

Lecture Notes in Computer Science 3376
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alfred Menezes (Ed.)

Topics in Cryptology –
CT-RSA 2005

The Cryptographers’ Track at the RSA Conference 2005
San Francisco, CA, USA, February 14-18, 2005
Proceedings

13

Volume Editor

Alfred Menezes
University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario, N2L 3G1, Canada
E-mail: ajmeneze@uwaterloo.ca

Library of Congress Control Number: 2004117506

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4.4, F.2.1-2, C.2, J.1

ISSN 0302-9743
ISBN 3-540-24399-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11377726 06/3142 5 4 3 2 1 0

Preface

The RSA Conference is attended by over 10,000 security professionals each year.
The Cryptographers’ Track (CT-RSA), one of several parallel tracks at the con-
ference, provides an excellent opportunity for cryptographers to showcase their
research to a wide audience. CT-RSA 2005 was the fifth year of the Cryptogra-
phers’ Track.

The selection process for the CT-RSA program is the same as for other
cryptography research conferences. This year, the program committee selected
23 papers from 74 submissions (two of which were later withdrawn) that covered
all aspects of cryptography. The program also included two invited talks by
Cynthia Dwork and Moti Yung. These proceedings contain the revised versions
of the selected papers. The revisions were not checked, and so the authors (and
not the committee) bear full responsibility for the contents of their papers.

I am very grateful to the program committee for their very conscientious
efforts to review each paper fairly and thoroughly. The initial review stage was
followed by a tremendous amount of discussion which contributed to our high
confidence in our judgements. Thanks also to the many external reviewers whose
names are listed in the following pages. My apologies to those whose names were
inadvertently omitted from this list.

Thanks to Eddie Ng for maintaining the submission server and the Web
review system. The submission software was written by Chanathip Namprempre,
and the Web review software by Wim Moreau and Joris Claessens. Thanks to
Alfred Hofmann and his colleagues at Springer for the timely production of these
proceedings. Finally, it is my pleasure to acknowledge Ari Juels and Mike Szydlo
of RSA Laboratories for their assistance and cooperation during the past seven
months.

October 2004 Alfred Menezes

RSA Cryptographers’ Track 2005
February 14–18, 2005, San Francisco, CA, USA

The RSA Conference 2005 was organized by RSA Security Inc. and its partner
organizations around the world. The Cryptographers’ Track was organized by
RSA Laboratories.

Program Chair

Alfred Menezes, University of Waterloo, Canada

Program Committee

Masayuki Abe .NTT Laboratories, Japan
Paulo Barreto . Scopus Tecnologia, Brazil
Alex Biryukov . K.U.Leuven, Belgium
John-Sebastien Coron . Gemplus, France
Steven Galbraith Royal Holloway, University of London, UK
Amir Herzberg . Bar-Ilan University, Israel
Yuval Ishai .Technion, Israel
Stanislaw Jarecki . UC Irvine, USA
Lars Knudsen . Technical University of Denmark
Kaoru Kurosawa . Ibaraki University, Japan
Tanja Lange . Ruhr-Universität, Bochum, Germany
Helger Lipmaa .Helsinki University of Technology, Finland
Philip MacKenzie . DoCoMo, USA
Tal Malkin . Columbia University, USA
Wenbo Mao . HP Laboratories, UK
Ilya Mironov . Microsoft Research, USA
Josef Pieprzyk .Macquarie University, Australia
Palash Sarkar . Indian Statistical Institute, India
Jessica Staddon . Palo Alto Research Center, USA
Rene Struik .Certicom, Canada
Michael Szydlo .RSA Laboratories, USA
Tsuyoshi Takagi . TU Darmstadt, Germany

Steering Committee

Marc Joye .Gemplus, France
Tatsuaki Okamoto . NTT, Japan
Bart Preneel .K.U.Leuven, Belgium
Ron Rivest . MIT, USA
Moti Yung .Columbia University, USA

VIII Organization

External Reviewers

Toru Akishita David Hwang Yasuhiro Ohtaki
Alexandr Andoni Kouichi Itoh Akira Otsuka
Roberto Avanzi Tetsu Iwata Pascal Paillier
Sara Bitan Antoine Joux Zulfikar Ramzan
Alexandra Boldyreva Masanobu Katagi Leo Reyzin
Reinier Bröker Jonathan Katz Matt Robshaw
Daniel Brown Jeff King Markku-Juhani Saarinen
Bertrand Byramjee Lea Kissner Taiichi Saito
Christophe De Canniere Yuichi Komano Akashi Satoh
Dario Catalano Hugo Krawczyk Kai Schramm
Liqun Chen Caroline Kudla Daniel Schepers
Joe Cho Joseph Lano Igor Shparlinski
Carlos Cid Kerstin Lemke Nigel Smart
Mathieu Ciet John Linn Angelos Stavrou
Scott Contini Anna Lysyanskaya Ron Steinfeld
Claus Diem Dahlia Malkhi Makoto Sugita
Yevgeniy Dodis Daniele Micciancio Matti Tommiska
Eiichiro Fujisaki Anton Mityagin Eran Tromer
Juan Garay Atsuko Miyaji Huaxiong Wang
Craig Gentry David Molnar Michael Wiener
Philippe Golle Michael Mueller Kai Wirt
Shai Halevi Jorge Nakahara Christopher Wolf
Darrel Hankerson Wakaha Ogata Shoko Yonezawa
Heng Swee Huay Kazuo Ohata Yunlei Zhao

Table of Contents

Invited Talks

Sub-linear Queries Statistical Databases: Privacy with Power 1
Cynthia Dwork

Malicious Cryptography: Kleptographic Aspects . 7
Adam Young and Moti Yung

Cryptanalysis

Resistance of SNOW 2.0 Against Algebraic Attacks . 19
Olivier Billet and Henri Gilbert

A Study of the Security of Unbalanced Oil
and Vinegar Signature Schemes . 29

An Braeken, Christopher Wolf, and Bart Preneel

Hold Your Sessions: An Attack on Java Session-Id Generation 44
Zvi Gutterman and Dahlia Malkhi

Update on SHA-1 . 58
Vincent Rijmen and Elisabeth Oswald

A Fast Correlation Attack on the Shrinking Generator 72
Bin Zhang, Hongjun Wu, Dengguo Feng, and Feng Bao

Public-Key Encryption

Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption . 87

Dan Boneh and Jonathan Katz

A Generic Conversion with Optimal Redundancy . 104
Yang Cui, Kazukuni Kobara, and Hideki Imai

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 118
Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

Signature Schemes

Foundations of Group Signatures: The Case of Dynamic Groups 136
Mihir Bellare, Haixia Shi, and Chong Zhang

Time-Selective Convertible Undeniable Signatures . 154
Fabien Laguillaumie and Damien Vergnaud

X Table of Contents

Design Principles

On Tolerant Cryptographic Constructions . 172
Amir Herzberg

Password-Based Protocols

Simple Password-Based Encrypted Key Exchange Protocols 191
Michel Abdalla and David Pointcheval

Hard Bits of the Discrete Log with Applications
to Password Authentication . 209

Philip Mackenzie and Sarvar Patel

Proofs for Two-Server Password Authentication . 227
Michael Szydlo and Burton Kaliski

Design and Analysis of Password-Based Key Derivation Functions 245
Frances F. Yao and Yiqun Lisa Yin

Pairings

A New Two-Party Identity-Based Authenticated Key Agreement 262
Noel McCullagh and Paulo S.L.M. Barreto

Accumulators from Bilinear Pairings and Applications 275
Lan Nguyen

Computing the Tate Pairing . 293
Michael Scott

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings . . 305
Tsz Hon Yuen and Victor K. Wei

Efficient and Secure Implementation

A Systematic Evaluation of Compact Hardware Implementations
for the Rijndael S-Box . 323

Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 334
Debra L. Cook, John Ioannidis, Angelos D. Keromytis, and Jake Luck

Side-Channel Leakage of Masked CMOS Gates . 351
Stefan Mangard, Thomas Popp, and Berndt M. Gammel

New Minimal Weight Representations for Left-to-Right Window Methods . 366
James A. Muir and Douglas R. Stinson

Author Index . 385

Sub-linear Queries Statistical Databases:
Privacy with Power

Cynthia Dwork

Microsoft Research
dwork@microsoft.com

Abstract. We consider a statistical database in which a trusted ad-
ministrator introduces noise to the query responses with the goal of
maintaining privacy of individual database entries. In such a database,
a query consists of a pair (S, f) where S is a set of rows in the database
and f is a function mapping database rows to {0, 1}. The true response
is
∑

r∈S
f(DBr), a noisy version of which is released. Results in [3, 4]

show that a strong form of privacy can be maintained using a surprisingly
small amount of noise, provided the total number of queries is sublin-
ear in the number n of database rows. We call this a sub-linear queries
(SuLQ) database. The assumption of sublinearity becomes reasonable as
databases grow increasingly large.
The SuLQ primitive – query and noisy reply – gives rise to a calculus of
noisy computation. After reviewing some results of [4] on multi-attribute
SuLQ, we illustrate the power of the SuLQ primitive with three exam-
ples [2]: principal component analysis, k means clustering, and learning
in the statistical queries learning model.

1 Introduction

Consider a statistical database in which a trusted administrator introduces
noise to the query responses with the goal of maintaining privacy of individ-
ual database entries. For concreteness, let the database consist of some number
n of rows DB1, . . . , DBn, where each row is a d-tuple of Boolean values. A
query consists of a pair (S, f) where S ⊆ [n] is a set of rows in the database
and f : {0, 1}d → {0, 1} is a function mapping database rows to {0, 1}. The
true response to the query is

∑
r∈S f(DBr), a noisy version of which is released.

That is, the administrator algorithm chooses a random quantity in some range
and releases the sum of the true response and the random quantity.

Such databases were studied extensively in the early 1980’s (see [1] for an
excellent survey of results on these and other techniques for statistical disclosure
control), with mixed results. However, results in [3, 4] show that a strong form of
privacy can be maintained using a surprisingly small amount of noise – a random
quantity whose standard deviation is of order o(

√
n) – provided the total number

of queries is sublinear in the number n of database rows.
This is significant for the following reason. If we think of each row as a sample

from some underlying probability distribution and we wish to gather statistics

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 1–6, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Cynthia Dwork

on a properties P that occur with possibly small but still constant probability
in the population, then the sampling error in our population of size n will be of
order Ω(

√
n). Thus, the noise that is added for the sake of protecting privacy is

significantly smaller than the sampling error. In other words, providing privacy
need not interfere with accuracy, so long as the number of statistical queries is
not too large. The assumption of sublinearity is reasonable as databases grow
increasingly large.

The basic SuLQ primitive – noisy sums of arbitrary Boolean functions applied
to each row in a set S ⊆ [n] of rows – is powerful: statistics for any d-ary predicate
can be very accurately obtained simply by querying the database. It is natural
to ask, “Which more complex computations can be expressed using few (in n)
SuLQ queries?” We have found this class to be quite rich.

Here, we review the results of [4] on multi-attribute SuLQ databases (Sec-
tion 3) and then give three examples of the power of the SuLQ primitive (Sec-
tion 4): principal component analysis, k means clustering, and learning in the
statistical queries learning model. The treatment here is informal and without
proofs. Rigorous treatment of these and other, related, results, is given in [4, 2].

2 Definitions

We model a database as an n × d binary matrix DB = {DBi,j}. Intuitively,
the columns in DB correspond to Boolean attributes α1, . . . , αd, and the rows
in DB correspond to individuals, where DBi,j = 1 iff attribute αj holds for
individual i.

Let D be a distribution on {0, 1}d. We say that a database DB = {DBi,j}
is chosen according to distribution D if every row in DB is chosen according to
D, independently of the other rows (in other words, DB is chosen according to
Dn). To capture partial information that the adversary may have obtained about
individuals prior to interacting with the database, this requirement is relaxed in
the privacy analysis, allowing each row i to be chosen from a (possibly) different
distribution Di. In that case we say that the database is chosen according to
D1 × · · · × Dn.

For a Boolean function f : {0, 1}d → {0, 1} we let pi,f
0 be the a priori

probability that f(DBi,1, . . . , DBi,d) = 1 and pi,f
T be the a posteriori probability

that f(DBi,1, . . . , DBi,d) = 1, given the answers to T queries, as well as all the
values in all the rows of DB other than i: DBi′ for all i′ �= i.

We define the monotonically-increasing 1-1 mapping conf : (0, 1) → IR as
follows:

conf(p) = log
p

1 − p
.

Note that a small additive change in conf implies a small additive change in p 1.

1 The converse does not hold: conf grows logarithmically in p for p ≈ 0 and logarith-
mically in 1/(1 − p) for p ≈ 1.

Sub-linear Queries Statistical Databases: Privacy with Power 3

Let confi,f
0 = log pi,f

0

1−pi,f
0

and confi,fT = log pi,f
T

1−pi,f
T

. We write our privacy re-

quirements in terms of the random variables Δconfi,f defined as2:

Δconfi,f = |confi,f
T − confi,f

0 |.

Definition 1 ((δ, T)-Privacy). A database access mechanism is (δ, T)-private
if for every distribution D on {0, 1}d, for every row index i, for every function
f : {0, 1}d → {0, 1}, and for every adversary A making at most T queries

Pr[Δconfi,f > δ] ≤ neg(n),

where neg(n) grows more slowly than the inverse of any polynomial in n. The
probability is taken over the choice of each row in DB according to D, and the
randomness of the adversary as well as the database access mechanism.

The definition of (δ, T)-privacy speaks of the probability that any single func-
tion experiences a change in confidence. The next definitions speak about sets
of functions that together experience little change in confidence.

A target set F is a set of d-ary Boolean functions (one can think of the
functions in F as being selected by an adversary; they represent information
the adversary may wish to learn about someone). A target set F is δ-safe if
Δconfi,f ≤ δ for all i ∈ [n] and f ∈ F . Let F be a target set of size polynomial
in n. Definition 1 implies that under a (δ, T)-private database mechanism, F is
δ-safe with probability 1− neg(n).

Claim. [4] Consider a (δ, T)-private database with d = O(log n) attributes. Let
F be the target set containing all the 22d

Boolean functions over the d attributes.
Then, Pr[F is 2δ-safe] = 1 − neg(n).

3 Multi-attribute SuLQ Databases

The multi-attribute SuLQ database of [4] is easy to describe. Let T = T (n) =
O(nc), c < 1, and define R =

(
T (n)/δ2

)
· logμ n for some μ > 0 (taking μ = 6

will work).

SuLQ Database Algorithm A
Input: a query (S, g).

1. Let aS,g =
∑

i∈S g(DBi).
2. Generate a perturbation value: Let (e1, . . . , eR) ∈R {0, 1}R and

E ←
∑R

i=1 ei −R/2.
3. Return ãS,g = aS,g + E .

2 Our choice of defining privacy in terms of Δconfi,f is somewhat arbitrary, one could
rewrite our definitions (and analysis) in terms of the a priori and a posteriori proba-
bilities. Note however that limiting Δconfi,f in Definition 1 is a stronger requirement
than just limiting |pi,f

T − pi,f
0 |.

4 Cynthia Dwork

Note that E is a binomial random variable with E[E] = 0 and standard
deviation

√
R. The analysis ignores the case where E largely deviates from zero,

as the probability of such an event is extremely small: Pr[|E| >
√
R log2 n] =

neg(n). In particular, this implies that the SuLQ database algorithm A is within
Õ(
√
T (n)) perturbation, meaning that for every query (S, f)

Pr[|A(S, f) − aS,f | ≤ E] = 1 − neg(n).

The probability is taken over the randomness of the database algorithm A.
Theorem 1. [4] Let T (n) = O(nc) and δ = 1/O(nc′) for 0 < c < 1 and 0 ≤
c′ < c/2. Then the SuLQ algorithm A is (δ, T (n))-private within Õ(

√
T (n)/δ)

perturbation.
Note that whenever

√
T (n)/δ <

√
n, restricting the adversary to T (n) queries

allows privacy with perturbation magnitude less than
√
n.

Let i ∈ [n] and f : {0, 1}d → {0, 1}. The proof analyzes the a posteriori prob-
ability p� that f(DBi) = 1 given the answers to the first � queries (ã1, . . . , ã�)
and DB{−i} (where DB{−i} denotes the entire database except for the ith row).
Let conf� = log2 p�/(1−p�). Note that confT = confi,fT , and (due to the indepen-
dence of rows in DB) conf0 = confi,f

0 . Following [3], a random walk on the real
line is defined, with step� = conf� − conf�−1. The proof argues that (with high
probability) T (n) steps of the random walk do not suffice to reach distance δ.

4 Computation with the SuLQ Primitive

The basic SuLQ operation – query and noisy reply – can be viewed as a noisy
computational primitive which may be used to compute other functions of the
database than statistical queries. In this section we describe three examples of
the power of the primitive. In this setting, the inputs are reals drawn from the
unit d-dimensional cube, and the noise is distributed according to a normal
variable N(0, R), where R = R(n) is roughly of order T (n) logn logT (n). The
privacy analysis in the proof of Theorem 1 must be extended accordingly. A
rigorous treatment of this work appears in [2].

4.1 Principal Component Analysis

Principal component analysis [6] is an extremely valuable tool in the (frequent)
case in which high-dimensional data lies primarily in a low-dimensional subspace.

The input consists of n points in Ud (the d-dimensional cube of side length 1)
and an integer k ≤ d. The output will be the k largest eigenvalues of the d × d
covariance matrix (defined below), and their corresponding eigenvectors.

For 1 ≤ i ≤ d, we let μi = Er∈[n][pr(i)],where pr(i) denotes the ith coordinate
of the input point described by row r. We let the d× d covariance matrix C be
defined by C = {cij}, where

cij = Er∈[n][pr(i)pr(j)] − μiμj .

PCA is known to be remarkably stable under random noise – so much so,
that it is often used with the express intention of removing noise.

Sub-linear Queries Statistical Databases: Privacy with Power 5

SuLQ Computation of PCA

1. (d queries) For 0 ≤ i ≤ d, let mi = SuLQ(F (x) := x(i))/n. By this we
mean that F (x) selects the ith coordinate of each row, so the query sums all
the ith coordinates (getting a noisy version of this sum), and the algorithm
divides this noisy sum by n. This gives an approximation to μi in the pure
PCA algorithm described above.

2. (Roughly d2/2 queries) Let cij = SuLQ(F (x) = x(i)x(j))/n−mimj . That is,
we first obtain a noisy average of the product of the ith and jth coordinates,
and then subtract the product of the estimates of μi and μj .

Given (an approximation to) the covariance matrix C, the k largest eigenval-
ues and corresponding eigenvectors can be computed directly, without further
queries.

We remark that, using the techniques of [4] for vertically partitioned data-
bases, this computation can be carried out even if each column of the database
is stored in a separate, independent, SuLQ database.

4.2 k Means

An instance of the k means computation is a set of n points in Ud, together
with some number k of initial candidate “means” in Ud. The output will consist
of k points in Ud (the “means”), together with the fraction of points in the
database associated with each mean. We next describe the basic step of the k
means algorithm.

Basic Step of k Means Algorithm

1. (k queries): For each mean mi, 1 ≤ i ≤ k, count the number of points closer
to this mean than to every other mean. This yields cluster sizes. This is
approximated via the queries, for 1 ≤ i ≤ k,

Sizei = SuLQ(F (x) := 1 if mi is the closest mean to x, and 0 otherwise).

2. (kd queries): for each mean mi, 1 ≤ i ≤ k, and coordinate j, 1 ≤ j ≤ d,
compute the sum, over all points in the cluster associated with mi, of the
value of the jth coordinate. Divide by the size of the cluster.
(a) Sumij = SuLQ(F (x) := x(j) if mi is the closest center to x, and 0

otherwise).
(b) mij = Sumij/Sizei

The basic step is iterated until some maximum number of queries have been
issued. (In practice, this usually converges after a small number of basic steps.)
If any cluster size is below a threshhold (say,

√
T (n)), then output an exception.

For clusters that are of size Ω(n), one step of the (pure) k means computation
differs from one step of the SuLQ-based k means computation by a quantity that
is roughly Gaussian with mean zero and variance Õ(

√
R/n).

6 Cynthia Dwork

4.3 Capturing the Statistical Queries Learning Model

The Statistical Queries Learning model was proposed by Kearns [5]. In this model
the goal is to learn a concept c : {0, 1}d → {0, 1}. There is a distribution D on
strings in {0, 1}d, and the learning algorithm has access to an oracle, statc,D,
described next.

On query (f, τ), where f = f(x, �) is any boolean function over inputs x ∈ D
and label � ∈ {0, 1}, and τ = 1/poly(d) is an error tolerance, the oracle replies
with a noisy estimate of the probability that f(x, c(x)) = 1 for a randomly
selected element from D; the answer is guaranteed to be correct within additive
tolerance τ . Many (but not all, see [5]) concept classes that are PAC learnable
can also be learned in the statistical queries learning model.

To fit the statistical queries learning model into our setting, we require that
one of the attributes be the value of c applied to the other data in the row, so that
a typical row looks like DBr = (x, c(x)). By definition, on input (f, S) the SuLQ
database responds with a noisy version of

∑
r∈S f(DBr). Taking S = [n], we have

that so long as the noise added by the SuLQ database is within the tolerance τ ,
the response (divided by n) is a “valid” response of the statc,D oracle. In other
words, to simulate the query statc,D(f, τ) we compute SuLQ(F (x) := f(x))/n a
total of Õ(R/τ2n2) times and return the average of these values.

With high probability the answer obtained will be within tolerance τ . Also,
recall that τ = 1/poly(d); if d = no(1) then repetition is not necessary.

References

1. N.R. Adam and J. C. Wortmann, Security-Control Methods for Statistical
Databases: A Comparative Study, ACM Computing Surveys 21(4), pp. 515–556,
1989.

2. A. Blum, C. Dwork, F. McSherry, and K. Nissim, On the Power of SuLQ Databases,
manuscript in preparation, 2004.

3. I. Dinur and K. Nissim, Revealing information while preserving privacy, Proceedings
of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 202-210, 2003.

4. C. Dwork and N. Nissim, Privacy-Preserving Datamining on Vertically Partitioned
Databases, Proceedings of CRYPTO 2004

5. M. Kearns, Efficient Noise-Tolerant Learning from Statistical Queries, JACM 45(6),
pp. 983–1006, 1998. See also Proc. 25th ACM STOC, pp. 392–401, 1993

6. M. J. O’Connel, Search Program for Significant Variables, Comp. Phys. Comm. 8,
1974.

Malicious Cryptography: Kleptographic Aspects

Adam Young1 and Moti Yung2

1 Cigital Labs
ayoung@cigital.com

2 Dept. of Computer Science, Columbia University
moti@cs.columbia.edu

Abstract. In the last few years we have concentrated our research ef-
forts on new threats to the computing infrastructure that are the result of
combining malicious software (malware) technology with modern cryp-
tography. At some point during our investigation we ended up asking
ourselves the following question: what if the malware (i.e., Trojan horse)
resides within a cryptographic system itself? This led us to realize that
in certain scenarios of black box cryptography (namely, when the code is
inaccessible to scrutiny as in the case of tamper proof cryptosystems or
when no one cares enough to scrutinize the code) there are attacks that
employ cryptography itself against cryptographic systems in such a way
that the attack possesses unique properties (i.e., special advantages that
attackers have such as granting the attacker exclusive access to crucial
information where the exclusive access privelege holds even if the Trojan
is reverse-engineered). We called the art of designing this set of attacks
“kleptography.” In this paper we demonstrate the power of kleptography
by illustrating a carefully designed attack against RSA key generation.

Keywords: RSA, Rabin, public key cryptography, SETUP, kleptogra-
phy, random oracle, security threats, attacks, malicious cryptography.

1 Introduction

Robust backdoor attacks against cryptosystems have received the attention of
the cryptographic research community, but to this day have not influenced in-
dustry standards and as a result the industry is not as prepared for them as it
could be. As more governments and corporations deploy public key cryptosys-
tems their susceptibility to backdoor attacks grows due to the pervasiveness of
the technology as well as the potential payoff for carrying out such an attack.

In this work we discuss what we call kleptographic attacks, which are attacks
on black box cryptography. One may assume that this applies only to tamper
proof devices. However, it is rarely that code (even when made available) is
scrutinized. For example, Nguyen in Eurocrypt 2004 analyzed an open source
digital signature scheme. He demonstrated a very significant implementation
error, whereby obtaining a single signature one can recover the key [3].

In this paper we present a revised (more general) definition of an attack based
on embedding the attacker’s public key inside someone else’s implementation of a

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 7–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 Adam Young and Moti Yung

public-key cryptosystem. This will grant the attacker an exclusive advantage that
enables the subversion of the user’s cryptosystem. This type of attack employs
cryptography against another cryptosystem’s implementation and we call this
kleptography. We demonstrate a kleptographic attcak on the RSA key generation
algorithm and survey how to prove that the attack works.

What is interesting is that the attacker employs modern cryptographic tools
in the attack, and the attack works due to modern tools developed in what some
call the “provable security” sub-field of modern cryptographic research. From
the perspective of research methodologies, what we try to encourage by our
example is for cryptographers and other security professionals to devote some of
their time to researching new attack scenarios and possibilities. We have devoted
some of our time to investigate the feasibility of attacks that we call “malicious
cryptography” (see [6]) and kleptographic attacks were discovered as part of our
general effort in investigating the merger of strong cryptographic methods with
malware technology.

2 SETUP Attacks

A number of backdoor attacks against RSA [5] key generation (and Rabin [4])
have been presented that exploit secretly embedded trapdoors [7–9]. Also, at-
tacks have been presented that emphasize speed [1]. This latter attack is intended
to work even when Lenstra’s composite generation method is used [2] whereas
the former three will not. However, all of these backdoor attacks fail when half
of the bits of the composite are chosen pseudorandomly using a seed [7] (this
drives the need for improved public key standards, and forms a major moti-
vation for the present work). It should be noted that [1] does not constitute
a SETUP attack since it assumes that a secret key remains hidden even after
reverse-engineering.

We adapt the notion of a strong SETUP [8] to two games. For clarity this
definition is tailored after RSA key generation (as opposed to being more gen-
eral). The threat model involves three parties: the designer, the eavesdropper,
and the inquirer.

The designer is a malicious attacker and builds the SETUP attack into some
subset of all of the black-box key generation devices that are deployed. The goal
of the designer is to learn the RSA private key of a user who generates a key
pair using a device contained in this subset when the designer only has access
to the RSA public keys. Before the games start, the eavesdropper and inquirer
are given access to the SETUP algorithm in its entirety1. However, in the games
they play they are not given access to the internals of the particular devices that
are used (they cannot reverse-engineer them).

Assumptions: The eavesdropper and inquirer are assumed to be probabilistic
poly-time algorithms. It is assumed that the RSA key generation algorithm is
deployed in tamper-proof black-box devices. It is traditional to supply an RSA
1 e.g., found in practice via the costly process of reverse-engineering one of the devices.

Malicious Cryptography: Kleptographic Aspects 9

key generation algorithm with 1k where k is the security parameter. This tells
the generator what security parameter is to be used and assures that running
times can be derived based on the size of the input. For simplicity we assume
that the generator takes no input and that the security parameter is fixed. It is
straightforward to relax this assumption.

Let D be a device that contains the SETUP attack.

Game 1: The inquirer is given oracle access to two devices A and B. So, the
inquirer obtains RSA key pairs from the devices. With 50% probability A has a
SETUP attack in it. A has a SETUP attack in it iff B does not. The inquirer wins
if he determines whether or not A has the SETUP attack in it with probability
significantly greater than 1/2.

Property 1: (indistinguishability) The inquirer fails Game 2 with overwhelming
probability.

Game 2: The eavesdropper may query D but is only given the public keys that
result, not the corresponding private keys. He wins if he can learn one of the
corresponding private keys.

Property 2: (confidentiality) The eavesdropper fails Game 1 with overwhelm-
ing probability.

Property 3: (completeness) Let (y, x) be a public/private key generated using
D. With overwhelming probability the designer computes x on input y.

In a SETUP attack, the designer uses his or her own private key in conjunction
with y to recover x. In practice the designer may learn y by obtaining it from a
Certificate Authority.

Property 4: (uniformity) The SETUP attack is the same in every black-box
cryptographic device.

When property 4 holds it need not be the case that each device have a unique
identifier ID. This is important in a binary distribution in which all of the in-
stances of the “device” will necessarily be identical. In hardware implementations
it would simplify the manufacturing process.

Definition 1. If a backdoor RSA key generation algorithm satisfies properties
1, 2, 3, and 4 then it is a strong SETUP.

3 SETUP Attack Against RSA Key Generation

The notion of a SETUP attack was presented at Crypto ’96 [7] and was later
improved slightly [8]. To illustrate the notion of a SETUP attack, a particular
attack on RSA key generation was presented. The SETUP attack on RSA keys
from Crypto ’96 generates the primes p and q from a skewed distribution. This

10 Adam Young and Moti Yung

skewed distribution was later corrected while allowing e to remain fixed2 [9]. A
backdoor attack on RSA was also presented by Crépeau and Slakmon [1]. They
showed that if the device is free to choose the RSA exponent e (which is often
not the case in practice), the primes p and q of a given size can be generated
uniformly at random in the attack. Crépeau and Slakmon also give an attack
similar to PAP in which e is fixed. Crépeau and Slakmon [1] noted the skewed
distribution in the original SETUP attack as well.

3.1 Notation and Building Blocks

Let L(x/P) denote the Legendre symbol of x with respect to the prime P . Also,
let J(x/N) denote the Jacobi symbol of x with respect to the odd integer N .

The attack on RSA key generation makes use of the probabilistic bias removal
method (PBRM). This algorithm is given below [8].

PBRM(R,S, x):
input: R and S with S > R > S

2 and x contained in {0, 1, 2, ..., R− 1}
output: e contained in {−1, 1} and x′ contained in {0, 1, 2, ..., S − 1}
1. set e = 1 and set x′ = 0
2. choose a bit b randomly
3. if x < S −R and b = 1 then set x′ = x
4. if x < S −R and b = 0 then set x′ = S − 1 − x
5. if x ≥ S −R and b = 1 then set x′ = x
6. if x ≥ S −R and b = 0 then set e = −1
7. output e and x′ and halt

Recall that a random oracle R(·) takes as input a bit string that is finite in
length and returns an infinitely long bit string. Let H(s, i, v) denote a function
that invokes the oracle and returns the v bits of R(s) that start at the ith bit
position, where i ≥ 0. For example, if R(110101) = 01001011110101... then,

H(110101, 0, 3) = 010

and

H(110101, 1, 4) = 1001

and so on.
The following is a subroutine that is assumed to be available.

RandomBitString1():
input: none
output: random W/2-bit string
1. generate a random W/2-bit string str
2. output str and halt

Finally, the algorithm below is regarded as the “honest” key generation al-
gorithm.
2 For example, with e = 216 + 1 as in many fielded cryptosystems.

Malicious Cryptography: Kleptographic Aspects 11

GenPrivatePrimes1():
input: none
output: W/2-bit primes p and q such that p �= q and |pq| = W
1. for j = 0 to ∞ do:
2. p = RandomBitString1() /* at this point p is a random string */
3. if p ≥ 2W/2−1 + 1 and p is prime then break
4. for j = 0 to ∞ do:
5. q = RandomBitString1()
6. if q ≥ 2W/2−1 + 1 and q is prime then break
7. if |pq| < W or p = q then goto step 1
8. if p > q then interchange the values p and q
9. set S = (p, q)
10. output S, zeroize all values in memory, and halt

3.2 The SETUP Attack

When an honest algorithm GenPrivatePrimes1 is implemented in the device,
the device may be regarded as an honest cryptosystem C. The advanced attack
on composite key generation is specified by GenPrivatePrimes2 that is given
below. This algorithm is the infected version of GenPrivatePrimes1 and when
implemented in a device it effectively serves as the device C′ in a SETUP attack.

The algorithm GenPrivatePrimes2 contains the attacker’s public key N
where |N | = W/2 bits, and N = PQ with P and Q being distinct primes. The
primes P and Q are kept private by the attacker. The attacker’s public key is
half the size of p times q, where p and q are the primes that are computed by
the algorithm.

In hardware implementations each device contains a unique W/2-bit identifier
ID. The IDs for the devices are chosen randomly, subject to the constraint that
they all be unique. In binary distributions the value ID can be fixed. Thus,
it will be the same in each copy of the key generation binary. In this case the
security argument applies to all invocations of all copies of the binary as a whole.

The variable i is stored in non-volatile memory and is a counter for the
number of compromised keys that the device created. It starts at i = 0. The
variable j is not stored in non-volatile memory. The attack makes use of the
four constants (e0, e1, e2, e3) that must be computed by the attacker and placed
within the device. These quantities can be chosen randomly, for instance. They
must adhere to the requirements listed in Table 1.

It may appear at first glance that the backdoor attack below is needlessly
complicated. However, the reason for the added complexity becomes clear when
the indistinguishability and confidentiality properties are proven. This algorithm
effectively leaks a Rabin ciphertext in the upper order bits of pq and uses the
Rabin plaintext to derive the prime p using a random oracle.

Note that due to the use of the probabilistic bias removal method, this al-
gorithm is not going to have the same expected running time as the honest
algorithm GenPrivatePrimes1(). The ultimate goal in the attack is to make
it produce outputs that are indistinguishable from the outputs of an honest

12 Adam Young and Moti Yung

Table 1. Constants used in key generation attack.

Constant Properties

e0 e0 ∈ ZZ∗
N and L(e0/P) = +1 and L(e0/Q) = +1

e1 e2 ∈ ZZ∗
N and L(e2/P) = −1 and L(e2/Q) = +1

e2 e1 ∈ ZZ∗
N and L(e1/P) = −1 and L(e1/Q) = −1

e3 e3 ∈ ZZ∗
N and L(e3/P) = +1 and L(e3/Q) = −1

implementation. It is easiest to utilize the Las Vegas key generation algorithm
in which the only possible type of output is (p, q) (i.e., “failure” is not an allow-
able output).

The value Θ is a constant that is used in the attack to place a limit on the
number of keys that are attacked. It is a restriction that simplifies the algorithm
that the attacker uses to recover the private keys of other users.

GenPrivatePrimes2():
input: none
output: W/2-bit primes p and q such that p �= q and |pq| = W
1. if i > Θ then output GenPrivatePrimes1() and halt
2. update i in non-volatile memory to be i = i + 1
3. let I be the |Θ|-bit representation of i
4. for j = 0 to ∞ do:
5. choose x randomly from {0, 1, 2, ..., N − 1}
6. set c0 = x
7. if gcd(x,N) = 1 then
8. choose bit b randomly and choose u randomly from ZZ∗

N

9. if J(x/N) = +1 then set c0 = eb
0e

1−b
2 u2 mod N

10. if J(x/N) = −1 then set c0 = eb
1e

1−b
3 u2 mod N

11. compute (e, c1) = PBRM(N, 2W/2, c0)
12. if e = −1 then continue
13. if u > −u mod N then set u = −u mod N /* for faster decr. */
14. let T0 be the W/2-bit representation of u
15. for k = 0 to ∞ do:
16. compute p = H(T0||ID||I||j, kW

2 , W
2)

17. if p ≥ 2W/2−1 + 1 and p is prime then break
18. if p < 2W/2−1 + 1 or if p is not prime then continue
19. c2 = RandomBitString1()
20. compute n′ = (c1 || c2)
21. solve for the quotient q and the remainder r in n′ = pq + r

22. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
23. if q is not prime then continue
24. if |pq| < W or if p = q then continue
25. if p > q then interchange the values p and q
26. set S = (p, q) and break
27. output S, zeroize everything in memory except i, and halt

Malicious Cryptography: Kleptographic Aspects 13

It is assumed that the user, or the device that contains this algorithm, will
multiply p by q to obtain the public key n = pq. Making n publicly available
is perilous since with overwhelming probability p can easily be recovered by the
attacker. Note that c1 will be displayed verbatim in the upper order bits of
n = n′ − r = pq unless the subtraction of r from n′ causes a borrow bit to be
taken from the W/2 most significant bits of n′. The attacker can always add this
bit back in to recover c1.

Suppose that the attacker, who is either the malicious manufacturer or the
hacker that installed the Trojan horse, obtains the public key n = pq. The
attacker is in a position to recover p using the factors (P,Q) of the Rabin
public key N . The factoring algorithm attempts to compute the two smallest
ambivalent roots of a perfect square modulo N . Let t be a quadratic residue
modulo N . Recall that a0 and a1 are ambivalent square roots of t modulo N
if a2

0 ≡ a2
1 ≡ t mod N , a0 �= a1, and a0 �= −a1 mod N . The values a0 and a1

are the two smallest ambivalent roots if they are ambivalent, a0 < −a0 mod N ,
and a1 < −a1 mod N . The Rabin decryption algorithm can be used to compute
the two smallest ambivalent roots of a perfect square t, that is, the two smallest
ambivalent roots of a Rabin ciphertext.

For each possible combination of ID, i, j, and k the attacker computes the
algorithm FactorTheComposite given below. Since the key generation device
can only be invoked a reasonable number of times, and since there is a reasonable
number of compromised devices in existence, this recovery process is tractable.

FactorTheComposite(n, P,Q, ID, i, j, k):
input: positive integers i, j, k with 1 ≤ i ≤ Θ

distinct primes P and Q
n which is the product of distinct primes p and q
Also, |n| must be even and |p| = |q| = |PQ| = |ID| = |n|/2

output: failure or a non-trivial factor of n
1. compute N = PQ
2. let I be the Θ-bit representation of i
3. W = |n|
4. set U0 equal to the W/2 most significant bits of n
5. compute U1 = U0 + 1
6. if U0 ≥ N then set U0 = 2W/2 − 1 − U0 /* undo the PBRM */
7. if U1 ≥ N then set U1 = 2W/2 − 1 − U1 /* undo the PBRM */
8. for z = 0 to 1 do:
9. if Uz is contained in ZZ∗

N then
10. for � = 0 to 3 do: /* try to find a square root */
11. compute W� = Uze�

−1 mod N
12. if L(W�/P) = +1 and L(W�/Q) = +1 then
13. let a0, a1 be the two smallest ambivalent roots of W�

14. let A0 be the W/2-bit representation of a0

15. let A1 be the W/2-bit representation of a1

16. for b = 0 to 1 do:
17. compute pb = H(Ab||ID||I||j, kW

2 , W
2)

14 Adam Young and Moti Yung

18. if p0 is a non-trivial divisor of n then
19. output p0 and halt
20. if p1 is a non-trivial divisor of n then
21. output p1 and halt
22. output failure and halt

The quantity U0 + 1 is computed since a borrow bit may have been taken
from the lowest order bit of c1 when the public key n = n′ − r is computed.

4 Security of the Attack

In this section we argue the success of the attack and how it holds unique prop-
erties.

The attack is indistinguishable to all adversaries that are polynomially
bounded in computational power3. Let C denote an honest device that imple-
ments the algorithm GenPrivatePrimes1() and let C′ denote a dishonest device
that implements GenPrivatePrimes2(). A key observation is that the primes
p and q that are output by the dishonest device are chosen from the same set
and same probability distribution as the primes p and q that are output by the
honest device. So, it can be shown that p and q in the dishonest device C′ are
chosen from the same set and from the same probability distribution as p and q
in the honest device C4.

In a nutshell confidentiality is proven by showing that if an efficient algorithm
exists that violates the confidentiality property then either W/2-bit composites
PQ can be factored or W -bit composites pq can be factored. This reduction is
not a randomized reduction, yet it goes a long way to show the security of this
attack.

The proof of confidentiality is by contradiction. Suppose for the sake of con-
tradiction that a computationally bounded algorithm A exists that violates the
confidentiality property. For a randomly chosen input, algorithm A will return a
non-trivial factor of n with non-negligible probability. The adversary could thus
use algorithm A to break the confidentiality of the system. Algorithm A factors
n when it feels so inclined, but must do so a non-negligible portion of the time.

It is important to first set the stage for the proof. The adversary that we are
dealing with is trying to break a public key pq where p and q were computed
by the cryptotrojan. Hence, pq was created using a call to the random oracle R.
It is conceivable that an algorithm A that breaks the confidentiality will make
oracle calls as well to break pq. Perhaps A will even make some of the same
oracle calls as the cryptotrojan. However, in the proof we cannot assume this.
All we can assume is that A makes at most a polynomial5 number of calls to the
oracle and we are free to “trap” each one of these calls and take the arguments.
3 Polynomial in W/2, the security parameter of the attacker’s Rabin modulus N .
4 The key to this being true is that n′ is a random W -bit string and so it can have a

leading zero. So, |pq| can be less than W bits, the same as in the operation in the
honest device before p and q are output.

5 Polynomial in W/2.

Malicious Cryptography: Kleptographic Aspects 15

Consider the following algorithm SolveFactoring(N,n) that uses A as an
oracle to solve the factoring problem.

SolveFactoring(N,n):
input: N which is the product of distinct primes P and Q

n which is the product of distinct primes p and q
Also, |n| must be even and |p| = |q| = |N | = |n|/2

output: failure, or a non-trivial factor of N or n
1. compute W = 2|N |
2. for k = 0 to 3 do:
3. do:
4. choose ek randomly from ZZ∗

N

5. while J(ek/N) �= (−1)k

6. choose ID to be a random W/2-bit string
7. choose i randomly from {1, 2, ..., Θ}
8. choose bit b0 randomly
9. if b0 = 0 then
10. compute p = A(n, ID, i,N, e0, e1, e2, e3)
11. if p < 2 or p ≥ n then output failure and halt
12. if n mod p = 0 then output p and halt /* factor found */
13. output failure and halt
14. output CaptureOracleArgument(ID, i,N, e0, e1, e2, e3) and halt

CaptureOracleArgument(ID, i,N, e0, e1, e2, e3):
1. compute W = 2|N |
2. let I be the Θ-bit representation of i
3. for j = 0 to ∞ do: /* try to find an input that A expects */
4. choose x randomly from {0, 1, 2, ..., N − 1}
5. set c0 = x
6. if gcd(x,N) = 1 then
7. choose bit b1 randomly and choose u1 randomly from ZZ∗

N

8. if J(x/N) = +1 then set c0 = eb1
0 e1−b1

2 u1
2 mod N

9. if J(x/N) = −1 then set c0 = eb1
1 e1−b1

3 u1
2 mod N

10. compute (e, c1) = PBRM(N, 2W/2, c0)
11. if e = −1 then continue
12. if u1 > −u1 mod N then set u1 = −u1 mod N
13. let T0 be the W/2-bit representation of u1

14. for k = 0 to ∞ do:
15. compute p = H(T0||ID||I||j, kW

2 , W
2)

16. if p ≥ 2W/2−1 + 1 and p is prime then break
17. if p < 2W/2−1 + 1 or if p is not prime then continue
18. c2 = RandomBitString1()
19. compute n′ = (c1 || c2)
20. solve for the quotient q and the remainder r in n′ = pq + r
21. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
22. if q is not prime then continue

16 Adam Young and Moti Yung

23. if |pq| < W or if p = q then continue
24. simulate A(pq, ID, i,N, e0, e1, e2, e3), watch calls to R, and

store the W/2-most significant bits of each call in list ω
25. remove all elements from ω that are not contained in ZZ∗

N

26. let L be the number of elements in ω
27. if L = 0 then output failure and halt
28. choose α randomly from {0, 1, 2, ..., L− 1}
29. let β be the αth element in ω
30. if β ≡ ±u1 mod N then output failure and halt
31. if β2 mod N �= u2

1 mod N then output failure and halt
32. compute P = gcd(u1 + β,N)
33. if N mod P = 0 then output P and halt
34. compute P = gcd(u1 − β,N)
35. output P and halt

Note that with non-negligible probability A will not balk due to the choice
of ID and i. Also, with non-negligible probability e0, e1, e2, and e3 will conform
to the requirements in the cryptotrojan attack. So, when b0 = 0 these four
arguments to A will conform to what A expects with non-negligible probability.
Now consider the call to A when b0 = 1. Observe that the value pq is chosen from
the same set and probability distribution as in the cryptotrojan attack. So, when
b0 = 1 the arguments to A will conform to what A expects with non-negligible
probability. It may be assumed that A balks whenever e0, e1, e2, and e3 are not
appropriately chosen without ruining the efficiency of SolveFactoring. So, for
the remainder of the proof we will assume that these four values are as defined
in the cryptotrojan attack.

Let u2 be the square root of u2
1 mod n such that u2 �= u1 and u2 < −u2 mod n.

Also, let T1 and T2 be u1 and u2 padded with leading zeros as necessary such
that |T1| = |T2| = W/2 bits, respectively. Denote by E the event that in a given
invocation algorithm A calls the random oracle R at least once with either T1

or T2 as the W/2 most significant bits. Clearly only one of the two following
possibilities hold:
1. Event E occurs with negligible probability.
2. Event E occurs with non-negligible probability.

Consider case (1). Algorithm A can detect that n was not generated by the
cryptotrojan by appropriately supplying T1 or T2 to the random oracle. Once
verified, A can balk and not output a factor of n. But in case (1) this can only
occur at most a negligible fraction of the time since changing even a single bit
in the value supplied to the oracle elicits an independently random response.
By assumption, A returns a non-trivial factor of n a non-negligible fraction of
the time. Since the difference between a non-negligible number and negligible
number is a non-negligible number it follows that A factors n without relying
on the random oracle. So, in case (1) the call to A in which b0 = 0 will lead to
a non-trivial factor of n with non-negligible probability.

Now consider case (2). Since E occurs with non-negligible probability it fol-
lows that A may in fact be computing non-trivial factors of composites n by

Malicious Cryptography: Kleptographic Aspects 17

making oracle calls and constructing the factors in a straightforward fashion.
However, whether or not this is the case is immaterial. Since A makes at most
a polynomial number of calls6 to R the value for L cannot be too large. Since
with non-negligible probability A passes either T1 or T2 as the W/2 most sig-
nificant bits to R and since L cannot be too large it follows that β and u1 will
be ambivalent roots with non-negligible probability. Algorithm A has no way
of knowing which of the two smallest ambivalent roots SolveFactoring chose
in constructing the upper order bits of pq. Algorithm A, which may be quite
uncooperative, can do no better than guess at which one it was, and it could in
fact have been either. Hence, SolveFactoring returns a non-trivial factor of N
with non-negligible probability in this case.

It has been shown that in either case, the existence of A contradicts the
factoring assumption. So, the original assumption that adversary A exists is
wrong. This proves that the attack satisfies Property 2 of a SETUP attack.

Immediately following the test for p = q in C and in C′ it is possible to
check that gcd(e, (p− 1)(q− 1)) = 1 and restart the entire algorithm if this does
not hold. This handles the generation of RSA primes by taking into account the
public RSA exponent e. This preserves the indistinguishability of the output of
C′ with respect to C.

5 Conclusion

Attacks on cryptosystems can occur from many different angles: a specification
may be incorrect which requires provable security as a minimum requirement –
preferably based on a complexity theoretic assumption and if not than on some
idealization (e.g., assuming a random oracle like the idealization of unstructured
one-way hash functions). However, implementations can have problems of their
own. Here a deliberate attack by someone who constructs the cryptosystem (e.g.,
a vendor) has been demonstrated. This attack is not unique to the RSA cryp-
tosystem and is but one of many possible attacks. However, it serves to demon-
strate the overall approach. At a minimum, the message that we try to convey is
that the scrutiny of code and implementations is crucial to the overall security
of the cryptographic infrastructure, and if practitioners exercise scrutiny then
we should be aware that we may need to completely trust each individual imple-
mentation to be correct in ways that may not be efficiently black-box testable
(as our attack has demonstrated).

References

1. C. Crépeau, A. Slakmon. Simple Backdoors for RSA Key Generation. In The Cryp-
tographers’ Track at the RSA Conference – CT-RSA ’03, pages 403–416, 2003.

2. A. K. Lenstra. Generating RSA Moduli with a Predetermined Portion. In Advances
in Cryptology – Asiacrypt ’98, pages 1–10, 1998.

6 Polynomial in W .

18 Adam Young and Moti Yung

3. P. Q. Nguyen. Can We Trust Cryptographic Software? Cryptographic Flaws in
GNU Privacy Guard v1.2.3. In Advances in Cryptology – Eurocrypt ’04, pages
555–570, 2004.

4. M. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. TR-212, MIT Laboratory for Computer Science, January 1979.

5. R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures and
Public-Key Cryptosystems. In Communications of the ACM, volume 21, n. 2, pages
120–126, 1978.

6. A. Young, M. Yung. “Malicious Cryptography: Exposing Cryptovirology,” Wiley
Publishing Inc., Feb. 2004.

7. A. Young, M. Yung. The Dark Side of Black-Box Cryptography, or: Should we
trust Capstone? In Advances in Cryptology – Crypto ’96, pages 89–103, 1996.

8. A. Young, M. Yung. Kleptography: Using Cryptography Against Cryptography. In
Advances in Cryptology – Eurocrypt ’97, pages 62–74, 1997.

9. A. Young. Kleptography: Using Cryptography Against Cryptography. PhD Thesis,
Columbia University, 2002.

Resistance of SNOW 2.0
Against Algebraic Attacks

Olivier Billet and Henri Gilbert

France Télécom R&D,
38–40, rue du Général Leclerc,

92794 Issy les Moulineaux Cedex 9 – France
{olivier.billet,henri.gilbert}@francetelecom.com

Abstract. SNOW 2.0, a software oriented stream cipher proposed by
T. Johansson and P. Ekdahl in 2002 as an enhanced version of the
NESSIE finalist SNOW 1.0, is usually considered as one of the strongest
stream ciphers designed so far. This paper investigates the resistance of
SNOW 2.0 against algebraic attacks. This is motivated by the fact that
the main source of non-linearity in SNOW 2.0 comes from a permutation
build upon the AES S-box, which inputs and outputs are well known to
be related by numerous quadratic equations. We show that a slightly
modified version of SNOW 2.0 is susceptible to an algebraic attack with
time complexity about 250, and which requires no more than 1000 words
of output. We then explore various ways to extend this attack to the
actual stream cipher.

Keywords: SNOW 2.0, stream ciphers, algebraic attacks.

1 Introduction

SNOW 2.0 [9] is a software oriented stream cipher proposed by T. Johansson and
P. Ekdahl in 2002 as a replacement of an earlier version named SNOW 1.0 [8].
SNOW 2.0 is generally considered as one of the strongest stream cipher de-
signs currently available, together with ciphers like the Shrinking Generator [3],
SCREAM [12], and carefully initialized versions of RC4 [11]. SNOW 1.0 was one
of the finalists of the European project NESSIE. One of the main reasons for
the rejection of SNOW 1.0 from the NESSIE portfolio of recommended crypto-
graphic primitives – which eventually lacked a stream cipher design – was the
discovery of a statistical distinguisher with time complexity 295 due to Cop-
persmith et al. [2]. A key recovery attack of expected complexity 2224 against
SNOW 1.0 was also found H. Hawkes and G. Rose [13]. Both attacks require a
known key stream length of 295. Those attacks motivated the introduction of a
new version of SNOW, SNOW 2.0 [9], which eliminated at the same time some
other minor flaws. The most characteristic features of SNOW 2.0 are

– an LFSR defined over a large field, GF(232) with a new feedback polynomial
as to avoid the flaws detected in the previous design, SNOW 1.0;

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 19–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 Olivier Billet and Henri Gilbert

– a finite state machine involving two non-linearly updated memory registers
of size 32 bits. The non-linearity results from two modular additions, and a
32 bit to 32 bit function S based on the well-known and highly studied AES
S-box [14].

The best attack against SNOW 2.0 so far is a distinguishing attack of com-
plexity 2225 due to D. Watanabe, A. Biryukov, C. de Cannière [16], and re-
quires 2225 key stream words. It consists in an enhanced variant of the lin-
ear masking method [2] which exploits the feedback polynomial of the LFSR
over GF(232) instead of requiring low weight multiples with GF(2) coefficients,
as in the original attack.

This paper investigate the resistance of SNOW 2.0 against algebraic attacks.
Although the relevance of such attacks in the context of block ciphers – like
AES, for instance – remains unclear, it has been proved to be of interest in the
context of regularly clocked stream ciphers [5, 6, 1]. Considering that SNOW 2.0
is a regularly clocked stream cipher which non-linearity mainly rests on the AES
S-box, it seems natural to probe its resistance against algebraic attacks.

We first establish that if the function S based on the AES S-box was the
only source of non-linearity, SNOW 2.0 would be vulnerable to a very efficient
algebraic attack. More precisely, we consider the close variant of SNOW 2.0
obtained by replacing the two modular additions by additions over GF(232),
leaving the other parts (LFSR, S function based on AES S-box...) unchanged.
We explain how to recover the initial state of the LFSR using a linearization
attack of complexity about 250, requiring no more than 1000 clocks of key stream.
We then examine the consequences of this result for the actual stream cipher,
and show that the knowledge of a small key stream sequence (slightly more
than 17 key stream outputs) allows the attacker to write a rather large – still,
overdetermined and sparse – system of quadratic equations. Solving of such
sparse quadratic systems and its complexity are not yet fully understood, but
there is a growing research effort on the subject, due in large part to its potential
application to the AES block cipher standard [15, 7].

The paper is organized as follows. Section 2 provides a brief description of
the SNOW 2.0 stream cipher. Section 3 describe the algebraic attack against a
slightly modified SNOW 2.0, while Sec. 4 analyzes different means to extend this
attack to the actual stream cipher.

2 Description of SNOW

The stream cipher SNOW 2.0 is made of a linear feedback shift register (LFSR)
with sixteen 32 bit words and a finite state machine (FSM) with two 32 bit
memory registers. SNOW 2.0 mixes additions over GF(232) hereafter denoted
by ‘⊕’, together with additions modulo 232 denoted by ‘�’.

2.1 The Linear Feedback Shift Register

The linear feedback shift register (LFSR) is defined over GF(232), which allows
good performance for software implementations. It is made of sixteen 32 bit

Resistance of SNOW 2.0 Against Algebraic Attacks 21

words, thus exhibiting 512 bit internal state size. The field of definition can be
further described as GF(232) = GF(2)(α, β), where β is a root of the GF(2)[x]
polynomial x8 + x7 + x5 + x3 + 1, and α is a root of the GF(28)[x] polynomial
x4 + β23x3 + β245x2 + β48x+ β239. The feedback polynomial is then defined by

αx16 + x14 + α−1x5 + 1 .

This choice of a tower extension to describe GF(232) is justified by the simple
expression of the feedback polynomial in this context: it only consists of byte
shifts/xors, since each word can be expressed on the base {α3, α2, α, 1}.

In the following, the word that the LFSR outputs at clock t is denoted by st.

2.2 Finite State Machine

The other part of the stream cipher is a finite state machine (FSM), which
contains two 32 bit memory registers r1 and r2. This FSM is intended to produce
the non-linear part of the stream cipher. To this end, it contains a non-linear
32 bit to 32 bit non-linear bijection denoted by S, based on the AES S-box [14],
and defined as follows. If we decompose the register r1 at clock t on the base
{α3, α2, α, 1} as explained in the above section as rt

1 = at
1α

3+bt
1α

2+ct
1α+dt

1, and
similarly the register r2 at next clock as rt+1

2 = at+1
2 α3 + bt+1

2 α2 + ct+1
2 α+ dt+1

2 ,
the rule rt+1

2 = S(rt
1) to update r2 from r1 can be defined as⎡⎢⎢⎣

at+1
2

bt+1
2

ct+1
2

dt+1
2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X X + 1 1 1

X + 1 1 1 X
1 1 X + 1 X
1 X + 1 X 1

⎤⎥⎥⎦×
⎡⎢⎢⎣
S(at

1)
S(bt

1)
S(ct

1)
S(dt

1)

⎤⎥⎥⎦
where S represents the AES S-box, the matrix is the one MixColumn step in AES
when its four input bytes are considered as elements of the GF(28) definition of
the AES, i.e. GF(2)[X]/(X8 +X4 +X3 +X + 1). This completes the definition
of the non-linear function S.

rt
1 rt

2
S

st+15 st+11 st+5 st+2 st

zt

×α−1 ×α

Fig. 1. SNOW 2.0.

22 Olivier Billet and Henri Gilbert

Now the rule to update the register r1 from r2 is given by rt+1
1 = rt

2 � st+5.
The output of the FSM at clock t, which we denote by F t, is finally defined
by F t = (rt

1 � st+15) ⊕ rt
2. Let us summarize the behavior of the FSM below⎧⎪⎨⎪⎩

rt+1
2

def= S (rt
1) ,

rt+1
1

def= rt
2 � st+5 ,

F t def= (rt
1 � st+15)⊕ rt

2 .

2.3 Output of the Stream Cipher

The output of SNOW 2.0 is a classical example of linear masking, that is the
output of the LFSR is xored with the output of the (non-linear) FSM. Thus
the key stream output at clock t, which we henceforth denote by zt, is defined
by zt = st ⊕ F t, or equivalently by

zt = (st+15 � rt
1) ⊕ rt

2 ⊕ st .

2.4 Key Initialization

The stream cipher SNOW 2.0 can be used with 128 bit or 256 bit keys. For the
key initialization, the LFSR is loaded with the secret key K, a publicly known
initialization vector IV , and the two memory registers are set to zero. The cipher
is then clocked 32 times in a special mode where no key stream is produced, and
the FSM output is injected in the feedback value

st+16 def= α−1st+11 ⊕ st+2 ⊕ αst ⊕ F t .

The cipher is then switched into the normal mode described in 2.3, but the first
output of the keystream is discarded.

3 Attack on a Modified Version of SNOW 2.0

We now describe the algebraic attack against the close variant of SNOW 2.0
where modular additions ‘�’ are replaced with xors ‘⊕’ in its description, while
everything else remains identical.

3.1 Deriving the System

Let us construct a system of equation in the LFSR’s initial state variables alone,
and solve it. In order to do so, we need to eliminate the memory from the set of
equations. This is done by looking at the key stream generation and the update
rule for the register r1. Indeed, combining those relations{

zt = st+15 ⊕ rt
1 ⊕ st ⊕ rt

2 ,
rt
1 = rt−1

2 ⊕ st+4 ,

which can be further reduced into

Resistance of SNOW 2.0 Against Algebraic Attacks 23

rt
2 = rt−1

2 ⊕ zt ⊕ st+15 ⊕ st+4 ⊕ st ,

we get an expression of the register r2, for any clock t, which only involves the
key stream, the LFSR initial state variables s0, . . . , s15, and the initial state r0

2

of the register r2. Put it in equation, for each clock t, there are known binary
coefficients εit such that

rt
2 = r0

2

t⊕
i=0

zi
15⊕

j=0

εjts
j .

Let us assign t = 0 to the clock of the first key stream output. One easily
checks that the register r1, updated against the rule rt+1

1 = rt
2 ⊕ st+5, benefits

from the same property. (Note that the initial state of the register r1 can be
derived from the knowledge of r0

2 and the relation r0
1 = r0

2 ⊕ s0 ⊕ s15 ⊕ z0.)
In other words, we got rid of the memory, since for any clock t > 0, it can be
expressed linearly in terms of the initial state variables and the initial memory
value r0

2 .
The property that the knowledge of the key stream allows to track the linear

functions of r0
2 , s

0, . . . , s15 contained in r1 and r2 may be visualized on Fig. 3.
(Note that a similar property involving non-linear expressions, also holds for
the actual stream cipher.) Now we need to derive some equations involving the
initial LFSR state variable, and r0

2 . Those are obtained from the second update
rule, namely rt+1

2 = S(rt
1). Since the non-linear function S maps the four bytes

of rt
1 to the four bytes of rt

2 via the AES S-box, and then mixes the resulting
bytes linearly at the bit level, we are able to write down 156 linearly independent
quadratic equations relating the bits of rt

1 = rt
2 ⊕ st ⊕ st+15 ⊕ zt and the bits

of rt+1
2 .
To explain why, it is suffices to recall the well known property of the AES

S-box: there are linearly independent quadratic equations involving the S-box
input and output bits. To see why, just write S = A ◦ I, where A denotes the
GF(2)-affine mapping, and I maps zero to zero and equals the inversion over
GF(28) everywhere else. Then if w = S(u) = A ◦ I(u) and v = I(u), we get

uv = 1 , u2v = u , uv2 = v , uv4 = v3 , u4v = u3 ,

rt
1 rt

2

zt

st+5

st+15 st

S

Fig. 2. A variant of SNOW 2.0.

rt
1 rt

2

zt

st+5

st+15 st

Fig. 3. Tracking memory registers r1 and r2.

24 Olivier Billet and Henri Gilbert

the first equation being true for all bits, except the least significant one, because
I(0) = 0. And since x �→ x2 is GF(2)-linear, we deduce that the bits of u and v
are related by 5 × 8 − 1 = 39 quadratic equations. Now this property obviously
remains true after the application of A.

Going back to S, we are now able to write 4× 39 = 156 quadratic equations
relating rt

1 and rt+1
2 . Remember here that both registers are linear functions of

the LFSR initial state variables s0, . . . , s15 and r0
2 , for any t > 0.

3.2 Recovering the Initial State and the Key

The problem of recovering the initial state of the LFSR can be directly translated
into that of solving the system of quadratic equations constructed in the previous
section. However, two distinct strategies can be devised.

First one may wish to entirely linearize the system. The number of monomials
involved are, in the worst case, all monomials of degree up to 2 involving a total
of 512 + 32 variables over GF(2). There are N =

∑2
k=0

(
544
k

)
such variables,

which is slightly more than 217. To be able to linearize the system, we thus
need to get about N/156 < 951 key stream words, that is we need to get less
than 1000 consecutive output words of the stream cipher – under the usual
assumption that the small number of linear dependencies occurring before a full
rank system is obtained do not much affect the required number of outputs.
A very conservative estimation of the time complexity to solve the system is the
cube of the number of variables, that is about 251.

One could also want to solve the system of quadratic equations as soon as
it is overdefined and without requiring it to be linearized, since there exists
algorithms especially designed for this task [7, 10]. We note that in such case,
only slightly more than 17 key stream output words are needed for the system
to be overdefined. In this case however, the complexity to solve the system is not
fully understood in the current state of the art, and is expected to be notably
higher than for solving a linearized system.

Once the initial state s0, . . . , s15, and r0
2 have been recovered using the above

linearization method, r0
1 is given by the relation r0

1 = r0
2 ⊕ s0 ⊕ s15 ⊕ z0, and

so the entire state of the cipher at clock t = 0 is known. In order to derive the
secret key K – and thus be able to predict the key stream sequence for other
IV s – it suffices to run the cipher backward, one clock in the normal operation
mode, then 32 clocks in the special feedback mode. It is easy to see that the state
transitions of the SNOW 2.0 in both normal and special modes are invertible.
Therefore, we are able to get the LFSR state at the initialization time, wich
gives, from the knowledge of IV , the value of the secret key K.

4 Implications for SNOW 2.0

In this section, we seek for an extension of our attack described in Sec. 3 to the
actual SNOW 2.0 stream cipher. We mainly identified two possible methods to
take into account the extra source of non-linearity introduced by the modular

Resistance of SNOW 2.0 Against Algebraic Attacks 25

additions of the FSM. The first one is to guess the carries’ values for a small
number of consecutive clocks. The other one consists in introducing new variables
for the carries, and building a system of quadratic equations involving the LFSR
initial state variables, the FSM initial memory variables and the extra carry
variables. As will be shown in the sequel, the first method appears to require an
impractical amount of guessing, while the second one seems more promising at
first glance from a cryptanalytic point of view.

In the following, the carry corresponding to the addition st+15�rt
1 of the FSM

will be denoted by ct
1, while the carry corresponding to the addition st+5 � rt

2 of
the FSM will be denoted by ct

2. Hence,

st+15 � rt
1 = st+15 ⊕ rt

1 ⊕ ct
1 ,

st+5 � rt
2 = st+5 ⊕ rt

2 ⊕ ct
2 .

(1)

As in previous section we denote by t = 0 the clock of the first observable output
of SNOW 2.0 and call initial state the state of the LFSR at t = 0.

4.1 Guessing the Carries

This method strives to take benefit of the specificities of the carry bits’ distri-
bution occurring in modular additions. According to Eq. 1, we can track affine
functions of r0

2 , s0, . . . , s15 contained in the memory registers r1 and r2 in the
same way as done in Sec. 3 – and then, apply the attack therein described –
just by guessing the values of the carries ct

1 and ct
2 for about 16 consecutive

clocks. The single difference with Sec. 3 is that the expressions of rt
1 and rt

2 now
involve constant terms from the guessed carry values. However, due to the very
particular distribution of carry bits, the cost of one guess is far less than 232.
Actually, it can be shown that the most probable carry – i.e. with no carry at
all during the addition – has one chance over

(
3
4

)31 to occur. Indeed, this will
happen when any two matching bits are not simultaneously 1, which represents
three possibilities out of four. Thus a rough estimation for an upper bound on
the probability to make a right guess for the carries c1 and c2 during 16 consec-
utive clocks is

(
3
4

)31×2×16. As it is much less than 2−256, this approach seems
impractical.

4.2 Quadratic System with Carry Variables

This second method consists in building a system of quadratic equations describ-
ing the actual SNOW 2.0 stream cipher. To this end, it suggests to introduce new
GF(2) variables for the carry bits of the two modular additions ‘�’ at each clock.
This results in gathering quadratic equations during slightly more than 17 clocks
– for the system to be overdetermined – and trying to solve the corresponding
system.

Deriving the set of quadratic equations goes along the lines of the method
exposed in Sec. 3. Indeed, just inserting the carries due to modular additions
gives

26 Olivier Billet and Henri Gilbert{
zt = ct

1 ⊕ st+15 ⊕ rt
1 ⊕ st ⊕ rt

2 ,
rt
1 = ct−1

2 ⊕ rt−1
2 ⊕ st+4 ,

which is this time reduced into

rt
2 = rt−1

2 ⊕ zt ⊕ st+15 ⊕ st+4 ⊕ st ⊕ ct
1 ⊕ ct−1

2 .

Eventually, we come to the fact that the memory registers can be expressed at
any clock t > 0 as a linear combination of the initial LFSR state variables, the
initial value r0

2 of the register r2, and all the carry bits occurring between clock 0
and clock t. The (i+1)th carry bit in the modular addition of two 32 bit words x
and y can be defined as the majority of the ith bits of x, y, and ith carry bit.
For each clock t, Eq. 1 thus implies

ct
1,[0] = 0

ct
1,[1] = st+15

[0] ⊕ rt
1,[0]

0 < i < 32, ct
1,[i+1] = st+15

[i] rt
1,[i] ⊕ st+15

[i] ct
1,[i] ⊕ ct

1,[i]r
t
1,[i] ,

as well as

ct
2,[0] = 0

ct
2,[1] = st+5

[0] ⊕ rt
2,[0]

0 < i < 32, ct
2,[i+1] = st+5

[i] rt
2,[i] ⊕ st+5

[i] ct
2,[i] ⊕ ct

2,[i]r
t
2,[i] ,

where x[i] denotes the ith bit of the 32 bit word x.
Of course, we have to add to these the quadratic equations holding between

the registers r1 and r2. As stated above in Sec. 3, there are 156 such equations
at each clock t, but this time involving the LFSR initial state variables, the
variables for the bits of r0

2 , and all the carries’ bits.
Let us now count the number of variables that appear in the system after

n consecutive clocks. There are the 512 variables from the LFSR initial state, the
32 variables from r0

2 , plus for each clock, 62 carry bit variables. Hence, a total of
544 + 62n variables. On the other hand, there are 156n equations coming from
the relation S, and 62n equations from the definition of each carry bit, all at
most quadratic, which amounts to a total of 218n equations. Hence the minimum
value n = 17 for the system to be overdetermined, gives a total of 3706 equations
with 1598 variables. For larger value of n, the system is more overdefined, but
the equations to variables ratio is asymptotically bounded above by 7

2 .
The above system has been derived as to minimize the number of variables,

not to maximize its sparsity. One can easily see that only the equations defining
the carry bits are extremely sparse. Alternatively, one might write an equiva-
lent, still overdefined and much more sparse system, by introducing the aux-
iliary variables rt

1 and rt
2 and their related linear equations, at the expense of

increasing the number of variables. The system would have 544+126n variables,
282n quadratic or linear equations, and about the same sparsity as the equations
on the AES block cipher. Its intractability remains, as in the case of the AES,
an open question.

Resistance of SNOW 2.0 Against Algebraic Attacks 27

5 Conclusion

We exposed in this paper a very efficient attack against a close variant of
the stream cipher SNOW 2.0. Various ways to extend this attack to the ac-
tual SNOW 2.0 design were also tried. The key search problem for the actual
SNOW 2.0 was shown to be reducible to the solving of an overdetermined system
of quadratic equations, the complexity of which remains unknown nowadays.

References

1. J. Y. Cho and J. Pieprzyk. Algebraic attacks on SOBER-t32 and SOBER-128. In
W. Meier and B. K. Roy, editors, Fast Software Encrytion – FSE 2004, Lecture
Notes in Computer Science. Springer-Verlag, 2004.

2. D. Coppersmith, S. Halevi, and C. S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002,
Lecture Notes in Computer Science, pages 515–532. Springer-Verlag, 2002.

3. D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In D. R.
Stinson, editor, Advances in Cryptology – CRYPTO ’93, Lecture Notes in Com-
puter Science, pages 22–39. Springer-Verlag, 1993.

4. N. T. Courtois. Algebraic attacks on combiners with memory and several outputs.
Cryptology ePrint Archive, Report 2003/125, 2003. http://eprint.iacr.org/.

5. N. T. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 176–194. Springer-Verlag, 2003.

6. N. T. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 345–359. Springer-Verlag, 2003.

7. N. T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overde-
fined systems of equations. In Y. Zheng, editor, Advances in Cryptology – ASI-
ACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 267–287.
Springer-Verlag, 2002.

8. P. Ekdahl and T. Johansson. SNOW – a new stream cipher. Submission can be
downloaded at http://www.cryptonessie.org, 2000.

9. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In K. Ny-
berg and H. M. Heys, editors, Selected Areas in Cryptography – SAC 2002, Lecture
Notes in Computer Science, pages 47–61. Springer-Verlag, 2002.

10. J.-C. Faugère. A New Efficient Algorithm for Computing Groebner Bases without
Reduction to Zero (F5). In Proceedings of ISSAC, pages 75–83. ACM Press, 2002.

11. S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algo-
rithm of rc4. In S. Vaudenay and A. M. Youssef, editors, Selected Areas in Cryp-
tography – SAC 2001, Lecture Notes in Computer Science, pages 1–24. Springer-
Verlag, 2001.

12. S. Halevi, D. Coppersmith, and C. S. Jutla. SCREAM: A software-efficient stream
cipher. In J. Daemen and V. Rijmen, editors, Fast Software Encrytion – FSE 2002,
Lecture Notes in Computer Science, pages 195–209. Springer-Verlag, 2002.

13. P. Hawkes and G. G. Rose. Guess-and-determine attacks on snow. In K. Nyberg
and H. M. Heys, editors, Selected Areas in Cryptography – SAC 2002, Lecture
Notes in Computer Science, pages 37–46. Springer-Verlag, 2002.

28 Olivier Billet and Henri Gilbert

14. National Institute of Standards and Technology. Advanced encryption standard.
FIPS publication 197, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

15. M. J. B. Robshaw and S. Murphy. Essential Algebraic Structure within the AES. In
M. Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 1–16. Springer-Verlag, 2002.

16. D. Watanabe, A. Biryukov, and C. de Cannière. A distinguishing attack on
SNOW 2.0 with linear masking method. In M. Matsui and R. Zuccherato, ed-
itors, Selected Areas in Cryptography – SAC 2003, Lecture Notes in Computer
Science, pages 222–233. Springer-Verlag, 2003.

A Study of the Security of Unbalanced Oil
and Vinegar Signature Schemes

An Braeken, Christopher Wolf, and Bart Preneel

K.U.Leuven, ESAT-COSIC,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{An.Braeken,Christopher.Wolf,Bart.Preneel}@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/cosic/

Abstract. The Unbalanced Oil and Vinegar scheme (UOV) is a signa-
ture scheme based on multivariate quadratic equations. It uses m equa-
tions and n variables. A total of v of these are called “vinegar variables”.
In this paper, we study its security from several points of view. First,
we are able to demonstrate that the constant part of the affine transfor-
mation does not contribute to the security of UOV and should therefore
be omitted. Second, we show that the case n ≥ 2m is particularly vul-
nerable to Gröbner basis attacks. This is a new result for UOV over
fields of odd characteristic. In addition, we investigate a modification
proposed by the authors of UOV, namely to chose coefficients from a
small subfield. This leads to a smaller public key. But due to the smaller
key-space, this modification is insecure and should therefore be avoided.
Finally, we demonstrate a new attack which works well for the case of
small v. It extends the affine approximation attack from Youssef and
Gong against the Imai-Matsumoto Scheme B for odd characteristic and
applies it against UOV. This way, we point out serious vulnerabilities in
UOV which have to be taken into account when constructing signature
schemes based on UOV.

1 Introduction

1.1 Public Key Cryptography in General

Public key cryptography is used in e-commerce systems for authentication (elec-
tronic signatures) and secure communication (encryption). In terms of key dis-
tribution, public key cryptography has significant advantages over secret key
cryptography. Moreover, efficient signature schemes cannot be obtained by se-
cret key schemes. The security of widely used public key algorithms relies on
the difficulty of a small set of problems from algebraic number theory. The RSA
scheme relies on the difficulty of factoring large integers, while the difficulty
of solving discrete logarithms provides the basis for the ElGamal and Elliptic
Curve schemes [18]. Given that the security of these public key schemes rely on
such a small number of problems that are currently considered hard, research
on new schemes that are based on other classes of problems is worthwhile. Such

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 29–43, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 An Braeken, Christopher Wolf, and Bart Preneel

work provides a greater diversity and avoids the risk that the information society
joints all its “crypto eggs” in one basket.

In addition, important results on the potential weaknesses of existing public
key schemes are emerging. Techniques for factorisation and solving discrete log-
arithm continually improve. Polynomial time quantum algorithms can be used
to solve both problems [25]; fortunately, quantum computers with more than 7
bits are not yet available and it seems unlikely that quantum computers with
100 bits will be available within the next 10–15 years. Nevertheless, this stresses
the importance of research into new algorithms for asymmetric encryption and
signature schemes that may not be vulnerable to quantum computers.

1.2 Multivariate Cryptography

One way to achieve more variety in asymmetric cryptology are schemes based
on the problem of solving Multivariate Quadratic equations (MQ-problem),
e.g., see [17, 21, 22, 3, 12, 19, 4, 28, 11]. These schemes use the fact that the MQ-
problem, i.e., finding a solution x ∈ F

n for a given system of m polynomial
equations in n variables each⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,

for given y1, . . . , ym ∈ F and unknown x1, . . . , xn is difficult, namely NP-
complete (cf [9, p. 251] and [24, App.] for a detailed proof)). In the above system
of equations, the polynomials pi have the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). This polynomial-vector P := (p1, . . . , pm) forms the public
key of these systems. Moreover, the private key consists of the triple (S,P ′, T)
where S ∈ AGLn(F), T ∈ AGLm(F) are affine transformations and P ′ ∈ MQn,m

is a polynomial-vector P ′ := (p′1, . . . , p′m) with m components; each component
is a polynomial in n variables x′1, . . . , x

′
n. Throughout this paper, we will denote

components of this private vector P ′ by a prime ′. In contrast to the public
polynomial vector P ∈ MQn,m, the private polynomial vector P ′ does allow
an efficient computation of x′1, . . . , x

′
n for given y′1, . . . , y

′
m. At least for secure

MQ-schemes, this is not the case if the public key P alone is given. The main
difference between MQ-schemes lies in their special construction of the central
equations P ′ and consequently the trapdoor they embed into a specific class
of MQ-problems. We refer to [13] for an overview of the different proposed
schemes. Note that most of them are already broken e.g., [5, 8, 10, 15, 20, 27]. We
describe in this paper some new results on the cryptanalysis of the Unbalanced

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 31

Oil and Vinegar scheme which is still considered to be secure for certain choices
of parameters.

1.3 Outline and Achievement

We start with an explanation of the Unbalanced Oil and Vinegar scheme (UOV).
Second, we outline in Sect. 3.1 why the constant part of the initial affine trans-
formation can be omitted as it does not contribute to the overall security of
UOV. In Sect. 3.2, we give a short description of the Shamir and Kipnis attack
against the (balanced) oil and vinegar scheme together with its extension on the
unbalanced case. Then we show how this attack breaks the scheme proposed
in [13, Sect. 14, ex. 4]. Moreover, we show that the case n ≥ 2m is particularly
vulnerable to Gröbner basis attacks (Sect. 3.3). This way, we improve a result
of Courtois et al. who were able to defeat the cases n ≥ 4m [2] – and to some
extent also n ≥ 3m. However, for their most efficient attack to work, they need
an even characteristic. The attacks demonstrated in this paper do not have this
restriction. Finally, we extend the attack from Youssef and Gong [29] against
the Scheme B from Imai and Matsumoto [16] against Unbalanced Oil and Vine-
gar scheme – both for even and odd characteristic in Sect. 3.4. The algorithm
presented in [29] only works for the even case. We conclude with Section 4.

2 Oil and Vinegar Signature Schemes

In 1997, Jacques Patarin suggested a scheme called “Oil and Vinegar” for pub-
lic key cryptography [23]. This scheme uses multivariate quadratic polynomial
equations over small finite fields as public key and similar polynomials as the
private keys.

In Oil and Vinegar Schemes, the trapdoor is achieved by a special structure of
multivariate quadratic polynomials p′i. Let o ∈ N be the number of oil variables
and v ∈ N the number of vinegar variables. We have n = o + v. Moreover, we
have m = o and o = v (or also n = 2m) for the case of Oil and Vinegar Schemes1.
The private polynomials p′i for 1 ≤ i ≤ m can be represented by

p′i(x
′
1, . . . , x

′
n) := x′1Lin’i,1(x′1, . . . , x

′
n) + . . . + x′vLin’i,v(x′1, . . . , x

′
n) +

+Af’i(x
′
1, . . . , x

′
n)

=
∑

1≤j≤v
1≤k≤n

γ′
i,j,kx

′
jx

′
k +

∑
1≤k≤n

β′
i,kx

′
k + α′

i ,

for Lin’i,j linear, Af’i affine or – more general – for 1 ≤ i ≤ m, 1 ≤ j ≤ v and
1 ≤ k ≤ n and α′

i, β
′
i,k, γ

′
i,j,k ∈ F. Here the vinegar variables x′1, . . . , x

′
v may

be quadratically combined while oil variables x′v+1, . . . , x
′
n do not mix with oil

variables.
1 The above notation clearly has some redundancies. The problem in this context is

that different papers about these schemes use very different notation. With the above
settings, we use a kind of “generalised notation” which suits most of them.

32 An Braeken, Christopher Wolf, and Bart Preneel

The trapdoor consists of an affine transformation S ∈ AGLn(F) that mixes
the oil and vinegar variables, i.e., (x′1, . . . , x

′
n) = S(x1, . . . , xn) leads to an affine

relation between the public variables xi and the private variables x′i. In order to
obtain a solution for such a system, the legitimate user fixes all vinegar variables
to random values. This way, he obtains a (random) linear equation in the oil
variables which can be solved with ordinary Gauss elimination.

Generally speaking, the (unbalanced) oil and vinegar scheme is designed for
a signature scheme. It is not suitable for encryption because of the parameter
v, which should be chosen too high for an appropriate security level. To sign a
message M ∈ F

m, we perform the following steps:

1. Assign random variables a1, . . . , av to all the vinegar variables.
2. After substituting the random values, the system M = P ′(a) becomes linear.

Solve this linear system for the remaining m variables a1, . . . , ao of a by
Gaussian elimination. If the linear system is singular, return to the first step
and try with new random vinegar variables.

3. Map the solution a to the signature x by x = S−1(a).

Verifying the signature x ∈ Fn is just the evaluation of x by the public system
P . An attacker wants to forge signature on a given message M = (M1, . . . ,Mm),
needs to solve the system:

M1 = p1(x1, . . . , xn)
...

Mm = pm(x1, . . . , xn)

In general, this is an MQ-problem and therefore difficult to solve.
As the original Oil and Vinegar scheme was broken in [14], Kipnis et al.

extended it to the so-called “Unbalanced Oil and Vinegar” signature scheme [12]
(see also the extended version [13]). For an Unbalanced Oil and Vinegar Scheme
(UOV), we have v > o (or equivalently n > 2m). According to [12, 13], this case
is considered to be secure if the number of vinegar variables is not too “close”
to the number of oil variables. In symbols: v �≈ o.

3 Cryptanalysis

3.1 Attacking the Constant Part of UOV

We first show that the affine transformation S in the oil and vinegar scheme
should be replaced by a linear transformation.

Consider the affine transformation S ∈ AGLn(F), which can be uniquely
represented by an invertible matrix MS ∈ Fn×n and a vector ms ∈ Fn, i.e.,
S(x) = MSx + ms for all x ∈ Fn. Moreover, we can uniquely rewrite S as
S(x) = (x′ +ms) ◦ (MSx) where x′ denotes the output of MSx and ◦ represents
the composition of functions. We now express the public key P as a composition
of the private key (P ′, S):

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 33

P = P ′ ◦ S
= P ′ ◦ [(x′ + ms) ◦ (MSx)]
= [P ′ ◦ (x′ + ms)] ◦ (MSx)
= P ′′ ◦ (MSx)

for some system of equations P ′′. As (x′ + ms) is a transformation of degree
1, it does not change the overall degree of P ′′, i.e., as P ′ consists of equations
of degree 2 at most, so will P ′′. In addition, due to its construction, (MS ,P ′′)
forms a private key for the public key P . Moreover, the private key equations
P ′ were random equations. The transformation (x′ + ms) does not change the
internal structure of P ′.

Therefore, we can conclude that the use of an affine instead of a linear trans-
formation does not enhance the overall security of the (unbalanced) oil and
vinegar schemes. In fact, we can draw a similar conclusion for all such systems
– as long as it is possible to replace the equation P ′ by an equation of similar
shape. This is always the case if P ′ allows a constant, non-zero term and also
non-zero linear terms. The corresponding observation for HFE has been made
by Toli [26].

3.2 The Kipnis and Shamir Attack

After this initial observation, we move on to the attack of Kipnis and Shamir
against the Balanced Oil and Vinegar scheme. The main idea in this attack is to
separate the oil and the vinegar variables, which enables the attacker to access
an isomorphic copy of the private key. This way, an attacker can forge arbitrary
signatures. The attack is very efficient for all v ≤ m. We describe the attack here
for v = m and thus 2m = n.

We take only the quadratic terms of the private P ′ and the public P equations
into account. In odd characteristic, we can uniquely represent the private key
equations (resp. public key equations) by xtP ′

ix (resp. x′tPix
′) for 0 ≤ i ≤ m,

where P ′
i and Pi are symmetric matrices (here t denotes transposition). For even

characteristic, the unique symmetric matrices P ′
i + P

′t
i and Pi + P t

i where P ′
i

and Pi are upper-triangular matrices belonging to Fm×m are considered. For
simplicity, we denote these matrices again by P ′

i and Pi.
Note that because of the special structure of the private equations P ′, the

matrices P ′
i for 1 ≤ i ≤ m have the form:

P ′
i =

(
0 Ai

Bi Ci

)
,

where 0, Ai, Bi, Ci are submatrices of dimension m×m. Because P = P ′ ◦S, we
obtain

Pi = MS

(
0 Ai

Bi Ci

)
MT

S .

34 An Braeken, Christopher Wolf, and Bart Preneel

It is clear that each P ′
i maps the subspace xm+1 = · · · = x2m (oil subspace) to

the subspace x1 = · · · = xm = 0 (vinegar subspace). If P ′
j is invertible, we can

then conclude that each P ′
iP

′−1
j maps the oil subspace to itself. Consequently the

image of the oil subspace under S, called the subspace O, is a common eigenspace
for each PiP

−1
j with 1 ≤ i < j ≤ m. In [14, Sect. 4], Shamir and Kipnis describe

two very efficient algorithms for computing the common eigenspace O of a set
of transformations. Picking a subspace V for which O + V = Fm allows us to
separate the oil and the vinegar variables. This way, we obtain an isomorphic
copy of the private key (P , S).

In [12, Sect. 4], an extension based on a probabilistic approach of the previous
attack is described which also works for v > m (or n > 2m) with complexity
O(qv−m−1m4) = O(qn−2m−1m4).

Application Against the Parameters from [13, Sect. 14]: In order to avoid the
birthday paradox, [12, Sect. 8] describes a modification of UOV which fixes the
linear terms of the public equations depending on the message M . This way, it
is no longer possible to obtain a collision for different messages M1 �= M2 and
the same public key, as this public key now also depends on the message M .
We consider this construction to be secure and therefore refer to [12, Sect. 8]
for a detailed description. However, its application in [13, Sect. 14], Example 4
is flawed. In order to derive a smaller public key, the authors use the trick of
restricted coefficients (cf [13, Sect. 10]). In a nutshell, all coefficients in the affine
transformation S and the system of private polynomials P ′ are not chosen from
the field F but from a strictly smaller subfield F̃. This way, the public key P
will only have coefficients from F̃ as P = P ′ ◦ S and subfields are closed under
addition and multiplication. Thus, we derive a public key which is a factor of
(log |F̃|/log |F|) smaller than the original key.

In Example 4, the authors of [13] propose F = GF(16), F̃ = GF(2), m = 16,
v = 32/48 and obtain a public key with 2.2kB/4 kB – this is 4 times smaller
than without this trick. However, we can apply the attack from the [12, Sect. 4]
(see above) against the UOV system over F̃ = GF(2). This is possible as the
Kipnis-Shamir attack does not take linear terms into account but only quadratic
terms. The crucial point is that the linear terms are from GF(16) while the
quadratic terms are from a subfield isomorphic to GF(2). As soon as we derived
an isomorphic copy of the private key (P , S) over GF(2), we can translate it to
GF(16) and are now in the same position as a legitimate user. In particular, we
can do all computations necessary to translate the linear parts of the public key
(over GF(16)) to the corresponding private key (now, also over GF(16)). As we
have q = 2, the attack complexity is 232−16−1.164 = 232 or 248−16−1.164 = 247

and therefore far less than the claimed security level of 264.

Remark: Although the algorithms from [2] achieve a lower running time, they
are not applicable in this case: they are only able to solve a given instance of an
MQ-problem. For this attack, we need the fact that we actually derive a valid
private key of the UOV-system.

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 35

3.3 Attacks Using Gröbner Basis Algorithms

The article of Daum, Felke, and Courtois [5] outlines a way of attacking HFE
with Gröbner Basis algorithms. The attack works for m < n, i.e., less equations
than variables. The idea is to add n−m linear equations. This way, the number of
variables can be reduced to m. On the other hand, a system with n variables and
m equations is expected to have qn−m solutions on average. Therefore, adding
a total of n−m linear equations will lead to one solution on average. Repeating
this experiment a few times (e.g., 6, cf Fig. 1), we will find at least one solution.

In our experiments, we fixed n−m variables to random values from F instead
of adding n−m linear equations. From a mathematical point of view, both ideas
are equivalent, as the transformation S already gives a random system of degree
1 equations. In a first step, we computed the average number of tries for a series
of experiments where n takes values from 10 to 24, and v goes from 1 to n− 1.
Figure 1 shows that we need only a few tries for a given system of equations
until we find a solution. In more than 60% of the cases, we obtain a solution
with the first random fixing of variables, after that the number of necessary tries
converts quickly to zero.

Percent of number of runs for q=2

0

0.1

0.2

0.3

0.4

0.5

0.6

percent

2 4 6 8 10
nr_runs

Fig. 1. Occurrence of number of runs.

In a second step, we investigated the time complexity of the attack for fixed
m and varying v. From experiments, we could conclude that the time complexity
increases exponentially with increasing v. This fact can be understood intuitively
by the observation that for increasing v, the scheme becomes more random, which
makes it more difficult to solve. However, as the number of solutions increases
by qv, i.e., exponentially, the probability of finding one out of these qv solution
becomes higher, too.

In particular, we investigated the logarithmic time complexity (T) for varying
the number of equations m for the two values v = 2m, v = 3m in characteristics
q = 2, q = 3 and q = 16. The corresponding graphs can be shown in figures 2,
3, and 4. In Table 1, we computed the line that approximately fitted the points
from our experiments for the extended Gröbner attack on UOV.

From these experiments, we conclude that the number m of equations should
be higher than 38 for characteristic 2 and higher than 24 for characteristic 3 both

36 An Braeken, Christopher Wolf, and Bart Preneel

Log time for v=2*m, q=2, and varying m

0

2

4

6

T

11 12 13 14 15
m

Log time for v=2*m, q=2, and varying m

0

2

4

6

T

11 12 13 14 15
m

Fig. 2. Graphs for logarithmic time in function of m with v = 2m, resp. 3m, and q = 2.

Log time for v=2*m, q=3, and varying m

6

8

10

12

T

10 10.5 11 11.5 12 12.5 13
m

Log time for v=3*m, q=2, and varying m

6

8

10

12

T

10 10.5 11 11.5 12 12.5 13
m

Fig. 3. Graphs for logarithmic time in function of m with v = 2m, resp. 3m, and q = 3.

Log time for v=2*m, q=16, and varying m

–5

0

5

10

15

T

3 4 5 6 7 8
m

Log time for v=3*m, q=16, and varying m

–5

0

5

10

T

3 4 5 6 7
m

Fig. 4. Graphs for logarithmic time in function of m with v = 2m, resp. 3m, and
q = 16.

for n ≥ 2m and n ≥ 3m in order to obtain a security level greater than 264.
In this paper, we do not predict the behaviour of the curve for q = 16 as the
graph does not clearly convert to a straight line. To see its behaviour for m > 8
– and therefore, to make predictions, we would need to run more experiments.
Unfortunately, the current computational power available does not permit this.

These lowerbounds on the minimum number of equations are much higher
than the bounds proposed in [13] and later in [2]. All experiments in this sec-

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 37

Table 1. Equations representing the time complexity of the extended Gröbner Attack.

v q Equation Base

v = 2m q = 2 -17.53+1.62m 3.07
v = 3m q = 2 -16.66+1.60m 3.03
v = 2m q = 3 -23.17+2.74m 6.68
v = 3m q = 3 -21.85+2.67m 6.36

v = 2m q = 16 -21.14+4.82m 28.20
v = 3m q = 16 -21.89+5.03m 32.63

tion were carried out with MAGMA and used its implementation of Faugere’s
algorithm F4 [6]. Given the fact that his algorithm F5 [7] has a far better run-
ning time, we expect the attack to be even more efficient with this method.
Unfortunately, we do not have access to an actual implementation of it.

3.4 Exploiting the Existence of Affine Subspaces

This attack extends the attack of Youssef and Gong [29] against the Imai and
Matsumoto Scheme B [16]. It exploits the fact that a cryptosystem can be ap-
proximated by several affine equations. The original attack was designed for
fields of even characteristic. The attack described in this section is generalised
to all characteristics.

In a nutshell, the attack assembles several points belonging to the same affine
subspace W . Having w points x1, . . . , xw ∈ Fn for which UOV is affine, a function
F (x) = Ax + b can be used to describe the output of UOV. To launch the
attack, we first compute the corresponding yi = UOV (xi) for 1 ≤ i ≤ w and
yi ∈ Fm. With this knowledge, we can determine for any given y′ if it belongs
to the subspace W and – if this is the case – compute a vector a ∈ Fw with y′ =∑w

i=1 aiyi. As the subspace W is affine, we can then determine the corresponding
x′ ∈ Fn as

∑w
i=1 aixi. In the following section, we will present several ways of

computing the points xi, i.e., to determine one or several subspaces W .
For UOV, there exist approx. qv subspaces of dimension o = m on which UOV

is affine. Moreover, all these subspaces are disjunct. If we can find (o+1) linearly
independent points of the same subspace, we completely broke the scheme for
this subspace. If we find fewer, e.g., w points, we have at least covered qw points
of the corresponding subspace W . Repeating the search for (o + 1) points qv

times, we break the whole scheme. Note that it is sufficient for the signature
forgery of a given y ∈ Fm if we know one subspace W for which y ∈ W .
Therefore, we do not need to know all qv subspaces but only a small number for
forging any given signature x ∈ Fn with high probability.

In order to search for points which are in the same subspace, we use the
following observation: if the 3 points R1, R2, R3 ∈ Fn are in the same affine
subspace with respect to UOV, the following condition has to be satisfied:

UOV (R1) − UOV (R2) − UOV (R3) + UOV (−R1 + R2 + R3) = 0 . (1)

38 An Braeken, Christopher Wolf, and Bart Preneel

Input: point R1, public key P of UOV
Output: A pair (R1, R2) of points which belong to the same affine subspace
repeat

pass ← 0
trials ← 0
R2 ← Random(Fn)
δx ← −R1 + R2

repeat
trials ← trials + 1
R3 ← Random(Fn)
R4 ← δx + R3

δy ← UOV (R1) − UOV (R2) − UOV (R3) + UOV (R4)
if (δy = 0) then pass ← pass + 1

until (pass > threshold) or (trials > qv · threshold)
until (pass > threshold) or (trials > qv · threshold)
OUTPUT (R1, R2)

Fig. 5. Algorithm to find a pair of points in the same affine subspace for which UOV
is affine.

Using this property, we can determine points of the same affine subspace repeat-
ing the heuristic algorithm described in Figure 5 several times. The correspond-
ing algorithm for even characteristic has been described in [29].

Repeating this algorithm often enough for a fixed point R1, we obtain (o + 1)
linearly independent points of one affine subspace. The complexity of the algo-
rithm will be roughly O(q2v), according to the probability that R1, R2 and R3

belong to the same affine subspace.
This attack can be improved using the relation

UOV (R1) + UOV (R2) − UOV (R1 + R2) = b (2)

for some fixed b ∈ F
m. As soon as we find a triple (R1, R2, R3) ∈ (Fn)3 of

points which yield δy = 0 in Algorithm 5, we use (2) to check if all of them
yield the same constant b. If this is the case, we can conclude with probability
q−2m that all three points belong to the same subspace. At this point, we can
change to another algorithm: instead of checking triples, we now check pairs. If
the pair (R1, R

′) yields the constant b, we found a new candidate belonging to
the same subspace as R1. Using the other points found so far, we can increase
the probability that R′ is genuine further by q−m with each point we try. We
summarise this algorithm:
1. Find a triple (R1, R2, R3) ∈ (Fn)3 which satisfies (1).
2. Using this triple and (2), determine the value of the constant b ∈ Fm.
3. Use (2) to find more points R′ ∈ Fn in the same subspace.
4. As soon as (o + 1) points R ∈ Fn are known, determine the value of the

matrix A by Gaussian elimination.
The running time of this algorithm is O(q2v + (n− v)qv) on average as we chose
the points R2 and R3 independently from the point R1 in the first step and R′

also independently from R1. The overall running time to find a total of (o + 1)
points in the same subspace becomes therefore O(q2v) as O(oqv) is negligible in
comparison to O(q2v).

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 39

We are able to speed up Algorithm 5 from Section 3.4 if we can spend some
memory and also have m > v, i.e., we do have “enough” equations in relation
to the dimension v of the affine subspaces to be found. This is certainly not true
for UOV – here we have typically m < v or even m < 2v (see above). However,
for other multivariate quadratic systems, this condition may hold. In particular,
it is the case for System B of Matsumoto-Imai, cf [29]. We therefore present
two ways of speeding up Algorithm 5. We explain it for the example of UOV to
simplify the discussion but want to stress that it also works against System B
or any other multivariate quadratic system which has affine approximations of
small dimension.

Triple-Algorithm If we can spend O(kq2v) of memory for some small k (e.g.,
10 ≤ k ≤ 20), we can achieve a time/memory-tradeoff for finding all subspaces in
UOV by using the following technique. In the precomputation phase, we evaluate
random pairs (R1, R2) ∈R Fn × Fn using (2). The probability for each of these
pairs to have points in the same affine subspace is q−v (birthday paradox).
Moreover, we know that two points in the same subspace will yield the same
constant b ∈ Fm. On the other hand, two points which are not in the same
subspace will yield a random value v ∈ Fm. The probability for each of these
values to occur is q−m with m > v. As we were dealing with a total of kq2v

pairs, we do not expect two random values v1, v2 ∈ F
n to occur more often than,

say, k
2 times. Therefore, all values occurring more often than k

2 are constants
b with very high probability. Checking the points in the corresponding pairs
using (1), we can even distinguish pairs of different subspaces which yield the
same constant b. After this precomputation step, we can check for each point
R′ ∈ Fn to which of the qv subspaces it belongs, using O(qv) computations on
average. After O(oqv) trials, we have (o + 1) points for each subspace and can
therefore determine the matrix A ∈ Fn×n and the vector b for the affine equation
F (x) = Ax + b. The above algorithm can be summarised as follows:

1. Use Equation 2 on kq2v random pairs (R1, R2) ∈R Fn ×Fn and store triples
(b, R1, R2) ∈ Fm × (Fn)2

2. Check for each value bi ∈ Fm how often it occurs in the stored list
3. For values bi which occur at least k

2 times, use (1) to check whether the
corresponding triples belong to the same affine subspace.

4. Use (2) to determine more points R′ ∈ Fn for each of these subspaces.

The overall running time of this algorithm is O(q2v). However, the drawback
is that we need an amount of memory that grows exponentionally with 2v.
Therefore, it seems to be advisable to use the following algorithm O(qv) times
instead. This leads to the same overall running time but requires less memory,
namely only O(qv).

Pair-Algorithm Using a similar idea, we can also reduce the running time for
finding the corresponding subspace W for one given point R1 ∈ Fn. However,
we need O(kqv) memory for some small k, e.g., 10 ≤ k ≤ 20. In this setting, we

40 An Braeken, Christopher Wolf, and Bart Preneel

evaluate pairs (R1, R2) for randomly chosen R2 ∈R Fn and store the correspond-
ing triples (b, R1, R2) ∈ F

m× (Fn)2. With a similar argument as for the previous
algorithm, we expect a random distribution for the values bi ∈ Fm – except if
the pair (R1, R2) for given R1, R2 is in the same vector space W . This event
occurs with probability q−v. Therefore, we can assume that the correct value b
will occur k times on average and with very high probability at least k

2 times. As
soon as we have found this value b, we can look for more values R′ which satisfy
(2). The overall running time of this algorithm is O(kqv) for the first step and
O(oqv) for the second step, i.e., O(qv) in total. However, the drawback is that
we need an amount of memory that grows exponentionally with v.

Both speed-ups do no longer work for v,m = n
2 as the “gap” between q−v

and q−m no longer exists. Therefore, we cannot distinguish anymore between
values b and random values.

The advantage of the affine approximation attack against UOV is that we
know exactly the structure of these affine subspaces. In addition, all these affine
subspaces are disjunct. This was not the case for System B from Matsumoto-
Imai [16]. Theoretical predictions were therefore more difficult.

4 Conclusions

In this paper, we studied the security of the public key signature scheme “Un-
balanced Oil and Vinegar” which has been proposed by Kipnis, Patarin, and
Goubin in [12] and extended in [13]. We studied its resistance against a modified
Gröbner basis attack and concluded that the case 2m < v < 4m is particularly
vulnerable. In addition, we demonstrated that the choice of parameters in [13,
Sect. 14] for Example 4 is insecure under an attack from the previous paper [12].
Moreover, we implemented and simulated an attack using Gröbner bases against
the other parameter sets described in [13, Sect. 14]. We conclude that they allow
a security-level of 264, as claimed in the paper. However, as we did not have
access to the algorithm F5 [7], we recommend to be cautious as this algorithm
is expected to have a rather small running time, therefore, its effect on UOV
should be studied more carefully.

In addition, we showed that the constant part of the affine transformation
S does not contribute to the overall security of UOV – at least not for attacks
which recover the private key.

Finally, we described a new attack against cryptosystems which have small
affine subspaces and applied it against UOV. In particular, parameters with qv

small are shown to be very vulnerable against this type of attack. The attack is
very elegant and the occurrence of affine subspaces is a very natural property.
We therefore expect it to be efficient against other multivariable cryptographic
schemes which have a high number of affine subspaces.

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 41

Acknowledgements

We want to thank Jacques Patarin (University of Versailles, France) for fruitful
discussions about UOV and pointing out the algorithm from Meier and Tacier
[2] to us. In addition, we want to thank Willi Meier (FH Aargau, Swiss) for
answering our questions about the Meier-Tacier algorithm.

This work was supported in part by the Concerted Research Action (GOA)
GOA Mefisto 2000/06, GOA Ambiorix 2005/11 of the Flemish Government and
the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. The first author was mainly supported by the FWO.

Disclaimer

The information in this document reflects only the author’s views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. Computational Algebra Group, University of Sydney. The MAGMA Computational
Algebra System for Algebra, Number Theory and Geometry.
http://magma.maths.usyd.edu.au/magma/.

2. Nicolas Courtois, Louis Goubin, Willi Meier, and Jean-Daniel Tacier. Solving un-
derdefined systems of multivariate quadratic equations. In Public Key Cryptography
– PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages 211–227.
David Naccache and Pascal Paillier, editors, Springer, 2002.

3. Nicolas Courtois, Louis Goubin, and Jacques Patarin. Quartz: Primitive specifica-
tion (second revised version), October 2001.
https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/quartz v21-
b . zip, 18 pages.

4. Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFlashv3, a fast asymmetric
signature scheme – Revised Specificatoin of SFlash, version 3.0, October 17th 2003.
ePrint Report 2003/211, http://eprint.iacr.org/, 14 pages.

5. Nicolas T. Courtois, Magnus Daum, and Patrick Felke. On the security of HFE,
HFEv- and Quartz. In Public Key Cryptography – PKC 2003, volume 2567 of
Lecture Notes in Computer Science, pages 337–350. Y. Desmedt, editor, Springer,
2002. http://eprint.iacr.org/2002/138.

6. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139:61–88, June 1999.

7. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5). In International Symposium on Symbolic and Algebraic
Computation – ISSAC 2002, pages 75–83. ACM Press, July 2002.

8. Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of Hidden Field
Equations (HFE) using gröbner bases. In Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 44–60. Dan Boneh,
editor, Springer, 2003.

42 An Braeken, Christopher Wolf, and Bart Preneel

9. Michael R. Garay and David S. Johnson. Computers and Intractability – A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979. ISBN 0-
7167-1044-7 or 0-7167-1045-5.

10. Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosystem.
In Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 44–57. Tatsuaki Okamoto, editor, Springer, 2000.

11. Masao Kasahara and Ryuichi Sakai. A construction of public key cryptosystem for
realizing ciphtertext of size 100 bit and digital signature scheme. IEICE Trans.
Fundamentals, E87-A(1):102–109, January 2004. Electronic version:
http://search.ieice.org/2004/files/e000a01.htm#e87-a,1,102.

12. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar sig-
nature schemes. In Advances in Cryptology – EUROCRYPT 1999, volume 1592 of
Lecture Notes in Computer Science, pages 206–222. Jacques Stern, editor, Springer,
1999. Extended version: [13].

13. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes – extended version, 2003. 17 pages, citeseer/231623.html, 2003-
06-11, based on [12].

14. Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar signature
scheme. In Advances in Cryptology – CRYPTO 1998, volume 1462 of Lecture Notes
in Computer Science, pages 257–266. Hugo Krawczyk, editor, Springer, 1998.

15. Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryp-
tosystem. In Advances in Cryptology – CRYPTO 1999, volume 1666 of Lecture
Notes in Computer Science, pages 19–30. Michael Wiener, editor, Springer, 1999.
http://www.minrank.org/hfesubreg.ps or
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html.

16. Tsutomu Matsumoto and Hideki Imai. Algebraic methods for constructing asym-
metric cryptosystems. In Algebraic Algorithms and Error-Correcting Codes, 3rd
International Conference, AAECC-3, Grenoble, France, July 15-19, 1985, Proceed-
ings, volume 229 of Lecture Notes in Computer Science, pages 108–119. Jacques
Calmet, editor, Springer, 1985.

17. Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for ef-
ficient signature verification and message-encryption. In Advances in Cryptology
– EUROCRYPT 1988, volume 330 of Lecture Notes in Computer Science, pages
419–545. Christoph G. Günther, editor, Springer, 1988.

18. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. ISBN 0-8493-8523-7, online-version:
http://www.cacr.math.uwaterloo.ca/hac/.

19. T. Moh. A public key system with signature and master key function. Communi-
cations in Algebra, 27(5):2207–2222, 1999. electronic version at
http://citeseer/moh99public.html.

20. Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In Advances in Cryptology – CRYPTO 1995, volume 963 of Lecture
Notes in Computer Science, pages 248–261. Don Coppersmith, editor, Springer,
1995.

21. Jacques Patarin. Asymmetric cryptography with a hidden monomial. In Advances
in Cryptology – CRYPTO 1996, volume 1109 of Lecture Notes in Computer Science,
pages 45–60. Neal Koblitz, editor, Springer, 1996.

A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes 43

22. Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of asymmetric algorithms. In Advances in Cryptology –
EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Science, pages
33–48. Ueli Maurer, editor, Springer, 1996. Extended Version:
http://www.minrank.org/hfe.pdf.

23. Jacques Patarin. The oil and vinegar signature scheme. presented at the Dagstuhl
Workshop on Cryptography, September 1997. transparencies.

24. Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and multivari-
ate polynomials. In International Conference on Information Security and Cryp-
tology 1997, volume 1334 of Lecture Notes in Computer Science, pages 356–368. In-
ternational Communications and Information Security Association, Springer, 1997.
Extended Version: http://citeseer.nj.nec.com/patarin97trapdoor.html.

25. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, October 1997.

26. Ilia Toli. Cryptanalysis of HFE, June 2003. arXiv preprint server,
http://arxiv.org/abs/cs.CR/0305034, 7 pages.

27. Christopher Wolf, An Braeken, and Bart Preneel. Efficient cryptanalysis of
RSE(2)PKC and RSSE(2)PKC. In Conference on Security in Communication Net-
works – SCN 2004, Lecture Notes in Computer Science, September 8–10 2004. 14
pages.

28. Bo-Yin Yang and Jiun-Ming Chen. Rank attacks and defence in Tame-like multi-
variate PKC’s. Cryptology ePrint Archive, Report 2004/061, 23rd March 2004.
http://eprint.iacr.org/, 21 pages.

29. Amr M. Youssef and Guang Gong. Cryptanalysis of Imai and Matsumoto scheme B
asymmetric cryptosystem. In Progress in Cryptology – INDOCRYPT 2001, volume
2247 of Lecture Notes in Computer Science, pages 214–222. C. Pandu Rangan and
Cunsheng Ding, editors, Springer, 2001.

Hold Your Sessions:
An Attack on Java Session-Id Generation

Zvi Gutterman and Dahlia Malkhi

School of Engineering and Computer Science,
The Hebrew University of Jerusalem,

Jerusalem 91904, Israel
{zvikag,dahlia}@cs.huji.ac.il

Abstract. HTTP session-id’s take an important role in almost any web
site today. This paper presents a cryptanalysis of Java Servlet 128-bit
session-id’s and an efficient practical prediction algorithm. Using this
attack an adversary may impersonate a legitimate client. Through the
analysis we also present a novel, general space-time tradeoff for secure
pseudo random number generator attacks.

Keywords: pseudo random number generators, space-time tradeoff,
HTTP, web security

1 Introduction

At the root of many security protocols, one finds a secret seed which is supposedly
generated at random. Unfortunately, truly random bits are hard to come by, and
as a consequence, often security hinges on shaky, low entropy sources. In this
paper, we reveal such a weakness in an important e-commerce building block,
the Java Servlets engine.

Servlets generate a session-id token which consists of 128 hashed bits and
must be unpredictable. Nevertheless, this paper demonstrates that this is not
the case, and in fact it is feasible to hijack client sessions, using a few legitimately-
obtained session-id’s and moderate computing resources.

Beyond the practical implication to the thousands [16] of servers using
Servlets, this paper has an important role in describing an attack on a pseudo-
random-number-generator (PRNG) based security algorithm and in demonstrat-
ing a nontrivial reverse engineering procedure. Both can be used beyond the
Servlets attack described henceforth.

Web server communication with clients (browsers) often requires state. This
enables a server to “remember” the client’s already visited pages, language pref-
erences, “shopping basket” and any other session or multi-session parameters.
As HTTP [9] is stateless, these sites need a way to maintain state over a state-
less protocol. Section 2 describes various alternatives for implementing state over
HTTP. However, the common ground of all these schemes is a token traversing
between the server and the client, the session-id.

The session-id is supported by all server-side frameworks, be it ASP, ASP.net,
PHP, Delphi, Java or old CGI programming. Session-id’s are essentially a random

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 44–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hold Your Sessions: An Attack on Java Session-Id Generation 45

value, whose security hinges solely on the difficulty of predicting valid session
id’s. HTTP session hijacking is the act where an adversary is able to conduct
a session with the web server and pretend to be the session originator. In most
cases, the session-id’s are the only means of recognizing a subscribing client
returning to a site. Therefore, guessing the unique session-id of a client suffices
to act on its behalf.

Driven by this single point of security, we set out to investigate the security of
session-id’s deployments, and as our first target, we have analyzed the generation
of session-id’s by Apache Tomcat. Apache [2] is an open-source software projects
community. The Apache web server is the foundation’s main project. According
to Netcraft [16] web study of more than 48, 000, 000 web servers, the Apache
web server is used by more than 67% of the servers and hence the most popular
web server for almost a decade.

At the time of this writing (April 2004), sites such as www.nationalcar.com,
www.reuters.com, www.kodak.com and ieeexplore.ieee.org are using Java
Servlets on their production web sites.

In many of these sites, the procedure for an actual credit-card purchase re-
quires a secure TLS [8] sessions, separated from the “browsing and selection” ses-
sion. However, this is not always the case. For example, Amazon’s patented [10]
“one-click” checkout option permits subscribing customers to perform a purchase
transaction within their normal browsing session. In this case, the server uses a
client’s credit-card details already stored at the server, and debits it based solely
on their session-id identification.

In either of these scenarios, an attacker that can guess a valid client id can
easily hijack the client’s session. At the very least, it can obtain client profile data
such as personal preferences. In the case of a subscriber to a sensitive service
such as Amazon’s “one-click”, it can order merchandize on behalf of a hijacked
client.

Briefly, our study of the generation of Java Servlets’ session-id’s reveals the
following procedure. A session-id is obtained by taking an MD5 hash over 128-
bits generated using one of Java’s pseudo-random number generators (PRNG).
Therefore, two attacks can be ruled out right away. First, a brute force search of
valid session-id’s on a space of 2128 is clearly infeasible. Second, various attacks
on PRNGs, e.g., Boyar’s [6] attack on linear congruential generators, fail because
PRNG values are hidden from an observer by the MD5 hashing.

Nevertheless, we are able to mount two concrete attacks. We first show a
general space-time attack on any PRNG whose internal state is reasonably small,
e.g., 264–280. Our attack is resilient to any further transformation of the PRNG
values, such as the above MD5 hashing. Using this attack, we are able to guess
session-id’s of those Servlets that use the java. util .Random package, whose
internal PRNG state is 64-bits. Beyond that, our generic PRNG attack is the
first to use space-time tradeoffs, and may be of independent interest.

Our second attack is on the seed-generation algorithm of Java Servlets. Using
intricate reverse engineering, we show a feasible bound for the seed’s entropy.
Consequently, we are able to guess valid session-id’s even when Servlets are

46 Zvi Gutterman and Dahlia Malkhi

using the java. security .SecureRandom secure PRNG (whose internal state is
160 bits).

The paper is organized as follows. In Section 2 we describe the HTTP state
mechanisms. In Section 3 we describe and analyze the Tomcat session-id gener-
ation algorithm. Java hashCode() study is presented in Section 4. In section 5
we present our attacks on the session-id. We conclude in Section 6.

2 Stateful Web Browsing

HTTP is a client/server protocol designed for a light-weight and quick delivery
of content from servers to clients. HTTP is stateless, in that a server responds to
a client’s request with a hypertext page and then breaks down the connection.
Any additional request from the same client requires the client to build a new,
seemingly unrelated connection with the server. Statelessness is part of what
makes HTTP efficient and fast to implement.

However, a typical client/server interaction entails repeated interaction. For
example, often a web page contains links to images and multi-media objects.
Obtaining each one of these is done in a separate TCP/IP connection to the
server, but they appear to be part of a single prolonged interaction. The new
HTTP standard [9] (HTTP 1.1) is already in place, allowing multiple retrievals
instead of a single one. Nevertheless, it is not meant to keep connections up
through an involved client/server interaction, which could span multiple screens
and forms. And it does not address clients returning to the same site after days
have passed.

Cookies [13] change this situation. Introduced originally by Netscape and
thereafter adopted widely and as part of HTTP 1.1, cookies were designed with
the intention of solving the vexing problem of keeping long-lived relationships
between web servers and their clients. Cookies extend the HTTP protocol by al-
lowing a server to hand a client certain information to keep. The client’s browser
automatically hands the server this information, the cookie, the next time it
connects to the same site. Cookies are used by servers to store a variety of in-
formation, from client membership identification to complete shopping basket
contents. They greatly enhance the web browsing experience, allowing a client
to be recognized by a server, accumulate shopping selections, and so on.

An analog mechanism to cookies is URL rewriting. In this framework, instead
of sending a fixed web page to the client the web server encodes the session
information as part of the page, e.g., within embedded URL links. URL rewriting
requires less from the client side, but as far as this paper is concerned is the same
session mechanism and our attack is equally applicable to it.

From a privacy point of view, it should be noted that the cookies mechanism
and likewise, URL re-writing were designed to prevent leakage of information
between sites, in that a cookie is returned only to the site that originally sent
it. In this way, a server may only obtain information that it already had about
a user. Unfortunately, there are examples of cookie-abuse, e.g., the infamous
doubleclick.com site, that collects client clicking-profile through its advertise-
ments on partner sites.

Hold Your Sessions: An Attack on Java Session-Id Generation 47

This work, however, is concerned with a different weakness of cookies, and
more generally, with stateful web browsing. True, recognizing a returning client
through cookies alleviates the need to tediously re-type a user name and a pass-
word upon each connection establishment to a site. Unfortunately, it also poses a
web-identity theft potential: If one can guess a valid cookie, one can impersonate
another client. As simple as that.

There is hardly a limit to what an attacker may obtain through such identity
theft: She may be able to learn private user data, such as names and addresses.
She could collect clients’ profile information, such as preferences and shopping
history. She could penetrate access protected sites. In a particularly vicious at-
tack, using Amazon’s “one-click” option, she might be able to order merchandize
on behalf of impersonated customers. Essentially, there are limitless hazards.

3 Tomcat Session-Id Generation Algorithm

In this section, we describe our study of Tomcat 5 [1], the Apache Java imple-
mentation for Servlet 2.4 [19] and JSP 2.0 [14] specifications. We study version
5.0.18, which was released on January 2004. Our full study involves additional,
and more challenging reverse-engineering of relevant modules of the JVM which
are written in native-code. This part is deferred to the next section.

The remainder of this section describes the Tomcat session-id generation
scheme, which includes two parts. One is a session-id allocation used during
the set up of each new session. The second is an initialization phase that is
executed once when the server comes up. We hint about potential weaknesses as
we go along. The description omits unimportant implementation details such as
irrelevant Java class names.

3.1 Allocation

We begin by examining the algorithm for generating new sessions-id’s dur-
ing the set up of new sessions. Session-id’s are allocated within method
generateSessionId(), and consists of 16 bytes, or equivalently, 128 bits.

Inside generateSessionId(), the allocation consists of the following steps:

1. Method getRandomBytes fills a sixteen bytes array. If /dev/urandom exists
the bytes are read from it. If not, a Java pseudo-random number generator
(PRNG) is invoked. Method getRandom() is invoked to obtain a handle
either to Java.Security .SecureRandom or Java.Util .Random. Figures 1,2
presents these functions.

2. The 16 bytes obtained from getRandomBytes are mixed using a digest func-
tion which is MD5 [18] by default.

3. The result is the 128-bit session-id. For convenience, it is converted into 32
ASCII characters, where each 4 bits are mapped to a matching character
between ’0’ . . . ’F’.

48 Zvi Gutterman and Dahlia Malkhi

xn :=

{
initial seed n = 0
(25, 214, 903, 917 × xn−1 + 11) mod (248 − 1) n > 0

Fig. 1. java.util.Random. xn holds the PRNG next output.

xn := SHA1(sn) n = 0

sn :=

{
initial seed
(xn−1 + sn−1 + 1) mod 2160

n = 0
n > 1

Fig. 2. java.security.SecureRandom. xn holds the PRNG next output and sn is the
internal state.

3.2 Initialization

Given that generateSessionId() employs a Java PRNG for allocating session-id’s,
the next thing to investigate is how it is initialized inside the Tomcat package. We
had initially hoped to find a simple weakness, e.g., initialization by a hard-wired
constant, which would render session-id’s easily predictable. Such weakness were
found frequently in the past, e.g, [12].

That is not the case here, and the seeding of the PRNG within Tomcat is an
intricate, thoughtful process, consisting of the following steps.

1. Set C = System.currentTimeMillis(). This is 64 bit field measuring the time
since January 1, 1970 in milliseconds.

2. Set Entropy = toString(org.apache.catalina. session .ManagerBase.java).
The value of Entropy is equal to the Java String org.apache.catalina.session.
ManagerBase.java@X. The prefix of the term is always the same, and the
part following the @ sign is variable. Section 4 describes our study of the X
value and how we can predict it.

3. Set Seed = f(C,Entropy). The function f is depicted in Figure 3. It takes
the Entropy and spreads it byte by byte (letter by letter), with 8 bytes per
row (or 64 bits per row). It computes a xor of all the rows, xor’ed also with
C, yielding a 64-bit value.

4. Seed is used for initializing the PRNG.

Despite the intricate seeding process above, this is the important part where
our attack will take place. As we show below, we can indeed predict with reason-
able effort the Seed value. As all other steps are deterministic and known from
the server code, once we find the Seed we can predict each session-id value. This
will be later presented in Section 5.

4 Java Object.toString() Algorithm

The Java Object.toString() function is used by the initialization algorithm pre-
sented in Section 3 for generating the PRNG seed. In this section, we take a

Hold Your Sessions: An Attack on Java Session-Id Generation 49

Fig. 3. The function f() employed to generate a seed out of C, the time in milliseconds,
and Entropy, a string containing org.apache.catalina . session .ManagerBase.java@X,
where X is the hashCode 32 bit field marked as scattered area.

close look at Object.toString(), and show that this value is actually a very low
entropy source.

The Java Object method toString returns the value
getClass (). getName()+”@”+Integer.toHexString(hashCode()); Hence, the re-
turned string has a fixed prefix, which is the class name, followed by the @
sign and a 32 bit field which is the result of the method hashCode.

The function java.lang.Object.hashCode() is a native one, which requires
each Java virtual machine implementor to bring its own implementation.

According to the Java documentation the hashCode method must have the
following properties.

1. Whenever it is invoked on the same object more than once during an exe-
cution of a Java application, the hashCode method must return the same
integer (32 bit).

2. If two objects are equal they return the same hashCode
3. it is not required that two object which are not equal return distinct values

of hashCode.
4. As much as is reasonably practical, the hashCode method defined by class

Object does return distinct integers for distinct objects (this is typically
implemented by converting the internal address of the object into an integer,
but this implementation technique is not required by the Java programming
language).

It is important to note here that reading the Java documentation may lead
the reader (and maybe also the Tomcat implementor) to think that the hashCode
is hard to predict.

50 Zvi Gutterman and Dahlia Malkhi

However, this is not always the case. In particular, the Microsoft Windows
platform [15] does not follow the recommendation to use the pointer address
space in generating the hashCode. Instead the JVM uses a linear congruential
generator (LCG) to get the different hash codes. Using the IDA-Pro [7] disas-
sembler we get

hashCode(object) :=
{

(a× xn + b) mod m first object access
hash is given from a history table otherwise

(1)
We can now predict the hashCode value using the LCG values. What we

need to know is the server boot sequence where our object will be called. This
information should usually be available for an attacker, which in most cases
can deploy the same server and verify the class loading sequence. Even when
this procedure is hard to perform an adversary can narrow the valid range into
256 possible values with only few trials. This brings the Java hashCode into 8
entropy bits or less, which is far lower entropy than the presumed 32 bits and
will take part in our general attack scheme.

5 Attacks

We remind the reader that the goal of an attacker in our settings is to predict
legitimate session-id’s that are allocated to clients, and impersonate these clients
over HTTP connections with servers.

We describe two attacks. The first one is a generic attack on any PRNG
whose internal state is feasibly small, e.g., 264–280. The second is an attack on
the seeding procedure of Java Servlets.

5.1 Space-Time Tradeoffs for PRNG Attacks

A space-time tradeoff attack is the notion of using a large space of pre-computed
values in order to reduce the time of an online attack. Ours is the first general
space-time tradeoff on secure PRNG based protocols. In the following, we first
present the general attack and then tailor it for the session-id’s case. Our at-
tack is a direct adaptation of a space-time tradeoff attack on stream-ciphers,
recently demonstrated by Biryokuv and Shamir in [4]. For completeness, we first
introduce space-time tradeoffs for block and stream ciphers.

Background. A block cipher space-time attack lets an adversary tune the
values of memory M and online attack time T for a given key space K of size
N = |K|. Hellman [11] introduced this method with a TM2 = N2 tradeoff.

Hellman’s space-time tradeoff block cipher attack is made of two parts. We
first conduct a pre-computation stage to set the memory tables, with computa-
tion cost P = N . The second stage includes the online attack. Given a cipher-text
y the online stage returns the key k ∈ K such that y = Ek(p), where E is the
encryption function and p is a pre-chosen plain text.

The pre-computation includes building several tables of chains as follows. For
the first element in the chain, we first randomly select a key k0 ∈ K. The second

Hold Your Sessions: An Attack on Java Session-Id Generation 51

chain element is k1 = R(Ek0(p)), where R(y) ∈ K is an arbitrary reduction
function which maps a cipher text block to a valid key value. The reduction
function can be simple truncation, or a selection of |k| bits from the cipher text
y, but as explained below, it is important that R is uniformly distributed over K.

A chain of length t contains repeated invocations of R(Eki(p)). We mark SP
and EP as the start and end points. The resulting length t chain, with reduction
function R() is as follows:

SP := k0 −→ k1 := R(Ek0 (p)) −→ . . . −→ EP := kt−1 := R(Ekt−2 (p)) (2)

The goal is to cover K with the different chains and with low or no collisions at
all. Each chain starts with a different SP , and we assume that the application
of R(Ek()) over the initial random starting points is like a random selection of
elements from K.

We can repeat the chain building procedure and make m such chains. In
order to complete our attack these chains must cover K. However, some collisions
will occur, i.e., a chain will occasionally reach a key that already appears in a
previous chain. Once such a collision occurs, the remainder of the chain, which is
computed in a deterministic way, will repeat the same, already computed chain.
Furthermore, when existing chains cover as little as N/t out of the N elements,
the probability for collision in the next t elements is a non negligible constant.

Hellman suggested to solve the collision problem using r different reduction
functions R1, . . . , Rr. Each reduction function is chosen as a different selection
of |k| bits out of the cipher text y. For each reduction function we build a table
with m chains, each of length t, such that mt = N/t (the point beyond which
producing additional chains is wasteful). The different reduction functions ensure
that even when an element occurs in two different tables, the next element in
the chains will be different in the two tables, hence the total number of collisions
is low.

The assignment of m, t and r such that mtr ≥ N solves both our collision
and coverage concerns. In the rare occasion that during our pre-computation
two chains end with the same EP we select the longer chain.

An additional important technique which can improve the table lookup per-
formance is due to Rivest. Instead of stopping after t steps we can stop at a
Distinguished Point which is a point with some easy to verify property, e.g.,
all its log2 t first bits are zero. As Ri(Ek(p)) is distributed uniformly, the av-
erage chain length will be t. In this way, instead of looking up each key value
in the pre-computed endpoints, we will only need to look for values which are
Distinguished Points.

Here, care should be taken to avoid loops. When building a chain, there is
a small probability of a loop, in which case we may never reach a distinguished
point. In this rare event we just keep any such loop chain. The additional com-
putational and storage complexities are negligible.

The second part of the space-time attack is the online attack. At this stage
we assume that r tables with m different chains, each of length t were computed
and stored. Each such chain is stored as a pair of SP and EP.

52 Zvi Gutterman and Dahlia Malkhi

Given a cipher text y′ we can now find a key k
′

such that Ek′ (p) = y′ as
follows. The idea is to find the chain in which y′ appears, and then find y′’s
predecessor in the chain, which is k′. We locate the chain by setting k0 = Ri(y),
and then repeatedly applying Ri(Ekj (p)) with the r different reduction functions.
Once getting to a distinguished point we look it up in the i-th table. If matched,
we found the chain represented as SP,EP. We can now repeat the Ri(Ekj (p))
invocation starting from SP, until we find k′ such that y′ = Ek′(p).

Neglecting logarithmic factors, we can conclude Hellman’s space-time attack
for block ciphers with online cost T = tr (though only r expensive table lookups),
space M = mr, pre-computation P = trm = N . Together, these yield TM2 =
N2.

Hellman’s attack can be quite practical. In fact, Oechslin demonstrates in [17]
a very feasible implementation of Hellman’s space-time attack for breaking Win-
dows passwords. That work is based on the fact that the key space is rather small,
237, and on the fact that Windows password encryption uses the password to
encrypt a fixed known plain text.

That said, Hellman’s method has two main drawbacks. The first is the pre-
computation cost, which is equal to the entire key space size N . The second is
that it is a chosen plain-text attack. All the table values were computed using a
chosen plain text and are relevant only for attacking that plain text cipher.

Recently, Biryokuv and Shamir [4] extended space-time attacks for stream
ciphers. A stream cipher works as a state machine that is initialized with a secret
key and outputs a keystream sequence that contains bits from the internal state
of the machine. Encryption consists of xor-ing the keystream bits with the plain
text. Once we find a correct state of the stream cipher machine, not necessarily
the initial key or the first state but any state, the remainder of the stream
cipher output is predictable. Hence, the search space K is no longer the initial
key space but rather the internal stream cipher state. That is, given a state s
of the stream cipher, the next keystream k(s) (of some pre-determined length)
produced by the stream cipher is determined. Now, given a known plain-text p′

and its cipher-text c′, we can determine whether k(s) is the key producing the
cipher and conclude that the stream-cipher’s internal state is s. This may be
done for any known plain-text, not a specifically chosen plain-text p as before.

Hellman’s attack framework presented above is used in a similar way here
with one important change. The chain step maps an internal state of the stream
cipher into the appropriate keystream it generates, and from the keystrem is
reduces back using a reduction function to an internal state. The rest of the
parameters – N , m, t, r and the distinguished points can be used in the same
way.

When working on stream ciphers, Biryukov and Shamir explain how the two
main drawbacks for block ciphers are solved. Cipher stream encryption is used
as a one time pad for the plain text. Therefore, given any exposed plain-text, we
recover the keystream with which it is encrypted. This keystream is the same for
a given internal state of the streamcipher, regardless of the plaintext it encrypts.
Given an exposed cipher text, we first (trivially) find the keystream that encrypts

Hold Your Sessions: An Attack on Java Session-Id Generation 53

it, and then we attempt to recover the stream-cipher’s internal state that results
in this keystream. Hence, this is a known plain text attack and not a chosen
plain text attack as in the block cipher case. The distinction is huge, since we
can use a one-time preparation stage for all future attacks on the stream-cipher.

We can also use this fact to reduce the search space using multiple known
plain-texts. Let us denote the number of exposed cipher texts given to the ad-
versary by D. Since every exposed cipher text (equivalently, every keystream)
corresponds to some unknown internal state of the stream cipher, we can find
one of the keystreams with good probability if we cover only N/D of the states
space. Thus, if an adversary can expose D cipher texts, it is enough to pre-
compute only N/D of the states space. We therefore set r = t/D instead of
r = t, and compute only r different tables.

The space-time tradeoff for stream ciphers can now be written as time T =
Dtr = t2 (as in Hellman’s attack), space M = mt/D, where mt2 = N which is
better than before, and likewise the pre-computation P = N/D is lower. We get
a tradeoff of TM2D2 = N2, which is much better than the block-cipher tradeoff
of TM2 = N2.

Session-Id’s Space-Time Tradeoffs Attacks on pseudo random generators
can be addressed in a similar way to stream ciphers, thus we attack the PRNG
internal state using a space-time attack. Below, we demonstrate the attack using
the specific example of the Tomcat session-id generation algorithm. However, the
same principles can be applied for other uses of the bits produced by a PRNG.

We can describe a PRNG as a state machine with states x1, x2, x3, In any
state xn, some bits are made available as output, and then the PRNG shifts to
state xn+1. Consequently, there is a deterministic sequence of bits b1, b2, b3, . . .
produced by the PRNG from any particular state xn onward. For example, in
java. util .Random(), the bits produced by the LCG state xn are xn itself. We
denote f(xn) the deterministic 128-bit sequence produced by the PRNG from
state xn. The Tomcat session-id is generated as follows:

y := session id := MD5(f(xn)) (3)

Although the MD5 transformation (or any other transformation, for that
sake) effectively masks the values of the PRNG, we do not need to break MD5 in
order to predict session-id’s. The session-id generation algorithm is deterministic
and has no additional entropy sources along the algorithm. In this sense, our
PRNG algorithm is similar to the stream-cipher where the encryption is based
on the internal state cipher. Once we break any session-id value and reverse it
to its state value xn we can generate the entire series of next values.

Assume for the sake of demonstration that states are 64 bit values. The space-
time attack we employ targets the “key space” K of PRNG internal states. Thus,
N = |K| = 264.

We denote the transformation of Equation 3 by F . Given a value y, our goal
is to find x such that x = F−1(y). We do this with a time-space tradeoff as
follows. The start-point of chains are m randomly selected values k representing

54 Zvi Gutterman and Dahlia Malkhi

states of the PRNG. The chaining step from ki to ki+1 is the transformation
F followed by reduction functions Rj , j = 1..r. We use for Rj a truncation
and a simple xor in order to reduce the 128 bits F values into a 64 bits internal
PRNG states: Ri(y0−127) := y0−63⊕i where i ∈ {1 . . . r}. As before, we maintain
r tables, each containing m chains, and each terminating with a distinguished
end-point (e.g., whose lowest log2 t bits are zero). For each chain, we store only
the start and the end points.

Suppose we are able to obtain D distinct valid session-id’s. In practice, col-
lecting session-id’s from a working web-server is easy, and even a large number of
sessions requested by the same client over a short time frame may not raise sus-
picion. Note that, these session-id’s need not be consecutive, which is important
in the framework of current distributed clients accessing a web server.

Our attack is then mounted as follows: For each of the D known session-
id’s y, and for j = 1..r, apply Rj(F ()) repeatedly until a distinguished point
is reached, and search for it in the j’th pre-made table. If found, then go back
to the start point, and reach the state xi such that F (xi) = y. From state xi

onward, the session-id’s generated by this server are predictable.
Letting r = t/D as in the stream cipher attack, we obtain a tradeoff of

P = N/D pre-computation time, space M = mt/D where mt2 = N , and on-line
computation time T = t2. This yields TM2D2 = N2.

For concrete numbers, we assume that it is possible to obtain D = 1000 valid
session id’s without raising suspicion. We put t = 222. Then our space of N = 264

PRNG states can be broken with storage M = 264−22−10 = 232, and an on-line
computation time T = t2 = 244, both very feasible today with a moderately
powerful workstation.

5.2 The Seed Attack

Some installations of Java Servlets use the java. security .SecureRandom PRNG,
rather than java. util .Random. As outlined in Section 4 above, SecureRandom
has an internal state of 160 bits. Hence, the general PRNG attack we described so
far is not feasible against it. Here, we attack the protocol using another weakness,
a low-entropy seed.

According to the description in Section 3, the space of seeds for the PRNG
is determined by combining the range of possible clock readings in milliseconds
(counted from 1970), and a value set by the method hashCode(). A day has
about 226 milliseconds and a year has about 235. Hence, the entropy of this
value is between 26 to 35, depending on how accurately we can estimate a server’s
uptime. As for the value of hashCode(), Our reverse engineering of this method
constrains it to within a small set of values, typically less than 128 different
ones. Thus, the effective total range size of seeds is bounded between 233 and
242. Certainly this is a space that can be searched exhaustively with a moderate
computation power, especially if the uptime of a server is estimated relatively
accurately.

While this is a weakness of the session-id generation algorithm, in itself it
does not lead to a practical attack. The difficulty is in verifying the correctness

Hold Your Sessions: An Attack on Java Session-Id Generation 55

of a guessed seed. The naive way is to involve the server. That is, one can guess
a seed value, generate one or several “session-id’s” originating with the seed
value, and attempt to “hijack” a customer session with this session id. As this
procedure involves an interaction with the server for each guessed value, even
for for a space of 232 values it is very time consuming. Moreover, it would be
very easy to detect that such an attack is going on at the server side. The server
can protect itself against repeated connection attempts from the same domain
over a short period of time by slowing down its response or refusing recurring
attempts, and thus thwart the entire attack.

Our strategy is therefore to mount an almost entirely off-line attack as follows:

1. Get a valid session-id by connecting to the attacked web server. Mark this
valid session-id as Sid.

2. Set T as an upper limit for the server uptime, since the last reboot. The
value is in milliseconds.

3. Set hash min, hash max as the lower and upper limit on the JVM
hashCode(). Mark Δhash = hash max− hash min.

4. Set sid min, sid max as the minimal and maximal number of valid session-
id’s assigned so far by the attacked server. Mark Δsid = sid max− sid min.

5. Generate all the possible session-id’s using all the possible T × (hash max−
hash min) seeds, and for each potential seed, producing (sid max−sid min)
session-id’s. Compare Sid against this space, until a valid seed is revealed.

The above ignores the variability that different architectures and JVM ver-
sions may have in generating hashCode() values. If that is not known by the
attacker, this should incur a multiplicative factor over the range of possible
hashCode() values.

In the above attack, the size of the potential sessions-id’s space is 2E , where
the exponent E is given by the following sum:

E = log2(T) + log2(Δhash) + log2(Δsid) (4)

If we take fairly conservative values, a server up-time of a month, hash values
range 128, and valid session-id range 32, 000 we get E = 29 + 7 + 15 = 51. This
is certainly a searchable space.

6 Conclusions

This paper presents a practical attack on one of today’s main E-commerce build-
ing blocks, the session-id. Our attack shows that the presumably secure 128 bits
can be broken using 264 or less computation steps. Our attack can be mounted
using limited computing resources, and has the same communication fingerprint
of a legitimate user accessing the attacked web server. Hence, it is difficult for a
server to detect and stop such an ongoing attack.

We implemented the attack and tested it under distilled environment con-
ditions. In our case, we set up a Tomcat server and obtained session-id’s from
it. We staged our attack on the same machine, so any uncertainty about Java

56 Zvi Gutterman and Dahlia Malkhi

versions and platforms was completely alleviated. Given the session-id’s we ob-
tained, we were able to predict the PRNG sequence within a day of CPU time.
We did not try our attack on working servers to avoid legal complications.

Beyond the attack on session-id generation, we present a general scheme with
a space-time tradeoff for attacking pseudo random number generators. To the
best of our knowledge, this is the first space-time tradeoff for PRNG attacks. The
attack may have important ramifications on presumably secure uses of PRNGs,
such as BlumBlumShub [5], and emphasizes the need for deploying these with a
large internal state.

This paper proves again a common cryptographers’ knowledge. The complex-
ity of a security scheme does not make it secure; nor is it made secure by using
building blocks such as one way functions and secure pseudo random number
generators.

It is important to note that Tomcat bring web server administrator the option
to harden the session-id generation. The simple option is to add secret entropy to
the seed. Other options require either using a different random number generator
or a different session-id scheme.

The Tomcat web server is an open-source project. As such, it is an easy
target for analysis, through both dynamic and static reverse engineering. The
equivalent “binary only” attack requires more sisyphean work, usually through
the low level assembly code. In a sense, this is the Achilles’ heel for the security
aspects of open source code. We believe that this is true only for the short term.
In the long term, an open source project can benefit from a large audience testing
its security, while closed projects might wrongly be presumed secure just because
their study is complex. One such example is the GSM encryption scheme, which
was considered secure for long, but was recently proven not so [3].

Acknoledgments

The authors wish to thank Tzachy Reinman and Yaron Sella for reviewing early
drafts of the paper.

References

1. Apache Software Foundation (ASF). Apache jakarta tomcat. http://jakarta.

apache.org/Tomcat.

2. Apache Software Foundation (ASF). Apache web server. http://www.apache.org.

3. E. Barkan, E. Biham, and N. Keller. Instant ciphertext-only cryptanalysis of gsm
encrypted communication. In Proceedings of CRYPTO’2003, LNCS 2729, pages
600–616, 2003.

4. A. Biryukov and A. Shamir. Cryptanalytic time/memory/data tradeoffs for
stream ciphers. In Lecture Notes in Computer Science 1976, proceedings of ASI-
ACRYPT’2000, pages 1–13, 2000.

5. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. 15:364–383, 1986.

Hold Your Sessions: An Attack on Java Session-Id Generation 57

6. J. Boyar. Inferring sequences produced by a linear congruential generator missing
low-order bits. Journal of Cryptology, 1(3):177–184, 1989.

7. Datarescue. Ida: The interactive disassembler. http://www.datarescue.com/

idabase/.
8. T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, Internet Engi-

neering Task Force, January 1999.
9. R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. J. Leach, and

T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2616, Internet En-
gineering Task Force, June 1999.

10. Hartman. Method and system for placing a purchase order via a communications
network, September 1999. U. S. patent 5,960,411.

11. M. E. Hellman. A cryptanalytic time-memory trade off. IEEE Trans. Inform. The-
ory, IT-26:401–406, 1980.

12. M. Heuse. Websphere cookie and session-id predictability, 10 2001. http://www.
securiteam.com/windowsntfocus/6Q0020K2UU.html.

13. D. Kristol and L. Montulli. HTTP state management mechanism. RFC 2965, In-
ternet Engineering Task Force, October 2000.

14. M. Roth. JSR 152: JavaServer PagesTM 2.0 Specification, November 2003. http:
//jcp.org/aboutJava/communityprocess/final/jsr152/index.html.

15. Sun Microsystems. The java virtual machine version 1.4.2. http://java.sun.com/
j2se/1.4.2/index.jsp.

16. Netcraft. Market share for top servers across all domains august 1995 - march 2004.
http://news.netcraft.com/archives/web_server_survey.html.

17. P. Oechslin. Making a faster crytanalytical time-memory trade-off. In Advances
in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Sci-
ence, Santa Barbara, California, USA, August 2003. 23rd Annual International
Cryptology Conference, Springer. ISBN 3-540-40674-3.

18. R. Rivest. The MD5 message-digest algorithm. RFC 1321, Internet Engineering
Task Force, April 1992.

19. Y. Yoshida. JSR-000154 JavaTM Servlet 2.4 Specification (Final Release), Novem-
ber 2003. http://jcp.org/aboutJava/communityprocess/final/jsr154/index.

html.

Update on SHA-1�

Vincent Rijmen1,2 and Elisabeth Oswald1

1 IAIK, Graz University of Technology,
Inffeldgasse 16a, A-8010 Graz, Austria

{vincent.rijmen,elisabeth.oswald}@iaik.tugraz.at
2 Cryptomathic A/S,

Jægerg̊ardsgade 118, DK-8000 Århus C, Denmark

Abstract. We report on the experiments we performed in order to as-
sess the security of SHA-1 against the attack by Chabaud and Joux [5].
We present some ideas for optimizations of the attack and some proper-
ties of the message expansion routine. Finally, we show that for a reduced
version of SHA-1, with 53 rounds instead of 80, it is possible to find col-
lisions in less than 280 operations.

Keywords: hash functions, cryptanalysis

1 Introduction

In [5], Chabaud and Joux presented a method to find collisions for the original
Secure Hash Standard (here denoted by SHA-0). We present here the results
of our attempts to apply their attack to SHA-1, as well as some extensions to
the approach described in [5]. For a good understanding of our results, it is
recommended to study [5] very carefully. Space restrictions do not permit us to
copy all the important details of the original attack.

In the case of SHA-0, the message expansion shows a certain weakness, which
allows to reduce the search space for difference patterns to a size which makes
exhaustive search possible. This weakness has been fixed in SHA-1 and conse-
quently, it was necessary to design and implement more intelligent searching
algorithms.

Furthermore, we investigated the use of alternative linear approximations
for the non-linear functions. We also optimized the equation solving step, which
allows to solve larger systems of equations. Finally, we analyzed in much detail
the complexity of an attack on a version of SHA-1 reduced to 53 rounds.

The appendix lists some expanded message words with very low weight, which
we can’t use in an attack.

In parallel to our research, Biham and Chen [1] improved the complexity of
the Chabaud-Joux attack on SHA-0. The same authors announce forthcoming
results on SHA-1 in [2]. Saarinen describes attacks on block ciphers based on
SHA-1 in [6].

� This research was supported financially by the A-SIT, Austria and by the BSI,
Germany.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 58–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Update on SHA-1 59

2 SHA-0 and SHA-1

The SHA family of hash functions is described in [4]. Briefly, the hash functions
consist of two phases: a message expansion and a state update function. These
are explained in more detail in the following. SHA-0 and SHA-1 share the same
state update, but SHA-0 has a simpler message expansion. Both SHA-0 and
SHA-1 consist of 80 rounds. Because we will mainly study reduced versions
here, we make the number of rounds variable, and denote it by R.

2.1 Message Expansion

In SHA-1, the message expansion is defined as follows. The input is a 512-bit
message, denoted by a row vector m. The message is also represented by 16
32-bit words, denoted by Mt, with t = 0, 1, . . . , 15.

In the message expansion, this input is expanded linearly into R 32-bit words
Wt, also denoted as the 32R-bit expanded message word w. The words Wt are
defined as follows.

Wt = Mt, t = 0, . . . 15 (1)
Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪ 1, t > 15 (2)

The message expansion of SHA-0 is very similar, but uses:

Wt = Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16 . (3)

Consequently, a bit at a certain position i in one of the words of w only depends
on the bits at corresponding positions in the words of m.

2.2 State Update Transformation

The state update transformation starts from a (fixed) initial state for 5 32-bit
registers and updates them in R steps, using one word Wt in every step. Figure 1
illustrates one step of the state update function. The function f depends on the
round number: rounds 1 to 20 use the IF-function, rounds 41 to 60 use the
MAJ-function.

fif(X,Y, Z) = XY ⊕XZ (4)
fmaj(X,Y, Z) = XY ⊕XZ ⊕ Y Z (5)

The remaining rounds use 3-input XOR. A round constant Kt is added in every
round. There are four different constants; one for rounds 1 to 20, one for rounds
21 to 40, one for rounds 41 to 60 and one for rounds 61 to 80. After the last
application of the state update transformation, the initial register values are
XOR-ed to the final values, and the result is outputted.

60 Vincent Rijmen and Elisabeth Oswald

�
≫ 2

+

�

+

�

+

�

+

�
�• ≪ 5 �

f �

�•

�•

�•
� Kt

� Wt

� � � � �

Fig. 1. One step of the state update function of SHA-1.

3 The Basic Attack Strategy

The attack on SHA-0 can be summarized as follows [5].

1. Firstly, a linear approximation of SHA-0 is constructed.
2. Secondly, collisions for the linear approximation are determined.
3. Thirdly, a collision for the real SHA-0 is searched among the collisions for

the linear approximation.

We now discuss each of these steps and point out the differences between SHA-0
and SHA-1 relevant to the attack. The next sections also go into more detail for
step 2 and step 3.

3.1 Determining a Linear Approximation

In this step, we replace all non-linear components by linear approximations.
For our purposes, a linear function λ is a ‘good’ approximation for a non-linear
function γ if the relation

γ(x⊕ δ)⊕ γ(x) = λ(x⊕ δ) ⊕ λ(x) = λ(δ) (6)

holds for relatively many values of x and δ. The complexity of the third step of
the attack is influenced by the quality of the approximation.

Both in SHA-0 and SHA-1, there are 3 non-linear components. Firstly, there
is the addition modulo 232. This component is approximated by a bitwise ex-
clusive-or of the inputs, i.e. the carry is ignored.

Next are the functions fif(X,Y, Z) and fmaj(X,Y, Z). The functions operate
bitwise, hence the approximation should also be a bitwise function. The authors

Update on SHA-1 61

of [5] approximate both functions by a bitwise exclusive-or of the 3 inputs. Since
the f -function used in half of the rounds is exactly given by this exclusive-or,
this approximation results in 80 iterations of the same round. On the other hand,
the quality of this approximation seems sub-optimal. We discuss some ideas for
improvements in Section 4.

3.2 Finding Collisions for the Linear Approximation

Finding a collision for a linear approximation of SHA-1 is not difficult. Whether
two messages will produce a collision or not, doesn’t depend on the value of the
messages, but depends on the value of their difference only. Collision-producing
values of the difference can be found as the solutions of an under-determined set
of linear equations.

The difficulty lies in the additional constraints imposed by the third step of
the attack. We want to find a collision that minimizes the work of the third step.
The explanation of the third step will show that the most important requirement
is that the weight of the difference should be small.

The problem of finding a collision-producing difference with small weight can
be translated to the problem of finding a codeword with small weight in a linear
code.

Since the message expansion is linear, there is a 512 × 32R matrix E such
that w = mE. The message expansion starts with a copy of the message, cf. (1).
Hence, there is a 512× 32(R− 16) matrix F such that E can be written as:

E512×32R =
[
I512×512 F512×32(R−16)

]
. (7)

For the linearized state update transformation, we can construct a 32R × 160
matrix A that produces the output vector o from the expanded message w.

o = wA = mEA (8)

A message word m corresponds to a collision-producing difference if and only if
o = 0. Hence, the set of collision-producing differences is a linear code with check
matrix H160×512 = (EA)t. The dimension of the code is k = 512 − 160 = 352.
The length of the code is n = 512. Later on, it becomes more useful to look at
the expanded words w, which are code words of a code with k = 352, n = 32R
and check matrix

H ′
(32R−352)×32R =

[
At|160×32R

F t|(32R−512)×512 I(32R−512)×(32R−512)

]
. (9)

In [5] an additional condition is imposed on the differences. The differences
are constructed as the sum of a perturbation word wp and 5 correction words
wc,i, i = 1, 2, 3, 4, 5. The authors require that wp and the 5 wc,i are all codewords.
It can be seen that this is a sufficient, but not a necessary condition for the sum
to be a codeword as well.

This restriction of the search space corresponds to adding 160 rows to the
check matrix of the code. It allows to zoom in quickly on the optimal solutions

62 Vincent Rijmen and Elisabeth Oswald

in the case of SHA-0. In the case of SHA-1, our experiments indicate that this
restriction on the search space leads to suboptimal results (cf. Table 4). Hence,
we can’t apply the perturbation-correction technique. A small side-effect is that
the weights we quote in this paper, are always weights for the full codeword,
which makes it difficult to compare them to the results in [5], where the authors
quote the weights of the perturbation words only.

3.3 Finding the Collisions for the Real SHA-1

We now have a difference that produces collisions in the linear approximation of
SHA-1. In the non-linear components of SHA-1, the propagation of the differ-
ences may be the same as in the linear case, or it may be different, depending
on the value of the message bits.

In order to find a collision, we want to find the values of the inputs such that
the difference propagation in SHA-1 corresponds to the difference propagation
in the linear approximation. This condition results in the equations that we have
to solve in order to find the collision.

For example, consider the addition of a register At and a word Wt of the
expanded message. Let the result be denoted by Bt. Assume now that in both
inputs, the differences are equal to zero except for one bit, at position i. It is
clear that in the linear approximation of the addition, the result has difference
zero. In Bt, the result of the real addition, the difference will be zero for the
bits with positions 0, 1, . . . , i. The difference at positions above i will be zero if
and only if the carry into position i + 1 has difference zero. Writing down the
equations for the carry results in the following requirement on the value of the
operands: the bits at position i in At and Wt should be of opposite value.

If we look at the equations generated during the attack, we typically get
groups of several equations involving the same state bit(s). It is then often pos-
sible to rework some of the equations and obtain linear equations involving bits
of the expanded message words only. Linear equations in the expanded message
words can easily be translated into conditions on the message words. They can
easily be solved.

Besides the additions, also the approximations of fif and fmaj result in con-
ditions. These conditions can be derived from Table 1. If the functions are ap-
proximated by 3-input XOR, then the first 3 and the 7th equation have to be
copied from the table (output difference equal to 1 is desired), while the 4th,
5th and 6th have to be inverted (output difference equal to 0 is desired). The
conditions result in equations involving bits from one, two or three registers.
Some special attention should go to the 4th equation for fif , respectively the 7th
equation for fmaj. For instance, when fif is approximated by 3-input XOR, this
input difference is problematic. It was this observation that led us to the idea of
considering other linear approximations. This is discussed in Section 4.

Update on SHA-1 63

Table 1. Conditions to have output difference equal to 1.

fif(x, y, z)

δ equation

001 x = 0
010 x = 1
100 y + z = 1
011 always
101 x + y + z = 1
110 x + y + z = 0
111 y + z = 0

fmaj(x, y, z)

δ equation

001 x + y = 1
010 x + z = 1
100 y + z = 1
011 y + z = 0
101 x + z = 0
110 x + y = 0
111 always

4 Other Linear Approximations

4.1 Motivation

Approximation of both fif and fmaj by 3-input XOR has as main advantage that
the resulting approximation for SHA-1 has 80 identical rounds. There appear to
be also a couple of disadvantages related to this choice:

1. For δ = 011, the output bit of the linear approximation flips with probability
0, but the output bit of fif flips with probability 1. Hence there is no input
pair that produces the same behavior in fif and the approximation.

2. 3-Input XOR has good diffusion properties (avalanche effect). Other linear
functions on the 3 inputs have worse diffusion properties.

The first property complicates the search for a suitable collision in the linear
approximation of SHA-1, because the situation where δ = 011, has to be avoided.
The restriction of the search space corresponds to the addition of non-linear
conditions. The second property makes it more difficult to prevent a difference
from expanding; more equations have to be added. Therefore we considered also
other linear approximations, which produce different equations, that can also be
generated by copying and inverting equations from Table 1.

Table 2 lists for both f -functions and the 7 possible linear functions with 3
inputs the probability that the output bit flips for the given input difference. By
definition, the output flip probability for a linear function is either 0 or 1; it can
be computed by simply evaluating f(δ).

The quality of the approximations differs only for the values δ = 011 and
δ = 111. For these values of δ, the output bit of fif , respectively fmaj, flips
with probability 1. The first disadvantage explained above can be avoided by
selecting a linear approximation that does not have output bit flip probability
equal to 0 when the non-linear function has output flip probability equal to 1.
The second criterion for the quality of an approximation is the diffusion: an
approximation with bad diffusion is more likely to result in low-weight collision-
producing differences.

For the function fif , the approximations y, z, x ⊕ y and x ⊕ z appear to be
better choices. For the function fmaj, the approximations x, y and z have equally
good flip probabilities as x⊕ y ⊕ z, and less avalanche.

64 Vincent Rijmen and Elisabeth Oswald

Table 2. The probability that the output bit changes value when the input bits are
changed according to the input difference, for the two f -functions and for all the linear
approximations.

δ output flip probability
fif fmaj linear functions

xy ⊕ xz xy ⊕ xz ⊕ yz x y z x ⊕ y x ⊕ z y ⊕ z x ⊕ y ⊕ z

000 0 0 0 0 0 0 0 0 0
001 1/2 1/2 0 0 1 0 1 1 1
010 1/2 1/2 0 1 0 1 0 1 1
011 1 1/2 0 1 1 1 1 0 0
100 1/2 1/2 1 0 0 1 1 0 1
101 1/2 1/2 1 0 1 1 0 1 0
110 1/2 1/2 1 1 0 0 1 1 0
111 1/2 1 1 1 1 0 0 0 1

4.2 Results

Despite the expected improvements in the search for low-weight codewords, the
results obtained with alternative linear approximations turn out to be inferior.
We tried out replacing the approximations by any of the other linear functions
with the same or better flip probabilities. For versions with more than 25 rounds,
we never obtained better results than with the original approximation.

We can think of two possible explanations. The use of alternative approxi-
mations for the Boolean functions results in an approximation for SHA-1 that
has two different round transformations (at least), since the 40 rounds using the
3-input XOR clearly can’t be approximated by another linear function. Hence
we obtain a linear code with less regularity.

As we explain in Section 5, we use heuristic algorithms to search for low-
weight codewords. A first explanation would be that the decrease in regularity
causes an increase in the minimum distance of the code. But this almost implies
that the round transformation of SHA-1 would show some kind of weakness,
which results in a lower minimum distance of the corresponding linear code.
An alternative explanation is that the decrease in regularity makes the heuristic
search algorithms perform worse: the low-weight words are still there, but we
can’t find them. In that case, perhaps better search algorithms can be found.

5 Searching for Low-Weight Codewords

There is no fast, deterministic algorithm known that can find low-weight code-
words in arbitrary linear codes. Different approaches are possible:

1. Exhaustive search.
2. Apply heuristic techniques that can be used to find low-weight codewords in

random linear codes, e.g. [3].
3. Exploit the structure of the code and obtain an analytical solution.

Update on SHA-1 65

In the case of SHA-0, it is possible to define a restricted search space that is
very likely to contain the best codewords. Since the restricted search space has
dimension 216, exhaustive search is possible. For SHA-1, it seems impossible to
define a search space small enough to allow an exhaustive approach.

It seems that the dimensions we are dealing with here, are still out of reach
for the algorithms discussed in [3]. Secondly, as follows from Section 4, we are
clearly not in the situation of a purely random code.

The best strategy seems to combine the second and the third approach.
For instance, we know that the codewords are produced by an LFSR. If w =
(W0,W1, . . .) is a codeword, then also (rot(W0), rot(W1), . . .) is a codeword. More
specific knowledge of the LFSR allowed us to define other strategies resulting in
words with a weight probably very close to the minimal weight for R < 50. For
larger values of R, the problem is still open.

5.1 Our Search Algorithm

Our heuristic search algorithm is based on an observation that resulted from
experiments on SHA-1 versions with R ≤ 25. First, we introduce the following
notation. Let the bitwise OR operation be denoted by ∨, then we define the
following shorthand notation.

W∨ =
R−1∨
i=0

Wi (10)

Observation 1. For codewords w = (W0,W1, . . . ,WR−1) with low Hamming
weight, the Hamming weight of W∨ is low. In other words: codewords with low
Hamming weight have the property that the non-zero bits usually occur at the
same positions in all the words Wi.

The observation was derived from experiments, but we believe it is also in agree-
ment with intuition. Differences introduced in the state have to be compensated
for and eventually canceled. This requires that the differences in the expanded
message words occur in ‘bands’. Algorithm 1 uses the observation to perform an
accelerated search. The results obtained with the algorithm are shown in Table 3.
Further restriction of the search space is possible by using Observation 2.

Observation 2. The non-zero bits in W∨ occur at consecutive positions, or
‘almost’ consecutive positions.

By ‘occur in almost consecutive positions,’ we mean that there are at most
two runs of ones, separated by a run of one or two zeroes. Motivated by this
observation, we remove the inner for-loop of Algorithm 1, which results in an
important speedup. Algorithm 2 uses a parameter u, which denotes the sum of
the lengths of the runs of ones and the one or two zeroes in between.

By starting with the large values of u and moving to the lower ones, we save
on the operations needed to compute the new check matrix of the code and its
rank. The algorithm starts an exhaustive search when the dimension of the code

66 Vincent Rijmen and Elisabeth Oswald

Table 3. Minimal weights of collision-producing codewords for reduced versions of
SHA-1. Produced with Algorithm 1.

R Hwt(W∨) Hwt(w)

20 3 18
25 6 34
30 6 38
31 6 38
32 6 38
33 6 38
34 6 38
35 8 76
36 8 76
37 8 80
38 8 100
39 8 112
40 10 128

gets below a parameter D. Algorithm 2 was executed for various numbers of
rounds. In the cases where there were several values for u that resulted in a code
with less than 2D codewords, it was always the case that the codeword with the
lowest weight was among those with the smallest u. The results are presented in
Table 4.

In order to optimize the complexity of the attack, the first 15 message words
are pre-computed such that the conditions in the first 15 rounds are satisfied.
Hence, the weight in the first 15 rounds is not relevant. Therefore, the results in
Table 4 do not take into account the first 15 rounds (neither in Hwt(w), nor in
u). The results indicate that a shortcut attack finding a collision is feasible for
versions reduced to 35–40 rounds. In Section 6, we examine the complexity of
the attack for a version reduced to 53 rounds.

5.2 Observations on the Message Expansion

We applied Algorithm 2 also to the naked message expansion: dropping the con-
dition to have a collision and simply searching for low-weight expanded message
words. The results are given in Table 5. Since the words are obtained with a
heuristic algorithm, it is not proven that these are the best words. Indeed, in
Appendix A, we give three 80-rounds expanded message words with Hamming
weight 44 (including the first 15 rounds), obtained by other means. Neverthe-
less, the values in the table give some indication about the ‘penalty’ in additional
weight coming from the requirement to produce a collision.

For all the words listed in this paper, it can be observed that the rounds that
contribute the most to the total weight, are situated at the beginning and at
the end. Furthermore, the rounds with the lowest weight aren’t situated exactly
in the middle, but slightly more towards the end of the word. This can be
explained by the fact that the diffusion of the message expansion goes slower in
the backwards direction.

Update on SHA-1 67

Algorithm 1

Input: H /* check matrix of the code */
n /* length of the code */

For h = 1 to 32 do
For all values of W∨ with Hamming weight h do

Copy H to He

Extend He with R × (32 − h) rows corresponding to the conditions on
the bits of W0, W1, . . . at the positions where W∨ = 0

If rank(He) < n then
Perform an exhaustive search for low-weight codewords
Output the word with lowest weight and exit

Algorithm 2

Input: H /* check matrix of the code */
n /* length of the code */
D /* exhaustive search space bound */

For u = 32 to 1 do
Extend H with R rows corresponding to the conditions on

the bits of W0, W1, . . . at position h − 1
If n − rank(H) < D then

Perform an exhaustive search for low-weight codewords
Output the word with lowest weight

Table 4. Hamming weights of the codewords with smallest weights, for reduced ver-
sions of SHA-1. Produced with Algorithm 2. The weight of the first 15 rounds is not
taken into account. The fourth and the fifth column list the results obtained when the
search space is restricted to the perturbation-correction codewords used with success
on SHA-0 in [5]. The second and the third column give the results for an unrestricted
search space.

full search space restricted space

R u Hwt(w) u Hwt(w)

35 6 35 16 127
40 8 67 17 178
45 8 81 17 215
50 8 83 18 258
51 8 86
53 8 95
54 10 145
55 10 157
60 12 167
65 12 226
70 12 276
75 13 278
80 14 333 21 552

68 Vincent Rijmen and Elisabeth Oswald

Table 5. Weight of low-weight codewords for the message expansion of SHA-1. The
weight includes the weight of the first 15 rounds. Produced with Algorithm 2.

R u Hwt(m)

50 3 20
60 3 31
70 4 41
80 5 51

The diffusion of the message expansion (2) is determined by the feedback
polynomial and the rotation. If we visualize the expanded message as a 32 ×R
rectangle, then the ‘influence region’ of a bit occurring at position i in round t
can be visualized as two triangles meeting at the point (t, i). This is illustrated in
Figure 2. In the forward direction, the upper line of the triangle has a slope of 3
rounds per bit. The lower line has a slope of 16 rounds per bit. In the backwards
direction, the influence region is bounded by the horizontal line and a line with
a slope of 16 rounds per bit. This region expands much slower.

Consequently, a good strategy to find a low-weight codeword is to place a
word with weight 1 somewhere in the middle, add 7 or 8 zero words before
and after, and compute the other rounds backwards and forwards. Since the
diffusion backwards goes slower, it is better to compute more rounds backwards
than forwards.

31

i

0 t 79

Fig. 2. Diffusion in the SHA-1 message expansion. A bit at position i in round t
influences only bits in the shaded triangles.

6 Experiments with a 53-Round Characteristic

Table 4 shows that the weight of our best 54-round codeword is significantly
larger than the weight of our best 53-round codeword. Therefore, we decided
to use a version of SHA-1 reduced to 53 rounds to apply the third step of the
attack: generating (and possibly solving) the equations. The codeword we used,
is listed in Table 6.

During the generation of equations, a new problem became apparent. In the
original attack on SHA-0, the modular additions have input differences in 0, 1

Update on SHA-1 69

Table 6. Low-weight codeword for SHA-1 reduced to 53 rounds.

00000000 80000030 00000020
00000000 20000001 80000001
00000000 C0000012 C0000002
40000000 60000041 40000040
00000008 40000032 40000002
40000002 20000003 80000002
90000040 C0000042 80000040
50000011 E0000042 80000002
10000068 E0000002 80000000
E0000002 00000002 80000000
F0000022 00000040 80000000
70000051 80000001 00000000
10000010 80000060 00000000
60000041 80000001
C0000022 40000042
80000003 C0000040
E0000052 40000042
C0000040 00000000
E0000052 80000040
20000003 00000003

or 2 of the input words. However, our codeword results also in situations where
3 input words have a non-zero difference at the same position. In this situation,
a carry to the next position can’t be avoided. Hence, there is no input that
can behave the same in the linear approximation and in the real SHA-1. An
exception to this rule is of course formed by the most significant bit position,
where the carry simply overflows. It turns out that we are lucky enough that all
the situations with 3 non-zero input differences occur at the same bit position,
hence we can choose a rotated version of the codeword where all cases happen
at the most significant bit position.

In order to achieve the best results, we decided to avoid the ‘IF -rounds’ of
SHA-1, by defining the start of our reduced version at round 21. Doing this, we
get a total of 166 equations. From these equations, we can isolate 62 linear equa-
tions in bits of the message words only, leaving 104 equations. 33 equations apply
to the first 15 rounds, and can be solved explicitly during the pre-computation
phase, leaving 71 equations for the main step. Using the most naive methods for
solving non-linear Boolean equations, these equations can be solved with a com-
plexity that is close to but below that of 271 hash function evaluations. Hence,
in principle it is possible to find collisions for the reduced version, faster than by
the birthday paradox.

7 Conclusions

In this paper we presented the results from our attempts to extend the Chabaud-
Joux attack to SHA-1. The application to SHA-1 results in several complications,

70 Vincent Rijmen and Elisabeth Oswald

which were not obvious from the start. We proposed several strategies for opti-
mization of the attack and examined their effectiveness.

As a result, we have described a theoretical shortcut attack on a version of
SHA-1 reduced to 53 rounds. The shortcut attack becomes feasible for SHA-
1 reduced to 35–40 rounds. It is also clear that we are still far from even a
theoretical attack on the full SHA-1.

Furthermore, we presented several observations that came out of our exper-
iments. We hope that they might be of use for other cryptographers trying to
break SHA-1.

Acknowledgements

The authors wish to thank Carlos Cajal for assistance with the programming,
and Antoon Bosselaers for helpful discussions.

References

1. Eli Biham, Rafi Chen, “Near-Collisions of SHA-0,” Advances in Cryptology – Crypto
’04, LNCS, M. Franklin, Ed., Springer-Verlag, to appear.

2. Eli Biham, Rafi Chen, “Near-Collisions of SHA-0,” Cryptology ePrint Archive, Re-
port 2004/146, 2004, version of June 22, 2004, http://eprint.iacr.org/.

3. Anne Canteaut, Florent Chabaud, “A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511,” IEEE Transactions on Information Theory, Vol. 44,
No. 1, January 1998.

4. Federal Information Processing Standard 180-2, Secure Hash Standard, August 1,
2002.

5. Florent Chabaud, Antoine Joux, “Differential Collisions in SHA-0,” Advances in
Cryptology – Crypto ’98, LNCS 1462, H. Krawczyk, Ed., Springer-Verlag, 1998,
pp. 56–71.

6. Markku-Juhani O. Saarinen, “Cryptanalysis of Block Ciphers Based on SHA-1 and
MD5,” Fast Software Encryption 2003, LNCS 2887, T. Johansson, Ed., Springer-
Verlag, 2003, pp. 36–44.

A Some Low-Weight Codewords

Below is a codeword for 80 rounds, with weight 51. It is the word corresponding
to the entry in Table 5. The weight includes the weight of the first 15 rounds.
The ordering is from top to bottom, and then from left to right.

Update on SHA-1 71

10000000 40000000 40000000 00000000
20000000 40000000 20000000 40000000
00000000 40000000 00000000 00000000
30000000 00000000 00000000 00000000
40000000 00000000 40000000 00000000
41000000 20000000 60000000 00000000
40000000 00000000 00000000 00000000
40000000 50000000 40000000 00000000
10000000 40000000 40000000 00000000
40000000 50000000 00000000 00000000
00000000 00000000 00000000 00000000
30000000 40000000 40000000 00000000
00000000 00000000 00000000 00000000
21000000 60000000 00000000 00000000
40000000 00000000 00000000 00000000
40000000 40000000 40000000 00000000
50000000 40000000 00000000 00000000
20000000 20000000 40000000 80000000
00000000 00000000 00000000 00000000
30000000 40000000 40000000 00000000

The absolutely smallest weight we found for the 80-round message expan-
sion, is 44. We found 3 such codewords, given below. The 3 codewords have a
large amount of Wi in common. The first codeword starts top left and ends at
the bottom of the fourth column, the second codeword is shifted over 4 Wi’s,
the third one over a further two. The words have W∨ = C0000FF, C0001FF,
C0003FF and Hwt(W∨) = 10, 11, 12.

80000000 80000000 00000001 00000002 00000050
00000000 00000000 00000000 00000000 00000100
C0000000 00000001 00000001 00000000 00000010
00000001 00000001 00000000 00000004 00000000
00000001 80000000 00000001 00000000 00000210
00000001 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000008
00000000 00000001 00000000 00000000
80000000 80000001 00000000 00000004
00000000 00000000 00000000 00000010
40000001 00000001 00000000 00000000
00000001 00000001 00000000 00000000
40000001 00000000 00000000 00000020
00000000 00000000 00000000 00000000
00000001 00000001 00000000 00000014
00000000 00000000 00000000 00000040
80000001 00000000 00000000 0000000C
00000000 00000000 00000000 00000000
00000001 00000001 00000000 00000080
00000001 00000000 00000000 00000010

A Fast Correlation Attack
on the Shrinking Generator�

Bin Zhang1,2, Hongjun Wu1, Dengguo Feng2, and Feng Bao1

1 Institute for Infocomm Research, Singapore
2 State Key Laboratory of Information Security,

Graduate School of the Chinese Academy of Sciences,
Beijing 100039, P.R. China

zhangbin@mails.gscas.ac.cn

{hongjun,baofeng}@i2r.a-star.edu.sg

Abstract. In this paper we demonstrate a fast correlation attack on
the shrinking generator with known connections. Our attack is appli-
cable to arbitrary weight feedback polynomial of the generating LFSR
and comparisons with other known attacks show that our attack offers
good trade-offs between required keystream length, success probability
and complexity. Our result confirms Golić’s conjecture that the shrink-
ing generator may be vulnerable to fast correlation attacks without ex-
haustively searching through all possible initial states of some LFSR is
correct.

Keywords: Fast correlation attack, Shrinking generator, Linear feed-
back shift register.

1 Introduction

The shrinking generator (SG) is a well-known keystream generator proposed in
[4] at Crypto’93. It consists of two LFSR’s, say LFSR A and LFSR S. Both
LFSRs are regularly clocked and the output bit of the generating LFSR A is
taken iff the current output bit of the control LFSR S is 1. This generator obtains
a kind of implicit non-linearity from the shrinking process, i.e. the exact positions
of the remaining bits in the generated keystream become uncertain. It is proved
that the generated keystream has many merits in cryptographic sense such as a
long period, a desirably high linear complexity and good statistical properties.
It is recommended in [4] that both the initial states of the two LFSR’s and the
feedback polynomials of theirs be secret key. As in [5], we stress here that our
analysis is also based on the known feedback polynomials assumption.

So far, several attacks against the shrinking generator have been proposed.
A simple divide-and-conquer attack is proposed in [4] requiring an exhaustive
search through all possible initial states and feedback polynomials of LFSR S. A
� Supported by National Natural Science Foundation of China (Grant No. 60273027),

National Key Foundation Research 973 project (Grant No. G1999035802) and Na-
tional Science Fund for Distinguished Young Scholars (Grant No. 60025205).

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 72–86, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Fast Correlation Attack on the Shrinking Generator 73

correlation attack is proposed in [8] and is experimentally analyzed in [19] which
takes an exhaustive search through all initial states and all possible feedback
polynomials of LFSR A. At Asiacrypt’98, T. Johansson [12] presented a reduced
complexity correlation attack based on searching for specific subsequences of
the keystream, whose complexity and required keystream length are both ex-
ponential in the length of LFSR A. In 2001, a probabilistic correlation analysis
[6] based on a recursive computation of the posterior probabilities of individual
bits of LFSR A was conducted by J. D. Golić, which revealed the possibility of
implementing certain fast correlation attack on the shrinking generator. A novel
distinguishing attack on the shrinking generator is proposed in [5]. According to
the facts that an arbitrary weight feedback polynomial of degree L is known to
have a weight 4 multiple of degree O(2L/3) and 10000 = 213.2877 = 2L/3 [7, 20] ,
that distinguisher is applicable to arbitrary shrunken LFSR’s of length around
40. Very recently, an improved linear consistency attack is presented in [17] which
is an completely exhaustive search through all initial states of LFSR S.

In [6], it was conjectured that the shrinking generator may be vulnerable to
fast correlation attacks that would not require an exhaustive search through all
possible initial states of LFSRs. In this paper we try to answer this question def-
initely even for LFSR A of length 61, as suggested in [9]. We show that given a
length of only 140000 keystream bits, the initial state of LFSR A with arbitrary
weight feedback polynomial of degree 61 can be recovered with success proba-
bility higher than 99% and complexity 256, which is a good trade-off between
these parameters.

This paper is organized as follows. In Section 2 we present a general descrip-
tion of our attack. Deep analysis of our attack is made in Section 3. Experiments
results together with comparisons with other attacks on the shrinking generator
are provided in Section 4. Finally, conclusions are given in Section 5.

2 A General Description of Our Attack

We first present a general description of our attack. Denote the output se-
quence of LFSR A by a = a0, a1, · · · and the output sequence of LFSR S by
s = s0, s1, · · · . The output keystream of (SG) is z = z0, z1, · · · . Our attack is com-
posed of two phases: first, correlation analysis phase which results in a sequence
â = â0, â1, · · · associated with sequence a by the relation P (âi = ai) = 1

2 +ε with
ε > 0; second, fast correlation attack phase which aims at recovering the secret
initial state of LFSR A. Here we adopt the BSC (binary symmetric channel)
model for fast correlation attack, as shown in Figure 1.

Our main idea is to regard the sequence â as the noisy version of sequence a
through the binary symmetric channel representing the noise introduced by the
shrinking generator, i.e. 1− p = P (âi = ai), given p as the crossover probability
in the BSC. W.l.o.g assume p < 0.5. Our aim is to restore sequence a from â
by efficient fast correlation attack techniques. Note that several new efficient
fast correlation attacks on stream ciphers are proposed recently, [2, 3, 15, 16],
enabling us to construct an efficient fast correlation attack on the shrinking
generator, which is impossible by traditional techniques. In this paper, we follow

74 Bin Zhang et al.

ix
p−1

p−1

p
p

izLFSR

BSC

Fig. 1. Model for fast correlation attack.

the method in [3] to mount our attack on the shrinking generator. In nature, our
correlation analysis has nothing to do with the decoding algorithm which means
other decoding techniques may also be applied, as discussed in Section 4.

The original idea of correlation analysis phase goes back to [21]. We made
crucial improvements to the initial method. For simplicity, assume that both
the LFSR sequences generated by LFSR A and LFSR S are purely random (a
sequence of independent uniformly distributed random variables is called purely
random). Consider the probability that zk equals ar in the (SG). It is obvious
that k ≤ r. If we regard the event that si = 1 as success, then the event that zk

equals ar is equivalent to the event that the kth success of sequence s occurs at
the rth trial which obeys the Pascal Distribution. Thus the probability that zk

equals ar is:

P (zk = ar) =
(
r

k

)
(
1
2
)r+1. (1)

On the other hand, if ar appears in the keystream z, the following equation
holds:

ar = z∑ r−1
i=0 si

. (2)

When r grows large, the distribution of the sum
∑r−1

i=0 si approximates the Nor-
mal Distribution, i.e. ∑r−1

i=0 si − r/2√
r/4

�→ N(0, 1). (3)

Let Ir/2 = [r/2 − α
√
r/4, r/2 + α

√
r/4], here comes our main observation:

for arbitrary probability p, there exists a α such that whenever ar appears in
keystream z, the following equation holds:

P (
r−1∑
i=0

si ∈ Ir/2) = p. (4)

As in [5], we formally define two kinds of intuitive notion of imbalance.

Definition 1. W.l.o.g, we assume the interval Ir/2 includes odd number of in-
tegers. Let S0 = {zi|i ∈ Ir/2, zi = 0}, S1 = {zi|i ∈ Ir/2, zi = 1}, the first kind of
imbalance of the interval Ir/2, Imb1(Ir/2), is defined as |S1| − |S0|, where | · | is
the cardinality of a set. If Imb1(Ir/2) �= 0, this interval is said to be imbalanced.
See Figure 2.

A Fast Correlation Attack on the Shrinking Generator 75

rs

ra

r2r
[]

r

r

Sequence s

Sequence a

Keystream z

Fig. 2. The interval that ar probably lies in.

Definition 2. The notations are the same as those in Definition 1. Let P (r)
0 =∑

zi∈S0
P (ar = zi), P

(r)
1 =

∑
zi∈S1

P (ar = zi), the second kind of imbalance of

the interval Ir/2, Imb2(Ir/2), is defined as P
(r)
1 − P

(r)
0 . If Imb2(Ir/2) �= 0, this

interval is also said to be imbalanced. See Figure 2.

Now there are two kinds of construction methods of sequence â corresponding
to these two kinds of imbalance. The first one is a straightforward majority poll
according to Definition 1. The second one is a similar but more reasonable poll
according to Definition 2.

Method 1. Following Definition 1, if Imb1(Ir/2) > 0, let âr = 1. Otherwise, let
âr = 0.

Method 2. Following Definition 2, if Imb2(Ir/2) ≥ 0, let âr = 1. Otherwise, let
âr = 0.

Both theoretical analysis and experimental results show that sequence â con-
structed above satisfying P (âi = ai) = 1

2 +ε with ε > 0 as expected. We will give
the theoretical analysis in next section and the experimental results in Section
4.

Next, we will present a brief description of the fast correlation attack [3]
involved in our attack. This attack is a one-pass correlation attack consisting of
two stages: pre-processing stage aiming at the construction of parity-check equa-
tions of weight k and processing stage in which a majority poll is conducted for
D (D > L−B) considered bits other than the first B bits (x0, x1, · · · , xB−1) of
the initial state (x0, x1, · · · , xL−1). In general, there are three new ideas proposed
in [3]. First, a match-and-sort algorithm is proposed to construct parity-check
equations of the following form with respect to a given considered bit xi

xi = xm1 ⊕ . . .⊕ xmk−1 ⊕
B−1∑
j=0

cjxj (5)

where mj (1 ≤ j ≤ k − 1) denote the indices of the keystream bits and the
last sum represents a partial exhaustive search over (x0, · · · , xB−1) of the initial
state (x0, · · · , xL−1). (5) offers plenty of suitable parity-check equations needed
for high performance decoding, meanwhile avoids the low weight restriction of
the feedback polynomial of the LFSR. Second, after regrouping the parity-check

76 Bin Zhang et al.

equations that contain the same pattern of B−B1 initial bits, an application of
Walsh transform is suggested to evaluate the parity-check equations in processing
stage for a given zi, i.e. when ω = [xB1 , xB1+1, · · · , xB−1], Fi(ω) =

∑
(−1)t1i ⊕t2i

is just the difference between the number of predicted 0 and the number of
predicted 1, where t1i = zm1 ⊕ · · · ⊕ zmk−1 ⊕

∑B1−1
j=0 cjxj and t2i =

∑B−1
j=B1

cjxj .
Then for each of the D considered bits, if Fi(ω) > θ, let xi = 0. If Fi(ω) < −θ,
let xi = 1, where θ is the decision threshold. Third, in order to have at least
L− B correctly recovered bits among the D considered bits, a check procedure
is used which requires an exhaustive search on all subsets of size L − B among
the L−B + δ bits. The total complexity of the processing stage is:

O(2BDlog2Ω + (1 + perr(2B − 1))
(
L−B + δ

δ

)
1
ε2

) (6)

where perr is the probability that a wrong guess results in at least L − B + δ
predicted bits and Ω is the expected number of parity-check equations of weight
k for each considered bit. For the details of these formulae and the notations,
please see the Appendix A and [3].

A summary of our attack is as follows:

1. Input: the feedback polynomial, f(x), of LFSR A, a segment of keystream
z0, z1, · · · , zN−1, N ′ < N , N ′ is determined by N ′ ≈ N − α

√
N ′/2.

2. Construct sequence â = â0, · · · , âN ′−1 according to Method 1 or Method 2
from keystream z0, z1, · · · , zN−1.

3. For each guess of (a0, · · · , aB−1) and each bit position i, (i = B + 1, B +
2, . . . , D), evaluate the parity-check equations using the Walsh transform
technique. Select those bits passing the majority poll to recover the initial
state of LFSR A using the above check procedure.

After having recovered the initial state of LFSR A, we should also restore
the initial state of LFSR S. With the knowledge of known sequence of LFSR
A and keystream z, the remaining problem is much simplified compared to the
original one . One way to do so is to use the method proposed in [6]. Here we
do not focus on this problem.

3 Analysis of Our Attack

In this section, we will analyze our attack deeply, mainly on the two correlation
analysis methods. We give two theorems on the coincidence probabilities P (âr =
ar) under the above two methods, respectively. We will show that a special case
of our method 2 is equivalent to the method proposed by Golić in [6].

3.1 The Coincidence Probability Under Method 1

Keep the assumption that both sequences generated by LFSR A and LFSR S
are purely random. Theorem 1 yields the probability that sequence â equals
sequence a under method 1.

A Fast Correlation Attack on the Shrinking Generator 77

Theorem 1. Under method 1, the probability that the constructed sequence â
equals sequence a is given by

P (âr = ar) =
1
2

+
1

22E

(
2E
E

)
p

4
=

1
2

+ εr. (7)

where 2E + 1 satisfying E = �(α
√
r − 1)/2�, is the closest odd integer to α

√
r

and p = 1√
2π

∫ α

−α
e−x2/2dx is the probability in (4).

Proof. According to method 1, we have

P (âr = ar) = P (sr = 1)P (âr = ar|sr = 1) + P (sr = 0)P (âr = ar|sr = 0)

=
1
2
P (âr = ar|sr = 1) +

1
4

=
1
2
P (âr = ar|

r−1∑
i=0

si ∈ Ir/2, sr = 1)P (
r−1∑
i=0

si ∈ Ir/2|sr = 1)

+
1
2
P (

r−1∑
i=0

si∈̄Ir/2|sr = 1)P (âr = ar|
r−1∑
i=0

si∈̄Ir/2, sr = 1) +
1
4

=
1
4

+
1
4
(1 − p) +

p

2
P (âr = ar|

r−1∑
i=0

si ∈ Ir/2, sr = 1)

=
1
2
− p

4
+

p

2
P ∗

where P ∗ = P (âr = ar|
∑r−1

i=0 si ∈ Ir/2, sr = 1) can be derived by the following
equations.

P ∗ = P (âr = ar = 0|
r−1∑
i=0

si ∈ Ir/2, ·) + P (âr = ar = 1|
r−1∑
i=0

si ∈ Ir/2, ·)

= P (ar = 0)P (âr = 0|ar = 0,
r−1∑
i=0

si ∈ Ir/2, sr = 1)

+P (ar = 1)P (âr = 1|ar = 1,
r−1∑
i=0

si ∈ Ir/2, sr = 1)

=
1
2

2E∑
i=E

(
2E
i

)
1

22E
+

1
2

2E∑
i=E

(
2E
i

)
1

22E
. (8)

(8) comes from the observation that if ar = j (j = 0, 1), then there must be
at least E elements other than ar itself in Ir/2 to be j for âr = ar = j holds.
According to

∑2E
i=E

(
2E
i

)
=
∑E

i=0

(
2E
i

)
, we get

P ∗ =
1
2

+
1

22E+1

(
2E
E

)
.

This completes the proof.

78 Bin Zhang et al.

Corollary 1. The coincidence probability P (âr = ar) is a function of r satisfy-
ing

1
2
< P (âr = ar) ≤

3
4

(9)

where the upper bound is achieved when r = 0.

Theorem 1 implies that the smaller r, the larger P (âr = ar) is. Note that our
aim is to have a sequence â with a large enough correlation to a, which means
that we should make the probability P (âr = ar) as large as possible. The larger
εr is, the larger number of bits in sequence â satisfy âr = ar. However, the above
theorem shows that the probability function has an irregular form such that the
classical methods for finding global maximum value of regular functions can not
be used to obtain its global maximum. Instead, we try to find out the optimum
numerical values of P (âr = ar) for each r. From Theorem 1, we can see that the
bias

εr =
1

22E

(
2E
E

)
p

4
(10)

is dependent on the product of p and
(
2E
E

)
/22E. Therefore, the optimum value

of εr is

ε
(r)
max = max0≤p≤1{

1
22E

(
2E
E

)
p

4
}. (11)

Note that 2E + 1 is a measure of the length of Ir/2 which is determined by the
probability p chosen in advance. In intuitive point of view, we should always
choose p (by choosing α) rather large so that we can guarantee the interval Ir/2

always includes the indices of the elements that lie in keystream z. One easy
way to do so is to choose p equals to one fixed value such as 0.90, 0.95, · · · , even
p = 0.99. However, both theoretical and experimental results show that the bias
εr drops so rapidly in this way that the average coincidence probability found is
not good enough for an efficient fast correlation attack. Instead, we programmed
in Mathematica to find each α that results in ε

(r)
max. Figure 3 (In Figure 3, the

horizontal axes represents α) shows for each r, where the optimum of α is located
in the range (0, 5).

Note that our construction method of sequence â is independent of the con-
crete LFSR structure under the purely random assumption, which means the
pre-computation of the optimum values of α would be applied to arbitrary LFSR.
Figure 3 shows that the optimum values of α satisfy 1 ≤ α ≤ 2 for r ≥ 244.
Noting the instruction Findminimum in Mathematica can only find the local
minimum, we use the following two instructions to find the optimum value of α
(a represents α):

Findminimum[− (2E
E)

22E

∫ a
−a

e−x2/2dx

4
√

2π
, {a, 0, 5}], 0 ≤ r ≤ 243

or

Findminimum[− (2E
E)

22E

∫ a
−a

e−x2/2dx

4
√

2π
, {a, 1, 5}], r ≥ 244.

Figure 4 (In Figure 4 and 5, the horizontal axis represent keystream length N)
shows the locations of the optimum values of α. With the knowledge of the

A Fast Correlation Attack on the Shrinking Generator 79

Fig. 3. The optimum position of α.

Fig. 4. The optimum value α that results in ε
(r)
max. (a)-small scall, (b)-larger scale.

Fig. 5. The values of ε
(r)
max. (a)-small scale, (b)-large scale.

optimum values of α, the biases we found are plotted in Figure 5. Let H =
{âi| i ∈ {0, 1, · · · , N − 1}, âi = ai}, the correlation found in this way is defined
as |H |/N . We can see that the correlations is good enough for an efficient fast
correlation attack against LFSR of moderate length. For example, for N=243, it
amounts to 0.56555. For N = 3000, the correlation is 0.52748 and for N = 8000,
it is 0.52075. See Section 4.

80 Bin Zhang et al.

3.2 The Coincidence Probability Under Method 2

Next, we consider the probability P (âr = ar) under the construction of method
2. We will show that a special case of method 2 is equivalent to the method
proposed by Golić in [6] in a sense that the numerical biases found under both
methods (a special case of our method 2 and the method in [6]) are almost the
same.

First note that from Definition 2 and (1), we have

P
(r)
0 =

∑
zi∈S0

P (ar = zi) =
∑

zi∈Ir/2

(
r

i

)
(1 − zi)(

1
2
)r+1 (12)

P
(r)
1 =

∑
zi∈S1

P (ar = zi) =
∑

zi∈Ir/2

(
r

i

)
zi(

1
2
)r+1. (13)

(12) and (13) imply that

E(P (r)
0) = E(P (r)

1) =
1
2

∑
zi∈Ir/2

(
r

i

)
(
1
2
)r+1 =

1
2
(P (r)

1 + P
(r)
0), (14)

where E(·) is the mathematical expected value of the random variable. Note that
method 2 actually takes into account the weight (the probability P (ar = zk)
associated with the point) of each point in Ir/2 upon making a majority poll,
while in method 1, we regard each point in Ir/2 as the same, i.e. no one is more
important than any other one. Therefore,

P (âr = ar) = P (âr = ar,
r−1∑
i=0

si ∈ Ir/2) + P (âr = ar,
r−1∑
i=0

si∈̄Ir/2)

=
1
2

+ {max(P (r)
1 , P

(r)
0) − 1

2
(P (r)

1 + P
(r)
0)}

=
1
2

+ {max(P (r)
1 , P

(r)
0) − E(max(P (r)

1 , P
(r)
0))} =

1
2

+ εr. (15)

Now we consider an important case of method 2. Let Ir/2 = {0, 1, · · · , r} such
that P

(r)
1 + P

(r)
0 = 1

2 , i.e. the probability that ar lies in the interval Ir/2 is 0.5,
instead of 1, due to the nature difference between method 1 and method 2. In
this case, E(P (r)

0) = E(P (r)
1) = 1

4 . It follows from (14) and (15) that

E(εr) = E(max(P (r)
1 , P

(r)
0)) − 1

4

= E((P (r)
1 + P

(r)
0)/2 + |P (r)

1 − P
(r)
0 |/2)− 1

4

= E(|P (r)
1 − 1

4
|). (16)

Since Ir/2 = {0, 1, · · · , r}, we regard P
(r)
1 =

∑r
i=0

(
r
i

)
zi(1

2)r+1 as the sum of
r + 1 independent random variables ξ0, ξ1, · · · , ξr satisfying P (ξi = 0) = P (ξi =

A Fast Correlation Attack on the Shrinking Generator 81(
r
i

)
(1
2)r+1) = 0.5. When r → ∞, P

(r)
1 follows the Normal Distribution, i.e.

P
(r)
1 � N(1

4 , σ
2), where the variance σ2 =

∑r
i=0

(
r
i

)2(1
2)2r+2 1

4 =
(
2r
r

)
(1
2)2r+2 1

4 .
Hence, we get

E(εr) =
2σ√
2π

=

√
(1
2)2r
(
2r
r

)
2
√

2π
≈ 1

2
√

2π 4
√
π
· 1

4
√
r
≈ 0.149828

1
4
√
r
. (17)

Note that the corresponding bias found in [6] is 0.1515 1
4√r

based on approxi-
mating a binomial distribution by a uniform distribution. Both estimations are
almost the same. From above, we get the following theorem.

Theorem 2. Under method 2 and let Ir/2 = {0, 1, · · · , r}, the probability that
the constructed sequence â equals sequence a is given approximately by

P (âr = ar) ≈
1
2

+ 0.149828
1
4
√
r

(18)

where Ir/2 is the same notation as that defined in Section 2.

Note that we obtain Theorem 2 under a special case of method 2. As in Theorem
1, we also want to maximize the probability P (âr = ar) under the general case
of method 2. In nature, the maximization problem is to determine how long
the interval Ir/2 should be chosen (by choosing α) such that the second kind of
imbalance, Imb2(Ir/2), can be maximized. The detailed analysis appears to be
difficult, for the Normal Distribution may not be used in this case. We just leave
this problem open. In the following, we will show that the coincidence probability
obtained under Theorem 1 is approximately comparable to those got in Theorem
2 and in [6]. See Table 1. Note that the biases listed in Table 1 are not the average
values, which are listed in Section 4. We can see that the bias values got from
two methods are very close. Actually, such close values have almost the same
inflect on the complexity of the whole fast correlation attack. Hence, any one
of them can be used in practice. If all the binomial coefficients

(
i
k

)
0 ≤ i ≤ r

are pre-computed as suggested in [6] using the recursion
(

i
k

)
=
(

i−1
k−1

)
+
(
i−1
k

)
in

O(i2) time and stored in O(r2) space, then method 2 will give a slightly higher
coincidence. If the optimum values of α have been pre-computed in advance,
method 1 is OK.

In addition, from Theorem 2 we can see that with the increase of r, the
coincidence probability P (âr = ar) tends to 0.5 slowly. This fact can be inter-
preted as the reasonable result of basic design criterion of stream ciphers that
the keystream z should satisfy P (z = 0) = P (z = 1) = 0.5 and the fact that a
binomial distribution approximates a uniform distribution when r →∞.

Table 1. The one-point bias values of two methods.

r 1000 4000 8000 20000
Th. 1 0.0258843 0.018021 0.0150915 0.0119576
Th. 2 0.0266436 0.0188399 0.0158424 0.012599

82 Bin Zhang et al.

4 Experimental Results

In this section we present some simulation results of our attack together with
some comparisons with other known attacks on the shrinking generator. The
experiments were done on a Pentium 4 PC processor.

First, we list the optimum values of α that give ε
(r)
max in Table 2. We use

Mathematica to pre-compute these values in about four hours. It can be easily
seen that most of the optimum values of α lie in the interval (1.3, 1.5). The
average value ᾱ = 1.376395 corresponds to the average probability p̄ = 83.13%.
It is worth noting that the optimum values of α are applicable to arbitrary
LFSRs due to our purely random assumption in Section 2. Table 3 shows the
average biases obtained by two theoretical methods and computer simulations.
It is obvious that Theorem 1 is preferable when r is small, while Theorem 2
coincides with simulations better and offers a little better correlation when r
grows large. The actual values of ε in Table 3 are found based on a shrinking
generator with the following two primitive polynomials as the feedback polyno-
mials of LFSR A and LFSR S, respectively: fA(x) = 1+x+x3 +x5 +x9 +x11 +
x12 + x17 + x19 + x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40 [3, 15, 16, 10] and
fS(x) = 1 + x+ x2 + x3 + x4 + x5 + x42 by method 1. The experimental results
are in accordance with the theoretical expectations very well.

In order to compare our attack with other known ones, we consider another
example of the shrinking generator with the generating LFSR A of length 61,
as suggested in [9]. For practical considerations, we assume the length of LFSR
S ≈ 61. Following the fast correlation attack in Section 2 and Appendix A,

Table 2. The optimum values of α (N=120000).

Domain Number of α Percent
1.0 ∼ 1.1 248 0.2%
1.1 ∼ 1.2 3139 2.5%
1.2 ∼ 1.3 4308 3.6%
1.3 ∼ 1.4 63480 53.0%
1.4 ∼ 1.5 48221 40.2%
1.5 ∼ 1.6 365 0.3%
others 239 0.2%

ᾱ average 1.376395 100%

Table 3. The average biases ε of two methods and simulations.

N ε(Th. 1) ε(Th. 2) ε(found)
240 0.0667726 0.0512096 0.054167
3000 0.02748 0.0270324 0.02100
8000 0.02075 0.0211382 0.02037
40000 0.0135484 0.014129 0.015650
80000 0.0113329 0.01188 0.012275
140000 0.00982376 0.0103285 0.008700

A Fast Correlation Attack on the Shrinking Generator 83

we choose the attack parameters as follows: D = 36, δ = 3, B = 46, k = 5
for L = 61, the keystream length is N = 140000 ≈ 217.1 and the coincidence
probability is 0.50982376. We use the parity-check equations of weight 5, which
can be obtained in O(243) pre-processing time and can be reused in later as many
times as desirable. The expected number of parity-check equations for a given
bit is Ω = 4.88464 × 1014 and the probability that one parity-check equation
gives the correct prediction is q = 1

2 (1 + 0.019647524). From Appendix A, in
order to have P1 ≥ (L − B + δ)/D = 0.5, we choose t = 2.4423196361× 1014

such that P1 ≈ 0.500156 and Pv ≈ 0.999999. This gives the success probability

Psucc =
3∑

j=0

(
18
3

)
P 18−j

v (1 − Pv)j ≈ 99.9%.

The probability of false alarm is negligible in this case. In fact, the probability
Perr is limited to Perr ≈ 7.6 × 10−45. Hence, the total processing complexity is

246 · 36 · log2Ω + (1 + perr(246 − 1))
(

18
3

)
1
ε2

≈ 256.7786.

Table 4 shows the comparisons of different known attacks on the above example
shrinking generator.

Table 4. Comparisons of different attacks on the example shrinking generator.

[13] [8] A.[12] B.[12] C.[12] Our attack

Length of z few 210.23 few 230 230 − 240 217.1

Complexity 280 277 271 256 250 − 240 256

psucc 100% 100% 66% 66% 66% 99.9%

For the detailed discussion of the concrete values in Table 4, see Appendix
B. From Table 4, we can see that the attacks in [13], [8] and the attack A in [12]
are all with the complexity higher than an exhaustive search. The attacks B and
C in [12] are faster than an exhaustive search. But if a very high probability of
success is required, we have to repeat the whole attack at least 4 times, which,
for the best complexity result in [12], results in a 242 keystream length and 242

complexity. The required keystream length is too long for a 61-stage LFSR. In
contract, the keystream length required in our attack is rather small, 217.1, and
the complexity is comparable to those in [12]. Hence, our attack offers a better
trade-off between these parameters. In addition, our attack is better than the
recent proposed attack on irregularly clocked generators in [17]. In that paper,
a malformed shrinking generator with a LFSR S of length 26 and LFSR A of
length 60 is cracked using an exhaustive search over the initial states of LFSR
S with 1000000 ≈ 220 keystream bits. Besides, several fast correlation attack
ideas on the (SG) have been proposed in [6]. However, few concrete results are
available in that paper, making it difficult to make a comparison with it.

84 Bin Zhang et al.

Some Remarks. An important fact about our attack is that the coincidence
probability between a and â decreases, though rather slowly, with the increasing
length of keystream. Hence, we propose two recommendations on attacking the
shrinking generator.
1. It is of great importance to improve the fast correlation attack techniques by

reducing the number of keystream bits required and deriving more efficient
algorithm to construct parity-check equations with a little more weight. A
new fast correlation attack is proposed in [18] without the detailed process-
ing procedures, whose main advantage is the small amount of keystream
necessary for a success attack with respect to a certain noise level compared
to other attacks. From our experiments, the bias corresponding to N = 3000
keystream is 0.0274845, we think it is a promising way to apply this kind of
attack to the shrinking generator.

2. Another direction is to consider the sequence â satisfying P (âi = ai) = pi

with different pi, which is more closer to the truth of the construction
method. Actually, such a method is used in [14] whose main disadvantage
is the weight restriction of the feedback polynomials. Therefore, it is impor-
tant to develop new fast correlation attacks applicable to the different pi

case, while maintaining the property that it is independent of the feedback
polynomial’s weight.

5 Conclusions

In this paper, we demonstrate a fast correlation attack on the shrinking generator
with fixed connections. Our attack confirms that Golić’s conjecture is correct. In
addition, comparisons with other known attacks reveal that our attack offers a
better trade-off between the required keystream length, success probability and
the complexity.

Acknowledgements

We would like to thank the anonymous reviewers for very helpful comments.

References

1. A. Biryukov, “Block Ciphers and Stream Ciphers: The State of the Art”,
http://eprint.iacr.org/2004/094.pdf.

2. A. Canteaut, M. Trabbia, “Improved Fast Correlation Attacks Using Parity-Check
Equations of Weight 4 and 5”, Advances in Cryptology-EUROCRYPT’2000, LNCS
vol. 1807, Springer-Verlag, (2000), pp. 573-588.

3. P. Chose, A. Joux, M. Mitton, “Fast Correlation Attacks: An Algorithmic Point
of View”, Advances in Cryptology-EUROCRYPT’2002, LNCS vol. 2332, Springer-
Verlag, (2002), pp. 209-221.

4. D. Coppersmith, H. Krawczyk, Y. Mansour, “The Shrinking Generator”, Advances
in Cryptology-Crypto’93, LNCS vol. 773, Springer-Verlag, (1994), pp.22-39.

5. P. Ekdahl, T.Johansson, “Predicting the Shrinking Generator with Fixed Connec-
tions”, Advances in Cryptology-EUROCRYPT’2003, LNCS vol. 2656, Springer-
Verlag, (2003), pp. 330-344.

A Fast Correlation Attack on the Shrinking Generator 85

6. J. Dj. Golić, “Correlation analysis of the shrinking Generator”, Advances in
Cryptology-Crypto’2001, LNCS vol. 2139 Springer-Verlag, (2001), pp. 440-457.

7. J. Dj. Golić, “Computation of Low-weight parity-check ploynomials”, Electronic
Letters, Vol. 32, No. 21, pp. 1981-1982, October 1996.

8. J. Dj. Golić, “Embedding and probabilistic correlation attacks on clock-controlled
shift registers”, Advances in Cryptology-EUROCRYPT’94, LNCS vol. 950,
Springer-Verlag, (1994), pp. 230-243.

9. H. Krawczyk, “The shrinking generator: Some practical considerations”, Fast Soft-
ware Encryption-FSE’94, LNCS vol. 809, Springer-Verlag, (1994), pp. 45-46.

10. T. Johansson, F. Jonnson, “Improved fast correlation attack on stream ciphers
via convolutional codes”, Advances in Cryptology-EUROCRYPT’1999, LNCS vol.
1592, Springer-Verlag, (1999), pp. 347-362.

11. T. Johansson, F. Jönsson, “Fast correlation attacks through reconstruction of lin-
ear polynomials”, Advances in Cryptology-Crypto’2000, LNCS vol. 1880, Springer-
Verlag, (2000), pp. 300-315.

12. T. Johansson, “Reduced complexity correlation attacks on two clock-controlled
generators”, Advances in Cryptology-ASIACRYPT’98, LNCS vol. 1514, Springer-
Verlag, (1998), pp. 342-357.

13. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press,1997.

14. W. Meier, O. Staffelbach, “Fast correlation attacks on certain stream ciphers”,
Journal of Cryptology, (1989) 1 pp. 159-176.

15. M. Mihaljević, P.C. Fossorier, H.Imai, “Fast correlation attack algorithm with
list decoding and an application”, Fast Software Encryption-FSE’2001, LNCS vol.
2355, Springer-Verlag, (2002), pp. 196-210.

16. M. Mihaljević, P.C. Fossorier, H.Imai, “A Low-complexity and high-performance
algorithm for fast correlation attack”, Fast Software Encryption-FSE’2000, LNCS
vol. 1978, Springer-Verlag, (2001), pp. 196-212.

17. H. Molland, “Improved Linear Consistency Attack on Irregular Clocked Keystream
Generators”, Fast Software Encryption-FSE’2004, LNCS vol. 3017, Springer-
Verlag, (2004), pp. 109-126.

18. M. Noorkami, F. Fekri, “A Fast Correlation Attack via Unequal Error Correcting
LDPC Codes”, CT-RSA’2004, LNCS vol. 2964, Springer-Verlag, (2004), pp. 54-66.

19. L. Simpson, J. Dj. Golić, “A probabilistic correlation attack on the shrinking gen-
erator”, ACISP’98, LNCS vol. 1438, Springer-Verlag, (1998), pp. 147-158.

20. D. Wagner, “A Generalized Birthday Problem”, Advances in Cryptology-
Crypto’2002, LNCS vol. 2442, Springer-Verlag, (2002), pp. 288-303.

21. D. F. Zhang, W. D. Chen, “Information Leak analysing on the Shrinking Generator
and the Self-Shrinking Generator”, Journal of China Institute of Communications,
Vol. 17, No. 4, pp. 15-20, July 1996.

A Notations and Formulae
of a One-Pass Fast Correlation Attack

1. P (zi = xi) = 1
2 (1 + ε).

2. N is the length of the keystream.
3. L is the length of the LFSR.
4. B is the number of bits partially exhausitive searched.

86 Bin Zhang et al.

5. D is the number of bits under consideration.
6. k is the weight of the parity-check equations.
7. q = 1

2 (1 + εk−1) is the probability that one parity-check equation yielding
the correct prediction.

8. Ω is the expected number of weight k parity-check equations for each con-
sidered bit.

9. δ is the number of bits that predicted other than the n−B bits.
10. P1 =

∑Ω
j=Ω−t(1 − q)Ω−jqj

(
Ω
j

)
is the probability that at least Ω − t parity-

check equations give the correct result, where t is the smallest integer satis-
fying D · P1 ≥ L−B + δ.

11. θ is the threshold such that θ = Ω − 2t.
12. P2 =

∑Ω
j=Ω−t(1 − q)jqΩ−j

(
Ω
j

)
is the probability that at least Ω − t parity-

check equations give the wrong result.
13. Pv = P1/(P1 + P2) is the probability that a bit is correctly predicted with

at least Ω − t parity-check equations give the same prediction.
14. Psucc =

∑δ
j=0

(
L−B+δ

j

)
PL−B+δ−j

v (1− Pv)j is the probability that at most δ
bits are wrong among the n−B + δ predicted bits.

15. E = 1
2Ω−1

∑Ω
j=Ω−t

(
Ω
j

)
is the probability that a wrong guess yields at least

Ω − t identical predictions for a given bit.
16. Perr =

∑D
j=L−B+δ

(
D
j

)
Ej(1 − E)D−j is the probability that false alarm oc-

curs.
17. When k = 4, the time complexity of the pre-processing stage is O(N2logN).

When k = 5, the time complexity is O(DN2logN). In both cases, the mem-
ory complexities are O(N).

B Remarks on the Concrete Values in Table 4

The attack in [13] is a divide-and-conquer attack on LFSR S requiring O(2LSL3
A)

operations. For LS ≈ LA = 61, it amounts to 280. The probabilistic attack
proposed in [8] is also an exhaustive attack with complexity around 2LA(4LA)2.
As in [12], here we choose 4LA for unique decoding. For LA = 61, the complexity
is 277. There are three attacks proposed in [12]. Attack A is an exhaustive search
using the decoding algorithm given in that paper. Both attack B and C are based
on searching for specific weak subsequences in the keystream z. The difference
between B and C is that several weak subsequences are required in attack C,
which results in the very long length of the required keystream, i.e. 240. Though
the complexity of C is the lowest, 240, the required keystream length, 240, is
absolutely unrealistic for a LFSR A of length 61. Besides, the decoding algorithm
in [12] has a failure probability 0.34, when its complexity is assumed to be 210.

Improved Efficiency
for CCA-Secure Cryptosystems Built

Using Identity-Based Encryption

Dan Boneh1,� and Jonathan Katz2,��

1 Computer Science Department, Stanford University, Stanford CA 94305
dabo@cs.stanford.edu

2 Dept. of Computer Science, Univ. of Maryland
jkatz@cs.umd.edu

Abstract. Recently, Canetti, Halevi, and Katz showed a general
method for constructing CCA-secure encryption schemes from identity-
based encryption schemes in the standard model. We improve the effi-
ciency of their construction, and show two specific instantiations of our
resulting scheme which offer the most efficient encryption (and, in one
case, key generation) of any CCA-secure encryption scheme to date.

Keywords: Chosen-ciphertext security, Identity-based encryption,
Public-key encryption.

1 Introduction

Security against adaptive chosen-ciphertext attacks (i.e., “CCA-security”) [29,
17, 1] has become the de facto level of security for public-key encryption schemes.
The reasons for this are many: CCA security helps protect against subtle attacks
that have been demonstrated against schemes not meeting this notion of secu-
rity [3, 24, 23]; is helpful in defending against “active” attackers who may modify
messages in transit (see [32]); and, finally, allows encryption schemes to be de-
veloped and then securely “plugged in” to higher-level protocols which may then
be executed in arbitrary environments (see, e.g., [8, Sec. 8.2.2]).

Nevertheless, only a relatively small number of encryption schemes have been
rigorously proven secure against adaptive chosen-ciphertext attacks in the stan-
dard model1 (i.e., without resorting to the use of random oracles [2]). Schemes
based on general assumptions are known [17, 30, 27], but these rely on generic
non-interactive zero-knowledge proofs [4, 18] and do not currently lead to practi-
cal solutions. More interesting from a practical point of view are efficient schemes
based on specific number-theoretic assumptions; two general methodologies for
constructing such schemes are known. The first methodology is based on the
“smooth hash proof systems” of Cramer and Shoup [14], and has led to a variety

� Supported by NSF and the Packard Foundation.
�� This research was supported by NSF Trusted Computing Grant #0310751.
1 From now on, we use “CCA security” to refer by default to security which is proven

in the standard model.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 87–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

88 Dan Boneh and Jonathan Katz

of constructions [13, 14, 19, 15, 25]. The second, and more recent, method [11]
constructs a CCA-secure encryption scheme from any semantically-secure (or,
“CPA-secure”) identity-based encryption (IBE) scheme [7, 12] (which can in turn
be constructed in the standard model based on specific number-theoretic assump-
tions [10, 5, 6, 34]). Overall, the most efficient CCA-secure encryption scheme cur-
rently known is a hybrid encryption system due to Kurosawa and Desmedt [25]
which builds on the original proposal of Cramer and Shoup [13] and relies on
the decisional Diffie-Hellman assumption.

In this paper, we suggest a new method which allows for the construction
of very efficient CCA-secure encryption schemes. Our technique modifies the
approach of Canetti, Halevi, and Katz [11], who (as noted above) show a trans-
formation from any semantically-secure “weak” IBE scheme to a CCA-secure
public-key encryption scheme. Briefly and somewhat informally, their transfor-
mation from an IBE scheme2 (Setup,Der,Enc,Dec) to a CCA-secure scheme
proceeds as follows: key generation is performed by running Setup and letting
the public (resp. secret) key be the master public key PK (resp., master se-
cret key msk) output by this algorithm. To encrypt a message m using public
key PK, a sender generates a random key-pair (vk, sk) for a one-time signature
scheme and sends the ciphertext 〈vk,EncPK(vk,m), σ〉, where EncPK(vk,m)
represents an encryption of message m for the “identity” vk using master public
parameters PK, and σ represents a signature on the second component of this
ciphertext using sk. To decrypt ciphertext 〈vk, C, σ〉, the receiver first verifies
whether Vrfyvk(C, σ) ?= 1. If so, the receiver then decrypts C with respect to the
“identity” vk (it can do this since it has the master secret key msk).

Though conceptually simple, this transformation does add noticeable over-
head to the underlying IBE scheme: encryption requires the sender to generate
keys for a one-time signature scheme [26] and also to compute a signature using
the keys just generated; decryption requires the receiver to verify a signature
with respect to the verification key included as part of the ciphertext. Although
one-time signatures are “easy” to construct in theory, and are more efficient than
“full-blown” signatures (i.e., those which are existentially unforgeable under an
adaptive chosen-message attack [20]), they still have their price. In particular:

– One-time signatures based on cryptographic hash functions such as SHA-1
can be designed to allow very efficient signing; key generation, on the other
hand, typically requires hundreds of hash function evaluations and is rela-
tively expensive (though not as expensive as key generation in schemes based
on number-theoretic assumptions). More problematic, perhaps, is that such
schemes have very long public keys and signatures, which would result in
very long ciphertexts in the scheme of [11].

– One-time signatures based on number-theoretic assumptions (say, by adapt-
ing “full-blown” signature schemes) yield schemes whose computational cost
– both for key generation and signing – is more expensive, but which have
the advantage of short(er) public keys and signatures.

2 Definitions of IBE schemes and their security, as well as definitions of CCA-secure
encryption, are reviewed in Section 2.

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 89

Either way, the transformation of Canetti, Halevi, and Katz results in a CCA-
secure encryption scheme which is less efficient than the underlying IBE system.

1.1 Our Contribution

We describe a transformation from any CPA-secure “weak” IBE system to a
CCA-secure encryption scheme which adds essentially no overhead. The effi-
ciency advantage of our approach arises from our observation that the one-time
signature in the construction of Canetti, et al. (as described earlier) can be
replaced by a message-authentication code (mac) along with an appropriate
“encapsulation” of a mac key (for the purposes of this informal description, one
can think of an encapsulation as a commitment). Using the notation introduced
earlier, encryption using our approach is now performed (informally) by first
“encapsulating” a key r which results in an encapsulation com along with a de-
commitment string dec. The final ciphertext is 〈com,EncPK(com,m ◦ dec), tag〉,
where tag is now a message authentication code computed on the second com-
ponent of the ciphertext using key r. Decryption of ciphertext 〈com, C, tag〉 is
done in the natural way, but note that here the receiver must first decrypt C
(with respect to “identity” com) and only then can the receiver verify the cor-
rectness of tag. Indeed, this feature of our scheme complicates the security proof
somewhat (and in particular we must be careful to avoid circular arguments).

Adapting [16, 21], we show how encapsulation of the mac key can be done
both efficiently and securely using, e.g., SHA-1: encapsulation requires only a
single hash function evaluation, and is secure under the assumption that SHA-1
is second-preimage resistant (the scheme can be easily modified so as to be
secure under the weaker assumption of the existence of UOWHFs [28]). This
encapsulation scheme may have other applications, and thus the scheme – as
well as the relatively simple proof of security we provide for this encapsulation
scheme here (cf. Theorem 2) – may be of independent interest. Furthermore, our
technique of replacing a one-time signature by a mac seems applicable to other
constructions (e.g., those of [17, 30] as well as the various extensions mentioned
in [11]), giving efficiency improvements in those cases as well.

In addition to the general method discussed above, we also show two specific
instantiations of our approach based on two IBE schemes recently introduced by
Boneh and Boyen [5]. Our resulting schemes are quite efficient: in particular, the
times required for key generation and encryption are as fast as (or faster than)
the most efficient previous CCA-secure schemes to date.

1.2 Hybrid Encryption

In practice, public-key encryption is almost never used to encrypt actual data.
Instead, hybrid encryption is typically used, whereby a public-key scheme is used
to encrypt a random key, and the data is then encrypted using some symmetric-
key encryption scheme and this key. In fact, “encryption” of the symmetric
key is not required; “encapsulation” (cf. [33]) – which may be more efficient –
is enough. It is well known that if both the public-key encapsulation scheme

90 Dan Boneh and Jonathan Katz

and the underlying symmetric-key encryption scheme are CCA-secure, then the
resulting hybrid scheme is CCA-secure as well.

Interestingly, Kurosawa and Desmedt have recently shown [25] that the pub-
lic-key encapsulation scheme does not necessarily need to be CCA-secure in
order for the resulting hybrid scheme to be CCA-secure. In particular, they
show a hybrid encryption scheme which is based on, but more efficient than, the
Cramer-Shoup scheme [13] when used for hybrid encryption. The specific hybrid
schemes proposed here are as efficient as the Kurosawa-Desmedt scheme in terms
of encryption (and, in one case, key generation), but somewhat less efficient in
other measures; we provide detailed comparisons in Section 4. It is somewhat
surprising that constructions based on completely different approaches end up
having such similar performance for both encryption and key generation.

1.3 Outline

In Section 3, we present and prove secure a generic construction of a CCA-secure
encryption scheme based on a variety of primitives (IBE, macs, and encapsula-
tion) formally defined in Section 2. Section 4 describes in more detail two specific
instantiations of the various primitives; the efficiency of the resulting schemes
are then compared with previous work.

2 Basic Definitions

We review the standard definitions of public-key encryption schemes and their
security against adaptive chosen-ciphertext attacks. This is followed by defini-
tions of identity-based encryption, message authentication, and “encapsulation”
as needed for our construction.

Definition 1. (Public-Key Encryption) A public-key encryption scheme
PKE is a triple of ppt algorithms (Gen,Enc,Dec) such that:

– The randomized key generation algorithm Gen takes as input a security pa-
rameter 1k and outputs a public key PK and a secret key SK. We write
(PK,SK) ← Gen(1k).

– The randomized encryption algorithm Enc takes as input a public key PK
and a message m ∈ {0, 1}∗, and outputs a ciphertext C. We write C ←
EncPK(m).

– The decryption algorithm Dec takes as input a ciphertext C and a secret key
SK. It returns a message m ∈ {0, 1}∗ or the distinguished symbol ⊥. We
write m ← DecSK(C).

We require that for all (PK,SK) output by Gen, all m ∈ {0, 1}∗, and all C
output by EncPK(m) we have DecSK(C) = m.

Definition 2. (CCA Security) A public-key encryption scheme PKE is secure
against adaptive chosen-ciphertext attacks (i.e., is “CCA-secure”) if the advan-
tage of any ppt adversary A in the following game is negligible in the security
parameter k:

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 91

1. Gen(1k) outputs (PK,SK). Adversary A is given 1k and PK.
2. The adversary may make polynomially-many queries to a decryption oracle

DecSK(·).
3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit

b is randomly chosen and the adversary is given a “challenge ciphertext”
C∗ ← EncPK(mb).

4. A may continue to query its decryption oracle DecSK(·) except that it may
not request the decryption of C∗.

5. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by
PrA,PKE[Succ]. The adversary’s advantage is defined as |PrA,PKE[Succ] − 1/2|.

2.1 Identity-Based Encryption

Informally, an IBE scheme is a public-key encryption scheme in which any string
(i.e., identity) can serve as a public key. In more detail, a setup algorithm is first
run to generate “master” public and secret keys. Given the master secret key
and any string ID ∈ {0, 1}∗ (which can be viewed as an identity), it is possible
to derive a “personal secret key” SKID. Any sender can encrypt a message
for “identity” ID using only the master public key and the string ID. The
resulting ciphertext can be decrypted using the derived secret key SKID, but
the message remains hidden from an adversary who does not know SKID even if
that adversary is given SKID′ for multiple identities ID′ �= ID. The concept of
identity-based encryption was introduced by Shamir [31], and provably-secure
IBE schemes in the random oracle model were demonstrated by Boneh and
Franklin [7] and Cocks [12]. More recently, provably-secure IBE schemes in the
standard model have been developed [10, 5, 6, 34]; see further discussion below.

In the original definition of security for IBE proposed and achieved by Boneh
and Franklin [7], the adversary may choose the “target identity” (ID in the
above discussion) in an adaptive manner, based on the master public key and
any keys SKID′ the adversary has obtained thus far. A weaker notion of security,
proposed and achieved by Canetti, Halevi, and Katz [10], requires the adversary
to specify the target identity before the public-key is published; we will refer to
this notion of security as “weak” IBE. As in [11], our construction only requires
weak IBE schemes secure against chosen-plaintext attacks. We therefore only
recall this definition of security.

Definition 3. (IBE) An identity-based encryption scheme IBE is a 4-tuple of
ppt algorithms (Setup,Der,Enc,Dec) such that:

– The randomized setup algorithm Setup takes as input a security parameter 1k

and a value � for the identity length. It outputs some system-wide parameters
PK along with a master secret key msk. (We assume that k and � are implicit
in PK.)

– The (possibly randomized) key derivation algorithm Der takes as input the
master key msk and an identity ID ∈ {0, 1}�. It returns the corresponding
decryption key SKID. We write SKID ← Dermsk(ID).

92 Dan Boneh and Jonathan Katz

– The randomized encryption algorithm Enc takes as input the system-wide
public key PK, an identity ID ∈ {0, 1}�, and a message m ∈ {0, 1}∗; it
outputs a ciphertext C. We write C ← EncPK(ID,m).

– The decryption algorithm Dec takes as input an identity ID, its associated
decryption key SKID, and a ciphertext C. It outputs a message m ∈ {0, 1}∗
or the distinguished symbol ⊥. We write m ← DecSKID (ID,C).

We require that for all (PK,msk) output by Setup, all ID ∈ {0, 1}�, all SKID

output by Dermsk(ID), all m ∈ {0, 1}∗, and all C output by EncPK(ID,m) we
have DecSKID (ID,C) = m.

As mentioned earlier, we provide a definition of security only for the case of
“weak” IBE, as considered in [10, 5]. (Of course, a scheme satisfying the stronger
definition of [7, 6] is trivially a weak IBE scheme as well.)

Definition 4. (Selective-ID IBE) An identity-based scheme IBE is secure
against selective-identity, chosen-plaintext attacks if for all polynomially-bounded
functions �(·) the advantage of any ppt adversary A in the following game is
negligible in the security parameter k:

1. A(1k, �(k)) outputs a target identity ID∗ ∈ {0, 1}�(k).
2. Setup(1k, �(k)) outputs (PK,msk). The adversary is given PK.
3. The adversary A may make polynomially-many queries to an oracle Dermsk(·),

except that it may not request the secret key corresponding to the target iden-
tity ID∗.

4. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit
b is randomly chosen and the adversary is given a “challenge ciphertext”
C∗ ← EncPK(ID∗,mb).

5. A may continue to query its oracle Dermsk(·), but still may not request the
secret key corresponding to the identity ID∗.

6. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by
PrA,IBE[Succ]. The adversary’s advantage is defined as |PrA,IBE[Succ] − 1/2|.

For completeness, we remark that a slightly weaker definition – in which
� = Ω(log k) is a priori bounded, rather than being given as a parameter to
Setup – suffices for our construction.

2.2 Message Authentication

We view a message authentication code as a pair of ppt algorithms (Mac,Vrfy).
The authentication algorithm Mac takes as input a key sk and a message M ,
and outputs a string tag. The verification algorithm Vrfy takes as input a key sk,
a message M , and a string tag; it outputs either 0 (“reject”) or 1 (“accept”). We
require that for all sk and M we have Vrfysk(M,Macsk(M)) = 1. For simplicity,
we assume that Mac and Vrfy are deterministic.

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 93

We give a definition of security tailored to the requirements of our construc-
tion; in particular, we require only “one-time” security for our message authen-
tication code. We remark that efficient schemes satisfying this definition can be
constructed without any computational assumptions using, e.g., almost strongly
universal hash families [35].

Definition 5. (Message Authentication) A message authentication code
(Mac,Vrfy) is secure against a one-time chosen-message attack if the success
probability of any ppt adversary A in the following game is negligible in the
security parameter k:

1. A random key sk ∈ {0, 1}k is chosen.
2. A(1k) outputs a message M and is given in return tag = Macsk(M).
3. A outputs a pair (M ′, tag′).

We say that A succeeds if (M, tag) �= (M ′, tag′) and Vrfysk(M ′, tag′) = 1.

In the above, the adversary succeeds even if M = M ′ but tag �= tag′. Thus,
the definition corresponds to what has been termed “strong” security in the
context of signature schemes.

2.3 Encapsulation

We define a notion of “encapsulation” which may be viewed as a weak variant of
commitment. (Note that our definition is unrelated to that of key encapsulation
which was discussed in Section 1.2.) In terms of functionality, an encapsulation
scheme commits the sender to a random string as opposed to a chosen message
as in the case of commitment. In terms of security, our construction only re-
quires binding to hold for honestly-generated encapsulations ; this is analogous
to assuming an honest sender during the first phase of a commitment scheme.

Definition 6. (Encapsulation) An encapsulation scheme is a triple of ppt
algorithms (Setup,S,R) such that:

– Setup takes as input the security parameter 1k and outputs a string pub.
– S takes as input 1k and pub, and outputs (r, com, dec) with r ∈ {0, 1}k. We

refer to com as the public commitment string and dec as the de-commitment
string.

– R takes as input (pub, com, dec) and outputs an r ∈ {0, 1}k ∪ {⊥}.

We require that for all pub output by Setup and for all (r, com, dec) output by
S(1k, pub), we have R(pub, com, dec) = r. We also assume for simplicity that
com and dec have fixed lengths for any given value of the security parameter.

As in the case of commitment, an encapsulation scheme satisfies notions of
both binding and hiding. Informally, “hiding” requires that com should leak no
information about r; more formally, the string r should be indistinguishable from
random even when given com (and pub). “Binding” requires that an honestly-
generated com can be “opened” to only a single (legal) value of r; see below.

94 Dan Boneh and Jonathan Katz

Definition 7. (Secure Encapsulation) An encapsulation scheme
(Setup,S,R) is secure if it satisfies both hiding and binding as follows:

Hiding: The following is negligible for all ppt A:∣∣∣∣Pr
[

pub ← Setup(1k); r0 ← {0, 1}k;
(r1, com, dec) ← S(1k, pub); b ← {0, 1} : A(1k, pub, com, rb) = b

]
− 1

2

∣∣∣∣ .
Binding: The following is negligible for all ppt A:

Pr

⎡⎣ pub ← Setup(1k);
(r, com, dec) ← S(1k, pub);

dec′ ← A(1k, pub, r, com, dec)
: R(pub, com, dec′) �∈ {⊥, r}

⎤⎦ .
In the above, both hiding and binding are required to hold only computa-

tionally. In Section 4 we show a novel encapsulation scheme which is both simple
and efficient, and which achieves statistical hiding (and computational binding).

3 A Generic Construction

We now describe our construction of a CCA-secure encryption scheme from the
primitives introduced in the previous section. Let (Setup′,Der′,Enc′,Dec′) be
an IBE scheme, (Setup,S,R) be an encapsulation scheme, and (Mac,Vrfy) be a
message authentication code. Our scheme is constructed as follows:

Key Generation: Keys for our scheme are generated by running Setup′(1k)
to generate (PK,msk) and Setup(1k) to generate pub. The public key is
(PK, pub), and the secret key is msk.

Encryption: To encrypt a message m using public key (PK, pub), a sender first
encapsulates a random value by running S(1k, pub) to obtain (r, com, dec).
The sender then encrypts the “message” m ◦ dec with respect to the “iden-
tity” com; that is, the sender computes C ← Enc′PK(com,m ◦ dec). The
resulting ciphertext C is then authenticated by using r as a key for a mes-
sage authentication code; i.e., the sender computes tag = Macr(C). The final
ciphertext is 〈com, C, tag〉.

Decryption: To decrypt a ciphertext 〈com, C, tag〉, the receiver derives the se-
cret key SKcom corresponding to the “identity” com, and uses this key to de-
crypt the ciphertext C as per the underlying IBE scheme; this yields a “mes-
sage” m ◦ dec (if decryption fails, the receiver outputs ⊥). Next, the receiver
runs R(pub, com, dec) to obtain a string r; if r �=⊥ and Vrfyr(C, tag) = 1,
the receiver outputs m. Otherwise, the receiver outputs ⊥.

Intuition for the security of the above encryption scheme against chosen-
ciphertext attacks is similar to [11]. Let 〈com∗, C∗, tag∗〉 be the challenge ci-
phertext (cf. Definition 2). In the absence of any decryption queries, it is clear
that the value of the bit b remains hidden from the adversary due to the security
of the underlying IBE scheme. Decryption queries of the form 〈com, C, tag〉 with

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 95

com �= com∗ do not further help the adversary since the adversary would be
unable to determine b even if it had the secret key SKcom corresponding to com
(this follows again from the security of the underlying IBE scheme). Thus, it is
left to examine decryption queries of the form 〈com∗, C, tag〉. The crux of our
proof is to show that all queries of this form are rejected (i.e., the decryption
oracle returns ⊥ in response to all queries of this form) with all but negligible
probability. A formal proof of this statement is somewhat involved, as it requires
avoiding the apparent “circularity” arising from the IBE scheme, the message
authentication code, and the encapsulation scheme; the details are given in the
proof below.

Theorem 1. Assuming the IBE scheme, message authentication code, and en-
capsulation scheme used above satisfy Definitions 4, 5, and 7, respectively, the
above construction is a PKE scheme which is secure against adaptive chosen-
ciphertext attacks.

Proof. Given any ppt adversary A attacking the above encryption scheme in an
adaptive chosen-ciphertext attack, we construct a ppt adversaryA′ attacking the
underlying IBE scheme in a selective-identity, chosen-plaintext attack. Relating
the success probabilities of these adversaries gives the desired result.

Let �(k) denote the length of strings com output by S. Define adversary A′

as follows:

1. A′(1k, �(k)) runs Setup(1k) to generate pub, and runs S(1k, pub) to obtain
(r∗, com∗, dec∗). The adversary A′ then outputs the “target identity” com∗.

2. A′ is then given IBE parameters PK. Adversary A′, in turn, runs A on
inputs 1k and (PK, pub).

3. When A submits the ciphertext 〈com, C, tag〉 to its decryption oracle, A′

proceeds as follows:
– If com = com∗, then A′ returns ⊥.
– If com �= com∗, then A′ makes the oracle query Der′msk(com) to obtain

SKcom. It then computes m ◦ dec = Dec′SKcom
(com, C), followed by r =

R(pub, com, dec). If r �=⊥ and Vrfyr(C, tag) = 1, it returns m to A.
Otherwise, it returns ⊥.

4. At some point, A outputs two messages m0,m1. Adversary A′ outputs the
messages m0 ◦ dec∗ and m1 ◦ dec∗, and receives in return a ciphertext C∗. It
computes tag∗ = Macr∗(C∗) and returns 〈com∗, C∗, tag∗〉 to A.

5. A may continue to make decryption oracle queries, and these are answered
as before. (Recall, A may not query the decryption oracle on the challenge
ciphertext itself.)

6. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal strategy for attacking the underlying IBE scheme
in a selective-identity, chosen-plaintext attack; in particular, A′ never requests
the secret key corresponding to “target identity” com∗.

Before analyzing the success probability of A′, we prove a claim bounding the
probability of a certain event. Say a ciphertext 〈com, C, tag〉 is valid if decryption

96 Dan Boneh and Jonathan Katz

of this ciphertext would not result in ⊥. Let Valid denote the event that A ever
submits a ciphertext 〈com∗, C, tag〉 to its decryption oracle which is valid. (We
always implicitly assume that 〈com∗, C, tag〉 �= 〈com∗, C∗, tag∗〉 since this event
is disallowed after A is given the challenge ciphertext, and occurs with only
negligible probability before A is given the challenge ciphertext.)

Claim. Pr[Valid] is negligible.

Proof. Let Game 0 denote the original experiment in which A interacts with
a real decryption oracle (and not the simulated decryption oracle provided by
A′); we are interested in bounding Pr0[Valid]. Let Equiv be the event that the
adversary ever submits a ciphertext 〈com∗, C, tag〉 for which (1) C decrypts to
some arbitrary m◦dec (using the secret key SKcom∗) and (2) R(pub, com∗, dec) =
r with r �∈ {r∗,⊥}. Let Forge be the event that Equiv does not occur, and A
at some point submits a ciphertext 〈com∗, C, tag〉 such that Vrfyr∗(C, tag) = 1.
Clearly, we have Pr0[Valid] ≤ Pr0[Equiv] + Pr0[Forge].

We first show that Pr0[Equiv] is negligible, by the binding property of the
encapsulation scheme. Consider an adversary B acting as follows: given input
(1k, pub, r∗, com∗, dec∗), adversary B generates (PK,msk) for the IBE scheme
and runs A on inputs 1k and (PK, pub). Whenever A makes a decryption oracle
query, B can legitimately answer this query since B knows msk. When A submits
its two messages m0,m1, adversary B simply chooses b ∈ {0, 1} at random
and encrypts mb in the expected way to generate a completely valid ciphertext
〈com∗, C∗, tag∗〉 (B can easily do this since it has both r∗ and dec∗). Now, if
Equiv ever occurs then B learns dec such that R(pub, com∗, dec) �∈ {⊥, r∗}. But
this exactly violates the binding property of (Setup,S,R).

We next show that Pr0[Forge] is negligible. Let q(k) be a polynomial upper
bound on the number of decryption queries made by A, and let Forgei denote
the event that Forge occurs for the first time on the ith decryption query of
A. Let Forge′i denote the event that the ith decryption query is of the form
〈com∗, C, tag〉 and Vrfyr∗(C, tag) = 1 when all previous decryption queries of the
form 〈com∗, C′, tag′〉 are answered with ⊥ (without checking whether they are
valid or not). We refer to this latter “game” (which formally depends on the i
under consideration) as Game 0′.

Note that Pr0[Forge] =
∑q(k)

i=1 Pr0[Forgei]. Furthermore, for all i we have

Pr0′ [Forge′i] ≥ Pr0[Forgei]. Letting Forge′ def= ∪iForge′i, we obtain Pr0[Forge] ≤
Pr0′ [Forge′].

Define Game 1 which proceeds exactly as Game 0′, except that A is now
given a random encryption of mb ◦ 0n(k) instead of a random encryption of
mb◦dec∗ (here, n(k) def= |dec∗|; recall that Definition 6 requires the length of dec∗

to be fixed for a given value of k). We claim that
∣∣Pr0′ [Forge′]− Pr1[Forge′]

∣∣ is
negligible. Indeed, if this is not the case then we can easily construct an algorithm
B attacking the security of the underlying IBE scheme:

– Given input 1k, algorithm B runs Setup(1k) to generate pub and then runs
S(1k, pub) to obtain (r∗, com∗, dec∗). It outputs com∗ as the target identity

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 97

and is then given the IBE parameters PK. Finally, it runs A on inputs 1k

and (PK, pub).
– Decryption queries of A are answered as follows:

• Queries of the form 〈com, C, tag〉 with com �= com∗ are answered by first
querying Der′msk(com) to obtain SKcom, and then decrypting in the usual
way.

• Upon receiving a query of the form 〈com∗, C, tag〉, first check whether
Vrfyr∗(C, tag) = 1. If so, abort the experiment and output 1. Otherwise,
return ⊥ to A.

– Eventually, A sends a pair of messages m0,m1 to its encryption oracle. B
selects a bit b at random, and sends mb ◦ dec∗ and mb ◦ 0n(k) to its encryp-
tion oracle. It receives in return a challenge ciphertext C∗, and uses this to
generate a ciphertext 〈com∗, C∗, tag∗〉 in the natural way.

– Further decryption queries of A are answered as above.
– If A halts and B has not previously aborted the experiment, then B outputs

a random bit.

The probability that B outputs 1 when given an encryption of mb ◦ dec∗ is
1
2 + 1

2 · Pr0′ [Forge′]. On the other hand, the probability that B outputs 1 when
given an encryption of mb◦0n(k) is 1

2 + 1
2 ·Pr1[Forge′]. Since the difference between

these two probabilities must be negligible if the underlying IBE scheme is secure,
this proves the current claim.

Define Game 2 which proceeds exactly as Game 1, except that the challenge
ciphertext given to A is now constructed as follows: S(1k, pub) is run to give
(r, com∗, dec∗) but an independent random key r∗ ∈ {0, 1}k is chosen as well.
Compute C∗ ← EncPK(com∗,m ◦ 0n(k)), followed by tag∗ = Macr∗(C∗). The
challenge ciphertext, as usual, is 〈com∗, C∗, tag∗〉. We claim that the difference∣∣Pr1[Forge′] − Pr2[Forge′]

∣∣ is negligible. To see this, consider the following algo-
rithm B breaking the hiding property of the encapsulation scheme:

– B is given input 1k and (pub, com∗, r̃). It then runs Setup′(1k) to generate
(PK,msk), and runs A on input 1k and (PK, pub).

– Decryption queries of A are answered as follows:
• Queries of the form 〈com, C, tag〉 with com �= com∗ are answered by

running Der′msk(com) to obtain SKcom, and then decrypting in the usual
way.

• Upon receiving a query of the form 〈com∗, C, tag〉, first check whether
Vrfyr̃(C, tag) = 1. If so, abort the experiment and output 1. Otherwise,
return ⊥ to A.

– Eventually, A sends a pair of messages m0,m1 to its encryption oracle.
B selects a bit b at random and proceeds as follows: it computes C∗ ←
EncPK(com∗,mb ◦ 0n(k)), computes tag∗ = Macr̃(C∗), and returns the chal-
lenge ciphertext 〈com∗, C∗, tag∗〉 to A.

– Further decryption queries of A are answered as above.
– If A halts and B has not previously aborted the experiment, then B outputs

a random bit.

98 Dan Boneh and Jonathan Katz

Now, if r̃ is such that (r̃, com∗, dec∗) was output by S(1k, pub) then the view
of A is exactly as in Game 1 and so the probability that B outputs 1 in this
case is 1

2 (1 + Pr1[Forge′]). On the other hand, if r̃ is chosen independently of
com∗ then the view of A is exactly as in Game 2 and so the probability that B
outputs 1 in this case is 1

2 (1 + Pr2[Forge′]). Since the difference between these
two probabilities must be negligible by the hiding property of the encapsulation
scheme, this proves the current claim.

Finally, we claim that Pr2[Forge′] is negligible. This follows quite easily from
the security of the message authentication code, and we omit the details here.
This completes the proof of the claim. ��

Given the preceding claim, we see that the simulation which A′ provides for
A is statistically close to a real execution of A: in particular, the only difference
occurs when Valid occurs. We therefore conclude that the advantage of A′ is
negligibly close to the advantage of A. Since the advantage of A′ is negligible
under the assumed security of the underlying IBE, the advantage of A must be
negligible as well. This completes the proof of Theorem 1. ��

4 Efficient Instantiations

Here, we describe two particular instantiations of our scheme by describing spe-
cific instantiations of the various primitives.

IBE Schemes. Boneh and Boyen [5] recently proposed two efficient IBE
schemes suitable for our purposes. We refer to [5] for the full details and con-
tent ourselves with giving only a high-level description of their first scheme
here. Let G and G1 be two (multiplicative) cyclic groups of prime order q for
which there exists an efficiently-computable map ê : G × G → G1 which is bi-
linear and non-degenerate. Namely, (1) for all μ, ν ∈ G and a, b ∈ Zq we have
ê(μa, νb) = e(μ, ν)ab, and (2) ê(g, g) �= 1 for some generator g of G. The IBE
scheme is defined as follows:

Setup: Pick random generators g, g1, g2 of G and a random x ∈ Zq. Set g3 = gx

and Z = ê(g1, g3). The master public key is PK = (g, g1, g2, g3, Z) and the
master secret key is msk = x.

Derive: To derive the secret key for “identity” ID ∈ Zq using msk = x, choose
a random r ∈ Zq and return the key SKID = (gx

1g
r
2g

r·ID
3 , gr).

Encrypt: To encrypt a message M ∈ G1 with respect to “identity” ID ∈ Zq,
choose a random s ∈ Zq and output the ciphertext (gs, gs

2g
s·ID
3 , M · Zs).

Decrypt: To decrypt ciphertext (A,B,C) using private key (K1,K2), output
C · ê(B,K2)/ê(A,K1).

Correctness can be easily verified. Security of the above scheme is based on
the decisional bilinear Diffie-Hellman (decision-BDH) problem. For efficiency,
we assume that the master secret key msk contains the discrete logarithms of
g1, g2, and g3 with respect to base g, in which case generating SKID requires
only two exponentiations.

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 99

The second IBE scheme of Boneh and Boyen [5] is more efficient than the
above in terms of both key-generation and decryption time (the time required for
encryption is essentially the same), but is based on a cryptographic assumption
which is less standard.

Note that when the above scheme is used for key encapsulation (in the sense
of Section 1.2), the sender need only send (gs, gs

2g
s·ID
3) and compute the key

Hα(Zs) where H is a keyed hash function (see below); the receiver, given cipher-
text 〈A,B〉, computes the matching key Hα(ê(A,K1)/ê(B,K2)), where K1,K2

are as before. In this description, H represents a keyed hash function where
the key α is included as part of the receiver’s public key. Under the decisional-
BDH assumption, it suffices for H to be chosen from a pairwise-independent
hash family in order for the scheme to be secure. We remark, however, that this
encapsulation scheme is also secure under a potentially weaker “hash BDH” as-
sumption as well (and a similar remark holds also for the second IBE scheme
of [5]). See further discussion at the end of this section.

Message Authentication Codes. A number of efficient message authentica-
tion codes are known, and we do not suggest any particular one. We stress that
we only require “one-time” security (cf. Definition 5) and so efficient schemes
which do not rely on any computational assumptions (e.g., [35]) may be used.
Furthermore, messages to be authenticated have a (known) fixed length; this
enables slight optimizations and/or simplifications of known schemes.

Encapsulation Schemes. We suggest an encapsulation scheme based on a
fixed cryptographic hash function H : {0, 1}448 → {0, 1}128 (constructed, e.g.,
by suitably modifying the output length of SHA-1), and for a particular choice
of security parameters; it is easy to adapt the scheme for the more general case.
Our scheme works as follows:

– Setup chooses a hash function h from a family of pairwise independent hash
functions mapping 448-bit strings to 128-bit strings, and outputs pub = h.

– The encapsulation algorithm S takes pub as input, chooses a random x ∈
{0, 1}448, and then outputs (r = h(x), com = H(x), dec = x).

– The recovery algorithm R takes as input (pub = h, com, dec) and outputs
h(dec) if H(dec) = com, and ⊥ otherwise.

Note that binding holds as long as it is infeasible to find a dec′ �= dec such that
H(dec′) = H(dec), where dec is chosen uniformly at random (cf. Definition 7).
Thus, binding holds as long as H is second-preimage resistant (the construction
can be easily modified so as to be based on UOWHFs by simply having Setup
choose a key h′ for a UOWHF and including h′ in pub); collision-resistance is
not necessary3. Furthermore, the above scheme satisfies statistical hiding. More
specifically:

3 This also explains why an output length of 128 bits for H should provide a sufficient
level of security.

100 Dan Boneh and Jonathan Katz

Theorem 2. For the encapsulation scheme described above, the statistical dif-
ference between the following distributions is at most 2−63:

(1) {pub ← Setup; (r, com, dec) ← S(pub) : (pub, com, r)}
(2) {pub ← Setup; (r, com, dec) ← S(pub); r′ ← {0, 1}128 : (pub, com, r′)}.

Proof (Sketch). The idea is loosely based on [16, 21], but our proof is much
simpler. For any x ∈ {0, 1}448, let Nx

def= {x′ | H(x′) = H(x)} (this is simply the
set of elements hashing to H(x)). Call x good if |Nx| ≥ 2255, and bad otherwise.
Since the output length of H is 128 bits, there are at most 2255 · 2128 = 2383 bad
x’s; thus, the probability that an x chosen uniformly at random from {0, 1}448

is bad is at most 2−65.
Assuming x is good, the min-entropy of x – given pub and com – is at least

255 bits since every x̃ ∈ Nx is equally likely. Viewing h as a strong extractor (or,
equivalently, applying the leftover-hash lemma [22]) we see that {h,H(x), h(x)}
has statistical difference at most 2−64 from {h,H(x), U128}, where U128 repre-
sents the uniform distribution over {0, 1}128. The theorem follows easily. ��

A Concrete Scheme. Given the primitives above, we may construct a CCA-
secure encryption scheme as described in the previous section. However, as dis-
cussed in Section 1.2, improved efficiency can be obtained by directly construct-
ing a hybrid encryption scheme; we do so here.

Key Generation requires running the key-generation algorithm for the under-
lying IBE scheme and then choosing a hash function h from a family of
pairwise independent hash functions.

Encryption of a message M involves (1) running the encapsulation scheme to
obtain (k = h(x), ID = H(x), x); (2) using the underlying IBE as a key
encapsulation scheme, with identity ID, to generate a ciphertext C1 encap-
sulating a key k′; (3) using k′ to encrypt M ◦ x by, for example, computing
C2 = G(k′) ⊕ (M ◦ x), where G is a PRG; (4) computing a mac on C1, C2

using key k.
The ciphertext consists of ID,C1, C2, and the tag output by the mac.

Decryption of ciphertext (ID,C1, C2, tag) is done in the obvious way: recover
k′ from C1 (using identity ID), recover M ◦ x from C2, and compute k =
h(x). If H(x) = ID and Vrfyk((C1, C2), tag) = 1, then output M ; otherwise,
output ⊥.

We tabulate the efficiency of our schemes, and compare them to the scheme
of Kurosawa-Desmedt [25], in Table 1. Scheme 1 is instantiated using the first
IBE from [5], as described above; scheme 2 is instantiated using the second
IBE from [5]. During encryption all bases of exponentiation are fixed which
potentially enables further speed-up by pre-computation. In Scheme 1 we assume
that g1, g3 are generated by raising the fixed generator g to a random power.
Hence, computing ê(g1, g3) requires only a single exponentiation assuming ê(g, g)
is pre-computed.

In addition to comparing the efficiency of these various schemes, it is inter-
esting also to compare the cryptographic assumptions on which they are based.

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 101

Table 1. Efficiency comparison for CCA-secure hybrid encryption schemes. When tab-
ulating computational efficiency, “private-key” operations (hash function/block cipher
evaluations) are ignored, and one multi-exponentiation is counted as 1.5 exponentia-
tions. Ciphertext overhead represents the difference (in bits) between the ciphertext
length and the message length, and |p| is the length (in bits) of a group element.
“p-exp” refers to an exponentiation relative to a fixed base.

Encryption Decryption Key generation Ciphertext overhead

Scheme 1 3.5 p-exps. 2 p-exps. + 2 pairings 3 exps. 2|p| + 704

Scheme 2 3.5 p-exps. 1.5 exps. + 1 pairing 2 exps. 2|p| + 704

KD [25] 3.5 p-exps. 1.5 exps. 3 exps. 2|p| + 128

Security of the Kurosawa-Desmedt scheme (as in the case of the Cramer-Shoup
scheme [13] on which it is based) inherently relies on the decisional Diffie-Hellman
assumption, and it does not seem possible to obtain provable security using a
weaker variant of this assumption. In contrast, as noted earlier, our schemes
may be proven secure under “hash BDH”-type assumptions which are poten-
tially weaker than the decisional-BDH assumption4.

5 Conclusions

We present an efficient methodology for constructing CCA-secure public-key
cryptosystems from weak identity-based encryption schemes. Our construction
adds only a mac and a weak “commitment” to the original IBE system. Con-
sequently, performance of the resulting public-key system is very close to the
performance of the underlying IBE scheme. This improves on a previous trans-
formation of Canetti, et al. which relies on the use of one-time signature schemes.

Applying our construction to recent IBE systems of Boneh and Boyen we ob-
tain an efficient CCA-secure public-key cryptosystem without random oracles.
Encryption (and, in one case, key generation) in the resulting systems are more
efficient than in the Cramer-Shoup scheme, and on par with the recent proposal
of Kurosawa and Desmedt. Decryption time and ciphertext size are compara-
ble, though a bit worse. Our schemes are also somewhat more flexible than the
Kurosawa-Desmedt scheme in terms of the cryptographic assumptions needed to
obtain a proof of security. Our results show that building CCA-secure systems
from IBE can produce very efficient schemes. The resulting schemes, as well as
the proofs of security, are very different from those based on the work of Cramer
and Shoup.

4 In fact, we may base security of our constructions on purely computational – rather
than decisional – assumptions; e.g., the computational-BDH assumption (using hard-
core bits to encrypt one bit at a time). Although this no longer yields a practical
scheme, it achieves CCA-secure encryption based on a computational assumption
while avoiding the extreme inefficiency of NIZK proofs.

102 Dan Boneh and Jonathan Katz

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions
of Security for Public-Key Encryption Schemes. Adv. in Cryptology – Crypto 1998,
LNCS vol. 1462, Springer-Verlag, pp. 26–45, 1998.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for De-
signing Efficient Protocols. First ACM Conf. on Computer and Comm. Security,
ACM, pp. 62–73, 1993.

3. D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS#1. Adv. in Cryptology – Crypto 1998, LNCS
vol. 1462, Springer-Verlag, pp. 1–12, 1998.

4. M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and its Ap-
plications. 20th ACM Symposium on Theory of Computing (STOC), ACM, pp.
103–112, 1988.

5. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. Adv. in Cryptology – Eurocrypt 2004, LNCS vol. 3027,
Springer-Verlag, pp. 223–238, 2004. Full version available from
http://eprint.iacr.org/2004/172

6. D. Boneh and X. Boyen. Secure Identity Based Encryption Without Random Or-
acles. Adv. in Cryptology – Crypto 2004, LNCS vol. 3152, Springer-Verlag, pp.
443–459, 2004.

7. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
Adv. in Cryptology – Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp. 213–229,
2001. Full version in SIAM J. Computing 32(3): 586–615, 2003 and available from
http://crypto.stanford.edu/~dabo/pubs.html

8. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. 42nd IEEE Symp. on Foundations of Computer Science (FOCS), IEEE,
pp. 136–145, 2001. Full version available at http://eprint.iacr.org/2000/067/

9. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Re-
visited. 30th ACM Symp. on Theory of Computing (STOC), ACM, pp. 209–218,
1998.

10. R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. Adv. in Cryptology – Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag,
pp. 255–271, 2003. Full version available at http://eprint.iacr.org/2003/083

11. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. Adv. in Cryptology – Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag,
pp. 207–222, 2004.

12. C. Cocks. An Identity-Based Encryption Scheme Based on Quadratic Residues.
Cryptography and Coding, LNCS vol. 2260, Springer-Verlag, pp. 360–363, 2001.

13. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Chosen Ciphertext Attack. Adv. in Cryptology – Crypto 1998, LNCS vol.
1462, Springer-Verlag, pp. 13–25, 1998.

14. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. Adv. in Cryptology – Eurocrypt
2002, LNCS vol. 2332, Springer-Verlag, pp. 45–64, 2002.

15. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. Adv. in Cryptology – Crypto 2003, LNCS vol. 2729, Springer-
Verlag, pp. 126–144, 2003.

16. I. Damg̊ard, T.P. Pedersen, and B. Pfitzmann. On the Existence of Statistically-
Hiding Bit Commitment Schemes and Fail-Stop Signatures. Adv. in Cryptology –
Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 250–265, 1993.

CCA-Secure Cryptosystems Built Using Identity-Based Encryption 103

17. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM J. Com-
puting 30(2): 391–437, 2000.

18. U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs Under General Assumptions. SIAM J. Computing 29(1): 1–28, 1999.

19. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key
Exchange. Adv. in Cryptology – Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag,
pp. 524–543, 2003.

20. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308, 1988.

21. S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes
from Collision-Free Hashing. Adv. in Cryptology – Crypto 1996, LNCS vol. 1109,
Springer-Verlag, pp. 201–215, 1996.

22. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a Pseudorandom
Generator from any One-Way Function. SIAM J. Comp. 28(4): 1364–1396, 1999.

23. N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman,
A. Singer, and W. Whyte. The Impact of Decryption Failures on the Security of
NTRU Encryption. Adv. in Cryptology – Crypto 2003, LNCS vol. 2729, Springer-
Verlag, pp. 226–246, 2003.

24. M. Joye, J.-J. Quisquater, and M. Yung. On the Power of Misbehaving Adversaries
and Security Analysis of the Original EPOC. Cryptographers’ Track – RSA 2001,
LNCS vol. 2020, Springer-Verlag, pp. 208–222, 2001.

25. K. Kurosawa and Y. Desmedt. A New Paradigm of Hybrid Encryption Scheme.
Adv. in Cryptology – Crypto 2004, LNCS vol. 3152, Springer-Verlag, pp. 426–442,
2004.

26. L. Lamport. Constructing Digital Signatures from a One-Way Function. Technical
Report CSL-98, SRI International, 1978.

27. Y. Lindell. A Simpler Construction of CCA-Secure Public-Key Encryption Un-
der General Assumptions. Adv. in Cryptology – Eurocrypt 2003, LNCS vol. 2656,
Springer-Verlag, pp. 241–254, 2003.

28. M. Naor and M. Yung. Universal One-Way Hash Functions and Their Crypto-
graphic Applications. 21st ACM Symposium on Theory of Computing (STOC),
ACM, pp. 33–43, 1989.

29. C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. Adv. in Cryptology – Crypto 1991, LNCS vol. 576,
Springer-Verlag, pp. 433–444, 1992.

30. A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. 40th IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE, pp. 543–553, 1999.

31. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. Adv. in Cryp-
tology – Crypto 1984, LNCS vol. 196, Springer-Verlag, pp. 47–53, 1985.

32. V. Shoup. Why Chosen Ciphertext Security Matters. IBM Research Report RZ
3076, November, 1998. Available at http://www.shoup.net/papers.

33. V. Shoup. Using Hash Functions as a Hedge Against Chosen Ciphertext Attack.
Adv. in Cryptology – Eurocrypt 2000, LNCS vol. 275–288, Springer-Verlag, pp.
1807, 2000.

34. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. Avail-
able at http://eprint.iacr.org/2004/180

35. M.N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authenti-
cation and Set Equality. J. Computer System Sciences 22(3): 265–279, 1981.

A Generic Conversion with Optimal Redundancy

Yang Cui1, Kazukuni Kobara2, and Hideki Imai2

1 Dept. of Information & Communication Engineering, University of Tokyo
cuiyang@imailab.iis.u-tokyo.ac.jp

2 Institute of Industrial Science, University of Tokyo,
Komaba 4-6-1, Meguro-Ku, Tokyo, 153-8505, Japan

{kobara,imai}@iis.u-tokyo.ac.jp
http://imailab-www.iis.u-tokyo.ac.jp/imailab.html

Abstract. In this paper, we present a generic asymmetric encryption
conversion ROC, namely Redundancy Optimal Conversion, which has the
optimal message redundancy for one-way trapdoor function in the ran-
dom oracle model. To our best knowledge, it is the first generic conversion
to achieve such an optimal redundancy result for both one-way trapdoor
permutation and not length-preserving function.

To obtain IND-CCA security, the conversion only needs the weaker re-
quirement of the one-wayness, than the partial-domain one-wayness,
which succeeds to greatly extend the application area of the generic
conversion. Further, plaintext awareness property of the encryption is
not required any more, which also contributes to reduce the message re-
dundancy and hence removes the re-encryption step of the decryption
process, considerably reducing the computational burden. Finally, it has
simple construction of two cryptographic hash functions and two bitwise
XORs, as same as the widely used OAEP conversion, but more generally
useful.

Keywords: Optimal redundancy, IND-CCA, conversion, plaintext aware-
ness.

1 Introduction

The requirement of the strong confidentiality in active attack scenarios moti-
vates the cryptographic encryption scheme to be IND-CCA (i.e. polynomial-time
indistinguishability against adaptive chosen ciphertext attacks) [15, 24] secure.
Actually, the underlying security notion has been respected as the standard
by both academics and industrials. Rather than thwarting the inversion of the
one-way trapdoor function wholly in polynomial-time, it is definitely harder
preventing any single bit of the ciphertext from being distinguished, against the
adversary without the knowledge of the trapdoor. Cryptographic researchers pay
more randomness or redundancy to cope with the hardness of achieving this top
level security. While at the same time, too much randomness will aggravate the
load of the cryptosystem, especially in communication cost, which is extremely
disliked in the bandwidth limited network.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 104–117, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Generic Conversion with Optimal Redundancy 105

From a view point of redundancy, requirement of desired security varies much.
There have been some general methodologies to achieve IND-CCA [10, 3, 8, 5] for
the asymmetric (public key) encryption. The first general methodology employs
the technique of Naor and Yung’s paradigm [18], where the plaintext is en-
crypted twice by distinct keys, and a non-interactive zero-knowledge (NIZK)
proof is built to prove that the two ciphertexts are indeed encryptions of the
same plaintext, which intuitively makes the decryption oracle useless. Although
their paradigm only achieves indifferent security, the NIZK technique has be-
come a powerful tool to build a CCA secure scheme, as the first CCA secure
scheme by Dolev, Dwork and Naor [10]. However, schemes by this technique are
not practical at all, in that the NIZK proof is involved, thus this methodology
is only considered meaningful in theoretical aspect, unless some efficient NIZK
proof is invented.

Another methodology, Cramer-Shoup’s paradigm [8, 9], yields the first prac-
tical and provably CCA secure encryption scheme in the standard model (i.e.
without using the random oracle), and has been extended to more general case
by universal hash proofs. The proof is technically based on specific assumptions,
i.e. Decision Diffie Hellman problem or Deciding Quadratic Residuosity prob-
lem. Note that the above scheme is practical, but it seems not able to beat the
performance of random oracle based schemes in speed and message expansion
efficiency.

The random oracle model, by Bellare and Rogaway [2], is the most widely
used methodology, powerful to design provably secure and very efficient schemes.
Since original asymmetric encryption primitive has rarely achieved CCA security,
some famous generic conversion like Optimal Asymmetric Encryption Padding
(OAEP) [3] is constructed in this model, and used to preprocess the message and
additional randomness, together with some asymmetric encryption primitive, for
instance, RSA or Rabin, yielding IND-CCA security.

Obviously, among the above main methodologies1, generic conversions in the
random oracle model are entitled the most practical and the best efficient. In the
present paper, we study the least message redundancy of generic conversions to
achieve IND-CCA security in the random oracle model, not only for specific one-
way trapdoor permutation (deterministic), but also for not length-preserving
one-way trapdoor function (probabilistic), and provide such a conversion that
needs nearly the same elements as original OAEP (i.e. easy to be modified from
OAEP), but bases on a distinct assumption and gets a better performance.

1.1 Related Work

OAEP conversion has several variants, such as SAEP [4], OAEP+ [25], OAEP++
[17] etc., which are all equipped with plaintext awareness (PA), by means of con-
sequent zero bits or one more hash function, which will definitely raise the re-
dundancy. And more significantly these variants are not capable to deal with not
1 Recently, Canetti et al. [5] presents a generic CCA conversion from any weak secure

Identity Based Encryption (IBE), which is in another context, and we do not need
the IBE property in particular.

106 Yang Cui, Kazukuni Kobara, and Hideki Imai

length-preserving function, like ElGamal. And thanks to Fujisaki and Okamoto’s
generic conversions [12, 13], the not length-preserving function can be enhanced
to CCA security. Their first conversion is only applicable to IND-CPA (i.e. poly-
nomial-time indistinguishability against chosen plaintext attacks) primitive, and
soon improved to the second one, which obtains CCA security from a weak re-
quirement OW-CPA, applicable to numerous primitives. Later, Pointcheval [23]
gets a similar conversion.

More recently, conversions dependent on Gap problem [19], such as, REACT
[20], GEM [6] and two schemes by [7] are introduced for the merits of “on the
fly” speed or size efficiency. Except [7], all of these conversions can deal with
both not length-preserving function and permutation, however, unfortunately
they get a redundant construction for validity check, or the property PA. The
notion of PA is presented in [3] and improved in [1]. Roughly speaking, it means
that if an adversary has successfully created a valid ciphertext, she must know
that corresponding plaintext. It probably derives from the intuition to force the
adversary not able to get the help from the decryption oracle, but appears arti-
ficial. The recent work [11] has presented another notion that may be sufficient
and necessary to generate IND-CCA security in the random oracle model. And
our motivation of this work focuses on removing the redundancy from plaintext
awareness.

In Asiacrypt’03, Phan and Pointcheval [21] have put forward two CCA secure
schemes, one is in the so-called random permutation model, stronger required
than random oracle; the other is a 3-round OAEP without PA, which they claim
to be “without redundancy”. Both of them can only be applied to one-way
trapdoor permutation, and the practical 3-round OAEP still suffers from the
same restriction as the original OAEP that only partial-domain one-wayness
secure primitive is applicable [14].

Note that their “without redundancy” means the expanded ciphertext size
is zero beyond both the plaintext size and necessary randomness size for CCA
security. We hereby define the redundancy just as the expanded size of cipher-
text over the plaintext. We say optimal redundancy if the ciphertext size over
plaintext can not be reduced given that the IND-CCA security is guaranteed cor-
responding to the security parameter κ. Indeed, we find out that our conversion
also achieves their property of “without redundancy” in the occasion of length-
preserving permutation, and more generally implicate the analogous scenario for
not length-preserving trapdoor function.

1.2 Our Contribution

In this paper, we build the first generic conversion scheme ROC, which is able
to generate IND-CCA security from both one-way trapdoor permutation and not
length-preserving trapdoor function primitives with optimal redundancy, given
that the underlying primitives are OW-PCA (one-wayness against plaintext check
attack) secure in the random oracle model.

Further, plaintext awareness property of the encryption is not required any
more, which also contributes to reduce the message redundancy and hence re-

A Generic Conversion with Optimal Redundancy 107

moves the re-encryption step of the decryption process, considerably reducing the
computational burden. Finally, it has simple construction of two cryptographic
hash functions and two bitwise XORs, as same as the widely used OAEP conver-
sion, easily obtained from original OAEP conversion, but makes it fit for almost
all asymmetric primitives.

The paper will first start with some basic security notions in the next section,
then introduce the new construction of ROC in the section 3, and prove the
security of the conversion in the random oracle model in section 4, at last explain
the optimal result by a comparison of the generic conversions in section 5 and
draw a conclusion.

2 Security Notions

Here, in this section, we recall some basic security definitions so that we can con-
clude the security requirements of our schemes. At first, we give some notations
and conventions. We define that x

R← X as sampling randomly. The Ω and M
are the random coin space and message space, respectively. We define | · | as the
length. Further, if we say that ε(k) is negligible, we mean that for any constant
c, there exists k0 ∈ IN, such that ε < (1/k)c for any k > k0.

Definition 1 (Public Key Encryption). Let Π=(K, E, D) be a triple of
algorithms:
– the key generation algorithm K: on a secret input 1k (k ∈ IN), in polynomial

time in k, it probabilistically produces a pair of keys (pk, sk), publicly and
secretly known respectively.

– the encryption algorithm E: on input of message m ∈ {0, 1}n and public key
pk, the algorithm E(m; r) produces the ciphertext c of m, where c ∈ {0, 1}∗,
r ∈ Ω (for one-way permutation algorithm, r is omitted)

– the decryption algorithm D: By using a ciphertext c and the secret key sk, D
returns the plaintext m, or outputs ⊥, when it is an invalid ciphertext. This
algorithm is deterministic.

Definition 2 (One Wayness). In the notion of one wayness, there exists no
such an adversary A, with the public data only, that can get the whole preimage
of the ciphertext in a polynomial time bound t, and with an inverting probability
Succow more than negligible ε:

Succow = Pr
m←{0,1}n

r
R←Ω

[
(pk, sk) ← K(1k) : A(Epk(m; r)) = m

]
Remark. It is known that the one-wayness notion is the least requirement for a
encryption algorithm, but another notion called partial-domain one-wayness is
obviously stronger requirement that need even part of ciphertext impossibly to
be computed out by the adversary. Fujisaki et al. [14] have pointed that OAEP
indeed need a partial-domain one-wayness assumption, but RSA-OAEP is still
secure precisely because the random self-reducibility of RSA. Fortunately, in this
paper, we do not need the strong requirement of partial-domain one-wayness even
applying our conversion to RSA.

108 Yang Cui, Kazukuni Kobara, and Hideki Imai

Definition 3 (IND-CCA). A public key encryption scheme Π is IND-CCA
secure, if there exists no polynomial time adversary A = (A1,A2) who, under
the help of the decryption oracle, can distinguish the encryption cb of two equal-
length, distinct plaintexts m0, m1, b

R← {0, 1}, with the probability significantly
greater than 1/2 (the only restriction is that the target ciphertext cannot be
sent to the decryption oracle directly). More formally, the scheme is IND-CCA
secure, if the advantage of adversary is less than negligible ε, (s is the last state
information of A1, and b̂ ∈ {0, 1}):

Advind−cca
Π = 2 × Pr

b
R←{0,1}

r
R←Ω

⎡⎣ (pk, sk) ← K(1k),
(m0,m1, s) ← A1(pk), c ← Epk(mb ; r),
b̂←A2(c,m0,m1, s) : b̂ = b

⎤⎦− 1

The intuition behind IND-CCA security is that any polynomial-time adversary
can not gain even one bit useful information through the strongest attack. How-
ever, when it is derived from the random oracle model, a controversial notion
called plaintext awareness has been built.

Definition 4 (Plaintext Awareness). [1] For a public key encryption scheme
Π = (K, E ,D), oracles family H, B and K are algorithms called adversary and
knowledge extractor, respectively. Let QH be all the queries between B and ran-
domly chosen H, C as the set of queries answer by EH

pk , and y be the output of
B. For any k ∈ IN,

SuccPA
Π ,B ,K = Pr

⎡⎢⎣H R← H, (pk, sk) ← K(1k),
(QH , C, y) ← runBH,EH

pk (pk) :
K(QH , C, y, pk) = DH

sk (y)

⎤⎥⎦
where y /∈ C, and K is a ε(k)-extractor if K has run in polynomial time in the
input length and, for any adversary B, SuccPA

Π ,B ,K ≥ 1 − ε(k). Then Π is secure
in PA, if Π is IND-CPA secure and there exists a ε(k)-extractor K with negligible
ε(k).

Remark. The powerful PA directly denies the decryption oracle to help the ad-
versary with useful information. An IND-CPA scheme together with PA obtains
IND-CCA consequently. However, it is unnecessarily strong, and we will prove
that our scheme is IND-CCA secure but not in PA.(see Sect. 4)

3 The New Construction

3.1 Intractability of Gap Problem

In this section, we present the new construction of generic conversion, which
removes the artificial plaintext awareness assumption, and thus obtains an opti-
mal encryption size overhead, where we solely need a weak security condition for
both the permutation and not length-preserving primitives, called one-wayness
against plaintext checking attack, as follows:

A Generic Conversion with Optimal Redundancy 109

Definition 5 (OW-PCA). [20] A public key encryption scheme Π is said
to be OW-PCA, if there exists no such an adversary A, with the public data
and the help of the corresponding plaintext checking oracle Opca, can get the
whole preimage of the ciphertext with at most q queries to the Opca oracle, in a
polynomial time bound t and a winning probability more than negligible ε, where
the plaintext check oracle Opca takes as input a plaintext m and a ciphertext c,
output 1 or 0 for checking whether c is the encryption of m or not:

Succow−pca
Π,A = Pr

m,m′←{0,1}n

r
R←Ω

[
(pk, sk) ← K(1k), c← Epk(m; r),
Opca(m ′; c) ?= 1 : m ← (t, q)Aow(c)

]

Remark. For any deterministic public key encryption primitive, for example
RSA, the OW-PCA provides an exact OW-CPA security immediately, because
the adversary can encrypt the testing message by herself. And for the proba-
bilistic ones, they should be reduced to a kind of Gap problem [19, 20], which
is generally based upon the “gap” of one problem between in computation case
and in decision case. Although it seems a little easier to solve than the computa-
tion problem, there is not yet any attack known. For instance, ElGamal just can
employ our conversion based on the following GDH problem in a multiplicative
group G of prime order p with a generator g:

1. The Computational Diffie-Hellman Problem (CDH): given a triple of G ele-
ments, (g, ga, gb), to find gc = gab.

2. The Decision Diffie-Hellman Problem (DDH): given a quadruple of
(g, ga, gb, gc), to decide whether c = ab mod p.

3. The Gap Diffie-Hellman Problem (GDH): given a oracle which can solve DDH
problem, to find a solution of CDH problem.

Indeed, if taking the Discrete Logarithm problem as intractable, the above
gap problem is yet considered not to be a polynomially solvable one. And since
such kind of decision problem and computational problem are both well studied,
we can use the intractability of them in appropriate group.

Certainly, there are still other gap problems, and due to no significant weak-
ness is known for the gap problems, many encryption primitives can be based
on them and proven to be OW-PCA secure. Thus, it is convenient to implement
both deterministic primitive like RSA or Rabin, and probabilistic primitive like
ElGamal with our conversion, even NTRU [16].

3.2 Generic Conversion

We build a generic conversion, ROC, which security relies on the OW-PCA as-
sumption, and has an optimal redundancy.

Setup. k, k1, n is equivalent to |r|, |r′|, |m| respectively, s.t. r, r′ R← Ω, and
r ∈ {0, 1}k, r′ ∈ {0, 1}k1; m ∈ M = {0, 1}n. The primitive is a public key
encryption algorithm Π satisfying the OW-PCA security, mapping the message
to the domain Z, � = |Πoutput|, Π : M → Z, Z ⊆ {0, 1}�.

110 Yang Cui, Kazukuni Kobara, and Hideki Imai

Assume the random oracle family H, and G,H
R← H,

G : {0, 1}k → {0, 1}n, H : {0, 1}�+n → {0, 1}k.

Construction. The conversion ROC is defined as the following:
– it runs Π ’s key generation algorithm K: output a pair (pk, sk).
– Eroc: on input of m and r, first compute x := m ⊕ G(r). And by optional

randomness r′, the algorithm Epk(x; r′) produces the output z, the input and
output of Π will be hashed by random oracle H , t := H(z||x) ⊕ r. Finally,
get the ciphertext c := z||t.

– Droc: On the input of c, parse cipher and use Dsk(z) to obtain message m,
note that there is no re-encryption for checking.

Remark. This underlying scheme does not require the plaintext awareness, be-
cause anyone can make a valid ciphertext by himself, and any bit strings in M
has a valid corresponding ciphertext according to our definition. This greatly re-
duces the redundancy cost of the encryption, and for our conversion scheme, one
more merit lies in the deletion of re-encryption process, speeding up the scheme
much, while some conversion has to run the burdened public key encryption once
more to check the validity.

The conversion needs as the exactly OAEP does, and both the structure
are similar, which also shows the merit of two-round Feistel network. But ROC
can do with the not length-preserving functions as well, and assumes the one-
wayness instead of partial-domain one-wayness. When Π is one-way trapdoor
permutation, the conversion can be simplified further, in that the x and z have a
one-to-one relation, thus the hash of (x) is sufficient this time. When the Π is not
length-preserving function, which is the original OAEP or 3-round OAEP [21]
can not cope with, our conversion can still base the security on the OW-PCA
assumption.

And in both occasions, the message redundancy is optimal, let mLen and cLen
be the input and output of the trapdoor function, respectively. Redundancy RE
is as follows:

– for not length-preserving function, REroc = |c| − |m| = cLen−mLen + k =
REΠ + k.

– for permutation, REroc = |c| − |m| = k.

Enc:

x := m ⊕ G(r)
z := Epk(x; r′)
t := H(z||x) ⊕ r
c := z||t

Dec:

z||t := c
x := Dsk(z)
r := H(z||x) ⊕ t

m := x ⊕ G(r)

Fig. 1. Generic conversion ROC.

A Generic Conversion with Optimal Redundancy 111

Our claimed optimal result derives from the observation that REΠ is the self
redundancy of the primitive, which obviously can not be reduced if the underly-
ing encryption primitive is fixed. And k is the random number length, capable
to be adapted to different security reduction cost. We can, in practice, choose
k = c(κ), (i.e. κ is the security parameter), where c(κ) is the lower bound which
makes the conversion IND-CCA secure corresponding to the required security
level. Due to the quadratic reduction cost (see 4), ROC has to pay about 2κ-bit
randomness for CCA security, which is the same as [21].

4 Security Analysis

The underlying generic conversion ROC is IND-CCA secure, but not in the sense
of PA according to the following theorems.

4.1 Chosen Ciphertext Security

Theorem 1. Let A be a CCA adversary who breaks the indistinguishability of
the conversion ROC, with non-negligible advantage Advind−cca

roc,A and polynomial-
bounded running time τ , making at most qG, qH and qD queries to the hash
functions G, H and decryption oracle respectively. Then there exists an algorithm
B, breaking the OW-PCA security of the asymmetric encryption scheme Π with
successful probability Succow−pca

Π,B and running time τ ′, where

Advind−cca
roc,A ≤ Succow−pca

Π,B + qG · (2qD+1
2k + qD

2n)
τ ′ ≤ (qG + qH) · TOpca + τ

TOpca is the execution time of the plaintext checking oracle Opca.

Proof. Refer to the appendix A for the proof of reduction cost.

4.2 No Plaintext Awareness Property

For the sake of self-containess of the paper, although intuitively the proposed
conversion is not satisfied with PA, precisely due to the observation that any
ciphertext could be decoded to some valid plaintext, we still give a short expla-
nation that is rigorously proved.

Theorem 2. The proposed conversion scheme ROC does not meet the require-
ment of the plaintext awareness PA. Formally, there exists a polynomial time
adversary B, for which the knowledge extractor K cannot output the plaintext
with the following winning probability,

SuccPA
roc,B,K > 2−n

Proof. If there exists a knowledge extractor K for the underlying conversion
ROC, then depending upon the output of adversary B, (pk, z, t), K output a
plaintext m′. Obviously, because K is disallowed to query the oracle G, H , the
success probability is not overwhelmingly large with security parameter k, but
only SuccPA

roc,B,K ≤ 2−n.

112 Yang Cui, Kazukuni Kobara, and Hideki Imai

Table 1. Comparison of the Data Redundancy.

PA IND-CCA Re-enc Redundancy∗

FO Yes OW-CPA Yes cLen

Pointcheval Yes PDOW-CPA Yes cLen+R�

REACT Yes OW-PCA No cLen+H�

GEM Yes OW-PCA No cLen

ROC No OW-PCA No REΠ+c(κ)

∗: Data Redundancy=Ciphertext Size – Plaintext Size.
�: R and H are randomness and hash output size respectively.

5 Comparison of Generic Conversions

In this section, we will have a rough comparison of the generic conversion in the
literature.

First, our proposal is the first optimally redundant generic conversion for not
length-preserving function2, thus the advantage is obvious. (see Table 1). Recall
that the cLen is the output size of the primitive, which must be larger than
the function self redundancy cLen-mLen, we can conclude the winning on the
message redundancy. And the absence of re-encryption speeds up the conversion
as well.

Second, our scheme is also applicable to one-way permutations, like RSA.
Although due to the security reduction, we can also get exactly the same |m|+
2κ optimal bandwidth as [21] did, we should clarify that in this occasion our
conversion is advantageous merely for encrypting an arbitrary long message,
say 1024-bit long, which the 3-round OAEP can not transfer at one time, but
ours does. And one more advantage is that security depends on the one-wayness
rather than partial-domain one-wayness in that the OW-PCA is equivalent to
OW-CPA in the deterministic encryption scenario.

6 Conclusion

We build the first generic conversion ROC with optimal redundancy in the ran-
dom oracle model, which achieves IND-CCA security for any one-way trapdoor
function given that the underlying primitives are OW-PCA secure solely. The
optimally redundant conversion has many useful applications, and the security
bases on the one-wayness rather than partial-domain one-wayness.

Acknowledgement

The authors would like to thank Goichiro Hanaoka, and anonymous referees for
helpful comments.
2 Recently, Fujisaki introduced another solution independently [11]; and in Asi-

acrypt’04 [22], the security of 3-round OAEP for probabilistic primitive is improved,
but not IND-CCA secure.

A Generic Conversion with Optimal Redundancy 113

References

1. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In Crypto’98, LNCS 1462, pages 26-
45, Springer-Verlag, 1998.

2. M. Bellare and P. Rogaway. Random Oracles Are Practical: A paradigm for de-
signing efficient protocols, in Proc. First Annual Conference on Computer and
Communications Security, ACM, 1993.

3. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption - How to Encrypt
with RSA. In Eurocrypt’94, LNCS 950, pages 92-111. Springer-Verlag, 1995.

4. D. Boneh. Simplified OAEP for the RSA and Rabin Functions. In Crypto’01, LNCS
2139, pages 275-291. Springer-Verlag, 2001.

5. R. Canetti, S. Halevi and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. In Eurocrypt’04, LNCS 3027, pages 207-222. Springer-Verlag, 2004.

6. J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen. GEM:
A Generic Chosen-Ciphertext Secure Encryption Method. In CT-RSA’02, LNCS
2271, pages 263-276. Springer-Verlag, 2002.

7. Y. Cui, K. Kobara, H. Imai. Compact Conversion Schemes for the Probabilistic
OW-PCA Primitives. In ICICS 2003, LNCS 2836, pages 269-279. Springer-Verlag,
2003.

8. R.Cramer, V.Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In Crypto’98, LNCS 1462, pages
13-25, Springer-Verlag, 1998.

9. R. Cramer, V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In Eurocrypt’02, LNCS 2332, pages 45-
64, Springer-Verlag, 2002.

10. D. Dolev, C. Dwork, M. Naor: Nonmalleable Cryptography.(Extended Abstract).
STOC 1991: 542-552.

11. E. Fujisaki. Plaintext-Simulatability. Cryptology ePrint Archive: Report 2004/218.

12. E. Fujisaki, T. Okamoto. How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In PKC’99, LNCS 1560, pages 53-68. Springer-Verlag, 1999.

13. E. Fujisaki, T. Okamoto. Secure Integration of Asymmetric and Symmetric En-
cryption Schemes, In Crypto’99, Springer-Verlag, LNCS 1666, pp.537-554, 1999.

14. E. Fujisaki, T. Okamoto, D.Pointcheval and J.Stern. RSA-OAEP Is Secure under
the RSA Assumption. In Crypto’01, LNCS 2139, pages 260-274, Springer-Verlag,
2001.

15. S. Goldwasser, S. Micali. Probabilistic encryption. Journal of Computer Security,
28:270–299, 1984.

16. J. Hoffstein, J. Pipher, and J.H. Silverman. NTRU: a Ring based Public Key
Cryptosystem. In Proc. of ANTS III, LNCS 1423, pages 267-288. Springer-Verlag,
1998. First presented at the rump session of Crypto ’96.

17. K. Kobara, H. Imai. OAEP++ : A Very Simple Way to Apply OAEP to Deter-
ministic OW-CPA Primitives. Cryptology ePrint Archive: Report 2002/130

18. M. Naor and M. Yung. Public-Key Cryptosystems Provably-Secure against Chosen-
Ciphertext Attacks. 22nd ACM Symposium on Theory of Computing, pp. 427-437,
1990.

19. T. Okamoto, D. Pointcheval. The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In PKC’01, LNCS 1992, pages 104-118,
Springer-Verlag, 2001.

114 Yang Cui, Kazukuni Kobara, and Hideki Imai

20. T. Okamoto, D. Pointcheval. REACT: Rapid Enhanced-Security Asymmetric
Cryptosystem Transform. In CT-RSA 2001, LNCS 2020, pages 159-175, Springer-
Verlag, 2001.

21. D.H. Phan, D. Pointcheval. Chosen-Ciphertext Security without Redundancy. In
Asiacrypt’03, LNCS 2894, pages 1-18, Springer-Verlag, 2003.

22. D.H. Phan, D. Pointcheval. OAEP 3-Round: A Generic and Secure Asymmetric
Encryption Padding. In Asiacrypt’04, LNCS, Springer-Verlag.

23. D.Pointcheval. Chosen-Ciphertext Security for Any One-Way Cryptosystem. In
PKC’00, LNCS 1751, pages 129-146, Springer-Verlag, 2000.

24. C.Rackoff and D.Simon. Non-interactive Zero-knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In Crypto’91, LNCS 576, pages 433-444, Springer-
Verlag, 1992.

25. V.Shoup. OAEP Reconsidered. In Crypto’01, LNCS 2139, pages 239-259, Springer-
Verlag, 2001.

Appendix A: Proof of Theorem 1

The proof will be shown by a series of games as follows.

Initialization. We will define several games Gi, 0 ≤ i ≤ 5, which incrementally
modifies the simulation process, at last leads to the challenge bit b completely
independent of the view of the adversary. Note that the probability process is
always on the same space, and the changes made to the game rules is step by
step. In Game Gi, Si is considered to be the event that b̂ = b, for 0 ≤ i ≤ 5.
And we make SG as the set at which the r has been queried by adversary, and
answer of G is g, (r, g) is kept in the SG; similarly, SH as the set of queries of H ,
in which (z||x, h) is kept. Obviously, pairs appeared in the SG, SH include just
part of the queries, and we want to show our simulation is still doable when the
new query comes.

Game G0. This is the original IND-CCA game (definition 3),

(pk, sk) ← K(1κ), G,H
R← H,

(m0,m1, s) ← AG,H,Dsk

1 (pk),m0,m1 ∈ {0, 1}n,m0 �= m1,
b

R← {0, 1}, r∗ ← {0, 1}k,
g∗ ← G(r∗),m∗ ← mb,
x∗ ← m∗ ⊕ g∗, z∗ ← Epk(x∗),
h∗ ← H(z∗||x∗), t∗ ← r∗ ⊕ h∗,
c∗ ← (z∗||t∗),
b̂←AG,H,Dsk

2 (c∗,m0,m1, s)

Note that Pr[S0] = Pr[b̂ = b], and the adversary has the access to decryption
oracle Dsk, with the restriction that the challenge ciphertext c∗ cannot be queried
to it. The random oracles G,H are available for the adversary in the game.

Game G1. This game slightly modifies the original IND-CCA game, simulating
the game as the challenger’s view. The underlying oracles are all available. Hold-
ing the querying list of random oracles G,H , we answer the occurred queries just
as what the lists tell us, and new query in the next way.

A Generic Conversion with Optimal Redundancy 115

If a ciphertext c = z||t (c �= c∗), is queried, answer m as long as (c,m)
has been asked to the decryption oracle Dsk; otherwise, return a m ∈ {0, 1}n

randomly. More precisely, to check whether (z||σ) in the SH , σ ∈ {0, 1}n. If the
(z, σ, h) pair is in the SH , then let

r = t⊕ h

look up the list SG, if r ∈ SG, make the following setting Ansc
=c∗ :

h = H(z||x), r = t⊕ h, g = G(r), m = x⊕ g

If r /∈ SG, the same setting as the Ansc
=c∗ is also able to return a random value
hold the relation which cannot be distinguished by the adversary. Similarly, the
underlying setting can be applied to deal with the event that (z||σ) is not in
the SH , which finishes the simulation of the game G1. Thus, the successful
probability of G1 is equivalent to that of G0.

Pr[S1] = Pr[S0]

Game G2. Now this game G2 generates the ciphertext c∗ beforehand, and
makes the view of corresponding plaintext m∗ independent.

c
 R← {0, 1}k+z, c∗ = c

And we use such a lemma showing that Pr[S1] is bounded.

Lemma 1. Pr[S1] is bounded by the following, where Pr[AskH1.2] denotes the
probability of event that z
||σ
 has been asked to the H oracle.

Pr[S1] ≤ 1/2 + qG/2k + Pr[AskH1.2]

Proof. When we simulate the game G2, there are some events that error is
output, but we show that this can be bounded by another event’s probability,
and so on. More precisely, the random chosen values beforehand mean other
values fixed implicitly, thus the bound is computed by the following sub-games.

Game 1.1. First randomly choose the r
 R← {0, 1}k, and g
 R← {0, 1}n, then

r∗ = r
, g∗ = g
,
x∗ = m∗ ⊕ g
, z∗ = Epk(x∗), h∗ = H(z∗||x∗), t∗ = r
 ⊕ h∗

AskG1.1 denotes the event that r∗ has been asked to the G, r∗ ∈ SG. Because
the Pr[S1.1] = Pr[S1] unless the AskG1.1 occurred, there is

Pr[S1.1 ∧ ¬AskG1.1] = Pr[S1 ∧ ¬AskG1.1]

therefore,

|Pr[S1.1]− Pr[S1]|
= |Pr[S1.1 ∧AskG1.1] + Pr[S1.1 ∧ ¬AskG1.1]−

Pr[S1 ∧AskG1.1]− Pr[S1 ∧ ¬AskG1.1]|
= |Pr[S1.1 ∧AskG1.1] − Pr[S1 ∧AskG1.1]|
≤ Pr[AskG1.1]

116 Yang Cui, Kazukuni Kobara, and Hideki Imai

Game 1.2. Randomly choose r, x, h, r
 R← {0, 1}k, x
 R← {0, 1}n, h
 R← {0, 1}k.
then implicitly there is,

r∗ = r
, x∗ = x
, h∗ = h
,
g∗ = m∗ ⊕ x
, t∗ = r
 ⊕ h

AskH1.2 denotes that x∗ has been asked to H , then there is,

|Pr[AskG1.2] − Pr[AskG1.1]| ≤ Pr[AskH1.2]

where, Pr[AskG1.2] is at most qG/2k.

Game 1.3. Since randomly choose t

R← {0, 1}k, x
 R← {0, 1}n, then

c∗ = Epk(x
)||t

c∗ is totally random, thus

Pr[AskH1.3] = Pr[AskH1.2]

Noticing the probability of game 1.1 is just 1/2, all above sub-games of G2

lead to an inequation that finishes the proof of Lemma 1.

Pr[S1] = 1/2 + qG/2k + Pr[AskH1.2]

Game G3. In this game, we try to simulate even though the elements of cipher-
text appearing in the queries list in different order. The event AskH2.2(same as
AskH3) denotes that certain c = z||t has been queried to the decryption oracle,
but z||x /∈ SH . Then the next lemma holds.

Lemma 2. The following probability of the event is bounded by,

|Pr[AskH2.2]− Pr[AskH1.2]| ≤ qD · qG/2k + qD · qG/2n

Proof. Similarly we build some sub-games to prove the above lemma.

Game 2.1. To assume that this game rules the as the previous G2 except that
the event r has been asked to G before the z||t is asked to H , because the latter
h is uniformly distributed, thus,

|Pr[AskH2.1]− Pr[AskH1.2]| ≤ qD · qG/2k

Game 2.2. Compared to Game 2.1, x has been asked to the H oracle, but there
is no record in the SG.

|Pr[AskH2.2]− Pr[AskH2.1]| ≤ qD · qG/2n

Summarizing the Game 2.1, 2.2, the proof of Lemma 2. has been proven.

A Generic Conversion with Optimal Redundancy 117

Game G4. After simulating the decryption oracle with different queries order
to G,H oracles, we further try to deal with the adversary without the underlying
oracles, but just using the record lists SG, SH . Note that the simulation is perfect
except that the only bad event, due to the absence of random oracles, is the query
to G before that query to H is made. Let us denote F4 = [AskG∧¬AskH]. Since
until the z||t is asked to the H oracle, h is not fixed and uniformly distributed,
thus

r = h⊕ t

and the probability of r has been asked to G is bounded by qG/2k, then the
total probability of occurrence is bounded by qD · qG/2k. We get the following
inequation:

|Pr[AskH4]− Pr[AskH3]| ≤ Pr[AskG ∧ ¬AskH] ≤ qD · qG/2k

Game G5. At last, we simulate the decryption oracle without the sk, which can
show us the query-answer pair correctly, if it has been recorded in the SH . More
precisely, the probability of AskH4 in G4 is the same as AskH5 in G5

Pr[AskH5] = Pr[AskH4]

Finally, the probability of AskH in G5 is bounded by the successful probabil-
ity of one-wayness adversary Succow−pca

Π,B , and the running time of adversary is
bounded by the (qG + qH) queires to the plaintext check oracle,

Pr[AskH5] ≤ Succow−pca
Π,B

which has proven the theorem 1.

Choosing Parameter Sets for NTRUEncrypt
with NAEP and SVES-3

Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

NTRU Cryptosystems,
5 Burlington Woods, MA 01803

Abstract. We present, for the first time, an algorithm to choose pa-
rameter sets for NTRUEncrypt that give a desired level of security.

1 Introduction

Different descriptions of NTRUEncrypt, and different proposed parameter sets,
have been in circulation since 1996 [9–11, 5]. However, the method for choosing
parameter sets has always been something of a black art. No single paper has
ever described a machine which takes as input a desired security level k and
outputs a parameter set that gives k bits of security.

It is the aim of this paper to provide such a machine. This paper presents a
fixed algorithm to generate all required parameters for NTRUEncrypt with the
SVES-3 encryption scheme, starting from a single parameter, k. Additionally,
we present a more flexible framework generalizing the fixed algorithm in order
to allow for architecture and efficiency tradeoffs, while still maintaining security
against all known attacks. The fixed algorithm presented earlier always produces
parameters consistent with this framework. We arrive at the parameter bounds
specified in this framework by reviewing the effectiveness of each known attack.

2 A Specific Algorithm

This section gives a specific instantiation of the parameter generation algorithm
for NTRUEncrypt-SVES-3 with binary underlying polynomials and p = 2. The
input to this algorithm is the security parameter k. We denote this algorithm
P1

ntru, and denote by P1
ntru(k) the parameter set produced by this algorithm with

input k. Table 2 gives P1
ntru(k) for various common values of k. We present a

more general parameter generation framework later.

1. Set N to be the first prime greater than 3k + 8.
2. Set d to be the smallest integer such that

1√
N

(
N/2
d/2

)
> 2k .

Set dF = dr = d. Set dg = �N/2�.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 118–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 119

3. Set dm0 to be the largest integer such that

2N−1
dm0∑
i=0

(
N

i

)
< 2−40 .

If 1√
N

(
N/2
dm0

)
< 2k , increase N to the next largest prime and return to step 2.

4. Set q to be the first prime greater than 4d + 1.
5. Verify that the order of q (mod N) is N−1 or (N−1)/2. If it is not, increase

q to the next prime value until a q with a sufficiently high order is found.

6. Calculate c =
√

4πe
√
d(N − d)/N

√
dm0(N − dm0)/N/q.

If c < 2.6 or

0.42N − 3.4−max
r

⎛⎝log2

⎛⎝1 −
(

1 −
d−1∏
i=0

(
1 − r

N − i

))N
⎞⎠+ 0.21r

⎞⎠ < k ,

increase N to the next largest prime and return to step 2. Otherwise, output
{N , q, p = 2, dF , dr, dg, dm0} and stop.

The rest of this paper derives and justifies this algorithm.

3 Bit Strength

We quantify security in terms of bit strength k, evaluating how much effort an
attacker has to put in to break a scheme. All the attacks we consider here have
variable running times, so we describe the strength of a parameter set using the
notion of cost. For an algorithm A with running time t and probability of success
ε, the cost is defined as

CA = t/ε .

This definition of cost is not the only one that could be used. For example,
consider indistinguishability against adaptive chosen-ciphertext attack. In this
attack, an attacker with access to encryption and decryption oracles chooses two
messages M0 and M1, and is given the encryption of one of them. The attacker’s
output is a single bit i ∈ {0, 1}. She wins if Mi was in fact the encrypted
message. Here, the relevant measure of the attacker’s power is the advantage
over a random guess, defined as

adv(A(ind)) = 2.(Pr[Succ[A]] − 1/2) .

We will use either measure as appropriate.
Our notion of cost is derived from [19] and related work. An alternate notion

of cost, which is the definition above multiplied by the amount of memory used,
is proposed in [28]. The use of this measure would allow significantly more effi-
cient parameter sets, as the meet-in-the-middle attack described in Section 5.1 is
essentially a time-memory tradeoff that keeps the product of time and memory
constant. However, current practice is to use the measure of cost above.

120 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

We also acknowledge that the notion of comparing public-key security lev-
els with symmetric security levels, or of reducing security to a single headline
measure, is inherently problematic – see an attempt to do so in [24], and useful
comments on this in [17]. In particular, extrapolation of breaking times is an
inexact science, the behavior of breaking algorithms at high security levels is by
definition untested, and one can never disprove the existence of an algorithm that
attacks NTRUEncrypt (or any other system) more efficiently than the best cur-
rently known method. However, estimates of security have to start somewhere,
and we consider this paper to provide a useful starting point for NTRUEncrypt.

4 The NTRUEncrypt One-Way Function

An implementation of the NTRUEncrypt encryption primitive is specified by the
following parameters:

N Degree Parameter. A positive integer. The associated NTRU
lattice has dimension 2N .

q Large Modulus. A positive integer. The associated NTRU lat-
tice is a convolution modular lattice of modulus q.

p Small Modulus. An integer or a polynomial.
Df ,Dg Private Key Spaces. Sets of polynomials from which the private

keys are selected.
Dm Plaintext Space. Set of polynomials that represent encryptable

messages. It is the responsibility of the encryption scheme to
provide a method for encoding the message that one wishes to
encrypt into a polynomial in this space.

Dr Blinding Value Space. Set of polynomials from which the tem-
porary blinding value used during encryption is selected.

center Centering Method. A means of performing mod q reduction on
decryption.

Definition 1. The Ring of Convolution Polynomials is

R =
Z[X]

(XN − 1)
.

Multiplication of polynomials in this ring corresponds to the convolution product
of their associated vectors. We also use the notation Rq = (Z/qZ)[X]

(XN−1) .

Definition 2. A polynomial a(X) = a0 + a1X + · · · + aN−1X
N−1 is identified

with its vector of coefficients a = [a0, a1, . . . , aN−1]. The centered norm ‖a‖ of a
polynomial or vector is defined by

‖a‖2 =
N−1∑
i=0

a2
i −

1
N

(
N−1∑
i=0

ai

)2

. (1)

Definition 3. The width Width(a) of a polynomial or vector is defined by

Width(a) = Max(a0, . . . , aN−1) −Min(a0, . . . , aN−1) .

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 121

4.1 Key Generation

NTRUEncrypt key generation consists of the following operations:

1. Randomly generate “small” polynomials f and g in Df , Dg respectively.
2. Invert f in Rq to obtain fq, invert f in Rp to obtain fp, and check that g is

invertible in Rq [12].
3. The public key h = p ∗ g ∗ fq (mod q). The private key is the pair (f, fp).

4.2 Encryption

NTRUEncrypt encryption consists of the following operations:

1. Randomly select a “small”polynomial r ∈ Dr.
2. Calculate the ciphertext e as e ≡ r ∗ h + m (mod q).

4.3 Decryption

NTRUEncrypt decryption consists of the following operations:

1. Calculate a ≡ center(f ∗ e), where the centering operation center reduces
its input into the interval [A,A + q − 1].

2. Recover m by calculating m ≡ fp ∗ a (mod p).

To see why decryption works, use h ≡ p ∗ g ∗ fq and e ≡ r ∗ h + m to obtain

a ≡ p ∗ r ∗ g + f ∗ m (mod q) . (2)

For appropriate choices of parameters and center, this is an equality over Z,
rather than just over Zq . Therefore step 2 recovers m: the p ∗ r ∗ g term vanishes,
and fp ∗ f ∗ m = m (mod p).

4.4 The NTRU Hard Problem and One-Way Function

The one-way function underlying NTRU is:

F : Dm ×Dr →Rq

F (m, r) = m + r ∗ h,

where q,N ∈ Z, p ∈ Z[X], h ∈ Rq are given by the output of key generation.

Definition 4. (The P-NTRU problem) For a parameter set P, we denote by
Succow

ntru(A,P) the success probability of any adversary A for finding a preimage
of F ,

Succow
ntru(A,P) = Pr

[
(m′, r′) ← A(e, h)
s.t. F (m′, r′) = e

∣∣∣∣∣ (pk = h, sk) ← K,m R← R̃

r ← genr(ρ), ρ R←Rr , e = F (m, r)

]
.

Assumption 1 (The P1
ntru-NTRU assumption) For every probabalistic polyno-

mial (in k) time algorithm A there exists a negligible function νA such that for
sufficiently large k, we have

Succow
ntru(A,P1

ntru(k)) ≤ νA(k).

122 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

5 Security of the NTRU One-Way Function

Most public key cryptosystems, such as RSA [26] or ECC [18, 22], are based on a
one-way function for which there is one best-known method of attack: factoring
in the case of RSA, Pollard-rho in the case of ECC. In the case of NTRU, there
are two primary methods of approaching the one-way function, both of which
must be considered when selecting a parameter set.

5.1 Combinatorial Security

Polynomials are drawn from a known space S. This space can best be searched by
using a combinatorial technique originally due to Odlyzko [16], which can be used
to recover f or g from h or r and m from e. We denote the combinatorial security
of polynomials drawn from S by Comb[S], and the set of binary polynomials of
degree N − 1 with exactly d coefficients equal to 1 by BN (d). Then

Comb[BN(d)] ≥
(N/2

d/2

)
√
N

.

5.2 Lattice Security

The NTRU Lattice Lh associated to a polynomial h ∈ R is the lattice

Lh = {(u, v) ∈ R2 : v ≡ h ∗ u/p (mod q)}, satisfying
dim(Lh) = 2N and Disc(Lh) = qN .

Lattice-based attacks may be mounted against a ciphertext e to recover the
plaintext, or against a public key h to recover the private key. This section treats
lattice-based attacks on the public key; the analysis for attacks on a ciphertext
is almost identical. More details can be found in [13].

An NTRUEncrypt public key h describes a 2N -dimensional NTRU lattice
containing the private key (f, g). When f is of the form f = 1 + pF. the best
lattice attack on the private key involves solving a Close Vector Problem (CVP)1.
Experimentally, it has been found that an NTRU lattice of this form can usefully
be characterized by two quantities

a = N/q, c =
√

4πe‖F‖‖g‖/q .

This is to say that for constant (a, c), the experimentally observed running times
for lattice reduction behave roughly as

log(T) = AN + B ,

for some experimentally-determined constants A and B.
1 Coppersmith and Shamir [6] propose related approaches which turn out not to ma-

terially affect security.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 123

Table 1 summarizes results for breaking times from [9, 13], and more recent
experiments, giving breaking times for inhomogenous NTRU lattices with dif-
ferent (a, c) values. We represent the breaking time in terms of bit security,
which may be converted to time in MIPS-years using the equality 80 bits ∼
1012 MIPS-years.

Table 1. Extrapolated bit security depending on (c, a).

c a Bit Security

1.73 0.53 0.3563N − 2.263

2.6 0.8 0.4245N − 3.440

3.7 2.7 0.4512N + 0.218

5.3 1.4 0.6492N − 5.436

For constant (a, c), increasing N increases the breaking time exponentially.
For constant (a,N), increasing c increases the breaking time. For constant (c,N),
increasing a decreases the breaking time, although the effect is slight. More
details on this table are given in [13]. We write

Lattice Bit Security blatt ≡ αN + β .

The technique known as zero-forcing [13, 20] can be used to reduce the di-
mension of an NTRU lattice problem. The precise amount of the expected per-
formance gain is heavily dependent on the details of the parameter set; we refer
the reader to [13, 20] for more details. In this paper we use the formula2

Gain ∼

⎛⎝1 −
(

1 −
d−1∏
i=0

(
1 − r

N − i

))N
⎞⎠ 2αr/2 (3)

to determine the expected gain due to picking a pattern of r zeroes, if f has d
non-zero entries, and the lattice breaking bit security goes as αN + β. This will
typically overestimate the gain, but we use this formula for reasons of prudence.

5.3 Decryption Failure Security

NTRU decryption can fail on validly encrypted messages if the center method
returns the wrong value of A, or if the coefficients of prg + fm do not lie in an
interval of width q. Decryption failures leak information about the decrypter’s
private key [14, 25], so a center method must make the chance of a decryption
failure vanishingly small.

The parameter sets recommended in [5] allow a decryption failure probability
of about 2−104 for 80-bit security. In this paper, we will pick parameter sets such
that there will be no decryption failure, by selecting q to be greater than the
maximum possible value of prg + fm. Centering then becomes simply a matter
of reducing into the interval [0, q − 1].
2 Note that this formula, used in [13], corrects the equivalent formula given in [20].

124 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

5.4 Other Security Considerations

The following parameter selection criteria must also be taken into account, al-
though encryption and decryption will work even if they are violated.

Choosing N – The degree parameter N must be prime. (See [7].)

N , q and p – The small and large moduli p and q must be relatively prime in
the ring R. Equivalently, the three quantities

p, q, XN − 1

must generate the unit ideal in the ring Z[X]. (As an example of why this is
necessary, in the extreme case that p divides q, the plaintext is equal to the
ciphertext reduced modulo p.)

Factorization of XN −1 (mod q) – If F(X) is a factor of XN −1 (mod q), and if
h(X) is a multiple of F(X), i.e., if h(X) is zero in the field K = (Z/qZ)[X]/F(X),
then an attacker can recover the value of m(X) in the field K.

If q has order t (mod N), then

XN − 1 ≡ (X − 1)F1(X)F2(X) · · ·F(N−1)/t(X) in (Z/qZ)[X] ,

where each Fi(X) has degree t and is irreducible mod q. If Fi(X) has degree t,
the probability that h(X) or r(X) is divisible by Fi(X) is presumably 1/qt. To
avoid attacks based on the factorization of h or r, we will require that for each
prime divisor P of q, the order of P (mod N) must be N − 1 or (N − 1)/2. This
requirement has the useful side-effect of increasing the probability that randomly
chosen f will be invertible in Rq [27].

Information Leakage from Encrypted Messages – The transformation a → a(1)
is a ring homomorphism, and so the ciphertext e has the property that

e(1) = r(1)h(1) + m(1) .

An attacker will know h(1), and for many choices of parameter set r(1) will also
be known. Therefore, the attacker can calculate m(1). The larger |m(1) −N/2|
is, the easier it is to mount a combinatorial or lattice attack to recover the
msssage, so the sender should always ensure that ‖m‖ is sufficiently large. This
will double the encryption time, but does not appear to lead to any attacks. One
of our inputs into the parameter generation algorithm will be a lower bound for
the probability that a randomly generated m will be too small.

6 Encryption Schemes: NAEP

In order to protect against adaptive chosen ciphertext attacks, we must use an
appropriately defined encryption scheme. The scheme described in [15] gives
provable security in the random oracle model [2, 3]. We briefly outline it here.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 125

NAEP uses two hash functions:

G : {0, 1}N−l × {0, 1}l → Dr H : {0, 1}N → {0, 1}N

In terms of the security parameter, we wish l = Θ(k), and also N − l = Θ(k).
To encrypt a message M ∈ {0, 1}N−l using NAEP one uses the functions

compress(x) = (x (mod q)) (mod 2),
B2P : {0, 1}N → Dm ∪ “error”, P2B : Dm → {0, 1}N

The function compress puts the coefficients of the modular quantity x (mod q)
in to the interval [0, q), and then this quantity is reduced modulo 2. The role of
compress is simply to reduce the size of the input to the hash function H for
gains in practical efficiency.The function B2P converts a bit string into a binary
polynomial, or returns “error” if the bit string does not fulfil the appropriate
criteria – for example, if it does not have the appropriate level of combinatorial
security. The function P2B converts a binary polynomial to a bit string.

The encryption algorithm is then specified by:

1. Pick b
R← {0, 1}l.

2. Let r = G(M, b), m = B2P((M ||b)⊕H(compress(r ∗ h))).
3. If B2P returns “error”, go to step 1.
4. Let e = r ∗ h + m ∈ Rq.

Step 3 ensures that only messages of the appropriate form will be encrypted.
To decrypt a message e ∈ Rq one does the following:

1. Let a = center(f ∗ e (mod q)).
2. Let m = f−1

p ∗ a (mod p).
3. Let s = e−m.
4. Let M ||b = P2B(m) ⊕H(compress(P2B(s))).
5. Let r = G(M, b).
6. If r ∗ h = s (mod q), and m ∈ Dm, then return the message M , else return

the string “invalid ciphertext”.

The use of the scheme NAEP introduces a single additional parameter:

l Random Padding Length. The length of the random padding b
concatenated with M in step 1.

The ind game requires an attacker to identify the message encrypted in a
single, specific ciphertext. Therefore, the random padding does not require col-
lision resistance, but it does require preimage resistance. We therefore set l = k
to ensure that attacks based on guessing the random padding have a k-bit cost
(where cost is defined relative to the attacker’s advantage).

126 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

6.1 Instantiating NAEP: SVES-3

The EESS#1 v2 standard [5] specifies an instantiation of NAEP known as SVES-
3. In SVES-3, the following specific design choices are made:

– To allow variable-length messages, a one-byte encoding of the message length
in bytes is prepended to the message. The message is padded with zeroes to
fill out the message block.

– The hash function G which is used to produce r takes as input M ; b; an OID
identifying the encryption scheme and parameter set; and a string htrunc

derived by truncating the public key to length lh bits.

SVES-3 includes htrunc in G so that r depends on the specific public key. Even
if an attacker were to find an (M, b) that gave an r with an increased chance
of a decryption failure, that (M, b) would apply only to a single public key and
could not be used to attack other public keys. In the case of the parameter sets
proposed in this document, there are no decryption failures and so no need to
input htrunc to G. We will therefore use SVES-3 but set lh = 0.

7 Selecting Parameter Sets for SVES-3: Framework

Having completed our review of security considerations for NTRU parame-
ter sets, we can now specify an algorithm that generates a parameter set for
NTRUEncrypt-NAEP with a desired bit security level k. First, we specify our
overall framework. Then we apply it to specific sets of constraints on the param-
eters.

1. Determine μ, the number of bits that must be transported in m. Pick an
initial candidate N , a prime number that allows μ bits to be transported.

2. For this value of N , find values of dF , dg, dr that give the required level of
combinatorial security.

3. Using the bound Preject given in Constraint 6, calculate the minimum integer
dm0 and the maximum integer dm1 such that N/2−dm0 = dm1−N/2 and the
probability that a randomly chosen binary vector will have between dm0 and
dm1 1s is greater than 1−Preject. If dm0 does not give sufficient combinatorial
security, increase N to the next prime and repeat this step.

4. Calculate the maximum possible width of prg + m + pFm. Set q to be the
first prime greater than this number.

5. Verify that the order of q (mod N) is N−1 or (N−1)/2. If it is not, increase
q to the next prime value until a q with a sufficiently high order is found.

6. Verify whether the lattice strength is greater than 2k for the selected N , q,
Df , Dg, Dr, Dm. (In the case of Dm, the check is performed for the m with
dm = dm0, or in other words the weakest m that will occur). If the strength is
greater than 2k, terminate. Otherwise, increase N to the next highest prime
number and return to step 2.

The analysis below will explain why this process is likely to terminate after
a very small number of iterations.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 127

7.1 Binary Polynomials

We illustrate the method using binary polynomials. In this case, we use the
following constraints.

1. Take p = 2. Require q to be prime.
2. f will be of the form 1 + pF.
3. The polynomials F, g, r, m will be binary. Product form polynomials will not

be used.
4. F, g, r will have dF , dg, dr 1s respectively.
5. The system must be capable of transporting 2k bits of message.
6. The chance that a message representative m will be rejected due to having

insufficient security, Preject, will be less than 2−40.
7. Subject to the constraints above, minimize bandwidth.
8. Subject to the constraints above, maximize lattice security.

Select N – For k-bit security, we require l ≥ k, as stated in the discussion of
the security of NAEP. We also want to transport 2k bits of message, as stated in
constraint 5, and to use 8 bits to encode the length of the transported message.
The total number of bits to be transported in m is therefore 3k + 8. We set N
to be the first prime greater than 3k + 8.

Select Polynomial Spaces – We select values for dF , dg, dr so that Comb[BN (dF)],
Comb[BN(dg)], Comb[BN (dr)] > 2k. The smaller dF , dr are, the faster operations
will be. We select dF , dr such that dF = dr = d, d the smallest value for which
Comb[BN(d)] ≥ 2k. The results are shown in table 2. For all values of N in the
given range, d ∼ 0.19N ; in other words d increases (slightly slower than) linearly
with N . Therefore, NTRUEncrypt encryption and decryption times scale roughly
as N2 for our parameter sets.

There is no particular advantage, in performance or bandwidth, to taking
g to be small, so long as it is binary. Following constraint 8, we therefore take
dg = �N/2�. This is a change from practice in previous parameter sets, where
dg has typically been taken to be the same as df .

Select Dm – Table 2 gives the value of dm0 (and dm1 = N−dm0) for each N that
gives a chance of 2−40 of having to re-encrypt. In all cases, dm0 is comfortably
above df , and so m will have sufficient combinatorial security. If dm0 had been
below df , increasing N will both (a) reduce the value of df that gives combinato-
rial security and (b) increase the dm0 that gives the desired probability of having
to re-encrypt. The process of increasing N in this step will therefore eventually
terminate.

Select q – We select q subject to the requirements

q > Max(Width(prg + fm)) ,

Order(q (mod N)) ≥ (N − 1)/2 .

We now consider how to calculate the width of prg + fm.

128 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

Each term in the polynomial obtained by multiplying a polynomial a by a
binary polynomial b with db 1s can be thought of as the result of selecting db

terms from a and summing them. If b is also binary, with db 1s, clearly the
minimum possible value of any term in a ∗ b is max(0, da + db − N), and the
maximum is min(da, db) 3.

In this case dF = dg = dr = d. The number of 1s in m, dm, is variable, but
if it is less than dF then max(Width(F ∗ m)) < dF , and if it is greater than dF

then max(Width(F ∗ m)) = dF . So

max(Width(prg + m + pfm)) = 1 + 2pd = 1 + 4d
⇒ q > 1 + 4d ∼ 0.76N.

Taking q to be the first prime greater than 1 + 4d gives a q with a large
enough order (mod N) for almost all the (d,N) pairs under consideration. The
exception is k = 256, N = 787, d = 140, for which the first q implied, 563, has
order only 131 (mod N), and the lowest q that satisfies the order requirement
turns out to be 587. The values of q obtained are given in Table 2.

Check Lattice Strength – Having calculated d and q, we can now calculate the
lattice characteristics (a, c). For a binary polynomial b with d 1s, the centered
norm is given by |b| =

√
d(N − d)/N . and ranges from

√
d, when d is small, to√

d/2, when d = N/2. The thicker f, g, r, m are, the harder the lattice problem is.
We therefore calculate c for lattice attacks on (r,m) when the number of 1s in m
is dm0 to give a lower bound on the lattice security. All the parameter sets under
consideration give c ≥ 2.77, so we can use the c = 2.6, a = 0.8 experimental
lattice strengths in Table 1 to extrapolate the strength of (r,m) and (F, g).

For interest, we briefly consider extreme cases. If d = 0.001N , then we have

q ∼ 1 + 0.004N, c ∼ 11.6, a ∼ 250 . (4)

If d = N/2, then we have

q ∼ 2N, c = 2.066, a = 0.5 . (5)

This shows that as d/N increases, c will decrease to a minimum of 2.066.
As table 2 below shows, the suggested parameters clearly give a sufficient

level of lattice security, even taking zero-forcing into account.

Increase N if Necessary – If the strength against lattice attacks is insufficient,
we increase N . This will decrease (or at worst not increase) the value of d nec-
essary to give combinatorial security, reducing d/N . As noted in equations 4
and 5 above, as d/N decreases, c will increase. Even if c were to stay constant,
increasing N would increase the lattice strength; since we increase both c and N ,
lattice strength will certainly increase, eventually reaching the desire strength.
The process of increasing N will therefore eventually terminate.
3 The maximum width of the product of two binary polynomials is therefore N/2.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 129

Summary – This has rederived and justified the algorithm P1
ntru presented at

the start of this paper. Table 2 summarizes the results. For different values of
k, we give the corresponding N , d, and q values. These, along with p = 2, the
definition of center as reduction into [0, q− 1], and the specification l = k, fully
parameterize the system. For interoperability, other design decisions must be
made, such as the exact instantiations of the random oracles; we do not address
that question in this paper.

We also present the lattice bit security blatt, the number of zeroes an ad-
versary should guess when zero-forcing r, the lattice bit security including zero-
forcing bzflatt, the number of additions required for a convolution by f or r, the
public key size N�log2 q� and, for comparison, the sizes of RSA and ECC keys
that give a similar level of security. We also include the number of Adds With
Carry required for an ECC point operation at the same security level: details
of how this figure was calculated, and discussion of the appropriate figures to
compare, can be found in Appendix A. The bandwidth given is the minimum
bandwidth. In the case where q is a nine-bit quantity, for example, an imple-
mentation may decide to encode each coefficient in 16 bits rather than 9.

7.2 Product-Form Polynomials

Next we use the method above to generate parameter sets that make use of
product form polynomials for efficiency advantages. We take F = f1 ∗ f2 + f3,
with f1, f2, f3 all random binary with d 1s, r to have the same form, and g to be
binary with dg = �N/2�. Full details of the process are given in Appendix B.
Table 3 summarizes the results, including the speedup relative to the parameters
for binary polynomials investigated above, the public key size N�log2 q� and the
RSA and ECC figures as above.

8 Conclusions

We presented a framework for generation of NTRUEncrypt parameter sets and
used it to generate parameter sets for different levels of bits security. The frame-
work is robust and adaptable: if future developments in lattice analysis signifi-
cantly affect breaking times, it will be possible to calculate new parameter sets
that give an appropriate level of security. With different inputs to the frame-
work, different parameter sets would be possible. For example, one might take
p = 2 +X and q a power of 2 for efficiency in performing reductions; one might
require q < 256, increasing N as necessary, for use on 8-bit processors; one
might consider an alternate encryption scheme that transported fewer bits to
save bandwidth. We have also demonstrated that NTRUEncrypt remains more
efficient than other well-studied cryptosystems, and shown that for increasing
security levels the bandwidth required for NTRUEncrypt is less than for RSA.

This paper is merely a contribution to the systematic study of how to generate
NTRUEncrypt parameter sets, but we hope a useful one.

130 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

Table 2. Final Parameter Sets for different values of k using binary polynomials.

k N d dm0 q c(f,g) c(r, m) blatt r bzflatt adds size RSA ECC ECC AWC

80 251 48 70 197 2.93 2.77 103.1 29 97.98 12048 2008 1024 163 112210

112 347 66 108 269 2.94 2.83 143.9 31 138.26 22902 3033 ∼ 2048 224 170356

128 397 74 128 307 2.93 2.84 165.1 33 159.17 29378 3501 3072 256 277280

160 491 91 167 367 2.98 2.90 205.0 35 198.75 44681 4383 4096 320 –

192 587 108 208 439 2.97 2.91 245.7 37 239.21 63396 5193 7680 384 936618

256 787 140 294 587 2.95 2.91 330.6 41 323.45 110180 7690 15360 512 1595434

Table 3. Final Parameter Sets for different values of k using product form polynomials.

k N d q adds speedup size RSA ECC ECC AWC

80 251 8 293 6024 2.00 2259 1024 163 112210

112 347 11 541 11451 2.00 3370 ∼ 2048 224 170356

128 397 12 659 14292 2.06 3890 3072 256 277280

160 491 15 967 22095 2.02 4870 4096 320 –

192 587 17 1229 29937 2.12 6347 7680 384 936618

256 787 22 2027 51942 2.12 8459 15360 512 1595434

Acknowledgements

We would like to thank the anonymous referees for their comments, and Philip
Hirschhorn for his help with lattice reduction experiments.

References

1. ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), 1999.

2. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Proc. of Eurocrypt
’94, volume 950 of LNCS, pages 92–111. IACR, Springer-Verlag, 1995.

3. D. Boneh, Simplified OAEP for the RSA and Rabin functions, In proceedings of
Crypto ’2001, Lecture Notes in Computer Science, Vol. 2139, Springer-Verlag, pp.
275-291, 2001

4. M. Brown, D. Hankerson, J. López, and A. Menezes, Software Implementation of
the NIST Elliptic Curves Over Prime Fields, CT-RSA 2001, D. Naccache (Ed.),
LNCS 2020, 250–265, Springer-Verlag, 2001.

5. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard
#1 version 2, available from http://www.ceesstandards.org.

6. D. Coppersmith and A. Shamir, Lattice Attack on NTRU, Advances in Cryptology
- Eurocrypt’97, Springer-Verlag

7. C. Gentry, Key recovery and message attacks on NTRU-composite, Advances in
Cryptology – Eurocrypt ’01, LNCS 2045. Springer-Verlag, 2001

8. D. Hankerson, J. Hernandez, A. Menezes, Software implementation of elliptic curve
cryptography over binary fields, Proceedings of CHES 2000, Lecture Notes in Com-
puter Science, 1965 (2000), 1-24

9. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryp-
tosystem, in Algorithmic Number Theory (ANTS III), Portland, OR, June 1998,
Lecture Notes in Computer Science 1423 (J.P. Buhler, ed.), Springer-Verlag, Berlin,
1998, 267–288. See also http://www.ntru.com.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 131

10. J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In Public-key Cryp-
tography and Computational Number Theory. DeGruyter, 2000. Available at [4].

11. J. Hoffstein and J. H. Silverman, Random Small Hamming Weight Products With
Applications To Cryptography, Discrete Applied Mathematics, to appear, Avail-
able from http://www.ntru.com.

12. J. Hoffstein and J. H. Silverman. Invertibility in truncated polynomial rings. Tech-
nical report, NTRU Cryptosystems, October 1998. Report #009, version 1, avail-
able at http://www.ntru.com.

13. J. Hoffstein, J. H. Silverman, W. Whyte, Estimated Breaking Times for NTRU
Lattices, Technical report, NTRU Cryptosystems, June 2003 Report #012, version
2, available at http://www.ntru.com.

14. N. A. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman, A.
Singer, W. Whyte, The Impact of Decryption Failures on the Security of NTRU
Encryption, Advances in Cryptology – Crypto 2003, Lecture Notes in Compputer
Science 2729, Springer-Verlag, 2003, 226-246.

15. N. Howgrave-Graham, J. H. Silverman, A. Singer and W. Whyte. NAEP: Provable
Security in the Presence of Decryption Failures IACR ePrint Archive, Report 2003-
172, http://eprint.iacr.org/2003/172/

16. N. A. Howgrave-Graham, J. H. Silverman, W. Whyte, A Meet-in-the-Middle At-
tack on an NTRU Private key, Technical report, NTRU Cryptosystems, June 2003.
Report #004, version 2, available at http://www.ntru.com.

17. B. Kaliski, Comments on SP 800-57, Recommendation for Key Management, Part
1: General Guidelines. Available from
http://csrc.nist.gov/CryptoToolkit/kms/CommentsSP800-57Part1.pdf.

18. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48, pages
203–209, 1987.

19. A. K. Lenstra, E. R. Verheul, Selecting cryptographic key sizes, Journal of Cryp-
tology vol. 14, no. 4, 2001, 255-293. Available from http://www.cryptosavvy.com.

20. A. May, J.H. Silverman, Dimension reduction methods for convolution modular
lattices, in Cryptography and Lattices Conference (CaLC 2001), J.H. Silverman
(ed.), Lecture Notes in Computer Science 2146, Springer-Verlag, 2001

21. T. Meskanen and A. Renvall. Wrap Error Attack Against NTRUEncrypt. Proc.
of WCC ’03.

22. V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology:
Crypto ’85, pages 417–426, 1985.

23. NIST, Digital Signature Standard, FIPS Publication 186-2, February 2000.

24. NIST Special Publication 800-57, Recommendation for Key Management, Part 1:
General Guideline, January 2003. Available from
http://csrc.nist.gov/CryptoToolkit/kms/guideline-1-Jan03.pdf.

25. J. Proos Imperfect Decryption and an Attack on the NTRU Encryption Scheme,
IACR ePrint Archive, report 02/2003. http://eprint.iacr.org/2003/002/.

26. R. Rivest, A. Shamir, L. M. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, 21 (1978), 120-126.

27. J. H. Silverman, Invertibility in Truncated Polynomial Rings, Technical report,
NTRU Cryptosystems, October 1998 Report #009, version 1, available at
http://www.ntru.com.

28. Robert D. Silverman, A Cost-Based Security Analysis of Symmetric and Asym-
metric Key Lengths. RSA Labs Bulletin 13, April 2000. available from
http://www.rsasecurity.com/rsalabs.

132 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

A Comparing ECC Times to NTRUEncrypt Times

In this section we give a comparison, in terms of basic operations, of elliptic
curve point multiplication and NTRUEncrypt polynomial operations. The speed
of elliptic curve point multiplications (in software) for the prime fields given in [1,
23] is analyzed in [4]. The analysis in [4] is most complete for the smallest NIST
prime field Fp192, where p192 = 2192−264−1. The prime p192 is slightly less than
a power of 232 (a typical machine word size) and has a sparse bit representation,
yielding added efficiencies for various operations such as modular reduction.

The first three columns of Table 4 appear in [4, Table 10] and give the number
of basic operations required for an average point multiplication on the NIST p192

elliptic curve. The authors of [4] note that “95.4% of the total execution time
was spent on these basic operations.”

Operations in the first three columns of Table 4 are modulo p. We denote
by AWC. the amount of time it takes to perform a single 32 bit addition-with-
carry, and estimate the time for an elliptic curve point multiplication in terms
of AWC. For example, a single addition modulo p192 takes 6 AWC4.

To estimate AWC numbers for other security levels, we follow [4, Table 9],
which gives running times for point multiplications for all the recommended

Table 4. Average number of function calls and percentage of time spent on the basic
field operations in executions of [4, Algorithm 10] for elliptic curve point multiplication
for the p192 curve. Data in first three columns is from [4, Table 10]. The algorithm
numbers in Table 4 refer to the algorithms described in [4].

Field # of Percentage of AWC per Number of
operation calls total time call AWC

Addition (Alg 1) 1137 5.8% 6.00 6822.00

Subtraction (Alg 2) 1385 7.4% 6.28 8703.93

Integer multiplication (Alg 3) 1213 38.3% 37.14 45048.72

Integer squaring (Alg 4) 934 28.20% 35.5 33169.03

Fast reduction (Alg 7) 2147 14.8% 8.11 17407.86

Modular inversion (Alg 8) 1 0.9% 1058.59 1058.59

Total 95.4% 112210.14

Table 5. Estimated number of AWC for each of the NIST recommended finite fields,
derived from [4, Table 9].

Field Time AWC

p192 2144 112210

p224 3255 170356

p256 5298 277280

p384 17896 936618

p521 30484 1595433

4 Plus potentially one subtraction of p, which we consider free due to the form of p192.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 133

fields. The estimated number of AWC for field pi is simply the number of AWC
for p192 times the ratio of the running times for pi and p192. The results are
shown in Table 5. Our figures are based on the figures of [4] that do not use
precomputation, as ECC encryption and decryption typically involve one point
multiplication on an arbitrary base point for which precomputation cannot have
been performed5.

The NTRUEncrypt performance figures given are the time for a single convo-
lution, calculated as

Time = dN (Binary polynomials) ,
Time = 3dN (Product-form polynomials) .

This slightly underestimates the time for a convolution, in which each of the N
coefficients is produced by a combination of d additions (without carry) and 1
to d reductions mod q. However, the overhead due to the reductions is not great;
on a 32-bit machine, for example, each reduction can be accomplished in log2(d)
subtractions. We therefore consider the figures presented to be a good first-order
approximation to the actual running times.

In summary, NTRUEncrypt convolution operations with binary polynomials
are 7.5 − 15 times faster, and NTRUEncrypt convolutions with product-form
polynomials are 15 − 30 times faster than ECC point multiplications, at the
same security level. This figure leaves out the time required for any hash function
operations. For encryption, ECC requires an additional point multiplication to
a known base point, which increases encryption times by a factor of 1.3− 2. For
decryption, NTRUEncrypt-NAEP requires an additional encryption operation for
the consistency, increasing decryption times by a factor of 2.

B Details of Product Form Calculations

B.1 Combinatorial Security of Product-Form Polynomials

Product-form polynomials [10, 11] are polynomials of the form a1∗a2 or a1∗a2+a3.
The advantage of polynomials of this form is that they can be specified more
compactly, and multiplied by more quickly, than binary polynomials with the
same level of combinatorial security, though at the cost of requiring more RAM.

In this paper we will only consider the combinatorial security of polynomials
of the form a = a1 ∗ a2 + a3, where a1, a2, a3 are all binary with da1 , da2 , da3 1s
respectively, da1 = da2 = da3 = da, and there are no further constraints on a.
If PN (d) is the set of all polynomials of this form, then Comb[PN (d)] ≥ min

(
(
N−�N/d�

d−1

)2
, max

((N−�N
d �

d−1

)(N−� N
d−) �

d−2

)
,
(

N
2d

))
, max

((
N
d

)(
N

d−1

)
,
(N−� N

2d �
2d−1

)))
.

Previous parameter sets [5] have suggested using product-form polynomials
a = a1 ∗ a2 + a3, where the product polynomial a is constrained to be binary.
However, this increases the time to generate those polynomials, and more so
5 Signing is more likely to use precomputation, increasing speeds about 3.5-fold.

134 Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte

as the security parameter k increases. For reasons of efficiency the parameter
generation algorithm in this paper does not require binary output polynomials.

B.2 Parameter Set Generation

We work from the same constraints as in section 7.1, except that:

1. F will be of the form f1 ∗ f2 + f3, with f1, f2, f3 all random binary.
2. r will be of the form r1 ∗ r2 + r3, with r1, r2, r3 all random binary.
3. f1, f2, f3, r1, r2, r3 will have d 1s; g will have dg 1s.

As before, we set N to be the first prime greater than 3k+8. The parameter
set generation then proceeds as follows.

Select Polynomial Spaces – Select the smallest d that gives the desired level of
combinatorial security, and take dg = N/2 to give the greatest possible lattice
security. Table 6 shows the resulting values for d and the corresponding Ham-
ming weight of F, Hw(F)(= Hw(r)). For all values of N , dF = dr ∼ 0.03N . As in
the previous section, d increases slightly slower than linearly with N , so NTRU-
Encrypt encryption and decryption times scale approximately as N2. The value
obtained for dm0 only depends on N and does not change.

Select q – Select the smallest prime q such that Order(q (mod N)) ≥ (N − 1)/2
and q > Max(Width(prg + fm)). For both f ∗ m and r ∗ g, one of the operands
is binary but the other is product-form, so the width of the product a ∗ b
is no longer bounded by min(Hw(a, b)). However, since one of the operands is
binary, the width is certainly bounded by Hw(a), where a is the non-binary input
polynomial. Therefore,

max(Width(prg + m + pfm)) = 1 + 2pd(d + 1) = 1 + 4d(d + 1)
⇒ q > 1 + 4d(d + 1) ⇒ q ∼ cN2.

Applying the requirement that the order of q (mod N) be large, we increase
q(N = 397) and q(N = 491). The other values of q are unaffected.

Check Lattice Strength – We now calculate the lattice characteristics (a, c). For
g we use the standard centered norm. For f, the situation is more complicated.
Roughly speaking, centered norms obey the pseudo-multiplicative and pseudo-
additive rules

|a ∗ b| ∼ |a| ∗ |b|, |a + b| ∼
√
|a|2 + |b|2 .

The centered norm |F| will in general be |F| ∼
√
d2(N − d)2/N2 + d(N − d)/N .

However, in the case where F is binary, |F| will take the considerably lower value
|F| =

√
D(N −D)/N, D = d2 + d. Although it will be extremely rare for

randomly generated product-form F to be binary, we will use this lower value
in calculating c. For all parameter sets under consideration we obtain the result
c > 1.73, so we can use the extrapolation line obtained at c = 1.73, presented in
table 1 above, to estimate lattice strength. Estimating the effects of zero-forcing
is also harder in this case, because the number of zeroes in f, r is now variable.

Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3 135

We will assume that the product-form polynomials can be approximated by
dropping d(d + 1) balls into N boxes. The expected number of empty boxes is

E(zeroes) = N(1 − 1/N)d(d+1) .

We use this expected number of zeroes in our zero-forcing calculations6,7.
We can also estimate ‖F‖ by estimating the expected number of 0s, 1s, 2s, and

so on, and calculating the centered norm using Equation 1. This third estimate
of ‖F‖ gives a higher c value than the other methods described above. We denote
it by c0,1,2,3 in Table 6.

Table 6 summarizes the results for lattice strength for product form poly-
nomials. The value r is the number of zeroes an adversary should guess when
zero-forcing. We also give cf1,f2,f3 , the expected value of c as calculated from the
norms of f1, f2, f3, and c0,1,2,3, the expected value of c as calculated from the
expected numbers of 0s, 1s, 2s and 3s in F. Both of these measures give a higher
value for c than the one we use, demonstrating that in general the lattice security
will be considerably above the extrapolation line based on c = 1.73. The final
parameter sets are given in Table 3.

Table 6. Lattice constant c for different values of k.

k N d d/N Hw(F) q c(f, g) c(r, m) blatt r bzflatt cf1,f2,f3 E0 E1 E2 E3 E4 c0,1,2,3

80 251 8 0.032 72 293 2.57 2.43 87.2 20 80.1 2.76 188 55 7 1 0 2.79

112 347 11 0.032 132 541 2.21 2.13 117.8 16 118.7 2.59 237 90 18 2 0 2.56

128 397 12 0.030 156 659 2.24 2.17 136.3 17 136.6 2.50 268 105 21 4 0 2.53

160 491 15 0.031 210 967 2.08 2.02 171.3 16 170.1 2.42 301 146 38 4 0 2.52

192 587 17 0.029 306 1229 2.02 1.97 203.3 14 204.6 2.39 348 180 51 8 0 2.41

256 787 22 0.028 462 2027 1.78 1.75 278.1 14 276.7 2.27 414 261 93 17 1 2.28

6 If a given polynomial has more than the expected number of zeroes, this will help
the attacker by improving their chances of guessing a pattern, but also harm them
because the fewer entries a polynomial has the greater its norm, and the harder the
associated lattice problem, will in general be.

7 An attacker could also attempt zero-forcing by inverting h and looking for patterns
of zeroes in g. This approach would be worthwhile if there were fewer zeroes in F
than in g, but for the parameter sets under consideration, this is not the case and
zero-forcing on F will always be more effective.

Foundations of Group Signatures:
The Case of Dynamic Groups

Mihir Bellare, Haixia Shi, and Chong Zhang

Dept. of Computer Science & Engineering, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

{mihir,hashi,c2zhang}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir,hashi,c2zhang}

Abstract. Recently, a first step toward establishing foundations for
group signatures was taken [5], with a treatment of the case where the
group is static. However the bulk of existing practical schemes and ap-
plications are for dynamic groups, and these involve important new el-
ements and security issues. This paper treats this case, providing foun-
dations for dynamic group signatures, in the form of a model, strong
formal definitions of security, and a construction proven secure under
general assumptions. We believe this is an important and useful step
because it helps bridge the gap between [5] and the previous practical
work, and delivers a basis on which existing practical schemes may in
future be evaluated or proven secure.

1 Introduction

The purpose of foundational work is to provide strong, formal definitions of
security for cryptographic primitives, thereby enabling one to unambiguously
assess and prove the security of constructs and their use in applications, and then
prove the existence of schemes meeting the given definitions. As evidenced by
the development of the foundations of encryption [20, 24, 19, 25, 27, 17], however,
this program can require several steps and considerable effort.

This paper takes the next step in the foundational effort in group signa-
tures begun by [5]. Below we provide some background and then discuss our
contributions.

1.1 Background and Motivation

Group signatures. The setting, introduced by Chaum and Van Heyst [15], is
of a group of entities, each having its own private signing key, using which it
can produce signatures on behalf of the group, meaning verifiable under a single
public verification key associated to the group as a whole. The basic security
requirements are that the identity of the group member producing a particu-
lar signature not be discernible from this signature (anonymity), except to an
authority possessing a special “opening” key (traceability).

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 136–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Foundations of Group Signatures: The Case of Dynamic Groups 137

With time, more security requirements were added, including unlinkability,
unforgeability, collusion resistance [4], exculpability [4], and framing resistance
[16]. Many practical schemes were presented, some with claims of proven security
in the random oracle model [1]. However, it is often unclear what the schemes or
claimed proofs in these works actually deliver in terms of security guarantees, due
largely to the fact that the requirements are informal and sometimes ambiguous,
not precisely specifying adversary capabilities and goals. It would be beneficial
in this context to have proper foundations, meaning strong formal definitions
and rigorously proven-secure schemes.

Foundations for static groups. The first step toward this end was taken by
[5], who consider the case where the group is static. In their setting, the number of
group members and their identities are fixed and frozen in the setup phase, where
a trusted entity chooses not only the group public key and an opening key for the
opening authority, but also, for each group member, chooses a signing key and
hands it to the member in question. Within this framework, they formalize two
(strong) security requirements that they call full-anonymity and full-traceability,
and show that these imply all the informal existing requirements in the previous
literature. They then present a static group signature scheme shown to meet
these requirements, assuming the existence of trapdoor permutations.

Dynamic groups. However, static groups limit applications of group signa-
tures, since they do not allow one to add members to the group with time. They
also require an uncomfortably high degree of trust in the party performing setup,
since the latter knows the signing keys of all members and can thus frame any
group member. These limitations were in fact recognized early in the develop-
ment of the area, and the practical literature has from the start focused on the
case where the group is dynamic. In this setting, neither the number nor the
identities of group members are fixed or known in the setup phase, which now
consists of the trusted entity choosing only a group public key and a key for the
authority. An entity can join the group, and obtain a private signing key at any
time, by engaging in an appropriate join protocol with the authority.

Closing the gap. We thus have the following gap: foundations have been
provided for the static case [5], but the bulk of applications and existing practical
schemes are for the dynamic case [15, 16, 11, 14, 26, 13, 4, 3, 1]. Since the ultimate
goal is clearly to have proven secure schemes in settings suitable for applications,
it is important to bridge the above-mentioned gap by providing foundations for
dynamic group signatures.

However, an extension of the existing treatment of static groups [5] to the
dynamic case does not seem to be immediate. Dynamic groups are more com-
plex, bringing in new elements, security requirements and issues. A dedicated
and detailed treatment is required to resolve the numerous existing issues and
ambiguities. This paper provides such a treatment.

138 Mihir Bellare, Haixia Shi, and Chong Zhang

1.2 Model and Definitions for the Dynamic Group Setting

The first contribution of this paper is to provide a model and strong, formal
definitions of a small number of key security requirements for dynamic group
signatures that, in keeping with [5], are then shown to imply the large number
of existing informal requirements.

Selected features. We highlight a few important features of the model and
definitions:
• Two authorities. As suggested in some previous works, we separate the au-

thority into two, an opener (who can open signatures) and an issuer (who
interacts with a user to issue the latter a signing key). Each has its own secret
key. This provides more security (compared to having a single authority) in
the face of the possibility that authorities can be dishonest.

• Trust levels. We consider different levels of trust in each authority, namely that
it may be uncorrupt (trusted), partially corrupt (its secret key is available
to the adversary but it does not deviate from its prescribed program) or
fully corrupt (the adversary controls it entirely, so that it may not follow its
program). In order to protect group members against dishonest authorities to
the maximum extent possible, we formulate security requirements to require
the lowest possible level of trust in each authority.

• Three key requirements. We formulate three key requirements, namely anony-
mity, traceability and non-frameability. The levels of trust for each author-
ity for each requirement are summarized in Figure 1, and, as we explain
in Section 4, are the minimum possible in each case. (In the static setting,
the single full-traceability requirement covered both traceability and non-
frameability [5]. We separate them here because we can ask for and achieve
non-frameability with lower levels of trust in the authorities than traceabil-
ity.)

• PKI. We assume that each group member or potential group member has a
personal public key, established and certified, for example by a PKI, inde-
pendently of any group authority, so that it has a means to sign information,
using a matching personal private key that it retains. This is necessary in
order for group members to protect themselves from being framed by a par-
tially or fully corrupt issuer, and makes explicit what were called “long-term
credentials” in [1].

• Publicly verifiable proofs of opening. In order to be protected against a fully
corrupt opener, the opener is required to accompany any claim that a partic-
ular identity produced a particular signature with a publicly verifiable proof
to this effect (cf. [13]).

• Concurrent join protocols. In an Internet-based system, we would expect that
many entities may concurrently engage in the join protocol with the issuer.
Our model captures this by allowing the adversary to schedule all message
delivery in any number of concurrent join sessions.

Foundations of Group Signatures: The Case of Dynamic Groups 139

Requirement Opener Issuer

Anonymity uncorrupt fully corrupt

Traceability partially corrupt uncorrupt

Non-frameability fully corrupt fully corrupt

Fig. 1. Levels of trust in authorities for each of our three security requirements. In
each case, these are the lowest levels of trust achievable.

Definitional approach. In order to provide clear, succinct yet formal defini-
tions, and also allow for easy additions of more definitions, we take a modular
approach that follows the paradigm of [7]. We first specify a model that consists
of defining various oracles that provide the adversary with various attack capa-
bilities. Each of the formal definitions then provides the adversary with some
appropriate subset of these oracles, depending on the type of attack capabilities
the definition wishes to give the adversary.

As research in this area has shown, requirements for group signatures tend to
grow and evolve with time (cf. [4, 16, 23]). The benefit of the modular definitional
approach we employ here is that it is easy to add new requirements, first by
introducing new oracles to capture new attack capabilities if necessary, and then
by formulating new definitions in terms of adversaries that call on the old and
new oracles.

1.3 A Construction of a Secure Dynamic Group Signature Scheme

Given the stringency of our security requirements, the first and most basic ques-
tion that should be considered is whether a secure dynamic group signature
scheme even exists, and, if so, under what assumptions its existence can be
proved. Although the setting and requirements for dynamic groups are more
complex and demanding than for static groups, we can prove the existence of
a secure dynamic group signature scheme under the same assumptions as used
to prove the existence of a secure static group signature scheme [5], namely
the existence of trapdoor permutations. As is not uncommon with foundational
schemes, ours is polynomial-time but not efficient, and should be taken as a
proof of concept only.

The construction uses as building blocks the following: trapdoor permutation
based public-key encryption schemes secure against chosen-ciphertext attack
[17], trapdoor permutation based (ordinary) digital signature schemes secure
against chosen-message attack [6], and trapdoor permutation based simulation-
sound adaptive non-interactive zero-knowledge (NIZK) proofs for NP [28]. We
provide a way to define a group public key, keys for the two authorities, and
a join protocol so that the private signing key of any group member, as well
as the signature created, have essentially the same format as in the scheme of
[5], thereby enabling us to build on the latter. We then augment the opening
algorithm to also produce NIZK proofs of its claims, and define a judge algo-
rithm to check such proofs. To provide traceability and non-frameability, the join
protocol requires, on the one hand, that the group member provide the issuer

140 Mihir Bellare, Haixia Shi, and Chong Zhang

with a signature (relative to the personal public key that the group member has
via the PKI) of some information related to the private signing key it is issued.
(This signature is stored by the issuer in the registration table and can later be
accessed by the opener.) However, it also ensures that the issuer does not know
the private signing key of the group member. We note that in our scheme, the
length of signatures and the size of keys do not depend on the number of mem-
bers in the group. (The registration table has size proportional to the number
of users but is not considered part of the keys.)

We remark that the join protocol is simple and uses no zero-knowledge (ZK)
proofs. This is important because it facilitates showing security under arbitrary
concurrent executions. But it may be surprising because the join protocols in
practical schemes such as that of [1] use ZK proofs even though the security
requirements there are milder than in our case.

1.4 Discussion and Related Work

We do not consider revocation of group members1. Different solutions tend to
require or depend on different model elements [10, 2, 29] and we believe it is
restrictive to pin down features geared toward some solution as part of what
is supposed to be a general model. However, as noted above, our model has
an extensible format, and can be extended in different ways to accommodate
different revocation approaches and requirements.

In specifying our model and definitions we have built on numerous elements
of previous works, including informal discussions in [5] about extensions to the
dynamic setting. We remark however that we were not always able to follow the
suggestions of the latter. For example they suggested that a proof of opening
could consist of the coins underlying a certain ciphertext in the signature. But the
decryption algorithms of existing trapdoor permutation based, chosen-ciphertext
secure encryption schemes [17, 28] do not recover the coins, and, even if one had a
scheme that did, one would need to know whether it was secure against a stronger
type of chosen-ciphertext attacks in which the decryption oracle returns not just
the message but also the coins underlying a given ciphertext. Instead, we use
NIZK proofs.

Our model assumes that the issuer and opener are provided their keys by
a trusted initialization process that chooses these keys along with the group
public key. Naturally, if so desired, such a process may be implemented by a
secure distributed computation protocol in which the authorities jointly compute
their keys and the group public key. This would enable one to dispense with the
trusted initialization.

There may be schemes or setting in which there is a single authority that
plays the roles of both issuer and opener, rather than there being two separate
authorities as in our model. This case is simpler than the one we consider, and

1 Our terminology may thus be misleading. In some previous works, what we are
considering are called partially dynamic groups rather than dynamic groups. The
term monotonically growing groups has also been suggested.

Foundations of Group Signatures: The Case of Dynamic Groups 141

our definitions and scheme can easily be “dropped down” to handle it. Of course,
the security achieved will be weaker.

Our model captures the functionality of current efficient proposals for group
signature schemes, in particular that of [1]. Although we do not know whether
their scheme can be proven secure in our model, providing the model at least
enables one to address this question rigorously in the future.

Camenisch and Lysyanskaya [12] present simulation-based definitions for
identity-escrow schemes with appointed verifiers, which are related to group
signature schemes. We believe however that models like that of [5] and ours are
easier to use.

In concurrent and independent work, Kiayis, Tsiounis and Yung [23] intro-
duce an extension of group signatures called traceable signatures. However, in
the dynamic group signature setting, their model is different from ours. In par-
ticular, they consider a single authority rather than separate issuing and opening
authorities. This means that they cannot consider authority behavior that is as
adversarial as the ones we consider, namely fully corrupt, and, in some cases,
even partially corrupt authorities. Not only does this mean their requirements
are weaker than ours, but also this is where most of the novel issues, as compared
with [5], arise. We also note that their model does not include a PKI, yet some
such structure would appear to be required to realize certain assumptions they
make. (Namely that the authority is not given the power to modify transcripts
of the join protocol in non-frameability).

Finally we note that the traceable signature scheme of [23] is in the random-
oracle model, being derived as the Fiat-Shamir transform [18] of a traceable
identification scheme. Note that it may be impossible to “implement” the random
oracle of the Fiat-Shamir transform with a “real” function in a way that results
in a secure real-world scheme (Goldwasser and Tauman [22]). In contrast our
scheme is in the standard model.

2 Notation

We let N = {1, 2, 3, . . .} be the set of positive integers. If x is a string, then |x|
denotes its length, while if S is a set then |S| denotes its size. The empty string
is denoted by ε. If k ∈ N then 1k denotes the string of k ones. If n is an integer
then [n] = {1, . . . , n}. If S is a set then s

$← S denotes the operation of picking
an element s of S uniformly at random.

Unless otherwise indicated, algorithms are randomized. We write A(x, y, . . .)
to indicate that A is an algorithm with inputs x, y, . . . ,, and by z

$← A(x, y, . . .)
we denote the operation of running A with inputs x, y, . . . and letting z be the
output. We write A(x, y, . . . : O1,O2, . . .) to indicate that A is an algorithm
with inputs x, y, . . . and access to oracles O1,O2, . . ., and by z

$← A(x, y, . . . :
O1,O2, . . .) we denote the operation of running A with inputs x, y, . . . and access
to oracles O1,O2, . . ., and letting z be the output.

142 Mihir Bellare, Haixia Shi, and Chong Zhang

3 A Model for Dynamic Group Signature Schemes

Here we provide a model in which definitions can later be formulated. We begin
with a discussion of the syntax, namely the algorithms that constitute a dynamic
group signature scheme.

Algorithms and their usage. Involved in a group signature scheme are a
trusted party for initial key generation, an authority called the issuer, an author-
ity called the opener, and a body of users, each with a unique identity i ∈ N, that
may become group members. The scheme is specified as a tuple GS = (GKg,UKg,
Join, Iss,GSig,GVf,Open, Judge) of polynomial-time algorithms whose intended
usage and functionality are as follows. Throughout, k ∈ N denotes the security
parameter.

GKg – In a setup phase, the trusted party runs the group-key generation al-
gorithm GKg on input 1k to obtain a triple (gpk, ik, ok). The issuer key ik is
provided to the issuer, and the opening key ok is provided to the opener. The
group public key gpk, whose possession enables signature verification, is made
public.

UKg – A user that wants to be a group member should begin by running the user-
key generation algorithm UKg on input 1k to obtain a personal public and private
key pair (upk[i],usk[i]). We assume that the table upk is public. (Meaning,
anyone can obtain an authentic copy of the personal public key of any user. This
might be implemented via a PKI.)

Join, Iss – Once a user has its personal key pair, it can join the group by en-
gaging in a group-joining protocol with the issuer. The interactive algorithms
Join, Iss implement, respectively, the user’s and issuer’s sides of this interaction.
Each takes input an incoming message (this is ε if the party is initiating the
interaction) and a current state, and returns an outgoing message, an updated
state, and a decision which is one of accept, reject, cont. The communication is
assumed to take place over secure (i.e. private and authenticated) channels, and
we assume the user sends the first message. If the issuer accepts, it makes an
entry for i, denoted reg [i], in its registration table reg , the contents of this entry
being the final state output by Iss. If i accepts, the final state output by Join is
its private signing key, denoted gsk[i].

GSig – A group member i, in possession of its signing key gsk[i], can apply the
group signing algorithm GSig to gsk[i] and a message m ∈ {0, 1}∗ to obtain a
quantity called a signature on m.

GVf – Anyone in possession of the group public key gpk can run the deterministic
group signature verification algorithm GVf on inputs gpk, a message m, and a
candidate signature σ for m, to obtain a bit. We say that σ is a valid signature
of m with respect to gpk if this bit is one.

Open – The opener, who has read-access to the registration table reg being
populated by the issuer, can apply the deterministic opening algorithm Open to
its opening key ok, the registration table reg , a message m, and a valid signature

Foundations of Group Signatures: The Case of Dynamic Groups 143

σ of m under gpk. The algorithm returns a pair (i, τ), where i ≥ 0 is an integer.
In case i ≥ 1, the algorithm is claiming that the group member with identity i
produced σ, and in case i = 0, it is claiming that no group member produced σ.
In the former case, τ is a proof of this claim that can be verified via the Judge
algorithm.

Judge – The deterministic judge algorithm Judge takes inputs the group public
key gpk, an integer j ≥ 1, the public key upk[j] of the entity with identity j
(this is ε if this entity has no public key), a message m, a valid signature σ of
m, and a proof-string τ . It aims to check that τ is a proof that j produced σ.
We note that the judge will base its verification on the public key of j.

The oracles. The correctness and security definitions will be formulated via
experiments in which an adversary’s attack capabilities are modeled by providing
it access to certain oracles. We now introduce the oracles that we will need.
(Different experiments will provide the adversary with different subsets of this
set of oracles.)

The oracles are specified in Figure 2 and explained below. It is assumed that
the overlying experiment has run GKg on input 1k to obtain keys gpk, ik, ok
that are used by the oracles. It is also assumed that this experiment maintains
the following global variables which are manipulated by the oracles: a set HU
of honest users; a set CU of corrupted users; a set GSet of message-signature
pairs; a table upk such that upk[i] contains the public key of i ∈ N; a table
reg such that reg [i] contains the registration information of group member i.
The sets HU,CU,GSet are assumed initially empty, and all entries of the tables
upk, reg are assumed initially to be ε. Randomized oracles or algorithms use
fresh coins upon each invocation unless otherwise indicated.

AddU(·) – By calling this add user oracle with argument an identity i ∈ N,
the adversary can add i to the group as an honest user. The oracle adds i to
the set HU of honest users, and picks a personal public and private key pair
(upk[i],usk[i]) for i. It then executes the group-joining protocol by running
Join (on behalf of i, initialized with gpk,upk[i],usk[i]) and Iss (on behalf of
the issuer, initialized with gpk, ik, i,upk[i]). When Iss accepts, its final state is
recorded as entry reg [i] in the registration table. When Join accepts, its final
state is recorded as the private signing key gsk[i] of i. The calling adversary is
returned upk[i].

CrptU(·, ·) – By calling this corrupt user oracle with arguments an identity i ∈ N

and a string upk, the adversary can corrupt user i and set its personal public
key upk[i] to the value upk chosen by the adversary. The oracle initializes the
issuer’s state in anticipation of a group-joining protocol with i.

SndToI(·, ·) – Having corrupted user i, the adversary can use this send to issuer
oracle to engage in a group-joining protocol with the honest, Iss-executing issuer,
itself playing the role of i and not necessarily executing the interactive algorithm
Join prescribed for an honest user. The adversary provides the oracle with i and
a message Min to be sent to the issuer. The oracle, which maintains the issuer’s

144 Mihir Bellare, Haixia Shi, and Chong Zhang

AddU(i)

If i ∈ CU or i ∈ HU then return ε
HU ← HU ∪ {i}
deci ← cont; gsk[i] ← ε

(upk[i], usk[i])
$← UKg(1k)

Sti
jn ← (gpk,upk[i], usk[i])

Sti
iss ← (gpk, ik, i, upk[i]); Mjn ← ε

(Sti
jn, Miss, deci) ← Join(Sti

jn, Mjn)
While deci = cont do

(Sti
iss, Mjn, deci) ← Iss(Sti

iss, Miss, deci)
If deci = accept then reg [i] ← Sti

iss

(Sti
jn, Miss, deci) ← Join(Sti

jn, Mjn)
Endwhile
gsk[i] ← Sti

jn

Return upk[i]

SndToI(i, Min)

If i /∈ CU then return ε
(Sti

iss, Mout, deci) ← Iss(Sti
iss, Min, deci)

If deci = accept then reg [i] ← Sti
iss

Return Mout

SndToU(i, Min)

If i /∈ HU then
HU ← HU ∪ {i}
(upk[i], usk[i])

$← UKg(1k)
gsk[i] ← ε ; Min ← ε
Sti

jn ← (gpk,upk[i], usk[i])
(Sti

jn, Mout, dec) ← Join(Sti
jn, Min);

If dec = accept then gsk[i] ← Sti
jn

Return (Mout, dec)

CrptU(i, upk)

If i ∈ HU ∪ CU then return ε
CU ← CU ∪ {i}
upk[i] ← upk
deci ← cont
Sti

iss ← (gpk, ik, i, upk[i])
Return 1

USK(i)

Return (gsk[i], usk[i])

RReg(i)

Return reg [i]

WReg(i, ρ)

reg [i] ← ρ

Open(m, σ)

If (m, σ) ∈ GSet then return ⊥
Return Open(gpk, ok, reg , m, σ)

GSig(i, m)

If i �∈ HU then return ⊥
If gsk[i] = ε then return ⊥
Else return GSig(gpk,gsk[i], m)

Chb(i0, i1, m)

If i0 �∈ HU or i1 �∈ HU then
return ⊥

If gsk[i0] = ε or gsk[i1] = ε then
return ⊥

σ ← GSig(gpk,gsk[ib], m)
GSet ← GSet ∪ {(m, σ)}
Return σ

Fig. 2. Oracles provided to adversaries in the experiments of Figure 3.

state (the latter having been initialized by an earlier call to CrptU(i, ·)), computes
a response as per Iss, returns the outgoing message to the adversary, and sets
entry reg [i] of the registration table to Iss’s final state if the latter accepts.

SndToU(·, ·) – In some definitions we will want to consider an adversary that
has corrupted the issuer. The send to user oracle SndToU(·, ·) can be used by
such an adversary to engage in a group-joining protocol with an honest, Join-
executing user, itself playing the role of the issuer and not necessarily executing
the interactive algorithm Iss prescribed for the honest issuer. The adversary
provides the oracle with i and a messageMin to be sent to i. The oracle maintains
the state of user i, initializing this the first time it is called by choosing a personal

Foundations of Group Signatures: The Case of Dynamic Groups 145

public and private key pair for i, computes a response as per Join, returns the
outgoing message to the adversary, and sets the private signing of i to Join’s
final state if the latter accepts.

USK(·) – The adversary can call this user secret keys oracle with argument the
identity i ∈ N of a user to expose both the private signing key gsk[i] and the
personal private key usk[i] of this user.

RReg(·) – The adversary can read the contents of entry i of the registration table
reg by calling this read registration table oracle with argument i ∈ N.

WReg(·, ·) – In some definitions we will allow the adversary to write/modify the
contents of entry i of the registration table reg by calling this write registration
table oracle with argument i ∈ N.

GSig(·, ·) – A signing oracle, enabling the adversary to specify the identity i of a
user and a message m, and obtain the signature of m under the private signing
key gsk[i] of i, as long as i is an honest user whose private signing key is defined.

Ch(b, ·, ·, ·) – A challenge oracle provided to an adversary attacking anonymity,
and depending on a challenge bit b set by the overlying experiment. The adver-
sary provides a pair i0, i1 of identities and a message m, and obtains the signature
of m under the private signing key of ib, as long as both i0, i1 are honest users
with defined private signing keys. The oracle records the message-signature pair
in GSet to ensure that the adversary does not later call the opening oracle on it.

Open(·, ·) – The adversary can call this opening oracle with arguments a mes-
sage m and signature σ to obtain the output of the opening algorithm on m,σ,
computed under the opener’s key ok, as long as σ was not previously returned
in response to a query to Ch(b, ·, ·, ·).

Remarks. We are assuming the existence of a secure (private and authentic)
channel between any prospective group member and the issuer, as in [1]. The
privacy assumption is reflected in the fact that the adversary is not provided the
transcript of an interaction generated by the AddU(·) oracle. The authenticity
assumption is reflected in the fact that a party is initialized with the correct
identity and personal public key of its partner if relevant. (When the issuer
is fully corrupted, reflected by the adversary having a SndToU(·, ·) oracle, the
adversary does get the transcript of the communication, via its oracle queries and
answers.) We note however that the secure channels assumption is made more
for simplicity than anything else, and protocols are easily modified to avoid it.

4 Notions of Correctness and Security

Here we provide the definitions of correctness and security of a dynamic group
signature scheme, based on the model of an adversary with oracles introduced
above. We begin with correctness and then define three security requirements:
anonymity, traceability and non-frameability.

146 Mihir Bellare, Haixia Shi, and Chong Zhang

Experiment Expcorr
GS,A(k)

(gpk, ik, ok)
$← GKg(1k) ; CU ← ∅ ; HU ← ∅ ; (i, m)

$← A(gpk : AddU(·), RReg(·))
If i �∈ HU then return 0 ; If gsk[i] = ε then return 0

σ ← GSig(gpk,gsk[i], m) ; If GVf(gpk, m, σ) = 0 then return 1

(j, τ) ← Open(gpk, ok, reg , m, σ) ; If i �= j then return 1

If Judge(gpk, i, upk[i], m, σ, τ) = 0 then return 1 else return 0

Experiment Expanon-b
GS,A (k) // b ∈ {0, 1}

(gpk, ik, ok)
$← GKg(1k) ; CU ← ∅ ; HU ← ∅ ; GSet ← ∅

d
$← A(gpk, ik : Ch(b, ·, ·, ·), Open(·, ·), SndToU(·, ·), WReg(·, ·), USK(·), CrptU(·, ·))

Return d

Experiment Exptrace
GS,A(k)

(gpk, ik, ok)
$← GKg(1k) ; CU ← ∅ ; HU ← ∅

(m, σ)
$← A(gpk, ok : SndToI(·, ·), AddU(·), RReg(·), USK(·), CrptU(·, ·))

If GVf(gpk, m, σ) = 0 then return 0 ; (i, τ) ← Open(gpk, ok, reg , m, σ)

If i = 0 or Judge(gpk, i,upk[i], m, σ, τ) = 0 then return 1 else return 0

Experiment Expnf
GS,A(k)

(gpk, ik, ok)
$← GKg(1k) ; CU ← ∅ ; HU ← ∅

(m, σ, i, τ)
$← A(gpk, ok, ik : SndToU(·, ·), WReg(·, ·), GSig(·, ·), USK(·), CrptU(·, ·))

If GVf(gpk, m, σ) = 0 then return 0

If the following are all true then return 1 else return 0:

– i ∈ HU and gsk[i] �= ε and Judge(gpk, i, upk[i], m, σ, τ) = 1
– A did not query USK(i) or GSig(i, m)

Fig. 3. Experiments used to define correctness, anonymity, traceability and non-
frameability of a dynamic group signature scheme GS = (GKg, UKg, Join, Iss, GSig, GVf ,
Open, Judge).

4.1 Correctness

The correctness condition pertains to signatures generated by honest group mem-
bers, and asks the following: the signature should be valid; the opening algorithm,
given the message and signature, should correctly identify the signer; the proof
returned by the opening algorithm should be accepted by the judge. Formalizing
these conditions in the dynamic group setting is more involved than formaliz-
ing them in a static setting in that these conditions must hold for all honest
users under any “schedule” under which these users join the group. Accordingly,
we formalize correctness via an experiment involving an adversary. To dynamic
group signature scheme GS, any adversary A and any k ∈ N we associate the
experiment Expcorr

GS,A(k) depicted in Figure 3. We let

Advcorr
GS,A(k) = Pr

[
Expcorr

GS,A(k) = 1
]
.

We say that dynamic group signature scheme GS is correct if Advcorr
GS,A(k) = 0 for

any adversary A and any k ∈ N. Note that the adversary is not computationally
restricted.

Foundations of Group Signatures: The Case of Dynamic Groups 147

4.2 Anonymity

Formal definition. To dynamic group signature scheme GS, any adversary
A, a bit b ∈ {0, 1} and any k ∈ N we associate the experiment Expanon-b

GS,A (k)
depicted in Figure 3. We let

Advanon
GS,A(k) = Pr

[
Expanon-1

GS,A (k) = 1
]
− Pr

[
Expanon-0

GS,A (k) = 1
]
.

We say that dynamic group signature scheme GS is anonymous if the function
Advanon

GS,A(·) is negligible for any polynomial-time adversary A.

Discussion. The definition is liberal with regard to what it means for the ad-
versary to win. It need not recover the identity of a signer from a signature, but,
following [5], need only distinguish which of two signers of its choice signed a
target message of its choice. Formally, this means it wins if it guesses the value
of the bit b in the Ch(b, ·, ·, ·) oracle. In the process, the adversary is provided
with extremely strong attack capabilities, including the ability to fully corrupt
the issuer. (The adversary is not only given the issuer key ik, but is provided
access to the SndToI(·, ·) oracle, which enables it to play the role of issuer in in-
teracting with users in the join protocol.) The adversary is additionally allowed
to obtain both the personal private key and the private signing key of any user
(via the USK oracle); read, write or modify the content of the registration table
(via the RReg,WReg oracles); corrupt users and interact with the issuer on their
behalf (via the CrptU, SndToU oracles); and obtain the identity of the signer of
any signature except the challenge one (via the Open oracle).

We do not provide the adversary access to the GSig and AddU oracles because
they are redundant given the capabilities already provided to the adversary.
Naturally, the adversary is also denied the opener’s key ok, since the latter would
enable it to run the Open algorithm. (Meaning the opener must be assumed
uncorrupt.)

4.3 Traceability

Formal definition. To dynamic group signature scheme GS, any adversary A
and any k ∈ N we associate the experiment Exptrace

GS,A(k) depicted in Figure 3.
We let

Advtrace
GS,A(k) = Pr

[
Exptrace

GS,A(k) = 1
]
.

We say that dynamic group signature scheme GS is traceable if the function
Advtrace

GS,A(·) is negligible for any polynomial-time adversary A.

Discussion. Traceability asks that the adversary be unable to produce a sig-
nature such that either the honest opener declares itself unable to identify the
origin of the signature (meaning the Open algorithm returns (i, τ) with i = 0),
or, the honest opener believes it has identified the origin but is unable to produce
a correct proof of its claim (meaning the Open algorithm returns (i, τ) with i > 0
but the proof τ is rejected by the judge). In the process, the adversary is allowed
to create honest group members (via the AddU oracle); obtain both the personal
private key and the private signing key of any user (via the USK oracle); read

148 Mihir Bellare, Haixia Shi, and Chong Zhang

the content of the registration table (via the RReg oracles); and corrupt users
and interact with the issuer on their behalf (via the CrptU, SndToU oracles).

Note that traceability cannot be achieved in the presence of even a partially
corrupt issuer, for such an issuer can create dummy users with valid signing keys
and thus create untraceable signatures. (That is, the assumption that the issuer
is uncorrupt is minimal). Accordingly, in the definition, the adversary is not
given ik as input and not given a SndToU oracle. Also it is not allowed to write
to the registration table (meaning it is not given a WReg oracle) since it could
otherwise remove the information enabling a group member to be traced. Also,
the assumption that the opener is partially but not fully corrupt is minimal, for
a fully corrupt opener could simply refuse to trace.

4.4 Non-frameability

Formal definition. To dynamic group signature scheme GS, any adversary A
and any k ∈ N we associate the experiment Expnf

GS,A(k) depicted in Figure 3.
We let

Advnf
GS,A(k) = Pr

[
Expnf

GS,A(k) = 1
]
.

We say that dynamic group signature scheme GS is non-frameable if the function
Advnf

GS,A(·) is negligible for any polynomial-time adversary A.

Discussion. Non-frameability asks that the adversary be unable to create a
judge-accepted proof that an honest user produced a certain valid signature
unless this user really did produce this signature. (This implies the more usual
formulation, namely that it cannot produce a signature that an honest opener
would attribute to a user unless the latter really did produce it, because, if it
could produce such a signature, it could also produce the judge-accepted proof.
The latter is true because we give it the secret key of the opener). The adversary
outputs a message m, a signature σ, an identity i and a proof τ . It wins if
σ is a valid signature of m, i is an honest user, and the judge accepts τ as a
proof that i produced σ, yet the adversary did not query the signing oracle GSig
with i,m and did not obtain i’s signing key gsk[i] via the USK oracle. Barring
these restrictions, the adversary is extremely powerful, and in particular much
stronger than for traceability (which is why, unlike [5], we separate the two). In
particular it may fully corrupt both the opener and the issuer. (Reflected in its
getting input ok, ik and having access to the SndToU oracle.) Additionally, it
may create a colluding subset of users by using its USK oracle to obtain signing
keys of all users except the target one it outputs, and also corrupt users via
CrptU.

4.5 Remarks

Recall that in [5] the issuing process was static and trusted, and their single
authority played the role of opener. Their full-traceability requirement, which
covered both traceability and non-frameability, allowed the opener to be partially
but not fully corrupt. We are asking for traceabiltiy under the same conditions,

Foundations of Group Signatures: The Case of Dynamic Groups 149

which, as we have argued above, are minimal in the dynamic setting. But we ask
for non-frameability under much more adverse conditions, namely when both
authorities may be fully corrupt. (In achieving this, the PKI is crucial). This is
the motivation for separating their single requirement into two.

We note that a reader might find that what is intuitively regarded as trace-
ability is covered by the combination of traceability and non-frameability rather
than by the formal traceability alone.

In [8] we point out that, as in the static case [5], the key requirements that
we define (anonymity, traceability and non-frameability) are strong enough to
capture and imply all existing informal security requirements in the literature.

5 Our Construction

We begin by describing the primitives we use, and then overview our construc-
tion. A full description of the construction, together with definitions of security
for the primitives, can be found in [8].

Primitives. We use a digital signature scheme DS = (Ks, Sig,Vf) specified, as
usual, by algorithms for key generation, signing and verifying. It should sat-
isfy the standard notion of unforgeability under chosen message attack [21], the
definition of which is recalled in [8].

We use a public-key encryption scheme AE = (Ke,Enc,Dec) specified, as
usual, by algorithms for key generation, encryption and decryption. It should sat-
isfy the standard notion of indistinguishability under adaptive chosen-ciphertext
attack (IND-CCA) [27], the definition of which is recalled in [8].

The last building block we need are simulation-sound NIZK proofs of mem-
bership in NP languages. We use the following terminology. An NP-relation over
domain Dom ⊆ {0, 1}∗ is a subset ρ of {0, 1}∗×{0, 1}∗ such that membership of
(x,w) ∈ ρ is decidable in time polynomial in the length of the first argument for
all x in domain Dom. The language associated to ρ is the set of all x ∈ {0, 1}∗
such that there exists a w for which (x,w) ∈ ρ. Often we will just use the term
NP-relation, the domain being implicit. If (x,w) ∈ ρ we will say that x is a
theorem and w is a proof of x.

Fix an NP relation ρ over domain Dom. Consider a pair of polynomial time
algorithms (P, V), where P is randomized and V is deterministic. They have
access to a common reference string, R. In [8] we recall the definition of (P, V)
being a simulation-sound, non-interactive zero-knowledge proof system for ρ over
domain Dom.

Overview of our construction. We fix a digital signature scheme DS =
(Ks, Sig,Vf) and a public-key encryption scheme AE = (Ke,Enc,Dec) as above.
We now show that the building blocks above can be used to construct a group sig-
nature scheme GS = (GKg,UKg,GSig,GVf, Join, Iss,Open, Judge) that is anony-
mous, traceable and non-frameable. We now present an overview of our con-
struction.

The group public key gpk consists of the security parameter k, a public
encryption key pke, a verification key pks for digital signatures which we call

150 Mihir Bellare, Haixia Shi, and Chong Zhang

the certificate verification key, and two reference strings R1 and R2 for NIZK
proofs. We denote by sks the signing key corresponding to pks, and call it the
certificate creation key. The issuer secret key ik is the certificate creation key
sks. The opener secret key ok is the decryption key ske corresponding to pke,
together with the random coins re used to generate (ske, pke). The certificate
creation key sks is however denied to the group opener. (This prevents the latter
from issuing certificates for keys it generates itself, and is important to attain
traceability.)

In the group-joining protocol, user i generates a verification key pki and the
corresponding signing key ski. It uses its personal private key usk[i] to produce
a signature sigi on pki. The signature sigi prevents the user from being framed
by a corrupt issuer. (The personal public and private key pair (upk[i],usk[i])
were obtained by running the user-key generation algorithm prior to the group-
joining protocol. This is handled by the oracles.) The users sends pki, sigi to the
issuer, who issues membership to i by signing pki using the certificate creation
key sks. The issuer then stores (pki, sigi) in the registration table. Later, sigi

can be used by the opener to produce proofs for its claims.
A group member i can produce a signature for a message m under pki by

using its secret signing key ski. To make this verifiable without losing anonymity,
it encrypts the verification key pki under pke and then proves in zero-knowledge
that verification succeeds with respect to pki. However, to prevent someone
from simply creating their own key pair ski, pki and doing this, it also encrypts
i and its certificate certi, and proves in zero-knowledge that this certificate is
a signature of 〈i,pki〉 under the certificate verification key pks present in the
group public key. Group signature verification comes down to verification of the
NIZK proofs.

Opening is possible because the group opener has the decryption key ske. It
obtains the user identity i by decrypting the ciphertext in the signature. When
i is indeed an existing user, the opener proves its claim by supplying evidence
that it decrypts the ciphertext correctly, and the user public key it obtained
from decryption is authentic (i.e. signed by user i using usk[i]). The former is
accomplished by a zero-knowledge proof. The judge algorithm simply checks if
these proofs are correct.

Specification of our construction. We now specify witness relations ρ1

and ρ2 underlying the zero-knowledge proofs. Relation ρ1 is defined as follows:
((pke, pks,m,C), (i,pk′, cert, s, r)) ∈ ρ1 iff

Vf(pks, 〈i,pk′〉, cert)=1, Vf(pk′,m, s)=1 and Enc(pke, 〈i,pk′, cert, s〉; r)=C .

Here m is a k-bit message, C a ciphertext and s a signature. We are writing
Enc(pke,m; r) for the encryption of message m under key pke using coins r,
and assume that |r| = k. The domain Dom1 corresponding to ρ1 is the set of
all (pke, pks,m,C) such that pke (resp. pks) is a public key having non-zero
probability of being produced by Ke (resp. Ks) on input k, and m is a k-bit
string. It is immediate that ρ1 is an NP relation over Dom1. Relation ρ2 is
defined as follows: ((pke, C, i,pk, cert, s), (ske, re)) ∈ ρ2 iff

Foundations of Group Signatures: The Case of Dynamic Groups 151

Ke(1k; re) = (pke, ske) and Dec(ske, C) = 〈i,pk, cert, s〉
Here C is a ciphertext, i an identity and s a signature. The domain Dom2

corresponding to ρ2 is the set of all (pke, C, i,pk, cert, s) such that pke is a
public key having non-zero probability of being produced by Ke on input k. It
is immediate that ρ2 is an NP relation over Dom2.

We fix a proof system (P1, V1) for ρ1 and (P2, V2) for ρ2. A detailed specifica-
tion of the algorithms GKg,UKg,GSig,GVf, Join, Iss,Open, Judge that comprise
our dynamic group signature scheme GS, based on the above, can be found in [8].

Security Results. Fix digital signature scheme DS = (Ks, Sig,Vf), public-key
encryption scheme AE = (Ke,Enc,Dec), NP-relations ρ1 over domain Dom1, ρ2

over domain Dom2, and their non-interactive proof systems (P1, V1) and (P2, V2)
as above, and let GS = (GKg,UKg,GSig,GVf, Join, Iss,Open, Judge) denote the
dynamic group signature scheme associated to them as per our construction. We
derive our main result (Theorem 1) via the following three lemmas proved in [8].

Lemma 1. If AE is an IND-CCA secure encryption scheme, (P1, V1) is a sim-
ulation sound, computational zero-knowledge proof system for ρ1 over Dom1 and
(P2, V2) is a computational zero-knowledge proof system for ρ2 over Dom2, then
group signature scheme GS is anonymous. ��

Lemma 2. If digital signature scheme DS is secure against forgery under
chosen-message attack, (P1, V1) is a sound non-interactive proof system for ρ1

over Dom1 and (P2, V2) is a sound non-interactive proof system for ρ2 over
Dom2, then group signature scheme GS is traceable. ��

Lemma 3. If digital signature scheme DS is secure against forgery under
chosen-message attack, (P1, V1) is a sound non-interactive proof system for ρ1

over Dom1 and (P2, V2) is a sound non-interactive proof system for ρ2 over
Dom2, then group signature scheme GS is non-frameable. ��

We know that if trapdoor permutations exist then so do secure digital signature
schemes [6], IND-CCA secure encryption schemes [17, 28] and simulation sound
NIZK proofs for NP [28]. As a consequence we have:

Theorem 1. If there exists a family of trapdoor permutations, then there ex-
ists a dynamic group signature scheme that is anonymous, traceable and non-
frameable.

Acknowledgments

We thank Bogdan Warinschi for comments on a previous draft. The authors
are supported in part by NSF grants CCR-0098123, ANR-0129617 and CCR-
0208842, and an IBM Faculty Partnership Development Award.

152 Mihir Bellare, Haixia Shi, and Chong Zhang

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. Advances in Cryptology – CRYPTO
’00, Lecture Notes in Computer Science Vol. 1880, M. Bellare ed., Springer-Verlag,
2000.

2. G. Ateniese and G. Tsudik. Quasi-efficient revocation in group signature schemes.
Financial Cryptography ’02, Lecture Notes in Computer Science Vol. 2357,
M. Blaze ed., Springer-Verlag, 2002.

3. G. Ateniese and G. Tsudik. Group signatures à la carte. Proceedings of the 10th
Annual Symposium on Discrete Algorithms, ACM-SIAM, 1999.

4. G. Ateniese and G. Tsudik. Some open issues and directions in group signa-
ture. Financial Cryptography ’99, Lecture Notes in Computer Science Vol. 1648,
M. Franklin ed., Springer-Verlag, 1999.

5. M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: For-
mal definitions, simplified requirements, and a construction based on general as-
sumptions. Advances in Cryptology – EUROCRYPT ’03, Lecture Notes in Com-
puter Science Vol. 2656, E. Biham ed., Springer-Verlag, 2003.

6. M. Bellare and S. Micali. How to sign given any trapdoor permutation. JACM,
39(1):214–233, 1992.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution. Advances
in Cryptology – CRYPTO ’93, Lecture Notes in Computer Science Vol. 773,
D. Stinson ed., Springer-Verlag, 1993.

8. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: the case of
dynamic groups. Full version of this abstract. http://www-cse.ucsd.edu/users/
mihir.

9. M. Blum, A. DeSantis, S. Micali, and G. Persiano. Non-interactive zero-knowledge
proof systems. SIAM J. on Computing, 20(6):1084–1118, 1991.

10. E. Bresson and J. Stern. Efficient revocation in group signatures. Public-Key
Cryptography ’01, Lecture Notes in Computer Science Vol. 1992, K. Kim ed.,
Springer-Verlag, 2001.

11. J. Camenisch. Efficient and generalized group signature. Advances in Cryptology
– EUROCRYPT ’97, Lecture Notes in Computer Science Vol. 1233, W. Fumy ed.,
Springer-Verlag, 1997.

12. J. Camenisch and A. Lysyanskaya. An identity-escrow scheme with appointed ver-
ifiers. Advances in Cryptology – CRYPTO ’01, Lecture Notes in Computer Science
Vol. 2139, J. Kilian ed., Springer-Verlag, 2001.

13. J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
Advances in Cryptology – ASIACRYPT ’98, Lecture Notes in Computer Science
Vol. 1514, D. Pei ed., Springer-Verlag, 1998.

14. J. Camenisch and M. Stadler. Efficient group signatures schemes for large groups.
Advances in Cryptology – CRYPTO ’97, Lecture Notes in Computer Science
Vol. 1294, B. Kaliski ed., Springer-Verlag, 1997.

15. D. Chaum and E. van Heyst. Group signatures. Advances in Cryptology – EURO-
CRYPT ’91, Lecture Notes in Computer Science Vol. 547, D. Davies ed., Springer-
Verlag, 1991.

16. L. Chen and T. P. Pedersen. New group signature schemes. Advances in Cryptology
– EUROCRYPT ’94, Lecture Notes in Computer Science Vol. 950, A. De Santis
ed., Springer-Verlag, 1994.

Foundations of Group Signatures: The Case of Dynamic Groups 153

17. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. on
Computing, 30(2):391–437, 2000.

18. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. Advances in Cryptology – CRYPTO ’86, Lecture Notes
in Computer Science Vol. 263, A. Odlyzko ed., Springer-Verlag, 1986.

19. O. Goldreich. A uniform-complexity treatment of encryption and zero-knowledge.
J. of Cryptology, 6(1):21–53, 1993.

20. S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28:270–299, 1984.
21. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM J. on Computing, 17(2):281–308, 1988.
22. S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir paradigm.

Proceedings of the 44th Symposium on Foundations of Computer Science, IEEE,
2003.

23. A. Kiayias, Y. Tsiounis and M. Yung. Traceable signatures. Advances in Cryptol-
ogy – EUROCRYPT ’04, Lecture Notes in Computer Science Vol. 3027, C. Cachin
and J. Camenisch ed., Springer-Verlag, 2004.

24. S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryp-
tosystems. SIAM J. on Computing, 17(2):412–426, 1988.

25. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. Proceedings of the 22nd Annual Symposium on the Theory of
Computing, ACM, 1990.

26. H. Petersen. How to convert any digital signature scheme into a group signature
scheme. Proceedings of Security Protocols Workshop ’97.

27. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. Advances in Cryptology – CRYPTO ’91, Lecture Notes
in Computer Science Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991.

28. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. Proceedings of the 40th Symposium on Foundations of Com-
puter Science, IEEE, 1999.

29. D. Song. Practical forward-secure group signature schemes. Proceedings of the 8th
Annual Conference on Computer and Communications Security , ACM, 2001.

Time-Selective Convertible
Undeniable Signatures

Fabien Laguillaumie1,2 and Damien Vergnaud2

1 France Telecom Research and Development,
42, rue des Coutures, B.P. 6243, 14066 Caen Cedex 4, France

2 Laboratoire de Mathématiques Nicolas Oresme,
Université de Caen, Campus II, B.P. 5186,

14032 Caen Cedex, France
{laguillaumie,vergnaud}@math.unicaen.fr

Abstract. Undeniable signatures were introduced in 1989 by Chaum
and van Antwerpen to limit the self-authenticating property of digital
signatures. An extended concept – the convertible undeniable signatures
– proposed by Boyar, Chaum, Damg̊ard and Pedersen in 1991, allows the
signer to convert undeniable signatures to ordinary digital signatures. We
present a new efficient convertible undeniable signature scheme based on
bilinear maps. Its unforgeability is tightly related, in the random oracle
model, to the computational Diffie-Hellman problem and its anonymity
to a non-standard decisional assumption. The advantages of our scheme
are the short length of the signatures, the low computational cost of the
signature and the receipt generation. Moreover, a variant of our scheme
permits the signer to universally convert signatures pertaining only to
a specific time period. We formalize this notion as the time-selective
conversion.

Keywords: Convertible undeniable signatures, bilinear maps, anonym-
ity, exact security, time-selective conversion.

1 Introduction

Digital signatures aim at recover in silico the usual properties of the tradi-
tional in vivo signatures, namely authentication, integrity, non-repudiation of
the signed document and universal verifiability of the signatures. However, un-
like handwritten signatures, digital signatures can be copy-cloned and therefore
authenticated confidential documents (e.g. software certificates, contracts, dis-
honorable bills) can easily be disseminated.

For privacy reasons, it is preferable, in many applications, that the verifica-
tion of signatures be controlled or (at least) limited by the signer. This remark
justifies the concept of undeniable signatures, introduced at the very end of the
eighties by Chaum and van Antwerpen [14]. In this setting, the verification (and
the denial) of a signature requires the cooperation of the signer. The security of
their protocol relies on the discrete logarithm problem, but suffers from the fact
that the interactive protocols were not zero-knowledge. One year later, Chaum

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 154–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Time-Selective Convertible Undeniable Signatures 155

improved significantly the initial proposal in [12] by providing a zero-knowledge
version. Moreover there exist documents whose authentication must be limited at
first, but which will require ordinary digital signatures after some period of time.
In 1991, the concept has been refined by giving the possibility to transform an
undeniable signature into a self-authenticating signature. These convertible un-
deniable signatures, proposed in [6] by Boyar, Chaum, Damg̊ard and Pedersen,
provide individual and universal conversions of the signatures. Unfortunately,
this El Gamal-like scheme has been broken in 1996 by Michels, Petersen, and
Horster [25] who proposed a repaired version with heuristic security. Since then,
many schemes have then been proposed, based upon classical signatures, such as
Schnorr [26], El Gamal [17] and RSA [18–20]. Very recently, Monnerat and Vau-
denay [28] proposed short undeniable signatures based on the computation of
characters which do not provide the conversion property. Convertible undeniable
signatures have given rise to many applications in cryptography [6, 7, 16].

In all these protocols, the universal conversion consists in revealing a part
of the signer’s secret key. This conversion makes all signatures, past as well
as future, be universally verifiable. This property may be undesirable in some
context and furthermore the corresponding keys cannot be used to generate
undeniable signatures any more. As in a classical public key infrastructure the
public key needs to be certified by an authority (as well as in any asymmetric
cryptographic protocol), this approach leads to the registration of a large number
of public/secret key pairs for the signer, and the need for the verifiers to check
the validity of these certificates. Besides, in the identity-based paradigm1, the
problem is even more serious since there is a unique secret key by identity.

Our Contributions. In this article, we propose a new convertible undeniable
signature scheme, in the spirit of both the original paper of Chaum and van
Antwerpen [6] and the short signatures from bilinear maps proposed by Boneh,
Lynn and Shacham [5]. The amusing fact is that the idea underlying these two
papers is actually the same. In both cases, a signature consists in an exponen-
tiation of (a hash-value of) the message by the signer’s secret key : h(m)s. In
Chaum and van Antwerpen’s scheme, the anonymity of signatures [18] comes
from the difficulty of the decisional Diffie-Hellman problem in a prime order
subgroup of the multiplicative group of a finite field, whereas the efficiency of
Boneh et al. signatures comes from the ease of this problem on certain elliptic
curves.

We combine the best of the two worlds and, introducing Zhang, Safavi-Naini
and Susilo’s technique from [33,34], we obtain a convertible undeniable signature
protocol which is one of the most efficient. As in [26], the signer not only can
selectively convert valid signatures into ordinary digital signatures, but he can
also convert any invalid signature into an universally verifiable statement about
this fact. Moreover, to overcome the difficulty mentionned above, we introduce
and formalize the time-selective convertible undeniable signatures which supports
1 An identity-based undeniable signature scheme has been proposed by Libert and

Quisquater in 2004 [24], and, like our scheme, it is built with bilinear maps. However
it does not provide the universal conversion property.

156 Fabien Laguillaumie and Damien Vergnaud

signers in gradually converting the undeniable signatures in a controlled fashion.
A slight variant of our new scheme permits the signer to universally convert
signatures pertaining only to a specific time period.

The new convertible undeniable signature scheme is designed for devices with
constrained computation capabilities or with low bandwidth. It can be embedded
in smart cards for example, as the main computation for a signature is a scalar
multiplication on an elliptic curve, and the signature is essentially one point (with
some additional random salt). The unforgeability of our scheme is tightly related,
in the random oracle model, to the computational Diffie-Hellman problem and
its anonymity to a non-standard decisional assumption.

The article is organized as follows: first we formally define the concept of
time-selective convertible undeniable signature scheme and its security model.
Then, we review the cryptographic properties of bilinear maps and describe the
problems upon which depend our schemes. In the following section, we describe
our new scheme and its time-selective convertible variant, and finally we prove
its security in the random oracle model.

2 Formal Definition and Security Model

2.1 Definition

In this subsection, we formalize the concept of time-selective convertible unde-
niable signatures.

Definition 1 (Time-Selective Convertible Undeniable Signature).
Given an integer k, a time-selective convertible undeniable signature scheme
TSCUS with security parameter k is defined by the following:

– a common parameter generation algorithm TSCUS.Setup: it is a probabilis-
tic algorithm which takes as input k. The outputs are the public parameters;

– a key generation algorithm TSCUS.KeyGen: it is a probabilistic algorithm
which takes as inputs the public parameters and outputs a pair of keys (pk, sk)
and a public number of time periods T ∈ N;

– a signing algorithm TSCUS.Sign: it is a probabilistic algorithm which takes
as inputs T , a message m, a secret key sk, an integer t ∈ [[1, T]], and the
public parameters. The output σ is a time-selective convertible undeniable
signature on m for the time period t;

– confirming/denying protocols TSCUS.{Confirm, Deny}: they are protocols
which take as inputs T , a message m, an integer t ∈ [[1, T]], a bit string
σ, a pair of keys (pk, sk) and the public parameters. The output is a (possi-
bly non-interactive) non-transferable proof that σ is actually a valid/invalid
time-selective convertible undeniable signature on m for the time period t,
with respect to the key pk;

– an individual receipt generation algorithm TSCUS.IReceipt: it is an algo-
rithm which takes as inputs T , a message m, an integer t ∈ [[1, T]], a bit
string σ, a secret key sk and the public parameters. It outputs an individual
receipt σ̃ which makes it possible to universally verify whether σ is valid or
not.

Time-Selective Convertible Undeniable Signatures 157

– a verifying algorithm for individually converted signature TSCUS.IVerify:
it is a deterministic algorithm which takes as inputs T , a message m, an
integer t ∈ [[1, T]], a bit string σ, a bit string σ̃, the signer’s public key pk,
and the public parameters. It tests whether σ̃ is a valid individual receipt with
respect to σ and the public key pk. If it does, the algorithm states whether σ
is a valid time-selective convertible undeniable signature on m for the time
period t with respect to the key pk or not, else it outputs Error;

– a universal receipt generation algorithm TSCUS.UReceipt: it is a determin-
istic algorithm which takes as inputs T , a secret key sk, an integer t ∈ [[1, T]],
and the public parameters and outputs a universal receipt It which makes it
possible to universally verify all time-selective convertible undeniable signa-
ture σ on m for any time period t′ ≤ t;

– a verifying algorithm for universally converted signature TSCUS.UVerify:
it is a deterministic algorithm which takes as inputs T , a message m, two
integers (t, t′) ∈ [[1, T]]2 such that t′ ≤ t, a bit string σ, a public key pk, a bit
string It and the public parameters. It tests whether It is a valid universal
receipt for the time period t with respect to the key pk. If it does, it states
whether σ is a valid time-selective convertible undeniable signature on m for
the time period t′ with respect to the key pk or not, else it outputs Error;

and must satisfy the following properties (formally discussed in the next section):
1. completeness and soundness: the confirming and denying protocols and the

verifying algorithms are complete and sound, where completeness means that
valid (invalid) signatures can always be proved valid (invalid), and soundness
means that no valid (invalid) signature can be proved invalid (valid);

2. Unforgeability: given a public key pk, it is computationally infeasible, without
the knowledge of the corresponding secret key to produce a time-selective con-
vertible undeniable signature for any time period t ∈ [[1, T]] which is accepted
by the verification algorithms or by the confirming protocols;

3. Anonymity: given a message m and a time-selective convertible undeniable
signature σ on m for a time period t′ ∈ [[1, T]], it is computationally infeasible
without the knowledge of the signing secret key or of some universal receipt
It for some t ≥ t′, to determine which secret key sk was used to generate σ;

4. Non-transferability: a verifier participating in an execution of the confirm-
ing/denying protocols does not obtain information that could be used to con-
vince a third party about the validity/invalidity of a signature.

Definition 2 (Convertible Undeniable Signature). Given an integer k, a
convertible undeniable signature scheme with security parameter k is a time-
selective convertible undeniable signature scheme with security parameter k, and
whose key generation algorithm always outputs 1 as the number of time periods.

2.2 Security Model

In this subsection, we define the quantitative notions of unforgeability and
anonymity of a time-selective convertible undeniable signature scheme. The
proofs of security are carried in the random oracle model proposed by Bellare
and Rogaway [2]. In this model, hash functions are idealized as oracles which
output a random value for each new query.

158 Fabien Laguillaumie and Damien Vergnaud

Security Against Existential Forgery Under Chosen Message Attack.
The de facto standard notion of security for digital signatures was defined by
Goldwasser, Micali and Rivest [21] as existential forgery against adaptive cho-
sen message attacks (EF-CMA). For time-selective convertible undeniable signa-
tures, the unforgeability security is defined along the same lines, with the notable
difference that, while mounting a chosen-message attack, we suppose that the
adversary has access to the universal receipts It for all t ∈ [[1, T]]. Moreover,
he is allowed to query a receipt generating oracle Υ and a confirming/denying
oracle Ξ on any couple message/signature of his choice, in addition to the clas-
sical access to the signing oracle Σ and to the random oracle H. As usual, in
the adversary answer, there is the natural restriction that in the returned triple
message/signature/time period (m�, σ�, t�), the signature σ� on m� has not been
obtained from Σ for the time period t�. However, A is allowed to query the sign-
ing oracle on the returned message m� in any time period t ∈ [[1, T]] (especially
for t = t�).

Definition 3 (Unforgeability). Let TSCUS be a time-selective convertible un-
deniable signature scheme and let A be an EF-CMA-adversary against TSCUS.
We consider the following random experiment, where k is a security parameter:

Experiment Expef−cma
TSCUS,A(k)

params R←− TSCUS.Setup(k)
(pk, sk, T) R←− TSCUS.KeyGen(params)
For j from 1 to T do Ij ← TSCUS.UConvert(params, pk, sk, j)
(m�, σ�, t�) ← AH,Σ,Υ,Ξ(params, pk, {Ij}j∈[[1,T]])
Return TSCUS.UVerify(params, pk,m�, σ�, t�, T, IT)

We define the success of the adversary A, via

Succef-cma
TSCUS,A(k) = Pr

[
Expef-cma

TSCUS,A(k) = valid
]
.

Given (k, τ) ∈ N
2 and ε ∈ [0, 1], the scheme TSCUS is said to be (k, τ, ε)-

EF-CMA secure, if no EF-CMA-adversary A running in time τ has a success
Succef-cma

TSCUS,A(k) ≥ ε.

Anonymity. In this section, we state the precise definition of anonymity under
a chosen message attack (Ano-CMA) which captures the notion that an attacker
cannot determine under which key a signature was performed. Our formalization
follows the notion, introduced by Galbraith and Mao in [18] for undeniable sig-
natures. We consider an Ano-CMA-adversary A that runs in two stages. In the
find stage, it takes as input two public keys pk0 and pk1 and outputs a message
m�, a time period t� together with some state information s. In the guess stage
it gets a challenge time-selective convertible undeniable signature σ� formed by
signing the message m� at random under one of the two keys for the time pe-
riod t�, and must say which key was chosen. In both stages, the adversary has
access to the signing oracles Σ0, Σ1, to the receipt generating oracles Υ0 and Υ1

Time-Selective Convertible Undeniable Signatures 159

to the confirming/denying oracles Ξ0 and Ξ1, and to the random oracle(s) H.
The attacker is also given the universal receipts I1, . . . , It�−1 of both potential
signers. The only restriction of the attacker is that he cannot query the couple
(m�, σ�) on the converting and confirming/denying oracles.

Definition 4 (Anonymity). Let TSCUS be a time-selective convertible undeni-
able signature scheme and let A be an Ano-CMA-adversary against TSCUS. We
consider the following random experiments, for r ∈ {0, 1}, where k is a security
parameter:

Experiment Expano-cma−r
TSCUS,A (k)

params R←− TSCUS.Setup(k)
(pk0, sk0, T0)

R←− TSCUS.KeyGen(params)
(pk1, sk1, T1)

R←− TSCUS.KeyGen(params)
(m�, t�, s) ← AH,Σ0,Σ1,Υ0,Υ1,Ξ0,Ξ1(find, params, pk0, pk1) with t�≤min(T0, T1)
σ� ← TSCUS.Sign(params,m, skr, t

�)
For j from 1 to t� − 1 do

I0
j ← TSCUS.UConvert(params, pk0, sk0, j)
I1

j ← TSCUS.UConvert(params, pk1, sk1, j)
d←AH,Σ0,Σ1,Υ0,Υ1,Ξ0,Ξ1(guess, params, pk0, pk1,m

�, σ�, t�, s, {I0
j , I1

j }j∈[[1,t�−1]])
Return d

We define the advantage of the adversary A, via

Advano−cma
TSCUS,A (k) =

∣∣∣Pr
[
Expano−cma−1

TSCUS,A (k) = 1
]
− Pr

[
Expano−cma−0

TSCUS,A (k) = 1
]∣∣∣ .

Given (k, τ) ∈ N2 and ε ∈ [0, 1], the scheme TSCUS is said to be (k, τ, ε)-Ano-
CMA secure, if no Ano-CMA-adversary A running in time τ has an advantage
Advano−cma

TSCUS,A (k) ≥ ε.

Remark 1. To obtain the security results, the executions of the confirming/deny-
ing protocols must be simulated in the random oracle model. In our scheme,
these protocols are achieved by interactive zero-knowledge proofs of equality/in-
equality of (root of) discrete logarithms, which simulation is impossible in the
random oracle model [18]. Usually [18, 29], this problem is overcome with the
use of designated-verifier proofs [22]. By definition of these proofs, the adversary
gains no information other than the validity/invalidity of the signature from
its interaction with the signer. As the adversary can obtain this conviction by
querying the receipt generating oracle, there is no loss of generality to suppose
that it does not have access to the confirming/denying oracles.

3 Background

3.1 Proof of Equality or Inequality of Two Discrete Logarithms

Let (G,+) and (H, ·) be two groups of the same prime order q and let P and
g be generators of G and H (respectively). We denote, as in [11], the zero-

160 Fabien Laguillaumie and Damien Vergnaud

knowledge proof of equality of the discrete logarithm of Y ∈ G in base P and
the one of y ∈ H in base g by PK(a : y = ga ∧ Y = aP). We use the notation
PK(a : y �= ga ∧ Y = aP) for the proof of inequality of the discrete logarithms.
We refer the reader to Chaum and Pedersen’s paper [16] for the proof of equality,
and these of Camenisch and Shoup [10] for the proof of inequality.

In the design of the new scheme, we also need zero-knowledge proofs
of equality/inequality of a root of a discrete logarithm: given t ∈ N,
PK(a : y = gat ∧ Y = aP) and PK(a : y �= gat ∧ Y = aP). Efficient protocols
can be found in [8, 11].

3.2 Bilinear Maps

Recently admissible bilinear maps have allowed the opening up of new territories
in cryptography, making possible the realisation of protocols that were previously
unknown or impractical.

Definition 5 (Admissible Bilinear Map [4]). Let (G,+) and (H,×) be two
groups of the same prime order q and let us denote by P a generator of G.
An admissible bilinear map is a map e : G × G −→ H satisfying the following
properties:

– bilinear: e(aQ, bR) = e(Q,R)ab for all (Q,R) ∈ G2 and all (a, b) ∈ Z2;
– non-degenerate: e(P, P) �= 1.
– computable: there exists a polynomial time algorithm to compute e.

Definition 6 (Prime-Order-BDH-Parameter-Generator [4]). A prime-
order-BDH-parameter-generator is a probabilistic algorithm which takes as in-
put a security parameter k and outputs a 5-tuple (q, P,G,H, e) where q is a
prime with 2k < q < 2k+1, G and H are groups of order q, P generates G, and
e : G2 −→ H is an admissible bilinear map.

Usually G can be considered as a subgroup of points on a (hyper)elliptic
curve over a finite field, H as a subgroup of the multiplicative group of a related
finite field and e as the Weil or Tate pairing [4].

3.3 The xyz-Decisional Diffie-Hellman Problem

The unforgeability of our scheme is related to the classical Diffie-Hellman prob-
lem:
Computational Diffie-Hellman (CDH): Let (G,+) be a group of prime
order q, and let a, b be in [[1, q − 1]]. Given (P, aP, bP) ∈ G

3, compute abP .
The design of the new scheme is connected to the following decisional problem:
xyz-Decisional Diffie-Hellman Problem (xyz-DDH): Let (G,+) be a
group of prime order q, and let x, y and z be in [[1, q−1]]. Given (P, xP, yP, zP,Q)
∈ G5, decide whether Q = xyzP .

Time-Selective Convertible Undeniable Signatures 161

At first glance, this may seem very similar to the classical decisional Diffie-
Hellman (DDH) problem (in fact, the associated computational problem is equiv-
alent to the CDH problem). The DDH assumption, underlying the security of
many cryptographic protocols does not hold in the bilinear setting. Even if it
is easier than the DBDH problem [4], the xyz-DDH problem seems intractable.
Considering the xyz-DDH problem and assuming its difficulty (combined with
the ease of the DDH problem), we are able to design cryptographic protocols
achieving a trade-off between authenticity and privacy. The time-selective con-
vertible undeniable signature scheme is based on the following observations:

– Assuming the difficulty of the xyz-DDH problem, given (P, xP, yP, zP,Q) ∈
G5, no one can efficiently decide whether Q = xyzP .

– Everyone can be convinced by someone knowing either x, y or z that
Q = xyzP . This can be done thanks to the proofs of equality of two discrete
logarithms mentionned above, and the equalities e(Q,P) = e(yP, zP)x =
e(xP, zP)y = e(xP, yP)z .

– After the publication of xyP , everyone can decide whether Q = xyzP .

Our new protocol is designed according to this idea but relies on a stronger
assumption.

3.4 A New Decisional Problem

Recently, Boneh and Boyen [3] proposed an efficient digital signature scheme
whose security (in the standard security model) relies on the so-called �-Strong
Diffie-Hellman problem (�-SDH). This computational problem is slightly weaker
than the �-CAA problem2 introduced by Mitsunari, Sakai, Kasahara in 2002
in relation with the security of a traitor tracing scheme [27]. Using the tricky
polynomial construction from [27], it is easy to prove that the �-CAA problem
is polynomial time equivalent3 to the:

(�, T)–Computational CAA Problem ((�, T)-CCAA): Let (G,+) be a
group of prime order q, and let x be in [[1, q − 1]]. Given two integers � and T
and [

(xiP)i∈[[0,2T−1]],

(
xT

x + hj
P, hj

)
j∈[[1,�]]

]
∈ G

2T × (G × [[1, q − 1]])�
,

compute a pair (Q, h) ∈ G× ([[1, q−1]]\{h1, . . . , h�}) verifying (x+h)Q = xTP .

Like the DDH problem, thanks to the bilinear map, the decisional problem as-
sociated to (�, T)-CCAA is easy. Therefore, we introduce a decisional variant of
(�, T)-CCAA, similar to the xyz-DDH problem which runs in 3 stages:

(�, T)-xyz Decisional CAA Problem ((�, T)-xyz-DCAA): Let (G,+) be
a group of prime order q, let x, y and z be in [[1, q − 1]] and � and T be in N.
2 collusion attack algorithm with � traitors
3 In fact, the �-CAA problem from [27] is exactly the (�, 1)-CCAA problem

162 Fabien Laguillaumie and Damien Vergnaud

Input:

[
(xiP)i∈[[0,2T−1]], yP, zP, h,

(
xT y

x + hk
P, hk

)
k∈[[1,�]]

]
in G2T+2 × [[1, q − 1]] × (G × [[1, q − 1]])�, with h /∈ {h1, . . . , h�}

Oracle: for a request t� ∈ [[1, T]], the oracle answers
[
(xiyP)i∈[[1,t�−1]], Q

]
∈ Gt�

Output: decide whether (x + h)Q = xt�

yzP

The anonymity of our convertible undeniable signature scheme (i.e. with one
time period) is related to the (�, 1)-xyz-DCAA problem. The link between this
problem and the �-CAA problem from [27] is analogous to the one between the
xyz-DDH problem and the CDH problem. We want to stress that, though non-
standard, these problems are random-self reducible and achieve generic security
(as defined by Shoup [31]). The proof is similar to the one of the generic security
of �-SDH [3].

To conclude this section, we quantify the new algorithmic assumption.

Definition 7 ((�, T)-xyz-DCAA Assumption). Let Gen be a prime-order-
BDH-parameter-generator and let � and T be two integers. Let D be an adversary
that takes on input (q, P,G,H, e) a 5-tuple generated by Gen and[
(Xi)i∈[[1,2T−1]], Y, Z, h, (Rj, hj)j∈[[1,�]]

]
in G2T+1 × [[1, q − 1]]× (G × [[1, q − 1]])�

and returns a bit. We consider the following random experiments, where k is a
security parameter, for r ∈ {0, 1}:

Experiment Exp(�,T)−xyz−dcaa−r
Gen,D (k)

setup = (q, P,G,H, e) R←− Gen(k)
x

R←− [[1, q − 1]]. For i from 1 to 2T − 1 do Xi ← xiP

(y, z) R←− [[1, q − 1]]2, Y ← yP , Z ← zP

h1, . . . , h�, h
R←− [[1, q − 1]]

For j from 1 to � do Rj = xT y(x + hj)−1P
t� ← D(setup, (Xi)i∈[[1,2T−1]], Y, Z, h, (Rj , hj)j∈[[1,�]])
For k from 1 to t� − 1 do Yk ← xkyP

If r = 0 then Q ← xT yz(x + h)−1P else Q
R←− G

d ← D(setup, t�, (Xi)i∈[[1,2T−1]], Y, Z, h, (Rj , hj)j∈[[1,�]], (Yk)k∈[[1,t�−1]], Q)
Return d

We define the corresponding advantage of D in solving the (�, T)−xyz-DCAA
problem via:

Adv(�,T)-xyz-dcaa
Gen,D (k) =

∣∣∣Pr
[
Exp(�,T)-xyz-dcaa-0

Gen,D (k) = 1
]

− Pr
[
Exp(�,T)-xyz-dcaa-1

Gen,D (k) = 1
]∣∣∣ .

Given (k,τ)∈N
2 and ε∈ [0,1], Gen is said to be (k,τ ,ε)-(�,T)-xyz-DCAA-sec-

ure if no adversary D running in time τ has advantage Adv(�,T)−xyz−dcaa
Gen,D (k)≥ε.

Time-Selective Convertible Undeniable Signatures 163

4 A New Convertible Time-Selective
Undeniable Signature Scheme

4.1 The New Convertible Undeniable Signature Scheme: CUSBM

In this section, we describe the new convertible undeniable signature scheme
CUSBM, based on bilinear map. It is designed as follows:

Setup and Key Generation
Setup: Let k be a security parameter, Gen be a prime-order-BDH-parameter-
generator and (q, P,G,H, e) some output of Gen(k). Let fr : N → N be a function.
We denote nr = fr(k). Let [{0, 1}∗ × {0, 1}nr −→ G] be a hash function family,
and H be a random member of this family. Let [{0, 1}∗×{0, 1}nr −→ [[1, q− 1]]]
be a hash function family, and h be a random member of this family. The public
parameters are [(q, P,G,H, e), H, h]
KeyGen: Alice picks randomly two integers a1, a2 ∈ [[1, q − 1]] and computes
the points P1 = a1P and P2 = a2P . Alice’s public key is the pair (P1, P2) and
her secret key is (a1, a2).

Signing Algorithm
Sign: Given a message m ∈ {0, 1}∗, Alice picks at random r ∈ {0, 1}nr and
computes the point

σ =
a1a2

(a2 + h(m||r))H(m||r).

The convertible undeniable signature of the message m is (σ, r).

Confirmation/Denial Protocols
Confirm: Given a message m and a signature (σ, r), Alice can confirm (σ, r)
with the following interactive proof of knowledge: PK(a2 : e(σ, P2+h(m||r)P) =
e(H(m||r), P1)a2 ∧ P2 = a2P).
Deny: Given a message m and an invalid signature (σ, r), Alice can deny (σ, r)
with the following interactive proof of knowledge: PK(a2 : e(σ, P2+h(m||r)P) �=
e(H(m||r), P1)a2 ∧ P2 = a2P).

Receipt Generation and Verification
IReceipt: Given a message m ∈ {0, 1}∗ and a putative signature (σ, r) on m,
Alice computes the point σ̃ = a2H(m||r) ∈ G. The individual receipt with
respect to σ is σ̃.
IVerify: Given a message m ∈ {0, 1}∗, a putative signature (σ, r) on m and a
putative individual receipt σ̃ on (σ, r), the validity of the receipt is decided by
checking whether e(σ̃, P) = e(P2, H(m||r)) or not. If σ̃ is valid, then the validity
of (σ, r) is decided by checking whether e(σ, P2 + h(m||r)P) = e(σ̃, P1) or not.
UReceipt: Alice publishes the point I = a1a2P .
UVerify: The validity of the universal receipt I is decided by verifying that
e(P1, P2) = e(I, P). If it is valid, given a signature (σ, r) on a message m ∈ {0, 1}∗
and I, everyone checks the validity of this signature by verifying that
e(σ, P2 + h(m||r)P) = e(H(m||r), I).

164 Fabien Laguillaumie and Damien Vergnaud

Efficiency Considerations. Comparing with previous convertible undeniable
signature schemes, CUSBM has a number of advantages. The signature only
consists in an element of G and some additional random salt. In practice, the
size of an element of G can be reduced by a factor 2 with compression techniques
and the random salt has size nr = 112. Therefore, the size of the signature
is only 272 bits. Furthermore, a receipt (individual and universal) is also an
element of G, and therefore has bit size 160. From an efficiency point of view,
the signature generation and the individual and universal receipts generation
algorithms require only one exponentiation as the most expensive operation.
Unfortunately, it turns out that the signature verification is slightly more time
consuming, as it requires 2 pairing evaluations.

4.2 The First Time-Selective Convertible
Undeniable Signature Scheme: TSCUSBM

TSCUSBM is a time-selective convertible undeniable signature scheme which is
a variant of CUSBM.

Setup and Key Generation
TSCUSBM.Setup = CUSBM.Setup

KeyGen: Alice picks randomly two integers a1, a2 ∈ [[1, q−1]], and computes the
points P1 = a1P and P2 = a2P . She chooses a number of time periods T ∈ N.
Alice’s public key is the pair (P1, P2, T) and her secret key is (a1, a2).

Signing Algorithm
Sign: Given a message m ∈ {0, 1}∗ and a time period t, Alice picks at random
r ∈ {0, 1}nr and computes the point σ = a1a

t
2(a2 + h(m||r))−1H(m||r). The

signature of the message m is (σ, r, t).

Confirmation/Denial Protocols
Confirm: Given a message m and a signature (σ, r, t), Alice can confirm (σ, r, t)
with the following interactive proof of knowledge: PK(a2 : e(σ, P2+h(m||r)P) =
e(H(m||r), P1)at

2 ∧ P2 = a2P).
Deny: Given a message m and an invalid signature (σ, r, t), Alice can deny
(σ, r, t) with the following interactive proof of knowledge:

PK(a2 : e(σ, P2 + h(m||r)P) �= e(H(m||r), P1)at
2 ∧ P2 = a2P).

Receipt Generation and Verification

IReceipt: Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗ and a signature
(σ, r) on m for the time period t, Alice computes the t-tuple

σ̃ = (a2H(m||r), a2
2H(m||r), . . . , at

2H(m||r)).

The individual receipt with respect to σ is σ̃.

Time-Selective Convertible Undeniable Signatures 165

IVerify: Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗, a putative sig-
nature (σ, r) on m for the time period t and a putative individual receipt
σ̃ = (σ̃(1), . . . , σ̃(t)) on (σ, r), the validity of the receipt is decided by checking
whether e(σ̃(1), P) = e(P2, H(m||r)) and e(σ̃(i), P) = e(P2, σ̃

(i−1)) for i ∈ [[2, t]]
or not. If σ̃ is valid, then the validity of (σ, r) is decided by checking whether
e(σ, P2 + h(m||r)P) = e(σ̃(t), P1) or not.
UReceipt: Given an integer t ∈ [[1, T]], this protocol consists for Alice in pub-
lishing the t-tuple It = (a1a2P, a1a

2
2P, . . . , a1a

t
2P) ∈ Gt.

UVerify: Given an integer t ∈ [[1, T]], the validity of the universal receipt It =
(I(1), . . . , I(t)) is decided by verifying that e(P1, P2) = e(I(1), P) and e(I(i−1), P2)
= e(I(i), P) for i ∈ [[2, t]]. If it is valid, given a signature (σ, r) on a message
m ∈ {0, 1}∗ for a time period t′ ≤ t and It, everyone checks the validity of this
signature by verifying that e(σ, P2 + h(m||r)P) = e(H(m||r), I(t′)).

Remark 2. In a sequential use of these signatures (i.e. signatures for the time
period t are individually converted only after the publication of It−1), the ver-
ification processes can be considerably improved (as in the CUSBM scheme).
Otherwise, the signer’s operations are still efficient, but the verifier has more
computations to perform. The scheme remains nevertheless reasonable.

5 Security Results

Unforgeability. The theorem below states that TSCUSBM is EF-CMA secure
assuming the intractibility of the CDH problem in the random oracle model (we
replace the hash function H by random oracle H; there is no need to do ideal
assumptions on h).

Theorem 1 (Unforgeability of TSCUSBM). Let Gen be a prime-order-BDH-
parameter-generator, let fr : N → N and let A be an EF-CMA-adversary against
CUSBM in the random oracle model, that produces an existential forgery with
probability ε = Succef−cma

CUSBM,A, within time τ , making qH, qΣ and qΥ queries to
the random oracle, to the signing oracle and to the receipt generating oracle.
Then there exist ε′ ∈ [0, 1] and τ ′ ∈ N verifying{

ε′ ≥ ε− qΣ(qH + qΣ)
2nr

τ ′ ≤ τ + (qH + qΣ + O(1))TExp−G + (qΣ + O(1))TExp−q

such that CDH can be solved with probability ε′, within time τ ′, and where TExp−G

(resp. TExp−q) denotes the time for an exponentiation in G (resp. modulo q) and
nr = fr(k).

Proof. The proof is very similar to Boneh, Lynn and Shacham’s unforgeability
proof in [5]. For the reader’s convenience, it is supplied in appendix A.

Corollary 1 (Unforgeability of CUSBM). Under the CDH assumption, the
scheme CUSBM is EF-CMA secure in the random oracle model.

166 Fabien Laguillaumie and Damien Vergnaud

Remark 3. In order to shorten the public keys, we can modify the key generation
of CUSBM as follows : the key generation algorithm produces a public/private
pair of keys (aP, a). This variant of CUSBM (setting a1 = a2 = a) is unforgeable
under the �-CAA [27] assumption.

Anonymity. The next theorem claims TSCUSBM’s anonymity against a chosen
message attack under the (�, T)-xyz-DCAA assumption in the random oracle
model (the hash functions h and H are replaced by random oracles h and H):

Theorem 2 (Anonymity of TSCUSBM). Let Gen be a prime-order-BDH-
parameter-generator, let fr : N → N and let A be an Ano-CMA-adversary against
TSCUSBM in the random oracle model, that breaks anonymity with advantage
Advano−cma

CUS,A , within time τ , making qH, qh qΣ and qΥ queries to the random
oracles, to the signing oracles and to the receipt generating oracles. Then there
exist T ∈ N, ε′ ∈ [0, 1] and τ ′ ∈ N verifying{

ε′ ≥ ε

2
− (qΣ + 1)(qH + qh)

2nr−1
− 1

2k

τ ′ ≤ τ + (qH + 2qΣ + TqΥ + O(1))TExp−G + (qΣ + TqΥ + O(1))TExp−q

such that (qH, T)-xyz-DCAA can be solved with probability ε′, within time τ ′,
and where TExp−G (resp. TExp−q) denotes the time for an exponentiation in G

(resp. modulo q) and nr = fr(k).

Proof. Our method of proof is inspired by Shoup [32]: we define a sequence of
game Game0, . . . , Game5 starting from the actual Ano-CMA adversary A and
modify it step by step, until we reach a final game whose success probability
has an upper bound related to solving the (qH, T)-xyz-DCAA problem. All the
games operate on the same underlying probability space: the public and private
keys of the signature scheme, the coin tosses of A and the random oracles.

Let k be a security parameter, T and � be two integers and let (q, P,G,H, e)
be a 5-tuple generated by Gen(k) and

[
(Xi)i∈[[1,2T−1]], Y, Z, h), (Rj , hj)j∈[[1,�]]

]
in

G2T+1 × [[1, q − 1]] × (G × [[1, q − 1]])� be a random instance of the (qH, T)-xyz-
DCAA problem. We denote X0 = P . We construct a simulation which solves
this instance.
Game0. We consider anAno-CMA-adversaryAwith advantageAdvano−cma

TSCUSBM,A(k),
within time τ . The key generation algorithm is run twice and produces the
following pairs of keys (sk0, pk0, T0), and (sk1, pk1, T1). The adversary A is
fed with pk0, pk1, T0 and T1 and, querying the random oracles H and h ,
the signing oracles Σ0 and Σ1, and the receipt generating oracles Υ0 and
Υ1, outputs a message m� and a time period t� ∈ [[1,min(T0, T1)]]. A chal-
lenge signature is then produced by flipping a coin b ∈ {0, 1} and signing the
message under the key skb. The adversary is given this challenge signature
(σ�, r�, t�), and outputs a bit b� at the end of the guess stage.
We denote by qH, qh , qΣ , and qΥ the number of queries from the random
oracles, from the signing oracles, and from the receipt generating oracles and
we assume that T ≥ min(T0, T1) and qΣ ≤ �. The only requirement is that

Time-Selective Convertible Undeniable Signatures 167

the challenge signature (σ�, r�, t�) cannot be queried to a receipt generating
oracle.
In any game Gamei, we denote by Guessi the event b� = b. By definition,

|2 Pr[Guess0] − 1| = Advpsi−cma
TSCUSBM,A(k).

Game1. First, we pick (α, β) ∈ [[1, q − 1]]2 at random and modify the simulation
by replacing pk0 by (X1, Y1) and pk1 by (αX1, βY1). The distributions of pk0

and pk1 are unchanged since we consider a random instance of the (qH, T)-
xyz-DCAA problem. Therefore we have

Pr[Guess1] = Pr[Guess0].

Game2. In this game, we simulate the random oracles H and h and maintain
appropriate lists, which we denote by H-List and h-List. For any fresh query
(m, r) ∈ {0, 1}∗ × {0, 1}nr

• to the oracle H, we pick at random s ∈ [[1, q−1]], compute sP ∈ G, store
(m, r, s, sP, T) in the H-List and return sP as the answer to the oracle
call;

• to the oracle h , we pick at random u ∈ [[1, q − 1]], store (m, r, u) in the
h-List and returns u as the answer to the oracle call.

In the random oracle model, this game is clearly identical to the previous
one. Hence, we obtain

Pr[Guess2] = Pr[Guess1].

Game3. Now we simulate the signing oracles. We initialize a counter to i = 1, and
for each new request m ∈ {0, 1}∗, t ∈ [[1, T]] we pick r ∈ {0, 1}nr at random.
If there exists a triple (m, r, ?) in the h-List or a 5-tuple (m, r, ?, ?, ?) in the
H-List, we abort the simulation. We pick at random s ∈ [[1, q − 1]], compute
sXT−t ∈ G and store (m, r, s, sXT−t, t) in the H-List.
If the query is to Σ0, the signature is (sRi, r, t), we refresh the h-List with
(m, r, hi), then we increment the counter. If the query is to Σ1 the signature
is (sαt−1βRi, r, t), we refresh the h-List with (m, r, αhi), then we incremente
the counter. This game perfectly simulates the signing oracle if we do not
abort. As we abort with probability at most (qH + qh)2−nr , we have

|Pr[Guess3]− Pr[Guess2]| ≤
qΣ(qH + qh)

2nr

Game4. We simulate the receipt generating oracles. When the adversary requests
a couple message/putative signature (m, (σ, r, t)) on m to Υ0 with t ∈ [[1, T]],
we look in the H-List for a 5-tuple (m, r, s, sXT−t′ , t

′), then the answer is the
t-tuple (sXT−t′+1, . . . , sXT−t′+t). If this request is on Υ1, we answer with
(sαT−t′+1XT−t′+1, . . . , sα

T−t′+tXT−t′+t) This simulation is perfect, there-
fore we have

Pr[Guess4] = Pr[Guess3].

Game5. Finally, in this game, in the challenge generation: once the adversary
A asks for a signature on a message m� for a time period t�, we query the
problem challenger with t�. It outputs (Yj)j∈[[1,t�−1]] ∈ G

t�−1 and Q ∈ G.

168 Fabien Laguillaumie and Damien Vergnaud

We pick a bit b ∈ {0, 1} and r� ∈ {0, 1}nr at random. If there exists a 5-tuple
(m�, r�, ?, ?, ?) in the H-List or a triple (m�, r�, ?) in the h-List, we abort the
simulation, else we update the H-List by storing (m�, r�,⊥, Z,⊥) and the
h-List by storing (m, r, αbh). We output ((αt�−1β)bQ, r�, t�) as the challenge
signature and (Yj)j∈[[1,t�−1]] as the universal receipts for the challenge..

If Q = Qreal = xT yz(x+ h)−1P , this game perfectly simulates the challenge
generation if we do not abort (which happens with probability at most (qH +
qh)2−nr). Therefore

|Pr [Guess5|Q = Qreal] − Pr [Guess4]| ≤
qH + qh

2nr

If Q = Qrandom is a random element from G, the adversary gains no informa-
tion on b, in an information theoretic sense, therefore

Pr [Guess5|Q = Qrandom] ≤ 1
2

+
qH + qh

2nr
+

1
2k

.

The last term accounts for the probability that Qrandom = Qreal. By definition, the
advantage in the Game5 simulation in solving the (qH, T)−xyz-DCAA problem
is: Adv(qH,T)−xyz−dcaa

Gen,Game5
(k) = |Pr [Guess5|Q = Qreal]− Pr [Guess5|Q = Qrandom]|. A

simple computation gives the claimed bounds for ε′ and τ ′. ��

Remark 4. Using Boneh-Boyen’s technique [3], it is possible to avoid the ideal
hypothesis of perfect randomness of the hash function h.

Corollary 2 (Anonymity of CUSBM). Under the (�, 1)-xyz-DCAA assump-
tion, the scheme CUSBM is Ano-CMA secure in the random oracle model.

Final Remarks and Conclusion

Time-selective convertible signatures are introduced to eliminate the burden of
registration of new public keys after the universal receipt publication. We for-
malized the security notions of a time-selective convertible undeniable signature
scheme and thanks to a new technique to design cryptographic protocols achiev-
ing a tradeoff between authenticity and privacy, we proposed the first scheme
meeting this definition.

The new schemes offer the advantage of issuing short signatures. Moreover,
the computational costs for the signer in the signature generation, the confirma-
tion/denial protocols and the receipt generation algorithms, are the lowest of all
known convertible undeniable signature schemes.

The xyz-technique has other applications. For example, we are also able
to design very efficient universally convertible directed signatures – such a con-
struction had remained open since 1993. Full details will appear elsewhere. Other
applications will certainly appear: the use of this trick to design distributed con-
tract signing and verifiable signature sharing protocols seems to be an interesting
topic for further research.

Time-Selective Convertible Undeniable Signatures 169

Ackowledgements

We express our gratitude to Pascal Paillier for his helpful comments.

References

1. P. S. L. M. Barreto, H. Y. Kim: Fast hashing onto elliptic curves over fields of
characteristic 3, Cryptology ePrint Archive, Report 2001/098 (2001)

2. M. Bellare, P. Rogaway: Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. Proc. of 1st ACM Conference on Computer and Communica-
tions Security. 62–73 (1993)

3. D. Boneh, X. Boyen: Short Signatures Without Random Oracles. Proc. of Euro-
crypt’04, Springer LNCS Vol. 3027, 56–73 (2004)

4. D. Boneh, M. Franklin: Identity-based Encryption from the Weil Pairing. SIAM J.
Computing, 32(3), 586–615 (2003)

5. D. Boneh, B. Lynn, H. Shacham: Short signatures from the Weil pairing. Proc. of
Asiacrypt’01, Springer LNCS Vol. 2248, 514–532 (2001)

6. J. Boyar, D. Chaum, I. B. Damg̊ard, T.P. Pedersen: Convertible undeniable signa-
tures. Proc. of Crypto’90, Springer LNCS Vol. 537, 189–205 (1991)

7. C. Boyd, E. Foo: Off-line Fair Payment Protocols using Convertible Signatures.
Proc. of Asiacrypt’98, Springer LNCS Vol. 1514, 271–285 (1998)

8. E. Bresson and J. Stern: Proofs of Knowledge for Non-Monotone Discrete-Log
Formulae and Applications. Proc. of ISC 2002, Springer LNCS Vol. 2433, 272–288
(2002)

9. J. Camenisch, M. Michels: Confirmer Signature Schemes Secure against Adaptative
Adversaries. Proc. of Eurocrypt’00, Springer LNCS Vol. 1807, 243–258 (2000)

10. J. Camenisch, V. Shoup: Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. Proc. of Crypto’03, Springer LNCS Vol. 2729, 126–144 (2003)

11. J. Camenisch, M. Stadler: Efficient Group Signature Schemes for Large Groups.
Proc. of Crypto’97, Springer LNCS Vol. 1296, 410–424 (1997)

12. D. Chaum: Zero-Knowledge undeniable signatures. Proc. of Eurocrypt’90, Springer
LNCS Vol. 473, 458–464 (1991)

13. D. Chaum: Designated Confirmer Signatures. Proc. of Eurocrypt’94, Springer
LNCS Vol. 950, 86–91 (1995)

14. D. Chaum, H. van Antwerpen: Undeniable Signatures. Proc. of Crypto’89, Springer
LNCS Vol. 435, 212–216 (1989)

15. D. Chaum, E. van Heijst, and B. Pfitzmann: Cryptographically strong undeni-
able signatures, unconditionally secure for the signer. Proc. of Crypto’91, Springer
LNCS Vol. 576, 470–484 (1992)

16. D. Chaum, T.P. Pedersen: Wallet Databases with Observers. Proc. of Crypto’92,
Springer LNCS Vol. 740, 89–105 (1993)

17. I. Damgard, T.P. Pedersen: New convertible undeniable signature schemes. Proc.
of Eurocrypt’96, Springer LNCS Vol. 1070, 372–386 (1996)

18. S. Galbraith, W. Mao: Invisibility and anonymity of undeniable and confirmer
signatures. Proc. of CT-RSA 2003, Springer LNCS Vol. 2612 80–97 (2003)

19. S. Galbraith, W. Mao, K.G. Paterson: RSA-based undeniable signatures for general
moduli. Proc. of CT-RSA 2002, Springer LNCS Vol. 2271, 200–217 (2002)

20. R. Gennaro, H. Krawczyk, T. Rabin: RSA-based undeniable signatures. Proc. of
Crypto’97, Springer LNCS Vol. 1294, 132–149 (1997)

170 Fabien Laguillaumie and Damien Vergnaud

21. S. Goldwasser, S. Micali, R. Rivest: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM J. Computing, 17 (2), 281–308 (1988)

22. M. Jakobsson, K. Sako, R. Impagliazzo: Designated Verifier Proofs and their Ap-
plications. Proc.of Eurocrypt’96, Springer LNCS Vol. 1070, 142–154 (1996)

23. H. Krawczyk, T. Rabin: Chameleon Signatures. Proc. of NDSS 2000, 143–154
(2000)

24. B. Libert, J.-J. Quisquater: Identity Based Undeniable Signatures. Proc. of CT-
RSA 2004, Springer LNCS Vol. 2964, 112–125 (2004)

25. M. Michels, H. Petersen, P. Horster: Breaking and repairing a convertible undeni-
able signature scheme. Proc. of ACM Conference on Computer and Communica-
tions Security 1996, 148–152, ACM Press (1996)

26. M. Michels, M. Stadler: Efficient Convertible Undeniable Signature Schemes. Proc.
of SAC’97, 231–244 (1997)

27. S. Mitsunary, R. Sakai, M. Kasahara: A New Traitor Tracing. IEICE Trans. Fun-
damentals, Vol. E85-A (2), 481–484 (2002)

28. J. Monnerat, S. Vaudenay: Undeniable Signatures Based on Characters: How to
Sign with One Bit. Proc. of PKC 2004, Springer LNCS Vol. 2947, 69–85 (2004)

29. D. Pointcheval: Self-Scrambling Anonymizers. Proc. of Financial Cryptography
2000, Springer LNCS Vol. 1962, 259–275 (2000)

30. D. Pointcheval, J. Stern: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology, Vol. 13 (3), 361–396 (2000)

31. V. Shoup: Lower bounds for discrete logarithms and related problems. Proc. of
Eurocrypt’97, Springer LNCS Vol. 1233, 256–266 (1997)

32. V. Shoup: OAEP reconsidered. Manuscript, November 16, 2000. Revised Septem-
ber 18, 2001. Full length version of the extended abstract in Proc. Crypto’01 (2001)

33. F. Zhang, R. Safavi-Naini, W. Susilo: Efficient Verifiably Encrypted Signature and
Partially Blind Signature from Bilinear Pairings. Proc. of Indocrypt 2003, Springer
LNCS Vol. 2904, 191–204 (2003) Revised version available from the authors.

34. F. Zhang, R. Safavi-Naini, W. Susilo: An efficient Signature Scheme from Bilinear
Pairings and its Applications. Proc. of PKC 2004, Springer LNCS Vol. 2947, 277–
290 (2004)

A Proof of Unforgeability

We define a sequence of games Game0, . . . , Game3 starting from the actual EF-
CMA adversary A and modify it step by step, until we reach a final game whose
success probability has an upper bound related to solving CDH. All the games
operate on the same underlying probability space: the public and private keys of
the signature scheme, the coin tosses of the adversary A and the random oracle
H. Let k be a security parameter, let (q, P,G,H, e) be a 5-tuple generated by
Gen(k) and let (X,Y) be a random instance of the CDH problem.

Game0. We consider an EF-CMA-adversary A with success Succef−cma
TSCUSBM,A,

within time τ . The key generation algorithm is run and produces a pair
of keys (pk, sk, T). The universal receipt generation algorithm produces the
information (I1, . . . , IT). The adversary A is fed with pk and (I1, . . . , IT)
and, querying the random oracle H, the signing oracle Σ, and the receipt
generating oracle Υ , outputs a couple (m�, (σ�, r�, t�)).

Time-Selective Convertible Undeniable Signatures 171

We denote by qH, qΣ and qΥ the number of queries from the random ora-
cle H, from the signing oracle Σ and from the receipt generating oracle Υ .
The only requirement is that the output signature (σ�, r�, t�) has not been
obtained from the signing oracle. For a signing query on a message m, we
first ask an hash value of m with some additional random salt r and when
the adversary outputs its forgery (m�, (σ�, r�, t�)), we ask a hash value of
(m�, r�). Therefore at most qH + qΣ +1 queries are asked to the hash oracle
during this game.
In any Gamej , we denote by Forgej the event

TSCUSBM.UVerify(m�, (σ�, r�, t�), pk, IT) = 1.

By definition, we have Pr[Forge0] = Succef−cma
TSCUSBM,A.

Game1. In this game, we pick an element a2 ∈ [[1, q−1]] at random, and we modify
the simulation by replacing pk by (X, a2P) and the T -tuple (I1, . . . , IT) by
(a2X, a2

2X, . . . , aT
2 X). The distribution of pk is unchanged since (X,Y) is a

random instance of the CDH problem and a2 is picked at random. From now
on, thanks to the knowledge of a2, we can simulate the receipt generating
oracle Υ . We have Pr[Forge1] = Pr[Forge0].

Game2. In this game, we simulate the random oracle H. For any fresh query
(m, r) ∈ {0, 1}∗ × {0, 1}nr to the oracle H, we pick at random u ∈ [[1, q −
1]] and compute Q = (a2 + h(m||r))uY . We store (m, r, u,Q) in the H-
List and returns Q as the answer to the oracle call. In the random oracle
model, this game is clearly identical to the previous one. Hence, we get
Pr[Forge2] = Pr[Forge1].

Game3. In this game, we simulate the signing oracle Σ: for any message m, whose
signature is queried for the time period t, we pick at random two elements
r ∈ {0, 1}nr , v ∈ [[1, q − 1]], and compute σ = at

2v(a2 + h(m||r))−1X . If
the H-List includes a quadruple (m, r, ?, ?) we abort the simulation, else we
store (m, r, v, vP) in the H-List and outputs σ as the signature. As we abort
with probability at most (qH + qΣ)2−nr , summing up the inequalities for all
signature queries, we have |Pr[Forge3] − Pr[Forge2]| ≤ qΣ(qH + qΣ)2−nr

When the game Game3 terminates, outputting a valid pair message/signature
(m�, (σ�, r�, t�)), by definition of existential forgery, the H-List includes a quadru-
ple (m�, r�, u�, Q�) with Q� = (a2 + h(m||r))u�Y By the simulation, we have
e(σ�, P2+h(m||r)P) = e(Q�, at�

2 P1), and the point R = (u�at�

2)−1σ� is a solution
to our instance of the Computational Diffie-Hellman Problem. This concludes
the proof. ��

On Tolerant Cryptographic Constructions

Amir Herzberg

Computer Science Department, Bar Ilan University, Ramat Gan, Israel
herzbea@cs.biu.ac.il

http://AmirHerzberg.com

Abstract. Cryptographic schemes are often constructed using multiple
component cryptographic modules. A construction is tolerant for a (se-
curity) specification if it meets the specification, provided a majority (or
other threshold) of the components meet their specifications. We define
tolerant constructions, and investigate ‘folklore’, practical cascade and
parallel constructions. In particular, we show that cascading encryption
schemes provides tolerance under chosen plaintext attack, non-adaptive
chosen ciphertext attack (CCA1) and a weak form of adaptive chosne
ciphertext attack (weak CCA2), but not under the ‘standard’ CCA2
attack. Similarly, certain parallel constructions ensure tolerance for un-
forgeability of Signature/MAC schemes, OWF, ERF, AONT and certain
collision-resistant hash functions. We present (new) tolerant construc-
tions for (several variants of) commitment schemes, by composing simple
constructions, and general method of composing tolerant constructions.
Our constructions are simple, efficient and practical. To ensure prac-
ticality, we use concrete security analysis (in addition to the simpler
asymptotic analysis).

1 Introduction

Most cryptographic schemes do not have an unconditional proof of security.
The classical method to establish security is by cryptanalysis, i.e. accumulated
evidence of failure of experts to find weaknesses in the function. However, crypt-
analysis is an expensive, time-consuming and fallible process. In particular, since
a seemingly-minor change in a cryptographic function may allow an attack which
was previously impossible, cryptanalysis allows only validation of specific func-
tions and development of engineering principles and attack methodologies and
tools, but does not provide a solid theory for designing cryptographic functions.
Indeed, it is impossible to precisely predict the rate of future cryptanaltical suc-
cesses. Prudent designers are usually able to ensure security by using sufficient
margins and conservative to allow for unexpected breakthroughs, e.g. [LV01];
however, there is often resistance to replace widely deployed standards which
were not broken yet, ‘just’ since the safety margins are eroded.

Hence, it is desirable to design cryptographic schemes to be tolerant of
cryptanalysis, failure of assumptions and other vulnerabilities (including known
trapdoors). A tolerant cryptographic scheme remains secure following success-
ful cryptanalysis of some subset of its cryptographic ‘components’, or successful

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 172–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Tolerant Cryptographic Constructions 173

counterexample to one of the assumptions underlying its security (e.g. factor-
ing). Tolerance does not imply unconditional-security; however, it would hope-
fully provide sufficient advanced-warning time to replace broken cryptographic
components.

Many cryptographic systems and constructions use redundant components in
the hope of achieving tolerance. The most familiar such construction is cascade.
Cascading of cryptosystems is very natural; novices and experts alike believe
that the cascade E ◦ E ′ of two encryption schemes E , E ′ is at least as secure
as the more secure of the two, hopefully even more secure than both. Indeed,
cascading of cryptosystems has been a common practice in cryptography for
hundreds of years.

However, so far, there are few publications analyzing tolerant cryptographic
constructions. In [1], Asmuth and Blakely present a simple ‘parallel’ construc-
tion of a randomized cryptosystem from two component ciphers, with the hope
of achieving tolerance; proof of security was given only in [23]. A similar ‘par-
allel’ construction for block ciphers appears in [28]. More attention was given
to cascading of block ciphers . Even and Goldreich showed that keyed cascade
ensures tolerance against message recovery attacks on block ciphers [17, Theo-
rem 5], and conjectured that the result holds for other specifications of ciphers.
Damgard and Knudsen [13] proved that it holds for security against key-recovery
under chosen-plaintext attacks. Maurer and Massey [32] claimed that the proof
in [17] holds only under the uninterestingly restrictive assumption that the en-
emy cannot exploit information about the plaintext statistics, but we disagree.
We extend the proof of [17] and show that, as expected intuitively and in [17],
keyed cascading provides tolerance to many confidentiality specifications, not
only of block ciphers but also of other schemes such as public key and shared
key cryptosystems.

Our proof holds for three definitions of security under indistinguishability
test: the well-known notions of plaintext only attack and non-adaptive chosen
ciphertext attack (CCA1), as well as a new, weak version of adaptive chosen
ciphertext attack (wCCA2), which may be of independant interest. We note
that cascading does not provide tolerance for the well-known notion of adaptive
chosen ciphertext attack (CCA2). Also, cascading does not provide tolerance if
the length of the output may differ for two messages of the same length. These
observations demonstrate the importance of backing intuition with analysis and
proof.

Tolerance is relevant to any cryptographic scheme, not just for confidentiality.
In particular, it is widely accepted that the parallel construction g(x)‖f(x), using
the same input x to both functions, ensures tolerance for several integrity prop-
erties, such as (several variants of) collision-resistant hashing as well as Message
Authentication Codes (MAC) and digital signatures. We prove that the parallel
construction indeed provide tolerance for such integrity specifications. The par-
allel construction is used, for tolerance, in practical designs and standards, e.g.
in the W3C XML-DSIG specifications and in the TLS protocol [35].

174 Amir Herzberg

We present few simple tolerant constructions for some basic cryptographic
goals (specifications); further research is required to find tolerant constructions
for other goals.

Efficiency is critical for practical tolerant constructions; implementors will
rarely be willing to tolerate non-negligible performance loss, ‘just’ in order to
tolerate potential vulnerabilities in a cryptographic function. In fact, ignoring
efficiency, we can ensure tolerance by using provable constructions of crypto-
graphic mechanisms from few ‘basic’ cryptographic mechanisms, which have
simple tolerant designs. For example, many cryptographic mechanisms can be
constructed from one-way functions; and it is sufficient that one of {g, f} is a
one-way function, to ensure that g(x)‖f(x) is also a one-way function. Provably-
secure constructions based on one-way functions exist for many cryptographic
mechanisms, e.g. pseudo-random generators [19, 26] and signature schemes [34].
Therefore, by using a tolerant construction of one way function (from multiple
candidate one-way functions) as the basis of some cryptographic scheme, the
scheme retains the proven security properties even if one of the candidate one-
way functions is not secure. However, such constructions are often inefficient,
and involve unacceptable degradation in security parameters (e.g., require ab-
surd key and/or block sizes) [27]. To quantify loss in security and efficiency due
to the constructions, we use concrete security measures [7, 8].

Our contributions. We identify and define cryptographic tolerance as a crite-
ria for cryptographic specifications, and goal for constructions. Some additional
contributions include:

– Precise analysis of the security of several ‘folklore’ constructions. In par-
ticular, we show that cascade encryption indeed ensures tolerance as long
as each component encryption has fixed output length (for fixed length in-
put), and for several variants of indistinguishability including a weak form
of adaptive chosen ciphertext attack (weak CCA2), but not for the ‘regular’
CCA2 specification. We note that the ‘multiple encryption’ construction of
[14] seems to ensure tolerant encryption for CCA2, but at significant over-
head (ciphertext length more than doubles), which may be unacceptable for
many applications.

– Efficient, practical constructions for commitment schemes. To our knowl-
edge, these are the first provably-secure tolerant constructions of general
cryptographic functions, beyond the folklore constructions, and few addi-
tional cryptographic constructions proven secure based on validity of either
of two (specific) ‘hardness’ assumptions, e.g. [39].

– Compositions of constructions. Cryptographic constructions are usually
studied in isolation; however, sometimes one construction is good for en-
suring some properties, e.g. confidentiality, while another is good for other
properties, e.g. integrity. We define compositions of constructions, to com-
bine the benefits of different constructions (when possible), and present a
generic composition based on a simple combinatorial object (composition
structure). Finally, we use the generic composition and two simple composi-
tion objects to compose the cascade and parallel constructions, creating two
new efficient composite constructions for commitment schemes.

On Tolerant Cryptographic Constructions 175

2 Notations and Definitions

We first fix some notations and recall the (standard) cryptographic definitions,
for schemes to which we present tolerant constructions. We then define the con-
cept of tolerant constructions.

2.1 Cryptographic Functions and Schemes

We find it convenient to define tolerant constructions for cryptographic schemes
which are finite sets of functions, taken from some general set F of (crypto-
graphic) functions1. If a function is ‘randomized’, we write the randomization
bits as explicit input bits, for clarity and to facilitate concrete security analysis.
We denote schemes by calligraphical font e.g. S, and refer to particular function
π in the scheme using dot notation i.e. S.π. We next define some cryptographic
functions and schemes, beginning with encryption; more definitions will appear
in the final version.

Encryption. An encryption scheme E consists of three functions <KG,E,D>
(for key generation, encryption and decryption, respectively). The key generation
function E .KG accepts as input a random string, and its output is a pair of
keys: e, d for encryption and decryption, respectively. (For symmetric encryption,
e = d.) We again use dot notation to refer to particular key, e.g. E .KG.e(r) is
the encryption key generated by E .KG on input r. We use subscripts to denote
keys, and the random input to the encryption function. Encryption of message
m, where m ∈ M for some message space M , using key e and randomness r, is
E .Ee,r(m) ∈ C, where C is the ciphertext space. The decryption function E .D
accepts as input ciphertext c ∈ C, and private decryption key d, and returns
a message m′ ∈ M or a failure indicator ⊥. The correctness requirement is
E .Dd(E .Ee,r(m)) = m, for any m ∈ M, r ∈ {0, 1}∗ and rKG ∈ {0, 1}∗ with
e = E.KG.e(rKG), d = E.KG.d(rKG).

Security of Encryption. To define security for encryption schemes, we use the
quantitative ‘indistinguishability experiment’ approach of [7], but extend their
definitions as follows:

– Our definitions and results apply to both shared-key and public-key encryp-
tion. We use a flag ISPUB to signal when the encryption key is public.

– In our quantitative security analysis, we bound, in addition to the ‘standard’
capabilities of the adversary, also the length of ciphertext (l) and plaintext
(l − Δ) in queries. We use this to bound the length of the inputs to the
encryption schemes used in our reductions, in order to limit the computation
time.

– Cascade encryption is insecure for adaptive chosen ciphertext attack (CCA2).
Recently, [14] presented constructions for ‘multiple encryption’ schemes that
appear to be tolerant for CCA2, but have significant overhead; we believe
that in many applied scenarios, this overhead would not be acceptable.

1 Some definitions allow cryptographic schemes to be stateful machines.

176 Amir Herzberg

We found that cascade encryption is secure under a weak-CCA2 attack
model, where the attacker can chose ciphertext adaptively, but if the de-
crypted plaintext is one of the two chosen ‘test’ plaintexts, then the or-
acle returns a special ‘bingo’ signal, but does not identify the plaintext;
we call this the ‘weak decrypt’ oracle. Namely: E .wDd,p[0],p[1](c) = {m :=
E .Dd(c); if m = p[0] or m = p[1] return ‘bingo’; else return m; }. Weak-
CCA2 follows the criticism of [3] on ‘regular’ CCA2, but is even weaker than
their gCCA2 notion; still, it may be sufficient in practice, in particular it
allows the practical ‘feedback only CCA’ attacks of [6, 29]. The Weak-CCA2
notion may have additional applications; for example, it may be possible to
design a universal re-encryption scheme [24] secure under Weak-CCA2 at-
tack, while current definitions and constructions allow only CCA1 attacks
(since re-encryption makes it impossible to ensure security under CCA2).

Definition 1 (Indistinguishability Experiment). Let E be an encryption
scheme and let k, l, t, ρ,Δ, ρA ∈ N, ISPUB ∈ {T/F} and q : {select, find} ×
{E,D,wD} → N. Let A ∈ PPT be an (adversarial) machine with access to
oracle O. Let IndExpA,E,ISPUB(k, q, l, ρ, t,Δ, ρA) be the following experiment:

1. red ∈R {0, 1}k ; e = E .KG.e(red) ; d = E .KG.d(red)
2. Let O be an oracle to the functions: {E .Ee,r , E .Dd , E .wDd,p[0],p[1]}
3. If ISPUB = T then e′ = e else e′ = λ
4. (p[0], p[1], state) ← AO(“select′′, e′, 1k); /* select phase */
5. b ∈R {0, 1};
6. r ∈R {0, 1}ρ; c = E .Ee,r(p[b]);
7. β = AO(“find′′, c, state); /* find phase */
8. Return win iff the following conditions hold:

(a) β = b
(b) |p[1]| = |p[0]| ≤ l −Δ
(c) total running time of A is less than t
(d) A makes at most q[φ, f] calls to oracle E .f at phase φ ∈ {select, find}
(e) A uses at most ρA random bits
(f) In its oracle queries, A uses m, c s.t. |m| ≤ l −Δ and |c| ≤ l.

The confidentiality specifications depend on the maximal advantage a for the
adversary.

Definition 2. E satisfies specification INDISPUB(a, k, q, l,Δ, t, ρ, ρA) if for ev-
ery adversary A ∈ PPT holds Pr[IndExpA,E,ISPUB(k, q, l,Δ, t, ρ, ρA) = win] <
1
2 + a.

We now also present asymptotic, polynomial-time complexities. Allowing
polynomial number of each type of queries, possibly restricting queries to or-
acle D for the ‘weaker’ notions (cf. to CCA2), i.e. CPA, CCA1 and wCCA2.

Definition 3. E satisfies specification CCA2−INDISPUB if E ∈ PPT and for
any strictly positive polynomials l,Δ, t, ρ, ρA, a and positive polynomials q[φ, f]

On Tolerant Cryptographic Constructions 177

for φ ∈ {select, find} and f ∈ {E,D,wD}, exists some integer k0 such that for
every k ≥ k0, holds: Pr[IndExpA,E,ISPUB(k, q(k), l(k), Δ(k), t(k), ρ(k), ρA(k)) =
win] < 1

2 + a(k). We say that E satisfies specifications wCCA2 − INDISPUB ,
CCA1 − INDISPUB, CPA − INDISPUB, respectively, if E satisfies CCA2 −
INDISPUB restricted to q[find,D] = 0, q[find,D] = q[find, wD] = 0, or
q[select,D] = q[select, wD] = 0, respectively.

Commitment. A (non-interactive) commitment scheme C consists of four func-
tions2 < KG,C,D, V > (for Key Generation, Commit, Decommit and Validate,
respectively). The key generation function C.KG accepts as input a random
string, and its output is a public commitment key ck. The commitment and
decommit functions C.C, C.D have both three inputs: a message m ∈ M , a pub-
lic commitment key ck and randomness r, and their respective outputs are: a
commitment C.Cck,r(m) and a decommitment C.Dck,r(m). The validate func-
tion C.V has the same inputs , plus the commitment and decommitment values
(c, d respectively), and outputs True iff c, d are a correct commitment and de-
commitment values for m. The correctness requirement is C.Vck(m, C.Cck,r(m),
C.Dck,r(m)) = True, for any m ∈ M , r and rKG such that ck = C.KG(rKG).
Security of Commitment. Commitment schemes have a confidentiality property,
called hiding, and an integrity property, called binding. We only sketch the
asymptotic definitions; the final version of this manuscript will contain complete
(and concrete) definitions.
Hiding. No PPT adversary can distinguish the commitments of any two messages
of its choice.
Binding. Given (random) ck, every PPT adversaryA has negligible probability of
finding a collision, i.e. values c, d, d′,m,m′ s.t. C.Vck(m, c, d) =
C.Vck(m′, c, d′) = True (notice the commitment c is the same!).

Following [3], we also consider relaxed binding, where A has negligible proba-
bility of finding a message m s.t. when given c = C.Cck,r(m) and d = C.Dck,r(m),
the PPT adversary A can find m′, d′ s.t. C.Vck(m′, c, d′) = True. As motivated
in [3], known constructions for commitment schemes can use UOWHF for re-
laxed binding, but require the (strictly stronger) CRHF for (strict) binding. We
show later a construction which is tolerant for both versions of binding (‘strict’
or relaxed).

Our construction is also tolerant for trapdoor commitments [40], or chameleon
hash functions [30]. In these schemes, the key generation produces also a secret
trapdoor key C.KG.t. The schemes also define a Switch algorithm, which uses
the trapdoor key, to transform any valid commitment to any message m to an
indistinguishable commitment to any other message m′ (adversary may choose
both m and m′).

2 Most existing definitions of commitment schemes are slightly different, and in partic-
ular use ‘open’ to recover the message, rather than ‘validate’. However, as a result,
the constructions use long decommitment strings, which contain the original mes-
sage. By explicitly using the message as separate input, we can compare the actual
overhead of schemes.

178 Amir Herzberg

2.2 Performance Specifications

For asymptotic security analysis, it is sufficient to require all algorithms to be
probabilistic polynomial time. However, to allow concrete security analysis of
constructions, we need concrete bounds on the complexities of the schemes. In
this version of the work, we present such bounds (and concrete analysis) only
for encryption schemes, as follows.

Definition 4 (Concrete Complexity Bounds for Encryption Schemes).
Let k, k′, l, Δ, ρ ∈ N, with l > Δ, and let τ : {KG,E,D} → N. For every
encryption scheme E ∈ PPT , let bounds[k, k′, l, Δ, ρ, τ](E) = 1 iff:

1. For inputs of length up to k, E .KG(k) is computable in time τ [KG] and
|E .KG(k)| ≥ k′.

2. There is a deterministic algorithm that computes E .Ee,r(m) in time τ [E],
for every e ∈ {0, 1}k′

and every m s.t. |m| ≤ l−Δ, and reads up to the first
ρ bits of r; also, |E .Ee,r(m)| ≤ l.

3. There is a deterministic algorithm that computes E .Dd(c) in time τ [D], for
every d ∈ {0, 1}k′

and every c s.t. |E .Dd,r(c)| ≤ |c| ≤ l.

2.3 Tolerant Constructions

We are interested in specifications (properties) of functions, including concrete
security specifications and asymptotic security specifications. We define speci-
fications simply as binary predicates over the set of functions F . Let S(F) =
{s : F → {0, 1}} be the set of all specifications (predicates) over F . We say that
f ∈ F satisfies s ∈ S(F) iff s(f) = 1.

We say that a mapping c of p functions f1, . . . fp into a single function
c(f1, . . . , fp), i.e. c : F p → F , is a construction of plurality p over F . Con-
struction c is tolerant if c(f1, . . . , fp) satisfies some specification s′ as long as a
sufficient subset of f1, . . . fp satisfy specifications s1, . . . sp , respectively (often,
all specifications are identical, i.e. s = s1 = · · · = sp and also often s = s′). To
complete this definition, we need to identify the sufficient subset of f1, . . . fp; fol-
lowing the works on secret-sharing, we define two variants of tolerance: based on
threshold t (0 ≤ t < p), and based on general access structure Λ ⊆ P ({1, . . . p})
(where Λ is a set of subsets of {1, . . . p}). In addition, we often require that all
of the candidate functions fi satisfy some minimal specifications b ∈ S(F), such
as bounds on their complexities.

Definition 5. Consider some set of functions F , integer p, predicates s′, b, s1,
. . . , sp ∈ S(F) and construction c : F p → F of plurality p over F . Construction
c is t-tolerant for (s1, . . . sp) → s′, with threshold t < p, if s′(c(f1, . . . , fp)) holds
provided

∑p
i=1 si(fi) ≥ p− t. Construction c is Λ− tolerant for (s1, . . . sp) → s′,

with access structure Λ ⊆ P (1, . . . p), if s′(c(f1, . . . , fp)) holds provided for some
λ ∈ Λ holds (i ∈ λ) → si(fi) = 1. Construction c is t − tolerant with prerequi-
site b if s′(c(f1, . . . , fp)) holds provided (

∑p
i=1 b(fi) = p)∧ (

∑p
i=1 si(fi) ≥ p− t).

Similarly, c is Λ− tolerant with prerequisite b if s′(c(f1, . . . , fp)) holds provided
(
∑p

i=1 b(fi)=p)∧ (∃λ∈Λ)
(∑

i∈λ si(fi)=|λ|
)
. If c is 0-tolerant for (s1, . . . sp)→s′

On Tolerant Cryptographic Constructions 179

then we say that c preserves (s1, . . . sp) → s′ (with or without prerequisites). If
c is t-tolerant for (s1, . . . sp) → s′, then we say that c is t-tolerant for s → s′;
if t = 0 then we say that c preserves s → s′. If s = s′ then we say that c is
t-tolerant for (or preserves) s.

3 Cascade Constructions and Their Tolerance

The most basic tolerant construction of cryptographic functions is the cascade
construction c◦. We begin by discussing cascading of functions with a single input
and output, such as hash functions, namely c◦(f, g)[x] = f ◦ g(x) = f(g(x)). In
the following subsections we discuss cascading of keyed schemes.

3.1 Simple Cascade of Keyless Cryptographic Functions
Consider any two functions g : Dg → Rg, f : Df → Rf s.t. Rg ⊆ Df . The
simple cascade of f and g, denoted f ◦g or c◦(f, g), is a construction of plurality
2 defined as c ◦ (f, g) = f ◦ g(x) = f(g(x)).

Unfortunately, simple cascade rarely ensures tolerance, and often does not
even preserve cryptographic specifications. So far, we found simple cascade en-
sures tolerance only to the one-way property, and that with a prerequisite re-
quirement perm(f), which is true only if f is a permutation when restricted to
input domains {0, 1}l for some length l.

Lemma 1. Simple cascade of two functions is. . .

1. 1-tolerant with prerequisite perm for specifications OWF .
2. 1-tolerant with prerequisite perm for specifications:

concrete−OWF f (a, k, ρA, τA) ∧ [T ime(f, k) ≤ τF]
→ concrete−OWF f (a, k, ρA, τA + τF)

3. Preserves (0-tolerant), but not 1-tolerant, for specifications ERF (exposure
resilient function) and AONT (all or nothing transform).

4. Not (even) 0-tolerant for specifications OWF and WCRHF .

Proof: The negative claims (4 and part of 3) follow by simple examples, e.g.
to prove claim 4, let h be a OWF and/or WCRHF . Let g(x) = h(x)||0|h(x)|

and f(x) =
{

0 if x = y0|x|/2

h(x) otherwise
. Trivially, both f and g are OWF and/or

WCRHF , respectively, yet f◦g is neither OWF not WCRHF ; in fact, f◦g(x) =
0 for every x. Claims 1 and 2 follow from a simple reduction argument; the proof
of claim 2 is in the full version (and claim 1 immediately follows from claim 2).

��

3.2 Cascade Encryption Is Tolerant

The cascade encryption, i.e. cascade of two3 encryption schemes E , E ′, is denoted
cE(E , E ′) or E ◦E ′ and defined as follows. Notation: For convenience we explicitly
3 Extension to arbitrary number of schemes is trivial.

180 Amir Herzberg

write the inputs and outputs to the cascade (or any composition) as a tuple of
inputs or outputs when appropriate, e.g. < r, r′ > to denote the pair of two
random inputs (r to E and r′ to E ′).

– E ◦ E ′.KG.e(< r, r′ >) =< E .KG.e(r), E ′.KG.e(r′) >
– E ◦ E ′.KG.d(< r, r′ >) =< E .KG.d(r), E ′.KG.d(r′) >
– E ◦ E ′.E<e,e′>,<r,r′>(m) = E .Ee,r(E ′.Ee′,r′(m))
– E ◦ E ′.D<d,d′>(c) = E ′.Dd′(E .Dd(c))

Cascade encryption is a construction of plurality 2; the following lemma
bounds the complexities:

Lemma 2. Let E , E ′ be a pair of encryption schemes such that for s ∈ {E , E ′}
holds bounds[k, k′, l, Δ, ρ, τ](s) = True with l > 2Δ. Then E ◦ E ′ is an encryp-
tion scheme with bounds[2k, 2k′, l, 2Δ, 2ρ, 2τ](E ◦ E ′) = True. ��

We now investigate the security and tolerance of cascade encryption. As noted
in the introduction, cascade encryption is an ancient, widely-deployed technique,
usually in the hope of improving security - e.g., providing tolerance to weaknesses
of one of the two cascaded encryption schemes. Is this secure? This depends on
the adversary capabilities (‘attack model’). Cascade encryption is not tolerant
for adaptive chosen ciphertext attack (CCA2); simply consider E ′ which ignores
the least significant bit of the ciphertext, allowing adversary to decrypt the
challenge ciphertext (by flipping the LSb and invoking the decryption oracle).
However, as [3] argued, this ‘attack’ is so contrived, that it may indicate that
CCA2 is overly restrictive, rather than a problem with cascade encryption. In
[3], the authors present a slightly weaker definition, gCCA, but we do not think
cascade is tolerant under that definition, either; on the other hand, the following
lemma shows that cascade encryption is tolerant under the more relaxed weak
CCA (wCCA) definition.

Also, note that the indistinguishability experiment restricts the adversary
to select plaintexts of the same length. Obviously, the length of the ciphertext
should be indistinguishable between any two plaintexts (of the same length).
For simplicity, we define a predicate FixedExtra over encryption schemes, such
that FixedExtra(E ′) holds if the length of the ciphertext depends only on the
length of the plaintext and on the security parameter; this holds for all practical
cryptosystems. Clearly, if the length of the output of E ′ differs for two plaintexts
of the same length, then cascading it with a secure E may not suffice to ensure
indistinguishability. We therefore require FixedExtra(E ′) to hold.

Lemma 3. Cascade encryption is 1-tolerant with prerequisite FixedExtra, for
specifications wCCA2−INDISPUB, CCA1−INDISPUB, CPA−INDISPUB.
Furthermore, let k, k′, l, Δ, ρ, t◦, ρ◦A ∈ N s.t. l > 2Δ, τ : {KG,E,D} → N, q :
{select, find} × {E,D,wD} → N s.t. q[find,D] = 0. Then, cE is also 1-
tolerant with the additional prerequisite bounds[k, k′, l, Δ, ρ, τ], for specifications
INDISPUB(a, k, q, l,Δ, t, ρ, ρA) → INDISPUB(a, k, q, l, 2Δ, t◦, ρ, ρ◦A), where
ρA = ρ◦A + 2k + 2ρ and

t = t◦ + τ [KG] + 2τ [E] +
∑

j∈{find,select}
∑

f∈{E,D,wD} q[j, f]τ [f]. ��

On Tolerant Cryptographic Constructions 181

Cascading is a natural candidate construction for many cryptographic mech-
anisms; we now define and investigate tolerance of cascade of commitment and
MAC/Signature schemes.

3.3 Cascade Commitment

We define cascade commitment cc(C, C′) (or C ◦ C′), i.e. cascade of two com-
mitment schemes C, C′, as follows. (The final version will also contain the simple
extension to trapdoor commitment schemes.) We again wrote inputs and outputs
as tuples.
– C ◦ C′.KG(< r, r′ >) =< C.KG(r), C′.KG(r′) >
– C ◦ C′.C<ck,ck′>,<r,r′>(m) = C.Cck,r(C′.Cck′,r′(m))
– C ◦ C′.D<ck,ck′>,<r,r′>(m)

=< C.Dck,r(C′.Cck,r(m)), C′.Dck′,r′(m), C′.Cck′,r′(m) >
– C ◦ C′.V<ck,ck′>(m, c,< d, d′, c′ >) = C′.Vck′ (m, c′, d′) ∧ C.Vck(c′, c, d).

As the following lemma shows, cascade ensures the privacy (hiding) property
of commitment schemes, but only preserves the integrity (binding) property.

Lemma 4. Cascade commitment is tolerant for the hiding specification, and
preserves (but is not tolerant for) the binding specification.

We next show that cascade also preserves, but does not ensure tolerance, for
other integrity properties, specifically of MAC/Signature schemes.

3.4 Cascading Preserves Unforgeability of MAC/Signature Schemes

We define cascade S ◦ S ′ of two MAC/Signature schemes S,S ′, as follows. We
again write inputs and outputs as tuples.
1. S ◦ S ′.KG.s(< r, r′ >) =< S.KG.s(r),S′.KG.s(r′) >
2. S ◦ S ′.KG.v(< r, r′ >) =< S.KG.v(r),S′.KG.v(r′) >
3. S ◦ S ′.S<s,s′>,<r,r′>(m) =< S.Ss,r(m)(S′.Ss′,r′(m)) >
4. S ◦ S ′.V<v,v′>(σ,< m, σ′ >) = S.Vv(σ, σ′) ∧ S′.Vv′ (σ′,m)

Lemma 5. Cascade MAC/Signature is 0-tolerant for (i.e. preserves) the exis-
tential unforgeability under adaptive chosen message attack specification.

4 Parallel Constructions and Their Tolerance

We now consider another important family of constructions, which are parallel
applications of two or more cryptographic functions or schemes. Parallel con-
structions may use the same input to all functions, use different parts of the
input to each function, or use some combination of the inputs to create the
input to each function, often involving XOR or secret-sharing. Similarly, the
output of some parallel constructions is simply the concatenation of the outputs
of each function, while others ‘merge’ the outputs, by XOR or secret-sharing.

4.1 Split-Parallel-Concat Construction for OWF
Possibly the simplest parallel construction ‘splits’ the input among several func-
tions, and concatenates the result. In particular, the Split-Parallel-Concat (sc)

182 Amir Herzberg

construction for two keyless functions f, f ′ is defined as sc(f, f ′)[< x, x′ >] =
f ||scf

′(< x, x′ >) =< f(x), f(x′) >. This trivial construction is tolerant for
One-Way Functions specifications, using two or more functions.

Lemma 6. The Split-Parallel-Concat (sc) construction is tolerant for OWF
specifications.

Proof Sketch: use argument for transforming a weak OWF into a strong OWF
(see e.g. [19]). ��

4.2 Copy-Parallel-Concat Construction for Integrity Specifications

The Copy-Parallel-Concat (cc) construction is also trivial and well-known, but
it is very practical and widely deployed. Here, the input to the construction
is ‘copied’ and used as input to each of the components; and the output is
simply the concatenation of the output of all components. This simple, folklore
construction provides tolerance for the integrity properties of collision-resistant
hash functions, signature/MAC schemes and commitment schemes.

Let us first define the cc construction for keyless functions, e.g. (weakly colli-
sion resistant) hash functions. The Copy-Parallel-Concat (cc) parallel construc-
tion of single-input (keyless) functions f, g is denoted as f ||g or c||(f, g), and
defined as c||(f, g)(x) = f ||g(x) = f(x)||g(x). When the functions have inputs
for random bits and/or keys, these are selected independently for the two func-
tions, and the parallel construction is fk,r||gk′,r′(x) = fk,r(x)||gk′,r′(x).

The Copy-Parallel-Concat (cc) construction of two Signature/MAC schemes
S,S′, denoted c||(S,S ′) = S||S′, is defined as follows. The definitions and proofs
extend trivially to arbitrary number of schemes.

– S||S ′
.KG(< r, r′ >) =< S.KG(r),S′.KG(r′) >

– S||S ′
.S<s,s′>,<r,r′>(m) =< S.Ss,r(m),S′.Ss′,r′(m) >

– S||S ′
.Vv,v′(m,< σ, σ′ >) = S.Vv(m,σ) ∧ S′.Vv′(m,σ′)

Similarly, the Copy-parallel-Concat (cc) parallel construction of two commit-
ment schemes C, C′, denoted c||(C, C′) = C||C′, is defined as follows. The definition
extends trivially to trapdoor commitment.

– C||C′.KG(< r, r′ >) =< C.KG(r), C′.KG(r′) >
– C||C′

.C<ck,ck′>,<r,r′>(m) =< C.Cck,r(m), C′.Cck′,r′(m) >
– C||C′

.D<ck,ck′>,<r,r′>(m) =< C.Dck,r(m), C′.Dck′,r′(m) >
– C||C′

.V<ck,ck′>(m,< c, c′ >,< d, d′ >) = C.Vck(m, c, d) ∧ C.Vck(m, c, d)

As the following lemma shows, the parallel construction ensures tolerance for
many integrity properties / specifications, but clearly is quite bad for privacy.

Lemma 7. The Copy-Parallel-Concat (cc) construction is. . .

1. Tolerant for the ‘integrity’ specifications WCRHF .
2. Tolerant for the existential unforgeability under adaptive chosen message

attack specification of Signature/MAC schemes.

On Tolerant Cryptographic Constructions 183

3. Tolerant for the Binding and Relaxed-Binding specifications of commitment
schemes.

4. Preserving, but NOT tolerant, for the ‘confidentiality’ specifications Hid-
ing of commitment schemes, and CCA1-IND , CPA-IND, CCA2-IND and
wCCA-IND, of encryption schemes.

5. NOT tolerant, for (the ‘confidentiality’ specifications) OWF.
6. NOT even preserving for the ‘confidentiality’ specifications AONT.

The quantitative versions of the claims and the (simple) proofs will be in-
cluded in the final version.

4.3 XOR-Parallel-Concat Construction for Encryption and AONT

Another classical tolerant construction, originally proposed in [1] for encryption
schemes, takes two inputs: a message (plaintext) and a random bit string of
the same length, and applies one function to the random string, and the other
function to the exclusive-OR of the message with the random string. Namely, the
simple XOR-Parallel-Concat (xc) construction for two keyless functions f, f ′ is
defined as xc(f, f ′)[< m,x >] = f ||xcf

′(< m,x >) =< f(m ⊕ x), f ′(x) >;
generalization to more than two functions is trivial.

The definition for xc construction for encryption schemes E , E ′, is similar:

– E||xcE ′.KG.e(< r, r′ >) =< E .KG.e(r), E ′.KG.e(r′) >
– E||xcE ′.KG.d(< r, r′ >) =< E .KG.d(r), E ′.KG.d(r′) >
– E||xcE ′.E<e,e′>,<r,r′,x>(m) =< E .Ee,r(x), E ′.Ee′,r′(x⊕m) >
– E||xcE ′.D<d,d′>(< c, c′ >) = E ′.Dd′(c′) ⊕ E .Dd(c)

Lemma 8. The xc construction of encryption schemes is tolerant for specifica-
tions CCA1 − INDISPUB and CPA− INDISPUB , but does not even preserve
wCCA2 − INDISPUB or CCA2 − INDISPUB. The simple xc construction is
tolerant for specifications AONT (k, s, l) → AONT (k, 2s, s + l). ��

Comment. The xc construction seems unacceptably wasteful for AONT, as
the number of bits in the secret part doubles, and the number of bits which the
adversary is allowed to expose does not increase (remains s− l).

4.4 Share-Parallel-Concat Construction for Tolerant Commitment

In the Share-Parallel-Concat construction, the inputs to each component com-
mitment scheme are shares of the input to the construction. A secret sharing
scheme is a pair of algorithms < Share,Reconstruct >. The Share algorithm
accepts a message m as input, and outputs n secret values s1, . . . , sn which
we call shares; it is randomized, i.e. it also accepts some random input r. For
convenience, let Sharei,r(m,n) denote the ith output of Share on input m,
number of shares n and randomness r. Reconstruct is a deterministic algo-
rithm which takes n shares, s′1, . . . , s

′
n, some of which may have the special

value ⊥ (for a missing share), and outputs a message m′ (or ⊥ for failure).
The correctness property is that for every message m and randomness r holds
m = Reconstruct(Share1,r(m,n), . . . , Sharen,r(m,n)).

184 Amir Herzberg

Secret sharing schemes support different thresholds, for tolerating exposure or
corruption of shares. In particular, in our case, we are interested in the following
two thresholds. First, secret sharing schemes have a privacy threshold, tp, which
determines the maximum number of shares which reveal ‘no information’ about
the message m. Second, they have a soundness threshold ts, which determines
the minimum number of correct shares which ensures it is impossible to recover
an incorrect message m′ �= m (and m′ �= ⊥).

For simplicity, we present the share-parallel-concat (sc) construction for en-
suring tolerance from three candidate commitment schemes, C1, C2 and C3, and
using an arbitrary secret sharing scheme < Share,Reconstruct > with n =
3, tp = 1, ts = 2, e.g. Shamir’s scheme [37]. Generalizations allowing threshold
to tp > 1 insecure components (by using 2tp + 1 components and shares) are
straightforward. We use the notation si = Sharei,r(m,n).

sc(C1, C2, C3).KG(< r1, r2, r3 >) =
=< C1.KG(r1), C2.KG(r2), C3.KG(r3) >

sc(C1, C2, C3).C<ck1,ck2,ck3>,<r,r1,r2,r3>(m) =
=< C1.Cck1,r1(s1), C2.Cck2,r2(s2), C3.Cck3,r3(s3) >

sc(C1, C2, C3).D<ck1,ck2,ck3>,<r,r1,r2,r3>(m) =
=< C1.Dck1,r1(s1), C2.Dck2,r2(s2), C3.Dck3,r3(s3), s1, s2, s3 >

sc(C1, C2, C3).V<ck1,ck2,ck3>(m,< c1, c2, c3 >,< d1, d2, d3, s1, s2, s3 >) =
= {True iff (m = Reconstruct(s1, s2, s3)) ∧ ((∀i=1,2,3) Ci.Vcki(si, ci, di))}

The tolerance of the share-parallel-concat scheme follows easily from the
properties of the secret sharing scheme. Essentially, the shared-parallel-concat
is a hybrid or generalization of the copy-parallel-concat and the XOR-parallel-
concat constructions. The construction and lemma extend trivially to trapdoor
commitment schemes.

Lemma 9. The Share-Parallel-Concat (sc) construction of 2t + 1 commitment
schemes is t-tolerant for Binding, Relaxed-Binding and Hiding specifications, for
every t ≥ 1. ��

Comment. In most practical commitment schemes, decommitment requires
mainly the original message, and the additional decommitment strings di are
quite short. However, the Share-Parallel-Concat construction uses long decom-
mitment string; specifically, the decommitment includes < d1, d2, d3, s1, s2, s3 >.
Using [37], each share is as long as the message; namely the decommit string is
three times as long as the message. This may be substantial overhead for some
applications. The scheme we present in the next section avoids this overhead.

Comment. By using robust secret sharing and other tools, [14] achieve toler-
ant construction for the CCA2-IND specification of encryption schemes. How-
ever, their construction is very wasteful in the length of the ciphertext, which
may rule it unacceptable in most applications; we expect cascade would remain
the preferred tolerant construction for encryption in practice (although it is not
tolerant for CCA2).

On Tolerant Cryptographic Constructions 185

5 Composing Constructions, and Tolerant Commitment

Often, we may want to combine multiple constructions, e.g. to ensure tolerance
to multiple specifications. We restrict our attention to compositions of two con-
structions. In the first subsection we present two ways to compose the cascade
construction (tolerant for hiding) and the Copy-Parallel-Concat (cc) construction
(tolerant for binding), resulting in efficient tolerant constructions for commitment
schemes (ensuring both hiding and binding specifications). In the second sub-
section, we generalize these results, by defining a composition as a mapping of
(two) constructions, presenting a generic composition based on a combinatorial
‘composition structure’ variable, and showing that the compositions for commit-
ment schemes are a special case. In particular, we use the general lemmas of the
second subsection, to prove the tolerance of the constructions for commitment
in the first subsection.

5.1 ‘Composite’ Tolerant Constructions for Commitment Scheme

The Share-parallel-Concat (sc7) construction provides tolerant design for com-
mitment schemes, but results in a long decommitment string (three times the
original message), which may be problematic for many applications. Can we con-
struct efficient tolerant commitment schemes, with short decommitment (and
commitment) strings? In this subsection we show two such constructions, with
different tradeoffs, both of which are compositions of the cascade and copy-
parallel-concat (cc) constructions. This builds on the fact that cascade is tolerant
for the hiding specification, and copy-parallel-concat (cc) is tolerant for the bind-
ing specifications. It therefore makes sense to combine them, e.g. use four candi-
date commitment schemes, C11, C12, C21, and C22, cascading C11 and C12 and con-
necting this in parallel to the cascade of C21 and C22. We call the result the D con-
struction, after its ‘shape’, and define it as follows. We use the notation Cij(m) =
Cij .Ckij ,rij (m), Dij(m) = Cij .Dkij ,rij(m), Vij(m) = Cij .Vkij (m, cij , dij), R =<
r11, r12, r21, r22 >, K =< k11, k12, k21, k22 >= D.KG(R).

– D.KG(R) =< C11.KG(r11), C12.KG(r12), C21.KG(r21), C22.KG(r22) >
– D.CK,R(m) =< C12(C11(m)), C22(C21((m)) >
– D.DK,R(m)

=< D11(m), C11(m),D12(C11(m)),D21(m), C21(m),D22(C21(m)) >
– D.VK(m,< c12, c22 >,< d11, c11, d12, d21, c21, d22 >)

= V11(m) ∧ V21(m) ∧ V12(c11) ∧ V22(c21)

The D construction is quite efficient in computation times (each operation
requires one operation from each of the four candidate commitment schemes),
and in the size of the commit and decommit strings (commit size is twice that of
the candidate commitment schemes, and decommit size consist of four decom-
mitments plus two commitments). In particular, in the size of the commit and
decommit strings, it substantially improves upon the sc construction; this may
be important for many applications.

186 Amir Herzberg

However, the D construction has one significant drawback: it uses four com-
ponent commitment schemes for 1-tolerance, while sc requires only three candi-
date schemes for 1-tolerance. We can fix this by using only three commitment
schemes, but using each of them twice, by connecting in parallel three cascades
of two schemes each; we call this the E construction. The definition is omitted
for lack of space (and since it should be obvious - especially after reading the
next subsection). We next state the tolerance of the D and E constructions. The
proof is given in the next subsection.

Lemma 10. The D (E) construction of 2t+2 (respectively, 2t+1) commitment
schemes is t-tolerant for Binding, Relaxed-Binding and Hiding specifications.

��
5.2 Composing Arbitrary Constructions

We now generalize the idea of combining multiple constructions, as in the previ-
ous subsection, to arbitrary constructions and specifications. We still limit our
attention to compositions of two constructions. Such compositions accept as in-
put two constructions c and c′ and produce a composite construction denoted
c′ ◦I c, where I is a mapping of the ‘candidate functions’ to the constructions.
We present few simple, and useful, compositions. First, we need to define the
relevant mappings I and the composition for given I.

Let c be a construction of plurality p over F which is t-tolerant for s → s′, and
let c′ be a construction of plurality p′ over F which is t′-tolerant for s′ → s”.
Let p◦ denote the plurality of the composition of c and c′; namely the input
to the composite construction is an ordered set f of p◦ functions, f [i] ∈ F .
The composite construction c′ ◦I c first applies c to p′ sets of p functions each,
and then applies c′ to the p′ resulting functions. The composition is defined by
the selection of the p functions input to each of the p′ applications of the c
construction, namely by a mapping I : {1, . . . , p} × {1, . . . , p′} → {1, . . . , p◦},
where Ii[j] identifies the jth function input to the ith c construction. Given I,
the I-composition of c′ and c, denoted c′ ◦I c, is

c′ ◦I c (f [1], ..., f [p◦]) = c′ (c (f [I1(1)], ..., f [I1(p)]) , ..., c (f [Ip′(1)], ..., f [Ip′(p)]))

Consider cascade compositions of threshold-tolerant constructions. The fol-
lowing lemma shows that the security of the I-composition of two threshold-
tolerant constructions, depends on a simple combinatorial property of mappings
I. Consider mapping I : {1, . . . , p}×{1, . . . , p′} → {1, . . . , p◦} and some set T ⊆
{1, . . . , p◦} (of ‘weak input functions’). Let Gi(I, T) = {Ii[j]|j = 1, . . . , p} − T ,
i.e. values Ii[j], for some j, which are not in T ; think of Gi(I, T) as the ‘good
selections’ of Ii. Let G(I, T)[t] = {i s.t. |Gi(I, T)| ≥ p − t}. We say that I is
a (good) (t, t′, t◦)-threshold-composition-structure if for every T ⊆ 1, . . . , p◦ s.t.
|T | ≤ t◦ holds: |G(I, T)[t]| ≥ p′ − t′.

Lemma 11. Let I : {1, . . . , p} × {1, . . . , p′} → {1, . . . , p◦} be a (good) (t, t′, t◦)-
threshold-composition-structure. Let c be a construction of plurality p over F
which is t-tolerant for s → s′. Let c′ be a construction of plurality p′ over F
which is t′-tolerant for s′ → s”. Then c′ ◦I c, is a construction of plurality p◦

over F which is t◦-tolerant for s → s”.

On Tolerant Cryptographic Constructions 187

Proof: Consider any set f of p◦ functions, f [i] ∈ F , and assume that p◦ −
t of them satisfy specification s. Namely, for some set {ij} of p◦ − t indexes
holds s(f [ij]) = 1. We need to prove that for every choice T ⊆ {1, . . . , p◦}
of up to t◦ functions in f which do not satisfy s, the function resulting from
applying composed construction c ◦I c

′ to {f [1], . . . , f [p◦]} satisfies s”. Namely,
we need to prove that s”(c′ ◦I c(f [1], . . . , f [p◦])) = 1. Let f ′[1], . . . , f ′[p′] denote
the p′ intermediate functions, i.e. f ′[i] = c(f [Ii(1)], . . . , f [Ii(p)]); hence c′ ◦I

c(f [1], . . . , f [p◦]) = c′(f ′[1], . . . , f ′[p′]).
If i ∈ G(I, T)[t], namely |Gi(I, T)| ≥ p− t, then for at least p− t of the func-

tions f [Ii(1)], . . . , f [Ii(p)] holds s(f [Ii(j)]) = True. Since c is t-tolerant for s →
s′, it follows that s′(f ′[i]) = True, for every i ∈ G(I, T). Since c′ is t′-tolerant for
s′ → s”, it follows that: s”(c′ ◦I c(f [1], . . . , f [p◦])) = s”(c′(f ′[1], . . . , f ′[p′])) = 1.

��
We now present two simple threshold cascade compositions derived from the

above lemma, by presenting two simple composition structures:

– Composition structure D : 0, 1× 0, 1 → 0, 1, 2, 3 defined as Di[j] = 2i+ j for
i, j ∈ 0, 1.

– Composition structure E : 0, 1×0, 1, 2 → 0, 1, 2 defined as Ei[j] = i+j mod 3
for i ∈ 0, 1, j ∈ 0, 1, 2.

By simply checking the combinatorial definition of (t, t′, t◦)-threshold-composi-
tion-structure we get:

Lemma 12. D and E are both (good) (0, 1, 1) and (1, 0, 1) threshold-composi-
tion-structures. ��

From the two Lemmas, we get:

Lemma 13. Let c, c′D, c′E be constructions of plurality 2, 2 and 3 respectively.
If c is t-tolerant for s → s′ where t ∈ 0, 1, and c′D, c′E are (1 − t)-tolerant for
s′ → s”, then c′D ◦D c and c′E ◦E c are both 1-tolerant for s → s”. ��

We can now prove Lemma 10, for t = 1 (proof for t > 1 is similar).
Proof of Lemma 10 Let c be cc, i.e. c is the cascade construction; and let

c′D, c′E be c||, i.e. the copy-parallel-concat construction, both for commitment
schemes. Notice that D = cD′ ◦D c, E = cE′ ◦E c. The claim follows immediately
from Lemmas 4, 7 and 13. ��

6 Conclusions and Open Questions

In this work we presented simple, efficient and practical tolerant constructions
for some of the most important and practical cryptographic mechanisms, in-
cluding encryption, signature/MAC and commitment schemes. For encryption,
MAC and signature schemes, we simply proved the security of the (very effi-
cient) ‘folklore’ constructions; for commitment schemes, we present new con-
structions which are simple compositions of the folklore cascade and parallel
(specifically, copy-parallel-concat) constructions. We also present definitions for

188 Amir Herzberg

tolerant constructions and compositions, and some basic yet useful results re-
garding compositions of constructions.

We believe that efficient tolerant constructions are an important require-
ment from practical cryptographic primitives; put differently, we should prefer
specifications with an efficient tolerant construction. We presented efficient tol-
erant constructions for several of the important primitives (and specifications) of
modern cryptography. However, for others, we did not find (yet?) a (reasonably
efficient) tolerant construction. This calls for additional research, to distinguish
between specifications with efficient tolerant design, vs. specifications that do
not have an efficient tolerant design (and possibly, to find alternate specifica-
tions which are sufficient for most applications/scenarios). For example, XOR-
parallel-concat is tolerant for AONT , but has substantial loss in parameters
(instead of s secret bits out of which l must remain secret, we need 2s secret
bits out of which s + l must remain secret). We hope follow-up works will in-
vestigate efficient tolerant constructions for AONT , and for other mechanisms
not covered by our results. Similarly, the construction in [14] provides tolerance
for encryption schemes under CCA2-IND attacks, but inefficiently; is there a
practical, reasonably efficient construction?

Acknowledgment

I wish to thank Mihir Bellare, Ran Canetti, Shai Halevi, Kath Knobe, Boaz
Patt-Shamir, Avi Wigderson and anonymous referees for helpful comments and
discussions. This work was supported in part by Israeli Science Foundation grant
ISF 298/03-10.5.

References

1. C. A. Asmuth and G. R. Blakley. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Comp. and
Maths. with Appls., 7:447-450, 1981.

2. B. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan, Security amplification
by construction: the case of doubly-iterated, ideal ciphers, Proc. of CRYPTO 98.

3. Jee Hea An, Yevgeniy Dodis and Tal Rabin, On the Security of Joint Signature
and Encryption, in Theory and Application of Cryptographic Techniques, pp. 83-
107, 2002. Also in Advances in Cryptology - EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 83-107. Springer-Verlag, 2002.

4. Ross Anderson, Roger Needham. Robustness Principles for Public Key Protocols.
In Proceedings of Int’l. Conference on Advances in Cryptology (CRYPTO 95), Vol.
963 of Lecture Notes in Computer Science, pp. 236-247, Springer-Verlag, 1995.

5. Martin Abadi, Roger Needham. Prudent Engineering Practice for Cryptographic
Protocols. IEEE Transactions on Software Engineering, 22, 1 (Jan.), 1996, pp. 6-15.

6. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS#1. In Advances in Cryptology - CRYPTO ’98,
LNCS 1462, pages 1-12. Springer, 1998.

On Tolerant Cryptographic Constructions 189

7. M.Bellare, A.Desai, E.Jokipii, P.Rogaway: A Concrete Security Treatment of Sym-
metric Encryption, Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 394-403, 1997. Revised version at
http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html.

8. Mihir Bellare, Joe Kilian and Phil Rogaway, The security of cipher block chaining,
Journal of Computer and System Sciences, Vol. 61, No. 3, Dec 2000, pp. 362-399.
Extended abstract in Advances in Cryptology - Crypto 94 Proceedings, Lecture
Notes in Computer Science Vol. 839, Y. Desmedt ed, Springer-Verlag, 1994.

9. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic construction paradigm. In T. Okamoto,
editor, Asiacrypt 2000, volume 1976 of LNCS, pages 531-545. Springer-Verlag,
Berlin Germany, Dec. 2000.

10. Mihir Bellare and Phillip Rogaway, Collision-Resistant Hashing: Towards Making
UOWHFs Practical, Extended abstract was in Advances in Cryptology- Crypto 97
Proceedings, Lecture Notes in Computer Science Vol. 1294, B. Kaliski ed, Springer-
Verlag, 1997. Full paper available at
http://www.cs.ucsd.edu/users/mihir/papers/tcr-hash.html.

11. Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security
of signcryption. In David Naccache and Pascal Pailler, editors, 5th International
Workshop on Practice and Theory in Public Key Cryptosystems - PKC 2002, pp.
80-98, LNCS Vol. 2274, 2002.

12. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
Proceedings of the 23rd Symposium on Theory of Computing, ACM STOC, 1991.

13. Ivan B. Damg̊ard, Lars Ramkilde Knudsen. Enhancing the Strength of Conven-
tional Cryptosystems, BRICS report RS-94-38, November 1994.

14. Yevgeniy Dodis and Jonathan Katz, Chosen Ciphertext Security of Multiple En-
cryption, Manuscript, December 2003.

15. Ivan B. Damg̊ard, Torben P. Pedersen, Birgit Pfitzmann: On the Existence of
Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures; Crypto
’93, LNCS 773, Springer-Verlag, Berlin 1994, 250-265.

16. Ivan B. Damg̊ard, Torben P. Pedersen, Birgit Pfitzmann: Statistical Secrecy and
Multi-Bit Commitments; IEEE Transactions on Information Theory 44/3 (1998)
1143-1151.

17. Shimon Even and Oded Goldreich, On the Power of Cascade Ciphers, ACM Trans-
actions on Computer Systems, Vol. 3, 1985, pp. 108-116.

18. National Institute of Standards and Technology, Federal Information Processing
Standards Publication, FIPS Pub 180-1: Secure Hash Standard (SHA-1), April 17,
(1995), 14 pages.

19. Oded Goldreich, The Foundations of Cryptography, Volume 1 (Basic Tools), ISBN
0-521-79172-3, Cambridge University Press, June 2001.

20. Oded Goldreich, Fragments of a Chapter on Encryptions Schemes, Extracts from
working drafts of Volume 2, The Foundations of Cryptography.

21. Oded Goldreich and Shafi Goldwasser and Silvio Micali ”How to Construct Ran-
dom Functions” Journal of the ACM, 33(4), 1984, 792-807.

22. Oded Goldreich, R. Impagliazzo, L. Levin, R. Venkatesen, D. Zuckerman. ”Security
preserving amplification of randomness”, 31st Annual Symposium on Foundations
of Computer Science, IEEE Computer Society Press, (1990), 318-326.

23. Shafi Goldwasser and Silvio Micali. ”Probabilistic Encryption,” JCSS (28), 1984,
270-299.

190 Amir Herzberg

24. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal re-
encryption for mixnets. In Tatsuaki Okamoto, editor, RSA Conference Cryptogra-
phers’ Track, volume 2964 of LNCS, Springer-Verlag, pages 163–178, San Francisco,
California, USA, February 2004.

25. Shai Halevi and Silvio Micali, ”Practical and Provably-Secure Commitment
Schemes from Collision Free Hashing”, in Advances in Cryptology - CRYPTO96,
Lecture Notes in Computer Science 1109, Springer-Verlag, 1996, pp. 201-215.

26. Johan Hastad, Rudich Impagliazzo, Leonid A. Levin, and Mike Luby, Construction
of a Pseudorandom Generator from any One-Way Function. SIAM Journal on
Computing, Vol. 28, No. 4, pp. 1364-1396, 1999.

27. Amir Herzberg and Mike Luby, ”Public Randomness in Cryptography”, proceed-
ings of CRYPTO 1992, ICSI technical report TR-92-068, October, 1992.

28. Amir Herzberg and Shlomit Pinter, ”Composite Ciphers”, EE Pub. no. 576, Dept
of Electrical Engineering, Technion, Haifa, Israel, Feb. 1986.

29. Hugo Krawczyk, ”The Order of Encryption and Authentication for Protecting
Communications (or: How Secure Is SSL?),” In Crypto ’01, pp. 310-331, LNCS
Vol. 2139, J. Kilian ed., Springer-Verlag, 2001.

30. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Network and Distributed
System Security Symposium, pages 143-154. The Internet Society, 2000.

31. Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Jour-
nal of Cryptology: The Journal of the International Association for Cryptologic
Research, 14(4):255–293, September 2001.

32. U.M. Maurer and J.L. Massey, Cascade ciphers: the importance of being first,
Journal of Cryptology, Vol. 6, No. 1, pp. 55-61, 1993.

33. Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Ap-
plied Cryptography, Section 9.2.6, CRC Press, ISBN 0-8493-8523-7, October 1996.
Available online at http://www.cacr.math.uwaterloo.ca/hac/.

34. Moni Naor and Moti Yung, Universal one-way hash functions and their crypto-
graphic applications, Proc. 21st Annual ACM Symposium on Theory of Computing
(STOC), 1989, pp. 33–43.

35. T. Dierks, C. Allen, The TLS Protocol: Version 1.0, Network Working Group,
Internet Engineering Task Force (IETF). Available online at
http://www.ietf.org/rfc/rfc2246.txt.

36. Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-
Wesley, 2000.

37. Adi Shamir, How to share a secret, Comm. of the ACM, 22(11):612-613, 1979.
38. Bruce Schneier, Applied Cryptography, John Wiley and Sons, 1996.
39. Victor Shoup, Using hash functions as a hedge against chosen ciphertext attacks,

Adv. in Cryptology – Proc. of Eurocrypt ’2000, LNCS 1807, pp. 275-288.
40. Adi Shamir and Yael Tauman. Improved online/online signature schemes. In Joe

Killian, editor, Proceedings of Crypto 01, volume 2139 of LNCS, pages 355–367.
Springer-Verlag, August 2001.

41. Yuliang Zheng, Digital signcryption or how to achieve cost(signature+encryption)
<< cost(signature)+cost(encryption), in Advances in Cryptology - CRYPTO’97,
Berlin, New York, Tokyo, 1997, vol. 1294 of Lecture Notes in Computer Science,
pp. 165–179, Springer-Verlag.

42. Phil R. Zimmerman. The Official PGP User’s Guide. MIT Press, Boston, 1995.

Simple Password-Based
Encrypted Key Exchange Protocols

Michel Abdalla and David Pointcheval

Departement d’Informatique,
École Normale Supérieure,

45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,David.Pointcheval}@ens.fr

http://www.di.ens.fr/users/{mabdalla,pointche}

Abstract. Password-based encrypted key exchange are protocols that are de-
signed to provide pair of users communicating over an unreliable channel with
a secure session key even when the secret key or password shared between two
users is drawn from a small set of values. In this paper, we present two simple
password-based encrypted key exchange protocols based on that of Bellovin and
Merritt. While one protocol is more suitable to scenarios in which the password
is shared across several servers, the other enjoys better security properties. Both
protocols are as efficient, if not better, as any of the existing encrypted key ex-
change protocols in the literature, and yet they only require a single random oracle
instance. The proof of security for both protocols is in the random oracle model
and based on hardness of the computational Diffie-Hellman problem. However,
some of the techniques that we use are quite different from the usual ones and
make use of new variants of the Diffie-Hellman problem, which are of indepen-
dent interest. We also provide concrete relations between the new variants and
the standard Diffie-Hellman problem.

Keywords: Password, encrypted key exchange, Diffie-Hellman assumptions.

1 Introduction

Background. Keys exchange protocols are cryptographic primitives used to provide a
pair of users communicating over a public unreliable channel with a secure session key.
In practice, one can find several flavors of key exchange protocols, each with its own
benefits and drawbacks. An example of a popular one is the SIGMA protocol [19] used
as the basis for the signature-based modes of the Internet Key Exchange (IKE) protocol.
The setting in which we are interested in this paper is the 2-party symmetric one, in
which every pair of users share a secret key. In particular, we consider the scenario in
which the secret key is a password.

PASSWORD-BASED KEY EXCHANGE. Password-based key exchange protocols as-
sume a more realistic scenario in which secret keys are not uniformly distributed over
a large space, but rather chosen from a small set of possible values (a four-digit pin,
for example). They also seem more convenient since human-memorable passwords are
simpler to use than, for example, having additional cryptographic devices capable of
storing high-entropy secret keys. The vast majority of protocols found in practice do

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 191–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

192 Michel Abdalla and David Pointcheval

not account, however, for such scenario and are often subject to so-called dictionary at-
tacks. Dictionary attacks are attacks in which an adversary tries to break the security of
a scheme by a brute-force method, in which it tries all possible combinations of secret
keys in a given small set of values (i.e., the dictionary). Even though these attacks are
not very effective in the case of high-entropy keys, they can be very damaging when the
secret key is a password since the attacker has a non-negligible chance of winning.

To address this problem, several protocols have been designed to be secure even
when the secret key is a password. The goal of these protocols is to restrict the adver-
sary’s success to on-line guessing attacks only. In these attacks, the adversary must be
present and interact with the system in order to be able to verify whether its guess is cor-
rect. The security in these systems usually relies on a policy of invalidating or blocking
the use of a password if a certain number of failed attempts has occurred.

ENCRYPTED KEY EXCHANGE. The seminal work in the area of password-based key
exchange is the encrypted key exchange (EKE) protocol of Bellovin and Merritt [8].
In their protocol, two users execute an encrypted version of the Diffie-Hellman key
exchange protocol, in which each flow is encrypted using the password shared between
these two users as the symmetric key. Due to the simplicity of their protocol, several
other protocols were proposed in the literature based on it [7, 10, 11, 18, 21], each with
its own instantiation of the encryption function. Our protocol is also a variation of their
EKE protocol.

MINIMIZING THE USE OF RANDOM ORACLES. One of our main goals is to provide
schemes that are simple and efficient, but relying as little as possible on random oracles.
Ideally, one would want to completely eliminate the need of random oracles as done in
the KOY protocol [17]. However, such protocols tend to be less efficient than those
based on the EKE protocol of Bellovin and Merritt [8].

Public information: G, g, p,M, N
Secret information: pw ∈ Zp

User A User B

x
R← Zp ; X ← gx y

R← Zp ; Y ← gy

X� ← X · Mpw Y � ← Y · Npw

X�

−→
Y �

←−
SK A ← (Y �/Npw)x SK B ← (X�/Mpw)y

Fig. 1. An insecure password-based key exchange protocol.

To understand the difficulties involved in the design of protocols with few random
oracles, let us consider the extreme case of the protocol in Figure 1 in which no ran-
dom oracles are used. Despite being secure against passive attacks, this protocol can be
easily broken by an active adversary performing a man-in-the-middle attack. Such an
adversary can easily create two different sessions whose session keys are related in a
predictable manner. For instance, an adversary can do so by multiplying X� by gr for

Simple Password-Based Encrypted Key Exchange Protocols 193

a known value r. The relation between the underlying session keys SKA and SKB is
SKB = SKA · Y r. Hence, if the adversary learns the value of these two keys, it can
perform an off-line dictionary attack using Y = (SKB/SKA)−r and Y � to recover
the password. Moreover, since the adversary can use arbitrary values for r, we cannot
detect such attacks.

PROTECTING AGAINST RELATED KEY ATTACKS. In order to fix the problem in the
protocol presented in Figure 1 and prevent the adversary from altering the messages,
one may be tempted to use message authentication code (MAC) algorithms for key
derivation (e.g., by making the session key equal to MACSKA

(A,B,X�, Y �, 0)) or
key confirmation (e.g., by computing tags via MACSKA

(A,B,X�, Y �, 1)). In fact,
this is the approach used by Kobara and Imai in the construction of their password-
authenticated key exchange protocol [18]. Unfortunately, this approach does not quite
work.

Let us now explain the main problems with using MACs. First, the standard notion
of security for MACs does not imply security against related key attacks. Hence, new
and stronger security notions are required. Second, such new security notions may have
to consider adversaries which are given access to a related-key tag-generation oracle.
These are oracles that are capable of generating tags on messages under related keys,
where the related key function is also passed as a parameter. This is actually the ap-
proach used in [18]. However, it is not clear whether such MACs can even be built.
Such security notion, for instance, may completely rule out the possibility of using
block-cipher-based MAC algorithms since similar security requirements in the context
of block ciphers are known to be impossible to achieve [3]. Perhaps, hash-based MAC
algorithms may be able to meet these goals, but that does not seem likely without re-
sorting to random oracles, which would defeat the purpose of using MACs in the first
place.

SIMPLE CONSTRUCTIONS. In this paper, we deal with the problem of related-key at-
tacks by using a single instance of a random oracle in the key derivation process. We
present two simple constructions, whose only difference to one another is the presence
of the password in the key derivation function. The presence of the password in the key
derivation function is an important aspect, for example, when one wants to consider
extensions to the distributed case, where each server only holds a share of password
(see [12]).

Surprisingly, the techniques that we use to prove the security of these two con-
structions are quite different and so are the exact security results. While we are able to
provide a tight security reduction for the scheme which includes the password in the
key derivation phase, the same cannot be said about the other scheme, for which we can
only prove its security in the non-concurrent scenario. However, the techniques that we
use to prove the security of the latter are quite interesting and make use of new variants
of the Diffie-Hellman problem.

NEW DIFFIE-HELLMAN ASSUMPTIONS. The new variants of the Diffie-Hellman prob-
lem that we introduce are called Chosen-Basis Diffie-Hellman assumptions due to the
adversary’s capability to choose some of the bases used in the definition of the prob-
lem. These assumptions are particular interesting when considered in the context of

194 Michel Abdalla and David Pointcheval

password-based protocols and we do expect to find applications for them other than the
ones in this paper. Despite being apparently stronger than the standard Diffie-Hellman
assumptions, we prove that this is not the case by providing concrete reductions to the
computational Diffie-Hellman problem.

Contributions. In this paper, we address the issue of constructing efficient password-
based encrypted key exchange protocols. Our main contributions are as follows.

SIMPLE AND EFFICIENT CONSTRUCTIONS IN RANDOM ORACLE MODEL. In this
paper, we propose two new password-based encrypted key exchange protocols, called
SPAKE1 and SPAKE2, both of which can be proven secure based on the hardness of
the computational Diffie-Hellman problem in the random oracle model. Both protocols
are comparable in efficiency to any of the existing EKE protocols, if not more efficient,
and they only require one random oracle instance. This is contrast with existing EKE
constructions, which require either a larger number of random oracle instances or ad-
ditional ideal models, such as the ideal cipher model. Moreover, neither SPAKE1 nor
SPAKE2 requires full domain hash functions or ideal ciphers onto a group, which are
hard to implement efficiently. While one protocol is more suitable to scenarios in which
the password is shared across several servers, the other enjoys better security properties.

NEW DIFFIE-HELLMAN ASSUMPTIONS. In proving the security of our protocols, we
make use of new variations of the computational Diffie-Hellman assumption, called
chosen-basis computational Diffie-Hellman assumptions. These new assumptions are
of independent interest and we do expect to find new applications for it other than the
ones in this paper. Reductions between the problems underlying the new assumptions
and the standard computational Diffie-Hellman assumption are also provided.

Related Work. Password-based authenticated key exchange has been extensively stud-
ied in the last few years [4, 9–11, 13–15, 17, 20, 22, 12] with the majority of them being
submitted for inclusion in the IEEE P1363.2 standard [16], a standard dealing with the
issues of password-authenticated key agreement (e.g. EKE) and password-authenticated
key retrieval. With the exception of [13, 14, 17], all of these protocols are only proven
secure in the random oracle model.

Perhaps, the related work that is closest to ours is the pretty-simple password-
authenticated key exchange protocol of Kobara and Imai [18], whose proof of security
is claimed to be in the “standard” model. Their protocol consists of EKE phase that is
similar to the one used in our protocols followed by an authentication phase based on
message authentication code (MAC) algorithms. However, the security model which
they use is different from the standard one and hence their result only applies to their
specific model. Moreover, as we pointed out above, their protocol needs a stronger se-
curity notion for the MAC algorithm and it is not clear whether such MACs can be built
without resorting to random oracles, which would contradict their claims.

Organization. In Section 2, we recall the security model for password-based authen-
ticated key exchange. Next, in Section 3, we present our new variants of the Diffie-
Hellman problem and their relations to the computational Diffie-Hellman problem.
Section 4 then introduces the first of our password-based encrypted key exchange pro-
tocols, called SPAKE1, along with its proof of security. SPAKE1 is in fact based on

Simple Password-Based Encrypted Key Exchange Protocols 195

one of the variants of the Diffie-Hellman problem introduced in Section 3. Our second
protocol, SPAKE2, is then presented in Section 4 along with its security claims. The
proof of security for SPAKE2 can be found in the full version of this paper [2].

2 Security Model for Password-Based Key Exchange

We now recall the security model for password-based authenticated key exchange of
Bellare et al. [4].

PROTOCOL PARTICIPANTS. Each participant in the password-based key exchange is
either a client C ∈ C or a server S ∈ S. The set of all users or participants U is the
union C ∪ S.

LONG-LIVED KEYS. Each client C ∈ C holds a password pwC . Each server S ∈ S
holds a vector pwS = 〈pwS [C]〉C∈C with an entry for each client, where pwS [C] is the
transformed-password, as defined in [4]. In this paper, we only consider the symmetric
model, in which pwS [C] = pwC , but they may be different in general. pwC and pwS

are also called the long-lived keys of client C and server S.

PROTOCOL EXECUTION. The interaction between an adversary A and the protocol
participants occurs only via oracle queries, which model the adversary capabilities in
a real attack. During the execution, the adversary may create several instances of a
participant. While in a concurrent model, several instances may be active at any given
time, only one active user instance is allowed for a given intended partner and password
in a non-concurrent model. Let U i denote the instance i of a participant U and let b
be a bit chosen uniformly at random. The query types available to the adversary are as
follows:

– Execute(Ci, Sj): This query models passive attacks in which the attacker eaves-
drops on honest executions between a client instance Ci and a server instance Sj .
The output of this query consists of the messages that were exchanged during the
honest execution of the protocol.

– Send(U i,m): This query models an active attack, in which the adversary may tam-
per with the message being sent over the public channel. The output of this query
is the message that the participant instance U i would generate upon receipt of mes-
sage m.

– Reveal(U i): This query models the misuse of session keys by a user. If a session
key is not defined for instance U i or if a Test query was asked to either U i or to its
partner, then return ⊥. Otherwise, return the session key held by the instance U i.

– Test(U i): This query tries to capture the adversary’s ability to tell apart a real ses-
sion key from a random one. If no session key for instanceU i is defined, then return
the undefined symbol ⊥. Otherwise, return the session key for instance U i if b = 1
or a random key of the same size if b = 0.

NOTATION. Following [5, 6], an instance U i is said to be opened if a query Reveal(U i)
has been made by the adversary. We say an instance U i is unopened if it is not opened.
We say an instance U i has accepted if it goes into an accept mode after receiving the
last expected protocol message.

196 Michel Abdalla and David Pointcheval

PARTNERING. The definition of partnering uses the notion of session identifications
(sid). More specifically, two instances U i

1 and U j
2 are said to be partners if the following

conditions are met: (1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same
session identifications; (3) The partner identification for U i

1 is U j
2 and vice-versa; and

(4) No instance other than U i
1 and U j

2 accepts with a partner identification equal to U i
1

or U j
2 . In practice, the sid could be taken to be the partial transcript of the conversation

between the client and the server instances before the acceptance.

FRESHNESS. The notion of freshness is defined to avoid cases in which adversary can
trivially break the security of the scheme. The goal is to only allow the adversary to ask
Test queries to fresh oracle instances. More specifically, we say an instance U i is fresh
if it has accepted and if both U i and its partner are unopened.

SEMANTIC SECURITY. Consider an execution of the key exchange protocol P by an
adversary A, in which the latter is given access to the Reveal , Execute, Send, and Test
oracles and asks a single Test query to a fresh instance, and outputs a guess bit b′. Such
an adversary is said to win the experiment defining the semantic security if b′ = b,
where b is the hidden bit used by the Test oracle.

Let SUCC denote the event in which the adversary is successful. The ake-advantage
of an adversary A in violating the semantic security of the protocol P and the advan-
tage function of the protocol P , when passwords are drawn from a dictionary D, are
respectively

Advake
P,D(A) = 2 · Pr[SUCC]− 1 and Advake

P,D(t, R) = max
A

{Advake
P,D(A) } ,

where maximum is over all A with time-complexity at most t and using resources at
most R (such as the number of queries to its oracles). The definition of time-complexity
that we use henceforth is the usual one, which includes the maximum of all execution
times in the experiments defining the security plus the code size [1].

3 Diffie-Hellman Assumptions

In this section, we recall the definitions for the computational Diffie-Hellman assump-
tion and introduce some new variants of it, which we use in the proof of security of
simple password-based encrypted key exchange protocols. We also present some rela-
tions between these assumptions. In doing so, we borrow some of the notations in [1].

3.1 Definitions

NOTATION. In the following, we assume a finite cyclic group G of prime order p gen-
erated by an element g. We also call the tuple G = (G, g, p) the represented group.

Computational Diffie-Hellman Assumption: CDH. The CDH assumption states that
given gu and gv, where u and v were drawn at random from Zp, it is hard to compute
guv. Under the computational Diffie-Hellman assumption it might be possible for the
adversary to compute something interesting about guv given gu and gv.

Simple Password-Based Encrypted Key Exchange Protocols 197

This can be defined more precisely by considering an Experiment Expcdh
G (A), in

which we select two values u and v in Zp, compute U = gu, and V = gv, and then
give both U and V to an adversary A. Let Z be the output of A. Then, the Experiment
Expcdh

G (A) outputs 1 if Z = guv and 0 otherwise. Then, we define advantage of
A in violating the CDH assumption as Advcdh

G (A) = Pr[Expcdh
G (A) = 1] and the

advantage function of the group, Advcdh
G (t), as the maximum value of Advcdh

G (A)
over all A with time-complexity at most t.

Chosen-Basis Computational Diffie-Hellman Assumption: CCDH. The chosen-
basis computational Diffie-Hellman problem is a variation of the CDH problem. It
considers an adversary that is given three random elements M , N and X in G and
whose goal is to find a triple of values (Y, u, v) such that u = CDH(X,Y) and v =
CDH(X/M,Y/N). The idea behind this assumption is that the adversary may be able
to successfully compute either u (e.g., by choosing Y = g and u = X) or v (e.g., by
choosing Y = g ·N and v = X/M), but not both. In fact, as we prove later, solving this
problem is equivalent to solving the underlying computational Diffie-Hellman problem
in G. We now proceed with the formal definition.

Definition 1 (CCDH). Let G = (G, g, p) be a represented group and let A be an
adversary. Consider the following experiment, where M , N and X are elements in G,

Experiment Expccdh
G (A,M,N,X)

(Y, u, v) ← A(M,N,X)
u′ ← CDH(X,Y)
v′ ← CDH(X/M,Y/N)
if u = u′ and v = v′ then b ← 1 else b ← 0
return b

Now define the advantage of A in violating the CCDH assumption with respect to (M,
N,X), the advantage of A, and the advantage function of the group, respectively, as
follows:

Advccdh
G (A,M,N,X) = Pr[Expccdh

G (A,M,N,X) = 1]

Advccdh
G (A) = PrM,N,X

[
Advccdh

G (A,M,N,X)
]

Advccdh
G (t) = max

A
{Advccdh

G (A) },

where the maximum is over all A with time-complexity at most t. ♦

Password-Based Chosen-Basis Computational Diffie-Hellman Assumption:
PCCDH. The password-based chosen-basis computational Diffie-Hellman problem
is a variation of the chosen-basis computational Diffie-Hellman described above that
is more appropriate to the password-based setting. The inputs to the problem and the
adversarial goals are also somewhat different in this case so let us explain it.

Let D = {1, . . . , n} be a dictionary containing n equally likely password values
and let P be a public injective map P from {1, . . . , n} into Zp. An example of an ad-
missible map P is the one in which {1, . . . , n} is mapped into the subset {1, . . . , n} of

198 Michel Abdalla and David Pointcheval

Zp. Now let us consider an adversary that runs in two stages. In the first stage, the ad-
versary is given as input three random elements M , N and X in G as well as the public
injective map P and it outputs a value Y in G. Next, we choose a random password
k ∈ {1, . . . , n} and give it to the adversary. We also compute the mapping r = P(k)
of the password k. The goal of the adversary in this second stage is to output a value K
such that K = CDH(X/M r, Y/Nr).

Note that an adversary that correctly guesses the password k in its first stage can
easily solve this problem by computing r = P(k) and making, for instance, Y = g ·N r

and K = X/M r. Since we assume k to be chosen uniformly at random from the
dictionary {1, . . . , n}, an adversary that chooses to guess the password and follow this
strategy can succeed with probability 1/n.

The idea behind the password-based chosen-basis computational Diffie-Hellman
assumption is that no adversary can do much better than the adversary described above.
In fact, as we later prove, this should be the case as long as the computational Diffie-
Hellman problem is hard in G. We now proceed with the formal definition.

Definition 2 (PCCDH). Let G = (G, g, p) be a represented group and let A be an
adversary. Consider the following experiment, where M and N are elements in G, and
P is a public injective map from {1, . . . , n} into Zp,

Experiment Exppccdh
G,n (A,M,N,X ′,P)

(Y ′, st) ← A(find,M,N,X ′,P)
k

R← {1, . . . , n} ; r ← P(k)
(K) ← A(guess, st, k)
X ← X ′/M r ; Y ← Y ′/N r

if K = CDH(X,Y) then b ← 1 else b ← 0
return b

Now define the advantage of A in violating the PCCDH assumption with respect to (M,
N,X ′,P), the advantage of A, and the advantage function of the group, respectively,
as follows:

Advpccdh
G,n (A,M,N,X ′,P) = Pr[Exppccdh

G,n (A,M,N,X ′,P) = 1]

Advpccdh
G,n (A,P) = PrM,N,X′

[
Advpccdh

G,n (A,M,N,X ′,P)
]

Advpccdh
G,n (t,P) = max

A
{Advpccdh

G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

Set Password-Based Chosen-Basis Computational Diffie-Hellman: S-PCCDH. The
set password-based chosen-basis computational Diffie-Hellman problem (S-PCCDH) is
a multidimensional variation of the password-based chosen-basis computational Diffie-
Hellman problem described above, in which the adversary is allowed to return not one
key but a list of keys at the end of the second stage. In this case, the adversary is
considered successful if the list of keys contains the correct value. We now proceed
with the formal definition.

Simple Password-Based Encrypted Key Exchange Protocols 199

Definition 3 (S-PCCDH). Let G = (G, g, p) be a represented group and let A be an
adversary. Consider the following experiment, where M and N are elements in G, and
P is a public injective map from {1, . . . , n} into Zp,

Experiment Exps−pccdh
G,n,s (A,M,N,X ′,P)

(Y ′, st) ← A(find,M,N,X ′,P)
k

R← {1, . . . , n} ; r ← P(k)
(S) ← A(guess, st, k)
X ← X ′/M r ; Y ← Y ′/N r

if CDH(X,Y) ∈ S and |S| ≤ s then b ← 1 else b ← 0
return b

As above, we define the advantage of A in violating the S-PCCDH assumption with
respect to (M,N,X ′,P), the advantage of A, and the advantage function of the group,
respectively, as follows:

Advs−pccdh
G,n,s (A,M,N,X ′,P) = Pr[Exps−pccdh

G,n,s (A,M,N,X ′,P) = 1]

Advs−pccdh
G,n,s (A,P) = PrM,N,X′

[
Advs−pccdh

G,n,s (A,M,N,X ′,P)
]

Advs−pccdh
G,n,s (t,P) = max

A
{Advs−pccdh

G,n,s (A,P) },

where the maximum is over all A with time-complexity at most t. ♦
3.2 Some Relations

In this section, we first provide two relations between the above problems. The first
result is meaningful for small n (polynomially bounded in the asymptotic framework).
The second one considers larger dictionaries. Then, we show that these assumptions
are implied by the classical computational Diffie-Hellman assumption. Finally, we also
prove that the most general assumption is also implied by the classical computational
Diffie-Hellman assumption.

Relations Between the PCCDH and CCDH Problems. The following two lemmas
present relations between the PCCDH and CCDH problems. The first lemma, whose
proof can be found in the full version of this paper [2], is oriented to the case of
small dictionaries, for which n is polynomially-bounded. However, if n is large, super-
polynomial in the asymptotic framework, or more concretely n ≥ 8/ε, then one should
use the second lemma, whose proof can be easily derived from the proof of the first
lemma (see [2]).

Lemma 1. Let G = (G, g, p) be a represented group, let n be an integer, and let P be
a public injective map from {1, . . . , n} into Zp.

2
n
≥ Advpccdh

G,n (t,P) ≥ 1
n

+ ε =⇒ Advccdh
G (2t + 3τ) ≥ n

128
× ε3.

Lemma 2. Let G = (G, g, p) be a represented group, let n be an integer, and let P be
a public injective map from {1, . . . , n} into Zp.

Advpccdh
G,n (t,P) ≥ ε ≥ 8

n
=⇒ Advccdh

G (2t + 3τ) ≥ ε2

32
,

where τ denotes the time for an exponentiation in G.

200 Michel Abdalla and David Pointcheval

Relation Between the CCDH and CDH Problems. The following lemma, whose
proof can be found in the full version of this paper [2], shows that the CCDH and CDH
problems are indeed equivalent.

Lemma 3. Let G = (G, g, p) be a represented group.

Advccdh
G (t) ≤ Advcdh

G (t + 2τ),

where τ denotes the time for an exponentiation in G.

Relation Between the S-PCCDH and CDH Problems. The following lemma, whose
proof can be found in the full version of this paper [2], gives a precise relation between
the S-PCCDH and CDH problems.

Lemma 4. Let G = (G, g, p) be a represented group, let n and s be integers, and let
P be a public injective map from {1, . . . , n} into Zp.

Advs−pccdh
G,n,s (t,P) ≥ 1

n
+ ε =⇒ Advcdh

G (t′) ≥ n2ε6

214
− 2s4

p
,

where t′ = 4t + (18 + 2s)τ and τ denotes the time for an exponentiation in G. More
concretely,

Advs−pccdh
G,n,s (t,P) ≥ 1

n
+ ε ≥ 1

n
×
(

1 +
8(ns)2/3

p1/6

)
=⇒ Advcdh

G (t′) ≥ n2ε6

215
.

4 SPAKE1: A Simple Non-concurrent
Password-Based Encrypted Key Exchange

We now introduce our first protocol, SPAKE1, which is a non-concurrent password-
based encrypted key exchange protocol, based on the multi-dimensional version of
password-based chosen-basis computational Diffie-Hellman problem, S-PCCDH.

4.1 Description

SPAKE1 is a variation of the password-based encrypted key exchange protocol of
Bellovin and Merritt[8], in which we replace the encryption function Epw(.) with a
simple one-time pad function. More specifically, whenever a user A wants to send the
encryption of a value X ∈ G to a user B, it does so by computing X ·Mpw , where M
is an element in G associated with user A and the password pw is assumed to be in Zp.
The session identification is defined as the transcript of the conversation between A and
B, and the session key is set to be the hash (random oracle) of the session identification,
the user identities, and the Diffie-Hellman key. The password pw is not an input to the
hash function. The full description of SPAKE1 is given in Figure 2.

CORRECTNESS. The correctness of our protocol follows from the fact that, in an honest
execution of the protocol, KA = KB = gxy.

Simple Password-Based Encrypted Key Exchange Protocols 201

Public information: G, g, p, M, N, H
Secret information: pw ∈ Zp

User A User B

x
R← Zp ; X ← gx y

R← Zp ; Y ← gy

X� ← X · Mpw Y � ← Y · Npw

X�

−→
Y �

←−
KA ← (Y �/Npw)x KB ← (X�/Mpw)y

SK A ← H(A, B,X�, Y �, KA) SK B ← H(A, B,X�, Y �, KB)

Fig. 2. SPAKE1: a simple non-concurrent password-based key exchange protocol.

4.2 Security

As Theorem 1 states, our non-concurrent password-based key exchange protocol is se-
cure in the random oracle model as long as we believe that the S-PCCDH problem is
hard in G.

Theorem 1. Let G be a represent group and let D be a uniformly distributed dictionary
of size |D|. Let SPAKE1 describe the password-based encrypted key exchange protocol
associated with these primitives as defined in Figure 2. Then, for any numbers t, qstart,
qA
send, qB

send, qH , qexe,

Advake
SPAKE,D(t, qstart, qA

send, q
B
send, qH , qexe)

≤ 2 · (qA
send + qB

send) ·Advs−pccdh
G,|D|,qH

(t′,P) +

2 ·
(

(qexe + qsend)2

2p
+ qH Advcdh

G (t + 2qexeτ + 3τ)
)

,

where qH represents the number of queries to the H oracle; qexe represents the number
of queries to the Execute oracle; qstart and qA

send represent the number of queries to
the Send oracle with respect to the initiator A; qB

send represents the number of queries
to the Send oracle with respect to the responder B; qsend = qA

send + qB
send + qstart;

t′ = t + O(qstartτ); and τ is the time to compute one exponentiation in G.

Since the S-PCCDH problem can be reduced to the CDH problem according to
Lemma 4, it follows that SPAKE1 is a secure non-concurrent password-based key ex-
change protocol in the random oracle model as long as the CDH problem is hard in G,
as stated in Corollary 1.

Corollary 1. Let G be a represent group and let D be a uniformly distributed dictio-
nary of size |D|. Let SPAKE1 describe the password-based encrypted key exchange
protocol associated with these primitives as defined in Figure 2. Then, for any numbers
t, qstart, qA

send, qB
send, qH , qexe,

202 Michel Abdalla and David Pointcheval

Advake
SPAKE,D(t, qstart, qA

send, q
B
send, qH , qexe)

≤ 2 ·
(
qA
send + qB

send

|D| + 6

√
214

|D|2 Advcdh
G (t′) +

215q4
H

|D|2p

)
+

2 ·
(

(qexe + qsend)2

2p
+ qH Advcdh

G (t + 2qexeτ + 3τ)
)

,

where t′ = 4t+O((qstart+qH)τ) and the other parameters are defined as in Theorem 1.

Proof Idea. Let A be an adversary against the semantic security of SPAKE. The idea
is to use A to build adversaries for each of the underlying primitives in such a way that
if A succeeds in breaking the semantic security of SPAKE, then at least one of these
adversaries succeeds in breaking the security of an underlying primitive. Our proof
consists of a sequence of hybrid experiments, starting with the real attack and ending
in an experiment in which the adversary’s advantage is 0, and for which we can bound
the difference in the adversary’s advantage between any two consecutive experiments.

Proof of Theorem 1. Our proof uses a sequence of hybrid experiments, the first of
which corresponds to the actual attack. For each experiment Expn, we define an event
SUCCn corresponding to the case in which the adversary correctly guesses the bit b in-
volved in the Test query.

Experiment Exp0. This experiment corresponds to the real attack, which starts by
choosing a random password pw . By definition, we have

Advake
SPAKE(A) = 2 · Pr[SUCC0] − 1 (1)

Experiment Exp1. In this experiment, we simulate the Execute, Reveal , and Send
oracles as in the real attack (see Figure 4 and Figure 5), after having chosen a random
password pw . One can easily see that this experiment is perfectly indistinguishable
from the real experiment. Hence,

Pr[SUCC1] = Pr[SUCC0] (2)

Experiment Exp2. In this experiment, we simulate all oracles as in Experiment Exp1,
except that we halt all executions in which a collision occurs in the transcript ((A,X�),
(B, Y �)). Since either X� or Y � was simulated and thus chosen uniformly at random,
the probability of collisions in the transcripts is at most (qsend + qexe)2/(2p), according
to the birthday paradox. Consequently,∣∣Pr[SUCC2] − Pr[SUCC1]

∣∣ ≤ (qexe + qsend)2

2p
(3)

H
or

ac
le – On hash query H(q) (resp. H ′(q)) for which there exists a record (q, r) in the list

ΛH (resp. ΛH), return r. Otherwise, choose an element r ∈ {0, 1}lk , add the record
(q, r) to the list ΛH (resp. ΛH), and return r.

Fig. 3. Simulation of random oracles H and H ′.

Simple Password-Based Encrypted Key Exchange Protocols 203

Se
nd

qu
er

ie
s

– On a query Send(Ai, start), assuming Ai is in the correct state, we proceed as
follows:

if ActiveSessionIndex �= 0 then abort AActiveSessionIndex

ActiveSessionIndex = i

θ
R← Zp ; Θ ← gθ ; Θ� ← Θ · Mpw

return (A, Θ�)

– On a query Send(Bi, (A,Θ�)), assuming Bi is in the correct state, we proceed as
follows:

φ
R← Zp ; Φ ← gφ ; Φ� ← Φ · Npw

K ← (Θ�/Mpw)φ

SK ← H(A,B, Θ�, Φ�, K)
return (B, Φ�)

– On a query Send(Ai, (B,Φ�)), assuming Ai is in the correct state, we proceed as
follows:

K ← (Φ�/Npw)θ

SK ← H(A,B, Θ�, Φ�, K)
ActiveSessionIndex = 0

Fig. 4. Simulation of Send oracle query.

Experiment Exp3. In this experiment, we replace the random oracleH by a secret one,
for computing SKA and SKB for all sessions generated via an Execute oracle query.
As the following lemma shows, the difference between the current experiment and the
previous one is negligible as long as the CDH assumption holds. More precisely, we use
a private random oracle H ′, and in the Execute oracle queries, one gets SKA,SKB ←
H ′(A,B,Θ�, Φ�).

Lemma 5.
∣∣Pr[SUCC3]− Pr[SUCC2]

∣∣ ≤ qH ·Advcdh
G (t + 2qexeτ + 3τ) .

Proof. The proof of Lemma 5 uses the random self-reducibility of the Diffie-Hellman
problem. Indeed, the only way for an execution to be altered by the above modification
is if the adversary directly asks for H(A,B,Θ�, Φ�,K), which will output something
different from H ′(A,B,Θ�, Φ�), the answer of a Reveal query. But let us simulate
the Execute oracle with a Diffie-Hellman instance (A,B), and thus Θ ← A · gθ and
Φ ← B · gφ. As a consequence, the above event means that K = CDH(Θ,Φ) =
CDH(A,B) × Aφ ×Bθ × gφθ is in the list of the queries asked to H : a random guess
leads to CDH(A,B).

Experiment Exp4. The goal of this experiment is to bound the advantage of the ad-
versary during active attacks, in which the adversary has possibly generated the input
of a Send oracle. To achieve this goal, we change the simulation of the Send oracle
so that its output is chosen uniformly at random and independently of the password.
The session key associated with each oracle is a bit string of appropriate length chosen
uniformly at random and independently of input being provided to the Send oracle. The
exact simulation of the Send oracle is as follows:

– On a query of type (Ai, start), we reply with (A,X� = gx�

) for a random x� ∈
Zp, if Ai is in the correct state. If another concurrent session already exists for user
A, then we also terminate that session.

204 Michel Abdalla and David Pointcheval

E
xe

cu
te

,R
ev

ea
l

an
d

Te
st

qu
er

ie
s.

– On query Reveal (U i), proceed as follows:
if session key SK is defined for instance U i

then return SK ,
else return ⊥.

– On query Execute(Ai, Bj), proceed as follows:

θ
R← Zp ; Θ ← gθ ; Θ� ← Θ · Mpw

φ
R← Zp ; Φ ← gφ ; Φ� ← Φ · Npw

K ← Θφ

SK A ← H(A, B,Θ�, Φ�, K) ; SK B ← SK A

return ((A, Θ�), (B, Φ�))

– On query Test(U i), proceed as follows:
SK ← Reveal (U i)
if SK = ⊥ then return ⊥
else

b
R← {0, 1}

if b = 0 then SK ′ ← SK else SK ′ R← {0, 1}lk

return SK ′

Fig. 5. Simulation of Execute, Reveal and Test queries.

– On a query of type (Bi, (A,X�)), we reply with (B, Y � = gy�

) for a random
y� ∈ Zp and we set the session key SKB to H ′(A,B,X�, Y �), if Bi is in the
correct state.

– On a query of type (Ai, (B, Y �)), we set the session key SKA to H ′(A,B,X�,
Y �), if Ai is in the correct state.

As the following lemma shows, the adversary cannot do much better than simply
guessing the password when distinguishing the current experiment from the previous
one.

Lemma 6.
∣∣Pr[SUCC4]−Pr[SUCC3]

∣∣ ≤ (qA
send+qB

send)·Advs−pccdh
G,|D|,qH

(t′,P) , where
t′ = t + O(qstartτ).
Proof. The proof of this lemma is based on a sequence of qA

send + qB
send + 1 hybrid

experiments Hybrid3,j , where j is an index between 0 and qAB = qA
send + qB

send.
Let i be a counter for number of queries of the form (Bk, (A,X�)) or (Ak, (B, Y �)).
That is, we do not count start queries (we do not increment this counter). We define
Experiment Hybrid3,j as follows:

– If i ≤ j, then we processes the current Send query as in Experiment Exp4.
– If i > j, then we processes the current Send query as in Experiment Exp3.

It is clear from the above definition that experiments Hybrid3,0 and Hybrid3,qAB

are equivalent to experiments Exp3 and Exp4, respectively. Now let Pj denote the
probability of event SUCC in Experiment Hybrid3,j . It follows that Pr[SUCC3] = P0

and Pr[SUCC4] = PqAB . Moreover,∣∣∣Pr[SUCC4] − Pr[SUCC3]
∣∣∣ ≤ qAB∑

j=1

∣∣Pj − Pj−1

∣∣ .

Simple Password-Based Encrypted Key Exchange Protocols 205

The lemma will follow easily from bounding
∣∣Pj − Pj−1

∣∣. In order to so, consider the
following algorithm Dj for the S-PCCDH problem in G.

ALGORITHM Dj . Let U = gu, V = gv, and W = gw be random elements in G and let
P be any injective map from {1, . . . , n} into Zp. Dj starts running A, simulating all its
oracles. The Reveal , Execute, and Test oracles are simulated as in Experiment Exp3.
The Send oracle is simulated as follows, Let i be the index of the current Send query.

– If the Send query is of the form (Ak, start),
• if i ≤ j, then Dj replies with (A,X� = Wgx�

) for a random x� ∈ Zp, if Ak

is in the correct state. If another concurrent session already exists for user A,
then Dj also terminates that session.

• if i > j, then Dj processes it as in Experiment Exp3.
– If the query is of the form (Bk, (A,X�)),

• if i < j, then Dj processes it as in Experiment Exp4.
• if i = j, then Dj replies with (B, Y � = W). It also returns (st, Y ′ = X�)

as the output of its find stage and waits for the input (st, k) of the guess
stage. It then sets the password pw shared between A and B to P(k) and the
session key SKB to H(A,B,X�, Y �,KB), where KB = (X�/V pw)w−u pw .
We note that st should contain all the necessary information for Dj to continue
the execution of A and the simulation of its oracles in the guess stage. Let this
be Case B.

• if i > j, then Dj processes it as in Experiment Exp3.
– If the Send query is of the form (Ak, (B, Y �)),

• if i < j, then Dj processes it as in Experiment Exp4.
• if i = j, and Ak is in the correct state, then it returns (st, Y ′ = Y �) as the

output of its find stage and waits for the input (st, k) of the guess stage. Then,
it sets the password pw shared between A and B to P(k) and the session key
SKA to H(A,B,X�, Y �,KA), where KA = (Y �/V pw)w+x�−u pw . Let this
be Case A.

• if i > j, then Dj processes it as in Experiment Exp3.

Let K be the part of the input of H that is not present in H ′ and let K1, . . . ,KqH

be the list of all such elements. When in Case A, Dj sets K ′
i = Ki/(Y ′/V pw)x�

for
i = 1, . . . , qH , where x� is the value used to compute X� in the crucial query. When in
Case B, Dj simply sets K ′

i = Ki. Finally, Dj outputs K ′
1, . . . ,K

′
qH

.
We note that in the above, the password is only defined at the j-th step and it is not

used before that. Due to the non-concurrency, we do not need to know the password for
simulating flows in Experiment Exp4. We only need it in Experiment Exp3.

Using the knowledge of u, v, and w in the above, it is clear that the processing
of the Send queries matches that of Experiment Hybrid3,j−1. However, in the actual
description of the S-PCCDH problem, we do not have access to these values. For this
reason, the actual algorithm Dj replaces the random oracle H by a secret random or-
acle H ′ in the computation of SKA and SKB during the processing of the j-th Send
query. More precisely, it computes SKA and SKB as H ′(A,B,X�, Y �). Moreover,
we note that in this new scenario, the processing of the Send queries matches that of
Experiment Hybrid3,j .

206 Michel Abdalla and David Pointcheval

PROBABILITY ANALYSIS. Let ASKH represent the event in which the adversary asks
for H(A,B,X�, Y �,K), where K = CDH(X�/Upw , Y �/V pw) and either X� or Y �

is involved in the crucial j-th query. We first observe that experiments Hybrid3,j−1

and Hybrid3,j are identical if event ASKH does not happen. Therefore, it follows that
the probability difference

∣∣Pj − Pj−1

∣∣ is at most Pr[ASKH].
However, whenever event ASKH happens, we know that the list of queries asked

to H contains the key K = CDH(X�/Upw , Y �/V pw) involved in the crucial query,
and thus Dj will be able to successfully use A to help it solve the S-PCCDH problem.
This is because KA (Case A) or KB (Case B) can be used to compute the solution
CDH(W/Upw , Y ′/V pw) for the S-PCCDH problem as follows:

KA = CDH(Y �/V pw ,Wgx�

/Upw) = CDH(W/Upw , Y ′/V pw) × (Y ′/V pw)x�

KB = CDH(X�/V pw ,W/Upw) = CDH(W/Upw , Y ′/V pw)

Therefore, the list of candidates K ′
1, . . . ,K

′
qH

that Dj outputs should contain the so-
lution for the S-PCCDH problem whenever ASKH happens. Hence, Pr[ASKH] is less
than or equal to the success probability of Dj . The lemma follows easily from the fact
that Dj has time-complexity at most t′. ��

5 SPAKE2: A Simple Concurrent Password-Based
Encrypted Key Exchange

We now introduce our second protocol, SPAKE2, which is a concurrent password-based
encrypted key exchange protocol, based on the computational Diffie-Hellman problem,
CDH.

5.1 Description

SPAKE2 is a also variation of the password-based encrypted key exchange protocol
of Bellovin and Merritt[8] and is almost exactly like SPAKE1. The only difference
between the two is in the key derivation function, which also includes the password pw .
More specifically, the session key in SPAKE2 is set to be the hash (random oracle) of
the session identification, the user identities, the Diffie-Hellman key, and the password.
In other words, SK ← H(A,B,X�, Y �, pw ,K). The session identification is still
defined as the transcript of the conversation between A and B.

5.2 Security

As the following theorem states, our concurrent password-based key exchange protocol
is secure in the random oracle model as long as the CDH problem is hard in G. The
proof of Theorem 2 can be found in the full version of this paper [2].

Theorem 2. Let G be a represent group and let D be a uniformly distributed dictionary
of size |D|. Let SPAKE2 describe the password-based encrypted key exchange protocol
associated with these primitives as defined in Section 5.1. Then, for any numbers t,
qstart, qA

send, qB
send, qH , qexe,

Simple Password-Based Encrypted Key Exchange Protocols 207

Advake
SPAKE2,D(t, qstart, qA

send, q
B
send, qH , qexe)

≤ 2 ·
(
qA
send + qB

send

n
+

(qexe + qsend)2

2p

)
+

2 ·
(
qH Advcdh

G (t + 2qexeτ + 3τ) + q2
H Advcdh

G (t + 3τ)
)
,

where the parameters are defined as in Theorem 1.

Acknowledgments

The work described in this document has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT. The
information in this document reflects only the author’s views, is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In D. Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages
143–158. Springer-Verlag, Apr. 2001.

2. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange protocols.
Full version of current paper. Available from authors’ web pages.

3. M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491–506. Springer-Verlag, May 2003.

4. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
139–155. Springer-Verlag, May 2000.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS. Springer-Verlag, Aug. 1994.

6. M. Bellare and P. Rogaway. Provably secure session key distribution — the three party case.
In 28th ACM STOC, pages 57–66. ACM Press, May 1996.

7. M. Bellare and P. Rogaway. The AuthA protocol for password-based authenticated key
exchange. Contributions to IEEE P1363, Mar. 2000.

8. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84.
IEEE Computer Society Press, May 1992.

9. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange
using Diffie-Hellman. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 156–171. Springer-Verlag, May 2000.

10. E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient password-
based key exchange. In ACM CCS 03. ACM Press, Oct. 2003.

11. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted key ex-
change. In F. Bao, R. Deng, and J. Zhou, editors, PKC 2004, volume 2947 of LNCS, pages
145–158. Springer-Verlag, Mar. 2004.

12. M. Di Raimondo and R. Gennaro. Provably secure threshold password-authenticated key
exchange. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 507–523.
Springer-Verlag, May 2003.

208 Michel Abdalla and David Pointcheval

13. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange.
In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer-
Verlag, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

14. O. Goldreich and Y. Lindell. Session-key generation using human passwords only. In J. Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 408–432. Springer-Verlag, Aug.
2001. http://eprint.iacr.org/2000/057.ps.gz.

15. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. In ACM
Transactions on Information and System Security, pages 524–543. ACM, 1999.

16. IEEE draft standard P1363.2. Password-based public key cryptography.
http://grouper.ieee.org/groups/1363/passwdPK,May 2004. Draft Version
15.

17. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using
human-memorable passwords. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 475–494. Springer-Verlag, May 2001.

18. K. Kobara and H. Imai. Pretty-simple password-authenticated key-exchange under stan-
dard assumptions. IEICE Transactions, E85-A(10):2229–2237, Oct. 2002. Also available at
http://eprint.iacr.org/2003/038/.

19. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman
and its use in the IKE protocols. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 400–425. Springer-Verlag, Aug. 2003.

20. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key exchange based
on RSA. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 599–613.
Springer-Verlag, Dec. 2000.

21. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange. Con-
tributions to IEEE P1363.2, 2002.

22. P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key
exchange. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 385–400.
Springer-Verlag, Aug. 2002.

Hard Bits of the Discrete Log
with Applications to Password Authentication

Philip Mackenzie� and Sarvar Patel

Bell Laboratories, Lucent Technologies
{philmac,sarvar}@lucent.com

Abstract. Assuming the intractability of solving the discrete logarithm
with short exponent problem, it was recently shown that the trailing
n − ω(log n) bits of the discrete logarithm modulo an n-bit safe prime p
are simultaneously hard. However, the question of hardness of the leading
bits was left open. In this paper we show that the leading n − ω(log n)
bits are also simultaneously hard, or equivalently that the distribution
of gs mod p, where g is a generator of Z

∗
p and s is a uniformly chosen

short exponent of ω(log n) bits, is indistinguishable from the uniform
distribution on Z

∗
p. We further show that this result implies the security of

a short exponent version of PAK, a password-authenticated key exchange
protocol that protects against offline dictionary attacks.

1 Introduction

Informally, a hard bit of a one-way function is a bit which is as hard to compute
as it is to invert the one way function. Equivalently, for a one-way function f ,
we say that a bit of f−1 is hard if computing that bit is as hard as computing
f−1 itself. Blum and Micali [5] introduced the concept of hard bits of a one-
way function and showed that for the discrete logarithm modulo a prime p,
the unbiased most significant bit (i.e., the bit denoting whether the discrete
log is greater or less than p−1

2) is a hard bit. The question of hard bits is not
only theoretically interesting, but is also interesting in practice, for example, in
speeding up pseudorandom bit generation.

Our knowledge about hard bits of one-way functions has steadily grown, both
for hard bits of arbitrary one-way functions and hard bits of specific one-way
functions. Hard bits of arbitrary one-way functions [9, 19, 20] have the advantage
that they can be used without considering the specifics of the one-way function.
However, hard bits of specific functions have the advantage that they may be
easier to compute and/or use. For instance, they may simply be some of the
bits of the argument to the one-way function. Informally, a group of bits in the
argument of the one way function are simultaneously hard if computing any
information about them given the output of the one-way function is as hard as
inverting the one-way function. For arbitrary one-way functions it is not possible
to have more than O(log n) simultaneous hard bits, while for specific one-way
� Current Address: DoCoMo USA Labs, San Jose, CA, philmac@docomolabs-usa.com

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 209–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 Philip Mackenzie and Sarvar Patel

functions it is possible (see [27] for a survey of results). In regards to simultaneous
hard bits of specific one-way functions, two questions have been investigated: (1)
how many bits does the one way function hide and (2) where are they.

It has been shown that the discrete logarithm modulo a prime hides at least
O(log n) bits. Peralta [24] showed that the O(log n) least significant bits are
simultaneously hard, and Long and Wigderson [16] showed that the O(log n)
unbiased most significant bits are simultaneously hard. For almost all primes p,
Hastad and Naslund [11] were able to show the individual hardness of all bits,
as well as the simultaneous hardness of blocks of O(log n) bits. For the discrete
logarithm modulo a composite, Hastad, Schrift and Shamir [12] showed that
n
2 +O(logn) bits are simultaneously hard, and that both the lower half and the
upper half of the bits are simultaneously hard, assuming factoring Blum integers
is hard.

For the discrete logarithm modulo a safe prime1 p, Patel and Sundaram [23]
showed that the trailing2 n−ω(logn) bits are simultaneously hard assuming the
intractability of solving the discrete log with short exponent (DLSE) problem.
Obviously this is the maximum possible number of simultaneously hard bits.
However, they do not say anything about the simultaneous hardness of the lead-
ing bits, and in fact a direct use of their proof technique does not seem to lead
to a similar hardness result on the leading bits.

Our Contributions I: In the first part of this paper we are able to show that
the leading n− ω(logn) bits of the discrete logarithm modulo a safe prime are
simultaneously hard assuming the intractability of the DLSE problem. We prove
this result by proceeding in two steps. In the first step we prove that showing
the simultaneous hardness of the leading bits is equivalent to showing that the
distribution of gs mod p, where s is a uniformly chosen short exponent of ω(logn)
bits, is indistinguishable from the uniform distribution on Z∗

p. In the second step
we show that a distinguisher between the two distributions above can be turned
into a DLSE solver. Since we assume that solving DLSE is intractable, there
cannot be such a distinguisher, and hence the leading n − ω(logn) bits are
simultaneously hard.

The second step is similar to a result in Gennaro [8], except that the leading
n− ω(logn) bits are zero in our case, whereas the trailing n− ω(logn) bits are
zero in his case (except for the lowest bit). Both cases deal with exponents that
contain only a small number of non-zero bits, and thus, in some sense, both
results deal with “short exponents” (although his short exponents are biased
since they contain the leading bits). In his case the result follows by a relatively
straightforward reduction to the hardness result of [23]. On the other hand, our
case is more difficult, since our exponent s is unbiased, and can cause overflow
in the exponent if it is shifted to the leading bits.

We note that analogously to [8], our result can be naturally translated into
a simple PRG where at each step the leading bits are output (as opposed to the
1 A prime p is a safe prime if p = 2q + 1 where q is also prime.
2 We use the term trailing bits to denote the least significant bits and leading bits to

denote the most significant bits.

Hard Bits of the Discrete Log with Applications to Password Authentication 211

trailing bits in [8]). However, in our case one has to take care of the bias of the
leading bits, either by dropping them or using a technique such as, e.g., [13] to
convert them into unbiased bits.

Application: Password Authenticated Key Exchange: Classical entity authenti-
cation and key exchange protocols (e.g., [2]) are not necessarily secure when the
two communicating entities only share a password and not a strong secret key.
This is because although the data the entities transmit cannot be used to deter-
mine their shared strong secret key, it may be used to verify a guess at their key,
and thus the protocol would be susceptible to an off-line dictionary attack. In
particular, humans are prone to choose passwords with low entropy, and hence
it is possible for an attacker to compile a dictionary of likely passwords and do
a off-line search by testing candidate passwords from the dictionary against the
overheard data.

Lomas et al. [15] presented the first protocols which protected against off-line
dictionary attacks, but they were not strictly password only protocols because
they assumed that the client had the server’s public key. The EKE protocol [3]
was the first password-only authenticated key exchange protocol that tried to
protect against off-line dictionary attacks. Subsequently, many password only
protocols were presented with heuristic arguments, and a large number of them
were shown to be insecure. Recently, some protocols were formally proven se-
cure [1, 6, 10, 18].

In particular, the PAK protocol [6] was proven to be as secure as Diffie-
Hellman [7] in the random oracle model. The proof of security fails, however, if
the parties in the protocol use short exponents, even if one assumes the hardness
of the Diffie-Hellman with short exponents (DHSE) problem. (The basic reason
is that the proof relies on the fact that the values transmitted by the parties have
exactly the same distribution for any password, which is not the case if short
exponents are used.) However, there are existing systems which use unauthen-
ticated Diffie-Hellman with short exponents to perform key exchange [22], and
a short exponent version of PAK could be an attractive enhancement to these
protocols since (1) this would not create a change in the underlying messaging,
(2) this would cause the least possible change in the code, and, most impor-
tantly, (3) this would not cause any significant increase in the computational
complexity.

Our Contributions II: In the second part of this paper we show that we can
use our result above on simultaneous hard bits (and more specifically, the result
that the distributions Z

∗
p and Z

∗
p restricted to short exponents are indistinguish-

able assuming the intractability of the DLSE problem) to prove the security of
a short exponent version of PAK based on the hardness of the DHSE problem.
Initially, one may think this would follow directly. However, for technical reasons
this does not seem to be the case, and in fact, for our proof of security to go
through the exponents used in PAK need to be chosen from a larger range than
the range specified in the DHSE problem. As a concrete example, assuming the
DHSE problem is intractable for 256-bit exponents, we would need to use 384-bit

212 Philip Mackenzie and Sarvar Patel

exponents in PAK for the proof of security to go through (with a roughly equiv-
alent level of security). Still, this is the most efficient version of PAK (over Z

∗
p)

that has been proven secure.

2 Preliminaries

2.1 Notation

The integer x can be represented as the bit string x = xn, . . . , x1 where x =
xn · 2n−1 + xn−1 · 2n−2 + . . . + x2 · 21 + x1 · 20. {0, 1}n denotes the set of n-bit
strings and 0n denotes the string of n zeroes. xj

i is the binary substring xj , . . . , xi.
x

R← S denotes randomly choosing an element x from the set S.

2.2 Discrete Logarithm

For n-bit prime p and generator g ∈ Z∗
p, the modular exponentiation function

fp,g(x) = gx mod p is believed to be a one-way function. It can be computed in
polynomial time but it is believed that there is no deterministic or randomized
algorithm which can compute the discrete logarithm in time polynomial in n.
The index calculus method is the best algorithm known to compute the discrete
logarithm, however, even this is infeasible today if p is moderately large, say 1024
bits. The complexity of index calculus is subexponential but not polynomial in n.

Now we define some notation. Let p be an n-bit prime and g be a generator
of Z

∗
p. We define the discrete log function DL as follows: DL(p, g, y) = x iff

gx ≡ y mod p, where y ∈ Z∗
p. We will define the Diffie-Hellman function DH as

follows: DH(p, g, x, y) = z iff x = ga mod p, y = gb mod p, and z = gab mod p.
(For the remainder of the paper, we will omit “modp” when it is obvious from
context. We will also omit p and g from the input to the functions DL and DH
when they are obvious from context.)

Discrete Logarithm with Short Exponent Problem. Although performing
modular exponentiation can be done in polynomial time, it is still reasonably
costly today in terms of computational complexity, especially on computationally
bounded devices such as PDAs or cell phones. Even exponentiation modulo a
1024-bit prime can be demanding on such devices. Thus in some protocols that
use modular exponentiations, the exponent is restricted to be c bits (e.g., c = 160
bits) since this requires fewer multiplications [21]. The security of the protocols
then is restricted by the hardness of the discrete logarithm with short exponent
(DLSE) problem [23]. The best algorithms known to solve the DLSE problem
are square root time algorithms requiring 2c/2 steps due to Shanks [14] and
Pollard [25]. (The index calculus method does not depend on the size of the
exponent and its efficiency is related to the size of the whole group.) Then, for
instance, to provide 80 bits of security, c should be at least 160 bits.

The DLSE problem has been investigated in the context of the Diffie-Hellman
key agreement by van Oorschot and Wiener [21], and they give attacks to discover
information about the exponent if random primes are used. They suggest that

Hard Bits of the Discrete Log with Applications to Password Authentication 213

using safe primes is sufficient to block such attacks. For this reason, we will only
consider safe primes for the remainder of the paper (as in [23]).

Now we define some notation. Let g be a generator of Z∗
p. Let SExpp,g,c = {gx :

x ∈ {0, 1}c}. We define the short exponent discrete log function DLSE(p, g, y, c) =
x iff DL(p, g, y) = x, but where the domain of y is restricted to SExpp,g,c.
We define the short exponent Diffie-Hellman function DHSE(p, g, c, x, y) = z
iff there are values a, b ∈ {0, 1}c such that DL(p, g, x) = a, DL(p, g, y) = b and
DL(p, g, z) = ab.

Let G(1n) output an n-bit safe prime p and a generator g for Z∗
p. Then for

any algorithm A, let

SuccDLSE
p,g,c (A) def= Pr[y R← SExpp,g,c;x←A(p, g, c, y) : y = gx]

Let SuccDLSE
n,c (A) def= Ex[(p, g) ←G(1n) : SuccDLSE

p,g,c (A)]. The DLSEc assumption
states that for any probabilistic polynomial-time algorithm A, SuccDLSE

n,c (A) is
negligible.

For any algorithm A, let

SuccDHSE
p,g,c (A) def= Pr[x, y R← SExpp,g,c; z ∈ A(p, g, c, x, y) : z = DH(x, y)]

Let SuccDHSE
n,c (A) def= Ex[(p, g) ←G(1n) : SuccDHSE

p,g,c (A)]. The DHSEc assumption
states that for any probabilistic polynomial-time algorithm A, SuccDHSE

n,c (A) is
negligible.

Let
SEc,n = {(p, g)←G(1n); v R← SExpp,g,c : v}

and
Un = {(p, g)←G(1n); v R← Z

∗
p : v}.

Let SEc and U be their respective distribution ensembles, parameterized by n.
We define SEdistc as the problem of distinguishing SEc from U. For any algorithm
A, let

AdvSEdist
p,g,c (A) def= |Pr[x R← SExpp,g,c; 1 = A(p, g, c, x)] − Pr[x R← Z

∗
p; 1 = A(p, g, c, x)]|

Let AdvSEdist
n,c (A) def= Ex[(p, g) ←G(1n) : AdvSEdist

p,g,c (A)]. The SEdistc assumption
states that for any probabilistic polynomial-time algorithm A, AdvSEdist

n,c (A) is
negligible.

3 Simultaneous Hardness
of the Leading n − ω(log n) Bits of the Discrete Log

Let f be a function. Informally, we say that a subset of bits of f−1 are simultane-
ously hard if no probabilistic polynomial-time algorithm can find any information
about them given only the output of the function f . A more precise way of stat-
ing this is that this subset of bits is indistinguishable from a randomly chosen

214 Philip Mackenzie and Sarvar Patel

group of bits with the same distribution given the output of f . Also, for another
function h, we say that a subset of bits of f−1 are simultaneously h−1-hard if
they are simultaneously hard assuming h is one-way.

Using this terminology, we may now precisely state the result of Patel and
Sundaram [23] on the simultaneous hardness of the trailing bits of the dis-
crete log.

Theorem 1 ([23]). For c = ω(logn), the trailing n− c bits (except the lsb) of
DL modulo an n-bit safe prime p are simultaneously DLSEc-hard.

However, this result does not imply anything about the simultaneous hardness
of the leading bits, which is what we examine here.

Let LBitsp,g,c = {x R← Zp−1 : (p, g, gx, xn
c+1)} and RLBitsp,g,c = {x, y R← Zp−1 :

(p, g, gx, yn
c+1)}. Informally, LBitsp,g,c is a distribution consisting of elements of

Z∗
p along with the leading bits of their discrete logs, and RLBitsp,g,c is a distri-

bution consisting of elements of Z∗
p along with the leading bits of discrete logs

of random elements. Let

LBc,n = {(p, g)←G(1n); v← LBitsp,g,c : v}

and
RLBc,n = {(p, g)←G(1n); v← RLBitsp,g,c : v}

Let LBc and RLBc be their respective distribution ensembles, parameterized by n.
In a similar way, we will define the corresponding distributions for trailing

bits. Let TBitsp,g,c ={x R← Zp−1:(p, g, gx, xn−c
2)} and RTBitsp,g,c ={x, y R← Zp−1:

(p, g, gx, yn−c
2)}. Informally, TBitsp,g,c is a distribution consisting of elements of

Z∗
p along with the trailing bits of their discrete logs (except for the lsb), and

RTBitsp,g,c is a distribution consisting of elements of Z∗
p along with the trailing

bits of discrete logs of random elements (except for the lsb)3. Let

TBc,n = {(p, g)←G(1n); v← TBitsp,g,c : v}

and
RTBc,n = {(p, g)←G(1n); v← RTBitsp,g,c : v}

Let TBc and RTBc be their respective distribution ensembles, parameterized
by n.

Definition 1. The n − c leading bits of DL are simultaneously hard if LBc is
polynomially indistinguishable from RLBc.

Now we are ready to state our main theorem.

Theorem 2. For c = ω(logn), the n− c leading bits of DL modulo an n-bit safe
prime are simultaneously DLSEc-hard.

3 The trailing bits of discrete logs of random elements are statistically indistinguishable
from random bits, but the distributions are not quite identical - see below.

Hard Bits of the Discrete Log with Applications to Password Authentication 215

We break the proof of Theorem 2 into two parts. In the first part we prove in
Theorem 3 that SEc is indistinguishable from U if and only if LBc is indistinguish-
able from RLBc. In the second part we prove in Theorem 4 that a distinguisher
between SEc and U can be turned in to a DLSEc solver. It follows from these
two results and the hardness of DLSEc that the leading n − c bits of DL are
simultaneously DLSEc-hard.

Theorem 3. SEc is indistinguishable from U iff LBc is indistinguishable from
RLBc.

Proof. First we show that if one can distinguish LBitsp,g,c from RLBitsp,g,c in
time T with probability ε, then one can distinguish the uniform distribution on
SExpp,g,c from the uniform distribution on Z∗

p in time T + T ′ with probability
ε − δ, where T ′ is polynomial and δ is negligible. (For the remainder of the
paper, when it is obvious from context we will use the name of a set to denote
the uniform distribution on that set. For instance, above we could say “. . . if one
can distinguish SEp,g,c from Z∗

p in time. . . ”)
Let D be a distinguisher that distinguishes LBitsp,g,c from RLBitsp,g,c. Then

we construct a distinguisher D′ that distinguishes SExpp,g,c from Z∗
p.

Let upper(p, c) = 2c�p2−c�, i.e., the result of zeroing the c trailing bits of p.

D′(y)
{

z
R← Zp−1

zc
1 ← 0c

y′ ← y · gz

return D(y′, zn
c+1)

}

If the input y is drawn uniformly from SExpp,g,c, and if z < upper(p, c), then
adding z to the exponent (with the c trailing bits of z set to zero) makes the
result y′ appear to be picked uniformly from a set S ⊆ Z∗

p with z as its leading
n − c bits, where S = {gx : x ∈ Zupper(p,c)}. Hence the statistical difference
between D′(y) for y R← SExpp,g,c and D(v) for v← LBitsp,g,c is at most 2c

p , which
is negligible.

On the other hand, if the input y is drawn uniformly from Z∗
p, and if z <

upper(p, c), then adding z to the exponent (with the c trailing bits of z set to
zero) makes the result y′ appear to be picked uniformly from Z∗

p with z as random
leading n− c bits. Hence the statistical difference between D′(y) for y R← Z

∗
p and

D(v) for v← RLBitsp,g,c is zero.
Next we show that if one can distinguish the uniform distribution on SExpp,g,c

from the uniform distribution on Z∗
p in time T with probability ε, then one can

distinguish LBitsp,g,c from RLBitsp,g,c in time T +T ′ with probability ε−δ, where
T ′ is polynomial and δ is negligible.

Let D be a distinguisher that distinguishes SExpp,g,c from Z∗
p. Then we con-

struct a distinguisher D′ that distinguishes LBitsp,g,c from RLBitsp,g,c.

216 Philip Mackenzie and Sarvar Patel

D′(v)
{

Say v = (y, zn−c
1)

wn
c+1 ← zn−c

1

wc
1 ← 0c

y′ ← y · g−w

return D(y′)
}

Say y = gx. If v is drawn from LBitsp,g,c, then zn−c
1 = xn

c+1, so y · g−w (for
w computed above) sets the leading n − c bits of the discrete log to zero. If
x < upper(p, c) then the result y′ appears to be picked uniformly from SExpp,g,c.
Hence the statistical difference between D′(v) for v← LBitsp,g,c and D(y) for
y

R← SExpp,g,c is at most 2c

p .
If v is drawn from RLBitsp,g,c, then zn−c

1 is random leading bits, so w is inde-
pendent from the discrete log of y. Then the result y′ appears to be picked uni-
formly from Z

∗
p. Hence the statistical difference between D′(v) for v← RLBitsp,g,c

and D(y) for y R← Z∗
p is zero.

Before we prove the next theorem, we will need to prove some intermediate
lemmas. Let

BSExpp,g,c = {w← Zp−1;xn
c+1 ← 0n−c;xc

2 ← wn
n−c+2;x

1
1 ← w1

1 : gx}.

In other words, BSExpp,g,c are elements of Z∗
p with “biased” short exponents of

size c that are distributed as the c−1 leading bits followed by the lsb of random
elements of Z∗

p. Let

BSEc,n = {(p, g)←G(1n); v R← BSExpp,g,c : v}.

Let BSEc be the corresponding distribution ensembles, parameterized by n.

Lemma 1. If SExpp,g,c can be distinguished from Z
∗
p in time T with probability

ε then BSEp,g,c−t can be distinguished from Z∗
p in time T + T ′ with probability

ε
2 , where t = log ε

2 and T ′ is polynomial.

Proof. Let D distinguish SExpp,g,c from Z∗
p in time T with probability ε. Then

we show how to create D′ to distinguish BSEp,g,c−t from Z∗
p in time T +T ′ with

probability at least ε
2 , where t = log ε

2 .

D′(y)
{

s
R← {0, 1}c

y′ ← y · gs

return D(y′)
}

Hard Bits of the Discrete Log with Applications to Password Authentication 217

If y is uniformly drawn from Z∗
p, then adding s to the discrete log will not

change the distribution, so y′ will be uniform over Z
∗
p. Hence the statistical

difference between D′(y) for y← Z∗
p and D(y) for y R← Z∗

p is zero.
If y is uniformly drawn from BSEp,g,c−t, then adding s to the discrete log

will make the distribution of the result y′ to be MIXp,g,c,t = {v← SEp,g,c;
y← BSEp,g,c−t : v · y}. So D′ will distinguish BSEp,g,c−t from Z∗

p with the same
probability as D distinguishes MIXp,g,c,t from Z∗

p. Here we bound this probabil-
ity. Let p0 = Pr[y← SEp,g,c;D(y) = 1], p1 = Pr[y←MIXp,g,c,t;D(y) = 1], and
p2 = Pr[y← Z∗

p;D(y) = 1]. Then

|p1 − p2| ≥ |p0 − p2| − |p0 − p1|
= ε− |p0 − p1|
≥ ε− StatDiff(SEp,g,c,MIXp,g,c,t),

where StatDiff() returns the statistical difference between two distributions. The
following claim is proven in the appendix.

Claim. StatDiff(SEp,g,c,MIXp,g,c,t) = ε
2 .

Hence |p1 − p2| ≥ ε
2 .

Lemma 2. If BSExpp,g,c can be distinguished from Z∗
p in time T with proba-

bility ε then we can distinguish TBitsp,g,c from RTBitsp,g,c in time T + T ′with
probability ε.

Proof. Let D distinguish BSExpp,g,c from Z∗
p with probability ε. Then we show

how to create D′ to distinguish TBitsp,g,c from RTBitsp,g,c with probability ε.
In the following protocol lsbExp(y) is an efficient algorithm that returns the

lsb of the exponent of y, and lsbZeroSqrt(y) is an efficient algorithm that com-
putes the two square roots of y and returns the one with lsb equal to zero.

D′(v)
{

Say v = (y, zn−c−1
1)

y′ ← y · g−2z

b← lsbExp(y′)
y′ ← y′ · g−b

For (n− c− 1 times)
y′ ← lsbZeroSqrt(y′)

y′ ← y′ · gb

D(y′)
}

Say y = gx. If v is drawn from TBitsp,g,c, then zn−c−1
1 = xn−c

2 , so y ·g−2z sets
the trailing bits (except for the lsb) of the discrete log to zero. The square roots
server to shift the c− 1 bits of the discrete log down to the trailing bits (again,
except for the lsb), so the final result y′ appears to be picked uniformly from

218 Philip Mackenzie and Sarvar Patel

BSExpp,g,c. Hence the statistical difference between D′(v) for v← TBitsp,g,c and
D(y) for y R← BSExpp,g,c is zero.

If v is drawn from RTBitsp,g,c, then zn−c+t−1
1 is random trailing bits inde-

pendent from the discrete log of y. Then the result y′ of multiplying by g−2z is
uniform in Z

∗
p. (The same idea was used by Gennaro [8] to create a more effi-

cient discrete logarithm based PRG.) Now we just argue that the remainder of
the computation on y′ does not change this distribution. First we store the lsb,
and set the lsb of y′ to be zero. Therefore the distribution of y′ is uniform over
the quadratic residues. Then we perform square root operations, where we take
the square root that is a quadratic residue. This is a permutation on quadratic
residues, so the distribution of y′ after this is also uniform over the quadratic
residues. Finally we add the lsb, which is random, so y′ is uniform over Z∗

p. Hence
the statistical difference between D′(v) for v← RTBitsp,g,c and D(y) for y R← Z∗

p

is zero.

Theorem 4. If SEc is distinguishable from U, then DLSEc can be solved in poly-
nomial time.

Proof. Let D distinguish SExpp,g,c from Z∗
p with probability ε.

Then we show how to create A to compute DLSE(p, g, y, c)

A(p, g, y, c)
{

For (guess = 0 to 2t − 1)
y′ ← y · (gguess·2c−t

)−1

x←B(p, g, y′, c− t,D∗())
if y = gx return x + guess · 2c−t

}

D∗() is a distinguisher between TBitsp,g,c−t and RTBitsp,g,c−t that can be
constructed from the previous two lemmas and based on a distinguisher be-
tween SExpp,g,c and Z∗

p. B(p, g, y, c′, D()) is the Patel-Sundaram [23] polynomial-
time algorithm for computing DLSE(p, g, y, c′) given a distinguisher D() between
TBitsp,g,c′ and RTBitsp,g,c′ .

When A(p, g, y, c) correctly guesses the t most significant bits of the c-bit
exponent of y, it sets them to zero, so that y′ ∈ SExpp,g,c−t. In this case
B(p, g, y′, c − t,D∗()) will return the correct discrete log of y′, and then A()
will return the correct discrete log of y.

A closer look at the Patel-Sundaram algorithm reveals that the time to solve
the DLSE is O((n−c−1)3c2T (n)

ε3) where T (n) is the time taken by the distinguisher
and ε is the distinguisher’s advantage; the constant in the expression is small. In
our solver, our distinguisher has advantage ε

2 and the algorithm B() is called 2t

times. Since t = log 2
ε , B() is called 2

ε times. Also the size of the exponent in B()
is changed from c bits to c− t bits. Thus the time to solve the DLSE using A is
O((n−c+t−1)3(c−t)2T (n)

ε4). If ε is non-negligible, then A runs in polynomial-time.

Hard Bits of the Discrete Log with Applications to Password Authentication 219

4 Application: Short Exponent PAK

In this section we show an application of our results to password-authenticated
key exchange protocols, and in particular, to the PAK protocols [6]. Although
one of the main technical points in the security proof for PAK is that all values
seen by the adversary are uniform in the group used, we show that the protocol
can be modified so that only short exponents are used (and thus elements are no
longer uniform in the whole subgroup), and that this new protocol can be proven
secure based on the hardness of DHSEc, for c = ω(logn). As an intermediate step,
we show it is based on the hardness of DHSEc, as well as the hardness of SEdistc.
Using the results of the previous section, this reduces to the hardness of DHSEc.

The protocol we will modify to use short exponents is the basic implicit
authentication version of PAK called PPK. Other variations such as PAK and
PAK-Z could be modified and proven secure similarly. Much of our notation and
proof techniques will be modeled on MacKenzie [17]. All of these results are in
the random oracle model.

4.1 Model

For our proofs of security we use the model of [1]. This model is designed for
the problem of authenticated key exchange (ake) between two parties, a client
and a server, that share a secret. The goal is for them to engage in a protocol
such that after the protocol is completed, they each hold a session key that is
known to nobody but the two of them. We assume that secret keys are drawn
from {0, 1}κ.

In the following, we will assume some familiarity with the model of [1].

Protocol Participants. Let ID be a nonempty set of principals, each of which
is either a client or a server. Thus ID def= Clients ∪ Servers , where Clients and
Servers are finite, disjoint, nonempty sets. We assume each principal U ∈ ID is
labeled by a string, and we simply use U to denote this string.

Each client C ∈ Clients has a secret password πC and each server S ∈ Servers
has a vector πS = 〈πS [C]〉C∈Clients . Entry πS [C] is the password record. In the
balanced case we will have πS [C] = f(πC), for some deterministic function f .
Let PasswordC be a (possibly small) set from which passwords for client C are
selected. We will assume that πC

R← PasswordC (but our results easily extend to
other password distributions). Clients and servers are modeled as probabilistic
poly-time algorithms with an input tape and an output tape.

Execution of the Protocol. A protocol P is an algorithm that determines
how principals behave in response to inputs from their environment. In the real
world, each principal is able to execute P multiple times with different partners,
and we model this by allowing unlimited number of instances of each principal.
Instance i of principal U ∈ ID is denoted ΠU

i .
To describe the security of the protocol, we assume there is an adversary

A that has complete control over the environment (mainly, the network), and
thus provides the inputs to instances of principals. Formally, the adversary is
a probabilistic algorithm with a distinguished query tape. Queries written to

220 Philip Mackenzie and Sarvar Patel

this tape are responded to by principals according to P ; the allowed queries are
formally defined in [1] and summarized here:

Send (U, i, M): Causes message M to be sent to instance ΠU
i . The instance

computes what the protocol says to, state is updated, and the output of the
computation is given to A. If this query causes ΠU

i to accept or terminate,
this will also be shown to A 4. To initiate a session between client C and
server S, the adversary should send a message containing the server name S
to an unused instance of C.

Execute (C, i, S, j): Causes P to be executed to completion between ΠC
i

(where C ∈ Clients) and ΠS
j (where S ∈ Servers), and outputs the transcript

of the execution. This query captures the intuition of a passive adversary who
simply eavesdrops on the execution of P .

Reveal (U, i): Causes the output of the session key held by ΠU
i .

Test (U, i): Causes ΠU
i to randomly select a bit b. If b = 1 the session key sk i

U

is output; otherwise, a string is drawn uniformly from the space of session
keys and output. A Test query may be asked at any time during the execution
of P , but may only be asked once.

Corrupt (U): If U ∈ Servers , this returns 〈πU [C]〉C∈Clients , and otherwise re-
turns πU

5.

Partnering. A client or server instance that accepts holds a partner-id pid ,
session-id sid , and a session key sk . Then instances ΠC

i (with C ∈ Clients)
and ΠS

j (with S ∈ Servers) are said to be partnered if both accept, they hold
(pid , sid , sk) and (pid ′, sid ′, sk ′), respectively, with pid = S, pid ′ = C, sid =
sid ′, and sk = sk ′, and no other instance accepts with session-id equal to sid .

Freshness. We define the notion of freshness without forward secrecy [1]. An
instance ΠU

i is nfs-fresh (fresh with no requirement for forward secrecy) unless
either (1) a Reveal (U, i) query occurs, (2) a Reveal (U ′, j) query occurs where
Πj

U ′ is the partner of ΠU
i , or (3) a Corrupt (U ′) query occurs. (For convenience,

we simply disallow Corrupt queries.)

Advantage of the Adversary. We now formally define the authenticated key
exchange (ake) advantage of the adversary against protocol P . Let Succake

P (A)
be the event that A makes a single Test query directed to some fresh instance
ΠU

i that has terminated, and eventually outputs a bit b′, where b′ = b for the
bit b that was selected in the Test query. The ake advantage of A attacking P is
defined to be

Advake
P (A) def= 2 Pr

[
Succake

P (A)
]
− 1.

The following fact is easily verified.

Fact 1 Pr(Succake
P (A)) = Pr(Succake

P ′ (A))+ε ⇐⇒ Advake
P (A) = Advake

P ′ (A)+2ε.
4 Recall that accepting implies generating a triple (pid , sid , sk), terminating implies

accepting and no more messages will be output. If the protocol aborts, then no
more messages will be output, but it does not accept or terminate according to our
definitions.

5 This is the weak corruption model of [1].

Hard Bits of the Discrete Log with Applications to Password Authentication 221

4.2 SEPPK Protocol

Let n be the size of p, and c and c′ be auxiliary parameters that we will discuss
later. The short exponent PPK (SEPPK) protocol is shown in Figure 1, where
all arithmetic operations are performed in Z∗

p. The only difference between this
protocol and the PPK protocol in [17] is in how x and y are chosen; in PPK
they are chosen from Zq, where q = p− 1.

Recall that we assume the random oracle model, and thus we assume the
existence of public random functions H from {0, 1}∗ to {0, 1}∞, and as shown in
[4], this sequence of bits may be used to define the output of H in a specific set.
In particular we will assume that we can specify that the output of a random
oracle H be interpreted as a (random) element of Z∗

p.
To define hash functions that output elements of Z∗

p, (H1 and H2 in PPK),
we could, for instance, use a random oracle H : {0, 1}∗ → {0, 1}|p|+c, and
set Hi(x) ← H(BYTE(i) ‖ x) mod p. To simulate Hi, we can simulate H in
the following way. So that Hi(x) outputs X (with high probability), we set
H(BYTE(i) ‖ x) as follows, with w = 2|p|+c: Generate r

R← Zw. If r > w −
(w mod p) output r, else output X + p�r/p�.
Security and the Size of the Exponents. Initially, one may think that the security
of SEPPK would follow directly from the hardness of SEdistc, even if the expo-
nents chosen by the players were c bits. In particular, one may attempt to use
the hardness of SEdistc to reduce the security of the SEPPK protocol directly to
the security of the standard PPK protocol, since the only difference is in the size
of the exponents of the players Diffie-Hellman values. However, the simulation
argument in this reduction seems to break down since there will be a session for
which we will not know the discrete log of a simulated players Diffie-Hellman
value, and for this session we may not be able to determine a correct password
guess by the adversary.

Our proof below follows a different approach, using the hardness of SEdistc
to reduce the security of the SEPPK protocol to one where the hash functions
return values from SExpp,g,c instead of Z∗

p, and then using the security of DHSEc

to complete the proof, analogous to the proof of security of the standard PPK
protocol, but with an extra padding of c′ bits used to make some simulated
values indistinguishable from real values.

Example 1. Consider n = 1024. Let c = 256 and c′ = 128. That is, we assume
the hardness of DHSE256 and SEdist256, or equivalently, 128-bit security. Then
the exponents in the SEPPK protocol must be 384 bits. Note that this is more
efficient than the PPK protocol using similar parameters, since in the PPK
protocol, the client needs to perform two 256-bit exponentiations and one extra
768-bit exponentiation.

4.3 Security of SEPPK

Here we prove that the SEPPK protocol is secure, in the sense that an adver-
sary attacking the system cannot determine session keys of fresh instances with
greater advantage than that of an online dictionary attack. For concreteness, we

222 Philip Mackenzie and Sarvar Patel

Client C Server S
Input: S, π πS [C] = 〈(H1(πC))−1, H2(πC)〉

x
R←{0, 1}c+c′

α ← gx mod p
γ1 ← H1(π)
γ2 ← H2(π)
m ← α · γ1

〈C,m〉 �
Abort if m ≡ 0 mod p

y
R←{0, 1}c+c′

β ← gy

〈γ′
1, γ2〉 ← πS[C]

α ← m · γ′
1

σ ← αy

μ ← β · γ2
μ�

Abort if μ ≡ 0 mod p
β ← μ · (γ2)

−1

γ′
1 ← (γ1)

−1

σ ← βx

Fig. 1. PPK Protocol over Z
∗
p with generator g. Session ID is sid = C ‖ S ‖ m ‖ μ.

Partner ID for C is pidC = S, and partner ID for S is pidS = C. Shared session key is
sk = H3(〈C,S, m, μ, σ, γ′

1〉).

prove our theorem based on the hardness of both DHSEc and SEdistc. However,
by using the result of Theorem 4, our proof below implies that if an adver-
sary can break SEPPK with non-negligible probability, DHSEc can be solved in
polynomial time. Therefore, the security of SEPPK actually relies only on the
hardness of DHSEc.

Let SuccDHSE
p,g,c (t, k) = maxA

{
SuccDHSE

p,g,c (A)
}

, where the maximum is taken
over all adversaries of time complexity at most t that output a list containing at
most k elements of Z∗

p.

Let AdvSEdist
p,g,c (t) = maxA

{
AdvSEdist

p,g,c (A)
}

, where the maximum is taken over
all adversaries of time complexity at most t.

Let texp be the time required to perform an exponentiation in Z∗
p.

Theorem 5. Let P be the SEPPK protocol described in Figure 1 except that the
exponents x and y are drawn uniformly from {0, 1}c+c′. Assume passwords are
drawn uniformly from a dictionary of size N . Fix an adversary A that runs in
time t, and makes qse, qex, qre queries of type Send,Execute,Reveal, respectively,
and qro queries to the random oracles. Then for t′ = O(t+ (qro + qse + qex)texp):

Advake
P (A) =

qse
N

+ O
(
qroSuccDHSE

p,q,c (t′, (qro)2) + qroAdvSEdist
p,q,c (t′)+

(qse + qex)(qro + qse + qex)2−(c+c′) + qro2−c + qse2−c′
)
.

A proof sketch is given in the appendix.

Hard Bits of the Discrete Log with Applications to Password Authentication 223

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000 (LNCS 1807), pp. 139–155, 2000.

2. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO ’93 (LNCS 773), pp. 232–249, 1993.

3. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Symposium on Research in Security and
Privacy, pages 72–84, 1992.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, November 1993.

5. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. In SIAM Journal of Coumputing 13(4):850–864, November
1984.

6. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password authentication
and key exchange using Diffie-Hellman. In EUROCRYPT 2000 (LNCS 1807), pp.
156–171, 2000.

7. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Info.
Theory, 22(6):644–654, 1976.

8. R. Gennaro. An Improved Pseudo-Random Generator Based on Discrete Log. In
CRYPTO 2000 (LNCS 1880), pp. 469–481, 2000.

9. O. Goldreich and L. Levin. A hard core predicate for any one way function. 21st
ACM Symposium on the Theory of Computing, pp. 25-32, 1989.

10. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only. In CRYPTO 2001 (LNCS 2139), pp. 408–432, 2001.

11. J. Hastad and M. Naslund. The Security of all RSA and discrete log bits.
Manuscript, 1999. (Preliminary version appears in 39th FOCS, 1998, pp. 510–519.)

12. J. Hastad, A. Schrift, and A. Shamir. The discrete logarithm modulo a composite
hides O(n) bits. Journal of Computer and System Sciences, 47:376–404, 1993.

13. A. Juels, M. Jakobsson, E. Shriver, and B. Hillyer. How to turn loaded dice into
fair coins. IEEE Transactions on Information Theory, 46(3): 911-921, 2000.

14. The Art of Computer Programming (vol 3): Sorting and Searching, Addison, Wes-
ley, 1973.

15. T. Lomas, L .Gong, J. Saltzer, and R. Needham. Reducing risks from poorly chosen
keys. ACM Operating Systems Review, 23(5):14–18, Dec. 1989. Proceedings of the
12th ACM Symposium on Operation System Principles.

16. D. Long and A. Wigderson. The discrete log hides O(log n) bits. SIAM Journal of
Computing 17, 413–420, 1988.

17. P. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange.
DIMACS Technical Report 2002-46, October 2002.

18. P. MacKenzie, S. Patel, and R. Swaminathan. Password authenticated key ex-
change based on RSA. In ASIACRYPT 2000 (LNCS 1976), pp. 599–613, 2000.

19. M. Naslund. Universal hash functions and hard core bits. In EUROCRYPT 1995
(LNCS 921), pp. 356–366, 1995.

20. M. Naslund. All bits in ax+b are hard. In CRYPTO 1996 (LNCS 1109), pp. 114–
128, 1996.

21. P. van Oorschot and M. Wiener. On Diffie-Hellman key agreement with short
exponents. EUROCRYPT’96 (LNCS 1070), pp. 332–343, 1996.

224 Philip Mackenzie and Sarvar Patel

22. TIA/EIA/IS-683-C. Over-the-Air service provisioining of mobile stations in spread
spectrum systems.

23. S. Patel and G. Sundaram. An efficient discrete log pseudo random generator. In
CRYPTO ’98 (LNCS 1462), pp. 304-317, 1998.

24. R. Peralta. Simultaneous security of bits in the discrete log. In EUROCRYPT 1985
(LNCS 219), pp. 62–72, 1985.

25. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of Computation, 32, No. 143:918–924, 1978.

26. D. R. Stinson. Universal hash families and the leftover hash lemma, and applica-
tions to cryptography and computing. J. Combin. Math. Combin. Comput., 42,
(2002), 3-31.

27. M. I. Gonzalez Vasco and M. Naslund. A survey of hard core functions. In Pro-
ceedings of the Workshop on Comp. Number Theory and Cryptography, Singapore
1999, Birkhauser, 2001, 227-256.

A Proofs

Proof (of Claim 3). Let X = SEp,g,c and Y = MIXp,g,c,t. Note the following:

1. For z ∈ {gx : 0 ≤ x < 2c−t − 1}, 2−c = Pr(X = z) ≥ Pr(Y = z).
2. For z ∈ {gx : 2c−t − 1 ≤ x < 2c − 1}, 2−c = Pr(X = z) = Pr(Y = z).
3. For z ∈ {gx : 2c ≤ x < 2c + 2c−t − 1}, 2−c ≥ Pr(Y = z) ≥ Pr(X = z).

Then StatDiff(X,Y) = 1
2

∑
z |Pr(X = z) − Pr(Y = z)| =

∑
z max{Pr(X = z),

Pr(Y = z)}− 1 ≤ 2−c(2c−t − 1) + 2−c(2c − 2c−t) + 2−c(2c−t − 1)− 1 ≤ 2−t ≤ ε
2 ,

where a proof for the second equality can be found in Stinson [26].

Proof (of Theorem 5 – Sketch). The proof of this theorem closely follows the
proof of security for PPK given in [17], which we call the PPK proof. We will
sketch this proof, focusing on the changes that need to be made to handle short
exponents.

As in the PPK proof, our proof will proceed by introducing a series of pro-
tocols P0, P0.5, P1, . . . , P7 related to P , with P0 = P . In P7, A will be reduced
to a simple online guessing attack that will admit a straightforward analysis.
Note that we add an addition protocol P0.5 in our analysis. We describe these
protocols informally in Figure 2. Except for P0.5 and P2, these descriptions are
identical to those in the PPK proof. Note that we do not have any sort of random
self-reducibility in SExpp,g,c, which somewhat reduces the strength of our secu-
rity reductions. For each i from 1 to 7, we will bound the decrease in advantage
of A attacking protocol Pi compared to A attacking protocol Pi−1.

P0 → P1: First we bound the decrease in advantage of A attacking protocol P0.5

compared to A attacking protocol P0. This is by a straightforward hybrid
argument on the calls to H1(·) and H2(·), so the decrease in advantage of A
is at most 2qroAdvSEdist

p,g,c (t′).
Next we bound the decrease in advantage of A attacking protocol P1 com-
pared to A attacking protocol P0.5. This is by the same argument as the
PPK proof, except that since the hash functions output values in a different
range, the q−1 factor is replaced by 2−c+c′, so the decrease in advantage of
A is at most O((qse + qex)(qro + qse + qex))2−(c+c′).

Hard Bits of the Discrete Log with Applications to Password Authentication 225

P0 The original protocol P .
P0.5 All values returned by H1(·) and H2(·) are drawn from SExpp,g,c.
P1 If honest parties randomly choose m or μ values seen previously in the exe-

cution of the protocol, the protocol halts and the adversary fails.
P2 The protocol answers Send and Execute queries using m and μ drawn ran-

domly from SExpp,g,c+c′ , without making any random oracle queries. Subse-
quent random oracle queries by the adversary are backpatched, as much as
possible, to be consistent with the responses to the Send and Execute queries.
(This is a standard technique for proofs involving random oracles.)

P3 If an H3(·) query is made, it is not checked for consistency against Execute
queries. That is, instead of backpatching to maintain consistency with an
Execute query, the protocol responds with a random output.

P4 If a correct password guess is made against a client instance or server instance
(determined by an H3(·) query using the correct inputs to compute a session
key), the protocol halts and the adversary automatically succeeds.

P5 If the adversary makes two password guesses against the same server instance,
the protocol halts and the adversary fails.

P6 If the adversary makes two password guesses against the same client instance,
the protocol halts and the adversary fails.

P7 The protocol uses an internal password oracle that holds all passwords and
only accepts simple queries that test whether a given password is the correct
password for a given client/server pair. The test for correct password guesses
(from P4) is changed so that whenever the adversary makes a password guess,
a query is submitted to the oracle to determine if it is correct.

Fig. 2. Informal description of protocols P0 through P7.

P1 → P2: Using m and μ drawn randomly from SExpp,g,c+c′ introduces a sta-
tistical distinguishability factor of O(qse)2−c′ . Then as in the PPK proof,
the remaining possibility of distinguishing the protocols is when A makes an
H3(〈C, S, ·, ·, ·, γ′〉) query where γ′ = H1(πC), but A has not actually made
the H1(πC) query. (That is, the adversary “guesses” the correct output of
an H1(·) query.) However, in our proof the H1(·) function outputs values
in a different range, so the q−1 factor is replaced by 2−c+c′, and thus the
distinguishing factor becomes O(qro)2−c.

P2 → P3: Similar to the PPK proof (with DHSE replacing CDH), this can be
shown using a standard reduction from DHSE. The decrease in advantage of
the adversary is at most 2SuccDHSE

p,g,c (t′, qro) + O(qex)2−c′ .
P3 → P4: As in the PPK proof, there is no decrease in the advantage of the

adversary.
P4 → P5: Similar to the PPK proof (with DHSE replacing CDH), this can be

shown using a standard reduction from DHSE. However, as opposed to
the PPK proof, one must make a guess at the H1(·) query involved in
the adversary’s double password guess, since we do not have random self-
reducibility in SExpp,g,c. The decrease in advantage of the adversary is at
most 2qroSuccDHSE

p,g,c (t′, (qro)2) + O(qse)2−c′ .

226 Philip Mackenzie and Sarvar Patel

P5 → P6: This is a reduction from DHSE, similar to the previous one. The de-
crease in advantage of the adversary is at most 2qroSuccDHSE

p,g,c (t′, (qro)2) +
O(qse)2−c′ .

P6 → P7 As in the PPK proof, by inspection one can see that these two protocols
are indistinguishable.

The probability of A succeeding in P7 is now at most the probability of
A guessing the correct password, plus the probability of succeeding while not
guessing the correct password. Since there are at most qse queries to the pass-
word oracle, and passwords are chosen uniformly from a dictionary of size N , the
probability of A guessing the correct password is at most qse

N . Then the probabil-
ity of A succeeding in P7 without guessing the password is the probability of A
making a Test query and succeeding in guessing the bit used in that query. But
as in the PPK proof, the view of A can be seen to be independent of the unre-
vealed session keys, and thus the probability of succeeding in this way is exactly
1
2 . Thus the advantage of A in P7 is at most qse

N , and the theorem follows.

Proofs for Two-Server Password Authentication

Michael Szydlo and Burton Kaliski

RSA Laboratories,
Bedford, MA 01730, USA

{mszydlo,bkaliski}@rsasecurity.com

Abstract. Traditional password-based authentication and key-ex-
change protocols suffer from the simple fact that a single server stores the
sensitive user password. In practice, when such a server is compromised,
a large number of user passwords, (usually password hashes) are exposed
at once. A natural solution involves splitting password between two or
more servers. This work formally models the basic security requirement
for two-server password authentication protocols, and in this framework
provides concrete security proofs for two protocols. The first protocol
considered [7] appeared at USENIX’03, but contained no security proof.
For this protocol, we provide a concrete reduction to the computational
Diffie-Hellman problem in the random oracle model. Next we present a
second protocol, based on the same hard problem, but which is simpler,
and has an easier, tighter reduction proof.

Keywords: password authentication, secret sharing, concrete security
reduction

1 Introduction

Passwords remains the most widespread method of user authentication to date,
despite their inherent weaknesses. For example, user passwords, or password
hashes are often stored in a server database, and the user authenticates by send-
ing the password back using a server-side SSL authenticated channel. Of course,
all password systems permit an attacker to make some number of guesses before
the server locks the account down. However, a much more serious vulnerability
exists: in case of a server compromise, an attacker may obtain all user passwords,
or password hashes in the database at once.
Strengthening Passwords: The convenience of user-chosen password authen-
tication protocols has caused them to be widely deployed. Among the weaker
protocols one finds passwords sent in the clear, reusable low entropy PINs, and
hash based challenge response techniques. A commonly used, and better, ap-
proach is to send a password or password hash over a server-side SSL- authenti-
cated connection. Conceptually, these approaches still suffer from the fact that a
user may be tricked into revealing his password to a server who does not know it.
Starting with Encrypted Key Exchange[2] of Bellovin and Merritt, the benefits
of a zero-knowledge based approach were realized. The goal of such protocols is
to provide an authentication procedure which does not reveal a user password to

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 227–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 Michael Szydlo and Burton Kaliski

any party who does not already have it. This line of research continued in several
directions [8, 14, 4, 12], and represent a significant improvement in client-server
protocols.

Multiple Server Use: Despite the improvements described above, single server
password based authentication protocols do not protect from server compromise
in a satisfactory way. Typically, an attacker who breaches a server will be able to
obtain a very large number of user passwords, perhaps after running a dictionary
attack (salt merely slows this). The natural approach to addressing this vulnera-
bility is the use of multiple servers. In such schemes, the capability of verifying a
password is split among two or more machines, and more than a certain thresh-
old number of servers need to collude to recover the password. Starting with the
work of Ford and Kaliski[6], various zero-knowledge multiple server password
protocols have been proposed [9, 13, 7]. Multi-server protocols should provide
basic username-password authentication to the collection of servers, without us-
ing special hardware or long-term client side key storage. Even for low-entropy
passwords, an attacker should not be able to improve upon the naive guessing
strategy without corrupting a threshold number of servers. On the other hand,
these protocols do not pretend to have unrealistic goals of preventing denial of
service or protecting user passwords in the case of client compromise.

Our focus, the two-server approach, is appealing for several reasons. With just
two servers, the largest risk of wholesale password theft is greatly diminished.
Also, deploying a large number of independently run servers appears logistically
challenging, whereas the addition of a second server may be feasible in practice.

Provable Security: Increasingly, it has been realized that the proposal of a
cryptographic scheme is only as valuable as its accompanying provable security
analysis. The security proof techniques based on complexity theoretic founda-
tions, including the copious general results on secure multi-party computation
and threshold cryptography, provide tools for analyzing the kinds of protocols
we are interested in. Typically, this framework is used to present asymptotic
security definitions and security proofs1. However, for a protocol which is to be
deployed, a concrete security analysis is required.

Our Contributions: In this work, we describe an appropriate framework for
analyzing the concrete security of two-server password based authentication
schemes. For a (random oracle) variant of [7], we provide a concrete reduction to
the computational Diffie-Hellman problem. We also present a second protocol,
based on the same hard problem, whose security proof is tighter, and simpler. All
of our the security proofs are presented as explicit reduction algorithms which
relate the difficulty of two computational problems. This approach allows for a
more transparent concrete security analysis. Given that difficult security proofs,
are sometimes left unread, we hope that our explicit approach is helpful.

1 The somewhat misleading identification of the term “polynomial time” with “effi-
cient” is due to the notion’s stability among different models of computation.

Proofs for Two-Server Password Authentication 229

1.1 Organization

The rest of this paper is organized as follows. In Section 2, we discuss the struc-
ture and desired security properties of a two-server password authentication
protocol. In Section 3, we describe a general framework for concrete security re-
ductions. In Section 4, we recall the protocol from [7], and present a new protocol.
In Section 5, we define the concrete adversarial experiments appropriate for our
two party authentication protocols. In Section 6 and 7 we provide the explicit
reduction algorithm and state the concrete security result for these schemes. We
summarize the results and conclude in Section 9. In the appendix, we discuss
the unmodified scheme of [7], and the use of a Decisional Diffe-Hellman oracle.

2 Communication Framework and Desired Security

A two server authentication protocol involves a Client and two servers. Following
[7], the two servers will be denoted Blue and Red. During an enrollment phase, the
user chooses a password, which is processed by the client to produce registration
messages for each server. Later, when a claimant enters a password, the client
prepares and sends authentication messages to each server. After the two servers
complete a verification protocol, the claimant is notified of the result by one or
both servers.

To model a scenario in which the identities of the Blue and Red servers are
easily ascertained, we assume that all parties employ a secure channel to Blue
and Red. In practice, this can be realized with SSL. Architecturally, it may be
desirable for the client to communicate with a single server, and this is easily
accomplished by treating one server (say Blue) as a router.

The reader will easily verify that the protocols we describe are complete; a
claimant with correct password will always authenticate correctly. More difficult
is to show the soundness property: that an adversary can not do much better
than password guessing.
Password Privacy: In this paper, we are interested in measuring if the two-
party password protocols optimally protects the sensitive password data in the
event that one server is compromised, and that compromising one server does
not help an adversary authenticate to the other server. An experiment to test
this should be designed so that an adversary

1. Tries to authenticate as a user who has previously enrolled.
2. May compromise one server, gaining the ability to impersonate messages.
3. May pose as the user and interact in some number of rounds, (denoted T).
4. May prompt the actual user to authenticate with the correct password.
5. Is allowed some bounded number of random oracle calls, (denoted Q)2.
6. Is compared with an ideal-world adversary, allowed T password guesses.

2 Artificially counting random oracle calls this way is a feature of random oracle se-
curity proofs. When arguing that the security carries over to protocols using a hash
function, Q is usually set to be proportional to the adversary’s running time.

230 Michael Szydlo and Burton Kaliski

To simplify the formal experiments which follow, we make an additional as-
sumption on the protocol. Namely we assume the two servers employ a session
management technique which precludes simultaneous authentication attempts
for the same username, and also eliminate attacks which confuse messages cor-
responding to distinct usernames3. This means that the adversary will not gain
any advantage by interleaving messages among concurrent sessions.
Limitations of the Model: For concreteness, we set the adversarial goal to
be persuading the non-corrupted server to authenticate the adversary as user
username. It is straightforward to alter the exact experiments described below
for the goal of correctly guessing the password. This can be a more natural goal,
for instance, when one server (Blue) is granting access to some service, and an-
other (Red) is present to elliminate a single point of password compromise. Then,
the natural goal of an adversary compromising Blue is to learn user passwords.

The adversarial capabilities described above do not measure the potential
advantage an adversary might gain from keying error. Since the adversary is
only allowed to activate the client on the correct password, the model does not
capture the potential advantage for an adversary who observes a client launching
the authentication sequence with a incorrect but related password. Although it
is clumsy to model, it is conceivable that an adversary might benefit from this.

3 Formal Security Model

3.1 Adversarial Experiment Background

Parties and Experiments: All cryptographic parties are modeled as known
stateful, probabalistic algorithms, whose inputs and outputs are interpreted as
messages. The adversary, denoted Adv, is modeled by an arbitrary, unspecified
algorithm. Experiments, or hard problems are algorithms which call one or more
parties (black box) and output a bit {0, 1}, and are used to describe joint prop-
erties of the parties. For each adversary Adv, we denote the running-time of
Adv in experiment Exp by T imeExp(Adv), and the success by SuccExp(Adv) =
Prob[ExpAdv() = 1].
Adversarial Capabilities: A security property of a protocol is defined in terms
of an experiment which specifies both the adversarial capabilities (limiting the
number and order of messages sent), and the adversarial objective, or success
criteria. These experiments are designed to measure the ability of an attacker to
disrupt normal protocol flow, or to learn a secret.
Concrete Reduction: A concrete reduction from hard problem ExpRe to
ExpHp is a black box conversion of adversary AdvRe for the first to an adversary
AdvHp for the second. More specifically, it consists of:

1. An algorithm Reduce, defining AdvHp = ReduceAdvRe.
2. A formula for SuccExpHp(AdvHp) in terms of SuccExpRe(AdvRe).
3. A formula for T imeExpHp(AdvHp) in terms of T imeExpRe(AdvRe).

3 The username is included as input to the each random oracle (hash function) call.

Proofs for Two-Server Password Authentication 231

To be meaningful, ExpHp should represent a well studied computational prob-
lem, such as factoring, or the computational Diffe-Hellman problem4.

A comparative concrete reduction from hard problem ExpRe to ExpId and
ExpHp, also includes an algorithm ReduceId, defining AdvId = ReduceIdAdvRe,
and a formula for SuccExpHp(AdvHp) in terms of the real-ideal world advantage:

Ad = SuccExpRe(AdvRe) − SuccExpId
(AdvId). (1)

No Complexity Assumptions: In the concrete framework, no notion of com-
putational indistinguishability is required, and complexity assumptions play a
reduced role5. Although not required by this framework, a security parameter k
can be used to calibrate the scheme so that the underlying hard problem is more
difficult, and thus the attacker’s task more costly.
Random Oracle Disclaimer: Unfortunately, our protocols involve hash func-
tions, yet our security statements do not reduce to the associated hard problems
of inverting a hash function on a random input or of finding a collision. Instead,
our analysis pretends that the hash functions are replaced with “truly random”
functions[1]. As with all random oracle proofs, the security statements we prove,
describe most directly properties of a related protocol in which all parties must
query a distinct cryptographic trusted third party to evaluate the hash func-
tion. This party, easily implemented with a sorted table, chooses the random
function in stages by replying to queries randomly and consistently6.

4 Two Protocols

Secret Sharing Basis: We now describe a slightly modified version of the
protocol[7], and describe our new protocol. Before we begin, we provide the
basic intuition and notation common to each. During the registration phase
the client splits the password pass into shares by choosing a random pad R as
the first share, and setting the second share P = R ⊕ pass′. Later, during the
authentication phase, a claimant using password pass′, selects a distinct random
pad, R′, and sets P ′ = R′ ⊕ pass′. The Blue server computes Â = P ⊕P ′, while
the Red server obtains B̂ = R⊕R′. Clearly Â = B̂ ⇐⇒ pass = pass′.
Relationship with Password Key Exchange: The problem of comparing
two values in zero knowledge is known as the socialist millionaire’s problem [5,
10, 11, 3]. Password based key exchange protocols must solve this problem. The
authentication protocols we consider are not key exchange protocols, per se,
as they already utilitize SSL session keys, but the interaction between the two
servers also follows a solution to the socialist millionaire’s problem. The reader
4 Reduction arguments relying on stronger assumptions such as the Decisional Diffe-

Hellman assumption, or oracle “gap-assumptions” are somewhat less compelling.
5 Common complexity-theoretic notions of “negligible function”, and “computational

indistinguishability” may distract from the focus of a concrete security analysis.
6 We prefer to explicitly describe the random oracle as a trusted third party so as not

to overstate the security implications of a random oracle proof.

232 Michael Szydlo and Burton Kaliski

is encouraged to compare messages exchanged between Blue and Red (especially
in the new scheme) with zero-knowledge key-exchange protocols such as PAK[4].

We also remark that the security of the three-party protocols we consider does
not follow automatically from a solution to the socialist millionaire’s problem. In
general, deducing security properties of composed protocol instances is difficult;
furthermore, in our particular case, the adversary can influence both Â and B̂.

Notation: The first protocol is from [7] (modifications discussed below), and
the new protocol follows the same framework. For easy comparison, we use the
same notation and display the two side by side. Let k be an integer, G be a cyclic
group of order q with generator G, and gp.gen(k) an algorithm which generates
(a description of) G.7 Let pass, pass′, R, P , R′, P ′ ∈ {0, 1}k, e, f be integers in
[1, q], A,B, Y0, Y1, Z0, Z1 ∈ G; H0, H1 ∈ {0, 1}k, and ok0, ok1 ∈ {0, 1}. Let w be
a function {0, 1}∗ → G, and let h be a function {0, 1}∗ → {0, 1}k, implemented

by random oracles W , and H . The symbol $← denotes a random assignment.

Modified BJKS(k) New Scheme(k)

Parameters
(G, q, G) ← gp.gen(k)
Registration
pass ← passgen()

R
$← {0, 1}k

P ← R ⊕ pass
Authentication
Client.auth1(pass′, U):

R′ $← {0, 1}k

P ′ ← R′ ⊕ pass′

Blue.auth1(P ′, U):

e
$← [1, q]

A ← w(P ⊕ P ′, U)
Y0 ← AGe

Red.auth1(R′, Y0, U):

f
$← [1, q]

� B ← w(R ⊕ R′, U)
Y1 ← BGf

Z1 ← (Y0/B)f

� H1 ← h(Y0, Y1, Z1, R ⊕ R′, U)
Blue.auth2(Y1, H1):
Z0 ← (Y1/A)e

� H0 ← h(H1, Z0, P ⊕ P ′, U)
Red.auth2(H0):

� ok1 ← H0
?
= h(H1, Z1, R ⊕ R′, U)

Blue.auth3():

� ok0 ← H1
?
= h(Y0, Y1, Z0, P⊕P ′, U)

Client.auth2(ok0).

Parameters
(G, q, G) ← gp.gen(k)
Registration
pass ← passgen()

R
$← {0, 1}k

P ← R ⊕ pass
Authentication
Client.auth1(pass′, U):

R′ $← {0, 1}k

P ′ ← R′ ⊕ pass′

Blue.auth1(P ′, U):

e
$← [1, q]

A ← w(P ⊕ P ′, U)
Y0 ← AGe

Red.auth1(R′, Y0, U):

f
$← [1, q]

B ← w(R ⊕ R′, U)
� Y1 ← Gf

Z1 ← (Y0/B)f

H1 ← h(Y0, Y1, Z1, R ⊕ R′, U)
Blue.auth2(Y1, H1):
� Z0 ← Y e

1

� ok0 ← H1
?
= h(Y0, Y1, Z0, P⊕P ′, U)

� if(ok0), conf ← P ⊕ P ′ else ∅
� Red.auth2(ok0, conf):

� ok1 ← R ⊕ R′ ?
= conf

� Blue.auth3():
Client.auth2(ok0).

7 This description includes an efficient test of membership for G. E.g., G = Z∗
p .

Proofs for Two-Server Password Authentication 233

Modifications: The first scheme described above differs from [7] in computa-
tions marked with the symbol �. The main difference is that P ⊕P ′ and R⊕R′

have been added as hash function inputs. This allows for a less awkward and
more efficient security proof. Also, the G -membership check for Y0, Y1 is not
depicted, but implicitly assumed to be part of the message parsing.

Although the new scheme resembles the first in form, it is related more
naturally to the Diffe-Hellman problem (and to PAK), and thus has a tighter
proof. In the new scheme, Y1 is set to Gf , instead of BGf , no H0, is computed,
and instead the Blue server sends R⊕R′ back to the Red server as a confirmation
message. These further differences are also marked by the symbol �.

5 Adversarial and Computational Problems

Following the framework of Section 3, we now describe the adversarial experi-
ments corresponding to the actual adversary (ExpRe), the ideal-world adversary
(ExpId), and the underlying hard problem (ExpHp). The concrete security state-
ments tie together the performance of adversaries for three such experiments,
quantifying the informal statement “the adversary can’t do significantly better
than guessing”.

ExpReal(k,T) ExpIdeal(T) CDH(k)

(G, q, G) ← gp.gen(k)
pass ← passgen()

R
$← {0, 1}k

P ← R ⊕ pass
AdvCorrupt(< sec >)
for(t = 1 to T)
< CompRound() >
loop
if (ok0=1) return(1) else
return(0)

pass ← passgen()
guess ← Adv

ok ← guess
?
= pass

return(ok)
————————–
Oracle Guess(s)
(allowed T -1 queries)

ok ← s
?
= pass

return(ok)

(G, q, G) ← gp.gen(k)

x
$← [1, q], X ← Gx

y
$← [1, q], Y ← Gx

Z ← Adv(G, q, G, X, Y)

return: ok ← Z
?
= Gxy

CDH-Square(k)

(G, q, G) ← gp.gen(k)

x
$← [1, q], X ← Gx

Z ← Adv(G, q, G, X)

return: ok ← Z
?
= Gx2

The ideal world adversarial experiment is very simple. It effectively must guess
the password in T tries. Clearly, the success probability of any adversary in
ExpIdeal(T) is less than the sum of the most common T passwords produced
by passgen(). We denote this probability GuessProb(T).

The hard problem experiment above simply corresponds to the Diffe-Hellman
problem for group G. Experiment CDH-Square(k) corresponds to the problem
of computing DH(X,X) from X , where DH(Ga, Gb) denotes the element Gab.

The real-world experiment is more interesting, and depends on which server
is compromised. The secret < sec > revealed during compromise is either P
if Blue is compromised, or R if Red is compromised. The per-round interac-
tions (CompRound() above), are described in more detail below with ExpRe-
alBlue(k,T) and ExpRealRed(k,T), which reflect the adversary’s capabilities
listed in Section 2. Separate experiments are given for the new scheme.

234 Michael Szydlo and Burton Kaliski

5.1 Per Round Interactions

These experiments are designed to follow the framework of in Section 2, except
for an additional simplification. Namely, the possibility of the adversary “acti-
vating” a user to authenticate with the correct password is treated separately, so
that we can assume that the adversary must interact within a session. It is not
difficult to see why the adversary will not benefit from this activity. In such a
situation P ⊕P ′ = R⊕R′, and regardless of whether the adversary has compro-
mised Blue or Red, the messages of the other server may be perfectly simulated,
so the adversary can learn nothing. Further details are in Appendix D.

CompRedRound CompRedRoundNew

Adversary:
P ′ ← AdvClient1()
Blue.auth1(P ′):

e
$← [1, q]

A ← w(P ⊕ P ′, U)
Y0 ← AGe

Adversary:
Y1, H1 ← AdvRed.auth1(Y0)
Blue.auth2(Y1, H1):
Z0 ← (Y1/A)e

H0 ← h(H1, Z0, P ⊕ P ′, U)
Adversary:
AdvRed.auth2(H0)
Blue.auth3():

ok0 ← H1
?
= h(Y0, Y1, Z0, P ⊕ P ′, U)

Adversary:
AdvClient2(ok0)

Adversary:
P ′ ← AdvClient1()
Blue.auth1(P ′):

e
$← [1, q]

A ← w(P ⊕ P ′, U)
Y0 ← AGe

Adversary:
Y1, H1 ← AdvRed1(Y0)
Blue.auth2(Y1, H1):
Z0 ← (Y1/A)e

ok0 ← H1
?
= h(Y0, Y1, Z0, P ⊕ P ′, U)

if(ok0), conf ← P ⊕ P ′ else ∅
Adversary:
AdvRed2(ok0, conf)
Blue.auth3():
Adversary:
AdvClient2(ok0)

CompBlueRound CompBlueRoundNew

Adversary:
R′ ← AdvClient1()
Y0 ← AdvBlue1()
Red.auth1(R′, Y0, U):

f
$← [1, q]

B ← w(R ⊕ R′, U)
Y1 ← BGf

Z1 ← (Y0/B)f

H1 ← h(Y0, Y1, Z1, R ⊕ R′, U)
Adversary:
H0 ← AdvBlue2(Y1, H1)
Red.auth2(H0):

ok1 ← H0
?
= h(H1, Z1, R ⊕ R′)

Adversary:
AdvClient2()

Adversary:
R′ ← AdvClient1()
Y0 ← AdvBlue1()
Red.auth1(R′, Y0, U):

f
$← [1, q]

B ← w(R ⊕ R′, U)
Y1 ← Gf

Z1 ← (Y0/B)f

H1 ← h(Y0, Y1, Z1, R ⊕ R′, U)
Adversary:
ok, conf ← AdvBlue2(Y1, H1)
Red.auth2(ok0, conf):

ok1 ← R ⊕ R′ ?
= conf

Adversary:
AdvClient2()

These per round interactions have been naturally derived from the real proto-
cols by inserting the adversary’s where the compromised server would be active.

Proofs for Two-Server Password Authentication 235

6 Concrete Reduction Algorithms

We now present the reduction algorithms, which will ultimately convert the real
world adversary into algorithm for solving CDH(k) or CDH-Square(k).

6.1 Strategy

We consider adversaries which compromise the Blue and Red servers separately,
and we prove each concrete reduction statement in two stages.

In Stage 1, we immediately present the reduction algorithm itself: Reduce,
which yields a CDH(k) adversary AdvHp = ReduceAdvRe for each real-world
adversary AdvRe. Viewing the transcript of a real-world experiment ExpAdvRe

Re

as a sequence of random variables, we will define (separately for each experi-
ment) an event called an effective guess which can be loosely interpreted as a
password guess, and we say the event EOverT occurs if there are more than T
effective guesses. In this stage we also relate the success SuccExpHp(AdvHp) to
the probability Prob[EOverT].

The goal of Stage 2, is to compare Prob[EOverT] with the success of the
real and ideal-world adversaries. To this end we study the interaction of a real
world adversary with a perfect simulator that calls a password guessing ora-
cle. By limiting the number of password guessing oracle calls to T , we obtain
an auxiliary reduction algorithm ReduceId, which yields an ideal-world Adver-
sary AdvId = ReduceIdAdvRe for each real-world adversary AdvRe. As an ideal
world adversary, its success must be bounded by GuessProb(T). The simulation
is also constructed such that if all effective guesses are incorrect, the success
probability is only T 2−k. Taken together, this implies that SuccExpRe(AdvRe) ≤
Prob[EOverT] + GuessProb(T) + T 2−k. Rewriting this relation as

Prob[EOverT] ≥ SuccExpRe(AdvRe) −GuessProb(T)− T 2−k, (2)

and combining it with the bound of stage 1, we finally relate SuccExpHp(AdvHp),
to the adversarial advantage (Eq. 1).

6.2 Compromise-Red Reduction (Modified BJKS)

For this experiment, we define an effective guess on ˜pass in round t to be the
event that for the Y0, Y1, H1, P

′ sent in round t, oracle H was called on input
(Y0, Y1, Z̃, P̃ , U) or on input (H1, Z̃, P̃ , U), where P̃ = P ′⊕R⊕ ˜pass, Ã = W (P̃),
and Z̃ = DH(Y0

Ã
, Y1

Ã
). We also let Q† = Q + 2T denote the maximal number of

H oracle queries in the entire experiment.
For the BJKS-modified scheme, our aim is reduce to CDH-Square(k). Thus

Reduce accepts X as input and attempts to compute DH(X,X). Reduce calls
AdvRe black box, and employs code from the actual protocol, as well as custom
versions, simulations, of certain functions, generally following the flow of ExpRe.
For this reduction, a custom W -oracle embeds X by responding to each new
query with Xr for a random r ∈ [1, q]. Next, for one randomly chosen round

236 Michael Szydlo and Burton Kaliski

t0 ∈ [1, T], the usual adversarial round interaction will be replaced with one in
which Blue’s normal operation is simulated so that (1) Y0 = Ga has a random
known discrete log a, (2) H0 is set to be equal to a value coinciding with a
random H oracle response in the range of indices [1, Q†], and (3) ok0 is chosen
randomly from {0, 1}.

Such a simulation is not perfect, but its transcript distribution follows that
of an actual real world adversary with probability at least 1/(2Q†). Since t0 is
random, with probability at least Prob[EOverT]/(2Q†T), two effective guesses
will be made on round t0. In the final stage, two indices in [1, Q†] are chosen
at random. If these indices correspond to H queries of the two effective guesses,
these H oracle queries will include the distinct pairs (P̃ , Z) and (P̃ ′, Z ′), such
that Z = DH(Y0

Ã
, Y1

Ã
) for Ã = W (P̃), and Z ′ = DH(Y0

Ã′ ,
Y1

Ã′) for Ã′ = W (P̃ ′).
Searching through the maximum of Q+T+2 calls to the W oracle, we locate the
two integers r, and r′ such that Ã = Xr and Ã′ = Xr′

. Provided r, r′, r− r′ �= 0,
the assignment

D ← {[Z(Y1/Ã)−a]1/r / [Z ′(Y1/Ã′)−a]1/r′
}1/(r−r′) (3)

yields DH(X,X). The final chance of success is Prob[EOverT]R/(2{Q3
†T), where

R = 1 − (Q + T + 2 + 2)(Q + T + 2 + 1)/2q (4)

lower bounds the chance that all the W -oracle results are distinct and nonzero.

ReduceRed(Adv, T,Q)(X,G,q,G) W,H Oracle Simulation

for i = 1 to Q + T + 2 :

ri
$← [1, q], Wi ← Xri

t0
$← [1, T], ind1

$← [1, Q†]

hrand
$← {0, 1}k

pass ← passgen()

R
$← {0, 1}k, P ← R ⊕ pass

AdvCorrupt(R)
for(t = 1 to T):

if(t = t0) SimulatedRound()
else CompRedRound()

ind2, ind3
$← [1, Q†]

(Z0, P̃) ← Hin(ind2)
(Z′

0, P̃ ′) ← Hin(ind3)
A ← W (P̃), r ← Wseek(A)
A′ ← W (P̃ ′), r′ ← Wseek(A′)

D ← { Z(Y1/A)−a]1/r

Z′(Y1/A′)−a]1/r′ }1/(r−r′)

output(D)

Oracle W(s) -Adv gets Q queries.
On i′th new query: w(s) = Wi.
Oracle H(s) -Adv gets Q queries.
ind1’th new query: h(s) = hrand.

Other new queries: h(s)
$← {0, 1}k

Simulated Round
Adversary:
P ′ ← AdvClient1()
Blue.sim1(P ′):

a
$← [1, q], Y0 ← Ga

Adversary:
Y1, H1 ← AdvRed.auth1(Y0)
Blue.sim2(Y1, H1):
H0 ← hrand
Adversary:
AdvRed.auth2(H0)
Blue.sim3():

ok0
$← {0, 1}

Adversary:
AdvClient2(ok0)

Passing to stage 2, our goal is to find a bound on Prob[EOverT]. This is
accomplished with another reduction, AdvId = ReduceIdAdvRe creating an ideal

Proofs for Two-Server Password Authentication 237

world adversary which makes guesses to a password guessing oracle. Algorithm
ReduceId is constructed from ExpRealRed(k,T), but replaces the algorithms
of Blue, H , and W with simulated algorithms, which do not directly make use
of the password.

ReduceRedId(Adv, T,Q)

Simulated Round W,H Oracle Simulation

Blue.sim1(P ′):

a
$← [1, q], Y0 ← Ga

Adversary:
Y1, H1 ← AdvRed.auth1(Y0)
Blue.sim2(Y1, H1):
for each hin

(valid, ˜pass) ← Valid(hin, t)
if(valid AND IdealGuess(˜pass))

H0, H
′
1 ← Correct(hin)

return(H0)

H0 ← hrandt
$← {0, 1}k

H ′
1 ← hrand′

t
$← {0, 1}k

Blue.sim3():

ok0 ← H ′
1

?
= H1

Oracle W(s)
On i′th new query:

ri
$← [1, q] w(s) = Gr

i .

Oracle H(hin)
for each completed round t,

(valid, ˜pass) ← Valid(hin, t)
if(valid AND IdealGuess(˜pass))

h(hin) ← hrandt

h(h′
in) ← hrand′

t

Other new queries:

h(hin)
$← {0, 1}k

Oracle IdealGuess(˜pass))

return (˜pass
?
= pass)

In contrast with Stage 1, Blue’s messages will be simulated for every round. The
challenge is to simulate Blue’s second and third interactions: Blue.sim2(Y1, H1),
and Blue.sim3(). Both H0 and ok0 must be consistent with the unknown pass-
word. This is accomplished by examining all queries made to H so far, to deter-
mine if they corresponds to effective guesses. This is done with a test

(valid, pass) ← Valid(Z̃, P̃ , t)

which returns valid = 1, if Z̃ = DH(Y0

Ã
, Y1

Ã
) for Ã = W (P̃), and 0 otherwise,

and also returns the guessed password pass = P̃ ⊕ P ′ ⊕ R, when the guess is
valid. In fact, this test can be efficiently performed if the discrete log of Ã, and
Y0 are known8. The test is used three ways, (1) to ensure each H0 is consistent
with previous H-queries, (2) to ensure each ok0 is consistent with previous H-
queries, (3) to ensure future H-queries are consistent with H0, ok0 values of
previous rounds.

A slight complication arrises from the fact that an effective guess can cor-
respond to two types of hash calls. To deal with this, the simulator uses the
function Correct(hin) which looks up the hash query values Z̃, and P̃ , and
returns both hash values H ′

1 = h(Y0, Y1, Z̃, P̃ , U) and H0 = h(H1, Z̃, P̃ , U), once
the password is discovered. If the H-oracle has not been called on the inputs cor-
responding to the correct password, the simulator will choose random responses
hrandt and hrand′t for the two types of hashes. Later H queries are always

8 Actually, the efficiency of AdvId is not important for our argument.

238 Michael Szydlo and Burton Kaliski

checked, and if one is found to correspond to an effective guesses for a previous
round, both types of hash are answered consistently, with hrandt and hrand′t.

This simulation is perfect if the number of IdealGuess() queries is not
limited, and the number of queries is distributed exactly as the number of ef-
fective guesses made by AdvRe in ExpRe. Thus by the argument above in Sec-
tion 6.1, we obtain bound (Eq. 2), on Prob[EOverT], so we can can relate
SuccExpHp(ReduceAdvRe) to the advantage Ad defined in (Eq. 1). Letting R be
the constant of (Eq. 4), and Ad′ = Ad− T 2−k, we obtain

SuccExpHp(ReduceAdvRe) ≥ Ad′R
2TQ3

†
. (5)

Furthermore, T imeExpHp(ReduceAdvRe) = TA + TE + TR, where TE is the
time of the experiment ExpRe itself, TA = T imeExpRe(AdvRe), and TR is the
additional time incurred by the reducer itself, which includes a cost proportional
to Qlog(Q) to manage the random oracle tables, the Q+ T + 2 exponentiations
for the W = Xr embedding, and the exponentiations required for the final
extraction of the candidate DH(X,X) value.

6.3 Compromise-Blue Reduction (BJKS)

This reduction is quite similar to the compromise Red one, except the definition
of effective guess is somewhat simpler as only one type of H query need be
considered. The success of the derived adversary ReduceAdvRe satisfies the same
inequality (Eq. 5). Further details on the simulation are given in Appendix A.

6.4 Completing the Reduction to CDH

The reductions, as presented, reduce to the hard problem CDH− Square(k).
In order to further reduce to CDH(k), we use a well known trick. The equation

DH(X,Y)2 =
√
DH(XY,XY)/

√
DH(X/Y,X/Y) (6)

defines a reduction Reduce, such that for all CDH− Square(k) solvers S, with
success ε completing in time τ , T = ReduceS is a CDH(k) solver with success
ε2 which completes in time 2τ . Using this approach, a significant loss of success
probability results in our reductions. However, when the decisional Diffe-Hellman
problem is feasible, the situation improves. In this case, we focus on measuring
expected time, and a CDH− Square(k) solver S, with expected time τ can be
converted to a CDH(k) solver T with expected time 2τ .

7 Reductions for the New Protocol

The reductions for the new protocol are significantly simpler. First, the appar-
ently small change of setting Y1 = Gf (instead of Y1 = BGf), enables a direct

Proofs for Two-Server Password Authentication 239

CDH(k) reduction in the compromise Blue experiment, rather than indirect
approach via the CDH− Square(k) problem. Secondly, using the confirmation
message conf , allows a direct comparison of the real-world adversary to the
password guessing adversary, without even mentioning the CHD problem. The
difference can easily be seen to be related to the chance of an H-oracle collision.

7.1 Compromise-Red (New Scheme)

For this experiment an effective guess on pass in round t denotes the event that
for the Y0, Y1, H1, P

′ sent in round t, oracle H was called on input (Y0,Y1,Z̃,P̃ ,U)
resulting in H1 where P̃ = P ′ ⊕ R ⊕ pass, Ã = W (P̃), and Z̃ = DH(Y0

Ã
, Y1).

Note the different requirement for Z̃, and the additional H1 requirement.
For this experiment we do not need the two stage proof, and instead con-

struct an ideal world adversary directly. The construction of ReduceID, follows
the same strategy described above in Section 6.2. Specifically, the W oracle is
programmed with values of known discrete log, a random Y0 = Ga is sent with
known discrete log a, and consistent values of H0 are produced by the simulator.
All of Blue server messages may be perfectly simulated provided that the oracle
IdealGuess() is called for each effective guess. As above, this simulation implies
Inequality (Eq. 2). However, two effective guesses on a single round would imply

h(Y0, Y1, Z̃, P̃ , U) = H1 = h(Y0, Y1, Z̃, P̃ , U),

which is a hash collision. Thus Prob[EOverT] < S, where

S = 1 −Q(Q− 1)/2q (7)

is a lower bound on the probability that none of the Q H-oracle results coin-
cide. The resulting bound on the adversarial advantage has nothing to do with
CDH(k).

SuccExpRe(AdvRe) −GuessProb(T) ≤ S + T 2−k. (8)

7.2 Compromise-Blue (New Scheme)

For this experiment an effective guess on pass round t denotes the event that
for the Y0, Y1, H1, P

′ sent in round t, oracle H was called on input (Y0,Y1,Z̃,P̃ ,U),
where P̃ = P ′⊕R⊕pass, Ã = W (P̃), and Z̃ = DH(Y0

Ã
, Y1). In this experiment,

the maximal number of H-queries is Q† = Q + T .
The reduction ReduceId, creating the ideal world adversary, follows the strat-

egy of Section 6.2, yielding the usual Inequality (Eq. 2). However, in contrast
with the scheme of [7], the main Reduce algorithm, is able to solve CDH(k)
directly. To define Reduce, we let X,Y be the CDH(k) problem instance. Fol-
lowing Section 6.2, the W oracle is programmed with values B = Xr

i , and for
a randomly chosen round t0 ∈ [1, T], Y1 is set equal to Y , and H1 is set to be
equal to the a’th H-oracle response, for a random index a in the interval [1, Q†].

In the final stage, two indices in [1, Q†] are chosen at random. If these indices
correspond to the H queries of two effective guesses, these H oracle queries will

240 Michael Szydlo and Burton Kaliski

include two pairs (P̃ , Z) and (P̃ ′, Z ′), such that Z = DH(Y0

Ã
, Y1) for Ã = W (P̃),

and Z ′ = DH(Y0

Ã′ , Y1) for Ã′ = W (P̃ ′). Searching through the (up to Q+T + 2)
W oracle queries, we find the two integers r, and r′ such that A = Xr and
A′ = Xr′

. Provided r − r′ �= 0, the formula

D ← [Z/Z ′]r−r′
(9)

yields DH(X,Y). The success is at least Prob[EOverT]R/(Q3
†T), where R is as

in (Eq. 4), (a slightly smaller R suffices), so combining with (Eq. 2), yields

SuccExpHp(ReduceAdvRe) ≥ Ad′R
TQ3

†
. (10)

8 Protocol and Proof Variants

Unmodified BJKS: We were still able to find security proofs for the unmodified
scheme of [7] without the modifications described in Section 4. This analysis is
described in Appendix B. The resulting success bound obtained was AdR

TQ5
†
.

Using a Decision Oracle: If there is an efficient Diffe-Hellman decision algo-
rithm for G, it makes sense to exploit this in the reduction proofs. For certain
elliptic curves, the Weil pairing provides such an efficient procedure. In addition
to the technique described in Section 6.4, a decision oracle can be used to improve
the simulations in Reduce. These techniques are discussed in Appendix C, and
we include the expected running time of the CDH adversaries in the summary.
Red Server Notification: In the protocols we have studied, the Red server
does not relay the result ok1 back to the client. The proof for the protocol variant
which includes this message requires some small modifications to the simulations.

9 Conclusions

We summarize the success of the derived CDH(k) Adversaries in this table.
This allows a comparison of the reduction efficiency. The final columns show
how an adversary can make QDDH DDH queries to obtain a success rate of
Ad′H/T , and thus can solve CDH(k) by with probability near one, by repeating
the algorithm Reps times. Notice that the difference in reduction “tightness” is
significantly more pronounced when a decisional oracle is not available.

Scheme Corrupted Time Success QDDH Reps

BJKS Blue/Red 2(TE + TA + TR) (Ad′R/2T) 2/Q10
† Q2 2T/Ad′R

BJKS-M Blue/Red 2(TE + TA + TR) (Ad′R/2T) 2/Q6
† Q 2T/Ad′R

New Blue TE + TA + TR Ad′R/2TQ3
† Q T/Ad′R

Red - -

The revised scheme presented in this paper is also preferable from several
other viewpoints: its security proof is more transparent, the message flows are

Proofs for Two-Server Password Authentication 241

more directly related to the usual Diffe-Hellman problem, and the server portion
of the three party protocol (except the confirmation message) closely relates
to the well studied PAK key exchange protocol. The second protocol was also
designed to have a security proof, whereas the security proof for scheme [7] was
found after its introduction. The preferred approach is to design the protocols
concurrently with the proofs.

This work has presented a framework which may be useful for proving con-
crete security statements concerning two-party password-based authentication
protocols. More generally, we hope that the approach of presenting explicit re-
duction algorithms instead of reduction proofs will be perceived as adding higher
level of transparency to security proofs. Additionally, we hope our approach also
illustrates that meaningful concrete security statements can be stated and proved
independently of any traditional complexity-theory based foundations9. While
very useful for feasibility results, complexity theory certainly does not encompass
all of cryptography!

Acknowledgments

The authors would like to thank Phil MacKenzie for useful discussions, and the
anonymous reviewers for comments and corrections.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM Press, 1993.

2. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In IEEE Computer Society Symposium on
Research in Security and Privacy, pages 72–84. IEEE Press, 1992.

3. F. Boudot, B. Schoenmakers, and J. Traoré. A fair and efficient solution to the so-
cialist millionaires’ problem. Discrete Applied Mathematics, 111(1-2):23–36, 2001.

4. V. Boyko, P. MacKenzie, and S.Patel. Provably secure password-authenticated
key exchange using diffie-hellman. In B. Preneel, editor, Advances in Cryptology -
Eurocrypt ’00, pages 156–, Berlin, 2000. Springer-Verlag. LNCS No. 1807.

5. R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
CACM, 39(5):77–85, May 1996.

6. W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from
a password. In Proceedings of the IEEE 9th International Workshop on Enabling
Technologies (WETICE). IEEE Press, 2000.

7. B. Kaliski and M. Szydlo J. Brainard, A. Juels. Nightingale: A new two-server
approach for authentication with short secrets. In Proceedings of the 12th USENIX
Workshop on Security, pages 1–2. IEEE Computer Society, 2003.

8. D. P. Jablon. Research papers on strong password authentication, 2002. URL:
www.integritysciences.com/links.html.

9 Corollary: Assuming computational Diffe-Hellman, we have Limk→∞Ad(T, k) = 0.

242 Michael Szydlo and Burton Kaliski

9. D.P. Jablon. Password authentication using multiple servers. In David Naccache,
editor, Topics in Cryptology - CT-RSA 2001, pages 344–360. Springer-Verlag, 2001.
LNCS no. 2020.

10. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. In T. Okamoto, editor, ASIACRYPT 2000, pages 162–177. Springer-Verlag,
2000. LNCS no. 1976.

11. M. Jakobsson and M. Yung. Proving without knowing: On oblivious, agnostic, and
blindfolded provers. In CRYPTO ’96, pages 186–200, 1996. LNCS no. 1109.

12. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key ex-
change based on rsa. In T. Okamoto, editor, Advances in Cryptology - Asiacrypt
’00, pages 599–, Berlin, 2000. Springer-Verlag. LNCS No. 1976.

13. P. Mackenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated
key exchange. In M. Yung, editor, CRYPTO 2002, pages 385–400. Springer-Verlag,
2002. LNCS no. 2442.

14. M.Bellare, D.Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology - Euro-
crypt ’00, pages 139–, Berlin, 2000. Springer-Verlag. LNCS No. 1807.

A Compromise Blue Details (BJKS)

This reduction algorithm takes the same form as that of Section 6.2, and we just
include it for completeness. For this experiment an effective guess on pass
in round t denotes the event that for the Y0, Y1, R

′ sent in round t, oracle H
was called on input (Y0, Y1, Z̃, R̃, U) where R̃ = R′ ⊕ P ⊕ pass, B̃ = W (R̃), and
Z̃ = DH(Y0/B̃, Y1/B̃). The problem instance X is embedded via the W oracle,
and the Red server messages are simulated for a randomly chosen round t0. In
this one round, the simulation sets Y1 = Ga to be a random group element with
known discrete log a, and imperfectly simulates H1 setting it to equal one of
the H oracle responses. This round’s the Red server simulation is shown below.
Once all T rounds complete, the reducer chooses two indices at random from
[1, Q†] and obtains the pairs (Z,B) and (Z ′, B′) where B = Xr, and B′ = Xr′

.
With probability Prob[EOverT]/Q†T , there are two effective guesses in round

t0. If additionally, the two chosen indices correctly correspond to the effective
guesses, the desired DH(X,X) may be algebraically derived from Z0, Z ′

0, B, B′,
r, r′, a, (see Eq. 3)), provided r, r′, r− r′ are all non-zero. We conclude that the
success is at least Prob[EOverT]/({Q3

†TR).

Simulated Round - ReduceBlue Simulated Round - ReduceBlueID

Red.sim1(R′, Y0):

a
$← [1, q], Y1 ← Ga

H1 ← hrand
Red.sim2(H0):
(nothing)

Red.sim1(R′, Y0):

a
$← [1, q], Y1 ← Ga

for each H̃ = H(hin)
(valid, ˜pass) ← Valid(hin, t)
if(valid AND IdealGuess(˜pass))

H1 ← H̃, return

H1 ← hrandt
$← {0, 1}k

Red.sim2(H0):
(nothing)

Proofs for Two-Server Password Authentication 243

The ReduceId algorithm uses the same strategy as Section 6.2, although the
simpler definition of effective guess makes the simulation easier (details be-
low). By the same argument above in Section 6.1, we obtain bound (Eq. 2),
on Prob[EOverT], so we can can relate SuccExpHp(ReduceAdvRe) to the advan-
tage Ad (Eq. 1), obtaining for R of (Eq. 4),

SuccExpHp(ReduceAdvRe) ≥ Ad′R
TQ3

†
. (11)

B Unmodified BJKS Scheme

Our modification of the scheme from [7] simply added the values P ⊕ P ′ and
R⊕R′ into the hash function inputs. Since the reducer was able to examine the
list of H queries, to obtain the P⊕P ′ as well as Z0, the candidate A = W (P⊕P ′)
values could be computed.

We were still able to find security proofs for the original scheme, without
this modification. In this case, the strategy employed by the reducer is to guess
the correct W oracle values at random from the entire list of oracle calls, thus
obtaining the required A = Gr and A′ = G′r, albeit with reduced probability.

The second stage, the comparison with the ideal strategy, was also somewhat
more difficult. Following the approach of Section 6.2, the simulator was not
able to directly connect the H queries to the password. Instead, the simulation
can be made by searching through the list of W oracle queries, and for each
image A compute an associated Z. Each Z is compared with the H oracle query
list to determine for which passwords “an effective guess” has been made. The
resulting simulation is not perfect, since at a later point in the execution, the W
oracle may coincidentally produce a random A which corresponds to an effective
guess. In such a case, the simulated H0 or ok0 may have been inconsistent with
the {H0, ok0} corresponding to the correct password. This imperfect simulation
results in a small error term in the inequality comparing the Prob[EOverT],
SuccRe, and ExpIdeal(T).

An alternate approach to the proof, which enumerates every possible pass-
word, may be more efficient for small password dictionaries.

C Using a Decisional Diffe Hellman Oracle

In our proofs, a DDH oracle can be used to check whether a call to the H-oracle
is an effective guess. This is useful in two ways. First, a perfect simulation in
Reduce can be achieved at a cost of Q† DDH-queries. One query is made for
each call to the H-oracle with respect to the chosen round t0. (Optionally, all T
rounds can be used), then the approach of setting H0 or H1 randomly is replaced
with a strategy which checks all previous H calls for effective guesses.

The second place where the DDH oracle is useful is in the final stage of
Reduce, where the two Z values are selected. By knowing which H queries are
effective guesses, the correct pair can be found when it exists.

244 Michael Szydlo and Burton Kaliski

Having implemented these changes to Reduce, the success can be improved to
Ad′R/T . Thus, the expected number of repeats of the whole experiment required
to solve the hard problem with high probability is approximately T/Ad′H times.

This approaches works for the modified BJKS scheme as well as the new
scheme, and for the modified BJKS scheme, passing from CDH− Square(k)
to CDH(k) incurs a mere doubling of expected time. However, for the unmodified
BJKS scheme, it is more difficult to determine an effective guess. By checking
each W and each H call, effective guesses may still be determined, but the
required number of DDH-queries is now Q2

†. In this case, we also note that the
simulation required for ReduceId has an extra, small error term.

D Partially Passive Adversaries

To simplify the argument in Section 5.1, we had deferred consideration of adver-
saries which are active at the time that the valid client authenticates. In some
models, the adversary is allowed to “trigger” the client some number of times.
We now provide further justification for the claim that this activity will not help
the adversary. For convenience, we note the details of the per-round interactions
in the cases that Blue or Red is compromised.

CompRedRoundPassive CompBlueRoundPassive

Client.auth1(pass,U):

R′ $← {0, 1}k

P ′ ← R′ ⊕ pass′

Blue.auth1(P ′):

e
$← [1, q]

A ← w(P ⊕ P ′, U)
Y0 ← AGe

Adversary:
Y1, H1 ← AdvRed.auth1(Y0, R

′)
Blue.auth2(Y1, H1):
· ·
Continues as in Section 5.

Client.auth1(pass,U):

R′ $← {0, 1}k

P ′ ← R′ ⊕ pass′

Adversary:
Y0 ← AdvBlue1(P ′)
Red.auth1(R′, Y0, U):

f
$← [1, q]

B ← w(R ⊕ R′, U)
Y1 ← BGf

· ·
Continues as in Section 5.

Unlike in Section 5.1, the adversary who corrupts Red is presented with an
R′ generated by the honest client. As a result, the adversary knows R ⊕ R′ =
P ⊕ P ′, and both the client and Blue server can be perfectly simulated, for
example, Client.sim1:R′ $← {0, 1}k, Blue.sim1: e $← [1, q]; A ← w(R⊕R′, U);
Y0 ← AGe. This simulation applies to the both the BJKS and new protocols.

Similarly, the adversary who corrupts Blue is presented with an P ′ gen-
erated by the honest client, so this adversary also knows P ⊕ P ′ = R ⊕ R′,
and both the client and Blue server can be perfectly simulated, for exam-
ple, Client.sim1:P ′ $← {0, 1}k, Blue.sim1: f $← [1, q]; B ← w(P ⊕ P ′, U);
Y1 ← BGe. Thus, the adversary who prompts the client to enter the correct
password, will not learn anything from this round of interaction.

Design and Analysis
of Password-Based Key Derivation Functions

Frances F. Yao1 and Yiqun Lisa Yin2

1 Department of Computer Science,
City University of Hong Kong,

Kowloon, Hong Kong
csfyao@cityu.edu.hk

2 Princeton Architecture Laboratory for Multimedia and Security,
Princeton University,
Princeton, NJ 08544
yyin@princeton.edu

Abstract. A password-based key derivation function (KDF) – a func-
tion that derives cryptographic keys from a password – is necessary
in many security applications. Like any password-based schemes, such
KDFs are subject to key search attacks (often called dictionary attacks).
Salt and iteration count are used in practice to significantly increase
the workload of such attacks. These techniques have also been specified
in widely adopted industry standards such as PKCS and IETF. Despite
the importance and wide-spread usage, there has been no formal security
analysis on existing constructions. In this paper, we propose a general
security framework for password-based KDFs and introduce two security
definitions each capturing a different attacking scenario. We study the
most commonly used construction H(c)(p‖s) and prove that the iteration
count c, when fixed, does have an effect of stretching the password p by
log2 c bits. We then analyze the two standardized KDFs in PKCS#5.
We show that both are secure if the adversary cannot influence the pa-
rameters but subject to attacks otherwise. Finally, we propose a new
password-based KDF that is provably secure even when the adversary
has full control of the parameters.

1 Introduction

1.1 Background and Motivation

Cryptographic keys are essential in virtually all security application. In prac-
tice, however, inputs to an application are typically raw key materials, such as
passwords, that are not yet in the form to be used as keys. Therefore, a key
derivation function (KDF) – a function that derives cryptographic keys from
keying materials – is often a necessary component in all security applications.

There are many usage scenarios for key derivation functions depending on
the form of the input. For example, the input can be a user password, a random
seed value from some entropy source, or an output value from a cryptographic

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 245–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 Frances F. Yao and Yiqun Lisa Yin

operation such as Diffie-Hellman key agreement. The second scenario is typically
handled by a pseudorandom number generator (e.g., the FIPS PRNG in [6]), and
the third scenario is handled by hashing the long output down to the required
key length (e.g., the KDF1 in [8]). In both scenarios, there is usually enough
entropy in the key materials.

In this paper, we focus our study on password-based key derivation functions.
Unlike the other two scenarios mentioned above, passwords, in particular those
chosen by a user, often are short or have low entropy. Therefore, special treatment
is required in key derivation to defend against exhaustive key search attacks.

One basic approach for designing a password-based key derivation function
is to derive the key from the password p and a random known value s (called
salt), by applying a function H (such as hash, keyed hash, or block cipher) for
a number of iterations c (called iteration count). For example, the following is a
typical construction1:

key = H(c)(p‖s).
Intuitively, the salt s serves the purpose of creating a large set of possible

keys corresponding to a given password, among which one key is selected ac-
cording to the salt used in each execution of the KDF. The iteration count c
serves the purpose of increasing the cost of deriving each key, thereby signifi-
cantly increasing the workload of key search attacks. These two techniques have
been commonly used in practice and also specified in widely adopted industry
standards, including PKCS [13] and IETF [4].

In a more general setting, we can view a password-based KDF as a method
for stretching any short keys (not necessarily passwords) into longer keys. An
efficient key stretching method can be useful in strengthening security without
any architectural or policy changes for complex systems (e.g., a credit-card sys-
tem). In addition, password-based KDF can be used in a straightforward way to
define password-based encryption schemes and message authentication schemes.

Despite their importance and wide-spread usage, there has been no formal
security analysis of existing password-based KDFs. Furthermore, there has been
no general security framework for analyzing such KDFs. It is possible that the
above popular KDF construction is insecure against some sophisticated key-
search attacks even though the parameters are chosen large enough and the
underlying hash function H is sound (e.g., it can be considered as a random
oracle).

1.2 Our Framework

In this paper, we propose a general security framework for studying password-
based key derivation functions. Our framework aims at capturing various types
of key-search attacks and allowing concrete analysis of attacker’s success prob-
ability relating to its available computational resource for launching key-search
attacks. We also model salt and iteration count in a way as they are used in prac-
tice so that their impact on the overall security of the scheme can be quantified.
1 Throughout the paper, we use H(c) to denote that H is applied c times and use ‖

to denote the concatenation of two strings.

Design and Analysis of Password-Based Key Derivation Functions 247

Key search attacks on password-based KDFs can be quite sophisticated [10],
but they generally target at the construction of the key derivation function F and
treat the underlying function H as a black-box transformation. This motivates
us to model the underlying primitive H as a random oracle [2] and hence its
internal structure is ignored in the analysis.

We define two levels of security for the KDF depending on the capability
of the adversary A: – in the weak model A can only observe the output of F
while in the strong model A can query F on inputs of its choice. In both models,
A can make queries to H , and the maximum number of such queries captures
A’s available computational power to launch key search attacks. Roughly, the
construction of F is secure under each model if A with the given capability
cannot distinguish the output of F for an unknown password p from a random
string.

1.3 Main Results

Using the proposed framework, we first study the security of the iterative con-
struction. We prove that if an adversaryA makes at most t queries to H , then the
success probability Adv that it can distinguish the derived key for an unknown
p from a random string of the same length n satisfies

�t/c�
|PW | < Adv <

�t/c�
|PW | +

t2

2n
.

The upper bound is dominated by the first term, since the second term is neg-
ligible in practical settings. The above result implies that, for a fixed iteration
count, there is no short-cut in the key search other than computing H iteratively
for each password. In other words, the iteration count c increases the workload
of exhaustive key search by a factor of c. So the iteration construction effectively
stretches a k-bit key to a (k + log2 c)-bit key.

We then focus our attention on practical password-based KDFs and analyze
the two KDFs in PKCS#5 [13] – the de facto standard for password-based
cryptography. Our analysis on the iterative construction implies that the two
KDFs are weakly secure as long as the computational resource available to the
attacker is much less than c|PW | (although it can be much larger than |PW |).
We also show that neither KDF is secure in the strong model and discuss how
such security weakness may be exploited to mount attacks in practical scenarios.

Based on the insight gained from our earlier analysis, we propose a new
password-based key derivation function with enhanced security. The main idea
in our construction is to include iteration count explicitly in the input to the
derivation function to prevent it from being manipulated by the attacker. We
show that the new KDF is secure in the strong model.

1.4 Related Work

Rigorous analysis of password-based key derivation schemes seems to have re-
ceived relatively little attention compared to other cryptographic schemes. In

248 Frances F. Yao and Yiqun Lisa Yin

[10], the term key-stretching is used for conversion of low-entropy keys into longer
keys by mechanisms such as iterated hash. A connection was made between the
cost of computing H(c) and the cost of finding a collision for H . Roughly speak-
ing, if H(c) could be computed on average with fewer than c/2 calls to H , then
this would lead to a collision search for H faster than the naive birthday attack.
Although it would be hard to translate the result into a standard concrete se-
curity model, it is certainly of practical interest. Our results on H(c) are well
quantified; moreover, the framework for KDF is rigorously defined and the effects
of salt and iteration are studied in a standard distinguish-from-random model
with respect to specific query types.

In [14], the UNIX password hashing algorithm is analyzed. The core of the
algorithm is roughly f(p) = DES

(25)
p (0), that is, to encrypt the value zero

25 times using the password p as the key. So the algorithm has an iterative
structure somewhat similar to the password-based KDFs considered here. It is
proved that the algorithm is a secure hashing function if DES is a secure block
cipher. However, as pointed out by the authors, their analysis only implies that
iteration does not harm security, but they are not able to show that iteration
actually enhances security as one would intuitively expect.

Key derivation functions in a general sense share some similarity in their
design, such as the use of hash functions to process the raw key materials. For
instance, the pseudorandom number generator (PRNG) defined in FIPS [6] is
hash-based and can derive long keys from a random seed. The exact construc-
tion, however, is quite different: in the password-based KDF the hash is applied
iteratively while in the PRNG the hash outputs are concatenated to produce
the key. Therefore, security analysis of PRNG type of key derivation [5] does not
directly apply to password-based key derivation.

Another related subject is password-based authentication and key exchange
protocols, and the goal of such protocols is to authenticate two parties who share
a common password. Existing protocols use various public-key techniques such
as RSA or Diffie-Hellman in a w ay that the messages exchanged between the
parties provide little or no help for an attacker to guess the password. A survey
of well-analyzed protocols can be found in [9].

2 Security Framework and Definitions

2.1 KDF Model

We denote a password-based key derivation function as

y = F (p, s, c)

where p is password, s is salt, c is iteration count, and y is derived key of length
n. Let the set of passwords, salts, and iteration counts be PW , S, and C. For a
fixed p ∈ PW , we can view y = Fp(s, c) as a function with input (s, c) and output
y. We interchangeably write F (p, s, c) or Fp(s, c) depending on the context.

Design and Analysis of Password-Based Key Derivation Functions 249

For ease of analysis, we make some assumptions on the sets PW , S, and C.
We assume that PW = {0, 1}l, S = {0, 1}s, and C = [c∗, c∗] for some integers
0 < c∗ < c∗. The upper limit ensures that the iteration count is not too large,
since otherwise the KDF becomes too slow and useless. In addition, we assume
that the length of p‖s‖c is at most n, although our analysis can be extended to
the more general case (see Section 4.3 for further discussions).

We denote the underlying primitive that is used to construct F as H . For
example, H can be instantiated using practical hash functions as building blocks.
Since key search attacks typically treats H as a black-box transformation without
exploiting its internal structure, we model H as a random function from Rn, the
set of all functions from {0, 1}n to {0, 1}n. That is, we focus our analysis on how
F is constructed based on H rather than the structure of H itself.

2.2 Attack Model

Consider a typical usage scenario of a password-based KDF in which two users
Alice and Bob share a password p. To encrypt a message, Alice sets s, c and
derives a key y = F (p, s, c). She then uses y to encrypt and obtain the ciphertext
z. Alice sends (z, s, c) in the clear to Bob. Bob derives the key y by computing
y = F (p, s, c) and uses y to decrypt z.

From the attacker’s point of view, the salt s and the count c are both known.
The attacker usually does not have control of s or c, but in certain scenarios
they can be chosen. The derived key y may be hidden from the attacker, but
it can become known for various reasons (e.g., it was leaked out due to system
security holes), in which case the attacker obtains a tuple (y, s, c) corresponding
to some unknown password p.

In our attack model, we assume that s and c can be either known or chosen,
and the derived key y is always known. An attacker A to a password-based KDF
is a polynomial-time algorithm that may use the following two types of oracle
queries:

– H Query: Query the underlying function H on input x and obtain H(x).
That is, A has access to oracle H(.).

– F Query: For an unknown password p, query the key derivation function F
on input (s, c) and obtain the derived key y = Fp(s, c). That is, A has access
to oracle Fp(., .) for some unknown p.

In practice, the number of H queries can be quite large, since it is determined
by the adversary’s available computational resource for performing an offline key
search attack. In contrast, the number of F queries is very limited, since it is
usually determined by the security design and policy of the system, not the
adversary.

2.3 Security Definition

We introduce two security definitions – weakly secure and strongly secure – de-
pending on attacker’s capability. In the weak model, we assume that the attacker

250 Frances F. Yao and Yiqun Lisa Yin

A can make only queries to H , while in the strong model, we assume that A can
make queries to both H and F . The goal of the attacker A is to distinguish the
derived key y = Fp(s, c) for p r← PW from a random string of the same length2.

Definition 1. Weakly Secure KDF. Let y = Fp(s, c) be a password-based
KDF. Let b ∈ {0, 1}. We consider the following experiment depending on b:

Experiment Eb

p0
r← PW // password is generated at random

H
r←Rn // H is generated at random

s0 ← S, c0 ← C // salt and count are fixed and known
If b = 0, then y0 ← Fp0(s0, c0), else y0

r← {0, 1}n

i ← 0
repeat

i ← i + 1
A chooses xi and is given H(xi)

until A reaches the maximum number of queries
A outputs either 0 or 1

The success probability of A is defined as

AdvA(t) = PrE1 [A = 1]− PrE0 [A = 1].

where t denote the maximum number of queries to H. The maximum success
probability achievable by any adversary A is denoted by Adv(t).

Definition 2. Strongly Secure KDF. Let y = Fp(s, c) be a password-based
KDF. Let b ∈ {0, 1}. We consider the following experiment depending on b:

Experiment Eb

p0
r← PW // password is generated at random

H
r←Rn // H is generated at random

s0 ← S, c0 ← C // salt and count are fixed and known
If b = 0, then y0 ← Fp0(s0, c0), else y0

r← {0, 1}n

i ← 0
repeat

i ← i + 1
A first decides which type of queries
If H query, A chooses xi and is given H(xi)
If F query, A chooses (si, ci) �= (s0, c0)

and is given yi = Fp0(si, ci)
until A reaches the maximum number of queries
A outputs either 0 or 1

The success probability of A is defined as

AdvA(t,m) = PrE1 [A = 1]− PrE0 [A = 1],

2 If W is a set, than w
r← W denotes selecting w uniformly at random from W .

Design and Analysis of Password-Based Key Derivation Functions 251

where t and m denote the maximum number of H and F queries, respectively.
The maximum success probability achievable by any adversary A in is denoted
by Adv(t,m).

3 Password-Based KDFs in Practice

Password-based key derivation functions are commonly used in practice. They
are also specified in industry standards such as PKCS#5, PKCS#12, IETF, and
openPGP. Here we describe the KDFs in PKCS#5, which is considered as the
de facto standard for password-based cryptography. KDFs in other standards
mostly follow similar designs.

Two password-based KDFs are specified in PKCS#5 v2.0 [13]: PBKDF1
and PBKDF2. Some recommendations are given regarding the use of salt and
iteration count. For example, S should be at least 64 bits, and c should be at
least 1000.

The underlying function in PBKDF1 is a hash function H() such as MD2,
MD5, or SHA1. The derived key is defined as y = H(c)(p‖s). Most other stan-
dards or implementations use this construction.

PBKDF2 was intended to provide more security. The underlying function in
PBKDF2 is a keyed hash function Hk(), such as HMAC [1]. The password p
is used as the key k in each invocation of Hk(). The derived key is defined as
y = U1 ⊕ U2 ⊕ ... ⊕ Uc, where Ui = H

(i)
p (s) for i = 1, .., c. The exclusive-ors

adds an extra layer of protection, but at the core of the construction is still the
iterative application of Hp.

4 Effects of Iteration Count

In this section, we focus our analysis on iteration count and quantify its effect
on the security of KDF. A KDF function with an iterative structure is of the
form

y = H(c)(p, s) = H(c)(p‖s).
We will show that this construction is secure as long as the adversary only has
access to H and its computational resource is significantly less than c|PW |,
which is formally stated in the following theorem.

Theorem 1. In the weakly secure model for KDF, if the adversary makes at
most t H queries, then the maximum success probability Adv(t) satisfies

�t/c0�
|PW | < Adv(t) <

�t/c0�
|PW | +

t2

2n
.

Before going into the proof details, we first try to understand the result by
considering a practical scenario. Let

|PW | = 240, n = 128, c = 216, t = 244.

252 Frances F. Yao and Yiqun Lisa Yin

Setting c = 216 adds little overhead at the user end for deriving a single key3, but
the workload of a straightforward dictionary attack increases to c|PW | = 256

from 240 (when c = 1). With t = 244 queries to H , the attacker can certainly
correctly compute a fraction of t/c

|PW | = 2−12 of the derived keys. Our result shows
that this is indeed the best the attacker can do, since the probability for correctly
computing more than 2−12 of the derived keys is at most t2

2n = 2−40. Effectively,
the iteration count stretches a 40-bit password into a 40 + log2 c = 56-bit key.

4.1 Graph Representation of H

For the purpose of the proof, we set up a graph to represent a random function
H and the adversary’s query process for H . This graph-based approach allows
us to visualize the adversary’s knowledge gained in the query process, and makes
the proof more intuitive.

Let GH be a directed graph on the vertex set {0, 1}n; a directed edge (x, y)
exists in GH if and only if H(x) = y. Hence every vertex has out-degree 1 and GH

contains 2n edges. The adversary, by probing a sequence of t edge “H(x) =?”,
discovers a subgraph QH of GH which is referred to as the query graph. Since
the same query graph QH can arise from different functions H , it is sometimes
convenient to write Q without referring to a specific H .

4.2 Analysis of Probabilities

We start by defining two games R (for “random”) and K (for KDF) which
correspond to the two experiments E1 and E0, respectively. For each game, we
specify how to simulate the oracle H upon adversary’s queries. In the game
specification, there are some extra computing steps – they are hidden to A and
hence do not affect the behavior of A, but they will help our analysis.

We note that the two games are very similar, and the only difference is in
Step 4 which is shown by the underline. Two flags bad1 and bad2 are set when
certain “bad” event occurs. The set Y contains all distinct values of H(x) for
which x has been queried4.

In Game R, the answers seen by the adversary A are exactly the same as in
E1. The difference is that the game contains two extra steps – Step 2 for detecting
collisions and Step 3 for detecting whether H(c0)(p0‖s0) has been computed. So
the success probabilities of A in game R and experiment E1 are the same, which
is stated in the following lemma.

Lemma 1. PrR[A = 1] = PrE1 [A = 1].

In Game K, the answers seen by the adversary A are almost the same as in
experiment E0 with possible exception on queries H(ui). We will show in the
next lemma that this apparent difference will not affect A’s success probability.
3 On a Pentium 4 running at 2.1GHz, 216 SHA-1 operations take less than 0.02 second

according to the benchmarks for Wei Dai’s CRYPTO++ Library.
4 We also include u0 = p0‖s0 in Y is for detecting the event that u0 is not the first

vertex of a path. It is not necessary to do so, but makes later analysis easier.

Design and Analysis of Password-Based Key Derivation Functions 253

Initially, H(.) is undefined. Choose p0
r← PW and y0

r← {0, 1}n.
Set i ← 0, u0 ← p0‖s0, Y ← {u0, y0}.
On oracle query H(x):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. If x = ui and i < c0, set i ← i + 1 and ui ← y.
Else if x = ui and i = c0, set bad2.

4. Define H(x) = y and return y.

Fig. 1. Game R.

Initially, H(.) is undefined. Choose p0
r← PW and y0

r← {0, 1}n.
Set i ← 0, u0 ← p0‖s0, Y ← {u0, y0}.
On oracle query H(x):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. If x = ui and i < c0, set i = i + 1 and ui ← y.
Else if x = ui and i = c0, set y ← y0. Set bad2.

4. Define H(x) = y and return y.

Fig. 2. Game K.

Lemma 2. PrK [A = 1] = PrE0 [A = 1].

Proof: In experiment E0, H is chosen randomly at the beginning and y0 is then
set to be y0 = H(c0)(u0). Therefore, for i = 0, 1, ...c0 − 1, each value H(ui) is
chosen at random before the experiment starts. In Game K, for i = 0, 1, ...c0−2,
each value H(ui) is chosen at random as the game proceeds. Only the last value
H(uc0−1) is chosen at random (to be y0) before the game starts.

Since all these values are chosen at random and they are all independent of
each other, there is no difference from the adversary’s point of view. Hence the
success probability of A is the same. QED

Using the above lemmas, we have AdvA(t) = PrR[A = 1]− PrK [A = 1]. So
we now consider the relation between Game R and Game K. Let BAD1 be the
event that flag bad1 gets set, and similarly for BAD2. Let BAD = BAD1∪BAD2.
It is easy to see that the answers seen by A are exactly the same if neither bad
event occurs. Furthermore, each bad event occurs with the same probability in
the two games.

254 Frances F. Yao and Yiqun Lisa Yin

Lemma 3. (1) PrR[A = 1|BAD] = PrK [A = 1|BAD].
(2) PrR[BAD] = PrK [BAD].

Following a standard probability argument (such as that in [11]), we have
AdvA(t) < PrR[BAD]. So we only need to derive an upper bound on PrR[BAD]
for proving the theorem.

Proof of Theorem 1. For simplicity, we omit the R in the subscript.

Pr[BAD] = Pr[BAD1 ∪ BAD2]
= Pr[BAD1] + Pr[BAD2|BAD1] · Pr[BAD1]
≤ Pr[BAD1] + Pr[BAD2|BAD1].

It is easy to see that Pr[BAD1] < (t2/2 + 2t)/2n, since the probability of a
collision within t queries is at most (t2/2)/2n, and the probability that any of
the t values of H collide with u0 or y0 is at most 2t/2n. Assuming t ≥ 4, we have
Pr[BAD1] < t2/2n.

We next bound the second term Pr[BAD2|BAD1]. If the event BAD1 doesn’t
occur, then the query graph consists of a set of disjoint paths on which u0 can
only appear as the first vertex. Note that BAD2 is the event that there is a path
of length at least c0 starting from vertex u0. With t edges, there are at most
�t/c0� such paths. For each path, with probability at most 1/|PW |, the first
vertex is u0 = p0‖s0. Hence Pr[BAD2|BAD1] <

�t/c0�
|PW | . Combining the two upper

bounds, we obtain that Adv(t) < Pr[BAD] ≤ 2t2

2n + �t/c0�
|PW | .

The lower bound can be achieved easily by computing full paths of length c0
for �t/c0� passwords in PW . QED

4.3 Discussions on c-th Iterate of a Random Function

It may be helpful to review some mathematical background on the c-th iterate
of a random function. Although random functions have been studied extensively
in the literature, the c-th iterate function H(c) has received relatively little at-
tention. For example, it is well known that the image of a random function has
size (1 − e−1)2n. What about the image of H(c)? At what rate does the image
size decrease with c? In a 1990 paper by Flajolet and Odlyzko [7] they provided
answers to these questions by deriving the following recurrence.

Image Size of H(c). The image size of H(c) is (1 − τc)2n, where τc satisfies
the recurrence τ0 = 0, τc+1 = e−1+τc . Furthermore, asymptotically 1 − τc = 2/c.

In other words, the image size of H(c) decreases arithmetically with c (not
geometrically as one might guess at first). This illustrates that H(c) is signifi-
cantly different from a random function as c gets larger, and its analysis is a
nontrivial matter. It is also interesting to note that, although the image size of
H(c) goes down by a factor of 2/c compared with that of H , yet Theorem 1
shows that the attacker’s workload must increase by a factor of c.

Design and Analysis of Password-Based Key Derivation Functions 255

Theorem 1 proves tight bounds for the password space. When t < c, the
lower bound on Adv(t) in the theorem becomes zero. Below, we derive a non-
trivial lower bound by describing a strategy of the attacker. Let d(x) denote the
number of divisors of x, and define d[x1, x2] = max d(x), x1 ≤ x ≤ x2.

Lemma 4. With t < c queries, the attacker can achieve AdvA(t) > t2

2n+1 +
(1 − t2

2n+1)d[c,c−t]
2n .

Proof. The attacker simply computes u,H(u), H(2)(u), . . . iteratively and hopes
that the sequence becomes periodic, i.e., a repeated value occurs before H(t)(u)
so that H(c)(u) is determined. The probability for this to happen is t(t+1)/2n+1.
In the case the chain (u,H(u), . . . , H(t)(u)) is not periodic, the adversary will
select a vertex on the path v = H(δ)(u) where δ is chosen to maximize the
number of divisors d(c− δ) for 0 ≤ δ ≤ t. The probability of success in this case
is at least d[c, c− t]/2n as stated. QED

We note that, somewhat surprisingly, the lower bound gets better with larger
c, as the attacker may find a number c − δ in the range [c − t, c] with a large
number of divisors so that it is more likely to have H(c)(u) = H(δ)(u) through
periodicity.

In our modelling of the password space, we assumed that all passwords are of
the same length � and are chosen by users with equal probability. It is not difficult
to extend our analysis to obtain similar security bounds when these assumptions
are removed. For example, let a set of passwords of arbitrary length be added to
PW . After one iteration of H these points are distributed randomly in the do-
main {0, 1}n, and additional iterations (adjusting c to be c−1) would behave just
as analyzed before. Similarly, even if the passwords have different probabilities
originally, after one iteration this will have no effect on the collision probabilities
which depend only on the fact prob[H(x) = y] = 1

2n in the domain {0, 1}n.

5 Security Analysis of KDFs in PKCS#5

In the preceding section, we analyzed the basic iterative construction H(c). The
analysis implies that the two KDFs in PKCS#5 are weakly secure as long as the
adversary’s computational resource is far less than c|PW |, even though it can
be much larger than |PW |.

In what follows, we analyze the security of the two KDFs under the strongly
secure model – that is, the adversary is allowed a few queries to F . We show that
neither KDF is secure under this model and we also explore how such security
weakness can be exploited to launch attacks in practical settings.

5.1 PBKDF1
The attack on PBKDF1 is based on an obvious relation between keys derived
using the same salt. For any salt s and two iteration counts c0 < c1, let yi =
F (p, s, ci) = H(ci)(p‖s). Then, it is easy to see that y1 = H(c1−c0)(y0). This
relation allows an attacker to distinguish y0 from a random function with one F
query (s, c1) and (c1 − c0) H queries.

256 Frances F. Yao and Yiqun Lisa Yin

Note that if the key y0 = H(c0)(p‖s) were ever compromised for some reason,
then any key derived using the same salt s and an iteration count larger than
c0 would all be compromised. This might happen in practice if the user (or the
security administrator of the system) decides to increment the iteration count.
Therefore, it is a good practice in general to use different salt values in deriving
different keys.

5.2 PBKDF2

The derived keys in PBKDF2 also suffer from non-randomness, although the
relations among keys are slightly more complicated. Let s be any salt value
and let c1, c2, c3 be three consecutive iteration counts. For i = 1, 2, 3, define
yi = F (p, s, ci) = U1 ⊕ ...⊕Uci . Then, we have y1 ⊕ y2 = Uc2 and y2 ⊕ y3 = Uc3 .
This yields the following relation among the three keys: (y2⊕ y3) = Hp(y1⊕ y2),
where Hp() is the underlying function HMAC.

This relationship among keys opens the door to dictionary attacks. The at-
tacker simply computes the HMAC function Hp(Uc2) for all possible passwords
p, and the password that gives Hp(Uc2) = Uc3 is very likely to be the correct
password used in the scheme. Once p is known, it is easy to distinguish the
derived key from a random string. We remark that the workload of the above
attack is |PW |, no matter what c is. This implies the iteration count does not
add much (or any) protection in PBKDF2 against dictionary attacks.

6 Effects of Salt

A salt serves the purpose of creating a large set of possible long keys correspond-
ing to a password p. If the salt is s bits long, then the number of possible long
keys can be as large as 2s. Each time the KDF is executed with a salt, either
selected by the user or generated at random, one of the 2s long keys is selected.

One natural question is the following: Suppose that an adversary has com-
puted the long keys correspond to all the passwords p ∈ PW for a salt s1. That
is, the adversary has a table of size |PW | in which each entry contains the value
(p,H(c)(p‖s1)) for some p ∈ PW . Does this table provide the adversary some
shortcuts to derive long keys using a different salt s2 �= s1?

The answer is certainly “No”, which is well-known in practice. Using the
graph-based approach, we can show that the set of paths corresponding to s1

and the set of paths corresponding to s2 are all disjoint with high probability,
and hence the table for s1 provides essentially no information for derived keys
using s2. The detailed analysis is similar to that for Theorem 1 and thus omitted
here.

7 New Proposal for Strongly Secure KDF

In this section, we present a new proposal for strongly secure KDF based on
our study on the effects of iteration counts and salt, as well as the analysis on
existing KDFs.

Design and Analysis of Password-Based Key Derivation Functions 257

We first note that the graph-based analysis provides insights on the exact
way that each parameter contributes to the overall security: The computation
process for deriving a key corresponds to a path in the query graph. So choosing
a larger iteration count forces the attacker to traverse a longer path for deriving
each key, while choosing a different salt value forces the attacker to traverse
a different path in the computation. It is also easy to see why the KDFs in
PKCS#5 are not strongly secure using the query graph. For example, in the
case on PBKDF1, the F queries (s, c0) and (s, c1) correspond to two paths that
overlap. This extra information allows the attacker to distinguish the derived
key from a random string.

Based on the above discussion, we can see that a strongly secure KDF should
be constructed in a way that the values of y = F (p, s, c), for different p, s and
c, are nearly independent of each other. Certainly, there are various ways of
achieving this goal. Here we propose a simple construction that maintains the
same efficiency as the KDFs in PKCS#5. The idea is to include iteration count
explicitly as an input to the hash function H . More specifically, the new KDF is

y = F ∗(p, s, c) = H(c)(p‖s‖c).

In what follows, we prove that the above KDF is strongly secure – secure
even when the adversary can choose (s, c) and make F queries. We assume that
there are lower and upper limits to the ci acceptable in queries to F , that is,
c∗ < ci < c∗. Indeed, without a lower limit, the adversary can always set c = 1
in the F query and then perform an offline key search attack with complexity
O(|PW |).

Theorem 2. In the strongly secure model for KDF, if the adversary makes at
most t queries to H and at most m queries to F , then the maximum success
probability Adv(t,m) satisfies

max(�(t− c∗)/c∗�,m)
|PW | < Adv(t,m)

�t/c∗�+ 2m
|PW | +

(t + m)2

2n
.

Proof. We provide a sketch of the proof here, and the details are given in the
appendix. The upper bound proof uses the same type of arguments as that of
Theorem 1. More specifically, we define two games R′ and K ′ which the adversary
might play. Since there are now two types of queries to deal with, the simulator
needs to maintain some extra information during the course of the game to make
sure that its answers to oracle queries F ∗ and H are consistent. Then following
a similar analysis, we only need to bound the probability of some bad events to
obtain the upper bound in the theorem.

For the lower bound, we describe two strategies. In strategy A, the adversary
computes separate paths of length c∗ using queries to H and makes only one F
query. In strategy B, the adversary constructs a single path of length t and picks
m appropriate vertices to make m queries to F . The success probability is the
maximum of the two as stated in the theorem. QED

258 Frances F. Yao and Yiqun Lisa Yin

8 Conclusions

Password-based key derivation functions are necessary in many security appli-
cations. Despite their importance and wide-spread usage, rigorous analysis of
such functions seems to have received relatively little attention in the literature
compared with many other cryptographic schemes.

In this paper, we define a general security framework for password-based
key derivation functions where salt and iteration count are included as parame-
ters. Under this framework, we focus on the most commonly used construction
H(c)(p‖s) and prove that the iteration count c, when fixed, does have an effect
of stretching the password by log2 c bits. Our analysis is done using a random
functional graph representing H , conditioned upon a query graph representing
information revealed to the attacker. It provides insights on the exact way that
each parameter contributes to the overall security.

We then analyze two widely deployed KDFs defined in PKCS#5. We show
that both are secure the adversary cannot influence the parameters, but are
subject to attacks otherwise. We also consider how such security weaknesses can
be exploited in practice.

Finally, based on the insight gained from our earlier analysis, we propose a
new password-based key derivation that is provably secure even when the at-
tacker has full control of the salt and iteration count. The new proposal achieves
stronger security while preserving the same efficiency as existing KDFs. We ex-
pect that the new proposal will find its application in practical implementations.

Acknowledgements

We would like to thank the anonymous referees for many helpful comments.

References

1. M. Bellare, R. Canetti and H. Krawczyk. Keyed Hash Functions for Message
Authentication. In Advances in Cryptology – Crypto ’96, Springer-Verlag, 1996.
Crypto’96.

2. M. Bellare and P. Rogaway. Random Oracles are practical: A Paradigm For De-
signing Efficient Protocols. In First ACM Conference on Computer and Commu-
nications Security, 1993.

3. S. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, 1992.

4. T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, Internet
Request for Comments, January 1999.

5. A. Hevia, A. Desai, and Y. L. Yin. A Practical-Oriented Treatment of Pseudoran-
dom Number Generators. In Advances in Cryptology – Eurocrypt ’02, Springer-
Verlag, 2002.

6. FIPS PUB 186-2. Digital Signature Standard. National Institute of Standards and
Technologies, 1994.

Design and Analysis of Password-Based Key Derivation Functions 259

7. P. Flajolet and A. M. Odlyzko. Random mapping statistics. In Advances in Cryp-
tology - EUROCRYPT ’89, Springer-Verlag, 1990.

8. IEEE Std 1363-2000: Standard Specifications for Public-Key Cryptography. IEEE
Computer Society, 2000.

9. IEEE P1363.2: Standard Specifications for Password-Based Public-Key Crypto-
graphic Techniques. Draft D15. May 2004.
http://grouper.ieee.org/groups/1363/passwdPK/draft.html.

10. J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure Applications of Low-Entropy
Keys. In Proceedings of the First International Workshop ISW ’97, Springer-Verlag,
1998.

11. J. Killian and P. Rogaway. How To Protect DES Against Exhaustive Key Search
Attacks. In Advances in Cryptology - CRYPTO ’96, Springer-Verlag, 1996.

12. A. M. Odlyzko, private communication. 2003.
13. RSA Laboratories’ PKCS#5 v2.0: Password-Based Cryptography Standard. 1999.
14. D. Wagner and I. Goldberg. Proofs of Security For The UNIX Password Hashing

Algorithm. In Advances in Cryptology - Asiacrypt ’00, Springer-Verlag, 2000.

Proof of Theorem 2

Upper Bound

The upper bound proof uses the same type of arguments as that of Theorem 1.
We start by specifying two games R′ and K ′ (see Figures 3 and 4). Since there
are now both H and F ∗ queries to deal with, the simulator needs to maintain
some necessary information during the course of the game to make sure that its
answers to both types of oracle queries are consistent.

Before diving into the detailed descriptions of the two games, it is instruc-
tional to compare at a high level how oracle query H is handled in Game K ′

and Game K. The main difference is the additional Step 4 (marked as new) in
Game K ′, which is for updating the necessary information maintained by the
simulator.

In both games, the simulator keeps track of all the F ∗ queries as well as the
H queries starting at p0‖s‖c. More precisely, it maintains a set

L = {(sk, ck, yk, uk, ik)}

where each item in L is a 5-tuple such that either the query (sk, ck) has been
made to F ∗ or the query x = p0‖sk‖ck has been made to H . The other three
entries are defined as follows:

– If the query to F ∗ has been made, then yk = H(ck)(x) Otherwise, yk = ∗
meaning it is still undefined.

– If the query to H has been made, then ik is the number of consecutive queries
to H made thus far starting at x, and uk is the last answer.

It also maintains the set of all “starting points” in L, that is, a set X = {xk}
where xk = p0‖sk‖ck.

Following similar analysis as that of Theorem 1, we have that AdvA(t,m) <
Pr[BAD] ≤ Pr[BAD1] + Pr[BAD2|BAD1]. So we only need to derive an upper

260 Frances F. Yao and Yiqun Lisa Yin

Initially, H(.) and Fp0(., .) are both undefined.
Choose p0

r← PW and y0
r← {0, 1}n.

Set i0 ← 0, x0 ← p0‖s0‖c0, Y ← {y0}.
Set X ← {x0}, L ← {(s0, c0, y0, u0, i0)}.
Set j ← 0.

On oracle query H(x):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. If x = xk ∈ X and ik < ck, set ik ← ik + 1 and uk ← y.
Else if x = xk ∈ X and ik = ck, set y ← yk. Set bad2.

4. (new step compared with Game K)
If x �∈ X and x = p0‖s‖c, then X ← X ∪ x and add a new item in L:
j ← j + 1, sj ← s, cj ← c, yj ← ∗, uj ← x, ij ← 1

5. Define H(x) = y and return y.

On oracle query F ∗
p0(s, c):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. Let x = p0‖s‖c.
If x = xk ∈ X and ik < ck, set yk ← y.
Else if x = xk ∈ X and ik = ck, set y ← yk. Set bad2.

4. If x �∈ X, then X = X ∪ x and add a new item in L:
j ← j + 1, sj ← s, cj ← c, yj ← y, uj ← x, ij ← 0

5. Define F ∗
p0(s, c) = y and return y.

Fig. 3. Game K′.

Game R′ is the same as Game K′, except that the execution of
the underlined step (y ← yk) is removed.

Fig. 4. Game R′.

bound on the probability of each bad event. Analyzing the first term is straight-
forward. Since there are t + m queries in total, Pr[BAD1] < (t + m)2/2n.

Analyzing the second term Pr[BAD2|BAD1] is somewhat more complex.
First, let Q1 be the query graph corresponding to the t H queries. If the at-
tacker uses only Q1, its success probability is bounded by �t/c∗�

|PW | as shown in
Theorem 1, except that c0 is replaced with its lower limit c∗. Next, we consider
the effect of F ∗ queries. We observe that (unlike in the proof of Theorem 1)
xj = p0‖sj‖cj doesn’t have to be the first vertex of a path, since the adversary

Design and Analysis of Password-Based Key Derivation Functions 261

is allowed to choose (sk, ck) and make a query to F ∗, and this provides the
adversary more chances of success. To quantify this advantage, we consider the
number of vertices of the form {p‖si‖ci, 1 ≤ i ≤ m}, denoted by m′. The success
probability using F ∗ queries is bounded by m′/|PW |. Note that m′ = m + q
where q is the expected number of collisions in s‖c among all the vertices p‖s‖c
in Q1. Since the expected value of q is t|PW |/2n << 1, it can be shown that
the probability that m′ = m + q ≥ m + m = 2m is negligible.

Combining all the probabilities, we prove that Adv(t,m) is bounded by
�t/c∗�+2m

|PW | + (t+m)2)
2n) as stated.

Lower Bound

For the lower bound, we describe two strategies from which the adversary can
pick the one yielding better success probability depending on the parameters. In
strategy A, the adversary computes separate paths of length c∗ for �(t− c∗)/c∗�
passwords pi‖s‖c∗ using t−c∗ queries to H . He then makes a F query asking for
y = F ∗

p (s, c∗). With probability �(t− c∗)/c∗�/|PW |, vertex y coincides with the
endpoint of one of the paths, thus revealing the password p0. In such an event
the adversary then makes c0 more H queries to compute y′0 = H(c0)(p0‖s0‖c0)
and answers 1 if y′0 = y0. All together the adversary used at most t queries to
H and one F queries to achieve success probability of �(t− c∗)/c∗�/|PW |.

In strategy B, the adversary constructs Q1 to be a single path of length t
starting from an arbitrary p‖s‖c. With probability 1−O(t2/2n), the path will be
cycle-free. Its first t−c∗ vertices pi‖si‖ci have their full paths Tpi‖si‖ci

completely
contained in Q1. Assuming m to be much smaller than t− c∗, the adversary can
pick m vertices pi‖si‖ci along the path with distinct pi and make at most m
queries to F with the corresponding (si, ci)’s. With probability m/|PW |, it can
identify the password. This completes the proof of Theorem 2. QED

A New Two-Party Identity-Based
Authenticated Key Agreement

Noel McCullagh1,� and Paulo S.L.M. Barreto2

1 School of Computing,
Dublin City University,

Glasnevin, Dublin 9, Ireland
noel.mccullagh@computing.dcu.ie

2 Escola Politécnica, Universidade de São Paulo,
Av. Prof. Luciano Gualberto, tr. 3, 158,

BR 05508-900 São Paulo(SP), Brazil
pbarreto@larc.usp.br

Abstract. We present a new two-party identity-based key agreement
that is more efficient than previously proposed schemes. It is inspired
on a new identity-based key pair derivation algorithm first proposed by
Sakai and Kasahara. We show how this key agreement can be used in
either escrowed or escrowless mode. We also describe conditions under
which users of different Key Generation Centres can agree on a shared
secret key. We give an overview of existing two-party key agreement
protocols, and compare our new scheme with existing ones in terms of
computational cost and storage requirements.

Keywords: authenticated key agreement, identity-based cryptography,
bilinear maps, Tate pairing.

1 Introduction

In this paper we propose a new two-party authenticated identity-based key agree-
ment from bilinear maps. The basic idea behind an identity-based cryptosystem
is that end users can choose an arbitrary string, for example email addresses or
other online identifiers, as their public key. This eliminates much of the overhead
associated with key management. In traditional PKI settings, key agreement
protocols relies on the parties obtaining each other’s certificates, extracting each
other’s public keys, checking certificate chains (which may involve many sig-
nature verifications) and finally generating a shared secret. The technique of
identity-based encryption (IBE) greatly simplifies this process. This idea was
first proposed by Shamir [19] in 1984, made viable by Cocks [8] and Boneh and
Franklin [4] in 2001, further streamlined by Sakai and Kasahara [16] in 2003,
and is currently an area of very active research (see e.g. [9] for a survey).

� This author wishes to thank Enterprise Ireland for their support with this research
under grant IF/2002/0312/N.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 262–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Two-Party Identity-Based Authenticated Key Agreement 263

There are many key agreement protocols based on bilinear maps, and most
have subsequently been broken. One of the first applications of pairing based
cryptography was a tripartite key agreement protocol by Joux [12]. Although
this key agreement does not authenticate the users, and thus is susceptible to
the man-in-the-middle attack, it was a significant step in the development of pair-
ing based cryptography. This original scheme was not identity-based. Many key
agreements from bilinear maps have been since proposed. Scott [17], Smart [24],
and Chen and Kudla [6] have proposed two-party key agreement protocols, none
of which have been broken. All of these schemes require that all parties involved
in the key agreement are clients of the same Key Generation Centre (KGC).
Nalla proposes a tripartite identity-based key agreement in [13], and Nalla and
Reddy propose a scheme in [14], but both have been broken [7, 21]. Shim presents
two key agreements [23, 22], but both these schemes have been broken by Sun
and Hsieh [25]. Another authenticated tripartite key agreement proposed by
Al-Riyami and Patterson [1] was broken by Shim [20].

Most identity-based key agreement protocols have the property of key escrow :
the trusted authority that issues private keys can recover the agreed session key.
This feature is either acceptable, unacceptable, or desired depending on the cir-
cumstances. For example, escrow is essential in situations where confidentiality
as well as an audit trail is a legal requirement, as in confidential communica-
tion in the health care profession. There are other examples, such as personal
communications, where it would be advantageous to turn escrow off.

The two-party key agreements proposed by Smart and by Chen and Kudla are
escrowed schemes by default. A modification suggested by Chen and Kudla [6] to
remove escrow can also be applied to Smart’s scheme. However, this modification
creates additional computational overhead. Scott’s scheme does not allow escrow,
and there seems no obvious way to introduce this feature – bar one party to the
protocol sending a third party a copy of the agreed key.

Chen and Kudla also suggest a modification that allows two parties that
have their public keys generated by two different Key Generation Centre’s to
communicate. We say that these parties are members of different domains. Most
key agreements require both parties to be from the same domain. This, for
example, might mean that two workers from the same company would be able
to generate a shared secret, however employees from two different companies
would not be able to generate such a shared secret. We suggest a protocol that,
without pairing precomputation, is twice as efficient as the scheme suggested
in [6].

We suggest key agreement between domains is an important property of this
scheme as, from a commercial viewpoint, identity-based cryptography (IBC)
seems particularly well suited to encrypted telephony and encrypted VoIP. For
encrypted VoIP to work on a global scale there simply must be compatibility
between networks, and therefore key agreement between different networks is
important.

264 Noel McCullagh and Paulo S.L.M. Barreto

Our contributions in this paper are:

– An efficient identity-based authenticated key agreement protocol that can be
instantiated in either escrowed or escrowless mode without imposing extra
computational steps.

– An efficient key agreement that allows users who have their private keys
generated by distinct Key Generation Centres to establish a shared secret
without additional overhead, provided standardised curve parameters are
used.
This paper is organised as follows. Section 2 introduces basic mathematical

concepts. Section 3 describes our proposed authenticated key agreement with
escrow, and section 4 introduces our proposed escrowless scheme. In section 5
we present a key agreement protocol for members of distinct key generation
domains. We discuss efficiency issues in section 6 and security issues in section 7.
Finally, we draw our conclusions in section 8.

2 Mathematical Preliminaries

An elliptic curve E(Fqk) is the set of solutions (x, y) over the field Fqk to an equa-
tion of the form y2 = x3 +Ax+B, together with an additional point at infinity,
denoted O. There exists an Abelian group law on E, with explicit formulas for
computing the coordinates of a point P3 = P1 + P2 from the coordinates of P1

and P2. Scalar multiplication of a point is defined as the repeated addition of a
point to itself n, e.g. 3P1 = P1 + P1 + P1. O is the identity element.

The number of points of an elliptic curve E(Fqk) is called the order of the
curve over the field Fqk . A point P has order r if rP = O for the smallest possible
r > 0. The set of r-torsion points on E is the set E[r] = {P ∈ E | rP = O}. The
order of a point always divides the curve order. There is an operation on a point
in the extension field that will reduce that point to a point in the base field; this
is called the trace map, and is denoted as Tr(P). One of these cyclic subgroups
is called the trace zero subgroup, T = {P ∈ E | Tr(P) = O}. A subgroup G of
an elliptic curve is said to have embedding degree k if its order r divides qk − 1
for the smallest possible k. We assume k > 1. We let G0 be the group of order r
defined over Fq and G1 be the trace zero group, again of order r. The results of
Weil and Tate pairing operations equate to one of the r-th roots of unity. Again
this is a group of order r, we call this group G2 [11].

The modified Tate pairing over supersingular curves [5] denoted t̂(P,Q) is
t(P, ψ(P)) where t : G0 × G1 → G2 is the Tate pairing and ψ : G0 → G1 is an
efficiently computable distortion map [11]. It is an example of a bilinear map of
the form t̂ : G0 × G0 → G2 where G0 and G2 are groups of order r.

The possibility of exploiting differences between the pairings t̂(P, P) and
t(P,Q) to implement protocols with different properties has occurred to other
authors [10, 17]. We use the modified Tate pairing in the escrowed system, and
the Tate pairing in the escrowless system.

3 An Authenticated Key Agreement with Escrow

As with all other identity-based cryptosystems we assume the existence of a
trusted Key Generation Centre (KGC) that is responsible for the creation and

A New Two-Party Identity-Based Authenticated Key Agreement 265

secure distribution of users private keys. This agreement algorithm can be im-
plemented using the modified Tate pairing.

Setup: The KGC inputs a security parameter κ into a BDH parameter gen-
erator Bmt which returns two groups G0 and G2, both of prime order r, a
suitable bilinear map t̂ : G0 × G0 → G2 (which can be implemented as the
modified Tate pairing), a generator element P such that 〈P 〉 = G0, and a
random oracle H : {0, 1}∗ → Z∗

r . The KGC randomly generates a master
secret s ∈R Z∗

r , and calculates a master public key sP . The parameters and
master public key are distributed to the users of the system through a secure
authenticated channel. We assume that the number of users is polynomial
in κ.

Extract: The KGC checks that a user has a claim to a particular online iden-
tifier. If they do, the KGC generates their private key and communicates it
privately to them. Let Alice’s online identifier map to a ∈ Z∗

r by means of
the random oracle H. Alice’s public key is (a+ s)P , which can be computed
as aP + sP . The KGC computes Alice’s private key as Apri = (a + s)−1P .
While it may be argued that this key pair derivation is not as elegant as
that in the Boneh-Franklin IBE [4], since the public key no longer relies on
the user’s identity alone, most key agreements, except Scott’s and Ryu et
al.’s [15], also use the KGC’s master secret in the key agreement stage.

Key Agreement: Assume that Alice and Bob have private keys issued by the
same KGC, respectively Apri and Bpri. Alice and Bob each generate one
unique random nonce xa, xb ∈R Z∗

r , respectively.

Alice Bob
AKA = xa(bP + sP) � BKA = xb(aP + sP)
keya = t̂(BKA, Apri)xa keyb = t̂(AKA, Bpri)xb

This scheme is consistent because:

keya = t̂(BKA, Apri)xa

= t̂(P, P)xaxb

= t̂(AKA, Bpri)xb

= keyb.

The escrow property derives from the KGC’s ability to recover the shared
session key by computing:

xaP = (s + b)−1AKA,

xbP = (s + a)−1BKA,

key = t̂(xaP, xbP).

Our scheme is role symmetric, with each party performing the same opera-
tions and thus incurring the same computational cost.

266 Noel McCullagh and Paulo S.L.M. Barreto

4 An Authenticated Key Agreement Without Escrow

The key agreement without escrow differs only slightly from the algorithm given
in section 3. Again there are three algorithms, Setup, Extract and Key Agree-
ment. This key agreement protocol can be implemented using the conventional
Tate pairing, not the modified Tate pairing as in the escrowed scheme.

Setup: The KGC inputs a security parameter κ into a BDH parameter gener-
ator Bt which returns three groups G0,G1 and G2, G0 and G2 being groups
of prime order r, a suitable bilinear map t : G0 × G1 → G2 (which can be
implemented as the Tate pairing), two generator elements P and Q such
that 〈P 〉 = G0 and 〈Q〉 = G1, and a random oracle H : {0, 1}∗ → Z

∗
r . It

is important that the discrete logarithm between ψ(P) and Q is unknown1.
This can be achieved by obtaining P and Q as the output of random oracles
H0 : {0, 1}∗ → G0 and H1 : {0, 1}∗ → G1 evaluated on publicly known
constant strings cs0 and cs1 (cs0 and cs1 may be the same string). The
KGC randomly generates a master secret s ∈R Z∗

r , and calculates a master
public key sP . The parameters, master public key and the constant strings
used in the derivation of P and Q are distributed to the users of the system
through a secure authenticated channel. We assume that the number of users
is polynomial in κ.

Extract: The KGC checks that a user has a claim to a particular online iden-
tifier. If they do, the KGC generates their private key and communicates it
privately to them. Let Alice’s online identifier map to a ∈ Z

∗
r by means of

the random oracle H. Alice’s public key is Apub = (a + s)P , which can be
computed as aP +sP . Alice’s private key is generated as Apri = (a+s)−1Q.
End user Alice is encouraged to check that the KGC has used the correct Q
in the construction of her private key by checking the following:

P ← H0(cs0)
Q ← H1(cs1)

t(Apub, Apri)
?= t(P,Q)

Key Agreement: Assume that Alice and Bob have private keys issued by the
same KGC, respectively Apri and Bpri. Alice and Bob each generate one
unique random nonce xa, xb ∈ Z∗

r , respectively.

Alice Bob
AKA = xa(bP + sP) � BKA = xb(aP + sP)
keya = t(BKA, Apri)xa keyb = t(AKA, Bpri)xb

1 If the KGC knows λ such that ψ (P) = λQ, it can use the distortion map to get
a representation in 〈Q〉 of AKA or BKA and then recover the session key using the
technique outlined in the previous section. On non-supersingular curves no efficiently
computable distortion map exists [26] and this attack does not apply.

A New Two-Party Identity-Based Authenticated Key Agreement 267

This scheme is consistent because

keya = t(BKA, Apri)xa

= t(P,Q)xaxb

= t(AKA, Bpri)xb

= keyb.

We also note that, although the KGC has the ability to generate the private
keys of both users in the protocol, it is not able to obtain the shared session
key for any particular run of the protocol. The KGC can, in this instance, eas-
ily compute t(P,Q)xa and t(P,Q)xb , but calculating the key from these values
involves solving the Computational Diffie-Hellman Problem (CDHP) over the
group G2 [27].

5 Key Agreement Between Members of Distinct Domains

We now look at key agreements between members of separate domains. This
idea was first suggested in [6]. We suggest a scheme that is twice as efficient as
their scheme without precomputation, whilst being similar with precomputation.
Again this protocol can be instantiated in escrowed or escrowless mode.

For key agreement to be possible between members of different groups all
that is needed is for the points P , Q in the case of the escrowless system, or
just P in the case of the escrowed system, and the curve description to be
the same (standardised). Elliptic curves, suitable group generator points and
other cryptographic tools have been standardised for non-IBE applications, for
example in the NIST FIPS standards. It is reasonable, therefore, to assume the
availability of standard pairing-friendly curves as well.

Once these group generator points and curves have been agreed upon, each
KGC can generate their own random master secret.

Alice’s private key is generated by KGC1 with a master secret s1. Bob’s
private key is generated by KGC2 with a master secret s2. Alice’s public key
is (a + s1)P and her private key is Apri = (a + s1)−1P . Likewise, Bob’s public
key is (b + s2)P and his private key is Bpri = (b + s2)−1P . Notice that now
Alice must obtain s2P (the master public key of Bob’s KGC) and vice-versa; it
is critical that the master public keys are obtained in an authenticated manner,
as with any IBC scheme.

Alice and Bob now perform the authenticated key agreement:

Alice Bob
AKA = xa(bP + s2P) � BKA = xb(aP + s1P)
keya = t̂(BKA, Apri)xa keyb = t̂(AKA, Bpri)xb

268 Noel McCullagh and Paulo S.L.M. Barreto

This scheme is consistent because

keya = t̂(BKA, Apri)xa

= t̂(P, P)xaxb

= t̂(AKA, Bpri)xb

= keyb.

6 Efficiency

Smart’s protocol [24] requires each party to perform 2 point scalar multiplications
and 2 pairing evaluations. One of these pairings can be partially precomputed,
reducing the cost to 1 point scalar multiplication, 1 pairing evaluation and 1
pairing exponentiation per party at an additional storage cost of one pairing per
recipient. Our new scheme achieves the same efficiency without incurring the
extra storage requirements.

The Chen-Kudla authenticated key agreement protocol [6] requires 2 elliptic
curve point scalar multiplications, 1 point addition and 1 pairing evaluation.

Scott’s key agreement [17], using the pairing as a SPEKE generator, only
requires two pairing exponentiations when precomputation is used. Again it
restricts all users to having private keys generated by the same KGC.

The scheme proposed here requires 1 point scalar multiplication, 1 pairing
exponentiation and one 1 pairing evaluation. We note that a pairing exponenti-
ation is quicker than a point scalar multiplication.

We also note that the method of generating public keys from identities –
namely, by mapping identities to integer coefficients and performing a scalar
multiplication – is faster than the technique used in Boneh-Franklin key pair
generation. Their technique involves mapping the identifier to a coordinate, solv-
ing the curve equation and then multiplying by a large cofactor to generate a
point of order r. Public keys in our system will always be points of order r.

In Smart’s protocol the recipient’s public key is used either explicitly or
implicitly (if pairings are precomputed) to complete the protocol. In our scheme,
public keys of form uP + sP may be stored to save one scalar multiplication,
with the advantage that such values require a much smaller storage space than
pairing values, namely, a fraction2 1/k where k is the embedding degree of the
curve E(Fq).

We leave public key generation out of the following complexity analysis as
it is only slightly faster for our system – and can be precomputed in all IBE
systems. We also leave out E(Fqk) multiplication, point addition and hashing as
they are fast to compute compared to the other principle operations.

Key: p = pairing evaluation, e = E(Fqk) (pairing) exponentiation, m = scalar
multiplication, n = number of recipients, s = storage space per pairing eval-
uation, rac = requires additional computation (two point multiplications).

2 If pairing compression techniques as described in [18] are used, the fraction is 2/k
in general or 3/k in a special case.

A New Two-Party Identity-Based Authenticated Key Agreement 269

Proposed Smart Chen-Kudla Scott
No Precomp 1p+1e+1m 2p+1m 1p+2m 1p+2e
Precomp 1p+1e+1m 1p+1e+1m+ns 1p+1e+1m+ns 2e
Escrow Yes / No Yes / No (rac) Yes / No (rac) No
Between Domains Yes No No No

7 Security of the Proposed Scheme

The proof of security of the above algorithm relies on the conjectured intractabil-
ity of a problem which Zhang et al. [28] call the Bilinear Inverse Diffie-
Hellman Problem: For α, β ∈ Z∗

r , given P , αP , βP , compute v = t̂(P, P)α−1β .

7.1 The Security of the Authentication Mechanism

Assuming that the BIDHP is hard (with respect to the security parameter κ),
we now show the security of the above protocols.

We adopt the security model proposed by Bellare and Rogaway [2], modified
by Blake-Wilson et al. [3], and used in proving the security of the key agreement
protocol introduced in [6] and others.

The model includes a set of parties, each modelled by an oracle. We use the
notation

∏n
i,j , meaning a participant/oracle i believing that it is participating

in the n-th run of the protocol with j. Oracles keep transcripts of all communi-
cations in which they have been involved. Each oracle has a secret private key,
issued by a KGC, which has run a BDH parameter generator B and published
groups G0 and G2, a bilinear map of the form e : G0 × G0 → G2, a group
generator P of G0, and a master public key sP .

The model contains and adversary E which has access to all message flows in
the system. E is not a user or KGC. All oracles only communicate with each other
via E. E can replay, modify, delay, interleave or delete messages. E is benign if it
acts like a wire and does not modify communication between oracles. From [2],
if two oracles receive, via the adversary, property formatted messages that have
been generated exclusively by the other oracle, and both oracles accept, we say
that these two oracles have had a matching conversation.

The adversary at any time can make the following queries:

Create: E sets up a new oracle in the system that has public key ID, of E’s
choosing. E has access to the identity / public key of the oracle. The private
key is obtained from the KGC.

Send: E sends a message of his choice to an oracle i,
∏n

i,j , in which case i
assumed that the message came from j. E can also instruct the actual or-
acle j to start a new run of the protocol with i by sending a λ. Using the
terminology of [6] an oracle is an initiator oracle if the first message that it
receives is a λ, otherwise it is a responder oracle.

Reveal: E receives the session key that is currently being held by a particular
oracle.

270 Noel McCullagh and Paulo S.L.M. Barreto

Corrupt: E receives the long term asymmetric private key being held by a
particular oracle.

Test: E receives either the session key or a random value from a particular
oracle. Specifically, to answer the query the oracle flips a fair coin c ∈ {0, 1};
if the answer is 0 it outputs the agreed session key, and if the answer is 1
it outputs a random element of G2. E then must decide whether c is 0 or
1; call this prediction c′. E’s advantage in distinguishing the actual session
key held by an uncorrupted party from a key sampled at random from G2

in this game, with respect to the security parameter κ, is given by:

AdvantageE(κ) = |Pr[c′ = c] − 1/2|

The Test query can be performed only once, against an oracle that is in
the Accepted state (see below), and which has not previously been asked a
Reveal or Corrupt query.

An oracle may be in one of the following states (it cannot be in more than
one state).

Accepted: If the oracle decides to accept a session key, after receipt of properly
formated messages.

Rejected: If the oracle decides to not to accept and aborts the run of the
protocol.

*: If the oracle has yet to decide whether to accept to reject for this run of the
protocol. We assume that there is some time out on this state.

Opened: If a Reveal query has been performed against this oracle for its last
run of the protocol (its current session key is revealed).

Corrupted: If a Corrupt query has ever been performed against this oracle.

Definition 1.
A protocol is an AK protocol if:

– In the presence of the benign adversary on
∏n

i,j and
∏t

j,i, both oracles always
accept holding the same session key, and this key is distributed uniformly at
random on G2; if for every adversary E:

– If uncorrupted oracles
∏n

i,j and
∏t

j,i, have matching conversations then both
oracles accept and hold the same session key;

– AdvantageE(κ) is negligible.

Theorem 1. The proposed key agreement protocol is a secure AK protocol.

Proof. Condition 1 holds as follows: Both oracles accept holding the same session
key as a direct result of the commutativity of exponentiation of members of
the group G2. The session key is distributed uniformly at random by the fact
that both oracles generate truly random x ∈ Z. Therefore the product of these
elements will also be random. Since the exponent is random, and e(P, P) is a
generator of the group G2, the session key will be uniformly distributed over G2.

Condition 2 holds by the fact that if they have matching conversations then
the communication was generated entirely by the two oracle’s. Therefore, by the

A New Two-Party Identity-Based Authenticated Key Agreement 271

bilinearity of the pairing and the commutativity of exponentiation they accept
and hold the same session key.

Condition 3 holds as follows: Consider by contradiction that AdvantageE(κ)
is non-negligible. Then we can construct from E an algorithm F that solves the
BIDHP with non-negligible advantage. F is given as input the output of the
BDH generator B. F ’s task is to solve the BIDHP, namely, given P , αP and βP ,
compute v = t̂(P, P)α−1β .

All queries by the adversary E now pass through F .

Create: For each oracle F chooses yi ∈R Z∗
p, creates a public key as uiP =

(yiP − sP), and computes the private key as y−1
i P . Obviously yiP = uiP +

sP . However, for the j-th oracle F answers αP . Since F does not know α,
it cannot calculate α−1P , the correct private key for this oracle.

Corrupt: F answers Corrupt queries in the usual way, revealing the private
key of the oracle being queried. However, F does not know the private key
for oracle j; if E asks a Corrupt query on oracle j, F gives up.

Send: F answers all send queries in the usual way, except if E asks Send
∏n

i,j , F
answers xiP , for a known xi, which is, from E’s perspective, indistinguishable
from xt(αP) for a random xt ∈R Z∗

q . In response it will get a value from j,
this is set as the value βP – this is a genuine value from j and F does not
influence it.

Test: At some point E will ask a single Test query of some oracle, which we
assume is oracle j; if it is not, F aborts. The chance of F picking j is ξ = 1/n
where n is the number of oracles (Create queries). Since it is picked it must
have accepted and it must be holding a session key of the form e(P, P)xixj .
However, F cannot compute this key and hence cannot simulate the query,
so it simply outputs a random element of the group G2.

If F does not abort and E does not detect F ’s inconsistency in answer-
ing the Test query then its advantage in predicting the correct session key is
AdvantageE(κ) as before. For this to be non-negligible, E must have some ad-
vantage in calculating e(P, P)xixj , given βP = xjαP as input from j.

If E does not detect any inconsistencies in F ’s responses, then F must have
non-negligible advantage A(κ) in calculating e(P, P)xixj , but, since F does not
know j’s private key the session key was calculated as e(P, P)α−1βxi. Provided
that F is able to calculate e(P, P)α−1βxi , it can calculate e(P, P)α−1β since it
knows xi.

We assume that there is some timeout τs on the length of a run of the
protocol, including the time spent in the ∗ state. We also assume that some time
τc is allocated to allow the construction of oracles in the Create query, and time
τo allocated for each Corrupt query. We assume that n oracles are needed, and
that m send queries are needed, and o corrupt queries are needed. The expected
time needed to solve the BIDHP is:

(nτc)(mτs)(oτo)ξ
A(κ)

272 Noel McCullagh and Paulo S.L.M. Barreto

Table 1. Key offset attack.

Alice E Bob
KA = xa(s + b)P → K′

A = εKA →
← K′

B = εKB ← KB = xb(s + a)P
key = e(K′

B, Apri)
xa key = e(K′

A, Bpri)
xb

= e(P, P)xaxbε = e(P, P)xaxbε

We note that our protocol is vulnerable to an attack described by Blake-
Wilson et al. [3], namely, that an active adversary can offset the agreed session
key by an exponent ε unbeknownst to Alice or Bob. Most key agreements without
key confirmation are vulnerable to this attack, for example, those by Chen and
Kudla, Smart and Scott. The attack is shown below, with E, being an active
attacker.

Although this attack (which exists against many key agreements) is interest-
ing, it should be noted that it does not allow the attacker to gain any knowledge
of the agreed session key.

7.2 Further Security Considerations

Here we look at the new key agreement using a few security definitions that are
often used to judge key agreements. We only consider the basic protocol given
in section 3.

Known Key Security: If one session key is compromised this does not mean
that any other session keys are compromised. This is from the fact that the
agreed session keys rely on random ephemeral keys. A session key as a result is
distributed uniformly in G2 with no connection to other session keys.

Key-Compromise Impersonation: If Alice’s private key is exposed, it does
not enable an adversary to impersonate Bob to Alice. This stems from the fact
that Alice uses Bob’s public key in her contribution to the shared secret.

Unknown Key-Share Resilience: Alice cannot be coerced into sharing a key
with Charlie thinking she is sharing a key with Bob. Again, this come from the
fact that Alice explicitly uses Bob’s public key in her contribution to the session
key.

Forward Secrecy: Compromise of either Alice’s private key or Bob’s private
key does not appear to allow an attacker to recover any past session keys. On
the other hand, compromise of the KGC’s master secret in the escrowed scheme
allows all past agreed session keys to be recovered.

Key Control: Because both parties have an input into the key, neither entity
is able to force the full session key to be a preselected value. However, Bob can
set certain bits of the agreed session key by carefully selecting his ephemeral key

A New Two-Party Identity-Based Authenticated Key Agreement 273

xb until be achieves the desired result. It does not appear possible for Bob to
set any substantial number of bits in a reasonable time frame. Again, this key
agreement is no less secure in this respect that most other key agreements. As
with all key agreements a short timeout on a particular run of the protocol may
be advisable.

8 Conclusion

We have presented a new ID-based key agreement protocol inspired on the Sakai-
Kasahara key pair generation algorithm. The proposed scheme improves on the
performance of the Smart and the Chen-Kudla key agreement protocols, can be
instantiated in either escrowed or escrowless mode, and can be carried out by
clients of distinct KGC’s.

References

1. S. S. Al-Riyami and K. G. Paterson. Tripartite authenticated key agreement pro-
tocols from pairings. In IMA Conference on Cryptography and Coding, volume
2898 of Lecture Notes in Computer Science, pages 332–359. Springer-Verlag, 2003.

2. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology – Crypto’93, volume 773 of Lecture Notes in Computer Sci-
ence, pages 232–249. Springer-Verlag, 1994.

3. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In IMA International Conference on Cryptography and Coding,
volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer-Verlag,
1997.

4. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In
Advances in Cryptology – Crypto’2001, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer-Verlag, 2001.

5. L. Chen and K. Harrison. Multiple trusted authorities in identifier based cryptog-
raphy from pairings on elliptic curves. Trusted Systems Laboratory, HP, 2003.
http://www.hpl.hp.com/techreports/2003/HPL-2003-48.pdf.

6. L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.
Cryptology ePrint Archive, Report 2002/184, 2002.
http://eprint.iacr.org/2002/184.

7. Z. Chen. Security analysis on Nalla-Reddy’s ID-based tripartite authenticated key
agreement protocols. Cryptology ePrint Archive, Report 2003/103, 2003.
http://eprint.iacr.org/2003/103.

8. C. Cocks. An identity based encryption scheme based on quadratic residues. In
VIII IMA International Conference on Cryptography and Coding, volume 2260 of
Lecture Notes in Computer Science, pages 360–363. Springer-Verlag, 2001.
"http://www.cesg.gov.uk/site/ast/idpkc/media/ciren.pdf.

9. R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptography : A survey. Cryptol-
ogy ePrint Archive, Report 2004/064, 2004. http://eprint.iacr.org/2004/064.

10. S. Galbraith. Personal communication, 2004.
11. S. Galbraith and V. Rotger. Easy decision-diffie-hellman groups. Cryptology ePrint

Archive, Report 2004/070, 2004. http://eprint.iacr.org/2004/070.

274 Noel McCullagh and Paulo S.L.M. Barreto

12. A. Joux. A one round protocol for tripartite Diffie-Hellman. In Proceedings of Al-
gorithmic Number Theory Symposium, volume 1838 of Lecture Notes in Computer
Science, pages 385–394. Springer-Verlag, 2000.

13. D. Nalla. ID-based tripartite key agreement with signatures. Cryptology ePrint
Archive, Report 2003/144, 2003. http://eprint.iacr.org/2003/144.

14. D. Nalla and K. C. Reddy. ID-based tripartite authenticated key agreement pro-
tocols from pairings. Cryptology ePrint Archive, Report 2003/004, 2003.
http://eprint.iacr.org/2003/004.

15. Eun-Kyung Ryu, Eun-Yoon, and Kee-Young Yoo. An efficient ID-based autenti-
cated key agreement protocol from pairings. In NETWORKING 2004, volume 3042
of Lecture Notes in Computer Science, pages 1458–1463. Springer-Verlag, 2004.

16. R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic
curve. In 2003 Symposium on Cryptography and Information Security – SCIS’2003,
Hamamatsu, Japan, 2003. http://eprint.iacr.org/2003/054.

17. M. Scott. Authenticated ID-based key exchange and remote log-in with insecure
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002.
http://eprint.iacr.org/2002/164/.

18. M. Scott and P. S. L. M. Barreto. Compressed pairings. In Advances in Cryptology –
Crypto’2004, volume 3152 of Lecture Notes in Computer Science. Springer-Verlag,
2004. to appear.

19. A. Shamir. Identity based cryptosystems and signature schemes. In Advances in
Cryptology – Crypto’84, volume 0196 of Lecture Notes in Computer Science, pages
47–53. Springer-Verlag, 1984.

20. K. Shim. Cryptanalysis of Al-Riyami-Paterson’s authenticated three party key
agreement protocols. Cryptology ePrint Archive, Report 2003/122, 2003.
http://eprint.iacr.org/2003/122.

21. K. Shim. Cryptanalysis of ID-based tripartite authenticated key agreement proto-
cols. Cryptology ePrint Archive, Report 2003/115, 2003.
http://eprint.iacr.org/2003/115.

22. K. Shim. Efficient ID-based authenticated key agreement protocol based on Weil
pairing. Electronics Letters, 39(8):653–654, 2003.

23. K. Shim. Efficient one round tripartite authenticated key agreement protocol from
Weil pairing, 2003.

24. N. P. Smart. An identity based authenticated key agreement protocol based on
the Weil pairing. Electronics Letters, 38:630–632, 2002.

25. H.-M. Sun and B.-T. Hsieh. Security analysis of Shim’s authenticated key agree-
ment protocols from pairings. Cryptology ePrint Archive, Report 2003/113, 2003.
http://eprint.iacr.org/2003/113.

26. E. Verheul. Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. In Advances in Cryptology – Eurocrypt’2001, volume 2045 of Lec-
ture Notes in Computer Science, pages 195–210. Springer-Verlag, 2001.

27. Y. Yacobi. A note on the bilinear Diffie-Hellman assumption. Cryptology ePrint
Archive, Report 2002/113, 2002. http://eprint.iacr.org/2002/113.

28. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bi-
linear pairings and its applications. In International Workshop on Practice and
Theory in Public Key Cryptography – PKC’2004, Lecture Notes in Computer Sci-
ence, pages 277–290. Springer-Verlag, 2004.

Accumulators from Bilinear Pairings
and Applications

Lan Nguyen

Centre for Information Security,
University of Wollongong, Wollongong 2522, Australia

ldn01@uow.edu.au

Abstract. We propose a dynamic accumulator scheme from bilinear
pairings and use it to construct an identity-based (ID-based) ring sig-
nature scheme with constant-size signatures and to provide member-
ship revocation to group signature schemes, identity escrow schemes and
anonymous credential systems. The ID-based ring signature scheme and
the group signature scheme have very short signature sizes. The size
of our group signatures with membership revocation is only half the
size of those in the well-known ACJT00 scheme, which does not pro-
vide membership revocation. The schemes do not require trapdoor, so
system parameters can be shared by multiple groups belonging to differ-
ent organizations. All schemes are provably secure in formal models. We
generalize the definition of accumulators and provide formal models for
ID-based ad-hoc anonymous identification schemes and identity escrow
schemes with membership revocation.

Keywords: Dynamic accumulators, ID-based, ring signatures, group
signatures, identity escrow, membership revocation, privacy, anonymity.

1 Introduction

An accumulator scheme, introduced by Benaloh and de Mare [5] and further
developed by Baric and Pfitzmann [3], allows aggregation of a large set of in-
puts into one constant-size value. For a given element, there is a witness that
the element was included into the accumulated value whereas it is not possible
to compute a witness for an element that is not accumulated. Camenisch and
Lysyanskaya [11] extended the concept to dynamic accumulators, that means the
costs of adding or deleting elements and updating individual witnesses do not
depend on the number of elements aggregated. Accumulators have been found in
a number of privacy-enhancing applications, including ad-hoc anonymous iden-
tification, ring signatures [13], identity escrow and group signature schemes with
membership revocation [11].

Ring signature schemes, introduced by Rivest et al. [19] and further studied
in [9], allows a user to form an ad-hoc group without a central authority and sign
messages on behalf of the group. A user might not even know that he has been
included in a group and even a party with unlimited computing resources can not
identify the signer. Zhang and Kim [23] extended the concept to ID-based ring

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 275–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

276 Lan Nguyen

signature schemes, where the group is formed by using members’ identities rather
than their public keys. ID-base cryptography was introduced by Shamir [20] to
simplify key management in public key primitives. In any ID-based system, there
is a central authority, called Private Key Generator (PKG), to extract private
keys from identities. In ID-based ring signature schemes, to comply with the
ad-hoc property, the involvement of a central authority is limited to only setting
up initial public parameters and generating private keys from identities, and not
for forming groups.

While having simple group formation set up as an advantage, the size of ring
signatures linearly depends on the group size, as the verifier needs to know at
least the group description. However, as pointed out in [13], in many scenar-
ios, the group does not change for a long time or has a short description. So
an appropriate measurement of ring signature sizes does not need to include
the group description and it is a good direction to find constant-size ring sig-
natures without the group description part. A ring signature scheme (DKNS04)
with such a property has been proposed by Dodis et al. [13]. They provide an
ad-hoc anonymous identification scheme, where a user can form ad-hoc groups
and anonymously prove membership in such groups, and use the Fiat-Shamir
heuristics [14] to convert it into the ring signature scheme. The DKNS04 scheme
requires user public keys to be primes, that does not seem to allow an ID-based
extension. This paper provides the first ID-based ring signature scheme with
constant-size signatures (without counting the list of identities to be included in
the ring).

The notion of ring signatures is originated from the notion of group signa-
tures, which was introduced by Chaum and Van Heyst [12]. A group signature
scheme allows a group member to sign a message on behalf of the group with-
out revealing his identity, and without allowing the message to be linkable to
other signed messages that are verifiable under the same public key. The main
difference with ring signature schemes lies in the role of a group manager. The
group manager registers new users by issuing membership certificates that con-
tains registration details, and in case of dispute revokes anonymity of a signed
message by ‘opening’ the signature. In some schemes the functions of the group
manager can be split between two managers: an issuer and an opener. An iden-
tity escrow system [15] can be converted into a group signature scheme using
the Fiat-Shamir heuristic [14], and group signatures have been used as building
blocks for anonymous credential systems [2]. A formal model (BSZ04) of group
signature schemes was proposed by Bellare et al. [4] with four security require-
ments (correctness, anonymity, traceability and non-frameability). In Crypto
2000, Ateniese et al. (ACJT00) [1] proposed an efficient group signature scheme
with very short length and low computation cost. Ateniese and de Medeiros later
proposed an efficient group signature scheme (AdM03) [2] that is ‘without trap-
door’ in the sense that none of the parties in the system, including the group
manager, need to know the trapdoor for generating system parameters. They
also outline the importance of this property in real-world applications.

Accumulators from Bilinear Pairings and Applications 277

Providing efficient fully dynamic group signature schemes, where users can
be revoked from the group, has been a serious challenge. The most notable
scheme (CL02) was proposed in [11]; and Tsudik and Xu [22] later proposed
another scheme (TX03), which requires less exponentiations in some operations.
Both schemes use dynamic accumulators as the key for efficiency improvements
and this method can provide membership revocation for other primitives, such
as identity escrow and anonymous credential systems. Using this approach to
extend AdM03 scheme to be a trapdoor-free group signature scheme with mem-
bership revocation does not seem to be easy, as the user certificates are not suit-
able to be accumulated by the dynamic accumulator used in CL02 and TX03
schemes. Based on this method, but using a different dynamic accumulator, we
construct a trapdoor-free group signature scheme with membership revocation.

Our Contribution
In this paper, we propose a new dynamic accumulator scheme and its provably
secure applications with a number of attractive properties. The applications are
an ID-based ring signature scheme, a group signature scheme with membership
revocation and their interactive counterparts, i.e. an ID-based ad-hoc anony-
mous identification scheme and an identity escrow scheme with membership
revocation. The dynamic accumulator can also be used to provide membership
revocation for anonymous credential systems. We also generalize the model of
accumulators and provide formal models of ID-based ad-hoc anonymous identifi-
cation schemes and identity escrow schemes with membership revocation, based
on the models in [13, 4].

The schemes have a number of attractive properties. Both signature schemes
provide the shortest signature sizes compared to corresponding schemes previ-
ously proposed. For example, at a comparable level of security when the CL02
and ACJT00 schemes use 1024 bit composite modulus and our group signature
scheme with membership revocation uses elliptic curve groups of order 160 bit
prime, the signature size in our scheme is just nearly one fourth and one half of
the size of an CL02 signature and an ACJT00 signature, respectively. For higher
security levels this ratio will be smaller, and ACJT00 scheme does not provide
membership revocation. Like CL02 scheme, no procedure in our scheme linearly
depends either on the current group size or the total number of revoked mem-
bers. Our ID-based ring signature scheme is the first one providing signatures
with fixed size. All previous normal ring signature schemes, except for the one
in [13], have signature sizes linearly dependent on the group size. When using
elliptic curve groups of order 160 bit prime, our ring signature size is only about
200 bytes.

Our schemes are completely trapdoor-free. Though being trapdoor-free, the
AdM03 scheme uses a trapdoor in the initialization of the system and assumes
that the initializing party “safely forgets” the trapdoor. Besides, the AdM03
scheme does not provide membership revocation. Finally in our group signature
scheme, the interactive protocol underlying the signature scheme achieves perfect
zero-knowledge without any computational assumption whereas in many previ-

278 Lan Nguyen

ous schemes, including ACJT00 and CL02 schemes, the corresponding protocols
achieve statistical zero-knowledge under the Strong RSA assumption. We note
that all these zero-knowledge proofs including ours, is in honest verifier model.

The organization of the paper is as follows. We recall some background knowl-
edge in section 2 and present the models of dynamic accumulators, ID-based ad-
hoc anonymous identification, ID-based ring signature and identity escrow with
membership revocation schemes in section 3. Section 4 and 5 give descriptions of
our dynamic accumulator scheme, an ID-based ad-hoc anonymous identification
scheme, an ID-based ring signature scheme and their security proofs. Section 6
exemplifies the application of our dynamic accumulator to membership revoca-
tion by providing an identity escrow scheme with membership revocation and
section 7 provides efficiency comparison.

2 Preliminaries

Notation. Let N be the set of positive integers. For a function f : N → R
+,

if for every positive number α, there exists a positive integer l0 such that for
every integer l > l0, it holds that f(l) < l−α, then f is said to be negligible.
If there exists a positive number α0 such that for every positive integer l, it
holds that f(l) < lα0 , then f is said to be polynomial-bound. Let PT denote
polynomial-time, PPT denote probabilistic PT and DPT denote deterministic
PT. An adversary is an interactive Turing machine. For a PT algorithm A(·),
“x ← A(·)” denotes an output from the algorithm. For a set X, “x ← X” denotes
an element uniformly chosen from X. For interactive Turing machines A(·) and
B(·), “(a ← A(·) ↔ B(·) → b)” denotes that a and b are random variables cor-
responding to outputs of the joint computation between A(·) and B(·). Finally,
“Pr[Procedures|Predicate]” denotes the probability that Predicate is true after
executing the Procedures.

2.1 Bilinear Pairings

Let G1,G2 be cyclic additive groups generated by P1 and P2, respectively, whose
orders are a prime p, and GM be a cyclic multiplicative group with the same
order p. Suppose there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1.
Let e : G1 × G2 → GM be a bilinear pairing with the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2, a, b ∈ Zp

2. Non-degeneracy: e(P1, P2) �= 1
3. Computability: There is an efficient algorithm to compute e(P,Q) for all

P ∈ G1, Q ∈ G2

For simplicity, hereafter, we set G1 = G2 and P1 = P2. But our schemes can
be easily modified for the general case when G1 �= G2. For a group G of prime
order, hereafter, we denote the set G∗ = G\{O} where O is the identity element
of the group.

We define a Bilinear Pairing Instance Generator as a PPT algorithm G that
takes as input a security parameter 1l and returns a uniformly random tuple

Accumulators from Bilinear Pairings and Applications 279

t = (p,G1,GM , e, P) of bilinear pairing parameters, including a prime number
p of size l, a cyclic additive group G1 of order p, a multiplicative group GM of
order p, a bilinear map e : G1 × G1 → GM and a generator P of G1.

2.2 Complexity Assumptions

The q-SDH assumption originates from a weaker assumption introduced by Mit-
sunari et al. [16] to construct traitor tracing schemes [21] before being proposed
by Boneh and Boyen [6]. It intuitively means that there is no PPT algorithm
that can compute a pair (c, 1

s+cP), where c ∈ Zp, from a tuple (P, sP, . . . , sqP),
where s ∈R Z∗

p.

q-Strong Diffie-Hellman (q-SDH) Assumption. For every PPT algorithm

A, the following function Adv
q-SDH
A (l) is negligible.

Adv
q-SDH
A (l) = Pr[(A(t, P, sP, . . . , sqP) = (c,

1
s + c

P)) ∧ (c ∈ Zp)]

where t = (p,G1,GM , e, P) ← G(1l) and s ← Z∗
p.

Intuitively, the DBDH assumption [7] states that there is no PPT algo-
rithm that can distinguish between a tuple (aP, bP, cP, e(P, P)abc) and a tuple
(aP, bP, cP, Γ), where Γ ∈R G∗

M (i.e., chosen uniformly random from G∗
M) and

a, b, c ∈R Z∗
p. It is defined as follows.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. For every PPT
algorithm A, the following function AdvDBDH

A (l) is negligible.

AdvDBDH
A (l) = |Pr[A(t, aP, bP, cP, e(P, P)abc) = 1]−Pr[A(t, aP, bP, cP, Γ) = 1]|

where t = (p,G1,GM , e, P) ← G(1l), Γ ← G∗
M and a, b, c← Z∗

p.

3 Models

3.1 Accumulators

We generalize definitions of accumulators provided in [11, 13] as follows (in [11,
13], Uf = Ug and the bijective function g is the identity function g(x) = x).

Definition 1. An accumulator is a tuple ({Xl}l∈N, {Fl}l∈N), where {Xl}l∈N is
called the value domain of the accumulator; and {Fl}l∈N is a sequence of families
of pairs of functions such that each (f, g) ∈ Fl is defined as f : Uf ×Xext

f → Uf

for some Xext
f ⊇ Xl, and g : Uf → Ug is a bijective function. In addition, the

following properties are satisfied:

– (Efficient Generation) There exists an efficient algorithm G that takes as
input a security parameter 1l and outputs a random element (f, g) ∈R Fl,
possibly together with some auxiliary information af .

280 Lan Nguyen

– (Quasi Commutativity) For every l ∈ N, (f, g) ∈ Fl, u ∈ Uf , x1, x2 ∈ Xl:
f(f(u, x1), x2) = f(f(u, x2), x1). For any l ∈ N, (f, g) ∈ Fl, and X =
{x1, ..., xq} ⊂ Xl, we call g(f(...f(u, x1)..., x1)) the accumulated value of
the set X over u. Due to quasi commutativity, the value f(...f(u, x1)..., x1)
is independent of the order of the xi’s and is denoted by f(u,X).

– (Efficient Evaluation) For every (f, g) ∈ Fl, u ∈ Uf and X ⊂ Xl with
polynomial-bound size: g(f(u,X)) is computable in time polynomial in l,
even without the knowledge of af .

Definition 2. (Collision Resistant Accumulator). An accumulator is de-
fined as collision resistant if for every PPT algorithm A, the following function
Advcol.acc

A (l) is negligible.

Advcol.acc
A (l) = Pr[(f, g) ← Fl;u ← Uf ; (x,w,X) ← A(f, g,Uf , u)|

(X ⊆ Xl) ∧ (w ∈ Ug) ∧ (x ∈ Xext
f \X)

∧(f(g−1(w), x) = f(u,X))]

We say that w is a witness for the fact that x ∈ Xl has been accumulated in
v ∈ Ug whenever g(f(g−1(w), x)) = v. The notion of witness for a set of values
X ⊆ Xl can be defined similarly.

Definition 3. (Dynamic Accumulator). A dynamic accumulator is defined
as a collision resistant accumulator with the following properties:

– (Efficient Addition) there exist PT algorithms Da,Wa such that, if v =
g(f(u,X)), x ∈ X, x′ /∈ X and g(f(g−1(w), x)) = v, then (i) Da(af , v, x

′) =
v′ such that v′ = g(f(u,X∪{x′})); and (ii) Wa(f, g, v, v′, x, x′, w) = w′ such
that g(f(g−1(w′), x)) = v′.

– (Efficient Deletion) there exist PT algorithms Dd,Wd such that, if v =
g(f(u,X)), x, x′ ∈ X, x �= x′ and g(f(g−1(w), x)) = v, then (i) Dd(af , v, x

′)
= v′ such that v′ = g(f(u,X\{x′})); and (ii) Wd(f, g, v, v′, x, x′, w) = w′

such that g(f(g−1(w′), x)) = v′.

Similar to Theorem 2 in [11], we can easily prove the following theorem about
security of dynamic accumulators against adaptive attacks.

Theorem 1. Suppose DA is a dynamic accumulator and O is an interactive
Turing machine, which operates as an oracle as follows. It receives input (f , g,
af , u), where (f, g) ∈ Fl and u ∈ Uf . It maintains a list of values X which is
initially empty, and the current accumulated value, v, which is initially g(u). It
responds to two types of messages: when receiving the (add, x) message, it checks
that x ∈ Xl, and if so, adds x to the list X and updating the accumulated value
(using efficient addition Da), it then sends back this updated value; similarly,
when receiving the (delete, x) message, it checks that x ∈ X, and if so, deletes
it from the list and updates v (using efficient deletion Dd) and sends back the
updated value. In the end of the computation, O returns the current values for
X and v. Let Uext

f × Xext
f denote the domains for which the computational

Accumulators from Bilinear Pairings and Applications 281

procedure for function f is defined. For every PPT adversary A, the following

function Adv
adap.col
A (l) is negligible.

Adv
adap.col
A (l) = Pr[(f, g) ← Fl;u ← Uf ; (x,w) ← A(f, g,Uf , u) ↔

O(f, g, af , u) → (X, v) — (X ⊆ Xl) ∧ (w ∈ Ug) ∧
(x ∈ Xext

f \X) ∧ (f(g−1(w), x) = f(u,X))]

3.2 Identity-Based Ad-Hoc Anonymous Identification Schemes

Syntax. The following definition is quite the same as the definition of an ad-
hoc anonymous identification scheme in [13] except for some ID-based-related
features: a KeyGen algorithm replaces the Register algorithm and the Setup does
not maintain a database of users’ public keys.

An identity-based ad-hoc anonymous identification scheme is defined as a
tuple IA =(Setup, KeyGen, Make-GPK, Make-GSK, IAIDP , IAIDV) of PT algo-
rithms, which are described as follows.

– Setup takes as input a security parameter 1l and returns the public param-
eters params and a master key mk. The master key is only known to the
Private Key Generator (PKG).

– KeyGen, run by the PKG, takes as input params, mk and an arbitrary
identity of an user and outputs a private key for the user. The identity is
used as the corresponding public key.

– Make-GPK takes as input params and a set of identities and deterministically
outputs a single group public key which is used in the identification protocol
IAID described below. Its cost linearly depends on the number of identities
being aggregated. The algorithm is order invariant that means the order of
aggregating the identities does not matter.

– Make-GSK takes as input params, a set of identities and a pair of an identity
and the corresponding private key and deterministically outputs a single
group secret key which is used in the identification protocol IAID described
below. Its cost linearly depends on the number of identities being aggregated.
It can be observed that a group secret key gsk ← Make-GSK(params,S′,
(sid, id)) corresponds to a group public key gpk ← Make-GPK(params,S)
if and only if S = S′ ∪ {id}. And more than one group secret key might
corresponds to the same group public key.

– IAID = (IAIDP , IAIDV) is the two party identification protocol, which allows
the prover (IAIDP) to anonymously show his membership in a group of iden-
tities he constructed by himself. Both of the prover and the verifier (IAIDV)
takes as input params and a group public key; IAIDP is also given a corre-
sponding group secret key; and IAIDV finally outputs 0 (reject) or 1 (accept).
The cost of the protocol is independent from the number of identities that
were aggregated in the group public key.

Security Requirements. The requirements are quite the same as thoses for ad-
hoc anonymous identification schemes in [13], including Correctness, Soundness

282 Lan Nguyen

and Unconditional Anonymity, which are described in the full version of this
paper [17].

3.3 ID-Based Ring Signature Schemes

Based on the model in [23], an ID-based ring signature scheme is as a tuple
IR =(RSetup, RKeyGen, RSign, RVerify) of PT algorithms. RSetup and RKey-
Gen are defined the same as Setup and KeyGen in ID-based ad-hoc anonymous
identification schemes. The PPT algorithm RSign takes as input the public pa-
rameter params, a user private key sid, a set of identities, which includes the
identity corresponding to sid, and a message m; and outputs a signature for m.
The DPT algorithm RVerify takes as input a set of identities, a message and a
ring signature; and outputs either accept or reject.

There are three security requirements for ID-based ring signature schemes:
Correctness, Unforgeability against Chosen Message, Group and Signer Attacks
(UNF-CMGSA), and Unconditional Anonymity. Correctness intuitively requires
that if RSign is given a valid private key correponding to an identity in the
input set of identities, then its output signature is accepted by RVerify with
overwhelming probability. UNF-CMGSA intuitively requires an adversary, who
can adaptively play a chosen message-group-signer attack many times, can not
forge a new ring signature with non-negligible probability. The chosen message-
group-signer attack allows the adversary to adaptively choose a message, a group
of identities, specify a signer in that group and query RSign for the correspond-
ing signature. Unconditional Anonymity intuitively requires that given a ring
signature, the adversary cannot tell the identity of the signer with a probability
non-negligibly larger than a random guess, even assuming that the adversary
has unlimited computing resources.

An ID-based ad-hoc anonymous identification scheme IA can be converted
to an ID-based ring signature scheme IR by applying the Fiat-Shamir heuristics.
Based on arguments similar to those in [13], we have the following lemma.

Lemma 1. If IA provides Correctness, Soundness and Unconditional
Anonymity, then the non-interactive dual IR provides Correctness,
UNF-CMGSA (in the random oracle model), and Unconditional Anonymity.

3.4 Identity Escrow Schemes with Membership Revocation

Based on the BSZ04 formal model for group signature schemes, we propose
a formal model for identity escrow schemes with membership revocation. The
model can be used for many existent schemes, such as ones in [11, 22], where
some public information needs to be updated after each addition or deletion
of group members. The main extensions from the BSZ04 formal model are as
follows.

– A public archive arc records history of the public information that needs to
be updated. After each addition or deletion of group members, the issuer
needs to add new information to arc.

Accumulators from Bilinear Pairings and Applications 283

– The issuer, with access to arc and reg, uses an algorithm Revoke to remove
a specified member from the group by updating arc.

– Apart from the unchanged membership secret key (private signing key in
the BSZ04 model), each group member also keeps a membership witness.
Based on information in the public archive, each group member can run an
algorithm Update to update the membership witness.

– There is an algorithm CheckArchive, that can be run by any party after each
change in the public archive. This algorithm checks if the issuer updates the
archive arc correctly. With such an algorithm, we can assume arc is always
updated correctly.

An identity escrow scheme with membership revocation is a tuple IE =(GKg,
UKg, Join, Iss, IEIDP , IEIDV , Open, Judge, Revoke, Update, CheckArchive) of PT
algorithms, where GKg generates public parameters and secret keys, UKg gen-
erates personal public and private keys (different from membership secret keys)
for users, the protocol (Join, Iss) allows a user to join the group and get a mem-
bership secret key and a membership witness, the protocol IEID=(IEIDP , IEIDV)
allows a group member to anonymously prove his membership, Open revokes a
IEID transcript to find the prover and Judge decides if the Open finds the right
prover. The security requirements are Correctness, Anonymity, Traceability and
Non-frameability. More details about the model are provided in the full version
of this paper [17].

4 A Dynamic Accumulator from Bilinear Pairings

We propose a dynamic accumulator DA1 = ({Xl}l∈N, {Fl}l∈N) from Bilinear
Pairings as follows.

– Efficient Generation: To generate an instance of the accumulator from a se-
curity parameter l, use BPG to generate a tuple t = (p,G1,GM , e, P) and
s ∈R Z∗

p. Compute a tuple t′ = (P, sP, . . . , sqP), where q is the upper bound
on the number of elements to be accumulated by the accumulator. The cor-
responding functions (f, g) for t, t′ are defined as:
f : Zp × Zp → Zp and g : Zp → G1

f : (u, x) �→ (x + s)u g : u �→ uP

The corresponding domain for elements to be accumulated is Zp\{−s} and
the auxiliary information is af = s. The tuple t′ = (P (0) = P, P (1) =
sP, . . . , P (q) = sqP) can be distributively constructed by many parties so
that all of them need to cooperate to find s.

– Quasi Commutativity: It holds that: f(f(u, x1), x2) = f(u, {x1, x2}) = (x1 +
s)(x2 + s)u.

– Efficient Evaluation: For u ∈ Zp and a set X = {x1, ..., xk} ⊂ Zp\{−s},
where k ≤ q, the value g(f(u,X)) =

∏k
i=1(xi + s)uP is computable in

time polynomial in l from the tuple t′ = (P, sP, . . . , sqP) and without the
knowledge of the auxiliary information s.

284 Lan Nguyen

– Efficient Addition: Suppose V = g(f(u,X)), x ∈ X, x′ /∈ X and
g(f(g−1(W), x)) = V , then V ′ = g(f(u,X ∪ {x′})) can be computed as
V ′ = (x′ + s)V . And the value W ′ such that g(f(g−1(W ′), x)) = V ′ can be
computed as W ′ = V + (x′ − x)W .

– Efficient Deletion: Suppose V = g(f(u,X)), x, x′ ∈ X, x �= x′ and
g(f(g−1(W), x)) = V , then V ′ = g(f(u,X\{x′})) can be computed as V ′ =
1/(x′ + s)V . And the value W ′ such that
g(f(g−1(W ′), x)) = V ′ can be computed as W ′ = (1/(x′ − x))(W − V ′).

Theorem 2 states the collision resistant property of DA1 based on the Strong
Diffie Hellman assumption.

Theorem 2. The accumulator DA1 provides Collision Resistance if the q-SDH
assumption holds, where q is the upper bound on the number of elements to be
accumulated by the accumulator.

Proof. Suppose there is a PPT adversary A that can break Collision-Resistance
property of DA1, we show a construction of a PPT adversary B that can break
the q-SDH assumption. Suppose a tuple challenge = (P, zP, . . . , zqP) is given,
where z ∈R Z∗

p, we show that B can compute (c, 1/(z + c)P), where c ∈ Zp

with non-negligible probability. Let u ∈R Z∗
p, as A breaks Collision-Resistance

property of DA1, he can output X = {x1, ..., xk} ⊂ Zp\{−z}, x ∈ Zp\({−z}∪X)
and W ∈ G1 such that k ≤ q and (x+z)W =

∏k
i=1(xi+z)uP . From this equation

and the tuple challenge, (1/(x + z))P can be computed and hence the q-SDH
assumption is broken.

5 An ID-Based Ad-Hoc
Anonymous Identification Scheme

5.1 Descriptions

As defined in the formal model, our scheme is a tuple IA1 =(Setup, KeyGen,
Make-GPK, Make-GSK, IAIDP , IAIDV) of PT algorithms, which are described as
follows.

Setup, on a security parameter l, generates an instance of the accumulator
above, including functions (f, g) and tuples t = (p,G1,GM , e, P) and t′ =
(P, Ppub = sP, . . . , sqP), where s ∈R Z∗

p and q is the upper bound on the num-
ber of identities to be aggregated. The auxiliary information s can be safely
deleted, as it will never be used later. It also generates Q ∈R G∗

1, u, sm ∈R Z∗
p

and computes Qpub = smQ. Let I be the set of all possible identities, choose
a collision-free function H : I → Zp\{−s}, that means the probability that an
PPT adversary can find id0 �= id1 so that H(id0) = H(id1) is negligible. H
does not have to be a hash or one-way function, but using a collision-free hash
function H : {0, 1}∗ → Zp is also acceptable. Then, the public parameters are
params = (l, t, t′, f, g,Q,Qpub, u,H) and the master key is mk = sm.

Accumulators from Bilinear Pairings and Applications 285

KeyGen extracts a private key sid = Rid for an identity id as Rid = 1/(H(id)+
sm)Q. The user can verifies the private key by checking e(H(id)Q+Qpub, Rid)

?=
e(Q,Q).

Make-GPK, given a set of identities {idi}k
i=1, computes the set X={H(idi)}k

i=1

and generates the group public key for the set gpk = V = g(f(u,X)).

Make-GSK generates the group secret key gsk for a user id and a set of iden-
tities {idi}k

i=1 by computing the set X′ = {H(idi)}k
i=1, hid = H(id) and the

witness W = g(f(u,X′)). The group secret key is gsk = (hid, sid,W).

(IAIDP , IAIDV). This protocol IAID has the common input params and gpk
and the prover (user id) also has gsk. It is a combination of the proof that
an identity is accumulated and a proof of knowledge of the user private key
correponding to that identity. The protocol proves the knowledge of (hid, Rid,W)
satisfying equations e(hidQ + Qpub, Rid) = e(Q,Q) and e(hidP + Ppub,W) =
e(P, V).

1. IAIDP generates r1, r2, r3, r4, k1, k2, k3, k4 ∈R Zp and computes

U1 = r1(hidQ + Qpub); U2 = r−1
1 Rid; U3 = r2U1 + r3H

S1 = r1r2(hidP + Ppub); S2 = (r1r2)−1W

T1 = k1Q + k2Qpub + k3H ; T2 = k4U1 + k3H ; T3 = k1P + k2Ppub

2. IAIDP −→ IAIDV : U1, U2, U3, S1, S2, T1, T2, T3

3. IAIDV verifies that e(U1, U2)
?= e(Q,Q) and e(S1, S2)

?= e(P, V) (This can
be done concurrently with next rounds).

4. IAIDP ←− IAIDV : c ∈R Zp

5. IAIDP computes s1 = k1 + cr1r2hid, s2 = k2 + cr1r2, s3 = k3 + cr3, s4 =
k4 + cr2

6. IAIDP −→ IAIDV : s1, s2, s3, s4

7. IAIDV verifies that T1
?= s1Q+ s2Qpub + s3H − cU3; T2

?= s4U1 + s3H − cU3;

T3
?= s1P + s2Ppub − cS1

5.2 Security

Theorem 3. The ID-based ad-hoc anonymous identification scheme IA1 pro-
vides Correctness and Unconditional Anonymity. The scheme IA1 provides
Soundness if the q-Strong Diffie-Hellman assumption holds, where q is the upper
bound of the group size.

Theorem 3 can be easily concluded from the zero-knowledge property of IAID
that is stated in Lemma 2. Correctness and Unconditional Anonymity is based
on the completeness and perfect zero-knowledge properties of the IAID protocol,
respectively. Soundness of IA1 is based on the soundness property of the IAID
protocol, the collision-resistance property of the accumulator DA1 and the fact
that: if a PPT adversaryA can compute a new pair of hashed identity and private
key (h∗

id, R
∗
id = 1/(h∗

id + sm)Q) from a set of {(h(i)
id , R

(i)
id = 1/(h(i)

id + sm)Q)}q
i=1,

then A can break the q-SDH assumption (see [6] for a proof of this).

286 Lan Nguyen

Lemma 2. The IAID protocol is a (honest-verifier) perfect zero-knowledge proof
of knowledge (hid, Rid,W) satisfying equations e(hidQ + Qpub, Rid) = e(Q,Q)
and e(hidP + Ppub,W) = e(P, V).

Proof. As the proof for completeness is straightforward, we present the proofs
for Soundness and Zero-knowledge property only, as follows.

Soundness: If the protocol accepts with non-negligible probability, we show that
the prover must have the knowledge of (hid, Rid,W) with the relations stated
in the theorem. Suppose the protocol accepts for the same commitment (U1,
U2, U3, S1, S2, T1, T2, T3) with two different pairs of challenges and responses
(c, s1, ...s4) and (c′, s′1, ..., s′4). Let fi = si−s′

i

c−c′ , i = 1, ..., 4, then

U3 = f1Q + f2Qpub + f3H ; U3 = f4U1 + f3H ; S1 = f1P + f2Ppub

so U1 = f1f
−1
4 Q + f2f

−1
4 Qpub.

Let hid = f1f
−1
2 , Rid = f2f

−1
4 U2 and W = f2S2, then e(hidQ+Qpub, Rid) =

e(Q,Q) and e(hidP+Ppub,W) = e(P, V), as e(U1, U2) = e(Q,Q) and e(S1, S2) =
e(P, V). So the prover have the knowledge of (hid, Rid,W) satisfying the rela-
tions.

Zero-Knowledge: The simulator chooses c, s1, ...s4 ∈R Zp, b1, b2 ∈R Z∗
p, U3 ∈R G1

and compute U1 = b1Q, U2 = b−1
1 Q, S1 = b2P , S2 = b−1

2 V , T1 = s1Q+s2Qpub +
s3H − cU3, T2 = s4U1 + s3H − cU3 and T3 = s1P + s2Ppub − cS1. We can see
that the distribution of the simulation is the same as the distribution of the real
transcript.

5.3 Constant-Size Identity-Based Ring Signatures

Applying the Fiat-Shamir heuristics to the ID-based ad-hoc anonymous iden-
tification scheme IA1 results in an ID-based ring signature scheme IR1 with
constant-size signatures. More specifically, each signature contains (U1, U2, U3,
S1, S2, c, s1, s2, s3, s4), where c is computed from a hash function (a random
oracle). Both the signer and the verifier only need to perform a computation
proportional to the ring size once, and get some constant-size information (the
group secret key and the group public key, respectively), on which they can
produce/verify many subsequent signatures in constant time. The security of
the scheme is stated in Theorem 4, which is based on results in Theorem 3 and
Lemma 1.

Theorem 4. The ID-based ring signature scheme IR1 provides Correctness
and Unconditional Anonymity. It also provides UNF-CMGSA in the random
oracle model under the q-SDH assumption, where q is the upper bound of the
group size.

6 Application to Membership Revocation

We show how dynamic accumulators can be used to achieve membership revo-
cation for group signature, identity escrow and anonymous credential systems.

Accumulators from Bilinear Pairings and Applications 287

In particular, we provide membership revocation to an identity escrow scheme
(NS04) proposed in [18], and prove its security in the formal model above. The
scheme can be easily converted to a group signature scheme (using Fiat-Shamir
heuristics) or extended to an anonymous credential system; all of them provide
membership revocation.

6.1 An Identity Escrow Scheme with Membership Revocation

As defined in the formal model, our identity escrow scheme involves a trusted
party for initial set-up, two group managers (the issuer and the opener), and
users, each with a unique identity i ∈ N, that may become group members.
The scheme is a tuple IE1 =(GKg, UKg, Join, Iss, IEIDP , IEIDV , Open, Judge,
Revoke, Update, CheckArchive) of PT algorithms which are defined as follows. We
assume that the group size and the number of queries asked by the adversary
are polynomial-bounded.

GKg: Suppose l is a security parameter and the generator BPG generates a
tuple of bilinear pairing parameters t = (p,G1,GM , e, P) ← G(1l), that is also
the publicly shared parameters. Choose a hash function H : {0, 1}∗ → Zp, which
is assumed to be a random oracle in the security proofs. Choose P0, G,H ∈R G1,
x, x′ ∈R Z∗

p and compute Ppub = xP , Θ = e(G,G)x′
.

An instance of the dynamic accumulator DA1 is also generated by choos-
ing Q ∈R G1, s ∈R Z∗

p, computing Qpub = sQ and defining functions (f, g),
correponding to the domain Zp\{−s} for elements to be accumulated and the
auxiliary information af = s, as:

f : Zp × Zp → Zp and g : Zp → G1

f : (u, a) �→ (a + s)u g : u �→ uQ

Note that unlike the definition of DA1, the tuple t′ = (Q, sQ, . . . , sqQ) is not
needed to be generated here. The reason is that the evaluation of the accumulated
value can be done by the issuer with the knowledge of the auxiliary information
s; and the efficient addition and efficient deletion properties allow witnesses to be
updated without the knowledge of the tuple t′.

Besides tables reg and upk, there is also a public archive, as a table arc.
Each entry j (row jth) on the table will have three attributes, the first attribute
contains a certificate part of an user, who was added to or deleted from the
group. The second attribute is just one bit, to indicate whether the user was
added (1) or deleted (0). The third attribute contains the group accumulated
value Vj (more description of this value will be given) after adding or deleting
that user.

Initially, the public archive is empty, a u ∈R Z∗
p is generated and the group

accumulated value is set to V0 = uQ. The group public key is gpk =(u, Q, Qpub,
P , P0, Ppub, H , G, Θ), the issuing key is ik = (s, x), and the opening key is
ok = x′.

UKg: This algorithm generates keys that provide authenticity for messages sent
by the user in the (Join, Iss) protocol. This algorithm is the key generation algo-
rithm KS of any digital signature scheme (KS , Sign, V er) that is unforgeable

288 Lan Nguyen

against chosen message attacks (UNF-CMA). A user i runs the UKg algorithm
that takes as input a security parameter 1l and outputs a personal public and
private signature key pair (upk[i], usk[i]). Public Key Infrastructure (PKI) can
be used here. Although any UNF-CMA signature scheme can be used, but using
schemes whose security is based on DBDH or SDH assumptions, will reduce the
underlying assumptions of our group signature scheme.

(Join, Iss): In this protocol, an user i and the issuer first generate a value
xi ∈ Z∗

p so that its randomization is contributed by both parties, but its value
is only known by the user. The issuer then generates (ai, Si) for the user so that
e(aiP+Ppub, Si) = e(P, xiP+P0). The user uses usk[i] to sign his messages in the
protocol. Suppose the current group accumulated value, which is publicly known,
is Vj (there have been j entries on the table arc), the issuer computes a new
group accumulated value Vj+1 = (ai +s)Vj and appends an entry (ai, 1, Vj+1) to
the table. Note that the formal model assumes the communication to be private
and authenticated. In case the user i was revoked and now rejoins the group
again (reg[i] has been filled), he and the issuer just need to perform the steps 8,
9, 10 of the protocol. The protocol is as follows.

1. user i −→ issuer: I = yP + rH , where y, r ∈R Z∗
p.

2. user i ←− issuer: u, v ∈R Z∗
p.

3. The user computes xi = uy + v, Pi = xiP .
4. user i −→ issuer: Pi and a proof of knowledge of (xi, r

′) such that Pi = xiP
and vP + uI − Pi = r′H (see [10] for this proof).

5. The issuer verifies the proof, then chooses ai ∈R Z∗
p different from all corre-

sponding elements previously issued, and computes Si = 1
ai+x (Pi + P0).

6. user i ←− issuer: ai, Si.
7. The user computes Δi = e(P, Si), verifies if e(aiP + Ppub, Si) = e(P, xiP +

P0), and stores the membership secret key gsk[i] = (xi, ai, Si, Δi). Note that
only the user knows xi. The issuer also computes Δi and makes an entry in
the table reg: reg[i] = (i,Δi, 〈Join, Iss〉 transcript so far).

8. Suppose the current group accumulated value is Vj , the issuer computes a
new group accumulated value Vj+1 = (ai + s)Vj and appends (ai, 1, Vj+1) to
the table arc.

9. user i ←− issuer: j + 1, Vj+1

10. The user verifies that e(aiQ + Qpub, Vj) = e(Q, Vj+1), then set his current
membership witness to be (j + 1,Wi,j+1) where Wi,j+1 = Vj .

(IEIDP , IEIDV): This protocol IEID shows an user i’s knowledge of (ai, Si)
and a secret xi such that: e(aiP + Ppub, Si) = e(P, xiP + P0) and ai has been
accumulated in the current group accumulated value. The protocol does not re-
veal any information about his knowledge to anyone, except for the opener, who
can only compute Δi by decrypting an encryption of that value. Before the pro-
tocol is started, user i checks the table arc to find the latest group accumulated
value Vj and runs Update algorithm to compute his current membership witness
(j,Wi,j) (or the issuer asks the users to run Update after changes in the table
arc). The protocol is then run between user i (as IEIDP) and a verifier IEIDV as
follows.

Accumulators from Bilinear Pairings and Applications 289

1. IEIDP computes E = tG, Λ = ΔiΘ
t

2. The following sub-protocol, which we call the Proving protocol, is performed.
(a) IEIDP generates r1, ..., r5, k0, ..., k7 ∈R Z∗

p and computes: R1 = r4(aiQ+
Qpub); R3 = r−1

4 Wi,j ; R2 = r1r2R1 + r5H ; U1 = r1(aiP + Ppub); U3 =
r2r4Si; U2 = r2r4U1 + r3H ; X = r1r2r4(xiP +P0); T1 = k1P +k2Ppub +
k0H ; T2 = k3P + k2P0; T4 = k5U1 + k0H ; T3 = k1Q + k2Qpub + k4H ;
T5 = k6R1 + k4H ; T6 = k7G− k5E; Π = Θk7Λ−k5 .

(b) IEIDP −→ IEIDV : E,Λ,R1, R2, R3, U1, U2, U3, X, T1, ..., T6, Π .

(c) IEIDV verifies that e(R1, R3)
?= e(Q, Vj) and e(U1, U3)

?= e(P,X) (This
can be done concurrently with next rounds).

(d) IEIDP ←− IEIDV : c ∈R Zp.
(e) IEIDP computes in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2r4ai; s2 = k2 +

cr1r2r4; s3 = k3+cr1r2r4xi; s4 = k4+cr5; s5 = k5+cr2r4; s6 = k6+cr1r2;
s7 = k7 + cr2r4t.

(f) IEIDP −→ IEIDV : s0, ..., s7.

(g) IEIDV verifies that T1
?= s1P +s2Ppub+s0H−cU2; T2

?= s3P+s2P0−cX ;

T4
?= s5U1 + s0H − cU2; T3

?= s1Q + s2Qpub + s4H − cR2; T5
?= s6R1 +

s4H − cR2; T6
?= s7G− s5E; Π ?= Θs7Λ−s5e(P, cU3).

Open: To open an IEID transcript (E,Λ, ...) to find the prover, the opener
computes Δi = Λe(E,G)−x′

and a non-interactive zero-knowledge proof of
knowledge of x so that Θ = e(G,G)x′

and Λ/Δi = e(E,G)x′
(see [10] for this

proof); and finds the corresponding entry i in the table reg. If no entry is found,
it returns (0, Δi,). Otherwise, it returns (reg[i],).

Judge: Anyone can run the Judge algorithm as follows. On an output (reg[i],)
by the Open algorithm for an IEID transcript (E,Λ, ...), it returns reject if verifi-
cation of the proof rejects. Otherwise, it returns accept. On an output (0, Δi,)
by Open, it returns reject if verification of the proof rejects; otherwise, it returns
accept.

Revoke: To remove an user i from the group, the issuer retrieves the user’s ai

from the table reg and the current group accumulated value Vj and computes a
new group accumulated value Vj+1 = (1/(ai + s))Vj . The issuer appends a new
entry (ai, 0, Vj+1) on the table arc.

Update: Given access to the arc table, which currently has n rows, an user i
with a membership witness (j,Wi,j) computes a new witness as follows. Its cost
is about n− j scalar multiplications.

for (k = j + 1; k + +; k ≤ n) do
retrieve from row kth of arc the entry (a, b, Vk);
if b = 1, then Wi,k = Vk−1 + (a− ai)Wi,k−1

else Wi,k = (1/(a− ai))(Wi,k−1 − Vk) end if;
end for;
return (n,Wi,n);

290 Lan Nguyen

CheckArchive: Any party, after a change on the public archive, can run this
algorithm as follows.

retrieve from the new row of arc the entry (a, b, Vk);
if (b = 1) then return (e(aQ + Qpub, Vk−1) = e(Q, Vk))
else return (e(aQ + Qpub, Vk) = e(Q, Vk−1));

6.2 Security

Theorem 5. The identity escrow scheme with membership revocation IE1 pro-
vides Correctness.

Theorem 6. The scheme IE1 provides Anonymity if the Decisional Bilinear
Diffie-Hellman assumption holds.

Theorem 7. The scheme IE1 provides Traceability if the q-Strong
Diffie-Hellman assumption holds, where q is the upper bound of the group size.

Theorem 8. The scheme IE1 provides Non-frameability if the Discrete Loga-
rithm assumption holds over the group G1 and the digital signature scheme (KS,
Sign, V er) is UNF-CMA.

Proofs of these theorems can be found in the full version [17]. They are
based on the Coalition-Resistance of the NS04 scheme, the Collision-Resistance
of DA1 and the Zero-knowledge property of the Proving protocol, which is stated
in Lemma 3.

Lemma 3. The Proving protocol in the IEID protocol is a (honest-verifier) per-
fect zero-knowledge proof of knowledge of Wi,j, (ai, Si), xi and t such that e(aiQ+
Qpub,Wi,j) = e(Q, Vj), e(aiP + Ppub, Si) = e(P, xiP + P0), E = tG and Λ =
e(P, Si)Θt.

Proof. As the proof for completeness is straightforward, we present the proofs
for Soundness and Zero-knowledge property only, as follows.

Soundness: If the protocol accepts with non-negligible probability, we show that
the prover must have the knowledge of Wi,j , (ai, Si), xi and t with the relations
stated in the theorem. Suppose the protocol accepts for the same commitment
(R1, R2, R3, U1, U2, U3, X, T1, ..., T6, Π) with two different pairs of challenges and
responses (c, s0, ...s7) and (c′, s′0, ..., s

′
7). Let fi = si−s′

i

c−c′ , i = 0, ..., 7, then

U2 = f1P + f2Ppub + f0H ; U2 = f5U1 + f0H

R2 = f1Q + f2Qpub + f4H ; R2 = f6R1 + f4H

X = f3P + f2P0; E = f7f
−1
5 G; Λ = e(P, f−1

5 U3)Θf7f−1
5

so U1 = f1f
−1
5 P + f2f

−1
5 Ppub and R1 = f1f

−1
6 Q + f2f

−1
6 Qpub.

Let ai = f1f
−1
2 , Si = f−1

5 U3, xi = f3f
−1
2 , t = f7f

−1
5 and Wi,j = f2f

−1
6 R3,

then E = tG, Λ = e(P, Si)Θt, e(aiP +Ppub, Si) = e(P, xiP +P0) (as e(U1, U3) =
e(P,X)) and e(aiQ + Qpub,Wi,j) = e(Q, Vj) (as e(R1, R3) = e(Q, Vj)). So the
prover have the knowledge of Wi,j , (ai, Si), xi and t satisfying the relations.

Accumulators from Bilinear Pairings and Applications 291

Zero-Knowledge: The simulator chooses c, s0, ...s7 ∈R Zp, b1, b2 ∈R Z∗
p, U1, U2, R2

∈R G1 and compute U3 = b1P , X = b1U1, R1 = b2Q, R3 = b−1
2 Vj , T1 =

s1P + s2Ppub + s0H − cU2, T2 = s3P + s2P0 − cX , T4 = s5U1 + s0H − cU2,
T3 = s1Q + s2Qpub + s4H − cR2, T5 = s6R1 + s4H − cR2, T6 = s7G − s5E,
Π = Θs7Λ−s5e(P, cU3). We can see that the distribution of the simulation is the
same as the distribution of the real transcript.

7 Efficiency Comparison

Our ID-based ring signature scheme is the first to provide constant-size signa-
tures. Although the tuple t′ is long, users just need to download it once, and
they do not need to obtain the whole t′. The signature size is also very much
smaller than that of the current state-of-the-art normal ring signature scheme
DKNS04. For elliptic curve group of 160-bit prime order, the signature size is
only about 200 bytes. In the future, when higher levels of security are required,
this difference even grows much larger. The same conclusion can be drawn for
the size of our group signatures in comparison with those in the CL02 and TX03
schemes, and even the ACJT00 scheme, which does not have membership re-
vocation. Note that e(Q,Q) and e(P, V) in IAID and e(Q, Vj) in IEID can be
pre-computed and published before the executions of the protocol.

We now make a specific comparison of sizes in our new group signature
scheme with membership revocation with those in ACJT00 and CL02 schemes.
We assume that our scheme is implemented by an elliptic curve or hyperelliptic
curve over a finite field. p is a 160-bit prime, G1 is a subgroup of an elliptic
curve group or a Jacobian of a hyperelliptic curve over a finite field with order
p and compression techniques are used. GM is a subgroup of a finite field of size
approximately 21024. A possible choice of these parameters can be from Boneh
et al.’s short signature scheme [8], where G1 is derived from the curve E/GF (3ι)
defined by y2 = x3−x+1. In addition, we assume that system parameters in the
ACJT00 and CL02 schemes are ε = 1.1, lp = 512, k = 160, λ1 = 838, λ2 = 600,
γ1 = 1102 and γ2 = 840. We summarize the result in the following table.

Signature gpk gsk ik ok Membership Revocation
ACJT00 1087 768 370 128 128 No
CL02 scheme 1968 1280 370 256 128 Yes
Our scheme 470 289 188 40 20 Yes

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. CRYPTO 2000, Springer-Verlag, LNCS
1880, pp. 255-270.

2. G. Ateniese, and B. de Medeiros. Efficient Group Signatures without Trapdoors.
ASIACRYPT 2003, Springer-Verlag, LNCS 2894, pp. 246-268.

292 Lan Nguyen

3. N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. EUROCRYPT 1997, Springer-Verlag, LNCS 1233, pp. 480-
494.

4. M. Bellare, H. Shi, and C. Zhang. Foundations of Group Signatures: The Case of
Dynamic Groups. Cryptology ePrint Archive: Report 2004/077.

5. J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to
digital signatures. EUROCRYPT 1993, Springer-Verlag, LNCS 765, pp. 274-285.

6. D. Boneh, and X. Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT 2004, Springer-Verlag, LNCS 3027, pp. 56-73.

7. D. Boneh, and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pp.
223-238.

8. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
ASIACRYPT 2001, Springer-Verlag, LNCS 2248, pp.514-532.

9. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications to
ad-hoc groups. CRYPTO 2002, Springer-Verlag, LNCS 2442, pp. 465-480.

10. J. Camenisch, and M. Michels. A group signature scheme with improved efficiency.
ASIACRYPT 1998, Springer-Verlag, LNCS 1514.

11. J. Camenisch, and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. CRYPTO 2002, Springer-Verlag,
LNCS 2442, pp. 61-76.

12. D. Chaum, and E. van Heyst. Group signatures. CRYPTO 1991, LNCS 547,
Springer-Verlag.

13. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous Identification in Ad
Hoc Groups. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pp. 609-626.

14. A. Fiat, and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. CRYPTO 1986, Springer-Verlag, LNCS 263, pp. 186-194.

15. J. Killian, and E. Petrank. Identity escrow. CRYPTO 1998, Springer-Verlag, LNCS
1642, pp. 169-185.

16. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans. Vol.
E85-A, No.2, pp.481-484, 2002.

17. L. Nguyen. Accumulators from Bilinear Pairings and Applications. Full version.
18. L. Nguyen, and R. Safavi-Naini. Efficient and Provably Secure Trapdoor-free Group

Signature Schemes from Bilinear Pairings. ASIACRYPT 2004, Springer-Verlag,
LNCS.

19. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. ASIACRYPT 2001,
Springer-Verlag, LNCS 2248, pp.552-565.

20. A. Shamir, Identity-based cryptosystems and signature schemes. CRYPTO 1984,
LNCS 196, Springer-Verlag, pp. 47-53.

21. V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear
map. DRM Workshop 2003.

22. G. Tsudik, and S. Xu. Accumulating Composites and Improved Group Signing.
ASIACRYPT 2003, Springer-Verlag, LNCS 2894, pp. 269-286.

23. F. Zhang, and K. Kim. ID-Based Blind Signature and Ring Signature from Pair-
ings. ASIACRYPT 2002, Springer-Verlag, LNCS 2501, pp. 533-547.

Computing the Tate Pairing�

Michael Scott

School of Computing,
Dublin City University,

Ballymun, Dublin 9, Ireland
mike@computing.dcu.ie

Abstract. We describe, in detail sufficient for easy implementation, a
fast method for calculation of the Tate pairing, as required for pairing-
based cryptographic protocols. We point out various optimisations and
tricks, and compare timings of a pairing-based Identity Based Encryption
scheme with an optimised RSA implementation.

Keywords: Elliptic curves, pairing-based cryptosystems.

1 Introduction

In the fast growing world of pairing-based cryptography (for background see
[1]) there are many protocols, many pairings (Tate, Weil, modified Weil etc.)
and many choices for the embedding degree k, as well as a choice of super- or
non-supersingular curves over fields of large or small characteristic. The range of
protocols is impressive, many with novel properties [6, 7, 28]. For a recent review
see [11]. However so far there are not many reported implementations of the fast
algorithms for pairings that have been developed in [2, 4, 13].

Here for the sake of being concrete we will focus exclusively on the Tate
Pairing on non-supersingular curves over a field of large prime characteristic.
We will also focus on the case k = 2 for the following reasons:

– It simplifies the description
– Choosing k = 2 makes it easy to pick a group order of the lowest possible

Hamming weight which is very efficient.
– Choosing k = 2 allows us to implement the Tate pairing based protocols us-

ing only E(Fp) elliptic curves as supported by many cryptographic libraries.
– k = 2 permits the important denominator elimination optimisation [2].
– It allows for easy times-2 compression of the Tate pairing value [25].
– In protocols elliptic curve point multiplication can often be replaced with

faster exponentiation using the identity er(wP,Q) = er(P,Q)w .
– Elliptic curves suitable for pairing based cryptosystems are, by design, in

flagrant breach of the MOV condition, as required for “ordinary” elliptic
curves [20]. The ECC community recently got a scare when Semaev [27]
suggested that a new index calculus type attack on normal elliptic curves may

� Research supported by Enterprise Ireland grant IF/2002/0312/N.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 293–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 Michael Scott

be possible. In the context considered here an index calculus attack is already
possible [20], and therefore we need not be too concerned. Nevertheless a
choice of a small value of k reduces the impact of any such new attack.

– For a given level of security it is our experience that k = 2 is fastest.
– In many protocols it is required to do a point multiplication prior to applica-

tion of the Tate pairing. Using k = 2 this implies a point multiplication only
on an E(Fp) curve, rather than a point multiplication on a curve defined over
a higher extension field, which would be computationally more expensive.

– Fp2 arithmetic is particularly easy to implement. This is sometimes called
the quadratic extension field. If it is assumed in this paper that the prime
modulus p is 3 mod 4, then an element in Fp2 can be considered as a “complex
number”, a+bi, a, b ∈ Fp, where i is

√
−1. Note that −1 is always a quadratic

non-residue for a 3 mod 4 prime. There are exactly (p− 1)(p + 1) elements
in the field Fp2 . Note that (a+ ib)p = (a− ib), where a− bi is the conjugate
of a + ib. Also an element ∈ Fp2 can be squared (or multiplied) using just
two (or three) Fp modular multiplications using the identity (a + bi)2 =
(a+b)(a−b)+2abi and Karatsuba’s method respectively. Sometimes we use
the notation [a, b] to denote the Fp2 number a + bi.

– Using k = 2 the time-critical function is 512-bit modular multiplication.
This is the same operation as required for 1024-bit RSA decryption using
the Chinese Remainder theorem and therefore it is likely to be supported
by hardware accelerators and co-processors. Highly optimized code for this
common operation may be already supported by cryptographic software li-
braries.

We do concede that k = 2 may not be optimal in some settings such as a
short signature scheme, like for example the BLS scheme [7].

In this paper we draw heavily from the theoretical results described by Bar-
reto et al. [4] and [2]. Our results improve a little on those described there using
ideas from [25].

2 The Curve

There are many ways proposed to find non-supersingular curves of low embed-
ding degree suitable for pairing-based protocols. See for example [3, 5, 8, 10, 21]
and [26]. Using these methods the existance of a suitable elliptic curve is first
determined, and then the actual parameters of the curve are found using the
method of Complex Multiplication as described in [14] and implemented in [23].

The particular curve we will use (found using the “folklore” method described
by Galbraith in Chapter 9 of [5]), is described in the Weierstrass form

E : y2 = x3 − 3x+ B

with B ∈ Fp. If x, y ∈ Fp, the curve has #E(Fp) points on it, where #E(Fp) =
p+ 1− t and t is the trace of the Frobenius [20]. If x, y ∈ Fp2 , it has #E(Fp2) =
(p + 1 − t)(p + 1 + t) points. A related twisted curve E′(Fp) is

E′ : y2 = x3 − 3x−B

Computing the Tate Pairing 295

If x, y ∈ Fp, this curve will have p+ 1 + t points on it. For our chosen curve:-
B = 68061659825436829401585865346840003227868864824516292145748121298848783826612

1706017410197802303768179517423581649948460652150151762287285211627769549950

p = 11711338024714009669995700965425239711927177698599625717955894184681899877662

827977441218356846207573509472307873756662300754437232398452830779100780970303

#E = 11711338024714009669995700965425239711927177698599625717955894184681899877662

611539569996945969293708404400344208273812850399351303651875378098503534075638

t = 216437871221410876913865105071963665482849450355085928746577452680597246894666

Note that p is 512-bits long and is congruent to 3 mod 4. #E(Fp) has (by
design) a 160-bit prime factor r of low Hamming weight, where r = 2159 +
217 + 1, a Solinas prime. The group of points on E(Fp2) of order r exhibit the
required k = 2 embedding degree behaviour [24] – observe that r | p + 1 – and
therefore form a suitable setting for calculation of the Tate pairing. Note that
the discrete logarithm problem over Fp2 where p is 512 bits is regarded as being
approximately as hard as a discrete logarithm problem over Fp where p is 1024
bits. Therefore this curve satisfies contemporary security requirements. Roughly
speaking it will be as difficult to “break” as 1024–bit RSA.

Note that although we have chosen to use a non-supersingular curve here,
the method described will also work without modification for a large prime
characteristic k = 2 supersingular curve, as originally suggested by Boneh &
Franklin [6].

3 The Tate Pairing Algorithm

The notation for the Tate pairing is er(P,Q), where P and Q are points on the
elliptic curve E(Fpk), with P a point of order r. Q may also be of order r, but
not necessarily (see below). The Tate pairing evaluates as an element in Fpk .

The algorithm itself consists of two parts; an application of Miller’s algorithm,
followed by a final exponentiation. For an easy-to-read introduction to the Tate
pairing, Miller’s algorithm, and its derivation from divisor theory see [18]. See
also [29] for a nice discussion on pairings.

Now we describe the optimised BKLS algorithm for the particular case of
k = 2 , with denominator elimination applied [2]. Basically (and very loosely)
Miller’s algorithm first carries out an implicit multiplication of P by r, using
the standard line-and-tangent double-and-add algorithm for elliptic curve point
multiplication [20]. The result of this multiplication will (of course) be O, the
point at infinity, as P is of order r. If a line or tangent should ever pass through
Q then the pairing algorithm will fail, but it can be arranged that this won’t
ever happen (see below). At each step in the process an Fp2 value is calculated
from a distance relationship between the current line or tangent and the point
Q. This consists of a numerator (derived from the line or tangent associated with
the addition or doubling of a point), and a denominator (derived from a vertical
line through the destination point).

This value is multiplicatively accumulated, and its final value is the output
of Miller’s algorithm.

296 Michael Scott

However this value, an element in Fp2 may not be of order r. To ensure a
unique answer of order r the output of Miller’s algorithm must be exponentiated
to the power of (p− 1)(p+1)/r. This is then the final result of the Tate pairing.

Observe that this final exponentiation itself can be considered in two parts
– an exponentiation to the power of (p − 1) followed by an exponentiation to
the power of (p + 1)/r. The first exponentiation to (p − 1) ensures that any
Fp component of the output of Miller’s algorithm is reduced to 1 (by Fermat’s
little theorem), and hence can be ignored. An important observation in [2] is
that under certain circumstances (that will pertain here) the “denominator”
component is always in Fp and hence can be discarded. So we only deal here
with the numerator.

In contrast to P , Q is not involved in any point addition or multiplication.
Only the coordinates of Q are actually required.

P and Q could be chosen as linearly-independent points from E(Fp2)[r],
and represented in standard (x, y) affine coordinates with x, y ∈ Fp2 . However
from an implementation view-point the requirement for point multiplication on
E(Fp2) is a little difficult, as most existing cryptographic libraries would not
support this. However this problem can be neatly side-stepped by modifying the
algorithm to accept P as a point on E(Fp). If it helps, think of P as an point on
E(Fp2) whose coordinates have an imaginary part of zero. Solinas [29] calls this
rather nicely Miller light. It solves another problem - if Q is truly on E(Fp2) then
P and Q can never be linearly dependant, and no line generated in the implicit
multiplication of P will ever pass through Q. This Miller light algorithm will
obviously be much faster.

As already stated Q need not be of order r. In fact it can be any point
on the curve. Whatever its value it will be a member of a coset which does
include exactly one point of order r (or the point at infinity). All points in the
same coset are equivalent as far as the Tate pairing is concerned [24]. Our only
problem is to ensure that Q is not in a coset associated with a point of order
r, which is in the same subgroup as P (otherwise P and Q will be linearly
dependent). This condition is met by points of the form Q([a, 0], [0, d]). It is not
difficult to see that if there are p + 1 − t points of the form Q([a, 0], [c, 0]) on
E(Fp) then there will be p + 1 + t points of the form Q([a, 0], [0, d]) on E(Fp2).
(Simply substitute all possible a < p for x in the curve equation, not forgetting
the point at infinity. If the right hand side is a quadratic residue the points are
Q([a, 0], [±c, 0]), otherwise they are Q([a, 0], [0,±d])). There will always be a
subgroup of order r consisting of points of this latter form. Such points stay in
this form under point multiplication. Furthermore there is a simple relationship
between such points on E(Fp2) and points on the twisted curve E′(Fp). In fact
for every point Q([−a, 0], [0, d]) on the curve defined over the quadratic extension
field Fp2 , there is a point Q(a, d) on the twisted curve defined over Fp [3]. This
isomorphism is very convenient, as it means that Q can be treated as a point
on E′(Fp)

In many protocols, for example [6], there is a need to hash and map an
arbitrary string to a curve point of order r. For a general point on E(Fp2) this

Computing the Tate Pairing 297

requires point multiplication by the large co-factor (p+1−t)(p+1+t)/r. However
if the string is hashed instead to a point on the twisted curve, then the cofactor
is the much smaller (p + 1 + t)/r.

Next we describe the BKLS algorithm in detail. If the current point in the
implicit multiplication is A(x, y), and if the next point doubling or addition
generates a line of slope λ, then we will require the function

f(A, λ,Q)
1. x, y ← A
2. a, d ← Q
3. return y − λ(a + x) − di

which calculates and returns an Fp2 value. We also need a function which adds
two points (or doubles a point) on the elliptic curve E(Fp). Assume therefore
the existance of a function A.add(B) which adds B to A and returns the line
slope λ. Next we need a function to calculate the contribution of the most recent
point addition/doubling to the Fp2 Miller variable m.

g(A,B,Q)
1. T = A
2. λ = A.add(B)
3. return f(T, λ,Q)

Now we are ready for the full BKLS algorithm.
Capital letters indicate an elliptic curve point. The variables r, n, p, and i

are all simple integers. The notation ni refers to the i-th bit of n. The variable
λ and the coordinates of A, P and Q are all in Fp. Only the Miller variable m
requires support for elementary Fp2 arithmetic. The standard elliptic curve point
addition/doubling formula involves the calculation of the line slope so there is
no extra work involved in obtaining λ [20]. The conjugate of m is denoted m̄.

BKLS(r, p, P,Q)
1. m = 1
2. A = P
3. n = r − 1
4. for i ← �lg(r)� − 2 downto 0 do
5. m = m2 · g(A,A,Q)
6. if ni = 1 then m = m · g(A,P,Q)
7. end for
8. m = m̄/m

9. m = m(p+1)/r

10. return m

As noted by Duursma and Lee [12] the very last step of Miller’s algorithm
can be ignored, as it does not contribute to the pairing value, so we do not need
to process the last bit of r. As a result, with our choice of r as a Solinas prime
with a Hamming weight of 3, the condition ni = 1 is met precisely once.

298 Michael Scott

As pointed out in [25], the value of m after line 8 of this algorithm is already
unitary. Unitary values like m = u + vi have the following useful properties:

– u2 + v2 = 1
– (u + vi)−1 = (u − vi)
– (u + vi)n = Vn(2u)/2 + Un(2u)vi

where Vn and Un are the well-known Lucas sequences. The first property tells
us that given u, then v can be uniquely determined from its sign. If it is clear
from the protocol that this sign is not important, then v can be dropped.

This compressed pairing εr(P,Q) as defined in [25] can be calculated in line 9
of the algorithm as V(p+1)/r(2u) and this single Fp value can be returned in line
10. Fortunately there is a well-known fast and efficient laddering algorithm which
calculates Vn(·), and requires very little memory [25]. Note that unitary values
remain unitary under any subsequent exponentiation. Therefore any subsequent
exponentiation of the compressed pairing value can also be computed using the
fast Lucas Vn(·) function.

3.1 Resistance to Simple Power Attack Analysis

We can make the following generalisations about pairing-based cryptographic
protocols based on the BKLS tate pairing algorithm described above

– r and p are fixed and public
– secrets may be introduced as unknown points P and/or Q
– secrets may be introduced as exponents of pairings.

In the light of these observations it is of interest to consider the resistance of
pairing-based protocols to so-called SPA attacks [17]. Observe first that the path
taken through the code in the course of the execution of the BKLS algorithm is
independent of any possible secrets. Furthermore, using the compressed pairing,
any subsequent exponentiation of a pairing value can be carried out using a
laddering algorithm, which is also known to be resistant to SPA [16]. Therefore
one might with reasonable confidence expect that the power consumption profile
of (and execution time for) such protocols will be constant and independent of
any secret values.

To increase resistance to more sophisticated SPA and DPA attacks we suggest
the following simple counter-measures

– Exploit bilinearity and calculate e(P,Q) = e(sP, tQ)1/st, where s and t are
random variables.

– Multiply the Miller variable at any time prior to line 8 in the BKLS algorithm
by a random element of Fp. This does not effect the result, as all such
contributions are eliminated by the final exponentiation.

4 Optimisations

In this section we will describe various speed-ups and tricks.

Computing the Tate Pairing 299

4.1 Projective Coordinates

It has been the experience of many that elliptic curve point addition and doubling
over E(Fp) is faster if the points are represented in (x, y, z) projective coordinates
rather than in (x, y) affine coordinates [14]. This is because affine point addition
or point doubling requires an expensive modular inversion mod p. This operation
is hard to optimise. If a single pairing value is being calculated and if pre-
computation is not possible, then our experience is that projective coordinates,
which do not require a modular inversion, are faster in practice. In the context
of pairings the use of projective coordinates is also recommended by Izu and
Takagi [15].

The modification to the algorithm above is simple - we just need a projective
version of the A.add(B) which will return the line slope as a rational λ = λn/λd,
and a new f(·) function. It is assumed that initially P and Q are presented in
affine coordinates (with z=1).

f(A, λ,Q)
1. x, y, z ← A
2. a, d ← Q
3. λn, λd ← λ
4. return yλd − λn(az3 + xz) − dz3λd · i

4.2 Precomputation

For the calculation of er(P,Q) in the context of a particular protocol, the pa-
rameter P may be fixed. It may for example be an individual’s fixed private key,
or it may be a system global. Whatever the reason, if P is fixed then it makes
sense to calculate the points and slopes that arise in the implicit multiplication
of rP just once, and store them, as suggested in [2] and [13]. In this case it
makes sense to revert to affine coordinates, as no point addition or doubling will
be needed.

The modification to the BKLS algorithm is straightforward. Assume the prior
storage of {xj , yj, λj} for each point Aj that arises in the point multiplication.
Then in line 2 of the g(·) function instead of calculating the next point and slope,
simply extract them from this precomputed store. The size of the store will be
3 · (512/8) · 160 = 30720 bytes.

For supersingular curves we like to use the pairing êr(P,Q) = er(P, φ(Q)),
where φ(·) is a distortion map. In this case êr(P,Q) = êr(Q,P), and so a fixed
parameter can always be exploited for precomputation. However this is not true
for non-supersingular curves as er(P,Q) �= er(Q,P).

4.3 Products of Pairings

In some protocols, for example [28], it is necessary to calculate the product
of two or more pairings. Consider the calculation of er(P,Q) · er(R,S). Each
pairing requires an implicit point multiplication by r, an application of Miller’s
algorithm, and a final exponentiation. We suggest three optimisations which
apply if the two pairing are calculated simultaneously rather than separately:

300 Michael Scott

– Since the implicit multiplications of P and R occur in lock-step with one
another, it makes sense to use affine coordinates in conjunction with Mont-
gomery’s trick. This means that just one modular inversion will be required
instead of two. Montgomery’s trick is based on the simple observation that
1/x = y/xy and 1/y = x/xy.

– Both pairings can share the same Miller variable m. This means only a single
squaring of m in line 5 will be required.

– Both pairings can share the final exponentiation (as pointed out by Solinas
[29]).

The second and third optimisations depend on the observation that the final
result will be the product of each pairing’s Miller variable. These optimisations
apply equally well to the product of multiple pairings. For the product of two
pairings it will be about 50% faster than computing two separate pairings.

4.4 Protocol Optimisations

In pairing based protocols the most important property of the pairing is bilin-
earity.

er(aP, bQ) = er(P,Q)ab

It is more efficient to calculate er(P,wQ) as er(P,Q)w , as exponentiation
by w in Fp2 will be much faster that point multiplication by w on E(Fp) (Note
however that this may not be true for values of k > 2.) A protocol like the Boneh
and Franklin IBE scheme [6] may demand that an arbitrary string be hashed
and mapped to the second Tate pairing parameter Q of order r. Since Q is on the
twisted curve, the hashing would result in a random point S of order p+1+t, and
the mapping would require a point multiplication by a large constant cofactor
c = (p+1+ t)/r, so Q = cS. However bilinearity applies even though S is not of
order r. So rather than calculate er(P, cS) again its faster to calculate er(P, S)c.
Depending on the protocol it may in fact be valid to dispense with the co-factor
altogether. Alternatively, as for example in the Boneh and Franklin scheme, it
may be possible to calculate e(P, cS) = e(cP, S), and the constant c can be
permanently combined with a constant P , and thus eliminated completely from
the calculation [19].

On occasion a protocol (such as Boneh and Franklin IBE decryption) requires
us to check that a curve point is in fact of order r, and then to calculate a pairing.
Since the pairing carries out an implicit point multiplication of its first parameter
by r, these functions can be combined. First re-organise the protocol if necessary
so that the point whose order is to be tested is the first parameter of the pairing.
Then in the BKLS algorithm insert the line

7a. if A �= −P then return Wrong Order

Computing the Tate Pairing 301

5 Case Study – The Sakai and Kasahara
Identity Based Encryption Scheme

Here we describe the simplest variant of the Sakai and Kasahara Identity Based
Encryption scheme [22], and deploy some of our optimisations, and make use of
the compressed pairing. This IBE method is not as well-known as that of Boneh
and Franklin [6], but it has its advantages, for example no pairing calculation is
required for encryption. It is not secure against a chosen-ciphertext attack, but
then neither is unadorned RSA with which we will be comparing it. As for all
IBE schemes, it can be described in four stages, Setup, Extract, Encrypt and
Decrypt.

– Setup: Global parameters are generated by the trusted key-issuing author-
ity. It generates a suitable curve (like ours) and generates random points
P ∈ E(Fp)[r] and Q ∈ E′(Fp)[r], and then generates its own master secret
s ∈ Fr. The authority makes public the values Q, sQ, and g = εr(P,Q). Also
made public are two hash functions h1 : {0, 1}∗ → Fr and h2 : Fp → {0, 1}c

– Extract: Each user approaches the trusted authority and is issued with a
private key. In the case of Alice, her identifying string is hashed to a value
a = h1(Alice′s Identity) and she is issued with the private key D = 1

s+aP
– Encrypt: To encrypt a secret session key k and send it to Alice, first find

a = h1(Alice′s Identity) and then generate a random w ∈ Fr and create the
ciphertext

C1 = w(sQ + aQ)
C2 = k ⊕ h2(Vw(g))

– Decrypt: Alice recovers the session key as k = h2(εr(D,C1)) ⊕ C2.

where Vw(·) is the Lucas function and εr(·) is the compressed pairing. The
correctness of the algorithm follows immediately from bilinearity. Note that a
pairing calculation is only needed for decryption. And for this pairing the first
parameter is a constant – Alice’s private key. Therefore the precomputation op-
timisation of section 4.2 is appropriate. For encryption Alice’s public key can be
regarded as (sQ+aQ), and if multiple messages are to be sent to Alice, then this
value can also be precalculated and cached. The calculation of aQ, if required, is
carried out on the twisted curve E′(Fp), as is the subsequent point multiplication
by w. If the point to be multiplied is fixed, then the precomputation method of
Brickell et al. can be used here to advantage [9].

6 Results

The IBE scheme described above was implemented using a mixture of C++,
C and assembly, both with and without precomputation, and compared with
a similarly optimised RSA implementation (standard windowing techniques for
modular exponentiation are used). We focus on the decryption operation in both
cases - clearly RSA encryption will be much faster. The RSA implementation uses
as a public key the product of two 512-bit prime factors, and decryption uses the

302 Michael Scott

Chinese Remainder Theorem. So in both cases 512-bit modular multiplication
or squaring in Fp is the time-critical operation. This was implemented using
inline unlooped assembly language. We are not claiming that our multi-precision
implementation is the fastest possible on the targeted hardware, a 1GHz Pentium
III, but it is the same implementation for both IBE and RSA. For the pairing
calculation without precomputation projective coordinates are used.

It is possible to calculate exactly the number of Fp multiplications (called
henceforth a mul) needed for the pairing; for now we count squarings as multipli-
cations, although squarings will be a little quicker. Using the standard algorithms
for point addition and doubling as described in [14], a projective point addition
requires 11 muls, and a doubling requires 8. The projective f(·) function needs
8 muls. Hence the g(·) function performs 16 muls for each point doubling and 19
muls for each addition. Line 5 of the main algorithm will require one Fp2 squar-
ing, and one Fp2 multiplication at a cost of 5 muls, plus a call to g(·) for a point
doubling, for a total of 21 muls. The loop is repeated 159 times, so line 5’s total
contribution is 159 · 21 = 3339 muls. The point addition of line 6 is only carried
out once, and adds an extra 22 muls. So by the end of Miller’s algorithm the cost
so far is 3361 muls. Line 9 calls for a Fp2 modular inversion. Assuming that we
are going to compress the pairing, this calls for 5 muls and a single inversion in
Fp. The exponent (p+1)/r will be 512−160 = 352 bits, and the Lucas laddering
algorithm [25] requires exactly 2 muls per bit. So the grand total for the whole
pairing is 3361 + 5 + 352 · 2 = 4070 muls plus one modular inversion.

Using precomputation the savings are substantial. The cost of each call to
the g(·) function now falls to just 1 mul. Repeating the analysis above the total
is now reduced to 1667 muls plus one inversion. By contrast a representative
run of an RSA decryption program requires 1020 modular squarings and 222
modular multiplications.

Some tests show that, in the environment used, a modular squaring is equiva-
lent to 0.89 of a modular multiplication, and that a modular inversion costs close
to 28 muls. Introducing these equivalent costs, we can specify the computation
required quite precisely in terms of the number of muls.

Timings are for the number theoretic parts of the algorithm; message padding
and hashing are excluded. Our actual timing do not quite live up to those that
could be projected from the raw mul counts. The pairing calculation, unlike RSA,
involves a large number of modular additions and subtractions which have been
ignored in the analysis above. In our implementation elliptic curve addition and
subtraction is done in C, whereas the pairing is implemented in C++, which will
be a little slower due to the tendency of C++ to create and destroy temporary
variables. Finally precomputation may suffer somewhat as the precomputed data
plus program variables are too large for the Pentium III 16K byte L1 data cache.

Table 1. Sakai and Kasahara IBE decryption – 1GHz PIII.

algorithm Fp Muls Time (ms)

IBE decryption, w/o precomp. 3992.7 20.0

IBE decryption, with precomp. 1660.1 10.2

RSA decryption 1126.8 4.5

Computing the Tate Pairing 303

A similarly optimised implementation of the Tate pairing, without precompu-
tation, on a Compaq iPaq 3660 PDA powered by a 206MHz 32-bit StrongARM
processor took just 355ms. This indicates that pairing-based cryptography may
find application on low powered devices such as PDAs and mobile phones.

7 Conclusions

We have shown that pairing-based cryptography is perhaps not as slow or as
difficult as was generally thought. The k = 2 case is particularly simple and ac-
cessible, and can be quickly implemented using existing crypto resources. Various
optimisations have been suggested. An implementation of an IBE scheme shows
that pairing-based cryptography can perform nearly as well as long established
techniques such as RSA.

Acknowledgments

Thanks to Paulo Barreto for useful comments, and Noel McCullagh for drawing
to my attention the Sakai and Kasahara IBE scheme [22] and for help with the
implementation on the Compaq PDA.

References

1. P. S. L. M. Barreto. The pairing-based crypto lounge, 2004. http://planeta.

terra.com.br/informatica/paulobarreto/pblounge.html.
2. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for

pairing-based cryptosystems. In Advances in Cryptology – Crypto’2002, volume
2442 of Lecture Notes in Computer Science, pages 354–68. Springer-Verlag, 2002.

3. P.S.L.M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In Security in Communication Networks – SCN’2002,
volume 2576 of Lecture Notes in Computer Science, pages 263–273. Springer-
Verlag, 2002.

4. P.S.L.M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography – SAC 2003, volume 3006 of Lecture
Notes in Computer Science, pages 17–25. Springer-Verlag, 2003.

5. I. F. Blake, G. Seroussi, and N. P. Smart, editors. Advances in Elliptic Curve
Cryptography, Volume 2. Cambridge University Press, 2005.

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

7. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – Asiacrypt’2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 514–532. Springer-Verlag, 2002.

8. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptog-
raphy. Cryptology ePrint Archive, Report 2003/143, 2003. Available from
http://eprint.iacr.org/2003/143.

9. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponenti-
ation with precomputation: Algorithms and lower bounds. In Advances in Cryp-
tology – Eurocrypt’92, volume 658 of Lecture Notes in Computer Science, pages
200–207. Springer-Verlag, 1993.

304 Michael Scott

10. R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. Cryptology ePrint Archive, Report 2002/094, 2002.
http://eprint.iacr.org/2002/094.

11. R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptography : A survey. Cryptol-
ogy ePrint Archive, Report 2004/064, 2004. http://eprint.iacr.org/2004/064.

12. I. Duursma and H.-S. Lee. Tate-pairing implementations for tripartite key agree-
ment. In Advances in Cryptology – Asiacrypt 2003, volume 2894 of Lecture Notes
in Computer Science, pages 111–123. Springer-Verlag, 2003.

13. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Algorithm Number Theory Symposium – ANTS V, volume 2369 of Lecture Notes
in Computer Science, pages 324–337. Springer-Verlag, 2002.

14. IEEE Std 1363-2000. Standard specifications for public-key cryptography. IEEE
P1363 Working Group, 2000.

15. T. Izu and T. Takagi. Efficient computations of the Tate pairing for the large MOV
degrees. In ICISC 2002, volume 2587 of Lecture Notes in Computer Science, pages
283–297, 2003.

16. M. Joye and S. Yen. The Montgomery powering ladder. In Cryptographic Hardware
and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 291–302, Berlin, Germany, 2003. Springer-Verlag.

17. P. Kocher, J. Jaffe, and B. Jun. Introduction to differential power analysis and
related attacks, 1998. http://www.cryptography.com/dpa/technical.

18. W. Mao and K. Harrison. Divisors, bilinear pairings, and pairing enabled cryp-
tographic applications, 2003. http://hplbwww.hpl.hp.com/people/wm/research/
pairing.pdf.

19. N. McCullagh. Personal Communication, 2004.
20. A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-

ers, 1993.
21. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve

traces for FR-reduction. IEICE Transactions on Fundamentals, E84-A(5):1234–
1243, 2001.

22. R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve.
Cryptography ePrint Archive, Report 2003/054, 2003. http://eprint.iacr.org/
2003/054.

23. M. Scott, 2002. http://ftp.compapp.dcu.ie/pub/crypto/cm.exe.
24. M. Scott, 2002. http://www.computing.dcu.ie/~mike/tate.html.
25. M. Scott and P. Barreto. Compressed pairings. In Advances in Cryptology –

Crypto’ 2004, volume 3152 of Lecture Notes in Computer Science, pages 140–156.
Springer-Verlag, 2004. Also available from http://eprint.iacr.org/2004/032/.

26. M. Scott and P. Barreto. Generating more MNT elliptic curves. Cryptology ePrint
Archive, Report 2004/058, 2004. Available from http://eprint.iacr.org/2004/

058/.
27. I. Semaev. Summation polynomials and the discrete logarithm problem on elliptic

curves. Cryptography ePrint Archive, Report 2004/031, 2003. http://eprint.

iacr.org/2004/031/.
28. N. P. Smart. An identity based authenticated key agreement protocol based on

the Weil pairing. Electronics Letters, 38:630–632, 2002.
29. J. Solinas. ID-based digital signature algorithms, 2003. http://www.cacr.math.

uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf.

Fast and Proven Secure Blind Identity-Based
Signcryption from Pairings

Tsz Hon Yuen and Victor K. Wei

Department of Information Engineering,
The Chinese University of Hong Kong,

Shatin, Hong Kong
{thyuen4,kwwei}@ie.cuhk.edu.hk

Abstract. We present the first blind identity-based signcryption
(BIBSC). We formulate its security model and define the security notions
of blindness and parallel one-more unforgeability (p1m-uf). We present
an efficient construction from pairings, then prove a security theorem
that reduces its p1m-uf to Schnorr’s ROS Problem in the random ora-
cle model plus the generic group and pairing model. The latter model
is an extension of the generic group model to add support for pairings,
which we introduce in this paper. In the process, we also introduce a
new security model for (non-blind) identity-based signcryption (IBSC)
which is a strengthening of Boyen’s. We construct the first IBSC scheme
proven secure in the strengthened model which is also the fastest IBSC in
this model or Boyen’s model. The shortcomings of several existing IBSC
schemes in the strengthened model are shown.

1 Introduction

Identity-based cryptography is a kind of public key cryptography that using re-
cipient’s identity as the public key. The identity can be name, email address
or any other arbitrary strings that can identify a recipient uniquely. Usually
a trusted authority (TA) is needed to generate private keys according to the
public keys. The advantage is that distribution of public key in advance is
not needed. The concept of identity-based cryptography was firstly proposed
by Shamir [21] in 1984. Since then, there are many suggestions for the imple-
mentation of identity-based encryption ([12, 23, 16, 10]). However they were not
fully satisfactory. In 2001, Boneh and Franklin [4] proposed the first practical
identity-based encryption scheme using pairings on elliptic curves. Identity-based
encryptions prior to [4] either requires high complexity to compute the key pairs
or is insecure against colluders. There are also developments in identity-based
signatures [6], authenticated key agreement, etc.

Blind signature was introduced by Chaum [7], which provides anonymity of
users in applications such as e-cash. It allows users to get a signature of a message
in a way that the signer learns neither the message nor the resulting signature.

Privacy and authenticity are also the basic aims of public key cryptography.
We have encryption and signature to achieve these aims. Zheng [27] proposed

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 305–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

306 Tsz Hon Yuen and Victor K. Wei

that encryption and signature can be combined as ”signcryption” which can be
more efficient in computation than running encryption and signature separately.
The security of signcryption is discussed by An et al. [1]

1.1 Contributions

This paper makes the following contributions to the literature:
1. We present the first blind identity-based signcryption (BIBSC). Roughly

speaking, BIBSC works as follows: Upon request from Warden, a blind sign-
cryption oracle makes a commitment, then blindly signs and computes the
randomness term in the encryption part. Warden deblinds the signature and
uses the randomness term returned to produce a signcryption.

2. We formulate the first BIBSC security models to define security notions
including blindness and parallel one-more unforgeability (p1m-uf).

3. We construct the first BIBSC scheme from pairings, and prove its security.
The blindness of our BIBSC scheme is statistical ZK, and the p1m-uf is
reduced to Schnorr’s ROS Problem in the random oracle model plus the
generic group and pairing model (GGPM).

4. We introduce the generic group and pairing model (GPPM) which is an
extension of the generic group model [18, 22, 20] by including support for
pairings. We use this model to prove p1m-uf of our BIBSC scheme.

5. We introduce a strengthening of Boyen’s [5] security model for identity-based
signcryption (IBSC) to add support of authenticated encryption.

6. We construct the first proven secure IBSC scheme in the strengthened model.
It is also the fastest and shortest IBSC scheme in our model as well as in
Boyen’s [5] model.

7. The shortcomings of several existing IBSC schemes in the strengthened
model are shown.

1.2 Organization

In Section 2, we define the preliminaries. In Section 3, we define the IBSC and
BIBSC security models. In Section 4, we introduce our schemes. In Section 5,
we introduce the generic group and pairing model. In Section 6, we compare our
IBSC scheme with existing schemes.

2 Preliminaries

2.1 Related Results

Shamir [21] suggested an identity-based signature scheme. Boneh and Franklin
[4] proposed an identity-based encryption scheme. There are some papers [15, 5,
13, 11, 9, 14] concerning the combination of identity-based signature and encryp-
tion to form IBSC schemes. The most expensive single operation is pairing com-
putations. Schemes of [15, 5, 14] use 5 pairings, while [13, 9] use 6, and [11] uses 4.
[5] is proven secure in a stronger model than [15, 13]. [11] has no security proof.

Blind signatures was introduced by Chaum [7]. Some identity-based blind
signature schemes was proposed in [24–26].

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 307

2.2 Pairings

Our BIBSC and IBSC schemes use bilinear pairings on elliptic curves. We now
give a brief revision on the property of pairings and some candidate hard prob-
lems from pairings that will be used later.

Let G1, G2, G3 be cyclic groups of prime order q, writing the group action
multiplicatively. Let g1 (resp. g2) be a generator of G1 (resp. G2). There exists
ψ which is isomorphism from G2 to G1, with ψ(g2) = g1.

Definition 1. A map e : G1 × G2 → G3 is called a bilinear pairing if, for all
x ∈ G1, y ∈ G2 and a, b ∈ Z, we have e(xa, yb) = e(x, y)ab, and e(g1, g2) �= 1.

Definition 2. (Co-BDH Problem). The co-Bilinear Diffie-Hellman problem is
that, given P, Pα, P β ∈ G1, Q ∈ G2, for unknown α, β ∈ Zq, to compute
e(P,Q)αβ.

Definition 3. (Co-CDH Problem). The co-Computational Diffie-Hellman prob-
lem is that, given P, Pα ∈ G1, Q ∈ G2, for unknown α ∈ Zq, to compute Qα.

2.3 Blind Signatures and Schnorr’s ROS Problem

Blind signature is described as follows: Upon request from Warden, a signing
oracle makes a commitment, then blindly signs a message for Warden. Warden
deblinds the signature such that the signing oracle knows neither the message
nor the output signature.

Parallel one-more forgery against blind signature is that an attacker interacts
with a signer l times and produces l + 1 signatures from these interactions.
Schnorr [20] reduced the parallel one-more unforgeability (p1m-uf) of the blind
Schnorr signature to the ROS Problem in the random oracle plus generic group
model (ROM+GGM). The followings are from Schnorr [20]:

Definition 4. (ROS Problem). Find an overdetermined, solvable system of lin-
ear equations modulo q with random inhomogeneities. Specifically, given an or-
acle random function F : Zl

q ← Zq , find coefficients ak,i ∈ Zq and a solvable
system of l + 1 distinct equations of Eq. (1) in the unknowns c1, . . . , cl over Zq:

ak,1c1 + . . . + ak,lcl = F (ak,1, . . . , ak,l) for k = 1, . . . , t. (1)

Theorem 1. [20] Given generator g, public key h and an oracle for H, let a
generic adversary A performs t generic steps and interacts with a signer for
l times. If A succeeds in a parallel attack to produce l + 1 signatures with a
probability of success better than (t

2)/q, then A must solve the ROS-problem in
ROM+GGM.

3 BIBSC and Enhanced IBSC Security Model

We define the first security model for BIBSC and also an enhancement of Boyen’s
security model for IBSC. For logistics, we present the latter first.

308 Tsz Hon Yuen and Victor K. Wei

Intuitions: Basically, signcryption reuses the randomness in signing as the ran-
domness in encryption, to achieve bandwidth conservation. Lower complexity
is also a goal. In blind signcryption, below, the ”prover oracle” delivers both
the blind signature as well as the intermediate encryption results which reuses
the randomness. In comparison, the prover oracle in a blind signature scheme
delivers only the signature.

In the naive sign-then-encrypt (StE) instantiation, the recipient can decrypt,
and then re-encrypt the (sender) signed plaintext to a third party. The resulting
signcryption is a valid signcryption but the signer and the encryptor are distinct.
Boyen’s ciphertext unlinkability [5] extends this basic idea. In the naive encrypt-
the-sign (EtS) instantiation, the encryptor and the signer are assured to be the
same. The authenticated encryption [1] extends this basic idea. Our security
model supports both ciphertext unlinkability and authenticated encryption in
two different but closely related dual versions.

3.1 Enhanced IBSC Security Model

We present an enhancement of Boyen’s security model for IBSC. The main ad-
dition is to add support for authenticated encryption. The signer cannot deny
signcrypting the message to the recipient. Boyen’s model is restricted to ci-
phertext unlinkability where this assurance is not required. Our model below is
capable of supporting authenticated encryption, resp. ciphertext unlinkability.

3.1.1 Primitives. An IBSC scheme consists of four algorithms: (Setup, Extract,
Signcrypt, Unsigncrypt). The algorithms are specified as follows: Setup: On input
a security parameter k, the TA generates 〈ζ, π〉 where ζ is the randomly gener-
ated master key, and π is the corresponding public parameter.
Extract: On input ID, the TA computes its corresponding private key SID (cor-
responding to 〈ζ, π〉) and sends back to its owner in a secure channel.
Signcrypt: On input the private key of sender A, SA, recipient identity IDB and
a message m, outputs a ciphertext σ corresponding to π.
Unsigncrypt: On input private key of recipient B, SB, and ciphertext σ, decrypt
to get sender identity IDA, message m and signature s corresponding to π. Verify
s and verify if encryptor = signer. Output ' for ”true” or ⊥ for ”false”.

We make the consistency constraint that if σ ← Signcrypt(SA, IDB,m),
then m ← Unsigncrypt(SB, σ).

3.1.2 Indistinguishability. Indistinguishability for IBSC against adaptive cho-
sen ciphertext attack (IND-IBSC-CCA2) is defined as in the following game. The
adversary is allowed to query the random oracles, key extraction oracle, sign-
cryption oracle and unsigncryption oracle. The game is defined as follows:

1. The simulator selects the public parameter and sends to the adversary.
2. The adversary performs polynomial number of oracle queries adaptively.
3. The adversary generates m1, IDA1, IDB1, and sends to the simulator. The

adversary knows SA1. The simulator generates m0, IDA0, IDB0, randomly
chooses b ∈R {0, 1}. The simulator delivers the challenge ciphertext σ ←
Signcrypt(SAb, IDBb,mb) to the adversary.

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 309

4. The adversary performs polynomial number of oracle queries adaptively.
5. The adversary tries to compute b, in the following three sub-games:

(a) The simulator ensures B0 = B1, m0 = m1.
(b) The simulator ensures A0 = A1, m0 = m1.
(c) The simulator ensures A0 = A1, B0 = B1.

The adversary wins the game if he can guess b correctly. The advantage of the
adversary is the probability, over half, that he can compute b accurately.

The oracles are defined as follows:

Key Extraction Oracle KEO: Upon input an identity, the key extraction
oracle outputs the private key corresponding to this identity.

Signcryption Oracle SO: Upon input m, IDA, IDB, the signcryption oracle
produces a valid signcryption σ for the triple of input.

Unsigncryption Oracle UO: Upon input ciphertext σ and recipient ID, the
unsigncryption oracle outputs the decryption result and the verification outcome.

Oracle query to KEO with input IDB0 or IDB1 is not allowed. Oracle query
to SO with input (m1, IDA1, IDB1) is not allowed. Oracle query to UO for the
challenge ciphertext from the simulator is not allowed.

Definition 5. (Indistinguishability). An IBSC is IND-IBSC-CCA2 secure if no
PPT adversary has a non-negligible advantage in any of the sub-games above.

Our security notion above is a strong one. It incorporates previous secu-
rity notions including insider-security in [1], indistinguishability in [15], and
anonymity in [5].

3.1.3 Existential Unforgeability. Existential unforgeability against adaptive
chosen message attack for IBSC (EU-IBSC-CMA) is defined as in the following
game. The adversary is allowed to query the random oracles, KEO, SO and UO,
which are defined in the above section. The game is defined as follows:

1. The simulator selects the public parameter and sends to the adversary.
2. The adversary performs polynomially number of oracle queries adaptively.
3. The adversary delivers a recipient identity IDB and a ciphertext σ.

The adversary wins the game if he can produce a valid (σ, IDB) such that σ can
be decrypted, under the private key of IDB, to a message m, sender identity
IDA and a signature s which passes all verification tests.

Oracle query to KEO with input IDA is not allowed. The adversary’s answer
(σ, IDB) should not be computed by SO before.

Definition 6. (Existential Unforgeability). An IBSC is EU-IBSC-CMA secure
if no PPT adversary has a non-negligible probability in winning the game above.

The adversary is allowed to get the private key of the recipient in the ad-
versary’s answer. This gives us an insider-security in [1]. This model for authen-
ticated encryption is stronger than Boyen’s [5] existential unforgeability in the

310 Tsz Hon Yuen and Victor K. Wei

sense that our model provides non-repudiation for the ciphertext while Boyen’s
provides non-repudiation for the decrypted signature only. For ciphertext un-
linkability, we have to add one more restriction for our model. Oracle queries to
SO for (IDA,m) in the adversary’s answer using any recipient identity are not
allowed. Then the model changes to non-repudiation for signature only.

3.2 Introducing BIBSC Security Model
We will propose the primitives of blind version of IBSC and then define the
security notions for blindness and parallel one-more unforgeability.

3.2.1 Primitives. A BIBSC is a five-tuple (Setup, Extract, BlindSigncrypt, War-
den, Unsigncrypt) where Setup, Extract and Unsigncrypt are identical as primitives
in IBSC. (BlindSigncrypt, Warden) is a 3-move interactive protocol as follows. In-
put to BlindSigncrypt is the sender identity IDA and its private key SA, and the
recipient identity IDB. Input to Warden is IDA, IDB and a message m.

1. BlindSigncrypt sends a commit X to Warden.
2. Warden challenges BlindSigncrypt with h.
3. BlindSigncrypt sends back the response W and V to Warden.

Finally Warden outputs a ciphertext σ.

3.2.2 Blindness. Here we define the blindness of BIBSC. The adversary is
allowed to makes qB queries to blind signcryption oracle BSO, qH queries to
random oracles, qS queries to SO, and qU queries to UO. The adversary keeps
the transcript T recording the interaction between BlindSigncrypt and Warden.

Definition 7. (Blindness) A BIBSC is blind if given a ciphertext σ by Warden,
Prob{σ by Warden} = Prob{σ by Warden|T }

3.2.3 Parallel One-More Unforgeability. Parallel one-more unforgeability
for BIBSC (p1m-uf) is defined as in the following game. It is similar to the
one-more forgery for traditional blind signature schemes [2, 3, 26].

1. The sender identity IDA is given to the adversary.
2. The adversary makes a total of qB queries to blind signcryption oracle

BSOIDk
, 1 ≤ k ≤ K, qH queries to random oracles, qK queries to KEO,

qS queries to SO, and qU queries to UO.
3. The adversary delivers qB+1 tuples (IDi, σi) to the simulator, 1 ≤ i ≤ qB+1.

The adversary wins the game if he can produce qB + 1 valid distinct tuples
(IDi, σi) that can decrypts, under the private key of IDi, to message mi, sender
identity IDA, and signature si which passes the verification tests. The SO, UO
and KEO are same as the one in IBSC. We have the new interactive BSO:

BSOIDA: Upon input IDB, it returns a number X . Then input a number h. It
produces an output (W,V) based on sender IDA, recipient IDB, X and h.
It is required that the private key of IDA is never extracted by KEO.

Definition 8. (Parallel One-more Unforgeability). A BIBSC is p1m-uf secure
if no PPT adversary has a non-negligible probability in winning the above game.

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 311

4 Efficient and Secure BIBSC (resp. IBSC) Schemes

We present our constructions of efficient and secure BIBSC and IBSC schemes
from pairings. For logistics of presentation, we present the IBSC scheme first.

4.1 A New Efficient and Secure IBSC Scheme

This IBSC scheme follows the primitives in Section 2. Let G1, G2, G3 be (mul-
tiplicative) cyclic groups of order q. The pairing is given as e : G1 × G2 → G3.
Now we define our scheme as follows.

Setup: The setup of TA is similar to [4]. On input a security parameter n ∈ N ,
a generator G[1n] generates G1, G2, G3, q and e. The TA chooses a generator
P ∈ G1 and picks a random s ∈ Zq as the master key. Then the TA sets PTA =
P s ∈ G1. After that the TA chooses cryptographic hash functions H0 : {0, 1}∗ →
G2, H1 : {0, 1}∗×G2×{0, 1}∗ → Zq, H2 : G3 → {0, 1}∗, H3 : G3×{0, 1}∗ → G2.
The system parameters are 〈q,G1, G2, G3, e, P, PTA, H0, H1, H2, H3〉.
Extract: Given a user identity string ID ∈ {0, 1}∗, his public key is QID =
H0(ID) ∈ G2. His private key SID = (QID)s ∈ G2 is calculated by TA.

Signcrypt: Suppose Alice wants to signcrypt a message m to Bob. Assume Alice’s
identity is IDA with public key QA and private key SA. Bob’s identity is IDB.

– Sign: Alice chooses a random r ∈ Zq and computes:

X = P r ∈ G1

h = H1(m,X, IDB) ∈ Zq

W = SA
hQA

r ∈ G2

– Encrypt: Alice computes QB = H0(IDB) ∈ G2 and:

V = e(PTA
r, QB) ∈ G3

Y = H3(V, IDA) ⊕W ∈ G2

Z = H2(V) ⊕ 〈IDA,m〉 ∈ {0, 1}∗

Alice outputs a ciphertext σ = 〈X,Y, Z〉 and sends to Bob.

Unsigncrypt: Bob receives the ciphertext σ = 〈X,Y, Z〉.

– Decrypt: Assume the private key of Bob is SB. Bob computes:

V ′ = e(X,SB)
〈IDA,m〉 = H2(V ′) ⊕ Z

Output 〈IDA,m〉 together with 〈X,Y, V ′〉 to Verify.

– Verify: Bob computes W ′ = H3(V ′, IDA)⊕ Y and compares if:

e(P,W ′) = e(XPTA
h, QA) where h = H1(m,X, IDB)

Output ' if the above verification is true, or output ⊥ if false.

312 Tsz Hon Yuen and Victor K. Wei

In Section 3.1, Unsigncrypt also requires the verification for checking encryp-
tor = signer. It is implicitly done in Decrypt and Verify as both of them use the
same X in σ to decrypt and verify.

Finally, we show the consistency constraint is satisfied in Decrypt and Verify.
In Decrypt, V can be recovered as: e(X,SB) = e(P r, QB

s) = e(PTA
r, QB). In

Verify, if the signature is valid, both sides should be equivalent because:
e(P,W) = e(P, SA

hQA
r) = e(P,QA

(sh+r)) = e(P (r+sh), QA) = e(XPTA
h, QA).

Theorem 2. Our IBSC scheme is IND-IBSC-CCA2 secure provided the co-
BDH Problem is hard in the random oracle model.

Theorem 3. Our IBSC scheme is EU-IBSC-CMA secure provided the co-CDH
Problem is hard in the random oracle model.

Proof sketches of the above two theorems are in Appendix B.

Dual Support of Ciphertext Unlinkability (CU) and Authenticated
Encryption (AE): One of the main difference between our IBSC scheme and
Boyen’s scheme [5] is that our scheme has linkability (AE) while Boyen’s scheme
has unlinkability (CU). In our original AE version, we include the recipient
identity in the signature, such that the adversary cannot reuse the signature s
by sender IDA for other recipients and encrypt s to forge a signcryption from
IDA to the adversary himself.

As unlinkability may also be important in some applications, we provide the
CU version of our scheme. The only change is that in Sign change h = H1(m,X).
Other steps remain unchanged. Therefore this CU version is as efficient as the
original AE version. Notice that by changing to CU, unforgeability for ciphertext
reduces to unforgeability for signature only, as in [5].

4.2 The First BIBSC Scheme

In this BIBSC scheme, Setup, Extract and Unsigncrypt are the same as Section
4.1. We describe the interactive protocol for BlindSigncrypt and Warden below:

BlindSigncrypt Warden

randomly choose r randomly choose α, β
send X = P r ∈ G1 −→

compute X̂ = XαP β ∈ G1, ĥ = H(m, X̂, IDB) ∈ Zq

←− send h = α−1ĥ ∈ Zq

send W = SA
hQA

r ∈ G2

and V = e(PTA
r, QB) ∈ G2 −→

compute Ŵ = W αQA
β ∈ G2

compute V̂ = V αe(PTA
β, QB) ∈ G3

compute Ŷ = H3(V̂ , IDA) ⊕ Ŵ ∈ G2

compute Ẑ = H2(V̂) ⊕ 〈IDA, m〉 ∈ {0, 1}∗
output σ = 〈X̂, Ŷ , Ẑ〉

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 313

Consistency is verified as:

e(P, Ŵ) = e(P,WαQA
β) and V̂ = V αe(PTA

β , QB)
= e(P,QA)sĥ+αr+β = e(P s(rα+β), QB)
= e(PTA

ĥXαP β , QA) = e(XαP β , SB)
= e(X̂PTA

ĥ, QA) = e(X̂, SB)

Theorem 4. Our BIBSC scheme has blindness.

Theorem 5. Our BIBSC scheme is p1m-uf secure provided Schnorr’s ROS
Problem is hard in the ROM+GGPM.

Proof sketches of the above two theorems are in Appendix B.

Remark: In our proof, we use an alternative representation for Ŷ and Ẑ. Let θ4

(resp. θ5) be a bijective mapping from G2 to G4 (resp. from {0, 1}∗ to G5) where
G4 (resp. G5) is a cyclic group. Change H2 : G3 → G5, H3 : G3 × {0, 1}∗ → G4.
Then Ŷ = H3(V̂ , IDA) ⊕ θ4(Ŵ) ∈ G4 and Ẑ = H2(V̂) ⊕ θ5(〈IDA,m〉) ∈ G5. In
Unsigncrypt, we can use θ−1

4 and θ−1
5 to recover the message. The efficiency and

security of our BIBSC scheme will not be affected.

5 Generic Group and Pairing Model (GGPM)

We briefly introduce the generic group and pairing model (GGPM) by extending
the generic group model (GGM) of [18, 22, 19], to include support for the pairing
oracle. There are two types of data, namely, group elements in G1, G2, and
G3, and non-group data. The group cardinalities are prime numbers q1, q2, q3
respectively, with q1 = q2 = q3 = q. Non-group data are integers in Z (or in Zq

depending on convention). The base elements of G3 can be randomly generated,
obtained from the blind signcryption oracle, or computed as the pairing of one
element from G1 and one element from G2. The GGPM consists of:

1. Three GGMs, one for each of G1, G2, and G3. Denote their encodings by
θi : Gi → Si, i = 1, 2, 3.

2. A pairing oracle, ê : S1 × S2 → S3, satisfying bilinear properties.
3. Other oracles in the security model such as BSO, KEO and random oracle.

The encodings θi are that non-group operations are meaningless. Similar to
[20] each generic step is a computation of one of the following:
mex-1: Zd1

q ×Gd1
1 → G1, (a

(1)
1 , · · · , a(1)

d1
, g

(1)
1 , · · · , g(1)

d1
) �→

∏
i(g

(1)
i)a

(1)
i

mex-2: Zd2
q ×Gd2

2 → G2, (a
(2)
1 , · · · , a(2)

d2
, g

(2)
1 , · · · , g(2)

d2
) �→

∏
i′(g

(2)
i′)a

(2)
i′

mex-3: Zd3+d1d2
q ×Gd3

3 ×Gd1
1 Gd2

2 → G3,

(a(3)
1 , · · · , a(3)

d3+d1d2
, g

(3)
1 , · · · , g(3)

d3
, (g(1)

1 , g
(2)
1), · · · , (g(1)

d1
, g

(2)
d2

))

�→
∏d3

i=1(g
(3)
i)a

(3)
i
∏d1

j=1

∏d2
k=1 e(g

(1)
j , g

(2)
k)a

(3)
d3+d2(j−1)+k

mex-p:Zd1+d2
q ×Gd1

1 ×Gd2
2 → G3,

(a(4)
1 , · · · , a(4)

d1
, a

(5)
1 , · · · , a(5)

d2
, g

(1)
1 , · · · , g(1)

d1
, g

(2)
1 , · · · , g(2)

d2
)

�→
∏

j

∏
k e(g

(1)
j , g

(2)
k)a

(4)
j a

(5)
k

314 Tsz Hon Yuen and Victor K. Wei

The elements g(1)
i ’s are P , PTA, BSO commitments Xi’s, and randomly gen-

erate G1 elements. The elements g
(2)
i ’s are QID’s, SID’s, BSO responses Wi’s,

and randomly generate G2 elements. The elements g(3)
i ’s are BSO responses Vi’s,

randomly generate G3 elements, and pairing oracle outputs. Similar to [20], we
can omit randomly generated group elements, below, w.l.o.g.

A (non-interactive) generic algorithm is a sequence of ttotal generic steps

1. Inputs are: f (u)
1 , · · · , f (u)

t′u
∈ Gu for u = 1, 2, 3, 1 ≤ t′u < ttotal, where t′ =∑

u t
′
u < ttotal and non-group data like Zq in given ciphertext or signature.

2. Computation steps are: f (u)
i =

∏i−1
j=1(f

(u)
j)a

(u)
i,j , for i = t′u+1, · · · , tu, u = 1, 2,

and f
(3)
i =

∏i−1
j=1(f

(3)
j)a

(3)
i,j ·

∏
1≤k,�<t e(f

(1)
k , f

(2)
�)bi,k,� for i = t′3 + 1, · · · , t3,

where ttotal = t1 + t2 + t3 + t4 and exponents a(u)
i,j depends arbitrarily on i, j,

and non-group inputs.
3. Ouputs are: non-group data and group elements f (u)

σ1 , · · · , f (u)
σd where the inte-

gers σ1, · · · , σd ∈ {1, · · · , tu} that depend arbitrarily on the non-group input.

The generic adversary can also perform equality test, if-then-else, looping, and
other logical operations. We omit discussions about them here.

In the generic algorithm, each computation step f
(u)
σ must be represented as

the product of powers of group elements g
(1)
i ’s, g(2)

i′ ’s, g(3)
i′′ ’s, and e(g(1)

k , g
(2)
�)’s.

There are only polynomially many group elements involved in any PPT algo-
rithm. Each step can be represented as a sequence of exponents, and that repre-
sentation should be unique. A collision is when a step can have multiple repre-
sentations w.r.t. the bases consisting of the prescribed set of group elements. The
following lemma shows the collision probability for f (1)

i , f
(2)
j , f

(3)
k are negligible

except when involving oracle queries. The proof is similar to Schnorr’s Lemma
1 and omitted.

Lemma 6. In an arbitrary instantiation of the generic groups and the generic
pairing, the probability of a PPT generic algorithm being able to compute a colli-
sion is negligible, except the collisions obtained via oracle queries. The probability
is taken over randomized instantiations of all randomly generated base elements.

Oracle assisted collisions are obtained from the BSO which are of the type
e(A,B) = e(C,D) in G3. The KEO also yields collisions in G2. The identity-
based characteristics need special attention in the proof of this lemma.

Next we elaborate on interactive generic algorithms. We count the fol-
lowing generic steps:

– group operations mex-1, mex-2, mex-3, mex-p
– queries to hash oracle H
– queries to key extraction oracle KEO
– interactions with a blind signcryption oracle BSO.

A generic adversary is an interactive algorithm that interacts with BSO.
The construction is similar to Schnorr’s, unless specified below. The input con-
sists of generators g(1), g(2), g(3), public keys Q1, · · · , QK ∈ G2, master public key

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 315

PTA ∈ G1, group order q, pairing e(·, ·) and collection of messages, ciphertexts
and so on, which can be broken into group elements and non-group data.

A’s transmission to KEO depends arbitrarily on given group elements and
non-group data. Notice that key extraction for sender’s private key is not allowed.

The restriction is that A can use group elements only for generic group
operations, equality tests and for queries to hash oracle and KEO, whereas non-
group data can be arbitrarily used without charge. The computed group elements
are given as explicit multiplicative combinations of given group elements. Let
X� = g(1)r� ∈ G1,W� = QA

r�+sh� ∈ G2, V� = e(X�, SB�
) for � = 1, · · · , l be

the group elements that A gets from BSO using the sender IDA and recipient

IDB�
. A computed f

(1)
j ∈ G1 is of the form f

(1)
j = P a

(1)
j,−1P

a
(1)
j,0

TA

∏l
�=1 X�

a
(1)
j,� ,

where the exponents a(1)
j,−1, · · · , a

(1)
j,l ∈ Zq depend arbitrarily on given non-group

data. A computed f
(2)
j ∈ G2 is of the form f

(2)
j = Q

a
(2)
j,0

A

∏l
�=1 W�

a
(2)
j,� , where the

exponents depend arbitrarily on given non-group data. A computed f
(3)
j ∈ G3

is of the form f
(3)
j = e(P,QA)a

(3)
j,−1e(PTA, QA)a

(3)
j,0
∏l

�=1 V�
a
(3)
j,� .

Powers and Limitations of GGM and GGPM. Because co-CDH and one-
more co-CDH are collisions in GGPM, Lemma 6 implies they are hard. The
real-world interpretations of this and other GGPM-based results are discussed
in Appendix A.

6 Comparisons

The bandwidth and complexity efficiencies of our IBSC scheme is compared
against a collection of existing schemes in Table 1.

The computation time includes the number of pairings and exponential com-
putation as they are the most expensive in IBSC scheme. The actual number
of computation which cannot be pre-computed (when the recipient identity and
the message is not yet known) is shown in bracket.

For fair comparison on ciphertext size, we assume that a message m of length
||m|| have to cut into k pieces for signcryption, usually with 160-bit for each piece.
The 160-bit randomness is reused by multiple 160-bit blocks in the same message.
We assume this bandwidth-conserving manoeuvre does not reduce security. We
ignore the bandwidth cost of sending the sender identity by assuming it is sent
just once, or not sent at all as the recipient is expecting a few senders. ||G1|| (resp.
||Fp||) denotes the size of G1 (resp. Fp) element, which is about 160 bits for most
representative in elliptic curve implementation and signcryption applicatons. In
LQ2 [14], δ is 160 bits for ciphertext unlinkability, and 0 bit for ciphertext
linkability.

Schemes M, LQ1, NR and CYSC are not IND-A secure, because the unsign-
cryption requires the knowledge of sender identity in advance. Schemes LQ1 and
NR are not IND-B secure because of the following: any adversary who knows
the sender identity, private key and the message signcrypted can distinguish the
recipient identity. [13] showed M is not IND-CCA2 secure. Schemes LQ1 and NR

316 Tsz Hon Yuen and Victor K. Wei

Table 1. Comparing bandwidth and complexity efficiencies of IBSC schemes. IND-A
(resp. IND-B, IND-C) means sender anonymity (resp. recipient anonymity, message
confidentiality). StE (Sign-then-Encrypt) and EtS (Encrypt-then-Sign) use ID-based
encryption from [4] and ID-based signature from [6].

Scheme Security Ciphertext Size Signcrypt Unsigncrypt
IND EU Time Time

A B C #pair #exp #pair #exp

EtS × √ √ √
(2k + 1)||G1|| + 2||m|| 1 4 (1) 3 1 (1)

StE
√ √ √ × (2k + 1)||G1|| + 2||m|| 1 4 (1) 3 1 (1)

M [15] × √ × √
(k + 1)||G1|| + ||m|| 1 3 (1) 4 1 (1)

LQ1 [13] × × *
√

k(||G1|| + ||Fp||) + ||m|| 2 2 (1) 4 1 (1)

NR [11] × × * × (k + 1)||G1|| + ||m|| 1 3 (2) 3 1 (1)

B [5]
√ √ √

* (k + 1)||G1|| + ||m|| 1 4 (3) 4 2 (2)

CYSC [9] × √ √ √
k(||G1|| + ||Fp||) + ||m|| 2 2 (1) 4 1 (1)

LQ2 [14]
√ √ √

* (k + 1)||G1|| + ||m + δ|| 1 4 (3) 4 1 (1)

This scheme
√ √ √ √

(k + 1)||G1|| + ||m|| 1 4 (1) 3 1 (1)

are IND-C secure in their own models only, but they are not IND-C secure in
Boyen’s model and our model. It is because the private key of sender is known
to the adversary in our strengthened model.

NR’s scheme is not EU-CMA secure. Any adversary can forge a signcryption
from any sender to recipient IDB, where private key of IDB is known to the
adversary. Boyen’s scheme has unforgeability for the signature only. It does not
satisfy the unforgeability for ciphertext in our security model and also the secu-
rity model of standard signcryption in [1]. LQ2 scheme is similar to Boyen’s in
this aspect. Our IBSC scheme avoids this controversial property of unlinkability
and achieves unforgeability for ciphertext.

As we can see, our IBSC scheme is the fastest, with shortest ciphertext size
and proven secure in the strongest model among the existing schemes1.

Additional Functionalities of Our Scheme: From our new efficient IBSC
scheme, we can achieve further functionalities which are useful in reality. They
are the TA compatibility and forward secrecy.

TA Compatibility. In reality, sender and recipient may use different TAs. If it hap-
pens, our scheme can still be used with slight changes. Assume all TAs use same
pairing e, hash functions and P ∈ G1. Now let Alice uses TA1 with master key
s1. and Bob uses TA2 with master key s2. In Encrypt, change V = e(QB

r, PTA2).
In Verify, e(P, Y) = e(PTA1

hX,QA). Others remain unchanged.

Forward Secrecy. Our scheme can achieve forward secrecy. It is implied by IND-
CCA2. If sender and recipient uses different TAs, then it can even achieve partial

1 After the completion of this research, two new pairing-based IBSC schemes are
proposed in [8] and [17]. [8] has the same efficiency after pre-compute and has similar
security as our IBSC scheme. [17] proposed a faster scheme with same bandwidth,
but there is no security proof for it.

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 317

TA forward secrecy. If the master key of TA1 is compromised, then past com-
munications with users using different TAs will not be compromised, since the
adversary still cannot compute V .

7 Conclusion

In this paper, we have proposed a new BIBSC scheme and its security model. We
introduce the generic group and pairing model (GGPM). We proof the BIBSC
scheme is secure against p1m-uf in ROM+GGPM.

For the IBSC scheme, our scheme is the fastest, with shortest ciphertext
and proven secure in a stronger security model when comparing with existing
schemes. We provide the flexibility for choosing linkability of ciphertext or not.

References

1. J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Proc. CRYPTO 2002, pages 83–107. Springer-Verlag, 2002. Lecture Notes in
Computer Science No. 2332.

2. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-
RSA-inversion problem and the security of Chaum’s blind signature scheme. J. of
Cryptology, pages 185–215, 2003.

3. A. Boldyreva. Efficient threshold signature, multisignature, and blind signature
schemes based on the Gap-Diffie-Hellman-group signature scheme. In PKC’03,
pages 31–46. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 567.

4. D. Boneh and M. Franklin. Identity-based encryption from the weil paring. In Proc.
CRYPTO 2001, pages 213–229. Springer-Verlag, 2001. Lecture Notes in Computer
Science No. 2139.

5. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In Proc. CRYPTO 2003, pages 382–398. Springer-
Verlag, 2003. Lecture Notes in Computer Science No. 2729.

6. J.C. Cha and J.H. Cheon. An identity-based signature from gap diffie-hellman
groups. In Practice and Theory in Public Key Cryptography – PKC’2003, pages
18–30. Springer-Verlag, 2003. Lecture Notes in Computer Science No. 2567.

7. D. Chaum. Blind signatures for untraceable payments. In Proc. CRYPTO 82,
pages 199–203. NY, 1983. Plenum.

8. L. Chen and J. Malone-Lee. Improved identity-based signcryption. Cryptology
ePrint Archive, Report 2004/114, 2004. http://eprint.iacr.org/.

9. S. Chow, S.M. Yiu, L. Hui, and K.P. Chow. Efficient forward and provably secure
ID-based signcryption scheme with public verifiability and public ciphertext au-
thenticity. In ICISC 2003, pages 352–369. Springer-Verlag, 2003. Lecture Notes in
Computer Science No. 2971.

10. C. Cocks. Non-interactive public-key cryptography. In Cryptography and Coding,
pages 360–363. Springer-Verlag, 2001. Lecture Notes in Computer Science No.
2260.

11. K.C. Reddy D. Nalla. Signcryption scheme for identity-based cryptosystems. Cryp-
tology ePrint Archive, Report 2003/066, 2003. http://eprint.iacr.org/.

318 Tsz Hon Yuen and Victor K. Wei

12. Y. Desmedt and J. Quisquater. Public-key systems based on the difficulty of
tampering. In Proc. CRYPTO 86, pages 111–117. Springer-Verlag, 1986. Lecture
Notes in Computer Science No. 263.

13. B. Libert and J.-J. Quisquater. New identity based signcryption schemes from
pairings. IEEE Information Theory Workshop, Paris (France), 2003.

14. B. Libert and J.-J. Quisquater. The exact security of an identity based signature
and its applications. Cryptology ePrint Archive, Report 2004/102, 2004.
http://eprint.iacr.org/.

15. J. Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098, 2002. http://eprint.iacr.org/.

16. U. Maurer and Y. Yacobi. Non-interactive public-key cryptography. In Proc.
CRYPTO 91, pages 498–507. Springer-Verlag, 1991. Lecture Notes in Computer
Science No. 547.

17. N. McCullagh and P. S. L. M. Barreto. Efficient and forward-secure identity-based
signcryption. Cryptology ePrint Archive, Report 2004/117, 2004.
http://eprint.iacr.org/.

18. V.I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55, pages 165–172, 1994.

19. C. P. Schnorr. Practical security in public-key cryptography. In Proc. ICISC.
Springer, 2001. Lecture Notes in Computer Science.

20. C. P. Schnorr. Security of blind discrete log signatures against interactive attacks.
In Proc. ICISC, pages 1–12. Springer-Verlag, 2001. Lecture Notes in Computer
Science No. 2229.

21. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc.
CRYPTO 84, pages 47–53. Springer-Verlag, 1984. Lecture Notes in Computer
Science No. 196.

22. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc.
EUROCRYPT 97, pages 256–266. Springer-Verlag, 1997. Lecture Notes in Com-
puter Science No. 1233.

23. S. Tsuji and T. Itoh. An ID-based cryptosystem based on the discrete logarithm
problem. IEEE Journal on Selected Areas in Communication, 7(4):467–473, 1989.

24. F. Zhang and K. Kim. ID-Based blind signature and ring signature from pairings.
In Proc. ASIACRYPT 2002, pages 533–547. Springer-Verlag, 2002. Lecture Notes
in Computer Science No. 2501.

25. F. Zhang and K. Kim. Efficient ID-based blind signature and proxy signature
from bilinear pairings. In Proc. ACISP’03, pages 312–323. Springer-Verlag, 2003.
Lecture Notes in Computer Science No. 2727.

26. F. Zhang, R. Safavi-Naini, and W. Susilo. Efficient verifiably encrypted signature
and partially blind signature from bilinear pairings. In Proc. INDOCRYPT03,
pages 191–204. Springer-Verlag, 2003. Lecture Notes in Computer Science No.
2904.

27. Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost (encryption). In Proc. CRYPTO 97, pages 165–179.
Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1294.

A Powers and Limitations of GGM and GGPM

Lemma 6 implies that co-CDH is hard. The perspective is that co-CDH con-
stitutes collisions in GGPM. The real-world interpretation of this model-based
result is roughly as follows: GGM (resp. GGPM) bans certain operations, in the

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 319

sense that it can be assumed w.l.o.g. that the generic algorithm does not use
these operations. The justification is that these operations are thought to be of
no help. In GGM for discrete logarithm with parameters p, q, g, the additions
(resp. subtractions) in Zp are banned. In GGM for ECDL with parameters p, q,
base point G whose order is q, arithmetics in Zp are banned. In GGPM where
we have in mind the G1, G2, and G3 are all groups of elliptic curve points, the
GGPM model allows point operations, arithmetics in Zq, but bans arithmetics
in Zp on the argument that they do not help.

Based on such model assumptions, GGM has been used to prove results that
often cannot be proved in other models. The GGM has been used to prove the
hardness of the discrete logarithm [18, 22]. It has also been used to reduce p1m-uf
of Schnorr or Okamoto-Schnorr blind signature to the ROS Problem [20], or the
one-more discrete logarithm problem. Note that the one-more discrete logarithm
problem is proven hard in the GGM by simple applications of the methods used
in [19]. Based on similar model assumptions, we use GGPM to reduce p1m-uf
of blind signcryption to the ROS Problem or the one-more co-CDH Problem in
this paper. Note that one-more co-CDH is proven hard in GGPM.

Algorithms already exist that exploit operations banned from GGM. The
index calculus method to compute the discrete logarithm utilizes size information
in Zp to achieve efficiency. It is outside the boundary of GGM. In ECDL, it
is suspected but not yet explicitly demonstrated that arithmetics in Zp and
properties of the curve can be exploited. Therefore, GGM and GGPM are used
with these elliptic curves applications in mind. If and when exploitations of
Zp arithmetics or curve properties, or other unforeseen techniques outside the
model, can be exhibited, both GGM and GGPM will need to be reexamined.

Lemma 6 also implies the hardness of the one-more co-CDH Problem in the
GGPM. The one-more co-CDH Problem is (roughly speaking): Given qB queries
to the co-CDH Oracle, compute qB + 1 co-CDH Problems.

B Proofs

B.1 Proof Sketch of Theorem 2

Setting Up: Dealer D gives (P, Pα, P β, Q) to Simulator S and wants S to compute
e(P,Q)αβ . S sends the system parameter to Forger F with PTA = P β as in Setup.
S randomly picks ηQ from {1, 2, ..., μ0}, where μ0 is the number of queries to H0.

Simulating Oracles: As regards queries to the oracles:

– Query on H0 for identity ID is handled as follows:
• The ηQ-th distinct query to H0 is back patched to the value Q. The

corresponding identity is denoted as IDQ. Adds the entry 〈IDQ, Q〉 to
tape L0, and returns the public key Q.

• Otherwise, picks a random λ ∈ F ∗
p , adds the entry 〈ID, λ〉 to the tape

L0, and return the public key QID = Pλ.
– Queries on H1, H2 and H3 are handled by producing a random element from

the codomain, and adding both query and answer to tape L1, L2 and L3.

320 Tsz Hon Yuen and Victor K. Wei

– KEO: For input identity IDA.
• If IDA = IDQ, then D terminates its interaction with F, having failed

to guess the targeted recipient among those in L0.
• Otherwise, S retrieves 〈IDA, λA〉 from L0 and returns SA = (P β)λA .

– SO : For input message m, sender IDA, and recipient IDB.
• If IDA = IDQ, then S randomly chooses r, h ∈ F ∗

p , and lets X =
P r(P β)−h, W = (Q)r. Then, S adds the tuple 〈m,X, h ⊕ IDB〉 to
L1 to force the random oracle H1(m,X) = h ⊕ IDB. Finally, S uses
〈X,W,m, r, IDB〉 to run Signcrypt to produce the desired ciphertext σ.

• Otherwise, S retrieves 〈IDA, λA〉 from L0 and computes SA = (P β)λA .
Then S will run Signcrypt using SA and get ciphertext σ.

– UO : For input recipient IDB and ciphertext σ = 〈X,Y, Z〉.
• If IDB = IDQ, then S searches all combinations 〈IDA,m,X,W 〉 such

that 〈m,X, h1〉 ∈ L1, 〈V, h2〉 ∈ L2, 〈V, IDA, h3〉 ∈ L3, for some h1, h2,
h3, V, under the constraints that h3 ⊕ Y = W , h2 ⊕ Z = 〈IDA,m〉 and
Verify[IDA,m,X,W, IDB] = '. Pick a 〈IDA,m〉 in one of the combi-
nations above to return as answer. If no such tuple is found, the oracle
signals that the ciphertext is invalid.

• Otherwise, S retrieves 〈IDB, λB〉 from L0 and computes SB = (P β)λB .
Then S will run Unsigncrypt using SB to get 〈IDA,m〉 or ⊥.

Witness Extraction: As in the IND-IBSC-CCA2 game, at some point F chooses
plaintext m1, sender IDA1, and recipient IDB1 on which he wishes to be chal-
lenged. S responds with challenge ciphertext 〈X,Y, Z〉, where X = Pα. Y and
Z are random strings of appropriate size. All further queries by F are processed
adaptively as in the oracles above.

Finally, F returns its final guess. S ignores the answer from F, randomly picks
an entry 〈V, h2〉 in L2, and returns V as the solution to the co-BDH problem.

If the recipient identity IDA1 = IDQ selected by S, to recognize the challenge
ciphertext 〈X,Y, Z〉 with X = Pα is incorrect, F needs to query random oracle
H2(V) with V = e(X,SQ) = e(Pα, Qβ) = e(P,Q)αβ . It will leave an entry
〈V, h2〉 on L2, from which B can extract V = e(P,Q)αβ . ��

B.2 Proof Sketch of Theorem 3

Setting up: Dealer D gives (P, P β , Q) to Simulator S and wants S to compute
Qβ . Others are same as in the proof sketch of Theorem 2.

Oracle Simulation: The signcryption oracle, unsigncryption oracle, and key ex-
traction oracle are simulated in the same way as in the proof of Theorem 2.

Witness Extraction: Assume F is a PPT forger. Rewind F to the random oracle
query whose output appears in verification of Unsigncrypt. Then we obtain W =
Sh

AQ
r
A and W ′ = Sh′

A Qr
A in respective forks. Combining, we can compute the

co-CDH Problem if QA = Q. Then Qβ = SA = (W ′/W)(h
′−h)−1

. ��

Fast and Proven Secure Blind Identity-Based Signcryption from Pairings 321

B.3 Proof Sketch of Theorem 4

To prove the blindness of BIBSC scheme, we show that given a valid ciphertext
〈X̂, Ŷ , Ẑ〉 and any transcript of blind signcryption (X,h,W, V), there always
exists a unique pair of blinding factors α, β ∈ Z∗

q . Since the blinding factors are
randomly chosen, the blindness of BIBSC scheme is achieved.

Given a valid ciphertext 〈X̂, Ŷ , Ẑ〉, then there exists a unique (X̂, Ŵ , V̂ ,m)
for this ciphertext. Then for any transcript of blind signcryption (X,h,W, V),
the following equations must hold for α, β ∈ Z∗

q :

X̂ = XαP β

h = α−1H1(m, X̂)
Ŵ = WαQA

β

V̂ = V αe(PTA
β , QB)

From the second equation, we see that there exists a blinding factor α =
H1(m, X̂)/h. For this α, there exists a blinding factor β from the first equation
and β = logP (X̂X−α). Therefore we have to show that these blinding factors
α, β satisfy the last two equations.

Notice that there exists a SB which is the private key for QB. Then:

V̂ = e(X̂, SB)
= e(XαP β, SB)
= e(X,SB)αe(P β , SB)
= V αe(PTA

β, QB)

Furthermore, 〈X̂, Ŵ ,m〉 is a valid signature. Therefore we have:

e(P, Ŵ) = e(X̂,QA)e(PTA, QA)H1(m,X̂)

= e(XαP β , QA)e(PTA, QA)αh

= e(XPTA
h, QA)αe(P β, QA)

= e(P,W)αe(P,QA
β)

= e(P,WαQA
β)

Hence, given a valid ciphertext 〈X̂, Ŷ , Ẑ〉 and any transcript of blind signcryption
(X,h,W, V), there always exists a unique pair of blinding factors α, β ∈ Z∗

q .
Therefore, Prob{σ by Warden} = Prob{σ by Warden|T }. The blindness of
BIBSC scheme is proved. ��

B.4 Proof Sketch of Theorem 5

This section refers to a generic adversary A performing some t generic steps,
including some qB interactions (X1, h1,W1, V1), · · · , (XqB , hqB ,WqB , VqB) with
BSO, producing some t′(u) group elements in Gu. We let r = (r1, · · · , rqB) denote
BSO random coins. Let f1 = P, f2 = PTA, f3, · · · , ft′(1) ∈ G1 denote the group el-
ements of A’s computation. The genericA computes fj =P aj,−1P

aj,0
TA

∏qB

�=1 X�
aj,�

where X� are BSO commitments and the exponents depend arbitrarily on pre-
viously computed non-group data.

322 Tsz Hon Yuen and Victor K. Wei

Schnorr’s Lemma 2 implies DLP is hard (uncomputable by PPT generic
adversary) in GGM. Similarly, it applies here. It is hard to get s from QB

s.
Let A’s outputs (X̂i, Ŵi, V̂i) be valid for message m̂i, sender IDA and recip-

ient IDBi , 1 ≤ i ≤ qB + 1. Then we have ĥi = H1(X̂i, m̂i, IDBi) for some hash
query satisfying e(X̂iP

ĥi

TA, QA) = e(P, Ŵi). Let X̂i = f
(1)
σi .

The equation e(P, Ŵi)e(P−ĥi

TA , QA)=e(fσi , QA)=e(P aσi,−1P
aσi,0

TA

∏qB

�=1X�
aσi,� ,

QA) and e(X�, QA)=e(P,W�)e(P−h�

TA , QA) imply:

Ŵi = QA
aσi,−1 ·

qB∏
�=1

W
aσi,�

� ·QA
(aσi,0−

∑ qB
�=1 aσi,�h�+ĥi)s

If ĥi = −aσi,0 +
∑l

�=1 aσi,�h�, then A can easily compute the correct Ŵi.
Then we have Ŵi = QA

aσi,−1
∏l

�=1 W
aσi,�

� where W1,· · ·,Wl, aσi,−1,· · ·,aσi,l are
known to A.

Conversely, A must select h1, · · · , hl as to zero the coefficient involving the
master secret key s. Otherwise we can recover QA

s from W1, · · · ,Wl, aσi,−1, · · · ,
aσi,l, ĥi, Ŵi which are known to A. Then it can solve the 1m-co-CDH problem,
as we get qK private keys from KEO. The probability of solving 1m-co-CDH in
GGPM is negligible. Hence A must solve the ROS problem. ��.

A Systematic Evaluation
of Compact Hardware Implementations

for the Rijndael S-Box

Nele Mentens�, Lejla Batina�, Bart Preneel, and Ingrid Verbauwhede

K.U. Leuven ESAT/COSIC, Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium

{Nele.Mentens,Lejla.Batina,Bart.Preneel,Ingrid.Verbauwhede}
@esat.kuleuven.ac.be

Abstract. This work proposes a compact implementation of the AES

S-box using composite field arithmetic in GF(((22)
2
)
2
). It describes a sys-

tematic exploration of different choices for the irreducible polynomials
that generate the extension fields. It also examines all possible transfor-
mation matrices that map one field representation to another. We show
that the area of Satoh’s S-box, which is the most compact to our knowl-
edge, is at least 5% away from an optimal solution. We implemented
this optimal solution and Satoh’s design using a 0.18 μm standard cell
library.

Keywords: AES, S-box, inversion in GF (2n), composite fields, smart
card implementation

1 Introduction

After an open competition ending in 2000, the National Institute for Standard
and Technology (NIST) has selected the Rijndael block cipher as the new Ad-
vanced Encryption Standard (AES) [1]. The AES algorithm, designed by Joan
Daemen and Vincent Rijmen, has an SPN (Substitution Permutation Network)
structure. Its use is mandatory for the encryption of sensitive but unclassified
US government information; in 2003 the US government has announced that it
can also be used for encrypting secret and top secret information (for the last
category key lengths of at least 192 bits need to be used). AES is currently
replacing the Data Encryption Standard as the worldwide standard algorithm.

Since 2000, extensive research has been performed on AES implementations.
In this article we are focusing on compact hardware implementations for mobile
devices and smart cards, but our results can also be applied in high-speed pipe-
lined implementations for network security and e-commerce applications. Note
that the best known software implementations achieve about 15 cycles/byte on
a modern PC.
� Lejla Batina and Nele Mentens are funded by research grants of the Katholieke Uni-

versiteit Leuven, Belgium. This work was supported by FWO project (G.0450.04).

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 323–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 Nele Mentens et al.

Design challenges for AES mainly lie in exploring all the options for the S-
box design. The most common strategy to reduce the gate complexity consists
of exploiting composite field arithmetic. By following that approach one still
has several options to represent the finite field GF (28). In this paper we rep-

resent GF (28) as the composite field GF (((22)2)
2
). In this way, we reduce the

arithmetic in GF (28) to operations in smaller fields. There are many ways to

represent GF (28) as GF (((22)2)
2
). Choices need to be made with respect to the

irreducible polynomials that are used to create the extension fields and with re-
spect to the transformation matrices that map elements from one representation
to the other. Exploring these two degrees of freedom we optimize the S-box of
Satoh et al. [17], which is to our knowledge the most compact implementation to-
day. Another area efficient implementation is the one of Wolkerstorfer et al. [20].
More precisely, according to Daemen and Rijmen [6], the number of kgates for
the implementations of [17] and [20] are 5.4 and 5.7 respectively.

The remainder of this paper is organized as follows. In Sect. 2 some details
on the AES algorithm are discussed. Section 3 lists previous work on hardware
implementations of Rijndael. In Sect. 4 we explain our approach to minimize
the area of the S-box and compare our new solution with the S-box of Satoh.
Section 5 concludes the paper and outlines future work.

2 The AES Algorithm

Rijndael has a variable block and key length which can be 128, 192 or 256 bits;
the AES standard includes only block lengths of 128 bits. In this implementation
we focus on the 128-bit key version of AES which has 10 rounds. In this case,
each round and the initial stage require a 128-bit round key. In total 10 sets of
round keys are generated from the secret key by using the S-box. The input data
is arranged as a table i.e., a matrix of bytes. Figure 1 outlines the basic structure
of the algorithm. The round transformation consists of four different transfor-
mations: ByteSub, ShiftRow, MixColumn and AddRoundKey. They are performed
in this order with the exception of the final round which is slightly different. All
transformations are based on byte-oriented arithmetic and AddRoundKey is a
bitwise XOR operation. The transformations operate on the intermediate result,
which is called the State.

The ByteSub transformation is a non-linear byte substitution also called
S-box (substitution table). It operates on bytes independently. The S-box is
invertible and consists of the following two transformations:

1. Inversion in the GF (28) field, modulo the irreducible polynomial m(x) =
x8 + x4 + x3 + x + 1.

2. Affine transformation defined with: Y = AX−1 + b, where A is a 8× 8 fixed
matrix and b is a 8 × 1 vector-matrix.

The schematic of the complete AES algorithm is shown in Fig. 1. Further details
on the AES algorithm can be found in [4, 5].

A Systematic Evaluation of Compact Hardware Implementations 325

CLEARTEXT KEY

+

+

BYTESUB

SHIFTROW

MIXCOLUMN

KEYSCHEDULE

+

BYTESUB

SHIFTROW

CIPHERTEXT

Fig. 1. Schematic of the AES encryption algorithm.

3 Previous Work

Many hardware architectures for Rijndael were proposed as either ASIC [11, 12,
19] or FPGA implementations [2, 3, 7, 8, 10, 14, 18]. Most of the known imple-
mentations, particularly the early ones, were quite simple and not small enough
as they did not exploit composite field arithmetic. Among those who tried to
produce a really small circuit we mention the work of Satoh et al. [17] and
Wolkerstorfer et al. [21]. In [16] the use of the composite field GF ((24)2) was
also proposed but no hardware implementation was presented.

Satoh et al. introduced a new composite field GF (((22)2)
2
) which resulted

in an optimized S-box. More precisely, their S-box requires less than 1/4 of the
size of one using a look-up table. This resulted in a compact AES implemen-
tation with a gate complexity of 5.4 kgates. To our knowledge this is the most
compact architecture so far. Wolkerstorfer et al. used arithmetic in GF ((24)2)
to achieve an implementation with a gate count comparable to Satoh et al. (5.7
kgates). In the solution of Wolkerstorfer et al. inversion of two-term polynomi-
als ahx + al ∈ GF ((24)2) involves only operations in GF (24), which are easily
computed using combinational logic. Macchetti and Bertoni [13] have described
an ASIC implementation for the same composite field GF ((24)2), but with a
representation as given in [16]. The work of Chodowiec and Gaj [3] also offers
a compact design that is targeting low-cost embedded applications. They used
dedicated Block RAMs for the implementation of the S-boxes. Recently, the work

326 Nele Mentens et al.

of Wu et al. [22] gives an area and delay reduction of 1/6 and 1/4 respectively
compared to [21]. The proposed approach uses dual AES in combination with a
composite field.

Here we use the composite field GF (((22)2)
2
), which was only explored by

Satoh et al. [17]. By a systematic exploration of all options we show that Satoh’s
S-box is at least 5% away from an optimal solution. The implementation of this
optimal solution and the approach we use to explore all design possibilities is
explained in the next section.

4 Hardware Implementation

In this section we examine the S-box of Satoh et al. [17] and we try to optimize it
for area. Section 4.1 describes the approach we used to optimize Satoh’s S-box.
Section 4.2 presents our new S-box. Implementation results and comparison with
Satoh’s S-box are given in Sect. 4.3.

4.1 Theoretical Approach to Optimize the S-Box

Let us view GF (22m) as a field extension of degree 2 over GF (2m). The field
GF (22m) is generated as an extension field of GF (2m) using an irreducible
polynomial say f(x) = x2 + αx + β, where α, β ∈ GF (2m). Then we have
GF (22m) = GF (2m)[ω], where ω is a root of f(x) and GF (22m) can be viewed
as a two-dimensional vector space over GF (2m). Hence, an arbitrary element
Δ ∈ GF (22m) can be written as Δ = δ1ω+ δ0, where δ1, δ0 ∈ GF (2m). We want
to calculate the inverse of Δ i.e. Δ−1 such that Δ ·Δ−1 ≡ 1 mod f(x).

The multiplicative inverse of Δ ∈ GF (22m) can therefore be computed as:

Δ−1 = (δ1ω+ δ0)−1 = δ1(δ2
1β+ δ1δ0α+ δ2

0)
−1ω+(δ0 + δ1α)(δ2

1β+ δ1δ0α+ δ2
0)

−1

(1)
This equation consists of operations which can be performed in the subfield

GF (2m) [9].

Equation (1) can be used recursively to find the inverse in GF (((22)2)
2
).

GF (((22)2)
2
) is a field extension of degree 2 over GF ((22)2) constructed using

the irreducible polynomial P (x) = x2 + p1x + p0, where p1, p0 ∈ GF ((22)2).
Let us call a root of P also x. GF ((22)2) is a field extension of degree 2 over
GF (22) using the irreducible polynomial Q(y) = y2 + q1y + q0, with y a root of
the polynomial and q1, q0 ∈ GF (22). GF (22) is a field extension of degree 2 over
GF (2) using the irreducible polynomial R(z) = z2 + z + 1, with root z.

In Satoh et al. the following choices are made for the coefficients of the
irreducible polynomials: p1 = 1 = {0001}2, p0 = λ = (z + 1)y = {1100}2,
q1 = 1 = {01}2 and q0 = φ = z = {10}2. Equation (1) is implemented as

A Systematic Evaluation of Compact Hardware Implementations 327

Δ2 = δ21x + δ20 ∈ GF (((22)
2
)
2
) :

Δ−1
2 = (δ21x + (δ21 + δ20)) · (λδ2

21 + (δ21 + δ20)δ20)−1 , (2)

Δ1 = δ11y + δ10 ∈ GF ((22)
2
) :

Δ−1
1 = (δ11y + (δ11 + δ10)) · (φδ2

11 + (δ11 + δ10)δ10)−1 .

Inversion in GF (22) requires only one addition:

Δ0 = δ01z + δ00 ∈ GF (22) : Δ−1
0 = δ01z + (δ01 + δ00) . (3)

The inversion in GF (28) is finally decomposed into operations in GF (22). There-
fore a transformation is needed to transform a representation in GF (28) to a rep-

resentation in GF (((22)2)
2
). In [15], Paar explains how a matrix can be created

to perform this transformation. Different choices for the irreducible polynomials
P (x) and Q(y) lead to different transformation matrices. For every combina-
tion of P (x) and Q(y) there are 8 possibilities for the transformation matrix.
For hardware implementations, the most area efficient transformation matrix
is the one that has the least ‘1’ entries, because this number determines the
XOR gate count for the transformation. After performing the inversion using
the GF (((22)2)

2
) representation we need to go back to the GF (28) representa-

tion using the inverse of the transformation matrix. This matrix can be combined
with the affine transformation matrix at the end of the S-box.

We stick to the choice of Satoh et al. to make p1 = q1 = 1 and q0 = φ = z.
Based on (2) and the fact that the transformation matrix depends on P (x) and
Q(y), we conclude that the hardware complexity of the circuit depends on the
choice of p0 = λ. That is why we explored all values of λ to determine the most
compact solution for the S-box. There are 8 choices for λ. The two elements that
determine the hardware complexity of the circuit are:

– the number of gates in the constant multiplication with λ in GF ((22)2),
– the number of ‘1’ entries in the transformation matrix and in the combination

of the inverse transformation matrix with the affine transformation matrix.

For every λ, Table 1 gives the number of 2-input XORs for the constant multipli-
cation and the total number of ‘1’ entries for every option of the transformation
matrix. Out of 8 possible transformation matrices for every λ, the one that gives
the least total number of ‘1’ entries is given in the last column.

The values in the table are depicted in Fig. 2.
From Table 1 and Fig. 2 we conclude that the solution of Satoh et al., which

has λ = (z + 1)y uses the most area efficient constant multiplication. The trans-
formation matrix they chose gives a total number of ‘1’ entries equal to 61. Their
implementation can be made more efficient by choosing the most compact trans-
formation matrix which leads to a total number of ‘1’ entries equal to 59. But
the most optimal solution (“best case”) would be to change the implementation
even more by taking λ = zy. The constant multiplication requires only 1 XOR
more than Satoh’s constant multiplication, but the total number of ‘1’ entries in
the matrices is reduced by 5. On the other hand, the design with a maximized

328 Nele Mentens et al.

Table 1. Comparison of the hardware complexity when using different polynomials

x2 + x + λ for the generation of GF (((22)
2
)
2
).

λ {λ}2 # XORs in �λ # ‘1’ in matrices min. # ’1’

(z + 1)y + z {1110}2 4 57, 58, 59, 60, 62, 63, 63, 67 57

zy {1000}2 4 54, 57, 59, 59, 61, 62, 63, 66 54

zy + (z + 1) {1011}2 5 59, 63, 63, 64, 65, 65, 67, 71 59

zy + z {1010}2 4 56, 59, 59, 61, 61, 66, 70, 71 56

(z + 1)y {1100}2 3 59, 61, 62, 63, 63, 64, 66, 69 59

(z + 1)y + 1 {1101}2 4 60, 61, 62, 62, 63, 64, 65, 68 60

zy + 1 {1001}2 5 55, 59, 59, 61, 62, 63, 65, 67 55

(z + 1)y + (z + 1) {1111}2 3 59, 59, 61, 62, 64, 64, 66, 72 59

Fig. 2. Graphical representation of the values in Table 1. The arrows point at Satoh’s S-
box, the S-box with minimized gate count (“best case”) and the S-box with maximized
gate count (“worst case”).

gate count (“worst case”) uses 5 XOR gates for the constant multiplication and
71 ’1’ entries in the matrices.

The implementation of the new optimized S-box is explained in the next
section. Implementation results for Satoh’s S-box, the “best case” and the “worst
case” are given in Sect. 4.3.

4.2 Implementation of the New Optimized S-Box

Figure 3 shows the structure of the S-box implementation.

A Systematic Evaluation of Compact Hardware Implementations 329

GF(2)8

GF(((2)))2 2 2

from
transformation

to GF(((2)))2 2 2
in

inversion GF(((2)))2 2 2

GF(2)8

transformation
from

to

inverse

+
afffine

transformation

a b c d

Fig. 3. Structure of the S-box implementation.

The transformation used here is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
b3
b4
b5
b6
b7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 1 0 0
0 1 0 1 0 0 1 1
0 1 0 0 0 1 0 1
0 1 0 0 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

a6

a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai, bi ∈ GF (2) are the coefficients of a ∈ GF (28), b ∈ GF (((22)2)
2
)

respectively.
This results in the following combination of the inverse transformation with the
affine transformation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

d4

d5

d6

d7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 1 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 1 1 1 0
1 0 0 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 0 1 1
0 0 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4
c5
c6
c7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ci, di ∈ GF (2) are the coefficients of c ∈ GF (((22)2)
2
), d ∈ GF (28)

respectively.
The total number of ‘1’ entries in both 8 × 8 matrices is equal to 54. The

addition of the column vector in the affine transformation is fixed and hence
does not have to be considered for optimization. The number of ‘1’ entries in the
matrices in Satoh’s implementation is equal to 61. Implementing the matrices in
a straightforward way, the number of XORs would be equal to the number of ’1’
entries minus the number of rows in the matrices. This would lead to an XOR
gate count of 38 and 45 for our and Satoh’s S-box respectively, which results in a

330 Nele Mentens et al.

reduction of 7 XOR gates. By finding common terms in the XOR equations and
exploring some rools of logic it is possible to reduce the number of XOR gates.
We leave this to a synthesis tool and give results on the final implementations
in Sect. 4.3.

^2 *
^−1

8

4

4

4

4

8

Fig. 4. Structure of the S-box implementation.

The inversion in GF (((22)2)
2
) has many levels of hierarchy. At the highest

level the architecture looks the same as Satoh’s architecture (see Fig. 4). At
the next level of hierarchy, the only difference with Satoh’s design is the imple-
mentation of the constant multiplication with λ. Figure 5 gives the gate-level
implementation of both Satoh’s (top) and our (bottom) constant multiplica-
tion. As can be seen, our constant multiplication requires one extra XOR gate
compared to Satoh’s implementation.

input input *

input * input

Fig. 5. Gate-level implementation of Satoh’s (top) and our (bottom) constant multi-
plication with λ.

A Systematic Evaluation of Compact Hardware Implementations 331

We can summarize this section by stating that, in a straightforward imple-
mentation, our S-box would require 6 XOR gates less than Satoh’s S-box (7 less
for the implementation of the matrices and 1 extra for the multiplication with
λ). The implementation results of both approaches after synthesis are compared
in the next section. To show the upper bound of the gate complexity, we also
implemented the “worst case” S-box and included it in the comparison.

4.3 Implementation Results and Comparison

We implemented both our new optimized S-box and Satoh’s S-box using a 0.18
μm CMOS standard cell library. To show that the area is sensitive to the choice of
the polynomials and the transformation matrix we also implemented the “worst
case” S-box (with maximized gate count). All three implementations are syn-
thesized with a rather slow target delay of 10 ns. Table 2 gives the number of
gates (in equivalent number of 2-input NAND gates) for all designs.

Table 2. Area comparison of our S-box with minimized/maximized gate count and
Satoh’s S-box (in equivalent number of 2-input NAND gates).

min. area Satoh max. area

number of gates 272 286 297

Satoh et al. implemented their S-box using a 0.11 μm CMOS standard cell
library, which resulted in 294 gates with a delay of 3.69 ns. This corresponds
to 286 gates in 0.18 μm CMOS with a maximum delay of 10 ns. The table
shows our new S-box has a 5% area reduction compared to Satoh’s S-box. This
is equivalent to the expected reduction of 6 XOR gates. The table also shows
that a bad choice for the polynomials and the transformation matrix can lead
to an area enlargement of 9%.

5 Conclusions and Future Work

We explored various options for low gate counts in the design of the AES S-box.
We used the architecture of Satoh as a reference and we showed that it is 5%
away from an optimal solution. Furthermore, we proved that the “worst case”
S-box leads to a 9% area increase. We optimized Satoh’s S-box by choosing the
irreducible polynomial and transformation matrix that lead to the most compact
solution.

There exists a possibility that a more compact S-box can be achieved by
choosing an irreducible polynomial P (x) = x2 + p1x + p0 with p1 �= 1. The
high level architecture of Satoh does not stay the same in this case. On the
other hand, in this work we only considered the gate complexity of the S-box
while encryption is done. The same strategy can be applied to the decryption
operation as well.

332 Nele Mentens et al.

Acknowledgements

For this work we used the Magma software package. We thank Jasper Scholten
from COSIC, Katholieke Universiteit Leuven for his help.

References

1. FIPS Pub. 197: Specification for the AES, Nov. 2001. http://csrc.nist.gov/pub-
lications/fips/fips197/fips-197.pdf.

2. M. Alam, W. Badawy, and G. Jullien. A novel pipelined threads architecture
for aes encryption algorithm. In M. Schulte, S. Bhattacharyya, N. Burgess,
and R. Schreiber, editors, Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and Processors (ASAP), pages 296–
302, San Jose, CA, USA, July 17-19 2002. IEEE Computer Society Press.

3. P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES al-
gorithm. In C. Walter, Ç. K. Koç, and C. Paar, editors, Proceedings of 5th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES),
number 2779 in Lecture Notes in Computer Science, pages 319–333, Cologne, Ger-
many, September 7-10 2003. Springer-Verlag.

4. J. Daemen and V. Rijmen. AES proposal: Rijndael, September 2001. http://cs-
rc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf.

5. J. Daemen and V. Rijmen. The design of Rijndael: AES–The Advanced Encryption
Standard. Springer-Verlag, 2002.

6. J. Daemen and V. Rijmen. Security of a wide trail design. In A. Menezes and
P. Sarkar, editors, Proceedings of Third International Conference on Cryptology in
India, volume 2551 of LNCS, pages 1–11, Hyderabad, India, December 16-18 2002.
Springer-Verlag. Invited talk.

7. V. Fischer and M. Drutarovský. Two methods of Rijndael implementation in recon-
figurable hardware. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Proceedings
of 3rd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), number 2162 in Lecture Notes in Computer Science, page 77–92, Paris,
France, May 13-16 2001. Springer-Verlag.

8. K. Gaj and P. Chodowiec. Fast implementation and fair comparison of the final
candidates for advanced encryption standard using field programmable gate ar-
rays. In D. Naccache, editor, Proceedings of RSA Security Conference: Topics in
Cryptology - CT-RSA, number 2020 in Lecture Notes in Computer Science, San
Francisco, CA, USA, April 8-12 2001. Springer-Verlag.

9. J. Guajardo and C. Paar. Efficient algorithms for elliptic curve cryptosystems.
In B. S. Kaliski Jr., editor, Advances in Cryptology: Proceedings of CRYPTO’97,
number 1294 in Lecture Notes in Computer Science, pages 342–356. Springer-
Verlag, 1997.

10. K. Jdrvinen, M. Tommiska, and J. Skyttd. A fully pipelined memoryless 17.8 Gbps
AES-128 encyptor. In Proceedings of the 11th ACM International Symposium on
Field-Programmable Gate Arrays (FPGA), Monterey, CA, USA, February 23-25
2003.

11. H. Kuo and I. Verbauwhede. Architectural optimization for a 1.82Gbits/sec VLSI
implementation of the AES rijndael algorithm. In Ç. K. Koç, D. Naccache, and
C. Paar, editors, Proceedings of 3rd International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), number 2162 in Lecture Notes in Com-
puter Science, pages 51–64, Paris, France, May 13-16 2001. Springer-Verlag.

A Systematic Evaluation of Compact Hardware Implementations 333

12. C.-C. Lu and S.-Y. Tseng. Integrated design of AES (Advanced Encryption Stan-
dard) encrypter and decrypter. In M. Schulte, S. Bhattacharyya, N. Burgess,
and R. Schreiber, editors, Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and Processors (ASAP), pages 277–
285, San Jose, CA, USA, July 17-19 2002. IEEE Computer Society Press.

13. M. Macchetti and G. Bertoni. Hardware implementation of the Rijndael Sbox: A
case study. ST Journal of system research, (0):84–91, 2002.

14. M. McLoone and J.V McCanny. High performance single-chip FPGA Rijndael
algorithm implementations. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Pro-
ceedings of 3rd International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), number 2162 in Lecture Notes in Computer Science, pages 65–76,
Paris, France, May 13-16 2001. Springer-Verlag.

15. C. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Germany, 1994.

16. A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi. Effi-
cient Rijndael encryption implementation with composite field arithmetic. In Ç.
K. Koç, D. Naccache, and C. Paar, editors, Proceedings of 3rd International Work-
shop on Cryptograpic Hardware and Embedded Systems (CHES), number 2162 in
Lecture Notes in Computer Science, pages 171–184, Paris, France, May 14-16 2001.
Springer-Verlag.

17. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A compact Rijndael hard-
ware architecture with S-Box optimization. In C. Boyd, editor, Proceedings of Ad-
vances in Cryptology - ASIACRYPT: 7th International Conference on the Theory
and Application of Cryptology and Information Security, number 2248 in Lecture
Notes in Computer Science, pages 239–254, Gold Coast, Australia, December 2001.
Springer-Verlag.

18. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient imple-
mentation of rijndael encryption in reconfigurable hardware: Improvements and de-
sign tradeoffs. In C. Walter, Ç. K. Koç, and C. Paar, editors, Proceedings of 5th In-
ternational Workshop on Cryptograpic Hardware and Embedded Systems (CHES),
number 2779 in Lecture Notes in Computer Science, pages 334–350, Cologne, Ger-
many, September 7-10 2003. Springer-Verlag.

19. I. Verbauwhede, P. Schaumont, and H. Kuo. Design and performance testing of a
2.29-Gb/s Rijndael processor. IEEE Journal of Solid-State Circuits, 38(3):569–572,
March 2003.

20. J. Wolkerstorfer. Dual-field arithmetic unit for GF (p) and GF (2m). In B. S.
Kaliski Jr., Ç. Koç, and C. Paar, editors, Proceedings of 4th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), number 2523 in
Lecture Notes in Computer Science, pages 500–514, Redwood Shores, CA, USA,
August 13-15 2002. Springer-Verlag.

21. J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC implementation of the
AES S-Boxes. In B. Preneel, editor, Proceedings of the RSA Conference - Topics
in Cryptography (CT-RSA), number 2271 in Lecture Notes in Computer Science,
pages 67–78, San Jose, USA, February 18-22 2002. Springer-Verlag.

22. S.-Y. Wu, S.-C. Lu, and C. S. Laih. Design of AES based on dual cipher and
composite field. In T. Okamoto, editor, Proceedings of RSA Cryptographers’ Track,
number 2964 in Lecture Notes in Computer Science, pages 25–38, San Fransisco,
USA, February 23-27 2004. Springer-Verlag.

CryptoGraphics:
Secret Key Cryptography Using Graphics Cards

Debra L. Cook1, John Ioannidis1, Angelos D. Keromytis1, and Jake Luck2

1 Department of Computer Science, Columbia University, New York, NY, USA
{dcook,ji,angelos}@cs.columbia.edu

2 10K Interactive
jake301@10k.org

Abstract. We study the feasibility of using Graphics Processing Units (GPUs)
for cryptographic processing, by exploiting the ability for GPUs to simultane-
ously process large quantities of pixels, to offload symmetric key encryption from
the main processor. We demonstrate the use of GPUs for applying the key stream
when using stream ciphers. We also investigate the use of GPUs for block ciphers,
discuss operations that make certain ciphers unsuitable for use with a GPU, and
compare the performance of an OpenGL-based implementation of AES with im-
plementations utilizing general CPUs. While we conclude that existing symmet-
ric key ciphers are not suitable for implementation within a GPU given present
APIs, we discuss the applicability of moving encryption and decryption into the
GPU to image processing, including the handling of displays in thin-client appli-
cations and streaming video, in scenarios in which it is desired to limit exposure
of the plaintext to within the GPU on untrusted clients.

Keywords: Graphics Processing Unit, Block Ciphers, Stream Ciphers, AES.

1 Introduction

We investigate the potential for utilizing Graphics Processing Units (GPUs) for sym-
metric key encryption. The motivation for our work is twofold. First, our initial mo-
tivation was a desire to exploit existing system resources to speed up cryptographic
processing and offload system resources. Second, there is the need to avoid exposing
unencrypted images and graphical displays to untrusted systems while still allowing
remote viewing. While we show that moving symmetric key encryption into the GPU
offers limited benefits compared to utilizing general CPUs with respect to non-graphics
applications, our work provides a starting point towards achieving the second goal, by
determining the feasibility of moving existing symmetric key ciphers into the GPU.
Our initial intent is to determine the use of standard GPUs and configurations for cryp-
tographic applications, as opposed to requiring enhancements to GPUs, their drivers, or
other system components. Avoiding specialized requirements is necessary to provide a
benefit to generalized environments. The focus of our work is on symmetric key ciphers
(as opposed to asymmetric schemes) due to the general use of symmetric key ciphers for
encryption of large quantities of data and the lack of basic modular arithmetic support
in the standard API (OpenGL) for GPUs.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 334–350, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 335

In a large-scale distributed environment such as the Internet, cryptographic proto-
cols and mechanisms play an important role in ensuring the safety and integrity of the
interconnected systems and the resources that are available through them. The funda-
mental building block such protocols depend on are cryptographic primitives, whose al-
gorithmic complexity often turns them into a real or perceived performance bottleneck
to the systems that employ them [4]. To address this issue, vendors have been marketing
hardware cryptographic accelerators that implement such algorithms [7, 12, 14, 16, 17].
Others have experimented with taking advantage of special functions available in some
CPUs, such as MMX instructions [1, 15].

While the performance improvement that can be derived from accelerators is sig-
nificant [13], only a relatively small number of systems employ such dedicated hard-
ware. Our approach is to exploit resources typically available in most systems. We ob-
serve that the large majority of systems, in particular workstations and laptops, but also
servers, include a high-performance GPU, also known as a graphics accelerator. Due to
intense competition and considerable demand (primarily from the gaming community)
for high-performance graphics, such GPUs pack more transistors than the CPUs found
in the same PC enclosure [18] at a smaller price. GPUs provide parallel processing
of large quantities of data relative to what can be provided by a general CPU. Perfor-
mance levels equivalent to the processing speed of 10Ghz Pentium processor have been
reached, and GPUs from Nvidia and ATI are functioning as co-processors to CPUs in
various graphics subsystems [18]. GPUs are already being used for non-graphics appli-
cations, but presently none are oriented towards security [11, 27].

With respect to our second goal, limiting exposure of images and graphical dis-
plays to be within a GPU, implementing ciphers within the GPU allows images to be
encrypted and decrypted without writing the image temporarily as plaintext to system
memory. Potential applications include thin clients, in which servers export displays to
remote clients, and streaming video applications. While existing Digital Rights Man-
agement (DRM) solutions provide decryption of video within the media player and only
allow authenticated media players to decrypt the images, such solutions are still utiliz-
ing the system’s memory and do not readily lend themselves to generic applications
exporting displays to clients [20].

Our work consists of several related experiments regarding the use of GPUs for
symmetric key ciphers. First, we experiment with the use of GPUs for stream ciphers,
leveraging the parallel processing to quickly apply the key stream to large segments of
data. Second, we determine if AES can be implemented to utilize a GPU in a manner
that allows for offloading work from other system resources (e.g., the CPU). Our work
illustrates why algorithms involving certain byte-level operations and substantial byte-
level manipulation are unsuitable for use with GPUs given current APIs. Finally, we
investigate the potential for implementing ciphers in GPUs for image processing to
avoid the image being written to system memory as plaintext.

1.1 Paper Organization

The remainder of the paper is organized as follows. We provide background on the
OpenGL commands and pixel processing used in our implementations in Section 2.
Section 3 explains how GPUs can be utilized for the combination of a stream cipher’s

336 Debra L. Cook et al.

keystream with data in certain applications, and includes performance results. Section
4 describes the representation of AES which we implemented in OpenGL and includes
a general discussion of why certain block ciphers are not suitable candidates for use
with a GPU given the existing APIs. Section 5 provides an overview of our implemen-
tation of AES that utilizes a GPU and provides performance results. We discuss the
potential use of GPU-embedded versions of symmetric key ciphers in image processing
and thin client applications in Section 6. Our conclusions and future areas of work are
covered in Section 7. Appendix A describes the experimental environments, including
the minimum required specifications for the GPUs. Appendix B contains pseudo-code
for our OpenGL AES encryption routine.

2 OpenGL and GPU Background

Before describing our work with symmetric key ciphers in GPUs, we give a brief
overview of the OpenGL pipeline, modeled after the way modern GPUs operate, and
the OpenGL commands relevant to our experiments. The two most common APIs for
GPUs are OpenGL and Direct3D [19]. We use OpenGL in order to provide platform
independence (in contrast to Microsoft’s Direct3D). We choose to avoid higher level
languages built on top of these APIs in order to ensure that specific OpenGL commands
are being used and executed in the GPU when using full hardware acceleration. Exam-
ples of such languages include Cg [8] (HLSL in DirectX [19]) and, from more recent
research, Brook (the BrookGPU compiler [3] uses Cg in addition to OpenGL and Di-
rect3D). Higher level languages do not allow the developer to specify which OpenGL
commands are utilized when there are multiple ways of implementing a function via
OpenGL commands and do not even guarantee the operations will be transformed into
OpenGL commands but instead may transform it into C code. For example, code in a
higher level language that XORs two bytes will likely be transformed into code executed
in the operating system rather than converted into OpenGL commands that converts the
bytes to pixels and XORs pixels. We use the OpenGL Utility Toolkit (GLUT) [28] to
open the display window. GLUT serves as a wrapper for window system APIs, allowing
the code to be independent of the window system.

Our implementations process data as 32 bit pixels treated as floating point values,
with one byte of data stored in each pixel component1. We do not use OpenGL’s capa-
bilities of processing pixels as color and stencil indices, and we do not use OpenGL’s
vertex processing (refer to [21] and [28] for a complete description). OpenGL version
1.4 was used in all experiments. Figure 1 shows the components of the OpenGL pipeline
that are relevant to pixel processing when pixels are treated as floating point values.
While implementations are not required to adhere to the pipeline, it serves as a general
guideline for how data is processed. We also point out that OpenGL requires support for
at least a front buffer (image is visible) and a back buffer (image is not visible) but does
not require support for the Alpha pixel component in the back buffer. This limits us to
three bytes per pixel (the Red, Green, Blue components) when performing operations

1 When using 32 bit pixels, 1 byte is typically dedicated to each of the Red, Green, Blue and
Alpha components. A format with 10 bits for each of the Red, Green and Blue components
and 2 bits for the Alpha component may also be supported.

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 337

in the back buffer. It is worth mentioning that while a 32 bit pixel format is used, the 32
bits cannot be operated on as a single 32 bit value, but rather is interpreted in terms of
pixel components. For example, it is not possible to add or multiply two 32 bit integers
by representing them as pixels.

System
Memory Framebuffer

Pixel Transfer
Operations
and Map

Texture
Memory

Rasterization
Per
Fragment
Operations

Pixel
Storage
Modes

Unpack

Convert
to [0,1]

Convert
Luminance
to RGBA

Scale
Bias

Color
map

Clamp
to [0,1]

RGBA,
depthPack

Convert
to [0,1]

Convert to
Luminance
(if required)

system to
framebuffer

framebuffer
to system

Legend

Fig. 1. OpenGL Pipeline for Pixel Processing

A data format indicating such items as number of bits per pixel and the ordering of
color components specifies how the GPU interprets and packs/unpacks the bits when
reading data to and from system memory. The data format may indicate that the pixels
are to be treated as floating point numbers, color indices, or stencil indices. The fol-
lowing description concerns the floating point interpretation. When reading data from
system memory, the data is unpacked and converted into floating point values in the
range [0, 1]. Luminance, scaling and bias are applied per color component. The next
step is to apply the color map, which we describe later in more detail. The values of the
color components are then clamped to be within the range [0, 1].

Rasterization is the conversion of data into fragments, with each fragment corre-
sponding to one pixel in the frame buffer. In our work this step has no impact. The frag-
ment operations relevant to pixel processing include dithering, threshold based tests,
such as discarding pixels based on alpha value and stencils, and blending and logical
operations that combine pixels being drawn into the frame buffer with those already in
the destination area of the frame buffer. Dithering, which is enabled by default, must be
turned off in our implementations in order to prevent pixels from being averaged with
their neighbors.

338 Debra L. Cook et al.

When reading data from the frame buffer to system memory, the pixel values are
mapped to the range [0, 1]. Scaling, bias, and color maps are applied to each of the
RGBA components and the result clamped to the range [0, 1]. The components or lu-
minance are then packed into system memory according to the format specified. When
copying pixels between areas of the frame buffer, the processing occurs as if the pix-
els were being read back to system memory, except that the data is written to the new
location in the frame buffer according to the format specified for reading pixels from
system memory to the GPU.

Aside from reading the input from system memory and writing the result to sys-
tem memory, the OpenGL commands in our implementations consist of copying pixels
between coordinates, with color mapping and a logical operation of XOR enabled or
disabled as needed. Unfortunately, the copying of pixels and color maps are two of the
slowest operations to perform [28]. The logical operation of XOR produces a bitwise-
XOR between the pixel being copied and the pixel currently in the destination of the
copy, with the result being written to the destination of the copy.

A color map is applied to a particular component of a pixel when the pixel is copied
from one coordinate to another. A color map can be enabled individually for each of the
RGBA components. The color map is a static table of floating point numbers between 0
and 1. Internal to the GPU, the value of the pixel component being mapped is converted
to an integer value which is used as the index into the table and the pixel component is
replaced with the value from the table. For example, if the table consists of 256 entries,
as in our AES implementation, and the map is being applied to the red component of a
pixel, the 8 bits of the red value are treated as an integer between 0 and 255, and the red
value updated with the corresponding entry from the table. In order to implement the
tables of equation (III) in Section 4 as color maps, the tables must be converted to tables
of floating point numbers between 0 and 1, and hard-coded in the program as constants.
The table entries, which would vary from 0 to 255 if the bytes were in integer format,
are converted to floating point values by dividing by 255. Because pixels are stored as
floating point numbers and the values are truncated when they are converted to integers
to index into a color map, 0.000001 is added to the result (except to 0 and 1) to prevent
errors due to truncation.

3 Graphics Cards and Stream Ciphers

As a first step in evaluating the usefulness of GPUs for implementing cryptographic
primitives, we implemented the mixing component of a stream cipher (the XOR opera-
tion) inside the GPU. GPUs have the ability to XOR many pixels simultaneously, which
can be beneficial in stream cipher implementations. For applications that pre-compute
segments of key streams, a segment can be stored in an array of bytes which is then read
into the GPU’s memory and treated as a collection of pixels. The data to be encrypted
or decrypted is also stored in an array of bytes which is read into the same area of the
GPU’s memory as the key stream segment, with the logical operation of XOR enabled
during the read. The result is then written to system memory. Overall, XORing the data
with the key stream requires two reads of data into the GPU from system memory and
one read from the GPU to system memory.

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 339

The number of bytes can be at most three times the number of pixels supported if
the data is processed in a back buffer utilizing only RGB components. The number of
bytes can be four times the number of pixels if the front buffer can be used or the back
buffer supports the Alpha component. If the key stream is not computed in the GPU, the
cost of computing the key stream and temporarily storing it in an array is the same as
in an implementation not utilizing a GPU. At least one stream cipher, RC4 [26], can be
implemented such that the key stream is generated within the GPU. However, the oper-
ations involved result in decreased performance compared to an implementation with a
general CPU. Our work with AES serves to illustrate the problems with implementing
byte-level operations within a GPU and thus we omit further discussion of RC4 within
this paper. Others, such as SEAL [24] which requires 9-bit rotations, involve operations
which make it difficult or impossible to implement in the GPU given current APIs.

Table 1. XOR Rate Using System Resources (CPU)

CPU
1.8 Ghz 1.3 Ghz 800 Mhz

XOR Rate 139MB/s 93.9MB/s 56MB/s

We compared the rate at which data can be XORed with a key stream in an OpenGL
implementation to that of a C implementation (Visual C++ 6.0). We conducted the tests
using a PC with a 1.8Ghz Pentium IV processor and an Nvidia GeForce3 graphics
card, a laptop with a 1.3Ghz Pentium Centrino Processor and a ATI Mobility Radeon
graphics card, and a PC with a 800Mhz Pentium III Processor and an Nvidia TNT2
graphics card. Refer to Appendix A for additional details on the test environments.
We provide the results from the C implementation in Table 1. We tested several data
sizes to determine the ranges for which the OpenGL implementation would be useful.
As expected, the benefit of the GPU’s simultaneous processing is diminished if the
processed data is too small. Table 2 indicates the average encryption rates over 10 trials
of encrypting 1000 data segments of size 3Y 2 and 4Y 2, respectively, where the area of
pixels is Y by Y . For the number of pixels involved in our images, the transfer rate to
the GPU was measured to be equal to the transfer rate from the GPU, thus each read
and write contributed equally to the overall time.

Notice that the encryption rate was fairly constant for all data sizes on the slow-
est processor with the oldest GPU (Nvidia TNT2). Possible explanations include slow
memory controller, memory bus, or GPU, although we have not investigated this fur-
ther. With the GeForce3 Ti200 card, the efficiency increased as more bytes were XORed
simultaneously. On the laptop the peak rates were obtained with 200x200 to 400x400
square pixel areas.

When using the RGB components, the highest rate obtained by the GPUs compared
to the C program is 58% for the Nvidia GeForce3 Ti200 card, 48.5% for the ATI Mobil-
ity Radeon card, and 51.4% for the Nvidia TNT2 card. With both the GeForce3 Ti200
and the ATI Radeon cards, results with the 50x50 pixel area was significantly slower
than with larger areas due to the time to read data to/from system memory representing

340 Debra L. Cook et al.

Table 2. XOR Rate Using GPUs - RGB and RGBA Pixel Components

Using RGB components Using RGBA components
Area Nvidia ATI Mobility Nvidia Nvidia ATI Mobility Nvidia

(in pixels) GeForce3 Ti200 Radeon 7500 TNT2 GeForce3 Ti200 Radeon 7500 TNT2
50x50 35.7MBps 23.5MBps 27.8MBps 49.3MBps 26.3MBps 37.0MBps

100x100 53.4MBps 38.5MBps 28.8MBps 69.2MBps 38.1MBps 38.4MBps
200x200 64.5MBps 45.5MBps 26.0MBps 86.8MBps 45.7MBps 32.0MBps
300x300 70.1MBps 45.0MBps 26.0MBps 94.8MBps 42.3MBps 32.0MBps
400x400 75.4MBps 43.0MBps 27.0MBps 95.9MBps 49.0MBps 32.8MBps
500x500 77.3MBps 38.0MBps 26.6MBps 97.5MBps 37.0MBps 32.6MBps
600x600 81.2MBps 41.7MBps 27.7MBps 105.0MBps 41.5MBps 32.8MBps

a larger portion of the total time. In both cases the rate is approximately 25% of that
of the C program. When using the RGBA components, the highest rates on the Nvidia
GeForce Ti200, ATI Radeon and Nvidia TNT2 cards are 75.5%, 52% and 68% of the
C program, respectively.

4 Graphics Cards and Block Ciphers

We now turn our attention to the use of GPUs for implementing block ciphers. The first
step in our work is to determine if AES can be represented in a manner which allows
it to be implemented within a GPU. We describe the derivation of the OpenGL version
of AES and its implementation in some detail, in order to illustrate the difficulties that
arise when utilizing GPUs for algorithms performing byte-level operations. We also
briefly comment on the suitability of using GPUs for block ciphers in general. While
GPUs are advantageous in various aspects, the use of floating point arithmetic and the
fact that the APIs are not designed for typical byte-level operations, as required in most
block ciphers, present severe obstacles. For 128-bit blocks, the AES round function for
encryption is typically described with data represented as a 4x4-byte matrix upon which
the following series of steps are performed:

(I) SubBytes (S-Box applied to each entry)
ShiftRows (bytes within each row of the 4x4 matrix are shifted 0 to 3 columns)
MixColumns (a matrix multiplication; absent in last round)
AddRoundKey (the 4x4 matrix is XORed with a round key)

Ten rounds are performed, with the data XORed with key material prior to the first
round and the MixColumns step omitted in the last round. The round function for de-
cryption differs from encryption in that inverse functions for SubBytes, ShiftRows and
MixColumns are used. Refer to [9] for a complete description of each function.

A faster implementation for environments with sufficient memory operates on 32-
bit words and reduces the AES round function to four table lookups and four XORs. If
A denotes a 4x4 matrix input to the round, ai,j denotes the ith row and jth column of
A, j − x is computed modulo 4, and Tk are tables with 256 32-bit entries, the round
function is reduced to the form:

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 341

(II) A′
j = T 0[a0,j]⊕ T 1[a1,j−1]⊕ T 2[a2,j−2] ⊕T 3[a3,j−3] ⊕RoundKey

where A′
j denotes the jth column of the round’s output. Refer to pages 58–59 of [6] for

a complete description. The entries in the tables in (II) are concatenations of 1, 2, and
3 times the S-Box entries. This version is due to the fact that the order of the SubBytes
and ShiftRows steps can be switched and the MixColumn step can be viewed as the
linear combination of four column vectors, which is actually a linear combination of
the S-Box entries.

The AES round function cannot easily be implemented with OpenGL as the stan-
dard series of four steps. The SubBytes can be performed using a color map, and the
ShiftRows and AddRoundKey can be performed by copying pixels to change their lo-
cation or to XOR them with other pixels. However, the MixColumn step would have to
be expanded to a series of color maps to perform individual multiplications and copying
of pixels to perform additions due to the lack of a corresponding matrix multiplication
with modular arithmetic in OpenGL. The view of AES as four table lookups and XORs
also cannot be implemented in OpenGL due to the lack of a 32-bit data structure. While
the RGBA format is 32 bits, it is not possible to use all 32 bits as an index into a color
map or to swap values between components, both of which would be necessary to im-
plement the version in (II). As a result, we use an intermediate step in the transformation
of the standard algorithm to the version in (II). Letting A′

j and ai,j be defined as in (II)
and letting S[ai,j] denote the S-Box entry corresponding to ai,j , the encryption round
function for rounds 1 to 9 is represented as:

(III) A′
j =⎛⎜⎜⎝

02S[a0,j]
01S[a0,j]
01S[a0,j]
03S[a0,j]

⎞⎟⎟⎠⊕

⎛⎜⎜⎝
03S[a1,j−1]
02S[a1,j−1]
01S[a1,j−1]
01S[a1,j−1]

⎞⎟⎟⎠⊕

⎛⎜⎜⎝
01S[a2,j−2]
03S[a2,j−2]
02S[a2,j−2]
01S[a2,j−2]

⎞⎟⎟⎠⊕

⎛⎜⎜⎝
01S[a3,j−3]
03S[a3,j−3]
02S[a3,j−3]
01S[a3,j−3]

⎞⎟⎟⎠⊕Roundkey

If three tables, representing 1, 2, and 3 times the S-Box entries are stored, (III)
reduces to a series of table lookups and XORs. This allows AES to be implemented
using color maps and copying of pixels. The 10th round is implemented as (III) with
all the coefficients of 2 and 3 replaced by 1. Since decryption uses the inverses of the
S-Box and matrix multiplication, five tables need to be stored, representing 0E, 0B, 0D,
09 and 01 times the S-Box inverse. Notice that this representation of AES processes
data as individual bytes, instead of 4-byte words. However, the manner in which the
pixel components are utilized in the implementation when encrypting multiple blocks
allows 4 bytes to be processed simultaneously per pixel, compensating for the loss of
not being able to use 32-bit words as in (II).

In general, algorithms performing certain byte and bit-level operations are not suit-
able for GPUs given current APIs. While simple logical operations can be performed
efficiently in GPUs on large quantities of bytes, as shown in Section 3, the byte and bit-
level operations typically found in symmetric key ciphers, such as shifts and rotates, are
not available via the APIs to GPUs. Modular arithmetic operations are also not readily
available. While some operations, such as defining masks of pixels and using multiple

342 Debra L. Cook et al.

copy commands to perform rotations and shifts on single bytes, can be performed via
combinations of OpenGL commands, other operations, such as shifts across multiple
bytes and table lookups based on specific bits, prove to be more difficult. For example,
there is no straightforward way to implement in OpenGL the data dependent rotations
found in RC6 [23] and MARS [5]. Also consider the DES S-Boxes [10]. The index into
the S-Box is based on six key bits XORed with six data bits. Two of the bits are used to
select the S-Box and the remaining four are the index into the S-Box. Masks of pixels
copied onto the data can be used to “extract” the desired bits, but to merely XOR the six
key bits with six data bits requires copying the pixel containing the desired key bits onto
the pixel containing the mask with XOR turned on, doing the same for the data pixel,
then copying the two resulting pixels to the same position. Color maps are required to
emulate the S-Box. Overall, to use OpenGL for the S-Box step in DES, a larger number
of less efficient operations are required than in a C implementation.

5 OpenGL Version of AES

5.1 Implementation Overview

We describe an implementation of AES’s encryption and decryption functions for 128-
bit blocks that works with any GPU supporting 32-bit pixels and OpenGL. The key
schedule is not implemented inside the GPU. While the GPU allows for parallel pro-
cessing of a large number of blocks, due to the simplicity in which AES can be imple-
mented in software as a series of table lookups and XORs, the overall encryption rate
using the GPU is below the rate that can be obtained with a C implementation utilizing
only system resources.

The code consisted of C, OpenGL and GLUT. The C portion of the code sets up
the plaintext or ciphertext and key. The OpenGL and GLUT commands are called from
within the C program. GLUT commands are used to open the display window. All
of the encryption and decryption computations are performed with OpenGL functions,
with data being stored and processed as pixels. To accomplish this, it is necessary to
represent AES in a manner that requires only the specific transformations or functions
supported by the graphics hardware. As explained in Section 4, we use a representation
that can be implemented in OpenGL solely via color maps and pixel copying. The
implementation allows encrypting 4 ∗ n blocks simultaneously, where n is the number
of pixels utilized for the data being encrypted or decrypted and may be any integer
less than the display’s maximum pixel height supported by the GPU. The encryption of
multiple blocks simultaneously from the same plaintext is useful if ECB or CTR mode
are used. Alternatively, we can process one block from several messages in parallel.

Figure 2 illustrates the pixel coordinates utilized by the algorithm. The initial data
blocks are read into the 16 x n area starting at the origin, indicated by “DATA” in the
diagram. One byte of data is stored in each pixel component, allowing us to process 4∗n
blocks of data when all of the RGBA components are used. The ith column contains
the ith byte of each block. This area is also used to store the output from each round.
To maximize throughput, for each data block one copy of the expanded key is read into
the area labeled “KEY” in the diagram. This area is 176 x n pixels starting at (17, 0)
and the round keys are stored in order, each encompassing 16 columns. The tables are

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 343

D
A

T
A

01
 (0

1)

02
 (

0E
)

03
 (

0B
)

(0D
)

(0
9)

KEY

16 pixels

n pixels

Fig. 2. Layout of Data in Pixel Coordinates used in OpenGL Version of AES

stored as color maps and do not appear in the layout. The data stored in the first 16
columns is copied 3 times for encryption and 5 times for decryption, applying a color
map each time. The results are stored in the areas indicated by the hex values in the
diagram and are computed per round. The values in parenthesis indicate the location
of the transformations for decryption. The hex value indicates the value by which the
S-Box (or inverse S-Box, when decrypting) entries are multiplied. See Appendix B for
pseudo-code of the GPU AES encryption process. Figure 3 shows an example of the
resulting display when the front buffer and RGB components are used to encrypt 300
identical data blocks simultaneously.

Two C implementations of AES are used for comparison. The first is the AES
representation corresponding to variant (I) in Section 4, with the multiplication steps
performed via table lookups, and reflects environments in which system resources for
storing the tables required by variant (II) are not available. The second is a C implemen-
tation of variant (II), which offers increased encryption and decryption rates over (I) at
the cost of requiring additional memory for tables. The code for (II) is a subset of [22].

5.2 Experiments

We compare the rate of encryption provided with the GPU to that provided by the
C implementation running on the system CPU. Tests were conducted using the same
three environments used for the stream cipher experiments. When describing the re-
sults, AES-GL indicates the implementation using OpenGL and AES-C indicates the
C implementations, with the specific variant from Section 4 indicated by I and II. The
AES-C programs have a hard-coded key and single 128-bit block of data. The pro-
grams expand the key then loop through encrypting a single block of data, with the

344 Debra L. Cook et al.

Fig. 3. Encryption of 300 Identical Blocks in RGB Components

output from the previous iteration being encrypted each time. No data is written to files
and the measurements exclude the key setup (which is common for all variants). The
AES-GL program uses a hard-coded expanded key and one or four blocks of data in
the cases when the red or RGBA pixel components are used, respectively. Both the key
and data are read in n times to provide n copies. Similar to the AES-C programs, the
AES-GL program loops through encrypting blocks of data, with the output from the
previous iteration being encrypted each time. The times exclude reading in the initial
data and key, and no data is read from or written to system memory during the loop.
Trials were conducted with the values of n ranging from 100 to 600 in increments of
100. The rates for values of n ≥ 300 varied by less than 2% and the rates across all val-
ues of n varied by at most 8%. The results for AES-GL in Table 3 are the averages over
n ≥ 300 when a single pixel component and all of the RGBA pixel components are
utilized. The corresponding decryption rates for the C and OpenGL implementations
will be slightly lower than the encryption rates due to a small difference in the number
of operations in the decryption function compared to that of the encryption function.

The layout of the pixels was chosen to simplify indexing while allowing for a few
thousand blocks to be encrypted simultaneously. Since the layout does not utilize all
of the available pixels, the number of blocks encrypted at once can be increased if the

Table 3. Encryption Rates for AES

AES Version
PC and GPU AES-GL AES-GL AES-C (I) AES-C (II)

R RGBA
800Mhz Nvidia TNT2 184Kbps 732Kbps 1.68Mbps 30Mbps

1.3Ghz ATI Mobility Radeon 55Kbps 278.3Kbps 2.52Mbps 45Mbps
1.8Ghz Nvidia GeForce3 380Kbps 1.53Mbps 3.5Mbps 64Mbps

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 345

display area is utilized differently. For example, if the number of blocks is n2, the lay-
out can be altered such that the various segments are laid out in n × n areas instead
of as columns. Performance recommendations for OpenGL include processing square
regions of pixels as opposed to processing narrower rectangles [28]. We tried a modi-
fication of the program, which performed the same number of steps on square regions
instead of the configuration shown in Figure 2. There was no change in the encryp-
tion rate, most likely because the program appears to be CPU-bound as we discuss in
the next section. Furthermore, using square areas makes indexing more difficult and re-
quires the number of blocks to be a perfect square for optimal utilization of the available
pixels.

5.3 Performance Analysis

With the two Nvidia graphics cards, AES-GL’s encryption rate was just under 50% that
of AES-C (I). However, when compared to AES-C (II), the AES-GL rate was 2.4% of
the AES-C version. The ratio was lower in both cases when using ATI Mobility Radeon
graphics card, with the AES-GL encryption rate being 11% of AES-C (I)’s rate and less
than 1% of AES-C (II)’s rate.

To determine the factors affecting AES-GL’s performance, additional tests were
performed in which AES-GL and AES-C were run while monitoring system resources.
When we use either AES-C or AES-GL, the CPU utilization is 100% for the duration of
the program. While we expect high CPU utilization for AES-C, the result is somewhat
counter-intuitive for AES-GL. We believe that this happens because of the rate at which
commands are being issued to the graphics card driver. Due to the simplicity in which
AES is represented, a single OpenGL command resulted in one operation from AES
being performed: either the table lookup or the XORing of bytes.

We do not consider the difference between the AES representations used by AES-
GL and AES-C to be a factor. While the representation of AES used in AES-GL pro-
cesses data as individual bytes instead of as the 32-bit words used in AES-C (II), even
when excluding the processing of n pixels simultaneously the use of the RGBA com-
ponents allows 4 bytes to be processed simultaneously per pixel, compensating for the
loss of not being able to use 32-bit words. We also reiterate that the actions performed
upon the pixels (color maps and copying) are two of the slowest GPU operations.

6 Decryption of Images Inside the GPU

The fact that symmetric key ciphers can be implemented within a GPU implies it is
possible to encrypt and decrypt images in a manner that does not require the image
to ever be present outside the GPU in unencrypted format. If the decrypted image is
only available in the GPU, an adversary must be able to execute reads of the GPU’s
memory for the area utilized by the window containing the image while the image is
being displayed. As a proof of concept, we use the AES-GL implementation with the
image read into the card’s memory in an area not utilized by AES. The data area for
AES is populated by copying the image pixels into the area in lieu of reading data from
system memory. Trivially, the image can have a stream cipher’s key stream applied to
it in the GPU by XORing the image with the pixel representation of the key stream.

346 Debra L. Cook et al.

One potential application is encrypted streaming video in which the video frames
are decrypted within the back buffer of the GPU prior to being displayed, as opposed to
decrypting within the system when the data is received. Typical media player screens
vary from 320 x 200 pixels to 1280x1024 pixels. For low-end video, 10 frames per
second (fps) is sufficient, while full-motion video requires 15 to 30 fps, with minimal
perceived difference between the two rates. Assuming 8 bits per RGB component, the
decryption rate must be 1.92 MBps to support 10 fps and 2.88 MBps to support 15 fps
when displaying video to a 320 x 200 pixel window, rates within the limits supported
by the GPUs when using stream ciphers but which exceed the rate currently obtained
with AES-GL. The AES C (I) implementation also does not support these rates. For a
1280x1024 screen, 39.25 MBps support is required for 10 fps, a rate which is supported
when using a stream cipher in two of the three GPUs. At 15 fps, 58.9MBps must be
supported, which can only be achieved with the Nvidia GeForce3 Ti200.

A second application, less intensive than streaming video, concerns processing of
displays in thin client applications. In such applications, a server sends only the updated
portion of a display to the client. For example, when a user places the mouse over a link
on a web page, the server may send an update that results in the link being underlined
or changing color by sending an update only for the display area containing the link,
thus requiring only a small amount of data to be decrypted.

When encrypting and decrypting images within the GPU, a few issues need to be
resolved, such as image compression. If an image is encrypted prior to compression,
ideally no compression should be possible; therefore, when encrypting and decrypting
images in the GPU compression and decompression will also need to be migrated to
the GPU. Second, as mentioned previously, dithering needs to be turned off. This may
produce a visible side affect if the algorithm is used on large images. However, on small
images, typical of a media player when not set to full screen, the lack of dithering is not
likely to be noticeable. An option would be to decrypt the image in the back buffer then
have dithering on when transferring the image to the front buffer, allowing decrypted
images and video to be displayed with dithering.

The current AES-GL implementation reads the expanded key from the system. Al-
ternate methods of storing the key or conveying the key to the GPU must be considered
to make the key storage secure as well. We are currently experimenting with the use
of remotely-keyed encryption [2] in which a smartcard or external system conveys an
encrypted secret key that is decrypted within the GPU. Our current implementation re-
quires the ability to store a certificate within the GPU and utilizes RSA [25] to convey
the secret key to the GPU, with limitations on the size of the RSA private key and
modulus in order to contain decryption of the secret key within the GPU.

7 Conclusions

While symmetric key encryption is possible in GPUs, the lack of support via APIs
for certain operations results in poor performance overall when using existing ciphers.
Furthermore, current APIs do not permit some ciphers to be implemented within the
GPU. The AES experiments prove it is possible to implement AES in a manner that
utilizes a GPU to perform the computation while illustrating the difficulty in moving

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 347

existing block ciphers into the GPU. The lessons learned from developing the OpenGL
version of AES indicate GPUs are not suitable, given current APIs, for ciphers involving
certain types of byte-level operations. GPUs can be used to offload a shared system
CPU in applications using stream ciphers and which allow large segments of data to be
combined with the key stream simultaneously.

Encryption and decryption of graphical displays and images may be moved into
the GPU to avoid temporarily storing an image as plaintext in system memory. As
GPU processing power and capabilities continue to increase, the potential uses will
also increase. Our plans for future work include deriving a mechanism by which the
key is not exposed outside the GPU and continuation of the work on remote keying of
GPUs. We are also continuing work on the applicability to thin client and streaming
video applications, such as video conferencing, and are designing a new cipher that can
better exploit the capabilities of modern GPUs for use in these applications.

References

1. E. Biham, A Fast New DES Implementation in Software, Workshop on Fast Software En-
cryption (FSE ’97), LNCS 1267, Springer-Verlag, pages 260-272, 1997.

2. M. Blaze, J. Feigenbaum and M. Naor, A Formal Treatment of Remotely Keyed Encryption,
Proceedings of EUROCRYPT ’98, LNCS 1403, Springer-Verlag, pages 251-265, 1998.

3. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston and P. Hanrahan, Brook
for GPUs: Stream Computing on Graphics Hardware Proceedings of SIGGRAPH, 2004.

4. A. G. Broscius and J. M. Smith, Exploiting Parallelism in Hardware Implementation of the
DES, Proceedings of CRYPTO ’91, LNCS 576, Springer-Verlag, pages 367-376, 1991.

5. D. Coppersmith, et.al., The MARS Cipher,
http://www.research.ibm.com/security/mars.html, 1999.

6. J. Daemon and V. Rijmen, The Design of Rijndael: AES the Advanced Encryption Standard,
Springer-Verlag, Berlin, 2002.

7. W. Feghali, B. Burres, G. Wolrich and D. Carrigan, Security: Adding Protection to the Net-
work via the Network Processor, Intel Technology Journal, 6(3), August 2002.

8. R. Fernando and M. Kilgard, The Cg Tutorial, Addison-Wesley, New York, 2003.
9. FIPS 197 Advanced Encryption Standard (AES), 2001.

10. FIPS 46-3 Data Encryption Standard (DES), 1999.
11. General Purpose Computation Using Graphics Hardware, http://www.gpgpu.org.
12. Helion Technology Limited, High Performance Solutions in Silicon, AES (Rijndael) Core,

http://www.heliontech.com/core2.htm, 2003.
13. A. D. Keromytis, J. L. Wright and T. de Raadt, The Design of the OpenBSD Crypto-

graphic Framework, Proceedings of the USENIX Annual Technical Conference, pages 181-
196, 2003.

14. H. Kuo and I. Verbauwhede, Architectual Optimization for 1.82 Gbits/sec VLSI Implementa-
tion of Rijndael Algorithm, Proceedings of CHES, LNCS 2162, Springer-Link, pages 51-64,
2001.

15. Helger Lipmaa, IDEA: A Cipher for Multimedia Architectures? Selected Areas in Cryptog-
raphy ’98, LNCS 1556, Springer-Verlag, pages 248–263, 1998.

16. A. Lutz, J. Treichler, F.K. Gurkeynak, H. Kaeslin, G. Bosler, A. Erni, S. Reichmuth, P. Rom-
mens, S. Oetiker and W. Fichtner, 2G bits/s Hardware Realizations of Rijndael and Serpent:
A Comparative Analysis, Proceedings of CHES, LNCS 2523, Springer-Link, pages 144-158,
2002.

348 Debra L. Cook et al.

17. M. McLoone and J. McConny, High Performance Single Chip FPGA Rijndael Algorithms
Implementations, Proceedings of CHES, LNCS 2162, Springer-Link, pages 65-76, 2001.

18. M. Macedonia, The GPU Enters Computing’s Mainstream, IEEE Computer Magazine, pages
106-108, October 2003.

19. Microsoft DirectX, http://www.microsoft.com/windows/directx.
20. Microsoft Windows 9 Media Series Digital Rights Management,

http://www.microsoft.com/windows/windowsmedia/drm.aspx, 2004.
21. OpenGL Organization, http://www.opengl.org.
22. V. Rijmen, A. Bosselaers and P. Barreto, AES Optimized ANSI C Code,

http://www.esat.kuleuven.ac.be/ rijmen/rijndael/rijndael-fst-3.0.zip.
23. Rivest, Robshaw, Sidney and Yin, RC6 Block Cipher,

http://www.rsa.security.com/rsalabs/rc6, 1998.
24. P. Rogaway and D. Coppersmith, A Software Optimized Encryption Algorithm, Journal of

Cryptology, vol. 11, pages 273-287, 1998.
25. RSA Laboratories, PKCS1 RSA Encryption Standard, Version 1.5, 1993.
26. B. Schneier, Applied Cryptography, 2nd edition, John Wiley and Sons, New York, 1996.
27. C. Thompson, S. Hahn and M. Oskin, Using Modern Graphics Architectures for General-

Purpose Computing: A Framework and Analysis, 35th Annual IEEE/ACM International
Symposium on Micro Architecture (MICRO-35), pages 306-317, 2002.

28. M. Woo, J. Neider, T. Davis and D. Shreiner, The OpenGL Programming Guide, 3rd edition,
Addison-Wesley, Reading, MA, 1999.

Appendix A: Environments

GPU Requirements

For our implementations, we use OpenGL as the API to the graphics card driver. All of
our programs use basic OpenGL commands and have been tested with OpenGL 1.4.0.
No vendor-specific extensions are used, allowing the program to be independent of the
GPU. The GPU must support 32-bit “true color” mode, because 8-bit color compo-
nents are required for placing the data in pixels. At a minimum, one color component
and at a maximum all four of the RGBA components are utilized by our programs.
The implementations of AES and stream ciphers can be set to work with one to four
pixel components. To avoid displaying the pixels to the window as the encryption is
occurring, the display mode can be set to use a front and back buffer, with the rendering
performed in the back buffer and the results read directly from the back buffer to system
memory and never displayed on the screen. The support for the Alpha component in the
back buffer is optional in OpenGL; therefore, it may be necessary to perform rendering
in the front buffer and display the pixels to the screen when utilizing all of the RGBA
components.

Processors

All tests were performed in three different environments, then a subset of the tests were
run in other environments to verify the correctness of the implementations with addi-
tional GPUs. The environments were selected to represent a fairly current computing
environment, a laptop and a low-end PC. Both Nvidia and ATI cards were used to illus-
trate our implementations worked with different brands of cards, but not to compare the

CryptoGraphics: Secret Key Cryptography Using Graphics Cards 349

performance of the different graphics cards. The three environments used for all tests
are:

1. A Pentium IV 1.8 Ghz PC with 256KB RAM and an Nvidia GeForce3 Ti200 graph-
ics card with 64MB of memory. The operating system is MS Windows XP.

2. A Pentium Centrino 1.3 Ghz laptop with 256KB RAM and an ATI Mobility Radeon
7500 graphics card with 32MB of memory. The operating system is MS Windows
XP.

3. A Pentium III 800 Mhz PC with 256KB RAM and an Nvidia TNT32 M64 graphics
card with 32MB of memory. The operating system is MS Windows 98.

In all cases, the display was set to use 32-bit true color and full hardware accelera-
tion. Aside from MS Windows and, in some cases a CPU monitor, no programs other
than that required for the experiment were running. The CPU usage averages around
8% in each environment with only the OS and CPU monitor running. All code was
compiled with Visual C++ Version 6.0. Our implementations required opening a dis-
play window, though computations may be performed in a buffer that is not visible on
the screen. The window opened by the program is positioned such that it does overlap
with the window from which the program was executed and to which the output of
the program is written. The reason for this positioning is that movement of the display
window or overlap with another active window may result in a slight decrease in per-
formance and can interfere with the results. GLUT commands were used to open the
display window.

The other GPUs we tested our programs with included an Intel c© 82845G/GL
Graphics Controller on a 2.3 Ghz Pentium IV processor running MS Windows XP, and
a Nvidia GeForce4 Ti 4200 on a Pentium III 1.4 Ghz processor running MS Windows
2000. The AES implementation was also tested using a GeForce3 Ti200 graphics card
with 64MB of memory with X11 and Redhat Linux 7.3.

Configuration Factors

In order to determine configuration factors impacting performance, we ran a series of
initial tests with the OpenGL implementations of AES and the stream cipher while hold-
ing the number of bytes encrypted constant. First, since the implementation required a
GPU that was also being utilized by the display, we varied the refresh rate for the dis-
play, but that did not affect performance. Second, we varied the screen area (not the
number of pixels utilized for the cipher) from 800x600 to 1600x1200. This also did not
affect performance, and in the results cited for AES, we set the screen area to the mini-
mum of 800x600 and the dimension that accommodated the number of pixels required
by the test. Third, we tested the use of a single buffer with the pixels displayed to the
screen versus a front and back buffer with all work performed in the back buffer and not
displayed to the screen. Again, there was no change in the encryption rate. A fourth test
was run to determine if there was any decrease in performance by using the GLUT or
GLX libraries to handle the display. GLX is the X Window System extension to support
OpenGL. In the test, we executed two versions of the program, one using GLUT and
one using GLX with direct rendering, from a server with a Pentium III running Redhat
Linux 7.3. There was no noticeable difference between the rates from the GLUT and
GLX versions of the program.

350 Debra L. Cook et al.

Appendix B: AES Encryption Using OpenGL

In our OpenGL version of AES, encryption was implemented as the following steps:

Define static color maps corresponding to 1, 2, 3 times the S-Box entries.

main {
Load the data into the DATA area.
Load the expanded key into the KEY area.
Turn the logical operation of XOR on.
Copy the first key from the KEY area to the DATA area.
Turn the logical operation XOR off.
for (i=0; i < 9; ++i) {

Copy the DATA area:
to the 01 area with the color map corresponding to 1*S-Box turned on
to the 02 area with the color map corresponding to 2*S-Box turned on
to the 03 area with the color map corresponding to 1*S-Box turned on
Turn color mapping off
Copy the pixels from areas 01,02,03 corresponding to the first term on

the right hand side of (III) to the DATA area.
Turn the logical operation of XOR on.
Copy the pixels from areas 01,02,03 corresponding to the 2nd, 3rd and

4th terms on the right hand side of (III) to the DATA area.
Copy the ith round key from the KEY area to the DATA area.
Turn the logical operation XOR off.

}
Copy the DATA area to the 01 area with the color map corresponding to

1*S-Box turned on.
Turn color mapping off.
Copy the pixels from the 01 area back to the DATA area in the order

corresponding to ShiftRows.
Turn the logical operation of XOR on.
Copy the last round key from the KEY area to the DATA area.
Turn the logical operation XOR off.
Read the DATA area to system memory.

}

Side-Channel Leakage of Masked CMOS Gates�

Stefan Mangard1, Thomas Popp1, and Berndt M. Gammel2

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Stefan.Mangard,Thomas.Popp}@iaik.at
2 Infineon Technolgies AG

St.-Martin-Straße 76, 81541 Munich, Germany
Berndt.Gammel@infineon.com

Abstract. There are many articles and patents on the masking of logic
gates. However, the existing publications assume that a masked logic gate
switches its output no more than once per clock cycle. Unfortunately, this
assumption usually does not hold true in practice.
In this article, we show that glitches occurring in circuits of masked gates
make these circuits susceptible to classical first-order DPA attacks. Be-
sides a thorough theoretical analysis of the DPA-resistance of masked
gates in the presence of glitches, we also provide simulation results that
confirm the theoretical elaborations. Glitches occur in every CMOS cir-
cuit. Consequently, the currently known masking schemes for CMOS
gates do not prevent DPA attacks.

Keywords: Power Analysis, DPA, Masking, Masked Digital Circuits,
Masked Logic Gates

1 Introduction

During the last years, a lot of research has been conducted on differential power-
analysis (DPA) attacks [11] and on corresponding countermeasures. DPA attacks
exploit the fact that the power consumption of a device executing a cryptographic
algorithm is correlated to intermediate results of the algorithm. This correlation
between the intermediate results and the power consumption allows an attacker
to reveal the secret key that is used by a device (see [11]).

Hence, the goal of countermeasures against DPA attacks is to completely re-
move or at least to reduce this correlation. Essentially, there exist two approaches
to achieve this goal.

The first approach is to try to make the power consumption of a device
independent of the data that is processed by the device. The countermeasures
that are based on this approach are usually called hardware countermeasures.
Typical examples of such countermeasures are detached power supplies [19], logic
styles with a data-independent power consumption [20, 21], noise generators and
� This work has been supported by the Austrian Science Fund (FWF Project Num-

ber P16110-N04) and by the European Commission under the Sixth Framework
Programme (Project SCARD, Contract Number IST-2002-507270).

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 351–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

352 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

the insertion of random delays [4, 12]. Each of these hardware countermeasures
reduces the correlation between the data that is processed by the device and
the power consumption. In practice, hardware countermeasures are typically
combined. This can reduce the correlation down to a level that makes DPA
attacks almost impossible in practice.

The second approach to counteract DPA attacks is to randomize the inter-
mediate results occurring in a cryptographic algorithm. The motivation behind
this approach is that the power consumption of a device processing randomized
intermediate results is uncorrelated to the actual intermediate results. The ran-
domization of intermediate results is usually called masking. Masking can be
applied either at the algorithm level or at the gate level.

Applying masking at the algorithm level means that an algorithm is rewritten
such that all intermediate results are randomized, while the input and the output
of the algorithm are identical to those of the unmasked version. There are several
publications that discuss how symmetric [1, 7, 8, 24] and asymmetric ciphers [5,
15] can be rewritten this way.

The alternative to masking at the algorithm level is the usage of masked logic
gates for implementations of cryptographic algorithms. This leads to circuits
where no wire stores a value that is correlated to an intermediate result of the
algorithm. Clearly this approach is more generic. Masking at the gate level is
independent of the implemented algorithm and in principle it can even be done
completely automatically, i.e. a program can be used to convert a digital circuit
into a circuit of masked gates. Throughout this article, we refer to such circuits
as masked circuits.

The theory of masking at the gate level has been analyzed recently in [9].
An implementation of an AES co-processor that is based on masking at the gate
level has been presented by Trichina and Korkishko in [22, 23]. Additionally,
there exist several patents on masking at the gate level (see for example [10],
[13] and [14]).

However, an important issue of masking at the gate level has not been con-
sidered until now. The security analyses that have been conducted so far assume
that each gate in a masked circuit switches no more than once per clock cycle.
However, this assumption does not hold true in general. The input signals of a
gate in a digital circuit usually do not arrive at the same time. Therefore, the
output of a gate potentially switches several times during one clock cycle.

The transitions at the output of a gate that occur before the gate switches to
the correct output are called glitches. The fact that glitches occur in digital cir-
cuits is well known and it is extensively discussed in the literature on VLSI design
(see for example [17]). Glitches contribute significantly to the power consump-
tion of CMOS circuits and hence, they are very relevant for the DPA-resistance
of these circuits.

In this article, we analyze the effect of glitches on the DPA-resistance of
masked gates. In fact we show that several masked CMOS implementations of
nonlinear gates, such as AND and OR gates, are not resistant to DPA attacks.
These implementations are susceptible to classical first-order DPA attacks. We

Side-Channel Leakage of Masked CMOS Gates 353

q

b

Normal

Gate

a

Fig. 1. The inputs and the output of a
normal gate.

q
m

m
q

b
m

m
b

m
a Masked

Gate

a
m

Fig. 2. The inputs and the output of a
masked gate.

show this fact theoretically and we also provide attack results based on SPICE
simulations.

This article is organized as follows: Section 2 introduces the concept of mask-
ing at the gate level and discusses existing publications and patents on this
countermeasure. In Section 3, we perform a thorough theoretical analysis of the
DPA-resistance of masked gates in the presence of glitches. Furthermore, we
discuss the causes of glitches and elaborate on the effort that is necessary to
prevent them. Section 4 presents simulation results of DPA attacks that have
been conducted on implementations of masked gates as they have been proposed
in [14] and [22, 23]. We show that both approaches lead to gates that are suscep-
tible to DPA attacks in practice. The conclusions of our findings are presented
in Section 5.

2 Masking at the Gate Level

The basic idea of masking at the gate level is to represent each value a occurring
in a circuit by two values am and ma. ma is a random mask that is statistically
independent of a and uniformly distributed. The masked value am is calculated
by adding a and ma modulo two: am = a⊕ma.

In a masked digital circuit, logic gates take the tuple (am,ma) instead of a
as input. In fact, all inputs and the output of every logic gate are masked. The
inputs and the output of a gate in a normal digital circuit are shown in Figure 1,
while the inputs and the output of a gate in a masked digital circuit are shown
in Figure 2.

In a normal digital circuit, a gate with two inputs calculates the output q
based on the inputs a and b: q = f(a, b). In a masked circuit, the inputs as well
as the output are masked. This means that am = a ⊕ ma, bm = b ⊕ mb and
qm = q⊕mq, where ma, mb and mq are randomly generated masks. The masked
gate calculates the output qm of the gate based on the inputs am, ma, bm, mb

and mq: qm = f̃(am,ma, bm,mb,mq).
For the sake of readability, we only discuss gates with two masked inputs

and one masked output. However, this restriction can be done without loss of
generality. Our results also hold true for more complex gates. Another restriction
we make in this article is that we only analyze masked circuits where one data
bit is masked with one mask bit. We do not consider the general case where a
value a is masked with several masks: a = am ⊕m1 ⊕m2 ⊕ . . .⊕mn.

354 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

Using more than one mask bit for one data bit, as for example proposed
in [9], is not very practical. Already in the case where only one mask bit is
required for each data bit, the generation and the distribution of the mask bits
are challenging tasks for the designers of a circuit.

In practical (commercial) applications, area and power restrictions usually
rule out the generation of a fresh mask for every data bit in every clock cycle. This
approach would essentially mean that for every data bit, one (pseudo-) random
number generator would be required. In practical applications, designers have to
reuse the same mask for several data signals or they have to use the same mask
for several clock cycles.

However, in the context of this article we do not elaborate on the issue of how
masks can be generated or distributed. We simply use the best-case assumption
concerning the generation and distribution of masks, i.e. fresh masks ma, mb

and mq can be generated for every gate in every clock cycle. We show that
even using this ideal assumption, glitches in masked digital circuits make these
circuits susceptible to DPA attacks.

2.1 The Theory Behind Masked Gates

So far, the masking of algorithms has received more attention than the masking of
logic gates. For example, there are several publications on how to mask DES [1,
8] and AES [1, 2, 7, 24]. However, there also exist two publications [3, 9] that
discuss masking in a more generic way. In particular, [9] discusses the theory of
masked gates. In this article, masked circuits are referred to as private circuits.
The goal of these circuits is to provide protection against an attacker that can
probe a certain number of wires in a circuit. Power-analysis attacks are modelled
as probing attacks because they allow the attacker to determine the value of a
particular wire.

An important assumption that is implicitly made in [9] is that every wire
changes its voltage level no more than once per clock cycle. A digital circuit is
modelled as a graph, where the nodes correspond to gates and the connections
correspond to wires. The propagation delay of the gates is not considered and
therefore, no glitches occur in this model. However, glitches occur in digital
circuits in practice and they have a significant impact on the power consumption
of a circuit. Therefore, the model proposed in [9] needs to be updated in order
to be applicable for circuits as they are used in practice.

The model used in [3] to analyze the security of masking does also not con-
sider the effect of glitches. Hence, also this model needs to be extended accord-
ingly.

2.2 Building Masked Gates Based on Multiplexors

One of the first patents on masking at the gate level has been issued to Messerges,
Dabbish, and Puhl in 2001 [14]. This patent describes how an arbitrary logical
function can be masked based on multiplexors and crossbar switches. All inputs
of the logical function as well as the output are masked. Therefore, the interfaces

Side-Channel Leakage of Masked CMOS Gates 355

of masked gates implemented according to [14] correspond to the one shown in
Figure 2.

Implementations of masked gates using this approach are relatively big in
practice. For example, a 2-input gate consists of 3 multiplexors, 3 crossbar-
switches and 4 XOR gates. Nevertheless, in [6] it has been proposed to use this
approach to secure a data scrambling technique against power-analysis attacks.

In the current article, we show that masked gates based on multiplexors do
not prevent DPA attacks, if glitches occur in the masked circuit.

2.3 Building Masked Gates Based on Correction Terms

In [22] and [23], an alternative approach for the implementation of masked logic
gates has been proposed. The basic idea of this approach is to build masked
gates based on normal (unmasked) gates.

For example, the masked AND gate that is used in [22] and [23] to implement
a masked AES co-processor consists of 4 AND gates and 4 XOR gates. The
interface of this AND gate also corresponds to the one shown in Figure 2.

A similar approach as the one presented by Trichina and Korkishko has been
patented by Klug, Kniffler, and Gammel in [10]. The main difference between
these two approaches is that in the patent, the same mask is used for the in-
puts and the output, i.e. ma = mb = mq. This leads to significantly smaller
implementations of masked gates.

However, all these approaches are vulnerable to DPA attacks in theory and
practice, if glitches occur in the masked circuit.

3 Theoretical Security Analysis of Masked Gates

In digital circuits, logical values are usually represented by voltage levels of wires.
The power consumption of a digital circuit is data-dependent because keeping a
wire at a certain voltage level requires almost no energy, while the switching of
a voltage level requires a significant amount of energy.

We denote the energy that is needed to switch a wire from the voltage repre-
senting the value 0 to the voltage representing the value 1 as E0→1. Accordingly,
we denote the energy that is needed to perform a (1 → 0) transition as E1→0.
In practice, these energies are usually different, i.e. E0→1 �= E1→0. Although
keeping a wire at a certain voltage level requires almost no energy, we also in-
troduce a notation for these energies. We refer to these energies as E0→0 and
E1→1, respectively.

Besides a notation for the energy consumption, also certain assumptions
about the data inputs of masked gates are required in order to perform an
analysis of the DPA-resistance. In this article, we use the common assumption
that the inputs of a gate in a digital circuit are statistically independent and
uniformly distributed. Based on this assumption and the notation for the en-
ergy consumption, we analyze the DPA-resistance of different logic gates in the
following subsections.

356 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

Table 1. The transitions a normal AND gate can perform during one clock cycle.

a b q Energy

0 → 0 0 → 0 0 → 0 E0→0

0 → 0 0 → 1 0 → 0 E0→0

0 → 0 1 → 0 0 → 0 E0→0

0 → 0 1 → 1 0 → 0 E0→0

0 → 1 0 → 0 0 → 0 E0→0

0 → 1 0 → 1 0 → 1 E0→1

0 → 1 1 → 0 0 → 0 E0→0

0 → 1 1 → 1 0 → 1 E0→1

a b q Energy

1 → 0 0 → 0 0 → 0 E0→0

1 → 0 0 → 1 0 → 0 E0→0

1 → 0 1 → 0 1 → 0 E1→0

1 → 0 1 → 1 1 → 0 E1→0

1 → 1 0 → 0 0 → 0 E0→0

1 → 1 0 → 1 0 → 1 E0→1

1 → 1 1 → 0 1 → 0 E1→0

1 → 1 1 → 1 1 → 1 E1→1

First, we analyze the DPA-resistance of normal (unmasked) gates in Sub-
section 3.1. This analysis is presented in order to provide a reference for the
analysis of masked gates. Subsection 3.2 discusses why masked gates provide
DPA-resistance, if no glitches occur in a digital circuit. This is essentially a
short summary of the arguments that have been used so far to promote masked
gates as a countermeasure against DPA attacks.

In Subsection 3.3, we argue why the assumption that there are no glitches in
a digital circuit is typically wrong in practice. This subsection in particular also
discusses the effort that is necessary to avoid glitches in digital circuits.

Finally, in Subsection 3.4 we show why masked CMOS gates do not prevent
DPA attacks, if glitches occur in a digital circuit.

3.1 Analyzing the DPA-Resistance of Normal Gates

A 2-input AND gate takes the two values a and b as input to calculate q = a∧b.
For our analysis, we assume that the inputs arrive at the same time and that
they change their values no more than once per clock cycle. We do not need
to consider glitches for our analysis of normal gates because these gates are
susceptible to DPA-attacks even if no glitches occur.

Each input of the AND gate can perform one out of four transitions (0 → 0,
0 → 1, 1 → 0, or 1 → 1) during a given clock cycle. Hence, in total there
exist 42 = 16 possible combinations of input transitions that can occur. These
combinations of input transitions are listed in Table 1. In addition to the input
transitions, Table 1 also shows the corresponding output transitions and the
energy that is needed to perform these transitions. All 16 cases shown in this
table have the same probability of occurrence because the inputs a and b are
statistically independent and uniformly distributed.

In a DPA attack on an AND gate that is part of a digital circuit, the power
consumption of the circuit is first recorded several times while the circuit per-
forms a cryptographic operation with different inputs. Subsequently, the power
measurements are split into two groups. The first group contains all measure-
ments, where q = 0 at the end of the clock cycle and the second group contains
all measurements, where q = 1.

Side-Channel Leakage of Masked CMOS Gates 357

Using the notation introduced in this section, this means that the first group
contains the cases where the output performs a (0 → 0) or a (1 → 0) transition,
while the second group contains the remaining cases. The attacker calculates the
means of the energies of both groups and subtracts them from each other.

3E0→1 + E1→1

4
�= 3E1→0 + 9E0→0

12
(1)

The expected values of these two means are in general not equal and hence,
there is a leakage of side-channel information. The processing of q = 0 requires a
different amount of energy than the processing of q = 1. In practice, the number
of samples that is needed to exploit this energy difference essentially depends on
the background noise, e.g. due to other circuit parts, and on the values E0→0,
E0→1, E1→1, and E1→1.

The corresponding analysis can also easily be carried out for other logic gates,
such as OR and XOR. All these gates are susceptible to DPA attacks.

Throughout this article we focus on the correlation between the power con-
sumption of logic gates and the data that is processed by the gates. This cor-
relation determines the number of samples that are needed in DPA attacks in
practice (see [12] and [16]).

3.2 Analyzing the DPA-Resistance of Masked Gates in Circuits
Without Glitches

Assuming that no glitches occur in a digital circuit, it is relatively easy to proof
that masked gates are resistant to DPA attacks. We present the basic idea of
these proofs based on a masked 2-input AND gate.

A masked 2-input AND gate takes five signals as input (am,ma, bm,mb,mq)
and calculates the output qm = ((am ⊕ma)∧ (bm ⊕mb))⊕mq. The assumption
that there are no glitches in a digital circuit means that every input and output
signal switches only once per clock cycle. Every input can perform one out of
four transitions during a given clock cycle. Hence, there are 45 = 1024 possible
combinations of input transitions that can occur.

Like in the previous subsection, we have created a table containing all pos-
sible input transitions, the corresponding output transitions and the energies
consumed by these output transitions. Based on this table it is possible to de-
termine whether the processing of q = 0 and the processing of q = 1 require
different amounts of energy or not.

In fact, it turns out that the expected value of the energy that is needed to
process q = 0 and the corresponding expected value for the processing of q = 1
are identical. Furthermore, the table can be used to show that also DPA attacks
on the inputs a and b are not possible. Assuming that there are no glitches
in a digital circuit, the energy dissipation of a masked AND gate is indeed
independent of the unmasked inputs and the unmasked output. Accordingly, it
can be shown that implementations of other masked gates (OR, XOR, ...), as
described in [10], [14], [22], and [23] are also resistant against first-order DPA
attacks.

358 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

This fact has been used in the past to promote masked gates. However, in the
following subsection, we discuss why the assumption that there occur no glitches
in digital circuits usually does not hold true in practice.

3.3 Timing and Switching Characteristics of Digital Circuits

In practice, digital circuits are usually implemented based on CMOS (see [17]).
Logical functions are realized by connecting multiple CMOS gates to each other.
An important property of these gates is that they have a certain propagation
delay, i.e. it takes a certain amount of time until the output of a gate reacts to
a change at an input of the gate.

This property has a significant impact on the switching activity of a digital
circuit. In such a circuit, the input signals of a gate are the outputs of different
combinational paths. These paths do not necessarily have the same length. For
example, it can happen that the input a of a gate always arrives earlier than the
input b. The consequence of such a delay between the input signals is that the
gate switches its output more than once per clock cycle. The output switches
when the input a performs a transition and it switches again when the input
b performs a transition. It is important to note that in the time span between
the arrival of the two input signals, the output of the gate is switched to a
“wrong” value. This “wrong” value is potentially the input of another logic
gate. Of course, such a gate reacts to this transition at its input and changes its
output based on the “wrong” input value. In this way, “wrong” values propagate
through the circuit.

The consequence of all this is that a lot of unintended switching activity takes
place before every wire in a combinational circuit settles to the final value. In
practice, glitches account for a significant amount of the power consumption of
a circuit. Hence, glitches cannot be neglected in a thorough analysis of the DPA-
resistance of masked gates. In the following subsection, we show that glitches
make masked gates susceptible to DPA attacks.

Glitches occur in classical CMOS circuits and of course they also occur in
masked circuits that are based on CMOS. However, besides CMOS there are
many other logic styles that can be used to implement digital circuits. Among
them, there are actually some that prevent glitches.

Glitches do not occur in so-called domino logic styles, such as for example pre-
charged NMOS [17], DCVSL [17] or SABL [20]. However, pre-charged circuits are
usually bigger than corresponding CMOS circuits. Another major disadvantage
of these logic styles compared to CMOS is the lack of automated off-the-shelf
circuit synthesis tools.

The papers and patents that have been published so far on masking at the
gate level do not address the problem of glitches. Therefore, readers of these
publications might implicitly assume that masking can be implemented based
on CMOS. However, as we point out in the following subsection, this is not
the case. In order to be sure that masked circuits are DPA-resistant, a logic
style that prevents glitches needs to be used. This significantly increases the
implementation costs of masked circuits.

Side-Channel Leakage of Masked CMOS Gates 359

3.4 Analyzing the Effect of Glitches
on the DPA-Resistance of Masked Gates

In digital circuits that are based on CMOS, the input signals of logic gates can
arrive at different moments of time. Furthermore, these signals switch potentially
several times during one clock cycle. We now analyze the impact of these facts
on an implementation of a masked 2-input AND gate.

In order to simplify the analysis, we make certain assumptions about how
the delays between the input signals look like and about how often the input
signals switch per clock cycle. However, these assumptions do not mean a loss
of generality.

We assume that each input signal switches once per clock cycle and that at
least one of the five input signals arrives at a different time than the other signals.
Furthermore, if there is a difference between the arrival time of two signals, this
difference is always assumed to be bigger than the propagation delay of the
masked gate.

For the analysis of the susceptibility of the masked AND gate, we have used
the same technique as in the previous subsections. We have created tables with
the input transitions, the output transitions and the energy that is needed to
perform the transitions.

First we have looked at the scenarios where only one of the five inputs arrives
at a different moment of time than the remaining four inputs. There exist ten
such scenarios. There are five input signals and each one of them can arrive
either before or after the four other ones. One scenario is for example that mq

arrives first and that am, ma, bm and mb arrive later.
Like in Subsection 3.2, in every scenario there exist 45 = 1024 possible com-

binations of transitions that can occur at the inputs. However, in the ten sce-
narios where the inputs arrive at two different moments of time, the output of
the masked AND gate performs two transitions instead of one. One transition
is performed when the single input performs a transition and another one is
performed when the other four input signals perform a transition.

We have analyzed whether the energy dissipation that is needed to perform
these two transitions is correlated to q = qm ⊕ mq or not. This was done by
calculating the expected value for the energy needed to process q = 0 and the
corresponding expected value for q = 1 (see Subsection 3.1). The same has also
been done for the unmasked inputs a and b. A masked gate is only resistant to
DPA-attacks if the energy dissipation of the gate is uncorrelated to all unmasked
inputs and outputs.

Unfortunately, it has turned out that in all ten scenarios the energy that is
needed to perform the two transitions of the output is correlated to a, b or q.
We have also investigated all remaining scenarios. These are for example the
scenarios where two inputs arrive at separate moments of time either before or
after the remaining three arrive. However, in the analysis of all scenarios, starting
from the one where only one signal arrives at a different time to the scenario
where all inputs arrive at separate moments of times, there has always been a
correlation to a, b or q.

360 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

In practice, different arrival times are very common. In case of a masked gate,
it is in particular very likely that the masks ma, mb and mq arrive at different
moments of time than the inputs am and bm. The reason for this is that the
masks are generated by a completely different part of the digital circuit.

Based on the scenarios we have analyzed in this section, we have to conclude
that there exists no implementation of a masked AND gate based on CMOS
that is resistant to DPA attacks. We have performed the same analysis as for
the masked AND gate also for masked NAND, OR, NOR, XOR and XNOR
gates.

It has turned out that masked nonlinear gates, such as AND, NAND, OR
and NOR gates, are susceptible to DPA-attacks, while masked linear gates, such
as XOR and XNOR gates, are resistant to DPA attacks. However, for imple-
mentations of operations like the AES S-Box, nonlinear operations are crucial
(see [18] and [25]).

Therefore, the conclusion of our theoretical analysis is that all published
gate-level masking schemes need to be implemented based on a logic style that
prevents glitches.

4 The DPA-Resistance of Masked Gates in Practice

In order to empirically verify the results of the theoretical analysis presented in
the previous section, we have performed simulated DPA attacks on implemen-
tations of masked 2-input AND gates. For this purpose, we have implemented
the masked AND gate presented in [14] and a masked AND gate based on the
approach described in [22, 23]. Both gates have been implemented using a CMOS
standard cell library based on a 0.35 μm technology.

We have performed SPICE simulations of these gates for two scenarios. In the
first scenario, all five inputs of the masked gates have arrived at the same time.
In the second scenario, the output mask mq has arrived first and the remaining
inputs have arrived one nanosecond later. Like in the theoretical analysis, each
input signal has only performed one transition per clock cycle.

We have simulated one power trace for each of the 45 = 1024 combinations
of input transitions that can occur. Subsequently, a DPA attack on q has been
performed. The goal was to check whether the mean power consumption for
q = 0 and the mean power consumption for q = 1 are indeed different or not. It
is important to point out that the AND gates have been implemented exactly
as described in [14] and [22, 23], respectively. Hence, there was no wire in the
circuit that stored q directly. However, the glitches in the gates have lead to the
fact that the power consumptions of the masked gates were correlated to q.

In order to provide a reference for the detected correlations, we have also
performed a DPA attack based on simulated power traces on a normal AND
gate. The results of all attacks are shown in Figure 3. The first three plots are
the result of attacks that are based on simulations where the inputs have arrived
at the same time. Even in this scenario, the power consumptions of the masked
gates are correlated to q. In fact, this is not surprising. The masked gates consist

Side-Channel Leakage of Masked CMOS Gates 361

1 2 3 4
-50

0

50

100

Time [ns]

D
if

fe
re

n
ce

 o
f

M
ea

n
s

[μ
A

]

Normal AND Gate

1 2 3 4
-50

0

50

100

Time [ns]

D
if

fe
re

n
ce

 o
f

M
ea

n
s

[μ
A

]

Masked AND Gate (Messerges)

1 2 3 4
-50

0

50

100

Time [ns]

D
if

fe
re

n
ce

 o
f

M
ea

n
s

[μ
A

]

Masked AND Gate (Messerges)

1 2 3 4
-50

0

50

100

Time [ns]

D
if

fe
re

n
ce

 o
f

M
ea

n
s

[μ
A

]

Masked AND Gate (Trichina)

1 2 3 4
-50

0

50

100

Time [ns]

D
if

fe
re

n
ce

 o
f

M
ea

n
s

[μ
A

]

Masked AND Gate (Trichina)

Fig. 3. The results of DPA attacks on a normal AND gate and of attacks on masked
AND gates implemented according to [14] and [22, 23].

of unmasked CMOS gates. Consequently, even if the inputs arrive at the same
time, glitches occur in the masked AND gates.

The last two plots show the results of attacks on implementations where mq

arrives one nanosecond before the other inputs. This time difference affects in
particular the implementation according to [22, 23]. The time difference leads
to a significant increase of the maximum of the DPA peak that occurs in the
attack.

In the two scenarios we have analyzed for the masked gates, the DPA peaks
that occur are obviously smaller than the peak that occurs in an attack on the
normal AND gate. However, the two scenarios are just examples of attacks on the
output q. We have also performed attacks on a and b and we have also looked at

362 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

scenarios with other delays between the input signals. In fact, there are actually
scenarios where peaks in the range of those of unmasked implementations occur.

In practice, it is extremely difficult to control the delay between the input
signals of a gate. In the semi-custom design flows that are usually used to im-
plement ICs, the designer has almost no control over these delays. Therefore,
almost any delay scenario occurs in a big circuit in practice.

The goal of this article is to show that glitches are a problem for the DPA-
resistance of masked CMOS circuits. We have not explicitly searched for the
scenario that maximizes the DPA peak occurring in an attack on a particular
implementation. Instead, we have presented two simple scenarios that should
make our point clear. Already in these simple scenarios, the maxima of the DPA
peaks are only a little bit more than halved by masking the gate. This is definitely
less than one would expect from this countermeasure. A reduction of the DPA
peak in this range can also be achieved by more inexpensive countermeasures
such as the generation of noise [4, 12].

A last point that is important to mention is that the results of the simulated
attacks presented in this section can not be compared directly with our theoret-
ical analysis conducted before. The reason for this is the fact that the masked
gates are built with unmasked CMOS gates. Hence, glitches occur not only out-
side the gates, but also inside the gates. The DPA peaks shown in Figure 3 are
the result of the superposition of the effect of all kinds of glitches. However, as
discussed in the theoretical analysis, masked gates are also susceptible to DPA
attacks, if glitches occur only outside the masked gates.

5 Conclusions

There are several publications and patents on masking at the gate level. We have
shown that all proposed implementations of masked gates based on CMOS are
susceptible to DPA attacks because of glitches. Glitches have been completely
ignored in previous analyses of masking at the gate level.

In this article, we have performed a theoretical analysis of the effect of glitches
on masked gates. Furthermore, we have presented results of DPA attacks based
on SPICE simulations of masked gates as they have been proposed in [14] and [22,
23]. Both approaches have turned out to be susceptible to DPA attacks.

Glitches in digital circuits can be prevented by using domino logic styles.
However, implementations based on such logic styles are usually bigger than
implementations based on CMOS. Also the design effort for circuits using domino
logic styles is significantly higher than the one for corresponding CMOS circuits.
This is a consequence of the fact that commercial synthesis tools for domino
logic styles are currently not available. Hence, the protection of digital circuits
against DPA attacks based on masked logic gates is very expensive in practice.

Side-Channel Leakage of Masked CMOS Gates 363

References

1. Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES and
AES, Secure against Some Attacks. In Çetin Kaya Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 309–318. Springer, 2001.

2. Johannes Blömer, Jorge Guajardo Merchan, and Volker Krummel. Provably Secure
Masking of AES. Cryptology ePrint Archive (http://eprint.iacr.org/), Report
2004/101, 2004.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

4. Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential Power
Analysis in the Presence of Hardware Countermeasures. In Çetin Kaya Koç and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2000, Second International Workshop, Worcester, MA, USA, August 17-18, 2000,
Proceedings, volume 1965 of Lecture Notes in Computer Science, pages 252–263.
Springer, 2000.

5. Jean-Sébastien Coron. Resistance against Differential Power Analysis for El-
liptic Curve Cryptosystems. In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 292–302. Springer, 1999.

6. Jovan D. Golić. DeKaRT: A New Paradigm for Key-Dependent Reversible Cir-
cuits. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2003, 5th International Work-
shop, Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lec-
ture Notes in Computer Science, pages 98–112. Springer, 2003.

7. Jovan D. Golić and Christophe Tymen. Multiplicative Masking and Power Analysis
of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume
2535 of Lecture Notes in Computer Science, pages 198–212. Springer, 2003.

8. Louis Goubin and Jacques Patarin. DES and Differential Power Analysis –
The Duplication Method. In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

9. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hard-
ware against Probing Attacks. In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes
in Computer Science, pages 463–481. Springer, 2003.

10. Franz Klug, Oliver Kniffler, and Berndt Gammel. Rechenwerk, Verfahren zum
Ausführen einer Operation mit einem verschlüsselten Operanden, Carry-Select-
Addierer und Kryptographieprozessor. German Patent DE 10201449 C1, January
2002.

364 Stefan Mangard, Thomas Popp, and Berndt M. Gammel

11. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

12. Stefan Mangard. Hardware Countermeasures against DPA – A Statistical Analysis
of Their Effectiveness. In Tatsuaki Okamoto, editor, Topics in Cryptology - CT-
RSA 2004, The Cryptographers’ Track at the RSA Conference 2004, San Francisco,
CA, USA, February 23-27, 2004, Proceedings, volume 2964 of Lecture Notes in
Computer Science, pages 222–235. Springer, 2004.

13. Renato Menicocci and Johan Pascal. Elaborazione Crittografica di Dati Digitali
Mascherati. Italian Patent IT MI0020031375A, July 2003.

14. Thomas S. Messerges, Ezzy A. Dabbish, and Larry Puhl. Method and Apparatus
for Preventing Information Leakage Attacks on a Microelectronic Assembly. US
Patent 6,295,606, September 2001. Available online at http://www.uspto.gov/.

15. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power Analysis At-
tacks of Modular Exponentiation in Smartcards. In Çetin Kaya Koç and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems, First International
Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, vol-
ume 1717 of Lecture Notes in Computer Science, pages 144–157. Springer, 1999.

16. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Examining Smart-
Card Security under the Threat of Power Analysis Attacks. IEEE Transactions on
Computers, 51(5):541–552, January 2002.

17. Jan M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996. ISBN 0-13-178609-
1.

18. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact Ri-
jndael Hardware Architecture with S-Box Optimization. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the
Theory and Application of Cryptology and Information Security, Gold Coast, Aus-
tralia, December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Com-
puter Science, pages 239–254. Springer, 2001.

19. Adi Shamir. Protecting Smart Cards from Passive Power Analysis with Detached
Power Supplies. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, Second International Workshop,
Worcester, MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture
Notes in Computer Science, pages 71–77. Springer, 2000.

20. Kris Tiri and Ingrid Verbauwhede. Securing Encryption Algorithms against DPA
at the Logic Level: Next Generation Smart Card Technology. In Colin D. Walter,
Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2003, 5th International Workshop, Cologne, Germany, September
8-10, 2003, Proceedings, volume 2779 of Lecture Notes in Computer Science, pages
137–151. Springer, 2003.

21. Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a Secure
DPA Resistant ASIC or FPGA Implementation. In 2004 Design, Automation and
Test in Europe Conference and Exposition (DATE 2004), 16-20 February 2004,
Paris, France, pages 246–251. IEEE Computer Society, 2004.

22. Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. Cryptology ePrint Archive (http://eprint.iacr.org/), Report
2003/236, 2003.

Side-Channel Leakage of Masked CMOS Gates 365

23. Elena Trichina and Tymur Korkishko. Small Size, Low Power, Side Channel-
Immune AES Coprocessor: Design and Synthesis Results. In Proceedings of the
Fourth Conference on the Advanced Encryption Standard (AES), 2004.

24. Elena Trichina, Domenico De Seta, and Lucia Germani. Simplified Adaptive Mul-
tiplicative Masking for AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, volume 2535 of Lecture Notes in Computer Science, pages 187–197.
Springer, 2003.

25. Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An ASIC im-
plementation of the AES SBoxes. In Bart Preneel, editor, Topics in Cryptology
- CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002, San
Jose, CA, USA, February 18-22, 2002, volume 2271 of Lecture Notes in Computer
Science, pages 67–78. Springer, 2002.

New Minimal Weight Representations
for Left-to-Right Window Methods

James A. Muir1 and Douglas R. Stinson2,�

1 Department of Combinatorics and Optimization, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

jamuir@uwaterloo.ca
2 School of Computer Science, University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
dstinson@uwaterloo.ca

Abstract. For an integer w ≥ 2, a radix 2 representation is called a
width-w nonadjacent form (w-NAF, for short) if each nonzero digit is an
odd integer with absolute value less than 2w−1, and, of any w consecutive
digits, at most one is nonzero. In elliptic curve cryptography, the w-NAF
window method is used to efficiently compute nP where n is an integer
and P is an elliptic curve point. We introduce a new family of radix 2
representations which use the same digits as the w-NAF but have the
advantage that they result in a window method which uses less memory.
This memory savings results from the fact that these new representations
can be deduced using a very simple left-to-right algorithm. Further, we
show that like the w-NAF, these new representations have a minimal
number of nonzero digits.

1 Window Methods

An operation fundamental to elliptic curve cryptography is scalar multiplica-
tion; that is, computing nP for an integer, n, and an elliptic curve point,
P . A number of different algorithms have been proposed to perform this op-
eration efficiently (see Ch. 3 of [7] for a recent survey). A variety of these
algorithms, known as window methods, use the approach described in Algo-
rithm 1.1.

For example, suppose D = {0,±1,±3}. Then Algorithm 1.1 first computes
and stores P and 3P . After a D-radix 2 representation of n is computed its
digits are read from left to right by the “for” loop and nP is computed using
doubling, addition and subtraction operations. Including negative digits in D
takes advantage of the fact that subtracting an elliptic curve point can be done
just as efficiently as adding it. A D-radix 2 representation of n can be com-
puted by sliding a window of width 3 from right to left across the {0, 1}-radix 2
representation of n (see Section 3).

� Supported by NSERC grant RGPIN 203114-02.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 366–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

New Minimal Weight Representations 367

Algorithm 1.1: radix-2-window-method(n, P)

fix a set of digits, D ⊂ Z.
for each d ∈ D with d > 0

do Pd ← dP
compute and store a representation (a�−1 . . . a1a0)2 = n with ai ∈ D.
Q ←∞
for i = �− 1 . . . 0

do

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q ← 2Q
if ai �= 0

then

⎧⎨⎩
if ai > 0
then Q ← Q + Pai

else Q ← Q− P−ai

return Q

Blake, Seroussi and Smart [2], Cohen, Miyaji and Ono [4] and Solinas [14]
independently suggested a specialization of Algorithm 1.1 called the width-w
nonadjacent form window method (this terminology is due to Solinas). We in-
troduce it now.

For an integer w ≥ 2, a radix 2 representation is called a width-w nonadjacent
form (w-NAF, for short) if it satisfies the following conditions:

1. Each nonzero digit is an odd integer with absolute value less than 2w−1.
2. Of any w consecutive digits, at most one is nonzero.

For example, a 3-NAF of 42 is given by (30030)2 (note that 1 denotes −1, 3
denotes −3, etc.) as it satisfies conditions 1. and 2., and

(30030)2 = 3 · 24 + 0 · 23 + 0 · 22 − 3 · 21 + 0 · 20 = 42.

When w = 2, the w-NAF coincides with the well known nonadjacent form [5].
Because of this, the w-NAF may be regarded as a generalization of the ordinary
NAF. As with the ordinary NAF, an integer n has exactly one w-NAF, and it
can be efficiently computed; hence, we refer to the w-NAF of n.

Let Dw be the set of w-NAF digits; that is,

Dw := {0} ∪ {d ∈ Z : d odd, |d| < 2w−1}.

If, in Algorithm 1.1, the digit set Dw is used and the representation (a�−1 . . .
a1a0)2 is always chosen to be a w-NAF, then this is the w-NAF window method.

One advantage of using the w-NAF of an integer is that it has a minimal
number of nonzero digits [1, 11]. A nonzero integer has an infinite number of
Dw-radix 2 representations and any of these representation could be used in
Algorithm 1.1. However, the choice of representation affects the performance of
the algorithm. In the “for” loop, an addition/subtraction operation is performed
for every nonzero digit of (a�−1 . . . a1a0)2. It is thus desirable to use a Dw-radix

368 James A. Muir and Douglas R. Stinson

2 representation of n with as few nonzero digits as possible. No other Dw-radix 2
representation of an integer has fewer nonzero digits than its w-NAF1.

The w-NAF of an integer is computed by sliding a window of width w from
right to left across the {0, 1}-radix 2 representation of n. This procedure deduces
the digits of the w-NAF from right to left; however, the “for” loop of Algorithm
1.1 reads these digits from left to right. This means that the w-NAF of n must
be computed and stored in its entirety before computations inside the “for” loop
can begin.

This problem of opposing directions occurs in many window methods and
has been lamented by both Müller [12] and Solinas [14]. If the algorithm which
computes the Dw-radix 2 representation of n worked in the same direction as
the “for” loop, Algorithm 1.1 could be modified so that it uses less memory. In
that case, it would be unnecessary to store the representation (a�−1 . . . a1a0)2
since its digits could be computed inside the “for” loop as they are needed. This
savings is most relevant for memory constrained devices like smartcards.

We propose a new family of Dw-radix 2 representations and prove that, like
the w-NAFs, these representations have a minimal number of nonzero digits.
The digits of these representations can be deduced from left to right and thus
can be used to reduce the memory requirements of Algorithm 1.1.

Joye and Yen [9] give a very simple left-to-right algorithm for computing the
digits of a {0,±1}-radix 2 representation of an integer. They also prove that the
representations constructed by this algorithm have a minimal number of nonzero
digits. Their results apply to the digit set D2, whereas ours apply to arbitrary
Dw with w ≥ 2.

The outline of the paper is as follows. In Section 2, we introduce the algorithm
used to construct our representations and then, in Section 3, describe how it can
be efficiently implemented. In Section 4, we prove minimality. We end with a
discussion of related work and some remarks.

2 The Algorithm

We introduce an algorithm for computing the digits of a Dw-radix 2 represen-
tation from left to right. Our discussion is mainly intended to illustrate the
idea behind algorithm. Details about how the algorithm can be efficiently im-
plemented are postponed until Section 3.

In order to motivate our algorithm, we begin by describing a simple method
of computing the {0, 1}-radix 2 representation of a positive integer. This could
be used if an integer were represented in some other way; for example, if we
wanted to convert from radix 10 to radix 2.

Suppose we want to deduce the digits of the {0, 1}-radix 2 representation
of 233 from left to right. This is easily done by subtracting powers of 2. The
number n = 233 is small enough so that we can quickly determine 2�lg n�; this is
the power of 2 closest to, but not larger than, n. Once we determine 2�lg n�, we

1 Cohen [3] presents a detailed average case analysis of the w-NAF window method.

New Minimal Weight Representations 369

replace n with n− 2�lg n� and then repeat these steps until we reach 0. Doing so
gives us

n 2�lg n�

233 128 = 27

105 64 = 26

41 32 = 25

9 8 = 23

1 1 = 20 .

Thus, we see that 233 = 27 + 26 + 25 + 23 + 20 = (11101001)2.
We can modify this process so that it returns a {0, 1}-string. We begin with

a string, α, which is initially empty. In each step, we append to α a (possibly
empty) run of 0’s followed by a single 1. Doing so gives us

n 2�lg n� α

233 128 = 27 α ‖ 1
105 64 = 26 α ‖ 1
41 32 = 25 α ‖ 1
9 8 = 23 α ‖ 01
1 1 = 20 α ‖ 001 .

Note that the symbol ‖ denotes concatenation. When n reaches 0, α is equal to
11101001 and we see that (α)2 = 233.

For an arbitrary nonnegative integer, we can describe this process in pseu-
docode. Let D = {0, 1} and define

C := {d · 2i : d ∈ D \ {0}, i ∈ Z, i ≥ 0}.

The set C consists of all the positive powers of 2. Here is a description of the
procedure:

α ← ε
while n �= 0

do

⎧⎨⎩
c ← an element in C closest to, but not larger than, n
append digits to α according to the value of c
n ← n− c

return α

Note that ε denotes the empty string. The set C is infinite, however this is not
a concern since we do not need to store C. To choose an element in C closest to,
but not larger than, n, we simply compute 2�lg n�.

Consider now the digit set D2 = {0,±1}. We would like to somehow deduce
the digits of a D2-radix 2 representation of an integer from left to right. We can
do this by modifying our previous procedure slightly. We first define

C2 := {d · 2i : d ∈ D2 \ {0}, i ∈ Z, i ≥ 0}.

Note that C2 consists of the positive and negative powers of 2. Now consider the
following procedure:

370 James A. Muir and Douglas R. Stinson

α ← ε
while n �= 0

do

⎧⎨⎩
c ← an element in C2 closest to n
append digits to α according to the value of c
n ← n− c

return α

The only change above is that the condition “closest to, but not larger than, n”
is now simply “closest to n”. If we apply this procedure to n = 233 we get

n c α

233 256 = 28 α ‖ 1
−23 −16 = −24 α ‖ 0001
−7 −8 = −23 α ‖ 1
1 1 = 20 α ‖ 001 .

When n reaches 0, α is equal to 100011001 and we see that

(α)2 = (100011001)2 = 28 − 24 − 23 + 20 = 233.

This same example is worked by Joye and Yen [9] and our representation is
identical to theirs. Note also that, as in the previous case, the set C2 does not
need to be stored. To choose a closest element from C2, we compute 2�lg|n|� and
then compare |n| to 2�lg|n|� and 2�lg|n|�+1.

In the general case, we would like to construct Dw-radix 2 representations
from left to right for arbitrary w ≥ 2. Here is a procedure which does so:

Algorithm 2.1: MSFw(n)

comment: w ≥ 2, Dw = {0} ∪ {d ∈ Z : d odd, |d| < 2w−1}, and
Cw = {d · 2i : d ∈ Dw \ {0}, i ∈ Z, i ≥ 0}

α ← ε
while n �= 0

do

⎧⎨⎩
c ← an element in Cw closest to n
append digits to α according to the value of c
n ← n− c

return α

As before, the set Cw does not need to be stored. We will see in Section 3 that
this procedure can be implemented efficiently by sliding a window of width w+1
from left to right across the {0, 1}-radix 2 representation of n. A description of
how digits are appended to α will be provided shortly. We call this procedure
MSFw(n).

We have given this procedure the title “Algorithm”. To justify this we must
show that MSFw(n) terminates for all n ∈ Z. If n = 0, then MSFw(n) clearly
terminates, so we need only consider n �= 0. To finish the argument we need a
Lemma.

New Minimal Weight Representations 371

Lemma 1 ([10]). Let n be a nonzero integer. If c is an element in Cw closest
to n, then

|n− c| ≤ 2�lg|n|�

2w−1
.

A proof of Lemma 1, as well as proofs of some other Lemmas we require later
on, can be found in the extended version of this paper [10].

To show that MSFw(n) terminates for n �= 0, it suffices to show that |n| >
|n− c|. Suppose to the contrary that |n| ≤ |n− c|. Then

|n| ≤ |n− c|
=⇒ |n| ≤ 2�lg|n|�/2w−1 (by Lemma 1)

=⇒ 2�lg|n|� ≤ 2�lg|n|�/2w−1

=⇒ 1 ≤ 1/2w−1

=⇒ w ≤ 1.

However, this is a contradiction because w ≥ 2. So, the sequence formed by
taking the absolute value of the variable n during the execution of MSFw(n) is
strictly decreasing. Thus, the variable n must reach 0, and so MSFw(n) termi-
nates for all n ∈ Z.

The string α returned by MSFw(n) has been defined somewhat informally.
We present a more rigorous definition based on the values that the variable c
assumes during the execution of MSFw(n). For an input, n, we define α =
. . . a2a1a0 to be the string such that

ai :=

{
d if c assumes the value d · 2i at some point in the algorithm,

0 otherwise.
(1)

Clearly, each ai ∈ Dw, and so α is a Dw-string. There is, however, one possible
problem with this definition. Suppose c assumes the two distinct values d0 · 2i

and d1 · 2i which share the same power of 2. In that case, the value of ai is
undefined. Fortunately, this problem never occurs, as is shown in the following
Lemma.

Lemma 2 ([10]). Let c0, c1 and n be nonzero integers such that c0 is an element
in Cw closest to n and c1 is an element in Cw closest to n− c0. If c0 = d02i0 and
c1 = d12i1 with d0, d1 ∈ Dw, then i0 > i1.

By Lemma 2, the string α is well defined. Moreover, as we saw in our earlier
examples, Lemma 2 tells us that α can be constructed using operations of the
form

α ← α ‖ 0td where t ≥ 0, d ∈ Dw, d > 0.

Actually, we need to be a bit more precise here. If n is odd, then α can be
constructed using only operations like the one above; however, if n is even, then
α will need to have a run of zeros appended to it before it is returned.

372 James A. Muir and Douglas R. Stinson

From the definition given in (1) we can now show that the string returned
by MSFw(n) is in fact a Dw-radix 2 representation of n (i.e., the algorithm
is correct). Let S be the set of values that the variable c assumes during the
execution of MSFw(n). For α = . . . a1a0 we have

(α)2 =
∑
i≥0

ai2i =
∑

i
ai
=0

ai2i =
∑
c∈S

c = n.

The representation returned by MSFw(n) for a given value of n is not neces-
sarily unique. For example, when w = 3, D3 = {0,±1,±3} and for n = 5 we see
that both 4 = 22 and 6 = 3 · 21 are elements in C3 closest to 5. Thus, MSF3(5)
will return one of the representations

(101)2 or (31)2.

From the description of Algorithm 2.1, it is apparent that MSFw(n) will have
more than one possible output only when some value of the variable n has more
than one closest element in Cw. This occurs only when a value of the variable n
is the midpoint between neighbouring elements of Cw.

We argue that there are at most two distinct outputs of MSFw(n) for any
n ∈ Z. Imagine a list of outputs of MSFw(n). Let i0 be the largest value of i
such that two outputs differ at digit i. If i0 does not exist then all the outputs
are the same; otherwise, let α = . . . a2a1a0 and β = . . . b2b1b0 be two outputs
with ai0 �= bi0 . We have

n = (. . . ai0 . . . a1a0)2 = (. . . bi0 . . . b1b0)2.

Let
n′ = (ai0 . . . a1a0)2 = (bi0 . . . b1b0)2.

At least one of ai0 and bi0 is nonzero. We assume, without loss of generality,
that ai0 �= 0. Let c0 = ai02i0 . The value c0 is an element in Cw is closest to n′.
Since ai0 �= bi0 there must be another value, say c1, closest to n′, and this value
must be encoded as the most significant nonzero digit of (bi0 . . . b1b0)2. Since
both c0 and c1 are closest to n′, n′ must be the midpoint between c0 and c1.
Thus, |n′ − c0| is as large as possible, so by Lemma 1 we have

|n′ − c0| = |n′ − c1| = 2�lg|n
′|�−w+1.

Let t = �lg |n′|� − w + 1. Since n′ − c0 = ±2t, n′ − c0 ∈ Cw and n′ − c0 is the
unique element in Cw closest to n′ − c0. Similarly, n′ − c1 is the unique element
in Cw closest to n′ − c1. Thus, the least significant nonzero digits of α and β
correspond to the values n′− c0 and n′− c1; that is, the least significant nonzero
digits of α and β are at and bt where one of at, bt is 1 and the other −1, so

n′ = c0 + 2t = c1 − 2t or n′ = c0 − 2t = c1 + 2t.

Note that the example above demonstrates this property. Thus, there are just
two kinds of outputs: ones that encode c0 and ones that encode c1.

From the preceding discussion, we can derive the following Lemma:

New Minimal Weight Representations 373

Lemma 3. Let α and β be two outputs of MSFw(n). Then α and β have the
same number of nonzero digits.

Proof. If α = β then there is nothing to prove, so we can assume α �= β. Let

α = . . . ai0 . . . a1a0 and β = . . . bi0 . . . b1b0,

where i0 is the largest value of i such that ai �= bi. From our discussion above,
the strings ai0 . . . a1a0 and bi0 . . . b1b0 each contain exactly two nonzero digits.
Thus α and β have the same number of nonzero digits. ��

It is possible to implement Algorithm 2.1 in such a way that it returns a
unique representation for every n ∈ Z. For example, if c0 and c1 are both closest
to n then we might resolve this ambiguity by choosing the larger one. Because
of Lemma 3, we know that, however Algorithm 2.1 is implemented, all outputs
will have the same number of nonzero digits (for a given input). In fact, any
representation of n constructed by Algorithm 2.1 will have a minimal number
of nonzero digits, and we will prove this in Section 4. In the next section, we
describe how to implement Algorithm 2.1 efficiently.

3 Implementations

We first review a known right-to-left sliding window method for constructing Dw-
radix 2 representations. Then, we describe how Algorithm 2.1 can implemented
using a left-to-right sliding window method. We also give a new implementation
of Algorithm 1.1 which incorporates our left-to-right representations.

3.1 Right-to-Left

Suppose that we want to deduce a radix 2 representation of the integer 379 using
the digits D3 = {0,±1,±3}. If we know the {0, 1}-radix 2 representation of 379
then this is easily done. Consider the following table

β c β′ c′

001 0 001 0
011 0 003 0
101 0 003 1
111 0 001 1
000 1 001 0
010 1 003 0
100 1 003 1
110 1 001 1

This table describes a map, (β, c) �→ (β′, c′), between ordered pairs. The ordered
pairs consist of a 3-digit string and a carry, c. Notice that for each row of the
table, the string β′ corresponds to ((β)2 + c) mods 23. After initializing the

374 James A. Muir and Douglas R. Stinson

carry to 0, we can apply these transformations by sliding a 3-digit window from
right to left across the {0, 1}-radix 2 representation:

379 = (010111101
0
1)2 003

(010111
0
1011)2 001003

(010
1
1111011)2 0001003

(01
1
01111011)2 0030001003

Each time the contents of the window and the value of the carry match an entry
in the left hand column of the table we output the corresponding 3-digit string,
update the carry and then advance the window 3 digits to the left. Otherwise,
we output a single 0, leave the carry unchanged and advance the window 1 digit
to the left.

This process constructs an integer’s 3-NAF, and it does so using only a look-
up table. If we allow simple bit operations, like xor, the number of rows in the
table can be halved.

3.2 Left-to-Right

When w = 3 we have C3 = {d · 2i : d ∈ D3 \ {0}, i ∈ Z, i ≥ 0}. The first few
positive elements of C3 are

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512 . . .

Notice that for i ≥ 2, the intervals [2i−1, 2i] (which are underlined) each contain
exactly 3 elements of C3. Consider the integer 379. From the list of values above,
we see that 384 is the element in C3 closest to 379, however this can also be
determined from the {0, 1}-radix 2 representation of 379.

We first determine two neighbouring elements of C3, call them c′ and c′′, such
that 379 ∈ [c′, c′′]. The value c′ is the unique element in C3 closest to, but not
larger than, 379. If 379 = (0b�−1b�−2 . . . b1b0)2 with bi ∈ {0, 1} and b�−1 = 1,
we can determine the value of c′ by simply reading the 3 digit prefix of this
representation (i.e., 0b�−1b�−2). If the prefix is 010, then c′ = (010)2 ·2�−2 = 2�−1.
If the prefix is 011, then c′ = (011)2 ·2�−2 = 3 ·2�−2. Since 379 = (0101111011)2,
we see that c′ = (010)2 · 27 = 256.

The most significant nonzero digit of the representation 379 = (0101111011)2
tells us that 28 ≤ 379 < 29. Since 28 and 29 are both in C3, it must be
that[c′, c′′] ⊆ [28, 29]. The interval [28, 29] has length 28 and contains exactly
three elements of C3, thus the interval [c′, c′′] must have length 28/2 = 27. So,
we see that c′′ = c′ + 27 = 256 + 128 = 384.

We have deduced that 379 ∈ [256, 384] where 256 and 384 are neighbouring
elements of C3. Now, the question is, which of 256, 384 is closer to 379. This
is determined by the digit immediately to the right of the 3 digit prefix we
considered above. If this digit is 0, 256 is closest, otherwise 384 is closest. Since
379 = (0101111011)2 we see that 384 is the element in C3 closest to 379.

New Minimal Weight Representations 375

To continue building a representation of 379 using Algorithm 2.1, we must
now determine an element closest to 379 − 384 = −5. Again, we can use the
{0, 1}-radix 2 representation of 379 to make this determination.

Suppose we have −5 = (1b�−1b�−2 . . . b1b0)2 with bi ∈ {0, 1} and b�−1 = 0.
Then, as before, we can determine neighbouring elements of C3, c′ and c′′, such
that −5 ∈ [c′, c′′]. The value c′ is determined by simply reading the 3 digit
prefix of this representation (i.e., 1b�−1b�−2). If the prefix is 100, then c′ =
(100)2 · 2�−2 = −2�. If the prefix is 101, then c′ = (101)2 · 2�−2 = −3 · 2�−2.

It is not difficult to construct such a representation of −5. Observe

379 = (0101111011)2
384 = (0110000000)2

=⇒ 379− 384 = (11111011)2.

Since the digits 11 can be replaced by 01, we have that −5 = (1011)2. Now we
see that c′ = (101)2 · 2 = −3 · 2 = −6.

The most significant nonzero digit of the representation −5 = (1011)2 stands
for −23. Because the following digit is 0, we have that −23 ≤ −5 < −22. Since
−23 and −22 are both in C3, it must be that[c′, c′′] ⊆ [−23,−22]. The interval
[−23,−22] has length 22 and contains exactly three elements of C3, thus the
interval [c′, c′′] must have length 22/2 = 2. So, we see that c′′ = c′ + 2 =
−6 + 2 = −4.

Now we must decide which of c′, c′′ is closest to −5. As before, we can deter-
mine this by reading the the digit immediately to the right of the 3 digit prefix.
If this digit is 0, c′ is closest. If this digit is 1, c′′ is closest. In this case, both
c′ = −6 and c′′ = −4 are closest to −5, however, this rule simply distinguishes
one of them. Since −5 = (1011)2 we see that −4 is an element in C3 closest to
−5.

To finish building our representation of 379 we must now determine an el-
ement closest to −5 − (−4) = −1. Clearly, −1 is the element in C3 closest to
−1, however, we can also make this determination be applying our previous ar-
guments to the representation −1 = (1.000)2. We can always examine a 3 digit
prefix of a representation by taking zeros from the right of the radix point when
necessary.

The techniques we have described for determining closest elements in C3 can
be implemented as a 4-digit window slides left to right across a {0, 1}-radix 2
representation. Consider the following table

β β′

0100 010
0101 003
0110 003
0111 100
1000 100
1001 003
1010 003
1011 010

376 James A. Muir and Douglas R. Stinson

This table describes a map, β �→ β′, between strings. The relation between these
strings is based on choosing closest elements in C3.

The first four rows of the table are filled in by determining closest elements to
integers represented as (01b�−2b�−3 . . .)2. The last four rows of the table are filled
in by determining closest elements to integers represented as (10b�−2b�−3 . . .)2.
It can be shown that if n = (b�b�−1b�−2b�−3 . . . b0)2 with bi ∈ {0, 1} and b� �=
b�−1, then, for the element c closest to n that we choose, we have n − c =
(b�−3b�−4 . . . b0)2.

Returning to our example, n = 379, we have

379 = (0101111011.000)2 003
(0101111011.000)2 0030
(0101111011.000)2 00300
(0101111011.000)2 003000
(0101111011.000)2 003000010
(0101111011.000)2 0030000101.000

As with the construction of the 3-NAF of 379, each time the contents of the
window match an entry in the left hand column of the table we output the
corresponding 3-digit string and then advance the window 3 digits to the right.
Otherwise, we output a single 0 and advance the window 1 digit to the right.

If we work from the description of Algorithm 2.1 in Section 2, we might
construct a different representation of 379 than the one above. Since 379 −
3 · 27 = −5 and −5 has two closest elements in C3, Algorithm 2.1 might also
return 379 = (30000031)2 (note that this example demonstrates that, unlike the
3-NAFs, the representations constructed by Algorithm 2.1 can have adjacent
nonzero digits). The implementation we have described is deterministic, thus it
must somehow distinguish one of two closest elements in Cw. It does so by always
selecting a largest closest element.

For general w ≥ 2, Algorithm 2.1 can be implemented by sliding a window
of width w + 1 from left to right across the {0, 1}-radix 2 representation of n.
This implementation is based on the following facts. If

n = (b�b�−1 . . . b1b0)2 with bi ∈ {0, 1} and b� �= b�−1, (2)

then we can determine c ∈ Cw closest to n from the w + 1 digit string b�b�−1 . . .
b�−w. For this value c closest to n, we have

n− c = (b�−wb�−w−1 . . . b1b0)2. (3)

The resulting look-up table will contain 2w rows and describes a map from w+1
digit strings to w digit strings. Due to the symmetry in the table, if we allow
simple bit operations, like xor, the second half of the table does not need to be
stored.

3.3 A New Window Method

In our example implementation for w = 3, our window slides either 3 digits to
the right (after the window matches an entry in the table) or one digit to the

New Minimal Weight Representations 377

right (otherwise). This is because the strings output in these cases have length 3
(a string β′) or length 1 (a single 0). However, it is not necessary for the strings
β′ to all have the same length.

If we take our previous table and delete the trailing zeros from each string
β′ then we get

β β′

0100 01
0101 003
0110 003
0111 1
1000 1
1001 003
1010 003
1011 01

β j d
0100 2 1
0101 3 3
0110 3 3
0111 1 1
1000 1 1
1001 3 3
1010 3 3
1011 2 1

In the left table, the strings β′ are all of the form 0j−1d where d is a nonzero digit
in D3. The right table is just an encoding of the left table. The left table can
be used to construct D3-radix representations similar to the way we described
in the previous section. The only difference is the window slides right 1, 2 or
3 digits at a time; the number being equal to the length of the output string
(either β′ or a single 0).

This implementation of Algorithm 2.1 can be incorporated easily with Algo-
rithm 1.1. From the right table, we can define a function T3 which maps strings
in {0, 1}4 to ordered pairs, (j, d), with the additional condition that if β ∈ {0, 1}4

does not appear in the table then T3(β) = (1, 0). Here is the resulting algorithm
for scalar multiplication, which works for an arbitrary value of w ≥ 2:

Algorithm 3.1: w-MSF-window-method(n, P)

comment: w ≥ 2, Dw = {0} ∪ {d ∈ Z : d odd, |d| < 2w−1}
n = (0b�−1 . . . b1b0)2, where bi ∈ {0, 1}
βi = bibi−1 . . . bi−w

external Tw : βi �→ (j, d)

for each d ∈ Dw with d > 0
do Pd ← dP

Q ←∞, i ← �
while i ≥ 0

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(j, d) ← Tw(βi)
Q ← 2jQ
if d �= 0

then

⎧⎨⎩
if d > 0
then Q ← Q + Pd

else Q ← Q− P−d

i ← i− j
return Q

378 James A. Muir and Douglas R. Stinson

Constructing the function Tw : {0, 1}w+1 → {1, 2, . . . , w} ×Dw for arbitrary
w ≥ 2 is straightforward, provided we already have the width-w look-up table
described in Section 3.2; we simply delete the trailing zeros on the output strings
and then encode the output strings as ordered pairs.

Building the width-w look-up table all at once is not difficult, however, it is
also possible to build the table on the fly. An algebraic expression for the element
c ∈ Cw closest to n can be obtained by subtracting the representation for n− c
in (3) from that of n in (2). The resulting expression for c is

c =
(
(b�b�−1 . . . b�−w+1)2 + b�−w

)
· 2�−w+1 (4)

which is a function of the w + 1 digits b�b�−1 . . . b�−w.

4 Minimality

If α is a string of digits, we denote the number of nonzero digits in α by wt(α). We
will refer to wt(α) as the weight of the string α. The set of all strings composed
of digits in Dw is denoted by Dw

∗. For an integer n, we define

wt∗(n) := min{wt(α) : α ∈ Dw
∗, (α)2 = n}.

So, wt∗(n) is the minimum number of nonzero digits required to represent n
using a Dw-radix 2 representation. If α ∈ Dw

∗ and (α)2 = n then it must be
that wt(α) ≥ wt∗(n); if wt(α) = wt∗(n) we say that α has minimal weight.

In this section, we will prove the following Theorem:

Theorem 1. Let w ≥ 2 be an integer. For any n ∈ Z, the representation re-
turned by MSFw(n) has a minimal number of nonzero digits.

It will be convenient to let MSFw(n) denote a string returned by the algorithm
on input n. To prove Theorem 1 we will show that for any n ∈ Z, wt(MSFw(n)) =
wt∗(n). In doing so, we will make use of a number of short Lemmas concerning
the functions wt∗(n) and wt(MSFw(n)).

Lemma 4. If n is even then wt∗(n) = wt∗(n/2).

Proof. Let (. . . a2a1a0)2 be a minimal weight representation of n. Since n is even,
a0 = 0 and so (. . . a2a1)2 = n/2. Thus, wt∗(n/2) ≤ wt∗(n). Let (. . . b2b1b0)2
be a minimal weight representation of n/2. Then (. . . b2b1b00)2 = n and so
wt∗(n) ≤ wt∗(n/2). ��

For any n ∈ Z, there exists a unique pair of integers, q and r, such that

n = q · 2w + r where − 2w−1 < r ≤ 2w−1.

We will denote this value of r by “n mods 2w”. For example, if w = 3 then
13 mods 23 = −3. Note that if n is odd then so is n mods 2w. As well, when
n > 0 it must be that q ≥ 0, and similarly, when n < 0, q ≤ 0. So, for n �= 0, we
have q/n ≥ 0.

New Minimal Weight Representations 379

If we write n = q · 2w + r with r = n mods 2w then q · 2w is a multiple of 2w

closest to n. We will make use of this fact later on.
The w-NAF of an integer has minimal weight [1, 11]. If n is odd then the

least significant digit of its w-NAF is equal to n mods 2w. From this fact, we
can deduce the following Lemma:

Lemma 5. If n is odd and r = n mods 2w, then wt∗(n) = 1 + wt∗((n− r)/2).

Lemma 5 can proved in the same way as Lemma 4.
To show that wt(MSFw(n)) = wt∗(n), we will argue by induction on |n|. For

n odd, it is thus useful to establish that |(n− r)/2| < |n|.

Lemma 6 ([10]). Let n be an odd integer and let r = n mods 2w. Then
|(n− r)/2| < |n|.

We now give two Lemmas which involve the function wt(MSFw(n)).

Lemma 7. If n is an even integer then wt(MSFw(n)) = wt(MSFw(n/2)).

Proof. If n = 0 then the result is clearly true, so we can assume n �= 0. Let
α = a�−1 . . . a2a1a0 be an output of MSFw(n) with a�−1 �= 0. Since n is even
and n = (α)2 it must be that a0 = 0. Thus, the strings α and α′ = a�−1 . . . a2a1

have the same weight. We show α′ is an output of MSFw(n/2), and then the
result follows from Lemma 3.

Let c = a�−12�−1; c is an element in Cw closest to n. Since a0 = 0 and
a�−1 �= 0 it must be that �− 1 ≥ 1, and so c is even. Thus, c/2 ∈ Cw. Now,

c is closest to n =⇒ c/2 is closest to n/2,

so there is an output of MSFw(n/2) where the most significant nonzero digit en-
codes c/2 = a�−12�−2. By repeating this argument, we see that α′ = a�−1 . . . a2a1

is indeed an output of MSFw(n/2). This proves the result. ��

Lemma 8. If c is an element of Cw closest to n, then wt(MSFw(n)) = 1 +
wt(MSFw(n− c)).

Lemma 8 follows from the description of Algorithm 2.1.
Now we have everything we need to prove our main result.

Proof (of Theorem 1). We show that for any n ∈ Z,

wt(MSFw(n)) = wt∗(n) . (5)

When n = 0, MSFw(n) returns the empty string; thus

wt(MSFw(0)) = 0 = wt∗(0) . (6)

Also, if n is even then from Lemmas 4 and 7 we have

wt(MSFw(n)) = wt∗(n) ⇐⇒ wt(MSFw(n/2)) = wt∗(n/2) . (7)

380 James A. Muir and Douglas R. Stinson

Thus, if we can show that (5) holds for all n with |n| ≥ 1 and n odd, then by
(6) and (7), it holds for all n.

Let n be an odd nonzero integer. We argue by induction on |n|. For our base
cases, we consider the values of n that satisfy 1 ≤ |n| < 22w−1. We deal with
this interval in two parts.

First, suppose 1 ≤ |n| < 2w−1. Then n ∈ Dw (because n is odd) and thus
wt(MSFw(n)) = 1. Any odd integer n has wt∗(n) ≥ 1, thus we see that

wt(MSFw(n)) = 1 = wt∗(n) .

Next, suppose 2w−1 ≤ |n| < 22w−1. Note that �lg |n|� ≤ 2w − 2. Let c be
an element in Cw closest to n. Note that c must be even since |n| ≥ 2w−1. By
Lemma 1, we have

|n− c| ≤ 2�lg|n|�−w+1. (8)

However,
�lg |n|� ≤ 2w − 2 =⇒ �lg |n|� − w + 1 ≤ w − 1,

and so
|n− c| ≤ 2w−1.

Since n is odd and c is even, n − c is odd and thus, n − c ∈ Dw. So Algorithm
2.1 uses just two elements of Cw to represent n (namely, c and n − c); thus
wt(MSFw(n)) = 2. Any odd integer n with |n| > 2w−1 (i.e., n �∈ Dw) has
wt∗(n) ≥ 2, and from this we see that

wt(MSFw(n)) = 2 = wt∗(n) .

With our base cases established, we now consider n odd with |n| ≥ 22w−1.
Note that �lg |n|� ≥ 2w − 1. Let c be an element in Cw closest to n and let
r = n mods 2w. We claim that c is also closest to n− r. To see this, first note
that n lies in one of the intervals

[2�lg|n|�, 2�lg|n|�+1] or [−2�lg|n|�,−2�lg|n|�+1].

From the proof of Lemma 2, we know that all elements of Cw in these intervals
have the form d · 2i with d ∈ Dw and

i ∈ {�lg |n|� − w + 2, . . . , �lg |n|� , �lg |n|�+ 1}.

Thus,
i ≥ �lg |n|� − w + 2 ≥ 2w − 1 − w + 2 = w + 1,

and so 2w+1 divides c. There are two neighbouring elements of Cw, say c0 and
c1, such that n ∈ [c0, c1]. Let m be the midpoint of [c0, c1]. We have

2w+1|c0 and 2w+1|c1 =⇒ 2w+1|(c0 + c1)

=⇒ 2w|c0 + c1
2

=⇒ 2w|m.

New Minimal Weight Representations 381

So c0, c1 and m are all multiples of 2w. One of c0 or c1 is equal to c. If c = c0,
then n ∈ [c,m]; whereas, if c = c1, then n ∈ [m, c]. In either case, it can be
shown that n− r is an element in the same closed interval (this follows because
n− r is the multiple of 2w closest to n). Thus, we see that c is closest to n− r.
Further, since both c and n− r are even, we have that

c/2 is closest to (n− r)/2. (9)

Now we are ready to finish the proof. Notice that, because 2w|c, we have

n− c mods 2w = n mods 2w = r. (10)

By induction, we have that wt(MSFw(n′)) = wt∗(n′) for all n′ with |n′| < |n|.
Using this and our Lemmas, we find that

wt(MSFw(n)) = 1 + wt(MSFw(n− c)) (by Lemma 8)
= 1 + wt∗(n− c) (by induction)

= 1 + 1 + wt∗
(

(n− c)− r

2

)
(by (10) and Lemma 5)

= 1 + 1 + wt

(
MSFw

(
(n− c)− r

2

))
(by induction)

= 1 + 1 + wt

(
MSFw

(
n− r

2
− c

2

))
= 1 + wt

(
MSFw

(
n− r

2

))
(by (9) and Lemma 8)

= 1 + wt∗
(
n− r

2

)
(by induction)

= wt∗(n) (by Lemma 5).

Each of the inductive steps above is justified by either Lemma 6 or the fact that
|n− c| < |n|. This concludes the proof. ��

5 Related Work

Avanzi [1] independently obtained similar results which were presented at SAC
2004. In particular, Avanzi describes a deterministic algorithm which constructs
Dw-radix 2 representations by scanning the binary representation of an integer
from left to right. He also proves that these representation have minimal weight.
As the input is scanned, Avanzi’s algorithm works by applying arithmetic opera-
tions to windows of w+1 digits; his algorithm does not require a stored table. By
comparing the expression for c in equation (4) to Avanzi’s algorithm, it can be
shown that Avanzi’s algorithm is a deterministic implementation of Algorithm
2.1; that is, Avanzi’s algorithm works by choosing closest elements from the set
Cw.

382 James A. Muir and Douglas R. Stinson

At CRYPTO 2004, Okeya, Schmidt-Samoa, Spahn and Takagi [13] presented
a very simple technique that allows Dw-radix 2 representations to be constructed
from either right to left or left to right. They consider a canonical {0,±1}-
radix 2 representation of an integer, n, constructed by the digit-wise subtraction
of the binary representation of n from that of 2n. Once this representation is
constructed, Dw-radix 2 representations can be obtained by sliding windows of
width-w across it. Sliding the window right to left gives the w-NAF, and sliding
the window left to right gives the same representation constructed by Avanzi’s
algorithm. Okeya et al. show that the average density of nonzero digits in their
left-to-right representations is asymptotically 1/(w + 1), however they do not
prove minimality.

The same canonical {0,±1}-radix 2 representation defined by Okeya et al. can
be found in work by Grabner, Heuberger, Prodinger and Thuswaldner [6]. Grab-
ner et al. use these representations to construct minimal weight joint {0,±1}-
radix 2 representations of pairs of integers from left to right. Heuberger, Katti,
Prodinger and Ruan [8] also use the canonical representations. They generalize
the results of Grabner et al. to joint representations of d ≥ 2 integers. As well,
Heuberger et al. show how Avanzi’s left-to-right algorithm can be obtained from
the canonical representation.

What is unique to our work is the idea of choosing closest elements in the
set Cw, our simple nondeterministic algorithm, our technique for proving mini-
mality and our method of incorporating our left-to-right representations into the
algorithm for scalar multiplication.

6 Remarks

In proving that our new representations have a minimal number of nonzero
digits, we essentially dealt with the following two statements concerning odd
integers:

wt∗(n) = 1 + wt∗((n− r)/2) where r = n mods 2w (11)
wt∗(n) = 1 + wt∗(n− c) where c ∈ Cw is closest to n. (12)

In our proof, we noted that (11) is true (by the minimality of the w-NAF) and
then showed that (11) implies (12). The same arguments can be used to show
that (12) implies (11). Thus, (11) and (12) are logically equivalent, which is
perhaps surprising.

The w-NAF has a very simple combinatorial description. From this descrip-
tion, it is very easy to look at a representation and quickly decide whether or
not it is a w-NAF. For our new representations, this does not appear to be quite
so easy.

Acknowledgments

The authors thank Roberto Avanzi, Bodo Möller and the anonymous reviewers
for helpful comments on earlier versions of this manuscript.

New Minimal Weight Representations 383

References

1. R. M. Avanzi A Note on the Signed Sliding Window Integer Recoding and its
Left-to-Right Analogue, in “Selected Areas in Cryptography 2004”. To appear in
Lecture Notes in Computer Science.

2. I. F. Blake, G. Seroussi and N. P. Smart. Elliptic Curves in Cryptography, Cam-
bridge University Press, 1999.

3. H. Cohen. Analysis of the Flexible Window Powering Algorithm. To appear in
Journal of Cryptology .
Available from http://www.math.u-bordeaux.fr/~cohen/window.dvi.

4. H. Cohen, A. Miyaji and T. Ono. Efficient Elliptic Curve Exponentiation Using
Mixed Coordinates, in “Advances in Cryptology – ASIACRYPT ’98”, Lecture
Notes in Computer Science 1514 (1998), 51–65.

5. D. M. Gordon. A Survey of Fast Exponentiation Methods, Journal of Algorithms
27 (1998), 129–146.

6. P. Grabner, C. Heuberger, H. Prodinger and J. Thuswaldner. Analysis of Linear
Combination Algorithms in Cryptography. Submitted.
Available from http://www.opt.math.tu-graz.ac.at/~cheub/publications/.

7. D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryptography ,
Springer, 2004.

8. C. Heuberger, R. Katti, H. Prodinger, and X. Ruan. The Alternating Greedy
Expansion and Applications to Left-To-Right Algorithms in Cryptography. Sub-
mitted.
Available from http://www.opt.math.tu-graz.ac.at/~cheub/publications/.

9. M. Joye and S. Yen. Optimal Left-to-Right Binary Signed-Digit Recoding, IEEE
Transactions on Computers 49 (2000), 740–748.

10. J. A. Muir and D. R. Stinson. New Minimal Weight Representations for Left-to-
Right Window Methods (Extended Version).
Available from http://www.math.uwaterloo.ca/~jamuir/papers.htm.

11. J. A. Muir and D. R. Stinson. Minimality and Other Properties of the Width-w
Nonadjacent Form. To appear in Mathematics of Computation.
Available from http://www.math.uwaterloo.ca/~jamuir/papers.htm.

12. V. Müller. Fast Multiplication on Elliptic Curves over Small Fields of Character-
istic Two. Journal of Cryptology 11 (1998), 219–234.

13. K. Okeya, K. Schmidt-Samoa, C. Spahn and T. Takagi. Signed Binary Represen-
tations Revisited, in “Advances in Cryptology – CRYPTO 2004”, Lecture Notes
in Computer Science 3152 (2004), 123–139.

14. J. A. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptog-
raphy 19 (2000), 195–249.

Author Index

Abdalla, Michel 191

Bao, Feng 72
Barreto, Paulo S.L.M. 262
Batina, Lejla 323
Bellare, Mihir 136
Billet, Olivier 19
Boneh, Dan 87
Braeken, An 29

Cook, Debra L. 334
Cui, Yang 104

Dwork, Cynthia 1

Feng, Dengguo 72

Gammel, Berndt M. 351
Gilbert, Henri 19
Gutterman, Zvi 44

Herzberg, Amir 172
Howgrave-Graham, Nick 118

Imai, Hideki 104
Ioannidis, John 334

Kaliski, Burton 227
Katz, Jonathan 87
Keromytis, Angelos D. 334
Kobara, Kazukuni 104

Laguillaumie, Fabien 154
Luck, Jake 334

Mackenzie, Philip 209
Malkhi, Dahlia 44
Mangard, Stefan 351

McCullagh, Noel 262
Mentens, Nele 323
Muir, James A. 366

Nguyen, Lan 275

Oswald, Elisabeth 58

Patel, Sarvar 209
Pointcheval, David 191
Popp, Thomas 351
Preneel, Bart 29, 323

Rijmen, Vincent 58

Scott, Michael 293
Shi, Haixia 136
Silverman, Joseph H. 118
Stinson, Douglas R. 366
Szydlo, Michael 227

Verbauwhede, Ingrid 323
Vergnaud, Damien 154

Wei, Victor K. 305
Whyte, William 118
Wolf, Christopher 29
Wu, Hongjun 72

Yao, Frances F. 245
Yin, Yiqun Lisa 245
Young, Adam 7
Yuen, Tsz Hon 305
Yung, Moti 7

Zhang, Bin 72
Zhang, Chong 136

	Frontmatter
	Invited Talks
	Sub-linear Queries Statistical Databases: Privacy with Power
	Malicious Cryptography: Kleptographic Aspects

	Cryptanalysis
	Resistance of SNOW 2.0 Against Algebraic Attacks
	A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes
	Hold Your Sessions: An Attack on Java Session-Id Generation
	Update on SHA-1
	A Fast Correlation Attack on the Shrinking Generator

	Public-Key Encryption
	Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption
	A Generic Conversion with Optimal Redundancy
	Choosing Parameter Sets for {\sf NTRUEncrypt} with {\sf NAEP} and {\sf SVES-3}

	Signature Schemes
	Foundations of Group Signatures: The Case of Dynamic Groups
	Time-Selective Convertible Undeniable Signatures

	Design Principles
	On Tolerant Cryptographic Constructions

	Password-Based Protocols
	Simple Password-Based Encrypted Key Exchange Protocols
	Hard Bits of the Discrete Log with Applications to Password Authentication
	Proofs for Two-Server Password Authentication
	Design and Analysis of Password-Based Key Derivation Functions

	Pairings
	A New Two-Party Identity-Based Authenticated Key Agreement
	Accumulators from Bilinear Pairings and Applications
	Computing the Tate Pairing
	Fast and Proven Secure Blind Identity-Based Signcryption from Pairings

	Efficient and Secure Implementation
	A Systematic Evaluation of Compact Hardware Implementations for the Rijndael S-Box
	CryptoGraphics: Secret Key Cryptography Using Graphics Cards
	Side-Channel Leakage of Masked CMOS Gates
	New Minimal Weight Representations for Left-to-Right Window Methods

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

