaned and optimized by computing 
the optimal route and decomposing it into waypoints [5], a goal to reach. After 
reaching each waypoint next goal is computed and cartographer gives the sequencer a 
set of waypoints to make a qualitative navigation possible. 

Solutions to the problems such as interference, member unproductive or failed, 
agents interactions and communications, individuality and autonomy, emergent 
behavior and heterogeneity could be in collaborating with the coordinator. 
Coordinator defines new goals and sets the strategical plans, which lead to tactical 
instructions and coordinate the relationship between strategy and agents set of tactical 
behavior through social rules. Coordinator can modify the relationship between the 
behaviors of agents: one strategy and several tactics.  

4   Future Directions 

For a later work we could enhance the agents architecture with learning-base 
distributed AI systems such as neural networks to learn from experiences and new 
data and be able to improve the agents behavior. The learning system should develop 
the ability of on-line learning in time critical environment using qualitative 
abstraction, symbolic learning algorithm and rules generation and challenge the 
autonomous learning of sequential behavior and gain some skills to carry out the plan 
for more robustness and performance monitoring. We could also investigate on 
stability, redundancy and complementary of the system. 
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1 Introduction

Knowledge acquisition and sharing are arguably the most critical activities of
communicating agents. We report about our on-going project featuring knowl-
edge acquisition and sharing among communicating agents embedded in a net-
work [7, 8]. The applications we target range from hardware robots to virtual
entities such as internet agents. Agent experiments can be simulated using a
convenient simulation language. We analyzed the complexity of communicating
agent simulations using Java and Easel [2]. Scenarios we have studied (see also
our previous work [6]) are listed below. The communication among agents can
range from declarative queries to sub-natural language queries.

– A set of agents monitoring an object are asked to build activity profiles based
on exchanging elementary observations.

– A set of car drivers form a line, where every car is following its predecessor.
An unsafe distance can create a strong wave in the line. Individual agents
are asked to incorporate and apply directions how to avoid the wave.

– A set of micro-air vehicles form a grid and are asked to propagate information
and concepts to a central server.

2 Knowledge Acquisition and Communication

For given knowledge representation language and agent communication language
we follow several principles:

– The agent network is a graph that has short search paths [9], [1].
– The individual agent is a graph that has short search paths.
– All graphs can dynamically change, communities can be formed and com-

municate.
– The agent understanding substantially depends on the semantic information.

M.G. Hinchey et al. (Eds.): FAABS 2004, LNAI 3228, pp. 287–289, 2005.
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For the knowledge acquisition of agents we use an algorithm that is based on
the approach developed by J. Siskind [4]. In short, agents receive a sequence of
utterances, each to be paired with a set of conceptual expressions. Conceptual
expressions are assumed to be provided by e.g. the agent’s cognitive system,
and consist of conceptual symbols. The basic problem is to map words onto
conceptual symbols. The thesis is that the natural language based knowledge
representation is effective in representing the agent world.

3 Simulation Language Complexity

For knowledge processing as well as for other important agent-related tasks we
have studied Easel property-based types (PBT) paradigm [2]. A type is a de-
scription of some class of objects, while a description is a set of properties.
PBTs are intended to provide a foundation for automated systems that solve
problems in ways analogous to those of humans. We further developed our ini-
tial comparison of Easel and Java presented in [6]. Java can be extended us-
ing special classes, such as Actor that is similar to an Easel actor type, which
enables lower complexity of programming simulations, such as in a Jade [3]
agent development environment. However, PBTs are not native structures in
Java.

4 Conclusion

The presented knowledge acquisition method is promising for the next step of
our project that deals with entities equipped with sensors. We have studied sev-
eral examples of emergent agent systems and described knowledge acquisition
and communication and the complexity of the implementation. The complex-
ity of simulation using a specialized language such as Easel is lower compared
with a general purpose language such as Java. The drawback of using a new
language is the cost of mastering a special purpose language and its syntax
rules.
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