O
eo)
aR)
oN
v
O
F”
-

Serge Vaudenay (Ed.)

Public Key
Cryptography -
PKC 2005

8th International Workshop
on Theory and Practice in Public Key Cryptography
Les Diablerets, Switzerland, January 2005, Proceedings

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3386

Serge Vaudenay (Ed.)

Public Key
Cryptography —
PKC 2005

8th International Workshop

on Theory and Practice in Public Key Cryptography
Les Diablerets, Switzerland, January 23-26, 2005
Proceedings

@ Springer

Volume Editor

Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne
School of Computer and Communication Sciences
Security and Cryptography Laboratory

1015 Lausanne, Switzerland

E-mail: serge.vaudenay @epfl.ch

Library of Congress Control Number: 2004117654

CR Subject Classification (1998): E.3, F2.1-2, C.2.0, K.4.4, K.6.5

ISSN 0302-9743
ISBN 3-540-24454-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© International Association for Cryptologic Research 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11376477 06/3142 543210

Preface

The 2005 issue of the International Workshop on Practice and Theory in Public
Key Cryptography (PKC 2005) was held in Les Diablerets, Switzerland during
January 23-26, 2005. It followed a series of successful PKC workshops which
started in 1998 in Pacifico Yokohama, Japan. Previous workshops were succes-
sively held in Kamakura (Japan), Melbourne (Australia), Cheju Island (South
Korea), Paris (France), Miami (USA), and Singapore. Since 2003, PKC has been
sponsored by the International Association for Cryptologic Research (IACR). As
in previous years, PKC 2005 was one of the major meeting points of worldwide
research experts in public-key cryptography. I had the honor to co-chair the
workshop together with Jean Monnerat and to head the program committee.
Inspired by the fact that the RSA cryptosystem was invented on ski lifts, we
decided that the best place for PKC was at a ski resort. Jean Monnerat and I
hope that this workshop in a relaxed atmosphere will lead us to 25 more years
of research fun.

PKC 2005 collected 126 submissions on August 26, 2004. This is a record
number. The program committee carried out a thorough review process. In to-
tal, 413 review reports were written by renowned experts, program committee
members as well as external referees. Online discussions led to 313 additional
discussion messages and 238 emails. The review process was run using email and
the Webreview software by Wim Moreau and Joris Claessens. Every submitted
paper received at least 3 review reports. We selected 28 papers for publication on
October 28, 2004. Authors were then given a chance to revise their submission
over the following two weeks. This proceedings includes all the revised papers.
Due to time constraints the revised versions could not be reviewed again.

Double submissions, where authors send the same or almost the same paper
to multiple conferences that explicitly prohibit such practices, is an increasing
problem for the research community worldwide. I do regret that we had to reject
6 such submissions without consideration of their scientific merits. I would like
to thank the program chairs of other events who collaborated in this effort, in
particular Anne Canteaut, Joe Kilian, Choonsik Park, and Seongtaeck Chee.

With the approval of the IACR Board of Directors, PKC 2005 delivered the
PKC Best Paper Award for the first time. The purpose of the award is to formally
acknowledge authors of outstanding papers and to recognize excellence in the
cryptographic research fields. Committee members were invited to nominate
papers for this award. A poll then yielded a clear majority. This year, we were
pleased to deliver the PKC Best Paper Award to Yevgeniy Dodis and Aleksandr
Yampolskiy for their brilliant paper “A Verifiable Random Function with Short
Proofs and Keys.” This paper concluded the workshop.

I would like to thank Jean Monnerat who accepted the responsibility to co-
chair the PKC 2005 workshop. I would like to thank the PKC steering committee
for their support and trust. The program committee and external reviewers

VI Preface

worked extremely hard under a tight schedule. I heartily thank them for this
volunteer work. Acknowledgments also go to the authors of submitted papers
and the speakers who made the real meat of PKC 2005. I am grateful to Antoine
Junod and Julien Brouchier for their support with the Webreview software. I also
thank my assistants Pascal Junod, Thomas Baigneres, Yi Lu, Gildas Avoine, and
Matthieu Finiasz for their help in the PKC 2005 organization. Special thanks
to Martine Corval who orchestrated the PKC 2005 logistics. We appreciate the
kind help of Christian Cachin in the advertising and registration process. We also
owe our gratitude to Kevin McCurley for spending a substantial amount of his
valuable time to set up the online registration website. We thank our generous
sponsors Gemplus and personally David Naccache, and HP Labs and personally
Wenbo Mao, for supporting PKC 2005. We also thank EPFL and TACR for
sponsoring this event. It was a very pleasant experience. Crypto is fun!

Lausanne, November 19, 2004 Serge Vaudenay

PKC Steering Committee (as of November 2004)

Yvo Desmedt
Hideki Imai (Chair)
Kwangjo Kim

David Naccache

Jacques Stern

Moti Yung

Yuliang Zheng (Secretary)
Ronald Cramer

Tatsuaki Okamoto

University College London, UK

University of Tokyo, Japan

Information and Communications University,
South Korea

Gemplus, France,

and Royal Holloway, University of London, UK
Ecole Normale Supérieure, France

Columbia University, USA

University of North Carolina at Charlotte, USA
CWI and Leiden University, The Netherlands
NTT Labs, Japan

Organizing Committee

General Co-chairs Jean Monnerat
Serge Vaudenay

Local Organization Martine Corval

Assistants Gildas Avoine
Thomas Baigneres
Matthieu Finiasz
Pascal Junod

Yi Lu

VIII Organization

Carlisle Adams
Feng Bao

Yvo Desmedt
Juan Garay
Martin Hirt
Kwangjo Kim

Kaoru Kurosawa
Anna Lysyanskaya
Wenbo Mao
David Naccache

Kaisa Nyberg
Tatsuaki Okamoto
Josef Pieprzyk
David Pointcheval
Reihaneh Safavi-Naini
Kazue Sako
Claus-Peter Schnorr
Berry Schoenmakers
Nigel Smart

Edlyn Teske

Serge Vaudenay
Moti Yung

Yuliang Zheng

Program Committee

University of Ottawa, Canada

Institute for Infocomm Research, Singapore
University College London, UK

Bell Labs — Lucent Technologies, USA
ETH Zurich, Switzerland

Information and Communications University,
South Korea

Ibaraki University, Japan

Brown University, USA

HP Labs Bristol, UK

Gemplus, France and

Royal Holloway, University of London, UK
Nokia, Finland

NTT Labs, Japan

Macquarie University, Australia
CNRS-ENS, France

University of Wollongong, Australia

NEC, Japan

University of Frankfurt am Main, Germany

Technische Universiteit Eindhoven, The Netherlands

University of Bristol, UK
University of Waterloo, Canada
EPFL, Switzerland

University of Columbia, USA

University of North Carolina at Charlotte, USA

External Reviewers

Masayuki Abe

Ben Adida

Gildas Avoine
Joonsang Baek
Thomas Baigneres
Mihir Bellare
Daniel Bleichenbacher
Colin Boyd
Emmanuel Bresson
Eric Brier

Duncan Buell
Srdjan Capkun
Dario Catalano
Liqun Chen

Benoit Chevallier-Mames
Jean-Sébastien Coron
Ronald Cramer
Jean-Frangois Dhem
Christophe Doche
Atsushi Fujioka
Eiichiro Fujisaki
Jun Furukawa
Steven Galbraith
Pierrick Gaudry
Louis Granboulan
Rob Granger

Jaime Gutierrez
Darrel Hankerson
Anwar Hasan

Alex Healy

Jason Hinek

Susan Hohenberger
Thomas Holenstein
Heng Swee Huay

Toshiyuki Isshiki
Kouichi Itoh
Michael Jacobson
Marc Joye

Pascal Junod
Charanjit Jutla
Jonathan Katz
Tetsutaro Kobayashi
Robert Konig
Byoungcheon Lee
Arjen Lenstra
Moses Liskov
Javier Lopez

Yi Lu

John Malone-Lee
Toshihiko Matsuo
Noel McCullagh
Anton Mityagin
Atsuko Miyaji
Jean Monnerat
Waka Nagao
Phong Q. Nguyén
Satoshi Obana
Takeshi Okamoto
Katsuyuki Okeya
Dan Page

Pascal Paillier
Jacques Patarin
Kenneth Paterson
Chris Peikert
Krzysztof Pietrzak
Bartosz Przydatek
Tal Rabin

Peter Roelse

Organization X

Hans-Georg Rueck
Ryuichi Sakai
Takakazu Satoh
Katja Schmidt-Samoa
Michael Scott
Hovav Shacham
Andrey Sidorenko
Johan Sjodin
Martijn Stam
Andreas Stein

Ron Steinfeld
Makoto Sugita
Willy Susilo
Koutarou Suzuki
Tsuyoshi Takagi
Keisuke Tanaka
Isamu Teranishi
Jacques Traoré
Shigenori Uchiyama
Frederik Vercauteren
Duong Quang Viet
Jorge L. Villar
Guilin Wang
Huaxiong Wang
Stephen Weis
Claire Whelan
Christopher Wolf
Go Yamamoto
Chung-Huang Yang
Danfeng Yao
Sung-Ming Yen
Huafei Zhu

Table of Contents

Cryptanalysis

A New Related Message Attack on RSA 1
Oded Yacobi and Yacov Yacobi

Breaking a Cryptographic Protocol with Pseudoprimes 9
Daniel Bleichenbacher

Experimenting with Faults, Lattices and the DSA 16
David Naccache, Phong Q. Nguyén, Michael Tunstall,
and Claire Whelan

Key Establishment

Securing RSA-KEM via the AES. 29
Jakob Jonsson and Matthew J.B. Robshaw

One-Time Verifier-Based Encrypted Key Exchange 47
Michel Abdalla, Olivier Chevassut, and David Pointcheval

Password-Based Authenticated Key Exchange
in the Three-Party Setting 65
Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Optimization

On the Optimization of Side-Channel Attacks
by Advanced Stochastic Methods i, 85
Werner Schindler

Symmetric Subgroup Membership Problems 104
Kristian Gjosteen

Building Blocks

Optimizing Robustness While Generating Shared Secret Safe Primes 120
Emil Ong and John Kubiatowicz

Fast Multi-computations with Integer Similarity Strategy 138
Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

XII Table of Contents

Efficient Proofs of Knowledge of Discrete Logarithms and Representations
in Groups with Hidden Order........ 154
Endre Bangerter, Jan Camenisch, and Ueli Maurer

Efficient k-Out-of-n Oblivious Transfer Schemes
with Adaptive and Non-adaptive Queries 172
Cheng-Kang Chu and Wen-Guey Tzeng

RSA Cryptography

Converse Results to the Wiener Attack on RSA........... 184
Ron Steinfeld, Scott Contini, Huaziong Wang, and Josef Pieprzyk

RSA with Balanced Short Exponents and Its Application
to Entity Authentication........... i 199
Hung-Min Sun and Cheng-Ta Yang

The Sampling Twice Technique for the RSA-Based Cryptosystems
with Anonymity 216
Ryotaro Hayashi and Keisuke Tanaka

From Fixed-Length to Arbitrary-Length
RSA Encoding Schemes Revisited oo i, 234

Julien Cathalo, Jean-Sébastien Coron, and David Naccache

Multivariate Asymmetric Cryptography

Tractable Rational Map Signature 244
Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou,
and Bo-Yin Yang

Cryptanalysis of the Tractable Rational Map Cryptosystem 258
Antoine Jouzx, Sébastien Kunz-Jacques, Frédéric Muller,
and Pierre-Michel Ricordel

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems .. 275
Christopher Wolf and Bart Preneel

Cryptanalysis of HFEv and Internal Perturbation of HFE 288
Jintai Ding and Dieter Schmidt

Signature Schemes

A Generic Scheme Based on Trapdoor One-Way Permutations
with Signatures as Short as Possible 302
Louis Granboulan

Table of Contents

Cramer-Damgard Signatures Revisited:

Efficient Flat-Tree Signatures Based on Factoring

Dario Catalano and Rosario Gennaro

The Security of the FDH Variant

of Chaum’s Undeniable Signature Scheme

Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng
Efficient Threshold RSA Signatures with General Moduli

and No Extra Assumptions.,

Ivan Damgard and Kasper Dupont

Identity-Based Cryptography

Improved Identity-Based Signcryption

Liqun Chen and John Malone-Lee

Efficient Multi-receiver Identity-Based Encryption and Its Application

to Broadcast Encryption

Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

CBE from CL-PKE: A Generic Construction and Efficient Schemes

Sattam S. Al-Riyami and Kenneth G. Paterson

Best Paper Award

A Verifiable Random Function with Short Proofs and Keys............

Yevgeniy Dodis and Aleksandr Yampolskiy

Author Index

XIIT

A New Related Message Attack on RSA

Oded Yacobi! and Yacov Yacobi?

! Department of Mathematics, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA
oyacobi@math.ucsd.edu
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

yacov@microsoft.com

Abstract. Coppersmith, Franklin, Patarin, and Reiter show that given
two RSA cryptograms z°mod N and (az + b)°mod N for known con-
stants a,b € Zn, one can compute x in O(elog2 e) Zyn-operations with
some positive error probability. We show that given e cryptograms c¢; =
(a;z 4+ b;)°mod N, i =0,1,...e — 1, for any known constants a;, b; € Zn,
one can deterministically compute x in O(e) Zn-operations that depend
on the cryptograms, after a pre-processing that depends only on the con-
stants. The complexity of the pre-processing is O(e log? e) Zn-operations,
and can be amortized over many instances. We also consider a special
case where the overall cost of the attack is O(e) Zn-operations. Our
tools are borrowed from numerical-analysis and adapted to handle for-
mal polynomials over finite-rings. To the best of our knowledge their use
in cryptanalysis is novel.

1 Introduction

Messages with known relations may occur for example if an attacker pretends
to be the recipient in a protocol that doesn’t authenticate the recipient, and
in addition the message is composed of the content concatenated with a serial
number. In that case the attacker can claim that she didn’t receive the transmis-
sion properly and ask that it be sent again. The next transmission will have the
same content as the original but an incremented serial number. If the increment
is known we have a known relation. Other examples appear in [4].

Related message attacks can be avoided all together if before RSA-encryption
the message M is transformed using e.g. the OAEP function ([3]; There are
other methods and some issues are not settled yet, see [5]). This transformation
destroys the relations between messages and increases the message length.

Nevertheless it is useful to know the ramifications in case for some reason
one chooses not to use OAEP or similar methods (even though it is highly
recommended). For example RFID tags may pose tough engineering challenges of
creating very compact cryptosystems, and the trade-off must be known precisely.

In [4] it was shown that given two RSA cryptograms z¢ mod N, and (az + b)°
mod N for any known constants a, b € Zy one can compute in O(elog? e) Zy-
operations with some small error probability.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 1-8, 2005.
© International Association for Cryptologic Research 2005

2 Oded Yacobi and Yacov Yacobi

We show that given e cryptograms ¢; = (a;x+b;)*mod N,i=0,1,...e—1, for
any known constants a;,b; € Zy, one can deterministically compute x in O(e)
Zn-operations, after doing O(e log? e) pre-computations that depend only on
the known constants. The descriptions of the protocol and the attack determine
the values of these constants. For example the attack described at the beginning
of this section has for all ¢ a; = b; = 1. The cost of the pre-computations can be
amortized over many instances of the problem.

Our problem could be solved by using the Newton expansion of ¢; = (a;z +
b;)° mod N, renaming z; = 2/ and using linear algebra to find z;. However, our
method is more efficient.

We also show that in the special case where ¢; = (ax +b-4)°mod N, i =
0,1,...e — 1, for any known constants a,b € Zy, where ged(a, N) = ged(b, N) =
ged(el, N) = 1, one can deterministically compute 2 in overall O(e) Zy-oper-
ations using

e—1

z=a "b[(b%e) Y (e B 1) i (—1)e € g 1] mod N

. (3
=0

If any of the above ged conditions do not hold then the system is already broken.

It remains an open problem whether the new approach can improve the
general case of implicit linear dependence, i.e., suppose for known constants
a;, © = 0,1,2,...k, there is a known relation Zle a;x; = ap among messages
T1, X9, ...v5. The current complexity of attacking this problem is O(e*/2k?) [4].

Our major attack-tools are divided-differences and finite-differences. These
tools are borrowed from numerical-analysis, and adapted to handle formal poly-
nomials over finite-rings. To the best of our knowledge their use in cryptanalysis
is novel.

For a survey of the work on breaking RSA see [2].

2 Main Result

2.1 Divided Differences

We borrow the concept of divided-differences from numerical analysis and adapt
it to handle formal polynomials over finite rings. This will allow us to extract the
message from a string of e cryptograms whose underlying messages are linearly
related. We specialize our definitions to the ring of integers modulo N, a product
of two primes (the “RSA ring”). All the congruences in this paper are taken
mudulo N.

Definition 1. Let h be a polynomial defined over the ring of integers modulo N,
and let xo, x1, ...z, be distinct elements of the ring such that (xg — a:i)*l mod N
exist for i = 0,1,...n. The n'* divided-difference of h relative to these elements
is defined as follows:

A New Related Message Attack on RSA 3

[zi] = h(zs),
_ [zo] — [z1]
(o, x1] = To — a1
_xo, @1, 1] — [71, 22, 2]
[0, 21, ...t = P)

Let = be an indeterminate variable, and for ¢ = 0,1,..n, let z; = = + b;
for some known constants b; (these are the general explicit linear relations that
we assume later). We can now view the above divided differences as univariate
polynomials in defined over Z .

The following lemma is true for the divided difference of any polynomial
mod N, but for our purposes it is enough to prove it for the RSA polynomial
x2°mod N. Related results are stated in [8]. Before beginning the proof we intro-

k

duce some notation borrowed from [7]. Let 7 (y) = [(y — ;). Then taking the
i=0

derivative of mp with respect to y we have for i < k

m(zi) = [(zi—x5)
0<i<k
G

By induction on & the following equality easily follows

k

[zo, .. zk] = 32 (1)

Let Cy(p) denote the ty, coefficient of the polynomial p, starting from the

leading coefficients (the coefficients of the highest powers). We use Cy[zg, ..z]
as a shorthand for Cy([zo, ..zk]).

Lemma 1. Let [zo, ..., z,] be the nt" divided difference relative to the RSA poly-
nomial h(z) = z°mod N, and let xg,x1,...x, be distinct elements of the ring
such that (zg — z;) "' mod N exist for i = 0,1,..n. Then (i) for 0 < n < e, if
(e_en) # 0mod N then degxo, ...,z = € = n. (i) Ce_pnlzo, 21, .., s = (e n)

(an important special case is Ci|xg, 1, ..,Te—1] = emod N).
Comment: In practice the condition in claim (i) always holds, since e << N.

Proof. The claim is trivial for n = 0. For n > 1 we prove the equivalent propo-
sition that Cy [zg,...,z,] =0fort =e,e—1,..,e —n+ 1 and Ce_,[x0, ...,] is
independent of the b; and is not congruent to 0. We use the notations 1/b and
b~! interchangeably. We induct on n. When n =1

o = (00 = @ b _ S ()5 b5
0= by — by - by — by
Note that by our assumption (bg — b1) "t mod N exist. So Ce[zg,71] = 0
and Ce_1[xg,x1] = e and indeed our claim is true for n = 1. For the inductive
hypothesis let n = k — 1 and assume that Cy [z, ...,zk—1] = 0 for t = e, e —

4 Oded Yacobi and Yacov Yacobi

L,...,e = (k—1)+ 1 and Ce_(4—1)[T0,..., k1] is independent of the b; and is
not congruent to 0. We want to show that when n = k, Ci[xo,...,xx] = 0 for
t=ee—1,..,e—k+1and Ce_g[xg, ..., 2%] is independent of the b; and is not
congruent to 0.

The fact that Cy [xo, ...,xx] = 0fort = e,e—1,...,e—k+1 follows immediately
from the inductive hypothesis and Definition 1. It takes a little more work to
show that C._g[zo, ..., zx| is independent of the b;.

Using (1):
b c o o o
(x4 b;)°¢ (e> it bo 7 by by
Ty L1y .ees Th| = = T + + ...+
[20, 21] ; o (x;) jgo Jj [F;C(xo) . (x1) W;c(xk)]
We want to show that C._x[xg, 21, ..., 2] is independent of the b;.
e bk bk bk
Ce—k|xo, 21, .., 28] = o 4 N k 2
wlos e (- k) R I LI

So now it is sufficient to show that
bk
(_1)0 0
(bo —b1) -+ (bo — br.)
is independent of the b;.

We first multiply (3) by the necessary terms to get a common denominator.
We introduce some compact notation that will simplify the process. For a given
set of constants by, by, ...bx define

§(h,i) = (by, — b;)
5(h7 Z?]) = (bh - bl)(bh - b])é(laj)

k
k bk

+..+(-1) (bo — bi) -+ (be—1 — by)

(3)

6(i0s -y in) = (big — biy) (big — biy) - -+ (biy — by,)0(i, ..y k)
Similarly we can also define §; = §(0,1,..., 4, ..., k) where the bar denotes
that the index is missing (so if k = 4 then d3 = §(0,1,2,4,)). Then (3) becomes:
bEdo — bio1 4 -+ (—1)Fbkéy @)
5(0,1,...,k)

We want to show that (4) is independent of the b;. In fact it equals 1. To see
this consider the Vandermonde matrix:

1bo b2 --- bk
v 1by b2 .- b
1by b2 - bF
We conclude from (2) that C._i[zo,21,..,2%] = (efk), which is certainly

independent of the b;. This also implies that C._y[zo, 21, .., %] is not congruent
to 0 when k < e. By induction we are done.

A New Related Message Attack on RSA 5

2.2 Related-Messages Attack

Here we consider the general case where fori = 0,1,...e—1, ; = a;x+b; mod V.
N = pq is an RSA composite (p and ¢ are large primes, with some additional
restrictions which are irrelevant in the current discussion), and the constants
a;, b; are known. Of course it is sufficient to consider just the case where x; =
2+ b;. We now show how to deterministically compute « in O(e) Z y-operations
after some pre-computation that depends only on the known constants. If the
constants b; hold for many unknown values of cryptograms x¢ then the cost of
pre-computations can be amortized and discarded. We show that the cost of the
additional computations that depend on the value of z is O(e).
Specifically, 7} (xy) is independent of y and of z, hence for all k these
coeflicients can be computed in advance. In that case the cost of computing
[z0, 21, ... Te1] = ux + v = w(zx) is O(e).
For each particular value z we know how to compute the value w(z) with-
out knowing x using Lemma 1 and Formula (1). More explicitly, Let ¢; =
(x4+b;)*modN, i = 0,1,2,...e — 1, be the given cryptograms, whose under-
e—1

lying messages are linearly related, and let 7/_,(xy) = H(bk —b;). We use py
7

as a shorthand for 7/, _, (x}). Then

e—1 e—1
2 = (2] _ ook
vl = kZ:O Tea (@) kzzopk

Here we assume that the inverses (by — b;)"! mod N exist. Note that if for
some k, 4 this isn’t true then we can factor the RSA-modulus N, by computing
ged(N, (b — ;).

From Lemma 1 (ii) we know that u = e. Note also that w(0) = v =

Z;é by, - pgl mod N, and we can compute it in the pre-computation phase (be-
fore intercepting the cryptograms). So we can find x = (w(x) — v)e ! mod N.
The following algorithm summarizes the above discussion:

Algorithm 1

Given cryptograms ¢; = (z+b;)°mod N, i =0, 1,2, ...e—1, with known constants
b;, find z.
Method:
1. Pre computation:
e—1
For k = 0,...e— 1, compute p; ' = H(bk —b;)~L; (If for some k, i, (b, —b;)~*
iz
does not exist then factor N using ged(by, — b;, N) and halt);
v= Z;é b5 - p;, ' mod N;
2. Real-time computation: = = e~ ! - ((Y5_¢ expy ') — v) mod N.

6 Oded Yacobi and Yacov Yacobi

The complexity of the pre-computation is O(elog?(e)) (see Appendix), and
the complexity of the real time computations is O(e).

3 Special Case

3.1 Finite Differences

We now consider the special case where the e cryptograms are of the form ¢; =
(az +b-i)*mod N, i = 0,1,...e — 1, for any known constants a,b € Zy, where
ged(a, N) = ged(b, N) = ged(e!, N) = 1. The special linear relations among
these cryptograms allows us to deterministically compute x in overall O(e) Zy -
operations. As before x denotes an indeterminate variable.

Definition 2. For h a polynomial over any ring let A (x) = h(z), and let
AD(z) = A (g 41) — ACY ()i =1,2,...

It is easy to see that the degree of the polynomials resulting from this simpler
process keep decreasing as in the case of divided-differences. More precisely:

Lemma 2. In the special case where x; = x+i, and ged(n!, N)=1, [xg, 21,xp]
= A (z)/n!

A similar relation can be derived when x; = ax + ib, for known constants
a,b. The next two lemmas are stated for general polynomials h(z), although
eventually we use them for h(z) = 2°mod N. Let m = deg(h), and 0 < k < m.
By induction on k:

Lemma 3. A®(z) = YF (") - h(z +14) - (=1)¥ " mod N.

For the algorithm we will need explicit formulas for the two leading terms
of AW (z). Let h(z) = 31", a;x* and let Téf}yam,l(m) denote the two leading
terms of A% (z).

Lemma 4. T4, ,(2) = (7" ™Y amm(z+k(m—k)/2)+an1(m—k)).

Proof. We induct on k. The basis step is trivial. We verify one more step that
is needed later.

71 (z) = 2™ *(amm(z + m2

Am,Gm—1

)+ am—1(m —1)) ()

AN (z) = h(z + 1) — h(zx), whose two leading terms are indeed equal to

é,ln),am,l(x) above. Now assume that the two leading terms of A~ (z) are

k—
TR D

b= Ez:}“;: [ammk(m — k)/2 4 am—1(m — k)].

(z) = ax™ F1 4 Bam=Fk where a = Ez:}c;iamm, and

The proof can be completed by showing that T (x) = TP (x). This can

a,B Q@ —1
be done by computing the first difference of Téﬁfalg%l (x), substituting « for a,

and (3 for a,,—1 in equation (5) to get the claim.

A New Related Message Attack on RSA 7

3.2 Related-Messages Attack with Lowered Complexity

Using the results of section 3.1 we consider the special case where z; = = + ¢
(or likewise x; = ax + bi, for known a,b) and use the simpler finite-differences
to yield overall complexity O(e).

In lemmas 3 and 4 let h(z) = 2° mod N, where e > 3. Thus a,, = 1,a,,—1 =0,

and Tl()eofl) =el(z+ (e —1)/2)(mod N). Lemmas 1 and 2 imply that after the
e — 1 finite difference we have a linear congruence ux + v = w. Then lemma 4
gives us the values of v and v, and lemma 3 tells us how to compute w given the
e cryptograms.

Specifically u = ¢!, v = el(e —1)/2 and w = Y ¢ (1) e (m1)e i
where ¢; = (x +)¢ (all the congruences are taken mod N). This equation is
solvable iff e!~! mod IV exists, which holds for practical (small) values of e. The
computation of w dominates, and takes O(e) operations in Zy (since (621) can
be computed from (fj) using one multiplication and one division).

If ; = ax+bimod N, i =0,1,2...e — 1, for known a and b, with ged(a, N) =
ged(b, N) = 1, we can likewise compute z. Given cryptogram

¢i = (ax+b-1)°mod N we can transform it into ¢ = ¢;-b~¢ = (2+¢)*mod N,
where z = zab~! mod N. So

—fe—1 e—1
_ —1 e —1 e—1+1
x =a bb%!) ;(;)~cl~(1))] modN.

which is computable in O(e) Zy operations.

4 Conclusions

We have shown new attacks on RSA-encryption assuming known explicit lin-
ear relations between the messages. Our attacks require more information (i.e.,
intercepting more cryptograms), but they run faster than previously published
attacks. In some practical cases they run three orders of magnitudes faster than
previous attacks. This should be taken into consideration when designing very
compact cryptosystems (e.g., for RFID tags), although the default should be us-
ing some form of protection like OAEP+ to destroy such known relations. Our
attack tools are borrowed from numerical analysis and adapted to handle formal
polynomials defined over finite rings.

Open problems: Can these or similar tools be used to attack other cases of
known relations, such as implicit linear relations or explicit non-linear relations?

Acknowledgements

Special thanks go to Gideon Yuval who suggested looking into divided differ-
ences, and to Peter Montgomery who made numerous valuable suggestions and
corrections. We also thank Don Coppersmith, Kamal Jain, Adi Shamir, and
Venkie (Ramarathnam Venkatesan), for helpful discussions on earlier applica-
tions of the finite difference technique. Finally, we thank PKC’05 reviewers who
made valuable suggestions that improved this paper.

8 Oded Yacobi and Yacov Yacobi

References

1. Aho Hopcroft and Ullman: “The Design and Analysis of Computer Algorithms”,
Addison Wesley, 1974, ISBN 0-201-00029-6.

2. D. Boneh: “Twenty Years of Attacks on the RSA Cryptosystem”, in Notices of the
American Mathematical Society (AMS), Vol. 46, No. 2, pp. 203-213, 1999.

3. M. Bellare and P. Rogaway: “Optimal asymmetric encryption”, Eurocrypt’94: 92-
111.

4. Don Coppersmith, Matthew Franklin, Jacques Patarin, Michael Reiter: “Low-
Exponent RSA with related Messages”, Proc. of Eurocrypt’96, LNCS 1070, pp.
1-9.

5. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern: “RSA-OAEP Is Secure Under the
RSA Assumption”, J. Crypt. Vo. 17, No.2, March’04, pp. 81-104 (Springer Verlag).

6. Ronald Rivest, Adi Shamir, Leonard M. Adleman: “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, CACM 21(2): 120-126 (1978).

7. Volkov, E.A., “Numerical Methods”. New York: Hemisphere Publishing Corpora-
tion, pp.48, 1987.

8. Whittaker, E. T. and Robinson, “The Calculus of Observations: A Treatise on Nu-
merical Mathematics”, 4th ed. New York: Dover, pp. 20-24, 1967.

Appendix: The Complexity of the Pre-processing

The following algorithm, due to Peter Montgomery, computes the pre-processing
phase of Algorithm 1 in O(e log? e) time. We currently do not know of a better

algorithm for the general case.
e—1

For k =0, ...e— 1, we need to compute p = 7}, (y) = H(bk —b;). We use the
iz
observation stated before Formula (1). The algorithm proceeds as follows (time
complexity for each step is included in the brackets):
e—1
1. Expand the formal polynomial 7(y) = [] (v — ;) in indeterminate variable
i=0
y (O(elog? €),as explained below).
2. Compute the formal derivative of w(y) (O(e)).
3. Simultaneously evaluate the value of the derivative in the given points b;, i =
0,1,...e — 1 (O(elog®e), see [1] pp. 294, Corollary 2).

Expanding step (1) above:

Suppose we have a polynomial multiplication algorithm that works in time
O(nlogn), where n is the degree of the polynomials. Multiply pairs (there are
n/2 many pairs). Then multiply the resulting n/4 pairs at cost O(2log2) each.
And so on. There are log e many levels. Let e = 2*. The total cost is e Ef:oi =
O(elog®e).

Note that if the b; happen to be some powers of one primitive ny;, root of
unity, w € Zy, then we can use DFT in O(nlogn). However, for arbitrary b}s
chances to have this condition with n = O(e) are negligible.

Breaking a Cryptographic Protocol
with Pseudoprimes

Daniel Bleichenbacher

Bell Labs, Lucent Technologies

Abstract. The Miller-Rabin pseudo primality test is widely used in
cryptographic libraries, because of its apparent simplicity. But the test is
not always correctly implemented. For example the pseudo primality test
in GNU Crypto 1.1.0 uses a fixed set of bases. This paper shows how this
flaw can be exploited to break the SRP implementation in GNU Crypto.
The attack is demonstrated by explicitly constructing pseudoprimes that
satisfy the parameter checks in SRP and that allow a dictionary attack.
This dictionary attack would not be possible if the pseudo primality test
were correctly implemented.

Often important details are overlooked in implementations of cryptographic pro-
tocols until specific attacks have been demonstrated. The goal of the paper is to
demonstrate the need to implement pseudo primality tests carefully. This is done
by describing a concrete attack against GNU Crypto 1.1.0. The pseudo primality
test of this library is incorrect. It performs a trial division and a Miller-Rabin
test with a fixed set of bases. Because the bases are known in advance an attacker
can find composite numbers that pass the primality test with probability 1. A
protocol implemented in GNU Crypto that requires a reliable primality test is
SRP. The security of SRP depends on a group for which computing DL is hard.
In SRP the server chooses the group parameters and sends them to the client.
It is then important that the client verifies that computing DLs in the chosen
group is indeed hard. Otherwise, the client could expose his password to a dic-
tionary attack. This paper shows that the flaw in the GNU Crypto primality
test indeed weakens the SRP implementation by explicitly constructing weak
parameters for SRP. The weakness would not exist if a reliable primality test
were implemented.

1 The Miller-Rabin Pseudo-primality Test

A well-known Theorem by Fermat states that if n is a prime and b is coprime
to n then
" '=1 (mod n) (1)

Hence if Equation (1) is not satisfied for a pair (b,n) that is coprime then n is
composite. Unfortunately, there also exist pairs (b, n) that satisfy Equation (1),
but where n is composite. Composite numbers n that satisfy Equation (1) for all
b coprime to n are called Carmichael numbers. Korselt proposed the following
criterion for such numbers [7].

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 9-15, 2005.
© International Association for Cryptologic Research 2005

10 Daniel Bleichenbacher

Korselt’s Criterion. A composite number n is a Carmichael number if and
only if n is squarefree and all prime divisors p of n satisfy

p—1n—1.

Because of the existence of Carmichael numbers [4] Equation (1) alone cannot
be used to distinguish composites from primes. Miller and Rabin proposed a
stronger test based on the following observation. Let n be an odd integer and
write n = 42" + 1 with v odd. Then for every odd prime n and every base
1 < b < n one of the following two conditions is satisfied:

b =1 (mod n) (2)
or there exists 0 < i < v such that
b2 = 1 (mod n) (3)

A composite n is called a strong pseudoprime for the base b if one of the condi-
tions is satisfied. Rabin showed that if n is composite n is a strong pseudoprime
for less than n/4 bases b € [2,n — 1] [10]. Thus any composite number n can
be recognized as composite with probability at least 1 — (1/4)* by selecting k
random bases and testing whether n fails the test for at least one base.
Damgard, Landrock, and Pomerance prove a bound much lower than (1/4)*
on the average probability that a composite number passes a Miller-Rabin test
with & bases [5]. This result, however, cannot be applied in cryptographic proto-
cols for a parameter verification. If a party has to verify that a received integer is
prime, then the party should assume the worst case, i.e., that the integer might
have been chosen to maximize the probability of passing a Miller-Rabin test.

2 SRP

GNU Crypto implements SRP-6 [11]. The goal of the SRP protocol is to avoid
offline dictionary attacks and thus increase the security of password based au-
thentications in the case that the clients password has not much entropy. In
particular, a server that does not know the clients password or a value v, which
is derived from it should only be able to confirm or reject one password guess
per login. This section reviews one version of the SRP protocol and describes
why it is important that the client performs a proper parameter verification in
step 2.

Client Server
1. L, (lookup s, v, g, N)
2. (verify g, N) N
xz =H(s, I, P)
3. (choose random a) (choose random b)
4. A =g% mod N i>B:31}-‘,-gl’1r1r1::)dN
5. u=H(A, B) L w=H(A, B
6. S = (B—3¢g%)*T"" mod N S = (Av*)® mod N
M
7. My = H(A, B, S) =L (verify M)
M,
8. (verify My) —2 M, = H(A, My, S)
9. K = H(S) K = H(S)

Breaking a Cryptographic Protocol with Pseudoprimes 11

In step 1 the client sends its identity I to the server and the server looks up the
corresponding values s, v, g, N, where s is a salt value, g is a generator of ZZ /(N)*
and v is encryption of the clients password defined by v = ¢g"(*/-") mod N.

In step 2 s and optional g and N are sent to the client. The client must verify
that N is a strong prime > 2°!2 i.e. N and (N — 1)/2 are both prime and that
g has order N — 1 in ZZ/(N)*.

In step 3 both client and server choose some random values a and b respec-
tively and derive two values A and B, which are then exchanged in step 4 and
5. Both server and client can now compute a mutual secret S. This value S is
subsequently used for a mutual authentication in step 7 and 8.

An outsider, or even a malicious server not knowing v should not be able to
verify the correctness of a guessed password P from the values observed during
a protocol run.

Attacking SRP with Bogus Parameters. MacKenzie noticed that Tom Wu’s SRP
implementations before version 1.6.0 are susceptible to an offline dictionary at-
tack [8]. In particular, MacKenzie noticed that while the SRP documentation
requires that N and (N — 1)/2 are primes the implementation does not perform
any primality checks when a client receives new parameters from a server. But
these checks are crucial for the protocol.

If an attacker posing as a server is able to submit parameters g, N, such that
computing the discrete logarithm of ¢* mod N is computable then the following
attack is possible.

Client Attacker
1. BRI (select s, g, N)
2. (verify g, N) SN

xz =H(s, I, P)
3. (choose random a)
4. A =g® mod N A, (choose any B)
5.u=H(A, B) L w=H(A, B)
6. S = (B —3¢g")*""* mod N

M

7. M, = H(A, B, S) =L (abort)

Hence after aborting the protocol in step 7 the attacker has now enough in-
formation for an offline dictionary attack. SRP was designed to prevent such
attacks. From the assumption that DLs mod N are computable follows that the
server can compute a such that g = A mod N. Now, the attacker can perform
an offline dictionary attack by first guessing P’, computing 2’ = H(s, I, P) and
S" = (B — 3¢")*t"* mod N. Finally if H(A, B,S’) equals M; then P’ is likely
the client’s password.

3 GNU Crypto

An analysis of the primality test in GNU Crypto 1.1.0 shows a serious flaw.
The primality test, first performs a trial division test and then calls the routine

12 Daniel Bleichenbacher

gnu.util.prime.passEulerCriterion. This routine is a Miller-Rabin with the
primes up to 41 as bases. Since the bases are fixed it is possible to find counter
examples that pass the test with probability 1.

4 Constructing Pseudoprimes

Requirements. Composite numbers that pass the GNU Crypto 1.1.0 primality
test are well known. For example Arnault has previously constructed a composite
337 digit number that is a strong pseudoprime for the 200 smallest prime bases
[3]. The construction that Arnault used generates integers that are the product of
asmall (i.e. 2 or 3) number of large primes. While these number would incorrectly
pass the parameter checks they cannot be used to break SRP.

The goal of this paper is to find parameters that pass the checks for the SRP
in GNU Cryptos implementation and allow a server to find a users password. This
requires to construct a triple (g, N, ¢) such that computing discrete logarithms
of g¢* (mod N) is easy, N = 2¢ + 1 > 2512 both N and ¢ pass the primality
test, N > 252 and ¢? = —1 (mod N).

The construction given in this paper constructs g such that it is the product
of small primes. Then computing DLs modulo N = 2¢ + 1 is easy, because the
algorithm by Pohlig and Hellman [9] can be applied.

Description of the Method. The method used here is based on an idea by Erdos [6]
to estimate the distribution of Carmichael numbers. Erdds suggested to construct
Carmichael numbers as follows. First choose an even integer M that has many
divisors. Let R be the set of primes r such that » — 1 is a divisor of M. If a
subset T' C R can be found such that

C=Hr51 (mod M), (4)

reT

then C' is a Carmichael number, because C' satisfies Korselt’s criterion. One can
hope to find such sets T" if R contains more than about log, M primes.

Erdos estimates were only heuristic. But Alford, Granville and Pomerance
extended his idea and were able to prove that there exist infinitively many
Carmichael numbers [2]. The main difficulty of this proof was to show that
for suitably chosen integers M the corresponding set of primes R is large enough
to guarantee that Equation 4 can be solved for a subset T' C R.

Additionally, a Carmichael number C is a strong pseudoprime for a base b if
the order of b modulo r is divisible by the same power of 2 for all primes factors
r of C. If all prime factors r are congruent 3 modulo 4 then this condition is
satisfied when b is a quadratic residue modulo either all prime factors r or none
at all, because in that case the order of b modulo r is either even or odd for all
r. In particular, it is possible to construct a Carmichael number that is strong
pseudoprime for a set of bases B as follows: Choose a suitable integer M. Then
find a set R of primes, such that for all bases b; € B there exists ¢; € {—1,1}
with (br) = ¢; for all r € R. Finally, find a subset 7" C R can be found that
satisfies Equation 4.

Breaking a Cryptographic Protocol with Pseudoprimes 13

The results by Alford, Granville and Pomerance are strong enough to show
that even under these restrictions large enough sets R can be found. In particular,
they showed the existence of infinitively many counter examples to a Miller-
Rabin test with a fixed set of bases [1].

To pass the parameter checks in GNU Crypto the pseudoprime C' needs
the additional property that 2C' + 1 is prime or pseudoprime. Because of this
additional property it appears difficult to prove the existence of counter examples
for arbitrary sets of bases.

However, the goal of this paper is to construct a pseudoprime for a given set
of bases only, i.e. the set B = {2,3,5,7,11,13,17,19,23,29,31,37,41} that is
used in GNU Crypto. To do so let

M=2-5.72.112-13-17-19-23-29-31-37-41 - 61.
Next a set R of all integers r satisfying

256 < 1 < 290,
r—11] M,

r is prime,

r

(bi) =¢; forall 1 <i<13,

where the pairs (b;, ¢;) are defined as follows:

112345 6 7 8 910111213
b; 2357 111317192329 313741
c-111-1-111-1-11-111

The values ¢; should are chosen in such a way that (lzj) = ¢; is possible for
primes 7 =1 (mod b;). The set R can be found efficiently, by first constructing
all divisors d of M and checking if r = d + 1 satisfies the remaining conditions.

The set of integers satisfying all these conditions contains 64 primes R =
{r1,...764}. Next find subsets T' C R with at least 2 elements satisfying Equa-
tion 4, i.e., [[,crm =1 (mod M). These subsets T' can be found using a meet-
in-the-middle approach. L.e., R is divided into two distinct subsets k1 and Rs.
The values ([, 7, r)~t mod M are precomputed for all 77 C R and stored in a
table. Then for all T5 C Rs the value HT€T2 r mod M is computed. If this value
is contained in the table then set T'=T; UT5 and C = HTGT r. If furthermore
N =2C + 1 is prime and N > 2°'2 then N passes the parameter test for SRP
in GNU Crypto. This is shown in the next paragraph.

Correctness of the Construction. Since N is prime it remains to show that C
passes the primality test. The assumption 256 < r implies that no prime factor
of C is found during the trial division test. Thus it is sufficient to show that C'
is a strong pseudoprime for the bases b; where 1 <7 < 13.

Since r — 1 divides M and C =1 (mod M) it follows that r» — 1 divides
C —1 for all prime factors r of C. Thus by Korselt’s criterion C' is a Carmichael

14 Daniel Bleichenbacher

number [7]. Because of (?) = —1 we have r =3 (mod 4) for all primes factor
r of C'. Moreover, from (l;) = ¢; for all 1 < i < 13 follows that b; is either a
quadratic residue for all prime factors r or a quadratic nonresidue for all prime
factors r. Hence it follows that C' is a strong pseudoprime for the base b;.

Results. An implementation of the algorithm needed less than 10 days on a 250
MHz CPU to find about 30 examples that pass the parameter checks in GNU
crypto. One example is the 1095 bit number

C' = 398462957079251-28278016308851-268974870654491-1239515532971-
12941222544251-2825874899-182200861571-480965007251-8028415890251 -
761874633627251-10326412038251-105324823451-7128348371-29542620251-
251906132167691-64654312451-226698699371-130685132579-9167201891-
432876391197251-3077983389251-17767646051-9371850251-954045342251-
112810627931 - 6297653304192251 - 20842025454251

5 GNU Crypto 2.0.1

The authors of GNU Crypto were informed in January 2004 about the flaws in
the primality test. Most of the problems have been fixed in version 2.0.1. How-
ever, an analysis of the source code reveals that GNU Crypto implementation
of SRP still calls the function gnu.util.prime.passEulerCriterion and that
this function has not been changed. Therefore the attack presented in this paper
still exists more than 8 month after the authors have been notified. The next
implementation error can be found just 2 lines later where SRP accepts g = —1
(mod N) as a generator of ZZ/(N)* allowing a simple impersonation attack.
Consequently, I do not recommend the use of GNU Crypto.

6 Proposed Parameter Verification for SRP

To verify that N > 25!2 is a safe prime (that is both N and ¢ = (N — 1)/2 are
prime) and g is a generator of ZZ/(N)* with an error probaility < 272* one can
perform the following tests:

— Check N > 2°12,
— Test the primality of ¢ with k£ rounds of Miller-Rabin with random bases.
— Test that 1 <g <N —1and g¢?=—-1 (mod N).

The k rounds of Miller-Rabin guarantee that a composite ¢ is detected with a
probability > 1—272%. Assuming that ¢ is indeed prime g? = —1 (mod N) now
implies that the order of ¢ modulo N is even and divides 2¢. Hence the order
is either 2 or 2¢. But ¢g> =1 (mod N) would imply g = g¢ = —1 (mod N)
which is impossible because of 1 < g < N — 1. Thus the order of g must be 2¢
and N = 2¢ + 1 must be prime. Hence no primality test for IV is needed here.

Breaking a Cryptographic Protocol with Pseudoprimes 15

References

1.

10.

11.

W. R. Alford, A. Granville, and C. Pomerance. On the difficulty of finding reliable
witnesses. In Algorithmic number theory, volume 877 of Lecture Notes in Computer
Science, pages 1-16, Berlin, 1994. Springer Verlag.

W. R. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Annals of Mathematics, 140(3):703-722, 1994.

. F. Arnault. Rabin-Miller primality test: Composite numbers which pass it. Math-

ematics of Computation, 64(209):355-361, Jan. 1995.

R. D. Carmichael. On composite numbers P which satisfy the Fermat congruence
af~' =1 mod P. American Math. Monthly,, 19:22-27, 1912.

I. Damgard, P. Landrock, and C. Pomerance. Average case error estimates for the
strong probable prime test. Mathematics of Computation, 61(203):177-194, 1993.
P. Erdos. On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen, 4:201—
206, 1956.

A. Korselt. Probleme chinois. L’intermédiaire des mathématiciens, 6:142-143,
1899.

P. MacKenzie. Personal communications.

S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory, IT-
24:106-110, Jan. 1978.

M. Rabin. Probabilistic algorithms for testing primality. J. Number Theory, 12:128—
138, 1980.

T. Wu. SRP-6: Improvements and refinements to the secure remote password pro-
tocol. http://srp.stanford.edu/doc.html, Oct. 2002.

Experimenting with Faults, Lattices and the DSA

David Naccache?*, Phong Q. Nguyéen®*,
Michael Tunstall>#, and Claire Whelan®**

! Gemplus Card International, Applied Research & Security Centre,
34 rue Guynemer, Issy-les-Moulineaux, F-92447, France
david.naccache@gemplus.com
2 Royal Holloway, University of London, Information Security Group,
Egham, Surrey TW20 0EX, UK
david.naccache@rhul.ac.uk
3 CNRS / Ecole normale supérieure, Département d’Informatique,
45 rue d’Ulm, F-75230 Paris Cedex 05, France
Phong.Nguyen@di.ens.fr
http://wuw.di.ens.fr/ pnguyen
4 Gemplus Card International, Applied Research & Security Centre,
Avenue des Jujubiers, La Ciotat, F-13705, France
michael.tunstall@gemplus.com
5 School of Computing, Dublin City University,
Ballymun, Dublin 9, Ireland
cwhelan@computing.dcu.ie

Abstract. We present an attack on DSA smart-cards which combines
physical fault injection and lattice reduction techniques. This seems to be
the first (publicly reported) physical experiment allowing to concretely
pull-out DSA keys out of smart-cards. We employ a particular type of
fault attack known as a glitch attack, which will be used to actively
modify the DSA nonce k used for generating the signature: k will be
tampered with so that a number of its least significant bytes will flip
to zero. Then we apply well-known lattice attacks on El Gamal-type
signatures which can recover the private key, given sufficiently many
signatures such that a few bits of each corresponding k are known. In
practice, when one byte of each k is zeroed, 27 signatures are sufficient
to disclose the private key. The more bytes of k we can reset, the fewer
signatures will be required. This paper presents the theory, methodology
and results of the attack as well as possible countermeasures.

Keywords: DSA, fault injection, glitch attacks, lattice reduction.

* The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

** Supported by the Irish Research Council for Science, Engineering and Technology
(IRCSET).

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 1628, 2005.
© International Association for Cryptologic Research 2005

Experimenting with Faults, Lattices and the DSA 17

1 Introduction

Over the past few years fault attacks on electronic chips have been investigated
and developed. The theory developed was used to challenge public key cryp-
tosystems [4] and symmetric ciphers in both block [3] and stream [8] modes.

The discovery of fault attacks (1970s) was accidental. It was noticed that
elements naturally present in packaging material of semiconductors produced
radioactive particles which in turn caused errors in chips [11]. These elements,
while only present in extremely minute parts (two or three parts per million),
were sufficient to affect the chips’ behaviour, create a charge in sensitive silicon
areas and, as a result, cause bits to flip. Since then various mechanisms for fault
creation and propagation have been discovered and researched. Diverse research
organisations such as the aerospace industry and the security community have
endeavoured to develop different types of fault injection techniques and devise
corresponding preventative methods. Some of the most popular fault injection
techniques include variations in supply voltage, clock frequency, temperature or
the use of white light, X-ray and ion beams.

The objectives of all these techniques is generally the same: corrupt the
chip’s behaviour. The outcomes have been categorised into two main groups
based on the long term effect that the fault produced. These are known as
permanent and transient faults. Permanent faults, created by purposely inflicted
defects to the chip’s structure, have a permanent effect. Once inflicted, such
destructions will affect the chip’s behavior permanently. In a transient fault,
silicon is locally ionized so as to induce a current that, when strong enough, is
falsely interpreted by the circuit as an internal signal. As ionization ceases so
does the induced current (and the resulting faulty signal) and the chip recovers
its normal behavior.

Preventive measures come in the form of software and hardware protections
(the most cost-effective solution being usually a combination of both). Current
research is also looking into fault detection where, at stages through the exe-
cution of the algorithm, checks are performed to see whether a fault has been
induced [10]. For a survey of the different types of fault injection techniques
and the various software and hardware countermeasures that exist, we refer the
reader to [2].

In this paper we will focus on a type of fault attack known as a glitch attack.
Glitch attacks use transient faults where the attacker deliberately generates a
voltage spike that causes one or more flip-flops to transition into a wrong state.
Targets for insertion of such ‘glitches’ are generally machine instructions or data
values transferred between registers and memory. Results can include the replace-
ment of critical machine instructions by almost arbitrary ones or the corruption
of data values.

The strategy presented in this paper is the following: we will use a glitch
to reset some of the bytes of the nonce k, used during the generation of DSA
signatures. As the attack ceases, the system will remain fully functional. Then,
we will use classical lattice reduction techniques to extract the private signature
key from the resulting glitched signatures (which can pass the usual verification

18 David Naccache et al.

process). Such lattice attacks (introduced by Howgrave-Graham and Smart [9],
and improved by Nguyén and Shparlinski [14]) assume that a few bits of & are
known for sufficiently many signatures, without addressing how these bits could
be obtained. In [14], it was reported that in practice, the lattice attack required
as few as three bits of k, provided that about a hundred of such signatures were
available. Surprisingly, to the authors’ knowledge, no fault attack had previously
exploited those powerful lattice attacks.

The paper is organised as follows: In section 2 we will give a brief description
of DSA, we will also introduce the notations used throughout this paper. An
overview of the attack’s physical and mathematical parts will be given in section
3. In section 4 we will present the results of our attack while countermeasures
will be given in section 5.

Related Work: In [1] an attack against DSA is presented by Bao et al., this
attack is radically different from the one presented in this paper and no physical
implementation results are given. This attack was extended in [6] by Dottax.
In [7], Knudsen and Giraud introduce another fault attack on the DSA. Their
attack requires around 2300 signatures (i.e. 100 times more than the attack pre-
sented here). The merits of the present work are thus twofold: we present a
new (i.e. unrelated to [7,1,6]) efficient attack and describe what is, to the au-
thors’ best knowledge, the first (publicly reported) physical experiment allowing
to concretely pull-out DSA keys out of smart-cards. The present work shows
that the hypotheses made in the lattice attacks [9, 14] can be realistic in certain
environments.

2 Background

In this section we will give a brief description of the DSA.

2.1 DSA Signature and Verification

The system parameters for DSA [12] are {p, ¢, g}, where p is prime (at least 512
bits), ¢ is a 160-bit prime dividing p—1 and g € Z,, has order q. The private key
is an integer o € Z;; and the public key is the group element 3 = g% (mod p).

Signature: To sign a message m, the signer picks a random k < ¢ and computes:

SHA(m) + ar

p (mod ¢)

r— (¢* (modp)) (modgq) and s«
The signature of m is the pair: {r, s}.

Verification: To check {r, s} the verifier ascertains that:

r= (g“"B*" (mod p)) (mod q) where w «— ! (mod ¢) and h «— SHA(m)
s

Experimenting with Faults, Lattices and the DSA 19

3 Attack Overview

The attack on DSA proceeds as follows: we first generate several DSA signatures
where the random value generated for k& has been modified so that a few of k’s
least! significant bytes are reset?. This faulty k& will then be used by the card
to generate a (valid) DSA signature. Using lattice reduction, the secret key «
can be recovered from a collection of such signatures (see [14,9]). In this section
we will detail each of these stages in turn, showing first how we tamper with
k in a closed environment and then how we apply this technique to a complete
implementation.

3.1 Experimental Conditions

DSA was implemented on a chip known to be vulnerable to Vcc glitches. For
testing purposes (closed environment) we used a separate implementation for
the generation of k.

A 160-bit nonce is generated and compared to q. If kK > ¢ — 1 the nonce is
discarded and a new k is generated. This is done in order to ascertain that £ is
drawn uniformly in Zj (assuming that the source used for generating the nonce
is perfect). We present the code fragment (modified for simplicity) that we used
to generate k:

PutModulusInCopro(PrimeQ) ;
RandomGeneratorStart () ;

status = 0;
do {
I0peak();
for (i=0; i<PrimeQ[0]; i++) {
acCoproMessage[i+1] = ReadRandomByte() ;
}

I0peak();

acCoproMessage [0] = PrimeQ[0];
LoadDataToCopro (acCoproMessage) ;

status = 1;
for (j=0; j<(PrimeQ[0]+1); j++) {
if (acCoproResult[j] != acCoproMessagel[jl) {
status = 0;

}
}
}
while (status == 0);
RandomGeneratorStop() ;

1 Tt is also possible to run a similar attack by changing the most significant bytes of
k. This is determined by the implementation.
2 Tt would have also been possible to run a similar attack if these bytes were set to FF.

20 David Naccache et al.

Note that IOpeaks®, featured in the above code was also included in the
implementation of DSA. The purpose of this is to be able to easily identify the
code sections in which a fault can be injected to produce the desired effect. This
could have been done by monitoring power consumption but would have greatly
increased the complexity of the task.

The tools used to create the glitches can be seen in figure 1 and figure 2.
Figure 1 is a modified CLIO reader which is a specialised high precision reader
that allows one glitch to be introduced following any arbitrarily chosen number of
clock cycles after the command sent to the card. Figure 2 shows the experimental
set up of the CLIO reader with the oscilloscope used during our experiments. A
BNC connector is present on the CLIO reader which allows the I/O to be easily
read; another connector produces a signal when a glitch is applied (in this case
used as a trigger). Current is measured using a differential probe situated on top
of the CLIO reader.

Fig.1. A Modified CLIO Reader.

3.2 Generating a Faulty k

The command that generated k was attacked in every position between the two
I0peaks in the code. It was found that the fault did not affect the assignment of k
to the RAM i.e. the instruction acCoproMessage[i+1] = ReadRandomByte() ;
which always executed correctly. However, it was possible to change the evalua-
tion of 1 during the loop. This enabled us to select the number of least significant
bytes to be reset. In theory, this would produce the desired fault in k& with prob-
ability ¢/2'%0, as if the modified k happens to be larger than g, it is discarded

3 The I/O peak is a quick movement on the I/O from one to zero and back again.
This is visible on an oscilloscope but is ignored by the card reader.

Experimenting with Faults, Lattices and the DSA 21

Fig. 2. Experimental Set Up.

anyway. In practice this probability is likely to be lower as it is unusual for a
fault to work correctly every time.

An evaluation of a position that resetted the last two bytes was performed.
Out of 2000 attempts 857 were corrupted. This is significantly less than what
one would expect, as the theoretical probability is ~ 0.77. We expected the
practical results to perform worse than theory due to a slight variation in the
amount of time that the smart card takes to arrive at the position where the
data corruption is performed. There are other positions in the same area that
return k values with the same fault, but not as often.

3.3 The Attack: Glitching k& During DSA Computations

The position found was equated to the generation of k in the command that
generates the DSA signature. This was done by using the last I/O event at the
end of the command sent as a reference point and gave a rough position of where
the fault needs to be injected.

As changes in the value of k were not visible in the signature, results would
only be usable with a certain probability. This made the attack more complex,
as the subset signatures having faulty & values had to be guessed amongst those
acquired by exhaustive search.

To be able to identify the correct signatures the I/O and the current consump-
tion signals were monitored during the attacks. An example of such a monitoring
is given in figure 3. The object of these acquisitions was to measure the time T
elapsed between the end of the command sent to the card and the beginning of
the calculation of r. This can be seen in the current consumption, as the chip
will require more energy when the crypto-coprocessor is ignited. If we denote
by ¢ the time that it takes to reach the start of the calculation of r knowing
that the picked k was smaller that ¢ (i.e. that it was not necessary to restart

22 David Naccache et al.

Fig. 3. I/O and Current Consumption (Beginning of the Trace of the Command Used
to Generate Signatures).

the picking process) then, if T = ¢ we know that the command has executed
properly and that k was picked correctly the first time. If 7" > ¢ then any fault
targeting k£ would be a miss (as k was regenerated given that the value of k orig-
inally produced was greater than ¢). Signatures resulting from commands that
feature such running times can be discarded as the value of k£ will not present
any exploitable weaknesses. When T' < ¢ we know that the execution of the code
generating k has been cut short, so some of the least significant bytes will be
equal to zero. This allows signatures generated from corrupted k values to be
identified a posteriori.

As the position where the fault should be injected was only approximately
identified, glitches were injected in twenty different positions until a position
that produced signatures with the correct characteristics (as described above)
was found. The I/O peaks left in the code were used to confirm these results.
Once the correct position identified, more attacks were conducted at this position
to acquire a handful of signatures. From a total of 200 acquisitions 38 signatures
where T' < t were extracted.

This interpretation had to be done by a combination of the I/O and the
current consumption, as after the initial calculation involving k& the command
no longer takes the same amount of time. This is because 0 < k < g and therefore
k does not have a fixed size; consequently any calculations k is involved in will
not always take the same amount of time.

3.4 Use of Lattice Reduction to Retrieve «

We are now in a position to apply the well-known lattice attacks of [9, 14] on El
Gamal-type signature schemes: given many DSA signatures for which a few bits

Experimenting with Faults, Lattices and the DSA 23

of the corresponding k are known, such attacks recover the DSA signer’s private
key. In our case, these known bits are in fact 0 bits, but that does not matter for
the lattice attack. We recall how the lattice attacks work, using the presentation
of Nguyén and Shparlinski [14]. Roughly speaking, lattice attacks focus on the

linear part of DSA, that is, they exploit the congruence s « SHA(;")tar (mod gq)
used in the signature generation, not the other congruence r < (g* (mod p))
(mod ¢) which is related to a discrete log problem. When no information on k is
available, the congruence reveals nothing, but if partial information is available,
each congruence discloses something about the private key a: by collecting suffi-
ciently many signatures, there will be enough information to recover a. If ¢ bits
of k are known for a certain number of signatures, we expect that about 160/¢
signatures will suffice to recover «.. Here is a detailed description of the attack.

For a rational number z and m > 1 we denote by | 2|, the unique integer a,
0 <a <m—1such that a = z (mod m) (provided that the denominator of z
is relatively prime to m). The symbol |.|, is defined as |z|, = minye z |z — bg| for
any real z.

Assume that we know the ¢ least significant bits of a nonce k € {0,...,q—1}
which will be used to generate a DSA signature (for the case of other bits, like
most significant bits or bits in the middle, see [14]).

That is, we are given an integer a such that 0 < a < 26 —1Tand k —a = 2%
for some integer b > 0. Given a message m (whose SHA hash is h) signed with
the nonce k, the congruence

ar = sk —h (mod q),
can be rewritten for s # 0 as:
ar2 st =(a—s'h)27+b (mod q). (1)
Now define the following two elements
t= {2_érs_1Jq
u= L2_é(a —s7'h)]

)

q
and remark that both ¢ and u can easily be computed by the attacker from the
publicly known information. Recalling that 0 < b < q/2¢, we obtain
¢
0<|at—ul, <q/2"
And therefore:
|at—u—q/2e+1|q Sq/2£+1. (2)

Thus, the attacker knows an integer ¢ and a rational number v = u + ¢q/2¢+!
such that:
lat —vlg < q/21.

In some sense, we know an approximation of at modulo q. Now, suppose we can
repeat this for many signatures, that is, we know d DSA signatures {r;, s;} of

24 David Naccache et al.

hashes h; (where 1 < i < d) such that we know the ¢ least significant bits of the
corresponding nonce k;. From the previous reasoning, the attacker can compute
integers t; and rational numbers v; such that:

lat; —vilg < q/2"

The goal of the attacker is to recover the DSA private key a. This problem is
very similar to the so-called hidden number problem introduced by Boneh and
Venkatesan in [5]. In [5, 14], the problem is solved by transforming it into a lattice
closest vector problem (for background on lattice theory and its applications to
cryptography, we refer the reader to the survey [16]; a similar technique was
recently used in [13]).

More precisely, consider the (d + 1)-dimensional lattice L spanned by the
rows of the following matrix:

g 0 -0 0
0 ¢q :

SR 3)
0 0 g O

toen o tg 1/2¢F1

The inequality |v; — at;|q < q/ 241 implies the existence of an integer ¢; such
that:
lvi — at; — qe;| < q/2° (4)

Notice that the row vector ¢ = (aty + qci, ..., atqg + qcq, /271 belongs to L,
since it can be obtained by multiplying the last row vector by « and then sub-
tracting appropriate multiples of the first d row vectors. Since the last coordinate
of this vector discloses the hidden number «, we call ¢ the hidden vector. The
hidden vector is very close to the (publicly known) row vector v = (v1,...,v4,0).
By trying to find the closest vector to v in the lattice L, one can thus hope to
find the hidden vector ¢ and therefore the private key . The article [14] presents
provable attacks of this kind, and explains how the attack can be extended to
bits at other positions. Such attacks apply to DSA but also to any El Gamal-type
signature scheme (see for instance [15] for the case of ECDSA).

In our case, we simply build the previously mentioned lattice and the target
vector v, and we try to solve the closest vector problem with respect to v, using
the so-called embedding technique that heuristically reduces the lattice closest
vector problem to the shortest vector problem (see [14] for more details). From
each close vector candidate, we derive a candidate y for a from its last coordinate,
and we check that the public key satisfies 8 = g¥ (mod p).

4 Results

As already mentioned in Section 3.3, using a glitch attack, we were able to gen-
erate 38 DSA signatures such that the least significant byte of the corresponding

Experimenting with Faults, Lattices and the DSA 25

k was expected to be zero. Next, we applied the lattice attack of Section 3.4,
using NTL’s [18] implementation of Schnorr-Euchner’s BKZ algorithm [17] with
block size 20 as our lattice basis reduction algorithm. Out of the 38 signatures,
we picked 30 at random to launch the lattice attack, and those turned out to
be enough to disclose the DSA private key « after a few seconds on an Apple
PowerBook G4. We only took 30 because we guessed from past experiments that
30 should be well sufficient.

Table 1. Experimental Attack Success Rates: n is the Number of Bytes Reset in k,
and d is the Number of Signatures.

Number d of Signatures

nl| 2 3 4 5 6 7 8 10 11 12 22 23 24 25 26 27
1 0% 10% 39% 63% 87% 100%
2 0% 69% 100%

3 0% 69% 100%

4 0% 100%

5 0% 2% 100%

6 0% 100%

7 0% 96% 100%
10 6% 100%
11 100%

To estimate more precisely the efficiency of the lattice attack, we computed
success rates, by running the attack 100 times with different parameters. Results
can be seen in Table 1. Because the number of signatures is small, the lattice
dimension is relatively small, which makes the running time of the lattice attack
negligible: for instance, on an Apple PowerBook G4, the lattice attack takes
about 1 second for 25 signatures, and 20 seconds for 38 signatures. Table 1
shows how many signatures are required in practice to make the lattice attack
work, depending on the number of least significant bytes reset in k. Naturally,
there will be a tradeoff between the fault injection and the lattice reduction:
when generating signatures with nonces with more reset bytes, the lattice phase
of the attack will require less signatures. When only one signature is available,
the lattice attack cannot work because there is not enough information in the
single congruence used. However, if ever that signature is such that k has a
large proportion of zero bytes, it might be possible to compute k by exhaustive
search (using the congruence «— (g% (mod p)) (mod ¢)), and then recover a.
From Table 1, we see that when two signatures are available, the lattice attack
starts working when 11 bytes are reset in each k. When only one byte is reset in
k, the lattice attack starts working (with non-negligible probability) with only
23 signatures.

It should be stressed that the lattice attack does not tolerate mistakes. For
instance, 27 signatures with a single byte reset in k£ are enough to make the
attack successful. But the attack will not work if for one of those 27 signatures,
k has no reset bytes. It is therefore important that the signatures input to the
lattice attack satisfy the assumption about the number of reset bytes. Hence,
if ever one is able to obtain many signatures such that the corresponding & is

26 David Naccache et al.

expected (but not necessarily all the time) to have a certain number of reset
bytes, then one should not input all the signatures to the lattice attack. Instead,
one should pick at random a certain number of signatures from the whole set
of available signatures, and launch the lattice attack on this smaller number of
signatures: Table 1 can be used to select the minimal number of signatures that
will make the lattice attack successful. This leads to a combination of exhaustive
search and lattice reduction.

5 Countermeasures

The heart of this attack lies with the ability to induce faults that reset some of
k’s bits. Hence, any strategy allowing to avoid or detect such anomalies will help
thwart the attacks described in this paper. Note that checking the validity of
the signature after generation will not help, contrary to the case of fault attacks
on RSA signatures [4]: the faulty DSA signatures used here are valid signatures
which will pass the verification process. We recommend to use simultaneously
the following tricks that cost very little in terms of code-size and speed:

— Checksums can be implemented in software. This is often complementary
to hardware checksums, as software CRCs can be applied to buffers of data
(sometimes fragmented over various physical addresses) rather than machine
words.

— Execution Randomization: If the order in which operations in an algorithm
are executed is randomized it becomes difficult to predict what the machine
is doing at any given cycle. For most fault attacks this countermeasure will
only slow down a determined adversary, as eventually a fault will hit the
desired instruction. This will however thwart attacks that require faults in
specific places or in a specific order.

For instance, to copy 256 bytes from buffer a to buffer b, copy

blf(1)] « a[f(@)] for i=0,...,255

where f(i) = (zx (i®w)+y (mod 256))® z and {z,y, z, w} are four random
bytes (z odd) unknown to the attacker.

— Ratification Counters and Baits: baits are small (< 10 byte) code fragments
that perform an operation and test its result. A typical bait writes, reads
and compares data, performs xors, additions, multiplications and other op-
erations whose results can be easily checked. When a bait detects an error
it increments an NVM counter and when this counter exceeds a tolerance
limit (usually three) the card ceased to function.

— Repeated Refreshments: refresh k by generating several nonces and exclusive-
or them with each other, separating each nonce generation from the previous
by a random delay. This forces the attacker to inject multiple faults at ran-
domly shifting time windows in order to reset specific bits of k.

Finally, it may also be possible to have a real time testing of the random num-
bers being generated by the smart card, such as that proposed in the FIPS140-2.

Experimenting with Faults, Lattices and the DSA 27

However, even if this is practical it may be of limited use as our attack requires
very few signatures to be successful. Consequently, our attack may well be com-
plete before it gets detected.

What is very important is that no information on k is leaked, and that k is
cryptographically random.

6 Conclusion

We described a method for attacking a DSA smart card vulnerable to fault
attacks. Similar attacks can be mounted on any other El Gamal-type signature
scheme, such as ECDSA and Schnorr’s signature. The attack consisted of two
stages. The first stage dealt with fault injection. The second involved forming a
lattice for the data gathered in the previous stage and solving a closest vector
problem to reveal the secret key.

The attack was realised in the space of a couple of weeks and was made
easier by the inclusion of peaks on the I/O. This information could have been
derived by using power or electromagnetic analysis to locate the target area, but
would have taken significantly longer. The only power analysis done during this
attack was to note when the crypto-coprocessor started to calculate a modular
exponentiation.

References

1. F. Bao, R. Deng, Y Han, A. Jeng, A. Narasimhalu and T. Hgair, Breaking Public
Key Cryptosystems and Tamper Resistant Devices in the Presence of Transient
Faults, 5-th Security Protocols Workshop, Springer-Verlag, LNCS 1361, pp. 115—
124, 1997.

2. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall and C. Whelan, The Sorcerers
Apprentice Guide to Fault Attacks, Workshop on Fault Diagnosis and Tolerence
in Cryptography in association with DSN 2004 — The International Conference on
Dependable Systems and Networks, pp. 330-342, 2004.

3. E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
Advances in Cryptology - CRYPTO’97, Springer-Verlag, LNCS 1294, pp. 513-525,
1997.

4. D. Boneh, R. DeMillo and R. Lipton, On the Importance of Checking Crypto-
graphic Protocols for Faults, Journal of Cryptology, Springer-Verlag, nol. 14, no.
2, pp. 101-119, 2001.

5. D. Boneh and R. Venkatesan, Hardness of Computing the Most Significant Bits
of Secret Keys in Diffie-Hellman and Related Schemes, Advances in Cryptology —
CRYPTO’96, Springer-Verlag, LNCS 1109, pp. 126-142, 1996.

6. E. Dottax, Fault Attacks on NESSIE Signature and Identification Schemes,
NESSIE Technical Report, October 2002.

7. C. Giraud and E. Knudsen, Fault Attacks on Signature Schemes, Workshop on
Fault Diagnosis and Tolerence in Cryptography in association with DSN 2004 —
The International Conference on Dependable Systems and Networks, 2004.

8. J. Hoch and A. Shamir, Fault Analysis of Stream Ciphers, Cryptographic Hardware
and Embedded Systems — CHES 2004, Springer-Verlag, LNCS 3156, pp. 240-253,
2004.

28

10.

11.

12.

13.

14.

15.

16.

17.

18

David Naccache et al.

N.A. Howgrave-Graham and N.P. Smart, Lattice Attacks on Digital Signature
Schemes, Design, Codes and Cryptography, vol. 23, pp. 283-290, 2001.

N. Joshi, K. Wu and R. Karri, Concurrent Error Detection Schemes for involution
Ciphers, Cryptographic Hardware and Embedded Systems — CHES 2004, Springer-
Verlag, LNCS 3156, pp. 400-412, 2004.

T. May and M. Woods, A New Physical Mechanism for Soft Errors in Dynamic
Memories, Proceedings of the 16-th International Reliability Physics Symposium,
April, 1978.

National Institute of Standards and Technology, FIPS PUB 186-2: Digital Signa-
ture Standard, 2000.

P.Q. Nguyén, Can we trust Cryptographic Software? Cryptographic Flaws in GNU
Privacy Guard v1.2.3, Advances in Cryptology — EUROCRYPT 2004, Springer-
Verlag, LNCS 3027, pp. 555-570, 2004.

P.Q. Nguyén and I.E. Shparlinski, The Insecurity of the Digital Signature Algo-
rithm with Partially Known Nonces, Journal of Cryptology, vol. 15, no. 3, pp.
151-176, Springer, 2002.

P.Q. Nguyén and I.E. Shparlinski, The Insecurity of the Elliptic Curve Digital Sig-
nature Algorithm with Partially Known Nonces, Design, Codes and Cryptography,
vol. 30, pp. 201-217, 2003.

P.Q. Nguyén and J. Stern, The two faces of lattices in cryptology, Cryptography
and Lattices — CALC’01), Springer-Verlag, LNCS 2146, pp. 146-180, 2001.

C.P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems, Math. Programming, vol. 66, pp. 181-199,
1994.

V. Shoup, Number Theory C++ Library (NTL), http://www.shoup.net/ntl/

Securing RSA-KEM via the AES

Jakob Jonsson! and Matthew J.B. Robshaw?

! Department of Mathematics, KTH
SE-100 44 Stockholm, Sweden
jakobj@math.kth.se
2 Information Security Group,
Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, UK

m.robshaw@rhul.ac.uk

Abstract. RSA-KEM is a popular key encapsulation mechanism that
combines the RSA trapdoor permutation with a key derivation function
(KDF). Often the details of the KDF are viewed as orthogonal to the
RSA-KEM construction and the RSA-KEM proof of security models the
KDF as a random oracle. In this paper we present an AES-based KDF
that has been explicitly designed so that we can appeal to currently held
views on the ideal behaviour of the AES when proving the security of
RSA-KEM. Thus, assuming that encryption with the AES provides a
permutation of 128-bit input blocks that is chosen uniformily at ran-
dom for each key k, the security of RSA-KEM against chosen-ciphertext
attacks can be related to the hardness of inverting RSA.

Keywords: RSA-KEM, AES, key derivation function.

1 Introduction

The RSA [16] public key cryptosystem has been used for more than twenty
years and, during that time, a good understanding of how we might best use
the basic encryption primitive has evolved [3,17, 18]. One recent addition to the
literature is the RSA Key Encapsulation Method (RSA-KEM) due to Shoup [18];
see [2,8,11,20] for similar constructions. Two attractive features of RSA-KEM
are its natural simplicity and its excellent security properties. Very loosely, we
can summarise the encapsulation process in the following way:
1. Generate an input w (of appropriate size) at random.
2. Encrypt w using RSA for transport to the recipient.
3. Generate keying material y = KDF(w) for use in the subsequent symmetric-
based session encryption.
It is clear that the intended recipient can recover w from the received ciphertext
and then generate y so that both sender and receiver can agree on the same
symmetric key. When the underlying key derivation function (KDF) is modelled
as a random oracle or a black box, the security of RSA-KEM (in a chosen-
ciphertext attack model) can be provably related to the hardness of inverting
the RSA primitive.
In this paper we consider the role of the KDF. The properties of the KDF
are such that a hash function is often used to build the KDF and there are

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 29-46, 2005.
© International Association for Cryptologic Research 2005

30 Jakob Jonsson and Matthew J.B. Robshaw

many dedicated and thoroughly suitable designs. However, since we are likely to
appeal to the AES [12] for any subsequent symmetric-based session encryption,
it might be preferable to build our KDF out of the AES rather than support an
additional algorithm. Furthermore, it might be desirable to have a design based
on the AES which would provide some immunity from continued cryptanalysis
of current hash function proposals [4, 19].

Of course, it is well-known that a hash function can be built out of a block
cipher [5,9] and, at first sight, it appears that one of these constructions might
suffice. However, our work is further motivated by the following goal. Instead
of modelling the KDF as a random oracle, we would like to provide an explicit
KDF construction that allows us to demonstrate the security of RSA-KEM based
upon reasonable assumptions about the underlying block cipher (i.e. the AES).
Thus our goal is to obtain a security proof for RSA-KEM under the assumption
that the block cipher used in our KDF construction acts as an ideal family of
random permutations indexed by the choice of key. Such an assumption on the
block cipher is often referred to as the Shannon, ideal cipher, or black-box model
and it is used widely (see for example Black et al. [5]).

Now our goal is not difficult to achieve for a block cipher with a sufficiently
large block length (say at least twice the desired security level in bits). However,
we would particularly like to use the AES, and the only block length permitted
for the AES is 128 bits (even though the original cipher Rijndael [6] offered
more flexibility in this regard). This is a problem since typical approaches for
a block cipher-based KDF appear to be at the mercy of birthday attacks; the
security level is bound by only half the block length (i.e., 64 bits in the case
of a 128-bit block cipher). Since the standardized block ciphers at our disposal
have a block length of either 64 or 128 bits, the security level attained using such
mechanisms might not be viewed as adequate. While these birthday attacks may
not immediately break the security of the full scheme RSA-KEM, they do seem
to make it difficult to achieve a sufficiently-tight security proof.

So the goal of our work has been to achieve the level of security offered by
conventional constructions that use a 256-bit block cipher, but to do so via a
construction built around a 128-bit block cipher. More generally, in the ideal
cipher model and using our construction built around a block cipher with block
size kp, an adversary making g oracle queries should not be able to exploit any
weakness with a probability better than

2
c-q
22kb (1)

for some reasonably small constant c¢. This is approximately as hard as finding
collisions for an ideal hash function with output 2k; bits. Our trick in accom-
plishing this with a 128-bit block cipher is to use an encryption key that is twice
the length of the input block; i.e. to use a 128-bit block cipher with a 256-bit
key. Thus, our specific construction is valid for the AES and all AES finalists,
as well as a range of block ciphers that use 64- and 128-bit block lengths'.

! Though the security level for 64-bit block lengths is unlikely to be appropriate.

Securing RSA-KEM via the AES 31

2 Notation and Specification

Establishing some of the machinery that we need in our construction might
initially appear to be somewhat complicated. However the description of the
scheme itself is straightforward and can be found in Section 2.2.

2.1 Pre-requisites

Our particular key derivation function KDF g is defined in terms of any block
cipher E with the property that the key length is at least twice the block length.
Let E be a block cipher with block length k; bits and key length at least 2k
bits. We will assume that the key length is exactly 2kp; in the case of a longer
key only the first 2k, bits will be used and the other bits will be fixed to some
prescribed value. Moreover, we will assume that k; is a multiple of 8. For each
integer k > 0 let {0,1}* denote the set of bit-strings of length k. For integers
j > 0and k> 0 with j < 2%, let (j)x be the k-bit big-endian representation of
j (e.g., (13)¢ = 001101). The concatenation of two bit-strings X and Y will be
denoted X||Y. For two bit-strings r; and r2 of the same length, 71 ® r2 denotes
the bitwise exclusive-or of r; and r9. In situations where a bit-string r of length
k and an integer j < 2F are combined, the expression r @ j denotes the sum
r® (j)k. We also use the following notational shorthand. For an integer m and
a bit-string s = vp||v; consisting of 2 blocks vy and v1, each of length k, we set
sWm = (vo ®m)l|(vi & m).

In our specification of KDFg we will appeal to a function § that “tweaks”
the most significant two bits of a string in the following way. Given a bit-string
7 of length ky, write 7 = (a)2||7’ (clearly a € {0,1,2,3} and ' € {0,1}**~2) and
define §(r) = §((a)z2]|7") = ((a + 1) mod 4)z]|r’". The effect of ¢ is summarized in
the following table:

r 00|’ 01|’ 10]|7’ 11|
o(r) O 10]|7’ 111 00|’

2.2 Definition of KDFg

Formally, we define KDF g as KDFg(w, L) with two input arguments w and L.
The first argument w is the secret input, while the second argument L is an
optional label to be associated with the key. Let Valid be the set of valid input
pairs (w, L) to KDF . To process a pair (w, L) € Valid, we need to apply a deter-
ministic encoding function 8 to (w, L) to give an input string of an appropriate
form (i.e., a sequence of blocks, each of bit length k;). We also need to generate

an initial value of bit length k; from (w, L) using a deterministic IV generator
7 : Valid — {0, 1},

The output from the encoding function § is a string R = (r1,...,7,) of
blocks r;, each of bit length k. We assume that there is an upper bound nmax
on the maximum number of blocks in an output (r1,...,7r,) = f(w,L) with

(w, L) € Valid. We require that it be computationally straightforward to recover

32 Jakob Jonsson and Matthew J.B. Robshaw

w and L in an unambiguous and unique manner from [(w, L) and the initial
value tg = 7(w, L). Our recommended encoding function S(w, L) is specified as
B(w, L) = w||L||0¥||(I(L))e4; k1 is the minimum value such that the bit length
of f(w, L) becomes a multiple of kj.

The initial value tg = 7(w, L) should contain the length in octets of w (even
in applications where the length is fixed) along with a “KDF Mode” indicator.

The output from KDFpg will be a sequence U = (uq,...,uy) of blocks u;,
each of bit length k,. We fix the number A of blocks to be a constant. For a
shorter output, we just truncate U to the desired number of bits.

The specification of KDF g(w, L) now follows and consists of two stages. This
process is illustrated in Figure 1 provided in Appendix A.

1. Apply the encoding rule to give B(w,L) = (r1,...,7,) and set the initial
value to = 7(w, L).

2. Extend tg to a padded initial value so = tol[to of length 2k;.

3. Process the blocks r1,...,r, as follows with ¢ running from 1 to n:

tio=FEs,_,(1:) @7 ;
tin = Es, ,(0(r:)) @15 5
si =tiolltin - (2)

4. Generate A blocks of output from s,, as follows:
Um = Eg,um(m) (1 <m <) 3)
(the kp-bit representation of m is encrypted). The output is the string
U =uq||uzl ... Jux ,

which can be truncated to a smaller number of bits if desired.

2.3 Properties of KDFg

Our construction has some similarity to mechanisms for providing double block-
length hash functions out of a block cipher [9]. Schemes such as MDC-2 [10] were
designed to give a collision-resistant hash function when using the block cipher
DES [13] (with its short block and key sizes as well as unusual complementation
and weak key properties) as a building block. While the underlying motivation —
to gain a level of security greater than the block size initially allows — is common
to both applications, our KDF construction differs in many important ways, not
least in how the chaining variables are specified and used.

To gauge the performance of our proposal, we observe that to produce A
blocks of output from n blocks of input, KDF g requires 2n+ A applications of F
with n + A different keys. The computation can be carried out on p > 2 parallel
processors, each applying the block cipher at most n + [A/p] times. The last A
applications of E are fully parallelizable, whereas the first 2n applications are
inherently serial with only two computations performed in parallel.

Securing RSA-KEM via the AES 33

We note that while the AES is a fast cipher, the rate of encryption [7] for
the AES with a 256-bit key (which is what we require in our construction) is
comparable to the hashing rate of SHA-256 [14] (the NIST hash function that
offers a similar level of security to that offered in our construction). Since two
invocations of the AES are required at each step of the first stage of KDFg,
we would expect our construction to compare reasonably well to one based on a
standardized hash function. Further, since the AES has a particularly lightweight
key schedule, even though there is considerable re-keying, we would not expect
the overhead to be too significant. Of course, it should also be stressed that
if KDFg is used as a component within RSA-KEM, then the RSA operation
is already likely to be a dominating factor (particularly the RSA private key
operation) in an application.

2.4 Design Rationale

An overall goal has been to design KDF g in a manner that puts minimal con-
straints on the encoding method 3; the security of KDF g should not rely on how
inputs are encoded as long as (3 is reversible. Here we give our rationale behind
other aspects to the design of KDF .

THE FIRST STAGE IN KDF g

The purpose of the first stage of the algorithm is to translate the input into a
secret s, in a collision-resistant manner. Specifically, it should be hard to find
two distinct inputs (w, L), (w’, L") such that the corresponding outputs sy, s/,
from the first stage are equal. This is to provide a high level of assurance that
different sets of keys are used in the second stage of the algorithm for different
inputs. Note that it is easy to find inputs such that the outputs are related in a
prescribed manner. Specifically, if we replace the last block 7, in the first stage
with 6(r,), then the rightmost k; bits of the new output key coincide with the
rightmost kj bits of the old output key, except that the two leftmost positions in
each block may differ. Yet in the ideal cipher model, such a correlation cannot
be exploited in a useful manner by an adversary.

In round 7 of the first stage, the same key s;_1 is used for both encryptions.
This introduces an effect that we may actually benefit from. Namely, we can con-
trol the behaviour of the output key s; in such a way that collisions with padded
initial values are impossible. Indeed, s; cannot be equal to a padded initial value
since this would imply that Es, ,(r;) = Es,_,(d(r;)), which is impossible. The
same is true for s, Wm; if B, (rp) ®rp ®@m = Es,_,(6(ry)) ® 1y @ m, then we
would again have E;, _, (r,) = Es,_,(6(ry)), which is impossible. If such colli-
sions had been possible then it would have been difficult to achieve our desired
security bound (1) without putting undesirable restrictions on the size of the set
of possible initial values.

THE SECOND STAGE IN KDFg
In the second stage we use different keys to derive the blocks u,, and our
approach has some similarity to the counter mode of operation for a block

34 Jakob Jonsson and Matthew J.B. Robshaw

cipher [15]. If we were to use a single key, then we would see a small bias in
the output due to the non-existence of collisions Es(r) = E,(r’). This would
result in a violation of (1). Indeed, in applications where plenty of output is
desirable, the security bound would be weak enough to be a concern in practice.

To minimize the probability of reusing a key, we derive the m'" key from s,,
by adding a simple counter m to s,. In this manner, if

spWm=s,, wm (4)
for some m,m’ € {0,...,\}, then
Sp =8, W (m ®@m)=s,,¥m”
for some m” € {0, ..., 5\}, where

. 0 when \ = 0;
A {ZUng M+ _ 1 otherwise. (5)

Consequently, while there are (1 + \)? pairs (s, Wm,s,, ”Wm') to be considered
in (4), there are only 1+ A values on s/, for each s, that give a collision in
(4). In particular, the constant ¢ in our security bound (1) will turn out to be
proportional to A rather than to A2.

The keys in the second stage are obtained from s,, by adding the same counter
value to each of the two blocks in s,,. This is to ensure that the derived blocks do
not collide with padded initial values. The counter starts at 1 to avoid undesirable
collisions between keys used in the first stage and keys used in the second stage.
For instance, there may be two inputs for which, in the first case, s, is used as
a key in some round n + 1 of the first stage, while in the second case, the same
sy is used in the second stage?. It seems worth taking the precaution to provide
this separation.

THE USE OF THE FUNCTION §

The function § is chosen so that §(6(r)) # r. Otherwise a function ¢ (e.g.
one that maps r to r ® d for some d) would suffer from the property that if
Es, [(ri))®r; = Es, ,(6'(1:)) ® 6'(r;), then r; and 6'(r;) both yield the same
intermediate s; in (2). This would result in a violation of our bound (1) and a
modified security bound would contain a term of the form c - q/2".

We have chosen § to be simple, modifying only two bits of the input. As well
as having little impact on efficiency this facilitates the security analysis. To see
this, consider the order of an element r defined as the smallest integer j such
that 7 = 07 (r), where ¢/ is shorthand for & applied j times. Clearly the order of
any element r with respect to § is only four. While it seems that any order larger
than two would result in a security bound of the form we require (1), analysis
could be harder. The reason is as follows.

We say that an input pair (s,7) to the block cipher E is of relevance in the
ith round of the first stage if (s,7) = (s;_1,7:) or (s,7) = (si_1,0(r;)). This

2 Essentially the set of possible sequences (r1,...,7n) is not necessarily “prefix-free”.

Securing RSA-KEM via the AES 35

means that the pair (s,r) is related to the two pairs (s,d(r)) and (s, 1(r)) in
an obvious manner. Similarly, (s, §(r)) is related to (s, 6%(r)), (s,6%(r)) is related
to (s,0%(r)), and so on and so forth. Consequently, if the order of r were large,
then we would have a long chain of related input pairs. This would make it hard
to analyse dependencies between pairs of inputs in the first stage of KDFg,
which we require in the context of RSA-KEM. Thus the main benefit of § as we
have defined it is to ensure that the corresponding chain of pairs is short; for
the given choice of §, any set of the form {(s,7), (s,d(r)), (s,6%(r)), (s,6%(r))}
has the property that each pair in the set is only related to other pairs in the
set and not to any pairs outside the set. This property makes it easier to obtain
stream-lined security proofs.

2.5 Some Related Applications

While an AES-based key derivation function (KDF) for use within RSA-KEM
is the focus of our work, we have actually designed something more flexible.
Very simple variants and extensions of our KDF design could be used as a mask
generating function MGFg, a block-cipher based hash function construction,
and as a block-cipher based message authentication code. However, these may
compare unfavourably with other, more established, mechanisms [9)].

For instance, it is easy to modify KDF g(w, L) for use as a hash function and
we define the hash function Hashg (M) as

Hashp (M) = KDFg(M, ¢) ,

where ¢ is the empty string. However, we need to make a few minor changes.
First, we change the encoding function and set

Buasu(M) = B(M, ¢) = M||0*[[(I(M))es -

Here, (M) is the length in bits (or bytes) of the message M and k; is the
minimum value such that the bit length of Bgasu(M) becomes a multiple of
ky. Second, we fix the initial value tg, which should contain a “Hash Mode”
indicator, and we set A = 2, which would give a hash function with a 256-bit
output.

KDF g (w, L) can also be used as the basis for a message authentication code.
Let the first argument w be the secret key and let the second argument L be the
message M to be authenticated (possibly a concatenation of the message and
other data). We can define the message authentication code MACg(w, M) as

MACEg(w, M) = KDFg(w, M) ,
using the same encoding function § as in key derivation mode;
Buac(w, M) = w| M]|0* | (((M))sa -

The initial value ¢y should be fixed and include the length in octets of w (even
in applications where the length is fixed) and also a “MAC Mode” indicator. A
typical parameter choice would be A = 1 or 2 (the latter if collision-resistance is
desired). Of course, another possibility would be to define a message authenti-
cation code as HMAC [1] with Hashp as the underlying hash function.

36 Jakob Jonsson and Matthew J.B. Robshaw

3 KDFjy Within RSA-KEM (and f-KEM)

KDFpg is intended for use as an AES-based key derivation function within RSA-
KEM [2,18,20]. However, to make the discussion as general as possible, we
consider an arbitrary trapdoor permutation f : Xy — Xy; see below for a
formal treatment of trapdoor permutations. We briefly discuss even more general
encryption schemes at the end of Section 4. Let

KDF : Xy x L — {0,1}"

be a key derivation function, where L is a set of labels and {0, 1}* is the set of all
finite bit-strings. Then f-KEM is defined as follows, where the input to f-KEM
is a label L € L.

1. Generate an element w € Xy uniformly at random.
2. Compute y = f(w).

3. Compute U = KDF(w, L).

4. Output y, the ciphertext, and U, the derived secret.

In Section 4 we will analyse f-KEM in the special case that the underlying KDF
is KDFg.

For a security parameter k, let F, be a finite family of pairs (f, f~1) with the
property that f is a permutation with inverse f ~!; f takes as input an element z
in aset X = Xy and returns an element y in the same set X. We assume that the
running time of each of f and f~! is polynomial in k. Let G be a probabilistic
polynomial-time (PPT) algorithm that on input 1* (i.e., k& uniformly random
bits) outputs a pair (f, f~1) € Fr. G is a trapdoor permutation generator. An
f-inverter T is an algorithm that on input (f,y) tries to compute f~!(y) for a
random y € X. Z has success probability € = e(k) and running time T' = T'(k) if

Pr((f 07 =008,y & X T(fy) = 17 W) 2 €

and the running time for Z is at most 7. In words, Z should be able to com-
pute f~1(y) with probability ¢ within time 7', where (f, f~1) is derived via the
trapdoor permutation generator and y is random. Z solves the f problem.

Fi is a trapdoor permutation family with respect to (e,T') if there is no
f-inverter with success probability € within running time 7'. The individual per-
mutation f is referred to as a trapdoor permutation.

4 Security Analysis

In this section we prove the security of f-KEM based on KDFg.

With the random oracle assumption on KDF it is straightforward to prove
that f-KEM based on KDF is secure against a chosen-ciphertext adversary if
f is a secure trapdoor permutation; see Shoup [18] for details. The purpose of
this section is to analyse f-KEM when KDFpg (see Section 3) is used as the

Securing RSA-KEM via the AES 37

underlying KDF. Our goal is to show that the security of f-KEM can be related
to the hardness of inverting f if the block cipher E is modelled as an indexed
family of random permutations.

The attack model against f-KEM is defined as follows and aligns with the
security model for key encapsulation schemes defined in Shoup [18]. The adver-
sary is given free access to a decryption oracle that on input (y, L) decrypts y
and outputs the corresponding secret U = KDFg(f~(y), L). This means that
we consider the family of adaptive chosen-ciphertext attacks (typically referred
to as CCA2). The adversary also has free access to an F-oracle and a D-oracle
simulating encryption and decryption with the block cipher FE.

The task for the adversary is to distinguish a secret Uy corresponding to a
certain challenge ciphertext (y*, L*) from a random string. To make the chal-
lenge nontrivial, we do not allow the adversary to query the challenge cipher-
text (y*,L*) at the decryption oracle after the challenge ciphertext has been
published. However, there are no other restrictions on decryption queries; the
adversary may well include either of y* and L* in a decryption query as long as
the query does not include both.

The attack experiment runs as follows. First, the adversary is given a trap-
door permutation f generated at random. The adversary is allowed to send
queries to her oracles during the entire attack and they may be chosen in an
adaptive manner depending on responses to previous queries. At any time of the
attack — but only once — the adversary sends a label L* to a challenge generator.
The challenge generator applies the f-KEM operation, producing a ciphertext
y* and a secret output Uy. In addition, the generator selects a uniformly ran-
dom string Uy and flips a fair coin b. The generator returns y* and Up; thus the
response depends on b.

At the end, the adversary outputs a bit b’. The distinguishing advantage € of
the adversary is defined as

e=Pr(t/ =b) —Pr(t/ #b) =2Pr(t) =b) — 1
where the probability is computed over all possible trapdoor permutations. The
adversary is referred to as an IND-CCA2 adversary. The main result now follows.

Theorem 1. Let A be an IND-CCAZ2 adversary against f-KEM based on KDFg
making qr queries to the E- and D-oracles and qy queries to the decryption
oracle (including one query to the challenge generator). Let

q:qE+(nmax+A)'Qfa

where Nmax 18 defined in Section 2.1. Assume that ¢ < 2’“1’/24. Moreover, assume
that the distinguishing advantage of A is € and that the running time is bounded
by T'. Then, viewing the block cipher E in the ideal cipher model, there is an
f-inverter T with success probability € and running time T such that

18(;\ 1) : q2 qf
= — _
€E=¢€ 2 |Yf| (6)

with \ defined in (5) and

38 Jakob Jonsson and Matthew J.B. Robshaw

T=T+0(q-Tr) + O\ -qys) , (7)
where Ty is the time needed to compute f on a given input.

The proof of Theorem 1 is given in Appendix B. Here we comment on the security
bounds in Theorem 1.

First, consider the difference € — € in success probabilities for the adversary
and the inverter. For typical applications, A will be quite small, say at most 100;
this would give 100k, bits of (symmetric) key material as output. Assuming that
A=2"—1and q=2""" < T’ for some 1, the significant term in (6) is equal to

18.27 212
<

_ ol2-2u
o2u o2 = 2 .

3

Defining a success probability of an algorithm to be “negligible” if the time-
success ratio (time/probability) of the algorithm is at least 2¥*, we may conclude
that ¢ — e is “negligible” as long as ¢ is at most 2¥*~12; the running time of the
adversary is assumed to be at least q.

Next, consider the running time of the adversary in terms of the inverter.
A close examination of the proof of Theorem 1 yields that the term O(q - T)
in (7) is approximately 47 - ¢ < 4T - T’. Namely, for each application of the
E-oracle simulation, the inverter applies f up to four times. As a consequence,
T'/T is approximately 1/(47y). We may ignore the rightmost term O(\ - ¢y) in
(7) as ¢y is typically bounded by a fairly small value such as 248 Note that the
factor T is not due to the specific KDF g construction but rather it is a generic
factor that is also present when the entire key derivation function is modelled as
a random oracle; see Shoup [18]. Hence, only the factor 4 is actually related to
the specifics of KDFg. To conclude, we lose approximately two bits of tightness
with respect to running time when replacing the random oracle with KDF g.

Remark. While we only consider trapdoor permutations, we conjecture that the
proof might extend to general deterministic public-key encryption algorithms [8].

5 Conclusion

In this paper we have introduced and analysed a new key derivation function
KDFg. Defined in terms of a block cipher E, KDFg has been specifically de-
signed as an AES-based key derivation function for use within the key encapsula-
tion mechanism RSA-KEM [18]. However the KDF g construction could also be
used as the basis for a mask generating function, a hash function, or a message
authentication code. While the KDF' g construction might be somewhat unusual,
there is considerable value in considering designs that allow us to demonstrate
the security of RSA-KEM under reasonable assumptions on the behaviour of
AES rather than the black-box behaviour of some ad-hoc construction. We leave
the definition of alternative proposals as a matter for further research.

Securing RSA-KEM via the AES 39

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message au-
thentication. In N. Koblitz, editor, Advances in Cryptology — Crypto 96, LNCS
1109, pp. 1-15, Springer-Verlag, 1996.

M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. Proceedings of the First Annual Conference on Computer
and Communications Security. ACM, 1993.

M. Bellare and P. Rogaway. Optimal Asymmetric encryption - How to Encrypt
with RSA. In A. De Santis, editor, Advances in Cryptology — Eurocrypt’94, LNCS
950, pp. 92-111, Springer-Verlag, 1995.

E. Biham and R. Chen. Near-collisions in SHA-0. In M. Franklin, editor, Advances
in Cryptology — Crypto 04, LNCS 3152, pp. 290-305, Springer-Verlag, 2004.

J. Black, P. Rogaway, and T. Shrimpton. Block-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In M. Yung, editor, Advances in
Cryptology — Crypto 02, LNCS 2442, pp. 320-335, Springer-Verlag, 2002.

J. Daemen and V. Rijmen. AES Proposal: Rijndael. Version 2. 1999.

W. Dai. Performance figures. Available via www.eskimo.com/ weidai/.

A. Dent. A Designer’s Guide to KEMs. In K. Paterson, editor, 9" IMA Conference
on Coding and Cryptography, LNCS 2898, 133—-151, Springer-Verlag, 2004.

. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-

phy. CRC Press. 1997.

C.H. Meyer and M. Schilling. Secure program load with manipulation detection
code. In Proceedings of SECURICOM ’88, pp. 111-130, 1998.

T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In D. Naccache, editor, Topics in Cryptology — CT-RSA
2001, LNCS 2020, pp. 159-175. Springer-Verlag, 2001.

National Institute of Standards and Technology. FIPS 196: The Advanced Encryp-
tion Standard. October, 2001. Available via csrc.nist.gov.

National Institute of Standards and Technology. FIPS 46-2: The Data Encryption
Standard. December, 1993. Available via www.itl.nist.gov/fipspubs/.
National Institute of Standards and Technology. FIPS 180-2: The Secure Hash
Standard. August, 2002. Available via csrc.nist.gov.

National Institute of Standards and Technology. Special Publication SP-800-38A:
Recommondation for Block Cipher Modes of Operation — Methods and Techniques.
December, 2001. Available via csrc.nist.gov.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21 (2), 120-126,
February 1978.

RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. June 14, 2002.
Available via www.rsasecurity.com.

V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Preprint,
December 2001. Available via eprint.iacr.org/2001/112.

X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,
Haval-128 and RIPEMD. Available via http://eprint.iacr.org/2004/199.

Y. Zheng and J. Seberry. Practical Approaches to Attaining Security Against
Adaptively Chosen Ciphertext Attacks. In E.F. Brickell, editor, Advances in Cryp-
tology — Crypto ’92, LNCS 740,pp. 292-304. Springer-Verlag, 1992.

40 Jakob Jonsson and Matthew J.B. Robshaw

A Pictorial Representation of KDFg

T Ti41
. . . .
v v v v
» E = E = E » E

A\ A\ A\
; tit1,0 Livi

S; Si41

spnWl »F s,W2 »E Shn WA = F

U

Fig. 1. The two stages of KDFg; E represents a ky-bit block cipher with a 2k;-bit key.

Securing RSA-KEM via the AES 41

B Proof of Theorem 1

Theorem 1. Let A be an IND-CCA2 adversary against f-KEM based on
KDFg making g queries to the E- and D-oracles and gy queries to the
decryption oracle (including one query to the challenge generator). Let

q:qE+(nmax+A)'Qfa

where npax is defined in Section 2.1. Assume that ¢ < 2’“7/24. Moreover,
assume that the distinguishing advantage of A is ¢ and that the running
time is bounded by T”. Then, viewing the block cipher F in the ideal cipher
model, there is an f-inverter Z with success probability € and running time

T such that

o B8O+ g
22k Rel

with A defined in (5) and

T=T+0(q Ty) +O(X-qy) ,

where T is the time needed to compute f on a given input.

Let A be the adversary. We will define an inverter Z in terms of A where 7

stores information on several lists:

1.

2.

f-List: Entries of the form (y,w) (with y = f(w)), sorted in alphabetic order
with respect to y. Refer to an entry starting with y as a y-entry.
KEM-List: Entries of the form (y, L, U) where L, w = f~1(y), and U satisfy
KDFg(w, L) = U. The entries are sorted alphabetically with respect to y
and then L. Refer to an entry starting with y as a y-entry.

. History List: Entries of the form (s;; (s0,71,-..,7:)), sorted with respect to

s; where s; is derived from sg and r1, ..., 7; via i < nyax rounds of (2). Refer
to an entry starting with s; as an s;-entry.

. E- and D-List: Entries of the form (s, (r1,v1), ..., (r4,vq)) where v; = Eq(r;)

sorted with respect to s. Within each entry pairs are sorted with respect to r;
on the F-list and with respect to v; on the D-list. Refer to an entry starting
with s as an s-entry. Since the E- and D-lists are essentially the same, we
suppress the D-list. Whenever 7 requires an output value v, it is implicitly
assumed that 7 looks on the D-list rather than on the E-list.

Let Sy be the set of possible padded initial values sg. Introduce additional

sets S1 and Ss as follows. S is the set of elements s such that there is an s-entry
on the history list, whereas Sy is the set of elements queried to the E- and D-
oracles (by either A or) that are not contained in Sy or S;. At the beginning
of the experiment, all lists and all sets except Sy are empty.

Suppose that A sends a decryption query (y, L). Then Z proceeds as follows.

42 Jakob Jonsson and Matthew J.B. Robshaw

F1 If (y, L) is on KEM-list, output the corresponding U and exit.

F2 If no (y, L) is found on KEM-list, check if there is some y-entry on f-list
to examine whether w = f~1(y) is known. If w is known, simulate the
encryption oracle as specified below to compute U = KDF g(w, L), output
U, and exit.

F3 In the case that w is unknown, generate a string U as the concatenation of
A uniformly random blocks of length &y, add (y, L, U) to KEM-list, output
U, and exit.

At some point during the attack, the adversary A requests a challenge ci-
phertext, providing as input a label L*. Z proceeds as follows; y* is the value
that he wants to invert.

C1 If (y*, L*) is a previous decryption query, output ERROR and exit.
C2 Generate uniformly random strings Uy and Uy of length Aky,. Add (y*, L*, Up)
to KEM-list, flip coin b, output (y*, Uy, U1—p), and exit.

Suppose that A sends an E-query (s,r). Say that Es(r) = v is consistent
if there is no conflict between this assignment and the pairs (7, v;) within the
s-entry on E-list. Z proceeds as follows.

El If v = E4(r) is already known, output v and exit.

E2 If s ¢ Sy U S1, generate a uniformly random v such that the assignment
v = FE4(r) is consistent. Add the pair (r,v) to the s-entry on E-list (introduce
the entry if necessary), output v, and exit.

E3 If s € Sy U Sy, for each j € {0, 1,2, 3} generate a uniformly random string v,
such that the four assignments v; = E,(67(r)) are consistent. Add the pairs
(67(r),v;) to the s-entry on E-list (introduce the entry if necessary).

E4 For 0 < j <3, let s/ = (v; © 07 (r))[|(V(j4+1) mod 4 ® 07(r)). The simulation
fails if any of the 4(1 4+ \) elements in

{s7Wm:0<5<3,0<m<\} (8)

are contained in S; U Sy or collide with each other. Let E4-Err be the event
that this failure occurs at some point during the attack.

E5 If s € Sy, there is a (unique) s-entry (s = s;; (s, 71,...,7:)) on the history
list. If s € Sp, consider the “empty” entry (s; (s,—)) and let i = 0 and sg = s.
If i + 1 < Nmax, then add the entries (s7, (s, 71,...,7,67(r))) to the history
list.

E6 For each j € {0,1,2,3}, check whether sq and (ry,...,7;,07(r)) correspond
to a valid input (w, L) to KDF g (meaning that sq is the padded initial value
corresponding to (w, L) and B(w, L) = (r1,...,7:,67(r))). If this is the case:
1. Compute y = f(w) and add (y,w) to f-list (if not present).

2. If there is an entry (y, L, U) on KEM-list, then KDF g(w, L) has already
been defined (implicitly) as U = wy|luz|| ... ||lux. If this is the case, for
1 <m < X assign
Ewm(m) = up, . (9)
For each m introduce an (s & m)-entry on E-list, add (m,u,,) to the
(s7 Wm)-entry, and remove (y, L, U) from KEM-list.
E7 Output vy = E,(r) and exit.

Securing RSA-KEM via the AES 43

The s-entry in step E5 being unique follows from the fact that E5 is the only
step where we add new entries to the history list; if some of the added keys
57 were already there (thus already contained in the set S;), the error E4-Err
would have occurred in step E4. The assignments in (9) are trivially consistent;
arriving at step E6 means that no error occurred in step E4, which implies that
s7 W m has never been used as a key before.

Now consider a D-query (s,v) by A. Z proceeds as follows.

D1 If » = D4(v) is already known, output r and exit.

D2 Generate a random string r such that the assignment » = D,(v) is consistent
and add (r,v) to the s-entry on E-list (introduce the entry if necessary).

D3 Check whether s € Sy U Sy. If this is not the case, output r, and exit.

D4 Proceed with steps E3-E6 in the simulation above with s and r, keeping in
mind in step E3 that F,(r) has already been defined as v.

D5 Output r = Dg(v) and exit.

We need to analyse what could go wrong in this simulation. First, we have a
possible error in step C1, but this error occurs only if the adversary picks y* in
one of her decryption queries preceding the challenge ciphertext query; denote
this event as CIl-Err. Since the adversary has no prior information about y*,
Pr(C1-Err) < gr/|Xy|. Note that this value is an extremely small value if f is
RSA with key size at least 1024 bits.

The remaining source of error is related to how Z simulates the E- and D-
oracles. Besides the event E4-Err in step E4, we also have the potential error that
the uniformly random strings generated in steps C2 and F3 may not be consis-
tent with other values. To analyse the probability of this error, we introduce an
auxiliary algorithm J that can compute inverses of f. To make J indistinguish-
able from Z for the adversary, we let 7 do exactly what Z does during the whole
experiment until the adversary exits. At the very end, we add a checking phase,
where J proceeds with each entry (y, L, U) on KEM-list, computes w = f~1(y),
and simulates the encryption oracle as specified above on all inputs necessary
to compute KDFg(w, L) (keeping in mind as specified in step E6 that the end
result should be U).

Now 7, and hence Z, will provide a perfect simulation unless an error occurs
in step C1 or the error E4-Err occurs in step E4, either during the original exper-
iment or during the additional checking phase. Namely, as long as all responses
are consistent and chosen uniformly at random, there is no way for the adversary
to distinguish the two simulations.

Before we can estimate the probability of the error E4-Err, we need to count
the number of keys s for which 7 ever provides some assignment v = E4(r). Now,
while J simulates the E-oracle on some inputs not queried by A, the underlying
key is always part of some other explicit or implicit query from .A. This implies
that the total number of keys is at most ¢ = ¢g + (nmax + A) - ¢; the latter term
(Mmax + A) - ¢7 estimates the total number of keys used when responding to the
decryption queries and the challenge ciphertext query. In particular, the size of
So is at most ¢, as is the number of applications of each of the steps E1-ET7.

44 Jakob Jonsson and Matthew J.B. Robshaw

We also need an upper bound on the total number of assignments v = E,(r)
for any fixed key s. Such a bound is given by 4q. Namely, each E- and D-
query results in at most four assignments, whereas each decryption query and
the challenge ciphertext query results in at most 4nm,.x assignments in the first
stage and at most \ assignments in the second stage. For the last claim, note
that step E6.2 is applied at most once for each entry on KEM-list; the number
of entries on this list is bounded by gy.

In step E3, there are four assignments v; = FE(67(r)). We refer to the set
Q ={(5,67(r)) : 0 < j <3} as a 4-set and to a pair of the form {(s,7), (s,0(r))}
as a window. Within a 4-set @ there are four windows {(s,&?(r)), (s, 671 (r))}
for 0 <j < 3.

To estimate Pr(E4-Err), consider a set of assignments to be made in step E3
(steps D2 and E3 in case of a decryption query) corresponding to a 4-set () and
let s be the underlying key. Since s € Sy U S7 and since it is impossible for a
key once in Ss to end up in 57 (this would result in an error in step E4), each
previous application of the key s must have been an assignment of values for
a full 4-set (as opposed to an assignment of a single value as would have been
the case if s € S3). As a consequence, the four values E4(6°(r)) all remain to be
assigned.

First, assume that the underlying query was not a decryption query; we did
not arrive at step E3 from step D4. For i € {0,1,2, 3}, the adversary cannot
predict the two values v; = Es(07(r)) and vj41 = Fs(67T!(r)), and hence not
the value s/, with probability better than

1 1 1 - 1 1 3
(2 —dg)2 S 22k 1 _8g/2k = 92 1 _1/3 22ke+1 P
The value 4¢ in the denominator is the upper bound derived above on the number
of previous queries with the key s; each such query corresponds to a value FEq(r')
that must be different from all E,(5%(r)). The second inequality follows from the
assumption ¢ < 2% /24.

Next, assume that we arrived at step E3 from step D4. Thus the first of the
four queries in step E3 is a new D-query (s, vg). As in (10), the adversary cannot
predict any two of the four values

r = Dy(vg),v1 = Es(6(r)),va = Es(6%(r)), v3 = Es(83(r))
with probability better than p, not even if the two other values were revealed.
In particular, since the adversary needs at least two of these values to determine
any s/, no s can be determined with probability better than p.

We may now easily compute a bound on the probability that we have a
collision between some element in the set (8) and some element in Ss; refer to
this event as E4-Err2. Specifically, for any j and m, s/ W m collides with any
fixed element in Se with probability at most p. Since there are a total of at most
4(A+1)- ¢ values in (8) to be considered during the entire experiment and since
|S2] < ¢, we have that

(10)

3-40+1)-¢2 _ 6(A+1)-¢?
Pr(E4-Er2) < p-4(A+1)-¢% = (22,%“) < 22,%) ;o (1)

A was defined in (5).

Securing RSA-KEM via the AES 45

Next, consider the probability of a collision either between two of the elements
in the set (8) or between one of these elements and some element in the set Sy;
refer to this event as E4-Errl. In such an eventuality, we have distinct (s,r) and
(s',r") such that

{ Ei(r)®er=Ey()er &m (12)

E;6(r))@r=Es(0(r")®r &m

for some integer m (with 0 < m < 5\) Now, each element in S corresponds to
a 4-set generated in a previous application of steps E3 and E4. This means that
we are effectively looking for collisions of the kind (12) with both keys in So U S1
and we have up to ¢ different 4-sets among which we want to find a collision.
For any fixed previously known window W, and for each of the four windows
within the 4-set () under consideration, the probability that the two windows
satisfy (12) is at most (A + 1) - p; use (10) and the fact that there are A + 1
possibilities for m. At the end of the experiment, there are a total of at most
4%q(q — 1)/2 = 8q(q — 1) pairs of known windows from different 4-sets. This
implies that the probability that (12) holds for some pair of this kind is bounded
by R
A+1)-p-8q(g—1) . (13)

Next, we turn our attention to windows within the same 4-set. Let W, be
the window {(s,5%(r)), (s,8°T(r))}. For 0 < i < 3, the pair (W;, W;11) (indices
computed modulo 4) cannot satisfy (12). Namely, if

v; ®6(r) = v ®6THr) dm
Vir1 D) = vipe B SFL(r) DM,

then v; = v;12, which is impossible. The remaining two cases (Wy, Wa) and
(W1, W3) both result in the same system of equations

Vg =V9DcDm
vy =v1Dcdm;

c=1r®6%(r) =8(r)®d3(r) = 100...0. By (10), the left-hand side cannot be
predicted with probability better than p even if the right-hand side (i.e., vg and
v1) is known. As a consequence, since there are at most ¢ known 4-sets and since
m can be chosen in A + 1 ways, the probability that (12) holds for some pair of
known windows from the same 4-set is bounded by

A+1)-p-q. (14)
Combining (13) and (14), we obtain that

Pr(E4-Erml) < (A+1)-p-8ql¢g—1)+(A+1)-p-q

. 1200+ 1) - ¢?
<8A+1)-p-¢* = (221%)

46 Jakob Jonsson and Matthew J.B. Robshaw

Summing (11) and (15), we conclude that

Pr(E4-Err) < Pr(E4-Errl) + Pr(E4-Err2)

1204+1)-¢> 6(A+1)-¢> 18(A+1)-¢?

Now return to the original inverter Z. Assume that A is able to guess the bit
b with advantage ¢’ in a perfect simulation model. In the model provided by Z,
the advantage of A is at least

’ ’ 18(5‘ +1)- ¢ ar
e = € — Pr(E4-Err) — Pr(C1-Err) > € 02, X,
the subtracted terms bounding the probability that J fails, in which case Z does
not necessarily provide a perfect simulation. To demonstrate that € is at least
the success probability of Z, note that the only situation where the interactions
between Z and A depend on b is in step E6 when the underlying values y and
L coincide with y* and L*. Namely, this is the only place where Uy is used in
a way distinguishable from U;. However, if 7 obtains y* in step E6, then by
construction Z obtains it from w* = f~1(y*); hence Z wins.

One-Time Verifier-Based
Encrypted Key Exchange

Michel Abdalla!, Olivier Chevassut?, and David Pointcheval!

1 Dépt d’informatique, Ecole normale supérieure, 75230 Paris Cedex 05, France
{Michel.Abdalla,David.Pointcheval}@ens.fr
http://www.di.ens.fr/users/{mabdalla,pointche}

2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
OChevassut@lbl.gov
http://www.itg.1lbl.gov/ chevassu

Abstract. “Grid” technology enables complex interactions among com-
putational and data resources; however, to be deployed in production
computing environments “Grid” needs to implement additional secu-
rity mechanisms. Recent compromises of user and server machines at
Grid sites have resulted in a need for secure password-authentication
key-exchange technologies. AuthA is an example of such a technology
considered for standardization by the IEEE P1363.2 working group. Un-
fortunately in its current form AuthA does not achieve the notion of
forward-secrecy in a provably-secure way nor does it allow a Grid user to
log into his account using an un-trusted computer. This paper addresses
this void by first proving that AuthA indeed achieves this goal, and then
by modifying it in such a way that it is secure against attacks using
captured user passwords or server data.

1 Introduction

Motivation. Next generation distributed infrastructures integrate the ongoing
work in Web Services (WS) with the state-of-the-art in distributed systems to en-
able seamless interaction among computational and data resources. “Grid” tech-
nology for example links computers, storage systems, and other devices through
common interfaces and infrastructure to create powerful distributed comput-
ing capabilities [9, 11]. In this model of distributed computing, researchers and
businesses not only plug into a global network of computer systems to access
information but also to access distributed processing power. In parallel with the
growth of Grid concepts and software in the scientific communities, commer-
cial interests have been developing Web Services (WS) for the next generation
business-to-business applications. Interest in both communities has grown to
combine the techniques and concepts of Grid computing with the functionality
of WS. This has led to the development of the Web Service Resource Framework
(WSRF) specification and other elements of the Open Grid Services Architec-
ture (OGSA) within several standard bodies such as the OASIS [19] and the
Global Grid Forum (GGF) [13].

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 47-64, 2005.
© International Association for Cryptologic Research 2005

48 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Security is one of the major requirements of Grid computing. Any Grid de-
ployment must provide the security services of authentication, authorization,
and secure session establishment. These services are provided by the Grid secu-
rity infrastructure which was initially built upon the Transport Layer Security
(TLS) protocol [10] and with the migration towards Web Services is now being
built upon the WS-security primitives [9]. The current implementation of the
Grid security infrastructure is based on public-key certificates. Recent security
hacks of Grid sites due to the compromise of client and server machines, however,
have led to a trend where many Grid sites are changing their security policies.
The new policy prohibits long-term private keys from being stored on the Grid
user’s machines but requires that the keys are stored on servers in data centers
where their integrity can be better protected. Grid users will authenticate to
the data centers using a (one-time) human-memorable password and be issued
short-lived certificates. Human-memorable passwords are short strings (e.g, 4
decimal digits) chosen from a relatively small dictionary so that they can be
remembered easily.

The unique requirement of Grid provides security researchers with the oppor-
tunity to design and develop “provably-secure” cryptographic technologies that
will play an essential role in securing next generation distributed infrastruc-
tures. The most immediate cryptographic need is certainly a “provably-secure”
One-time Password-authentication and Key-eXchange technology (OPKeyX) for
two-party [8].

Contributions. This paper is the third tier in the treatment of Encrypted Key
Ezchange (EKE), where the Diffie-Hellman key-exchange flows are encrypted
using a password, in the direct model of Bellare-Pointcheval-Rogaway [1]. The
first tier showed that under the computational Diffie-Hellman (CDH) assumption
the AuthA password-authenticated key-exchange protocol is secure in both the
random-oracle and ideal-cipher models [6]; the encryption primitive used is a
password-keyed symmetric cipher. The second tier provided a very ”elegant”
and compact proof showing that under the CDH assumption the AuthA protocol
is secure in the random-oracle model only [7]; the encryption primitive used is a
mask generation function. In the present paper, we propose a slightly different
variant of AuthA, where both flows are encrypted using separate mask generation
functions, similarly to [18]. This Two-Mask Encrypted Key Exchange (EKE-both
flows are encrypted) was not created for the sake of having one more variant,
but simply because it allows us to provide the first complete proof of forward-
secrecy for AuthA. The forward-secrecy of AuthA was indeed explicitly stated as
an open problem in [2,18]. Our result shows that under the Gap Diffie-Hellman
assumption [20] this variant of AuthA is forward-secure in the random-oracle
model. This is a significant achievement over other works which we hope will
leverage our work to obtain tighter and more meaningful security measurements
for the forward-secrecy of their EKE-like protocols.

We have furthermore augmented the Two-Mask protocol with two crypto-
graphic mechanisms to reduce the risk of corruption of the server and the client.
Corruption of a server occurs when an attacker gains access to the server’s local

One-Time Verifier-Based Encrypted Key Exchange 49

database of passwords. If client’s passwords are stored directly in the database,
then the attacker can immediately use any of these passwords to impersonate
these clients. Fortunately, there is a means to prevent an attacker from doing just
that: verifier-based password-authentication. Of course, this mechanism will not
prevent an adversary from mounting (off-line) dictionary attacks but it will slow
him or her down and thus give the server’s administrator time to react appro-
priately and to inform its clients. Corruption of a client occurs when a client is
using an un-trusted machine which happens frequently these days as hackers run
password sniffers on the Internet. There is a means to prevent a client’s password
from being captured: one-time password-based authentication. Passwords sniffed
by hackers are of no use since users’ passwords change from one session to the
other. The end result is a “provably-secure” One-time Password-authentication
and Key-eXchange (OPKeyX) technology for Grid computing.

The remainder of the paper is organized as follows. We first present the
related work. In Section 2, we define the formal security model which we use
through the rest of the paper. In Section 3, we present the computational as-
sumptions upon which the security of Two-Mask and, thus, our OPKeyX tech-
nology are based upon. In Section 4, we describe the Two-Mask protocol itself
and prove that the latter is forward-secure via a reduction from the Two-Mask
protocol to the Gap Diffie-Hellman problem. In Section 5, we augment the Two-
Mask protocol to reduce the risk of stolen server databases and captured client
passwords to construct a technology for OPKeyX.

Related Work. The seminal work in this area is the Encrypted Key Ezchange
(EKE) protocol proposed by Bellovin and Merritt in [3,4]. EKE is a classical
Diffie-Hellman key exchange wherein either or both flows are encrypted using
the password as a common symmetric key. The encryption primitive can be in-
stantiated via either a password-keyed symmetric cipher or a mask generation
function computed as the product of the message with the hash of a password.
Bellare et al. sketched a security proof for the flows at the core of the EKE proto-
col in [1], and specified a EKE-structure (called the AuthA protocol) in [2]. Boyko
et al. proposed very similar EKE-structures (called the PAK suite) and proved
them secure in Shoup’s simulation model [5, 18]. The PPK protocol in the PAK
suite is similar to our Two-Mask Encrypted Key Exchange protocol; however,
arguments in favor of forward-secrecy under the computational Diffie-Hellman
(CDH) assumption do not give many guarantees on its use in practice [18]. The
KOY protocol [16] is also proved to be forward-secure but it is not efficient
enough to be used in practice.

The PAK suite is in the process of being standardization by the IEEE P1363.2
Standard working group [15]. Server machines store images of the password un-
der a one-way function instead of a plaintext password when the “augmented”
versions of the PAK suite are used. ”Augmented” EKE-like protocols indeed
limit the damage due to the corruption of a server machine, but do not pro-
tect against attacks replaying captured users’ passwords. On the other hand,
One-Time Password (OTP) systems protect against the latter kind of attacks
but provide neither privacy of transmitted data nor protection against active

50 Michel Abdalla, Olivier Chevassut, and David Pointcheval

attacks such as session hijacking [14]. The present paper designs and develops
a cryptographic protocol for one-time “augmented” password-authenticated key
exchange.

2 Password-Based Authenticated Key Exchange

In this section, we recall the security model of Bellare et al. [1] for password-
based authenticated key exchange protocol.

2.1 Overview

A password-based authenticated key exchange protocol P is a protocol between
two parties, a client A € client and a server S € server. Each participant in a
protocol may have several instances, called oracles, involved in distinct, possibly
concurrent, executions of P. We let U? denote the instance i of a participant U,
which is either a client or a server.

Each client A € client holds a password pw 4. Each server S & server holds a
vector pwg = (pwg[A]) Acclient With an entry for each client, where pw ¢[4] is the
derived-password defined in [1]. In the symmetric model, pwg[C] = pw, but
they may be different in general, as in our verifier-based scheme. pw, and pwg
are also referred to as the long-lived keys of client C' and server S. Each password
pw 4 is considered to be a low-entropy string, drawn from the dictionary Password
according to the distribution PW. As in [7], we let PW(q) denote the probability
to be in the most probable set of ¢ passwords:

= < .
PW(Q) nggl%s)\i/ord {pwlej%;w[pw €r | #P - q]}

Note that, if we denote by Uy the uniform distribution among N passwords,
then Un(q) = ¢/N.

2.2 The Security Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [1,7].) The types of oracles available to the ad-
versary are as follows:

— Execute(A?, S7): The output of this query consists of the messages exchanged
during the honest execution of the protocol.

— Reveal(U?): This query is only available to A if the attacked instance actually
“holds” a session key and it releases the latter to A.

— Send(U?,m): The output of this query is the message that the instance U*
would generate upon receipt of message m. A query Send(A?, Start) initial-
izes the key exchange protocol, and thus the adversary receives the initial
flow that client instance A’ would send to the server S.

One-Time Verifier-Based Encrypted Key Exchange 51

2.3 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A.
In this game, we first draw a password pw from Password according to the dis-
tribution PW, provide coin tosses and oracles to A, and then run the adversary,
letting it ask any number of queries as described above, in any order.

AKE Security. In order to model the privacy (semantic security) of the session
key, we consider a new game Game®™®(A, P), in which an additional oracle is
available to the adversary: the Test(U") oracle.

— Test(U?): This query tries to capture the adversary’s ability to tell apart a
real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U? (i.e., the value that a query Reveal(U?) would output) if b = 1 or
a random key of the same size if b = 0.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U? is Fresh (which roughly means that
the session key is not “obviously” known to the adversary). When playing this
game, the goal of the adversary is to guess the hidden bit b involved in the Test-
query, by outputting a guess b’. Let Succ denote the event in which the adversary
is successful and correctly guesses the value of b. The AKE advantage of an
adversary A is then defined as Advis®(A) = 2 Pr[Succ] — 1. The protocol P is said
to be (t,¢)-AKE-secure if A’s advantage is smaller than ¢ for any adversary A
running with time ¢. Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of the probabilities.

Forward-Secrecy. One additional security property to consider is that of for-
ward secrecy. A key exchange protocol is said to be forward-secure if the security
of a session key between two participants is preserved even if one of these par-
ticipants is later compromised. In order to consider forward secrecy, one has to
account for a new type of query, the Corrupt-query, which models the compromise
of a participant by the adversary. This query is defined as follows:

— Corrupt(U): This query returns to the adversary the long-lived key pw; for
participant U. As in [1], we assume the weak corruption model in which the
internal states of all instances of that user are not returned to the adversary.

In order to define the success probability in the presence of this new type of
query, one should extend the notion of freshness so as not to consider those
cases in which the adversary can trivially break the security of the scheme. In
this new setting, we say that a session key sk is FS-Fresh if all of the following
hold: (1) the instance holding sk has accepted, (2) no Corrupt-query has been
asked since the beginning of the experiment; and (3) no Reveal-query has been
asked to the instance holding sk or to its partner (defined according to the

52 Michel Abdalla, Olivier Chevassut, and David Pointcheval

session identification). In other words, the adversary can only ask Test-queries
to instances which had accepted before the Corrupt query is asked.

Let Succ denote the event in which the adversary successfully guesses the
hidden bit b used by Test oracle. The FS-AKE advantage of an adversary A
is then defined as Adv3® ™(A) = 2 Pr[Succ] — 1. The protocol P is said to be
(t,e)-FS-AKE-secure if A’s advantage is smaller than e for any adversary 4
running with time ¢.

Verifier-Based and One-Time-Password Protocols. In order to mitigate
the amount of damage that can be caused by corruptions in the server and in
the client, we consider two extensions to the standard notion of EKE protocols
which we call Verifier-Based and One-Time-Password protocols.

In a Verifier-Based protocol, the goal is to keep the attacker capable of cor-
rupting the server from obtaining the password for all the clients in the system.
To achieve this goal, we need to adopt the asymmetric model in which the server
no longer knows the password of a user, but only a function of it, which we call
the verifier. In other words, only the client should know its password in a verifier-
based protocol. Even though off-line dictionary attacks cannot be avoided in this
case, the main idea of such protocols is to force an adversary who breaks into
a server to have to perform an off-line dictionary attack for each password that
it wants to crack based on its verifier. Therefore, the security of verifier-based
protocols is directly related to the difficulty of recovering the original password
from the verifier. In a One-Time-Password protocol, on the other hand, the goal
is to limit the damage caused by an attacker who breaks into a client’s machine
or sniffs the password. This is achieved by forcing the user to use a different
password in each session. That is, passwords are good for one session only and
cannot be reused.

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = (g) of order a ¢-bit prime number
q, where the operation is denoted multiplicatively. We also denote by G* the
subset G\{1} of the generators of G.

A (t,e)-CDH,4 ¢ attacker, in a finite cyclic group G of prime order ¢ with
g as a generator, is a probabilistic machine A running in time ¢ such that its
success probability Succ;‘?E(A), given random elements ¢g* and ¢¥ to output g*¥,

is greater than e:

Succh(4) = Pr[A(g%, ¢%) = ¢™] > e.

We denote by Succ;‘f(g(t) the maximal success probability over every adversaries

running within time ¢. The CDH-Assumption states that Succ;fi(g(t) < ¢ for any

t/e not too large.

A (t,n,e)-GDH, ¢ attacker is a (t,¢)-CDHy ¢ attacker, with access to an
additional oracle: a DDH-oracle, which on any input (g%, g¥, g*) answers whether
z = xy mod ¢. Its number of queries is limited to n. As usual, we denote by

One-Time Verifier-Based Encrypted Key Exchange 53

Client Server

pw € Password, PW* = G(A||S||pw), PW*= = G(S||Aljpw) € G

accept < false accept < false
z & Zq y Fid Zq
X —g" Y —g¥
A X"

X" X x PW* X X*/PW*

Y « Y*/PW= 5Y Y* —Y x PW*
sk = H(A|S[XY™ [[pw]]Y™) sk = H(A|SII XY™ |[pw]| X¥)
accept < true accept < true

Fig. 1. An execution of the EKE protocol.

Succid(g (t) the maximal success probability over every adversaries running within

time t. The GDH-Assumption states that Succf]d(g(t) < ¢ for any t/e not too large.

4 The EKE Protocol: Encrypted Key Exchange

4.1 Description of the Scheme

A hash function from {0,1}* to {0,1}* is denoted H. While G denotes a full-
domain hash function from {0,1}* into G. As illustrated on Figure 1 (with an
honest execution of the EKE protocol), the protocol runs between two parties
A and S, and the session-key space SK associated to this protocol is {0,1}*
equipped with a uniform distribution. It works as follows. The client chooses at
random a private random exponent x and computes its Diffie-Hellman public
value g*. The client encrypts the latter value using a password-based mask, as
the product of a Diffie-Hellman value with a full-domain hash of the password,
and sends it to the server. The server in turn chooses at random a private random
exponent y and computes its Diffie-Hellman public value g¥ which it encrypts
using another password-based mask'. The client (resp. server) then decrypts the
flow it has received and computes the session key.

4.2 Security Result

In this section, we assert that under the intractability of the Diffie-Hellman prob-
lem, the EKE protocol, securely distributes session keys: the key is semantically
secure. The proof, which is an improvement of [7], can be found in the full version
of this paper.

! This differs from the classical EKE protocol, which uses a common mask [7]. But
this helps to improve the security result.

54 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Theorem 1 (AKE Security). Let us consider the above EKE protocol, over
a group of prime order q, where Password is a dictionary equipped with the dis-
tribution PW. Let A be an adversary against the AKE security within a time
bound t, with less than qs active interactions with the parties (Send-queries) and
qp passive eavesdroppings (Execute-queries), and, asking g, and g, hash queries
to G and 'H respectively. Then we have

s 2 3 2
AdVIS(A) < 2 x PW(gu) + 48 x Succs®h (s + 5r) + (@ T 9% o @+ an)”,

where 1. denotes the computational time for an exponentiation in G.

Let us now enhance the result to cover forward-secrecy. The proof will be
different from previous proofs for EKE-like protocols since the simulation still
must be independent of any password (so that we can say that the adversary
has a minute of chance to guess the correct one), while after a corruption the
adversary will be able to check the consistency. To reach this aim, we will need to
rely on a stronger assumption: the Gap Diffie-Hellman problem. The Decisional
Diffie-Hellman oracle will be used to identify the public random oracle H to the
private one H’ when the input is a valid Diffie-Hellman value.

Theorem 2 (FS-AKE Security). Let us consider the above EKE protocol,
over a group of prime order q, where Password is a dictionary equipped with the
distribution PW. Let A be an adversary against the FS-AKE security within
a time bound t, with less than qs active interactions with the parties (Send-
queries) and q, passive eavesdroppings (Execute-queries), and, asking g4 and gy,
hash queries to G and H respectively. Then we have

(gp + qs)* + 3(qg + qn)?

Advake—fS(A) < 2x PW(qs)+4 x Succi‘f(g(qh,t-l- 57.) + 2%)

eke

where 1. denotes the computational time for an exponentiation in G.

Proof. As usual, we incrementally define a sequence of games starting at the
real game Gy and ending up at Gs. We are interested in the event S, which
occurs if the adversary correctly guesses the bit b involved in the Test-query.
Let us remember that in this attack game, the adversary is provided with the
Corrupt-query.

GAME Gyg: This is the real protocol, in the random-oracle model. By definition
of event Sy, which means that the adversary correctly guesses the bit b involved
in the Test-query, we have

AdveTS(A) = 2Pr[So] — 1.

eke

GAME Gg: In this game, we simulate the hash oracles (G and H, but also an
additional hash function H’ : {0,1}* — {0, 1}¢ that will appear in the Game G3)
as usual by maintaining hash lists Ag, A and Ay (see Figure 2). Except that

One-Time Verifier-Based Encrypted Key Exchange 55

For a hash-query G(q) such that a record (g, r,*) appears in Ag, the answer is

n

~ r. Otherwise the answer r is defined according to the following rule:
&

—

° »Rule g

:’:j Choose a random element r € G. The record (q,r, L) is
= added to Ag.

o)}

Note: the third component of the elements of this list will be explained later.
For a hash-query H(q) such that a record (g, r) appears in Ay, the answer is r.

Otherwise, g is parsed as (A[|S||X*||Y*||pw]||K), one first asks for G(A||S||pw)
and G(S||Allpw), using the above simulation, then the answer r is defined
according to the following rule:

»Rule H

Choose a random element r € {0, 1}".

One adds the record (g,) to As.
For a hash-query H'(q), such that a record (g,7) appears in A/, the answer

is r. Otherwise, one chooses a random element r € {0,1}", answers with it,
and adds the record (q,r) to Ay .

Fig. 2. Simulation of the EKE protocol (random oracles)

we query G(A||S|pw) and G(S| Allpw) as soon as A, S and pw appear in a
‘H-query. This just increases the number of G queries. We also simulate all the
instances, as the real players would do, for the Send-queries and for the Execute,
Reveal, Test and Corrupt-queries (see Figure 3).

From this simulation, we easily see that the game is perfectly indistinguish-
able from the real attack.

GAME Go: First, we cancel games in which some collisions appear:

— collisions on the transcripts ((4, X*), (S,Y™*));
— collisions on the output of G.

2
Pr[Colly] < (4 +an)”

2
(Qp + QS) T
2q 2q

GAME G3: In this game, we do not compute the session key sk using the oracle
'H, but using the private oracle H’ so that the value sk is completely independent
not only from H, but also from pw and thus from both K4 and Kg. We reach
this aim by using the following rule:
»Rule A3/S3()
Compute the session key sk,,g = H'(A||S]| X*||[Y™).
Since we do no longer need to compute the values K4 and Kg, we can also

simplify the second rules:

»Rule A2/S2()
Do nothing.

56 Michel Abdalla, Olivier Chevassut, and David Pointcheval

We answer to the Send-queries to an A-instance as follows:

— A Send(A’, Start)-query is processed according to the following rule:
»Rule A1)
Choose a random exponent 0 € Z,4, compute X = g% and
X* =X x PW*.
Then the query is answered with (A, X*), and the instance goes to an
expecting state. .
— If the instance A® is in an expecting state, a query Send(A*, (S,Y™)) is
processed by computing the session key. We apply the following rules:
»Rule A2(Y
Compute Y =Y*/PW* and K4 = y?,
»Rule A3()
Compute the session key ska = H(A|S||X*||Y™||pw|Ka).
Finally the instance accepts.

Send-queries to A

We answer to the Send-queries to a S-instance as follows:

0
S — A Send(S7, (A, X*))-query is processed according to the following rules:
.? »Rule S1V
g Choose a random exponent ¢ € Z4, compute ¥ = g% and
7 Y* =Y x PW=.
2 Then the query is answered with (S,Y™), and the instance applies the
A following rules.
»Rule S2(V
Compute X = X*/PW* and Ks = X*.
»Rule 3
Compute the session key sks = H(A||S|| X™||Y*||pw| Ks).
Finally, the instance accepts.
, An Execute(A’, S7)-query is processed using successively the above simu-
= lations of the Send-queries: (A, X*) « Send(A’,Start) and (S,Y*) <
2 Send(S7, (A, X*)), and outputting the transcript ((A4, X*), (S,Y™)).
f A Reveal(U)-query returns the session key (ska or sks) computed by the
£ instance I (if the latter has accepted).
S A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we

return the value of the session key sk, otherwise we return a random value
drawn from {0, 1}*.
A Corrupt(U)-query returns password pw of the user U.

Fig. 3. Simulation of the EKE protocol (Send, Reveal, Execute, Test and Corrupt
queries)

The games G3 and Go are indistinguishable unless A queries the hash function
H on either A||S||X*||Y*||pw| K4 or A||S||X*||[Y*|pw||Ks, for some execution
transcript ((4, X*), (S,Y™*)). We hope to prove that for all the transcripts of
accepted sessions, the probability of such an event is negligible. However, there
is no hope for proving it about sessions accepted after the corruption of the

One-Time Verifier-Based Encrypted Key Exchange 57

password, since the adversary may know the z and thus K4 (or y and Kg). One
should note that sessions accepted after the corruption may have been started
before. There is no way in our simulation to anticipate different answers for the
Send-queries according to that. Therefore, we have to make answers from H and
H' (when they correspond to the same query, which can be checked with the
DDH-oracle) to be the same for sessions accepted after the corruption of the
password:

»Rule H®)
— Before the corruption, randomly choose r € {0, 1}*.
— After the corruption, knowing the correct password, if
e pw is the correct password;
e A S X* Y* corresponds to the session ID of a session ac-
cepted after the corruption;
e K = CDH, g (X*/PW* Y*/PW*) (checked using the DDH-
oracle);
then r is set to H'(A||S|| X*|[Y™).
Else, choose a random element 7 € {0, 1}*.
This new rule for the simulation of H just replaces some random values by other
random values. The games G3 and G4 are now indistinguishable unless A queried
the hash function H on either A||S||X*||Y™*||pw| K4 or A|| S| X*||Y*| pw| Ksg, for
some accepted-session transcript ((A4, X™*), (S,Y™)), before corrupting the pass-
word: event AskHbC. This means that, for some transcript ((4,X™),(S,Y™)),
the tuple (4, S, X*, Y™*, pw, CDH, ¢ (X*/PW*, Y™* /PW**)) lies in the list Ay.
On the other hand, the session key (associated to a session accepted before the
corruption) is computed with a random oracle that is private to the simulator,
then one can remark that it cannot be distinguished by the adversary unless
the same transcript ((A, X™*),(S,Y™*)) appeared in another session, for which
a Reveal-query has been asked (which event has been excluded in the previous
game). The adversary correctly guesses the bit b involved in the Test-query (event
S3) only by chance: Pr[S3] = 1/2.
Actually, one does not need the Diffie-Hellman values K 4 or Kg for comput-

ing sk, but the password: we can formally simplify again some rules but thus
without modifying anything w.r.t. the probabilities:

»Rule A1®)

Choose a random element « € Z, and compute X* = g*.

»Rule S13)

Choose a random element y € Z, and compute Y* = g¥.

GAME Gy4: In order to evaluate the probability of event AskHbC, let us modify
the simulation of the oracle G, with two random elements P, @ € G\{1} (which
are thus generators of G, since the latter has a prime order ¢). The simulation
introduces values in the third component of the elements of Ag, but does not use
it. It would let the probabilities unchanged, but we exclude the cases PW?** = 1
or PW* = 1:

58 Michel Abdalla, Olivier Chevassut, and David Pointcheval

»Rule G
— If ¢ = “A||S||*", randomly choose k € Zj, and compute 7 = P,
— If ¢ = “S||A||*", randomly choose k € Zy, and compute r = QF:
— Else, choose a random element r € G, and set k = L.

The record (g, r, k) is added to Ag.

Since we just exclude k = 0, we have:

| PriAskHbC,] — Pr[AskHbCs] | < 99 T 9"
q

GAME Gj5: It is now possible to evaluate the probability of the event AskHbC.
Indeed, one can remark that the password is never used during the simula-
tion, before the corruption. It thus does not need to be chosen in advance,
but at the time of the corruption (or at the very end only). At that time, one
can check whether the event AskHbC happened or not. To make this evalu-
ation easier, we cancel the games wherein for some pair (X*,Y*) € G?, in-
volved in a communication, there are two passwords pw such that the tuple
(A, S, X*,Y*, pw,CDH, ¢ (X*/PW?*,Y*/PW*)) is in Ay (which event is de-
noted CollH;). Hopefully, event CollH5 can be upper-bounded, granted the fol-
lowing Lemma:

Lemma 1. For any pair (X*,Y™*) involved in a communication, there is at most
one password pw such that (A, S, X*,Y*, pw, CDH, ¢ (X*/PW?,Y*/PW*)) is in
Ayy, unless one can solve the Diffie-Hellman problem:

Pr[CollHs] < SuccE¢ (qn, t + 57c).

Proof. Assume there exist (X* = ¢% Y* = ¢¥) € G? involved in a commu-
nication, PV\//Ss = PR £ 1, PW? = Q% # 1, and PW3* = P~ F1 £ 1,
PW$? = Q%1 £ 1 such that the two following tuples (for i = 0,1) are in Ay:

(A, S, X*, Y™, pw;, Z; = CDH, ¢ (X*/PW:*, Y*/PW;?)).
Then, Z; = CDH, g (X* x P¥ Y* x Q¥). Since (X*,Y*) € G2 has been involved
in a communication (either from Send-queries or an Execute-query), one of X* =

g* or Y* = ¢g¥, has been simulated: at least one of z or y is known. Without loss
of generality, we can assume we know x:

Z; = (Y* x Q")* x CDH, (Y™, P)* x CDH, (P, Q)"
zio 2z = (YRR < PWER PWER) X CDH, (P, @)k (K H)

COH,a(P.Q) = ((PWE/Y*) Z0)F / (PWE/Y*)" Z0)")

where w is the inverse of kok1 (k] — k() in Z,. The latter exists since PWg®, PW{,
PW3, PWS® # 1, and they are all distinct from each other (we have excluded
collisions for G). Since we have access to a DDH-oracle, one can find the two
useful H-queries. O

One-Time Verifier-Based Encrypted Key Exchange 59

For a more convenient analysis, we can split the event AskHbC in two disjoint
sub-cases:

1. AskHbC-Passive, where the transcript ((4, X*), (S,Y™*)) involved in the cru-
cial H-query comes as an answer from an Execute-query;
2. AskHbC-Active, the other cases.

About the active case (the event AskHbC-Actives), the above Lemma 1 ap-
plied to games where the event CollH5 did not happen states that for each pair
(X™*,Y™*) involved in an active transcript, there is at most one pw such that the
corresponding tuple is in A:

Pr[AskHbC-Actives] < PW(qs).

Moreover, in the particular case of passive transcripts, one can state a stronger
result:

Lemma 2. For any pair (X*,Y™*) € G2, involved in a passive transcript, there
is no password pw such that (A, S, X*. Y™*, pw, CDH, ¢ (X*/PW* Y™*/PW**)) is
in Ay, unless one can solve the Diffie-Hellman problem:

Pr[AskHbC-Passives] < Succflfig(qh, t+4re).

Proof. Assume there exist (X* = ¢g*,Y* = g¥) € G? involved in a passive
transcript, and values PW?®* = P=F £ 1, PW® = Q% # 1 such that the tuple

(A7 S,)(*7 Y*, pw, 7 = CDHg,G(X*/PWaS7 Y*/PWsa))
is in Az Then, as above (but with 2 and y known),
COH, (P, Q) = (Z x PW* x PW* /g "

where u is the inverse of kk’ in Z,. By using the DDH-oracle, one easily gets the
crucial ‘H-query. O

As a conclusion,
Pr[AskHbCs] < SuccE (qn, ¢ + 47.) + PW(qs).
Combining all the above equations, one gets

ake—fs PW(gs) + Succiijﬁg(%a t+47.) + SUCC%,?E(%, t+57)
Advge " (A) <2 x Ldotan (gt an)? L @+ 0)?
q 2q 2q

60 Michel Abdalla, Olivier Chevassut, and David Pointcheval

5 The OPKeyX Protocol

The basic EKE protocol withstands password corruption, by providing forward-
secrecy. But this just protects the secrecy of session keys established before the
corruption. Nothing is guaranteed for future sessions. We can even show that one
easily breaks the semantic security of their session keys, by simply impersonating
one of the parties with the knowledge of the password.

In the above protocol, the password can be extracted from both machines:
the server and the client. And moreover, the server stores many passwords (since
its is aimed at establishing sessions with many clients), then the corruption of
the server does not just leak one password, but a huge number of them. This
would be quite useful to be able to reduce the damages of such a corruption. We
propose below two different ways to achieve this task.

5.1 Stealing the Server Database

In a verifier-based protocol, the client owns a password, but the server just knows
a verifier of the latter (which is actually a hash value, or the image by a one-
way function), not the password itself. Hence, the corruption of the server just
reveals this verifier. Of course, an off-line dictionary attack thereafter leads to
the password. Such an exhaustive search cannot be prevented but should be the
most efficient one: by including salts (sent back to the client by the server in the
first flow) would reduce even more the impact of the corruption, since a specific
dictionary attack should be performed towards each specific user, and could not
be generic.

A verifier-based enhancement of EKE is proposed on Figure 4. It is basically
the previous EKE scheme using first the verifier as common password. Then,
the client furthermore proves his knowledge of the password which matches the
password-verifier relation. In our proposal, the relation is the pairs (z, g*), and
thus the proof is a Schnorr-like proof of knowledge of a discrete logarithm [21],
with a multi-collision resistant function f [12]. To prevent dictionary attacks, we
introduce the Diffie-Hellman secret in the hash input to get the challenge e, so
that the latter can be computed by the two parties only: it is semantically secure
for external adversaries for exactly the same reasons the session key is. Because of
this semantic security, dictionary attacks are still prevented, since the additional
proof of knowledge does not reveal any information: the verification relation
is actually secret, because of the secrecy of e. As a consequence, the private
property of e makes that the proof does not leak any information about both
the password and the verifier to external parties. The zero-knowledge property of
this proof makes that even the server does not learn any additional information
about the password.

To improve efficiency, we also swapped the flows, so that the protocol remains
a 2-pass one. Indeed, the client has to be the last, since it has to send its proof of
knowledge of the password. By swapping the two flows of the basic EKE protocol,
the latter proof of knowledge can be concatenated to the last flow, which does
not increase the communication cost.

One-Time Verifier-Based Encrypted Key Exchange 61

Client Server

pw c Zq pw = gPW
PW?* = G(A]|S||pw), PW* = G(S||Al|pw) € G

accept < false accept < false

e &7, X — g y &Ly, Y — g¥

yovipws <Oy oy opws

X*— X x PW*
r &%, R—g",p=f(R)
e = H1(A|IS||X* ()Y *[|p]lpw]Y®)

A X"
s=17r—e-pwmod q i Rl i L X «— X*/PW*
e = Hi(AS[X™ Y pllpw]]Y™)
if p= f(g°pw°),

then accept « true

sk = H(A[SI XY [lpllpw][Y™) sk = H(A[SX*[Y*||pllpw|| X*)
accept < true

Fig. 4. An execution of the VB-EKE protocol.

From a more practical point of view, this inversion better suits the Transport
Layer Security (TLS) protocol [22]. The flows of the VB-EKE protocol thus have
to comply with the key-exchange phase, which happens right after the hello flows
(the first is from the client to the server, then the second goes back from the
server to the client) and precedes the finish phase (the first finish message is
again from the client to the server). In short, the first message of the VB-EKE
protocol would simply map to the ServerKeyFExchange flows while the second
message to the ClientKeyEzchange message.

5.2 Capturing the Client Password

The above modified scheme does not really increase the communication cost,
since additional data can be concatenated to existing flows. But both parties
have more computation to do, and namely a few exponentiations. The password-
verifier relation can be more efficient, using any one-way function. However, for
such a general function, a zero-knowledge proof of knowledge of the password
may not be easy to perform. But the zero-knowledge property is not required,
if we move to the one-time password scenario: f(pw) is first used as a common
password, then the client eventually reveals the password, which will thereafter
be the future common data (or verifier) if pw = f™(seed) [17]. The computa-
tion of f™(pw) is performed by a one-time password generator which derives

62 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Client Server

pw € Password, n, pw,, = f"(pw) n,pw = f(pw,,)

PW* = G(A||S|pw), PW* = G(S[|Allpw) € G

accept < false accept < false
o &L, X —g" Y& Ly Y — g

S, Y*.n
n correct? «————— Y* «— Y x PW®
Y « Y*/PW=

X* X x PW*
s = Hi(A[[S| XY || pw][Y)

c=FEs(pw,) ———— X « X*/PW*
s = Ha(AS]X7 Y [pw][y)
p = Ds(c),if pw = f(p),
then pw «— p,n «—n — 1,
accept « true

sk = H(A|SIX*[[Y*|[pw][Y") sk = H(A|SIX*[Y*[[pw]| X¥)

accept < true

Fig. 5. An execution of the OPKeyX protocol.

successive passwords from a seed. Since one-time password generators do not
require reader devices they are much more adapted for the Grid environment
than contact tokens (e.g, smart-card, USB tokens). This discussion leads to the
One-time Password-enhanced version of VB-EKE which is proposed on Figure 5.
The communication of the password has indeed to be sent in a private way, since
it will become the future common data, hence the use of an ephemeral session
key, which is trivially semantically secure (due to Theorem 2).

6 Conclusion

This paper provides strong security arguments to support the EKE-like protocols
being standardized by the IEEE P1363.2 Standard working group (namely the
PPK series). We have reached this aim by slightly modifying the original AuthA
protocol (the two encryption primitives are instantiated using separate mask
generation functions but derived from a unique shared password) to be able
to achieve the security notion of forward-secrecy in a provably-secure way. Our
result is a slight departure from previously known results on EKE-like structures
since the security of AuthA is now based on the Gap Diffie-Hellman problem.
Moreover, we have extended AuthA into a One-time Password-authentication
and Key eXchange (OPKeyX) technology which allows a user to securely log
into his account using a remote un-trusted computer and limits the damages of
corruption of the server.

One-Time Verifier-Based Encrypted Key Exchange 63

Acknowledgments

The authors would like to thanks Frank Siebenlist for invaluable discussions re-
lated to Grid computing. The first and third authors have been supported in part
by the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. The second author was supported by the Director, Office
of Science, Office of Advanced Scientific Computing Research, Mathematical In-
formation and Computing Sciences Division, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098. This document is report LBNL-56212.
Disclaimer available at http://www-library.1lbl.gov/disclaimer.

References

1.

10.

11.

12.

13.
14.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Se-
cure Against Dictionary Attacks. In Eurocrypt 00, LNCS 1807, pages 139-155.
Springer-Verlag, Berlin, 2000.

M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenti-
cated Key Exchange. Contributions to IEEE P1363. March 2000.

S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72-84. IEEE, 1992.

S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In Proc. of the 1st CCS, pages 244-250. ACM Press, New York, 1993.

V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman. In Eurocrypt ‘00, LNCS 1807, pages 156—171.
Springer-Verlag, Berlin, 2000.

E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient
password-based key exchange. In Proc. of the 10th CCS, pages 241-250. ACM
Press, New York, 2003.

E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted
Key Exchange. In PKC ’04, LNCS, pages 145-159. Springer-Verlag, Berlin, 2004.
L. Fang, S. Meder, O. Chevassut, and F. Siebenlist. Secure Password-based Au-
thenticated key Exchange for Web Services In Proc. of the ACM Workshop on
Secure Web Services, 2004.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2004.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. Security Architecture for
Computational Grids. In Proc. of the 5th CCS, pages 83-92. ACM Press, New
York, 1998.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International J. Supercomputer Applications, 15(3),
2001.

M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in
Identification Schemes. In Crypto ’94, LNCS 839, pages 202-215. Springer-Verlag,
Berlin, 1994.

The Global Grid Forum (GGF). http://www.ggf.org.

N. Haller, C. Metz, P. Nesser, and M. Straw. RFC 2289: A One-Time Password
System. Internet Activities Board, February 1998.

64

15.

16.

17.

18.

19.

20.

21.

22.

Michel Abdalla, Olivier Chevassut, and David Pointcheval

IEEE Standard 1363.2 Study Group. Password-Based Public-Key Cryptography.
http://grouper.ieee.org/groups/1363/passwdPK.

J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in password-only key ex-
change protocols. In SCN’02, LNCS 2576, pages 29-44. Springer-Verlag, Berlin,
2002.

L. Lamport. Password Authentication with Insecure Communication. Communi-
cations of the ACM 24, 11:770-771, November 1981.

P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key ex-
change. Technical Report 2002-46, DIMACS, 2002.

The Oasis standard body. http://www.oasis-open.org.

T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for
the Security of Cryptographic Schemes. In PKC °01, LNCS 1992. Springer-Verlag,
Berlin, 2001.

C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology, 4(3):161-174, 1991.

M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher
Suite for TLS. ACM Transactions on Information and System Security (TISSEC),
4(2):134-157, 2001.

Password-Based Authenticated Key Exchange
in the Three-Party Setting

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Departement d’Informatique
Ecole normale supérieure
45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,Pierre-Alain.Fouque,David.Pointcheval}@ens.fr
http://www.di.ens.fr/users/{mabdalla,fouque,pointche}

Abstract. Password-based authenticated key exchange are protocols
which are designed to be secure even when the secret key or password
shared between two users is drawn from a small set of values. Due to
the low entropy of passwords, such protocols are always subject to on-
line guessing attacks. In these attacks, the adversary may succeed with
non-negligible probability by guessing the password shared between two
users during its on-line attempt to impersonate one of these users. The
main goal of password-based authenticated key exchange protocols is
to restrict the adversary to this case only. In this paper, we consider
password-based authenticated key exchange in the three-party scenario,
in which the users trying to establish a secret do not share a password
between themselves but only with a trusted server. Towards our goal, we
recall some of the existing security notions for password-based authen-
ticated key exchange protocols and introduce new ones that are more
suitable to the case of generic constructions. We then present a natural
generic construction of a three-party protocol, based on any two-party
authenticated key exchange protocol, and prove its security without mak-
ing use of the Random Oracle model. To the best of our knowledge, the
new protocol is the first provably-secure password-based protocol in the
three-party setting.

Keywords: Password, authenticated key exchange, key distribution,
multi-party protocols.

1 Introduction

Motivation. A fundamental problem in cryptography is how to communicate
securely over an insecure channel, which might be controlled by an adversary.
It is common in this scenario for two parties to encrypt and authenticate their
messages in order to protect the privacy and authenticity of these messages. One
way of doing so is by using public-key encryption and signatures, but the cost as-
sociated with these primitives may be too high for certain applications. Another
way of addressing this problem is by means of a key exchange protocol, in which
users establish a common key which they can then use in their applications.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 65-84, 2005.
© International Association for Cryptologic Research 2005

66 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

In practice, one finds several flavors of key exchange protocols, each with
its own benefits and drawbacks. Among the most popular ones is the 3-party
Kerberos authentication system [25]. Another one is the 2-party SIGMA pro-
tocol [17] used as the basis for the signature-based modes of the Internet Key
Exchange (IKE) protocol. Yet another flavor of key exchange protocols which
has received significant attention recently are those based on passwords.

PAssSwWORD-BASED KEY EXCHANGE. Password-based key exchange protocols as-
sume a more realistic scenario in which secret keys are not uniformly distributed
over a large space, but rather chosen from a small set of possible values (a four-
digit pin, for example). They also seem more convenient since human-memorable
passwords are simpler to use than, for example, having additional cryptographic
devices capable of storing high-entropy secret keys. The vast majority of proto-
cols found in practice do not account, however, for such scenario and are often
subject to so-called dictionary attacks. Dictionary attacks are attacks in which
an adversary tries to break the security of a scheme by a brute-force method, in
which it tries all possible combinations of secret keys in a given small set of val-
ues (i.e., the dictionary). Even though these attacks are not very effective in the
case of high-entropy keys, they can be very damaging when the secret key is a
password since the attacker has a non-negligible chance of winning. Such attacks
are usually divided in two categories: off-line and online dictionary attacks.

To address this problem, several protocols have been designed to be secure
even when the secret key is a password. The goal of these protocols is to restrict
the adversary’s success to on-line guessing attacks only. In these attacks, the
adversary must be present and interact with the system in order to be able to
verify whether its guess is correct. The security in these systems usually relies
on a policy of invalidating or blocking the use of a password if a certain number
of failed attempts has occurred.

3-PARTY PASSWORD-BASED KEY EXCHANGE. Passwords are mostly used be-
cause they are easier to remember by humans than secret keys with high entropy.
Consequently, users prefer to remember very few passwords but not many. How-
ever, in scenarios where a user wants to communicate with many other users, then
the number of passwords that he or she would need to remember would be linear
in the number of possible partners. In order to limit the number of passwords
that each user needs to remember, we consider in this paper password-based
authenticated key exchange in the 3-party model, where each user only shares
a password with a trusted server. The main advantage of this solution is that
it provides each user with the capability of communicating securely with other
users in the system while only requiring it to remember a single password. This
seems to be a more realistic scenario in practice than the one in which users
are expected to share multiple passwords, one for each party with which it may
communicate privately. Its main drawback is that the server is needed during the
establishment of all communication as in the Needham and Schroeder protocol.

KEY PRIvACY. One potential disadvantage of a 3-party model is that the privacy
of the communication with respect to the server is not always guaranteed. Since

Password-Based Authenticated Key Exchange in the Three-Party Setting 67

we want to trust as little as possible the third party, we develop a new notion
called key privacy which roughly means that, even though the server’s help is
required to establish a session key between two users in the system, the server
should not be able to gain any information on the value of that session key. Here
we assume that the server is honest but curious. Please note that key distribution
schemes usually do not achieve this property.

INSIDER ATTACKS. One of the main differences between the 2-party and the
3-party scenarios is the existence of insider attacks. To better understand the
power of these attacks, consider the protocol in Figure 1, based on the encrypted
key exchange of Bellovin and Merritt[9], in which the server simply decrypts
the message it receives and re-encrypts it under the other user’s password. In
this protocol, it is easy to see that one can mount an off-line dictionary by
simply playing the role of one of the involved parties. Notice that both A and
B can obtain the necessary information to mount an off-line dictionary attack
against each other simply by eavesdropping on the messages that are sent out
by the server. More specifically, A and B can respectively learn the values X} =
Epwy(Xs) and Y = Epw, (Ys) and mount a dictionary attack against each
other using the fact that Xg = X4 and Yg = Yjp. Insider attacks do not need
be considered explicitly in the case of 2-party protocols due to the independence
among the passwords shared between pairs of honest users and those shared with
malicious users.

A NEW SECURITY MODEL. In order to analyze the security of 3-party password-
based authenticated key exchange protocols, we put forward a new security
model and define two notions of security: semantic security of the session key and
key privacy with respect to the server. The first of these notions is the usual one
and is a straight-forward generalization of the equivalent notion in the 2-party

Public information: G, g,p,E,D, H

Client A Server Client B
pw 4 € Password PW 4, pw 5 € Password pwp € Password
@ 2,5 Xa—g" y &2, Vi — g
X4 — Epwy(Xa) Y5 — &g (VB)

X% Yy
-4 £

Xs Dpr(X:‘;)
Ys < Dpwy (Y5)
Y§ — pr(YS)
XE — Epup (Xs)

Y X3
— —
YA — Dpw, (YE) XB « Dpwy (X3)
Ka <Y}y KB<—X}yB
SKa— H(A|B| S| Ka) SKp «— H(A|B||S| Ks)

Fig. 1. An insecure 3-party password-based encrypted key exchange protocol.

68 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

password-based authenticated key exchange model. The second one is new and
particular to the new setting, and captures the privacy of the key with respect
to the trusted server to which all passwords are known.

A GENERIC CONSTRUCTION. In this paper, we consider a generic construction
of 3-party password-based protocol. Our construction is a natural one, building
upon existing 2-party password-based key exchange and 3-party symmetric key
distribution schemes, to achieve provable security in the strongest sense. More-
over, our construction is also modular in the sense that it can be broken into two
parts, a 3-party password-based key distribution protocol and 2-party authenti-
cated key exchange. The second part is only needed if key privacy with respect
to the server is required.

THE NEED FOR NEW SECURITY NOTIONS. Surprisingly, the proof of security for
the new scheme does not follow from the usual security notions for the underlying
schemes as one would expect and requires a new and stronger notion of security
for the underlying 2-party password-based scheme (see Section 2). In fact, this
new security notion is not specific to password-based schemes and is one of the
main contributions of this paper. Fortunately, we observe that most existing 2-
party password-based schemes do in fact satisfy this new property [11,13,16,
21]. More specifically, only a few small changes are required in their proof in
order to achieve security in the new model. The bounds obtained in their proof
remain essentially unchanged.

Contributions. In this paper, we consider password-based (implicitly) authen-
ticated key exchange in the 3-party model, where each user only shares a pass-
word with a trusted server.

NEW SECURITY MODELS. Towards our goal, we put forth a new formal security
model that is appropriate for the 3-party password-based authenticated key ex-
change scenario and give precise definitions of what it means for it to be secure.
Our model builds upon those of Bellare and Rogaway [7, 8] for key distribution
schemes and that of Bellare, Pointcheval, and Rogaway [5] for password-based
authenticated key exchange.

NEW SECURITY NOTIONS. We also present a new and stronger model for 2-
party authenticated key exchange protocols, which we call the Real-Or-Random
model. Our new model is provably stronger than the existing model, to which we
refer to as the Find-Then-Guess model, in the sense that a scheme proven secure
in the new model is also secure in the existing model. However, the reverse is not
necessarily true due to an unavoidable non-constant factor loss in the reduction.
Such losses in the reduction are extremely important in the case of password-
based protocols.

A GENERIC CONSTRUCTION IN THE STANDARD MODEL. We present a generic
and natural framework for constructing a 3-party password-based authenticated
key exchange protocol from any secure 2-party password-based one. We do so by
combining a 3-party key distribution scheme, an authenticated Diffie-Hellman
key exchange protocol, and the 2-party password-based authenticated key ex-
change protocol. The proof of security relies solely on the security properties of

Password-Based Authenticated Key Exchange in the Three-Party Setting 69

underlying primitives it uses and does not assume the Random Oracle model [6].
Hence, when appropriately instantiated, this construction yields a secure proto-
col in the standard model.

A SEPARATION BETWEEN KEY DISTRIBUTION AND KEY EXCHANGE. In addi-
tion to semantic security of the session key, we present a new property, called key
privacy, which is specific to key exchange protocols. This new notion captures in
a quantitative way the idea that the session key shared between two instances
should be only known to these two instances and no one else, including the
trusted server.

Related Work. Password-based authenticated key exchange has been exten-
sively studied in the last few years [5,10-15,18-20, 23, 26], with a portion of the
work dealing with the subject of group key exchange and the vast majority deal-
ing with different aspects of 2-party key exchange. Only a few of them (e.g., [12,
18,26]) consider password-based protocols in the 3-party setting, but none of
their schemes enjoys provable security. In fact, our generic construction seems to
be the first provably-secure 3-party password-based authenticated key exchange
protocol.

Another related line of research is authenticated key exchange in the 3-party
setting. The first work in this area is the protocol of Needham and Schroeder [22],
which inspired the Kerberos distributed system. Later, Bellare and Rogaway
introduced a formal security model in this scenario along with a construction
of the first provably-secure symmetric-key-based key distribution scheme [8]. In
this paper, we consider the special but important case in which the secret keys
are drawn from a small set of values.

Organization. In Section 2, we recall the existing security model for 2-party
password-based authenticated key exchange and introduce a new one. Next,
in Section 3, we introduce new models for 3-party password-based authenti-
cated key exchange. Section 4 then presents our generic construction of a 3-party
password-based authenticated key exchange protocol, called GPAKE, along with
the security claims and suggestions on how to instantiate it. Some future exten-
sions of this work are presented in Section 5. In Appendix A, we describe the
cryptographic primitives and assumptions on which GPAKE is based. We con-
clude by presenting some results in Appendix B regarding the relation between
the existing security notions and the new ones being introduced in this paper.

2 Security Models
for 2-Party Password-Based Key Exchange

A secure 2-party password-based key exchange is a 2PAKE protocol where the
parties use their password in order to derive a common session key sk that will
be used to build secure channels. Loosely speaking, such protocols are said to be
secure against dictionary attacks if the advantage of an attacker in distinguishing
a real session key from a random key is less than O(n/|D|) + e(k) where |D| is

70 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

the size of the dictionary D, n is the number of active sessions and e(k) is a
negligible function depending on the security parameter k.

In this section, we recall the security model for 2-party password-based au-
thenticated key exchange protocols introduced by Bellare, Pointcheval, and Ro-
gaway (BPR) [5] and introduce a new one. For reasons that will soon become
apparent, we refer to the new model as the Real-Or-Random (ROR) model and
to the BPR model as the Find-Then-Guess (FTG) model, following the termi-
nology of Bellare et al. for symmetric encryption schemes [4].

2.1 Communication Model

ProT1OCOL PARTICIPANTS. Each participant in the 2-party password-based key
exchange is either a client C' € C or a server S € S§. The set of all users or
participants U is the union CU S.

Lonc-LivEp KEYS. Each client C' € C holds a password pw. Each server
S € S holds a vector pwg = (pwg[C])cec with an entry for each client, where
pwg[C] is the transformed-password, as defined in [5]. In a symmetric model,
pwg[C| = pwe, but they may be different in some schemes. pw and pwg are
also called the long-lived keys of client C' and server S.

ProTocorL EXECUTION. The interaction between an adversary A and the pro-
tocol participants occurs only via oracle queries, which model the adversary
capabilities in a real attack. During the execution, the adversary may create
several concurrent instances of a participant. These queries are as follows, where
U? denotes the instance i of a participant U:

— Execute(C?, S7): This query models passive attacks in which the attacker
eavesdrops on honest executions between a client instance C* and a server
instance S7. The output of this query consists of the messages that were
exchanged during the honest execution of the protocol.

— Send(U%,m): This query models an active attack, in which the adversary
may intercept a message and then either modify it, create a new one, or
simply forward it to the intended participant. The output of this query is
the message that the participant instance U would generate upon receipt of
message m.

2.2 Security Definitions

PARTNERING. We use the notion of partnering based on session identifications
(sid), which says that two instances are partnered if they hold the same non-null
sid. In practice, the sid is taken to be the partial transcript of the conversation
between the client and the server instances before the acceptance.

FRESHNESS. In order to properly formalize security notions for the session key,
one has to be careful to avoid cases in which adversary can trivially break the
security of the scheme. For example, an adversary who is trying to distinguish

Password-Based Authenticated Key Exchange in the Three-Party Setting 71

the session key of an instance U® from a random key can trivially do so if it
obtains the key for that instance through a Reveal query (see definition below) to
instance U? or its partner. Instead of explicitly defining a notion of freshness and
mandating the adversary to only perform tests on fresh instances as in previous
work, we opted to embed that notion inside the definition of the oracles.

Semantic Security in the Find-Then-Guess Model. This is the definition
currently being used in the literature. In order to measure the semantic security
of the session key of user instance, the adversary is given access to two additional
oracles: the Reveal oracle, which models the misuse of session keys by a user, and
the Test oracle, which tries to capture the adversary’s ability (or inability) to
tell apart a real session key from a random one. Let b be a bit chosen uniformly
at random at the beginning of the experiment defining the semantic security in
the Find-Then-Guess model. These oracles are defined as follows.

— Reveal(U?): If a session key is not defined for instance U® or if a Test query
was asked to either U? or to its partner, then return L. Otherwise, return
the session key held by the instance U°.

— Test(U?): If no session key for instance U’ is defined or if a Reveal query
was asked to either U? or to its partner, then return the undefined symbol
L. Otherwise, return the session key for instance U if b = 1 or a random of
key of the same size if b = 0.

The adversary in this case is allowed to ask multiple queries to the Execute,
Reveal, and Send oracles, but it is restricted to ask only a single query to the
Test oracle. The goal of the adversary is to guess the value of the hidden bit
b used by the Test oracle. The adversary is considered successful if it guesses b
correctly.

Let Succ denote the event in which the adversary is successful. The ftg-ake-
advantage of an adversary A in violating the semantic security of the protocol
P in the Find-Then-Guess sense and the advantage function of the protocol
P, when passwords are drawn from a dictionary D, are respectively

Advis, ™ (A)=2 Pr[Succ]—1 and Advs, *(t, R) = max{ AdviES M (A) b,

where the maximum is over all A with time-complexity at most ¢ and using
resources at most R (such as the number of queries to its oracles). The definition
of time-complexity that we use henceforth is the usual one, which includes the
maximum of all execution times in the experiments defining the security plus
the code size [1]. Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of the probabilities.

Semantic Security in the Real-Or-Random Model. This is a new defini-
tion. In the Real-Or-Random model, we only allow the adversary to ask Execute,
Send, and Test queries. In other words, the Reveal oracle that exists in the Find-
Then-Guess model is no longer available to the adversary. Instead, we allow the
adversary to ask as many Test queries as it wants to different instances. All Test
queries in this case will be answered using the same value for the hidden bit b
that was chosen at the beginning . That is, the keys returned by the Test oracle

72 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

are either all real or all random. However, in the random case, the same random
key value should be returned for Test queries that are asked to two instances
which are partnered. Please note that the Test oracle is the oracle modeling the
misuse of keys by a user in this case. The goal of the adversary is still the same:
to guess the value of the hidden bit b used to answer Test queries. The adversary
is considered successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ror-ake-
advantage Advlﬁgakc(A) of an adversary A in violating the semantic security
of the protocol P in the Real-Or-Random sense and the advantage function

Advﬁ_—‘,’)’gake (t, R) of the protocol P are then defined as in the previous definition.

Relation Between Notions. As we prove in Appendix B, the Real-Or-
Random (ROR) security model is actually stronger than the Find-Then-Guess
(FTG) security model. More specifically, we show that proofs of security in the
ROR model can be easily translated into proofs of security in the FTG model
with only a 2 factor loss in the reduction (see Lemma 1). The reverse, however,
is not necessarily true since the reduction is not security preserving. There is a
loss of non-constant factor in the reduction (see Lemma 2). Moreover, the loss in
the reduction cannot be avoided as there exist schemes for which we can prove
such a loss in security exists (see Proposition 1).

To better understand the gap between the two notions, imagine a password-
based scheme that was proven secure in the FTG model. By definition, the
advantage of any adversary is at most O(n/|D|) + ¢(k), where n is the number
of active sessions and e(k) is a negligible term. By applying the reduction, we
can show that no adversary can do better than O(n?/|D|)+n-e(k), which is not
enough to guarantee the security of the same scheme in the ROR model. Note
that such a gap is not as important in the case where high-entropy keys are used
since both terms in the expression would be negligible.

As a consequence, we cannot take for granted the security of the existing
schemes and new proofs of security need be provided. Fortunately, we would like
to point out here that the security proof for several of the existing schemes can be
easily modified to meet the new security goals with essentially the same bounds.
The reason for that is that the security proofs of most existing password-based
schemes in fact prove something stronger than what is required by the security
model. More specifically, most proofs generally show that not only the session
key being tested looks random, but all the keys that may be involved in a reveal
query also look random to an adversary that does not know the secret password,
thus satisfying the security requirements of our new model. In particular, this is
the case for the KOY protocol [16] and its generalization [13], and some other
schemes based on the encrypted key exchange scheme of Bellovin and Merritt [9]
(e.g., [11,21]).

Since most existing password-based schemes do seem to achieve security in
the new and stronger security model and since the latter appears to be more ap-
plicable to situations in which one wishes to use a password-based key exchange
protocol as a black box, we suggest the use of our new model when proving the
security of new password-based schemes.

Password-Based Authenticated Key Exchange in the Three-Party Setting 73

3 Security Models
for 3-Party Password-Based Key Exchange

In this section, we put forward new formal security models for 3-party password-
authenticated key exchange and key distribution protocols. Our models are gen-
eralizations of the model of Bellare and Rogaway [8] for 3-party key distribution
schemes to the password case and that of Bellare, Pointcheval, and Rogaway [5]
for 2-party password-based authenticated key exchange.

3.1 Protocol Syntax

ProTOCOL PARTICIPANTS. Each participant in a 3-party password-based key
exchange is either a client U € U or a trusted server S € S§. The set of clients
U is made up of two disjoint sets: C, the set of honest clients, and &, the set of
malicious clients. For simplicity, and without loss of generality', we assume the
set S to contain only a single trusted server.

The inclusion of the malicious set £ among the participants is one the main
differences between the 2-party and the 3-party models. Such inclusion is needed
in the 3-party model in order to cope with the possibility of insider attacks. The
set of malicious users did not need to be considered in the 2-party due to the
independence among the passwords shared between pairs of honest participants
and those shared with malicious users.

LoNG-L1vED KEYS. Each participant U € U holds a password pwy;. Each server
S € S holds a vector pwg = (pwg[U])uey with an entry for each client, where
pwg[U] is the transformed-password, following the definition in [5]. In a sym-
metric model, pw¢[U] = pwy;, but they may be different in some schemes. The
set of passwords pw, where E € £, is assumed to be known by the adversary.

3.2 Communication Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack.
These queries are as follows:

- Execute(Ulil,Sj , U%z): This query models passive attacks in which the at-
tacker eavesdrops on honest executions among the client instances Uli1 and
U2i2 and trusted server instance S7. The output of this query consists of the
messages that were exchanged during the honest execution of the protocol.

— SendClient(U?, m): This query models an active attack, in which the adver-
sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U’ would generate upon receipt of message m.

— SendServer(S7, m): This query models an active attack against a server. It
outputs the message that server instance S’ would generate upon receipt of
message m.

! This is so because we are working in the concurrent model and because all servers
in the general case know all users’ passwords.

74 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

3.3 Semantic Security

The security definitions presented here build upon those of Bellare and Rog-
away [7,8] and that of Bellare, Pointcheval, and Rogaway [5].

NOTATION. Following [7,8], an instance U’ is said to be opened if a query
Reveal(U") has been made by the adversary. We say an instance U® is unopened
if it is not opened. Similarly, we say a participant U is corrupted if a query
Corrupt(U) has been made by the adversary. A participant U is said to be un-
corrupted if it is not corrupted. We say an instance U’ has accepted if it goes
into an accept mode after receiving the last expected protocol message.

PARTNERING. Our definition of partnering follows that of [5], which uses session
identifications (sid). More specifically, two instances U{ and Uj are said to be
partners if the following conditions are met: (1) Both U} and UJ accept; (2) Both
Ui and Ug share the same session identifications; (3) The partner identification
for Ul is U] and vice-versa; and (4) No instance other than U} and UJ accepts
with a partner identification equal to Uj or Ug. In practice, as in the 2-party
case, the sid could be taken to be the partial transcript before the acceptance of
the conversation among all the parties involved in the protocol, a solution which
may require the forwarding of messages.

FRESHNESS. As in the 2-party case, we opted to embed the notion of freshness
inside the definition of the oracles.

Semantic Security in Find-Then-Guess Model. This definition we give
here is the straight-forward generalization of that of Bellare, Pointcheval, and
Rogaway [5] for the 2-party case, combined with ideas of the model of Bellare and
Rogaway [8] for 3-party key distribution. As in the 2-party case, we also define
a Reveal oracle to model the misuse of session keys and a Test oracle to capture
the adversary’s ability to distinguish a real session key from a random one. Let b
be a bit chosen uniformly at random at the beginning of the experiment defining
the semantic security in the Find-Then-Guess model. These oracles are defined
as follows:
— Reveal(U?): If a session key is not defined for instance U® or if a Test query
was asked to either U’ or to its partner, then return L. Otherwise, return
the session key held by the instance U*.
— Test(U?): If no session key is defined for instance U® or if the intended partner
of U? is part of the malicious set or if a Reveal query was asked to either U*
or to its partner, then return the invalid symbol 1. Otherwise, return either
the session key for instance U? if b = 1 or a random of key of the same size
ifb=0.
Consider an execution of the key exchange protocol P by an adversary A, in
which the latter is given access to the Reveal, Execute, SendClient, SendServer,
and Test oracles and asks a single Test query, and outputs a guess bit &’. Such an
adversary is said to win the experiment defining the semantic security if b’ = b,
where b is the hidden bit used by the Test oracle.

Let Succ denote the event in which the adversary wins this game. The
ftg-ake-advantage Advii:gg k(A of an adversary A in violating the semantic

Password-Based Authenticated Key Exchange in the Three-Party Setting 75

security of the protocol P in the Find-Then-Guess sense and the advantage
function Advgggg k(1 R) of the protocol P are then defined as in previous
definitions. 1

We say a 3-party password-based key exchange protocol P is semantically
secure in the Find-Then-Guess sense if the advantage Advtlfg ke is only negligi-
bly larger than kn/|D|, where n is number of active sessions and k is a constant.
Note that k£ = 1 in the best scenario since an adversary that simply guesses the

password in each of the active sessions has an advantage of n/|D|.

Semantic Security in Real-Or-Random Model. This is a new definition.
In the Real-Or-Random model, Reveal queries are no longer allowed and are
replaced by Test queries. In this case, however, the adversary is allowed to ask
as many Test queries as it wants.

The modifications to the Test oracle are as follows. If a Test query is asked
to a client instance that has not accepted, then return the undefined L. If a
Test query is asked to an instance of an honest client whose intended partner
is dishonest or to an instance of a dishonest client, then return the real session
key. Otherwise, the Test query returns either the real session key if b =1 and a
random one if b = 0, where b is the hidden bit selected at random prior to the
first call. However, when b = 0, the same random key value should be returned
for Test queries that are asked to two instances which are partnered. The goal
of the adversary is still the same: to guess the value of the hidden bit used by
the Test oracle. The adversary is considered successful if it guesses b correctly.

Consider an execution of the key exchange protocol P by an adversary A,
in which the latter is given access to the Execute, SendClient, SendServer, and
Test oracles, and outputs a guess bit »’. Such an adversary is said to win the
experiment defining the semantic security in the ROR sense if &’ = b, where b
is the hidden bit used by the Test oracle. Let SuccC denote the event in which
the adversary wins this game. The ror-ake-advantage Adv’ﬁgake(A) of an
adversary A in violating the semantic security of the protocol P in the Real-Or-
Random sense and the advantage function Advﬁgrgakc(t, R) of the protocol
P are then defined as in previous definitions.

3.4 Key Privacy with Respect to the Server

Differently from previous work, we define the notion of key privacy to capture, in
a quantitative way, the idea that the session key shared between two instances
should only be known to these two instances and no one else, including the
trusted server. The goal of this new notion is to limit the amount of trust put
into the server. That is, even though we rely on the server to help clients establish
session keys between themselves, we still want to guarantee the privacy of these
session keys with respect to the server. In fact, this is the main difference between
a key distribution protocol (in which the session key is known to the server) and
a key exchange protocol (for which the session key remains unknown to the
server).

In defining the notion of key privacy, we have in mind a server which knows
the passwords for all users, but that behaves in an honest but curious manner.

76 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

For this reason, we imagine an adversary who has access to all the passwords as
well as to the Execute and SendClient oracles but not to a Reveal oracle or to a
SendServer oracle, since the latter can be easily simulated using the passwords.
To capture the adversary’s ability to tell apart the real session key shared be-
tween any two instances from a random one, we also introduce a new type of
oracle, called TestPair, defined as follows, where b is a bit chosen uniformly at
random at the beginning of the experiment defining the notion of key privacy.

— TestPair(U}, U): If client instances U and U3 do not share the same key,
then return the undefined symbol L. Otherwise, return the real session key
shared between client instances U} and UJ if b = 1 or a random key of the
same size if b = 0.

Consider an execution of the key exchange protocol P by an adversary A
with access to the Execute, SendClient, and TestPair oracles and the passwords
of all users, and let b’ be its output. Such an adversary is said to win the exper-
iment defining the key privacy if ¥’ = b, where b is the hidden bit used by the
TestPair oracle. Let SUCC denote the event in which the adversary guesses b cor-
rectly. We can then define the kp-advantage AdvP5*°(A) of A in violating
the key privacy of the key exchange protocol P and the advantage function
Adv'P5 (¢, R) of P as in previous definitions.

Fiﬁally, we say an adversary A succeeds in breaking the key privacy of a
protocol P if Advlg))gakC (A) is non-negligible.

4 A Generic Three-Party Password-Based Protocol

In this section, we introduce a generic construction of a 3-party password-based
key exchange protocol in the scenario in which we have an honest-but-curious
server. [t combines a 2-party password-based key exchange, a secure key distribu-
tion protocol and a 2-party MAC-based key exchange and has several attractive
features. First, it does not assume the Random Oracle (RO) model [6]. That is,
if the underlying primitives do not make use of the RO model, neither does our
scheme. Hence, by using schemes such as the KOY protocol [16] for the 2-party
password-based key exchange and the 3-party key distribution scheme in [§],
one gets a 3-part password-based protocol whose security is in the standard
model. Second, if 2-party password-based key exchange protocols already exist
between the server and its users in a distributed system, they can be re-used in
the construction of our 3-party password-based key exchange.

Description of the Generic Solution. Our generic construction can be seen
as a form of compiler transforming any secure 2-party password-based key ex-
change protocol P into a secure password-based 3-party key exchange protocol
P’ in the honest-but-curious security model using a secure key distribution KD,
a secure MAC scheme, and generic number-theoretic operations in a group G for
which the DDH assumption holds (see Appendix A).

The compiler, depicted in Figure 2, works as follows. First, we use the pro-
tocol P between a user A and the server S to establish a secure high-entropy

Password-Based Authenticated Key Exchange in the Three-Party Setting 7

A S B
pW 4 pw,4 pwp PWp
2PAKE(5k A) 2PAKE(sk)
(KD(ska k)) ¢ KD(3k 5, Fm))
g%, MAC(k,,, g*, B, A)
g¥, MAC(k,,, g¥, A, B)

Fig. 2. GPAKE: a generic three-party password-based key exchange.

session key sk 4. Second, we use the protocol P between the server .S and the user
B in order to establish a session key sk p. Third, using a key distribution KD, we
have the server S first select a MAC key k,,, using the key generation of the lat-
ter, and then distribute this key to A and B using the session keys sk and sk g,
respectively, generated in the first two steps. Finally, A and B use a MAC-based
key exchange to establish a session key CDH in an authenticated way.

Semantic Security in the Real-Or-Random Model. As the following the-
orem states, the generic scheme GPAKE depicted in Figure 2 is a secure 3-party
password-based key exchange protocol as long as the Decisional Diffie-Hellman
assumption holds in G and the underlying primitives it uses are secure. The
proof can be found in the full version of this paper [2].

Theorem 1. Let 2PAKE be a secure 2-party password-based Key Exchange, KD
be a secure key distribution, and MAC be a secure MAC algorithm. Let Gexe
and Gresy Tepresent the number of queries to Execute and Test oracles, and let
a2 4 4B 4, axa, and Gae represent the mumber of queries to the SendClient
and SendServer oracles with respect to each of the two 2PAKE protocols, the KD
protocol, and the final AKE protocol. Then,

AAVERAED (t, Gexer Grests Teonds Tand» Ticds Gake) <
4 (qoxe + qra) - AdVEE (£ 1,0) + 2 ure - AdvVEET™(22,0)
+ 2 AdVE (4 8(dexe + dake)Te) + 4 AAVIIES (f dexes dexe + Tobnds diina)
+ 4 AdVIIRED (E, Gexes Gexe + Tonas @ina) »

where 1. denotes the exponentiation computational time in G.

Key Privacy with Respect to the Server. As the following theorem states,
whose proof can be found in the full version of this paper [2], the generic scheme
GPAKE depicted in Figure 2 has key privacy with respect to the server as long
as the Decisional Diffie-Hellman assumption holds in G.

Theorem 2. Let GPAKE be the 3-party password-based authenticated key ex-
change scheme depicted in Figure 2. Then,

78 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

kp—aki
AdvG%A;E?D (t, Gexe; Gtest q;indv Q£nda qkd, Qakc) < 2- Adv%dh (t/))

where t' =1t + 8 (Gexe + Gake) - Te and the other parameters are defined as in
Theorem 1.

Instantiations. Several practical schemes can be used in the instantiation of the
2-party password-based key exchange of our generic construction. Among them
are the KOY protocol [16] and its generalization [13], the PAK suite [21], and
several other schemes based on the encrypted key exchange scheme of Bellovin
and Merritt [9] (e.g., [11]).

In the instantiation of the key distribution scheme, one could use the original
proposal in [8] or any other secure key distribution scheme. In particular, the
server could use a chosen-ciphertext secure symmetric encryption scheme to
distribute the keys to the users. Independently of the choice, one should keep
in mind that the security requirements for the key distribution scheme are very
weak. It only needs to provide security with respect to one session.

For the instantiation of the MAC, any particular choice that makes the MAC
term in Theorem 1 negligible will do. Possible choices are the HMAC [3] or the
CBC MAC.

It is important to notice that, in order for GPAKE to be secure, the underlying
2-party password-based protocol must be secure in the ROR model. In view of
the computational gap that exists between the ROR and the FTG models (see
Proposition 1), a 2-party password-based secure in the FTG model does not
suffice to prove the security of GPAKE.

5 Concluding Remarks

AUTHENTICATION. In order to take (explicit) authentication into account, one
can easily extend our model using definitions similar to those of Bellare et al. [5]
for unilateral or mutual authentication. In their definition, an adversary is said
to break authentication if it succeeds in making any oracle instance terminate
the protocol without a partner oracle. Likewise, one could also use their generic
transformation to enhance our generic construction so that it provides unilateral
or mutual authentication. The drawback of using their generic transformation is
that it requires the random oracle model.

MORE EFFICIENT CONSTRUCTIONS. Even though the generic construction pre-
sented in this paper is quite practical, more efficient solutions are possible. One
example of such an improvement is a generic construction in which the key dis-
tribution and the final key exchange phases are combined into a single phase.
One can easily think of different solutions for this scenario that are more efficient
that the one we give. However, the overall gain in efficiency would not be very
significant since the most expensive part of these two phases, the Diffie-Hellman
protocol, seems to be necessary if key privacy with respect to the server is to be
achieved. Perhaps the best way to improve the efficiency of 3-party password-
based schemes is to adapt specific solutions in the 2-party model to the 3-party
model, instead of treating these schemes as black boxes.

Password-Based Authenticated Key Exchange in the Three-Party Setting 79

RELATION TO SIMULATION MODELS. In [24], the Find-Then-Guess model of [8]
is shown to be equivalent to simulation models in the sense that a scheme that is
proven secure in one model is also secure in the other model. By closely examining
their proof, one can easily see that the equivalence does not apply to the case of
password-based protocols due to the non-security-preserving reduction. It seems,
however, that their proof of equivalence can be adapted to show the equivalence
between the simulation model and the Real-Or-Random model that we introduce
in this paper in the case of password-based protocols. This is also the subject of
ongoing work.

Acknowledgements

The work described in this document has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In CT-RSA 2001, LNCS 2020, Springer-Verlag, Apr.
2001.

2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key
exchange in the three-party setting. Full version of current paper. Available from
authors’ web pages.

3. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO’96, LNCS 1109, Springer-Verlag, Aug. 1996.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, Oct. 1997.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, LNCS 1807, Springer-Verlag,
May 2000.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, Nov. 1993.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO’93, LNCS 773, Springer-Verlag, Aug. 1994.

8. M. Bellare and P. Rogaway. Provably secure session key distribution — the three
party case. In 28th ACM STOC, May 1996.

9. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and
Privacy, May 1992.

10. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In EUROCRYPT 2000, LNCS 1807, Springer-
Verlag, May 2000.

11. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted
key exchange. In PKC 2004, LNCS 2947, Springer-Verlag, Mar. 2004.

12. J. W. Byun, I. R. Jeong, D. H. Lee, and C.-S. Park. Password-authenticated
key exchange between clients with different passwords. In ICICS 02, LNCS 2513,
Springer-Verlag, Dec. 2002.

13. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In FUROCRYPT 2003, LNCS 2656, Springer-Verlag, May 2003.

80 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

14. O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
In CRYPTO 2001, LNCS 2139, Springer-Verlag, Aug. 2001.

15. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. In
ACM Transactions on Information and System Security, pages 524-543. ACM,
1999.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In FUROCRYPT 2001, LNCS 2045,
Springer-Verlag, May 2001.

17. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the ike protocols. In CRYPTO 2003, LNCS 2729, Springer-
Verlag, Aug. 2003.

18. C.-L. Lin, H.-M. Sun, and T. Hwang. Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review, 34(4):12-20, Oct. 2000.

19. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key ex-
change based on RSA. In ASTACRYPT 2000, LNCS 1976, Springer-Verlag, Dec.
2000.

20. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenti-
cated key exchange. In CRYPTO 2002, LNCS 2442, Springer-Verlag, Aug. 2002.

21. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key ex-
change. Contributions to IEEE P1363.2, 2002.

22. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(21):993-999, Dec. 1978.

23. M. D. Raimondo and R. Gennaro. Provably secure threshold password-authen-
ticated key exchange. In EUROCRYPT 2003, LNCS 2656, Springer-Verlag, May
2003.

24. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120,
1BM, 1999.

25. J. G. Steiner, B. C. Neuman, and J. L. Schiller. Kerberos: An authentication
service for open networks. In Proceedings of the USENIX Winter Conference,
pages 191-202, 1988.

26. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Operating Systems Review, 29(3):22-30, July 1995.

A Building Blocks

Decisional Diffie-Hellman Assumption: DDH. The DDH assumption
states, roughly, that the distributions (¢, g”, ¢"") and (¢“, ¢", g") are computa-

tionally indistinguishable when u,v,w are drawn at random from {1,...,|G|}.
This can be made more precise by defining two experiments, Expg" ™ (A)
and Exp((d;dh'rand (A). In both experiments, we compute two values U = g* and

V = g" to be given to A. But in addition to that, we also provide a third input,
which is g** in Exp2®™ ™ (A) and ¢* for a random z in Expit*™**4(A4). The
goal of the adversary is to guess a bit indicating the experiment it thinks it is in.
We define the advantage of A in violating the DDH assumption, Advi™"(A4), as
Pr[Expa®™ ™ (A4) = 1] — Pr[Expl™"™®4(A) = 1]. The advantage function
of the group, Adva®™(t) is then defined as the maximum value of Advi"(A)
over all A with time-complexity at most t.

Password-Based Authenticated Key Exchange in the Three-Party Setting 81

Message Authentication Codes (MIAC). A Message Authentication Code
MAC = (Key, Tag, Ver) is defined by the following three algorithms: (1) A MAC
key generation algorithm Key, which on input 1%, produces a ¢-bit secret-key sk
uniformly distributed in {0, 1}%; (2) A MAC generation algorithm Tag, possibly
probabilistic, which given a message m and a secret key sk € {0,1}¢, produces
an authenticator p; and (3) A MAC verification algorithm Ver, which given an
authenticator p, a message m, and a secret key sk, outputs 1 if p is a valid
authenticator for m under sk and 0 otherwise.

Like in signature schemes, the classical security level for a MAC is to prevent
existential forgeries, even for an adversary which has access to the generation
and verification oracles. We define the advantage of A, Advﬁ,l“,ﬁg “MA(A), as

Pr |:5]<,‘ - {07 1}27 (m7u) - ATag(sk;-),Ver(sk;'>')() . Ver(sk;m7ﬂ) — 1:| ,

and the advantage function of the MAC, Advﬁﬂuigcma(t, dg,4s), as the max-
imum value of Advijac ™ (A) over all A that asks up to ¢, and ¢, queries to
the generation and verification oracles, respectively, and with time-complexity
at most ¢t. Note that A4 wins the above experiment only if it outputs a new valid

authenticator.

3-Party Key Distribution. A secure key distribution protocol KD is a 3-party
protocol between 2 parties and a trusted server S where S picks a session key at
random and securely sends it to the users. The security model, formally intro-
duced in [8], is a generalization of that for 2-party authenticated key exchange
protocols, to which a new oracle was added to represent the trusted server.
Their security is in the Find-Then-Guess model, using the terminology that we
introduced for key exchange protocols.

In our generic construction, we only need a KD secure with respect to a
single session since the symmetric keys used as input to the key distribution
protocol differ from session to session. They are the session keys obtained from
the 2-party password-based authenticated key exchange protocols between the
server and each of the two parties. Since in this case, both the Find-Then-Guess
and Real-Or-Random notions are equivalent, we opted to use their definition
(i.e. FTG) adapted to our terminology. That is, we define Advig *!(A) as the
advantage of adversary A in violating the semantic security of a key distribution
KD in the FTG sense, and Advf(t%_kd (t,s,r) as the advantage function of KD,
which is the maximum value of Advff%ﬁkd (A) over all A with time-complexity
at most ¢, asking Send queries with respect to at most s sessions and asking at
most r Reveal queries.

B Relations Between Notions

In this section, we prove the relation between the Find-Then-Guess (FTG) and
Real-Or-Random (ROR) notions of security for authenticated key exchange pro-
tocols. The relation is not specific to password-based schemes, but its implica-
tions are more important in that scenario. We do not present proofs for the

82 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

forward-secure case as these proofs can be easily derived from the proofs in the
non-forward-secure case.

Lemma 1. For any AKE, Advi&z*(t, geend; Greveal, Gexe) < 2 - AdVIEE ™ (¢,
Gsend; Qreveal + 1; qCXC) .

Proof. In order to prove this lemma, we show how to build an adversary A;or
against the semantic security of an authenticated key exchange AKE protocol
in the ROR model given an adversary Ag, against the semantic security of the
same protocol AKE in the FTG model. We know that Agg has time-complexity
at most ¢t and that it asks at most gsend, Greveal, and Gexe queries to its Send,
Reveal, and Execute oracles, respectively.

The description of A, is as follows. A, starts by choosing a bit b uniformly
at random and starts running Ay,. If Age asks a Send query, then A,q, asks the
corresponding query to its Send oracle. If Ag, asks a Execute query, then Ao,
asks the corresponding query to its Execute oracle. If Ag, asks a Reveal query,
then Ao asks a Test query to its Test oracle and uses the answer it receives
as the answer to the Reveal query. If Ay, asks a Test query, then A, asks the
corresponding query to its Test oracle. If b = 1, then A, uses the answer it
received as the answer to the Test query. Otherwise, it returns a random key to
Apig. Let b be the final output of Agge. If b" = b, then Ao, outputs 1. Otherwise,
it outputs 0.

Note that A, has time-complexity at most ¢ and asks at most gsend, Greveal +
1, and gexe queries to its Send, Test, and Execute oracles, respectively.

In order to analyze the advantage of A, first consider the case in which
its Test oracle returns random keys. It is easy to see that, in this case, Ay,
cannot gain any information about the hidden bit b used to answer its single
Test query. Therefore, the probability that A, outputs 1 is exactly % Now
consider the case in which its Test oracle returns the actual sessions keys. In
this case, the simulation of Reveal is perfect and Ao, runs Ay, exactly as in the
experiment defining the semantic security of Ag, in the FTG model. Therefore,
the probability that A,., outputs 1 is exactly ; + ;Advfﬁgakc(fl&g) and, as a
result, Adv%ﬁgake(flftg) < 2-Advpge K Aor) < Advike Kt send, Qroveal +
1, Gexe). The lemma follows easily. O

Lemma 2 FOT any AKE’ “AdVrAOI'gI;akC (t7 Gsend Gtest, Qexe) S Qtest * AdvliAtI%Eake (ta
(send Qtest — 17 Qexe)~

Proof. In order to prove this lemma, we show how to build a sequence of ad-
versaries A}tg against the semantic security of an authenticated key exchange
AKE protocol in the FTG model given an adversary A, against the semantic
security of the same protocol AKE in the ROR model. We know that Ao, has
time-complexity at most ¢ and that it asks at most ¢send, Gtest, and Qexe queries
to its Send, Test, and Execute oracles, respectively.

The proof uses a standard hybrid argument, in which we define a sequence of
Gtest+1 hybrid experiments V;, where 0 < i < ggest. In experiment V;, the first t—1
queries to the Test oracle are answered using a random key and all remaining Test

Password-Based Authenticated Key Exchange in the Three-Party Setting 83

queries are answered using the real key. Please note that the hybrid experiments
at the extremes correspond to the real and random experiments in the definition
of semantic security in the ROR model. Hence, in order to prove the bound in
the lemma, it suffices to prove that the difference in probability that adversary
Aror Teturns 1 between any two consecutive experiments V; and V;_; is at most
AdvatﬁEakc(t, Gsend s Qtest — 1, Gexe)- This is achieved by building a sequence of gest
adversaries A}tg, as described below.

Let Af@tg be a distinguisher A}tg for experiments V; and V;_1, where 1 <1 <
Qrest - A}tg starts running A, answering to its queries as follows. If A,,, asks a
Send or Execute query, then A, answers it using its corresponding oracle. If
Aror asks a Test query, then Ay, answers it with a random key if this query is
among the first ¢ — 1. If this is the i-th Test, then Ay, uses its Test oracle to
answer it. All remaining Test queries are answered using the output of the Reveal
query. Agg finishes its execution by outputting the same guess bit b outputted
by Aor- _

Note that A%tg has time-complexity at most ¢ and asks at most gsend, Gtest — 1,
and gexe queries to its Send, Reveal, and Execute oracles, respectively.

In order to analyze the advantage of A}tg, first notice that when Test oracle
returns a random key, A}tg runs Ao, exactly as in the experiment V;. Next,
notice that when Test oracle returns the real key, Af@tg runs Ao, exactly as in
the experiment V;. It follows that the difference in probability that adversary
A,or Teturns 1 between experiments V; and V;_; is at most AdvtAtEEakc(Amr) <

AdvatﬁEakc(t, Gsend s Qtest — 1, @exe)- The lemma follows easily. |

Even though the reduction in Lemma 2 is not security-preserving (i.e., there
is a non-constant factor loss in the reduction), it does not imply that a gap
really exists — there might exist a tight reduction between the two notions that
we have not yet found. In order to prove that the non-constant factor loss in the
reduction is indeed intrinsic, we need to show that there exist schemes for which
the gap does exist.

To achieve this goal, one can use techniques similar to those used to prove
that a gap exists between the Left-Or-Right and Find-Then-Guess notions of
security for symmetric encryption schemes [4]. In that paper, they show how
to construct a new symmetric encryption scheme &’ from a secure encryption
scheme & such that £ exhibits the gap. £ was constructed in such a way that
its encryption function works like the encryption function of £ most of the time,
except in a few cases (which are easily identifiable) in which the ciphertext it
generates contains the plaintext. The probability in which such bad cases happen
in their construction is exactly 1/¢, where ¢ is the non-constant factor in the
reduction.

A similar technique can be applied to authenticated key exchange protocols.
Imagine a secure authenticated key exchange protocol AKE exists. For simplicity,
assume Qrest = 2!, for some integer . We can construct a new scheme AKE’ such
that the session key k that it generates equals the one generated by AKE most
of the time except when the first [bits are 0. In this case, we just make k = 0.
Using a proof technique similar to that used in [4], one can prove the the gap

84 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

in Lemma 2 cannot be avoided and we thus omit the detail. But before stating
our proposition, we make a final remark that when the underlying scheme AKE
is a password-based key exchange, not every choice of parameters will yield the
desired result claimed in the proposition. However, there are (easy) choices of
parameters for which the gap does exist and that suffices for the purpose of the
proposition. We are now ready to state our claim.

Proposition 1. The gap exhibited in Lemma 2 is intrinsic and cannot be
avoided.

On the Optimization of Side-Channel Attacks
by Advanced Stochastic Methods

Werner Schindler

Bundesamt fiir Sicherheit in der Informationstechnik (BSI),
Godesberger Allee 185-189,
53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

Abstract. A number of papers on side-channel attacks have been pub-
lished where the side-channel information was not exploited in an opti-
mal manner, which reduced their efficiency. A good understanding of the
source and the true risk potential of an attack is necessary to rate the
effectiveness of possible countermeasures. This paper explains a general
approach to optimize the efficiency of side-channel attacks by advanced
stochastic methods. The approach and its benefits are illustrated by ex-
amples.

Keywords: Side-channel attack, Montgomery’s multiplication algo-
rithm, stochastic process, statistical decision problem, optimal decision
strategy.

1 Introduction

At Crypto 1996 and Crypto 1998 Kocher, resp. Kocher et al., introduced timing
and power attacks [5,8]. Since then side-channel attacks have attracted enour-
mous attention in the scientific community and the smart card industry as they
constitute serious threats against cryptosystems. Their targets are usually smart
cards but also software implementations may be vulnerable, even against remote
attacks ([1,2] etc.). In a side-channel attack the attacker guesses the secret key
portion by portion. The correctness of the partial guesses cannot be verified (at
least not with certainty) until all parts of the key have been guessed. If the ver-
ification of the whole key guess fails (e.g. by checking a digital signature) this
does not provide the position(s) of the wrong guess(es).

A large number of research papers on timing attacks, power attacks, radiation
attacks and combined timing / power attacks have been published. A variety of
countermeasures have been proposed that shall prevent these attacks.

In ‘real life’ the number of measurements is often limited, or it is at least
costly to perform a large number of measurements. From the attacker’s point of
view it is hence desirable to minimize the error probabilities for the guesses of
the particular key parts (for a given number of measurements) or vice versa, to
minimize the number of measurements which is necessary for a successful attack.
If the outcome of the previous guesses has an impact on the guessing strategy of

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 85-103, 2005.
© International Association for Cryptologic Research 2005

86 Werner Schindler

the present key part it is additionally desirable to have criteria with which the
correctness of the previous guesses can be verified with reasonable probability.

In order to achieve these goals the side-channel information should be ex-
ploited in an optimal manner. Many papers present ingenious ideas but lack of
sound mathematical methods. As a consequence, only a fraction of the overall
side-channel information is indeed used which in turn lowers the efficiency of the
attack. As a consequence it may even be difficult to rate the true risk potential
of these attacks and to assess the effectiveness of the proposed countermeasures.
By applying appropriate stochastic methods it was possible to increase the effi-
ciency of a number of known attacks considerably ([12,14-16]; Sects. 4, 6, 7 in
this paper), in one case even by factor 50. Moreover, some attacks were gener-
alized, and new attacks were detected due to the better understanding of the
situation ([13,16,17], Sects. 5, 6 in this paper).

The focus of this paper are the applied mathematical methods themselves
but not new attacks. This shall put the reader into the position to apply and to
adjust these methods when considering side-channel attacks that are tailored to
a specific target. An individual treatment should in particular be necessary for
most of the power and radiation attacks. Often the (timing, power, radiation)
behaviour of the attacked device can be modelled as a stochastic process, and
the attack can be interpreted as a sequence of statistical decision problems.
Roughly speaking, in a statistical decision problem the optimal decision strategy
minimizes the expected loss which primarily depends on the probabilities for
wrong guesses but also on the a priori information and the consequences of
errors. In fact, depending on the concrete situation particular types of errors
may be easier to detect and correct than others (e.g., in the examples explained
in Sects. 6 and 7).

We refer readers who are generally interested in stochastic and statistical
applications in cryptography to ([10]) and to various papers of Meier and Staffel-
bach, Golic, Vaudenay and Junod, for instance.

Our paper is organized as follows: In Section 2 we introduce the concept of
statistical decision theory, and in Section 3 we exemplarily work out a stoch-
astic model for Montgomery’s multiplication algorithm. Then we illustrate our
approach by various examples and give final conclusions.

2 A Survey on Statistical Decision Theory

We interpret side-channel measurements as realizations of random variables, i.e.
as values assumed by these random variables. The relevant part of the inform-
ation is covered by noise but an attacker clearly aims to exploit all of the available
information in an optimal way. Therefore, he interprets the side-channel attack
as a sequence of statistical decision problems. Each decision problem corresponds
to the guessing of a particular key part. Previous guesses may have an impact
on the present guess (cf. Sects. 4, 5), or all guesses may be independent (cf. Sect.
6). Statistical decision theory quantifies the impact of the particular pieces of
information on the decision so that the search for the optimal decision strategy

On the Optimization of Side-Channel Attacks 87

can be formalized. In this section we introduce the concept of statistical decision
theory as far it is relevant for our purposes, namely to improve the efficiency of
side-channel attacks.

Formally, a statistical decision problem is defined by a 5-tuple (0, 2, s, D, A).
The statistician (in our context: the attacker) observes a sample w € 2 that he
interprets as a realization of a random variable X with unknown distribution
pp. On basis of this observation he estimates the parameter § € © where ©
denotes the parameter space, i.e., the set of all admissible hypotheses (= possible
parameters). Further, the set {2 is called the observation space, and the letter A
denotes the set of all admissible alternatives the statistician can decide for. In
the following we assume © = A where © and A are finite sets.

Ezample 1. (i) Assume that the attacker guesses a single RSA key bit and that
his decision is based upon N timing or power measurements. Then ©® = A =
{0,1}, 2 = RN,
(ii) Consider a power attack on a DES implementation where the attacker guesses
a particular 6-bit-subkey that affects a single S-box in the first round. Then
6 =A=1{0,1}S.

A deterministic decision strategy is given by a mapping 7: 2 — A (cf. Remark
1 (ii)). If the statistician applies the decision strategy 7 he decides for 7(w) €
A = O whenever he observes w € (2.

Finally, the loss function s: @ x A — [0,00) quantifies the harm of a wrong
decision, i.e., s(6,a) gives the loss if the statistician decides for a € A although
0 € ©® = A is the correct parameter. In our context this quantifies the efforts
(time, money etc.) to detect, to localize and to correct a wrong decision, i.e. a
wrong guess of a key part. Clearly, s(¢,) := 0 since a correct guess does not cause
any loss. For some attacks (as in Sects. 6, 7) specific types of errors are easier to
correct than others. The optimal decision strategy takes such phenomena into
account.

Assume that the statistician uses the deterministic decision strategy 7: 2 —
A and that 6 is the correct parameter. The expected loss (= average loss if the
hypothesis 0 is true) is given by the risk function

r(0,7) Z:AS(H,T(W))pg(dw). (1)

Our goal clearly is to apply a decision strategy that minimizes this term. Unfor-
tunately, usually there does not exist a decision strategy that is simultaneously
optimal for all admissible parameters § € ©. However, in the context of side-
channel attacks one can usually determine (at least approximate) probabilities
with which the particular parameters occur. This is quantified by the so-called
a priori distribution 7, a probability measure on the parameter space ©.

Ezample 2. (i) (Continuation of Example 1(i)) Assume that k exponent bits
remain to be guessed and that the attacker knows that r of them equal 1. If
the secret key was selected randomly then it is reasonable to assume that the
present bit is 1 with probability n(1) = r/k.

(ii) (Continuation of Example 1(ii)) Here n(x) = 27° for all z € {0,1}5.

88 Werner Schindler

Assume that n denotes the a priori distribution. If the statistician applies the
deterministic decision strategy 7: {2 — A the expected loss equals

Rin7) =10, 7n(60) = 3 /Q (60, 7(w)) po (dw) n(6). (2)

0co 0co

A decision strategy 7’ is optimal against 7 if it minimizes the right-hand term.
Such a decision strategy is also called a Bayes strategy against 7.

Remark 1. (i) For specific decision problems (e.g. minimax problems) it is rea-
sonable to consider the more general class of randomized decision strategies
where the statistician decides randomly (quantified by a probability measure)
between various alternatives when observing a particular w ([20]). In our con-
text we may restrict our attention to the deterministic decision strategies (cf.
Theorem 1). We point out that deterministic decision strategies can be viewed
as specific randomized decision strategies.

(ii) Theorem 1 is tailored to our situation. It provides concrete formulae that
characterize the optimal decision strategy. Although Theorem 1 can be deduced
from more general theorems (e.g., Hilfssatz 2.137 and Satz 2.138(i) in [20] imme-
diately imply assertion (i)) we give an elementary proof (cf. Theorem 2.48 in [20]
for the special case t = 2) in order to illustrate the background. We restricted
our attention to the case |@] < oo and left out mathematical difficulties as the
concept of o-algebras and measurability. We mention that the optimal decision
strategy 7 from Theorem 1 is measurable.

Theorem 1. Assume that (0, (2,s,D, A) describes a statistical decision prob-
lem with finite parameter space © = {01,...,0:} = A where D contains the
deterministic decision strategies. Further, let p denote a o-finite measure on {2
with pe, = fo, - 1, i.e. pg, has p-density fo,, for each i <t.

(i) The deterministic decision strategy T: {2 — A,

rw)i=a i Y (0 ayn(B:) fo, () = gleig{28(91‘7@/)77(9i)f9i(w)} (3)
i=1

i=1

is optimal against the a priori distribution n. (If the minimum is attained for
several decisions, we chose a € A according to any (fized) order on A.)
(i1) If © = {0,1} and s(0,1),s(1,0) > 0 the indicator function

T(W) 1= Lo)/ f1 (@) <5(10m(1)/5(0,1)0(0) (W) (4)
is optimal against n. (We set 7(w):=1 if fo(w)=f1(w)=0 or fo(w)=f1(w)=0c0.)
(i11) Assume that C C 2 with pg,(C) =p > 0 for all 6, € ©. Then (i) and (ii)
remain valid if fg 1s replaced by the conditional density foc-

Proof. Let k: 2 x P(A) — [0,1] denote any randomized decision strategy (cf.
[20], for instance). Fubini’s Theorem implies

t

ROnr) =3 (|3 s(61,,)5(0.0,) 0,) n(d) | (6

i=1 2521

On the Optimization of Side-Channel Attacks 89

/Q D s(0:,05)k(w, 05) fo, (w)n(0;) | p(dw).

i=1 j=1

Since k(w, -) is a probability measure, reordering the integrand yields

D k(w,05) > 5(6:,0;) fo, (w)n(6)zmg{sti,a’)fei(w)n(ei)}
j=1 =1

i=1

which proves (3). Assertion (ii) is an immediate consequence from (i) since
folw) = fi(w) = 0 and fo(w) = fi1(w) = oo occur only with probability zero.
Assertion (iii) is a corollary from (i) and (ii) since fg;c = fo/p.

Remark 2. (i) A o-finite measure p on {2 with the properties claimed in Theorem
1 does always exist (e.g. u=pg, + -+ po,)-

(ii) For £2 = R™ the well-known Lebesgue measure \,, is o-finite (The Lebesgue
measure on IR is given by A, ([a1,b1] X« [an,by]) = [Ty (b — a;) if b; > a;
for all i < n.) If {2 is finite or countable the counting measure uc is o-finite.
The counting measure is given by pc(w) = 1 for all w € 2. In particular, the
probabilities Probg(X = w) = pp(w) can be interpreted as densities with respect
to pc.

(iii) The examples mentioned in (ii) and combinations thereof cover the cases
that are relevant in the context of side-channel attacks.

With regard to Theorem 1 we will restrict our attention to decision problems of
the type
(0,0,5,DS, A =0O) with finite ©® = A4 (5)

where DS denotes the set of all deterministic decision strategies. At first the
attacker has to define the sets © = A and an appropriate loss function s. Then he
determines the a priori distribution n and, in particular, the probability densities
po, for all © < . In our context the latter will be the most difficult part but
gives the most significant impact on the decision strategy. For timing attacks
on public key algorithms, for instance, these distributions depend essentially on
the implemented arithmetic algorithms, for power and radiation attacks on the
internal activity within the attacked device or specific areas thereof when the
measurements are taken. Finally, the attacker applies Theorem 1 to determine
an optimal decision strategy 7 (= Bayes strategy against the a priori distribution
7). In specific situations the attacker may also be interested in the value R(n, 7).

3 Montgomery’s Modular Multiplication Algorithm

In this section we investigate the timing behaviour of Montgomery’s modular
multiplication algorithm (][9], Alg. 14.36) as it is implemented in most of the
smart cards that compute modular exponentiations (e.g., RSA-based digital sig-
natures).

90 Werner Schindler

3.1 Algebraic Background and Montgomery’s Algorithm

In this subsection we briefly describe the algebraic background and formulate the
multiprecision variant of Montgomery’s algorithm. We begin with a definition.

Definition 1. As usually, Zy; := {0,1,..., M — 1}, and for an integer b € Z
the term b(mod M) denotes the unique element of Zys that is congruent to b
modulo M.

In order to compute y?(mod M) a sequence of modular multiplications and
squarings have to be carried out. If ‘ordinary’ modular multiplication algorithms
are used this requires a large number of time-consuming integer divisions by the
modulus M. Montgomery’s multiplication algorithm saves these operations.

In the following we assume that M is an odd modulus (e.g., an RSA modulus
or a prime factor) and that R := 2% > M is a power of two (e.g. = 512). The
elementary variant of Montgomery’s algorithm transfers the modular multipli-
cations from the modulus Zy; to Zg. The term R~ € Zj; denotes the multi-
plicative inverse of R in Zys, i.e. RR™' =1 (mod M). The integer M* € Zp
satisfies the integer equation RR~' — MM* = 1. For input a,b € Z»; Mont-
gomery’s multiplication algorithm returns MM(a, b; M) := abR~!(mod M). We
point out that the mappings ¥, ¥.: Zy; — Zy, given by ¥(x) := xR (mod M)
and ¥, (z) := xR~ (mod M), induce inverse operations on Zy;.

Usually, a time-efficient multiprecision variant of Montgomery’s algorithm is
implemented which is tailored to the device’s hardware architecture. Assume that
ws denotes the word size for the arithmetic operations (e.g. ws = 32) and that
ws divides the exponent z. Then r := 2¥¢ and R = r? with v = z/ws (Example:
x = 512, ws = 32, v = 16). For the moment let further a = (ay—1,...,a0)r,
b= (by-1,---,b0)r, and s = (Sy—_1,...,80), denote the r-adic representations of
a, b and s, resp., and let m’ := M*(mod r).

Algorithm 1: Montgomery’s Algorithm (Multiprecision Variant)

1.) s:=0
2.) for i=0 to v-1 do {
u_i:= (s_O+a_i*b_0)m’ (mod r)
s:= (s+a_ib+u_iM) /r }
3.) if s>M then s:=s-M
4.) return s (= MM(a,b;M) = abR"{-1} (mod M))

In the following we assume that for fixed parameters M, R and r the run
times needed for Step 1 and Step 2 are identical for all pairs of operands. (This
assumption is reasonable, in particular for smart cards. Software implementa-
tions may process small operands (i.e., those with leading zero-words) faster
due to optimizations of the integer multiplication algorithms. This is absolutely
negligible for the attacks considered in Sects. 4 and 6 but may cause additional
difficulties for particular chosen-input attacks as described in Sect. 5, for in-
stance (cf. [1]).) Timing differences are caused by the fact whether in Step 3 the
subtraction, the so-called extra reduction, has to be carried out. Hence

Time (MM (a,b; M)) € {¢c,c+ cgr} (6)

On the Optimization of Side-Channel Attacks 91

where the time c is required iff no extra reduction is necessary. The constant
cer quantifies the time needed for an integer subtraction by M. The values of
the constants ¢ and cgr surely depend on the concrete implementation. Lemma
1 below (cf. [13] (Remark 1) or [11] (Lemma 1)) says that the fact whether an
extra reduction is necessary does only depend on a,b, M and R but not on the
word size ws.

Lemma 1. For each word size ws the intermediate result after Step 2 equals
s = (ab+uM)/R with uw = abM*(mod R).

3.2 The Stochastic Model

In this subsection we study the timing behaviour of Montgomery’s multiplication
algorithm within modular exponentiation algorithms. It will turn out that the
probability for an extra reduction (ER) in a squaring operation differs from
the probabiliy for an extra reduction in a multiplication with a particular value
a € Zpy. The latter depends linearly on the ratio a/M. We point out that
the probabilities, or more general, the stochastic properties of random extra
reductions do not depend on the size of the modulus M but on the ratio M/R.
Lemma 2. (i) MM(I'\I/}b;M) = (13“\12 M+ abM* émOd R)) (mod1). That is, an
extra reduction is carried out iff the sum within the bracket is > 1 iff MM(;\I/}b;M) <
AR

(ii) Assume that the random variable B is equidistributed on Zps. Then the
intermediate result in Algorithm 1 before the ER step is (in good approzimation)
distributed as

M a
RMU—i-V for MM(a, B; M) (7)
]\;UQ +V for MM(B, B; M). (8)

where U and V' denote independent random variables that are equidistributed on
0,1).

Sketch of the Proof. Assertion (i) follows immediately from Lemma 1. For a proof
of (ii) we refer the interested reader to [12], Lemma A.3. The central idea is that
a small deviation of B/M causes ‘vast’ deviations in the second summand and
that the distribution of the second summand is close to the equidistribution on
[0, 1] for nearly all values of a. An alternate proof for a related assertion is given
in [11]. (Both proofs use plausible heuristic arguments (Assumption DIS in [11]).
We further mention that (7) and (8) yield probabilities for extra reductions (cf.
(11)) which were confirmed by a large number of simulation experiments.
Modular exponentiation algorithms initialize a variable (in the following de-
noted with temp) with the base y or, in case of table methods, with a power
of y. A sequence of modular squarings of temp and multiplications of temp

92 Werner Schindler

with particular table values are carried out until temp equals y¢(mod M). Pseu-
doalgorithm 2 below combines modular exponentiation algorithms with Mont-
gomery’s multiplication algorithm. The modular exponentiation algorithm may
be the ‘square and multiply’ algorithm ([9], Alg. 14.79; cf. Sect. 4), a table
method (e.g. left-to right b-ary exponentiation, cf. [9], Alg. 14.82 and Sect. 6)
or the sliding windows exponentiation algorithm ([9], Alg. 14.85). In Pseudoal-
gorithm 2 the table values equal (y’ R) (mod M) (unlike (y’)(mod M) if ‘ordi-
nary’ modular multiplication algorithms are used) and hence temp = y?R(mod
M) after Step 2.

Pseudoalgorithm 2: Modular Exponentiation with Montgomery’s
Multiplication Algorithm

1.) \bar y_{1}:=MM(y,R"2;M) (= yR (mod M))
2.) Modular Exponentiation algorithm
a) table initialization (if necessary)
b) exponentiation phase
(Replace modular squarings and multiplications in
2a) and 2b) with the respective Montgomery operations)
3.) return temp:=MM(temp,1;M) (=y~d (mod M))

We interpret the normalized intermediate values temp,/M, temp, /M, ... from
the exponentiation phase as realizations of [0, 1)-valued random variables Sy, S,
.... Consequently, the time needed for the i Montgomery operation (squaring
or multiplication of temp with a particular table value), is interpreted as a re-
alization of ¢ + W; - cgr, where W is a {0, 1}-valued random variable, assuming
1 iff an extra reduction is necessary. The understanding of the stochastic pro-
cess Wy, Wa, ... will turn out to be necessary to determine the optimal decision
strategies in the following sections.

From Lemma 2 we deduce the following relations where the right-hand sides
denote the possible types of the i** Montgomery operation within the exponen-
tiation phase.

o f\lggl? + Viy1(mod 1) for MM (temp, temp; M) (9)
o 2 S+ Vigr(mod 1) for MM(temp, y;; M)

The term 7; denotes the j' table entry (j = 1 for the square & multiply
algorithm). With regard to Lemma 2(ii) we may assume that the random vari-
ables V1, Vs, ... are iid equidistributed on [0,1). As an immediate consequence,
the random variables S7,Ss, ... are also iid equidistributed on [0,1). From the
random variables Sp, St, ... one derives the random variables Wy, W5, ... that
describe the (random) timing behaviour of the Montgomery operations within
the exponentiation phase. To be precise, from Lemma 2(i) we conclude

Wi = { Lsi<sz,ouyr) for MM(temp, temp; M) (10)
Lsi<Si 1 (g;/M)(M/R) for MM(temp, 7;; M).
We mention that the sequence Wi, W, ... is neither independent nor identically

distributed but W; and W;; are negatively correlated. On the other hand, the

On the Optimization of Side-Channel Attacks 93

tuples (Wi, Wiga, ..., Wiy;) and (Wi, W1, ..., Wiye) (but not their compo-
nents!) are independent if k > i + j + 1. In particular, (10) implies

1M
for MM (temp, temp; M)
E(W;) = SR ’ ’ 11
(W3) { ;Xj[]\é for MM(temp, 7;; M). (11)
Remark 3. In this section we have derived a stochastic process Wy, Wa, ... that

models the timing behaviour of the Montgomery multiplications within modular
exponentiation algorithms. Clearly, a similar approach is at least principally
feasible for other arithmetic algorithms, too.

4 Timing Attacks on RSA Without CRT

A timing attack on RSA implementations was first described (and experimentally
verified) in [5]. Two years later a successful timing attack on a preliminary version
of the Cascade chip was presented at the Cardis conference ([4]). Kocher’s attack
was generalized and optimized in [12]. In this section we consider the attack
presented in [4]. Our approach improves its efficiency by factor 50.

4.1 The Optimal Decision Strategy

In this section we assume that the attacked smart card (e.g., a preliminary ver-
sion of the Cascade chip) calculates the modular exponentiations y ~— y¢(mod
n) with the square & multiply algorithm, combined with Montgomery’s algo-
rithm (cf. Pseudoalgorithm 2). We assume further that the secret exponent d
(target of the attack) remains fixed for all observed exponentiations and that no
blinding techniques are applied (cf. Remark 4) so that repetitions with identical
bases require equal running times. The binary representation of the secret expo-
nent d reads (dy_1,...,dp)2, and in Phase 2b of Pseudoalgorithm 2 the exponent
bits are processed from the left to the right.
In a pre-step the attacker measures the exponentiation times t~(j) =

Time(yé) (modn)) + tg) for a sample y(1),...,yn) where tg,, () denotes the
measurement error for sample j. To be precise, we have

Z(j) = tErr(j)+t5(j)+(v+ham(d)—2)c+ (w(j)l +...+ w(j)v+ham(d)—2) cer (12)

where w;y; € {0,1} equals 1 iff the ith Montgomery operation requires an
extra reduction for sample j and 0 else. The term Zg(;) summarizes the time
needed for all operations apart from the Montgomery multiplications (input,
output, handling the loop variable, evaluating the if-statements, pre- and post-
multiplication). We may assume that the attacker knows tg(;) exactly as possible
errors can be interpreted as part of the measurement error tg,.(;). We may fur-
ther assume that the attacker had guessed the parameters v, ham(d), ¢ and cgr
in a pre-step of the attack (cf. [14], Sect. 6).

The exponent bits are guessed from the left to the right. For the moment
we assume that the most significant exponent bits d,_1, ..., dx+1 have already

94 Werner Schindler

been guessed, and that all guesses glvv,l, . .,élvk+1 are correct. Our goal is to
derive an optimal decision strategy to guess the exponent bit dj. At first the
attacker subtracts the time needed to process the (correctly) guessed exponent
bits dy_1,...,dk+1 from the measured exponentiation time in order to obtain
the time needed for the remaining bits di, ..., dy (beginning with ‘if (dr = 1)
then MM(temp;),¥1(j); n)’), and from ham(d) he further computes the number
m of remaining Montgomery multiplications with ;). If the random exponent
d has been selected randomly it is reasonable to assume that 7(1) := Prob(dy =
1) = (m — 1)/k since dg = 1. That is, the a priori distribution is given by
(n(0),n(1)) = ((k+1—m)/k,(m —1)/k). Clearly, ® = A = {0,1}. Since the
differences of the running times are caused by the number of extra reductions
(and maybe by measurement errors) we consider the ‘normalized’ remaining time
~ v+ham(d)—2—k—m
Tarom(sy © = f(j) = tsg) — (v+ham(d) —2)c " (Z): wi (13)
1 CER i=1
v+ham(d)—2
= taprr(j) T > Wi()-
i=v+ham(d)—k—m—1

where the last sum equals the number of extra reductions in the remaining
Mongomery multiplications. The remaining Montgomery operations are labelled
by the indices v + ham(d) — k —m — 1,...,v + ham(d) — 2. The normalized
measurement error typ,.(;y = tprri)/ CER is assumed to be a realization of
an N(0,0%(= 0%,,/ cer?))-distributed random variable that is independent of
Wi, Wa, ... (cf. [12], Sect. 6).

The attacker bases his decision on the 4N-tuple

(tdrem(j)v UM (5) WS (5)s tS(i))jSN

(‘observation’) where wuaz(jy, us(jy,ts() € {0,1} quantify the timing of sample
J until the next decision (i.e., when guessing dj_1). To be precise, up(;y = 1
(resp. ug(;) = 1, resp. tg(;) = 1) iff # = 1 and the next multiplication with
U1(5) (resp., iff & = 1 and the subsequent squaring, resp. iff # = 0 and the next
squaring) requires an extra reduction. That is, us¢;) and ug(;) are summands
of the right-hand side of (13) if # = 1 whereas tg(;) is such a summand if
¢ = 0. Next, we study the stochastic process Wiy, Wa(jy, ... that quantifies
the (random) timing behaviour of these Montgomery multiplications. Although
these random variables are neither independent nor stationary distributed they
yet meet the central limit theorem ([12], Lemma 6.3(iii)). Since W;;y and W,
are independent if |i — r| > 1 (cf. Subsection 3.2) we conclude

t t—1
Var (Wl(j) +...4+ Wt(j)) = ZVar(Wi(j)) +2 Z COV(Wi(j), Wi-i—l(j)) (14)
1=1 =1

Concerning the variances we have to distinguish between two cases (squaring,
multiplication with g;y; cf. (11)), for the covariances between three cases, namely

On the Optimization of Side-Channel Attacks 95

that W;(;) and W;1(;) correspond to two squarings (covss), resp. to a squaring
followed by a multiplication with ;) (covgnj)), resp. to a multiplication with
7(j) followed by a squaring (covs(j)). Exploiting (10) and (9) the random vec-
tor (W;(;), Wit1(j)) can be expressed as a function of the iid random variables
Si—1(j)> Si(j)> Si+1(j)- For instance, Covms(W;Wiy1) =

Yg) n
1y, 1T 1y, i—1,SisSq dlfdzdz — . 15
/[071)3{51@11%/3} {sl+1<s§n/R}(5 1,815 Sit1) dsi—1ds;dst1 9R 3R (15)
Careful but elementary computations yield

9

COVNIS(j) = 2P+ = DiPs; COVSM() = P;Pi ~ DiPs (16)
7 TR

covgg = . ph—p? with p; = 3;(;%) and p, = 31;%.
Since the random variables Wy (), Wy(;y, . . . are not independent the distribution

of Wiy1¢j)+- - -+Wjy(;) depends on the preceding value wj(;). Theorem 2 considers
this fact (cf. [12]). We first introduce some abbreviations.

Notation. hn(0,7) := (k — 1)p«(1 — p«) +mp;(1 — p;) + 2(m — 1)covms() +
2(m — 1)covgnm(y) + 2(k —m — 1)covss + 2I§CZTCOVSM(J') + 2’,’;‘:11 covsg + a2,
hn(1,j) == (k = 1)p«(1 = ps) + (m — 1)p;(1 — p;) + 2(m — 2)covms(j) +

2(m — 2)covgm(y) + 2(k — m)covss + 2’“;@;1 covgm(j) + 2?:12covsg + a2,
ew(0,7 | b) := (k — 1)p« +mp; + ?{T(p*sa)) pe) + 2 Pisw) — pi)s

ew(1,5 | b) := (k= 1)pe+(m—1)p;+ " (p*sa;) P+ 271 (s —ps) with
Pas(1) = 503 asqo) = 1, ij(l) = op«pj and pjs() =T

A false guess élvk # dj, implies wrong assumptions about the intermediate temp
values for both hypotheses d; = 0 and d; = 1 for all the forthcoming decisions
(when guessing d; for ¢t < k). Consequently, these guesses cannot be reliable, and
hence we use the loss function s(0,1) = s(1,0) = 1. (For this setting the expected

loss R(n,7) equals the error probability Prob(dy # dj).) For a complete proof
of Theorem 2 we refer the interested reader to [12], Theorem 6.5 (i).

Theorem 2. (Optimal decision strategy) Assume that the guesses Jv_l,...,gk+1
are correct and that ham(dy, ... ,do) = m. Let

Una (R x{0,1)N = IR, UN,d ((Barem(1)s U (1)s - - - » US(N) s ES(N))) 2=

~ . 2
1 iv: (taremi) — ts() — ew(0,5 | ts())”
24 hn(0,)

- , 2

(farem() — wary) — us() — ew(l,j | us(y))

hn(1,5) '

Then the deterministic decision strategy 74: (IR x {0, 1}*)N — {0,1}, defined by
hn(1,5)

is optimal (i.e., a Bayes strategy against the a priori distribution n).

Tq = with ¢ := (17)

1
wn.a<log(, "1)43 Y0 log (1+¢))

96 Werner Schindler

Sketch of the Proof. To apply Theorem 1(ii), (iii) we first have to determine

the conditional probability densities hg . ;c, (fdrem(j), Unr(5), Us(5)s ts(j)) (normal
distribution) of the random vectors X ; := (fdrem(j), Uni(jys Us(jys Ts(jy) for 0 =
0,1 andj < N with Oj = (U]W(j) = UA4(j),U5(j) = uS(j)vTS(j) = tS(j))- (We
point out that the X ; are independent but not their components.) The products
Hj.vzl hg.«jic, (+) are inserted in (4), and elementary computations complete the
proof of Theorem 2. _ B

The overall attack is successful iff all the guesses d,_1,...,dy are correct.
Theorem 6.5 (ii) in [12] quantifies the probability for individual wrong guesses.
In particular, guessing errors will presumably only occur in the first phase of the
attack since the variance of the sum W, pam(d)—k—m—1(j) + - - - + Wotham(d)—2(j)
decreases as k tends to 0. Due to the lack of space we skip this aspect but give
a numerical example.

Ezxample 3. Assume that the guesses cz,_l, e Jkﬂ have been correct. For ran-
domly chosen bases y1), ..., y), for n/R=0.7, > =0, N > 5000, and ...

(a) ... (k,m) = (510,255) we have Prob(dy # dj) < 0.014.

(b) ... (k,m) = (440,234) we have Prob(dj, # d;) < 0.010.

(c) ... (k,m) = (256,127) we have Prob(dy, # dj) < 0.001.

4.2 Error Detection, Error Location and Error Correction

In order to guess the secret exponent d the attacker considers a sequence of
statistical decision problems (one for each exponent bit). The ¢ 4-values them-
selves can be interpreted as realizations of random variables Z,_1, Z,_o, ... with
the pleasant property that their distributions change noticeably after the first
wrong guess. For instance, the decision strategy from Theorem 2 then yields the
guess 1 only with a probability of about 0.20 (The exact probability depends
on the concrete parameters; cf. [12], Theorem 6.5(iii)). The interested reader is
referred to Section 3 of [15] where a new stochastic strategy was introduced to
detect, locate and correct guessing errors, which additionally reduces the sample
size by about 40%.

4.3 Practical Experiments/Efficiency of the Optimized Attack

Reference [15] distinguishes two cases. In the ideal case it is assumed that the
time measurements are exact, that the attacker knows the constants and param-
eters ¢, cgr, v and ham(d) and that he is able to determine the setup time #g)
exactly. For the ‘real-life’ case the timing measurements were performed using
an emulator which predicts the running time of a program in clock cycles. The
code we used was the ready-for-transfer version of the Cascade library, i.e. with
critical routines directly written in the card’s native assemble language. Since the
emulator is designed to allow implementors to optimize their code before ‘burn-
ing’ the actual smart cards, its predictions should match almost perfectly. In
the ‘real-life’ case the attacker did not know ¢, cgr, v, ham(d), and ¢(g). Instead,
these values were guessed in a pre-step ([14], Sect. 6).

On the Optimization of Side-Channel Attacks 97

Applying the optimized decision strategy and the error detection strategy
mentioned in the previous subsection we obtained for sample size N = 5000
success rates of 85% (ideal case) and 74% (‘real-life’ case). For N = 6000 we
obtained success rates of 95% and 85%, respectively. The original attack ([4])
yet required 200.000 — 300.000 measurements. In other words: The optimized
decision strategy from Theorem 2, combined with an efficient new error detection
strategy, improved the efficiency of the original attack by factor 50. Moreover,
the success rates for the ideal and the ‘real-life’ case are of the same size, which
additionally underlines that our stochastic model is very appropriate.

Remark 4. (Countermeasures). The attacker exploits that the secret exponent
d is the same for each exponentiation and that he knows both the bases and
the modulus. In fact, this type of timing attack can be prevented with expo-
nent blinding or base blinding techniques ([5]; Sect. 10). The latter is yet not
sufficient to prevent combined timing and power attacks (cf. Sect. 6). Constant
processing times for all Montgomery operations clearly is an alternative coun-
termeasure. This goal can be reached by omitting all extra reductions within
the exponentiation phase at cost of a larger modulus R > 4M ([18]). Alterna-
tively, an integer subtraction may be carried out in each Montgomery operation.
(The dummy subtractions should be implemented carefully since otherwise the
compiler might ignore them.)

5 A Timing Attack on RSA with CRT

In the previous section we considered a timing attack on RSA implementations
that do not use the CRT. It was essential that the attacker knew the base y,
the modulus n and the intermediate results of the computation. These require-
ments are obviously not fulfilled if the CRT is used. Consequently, it had been
assumed for some years that CRT implemenations were not vulnerable to tim-
ing attacks. In [13] a new type of timing attack against RSA with CRT and
Montgomery’s multiplication algorithm was introduced (adaptive chosen-input
attack). Unlike the attack from the previous section it does not guess the secret
exponent d bit by bit but factorizes the modulus n = pyp2. The attack would
not have been detected without the understanding of the stochastic behaviour
of Montgomery’s multiplication algorithm. We point out that also this timing
attack can be prevented with the countermeasures mentioned in Remark 4.

If the CRT is applied x; := (y(modp;))% = y?(modp;) is computed for
i = 1,2 with d; = d(mod (p; — 1)). Finally, y?(mod n) is computed from these
intermediate results. We assume that the square & multiply exponentiation al-
gorithm and Montgomery’s algorithm are used to calculate x; and z9. As in the
previous section R > p; denotes the Montgomery constant (which is assumed to
be the same for p; and py), while R~! stands for the multiplicative inverse of R
in Z,. For input y := uR~*(modn) the constant factor in the computation of
x; equals §;.1 = yR = u (mod p;) (cf. Step 1 of Pseudoalgorithm 2).

Let 0 < w1 < us < n with us — u; < pi1,p2. Three cases are possible:
The ‘interval set’ {u; + 1,...,us} contains no multiple of p; and ps (Case A),

98 Werner Schindler

resp. contains a multiple of p; or pa but not of both (Case B), resp. contains
multiples of both p; and ps (Case C). The computation of z; requires about
logy(n)/2 squarings and log,(n)/4 multiplications with ¢;,1. The running time
for input y := uR~! (mod n), denoted with T'(u), is interpreted as a realization
of a normally distributed random variable X, (cf. [13]), and from (11) we obtain

0 for Case A
E(Xy, — Xu,)~ — g \én for Case B (18)
—an \én for Case C.

where ‘E(-)" denotes the expectation of a random variable. This observation can
be used for a timing attack that factorizes the modulus n. In Phase 1 the attacker
determines an ‘interval set’ {uj; + 1,...,u2} with us — u; ~ 27 %p;,276py that
contains a multiple of p; or po. The attacker is convinced that this is the case iff
T(uz) — T(u1) > — cgr v/n/16R. (There is no need to distinguish between Case
B and Case C.) Starting with this interval {u; +1,...,us} in Phase 2 he applies
the same decision rule to decide whether its upper halve contains a multiple of p;
or pa, and he replaces current interval by that halve (upper halve or lower halve)
that contains a multiple of p; or ps. In the elementary form of the attack this
process is continued until the actual subset {u; +1,...,us} is sufficiently small
so that it is feasible to calculate ged(u, n) for all u within this subset (Phase 3).
If all decisions within Phase 1 and Phase 2 have been correct the final subset
indeed contains a multiple of p; or ps, and Phase 3 yields the factorization of n.

At any instant within Phase 2 the attacker can verify with high probability
whether his decisions have been correct so far, i.e. whether a given interval
{u1+1,...,us} really contains a multiple of p; or pa. He just applies the decision
rule to the time difference required for neighboured values of u; and wus, for
instance to T'(ug — 1) — T'(uy + 1). If this confirms the preceding decisions it is
verified with overwhelming probability that the interval {u; + 1,...,us} truly
contains a multiple of p; or ps. Consequently, we then call {u; + 1,...,us2} a
confirmed interval. Otherwise, the attacker evaluates a further time difference
(e.g. T(ug—2)—T(u1+2)). Depending on this difference he either finally confirms
the interval {u; + 1,...,u2} or restarts the attack at the preceding confirmed
interval, denoted with {ui.c+1,...,u2;.}, using values uj and uf that are close
to u1;. and ug,., respectively.

Under ideal conditions (no measurement errors) this attack required 570 time
measurements to factorize 1024 bit moduli n ~ 0.7 - 21924, Confirmed intervals
were tried to establish after each 42 steps ([13]). When attacking a prime p;
directly (instead of any multiple) it suffices to reconstruct the upper half of the
bit representation of p; or p2 ([3]). For the parameters from above this reduces
the number of time measurements from 570 to 300.

Also this attack may be interpreted as a sequence of decision problems with
|©] =2, 5(1,0) = s(0,1) = 1 and n(0) = n(1) = 0.5. However, the loss function
and the a priori distribution do not yield any additional information in this
case. We point out that this attack can be generalized to table methods ([13])
although its efficiency decreases due to a lower signal-to-noise ratio. In [1] this
attack was modified to attack OpenSSL implementations over local networks.

On the Optimization of Side-Channel Attacks 99

6 A Combined Timing and Power Attack

In this section we assume that the attacked device computes modular expo-
nentiations y + y%(mod n) with a modular exponentiation algorithm that uses
a b-bit-table ([9], Alg. 14.82) and Montgomery’s multiplication algorithm (cf.
Pseudoalgorithm 2). The b-bit table stores the values g1, ..., 201 with §j+1 =
MM(g;,91; M) (cf. Sect. 3). We assume that the attacked device is resistant
against pure power attacks but that the power measurements (SPA; cf. [16], Re-
mark 3) enable the attacker to identify the beginning and the end of the partic-
ular Montgomery multiplications, i.e., whether an extra reduction is carried out.
Due to base blinding (which prevents pure timing attacks) the attacker does
not any of the table values, that is, the operands of the Montgomery multiplic-
ations. (If the attacker knew the table entries the attack was indeed elementary
([19], Subsect. 3.3).) In [19] only the special case b = 2 was considered. In [16]
this attack was optimized and generalized to arbitrary b. Reference [17] treats
the sliding windows exponentiation algorithm ([9], Alg. 14.85) with a modified
variant of Montgomery’s exponentiation algorithm where an extra reduction is
carried out iff s > R (cf. Sect. 3, Alg. 1). Although the general approach remains
the same this increases the mathematical difficulties considerably.

The attack falls into four phases. At first the attacker measures the power
consumption for a sample y1,...,yy, and therefrom he determines those Mont-
gomery operations that require extra reductions. On basis of this information he
guesses the types ('S’, ‘M, ..., ‘M,) of all Montgomery operations within the
exponentiation phase. The attacker guesses blocks of f > 1 consecutive Mont-
gomery operations independently. (The attack becomes more efficient for f > 1
since the extra reductions of consecutive Montgomery multiplications are not in-
dependent. At the same time the computations become more complex.) Finally,
the attacker tries to correct possible guessing errors and checks the resulting
guess d for the secret exponent d (e.g. by a known digital signature).

Theorem 3 specifies the optimal decision strategy. The {0, 1}-valued random
variables W), Wa), . .. describe the random timing behaviour of the Mont-
gomery multiplications in the exponentiation phase (see Sect. 3) where ‘(k)’
indicates sample k. Equation (11) quantifies the probabilities for extra reduc-
tions which yet depend on the unknown table values. The ‘source’ of the attack
is the initialization phase where the table values yy(x),. .., Y20 _1(x) computed.
Although the attacker does not know the particular operands he at least knows
the type of these operation (7; 1) = MM(7;k), ¥1(k); M)). The random timing
behaviour in the initialization phase is quantified by another stochastic process
Wl’(k), s W2/b—1(k) (cf. [16], Equation (3)). Theorem 3 uses Theorem 1(iii). For
its proof we refer the interested reader to [16].

Theorem 3. Let Top ((wi(k), . ,wiJrf,l(k),w'l(k), . 7wl2b71(k))1SkSN) = 0" if

N
Z s(6,60")n(0) H Probg (Witk)y = Wick) » - - s Wit f—1(k) = Wit f—1(k) |
geo k=1

’I{(k) :w;(k),rzl,...ﬂb—l)

100 Werner Schindler

is minimal for 8’ = 6*. The decision strategy Topt is optimal among all the
decision strategies that guess the types T(i),...,T(i+ f — 1) simultaneously.

Apart from additional technical difficulties the conditional probabilities
Probg(- | -) are computed in a similar manner as in (15). We refer the interested
reader to Section 4 of [16]. Due to the lack of space we restrict our attention to
the a priori distribution and the loss function where we exclusively consider the
case f = 1. (The general case f > 1 is treated in [16], Sect. 5.) In particular,
O = {95, Mj...,'M;, ,}.In the exponentiation phase ~ log,(d) squarings and
~ log, (d)/(b2°) multiplications with any particular table entry ¢, are carried out.
This yields the a priori distribution

1 b
1 b2
‘M/ — ... = ¢ / = b2° = ‘Sl = .
n(4) (M) 2041 B26(20 1) n(s) b2b(20 — 1) (

19)
The following example underlines that unlike in Sects. 4 and 5 it is reasonable
to distinguish between different types of guessing errors.

Ezxample 4. Let b =4 and let the correct type sequence be given by
""LS(,(M3(,(SL7LS(,(SL7LS(, LM12L7LS(,(SL7LS(,(SL7LM147LS(,'"

whereas a), b) and c) are possible guesses.

a,) ---,‘S‘,‘MB‘,‘S‘,‘S‘,‘S‘,‘Mll‘,‘M12‘,‘S‘,‘S‘,‘S‘,‘S‘,‘Ml‘,‘s‘,--.

b) '."tS‘,4M34,4S£7£S(,(S(7(S4’ tS(, (S(,(S(7£S‘,‘S(7(M1£74S¢,.'.

C) "'7(SL7LM3L7LS(,(SL7LS(,(SL7 (M14(,(SL7LS(,(SL7LS(,4M1(,(SL7"'

Each of the subsequences a), b), and ¢) contains exactly one wrong guess. The
error in Sequence a) (‘M11’) is obvious as the number of squarings between two
multiplications with table entries must be a multiple of b = 4. Type-a errors
(‘M;’ instead of ‘S”) are easy to detect and to correct if they occur isolated, i.e.
if there are no further type-a or type-b errors (‘S’ instead of ‘M;’; cf. Sequence b))
in their neighbourhood. The correction of type-b-errors is not as obvious as that
of type-a errors. (Reasonably, the attacker tries that alternative a € 6 \ {*S’}
that yields the second lowest expected loss.) The detection and location of type-a
errors and type-b errors can be interpreted as a decoding problem. (Therefore,
*S" is replaced by 0 and ‘M by 1. Valid code words consist of isolated 1s and
subsequences of Os with lengths that are multiples of b.) Most cumbersome are
the type-c errors (‘M;’ instead of ‘M) as not even their detection is obvious.
Clearly, the attacker wants to avoid false guesses. However, the optimal decision
strategy need not minimize the total number of errors (which was achieved by
defining s(6;,60;) := 1 for all 6; # 6; € O) but should ‘favour’ type-a and
type-b errors in comparison with type-c errors. Consequently, it is reasonable to
choose a loss function that punishes type-c errors more than type-a and type-b
errors, In our practical experiments we used for b = 4, for instance, the values
s(*S,M3) = 1, s("M},*S") = 1.5, s(‘M{,"'M}) = 8 (cf. [16]). We point out
that the attack can be prevented with suitable exponent blinding or constant
processing times for all Montgomery operations in the exponentiation phase (cf.
Remark 4 and [16], Sect. 11) but not with base blinding.

On the Optimization of Side-Channel Attacks 101

Recall that whether a Montgomery operation requires an extra reduction nei-
ther depends on the concrete hardware platform nor on the used multiprecision
variant of Montgomery’s multiplication algorithm but only on d, n, R and the
base yx (cf. Subsect. 3.1). Hence we emulated the modular exponentiations on a
computer, outputting which Montgomery operations required extra reductions.
This clearly corresponds with an attack under ideal conditions (also consid-
ered in [19] and [16]) where the attacker knows definitely whether a particular
Montgomery operation needs an extra reduction. We point out that the attack,
though less efficient, will also work under less favourable conditions. An attack
was counted as successful iff the closest code word yielded the location of all
type-a and type-b errors, and if there was at most one type-c error. For RSA
without CRT, b = 2, n/R =~ 0.99, log,(d) ~ 384 and (f = 3, N = 200) we ob-
tained a success rate of about 90% whereas the attack in [19] required N = 1000
samples. (The efficiency of the attack increases as the ratio n/R increases.) For
b=4,n/R =~ 0.70 (average case), logy(d) ~ 512 and (f = 1, N = 550) about of
94% of the attacks were successful. We point out that also CRT implementations
are vulnerable to this attack (cf. [16], Sect. 10).

For b = 4, n/R =~ 0.70, logy(d) ~ 512 and (f = 1, N = 550), resp. (f =
1, N = 450) the optimal decision strategy was successful in about 94%, resp.
67% of the trials. Neglecting the a priori distribution and the different classes
of errors, i.e. when using the maximum-likelihood estimator, the success rates
decreased to 74% and 12%, resp., for these two parameter sets. For the optimal
decision strategy the average numbers of type-c errors per trial were about 0.3
and 0.8, respectively. When using the maximume-likelihood estimator about 0.8,
resp. 2.4, type-c errors occurred per trial in average.

These results underline that the probabilities py have the most significant
impact on the efficiency of the decision rule. Depending on the concrete situa-
tion, however, also the a priori distribution and the definition of an appropriate
loss function may have non-negligible impact on the efficiency of the decision
statrategy, especially for small sample sizes.

7 A Timing Attack on a Weak AES Implementation

Reference [7] considers a timing attack on a careless AES implementation. In
the MixColumn transformation multiplications over GF(2%) by ‘02" and ‘03’ =
‘01’ 4 ‘02" are carried out. Essentially, only the multiplications by ‘02’ need
to be calculated, and this is done by shifting the respective state byte by one
position to the left. If a carry occurs the hexadecimal constant ‘1B’ is XORed to
the shifted value. In the attacked implementation these conditional operations
caused differences in the encryption times since the other AES transformations
required identical time for all input values. In [7] the key bytes ki, ko, ..., kg
were treated independently, and all combinations of key byte candidates were
checked by a known plaintext/ciphertext pair.

Clearly, the larger the candidate sets the more time-consuming is the checking
phase. On the other hand, if a correct key byte is rejected the attack must fail.

102 Werner Schindler

In [15] the efficiency of this attack was increased noticeably by interpreting the
encryption times as realizations of random variables and by applying statistical
decision theory. The candidate sets for the particular key bytes were reduced in
two steps, considering one further key byte in each step. Each reduction step itself
consists of many decisions, tolerating errors in some of these individual decision
problems. Due to the lack of space we omit details and refer the interested reader
to [15]. We merely point out that the sample size was reduced from 48000 to 4000
with a success rate of more than 90%. Moreover, this two-step sieving process
can be adjusted to other side-channel attacks (e.g., to power attacks) where
different parts of the key influence the measurements simultaneously.

8 Final Remarks

This paper proposes a general method to optimize the efficiency of side-channel
attacks by advanced stochastic methods, especially by applying the calculus of
stochastic processes and statistical decision theory. The proposed method is not
a ‘ready-to-use’ tool for any application but requires some work to apply it to
specific problems. We yet believe that the above examples have illustrated the
central principles. We emphasize that a good understanding of the potential
power of an attack is necessary to be able to rate its true risk potential and to
design adequate and reliable countermeasures.

References

1. D. Brumley, D. Boneh: Remote Timing Attacks are Practical. In: Proceedings of
the 12th Usenix Security Symposium, 2003.

2. B. Canvel, A. Hiltgen, S. Vaudenay, M. Vuagnoux: Password Interception in a
SSL/TSL Channel. In: D. Boneh (ed.): Crypto 2003, Lecture Notes in Computer
Science 2729, Springer, Heidelberg (2003), 583-599.

3. D. Coppersmith: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. Cryptology 10 (no. 4) (1997) 233-260.

4. J.-F. Dhem, F. Koeune, P.-A. Leroux, P-A. Mestré, J.-J. Quisquater, J.-L.
Willems: A Practical Implementation of the Timing Attack. In: J.-J. Quisquater
and B. Schneier (eds.): Smart Card — Research and Applications, Springer, Lecture
Notes in Computer Science 1820, Berlin (2000), 175-191.

5. P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: N. Koblitz (ed.): Crypto 1996, Springer, Lecture Notes in Com-
puter Science 1109, Heidelberg (1996), 104-113.

6. K. Gandolfi, C. Mourtel, F. Olivier: Electromagnetic Analysis: Concrete Results.
In: C.K. Kog, D. Naccache, C. Paar (eds.): Cryptographic Hardware and Embedded
Systems — CHES 2001, Springer, Lecture Notes in Computer Science 2162, Berlin
(2001), 251-261.

7. F. Koeune, J.-J. Quisquater: A Timing Attack against Rijndael. Catholic Univer-
sity of Louvain, Crypto Group, Technical report CG-1999/1, 1999.

8. P. Kocher, J. Jaffe, B. Jub: Differential Power Analysis. In: M. Wiener (ed.): Crypto
1999, Springer, Lecture Notes in Computer Science 1666, Berlin (1999), 388-397.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

On the Optimization of Side-Channel Attacks 103

A.J. Menezes, P.C. van Oorschot, S.C. Vanstone: Handbook of Applied Crypto-
graphy, Boca Raton, CRC Press (1997).

D. Neuenschwander: Probabilistic and Statistical Methods in Cryptology. An In-
troduction by Selected Topics. Springer, Lecture Notes in Computer Science 3028,
Berlin (2004).

H. Sato, D. Schepers, T. Takagi: Exact Analysis of Montgomery Multiplication.
TU Darmstadt, Technical Report TI-6/04.

W. Schindler: Optimized Timing Attacks against Public Key Cryptosystems.
Statist. Decisions 20 (2002), 191-210.

W. Schindler: A Timing Attack against RSA with the Chinese Remainder Theo-
rem. In: C.K. Kog, C. Paar (eds.): Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, Springer, Lecture Notes in Computer Science 1965, Berlin
(2000), 110-125.

W. Schindler, F. Koeune, J.-J. Quisquater: Unleashing the Full Power of Timing
Attack. Catholic University of Louvain, Technical Report CG-2001/3.

W. Schindler, F. Koeune, J.-J. Quisquater: Improving Divide and Conquer Attacks
Against Cryptosystems by Better Error Detection / Correction Strategies. In: B.
Honary (ed.): Cryptography and Coding — IMA 2001, Springer, Lecture Notes in
Computer Science 2260, Berlin (2001), 245-267.

W. Schindler: A Combined Timing and Power Attack. In: P. Paillier, D. Naccache
(eds.): Public Key Cryptography — PKC 2002, Springer, Lecture Notes in Computer
Science 2274, Berlin (2002), 263-279.

W. Schindler, C. Walter: More Detail for a Combined Timing and Power Attack
against Implementations of RSA. In: K.G. Paterson (ed.): Cryptography and Cod-
ing — IMA 2003, Springer, Lecture Notes in Computer Science 2898, Berlin (2003),
245-263.

C.D. Walter: Precise Bounds for Montgomery Montgomery Modular Multiplica-
tion and Some Potentially Insecure RSA Moduli. In: B. Preneel (ed.): Topics in
Cryptology — CT-RSA 2002, Springer, Lecture Notes in Computer Science 2271,
Berlin (2002), 30-39.

C.D. Walter, S. Thompson: Distinguishing Exponent Digits by Observing Mod-
ular Subtractions. In: D. Naccache (ed.): Topics in Cryptology — CT-RSA 2001,
Springer, Lecture Notes in Computer Science 2020, Berlin (2001), 192-207.

H. Witting.: Mathematische Statistik I, Stuttgart, Teubner (1985).

Symmetric Subgroup Membership Problems

Kristian Gjgsteen

Department of Matematical Sciences,
Norwegian University of Science and Technology, 7491 Trondheim, Norway
kristian.gjosteen@math.ntnu.no

Abstract. We define and discuss symmetric subgroup membership
problems and their properties, including a relation to the Decision Diffie-
Hellman problem. We modify the Cramer-Shoup framework, so that we
can derive a chosen ciphertext secure cryptosystem in the standard model
from symmetric subgroup membership problems. We also discuss how
chosen ciphertext secure hybrid cryptosystems based on a symmetric
subgroup membership can be constructed in the standard model, giving
a very efficient cryptosystem whose security relies solely on the symmet-
ric subgroup membership problem.

Keywords: public key encryption, hybrid encryption, standard model,
subgroup membership problem.

1 Introduction

Public key cryptography was first proposed by Diffie and Hellman [5]. The most
general security notion for public key cryptosystems is security against adaptive
chosen ciphertext attacks (CCA) [10]. While many efficient schemes achieve this
in the random oracle model, Cramer and Shoup [2,4] designed the first efficient
scheme to achieve this security level in the standard model.

The security proofs for many public key cryptosystems essentially rely on
subgroup membership problems. The most famous subgroup membership prob-
lem is the Decision Diffie-Hellman problem [1], on which the Cramer-Shoup
cryptosystem relies. Yamamura and Saito [11] catalogued many subgroup mem-
bership problems that have appeared in the literature. Cramer and Shoup [3]
gave a framework for turning general subgroup membership problems into secure
cryptosystems, generalising their previous work and giving several new instances
with interesting properties.

We study symmetric subgroup membership problems (Sect. 2), and show how
they relate to the Decision Diffie-Hellman problem (Sect. 3). We also extend
the framework of Cramer and Shoup to make efficient use of symmetric sub-
group membership problems, giving very efficient cryptosystems secure against
chosen ciphertext attacks in the standard model (Sect. 4). Finally, we discuss
new developments in hybrid encryptions (Sect. 5) and construct a very efficient
cryptosystem provably chosen ciphertext secure in the standard model, relying
solely on the symmetric subgroup membership problem.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 104-119, 2005.
© International Association for Cryptologic Research 2005

Symmetric Subgroup Membership Problems 105

1.1 Notation

If S is a non-empty finite set, we denote by Ng the set {0,...,|S| —1}.

Let X be a distribution on a set S. We denote by x «+ X the act of sampling
x from S according to the distribution X. The notation x < S is used to denote
sampling = from S according to the uniform distribution. We denote by = « s
the assignment of the value s to z.

We use the following notation to describe new distributions. Let X5,..., X,
be distributions on sets Si,...,S,, and let f: 57 x--- xS, — S be a function.
Then by

X:{f(xl,...,xn) | T <—X1,...,I’n (—Xn}
we denote the distribution on S defined by

Prlz=s|az— X]=Pr[f(z1,...,2,) =8| 21 — X1,..., 2, — X,] .

The distance between two distributions X and Y on a set S is

Dist(X,Y) Z |Pr[X Pr[Y = s]| .
SGS

We say that two distributions X and Y are d-close if Dist(X,Y") < 4.

2 Symmetric Subgroup Membership Problem

A subgroup membership problem consists of a finite abelian group G along with
a proper, non-trivial subgroup K. The problem is to decide if a group element
z € Gisin K or in G\ K. We denote this subgroup membership problem by
SMq k), and the advantage of an adversary A is

SM(G,K)

Adv = |Pr[A(G,K,z)=1|x « K| —-Pr[A(G,K,z) =1 |z «— G\ K]| .
A

Let G be a finite abelian group, and let K and H be subgroups of G such
that K N H = {1} and G = KH. Then K x H ~ G, and the isomorphism is
simply the group operation: (k, h) + kh. If ged(|K|,|H|) = 1, then if d = |[H|~*
(mod |K|), we get that ¢ — (c/fl4 ¢1=1H19) is the inverse map. So anyone who
knows |K| and |H| can compute the reverse isomorphism.

The symmetric subgroup membership problem SSM q i m) is the subgroup
membership problem SM ¢y q i x m)- It is easy to show that distinguishing K x
H is equivalent to distinguishing either K or H or both, and that considering
maximum advantages for algorithms using some fixed amount of resources, we
get

|K| -1 < AdVSSM(G’K’H) S AdVSM(G’K) +AdVSM(G’H) .

AdvSMe.x)
' -1~

We shall assume that there are efficient algorithms available for sampling the
subgroups K and H from a distribution that is d-close to the uniform distri-
bution, for some negligible § > 0. Typically, these algorithms simply choose a

106 Kristian Gjgsteen

random exponent and exponentiate a generator for the subgroup. If § cannot be
zero, it is always easy to make § arbitrarily small.

We describe two instances of the symmetric subgroup membership problem.

Let n = pq be an RSA modulus, and let G be a group of order n. Let K be
the subgroup of order p and let H be the subgroup of order q. Then we have a
symmetric subgroup membership problem SSM g k. m)-

If p = 2n + 1 is prime, the set of quadratic residues in GF(p')* is exactly
such a group structure, and it seems plausible that it gives a hard symmetric
subgroup membership problem. It was discussed in [8] and [9]. We could also
consider p’ = 2sn + 1 for some small integer s, with little additional complexity.

As an alternative, let a, b, ¢, d, p = 2ab+ 1 and ¢ = 2¢d 4+ 1 be primes, let
n = pq, and let G be the subgroup of Z; with Jacobi symbol 1. Let K be the
subgroup of order 2ac and H be the subgroup of order bd. It is plausible that
the resulting symmetric subgroup membership problem is hard. Note also that
ac can be made much smaller than bd.

To see how this group structure can be used, we briefly describe a key encap-
sulation method (KEM) [4], and show that it is secure against passive attacks if
and only if the symmetric subgroup membership problem is hard.

The key generation algorithm simply selects a suitable symmetric subgroup
membership problem SSM ¢ i), and outputs a public key (G, K, H). The
private key is (G, | K|, |H]|).

To sample a symmetric key and encipher it, (z,y) € G x G is sampled
(almost) uniformly at random from K x H, using the sampling algorithms for
SSM ¢, k,m)- The key is (z,y) and the ciphertext is the product zy.

To decipher ¢ € G, the knowledge of | K| and |H]| is used to compute (z,y) €
K x H such that ¢ = xy, as described above.

It is clear that distinguishing the decryption (x,y) of a ciphertext ¢ from a
random pair (z/,y’) € G x G such that z’y’ = ¢ is equivalent to deciding the
symmetric subgroup membership SSM ¢ k, #)-

To discuss the efficiency of the above KEM, we shall compare it with three
other schemes. The first is the cryptosystem proposed in [9] (NBD), the second
is Diffie-Hellman in G (DH/G), and the third is Diffie-Hellman in the subgroup

It was shown in [9] that NBD is secure if the symmetric subgroup membership
problem is hard. Sect. 3 will show that Diffie-Hellman in G is not less secure than
the above KEM. Sect. 4 will show that Diffie-Hellman in K can be turned into
a cryptosystem with messages in G that is secure if the symmetric subgroup
membership problem is hard.

DH/G requires two exponentiations in G to encrypt, and one to decrypt.
DH/K requires two exponentiations in K to encrypt, and one to decrypt. NBD
requires one exponentiation in K and one in H to encrypt, and approximately
1.3 exponentiations in G to decrypt. Our KEM requires essentially one exponen-
tiation in K and one in H, both to encrypt and decrypt.

As we can see, Diffie-Hellman in K is the best option, especially if exponen-
tiations in K can be made cheaper than exponentiations in H.

Symmetric Subgroup Membership Problems 107

3 The Decision Diffie-Hellman Problem

We keep the notation introduced in Sect. 2. Let z be a generator for G. The
Decision Diffie-Hellman (DDH) problem is to distinguish the two distributions
{(z,z", 2", 2") | u,v — Ng} and {(z, 2", 2", 2") | u,v,w < Ng}. Some defini-
tions require w # uv (mod |G]), but the difference is negligible. The advantage
of an algorithm A taking four group elements as input and answering 0 or 1
against DDH is defined to be

1
AdviPMe = 2|Pr[A(:c,x”,:z:”,:z:“”) | u,v — Ng|—
Pr[A(z, 2", 2%, 2") | u,v,w «— Ng]| .
We shall need the following result later on, so we state it as a separate lemma.

Lemma 1. Let G be a finite cyclic group, and let K and H be non-trivial sub-
group of G such that KN H = {1} and G = KH. Let g be a generator for K.
Consider the two distributions given by U = {(¢",y,y"*) | v — Ng,y «— G\ K}
and V ={(¢",y,y"z |u— Ng,y — G\ K,z — H}. Then

[H| - o(H)

Dist(U,V) <
|H|

Proof. Let u; = umod |K| and us = v mod |H|, and let y = y1y2 with y; € K,
ys € H. It is easy to see that

U={(9"9"y5") | u1 + Ni,ug « Npg,y1 «— K,y2 — H\ {1}}
and
V ={(g"",y1"y5*2) | u1 < Ng,up — Np,y1 — K,yo — H\ {1},z — H} .

With U = {y5? | ua — Npg,y2 — H\ {1}} and V' = {952z | u2 «— Ny, y2 «—
H\{1},z < H}, it is clear that

Dist(U, V) = Dist(U’, V")

and that V' is exactly the uniform distribution on H. If y5 is a generator, then
U’ is also uniformly distributed on H. It follows that

|H| — ¢(|H])

Dist(U", V') < ,
|H |

which concludes the proof. O

Theorem 1. Let SSM g,k m) be a symmetric subgroup membership problem
such that G is cyclic, and suppose that the sampling algorithms for K and H
are §-close to uniform. Let A be an algorithm that decides the Decision Diffie-
Hellman problem in G. Then for any &' > 0 there are algorithms Ay, Az and As

108 Kristian Gjgsteen

that use A once as an oracle and otherwise do O(log1/d") exponentiations in G,
such that

SM SM SM
AdvaHG < AdVA1 @R 4 AdVA2 @R 4 AdVA3 (@4

Gl =G | 1K= (K] | [H|-o(H]) |G| - (Gl)

+
G| - |K| K| |H| G| — [H]|
70"+ 46 .
Proof. We shall need the following three experiments.
Experiment 1 Experiment 2 Experiment 3
Input: A, G, z € G Input: A, G,y € G Input: A, G, h € G
1. u,v,w +— Ng. 1. u,v +— Ng. 1. u,v «+— Ng.
2.y — . 2.z — K. 2. x— K,y G\ K.
3. b—{0,1}. 3. b—{0,1}. 3. b—{0,1}.
4. If b =1, then 4. If b =1, then 4. If b=1, then
z «— y*, otherwise z «— y*, otherwise z <« y“h, otherwise
z—xv. z—yv. z—yv.
5.0 — A(z,z",y,2). 5. b «— Alx,z"y,z). 5. b «— Alz,z",y,z).
6. If b=",output 1, 6. If b=10, output 1, 6. If b =1V', output 1,
otherwise output 0. otherwise output 0. otherwise output 0.
Output: 0 or 1. Output: 0 or 1. Output: 0 or 1.

In each experiment, Step 1 and 2 requires sampling certain elements from
certain uniform distributions. It may be impossible to implement these steps,
but we can implement approximations.

For Step 1, we note that the numbers sampled are used as exponents. There-
fore, we can sample uniformly from a larger set to get an element distribution
close to uniform. The cost is exponentiating to the larger exponent, but it is
easy to show that for any ¢’ > 0, O(1/log¢’) extra work suffices for a §’-close to
uniform distribution.

For Step 2, we simply use the algorithms provided by the subgroup member-
ship problem, which are §-close to uniform.

Consider first Experiment 1. If the input x is a generator for GG, then this
experiment measures the advantage of A against DDH. Let 77 denote the event
that the experiment outputs 1 when the input z is sampled from G\ K. An easy
computation shows that

G| — |K]
Let T} denote the event that the Experiment 1 outputs 1 when the input z is

sampled from K. By the comments above, we can use Experiment 1 to construct
a distinguisher A; for K, and

AdvPMe < |Pr[Ty) — 1/2] +

IPr[Ty] — Pr[T{]| < Advy 5 435" (2)

Symmetric Subgroup Membership Problems 109

Next, we consider Experiment 2. Let T4 be the event that Experiment 2 out-
puts 1 when the input y is sampled from K. Suppose the input x to Experiment 1
and y to Experiment 2 are sampled uniformly from K. In either case, if the x
sampled generates K, the two experiments proceed identically. In other words,

K] = 6K

IPx[T{] — Pr{T]| <
1 2 |K|

(3)
Let T, be the event that Experiment 2 outputs 1 when the input y is sampled
from G\ K. As above, we can use Experiment 2 to construct a distinguisher As
for K, and

|Pr[T5) — Pr(T3)| < Adviy @) 426" +6 . (4)

Then we consider Experiment 3. Let T4 be the event that the experiment
outputs 1 when the input h is sampled from H. When the input y to Experi-
ment 2 is sampled from G\ K and the input h to Experiment 3 is sampled from
H, Lemma 1 shows that

[H| - ¢(|H])

Pr{n] — P <

()

Let T3 be the event that the experiment outputs 1 when the input h is sampled

from G\ H. As above, we can use Experiment 3 to construct a distinguisher As
for H, and

|Pr[Ty] — Pr[T3]| < Adviy " 426" 435 . (6)

To conclude, we need only observe that in Experiment 3, when the input A

is sampled from G\ H and y is a generator, the distribution of z is independent
of b, and therefore

G| = ¢(IG)
Pr|T5] —1/2| < .
Combining equations (1)—(7) proves the theorem. O

4 Chosen Ciphertext Security

4.1 Hash Proof Systems

We give a brief presentation of hash proof systems. It is only superficially differ-
ent from [3], so we refer the reader there for further details.

Let G be a set, and let K be a subset of G. We say that W is a witness set for
K if there is an easily computable bijection p : W — K. This bijection allows
one to prove that an element x € G really is in K by presenting an element
w € W such that p(w) = x. This obviously assumes that it is easy to recognise
elements of W.

For two sets S, S’, denote by Map(S,S’) the set of maps from S to S’
Let L be a group. We are interested in looking at maps from G to L. There
is a natural map Map(G, L) — Map(K, L) given by restriction. From p we get

110 Kristian Gjgsteen

a bijection p* : Map(K,L) — Map(W,L). We also denote the natural map
Map(G, L) — Map(W, L) by p*.

A projective hash family is a tuple (G, K, L, W, p, M), where G is a set, K is
a subset of G, L is a group, W is a witness set for K with isomorphism p, M is a
subset of Map(G, L), and for any f € M, the image of K under f is a subgroup
of L. We also suppose that L has a subgroup L', such that L' N f(K) = {1} and
L = L'f(K). This gives us a subgroup membership problem SMy, 1. (This
corresponds to the definition sketched in Section 8.2.4 of [3].)

Let (G, K, L, W, p, M) be a projective hash family. The projective hash family
is e-universal if for any [’ € p*(M), z € G\ K and y € L, we have that

Pr(f(z) =y Ap*(f) = F'If < M] < ePr[p™(f) = f'|f — M] .

The projective hash family is e-universal-2 if for any f’ € p*(M), zg € G\ K,
x € G\ (KU{xo}) and y,yo € L, we have that

Pr(f(z) =y A f(xo) = yo A p*(f) = ['|f — M]
< ePr[f(xo) = yo A p*(f) = f'|f « M] .

It is clear that e-universal follows from e-universal-2.
Let (G, K, L, W, p, M) be a projective hash family. Define the two distribu-
tions

U={(zp"(f), f(@)) |z = G\ K, f— M},
V:{(xvp*(f)vf(x)y)|I<—G\K7f(_ny<_L/}

We say that the projective hash family is e-smooth if
Dist(U,V) <e .

A hash proof system II for a subgroup membership problem SM ¢ k) is
a projective hash family (G, K, L, W, p, M), along with efficient algorithms for
sampling W and M §’-close to uniform, and for evaluating the hash functions
on points in G and W.

An eztended hash proof system I for SM (g k) is a projective hash family

(G x S, K x S,ﬁ,W,[),M), where S is some set depending on G, along with
efficient algorithms for sampling W and M §'-close to uniform, and for evaluating
the hash functions on points in G x S and W x S.

A (extended) hash proof system IT (I) is e-smooth (e-universal-2) if the
projective hash family is e-smooth (e-universal-2).

Let SSM g,k 1) be a symmetric subgroup membership problem such that
G is cyclic, and suppose that a generator g is available for K. We shall describe
a hash proof system IT and an extended hash proof system II for SSMc K 1)
The group L will be G, and L' = H.

Let W = Zjk| and p([w]) = ¢g"¥. Let L = G and let L' = H. Since G is
cyclic, the homomorphism group Hom(G, G) is isomorphic to Z¢g|, and we let
M = Hom(G,G). For any f € M, a useful description of the function p*(f)

Symmetric Subgroup Membership Problems 111

is the group element f(g), since for any [w] € W, f(g*) = f(g9)“. The projec-
tive hash family is (G, K, G, Z k|, p, Hom(G, GG)), with the obvious sampling and
evaluation algorithms.

By Lemma 1, this hash proof system is e-smooth, for e = 1 — ¢(|H|)/|H|.

The extended hash proof system I is slightly more complicated. Let £ be the
smallest prime dividing |H|. We shall suppose that for some sufficiently large I,
a 1-1 function h : G x G — {0,...,¢ — 1}! is available. Then M is the set of
functions of the form

l
flave) = o) [i),

where h(z,e) = (y1,...,7), and f; € Hom(G, G).
The witness set for K x G is Z|k| x G, and the map p is given by p([w],e) =
(g%, e), where g is a generator for K. It is clear that

l
7 (D[l e) = folg)” T] £ilo)™,

i=1

where h(g”,e) = (71, ...,7). So a useful description of the function p*(f) is the
tuple (507 S1yee0 Sl) - (f0(9)7 fl(g)v SRE) fl(g)) .

By Theorem 3 of [3], the extended hash proof system II described above is
1/¢-universal-2. Just as in [4], it is possible to replace the 1-1 function h with
a collision resistant hash function, to get a computationally secure construction
with [= 1.

4.2 The Cryptosystem

The standard goal for a public key cryptosystem is indistinguishability of cipher-
texts against a adaptive chosen ciphertext adversary. We consider adversaries A
consisting of a pair of algorithms (A1, As), where A; receives the public key and
outputs a pair of messages (mg,m1). A2 then receives an encryption of one of
the messages and must decide which one. Both A; and As are allowed to have
arbitrary ciphertexts decrypted (the challenge ciphertext excepted, obviously).
If T is the event that A decides correctly, we say that A wins the game, and its
advantage is defined to be

Adv§9 = |Pr[T] —1/2] .

Suppose we have a subgroup membership problem SM ¢ k), a hash proof
system II for SM(q k), and an extended hash proof system I for SMa,K)
such that the projective hash families are (G, K, L, W, p, M) and (G x L, K x
L, LW, p, M), respectively.

We derive the cryptosystem C'S’ described in Fig. 1 from the two hash proof
systems. Note that M, M and W are sampled using the algorithms from the
hash proof systems.

The security analysis closely follows the analysis in [3].

112 Kristian Gjgsteen

Key Generation . Encryption Decryption
Input: SM¢ ky, II, 1. Input: pk, m € L. Input: sk, (z,e,9).
1.f<—M,f<—M. Lowe—W. 1. Q'<—f(:c7e).

2. sk (G,L, L. f, f). 2.z« p(w). 2. If §' # g, output L.
3. pk— (G,W,L,L,p, 3. y—p(f)w) 3.y — f(x).
o (£).6" (). 4 cym. 4m ey
5.9« p*(f)(w,e). 5. Output m.
Output: (pk, sk).
Output: (z,e,9). Output: A message m or L.
Fig. 1. The cryptosystem CS’.
Key Generation
Input: SSM(G,K,H), ge K.
1. (k ko, k1,..., k) « {0,...,|G] — 1}'T2
2. (87807517'--,&)‘_(9 7gk07gk17"'7gl)'
3. pk — (G,9,8,80,81,...,81,h).
4. sk — (G7k,k‘o7k‘17‘ . .,kl7h).
Output: (pk, sk).
Encryption Decryption
Input: pk, m € G. Input: sk, (z,e,35) € G X G x G.
1. w«{0,...,|K|—1} 1. (y1y--.m) < h(z,e).
2. x«— g". 2. ¢ —atoII, ahi
3.y« s*. 3. If § # ¢/, then output L.
4. e — ym. 4. y— 2"
5 (v1,---,m) < h(z,e). 5. m ey L.
6. 7 sy [[iey s

Output: A message m € G or L.
Output: (z,e,9) € G x G x G.

Fig. 2. The cryptosystem CS’ instantiated with a symmetric subgroup membership
problem SSM g,k H)-

Suppose that II is e-smooth, that I is €/-universal-2, that the sampling
algorithms for IT and IT are §'-close to uniform, and that the sampling algorithms
for the subgroup membership problems are d-close to uniform.

Suppose A = (A3, As) is a chosen ciphertext adversary against C'S’. We
shall use the following experiment to construct a distinguisher A’ for (G, K).
Again, note that M and M are sampled using the algorithms from the hash
proof systems.

Symmetric Subgroup Membership Problems 113

Experiment 4 .
Input: A= (A1, As), (G,K), II, I, xg € G.

f—M, f<— M.

. Sk — (G7L7L7f7f)'

pk — (G, W,L,L,p,p*(f),p*(f))-

. Initialise decryption oracle Dgy.

(mo,m1,s) — Aj(pk), giving Ay access to Dg.
b—{0,1}.

Yo — f(w0), €0 = Yomp, Yo — f(zo,e0).

. Initialise restricted decryption oracle D, .

© W N DU AW

b — Ax(pk,mo, ma, s, %o, €0, Yo), giving Ay access to DL,
. If b=10, output 1, otherwise output 0.

Ju—
o

Output: 0 or 1.

Note that Steps 1-3 do exactly as the key generation algorithm would do.

Let T” be the event that Experiment 4 outputs 1 when the input z¢ is in K.
Since Step 7 produces exactly the same result as the encryption algorithm when
the input zy € K, it is clear that the only difference between Experiment 4 and
a real attack is that xy has been sampled uniformly from K, and not via the
sampling algorithm for W. Since Experiment 4 outputs 1 when the adversary
wins, we have that

Adv§9h < [Pr[T"] —1/2| + &, (8)

since the sampling algorithm for W is §’-close to uniform.

Let T be the event that Experiment 4 outputs 1 when the input x(is in
G\ K. Tt is clear that from Experiment 4 we can derive an algorithm A’ for
distinguishing K from G \ K such that

IPr[T"] — Pr[T]| < Advo @5 (9)

To analyse the event T', we shall make a series of modifications to Experiment 4.
We number the modified experiments as 4’, 4", etc. Note that these modifications
need not be efficiently implementable.

First Modification. We change Step 1 so that f and f are sampled from the
uniform distribution, and not using the algorithms provided by the hash proof
systems.

Let T be the event that Experiment 4’ outputs 1 when the input zg is in
G\ K. Since the algorithms provided by the hash proof systems were ¢’-close to
uniform, we obviously have that

Pr[T] — Pr[Ty]| < 26" . (10)

114 Kristian Gjgsteen

Second Modification. We change the decryption oracles so that they refuse to
decrypt a ciphertext (z,e,) if z € K. Let T» be the event that Experiment 4"
outputs 1 when the input z¢ is in G \ K.

It is clear that this modification only affects the outcome if the adversary
produces a valid ciphertext (z/,¢’,9’) with x ¢ K, so |Pr[T2] — Pr[T1]| is upper-
bounded by the probability of this happening.

Since II is ¢-universal-2, we can show, using the same arguments as in (3],
that if A; and As make @ decryption queries in total, then

[Pr[Ty] — Pr[TY]] < Q€ . (11)
Third Modification. We change Step 7 to be

7.y — L', yo — f(x0), €0 — yormpy, Yo — f(xo,e0)-

Let T3 be the event that Experiment 4" outputs 1 when the input zg is in G\ K.
Since A; and A, cannot query the decryption oracle with ciphertexts (z, e, §)
where & € K, their only information about f is p*(f). Since IT is e-smooth, we

get that
[Pr[T5] — Pr[T3]| < €. (12)

Fourth Modification. We change Step 7 to be

7.4 — L\ L', yo — f(x0), €0 < yomuy', o — f(x0,e0)-

Let Ty be the event that Experiment 4" outputs 1 when the input z¢ is in G\ K.

It is quite clear that if 3’ had been sampled uniformly from L, then there
would be no information about m;, present in the ciphertext, and the probability
that Experiment 4" output 1 when the input 2y was in G \ K would be 1/2.
Since Experiment 4" samples from L\ L', we get that

2|1L|

PrT) —1/2l<

(13)
We need to bound |Pr[Ty] — Pr[T3|. To do this, we introduce another experi-
ment.

Experiment 5 .
Input: A = (A1, 42), (G,K), I, I,y € L.

Steps 1-6 are as in Experiment 4. R
7. g — G\ K, yo « f(w0), eo < yomuy', Jo < f(xo,€0)-
Steps 8-10 are as in Experiment 4.

Output: 0 or 1.

It is quite clear that we can repeat the two first modifications to Experiment 4
on Experiment 5, and the analysis remains the same. Let R’ be the event that
Experiment 5" outputs 1 when the input ¢’ is in L', and let R be the event that
Experiment 5" outputs 1 when the input ¢’ isin L\ L'.

Symmetric Subgroup Membership Problems 115

If the input y’ to Experiment 5” is in L, then it behaves exactly as Experi-
ment 4", Hence, Pr[R'] = Pr[T3].

If the input 3’ to Experiment 5” is in L \ L’, then it behaves exactly as
Experiment 4””. Hence, Pr[R] = Pr[Ty].

It is clear that we from Experiment 5 can derive an algorithm A” to distin-
guish L’ from L\ L', by sampling ¢ not uniformly from G \ K, but via the
subgroup membership problem’s algorithms, and that

Px[T3] — Pr[T3]| = |[Pr[R] — Pr[R]]| < Advi) +28' +6+ Qe . (14)

Summing Up. Combining (8)—(14), we have proved the following theorem.

Theorem 2. Let C'S’ be the cryptosystem described above, based on a subgroup
membership problem SM q k) and hash proof systems I and II. Let L be the
group associated to G by II, and let L' be the subgroup of L. Suppose that IT
is e-smooth, that II is € -universal-2, that the sampling algorithms for II and
II are §'-close to uniform, and that the sampling algorithms for the subgroup
membership problem are d-close to uniform. Then for any chosen ciphertext
adversary A against C'S’, we have that

AdvGe4 < AdvSO 4 AV B 458 46+ 2Q¢ + ¢ + 2|L| ,
where A’ and A" are algorithms that invoke each stage of A once, and Q is the
number of decryption queries made by A

It is clear that when instantiated with the hash proof systems described in
Sect. 4.1, then if the extended hash proof system is removed, the cryptosystem
C'S’ reduces to Diffie-Hellman in K, and the above proof is easily modified to
show that it is secure, as was claimed in Sect. 2.

Finally, we briefly discuss the performance of the scheme when instantiated
with the hash proof systems described in Sect. 4.1 (using a hash function instead
of a 1-1 function) and the symmetric subgroup membership problems discussed
in Sect. 2.

Two things should be noted. For encryption, three exponentiations in C'S’
are in K, while the fourth exponent has bit length equal to the length of the hash
value used. Second, when Z;, is used, K can be made very small compared to G.
It is not unreasonable that for a ¢ bit security level, log, | K| = 4t is sufficient.

The length of the hash should be 2¢. This means that the work required for
an exponentiation corresponds roughly to one exponentiation with exponent bit
length 14¢. For 80 bit security level this is 1120, and 1792 for 128 bit security
level. This compares well with the corresponding modulus lengths 1024 and 3096.

For decryption, slightly more than two exponentiations in G are required
(exactly two if GF(2n 4+ 1)* is used and |G| = n is known). If the order of K
is known to the private key holder, then roughly three exponentiations in K
are required, but since they are all to the same base, the actual cost is smaller,
say roughly equivalent to two exponentiations. For Z;,, this corresponds to one
exponentiation in G with exponent bit length 8t.

116 Kristian Gjgsteen

Of course, if Z is used and the factorisation of n is known to the private key
holder, Chinese remainder tricks are also available.

Compared to the instantiations of the Cramer-Shoup construction given in
[3], our two instantiations are significantly faster, except for the elliptic curve
variants of Cramer-Shoup. Asymptotically, they are faster than our variants, but
at 80 bit security level, our variants would seem to have an advantage, at least
for encryption.

5 Hybrid Encryption

When a key encapsulation method is all that is required, the Cramer-Shoup key
encapsulation method [4] using a subgroup of a finite field will be faster than
our two constructions in the previous section. However, recent advances in [7]
and [6] show that it is possible to construct secure hybrid encryption schemes
from key encapsulation methods that are by themselves not secure.

The basic idea is that an e-universal-2 hash proof system by itself will do,
when its output is split into two bit strings, where one is used as a key for a sym-
metric cryptosystem, and the other is used as a key to a message authentication
code.

We sketch a variant of this construction based on the symmetric subgroup
membership problem in Z}. We do not believe that it will be faster than other
instantiations, but we believe it is possible to construct a very fast cryptosystem
based only on the hardness of the subgroup membership problem, which is in
itself interesting.

The basic scheme requires five parts, a subgroup membership problem, a key
derivation function, a MAC, a symmetric encryption scheme, and a hash func-
tion. Note that there are information theoretically secure MACs and symmetric
encryption schemes.

The subgroup membership problem is based on Z, where n = (2ab+1)(2cd+
1) as described in Sect. 2. To simplify things, G shall be the subgroup of quadratic
residues. (It may be possible to use the subgroup with Jacobi symbol 1 instead.)
We are given a generator g for K, of order ac.

The key derivation function x : G — {0,1}"* x {0,1}!2 should return bit
strings indistinguishable from random when applied to group elements sampled
uniformly at random from certain subsets of G. Universal hashing techniques
should provide an information-theoretically secure key derivation function.

The interesting point, however, is the hash function. What we need is a hash
function h : G — Hom(G, G) that is target collision resistant, where we count
as a collision two homomorphisms that happen to be the same on any subgroup
of G (this is why we restrict to the quadratic residues, and why GF(2n + 1)*
cannot be used).

Note that Hom(G, G) ~ Zy(y,) /2. The hash function is simply h(x) = x, since
x € G can be represented by an integer in the set {1,...,n—1} (we will consider
the group elements to be integers when convenient). We claim that the advantage
of any collision finder against this hash function is less than AdvoSM@.r.m) |

Symmetric Subgroup Membership Problems 117

So suppose we have some algorithm that on input of G and g outputs distinct
x1, x2 such that h(zq) and h(xz) collide on some subgroup of G. We consider
all possibilities in turn.

If they collide on G itself, this means that 21 = x5 (mod abed), or that abed
divides x1 — x2. Let z be any element with Jacobi symbol —1. Then z*'~*2 must
be congruent to 1 modulo p and —1 modulo ¢, or vice versa. In other words,
1772 gives a factorisation of n.

If they collide on K or H, but not both, then ac or bd divides x1 —x2, but not
both. This may not lead to a factorisation of n, but it is clear that any multiple
of ac = |K| or bd = |H| can be used to distinguish K or H.

If they collide modulo a, but not modulo ¢, or vice versa, we use the subgroup
membership problems sampling algorithm to get an element z € K. Unless we
by chance have already got a factorisation of n, 21 ~*2 will give us one. Likewise,
for b and d.

This proves the claim. (Note that we prove collision resistance, which is
stronger than target collision resistance.)

The key generation algorithm takes as input G and g. It samples ko, k1
uniformly at random from {1,...,[n/4]}. The public key is (G,g,so,$1) =
(g*, g*1), the private key is (G, ko, k1)-

The encryption algorithm takes the public key as input, as well as a message
encoded as a bit string. It samples w uniformly at random from {1,...,N}

(where N is sufficiently much larger than |K|). It computes x = g%, =’ =
S(Q)wsf"Uh(w)

z

. Then it applies the key derivation function to z’ to get encryption
and MAC keys. It uses the encryption key to encrypt the message into ciphertext
e and the MAC key to compute a tag ¢ for e. The ciphertext is (z, e, t).

The decryption algorithm computes z2(kotn(@)k1) and applies the key deriva-
tion function to the result. It checks the tag ¢ with the derived MAC key, and if
it is correct, decrypts the ciphertext e with the encryption key and outputs the
result.

Key Generation Encryption Decryption
Input: G C Z,,,g € G. Input: pk, m € G. Input: sk, (z,e,t).
1. (ko, k1) < 1. w {0 LK =1} 1. 2! — g?Roth@k)
{0,...,|n/4] }2 2. x— 2. (k1,k2) «— kdf(z').
2. (s0,51) < (g™, g"). 3. ' — 58“’52“}“@ 3. t' — T (k2,e).
3. Select kdf. 4. (K1, K2) «— kdf (z'). 4. Ift #t', output L.
4. pk — (G, g, s0,s1,kdf). 5. e+ E(k1,m). 5. m « D(k1,e).
5. sk — (G, ko, k1, kdf). 6. t«— T (ke,e). 6. Output m.
Output: (pk, sk). Output: (z,e,t). Output: A message m or L.

Fig. 3. The hybrid cryptosystem using a symmetric cryptosystem (£,D) and MAC
algorithm 7.

118 Kristian Gjgsteen

The security analysis for this scheme should be essentially the same as in [6],
which is very similar to the proof in Sect. 4. Note that the extra squaring makes
the cryptosystem benignly malleable, in the sense that (x,e,t) and (—=z,e,t)
both decrypt to the same message. This is not a security problem.

Compared to the scheme described in Sect. 4, the encryption cost measured
in total exponent length is 8¢ + logy n. For 80 bit security level, this is roughly
1664, and 4120 for 128 bit security level. The decryption cost is roughly 480
and 768, respectively. The advantage is that we only depend on the subgroup
membership problem.

6 Concluding Remarks

We have defined and discussed symmetric subgroup membership problems. The
main result of the theoretic discussion is a relation between the Decision Diffie-
Hellman problem and the symmetric subgroup membership problem.

Then we have designed and analysed a chosen ciphertext secure public key
cryptosystem based on a symmetric subgroup membership problem, by extend-
ing the framework of Cramer and Shoup. The resulting scheme is quite efficient
compared to other instances of the Cramer-Shoup framework, although it re-
quires a new hardness assumption.

Finally, we have sketched how to design a hybrid cryptosystem with chosen
ciphertext security based only on a symmetric subgroup membership problem.
In the immediate aftermath of CRYPTO’04, not relying on a target collision
resistant hash function seems to be a conservative move. The full security proof
for this cryptosystem will appear at a later time.

References

1. D. Boneh. The Decision Diffie-Hellman problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, volume 1423 of LNCS, pages 48—63. Springer-
Verlag, 1998.

2. Ronald Cramer and Victor Shoup. A practical public key cryptosystem secure
against adaptive chosen cipher text attacks. In Hugo Krawczyk, editor, Proceedings
of CRYPTO 98, volume 1462 of LNCS, pages 13-25. Springer-Verlag, 1998.

3. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, Proceedings of EUROCRYPT 2002, volume 2332 of LNCS, pages 45—64.
Springer-Verlag, 2002.

4. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167-226, 2003.

5. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644-654, 1976.

6. Rosario Gennaro and Victor Shoup. A note on an encryption scheme of Kurosawa
and Desmedt. Cryptology ePrint Archive, Report 2004/194, 2004.
http://eprint.iacr.org/.

10.

11.

Symmetric Subgroup Membership Problems 119

K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In Matt Franklin, editor, Proceedings of CRYPTO 2004, volume 3152 of LNCS.
Springer-Verlag, 2004.

W. Mao. Fast Monte-Carlo primality evidence shown in the dark. Technical Report
HPL-1999-30R1, HP Laboratories, October 1999.

Juan Manuel Gonzélez Nieto, Colin Boyd, and Ed Dawson. A public key cryp-
tosystem based on the subgroup membership problem. In S. Quing, T. Okamoto,
and J. Zhou, editors, Proceedings of ICICS 2001, volume 2229 of LNCS, pages
352-363. Springer-Verlag, 2001.

C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Joan Feigenbaum, editor, Proceedings of CRYPTO
’91, volume 576 of LNCS, pages 433-444. Springer-Verlag, 1992.

Akihiro Yamamura and Taiichi Saito. Private information retrieval based on the
subgroup membership problem. In V. Varadharajan and Y. Mu, editors, Pro-
ceedings of ACISP 2001, volume 2119 of LNCS, pages 206-220. Springer-Verlag,
2001.

Optimizing Robustness
While Generating Shared Secret Safe Primes

Emil Ong and John Kubiatowicz

University of California, Berkeley

Abstract. We develop a method for generating shared, secret, safe
primes applicable to use in threshold RSA signature schemes such as
the one developed by Shoup. We would like a scheme usable in practical
settings, so our protocol is robust and efficient in asynchronous, hostile
environments. We show that the techniques used for robustness need spe-
cial care when they must be efficient. Specifically, we show optimizations
that minimize the number and size of the proofs of knowledge used. We
also develop optimizations based on computer arithmetic algorithms, in
particular, precomputation and Montgomery modular multiplication.

Keywords: Distributed key generation, safe primes, threshold RSA sig-
natures.

1 Introduction

Shoup’s scheme [1] for threshold RSA signatures was a great leap forward in
making threshold signature schemes practical. Its ability to avoid interaction
while signing makes the scheme efficient and easy to implement. Unfortunately,
Shoup’s scheme required the use of a safe prime product modulus for its proof
of correctness. Moreover, the scheme assumes a trusted dealer to create and
distribute this modulus and the private key shares. Since the development of
Shoup’s scheme, several works ([2-4]) have been published to try to eliminate the
single dealer, but none have shown the costs associated with a robust solution.

In this paper, we show the cost required for a robust implementation of a
distributed safe prime generation scheme. We follow the basic form of the al-
gorithm in [2], but we also show that the changes necessary for robustness are
non-trivial if we want efficiency. We develop several techniques for reducing the
number of proofs of knowledge while maintaining security. Our methods are
based on computer arithmetic, number theory, and simple protocol analysis to
reduce redundancy.

1.1 Algorithm Overview

Before diving into the details of our safe prime generation algorithm, we will give
a high-level overview. Our approach to prime finding is very familiar: effectively
we generate candidate numbers and test them until we find a safe prime. First
we use the usual techniques for improving our search — we make sure that our

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 120-137, 2005.
© International Association for Cryptologic Research 2005

Optimizing Robustness While Generating Shared Secret Safe Primes 121

1. Find a candidate number ¢ which has no small prime factors and has the property
¢ =3 mod 4.

2. If the number 2 is a Miller-Rabin witness to the compositeness of ¢ or
to step 1.

3. Run the Miller-Rabin test repeatedly on ¢ with random inputs a sufficient number
of times to ensure primality with a small error probability.

$—1

5, return

Fig. 1. Algorithm Overview.

candidate prime is not composed of small prime factors. However instead of doing
trial division, we produce our candidate in a constructive way following the lead
of Malkin, Wu, and Boneh [5]. We modify their algorithm however by making
it robust through contributing several zero-knowledge proofs. This method is
detailed in Section 3.

After finding such a candidate, we then proceed to do more rigorous tests.
Specifically, we follow the techniques outlined by Cramer and Shoup in [6]. The
procedure recommended in that work involves two specialized Miller-Rabin tests
followed by a generic Miller-Rabin test of compositeness. To do Miller-Rabin
compositeness tests, we have to perform modular exponentiation. In our case the
modulus is secret, a fact which is the main source of difficulty in our algorithm.
Sections 4.1 and 4.2 are dedicated to optimizing the performance of this type
of modular exponentiation. Specifically, we generalized the modular exponenti-
ation method given in [2] and provided a new modular multiplication algorithm
based on Montgomery multiplication. The high-level algorithm is summarized
in Figure 1.

1.2 Application: RSA Signatures

After successfully generating two shared, safe primes with this algorithm, the
players can simply multiply their shares of these primes together and reveal
the result. The factorization of the composite number is not revealed because
the VSS and multiplication schemes conceal. At this point, the players have
all generated a public RSA modulus for which no player knows the factors.
Moreover, the players can compute secret shares of the Euler totient function of
the modulus. This fact allows them to use the algorithm of Catalano et al. [7]
to compute secret shares of an RSA private key. These key shares are then
immediately usable for Shoup’s RSA signature scheme [1].

1.3 Related Work

Shoup’s proof of correctness required the use of safe primes in the RSA modulus
(i.e. n = pq where p, ¢ are primes of the form p = 2p’ + 1,9 = 2¢' + 1 with p’, ¢
also being primes). [3, 4] noted that this requirement is a bit strong and replaced
it with assumptions relating to the computational difficulty of certain operations
in RSA groups. Safe primes meet and exceed the requirements set by [3,4] and
these works both showed RSA moduli with lesser constraints are suitable for
Shoup’s scheme. The assumptions made are non-standard, but reasonable.

122 Emil Ong and John Kubiatowicz

Works by Boneh et al. [8, 5] developed ways to generate and verify RSA moduli
and inverses, but do not necessarily produce primes suitable to Shoup’s thresh-
old scheme. Moreover, these schemes are secure only in the honest-but-curious
setting. An optimization in [5], called distributed sieving, however is very useful
and we will develop a robust version in section 3.

Frankel, MacKenzie, and Yung [9] developed a robust method for RSA key
generation, but also do not produce safe prime product moduli. Many of their
techniques will be very useful in our protocol, however.

Algesheimer, Camenish, and Shoup [2] were the first to suggest an algorithm
for distributively generating safe primes and we follow their exposition closely.
Our work expands on their algorithm by making it robust and optimizing within
this robust framework.

1.4 Contributions

Our contributions to this field are three-fold:

— We provide a robust version of the Malkin, Wu, and Boneh [5] distributed
sieving algorithm,

— We improve the Miller-Rabin algorithm of Algesheimer, Camenish, and Shoup
[2] by (1) generalizing the modular exponentiation method and (2) introducing
Montgomery multiplication into a distributed computational framework for
faster modular arithmetic.

2 Preliminaries: Model and Commitments

We deal with two preliminaries before proceeding to our algorithm, the compu-
tational and network models and the commitment and verified secret sharing
schemes we use.

2.1 Model

We assume an asynchronous network only offering point-to-point messages. We
view the network as an adversary that can choose to drop or delay the messages
sent between two parties. The protocols we use require authenticated messages
however, so we will assume that there exists some way of ensuring the integrity
of messages which are delivered. We rely on the work of Goldwasser and Lindell
[10] which provides a broadcast protocol which is simpler than full, authenticated
Byzantine agreement, but is sufficient for both serial and parallel composition
of secure computation.

For the secrecy and binding of our commitment and secret sharing protocols,
we rely on the assumption that computing discrete logarithms is difficult. We
will build our protocols to be secure in the random oracle model since we intend
them to be used for Shoup’s RSA signature scheme [1], which uses a random
oracle for non-interactivity. This assumption can be removed by reintroducing
additional interactivity, though at significant cost, as usual.

Optimizing Robustness While Generating Shared Secret Safe Primes 123

In describing these multiparty protocols, we will borrow the notation of [2]
for secret sharing. We assume familiarity with both additive and polynomial
secret sharing (also known as Shamir secret sharing [11]). Our algorithms will
only involve polynomial secret sharing and we shall denote player j’s polynomial
share of a as [a]? € Zy. In general, we will use these notations to show the format
of the input and output values of our multiparty protocols, but refer to the shared
value directly in the body of the protocol for clarity.

2.2 Commitments

We will need a commitment scheme where the properties of the integers hold
because we may need to deal with negative numbers to prove relative primality.
We will also need a verifiable secret sharing scheme that works using integer
commitments. This property will give us the ability to prove statements about
the numbers we share. These two primitives are the basis for robustness in our
algorithm.

We will use a scheme discussed in [7] which uses a prime finite field of very
large order and relies on the discrete logarithm problem. In truth, these are not
commitments over the integers, but the finite field on which they are defined is
large enough that relations we are trying to prove also hold in these fields. We
prefer this technique over that of [12] in our case. A more complete explanation
of the differences is available in the extended version of this paper®.

Setup. The prime number that we use needs to be larger than any term we will
use in our commitments and computations. Since our goal is to create an RSA
modulus by multiplying shared primes, the players can agree to a specific RSA
key size a priori and this size will determine the maximum size of our committed
numbers. For example, if we are trying to generate a key of size 1024, we can set
the bound for candidate safe prime numbers at B = 2°'2,

There are two computations for which we need to be careful: those involved
in verifiable secret sharing (VSS) and the proofs of k-roughness. For VSS, if
we create a t-out-of-n sharing using a method similar to Pedersen’s VSS [13],
then we are creating a random polynomial of degree ¢t which will be evaluated
at the integers {1,2,...,n}. In order to make Lagrange interpolation calculations
remain in the integers, we will need to multiply our secret by n! and choose the
coefficients of this polynomial to be bound by +Bn!. As a consequence, no shared
point on the polynomial should exceed 2Btn‘n!. We choose prime p > 2Btn'n!
and work over the field GF(p). [7] contains a VSS protocol in which obeying this
bound is a requirement for secret share verification. This protocol is the one we
will use to share secrets.

We will give a brief discussion here of k-roughness proofs in order to de-
velop our commitment scheme with full details to follow in Section 3.1. We say
that a number a is k-rough if it has no small prime factors less than k. Let
My =", pi, where p; is the it" prime. The proof that a number is py;-rough
involves showing that a is relatively prime to M. Specifically, we will compute

! Visit http://oceanstore.cs.berkeley.edu for the extended version.

124 Emil Ong and John Kubiatowicz

Setup
INPUT: A bound B on the size of prime candidates, a number b such that M, =
[l;<;, i < B, and a bound §3 for the prime p (usually either 3 = 2Btn'n! or 3 = 2BMy).

1. Perform three (-bit joint coin-flipping protocols in parallel. Call the results z, y,
and z.

2. Let p be the smallest prime greater than z.

3. Let g=9y mod p and h =z mod p.

Making commitments
To make a commitment to x € Zp, a party chooses 7, €r Z;, and the commitment is
g“h"™ mod p.

Fig. 2. The integer commitment scheme.

and commit to x and y such that ax + My = 1. We need to make sure that
our commitment scheme is sufficient to contain ax and My, both of which are
bounded by BM,. Since we will never use ax or My in conjunction with VSS
however, we can set the bounds for the prime field in our commitment scheme
to be p > 2B max(M,, tn'n!).

Usually, the M, term will dominate the tn'n! term, unless there are a large
number of players. Because of the way that we create the prime candidates, we
must choose b such that M, < B to ensure that the candidates are not too
large. Choosing a large b means that we will be more likely to find a safe prime
quickly, but increases our commitment size. However, if the number of players
in our generation scheme is large, we can use a large b without this difficulty
because of the tn’n! term. As an example, suppose we are trying to generate a
1024-bit RSA key with factors of size 512-bits. Thus B = 2°'2. We can choose
b = 71, which makes the bit size of M} be |My|a = 475. Suppose t = 5 and
n = 11. Then |tnn!)|s = 45. In this case p must be greater than 2% since
475 > 45.

As an optimization, after we prove the k-roughness of a number a, we can use
the secret share conversion methods of [2] to reshare a over a prime field of size
p with 2Btn'n! < p < 2BM,. This step will reduce the size of messages for the
more communication intensive modular multiplication protocol.

A summary of the commitment scheme is given in Figure 2.

3 Distributed Sieving

In this section, we show how to generate safe prime candidates in a robust way.
We begin with a technique by Malkin, Wu, and Boneh [5] called distributed siev-
ing which aims to improve the efficiency of distributed random prime generation.
Specifically, the technique constructively produces numbers without small prime
factors, rough numbers. Using such numbers is a common approach in classical
prime number generation. The technique described in [2] to find rough numbers
is distributed trial division on random candidates. Unfortunately this approach
is probabilistic and may take many iterations. Distributed sieving requires only

Optimizing Robustness While Generating Shared Secret Safe Primes 125

INPUT: A bound, B, for generated prime candidates. Let M, = [[,.,pi < B be a
product of the first b primes.
OuTpPUT: A number a + rM, relatively prime to Mp.

1. Each server sieves to find a random integer a; relatively prime to M. In other words,
each server finds a random integer with no prime factors smaller than p,. The a;
are multiplicative shares of a (i.e. a =[] a;). Note that a also has no prime
factors less than py.

2. The servers produce an additive sharing of a such that each server has a share b;
witha=3%,_, , bi.

3. The servers choose a random number r; €r [0..%}, then locally compute b; +1; M.
At this point, each server has an additive share of a + rM, (where r = Ez‘:L.n ;)
which is also relatively prime to Mj.

i=1l..n

Fig. 3. Malkin, Wu, and Boneh Distributed Sieving in the Honest-but-Curious Model.

a small constant number of multiparty computations. The algorithm of Malkin,
Wu, and Boneh is listed in Figure 3.

The empirical experiments of [5] showed a factor of 10 improvement in the
speed of prime generation using this method. However this protocol is secure
only in the honest-but-curious model. Specifically, there is no check that the
multiplicative shares a; are being produced correctly. In other words, if even one
of the servers chooses a number with a prime factor less than or equal to py,
the protocol will never find a prime number as the sum a + r M, will always be
divisible by that prime. Moreover, unverified additive sharing is central in this
protocol and thus requires that a fixed threshold set of the servers be available
and honest throughout the protocol.

Thus we need a way to prove and verify that each a; is relatively prime to M,
using a non-interactive zero-knowledge argument (assuming the random oracle
model?). After these proofs, we will create a verifiable polynomial sharing of a
(resistant to failing or malicious servers) that allows easy computation of a+rM,
and with comparable efficiency to the scheme used in [5].

3.1 Proving a Number is k-Rough

In order for distributed sieving to work correctly, each player needs to produce
a number which is relatively prime to M, (equivalently, we say that the number
is pp1-rough or has no prime factors less than pyyq, where p; is the i*® prime
number). The protocol of [5] assumes honesty on the part of the players, but
this assumption may not always be acceptable.

Using the properties of integer commitment and the multiplication proof pro-
tocol of [12], we can prove that a number is relatively prime to M. Note that
showing relatively primality of a and M, is equivalent to showing that there
exist integers x,y such that ax + My = 1. Since we are actually working in a
finite field however, we also need to make sure that none of a, z, or y is 0 since a

2 Shoup’s RSA signature scheme already invokes the random oracle model, so we lose
no security in making this assumption.

126 Emil Ong and John Kubiatowicz

Step Bits

Find integers z;,y; such that a;x; + Mpy; = 1 holds using the extended|—
Euclidean algorithm.

Prove that x; # 0, y; # 0, and a; # 0. 33|p|2

Produce g h™i, g"*h"i, g¥ h"vi, and g**®*h"*i*i integer commitments|4|p|2
to as, xs, yi, and a;x;, respectively.

Show the multiplicative relationship between the commitments of a;, x;|8|p|2
and a;x;.

Prove a;xi+ Myy; to be 1 by showing knowledge of the discrete logarithm|2|p|2
logng™" (" ¥ h"ei=i) (g¥ A" vi)Mo

Total 47|p|2

Fig. 4. Proof that a; is pyii1-rough. Sizes given are for the random oracle, non-
interactive proof versions. See the extended version of this paper for more information.

dishonest prover could make y = M;l mod p and x = 0 to prove axz + My =1
while making a of any form the prover desires. A protocol for this proof is given
in the extended version of the paper. Thus each player distributing an a; proves
its pp-roughness by the protocol in Figure 4. If we invoke the random oracle
model, we can do all of these proofs without interaction.

Although the integer commitments that we are using are homomorphic and
are the basis of our VSS scheme, we will not use the commitment of a; directly in
the sharing. Recall that because we want to make Lagrange interpolation easier,
we multiply the secret in our VSS scheme by n!. Thus, we commit to a; and prove
the properties we need, then share n!a; and prove the multiplicative relationship
between the two commitments. As mentioned in Section 2.2, the commitment
scheme we use for this proof may be larger than the one we need for the rest of
the computations. We may choose to reshare a + rM; over a smaller finite field
after its computation.

At this point, each player should also prove that 2a; 4+ 1 is relatively prime to
M, as well. This fact will assure us that 2(a + rM;) + 1 is also py11-rough — a
helpful optimization when we later test for safe primality. Each proof of relative
primality requires a message of size 47|p|y in addition to the commitment of
a;, so each player will need to send messages of size 95|p|s for each a;. If we
consider the example from Section 2.2 where |plos = 988, the message size is
95|p|e ~ 11732 bytes ~ 11kB.

3.2 Computing the Primality Candidate

The previous section showed how to produce a polynomial secret sharing of
pp4+1-rough number a;. Now we need to multiply the a; together to produce
a. Note of course that we do not need all the a; of the previous section to
create a ppyi1-rough number for primality testing — any subset of {a;} will do.

Optimizing Robustness While Generating Shared Secret Safe Primes 127

This fact is convenient if one of the players was malicious or unavailable in the
previous sharing round. The classic technique for multiplying a number shared
polynomially was shown in [14]. This method simply multiplies two polynomial
shares together, rerandomizes the new (double degree) polynomial, then reduces
the degree of the polynomial through a linear transformation. We will need to do
this step once for each remaining good player. This multiplication requires the
same amount of communication as the multiplication scheme in [5], but produces
a polynomial (instead of additive) sharing of a at the conclusion.

Finally, each player chooses a random number r; € [0.. —] The players all
share and commit to these numbers, then each player multlphes their share by
M, and adds the result to their share of a. This arithmetic is all done non-
interactively. Now each player has a polynomial share of a + rM;. Note that
each player should prove that their r; is within the range [0..]5] so that the
final prime is of the approprlate size. To this end, will use Mao’s proof of bit
length [15]. This proof requires - (6|p\2 + 1) bits in the non-interactive form.

3.3 Ensuring a + M, =3 mod 4

We would like to use an algorithm from [2] for safe primality testing, however this
algorithm makes one additional requirement on a 4 rMj;: it must be congruent
to 3 mod 4. Going back to the distribution of the a;, each player needs to
produce a claim and a proof of each a; mod 4 in addition to the proofs of
relative primality of a; and Mj. The proofs for a; mod 4 ensure that no player
can force a + rM, # 3 mod 4, thus avoiding progress in the safe primality
generation. A full description of this technique is given in the extended paper.

A similar procedure must be performed for the r;. Then all the players can
compute a+rM, mod 4 and if a+7rM, = 3 mod 4, they do nothing, otherwise
they add 2 to their share of a + rM,.

Notice that the proof of congruence mod 4 serves another purpose: it proves
that the length of a; is correct. Thus although the proof seems expensive, it is
actually necessary and dual use.

3.4 Communication Efficiency

We now summarize the efficiency of the robust distributed sieving protocol.
Specifically we address the size of all the messages sent by a single player. The
proofs necessary for each players a; are the roughness proofs (95|p|2 bits), the
bit length proof of r; (1\%(6@‘2 + 1) bits), the claims of congruence mod 4

((|Bl2(Ipl2 + 1) — 9pl2) + (4|p|2 + Mib(ﬁ|p\2 + 1) + 2) bits), and the proofs of
equivalence of the commitment of a; to the VSS commitment of a;n! (2|p|2).
Using the example numbers from Section 2.2 (B = 2°'2 and p > 2%88), we see
that the proof size is approximately 418267 bytes or about 408kB. These proofs
must be broadcast.

We also have to share a; and r; using VSS. Sharing two values requires us to
broadcast 2t[p| bits to all players. We can reasonably assume® that there is a

3 Practical Byzantine broadcast schemes can use secure hashes of the message to verify
correct transmission.

128 Emil Ong and John Kubiatowicz

small constant ¢ such that n(2t|p|a + ¢) is cost of this broadcast to n players.
The remaining messages® are point-to-point and total 2 - 2n|p|s bits. Assuming
the player and threshold numbers from Section 2.2 (¢t = 5 and n = 11) along
with ¢ = 1kB, we see that each player will broadcast about 24.3kB and send
about 5.3kB in point-to-point messages. Broadcasting the proofs above costs
approximately 4.3MB and dominates the communication costs. This number is
large, but as we will see in Section 4.3, we can amortize the cost with a reuse
trick.

We also have to multiply the a; together. Recall from [14] that the communi-
cation required for multiplication is simply a secret sharing with a polynomial
of order 2¢t. We need n such random polynomials. The broadcast cost for these
larger polynomials is again 24.3kB, but we only need 2.7kB in point-to-point
messages.

In terms of round efficiency, we have only two concerns: the secret sharing of
a; and r; and the multiplication of the a;. Thus the number of communication
rounds that we use is 2 + n. Section 4.3 also shows how to parallelized this
procedure to use only 1 round of multi-secret VSS.

3.5 Application in Safe Prime Finding

We performed a simulation of this algorithm to get an empirical estimate on the
number of iterations required to find a safe prime. When we constructed 4858
1024-bit prime candidates of the form a + rMjsg, we found that the median
number of iterations between finding safe primes is approximately 45,000 and
the mean is approximately 63,000. When using purely random numbers, we
found that the mean number of iterations was about 436,000 and the median
was 275,000. Safe primes are unfortunately less dense than unrestricted primes,
but distributed sieving seems to be a great help in finding them. Based on our
experiment, sieving requires only about 15% of the time required by random
searching.

4 Optimizing the Distributed Miller-Rabin Test

In this section, we describe the distributed Miller-Rabin test we will use to
check for safe primes. We also give two improvements which improve on the
performance of the test, namely optimization of modular exponentiation and
multiplication.

The algorithm for our distributed Miller-Rabin test is given in Figure 5. On
the whole, the test is not significantly different than the version given in [2],
so we will not discuss it thoroughly. The main differences between our version
and the original is our preparation for the modular exponentiation step. Instead
of converting from additive shares of the candidate to polynomial shares of the
bits, we convert from polynomial shares of the candidate to polynomial shares

4 We ignore the size of complaint messages, which are relatively small.

Optimizing Robustness While Generating Shared Secret Safe Primes 129

INPUT: Shares of the prime candidate ¢.

1. Locally compute e = % (recall that since ¢ = 3 mod 4, we can do the division
correctly in the finite field).

2. Compute shares of the base-n representation of e, [e™]7, [e™]¥, -, [e"~1]2.

Precompute the values needed for modular exponentiation and multiplication.

4. Repeat the following step m times (in parallel):

(2) Choose [r]? €x {0,1}2 and set [g]? = MOD([r}Z, [617, [4]%)
(b) Compute g° mod ¢
(c) If g° mod g ¢ {—1,1} (using the SETMEM algorithm of [2]), output failure.

5. Output success.

@

Fig. 5. Distributed Miller-Rabin Algorithm.

oot (9], [, (1
Ourrur: [g° mod ¢.
1. Reshare the bits of e as (31, ..., Bn where (3, is the most significant bit.
2.c=(g—1)*Bn+1
3. For i =n — 1 downto 1, Do
(@) d=(g—1)*Bi+1
(b) ¢=((¢* mod ¢)*d) mod ¢
4. Output c.

Fig. 6. Algesheimer et al. Modular Exponentiation.

of the base-n representation. We also do precomputations of the values needed
for the modular exponentiation and multiplication procedures. In the next few
sections, we describe our optimizations to algorithms used by the Miller-Rabin
test.

4.1 Optimizing Modular Exponentiation

The modular exponentiation method of [2], shown in Figure 6, uses the familiar
square-and-multiply technique with a clever trick to decide when to square and
when to multiply. Suppose that (i,..., 3, are the bits of the exponent e and
are shared polynomially among the players (the details of how to perform this
sharing are given in Section 5.4). The algorithm uses the observation that g% =
(g — 1) % B; — 1 to decide when to square and when to multiply.

We generalize this algorithm to improve the running time by a constant factor.
Suppose we think of step 3a as a lookup instead of a algebraic manipulation —
when f; is 0, we assign d the value 1 and when (3; is 1, we assign d the value g.
Thus the modular exponentiation procedure is based on (albeit very immediate)
precomputations of the values 1 and g which are referenced based on the value of
(i We can extend this idea of a precomputed lookup table. Suppose that instead
of a shared binary representation of e, we have a shared base-n representation

130 Emil Ong and John Kubiatowicz

INpUT: [g]7, [€]F, [¢]5-

J’ J

InpuT: [s]¥ and [¢° mod 35, OutpUT: [¢° mod ¢]§
[g" mod ¢}, ---,[g" " mod g]]. 1. Reshare e in base-n: ("), ... e(7w-1)
Output: [g" mod 4. where e("<=1) is the most significant
1. In parallel: digit.
For i =0ton— 1, Do 2. ¢c= LOOKUP(e("“’*”)
o =1—||k —1i| 3. For ¢ = w — 2 downto 0, Do

2. In parallel:
Fori=0ton—1, Do
pi=0i*(g° mod ¢)

(a) d =LOOKUP(e("))
(b) ¢=((¢" mod ¢) *d) mod ¢

3. Locally compute 3>, , ; pi- 4. Output c.
Fig. 7. Lookup. Fig. 8. Revised Modular Exponentiation.
and we precompute the values ¢° mod ¢,¢' mod q,---,¢"7" ! mod ¢. Then we

can use the algorithm in Figure 7 to perform a lookup of these values.
Note that in this algorithm, we use a “normalization” procedure defined simply

as: 0 ifx=0,
|z = .
1 otherwise

The implementation of this procedure is given later in Section 5.1.

With this lookup procedure, we can now rewrite the modular exponentiation
algorithm of Algesheimer et al. to use generic lookups. The revised algorithm
is shown in Figure 8. (The technique for resharing a secret in a different base
is given in Section 5.4.) Clearly, this approach uses a smaller number of outer
loops, but there is still one concern in step 3b. Specifically, this step requires
exponentiating by 1 in Z, and would appear at first glance to remove the ad-
vantage of the reduced outer loop. There are however two reasons that this step
saves time. First, we are exponentiating by a known, public constant. Thus no
extra lookups are necessary in this step. Second, we still only have to perform
w lookups and multiplications by d. Overall we have reduced the number of
modular multiplications from 2|e|s to |e]a + w.

Our generic lookup procedure is clearly more expensive than the special case
used in [2]. Specifically, it requires 1 normalizations. However, we use it only
w times during the loop. Moreover, the normalization protocol of Section 5.1 is
simpler than modular multiplication, though it requires larger message sizes.

4.2 Optimizing Modular Multiplication

We present an alternative algorithm for modular multiplication which is based
on the Montgomery method [16]. In [17], Bajard et al. modified Montgomery
multiplication to work by manipulating representations in two different residue
number systems (RNS’s). We use a highly specialized case of this technique
in which the two RNS’s are simply prime finite fields. Although this approach
requires us to do some pre- and post-computations, we are able to parallelize
slightly more than with the algorithm of [2] and we also avoid some additional
zero-knowledge proofs in the robust case. The algorithm is listed in Figure 9.

Optimizing Robustness While Generating Shared Secret Safe Primes 131

Let p be the prime associated with our VSS scheme. Let p’ be the smallest prime
greater than p.
InpuT: [A]Y, [B]Y, and [¢]7.

OuTpuT: [ABp~" mod ¢,

Precomputation

1. Reshare A, B, and ¢ over Z,.
2. Compute shares of ¢~ mod p and ¢~ mod p'.

Multiplication

Compute —A * B mod p and A x B mod p’ simultaneously.
Compute ¢ = (—A * B mod p) * (¢~ mod p).

Convert ¢ to a sharing over p’.

Compute g * ¢ mod p’.

Locally compute 7 = (A * B mod p’) + (g * ¢ mod p') * (p~
Convert r to shares over p.

! mod p).

O T WY =

Fig. 9. Modular Multiplication.

Most of the operations performed during the multiplication are familiar: they
are modular multiplication and addition in the same field as our shared secrets.
These steps are performed relatively quickly. The conversion steps 3 and 6 are
new. To convert a sharing over Z, to a sharing over Z,/, we use the method of [2]
which entails converting the polynomial sharing over Z, to an additive sharing
over Z,, converting that sharing to an additive sharing over the integers, con-
verting that sharing to an additive sharing over Z,, and finally converting that
additive sharing to a polynomial sharing over Z,. This approach is complicated
and expensive, but the best way known.

In comparing the algorithm here to the one in [2], we notice that the lat-
ter has a much simpler form. Specifically, the algorithm of Algesheimer et al.
simply multiplies in the finite field, then takes the remainder of the product
mod ¢. The complexity of the algorithm is in the remainder functionality. Tak-
ing a remainder requires two multiplications, a subtraction, and two truncation
operations. The truncations involve converting a polynomial sharing mod p to
an additive sharing over the integers, shifting the additive shares right by some
number of bits, then resharing the shifted shares as polynomial shares mod p.
Our algorithm has the same number of multiplication and addition rounds, but
we avoid this additional bit shifting. In the honest-but-curious model, the bit
shifting is a local operation, so at first it may seem cheap. However since we are
in the robust setting, each player must produce a proof of correctness of their
truncated share, so we do end up saving some processing time®.

Moreover, more of the multiplications in this algorithm are grouped together,
rather than being split by conversions as in the [2] algorithm. As mentioned

5 We are not able to avoid truncation proofs entirely — truncation is necessary for the
algorithm to convert from additive shares over a finite field to additive shares over
the integers [2]. We provide an interactive proof for truncation correctness in the
extended paper.

132 Emil Ong and John Kubiatowicz

in [14], we can multiply polynomial shares together several times before reran-
domizing so long as the degree of the polynomial does not exceed the number
of players. The closeness of the multiplications makes this optimization feasible
here, but not in [2].

Note that we are doing Montgomery multiplication in this algorithm; the
output is actually (ABp~! mod ¢), the Montgomery product. When we do ex-
ponentiation, we will work with Montgomery products and then at the end, we
will convert this product by removing the p=! factor [18]. This step requires
one additional Montgomery multiplication at the beginning and the end of the
exponentiation.

4.3 Parallel Optimizations

There are (at least) two parallelization tricks that we can employ to improve the
speed of our algorithm. The most obvious trick is to generate and test several
k-rough candidates simultaneously. Unfortunately, the message sizes required for
robustness in the distribute sieving algorithm can grow to be quite large when
trying to generate safe primes suitable for RSA.

Thus we suggest that each player can generate and share some small number
of k-rough components (i.e. the a;). The proofs will be large initially, but once
the players have shared these numbers, they can recombine them in different
ways to produce new candidates. Specifically, let the number of players be [and
have each player share m different k-rough numbers. Then if we require that
each player gets to contribute one component rough number to each primality
candidate, then there are [different combinations possible. Recombinations
can proceed in the usual lexigraphical order, for example. A more thorough
exploration of these and other parallel techniques is available in the full paper.

5 Multiparty Arithmetic Circuits

This section develops the multiparty circuits that we will need to convert a
polynomial secret sharing into a sharing of the same number in base-7. Proofs
of secrecy and correctness for the protocols in this section are straightforward
since they are the composition of secure protocols.

InpuT: [2]).
Ourput: [||z]|]5.

1. Generate p® shared secret pairs (ri,8:) € Zp X Zy

Compute in parallel for each pair u; = r; * (1 —r; * s;) and v; = s; % (1 — s; *x 1)
Reveal all the u; and v;

For every i such that u; = v; = 0, compute and reveal x — r;

Let s = s; where i is the smallest index such that © —r; = 0 or return to step 1 and
try again if no such i exists

6. Output ||z|]| =z * s

A

Fig. 10. Normalization based on Bar-Ilan and Beaver’s algorithm.

Optimizing Robustness While Generating Shared Secret Safe Primes 133

5.1 Normalization

Recall the normalization procedure we used previously in Section 4.1. Note that
the output from this procedure is a shared secret containing ||x||; ||z|| is neither
public nor revealed. We derive our algorithm for normalization from Bar-Ilan
and Beaver’s algorithm for “extended inverses” [19]. Their method computes
either the inverse z=! € Z, of an element x € Z, if z # 0 and 0 otherwise.
We compute this value as well, then multiply = by 2= or 0, respectively, to
obtain ||x||. The full procedure is given in Figure 10. Note that we optimistically
generate only p? shared secret pairs in step 1, a reduction from the suggested p*
of [19].

We usually expect we will need only one iteration of this algorithm to calculate
[|z||. During one iteration, we must generate and share 2p? random numbers,
do 4p? multiplications, and reveal between 2p? and 4p? numbers. While this
complexity may seem high at first, we are saved by the fact that p will quite
small in practice.

Notice that these multiplications and random number generations can be
batched in advance (as described in Section 4.3) and the addition and scalar
multiplications are local operations. All the revelations can be done in parallel.

We will consider the bandwidth required by one normalization. Suppose we
choose p = 37 (for reasons we will see in the next few sections). We will need
to share p? = 1369 random pairs and do 4p? + 1 = 5477 multiplications with
upto 4p? = 5476 revelations. The random pairs and multiplications are simply
VSS operations, which we can batch. Each random number we share requires
broadcasting t|p|s bits and sending 2n|p|y bits point-to-point. Batching makes
the broadcast costs much smaller (since in practice, confirmation messages are
secure hashes of the broadcast message), so we will generously assume there is
a 1kB per player overhead for this operation. Random secret sharing for multi-
plication requires a polynomial of degree 2¢, so broadcast costs are higher, but
point-to-point bits remain the same. For p = 37, |p|a = 6, so we arrive at a total
of 5477 - n - |p|2(2¢ + 2) + 1369 - n - [p|2(t + 2) + 1024n bits. If we again use the
example t = 5 and n = 11 from Section 2.2, we need to send about 608kB.

We also need to account for the revelations. Each revelation requires broad-
casting 2 numbers to all parties. We can batch these revelations, but we need
two steps instead of one because of a dependency in the normalization algo-
rithm. Each batch of revelations requires broadcasting (at most) 2 * 2p? = 5476
numbers. The total, with broadcast costs, is n(5476 * |p|2 + 1024) ~ 55kB for
the revelations. To summarize our example, each normalization requires sending
about 718kB over 3 rounds. This primitive is our most expensive.

INPUT: [2]% and a publicly known set S C Zj.
Ourrur: [0]f if x ¢ S and [1]¥ otherwise.

1. d= HSGS('I - 8)
2. Output 1 — ||d]]-

Fig. 11. Secret set membership protocol.

134 Emil Ong and John Kubiatowicz

5.2 Secret Set Membership

In this section, we describe an algorithm for “secret set membership.” Given
x € Zyp and S C Zy, this algorithm outputs a shared secret containing 1 if z € S
and a shared secret containing 0 otherwise. We denote this method as computing
x €7 S. Readers familiar with the SETMEM algorithm in [2] should notice that our
algorithm is much simpler than SETMEM. This reduction is possible because we do
not test whether a shared secret is congruent to a member of S modulo another
shared secret modulus p’ — we need only test congruence modulo p, which is
public. See Figure 11.

Computation of the product in step 1 requires |S| multiplications which we
must do in serial. Note of course that we can share all the rerandomizing polyno-
mials for this step in advance, so we only incur one round of secret sharing. The
secret set membership algorithm is dominated by the cost of the normalization
in step 2. See Section 5.1 for the complexity of that step.

5.3 Base-n Addition Circuit

Assume we have shared base-7 representations of two numbers x and y. We will
show how to add these numbers together via the normal “elementary school
algorithm.” While there are more advanced circuits to perform this addition,
we describe this simple addition to show the underlying mechanisms at play.
Smaller depth circuits may be possible using these mechanisms.

We draw inspiration from the classic binary-coded-decimal addition algorithm.
Since we can easily do arithmetic on shared secrets over fields a prime p > 2n,
this model makes sense. See Figure 12 for the full details.

We now give an example to illustrate the costs associated with the protocol.
Suppose we have 512-bit numbers z and y with n = 16. Then we may choose
p = 37 since two base-16 digits with carry can add to at most 31. All the additions
and subtractions are local operations, so we ignore them. Choosing the initial
carry bit in step 1 requires one degree t secret sharing and the multiplication in
step 2c requires us to do w = 128 degree 2t secret sharings.

INPUT:
— A radix n = 2" which is a power of 2 '
— Numbers z and y shared in base-n representation over Z,. Let x = Zf;ol)i
and y = Z:’:_Ol ymipt,
Assume without loss of generality that |z]2 = |y|e, V“I|2, and w = @
OuTPUT: Shares of (") for i =0,--+ ,w — 1, where z = z + .
1. Generate shared zero co = 0
2. Fori=0tow—1 Do
(a) 2(m) = (i) y(m> T
(b) ciyr =27 €2 {g,n+1,..,2n - 1}
(c) 2(mi) — H0n) o (p—n) * cip1

Fig. 12. Addition in base-n representation.

Optimizing Robustness While Generating Shared Secret Safe Primes 135

INPUT:

— A radix n = 2" which is a power of 2
— Polynomial shares of secret x.

Assume without loss of generality that 1/! |z|2 and and w = ZT‘Q
OuTPUT: Polynomial shares of the base-n representation of x, [33("0)]?, e [x(”W*l)E?.

1. Convert the polynomial shares of x to additive shares such that z = 7., | ;.
(Recall that we also have verifiers for the additive shares when we use the poly-to-

sum protocol of [20].)
2. Reshare each v-bit block of z; in polynomial form as x;"(’), a:y”), e 7x§-n”’1>.
(a) Prove that these numbers are the base-n form of x; by showing that the com-
. T . z(.ni) Tm(."i) i
mitment, g”*h"*i, to x; contains the same value as [[,_, ,_,(¢"7 h %5)7.
(b) Prove that |x§."")|2 =viforeachi=0,---,w—1.

(n4)

;"" over p to shares over a smaller prime (e.g. the smallest

3. Convert all the shares x
prime p’ > 27).

4. Add all the base-eta shares of the z; together.

Fig. 13. Conversion to base-n representation.

Clearly the cost of the set membership to compute the carry bit in step 2b
dominates this algorithm. Our set has size n — 1 = 15, so we must perform this
many multiplications in each round. We must also perform 128 total normaliza-
tions. Thus we end up doing 1 degree t secret sharing, 15 % 128 4+ 128 = 2048
degree 2t secret sharings, and 128 normalizations. The normalizations dwarf the
other costs. With ¢t = 5 and n = 11 as before, the messages sent for the whole
protocol will total between 70MB and 80MB, depending on the random factors
in the normalization algorithm.

5.4 Converting a Number to Base-nn Representation

We now have all the tools that we need to convert a polynomial secret sharing of
a number x to its base-n representation. The method we use is inspired by the
one from [2] which produces the binary representation of a number. The basic
idea is that the secret is reshared as an additive secret, each n digit is reshared as
a polynomial, then we use the addition circuit to add all the numbers together
in base-n. The conversion algorithm is detailed in Figure 13.

Most of the cost of this algorithm is in the addition step which we addressed
in the previous section. The proofs in step 2 are non-trivial, however. Step 2a is
relatively simple because of the homomorphic commitment scheme — it requires
only 2|p|2 additional bits to be broadcast. Step 2b requires a proof of size pro-
portional to the size of x. Specifically, each base-n digit requires a proof of size
7(6]pla + 1) (See the extended paper for more details). Since we have w of these
digits, the proof expands to wn(6|p|a + 1) = |z]2(6|p|2 + 1).

136 Emil Ong and John Kubiatowicz

6 Summary

We presented a robust algorithm to generate shared secret, safe prime numbers.
Our algorithm owes much to the work of [2] and [5] in the general form. Us-
ing this framework, we developed efficient zero-knowledge proofs of knowledge
making the algorithm robust. We also borrowed ideas ([17]) from the computer
arithmetic world that reduced the number of such proofs we have to transmit
during the algorithm. We generalized the modular exponentiation algorithm of
[2] to general precomputed lookup tables. We believe our techniques make shared
generation of a safe prime much more feasible in the robust setting. Using this
primitive and the works of Catalano et al. [7], Shoup’s RSA scheme is much
closer to practical use without a trusted dealer.

References

1. Shoup, V.: Practical Threshold Signatures. Lecture Notes in Computer Science
1807 (2000)

2. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Pro-
ceedings of CRYPTO 2002, Springer Verlag (2002) 417-432

3. Fouque, P.A., Stern, J.: Fully distributed threshold RSA under standard assump-
tions. In: Proceedings of Asiacrypt. (2001) 310-330

4. Damgard, I.B., Koprowski, M.: Practical Threshold RSA Signatures Without a
Trusted Dealer. Technical Report RS-00-30, Basic Research in Computer Science,
University of Aarhus (2000)

5. Malkin, M., Wu, T., Boneh, D.: Experimenting with Shared Generation of RSA
keys. In: Symposium on Network and Distributed System Security. (1999) 43-56

6. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
ACM Transactions on Information and System Security 3 (2000) 161-185

7. Catalano, D., Gennaro, R., Halevi, S.: Computing inverses over a secret shared
modulus. In: EUROCRYPT 2000. Volume 1807 of LNCS., Springer-Verlag (2000)
190207

8. Boneh, D.; Franklin, M.: Efficient generation of shared RSA keys. Journal of the
ACM (JACM) 48 (2001) 702722

9. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust Efficient Distributed RSA-Key
Generation. In: Annual ACM Symposium on Theory of Computing. (1998)

10. Goldwasser, S., Lindell, Y.: Secure Multi-Party Computation Without Agreement.
In: 16th International Symposium on DIStributed Computing. Volume 2508 of
LNCS. (2002) 17-32

11. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979)

12. Damgard, 1., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In: ASTACRYPT. (2002) 125-142

13. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO 1991. Volume 576 of LNCS. (1991) 129-140

14. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Annual ACM Sympo-
sium on Theory of Computing. (1988) 1-10

15.

16.

17.

18.

19.

20.

Optimizing Robustness While Generating Shared Secret Safe Primes 137

Mao, W.: Guaranteed Correct Sharing of Integer Factorization with Off-line
Shareholders. In: Public Key Cryptography. Volume 1431 of LNCS. (1998) 60-71
Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics
of Computation 44 (1985) 519-521

Bajard, J.C., Didier, L.S., Kornerup, P.: Modular Multiplication and Base Exten-
sions in Residue Number Systems. In: Proceedings of the 15th IEEE Symposium
on Computer Arithmetic. (2001) 59-65

C.K. Kog, Acar, T.: Fast Software Exponentiation in GF(Qk). In: Symposium on
Computer Arithmetic. (1997) 225-231

Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Con-
stant Number of Rounds of Interaction. In: 8h ACM Symposium on Principles
of Distributed Computation. (1989) 201-209

Frankel, Y., MacKenzie, P., Yung, M.: Adaptively secure distributed public-key
systems. Theoretical Computer Science 287 (2002) 535-561

Fast Multi-computations
with Integer Similarity Strategy™

Wu-Chuan Yang!, Dah-Jyh Guan?, and Chi-Sung Laih!

! Department of Electrical Engineering, National Cheng Kung University,
Tainan, Taiwan 701, R.O.C.
2 Department of Computer Science, National Sun Yat Sen University,
Kaohsiung, Taiwan 804, R.O.C.
wcyang77@ms32.hinet.net, guan@cse.nsysu.edu.tw, laihcsQeembox.ncku.edu.tw

Abstract. Multi-computations in finite groups, such as multiexponenti-
ations and multi-scalar multiplications, are very important in ElGamal-
like public key cryptosystems. Algorithms to improve multi-computa-
tions can be classified into two main categories: precomputing methods
and recoding methods. The first one uses a table to store the precom-
puted values, and the second one finds a better binary signed-digit (BSD)
representation. In this article, we propose a new integer similarity strat-
egy for multi-computations. The proposed strategy can aid with precom-
puting methods or recoding methods to further improve the performance
of multi-computations. Based on the integer similarity strategy, we pro-
pose two efficient algorithms to improve the performance for BSD sparse
forms. The performance factor can be improved from 1.556 to 1.444 and
to 1.407, respectively.

Keywords: ElGamal-like public key cryptosystems, binary signed-digit
(BSD) representations, sparse forms, multi-computations, multiexponen-
tiations, multi-scalar multiplications

1 Introduction

Multi-computations in finite groups, such as multiexponentiations, e.g. ¢ =
a®b¥, and multi-scalar multiplications, e.g. C' = zA + yB (A, B, and C de-
note points in one elliptic curve), are very important in many ElGamal-like
public key cryptosystems [8,21,9]. In addition to the algorithms for single com-
putations (some good surveys can be found in [13,5,10]), the performance of
multi-computations can be improved by the concept of multiexponentiation [8,
Section V.BJ]. This concept was generalized to the small window methods by
Yen, Laih, and Lenstra [23].

Based on the concept of multiexponentiations, many algorithms have been
proposed to improve the performance of multi-computations. In general, these

* This work was supported by the National Science Council, Taiwan, under contract
NSC 92-2213-E-232-002.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 138-153, 2005.
© International Association for Cryptologic Research 2005

Fast Multi-computations with Integer Similarity Strategy 139

algorithms can be classified into two categories: precomputing methods and re-
coding methods. Precomputing methods use a large table to store the precom-
puted values, such as the BGMW method [4] and the Lim-Lee method [14].
Precomputing methods are very suitable for memory sufficient environment and
have the better performance indeed. Since the binary signed-digit (BSD) repre-
sentation of an integer is not unique, recoding methods try to recode the BSD
representations of x and y such that their joint Hamming weight w(z,y) is as
minimal as possible [7,22]. The joint Hamming weight can be defined by the
number of digit pairs, at least one of which is nonzero. Recoding methods are
very useful in memory limited environments, such as IC cards or smart consumer
electronic devices. Recently, this topic has been discussed in many articles [15,
18,2,3,16,19].

In this article, we focus on the memory limited environment and intro-
duce a new integer similarity strategy to improve the performance of multi-
computations. When computing ¢ = a®*b¥ or C = A + yB, the recoding meth-
ods match the zeros or nonzeros as possible by recoding x and y in advance,
therefore the performance of multi-computations can be improved. Instead of
recoding x and y, the new strategy is by deleting or inserting some digits in
x and y, such that x and y have as much similarity as possible. For example, if
xz = 0101010112 and y = 1010101012, we can match the zeros by deleting the
first zero in x and inserting a zero before the last digit in y as follows.

T 01010101 1
Original computation y 10101010 lw(z,y)=9
T 01010101 1
adjusted computation y 1010101 01 w(x,y) =5
T 7
deleted inserted

Obviously, the computation must be modified for evaluating the correct result
if some digits in x or y were deleted or inserted. As the above example, we only
compute the deleted digit which is the beginning digit of x. Afterwards the digit
with the same value can be computed simultaneously. Finally, the inserted digit
in y should be computed with the last digit pair. Different from the recoding
methods, our proposed methods improve the performance by shifting the digits.
Thus our methods are very promising ones to improve performance in memory
limited environments.

Since the performance of the multi-computation algorithms is determined
by the computations of nonzero columns, we use a performance factor, p, to
evaluate the performance of multi-computations. The performance factor can
be defined as follows, note that “1” refers to the necessary computations of
square (in multiexponentiation) or double (in multi-scalar multiplication).

number of nonzero digit pairs

=1+ . .
P number of total digit pairs

140 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

The performance of multi-computations by BSD representations can be de-
scribed as follows: p = 1.556 by using sparse forms directly [13], p’ = 1.534
[7] by using the Dimitrov-Jullien-Miller method, and p” = 1.500 [22] by using
joint sparse forms, respectively. The proposed integer similarity strategy has
practical applications for the above BSD methods. Based on the integer similar-
ity strategy, we propose two efficient algorithms to improve the performance for
BSD sparse forms; the performance factor can be reduced from 1.556 to 1.444
and to 1.407, respectively. The proposed strategy can also be used in binary rep-
resentations since it does not recode the representation. Based on the proposed
strategy, p can be reduced from 1.75 to 1.667 in binary method.

The rest of this article is organized as follows. In Section 2, we first review
the basic multi-computation algorithms. The concept of integer similarity strat-
egy and the proposed algorithms are illustrated in Section 3. And we also prove
the performance of the proposed algorithms. In Section 4, we compare the per-
formances of some well-known recoding methods and our proposed methods.
Besides, the application of the proposed strategy to binary representations is
also discussed in Section 4. Finally, our conclusion is presented in Section 5.

2 Preliminaries of Multi-computations

To simplify the description, the integer similarity strategy is described by multi-
scalar multiplication, C' = zA 4+ yB, with BSD representations only. Note that
our strategy can also be applied to multiexponentiation, ¢ = a®b¥, with binary
representations [11]. The notations used in this article are described as follows.
The uppercase alphabet, such as A or B, denotes the discrete point in elliptic
curve public key cryptosystems. The lowercase alphabet, such as x or y, denotes
an n-bit integer. Because the minimal weight BSD representations need an extra
BSD, z can be represented by n + 1 BSDs as follows (1 denotes —1).

x = Zxﬂi = (TpTp_1---T170)2, where x; € {1,0,1}.
i—0

Symbol |z| represents the bit-length of ;, w(z) represents the Hamming weight of
x, i.e. the number of nonzero digits. In multi-computation, we put our emphasis
on whether the digit is zero or not. Therefore we use “0” to denote zero value,
and “/” to denote the nonzero values. Hence the digits can be classified into
two sets: the zero set S, and the nonzero set S,. x; ~ y; denotes x;,y; € S, or
i, y; € S,. The expression x; ¢ y; denotes x; € S,, y; € S, or x; € S,, y; € S,.
For integer pairs, |(z,y)| = max(|z]|, |y|), the joint Hamming weight w(x,y) is
defined by the total number of (x;,y;) # (0,0), for all . Thus, the performance

w(z,y)

factor p can be simplified to p =1+ ()]

2.1 The Basic BSD Method for Multi-scalar Multiplications

The expected w(z) in minimal weight BSD representations is 3n [1]. Many algo-
rithms can be used to recode the binary representation or any BSD representa-

Fast Multi-computations with Integer Similarity Strategy 141

tion to minimum weight BSD representation [20,11,12]. Notice that an integer
may have many minimal weight BSD representations, the most famous one is
called the sparse form since no two consecutive digits are both nonzeros. Sparse
forms are also called canonical forms or non-adjacent forms [10]. Minimal weight
BSD representations are especially suitable for elliptic curve scalar multiplica-
tions since the inverse of a point is easy to compute. The basic BSD method
for multi-scalar multiplications is shown in Algorithm 1. Symbol O denotes the
identity element of the elliptic curve, this point is also called “point at infinity.”
The value of all possible z; A 4+ y; B must be precomputed in Line 6 of Algorithm
1. Therefore it needs 5 registers to store the value of A, B, A+ B, A — B,
and C. The inverse value —A, —B, —A — B and —A + B are easily to obtain
from the precomputed table, so we do not need to precompute these value. The
performance factor of Algorithm 1, p1, is equal to 1.556. The proof is shown in
Theorem 1.

Algorithm 1. The Basic BSD Method for multi-computations
I/P: A B, x,y

O/P: C=zxA+yB

1: Recode x and y to the minimum weight BSD representations;
2: Prepare the following values: A, B, A + B;

3: C=0;

4: for i = n downto 0 do {

5 C =20,

6: if (zi,yi) # (0,0) then C = C + (2;A + y; B);

7}

Theorem 1. The performance factor of Algorithm 1 is p; = 18 ~ 1.556.

Proof. In Line 6, the probability of (x;,y;) Zé 0,0)is 1 — (§)2 = g.

Therefore the performance factor p; =1+ ¢ >~ 1.556. O

2.2 The Recoding Methods for BSD Representations

Since there are many minimal weight BSD representations, the result of Algo-
rithm 1 can be improved by recoding the representations. Dimitrov, Jullien, and
Miller proposed 8 reduction rules to recode xz and y (called the DJM method
in this article) [7]. In their method, if the scanned segment of three consecutive
digits matches one of the upper part of Table 1, the algorithm recode the seg-
ment to the corresponding lower part. The performance factor can be reduced
from 1.556 to 1.534 by using the DJM method.

On the view of sparse form for the single integer, Solinas proposed the con-
cept of joint sparse form (JSF) for pairs of integers, the properties of JSF are
illustrated as follows [22]:

142 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 1. The DJM reduction rules.

Original zisomisiz: 010 010 010 010 101 101 101 101
digits yi+2yi+1y: 101 101 101 101 010 010 010 010
After) ,x},,2! 010 010 010 010 011 011 0T 011

Adjusted g/ oyl,1y, 011 011 011 011 010 010 010 010

1. Of any 3 consecutive digits, at least one is double zeros.
2. Adjacent digits do not have opposite signs.
3. f xj412; # 0, then y; 41 # 0 and y; = 0.

If Yi+1Yi 7§ 0, then Ti+1 }é 0 and €Ty = 0.

Solinas also proposed two efficient recoding algorithms to generate the joint
sparse form from binary representation and sparse form, respectively. The per-
formance factor can be improved to 1.500 when n approaches infinite, and this
value is the minimum of all the recoding methods.

3 The Integer Similarity Strategy

By observing above recoding methods, we find two major limitations in those
method. First, they can not recode the binary representations since the binary
representation for an integer is unique. Second, they cannot recode the digits
with the same signs, such as 101 or 101, because they are unique minimum
weight form. For example, if z = (10101010)2 and y = (01010101)a, all recoding
methods cannot improve the computation. Based on the observation, we propose
a totally new strategy, the integer similarity strategy, to improve the performance
of multi-computations. Our idea is to shift some digits by deleting and insert-
ing so that two different integers can be as much similarity as possible. For
example z = (01010101)2 and y = (10101010)2, = can be adjusted by deleting
the first zero and inserting a zero in the end. When the digit of = or y is deleted
or inserted, the corresponding computation must be defined for evaluating the
correct result. In order to use the proposed strategy for multi-computations, the
following items must be taken into consideration.

1. The Condition for Deleting or Inserting
For improving the performance, we have to define the condition to let the
integers be as much similarity as possible. The condition depends on both
integer representations and memory space.

2. The Corresponding Computation of Deletion or Insertion
In computing C = zA + yB, C = 2C + x; A is computed when deleting z;
and C = 2(C + y;+1B) + (z;A + y; B) when inserting y;.

3. The Computation After Deletion or Insertion
After deletion, the corresponding digits of z and y will be shifted, that is
the corresponding digits of z;_; is y; after deleting x;. The corresponding
computation after deletion is C' = 2C + (x;—1 A + y;2B).

Fast Multi-computations with Integer Similarity Strategy 143

The simplest case of the integer similarity strategy is that one insertion in
an integer follows one deletion in another integer, we name it the single-stage
version. The deletion can be acted on only one integer, called the single-integer
version, and it can be also acted on both the integers, call double-integer version.
In this article, in order to point out the essence of the integer similarity strategy,
two basic methods are taken into consideration. The first one, called the single-
stage single-integer (1S1I) method, is to delete one digit in x then to insert
another digit in y at an appropriate position. The second one, called the single-
stage double-integer (1S2I) method, is to delete one digit in 2 or y and insert
another digit in its opposite integer. The single stage can be generalized to multi-
stage. However, we do not discuss the generalization of 1511 and 1S2I method
in this article due to the page limitation.

3.1 The 1S1I Method for Sparse Forms

The BSD sparse form has an important property — of any 2 consecutive digits,
at least one is zero. According to this property, if we want to match the zeros
and nonzeros, x; 7 y; is a suitable condition to delete one digit in . When one
digit in x is deleted, the computation should be modified, which is called “Delete
z” state, denoted by Dz. On the contrary, if the computation is the same with
the original algorithm, the state can be called the “Normal” state, denoted by
Nr. Thus the state diagram of the 1S1I method is shown in Fig. 1.

Ty ~ Yi 131"7(‘211'

Ti~Yi
Y i % yi

Fig. 1. The state diagram of the 1S1I method.

Consider the following condition, x, is deleted in = and y, is inserted in y.

I:(Inﬁjuxufl vavil...xo)2

Y= Wn - Yu o Yos1¥o Yo—1 * - Y0)2

Before deleting z,, and after inserting y, (i > u or ¢ < v), the computation is
2C'+ (x; A+yi+1B). It is the same as Algorithm 1. When deleting z,, (i = u), the
computation is 2C + z, A. After deleting x,, and before inserting y, (u > i > v),
the computation is 2C' + (z;A + y;+12B) and the state is transferred into Dz.
When inserting y, (i = v), the computation is C = 2(C'+y,41B) + (2, A+y, B).
The corresponding digits are (z;,y;) in Nr, and (2, y;+1) in Dx. Therefore, the
corresponding computations can be illustrated in Table 2. To summarize the
above, Algorithm 1 can be modified to the following Algorithm 2.

144 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih
Table 2. The corresponding computations of the proposed algorithm.

State Corresponding computation
Nr C=2C+ (x;A+y;B)
Nr — Dz C =2C + z;A
Dz C=2C+ (:CZA =+ yi+12B)
Dz — NrC =2(C+yi+1B) + (xs A+ y; B)

Algorithm 2. The 1511 method for sparse forms

I/P: Aa Ba T = (Infla' ",Il,fEO)Qy Yy = (ynflv"'vylvyO)Q
O/P: C=x2A+yB
1: Prepare the value of A, B, A+ B, A+ 2B;

2: C =0, State = Nr;

3: for i = n downto 0 do {

4: if (State = Nr) {

5: if (z; ~y;) then C = 2C + (v; A + y; B);

6: else State = Dx, C = 2C + z; A;

7}

8: else{

9: if (z; # y;) then C = 2C + (x; A + y;+12B);
10: else State = Nr, C = 2(C' + y;41B) + (z;A + y; B);
11: }

12: }

The rules in Fig. 1 are very simple and efficient. Theorem 2 proves that Algorithm
2 is guaranteed to further improvement of the performance of Algorithm 1 with
BSD sparse forms.

Theorem 2. Let p1 and ps be the performance factor of Algorithm 1 and Algo-
rithm 2, respectively. If © and y are both sparse forms, then ps < p1.

Proof. The performance factor is analyzed by considering the computation of
Nr and of Dz.

First, we consider the computation in state Nr of Algorithm 2. In Line 5, it
is the same with Algorithm 1. In Line 6, if y; is zero, p will be decreased by 1,
otherwise p remains the same with Algorithm 1.

Then we consider the computation of state Dx. if z; 4 y; for u > i > v,
therefore Dz is occurred for (u — 1) > 4 > (v — 1), thus the corresponding
computation digits are shown as follows.

Nr Nr— Dx Dz --- Dx Dx Dz— Nr
Tu+1 /&u Ty—1 " T+l Ty Ty—1

Yu+1 Yu 0 Yod2 Yo+l YolYu—1

Fast Multi-computations with Integer Similarity Strategy 145

Suppose the length of the above interval of Dx is k, then k = u — v + 1. We can
get x; ~ y;41 for (u — 1) > i > v, because of the property of sparse forms and
x; 2 y; for u >4 > v. Thus p can be considered into the following 4 conditions:

1. Led by deleting o and ended by inserting u: p = 31 k=1,3,5,-- .
2. Led by deleting ¢ and ended by inserting o: p = 3%, k=1,3,5,---.
3. Led by deleting o and ended by inserting o: p = 32]“, k=24,---.

4. Led by deleting ¢ and ended by inserting ¢: p = 32k +1,k=2,4,---.

p will be decreased by kgl, kgl, g, and g — 1 for the above 4 conditions,

respectively, because p = 2k in Algorithm 1. Thus p will never be increased either
in Dz.

For the above discussion, ps < p;. O

According to the proof of Theorem 2, the computation cost will not be in-
creased even if in the worst case. The average performance of Algorithm 2 is
analyzed as follows. We now concern the conditional probability of x; when z;1
is given. We know P, = g and P, = é in sparse forms have been proved in [20].
Lemma 1 illustrates the conditional probability P,,|,,,, and it can be extended

to pairs of integers, Py, |z, 1y, @8 described in Lemma 2.

Lemma 1. Let P,,;,., be the conditional probability of x; given x;1. Then

P, =P, = é, P,, =1, and P,, = 0 in BSD sparse forms.

Proof. Since no two consecutive digits are nonzeros, P,|, =1 and P,|, = 0.
Let Py, =pand P, =1—p.
P, =Py Py, + P,P,,, therefore > = 2. p+
We can get Py, =p= ; and P, =1-p=

-1—>p:é,
. O

N =y =

Lemma 2. Let P,

wiyilziiayin, D€ the conditional probability of x;y; given Tit1Yit1-
_ _ _ _ _ 1 _ _ _
Then Poo|LL =1, Poo\m = Loloe = Looleo = Lotleo = o> Poo\oo = Loiloo = Lvoloo —

_ 1 _ _ _ _ _ — _
PLL\oo = g P0L|LL = Lvolee = Fujee = Lovloo = Lujor = Lvoleo = Luifeo = 0.

Proof. Because the digits in z and y are independent, the probability Py |2, 1.1

vilzisr X Pyilyie,- Thus the proof of this Lemma is completed. O
According to Lemma 3, the corresponding computations and their proba-
bilities of Algorithm 2 are illustrated in Table 3, where the symbols “P.S.” and
“N.S.” stand for “Present state” and “Next state”, respectively. The items “com-
putations,” “ng,y,,” “Pr, 29,01y, and “Line” denote the corresponding com-
putations, the number of additions, the probability of the computation of this
row, and the corresponding line number in Algorithm 2. In Theorem 3, we show
that the performance factor po of Algorithm 2 is 1.444. In comparison with 5
registers in Algorithm 1, Algorithm 2 needs 2 extra registers to store the value
of A+2B.

Lemma 3. Among the 16 possible x;412;yi11Yi, there are 9nonzero Py, ziy;iry;»
1.€. POOOO) POOOL) POLOO) POLOL7 PLOLO7 POOLO7 POLLO7 PLOOO} and PLOOL7 and all Of them
are all equal to é.

146 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 3. Performance Analysis of Algorithm 2.

P.S. zit1yi+1 xiy; N.S. computations Nayy; Pripyeiyipy; Line
Nr 00 oo Nr C=2C 1 1/9 5
Nr 00 oo Dz C=2C 1 1/9 6
Nr 00 o Dz C=2C0+A 2 1/9 6
Nr 00 w Nr C=2C+(A+B) 2 1/9 5
Nr L oo Nr C=2C 1 1/9 5
Dz oL oo Nr C=2(C+B) 2 1/9 10
Dz oL o Dr C=2C+(A+2B) 2 1/9 9
Dz Lo oo Nr C=2C 1 1/9 10
Dz Lo oo Dz C=2C 1 1/9 9

Proof. The value of P, is P, = g and P, = :1,,, then the value of P,,,, is P,, = 3,

— — 2 _ 1
Po,=Po=§,and P, = 4.
The value of Py, 2y, 1y, 18 equal to P,y s X Pr,yijzi1ys, - Lhus, accord-

ing to Lemma 2 and the above fact, all the nonzero Py, z,y,,,y; are as shown
in this Lemma, and the values are all é. a

Theorem 3. The performance factor of Algorithm 2 is py = 12 ~ 1.444.

Proof. The performance factor is computed by > (a4, X Pr,iaiyisry:)-

According to Table 3,
o = 1»1+1-1+1»2+1-2+1él+1-2+1»2+1-1+1»1 _ 193 ~ 1.444. O

3.2 The 1S2I Method for Sparse Forms

When the deleted digit is equal to zero, it only needs one computation. Therefore
if x; = ¢ and y; = o, it is more suitable to delete y; instead of x;. When we
delete y;, the state is transferred into the state “Delete y,” denote by Dy. In
this subsection, we propose a method which deletes one digit of x; or y; rather
than deletes z; only. The method is called the 1s2I method. The corresponding

Table 4. The corresponding computations of the 1521 algorithm.

State Corresponding computations

Nr C=2C+ (x;A+y;B)

Nr — Dz C =2C

Nr — Dy C =2C
Dz C=2C+ (x;iA+yi+12B)

Dz — NrC =2(C+y;+1B) + (x: A+ y: B)
Dy C =2CH+ (zi+12A + y; B)

Dy — NrC =2(C+ziy1A) + (ziA+y:B)

Fast Multi-computations with Integer Similarity Strategy 147

T; =1L r; = 0
=0 =1
< Yi Yi >
> <
Ti ~ Y T~ Yi
i % Yi Ti~Yi Ti Y

Fig. 2. The state diagram for the 1S2I method.

computation is illustrated in Table 4 and the state diagram of the 1521 method

is shown in Fig. 2. Thus Algorithm 2 can be modified in the 1S2I method, as
shown in Algorithm 3.

Algorithm 8. The 1521 method for sparse forms

I/P: A7 -87 r = (xn—lu"'7x17$0)27 Yy = (yn—17"'7y17y0)2
O/P: C=zA+yB

1:

el e e T e T s T o S =Sy

Prepare the value of A, B, A+ B, A+ 2B, 2A + B;
C = O, State = Nr,
for i = n downto 0 do {
if (State = Nr) {
if (z; ~y;) then C = 2C + (v; A + y; B);
else if (z; = 0o and y; = ¢) then State = Dz, C = 2C;;
else State = Dy, C' = 2C;
}
else if (State = Dx) {
if (z; # y;) then C = 2C + (2; A + y;+12B);
else State = Nr, C = 2(C' + y;i+1B) + (z;A + y; B);
}
else {
if (z; # y;) then C = 2C + (x;112A + y; B);
else State = Nr, C = 2(C 4+ z;11A) + (v; A+ y;B);
}
}

The performance analysis of Algorithm 3 is similar to Algorithm 2. In order
to get the performance analysis table like Table 3, we compute the probability
of all the state beforehand. We first find that the deleted digit is always zero and
the corresponding digit is always nonzero. Therefore, the state Dx is separated
into D2 (z; = o and y; =) and D2 (x; = ¢ and y; = o); the state Dy is
separated into Dy (z; = ¢ and y; = o) and Dy’ (z; = o and y; = ¢). Then
according to Lemma 1 and Lemma 2, the probability of the state diagram is

148 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

3
5

Fig. 3. The detail state probability of Algorithm 3.

illustrated as Fig. 3. The probability of state Nr, D/, D2”’, Dy, and Dy’ are
illustrated in Lemma 4. Thus the performance analysis is illustrated in Table 5.
In Theorem 4, the performance factor ps is proved to be 1.407. In comparison

with b registers in Algorithm 1, Algorithm 3 needs 4 extra registers to store the
value of A+ 2B and 2A + B.

Lemma 4. Suppose po, Py, pY, ph, and ply denote the probabilities of state Nr,

Dx’, Dx”, Dy’, and Dy”, respectively. Then py = 3; pL= 247, = 227, Py = 247:
and py = 2,
Proof. Consider the probability in Fig. 2, we can get

P3 = oph = ph =25,

p/2 = :Do+ 2p/21_’p02 2]9/2/7

Py =Py = Py = 2p0, .

Py = spo+ 5p1 — po= 51,

Suppose py = py = a, and p, = pj = 2a,pg = 125a,

Wecanget (1+1+2+2+ P)a=1—a=,,

Therefore po = §, P} = o0, P{ = 5. Py = v, and pf = .. O
Theorem 4. The performance factor of Algorithm 8 is ps = 1;% ~ 1.407.
Proof. The performance factor is computed by > (a4, X Pr,aiyisry:)-

According to Table 5,

_ T1HL 41141241 | 2242241141 142:242:24 11411 _ 38
p3 = 9 + o7 = 57 =~ 1.407. O

4 Comparison and Discussion

The performance of multi-computations can be improved by integer similarity
strategy. Consider the 1S1I and 1S2I methods with sparse forms, p; = 1.556
is improved to ps = 1.444 and ps = 1.407. The performance of the proposed
algorithm seems to be further improve by combining with recoding methods.

Fast Multi-computations with Integer Similarity Strategy 149

Table 5. Performance analysis of Algorithm 3.

P.S. zi+1yi+1 ziyi N.S. computations Nayy; Pripyeiyipy; Line
Nr oo oo Nr C=2C 1 1/9 5
Nr 00 oo Dz C=2C 1/9 6
Nr 00 o Dz C=2C 1/9 7
Nr 00 w Nr C=2C+(A£B) 1/9 5
Nr L oo Nr C=2C 1/9 5

1
1
2
1
Dz oL oo Nr C=2(C+B) 2 2/27 11
Dz oL o D C=2C+(A+2B) 2 2/27 10
Dz Lo oo Nr C=2C 1 1/27 11
Dz Lo oo Dx C=2C 1 1/27 10
Dy oL oo Nr C=2C 1 1/27 15
Dy oL o Dy C=2C 1 1/27 14
Dy Lo oo Nr C=2(C+A) 2 2/27 15
Dy Lo oo Dy C=2C+(2A+B) 2 2/27 14

Thus, using recoding methods in Algorithm 2 and Algorithm 3 is an interesting
approach. As described in proof of Theorem 2, the computation in Dz can be
divided into 4 conditions, and the performance factor can be increased in each
condition. Thus our proposed methods will also improve the performance when
combined with recoding methods. Unfortunately, the performance is poorer than
directly using sparse forms. The reason is that zeros (or nonzeros) have been
aligned between x and y in recoding methods. If we try to apply our method
to the recoded BSD representations, the ratio of the improvement is less than
the ratio that we apply the method on sparse forms. In our simulation (10000
pairs of 1024-bit integers generated by java.security.SecureRandom object in
Java 2 platform), the performance factor is shown in Table 6. Thus the proposed
strategy is suitable for spars forms especially. We illustrate improvement of the
1S1I method of the by given instance in Example 1. Furthermore, the proposed
strategy seems to be similar to the width-w nonadjacent form (w-NAF) encoding
method [6,17]. In order to achieve the unique w-NAF, the digits in w-NAF
should be zero or odds. If the digits is in {—2,—1,0, 1,2}, the effect is very
near to the proposed integer similarity strategy, but the integer will be many
representations. It does not exist an exact method to find a good “w-NAF(-2,-
1,0,1,2)” for multi-computations. Based on the proposed strategy, Algorithm 2
and Algorithm 3 exactly define the rules of deleting or inserting digits. However,
the w-NAF encoding is a very interesting research topic in multi-computations.

Example 1. Let x = (1010101010101010) and y = (0101010101010100)2. The
performance factor of the combination with recoding methods and the 1slI
method is shown as follows. In this example, we first find that p; = 1.938 is
improved to pj = p{ = 1.563 by using the DJM method and JSF, respectively.
Second, we find that p; = 1.938 is improved to ps = 1.500 by using the 1511
method. Finally, p2 can not be improved by using the DJM method and JSF.

150 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 6. The comparison of some algorithms.

Performance Factor Original with 1S1I with 1S21
Sparse Forms 1.556 1.444 1.407
recode by DJM 1.534 1.453 1.414
recode to JSF 1.500 1.469 1.438

Sparseforms 101 01 01010
01010 101071
with 1S11I A01 01 01010
010101010
recode by DJM 01 1 01 0101 0
010 01 01011
with 111 0141 01 01010
01 001 0101
recodetoJSF 010 11 01010
010 1001011
with 1811 010 14 01010
0101 00101

Besides, our proposed strategy can also be applied to multiexponentiation
with binary representations. With regard to state Dz, the corresponding digits
are (r;,1i+1), T; # Yir1 is suitable to insert y;. But the value of (¢ x b¥+1)% x
a®*b¥" must be computed by inserting y;. The computation needs 1 square and
2 multiplications. Therefore, the condition, z; = y; and y; # y;+1 (denoted by
T; = Yi # Yi+1) i1s more suitable. Since the number of multiplication can be
reduced by 1. The conditions of deletion and insertion for binary representations
are shown in Fig. 4. Apply the strategy to the binary method (the square-
and-multiply method), the modified algorithm is shown in Algorithm 4. The
performance factor can be reduced from 1.75 to 1.667 and only increase one

extra register to store ab?.

Ti = Yi Izséyz

/<

Ti =Yi # Yir1

10101 0
0101 0 0p, =1.938
10101 0
1010 100ps =1.500
01011 0
0101 0 0p, =1.563
01014 0

10101 00 ph = 1.563

01011 0
01010 0p/=1563
01014 0

10101 00 p4§ =1.563

T; = Yit1 OF

Yi = Yit1 7 T

Fig. 4. The state diagram for binary representations.

Fast Multi-computations with Integer Similarity Strategy 151

Algorithm 4 Apply the integer similarity strategy to binary methods
I/P: a, b, = (Tp-1-2120)2, Y = (Yn—1"""Y1%0)2
O/P: ¢=a"b¥

1: Precompute and store the values of a, b, ab, and ab?.
2: ¢=1, state = Nr;

3: for i =n — 1 downto 0 do {

4: if (state = Nr) {

5: if (z; # y;) then state = Dz, ¢ = ¢* x a®i;

6: else ¢ = ¢ x (aib¥%);

7

8

9

}

else {
: if (x; # yiy1) then {
10: if (r; = y;) then state = N1, c = (¢ x bYi+1)2 x (a®ibYi);
11: else ¢ = (c x b¥i+1)2 x a®i;
12: }
13: else c = ¢ x (a®b?¥i);
14: }

15: }

5 Conclusion

In this article, we propose a totally new strategy, the integer similarity strat-
egy, for multi-computations. In order to match zeros and nonzeros in multi-
computation, the proposed strategy modifies the computing sequences by delet-
ing and inserting some digits. According to the strategy, we propose two efficient
algorithms, named the 1S1I and 1S2I method for multi-scalar multiplications
with BSD sparse forms. The performance factor is improved from 1.556 to 1.444
and to 1.407, respectively. The memory space only required 2 and 4 extra regis-
ters, respectively. Thus the proposed algorithms is suitable for memory limited
environments.

Our proposed algorithms can also be combined with recoding methods, in-
cluding the DJM method and joint sparse forms. However, this way turns out to
be far from desirable. Besides, the proposed strategy can be still used in binary
representations. In binary methods for multiexponentiation, the performance
factor can be improved form 1.75 to 1.667 with only one extra register.

Based on the integer similarity strategy, all the proposed methods are all
single stage in this article, that is one insertion must appear after one deletion.
In general case, the deletion and insertion should be appeared without any lim-
itations. The multi-stage version of the proposed strategy is an interesting work
in the future.

152 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih
References
1. S. Arno and F. S. Wheeler. Signed digit representations of minimal hamming

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

weight. IEEE Trans. Computers, 42(8):1007-1010, 1993.

. R. M. Avanzi. On multi-exponentiation in cryptography. IACR Cryptology ePrint

Archive 2002/154, http://eprint.iacr.org, 2002.

D. J. Bernstein. Pippenger’s exponentiation algorithm.
http://cr.yp.to/antiforgery.html, 2002.

E. F. Brickelland, D. M. Gordon, K. S. McCurley, and D. Wilson. Fast exponentia-
tion with precomputation. Advances in Cryptology-EUROCRYPT 92, LNCS 658,
Springer-Verlag, pages 200-207, 1992.

C. K. Kog. High-speed RSA implementations. RSA Laboratories, Technique Notes
TR201, http://www.rsasecurity.com/rsalabs, pages 9-32, Nov. 1994.

H. Cohen, A. Miyagi, and T. Ono. Efficient elliptic curve exponentiation us-
ing mixed coordinates. Advances in Cryptology-AISACRYPT’98, LNCS 1514,
Springer-Verlag, pages 51-65, 1998.

V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Complexity and fast algorithms
for multiexponentiation. IEEE Trans. Computers, 49(2):141-147, Feb. 2000.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4):469-472, Jul. 1985.
FIPS186-2. Digital signature standard(DSS). NIST Computer Security FIPS page,
http://csre.nist.gov/publications/fips/, 2001.

D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129-146, 1998.

J. Jedwab and C. J. Mitchell. Minimum weight modified signed-digit representa-
tions and fast exponentiation. FElectronics Letters, 25(17):1171-1172, 1989.

M. Joye and S. M. Yen. Optimal left-to-right binary signed-digit recoding. IEEE
Trans. Computers, 49(7):740-748, 2000.

D. E. Knuth. The Art of Computer Programming, Seminumerical Algorithms,
volume 2. Addison-Wesley, 3" edition, 1998.

C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation.
Advances in Cryptology-CRYPTO’94, LNCS 839, Springer-Verlag, pages 95-107,
1994.

B. Moller. Algorithms for multi-exponentiations. 8th Annual Workshop on Selected
Areas in Cryptography -SAC 2001, LNCS 2259, Springer-Verlag, pages 165-180,
2001.

P. K. Mishra. Scalar multiplication in elliptic curve cryptosystems: Pipelining with
pre-computations.

TACR Cryptology ePrint Archive 2004/191, hitp://eprint.iacr.org, 2004.

J. Muir and D. Stinson. Minimality and other properties of the width-w nonadja-
cent form. Technique Report CORR 2004-08, http://www.cacr.math.uwaterloo. ca,
2004.

K. Okeya and K. Sakurai. Fast multi-scalar multiplication methods on elliptic
curves with precomputation using montgomery trick. 4th International Workshop
on Cryptographic Hardware and Embedded Systems - CHES 2002, LNCS 2523,
Springer-Verlag, pages 564-578, 2003.

K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi. Signed binary representa-
tions revisited. JACR Cryptology ePrint Archive 2004/195, hitp://eprint.iacr.ory,
2004.

G. W. Reitwiesner. Binary arithmetic. Advance in computers, pages 231-308, 1960.

Fast Multi-computations with Integer Similarity Strategy 153

21. C. P. Schnorr. Efficient identification and signatures for smart cards. Advances in
Cryptology-CRYPTO’89, LNCS 435, Springer-Verlag, pages 239-252, 1989.

22. J. A. Solinas. Low-weight binary representations for pairs of integers. Technique
Report CORR 2001-41, hitp://www.cacr.math.uwaterloo.ca, 2001.

23. S. M. Yen, C. S. Laih, and A. K. Lenstra. Multiexponentiation. IEE Proc., Com-
puters and Digital Techniques, 141(6):325-326, 1994.

Efficient Proofs of Knowledge
of Discrete Logarithms and Representations
in Groups with Hidden Order

Endre Bangerter!, Jan Camenisch!, and Ueli Maurer?
1 IBM Research, Zurich Research Lab, CH-8803 Rueschlikon, Switzerland
{eba, jca}@zurich.ibm.com
2 Departement of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. For many one-way homomorphisms used in cryptography,
there exist efficient zero-knowledge proofs of knowledge of a preimage.
Examples of such homomorphisms are the ones underlying the Schnorr
or the Guillou-Quisquater identification protocols.

In this paper we present, for the first time, efficient zero-knowledge proofs
of knowledge for exponentiation (z1) = h]' and multi-exponentiation
homomorphisms ¥ (z1,...,x;) = hi* - ...kt with hy,...,h € H (i.e.,
proofs of knowledge of discrete logarithms and representations) where H
is a group of hidden order, e.g., an RSA group.

1 Introduction

Consider mappings ¢ : G — H, where the domain is the group (G,+) and
the co-domain is (H,-). A mapping v is called a homomorphism if V(g + ¢') =
¥(g) - ¥(g') for all g and ¢’ from G. A proof of knowledge of a preimage under
a homomorphism is a two-party protocol between a prover and a verifier. The
parties’ common input is a homomorphism ¢ and an element y € H. As a result
of the protocol the verifier either accepts or rejects. Informally speaking, a proof
of knowledge has the property that if a prover succeeds in making the verifier
accept with a probability larger than some threshold probability (the knowledge
error), then the prover must “know” a preimage z of y, i.e., an element x € G
such that y = ¢(z). That is, there exists an algorithm (the knowledge extractor)
for the protocol that can compute a preimage x of y given rewinding oracle
access to such a prover.

For all (computable) homomorphisms there exists a proof of knowledge: the
well known commitment-challenge-response protocol, often called X-protocol
[17,18], with binary challenges. Due to the binary challenges, the protocol has
a knowledge error of 1/2 and therefore it needs to be repeated sequentially suf-
ficiently many times to achieve a reasonably small knowledge error (i.e., a small
success probability for a cheating prover). However, some homomorphisms al-
low one to use the X-protocol with larger challenges, which results in a smaller
knowledge error. Thus, the protocol needs to be repeated only a few times or

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 154-171, 2005.
© International Association for Cryptologic Research 2005

Efficient Proofs of Knowledge of Discrete Logarithms 155

just once, which is an order of magnitude more efficient. Examples of homomor-
phisms for which this is known to be possible are for instance those underlying
the Schnorr and the Guillou-Quisquater identification schemes [32,27]. In fact,
Cramer [17] remarks that all the homomorphisms for which this is the case al-
low one to compute some information (e.g., the order of the group) from their
description that enables the knowledge extractor, together with the information
extracted from a convincing prover, to compute a preimage. Cramer calls such
homomorphisms special.

Unfortunately, many homomorphisms widely used in cryptographic proto-
cols are not known to be special and hence the most efficient proofs of knowl-
edge known for them is the X-protocol with binary challenges. Prominent ex-
amples of such homomorphisms are exponentiations ¥ (z1) = hi' and multi-
exponentiations ¢ (z1,...,2;) = h{* -...- h{" with hy,...,hy € H in hidden
order groups H, e.g., where H is a class group [7,22] or an RSA group. Such
homomorphisms are for instance the basis of recent group signature and iden-
tity escrow schemes, credential systems, and fair exchange protocols [2,1,8-10,
28,5,25,11]. In fact in these schemes, the authors often employ the X-protocol
with non-binary challenges, sometimes wrongly relying on them to be proofs of
knowledge in this setting as well.

Related Work. Girault [26] suggests an efficient proof of knowledge for discrete
logarithms in the RSA group based on the X-protocol. His approach is to publish
the order of the sub-group in which the images lies. This requires, on the one
hand, that the RSA modulus has a special form and, on the other hand, the
non-standard assumption that giving away the order of the sub-group does not
allow one to factor the RSA modulus. Also, one can no longer make use of the
RSA-trapdoor for this subgroup with this approach.

Poupard and Stern [30] describe an identification scheme based on the X-
protocol, where the private key is a discrete logarithm of a generator of a sub-
group of the RSA group. They show that from an adversary that breaks the
identification scheme, a discrete logarithm can be extracted. While their con-
struction is appropriate to prove the security of their identification scheme, their
protocol is not a proof of knowledge of a discrete logarithm in the RSA group.

The most relevant work in the field is that by Damgard and Fujisaki [21]
(based on work by Fujisaki and Okamoto [24]). They show that the X-protocol
can be used in certain cases to demonstrate knowledge of a discrete logarithm
(or representation) in hidden order groups provided that the prover is not given
the group’s order. Let us refer in the following to the Damgard and Fujisaki
scheme as the DF scheme. As pointed out and explained in detail by its au-
thors [21], the DF scheme is not a (computational) proof of knowledge accord-
ing to the standard definition [4]. Rather, it only works in a stronger definitional
setting resulting in “weak proofs of knowledge”. Technically, the DF scheme
demonstrates knowledge only over a suitable probability distribution of (multi-)
exponentiations. This distribution is enforced in a setup phase prior to the proof
protocol. While for some applications this is appropriate, it often leads to com-
plicated and error-prone proofs of security as one can no longer consider each

156 Endre Bangerter, Jan Camenisch, and Ueli Maurer

proof protocol separately (as one could with standard proofs of knowledge) but
has to analyze all of them in conjunction with each other. In fact, many authors
seem not to be aware of this fact and correspondingly the security analysis of
their applications using the DF scheme are incomplete or false.

Our Results. In this paper we provide two independent, new methods to obtain,
for the first time, efficient zero-knowledge proofs of knowledge for (multi-) ex-
ponentiations in hidden order groups H, where the order H is not known to at
least the verifier.

Our first method is based on the X-protocol. It relies on the new idea to pro-
vide auxiliary information to the verifier (and thus to the knowledge extractor)
to obtain proofs of knowledge for homomorphisms for which the X-protocol is
not known to work otherwise. The method applies to (multi-) exponentiation
homomorphisms in hidden order groups H, provided that the prover (but not
the verifier) knows the order H. The method relies on the hardness of a new com-
putational problem, which we call the pseudo-preimage problem. We prove the
pseudo-preimage problem to be hard under standard assumptions, e.g., the RSA
assumption. This result is of potential independent interest for the construction
of new cryptographic schemes.

Our second method is based on a new protocol, which we call the X-
protocol. The X t-protocol yields efficient proofs of knowledge for any (multi-)
exponentiation homomorphism in groups H with hidden order. The efficiency
of the proof depends on the smallest factor of the order of the homomorphism’s
image. Thus, we obtain for instance efficient proofs for discrete logarithm-based
homomorphisms in RSA groups whose modulus is a product of two safe primes.
Technically, we apply the ideas underlying the DF scheme and extend them to
obtain standard proofs of knowledge. As a consequence one can always use our
protocol instead of the DF scheme to obtain standard proofs of knowledge. Yet,
compared to the DF scheme, our protocol is applicable to a wider number of
settings and is also more efficient in certain application scenarios.

A Remark on the Presentation. We formulate all our new results for multi-
exponentiation vy, : Z' — H in hidden order groups H, i.e., mappings
(e, ..) =hT - B with by, ... by € H. We would like to emphasize
that the results (trivially) specialize to the practically relevant cases such as
when H is an RSA group or a class group and also to simple exponentiations
Y (x) = h*. We recall that what we call a proof of knowledge for a multi-
exponentiation homomorphism is often referred to as a proof of knowledge of a
representation.

Outline. The remainder of this paper is structured as follows: In § 2 we introduce
the basic concepts and the notation we use. In § 3 we introduce the notion of a
pseudo-preimage and the related pseudo-preimage problem, which we prove to
be hard under standard assumptions. In § 4 we review the X-protocol and its
properties and then making use of the hardness of the pseudo-preimage problem
we discuss the first of our new methods, i.e., the one based on the X-protocol
where the verifier is given auxiliary information. In § 5 we discuss our second
method which is based on the XT-protocol.

Efficient Proofs of Knowledge of Discrete Logarithms 157

2 Preliminaries

Let M be an algorithm. By y < M (x), we denote that y was obtained by running
M on input z. If M is deterministic, then this y is unique; if M is probabilistic,
then y is a random variable.

By k we denote an integer security parameter. A negligible function is a
function that, asymptotically in k, is smaller than one divided by any polynomial
in k.

We call a computational problem hard if there is a probability ensemble D(k)
on problem instances such that for any probabilistic polynomial-time algorithm,
the probability of solving the problem over choices according to D(k) is negligi-
ble. If there is a probabilistic polynomial-time algorithm that is successful over
choices D(k) with probability 1 — v(k), where v(k) is a negligible function, we
call the problem easy.

Let (G,4) and (H,-) be abelian groups, with their identity elements de-
noted 0 and 1, respectively. By |H| we denote the order of the group H, and
by |h| the order of the element h € H. We say that a group H has hidden
order if there is a description of H such that it is hard to compute a non-
zero multiple of |H|. A (group) homomorphism 1 is a mapping ¢ : G — H
such that (g1 + g2) = ¥(g1) - ¥(g2) for all g1,g2 € G. We recall that the im-
age of a homomorphism, denoted image(v), is a subgroup of its co-domain H.
In the following we assume that H is a finite group. Throughout the paper
s stands for a multi-exponentiation homomorphism 1y : Z' — H, where
(1, ..) = k- -hf"and hy, ..., by € H. We always assume that groups
and homomorphisms are computationally tractable. That is, there shall be de-
scriptions of groups and homomorphisms such that in (probabilistic) polynomial-
time one can evaluate the group operation, invert group elements, test member-
ship in the group, uniformly choose an element from the group (for finite groups),
and evaluate a homomorphism.

By a collection of homomorphisms W we refer to a (finite or infinite) set
of homomorphisms together with a probability ensemble Dy (k) on ¥. We as-
sume that there is a probabilistic polynomial-time algorithm that allows one to
chose homomorphisms ¢ according to Dy (k). Also, we consider sequences of sets
U(k)={¢Y:¢Y €W ¢:G— H, and [log(|H|)] = k}. The notion of a collection
of homomorphisms ¥ comprises as special cases sequences of homomorphisms,
where ¥ is an infinite set of homomorphisms indexed by the security parameter,
and single homomorphisms, i.e., ¥ = {¢}.

Given a binary relation R, we denote the corresponding language by Lx.
Homomorphism collections give rise to what we call a homomorphism relation

RV ={((,y),z):p €V, :G— H,xz € G,y =¢(x)} or

RW (K] ={((,y),2) : € ¥(k),¢: G — HzeGy=y)} .

Our results on (computational) proofs of knowledge are formulated with respect
to the corresponding definitions put forth by Bellare and Goldreich [4].

158 Endre Bangerter, Jan Camenisch, and Ueli Maurer
3 The Pseudo-preimage Problem

In this section we introduce the notion of a pseudo-preimage of a homomor-
phism and a related computational problem termed the pseudo-preimage prob-
lem. While the pseudo-preimage problem has not been explicitly considered in
existing work, it is implicit in the construction of all known knowledge extractors
for the X-protocol. In fact, these constructions crucially rely on the existence of
easy instances of the pseudo-preimage problem. In the following we prove that
for a large class of multi-exponentiation homomorphisms the pseudo-preimage
problem is hard.

Definition 1 (Pseudo-preimage). Consider a homomorphism ¢ : G — H
andy € H. A pseudo-preimage of y under 1 is a pair (v, w) such that y* = ¥(w),
where v is a non-zero integer and w € G . We refer to v as the exponent of the
pseudo-preimage (v, w).

Note that when 1) is not surjective, then there are pseudo-preimages (v, w)
of y € H under 1 even for elements y ¢ image(v)).

Definition 2 (Pseudo-preimage Problem). The pseudo-preimage (PP)
problem for a homomorphism) is to compute a preimage x of y under i given
a pseudo-preimage (v, w) of y under 1, with y € image(1)).

For homomorphisms that are easy to invert, the PP problem trivially is easy.
More interestingly, the PP problem is also easy for certain one-way homomor-
phisms. In fact, as we will see in § 4.1, the existence of easy instances of the PP
problem for one-way homomorphisms is key for the construction of knowledge
extractors for the X-protocol. Examples of such one-way homomorphisms are
the ones underlying the Schnorr and the Guillou-Quisquater schemes.

In the following we show that the PP problem is hard for multi-exponentia-
tions in groups for which the ROOT problem, i.e., computing roots, is hard. Let
us introduce concepts and notation used for the formulation of this result. We
recall the ROOT problem for an arbitrary abelian group H. It is to compute a
h € H such that h® = u given an integer e > 1 and a group element v € H. Next,
we define generators Dr and Dp for the ROOT and PP problem, respectively.
Let H be an arbitrary multiplicative abelian group and let [be an arbitrary
integer parameter. The generator Dg(H) works as follows: 1) Choose u €y H
and an integer e > 1 such that ged(|H|,e) = 1, whereas the distribution of e
may be arbitrary. 2) Output the ROOT problem instance (u,€).

In the definition of the generator for the PP problem we use as a subroutine
a probabilistic polynomial-time algorithm D(H, 1) with the following properties.
The algorithm D(H,1) outputs tuples (v, (wy,...,w;), (e1,...,e;)), where v is
an integer and (wy,...,w;) and (e,...,e;) are elements of Z', such that v {
(eqw1 + ... 4+ ew;) and ged(|H|,v) = 1. Apart from this, the tuples may be
distributed arbitrarily. Note that the latter condition can be fulfilled by ’Z§(H)
without being given |H|. It suffices if one can compute a At > |H| from the
description of H. Then one can, for instance, choose a v as a prime > A*.

Efficient Proofs of Knowledge of Discrete Logarithms 159

Now, the generator Dp(H, |H|,l) is as follows: 1) Choose (v, (w1,...,wy),
(e1,...,€1)) <« D(H,l) and an element h €y H. 2) Set hy = h®',... hy = h®

and define the homomorphism ¢ : Z! — H by tar(z1,...,21) = hi' ... ki
3) Set (z1,...,21) = (wyv~! (mod |H|),...,ww~! (mod |H|)) and let
y=vm(z1,...,2) =hi' - ...- 2. (Note that by construction (v, (wy,...,w;))

is a pseudo-preimage of y under v¢ps.) 4) Output the PP problem instance
((’U, (wla EEE) wl))v Y, 1/}1\/[)

Let be given computational problems P; and P» and the respective generators
D1 and Dy. We say Ps is reducible to Py, if given a probabilistic polynomial-time
solver M with non-negligible success probability for P; over choices of Dy, one
can construct a probabilistic polynomial-time solver given black box access to M
that has non-negligible success probability for P» over choices of Dy. We denote
this by P1[D1] > P2[Ds].

Theorem 1. For the generators Dr(H) and Dp(H,|H|,l) (as defined above)
we have PP[Dp(H,|H|,1)] > ROOT|Dr(H)).

Proof. Let M denote a probabilistic polynomial-time solver of the PP problem
that is successful with non-negligible probability over choices of Dp.
Given an instance of the ROOT problem (u,e) <« Dgr(H) we construct an

instance of the PP problem as follows. Choose (v', (w},...,w)), (€],...,e})) <
D(H,l). Then we set h' = ", hy = KW' ,...,h] = h'¢t and define the ho-
momorphism ¢}, : Z' — H by @\, (x1,...,2) = h™ - ... h". We set

y = wlEwitetew) i g easy to see that we have constructed an instance
(', (wh,...,w),y Y},) of the PP problem.

Now, we invoke M on input (v/, (wi,...,w}), vy, ¥),) and let us assume that
M outputs a preimage (z1,...,2) of ¥’ under ¢},. Thus we have v’ = (W'7" -
. hl'lzl)v, _ h/(ellzl-‘,-...-',-e’lzl)yl and ylv/ _ hiwi o h;wl/ _ h/(ell’wi-‘r...-‘re;wi)'

Using A = (ejw} + ...+ ejw]) — (e}z1 + €hza + ... + €]z;)v we have h'* = 1. By
assumption v { (ejw] +...+ejwj) and thus A # 0, i.e., A is a non-zero multiple of
the order of A'. As b’ and u have the same order, \ is also a multiple of the order
of u. This allows us to compute the e-th root of u as follows. We note that A is
not necessarily co-prime to e. However, we have by assumption ged(e, |H|) = 1.
Thus we can easily find a multiple A" of |u| that is co-prime to e, if we set X' = A
and compute X' = X/ ged(e, ') until ged(e, \') = 1. Finally we compute 1/e
modulo X to obtain u!'/€.

It remains to show that the distribution of instances (v, (w}, ..., w)),y’, ¥})
of the PP problem constructed above is equal to the distribution of instances gen-
erated by Dp(H, |H]|,1). From y¥ = tpr(wy, ..., w;) and ged(v, |H|) = 1 we have
that the image element y is uniquely determined by ¢y, and (v, (w1, ..., w;))
and the same is true for ((v/,(wi,...,w;),y’,¥),). Hence, it suffices to show
that the distribution of v/, (wf,...,w}), and ¥, is indistinguishable from the
distribution of the corresponding quantities chosen by Dp(H,|H]|,1). By con-
struction the distribution of tuples (v', (wf,...,w]), (e},...,e])) chosen above is
the same as the one of those output by Dp(H, |H|,1). It remains to see that ¢},
and s have the same distribution. To this end, note that h' = u", where u

160 Endre Bangerter, Jan Camenisch, and Ueli Maurer

is a uniform random element of H. From ged(v, |[H|) = 1 it follows that A’ is
uniformly distributed in H, and thus has the same distribution as the element
h chosen by the generator Dp(H, |H]|,1). The claim now follows immediately, as
the homomorphism), is constructed from A’ in the same way as is ¥ from h
by the generator Dp(H,|H]|,1). O

Theorem 1 implies that the PP problem is hard for multi-exponentiations
in groups for which the ROOT problem is hard. This is widely assumed to
be the case for RSA groups [31] and class groups [7]. Moreover, Damgard and
Koprowski [22] have shown that if a group has hidden order and if the order of
that group contains a large prime factor, then the ROOT problem is hard for
generic algorithms.

Corollary 1. There is a probabilistic polynomial-time algorithm M such that
the probability distributions ((v, (wy,...,w;)),y,¥nm) «— Dp(H,|H|,1) and
((’U, (wla sy wl))v Y, 7v/}M) — M(Hv l) are equal.

Corollary 1 follows from the proof of Theorem 1. It implies that instances of
the PP problem as output by Dp(H, |H|,1)) do not reveal any computational
information on the order of H.

4 Efficient Proofs of Knowledge
Using Auxiliary Pseudo-preimages

This section presents a new technique that uses the hardness of the pseudo-
preimage problem to yield proofs of knowledge for multi-exponentiations vy,
in groups for which the ROOT problem is hard (e.g., RSA groups and class
groups). The proofs are based on the X-protocol. The technique requires that
the honest prover is given the order of H, while it ensures that the verifier does
not learn the order of H. The resulting proofs are efficient, they achieve in fact
an arbitrarily small knowledge error in a single execution of the X-protocol.

4.1 Preliminaries: The Y-Protocol and Its Properties

In this section we review known properties of the X-protocol. For a detailed
discussion we refer to Cramer [17] and Damgard [20].

Definition 3 (X-Protocol). Let ¥ be a collection of homomorphisms with a
finite domain and let ((¢,y),z) € R[W(k)]. Let (P,V) be a pair of interactive
machines with common input (v, y), the private input of P being x. A X-protocol
with challenge set C={0,...,c*(k)} is (P, V') performing the following joint com-
putation.

1. P: Choose r €y G, compute t =(r), and send t to V.

2. V: Choose ¢ €y C and send ¢ to P.

3. P: Set s=r+cx and send s to V.

4. V: If (s) = ty© output 1; otherwise output 0.

Efficient Proofs of Knowledge of Discrete Logarithms 161

The X-protocol is honest-verifier zero-knowledge but not known to be zero-
knowledge unless the cardinality of C is polynomially bounded in k. In case
one requires real zero-knowledge or the even stronger notion of concurrent zero-
knowledge, one can apply one of numerous constructions, e.g., [19,23,15]. Most
notably, the technique by Damgard [19] achieves concurrent zero-knowledge at
almost no computational and communicational overhead. In Definition 3, the X-
protocol is only defined for homomorphisms with a finite domain. However, there
is a standard variant of the X-protocol that is defined for multi-exponentiations
Y+ Z8 — H (which have an infinite domain). That variant of the protocol is
statistical zero-knowledge instead of perfect zero-knowledge; apart from this, the
above comments and results stated in the following are valid for both variants
of the X-protocol.

We call ¥ a (collection of) special homomorphisms, if there is a probabilistic
polynomial-time algorithm M that on input any (v, y) € Lz outputs a pseudo-
preimage (v,w) of y under ¢. The algorithm M is called a pseudo-preimage
finder (for ¥). An example of a special homomorphism is the one used in the
Schnorr protocol, i.e., the mapping ¢ : Z;, — Zj, defined by (x) = h* with
g | (p—1) and |h| = ¢. From the description of this mapping, the pseudo-
preimage finder can derive (¢,0). Now y? = 1 = ¢(0) for all y € image(%))
and therefore the pair (g,0) is a pseudo-preimage of y under 1. More generally,
homomorphisms ¢ : G — H for which a multiple of the order image(1)) can be
efficiently computed from the description of i are easily seen to be special. An
example of a special homomorphism with hidden order co-domain is the mapping
Y ZY — 77 given by 1(x) = x¢, where e is an integer, which is used in the
Guillou and Quisquater [27] scheme. For such mappings we have y¢ = ¢(y) and
hence (y, e) is a pseudo-preimage of y under).

To simplify the subsequent discussion we make the following assumption
on collections ¥ and pseudo-preimage finders M. For (v,y) € Lgrwm) and
(v,w) «— M(t,y) we assume that the exponents v are all equal for a given
value of the security parameter k, i.e., that v = v(k). It is straightforward to
generalize our discussion and results to the setting where this assumption is not
made. Moreover, all known examples of (collections of) special homomorphisms
fulfill this assumption.

Theorem 2. The Y-protocol with challenge set C = {0,...,c*(k)} is a proof of
knowledge for R[¥],

(a) with knowledge error 1/2 if ¢t (k) = 1.
(b) with knowledge error 1/(ct+1) if ¥ is a collection of special homomorphisms

and ct(k) < p(k), where p(k) is the smallest prime dividing the pseudo-
preimage exponent v(k) output by a pseudo-preimage finder M for .

Pseudo-preimages have the property that given two (appropriate) pseudo-
preimages of y under 1 one can compute a preimage of y as follows.

Lemma 1 (Shamir’s Trick). Let be given two pseudo-preimages (vi,w;1) and
(va,we) of y for . If ged(vy,va) = 1, then x = awy + bwy is a preimage of
y under v, where a and b are integers (computed using the extended Euclidean
algorithm) such that avy + bve = 1.

162 Endre Bangerter, Jan Camenisch, and Ueli Maurer

Proof (Theorem 2). Let us describe a knowledge extractor for the X-protocol.
Let P* be an arbitrary prover that is successful in the YX-protocol on common
input (¢,y) € Lgw) and arbitrary private input with probability ¢ > & =
1/(ct +1). It is well known that given rewinding access to P*, one can obtain a
pair of tuples (¢, ¢, s) and (¢, ¢, s") that fulfill the verification equation in step 4
of the X-protocol, with ¢ = t’ and ¢ # /. We refer to this property of the X-
protocol as the collision extractibility property. For a detailed analysis of this
property we refer to Damgard [20]. Now, using Ac = ¢ — ¢ and As = s — ¢/,
where wlog we assume Ac > 0, one gets

Yo = 9(Ds). (1)

In the case where the challenge set is C = {0,1} we have Ac = 1 and thus
y = ¥(As). This proves part (a) of the theorem. To prove part (b) we may
assume that v is special. Now, we in invoke a pseudo-preimage finder for ¢
on input (¢,y) to obtain a pseudo-preimage (v,w) of ¢ under y. Using that
Ac < ¢t (k) and the assumption ¢t (k) < p(k), it follows that ged(v, Ac) = 1,
and by Lemma 1 we can compute a preimage of y under 1. a

We call the knowledge extractor described in the proof of Theorem 2 the
standard knowledge extractor (for the X-protocol). The standard knowledge ex-
tractor, informally speaking, is the “only knowledge extractor that is known for
the X-protocol”. More precisely, Cramer [17] points out that all existing knowl-
edge extractors for the X-protocol with a challenge set of cardinality larger than
two use the collision extractability property, the existence of pseudo-preimage
finders for special homomorphisms, and Shamir’s trick to compute a preimage.

It is worthwhile to note that the standard knowledge extractor is only suc-
cessful when the instances (1) of the PP problem (obtained from the prover P*)
are easy to solve. In fact, we can distinguish two classes of PP instances that
are easy to solve. One class consists of PP problem instances ((v,w),y,) with
v = 1, where w is a preimage of y under ¢, in which case the PP problem is
trivial to solve. The other class consists of easy PP problem instances for special
homomorphisms. In fact, let ¢ be a special homomorphism, y € image(¢), and
(v, w) be the pseudo-preimage output by a pseudo-preimage finder for ¢). Then
by Lemma 1 all instances ((v/,w’),y,) of the PP problem with ged(v,v") =1
are easy. The former class of easy instances underlies the proof of part (a) and
the latter the proof of part (b) of Theorem 2.

For non-special homomorphisms, such as multi-exponentiations in groups
with hidden order, the PP problem instances (1) extracted from the X-protocol
with non-binary challenge set are not known to be easy. Hence, the standard
knowledge extractor does not work for non-special homomorphisms.

4.2 XY -Protocol with Auxiliary Pseudo-preimages: Basic Idea

Our idea in the following is to enhance the common input of the X-protocol
by a pseudo-preimage. That is, we consider the X-protocol on common input
(¥,y) and a pseudo-preimage (v, w) (of y under). The prover’s private input

Efficient Proofs of Knowledge of Discrete Logarithms 163

remains to be a preimage x (of y under). This allows us to obtain proofs of
knowledge for non-special homomorphisms using the X-protocol with challenge
sets of cardinality larger than two.

Let us refer to the pseudo-preimage in the common input as an “auxiliary
pseudo-preimage” . In fact, auxiliary pseudo-preimages enable us to use the stan-
dard knowledge extractor for non-special homomorphisms. This claim is easy to
verify: The common input and thus the auxiliary pseudo-preimage is by defini-
tion given to the knowledge extractor [4]. We recall that the standard knowl-
edge extractor (described in §4.1) first computes a pseudo-preimage (Ac, As)
from the prover P*. It then uses a second pseudo-preimage to compute the
desired preimage using Shamir’s trick. For special homomorphisms the second
pseudo-preimage can be obtained using a corresponding pseudo-preimage finder.
In our approach, this second preimage is the auxiliary preimage contained in the
common input. In the following we formalize this idea and discuss under what
conditions it can be used to obtain practically useful proofs of knowledge.

Definition 4. Let v(k) be an arbitrary integer parameter and ¥ a collection
of homomorphisms. We call RV W] = {((«,y, (v(k),w)),z) : ¢ € (k)9 :
G — H,x € G,y = ¢(x), and (v(k),w) is a pseudo-preimage of y under ¥} a
pseudo-preimage relation.

Note that while in Definition 3 we describe the X-protocol only for homomor-
phism relations, it is clear it is also defined for pseudo-preimage relations R(?) 4
(i-e., where the common input is (¢, y, (v,w)) € Lz [g))-

Corollary 2. The X -protocol with challenge set C = {0, ..., cT(k)} is a proof of
knowledge for the pseudo-preimage relation R(*) [Z] if the smallest prime factor
of v(k) is larger than ¢ (k). The knowledge error is 1/(c* (k) + 1).

Corollary 2 follows from the proof of Theorem 2. Let us consider a collection
of homomorphisms ¥, a homomorphism relation R[¥], and the pseudo-preimage
relation R(")[#]. We observe that a proof of knowledge for a ((1,y),z) € R[¥]
and a proof of knowledge for ((¢,y, (v,w)),z) € RW[¥] both are proofs of
knowledge of a preimage x of y under ¢ (possibly with different knowledge
errors). Thus to prove knowledge of a preimage under a homomorphism one
can use proofs of knowledge for pseudo-preimage relations. In the following we
pursue this idea of using pseudo-preimage relations for proving knowledge of a
preimage of a homomorphism. We refer to a proof of knowledge for a collection
of homomorphisms ¥ using a pseudo-preimage relation R [#] as a proof of
knowledge in the auziliary setting and call R(") [#] anauziliary relation.

A desirable property of the auxiliary setting is that it allows one to obtain
very efficient proofs of knowledge for any homomorphism collection ¥. In fact,
using the X-protocol in the auxiliary setting, we can achieve an arbitrary small
knowledge error for any ¥. Therefore, we use the auxiliary relation R(*) [#], where
v(k) is prime, and the X-protocol with the challenge set C = {0,. .., (v(k) —1)}.
By Corollary 2, the resulting knowledge error is 1/v(k), which can be made
arbitrarily small by choosing v(k) appropriately. This is in contrast to existing
proofs of knowledge for homomorphisms (i.e., not in the auxiliary setting) based

164 Endre Bangerter, Jan Camenisch, and Ueli Maurer

on X-protocol, where the knowledge error can not be made arbitrarily small and
is in fact often quite large (see Theorem 2).

Our discussion so far was focused on obtaining proofs of knowledge of a
preimage. We have seen that within this focus proofs in the auxiliary setting
and conventional proofs (i.e., proofs for homomorphism relations without using
auxiliary pseudo-preimages) are equivalent and thus one can use the former in-
stead of the latter. However, if we widen our focus, then the auxiliary setting is in
general not equivalent to the conventional setting. The reason is that providing
auxiliary pseudo-preimages might reveal information that is not available other-
wise. For instance, the auxiliary pseudo-preimage could suddenly allow a verifier
to compute a preimage from the common input to the X-protocol. Thus, in the
following we need to additionally consider what (computational) information the
prover and the verifier obtain from an auxiliary pseudo-preimage.

4.3 XY-Protocol with Auxiliary Pseudo-preimages:
Applied to Multi-exponentiations in Hidden Order Groups

In the following we look at proofs of knowledge in the auxiliary setting for
multi-exponentiations 1y; : Z! — H in groups H for which the ROOT problem
is hard. In particular, we consider the information the prover and the verifier can
derive from an auxiliary pseudo-preimage. It turns out that, on the one hand,
the verifier does not get any additional (computational) information on |H| and
the preimage x. On the other hand, we see that |H| is required by the (honest)
prover.

Let us first consider a (possibly dishonest) verifier in the auxiliary setting.
The results from §3 allow us to exclude that the verifier can either compute
a preimage or information about the order of H from an auxiliary pseudo-
preimage. In fact, by Theorem 1 (under the ROOT assumption) it is impossible
for the verifier to compute a preimage from a pseudo-preimage, i.e., to solve the
PP problem. Concerning the order of H, Corollary 1 implies that instances of the
PP problem for multi-exponentiations in a group H, and thus the common input
to the X-protocol in the auxiliary setting, can be generated without knowing the
order of H. Hence, an auxiliary pseudo-preimage gives the verifier no advantage
in computing the order of H either. Finally, as the X-protocol is (honest verifier)
zero-knowledge (c.f. §4.1), the verifier does not get an advantage in computing a
preimage or information on the order of H from running the protocol with the
prover.

Next, we consider the information the (honest) prover learns on |H| in the
auxiliary setting. We note that the prover in addition to the common input is also
given a preimage as private input. It is easy to see that from the honest prover’s
input (Yar,y, (v,w),z) € R™ (where 15;(z) = h?), one can compute the order
of h (assuming v { w). Moreover, in certain groups, such as RSA groups with
moduli being a safe-prime product, this allows one to factor the modulus and to
obtain the group’s order. For the case where s is a multi-exponentiation, we
don’t know how to show that the (honest) prover obtains information on |H].
But neither can we prove that it does not get information on |H|. Thus, unless
we want to put forth a corresponding (and “rather questionable”) computational

Efficient Proofs of Knowledge of Discrete Logarithms 165

assumption, we should expect that the prover can compute |H|. Moreover, we
only know how to generate the protocol’s input in the auxiliary setting, i.e.,
(Yar,y, (v,w), z) when the order of H is given. (For a possible way to generate
the input we refer to the description of the PP instance generator Dp in §3.)
Thus, in the context of an application where the input to the X-protocol in the
auxiliary setting is generated by the (honest) prover, then the (honest) prover
explicitly needs to be privy to |H].

Finally, we note that if one uses our auxiliary setting to obtain a proof of
knowledge as a sub-protocol in some application, one needs to consider the infor-
mation an auxiliary pseudo-preimage reveals in the context of the whole system—
in the same way one has to do this for the image y itself. Such an analysis,
however, must be outside the scope of this paper.

A property of practical interest of proofs of knowledge in the auxiliary set-
ting is that one can use techniques from groups with known order for proving
relations among preimages of different multi-exponentiations [6, 14]. As an ex-
ample one can prove knowledge of two discrete logarithms of two different group
elements with respect to different bases and also that the discrete logarithms
are equal. That is, using notation introduced by Camenisch and Stadler [13], on
can realize a proof PK({a1, a2} : y1 = h{* Ay2 = hg? Aas = as}. The approach
to obtain such an equality proof in the auxiliary setting is to choose the auxil-
iary pseudo-preimage (v, w) to be the same for (yi,v¥n1(x1) = hi™') and for
(y2, ¥ar 2(x2) = ho™?). Using this approach it is straightforward to verify that
the knowledge extractor indeed is able to find a value x = log,, y1 = log, ¥2.

5 The ¥1t-Protocol

In this section we introduce a new protocol that we call the X +-protocol. The
Y *-protocol is a an efficient zero-knowledge (computational) proof of knowl-
edge for multi-exponentiations s in arbitrary groups H and, in particular, in
groups with hidden order. The knowledge error of the X" -protocol is governed
by the smallest prime in |image(¢as)|. The computational validity property of
the X *-protocol holds under the Strong RSA assumption [3,24] and under the
computational binding property of the commitment scheme used in the protocol.
The X*-protocol is a proof of knowledge regardless of whether the prover or the
verifier knows the order of H.

Technically, the construction of the X ™-protocol takes up and extends ideas
underlying the DF scheme (c.f. § 1) to obtain standard proofs of knowledge
according to [4]. In fact, the X T-protocol can always be used to replace the DF
scheme to obtain standard proofs of knowledge.

Yet, compared to the DF scheme, the X T-protocol works under weaker con-
ditions and hence can be used more broadly. In fact, when applied to a multi-
exponentiation ¢y : Z! — H, the DF scheme requires that H is a group (with
hidden order) for which the generalized root assumption! holds, and that the

! The assumption is that given h €y H it is hard to compute an integer e # 1 and
u € H such that u® = h.

166 Endre Bangerter, Jan Camenisch, and Ueli Maurer

prover must not know the order of H. The X T-protocol needs neither of these
requirements. Additionally, in certain application scenarios the X T-protocol is
more efficient than the DF scheme. We recall that the DF scheme consists of two
parts. A rather inefficient setup part that is run once and an efficient proof of
knowledge part using the X-protocol, which is typically executed several times.
The computational cost of the X¥-protocol, which is an atomic protocol, is
roughly three times the cost of the X-protocol. As a consequence, the XT-
protocol is more efficient than the DF protocol in settings when few proofs of
knowledge are required, while the DF scheme is more efficient when one requires
many proofs of knowledge.

5.1 Preliminaries

The Strong RSA assumption [3,24] states that there is a generator Dgs(k) such
that given (n,g) «— Ds(k), with g € Z}, it is hard to compute a u € Z% and an
integer e > 1 fulfilling u® = g. In the following we assume that n = (2p+1)(2¢+1)
with p, ¢, (2p+ 1), and (2¢ + 1) being primes, and that g € QR,,, where QR,, is
the subgroup of quadratic residues of Z .

We define a generator Dy(l, k) that outputs multi-exponentiations 9 : Z! —
QR,, as follows: 1) Choose (n, g) < Ds(k). 2) Fori=1,...,(l—1) choose p; €y
[0,2%|n/4]]. 3) Set g; = g”i. 4) Define the multi-exponentiation ¥(zy,...,z;) =

Ti—1

g1t ... g1 - g™ 5) Output (¥, n). Using this notation the following holds.

Theorem 3. Under the Strong RSA assumption, it is hard given (n,9) «—
Dy (1, k) to compute ay € Z¥, and a pseudo-preimage (v, (w1, ...,w;)) of y under
¥ such that v # 1 and vt w; for some i€ {1,...,1}.

Theorem 3 underlies the construction of the knowledge extractor of the DF
scheme as well as the one for our X "-protocol. A similar statement was recently
proved by Camenisch and Shoup [12, Theorem 3].

Let commit(-,-) be a computationally binding and statistically hiding com-
mitment scheme such as the one by Pedersen [29]. To commit to value v, one
computes C' « commit(vy,r), where r is a random value. To open the commit-
ment C, one reveals v and r to a verifier, who checks that C' = commit(-y, r).

5.2 The X *+-Protocol and Its Properties

In this section we define the X *-protocol. For simplicity, we describe the protocol
only for simple-exponentiations 1y (z) = h* with h € H. This allows us to focus
on the key ideas underlying the protocol construction. It is a straightforward
exercise to extend the definition of the protocol and the results given below to
multi-exponentiations ¥as(x1,...,2;) = hi' -...- k)" with hy,...,hy € H. Let
Az = Az(k) and [, = 1,(k) denote integer parameters.

Definition 5 (Xt-Protocol). Let ¥ be a collection of simple-exponentiation
homomorphisms and ((Yar,y),z) € R[¥] with x € [—Ax,+Ax]. Let (P, V) be
a pair of interactive Turing machines with common input (Yar,y), the private
input of P being x. A X ¥ -protocol with challenge set C ={0,...,c"} consists of
(P, V) performing the joint computation described in Fig. 1.

Efficient Proofs of Knowledge of Discrete Logarithms 167

Note that z € [-Az,+Axz] in Definition 5 is necessary for the X*-protocol
to be statistical zero-knowledge (i.e., one needs to know how large x can be
to blind z in the messages sent by the prover). The tightness of the statistical
zero-knowledge property of the X T-protocol is controlled by the parameter ..

Next, we sketch the key features underlying the proof of knowledge and
zero-knowledge property of the X *-protocol. Let us therefore consider the XT-
protocol on input ((¥ar,y),x).

First, we look at the proof of knowledge property, i.e., the features that allow
us to construct a knowledge extractor. In step 1, the verifier chooses a multi-
exponentiation ¥(-, -) by executing the steps of the generator Dy(2, k) (as defined
in the previous section). The description of 9(-,) is sent to the prover. In step
2, the prover first computes y =9(z,x), where x is the preimage of y under ¥y,
and x is random value to ensure that y does not reveal information about z.
Now, we observe that the remainder of step 2 and steps 3, 4, and 7 essentially
correspond to two X-protocols run in parallel for each of the homomorphisms v
and 9. (For the matter of this observation, we may forget about the commitment
commit(-, -) used in steps 2 and 7, and assume that the message sent at the end
of step 2 is (¢,t).) These two X-protocols are run in parallel as one would do in
a proof of equality in groups of known order to demonstrate that the preimage
of y equals the first component of the preimage of y (cf. [16]). In fact, in all
evaluations of ¥y and ¥ (see steps 2 and 7) the argument of ¢5; and the first
argument of ¥ are equal. This allows us to obtain a knowledge extractor for the
X+ -protocol as follows. As the X-protocol uses essentially the same verification
equations (step 7) as the X F-protocol, the knowledge extractor can retrieve from
a convincing prover a pseudo-preimage (Ac, As) of y under ¥y and a pseudo-
preimage (Ac, (As,As)) of y under ¢. That is, we have

Yoo = Yar(As) = B4 (2)
yAe = 0(As, As) = gD gt (3)

As we run the two Y-protocols in parallel as described above, the same integers
Ac and As occur in (2) and (3). Now, as ¢ was chosen according to Dy(2, k),
Theorem 3 implies that in (3) we must have Ac | As and Ac | As. Thus, (if we,
e.g., additionally assert that gcd(Ac, | image(tpar)|) = 1) the knowledge extractor
can compute a preimage x = As/Ac of y under ¥ys. Finally we note, that the
X+ -protocol is not a proof of knowledge for the multi-exponentiation 9J; the role
of ¥ is just to enable the construction of the knowledge extractor for ;.

It remains to discuss the statistical zero-knowledge property of the X -
protocol. We have seen that for the knowledge extractor to work, the prover
needs to provide to the verifier the values (¢, s) and (t, (s,s)) that fulfill the ver-
ification equations in step 7. As these are the same verification equations as for
the X-protocol, we can use the standard zero-knowledge simulation technique for
the X-protocol, i.e., given (¢ps,y) and (¥,y) we can simulate tuples (¢, ¢, s) and
(t, ¢, (s,s)) fulfilling the respective verification equations. This approach works
fine for given (var,y) and (9,y), respectively. However, in the X+ -protocol (9, y)
are chosen within the protocol. Thus, for the X *-protocol to be zero-knowledge,

168 Endre Bangerter, Jan Camenisch, and Ueli Maurer
P((¢ar,y),) V(¥ar,y)

1.
(n,9) < Ds(k)
p €u [0,2"|n/4]]; g1 =g” mod n
I(z1,22) = g7' ¢ mod n
2. (g1, 9.m)
x €u [0, [n/4]]; y=9(z,x)
r ey [<25 ¢t Ar, 2= et Ay t= b (r)
reu [—2%ctn/4]], 25 ¢t [n/4]]; t=9(r,r)
Choose ry; y = commit(y, ry)

Choose 7¢; t = commit(t, rt)

G.ED) .
cev C={0,...,ct}
4 - c
s=r+cx
sS=r+4cx
(sys) R 5
6. p

If g1 # g” (mod n), then halt.
((t7 Tt), (y7 7"Y)) 7.

If the equalities

y = commit(y, ry); t = commit(t, 7)
Y (s) = tyS; 9(s,s) = ty® (mod n)
hold, then output 1; else output 0

Fig. 1. Description X *-Protocol.

we additionally need to simulate the choices of y. Choices of y can be easily
simulated when ¥(x1, z2) = ¢7'¢*? is formed correctly, i.e., g1 € (g). Then, over
the choices of x, y = d(x,x) = ¢g7¢g* is a uniform random element in (g) (we
recall that x €y [0, [n/4]] is statistically close to uniform on Z,). However, a
dishonest verifier could choose a malformed ¥ such that y = J(x,x) would leak
information about the preimage x and thus ruin the zero-knowledge property
of the X T-protocol. To overcome this problem, we use the commitment scheme
commit(-, -) as follows. In step 2, the prover does not know whether ¢ is correctly
chosen, and thus only sends the commitments to t and y instead of these values
themselves. Then, in steps 5 and 6 the verifier convinces the prover that 9 is
correctly formed., i.e., that g1 € {g). To this end, it sends the discrete logarithm

Efficient Proofs of Knowledge of Discrete Logarithms 169

p of g1 with respect to g to the prover. Finally, when the prover is convinced
of the correctness of ¥, it opens the commitments from step 2 and reveals the
values t and y. It is important that the verifier reveals the discrete logarithm p
only after the prover has answered the challenge (steps 3 and 4). This is because
for Theorem 3 to be applicable in the construction of the knowledge extractor,
As and As in (3) and thus s and s in step 4 of the protocol need to be computed
by the prover without being given the discrete logarithm p. (In fact, Theorem 3
does not hold when one is given the discrete logarithms (with respect to some
base element) of the g; defining ¥).

Note that the simulator sketched above only works when the cardinality of
C is bounded by some polynomial in the security parameter. This is because the
simulator needs to be able to guess the challenge value for which it computes
the simulated view. However, applying Damgard’s technique [19], we turn the
Y t-protocol into a concurrent-zero knowledge protocol simply by additionally
committing to ¢ in step 2 and correspondingly open the commitment in step 6.

Now, along the lines sketched above one can prove the following theorem.

Theorem 4. Let ¥ be a collection of simple-exponentiation homomorphisms
and ¢ (k) be a positive integer parameter such that for any vy € W(k), ¢ (k)
is smaller than the smallest prime dividing |image(¢ar)|. Then the X -protocol
with challenge set C = {0,...,c¢T(k)} is a computational proof of knowledge
for R[¥]. The computational validity property holds under the computational
binding property of the commitment scheme and the Strong RSA assumption.
The knowledge error is 1/|C| + 1/p(k), where p(-) is an arbitrary polynomial.

Let us conclude with a technical remark. Consider the DF scheme and the
Y+_protocol computed for, e.g., common input a simple-exponentiation
Y (z) = h* and an image element y. We note that the knowledge extractors
of both schemes rely on obtaining a pseudo-preimage (Ac, As) of y under vy,
i.e., y©¢ = h®* such that the divisibility Ac | As (which allows one to compute
a preimage of y) holds. (In fact, the X T-protocol can guarantee the divisibility
under weaker conditions.) Technically, this is the reason why the X*-protocol
works in all cases where the DF scheme is known to work. In particular, the XT-
protocol can also be used to obtain so called interval or range proofs [5]. Finally,
the DF scheme is often considered under different conditions than formulated in
Theorem 4, allowing one, e.g., only to prove that one knows b and z such that
y = bh* with b? = 1. Given the foregoing observation, it is clear that such proofs
can also be obtained using the X *-protocol.

References

1. G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures.
In Proc. 6th ACM Conference on Computer and Communications Security, pp.
138-146. ACM press, Nov. 1999.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology —
CRYPTO 2000, vol. 1880 of Lecture Notes in Computer Science, pp. 255-270.
Springer Verlag, 2000.

170

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Endre Bangerter, Jan Camenisch, and Ueli Maurer

N. Bari¢ and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Advances in Cryptology — EUROCRYPT °97, vol. 1233
of LNCS, pp. 480-494. Springer Verlag, 1997.

M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology — CRYPTO 792, vol. 740 of Lecture Notes in Computer Science, pp.
390—420. Springer-Verlag, 1992.

F. Boudot. Efficient proofs that a committed number lies in an interval. In Ad-
vances in Cryptology — EUROCRYPT 2000, vol. 1807 of Lecture Notes in Computer
Science, pp. 431-444. Springer Verlag, 2000.

S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In Advances in Cryptology — EUROCRYPT ’97, vol. 1233 of Lecture Notes in
Computer Science, pp. 318-333. Springer Verlag, 1997.

J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal Of Cryptology, 1(2):107 — 118, 1998.

J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Advances in Cryp-
tology — EUROCRYPT 2001, vol. 2045 of LNCS, pp. 93-118. Springer Verlag,
2001.

J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed
verifiers. In Advances in Cryptology — CRYPTO 2001, vol. 2139 of LNCS, pp.
388-407. Springer Verlag, 2001.

J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In Advances in Cryptology — CRYPTO
2002, vol. 2442 of LNCS, pp. 61-76. Springer Verlag, 2002.

J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
In Advances in Cryptology — ASIACRYPT 98, vol. 1514 of LNCS, pp. 160-174.
Springer Verlag, 1998.

J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology — CRYPTO 2003, vol. 2729 of
LNCS, pp. 126-144, 2003.

J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Advances in Cryptology — CRYPTO ’97, vol. 1296 of Lecture Notes in Computer
Science, pp. 410-424. Springer Verlag, 1997.

J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Ziirich, 1998. Diss. ETH No. 12520,
Hartung Gorre Verlag, Konstanz.

R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge.
pp- 235-244. ACM Press, 2000.

D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology — CRYPTO °92, vol. 740 of Lecture Notes in Computer Science, pp.
89-105. Springer-Verlag, 1993.

R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocol. PhD
thesis, University of Amsterdam, 1997.

R. Cramer and I. Damgard. Zero-knowledge proof for finite field arithmetic, or:
Can zero-knowledge be for free? In Advances in Cryptology — CRYPTO ’98, vol.
1642 of Lecture Notes in Computer Science, pp. 424—441, Berlin, 1998. Springer
Verlag.

I. Damgard. Efficient concurrent zero-knowledge in the auxiliary string model.
In Advances in Cryptology — EUROCRYPT 2000, vol. 1807 of Lecture Notes in
Computer Science, pp. 431-444. Springer Verlag, 2000.

Efficient Proofs of Knowledge of Discrete Logarithms 171

20. I. Damgard. On sigma-protocols. Lecture Notes, 2002.

21. I. Damgard and E. Fujisaki. An integer commitment scheme based on groups with
hidden order. In Advances in Cryptology — ASIACRYPT 2002, vol. 2501 of LNCS.
Springer, 2002.

22. I. Damgard and M. Koprowski. Generic lower bounds for root extraction and sig-
nature schemes in general groups. In Advances in Cryptology — EUROCRYPT’ 02,
vol. 2332 of Lecture Notes in Computer Science, pp. 256271 Springer Verlag, 2002.

23. C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In Proc. 30th
Annual ACM Symposium on Theory of Computing (STOC), 1998.

24. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology — CRYPTO °97, vol. 1294 of
Lecture Notes in Computer Science, pp. 16-30. Springer Verlag, 1997.

25. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In Advances in Cryptology —
EUROCRYPT 98, vol. 1403 of LNCS, pp. 32-46. Springer Verlag, 1998.

26. M. Girault. An identity-based identification scheme based on discrete logarihtms
modulo a composite number. In Advances in Cryptology — EUROCRYPT ’90, vol.
473 of Lecture Notes in Computer Science, pp. 481-486. Springer-Verlag, 1991.

27. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology — EUROCRYPT ’88, vol. 330 of Lecture Notes in Computer Science,
pp. 123-128. Springer Verlag, 1988.

28. P. MacKenize and M. K. Reiter. Two-party generation of DSA signatures. In
Advances in Cryptology — CRYPTO 2001, vol. 2139 of LNCS, pp. 137-154. Springer
Verlag, 2001.

29. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology — CRYPTO ’91, vol. 576 of Lecture Notes in
Computer Science, pp. 129-140. Springer Verlag, 1992.

30. G. Poupard and J. Stern. Security analysis of a practical “on the fly” authentication
and signature generation. In Advances in Cryptology — EUROCRYPT ’98, vol. 1403
of Lecture Notes in Computer Science, pp. 422-436. Springer Verlag, 1998.

31. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126, Feb.
1978.

32. C. P. Schnorr. Efficient signature generation for smart cards. Journal Of Cryptol-
ogy, 4(3):239-252, 1991.

Efficient k-Out-of-n Oblivious Transfer Schemes
with Adaptive and Non-adaptive Queries

Cheng-Kang Chu and Wen-Guey Tzeng

Department of Computer and Information Science,
National Chiao Tung University,
Hsinchu, Taiwan 30050
{ckchu,tzeng}@cis.nctu.edu.tw

Abstract. In this paper we propose efficient two-round k-out-of-n obliv-
ious transfer schemes, in which R sends O(k) messages to .S, and S sends
O(n) messages back to R. The computation cost of R and S is reasonable.
The choices of R are unconditionally secure. For the basic scheme, the se-
crecy of unchosen messages is guaranteed if the Decisional Diffie-Hellman
problem is hard. When k = 1, our basic scheme is as efficient as the most
efficient 1-out-of-n oblivious transfer scheme. Our schemes have the nice
property of universal parameters, that is each pair of R and S need nei-
ther hold any secret key nor perform any prior setup (initialization). The
system parameters can be used by all senders and receivers without any
trapdoor specification. Our k-out-of-n oblivious transfer schemes are the
most efficient ones in terms of the communication cost, in both rounds
and the number of messages.

Moreover, one of our schemes can be extended in a straightforward way
to an adaptive k-out-of-n oblivious transfer scheme, which allows the re-
ceiver R to choose the messages one by one adaptively. In our adaptive-
query scheme, S sends O(n) messages to R in one round in the commit-
ment phase. For each query of R, only O(1) messages are exchanged and
O(1) operations are performed. In fact, the number k of queries need
not be pre-fixed or known beforehand. This makes our scheme highly
flexible.

Keywords: k-out-of-n Oblivious Transfer, Adaptive Oblivious Transfer

1 Introduction

Oblivious transfer (OT) is an important primitive used in many cryptographic
protocols [GV87,Kil88]. An oblivious transfer protocol involves two parties, the
sender S and the receiver R. S has some messages and R wants to obtain some
of them via interaction with S. The security requirement is that S wants R to
obtain the message of his choice only and R does not want S to know what
he chooses. The original OT was proposed by Rabin [Rab81], in which S sends
a message to R, and R gets the message with probability 0.5. On the other
hand, S does not know whether R gets the message or not. Even, et al. [EGLS85]
suggested a more general scheme, called 1-out-of-2 OT (OT3). In this scheme, S

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 172-183, 2005.
© International Association for Cryptologic Research 2005

Efficient k-Out-of-n Oblivious Transfer Schemes 173

has two messages m1 and me, and would like R to obtain exactly one of them.
In addition, S remains oblivious to R’s choice. Brassard, et al. [BCR86] further
extended OT3 to 1-out-of-n OT (OT}) for the case of n messages.

Oblivious transfer has been studied extensively and in many flavors. Most
of them consider the case that R chooses one message. In this paper we are
concerned about the case that R chooses many messages at the same time. A
k-out-of-n OT (OTE) scheme is an OT scheme in which R chooses k messages at
the same time, where k < n. A straightforward solution for OT% is to run OT},
k times independently. However, this needs k times the cost of OT. The com-
munication cost is two-round, O(k) messages from R to S, and O(kn) messages
from S to R even using the most efficient OT? schemes [NP01,Tze02].

Oblivious transfer with adaptive queries (Adpt-OT) allows R to query the
messages one by one adaptively [NP99a]. For the setting, S first commits the
messages to R in the commitment phase. Then, in the transfer phase, R makes
queries of the messages one by one. The cost is considered for the commitment
and transfer phases, respectively. It seems that the adaptive case implies the
non-adaptive case. But, the non-adaptive one converted from an adaptive one
usually needs more rounds (combining the commitment and transfer phases), for
example, the scheme in [OK02]. Since our scheme needs no trapdoors, there is
no entailed cost due to conversion. Adaptive OT¥ is natural and has many appli-
cations, such as oblivious search, oblivious database queries, private information
retrieval, etc.

In this paper we propose efficient two-round OT¥ schemes, in which R sends
O(k) messages to S, and S sends O(n) messages back to R. The computation cost
of R and S is reasonable. The choices of R are unconditionally secure. For the
basic scheme, the secrecy of unchosen messages is guaranteed if the Decisional
Diffie-Hellman (DDH) problem is hard. When k = 1, our scheme is as efficient as
the one in [Tze02]. Our schemes have the nice property of universal parameters,
that is, each pair of R and S need neither hold any secret key nor perform any
prior setup (initialization). The system parameters can be used by all senders
and receivers without any trapdoor specification. Our OT* schemes are the most
efficient one in terms of the communication cost, either in rounds or the number
of messages.

Moreover, one of our schemes can be extended in a straightforward way to
an Adpt-OT% scheme. In our adaptive-query scheme, S sends O(n) messages
to R in one round in the commitment phase. For each query of R, only O(1)
messages are exchanged and O(1) operations are performed. In fact, the number
k of queries need not be fixed or known beforehand. This makes our scheme
highly flexible.

1.1 Previous Work and Comparison

Rabin [Rab81] introduced the notion of OT and presented an implementation to
obliviously transfer one-bit message, based on quadratic roots modulo a compos-
ite. Even, Goldreich and Lempel [EGL85] proposed an extension of bit-OT3, in
which m; and mg are only one-bit. Brassard, Crépeau and Robert [BCR86]

174 Cheng-Kang Chu and Wen-Guey Tzeng

proposed OT} soon after in the name “all-or-nothing disclosure of secrets”
(ANDOS). After that, OT. has become an important research topic in cryp-
tographic protocol design. Some OT} schemes are built by invoking basis OT3
several times [BCR87,BCS96,NP99b], and the others are constructed directly
from basic cryptographic techniques [SS90,NR94,Ste98,NP01,Tze02]. Some OT}
schemes derived from computational private information retrieval (CPIR) have
polylogarithmic communication cost [Lip04]. Nevertheless, the privacy of the
receiver’s choice is computationally secure. Besides, there are various oblivious
transfer schemes developed in different models and applications, such as OT
in the bounded storage model [CCM98,Din01], distributed OT [NP00,BDSS02],
Quantum OT [BBCS91,CZ03], and so on. Lipmaa [Lip] provided a good collec-
tion of these works.

For OTE, Bellare and Micali [BM89] proposed an OT?~! scheme. Naor and
Pinkas [NP99b] proposed a non-trivial OTX scheme. The scheme invokes a ba-
sis OT} scheme O(wklogn) times, where w > logd/log(k*/\/n) and § is the
probability that R can obtain more than k messages. The scheme works only
for k < n'/%. After then, they also took notice of adaptive queries and provided
some Adpt-OT¥ schemes [NP99a]. In one scheme (the two-dimensional one), each
query needs invoke the basis OT}/H scheme twice, in which each invocation of

OTi/n needs O(y/n) initialization work. In another scheme, each adaptive query

of messages need invoke the basis OT? protocol logn times. Mu, Zhang, and
Varadharajan [MZV02] presented some efficient OT¥ schemes'. These schemes
are designed from cryptographic functions directly. The most efficient one is
a non-interactive one. To be compared fairly, the setup phase of establishing
shared key pairs of a public-key cryptosystem should be included. Thus, the
scheme is two-round and R and S send each other O(n) messages. However, the
choices of R cannot be made adaptive since R’s choices are sent to .S first and
the message commitments are dependent on the choices. Recently, Ogata and
Kurosawa [OK02] proposed an efficient adaptive OT scheme based on the RSA
cryptosystem. Each S needs a trapdoor (the RSA modulus) specific to him. The
scheme is as efficient as our Adpt-OT* scheme. But, if the adaptive OT scheme
is converted to a non-adaptive one, it needs 3 rounds (In the first round, S sends
the modulus N to R).

Ishai, Kilian, Nissim and Petrank [IKNP03] proposed some efficient protocols
for extending a small number of OT’s to a large number of OT’s. Chen and Zhu
[CZ03] provided an OT¥ in the quantum computation model. We won’t compare
these schemes with ours since they are in different categories.

In Table 1 we summarize the comparison of our, Mu, Zheng, and Varad-
harajan’s, and Naor and Pinkas’s OTX schemes. In Table 2 we summarize the
comparison of our and Naor and Pinkas’s Adpt-OTX schemes.

! Yao, Bao, and Deng [YBDO03] pointed out some security issues in [MZV02].

Efficient k-Out-of-n Oblivious Transfer Schemes 175

Table 1. Comparison of OTX schemes in communication cost.

Ours (this paper) Mu, et al. [MZV02] Naor, et al. [NP99b]

rounds 2 2 O(wklogn)
messages (R — S) O(k) O(n) O(wklogn))
messages (S — R) O(n) O(n) O(n + wklogn)
universal parameters Yes Yes No (need setup)
made to adaptiveness Yes (OTE-IT) No Yes

Table 2. Comparison of Adpt-OT¥ schemes in communication cost.

Ours 2-dimensional one, OTk,
(this paper) Naor, et al. [NP99a] Ogata, et al.[OKO02]
commitment rounds 1 1 1
phase messages O(n) O(n) O(n)
transfer ~ rounds 2 3* 2
phase messages 0(1) O(y/n)** O(1)

* Two invocations of OT? ,, in parallel.

** Use the most round-efficient OTf/n scheme as the basis.

2 Preliminaries

Involved Parties. The involved parties of an OT scheme is the sender and
receiver. Both are polynomial-time-bounded probabilistic Turing machines
(PPTM). A party is semi-honest (or passive) if it does not deviate from the steps
defined in the protocol, but tries to compute extra information from received
messages. A party is malicious (or active) if it can deviate from the specified
steps in any way in order to get extra information.

A malicious sender may cheat in order or content of his possessed messages.
To prevent the cheat, we can require the sender to commit the messages in a
bulletin board. When the sender sends the encrypted messages to the receiver
during execution of an OT scheme, he need tag a zero-knowledge proof of show-
ing equality of committed messages and encrypted messages. However, in most
applications, the sender just follows the protocol faithfully. Therefore, we con-
sider the semi-honest sender only and the semi-honest/malicious receiver.

Indistinguishability. Two probability ensembles {X;} and {Y;}, indexed by 4, are
(computationally) indistinguishable if for any PPTM D, polynomial p(n) and
sufficiently large 7, it holds that

| Pr[D(X;) = 1] = Pr[D(Y:) = 1]| < 1/p(i).

Correctness of a Protocol. An OT scheme is correct if the receiver obtains the
messages of his choices when the sender with the messages and the receiver with
the choices follow the steps of the scheme.

176 Cheng-Kang Chu and Wen-Guey Tzeng

Security Model. Assume that S holds n messages mi,mo,...,m, and R’s k
choices are o1, 09,...,0;. Note that only semi-honest sender is considered. We
say that two sets C' and C’ are different if there is = in C, but not in C’, or vice
versa. An OTF scheme with security against a semi-honest receiver should meet
following requirements:

1. Receiver’s privacy — indistinguishability: for any two different sets of choices
C ={01,02,...,01} and C' = {0}, 05,...,0}}, the transcripts, correspond-
ing to C' and C’, received by the sender are indistinguishable. If the received
messages of S for C' and C’ are identically distributed, the choices of R are
unconditionally secure.

2. Sender’s security — indistinguishability: for any choice set C={01,09,...,01},
the unchosen messages should be indistinguishable from the random ones.

An OT% scheme with security against a malicious receiver should meet fol-
lowing requirements:

1. Receiver’s privacy — indistinguishability: the same as the case of the semi-
honest receiver.

2. Sender’s security — compared with the Ideal model: in the Ideal model, the
sender sends all messages and the receiver sends his choices to the trusted
third party (TTP). TTP then sends the chosen messages to the receiver. This
is the securest way to implement the OTX scheme. The receiver R cannot
obtain extra information from the sender S in the Ideal model. We say that
the sender’s security is achieved if for any receiver R in the real OT¥ scheme,
there is another PPTM R’ (called simulator) in the Ideal model such that
the outputs of R and R’ are indistinguishable.

Computational Model. Let G, be a subgroup of Z7 with prime order ¢, and p =
2¢+1 is also prime. Let g be a generator of G;. We usually denote ¢g* mod p as g%,
where x € Z,. Let © €g X denote that x is chosen uniformly and independently
from the set X.

Security Assumptions. For our OT® schemes against semi-honest and malicious
receiver, we assume the hardness of Decisional Diffie-Hellman (DDH) problem
and Chosen-Target Computational Diffie-Hellman (CT-CDH) problem, respec-
tively.

Assumption 1 (Decisional Diffie-Hellman (DDH)). Let p = 2¢+ 1 where
p,q are two primes, and G, be the subgroup of Z with order q. The following
two distribution ensembles are computationally indistinguishable:

- Y1 ={(9.9% 9" 9"")}c,, where g is a generator of G4, and a,b €g Z,.
- Yy = {(gagavgbagc)}cq, where g is a generator of G4, and a,b,c €gr Z,.

For the scheme against malicious receiver, we use the assumption introduced
by Boldyreva [Bol03], which is analogous to the chosen-target RSA inversion
assumption defined by Bellare, et al. [BNPSO01].

Efficient k-Out-of-n Oblivious Transfer Schemes 177

— System parameters: (g, h, Gq);
— S has messages: mi,ma, ..., My;
— R’s choices: 01,02,...,0%k;

1. R chooses two polynomials f(z) = ap + a1z + -+ + ag_12" "' + 2% and f/(z) =
bo+bix+---+be_12" ' + 2* where @0, a1,...,05—1 €r Zg and bo +b1x + -+
b 1z" ' +2F = (z —01)(x — 02)--- (x — ox) mod q.

2. R— S :Ag=g™"h" Ay = g™ hb ... Ay = g®-1hbr-1,

3. S computes ¢; = (g%, m;Bf") where k; €p Z; and B; = g Opf'@
ApAl .. A};k:ll (gh)ik mod p, fori =1,2,...,n.

4. S — R:ci,c2,...,Cn.

5. Let ¢; = (Ui, Vi), R computes mo, = Vai/UJ}‘”) mod p for each o;.

Fig. 1. OTF-I: k-out-of-n OT against semi-honest receiver.

Assumption 2 (Chosen-Target Computational Diffie-Hellman (CT-
CDH)). Let Gy be a group of prime order q, g be a generator of Gy, © €r Z;.
Let Hy : {0,1}* — Gy be a cryptographic hash function. The adversary A is given
input (q,g,9%, H1) and two oracles: target oracle Tg(-) that returns a random
element w; € G, at the i-th query and helper oracle Hg(+) that returns (-)*. Let
qr and qg be the number of queries A made to the target oracle and helper oracle
respectively. The probability that A outputs k pairs ((v1,j1), (v2,j2)s - - (Vk, Jk))s
where v; = (w;,)* fori e {1,2,....k}, qu <k < qr, is negligible.

3 k-Out-of-n OT Schemes

We first present a basic OTX scheme for the semi-honest receiver in the standard
model. Then, we modify the scheme to be secure against the malicious receiver
in the random oracle model. Due to the random oracle model, the second scheme
is more efficient in computation.

3.1 k-Out-of-n OT Against Semi-honest Receiver

The sender S has n secret messages m1,ms, ..., m,. Without loss of generality,
we assume that the message space is G, that is, all messages are in G,. The
semi-honest receiver R wants to get my, , Mg, , - - - , Mg, - The protocol OT-T with

security against the semi-honest receiver is depicted in Figure 1.

For system parameters, let g, h be two generators of G, where log, h is un-
known to all, and G4 be the group with some descriptions. These parameters
can be used repeatedly by all possible senders and receivers as long as the value
log, h is not revealed. Therefore, (g, h,G4) are universal parameters.

The receiver R first constructs a k-degree polynomial f’(z) such that f’(i) =
0 if and only if ¢ € {o1,...,0%}. Then R chooses another random k-degree
polynomial f(z) to mask the chosen polynomial f’(z). The masked choices
Ag, A1, ..., Ax_1 are sent to the sender S.

178 Cheng-Kang Chu and Wen-Guey Tzeng

When S receives these queries, he first computes B; = ¢/ @rf" @ by com-
puting AgA‘ -~ A" (gh)" mod p. Because of the random polynomial f(z), S

does not know which f’(4) is equal to zero, for i = 1,2,...,n. Then S treats B;
as the public key and encrypts each message m; by the ElGamal cryptosystem.
The encrypted messages c1,co, ..., c, are sent to R.

For each ¢;,i € {01,09,...,0k}, since B; = gf ORI’ () = gfOp0 = ¢/ R
can get these messages by the decryption of ElGamal cryptosystem with secret
key f(i). It i ¢ {01,00,...,04}, since R can not compute (g/@h/ (D) with the
knowledge of g¥ and f(i), f'(i) only, the message m; is unknown to R.

Correctness. Let ¢; = (U;, Vi), we can check that the chosen messages m,,,
i=1,2,...,k, are computed as

Vg»/U(f("i) =m,, - (gf(ﬂi)hf'(m))kgi /gkaif(gi)
=My, - (g7 - 1)kei Jghoif(o0)

Security Analysis. We now prove the security of OT-I.

Theorem 1. For scheme OTE-I, R’s choices are unconditionally secure.

Proof. For every tuple (bf,b],...,b)_;) representing the choices 01,05, ...,0},
there is a tuple (a), a},...,a,_,) that satisfies 4; = g%hb fori=0,1,...,k—1.
Thus, the receiver R’s choices are unconditionally secure. O

Theorem 2. Scheme OTF -1 meets the sender’s security requirement. That is, by
the DDH assumption, if R is semi-honest, he gets no information about messages
m;, 1 ¢ {o1,09,...,01}.

Proof. We show that for all ¢ ¢ {o1,09,...,0k}, ¢;’s look random if the DDH
assumption holds. First, we define the random variable for the unchosen messages

C=(g,h, (gml My, (gf(il)hf/(il))kil)y (gkinfk M, (gf(infk)hf/(in,k))kinik),

where ki, , ki, ..., ki,_, €r Z;. Since the polynomial f(z) and f’(x) are chosen
by the receiver, and f'(i1),..., f/(in—r) # 0, we can simplify C as

O/ = (gv ha (gkil 5 hkil), ceey (gki"*k , hkin—k))

Since the indistinguishability is preserved under multiple samples, we just need
to show that if the following two distributions

—C= (g, h,g",h"), where h £ 1,1 € Zy
— X = (g, h,x1,22), where h # 1, 21,29 €5 Gy
are distinguishable by a polynomial-time distinguisher D, we can construct an-

other polynomial-time machine D', which takes D as a sub-routine, to solve the
DDH problem:

Efficient k-Out-of-n Oblivious Transfer Schemes 179

— System parameters: (g, Hi, H2, Gy);
— S has messages: mi,ma, ..., My;
— R’s choices: 01,02,...,0%k;

1. R computes wo; = Hi(0;) and Aj = ws, 9%, where aj €r Zg and j = 1,2,... k.

2. R — SI A17A27...,Ak.

3. S computes y = g%, D; = (A;)", ws = Hi(i), and ¢; = m; ® Ha(wy), where
r€ERZy,i=1,2,...,n,and j =1,2,... k.

4. S — R: Y, D17D27‘..,D1€7 C1,C2,...,Cn

5. R computes K; = D;/y* and gets my, = co; ® H2(Kj;) for j =1,2,... k.

Fig. 2. OTF-II: k-out-of-n OT against malicious receiver.

Machine D’

Input: (g, u,v,w) (either from Yy or Y3 in DDH)
Output: D(g, u, v, w)

If D distinguishes C and X with non-negligible advantage £ (Should be e(n, t), we
omit the security parameter n and t here for simplicity, where t is the security
parameter.), D’ distinguishes Y7,Y> in the DDH problem with at least non-
negligible advantage ¢ — 2/¢, where dist(C,Y;) = 1/q and dist(X,Ys) = 1/q.

O

Complexity. The scheme uses two rounds (steps 2 and 4), the first round sends
k + 1 messages and the second round sends 2n messages. For computation, R
computes 3k + 2 and S computes (k + 2)n modular exponentiations.

3.2 k-Out-of-n OT Against Malicious Receiver

A malicious player may not follow the protocol dutifully. For example, in scheme
OT¥-1, a malicious R might send some special form of A;’s in step 2 such that he
is able to get extra information, such as the linear combination of two messages
(even though we don’t know how to do such attack). So, we present another
scheme OTE-II that is provable secure against the malicious R. The scheme is
depicted in Figure 2.

Let G, be the subgroup of Z; with prime order ¢, g be a generator of Gg,
and p = 2¢ + 1 is also prime. Let H; : {0,1}* — G, Ha : G4 — {0,1}! be two
collision-resistant hash functions. Let messages be of [-bit length. Assume that
CT-CDH is hard under G,,.

Correctness. We can check that the chosen messages mo;, j = 1,2,...,k, are
computed as
Coy ® Hy(K;) = my, ® Hy(w?,) & Hy(uw?)

=M.

Security Analysis. We need the random oracle model in this security analysis.

180 Cheng-Kang Chu and Wen-Guey Tzeng

Theorem 3. In OT:-II, R’s choice meets the receiver’s privacy.

Proof. For any A; = w;g% and wy, [# j, there is an a] that satisfies A; = wy g™
For S, A; can be a masked value of any index. Thus, the receiver’s choices are
unconditionally secure. O

Theorem 4. Even if R is malicious, the scheme OT*-II meets the requirement
for the sender’s security assuming hardness of the CT-CDH problem the random
oracle model.

Proof. Since we treat Hs as a random oracle, the malicious R has to know
K; = w? in order to query the hash oracle to get Ha(w?). For each possible
malicious R, we construct a simulator R* in the Ideal model such that the
outputs of R and R* are indistinguishable.

R* works as follows:

1. R* simulates R to obtain A}, A3,..., A;. When R queries H; on index i, we
return a random w; (consistent with the previous queries.)

2. R* simulates S (externally without knowing m;’s) on inputs A}, A3, ..., A}
to obtain z*, y*, DY, D5,..., D;.

3. R* randomly chooses c],c3,...,c}.

4. R* simulates R on input (y*, Dy, D3, ..., D5, ci,ch, ..., c}) and monitors the

queries closely. If R queries Hy on some v; = (w})® , R* sends j to the TTP
T' to obtain m; and returns ¢ @m; as the hash value Hg((w;‘)w), otherwise,

returns a random value (consistent with previous queries).
5. Output (A5, A5, ..., A, y*, D, D5,...,Df,c5,ch5....ch).

If R obtains k + 1 decryption keys, R* does not know which k indices are
really chosen by R. The simulation would fail. Therefore we show that R can
obtain at most k decryption keys by assuming the hardness of chosen-target CDH
problem: In the above simulation, if R queries H;, we return a random value
output by the target oracle. When R* simulates S on input A7, A3,..., A}, we
forward these queries to the helper oracle, and return the corresponding outputs.
Finally, if R queries Hy on legal vj;, for all 1 <4 < k + 1, we can output k£ + 1
pairs (vj,,ji), which contradicts to the CT-CDH assumption. Thus, R obtains
at most k decryption keys.

Let 01, 02,...,0, be the k choices of R. For the queried legal Vo;'S, Co;
is consistent with the returned hash values, for j = 1,2,..., k. Since no other
(wf)x, l # 01,09,...,0%, can be queried to the Hy hash oracle, ¢; has the right
distribution (due to the random oracle model). Thus, the output distribution is
indistinguishable from that of R. O

Complexity. OTE-II has two rounds. The first round sends k messages and the
second round sends n + k + 1 messages. For computation, R computes 2k, and
S computes n + k + 1 modular exponentiations.

Efficient k-Out-of-n Oblivious Transfer Schemes 181

— System parameters: (g, Hi, H2, Gy);
— S has messages: mi,ma, ..., My;
— R’s choices: 01,02,...,0%k;

Commitment Phase

1. S computes ¢; = m; ® Ho(wi) for i = 1,2,...,n, and y = g where w; = H1(4),
and x €r Z.
2. S— R:y,c1,C2,...,Cn.

Transfer Phase
For each 0, j =1,2,...,k, R and S execute the following steps:

R chooses a random a; € Z; and computes wo; = H1(0;), Aj = ws; g%
R— S: Aj.

S— R:D; = (4;)".

R computes K; = D;/y* and gets mo; = co; © H2(Kj).

Ll s

Fig. 3. Adpt-OTY: Adaptive OTE.

4 k-Out-of-n OT with Adaptive Queries

The queries of R in our schemes can be adaptive. In our schemes, the commit-
ments ¢;’s of the messages m;’s of S to R are independent of the key masking.
Therefore, our scheme is adaptive in nature. Our Adpt-OT¥ scheme, which re-
phrases the OT-II scheme, is depicted in Figure 3.

The protocol consists of two phases: the commitment phase and the transfer
phase. The sender S first commits the messages in the commitment phase. In
the transfer phase, for each query, R sends the query A; to S and obtains the
corresponding key to decrypt the commitment c;.

Correctness of the scheme follows that of OTK-II.

Security Analysis. The security proofs are almost the same as those for OTE-IL.
We omit them here.

Complezity. In the commitment phase, S needs n + 1 modular exponentiations
for computing the commitments ¢;’s and y. In the transfer phase, R needs 2
modular exponentiations for computing the query and the chosen message. S
needs one modular exponentiation for answering each R’s query. The commit-
ment phase is one-round and the transfer phase is two-round for each adaptive

query.

5 Conclusion

We have presented two very efficient OT* schemes against semi-honest receivers
in the standard model and malicious receivers in the random oracle model. Our
schemes possess other interesting features, such as, it can be non-interactive and
needs no prior setup or trapdoor. We also proposed an efficient Adpt-OTE for

182 Cheng-Kang Chu and Wen-Guey Tzeng

adaptive queries. The essential feature allowing this is the reversal of the orders of
key commitment and message commitment. In most previous schemes (including
OT%-1), the key commitments (for encrypting the chosen messages) are sent
to S first. The message commitments are dependent on the key commitments.
Nevertheless, in our scheme OT%-II the message commitments are independent
of the key commitment. Thus, the message commitments can be sent to R first.

References

[BBCS91]

[BCRS6]

[BCRS7]

[BCS96]

[BDSS02]

[BM89)

[BNPSO1]

[Bol03]

[COMOS]

[CZ03]

[Din01]

[EGLS5)

Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Héléne
Skubiszewska. Practical quantum oblivious transfer. In Proceedings of
Advances in Cryptology - CRYPTO ’91, volume 576 of LNCS, pages 351—
366. Springer-Verlag, 1991.

Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In Proceedings of Advances in Cryptology - CRYPTO
’86, volume 263 of LNCS, pages 234—238. Springer-Verlag, 1986.

Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information the-
oretic reductions among disclosure problems. In Proceedings of 28th Annual
Symposium on Foundations of Computer Science (FOCS '87), pages 427—
437. IEEE, 1987.

Gilles Brassard, Claude Crépeau, and Miklés Santha. Oblivious trans-
fers and intersecting codes. IEFEE Transactions on Information Theory,
42(6):1769-1780, 1996.

Carlo Blundo, Paolo D’Arco, Alfredo De Santis, and Douglas R. Stinson.
New results on unconditionally secure distributed oblivious transfer. In
Proceedings of Selected Areas in Cryptography - SAC ’02, volume 2595 of
LNCS, pages 291-309. Springer-Verlag, 2002.

Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and
applications. In Proceedings of Advances in Cryptology - CRYPTO ’89,
volume 435 of LNCS, pages 547-557. Springer-Verlag, 1989.

Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. Power of rsa inversion oracles and the security of Chaum’s RSA-
based blind signature scheme. In Proceedings of Financial Cryptography
(FC 01), pages 319-338. Springer-Verlag, 2001.

Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme. In Pro-
ceedings of the Public-Key Cryptography (PKC ’03), pages 31-46. Springer-
Verlag, 2003.

Christian Cachin, Claude Crepeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In Proceedings of 39th Annual Sympo-
stum on Foundations of Computer Science (FOCS ’98), pages 493-502.
IEEE, 1998.

Zhide Chen and Hong Zhu. Quantum m-out-of-n oblivious transfer. Tech-
nical report, arXiv:cs.CR/0311039, 2003.

Yan Zong Ding. Oblivious transfer in the bounded storage model. In
Proceedings of Advances in Cryptology - CRYPTO ’01, volume 2139 of
LNCS, pages 155—170. Springer-Verlag, 2001.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Communications of the ACM, 28(6):637—647,
1985.

(GV8T]

[IKNP03]

[NP99a]

[NP99D)

[NP0O]

[NPO1]

[NR94]

[OK02]
[Rab81]

[SS90]

[Ste9s]

[Tze02]

[YBDO3]

Efficient k-Out-of-n Oblivious Transfer Schemes 183

Oded Goldreich and Ronen Vainish. How to solve any protocol problem
- an efficiency improvement. In Proceedings of Advances in Cryptology -
CRYPTO 87, volume 293 of LNCS, pages 73—-86. Springer-Verlag, 1987.
Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Proceedings of Advances in Cryptology
- CRYPTO °03, volume 2729 of LNCS, pages 145-161. Springer-Verlag,
2003.

Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings
of the 20th Annual ACM Symposium on the Theory of Computing (STOC
’88), pages 20-31. ACM, 1988.

Helger Lipmaa. Oblivious transfer.

http://www.tcs.hut.fi/ “helger/crypto/link /protocols/oblivious.html.
Helger Lipmaa. An oblivious transfer protocol with log-squared commu-
nication. Technical report, Cryptology ePrint Archive: Report 2004/063,
2004.

Yi Mu, Jungi Zhang, and Vijay Varadharajan. m out of n oblivious transfer.
In Proceedings of the 7th Australasian Conference on Information Security
and Privacy (ACISP ’02), volume 2384 of LNCS, pages 395-405. Springer-
Verlag, 2002.

Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evalua-
tion. In Proceedings of the 81th Annual ACM Symposium on the Theory of
Computing (STOC 99), pages 245-254. ACM, 1999.

Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries.
In Proceedings of Advances in Cryptology - CRYPTO ’99, volume 1666 of
LNCS, pages 573-590. Springer-Verlag, 1999.

Moni Naor and Benny Pinkas. Distributed oblivious transfer. In Proceedings
of Advances in Cryptology - ASIACRYPT ’00, volume 1976 of LNCS, pages
200—219. Springer-Verlag, 2000.

Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
Proceedings of the 12th Annual Symposium on Discrete Algorithms (SODA
’01), pages 448-457. ACM/SIAM, 2001.

Valtteri Niemi and Ari Renvall. Cryptographic protocols and voting. In
Results and Trends in Theoretical Computer Science, volume 812 of LNCS,
pages 307-317. Springer-Verlag, 1994.

Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Journal
of Complezity, 20(2-3):356-371, 2004.

Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Aiken Computation Laboratory, Harvard University, 1981.
Arto Salomaa and Lila Santean. Secret selling of secrets with several buy-
ers. Bulletin of the FEuropean Association for Theoretical Computer Science
(EATCS), 42:178-186, 1990.

Julien P. Stern. A new and efficient all or nothing disclosure of secrets
protocol. In Proceedings of Advances in Cryptology - ASIACRYPT ’98,
volume 1514 of LNCS, pages 357-371. Springer-Verlag, 1998.

Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In Proceed-
ings of the Public-Key Cryptography (PKC ’02), pages 159-171. Springer-
Verlag, 2002.

Gang Yao, Feng Bao, and Robert Deng. Security analysis of three oblivious
transfer protocols. Workshop on Coding, Cryptography and Combinatorics,
Huangshan City, China, 2003.

Converse Results to the Wiener Attack on RSA

Ron Steinfeld, Scott Contini, Huaxiong Wang, and Josef Pieprzyk

Dept. of Computing, Macquarie University, North Ryde, Australia
{rons,scontini,hwang, josef}@ics.mq.edu.au
http://www.ics.mq.edu.au/acac/

Abstract. A well-known attack on RSA with low secret-exponent d was
given by Wiener about 15 years ago. Wiener showed that using continued
fractions, one can efficiently recover the secret-exponent d from the public
key (N,e) as long as d < N4, Interestingly, Wiener stated that his
attack may sometimes also work when d is slightly larger than N /4 This
raises the question of how much larger d can be: could the attack work
with non-negligible probability for d = N 14+ for some constant p > 07
We answer this question in the negative by proving a converse to Wiener’s
result. Our result shows that, for any fixed e > 0 and all sufficiently large
modulus lengths, Wiener’s attack succeeds with negligible probability
over a random choice of d < N° (in an interval of size 2(N°)) as soon
as 0 > 1/4 4 e. Thus Wiener’s success bound d < N'/* for his algorithm
is essentially tight. We also obtain a converse result for a natural class
of extensions of the Wiener attack, which are guaranteed to succeed
even when 6 > 1/4. The known attacks in this class (by Verheul and
Van Tilborg and Dujella) run in exponential time, so it is natural to ask
whether there exists an attack in this class with subexponential run-time.
Our second converse result answers this question also in the negative.

1 Introduction

The RSA public-key cryptosystem is one of the most popular systems in use
today. Accordingly, the study of the security of special variants of RSA designed
for computational efficiency is a major area of research. One natural RSA vari-
ant which is attractive for speeding up secret operations (signature generation
or decryption) is Low Secret-Exponent RSA. In this variant the RSA secret ex-
ponent d is chosen to be small compared to the RSA modulus N. A well-known
attack on RSA with low secret-exponent d was given by Wiener[10] about 15
years ago. Wiener showed that using continued fractions, one can efficiently re-
cover the secret-exponent d from the public key (N,e) as long as d < N1/4,
Interestingly, Wiener stated that his attack may sometimes also work when d is
slightly larger than N/, This raises the question of how much larger d can be:
could the attack work with non-negligible probability for d = N'/4t# for some
constant p > 07

In this paper, we answer the above question in the negative by proving a
converse to Wiener’s result. Our result shows that, for any fixed ¢ > 0 and
all sufficiently large modulus lengths, Wiener’s attack succeeds with negligible

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 184-198, 2005.
© International Association for Cryptologic Research 2005

Converse Results to the Wiener Attack on RSA 185

probability over a random choice of d < N (in an interval of size 2(N?)) as soon
as & > 1/4+e. Thus Wiener’s bound d < N'/* for his attack is essentially tight.
We also obtain a converse result for a natural class of extensions of the Wiener
attack, which are guaranteed to succeed even when 6 > 1/4. The known attacks
in this class (by Verheul and Van Tilborg [8] and Dujella [3]) run in exponential
time, so it is natural to ask whether there exists an attack in this class with
subexponential run-time. Our second converse result answers this question also
in the negative.

Related Work. To our knowledge, the converse results in this paper provide the
first proven evidence for the limitations of the Wiener attack [10] and its ex-
tensions by Verheul and Van Tilborg [8] and Duejlla [3]. Essentially, our results
prove that when 6 > 1/4, the linear equation (satisfied by the secret key) which
is exploited by the Wiener attack cannot lead by itself to a key-recovery attack
which runs in subexponential time (because there are too many solutions). In or-
der to obtain a subexponential attack when § > 1/4 one must exploit some other
property of the secret key. Indeed, the lattice-based Boneh-Durfee attack [2] and
its variant given by Blomer and May [1], exploit a non-linear equation satisfied
by the secret key, which gives an attack that heuristically succeeds in polynomial-
time when § < 0.292. Finding proven limitations on the Boneh-Durfee attack
and its variants is currently an open problem, but we believe our results on
provable limitations of the Wiener attack are a first step in this direction.

Organization of This Paper. Section 2 presents definitions and known results
from number theory that we use. In Section 3, we define the standard RSA
key-generation algorithm that our results apply to and review Wiener’s result.
In Section 4, we state and prove our converse to Wiener’s result. In Section 5,
we present our generalized converse result which applies to a natural class of
extensions of the Wiener attack. Section 6 concludes the paper.

2 Preliminaries

2.1 Continued Fractions

Here we collect several known results that we use about continued fractions,
which can be found in [5, 6].

For positive integers aq, ..., a,, we define the rational number
def 1
T = 1
At g4t
For brevity, we write z = (a1, as,...,a,), and we call the sequence (a1, ..., a,)

a continued fraction expansion of length n for x.

Theorem 1 (Continued Fractions). Let x = ", for positive integers r, s with
ged(r,s) = 1 and r < s. Then the rational x has a unique continued fraction
expansion x = (ay, ..., a,) with a, > 1, which can be computed in time O(log? s)
by the following algorithm:

186 Ron Steinfeld et al.

1. Initialize xo = .

2. Compute iteratively x; = mv,l—lL:c-,l

the smallest value of i such that |z;] = x;.

| fori=1,...,n, where n < 2log(s) is

3. Return (ai,...,a,), where a; = |2;| fori=1,...,n.
Let (ai,...,a,) denote the continued fraction expansion of rational x. For
i = 1,...,n, the rationals y; = 7' def (a1,...,a;) are called the convergents

of (the continued fraction expansion for) z. The convergents y; to 2 become
successively closer to x with increasing index ¢ until the last convergent y,, which
is equal to x.

Theorem 2 (Convergents). Let y1,...,y, denote the convergents of a ra-
tional x = " for positive integers r,s with ged(r,s) = 1 and r < s. For
i =1,...,n—1, let us write y; = ' for integers r;,s; with ged(ry, s;) = 1.

Then the following statements hold:

(1) Fori € {l,....,n—1}, y; = [’ is a best approximation to z in the sense
that |s; -« —ri| <|s'-x —71'| for all v, s such that 0 < s’ < s; and Z: # y;
(note:l this implies that |\ — x| < |7, — x| for allv’,s" such that 0 < s’ <s;
and ", # yi).

(2) Forie{l,....n—1}, |' —a| < 5 oand siy1 > 2s;.

(8) Lety = X be any rational such that |~ — x| < 2/1\ . Then y is equal to one of
S S S

2
the convergents of x, i.e. y = y; for some i € {1,...,n}.

3 Review of Wiener’s Attack

3.1 The RSA Key-Generation Algorithm

In this paper we assume the following natural key-generation algorithm
RSAKGs 8,3, (¢) for RSA, which would typically be used when the goal is to
produce a modulus N in the order of 2¢ and a secret exponent d in the order
of N9 for some fixed 0 < § < 1. The fixed real-valued parameters §; > 0 and
(B2 > 0 control the size of the intervals from which the prime factors of N and
the secret exponent d are chosen from (typically, we set 51 = 2 = 1, to fix a
certain bit-length for p, ¢ and d).

All the probabilities computed in this paper are evaluated over the random
choices of algorithm RSAKG; g, g, (£).

RSAKGs g, 5, (£): RSA Key-Generation Algorithm

1 Pick uniformly at random a prime p € Py/ 5, (Here Py/5 5, denotes the set
of all primes in the interval [2¢/2751 2¢/2] and typically we set 3; = 1).

2 Pick uniformly at random a prime q € Py/2 3, -

3 Compute integers N = pg and ¢ = (p — 1)(¢ — 1).

Converse Results to the Wiener Attack on RSA 187

4 Pick uniformly at random a secret exponent d € Dy s ,(¢) (Here Dy 5,5, (¢)
denotes the set of all integers in the interval [2°~%2 2°] which are coprime
to ¢, and typically we set Jy = 1).

5 Compute ¢ = d~!mod ¢ (note: this implicitly defines the integer k =
(ed—1)/9).

6 Return secret-exponent d and public key (V,e).

3.2 Wiener’s Attack

The idea behind Wiener’s attack on RSA with small secret-exponent d is that
for small d, the publicly known fraction e/N is a very good approximation to
the secret fraction k/d (here k = (ed — 1)/¢), and hence k/d can be found from
the convergents of the continued-fraction expansion of e/N, using the results of
Section 2.1.

WienAtk(N, e): Wiener Attack Algorithm

1 Compute the continued fraction convergents (51 ey S") of using the
algorithm of Theorem 1.
k En
2 Return (di""’dn
We say that algorithm WienAtk succeeds on input (N,e) if it outputs
Zi,..., ’;Z with ’; = % for some i € {1,...,n} (where d = e~! mod ¢ and
k= (ed—1)/9).

To obtain Wiener’s sufficient condition for the success of algorithm WienAtk,
we observe that, from the equation ed —1 = k¢ it follows that the approximation
error of k/d by e/N is given by:

§‘§‘6<; ;) ¢-d W
(D e @
(") (N—d-s) @
<y < 22;: (4)

The last bound uses the fact that s < 2¢/2%1 since p and ¢ are not even. Note
also that S -5 >0

From Theorem 2 part (3), we know that k/d will be one of the convergents of
the continued fraction expansion of e/N if Z -5n< 2}12 . Using the above bound

Z — v and the fact that d < 29t we conclude that a sufficient condition for
success of algorithm WienAtk is that 22;2:1 < 225,12 +1 - This immediately gives us

the following result due to Wiener [10].

on

188 Ron Steinfeld et al.

Theorem 3 (WienAtk Sufficient Condition). Suppose that the key-generation
parameters (0, 81, B2, £) satisfy the condition

G +1

0<1/4—
<1/ p

Then on input (N,e), where (N,e,d) = RSAKGs g, 3,(¢), the Wiener attack
algorithm WienAtk succeeds with probability 1.

4 A Converse to Wiener’s Result

The following statement is our necessary condition for success of Wiener’s al-
gorithm. It shows that whenever § exceeds the Wiener sufficiency threshold 1/4
by any positive constant €, the Wiener attack algorithm succeeds with negligible
probability 27* for some constant ¢ > 0.

Theorem 4 (WienAtk Necessary Condition). Fiz positive constants 0 < € <
3/4, B1 and (2, and suppose that the key-generation parameter 0 satisfies the
condition

d=1/4+ce.

Then there exist positive constants ¢ and £y (depending on €,81 and B3) such that
on input (N, e), where (N,e,d) = RSAKGs g, 3,(¢), the Wiener attack algorithm
WienAtk succeeds with probability at most 2= for all £ > £y.

Proof. By definition, if WienAtk succeeds on input (N, e), then one of the con-

dy’ Y dy
that Z -5 < dlg. Using d > 29=72 and § = 1/4 + ¢, we obtain the necessary
success condition

vergents (kl e k") of 5 is equal to Z. But by Theorem 2 part (2), it follows

k
- ;\3] < 92B2—(1/2+2¢)L_ (5)

We now show that, for any € > 0, the probability that (5) holds is negligible
over the random choice of d € Dy 5 3,(¢). We first reduce the problem to upper
bounding the probability that 5 is negligibly small.

Lemma 1. Fizx positive constants ¢1 and n1. Then there exist positive constants
co and 1y such that

k e e
_ L= (1/24m)L| < [. *772'4}
Pr d <c -2 } <Pr <co-2 .

Proof. Let A = Z— ~ - From (3) in Section 3.2 we have A = (NS_S) (5 '

N~ ds
and using s = p+q—1> N2 weget A > N=1/2.(& — iz)- Using d > 297602

and N > 27200 we get A > N~V/2. (& —20482-(1/249)6) "and then using

Converse Results to the Wiener Attack on RSA 189

N < 2¢ we get A > 2742 (& —25140:=(1/240)6) Lot C = 2A1+P2=(1/240)£,
Then we have

Pr [A <e- 2*<1/2+’71>'4} < Pr [2*4/2 : (c_ C) < -9 (/2Hm)L
N

e

N

< Pr [; < cy- 2_"”} ,

:Pr[<01-27’71'£+C}

for positive constants c; = 2max(cy, 2°F1H92) and 1, = min(ny,1/2 + §), as
claimed. O

To bound Pr []f, <cg- 2*’72'5}, we need an upper bound on the number of
d € Dy 5,,(¢) such that § < c2-27"* holds, and a lower bound on the total size
of the set Dy s 3,(4). These bounds are provided by the following two counting
results.

Lemma 2. Fizx positive constants c1, co and §. The size of the set M of secret-
exponents d < 2% such that the corresponding public exponent e = d~' mod ¢
satisfies § < c1- 272t js bounded as follows:

UM =0 (2(5%#1;;,_7).@) 7

with constant cs = 2(1 + 9).

Proof. For each d € M, we have e-d = 1+ k - ¢ for some positive integer k,
where k < Zfl =0 (2(5_02)'€) using the fact that N/¢ = O(1). So, to get an upper
bound on the number of (e,d) pairs, we only need to consider the possibilities
for k, from 1 up to some integer K = O (2(‘5_02)'5).

Foreachk € {1,...,K},let m = 1+k-¢ = O (2(”5*2)'5). The possible (e, d)
pairs for this k correspond to factorizations of m as a product of two integers.
The number of such factorizations is equal to 7(m), the number of divisors of
m. It is known (see Theorem 317 of [4]) that 7(m) = O (210255@%), and using

the bounds m = O(k - ¢) = O (21+94) and m = 2(N) = 2 (2*) we conclude
that 7(m) = O (22&;’?) t

Thus the total number of possible (e, d) pairs satisfying the required con-
ditions is bounded as #M = O (K -7(m)) = O (2(5_02‘*153@)'@) where ¢3 =

2(1+9), as required. O

Lemma 3. Fiz positive constants (1, B2 and §. The size of the set Dy s.5,(p) of
all integers in the interval [2°°=52 2% which are coprime to ¢ is lower bounded
as follows:

#Des(0) = 2 (20771,

190 Ron Steinfeld et al.

Proof. For an integer d > 1, we denote by u(m) the Mobius function. We recall
that (1) = 1, u(d) = 0if d > 2 is not square-free and u(d) = (—1)*(9) otherwise,
where for integer d we denote by w(d) the number of distinct prime factors of d.
Fix any integers m, J > 1. Using the Mobius function p(d) over the divisors
of ¢ to detect the co-primality condition (see Section 3.d of Chapter 2 of [9]) and
interchanging the order of summation, we obtain the Legendre formula

J
> 1=Yua |y =X o[Swal). ©
Jj=1 dlm

) dlm dlm
ged(j,m)=1

Observe that -
w(m wlm
S @l = 3 -0) =2,

dlm k=0

and recall that the Mdbius function satisfies
Z p(d) _ p(m)
d m
d|m

where ¢(m) denotes Euler’s phi function evaluated at m. So, for any integers
Jmaz > Jmin > 1, applying (6) to both intervals [1,..., Jmin] and [1,..., Jmaa)

and subtracting gives us

Z 1 — SD(m) (Jma;v _ szn) + O(2w(m))
aninSjS‘]maz

ged(j,m)=1

But 2¢(™) is the number of square-free divisors of m, which is upper bounded
by the total number 7(m) of divisors of m. It is known (see Theorem 317 of [4])

2log m
that 7(m) = O (210g10gM>. Setting m = &, Jyin = 2°¢/272 and Jpa. = 2%, we
get

#Du5.6,(¢) = 2 (‘pf) : 2‘”) +0 (212‘1”@%) _ (7)

2log ¢ cgl
We now observe that ¢ = ©(2¢) so 2= oge = O (2102@) for some positive con-

stant c¢5. Furthermore, it is known [7] that «pébcb) = O(loglog ¢) = O(2'°loe),

cgl
Plugging these results in (7) and using the fact that 21es¢ = o (2“‘10’g logé) we
obtain the claimed result #M = 2 (2(57 - 2052”). O

Using Lemma 1 and the fact that d is chosen uniformly at random from
the set Dy 53,(¢), we conclude that WienAtk’s success probability p is upper
bounded as p < #Dﬁ]\g (#) where M denotes the set of all secret-exponents

29,92

d < 2% such that the corresponding public exponent e = d~' mod ¢ satisfies

v < cg-27"2* Taking the ratio of the bounds on #M and #Dy s ,(¢) from

Converse Results to the Wiener Attack on RSA 191

_loglogf)'
. ¢

Lemma 2 and Lemma 3, we have that p = O (2_("2_1552) for some

positive constants 72 and cs. It follows that there exists a constant ¢y such that
p < 27¢ for all £ > {y, where ¢ = 12/2 > 0. This completes the proof of the
theorem. a

5 A Converse Result
for Improved Variants of Wiener Attack

Since Wiener’s attack fails as soon as 6 > 1/4, it is natural to investigate im-
proved variants of the Wiener attack which may succeed even in this case. In
particular, Verheul and Van Tilborg (VVT) [8], and more recently Dujella [3],
presented improved variants of Wiener’s attack which are guaranteed to succeed
even when § > 1/4. However, the run-time of these attacks when § = 1/4+¢ (for
some positive constant €) is exponential in € - £, so these attacks are asymptoti-
cally slower than the generic attack of factoring the RSA modulus, which runs
in subexponential time. As we explain below, both the VVT and Dujella attacks
can be viewed as members of a natural class of extensions of the Wiener attack
(which are all guaranteed to succeed when § > 1/4), which we call the Wiener
Search Variant (WSV) class of attacks (essentially, a WSV attack searches an
interval near the known fraction e/N for the secret fraction k/d — see below
for a precise definition). It is interesting to ask whether one can substantially
improve on the VVT and Dujella attacks — in particular: does there exist an
attack in the WSV class which has subexponential run-time? In this section, we
answer this question in the negative by proving the following ‘converse’ result:
For any attack algorithm in the WSV class and any subexponential run-time
bound T, the probability (over the random choices of the key generation algo-
rithm RSAKG) that the attack halts with success after a run-time less than 7' is
negligible whenever § = 1/4 + € for any constant € > 0. Thus there are no WSV
attacks which are asymptotically faster than factoring (and hence the VVT and
Dujella attacks are optimal in the sense that all WSV attacks must have at least
exponential run-time).

The Wiener Search Variant (WSV) Attack Class. Recall that the central idea
behind Wiener’s attack is that the public fraction e¢/N is a good approximation
to the secret fraction k/d. Indeed, when § < 1/4—e¢, k/d is the best approximation
to e/N among all fractions with denominator at most d (see Theorem 2), and
Wiener’s continued fractions attack efficiently finds this best approximation. Our
converse result in the previous section shows that when ¢ > 1/4, k/d is likely
to no longer be the best approximation to e/N in the set of all fractions with
denominator at most d, but it is still likely to be a good approximation. So, a
natural extension of the Wiener attack is to search through the set of fractions
with denominator less than 2° (and greater than 2°“~#2) in an interval close
to e/N, until k/d is found. This leads to the following definition.

Definition 1 (Wiener Search Variant Attack Class — WSV). An attack
algorithm As g, ¢ is said to belong to the Wiener Search Variant (WSV) attack
class if it has the following form.

192 Ron Steinfeld et al.

As p,0(N,e): WSV Attack Algorithm

1 Enumerate a set S(N,e) of approxzimations to 5, where S(N,e) is guaran-

teed to contain the set S(N,e) of all fractions Zi in the interval [5, %] with
denominator d' € [20°¢=P2 204],
2 Return a list containing all elements of the set S(N,e).

We note that the above definition gives rise to a class of attacks, since it allows
any choice for the set S(N,e) (subject to the constraint that S(N,e) contains
§(N7 e)). As in the case of the original Wiener attack, we say that a WSV attack
succeeds if it outputs a set of approximations S(N, e) which contains the desired
secret fraction k/d. From the definition, it is in fact clear that any WSV attack
succeeds with probability 1 because of the requirement that S(N,e) D S (N,e)
and the fact that k/d € S (N, e). The central question is, therefore, how large is
the running-time of the attack for 6 = 1/4 4+ e. The running-time depends on
the size of the set S(N,e) output by the attack, and on the efficiency by which
the elements of S(N,e) are enumerated.

Known WSV Attacks. The VVT [8] and Dujella [3] attacks are both mem-
bers of the WSV class. Let § = 1/4 4+ € with ¢ > 0. In the VVT attack [8],
it is shown, using continued fraction techniques, how to enumerate a set of
approximations Syyr(N,e) (containing S(N,e) as defined in Def. 1) of size
#SVVT(N, 6) = O(A2 . QQE'E) in time Tyyr = O(KQ#SVVT(N, 6)), where the
integer A is proportional to certain coefficients in the continued fraction expan-
sion of ¢/N and heuristically expected to be small with high probability. The
Dujella attack [3] improves on the VVT attack by using results from diophantine
approximation to enumerate a smaller set #Sp,;(N,e) (containing S(N,e)) of
size #Spuj(N,e) = O(log(A) - 22¢%) in time Tpuj; = O(L?#Spu;(N,e)), where
the integer A is the same as in the VVT attack. Moreover, Dujella proves that
#Spuj(N,e) = O(L - 2%4).
Our Result: A Lower Bound on WSV Attack Running-Time. The known WSV
attacks have exponential run-times for 6 = 1/4 + € with € > 0. We now address
the following question: Does there exist a WSV attack with subexponential run-
time for § = 1/44€? The following result shows that the answer is no. Therefore,
the WSV class does not contain an attack faster than factoring.
Theorem 5 (WSV Attack Lower Bound). Let As g, ¢ denote any ‘Wiener
Search Variant’ (WSV) attack algorithm (see Def. 1). Let T'(¢) = 29 denote
any subexponential function, where g(£) = o({). Fiz positive constants 0 < € <
3/4, 81 and B2, and suppose that the key-generation parameter & satisfies the
condition

d=1/4+e.
Then there exist positive constants ¢ and £y (depending on €,51, B2 and g(£))
such that on input (N,e), where (N,e,d) = RSAKG; g, g,(£), the running-time
of the WSV attack algorithm Asp,.¢ is less than T({) with probability at most
2= for all £ > (.

Proof. The set S(NV,e) output by As g, ¢ is guaranteed by Def. 1 to contain the
set S(N,e), where

Converse Results to the Wiener Attack on RSA 193

~ k
S(N.€) = (Fase \ Fpseos) N [s

and for any m > 0, we denote by F,, the Farey set of order m which consists
of all rational numbers k'/d’ with ¥',d" € Z, 0 < d < mand 0 < k' < d'.
So the running-time T4 of Ajsg,¢ on input (N, e) is certainly lower bounded

as Ty = 2(#8(N, e)). To prove the theorem, it therefore suffices to show that
for any subexponential bound T = 29() with g(f) = o(¢), there exist positive
constants ¢ and £y such that

Pr[#S(N,e) < T] <27 for all £ > £;. (8)

We will first reduce this problem to several simpler problems. To do so, we
introduce the following definitions. For an element ’;, € Fos.e \Fys-t—p,, we denote

by A(g_,ﬁz,f(];:) the adjacent element of Z: in Fose \ Fasee—5, in the ‘=’ direction,
i.e. the largest element of Fys.c \ Fas-e—p, which is strictly less than Z: . We will be
interested in elements Z; for which the gap Zi —As s, Z(Zi) is ‘large’. Accordingly,
for positive A, let §§752)€(AA) denote the set of all elements Z; in Fosoe \ Fosoe-p,
such that Zi - Ag)ﬁﬂ(g;) > A.

We now have the following result.

Lemma 4. For any Apin > 0, we have

a a Amln * k
Pr[#S(N,e) <T| <T-#55 35, < T) -p"+Pr {d - ; < Amm} , (9

) koK
p = » max Pr d = d/ .
ar EF 5.0 \.7‘—25.[,52

Proof. For a positive integer i, let Z? denote the ith closest element in Fys.e \

where

Fose-p, to ¥ in the ‘— direction (if ¢ exceeds the number of elements of Fys.c \
Fos.0-p, which are less than Z then we define 5? = 0). Also, we define 52 = Z.

Then #§(N, e) < T implies that Z - Z; > A, where A = Z — %, and hence

N
that oy
~ (ke (K
Z(dr—Aw2yg(d7ﬂ)>>A.

r=0

It follows that there exists 7* € {0,...,T — 1} such that Z: - A;BM(Z::) > ?.
So, for any A, > 0:

Pr[#S(N,e) < T
. ke e A
<Pr {Elr <T: d. _A57327é <dr*) > T]

. ke o (ke _ A
=Pr Kar STy~ A (dr*> > T) and A > Apin

194 Ron Steinfeld et al.

ks _ ko A
+ Pr {(Hr* <T: d. - Aéﬂml (dr*> > T) and A < Amm]
% k,,,* _ k,,«* Amzn
< Pr {Elr <T: d. _Aé,ﬁz,é <dr*) > T } + Pr[A < Apin
T—1
< (Z pr> + Pr[A < Al (10)
r=0

where, for each r € {0,...,T — 1},

kr _ kr Amin
pr:PI‘ [dT_Aé’BQ’é <dT> > T :|

kr 4.
< #Sgﬁ%E(Amzn/T) : p:u (12)
and . k, i
pp= _ max Prd:d’
2, Esg,BQ,[(Ami"/T) T
kK
< max (Pr [= /]) = p* for all r, (13)
2: 6]:25[\]:25[,@2 d d
where the last inequality follows because the probability that Z: = Z; is equal to

the probability that Z coincides with the rth closest element in Fos.e \ Fos.e—p2
to Z; in the ‘+’ direction.

Plugging (13) into (12) and the result into (10), the claimed bound on
Pr[#5(N, e) < T) follows immediately. O

Let us now apply Lemma 4 with the parameter A,,;, = 2~ (1/2+72) for some
positive constant 7o such that o < 2-¢ (recall that 6 = 1/4+¢), and upper bound
each of the terms on the right-hand side of (9). First, combining Lemmas 1, 2
and 3 from the proof of Theorem 4, we conclude that there exists a positive
constant c3 such that

ke _ sl
Pr[d—N<Amm}_o(2) (14)

Next, we upper bound #ggﬂﬂ (A’;J'"). Let us define n = 20°¢ = 2(1/4+9)t_ Then
we have, using 7' = 29() with g(£)/¢ = o(1), that there exist positive constants
€ and Zg such that

Ammin 1

T 9mt+g0)/0)-L . 9t/2

22e:t 1
T 9(mtg(®)/0)L <22e-£ . ge/2>
— n2e—(m2tg(0)/0))/6 =2
> 2079 for all £> B, (15)
where we have used the fact that 0 < 79 < 2¢ to obtain the last inequality.

Converse Results to the Wiener Attack on RSA 195

The following lemma shows that ‘large’ gaps (exponentially larger than n=2)
between adjacent elements of the set JF,, \ F,, 55, are very ‘rare’ (negligible frac-
tion).

Lemma 5. Fiz positive constants 32, v, and 8. For anyn = 2°¢, and any v’ > v

we have R ,
#S§,ﬁz,e(n_(2_u)y =0(mn*).

Proof. For brevity, in the following we let 7 denote the set 7, \ F,, /o5, . For each
x € F, letd(x) =z — Agﬂﬂ(x) denote the distance to the adjacent element to
2 in F in the -’ direction (and d(0) = 0). Notice that §§‘ﬁ21£(n’(27”)) ={z ¢
Fd(z) >n~ G},

Let X denote a random variable uniformly distributed in F. The expected
value of d(X) is

1 1
Eld(X)] = : d(z) <)
00 = e D) <
since) 7 d(x) = max,cr x < 1. Now recall that by the Markov inequality, the
probability that d(X) exceeds r - E[d(X)] is at most 1/r for any r > 0. Hence,
for any constant ¢ > 0, we have:

v

Pr {d(X)] <Prld(X)>c-n”-E[dX)]]<ctn".

n
>

Sy =
Since X is uniformly random in F, it follows that

#5i (C' ;f> ST H4F ST 0 (16)

using #F < n?. Below we will show that #F = 2(n?> "%) where h(f) =
o(£). Plugging this in (16) we obtain #§;BM ("Hh(l)) = O(n*7") and hence

n2

#gg,ﬁg,e (nu) = O(n?>7) for any any 0 < v/ < v, as claimed.

n2
It remains to show that #F = 2(n?> ") where h(f) = o(¢). Indeed, for
every d’ € [n/2% n] there are p(d') fractions k'/d' € F with ged(k',d’) = 1,
and from [7] we know that ¢(d') = 2(d'/loglogd’) = 2(n/loglogn). Since
there are £2(n) choices for d’, we have #F = 2(n?/loglogn) = 2(n?>"®)
with h(¢) = loglogd¢/(6¢) = o(¢), as required. This completes the proof of the
lemma. O

The next lemma shows that, thanks to the uniformly random choice of p and
q in Pyja5, and d in Dy 5,(¢), the resulting probability distribution of k/d is
‘close’ to uniform in the set 7, \ F,, /o6, -

Lemma 6. Fiz positive constants 31, f2 and set n = 2%°¢. There exists a positive
constant c; such that

. k_ ¥ ~(2-cr/log0)
pr= max Pr J-al)= (0] (n) .
N €F 5.0 \Fys.0—py

196 Ron Steinfeld et al.

Proof. The algorithm RSAKG always generates k and d such that ged(k,d) =
1 and Z € Fose \ Fas-e—py. So, in bounding p* it is enough to consider any
fixed & and d’ with ged(k’,d’) = 1 and % € Fpse \ Fose-s,, and we have
Prlk/d = k'/d'] = Pr[k = k' and d = d']. But from ed — 1 = k¢ we have that
k = —¢ ! mod d and hence

Pr kK =Pr[-¢ ' modd =k and d = d']
d d| - -

(=)~ (mod d') and d = d']

=Pr[¢p = (—K) "' (mod d')] - Pr[d = d'|¢p = (k)" (mod d')] (17)
We now upper bound each of the two probabilities in the right-hand side of (17).
First we upper bound the probability Pr[d = d’|¢ = (—k')~! (mod d’)]. To do

so, observe that for any fixed ¢’ in the support of ¢ and any fixed d' € Z we
have

Prld = d'|¢p = ¢'] < 1/#Du5,6,(¢) < p, (18)
for some fixed p = O (n*(l’lggf)), using Lemma 3. Letting ¢ denote the set of
¢’ in the support of ¢ satisfying ¢ = (—k’)~! (mod d’), we have
Pr[d =d' and ¢ = (—k')~! (mod d')]

Pr[¢ = (—k')~! (mod d')]
B E(b/E@Pr[d =d and ¢ = ¢']
~ Pr[p=(—k)"1 (mod d)]
_ YweaPrld=d'|¢ = ¢] - Pr[p = ¢']
B Pr[¢ = (—k')~! (mod d')]
< Zd;/e@p ' Pr[¢ = ¢/]
~ Pr[¢p = (—K)~! (mod d')]
—p=0 (n—(l—lﬁ}?f) 7 (19)

where we used (18) to get the inequality in the fourth line.
Fix ¢’ = (—k’)~! modd’. We now focus on upper bounding Pr[¢= ¢’ (mod d’)].
First, observe that ¢ < N < 2¢. So

Prlp=¢ mod d| < #{p € Zy :¢=¢ (modd)}- max Pr[p=g).
20 J4< p<2t

Pr{d=d|¢=(—k')""modd] =

But

b é ¢
#{¢€ZQ@ : QbE(b/ (mod d/)}:#{h62h20and ¢/+h'd/<2e}§ Zl—l—l.

Now recall that ¢ = (p — 1) - (¢ — 1). So, for any ¢ < 2°, we have using the

~

uniform distributi(/)\n of (p,q) in 73@2/2/)\61, that Pr[¢ = ¢] :A#{(p,q) € Pf2/2761 :
p—1(¢g—-1) = ¢}/#Pg2/2ﬁ1 < T(gb)/#Pg/Qﬁl, where 7(¢) denotes the total

Converse Results to the Wiener Attack on RSA 197

number of divisors of ¢. It is known (see Theorem 317 of [4]) that T(g/b\) =
0 (221°g(¢)/1°g1°g(¢)) = O(n®2/1°8%) for some positive constant cz, using the

fact that 2¢/4 < ¢ < 2°. Also, from the prime number theorem (see Theorem 6
of [4]), we have that ¢y -x/Inx < m(x) < ¢y -2/ Inz for any constants ¢z, < 1 and
cy > 1 for all sufficiently large =, where 7(z) denotes the number of primes less
than or equal to z. It follows that #Py/s 5, = m(2%/2) — w(24/2F1) = 2(2%/2 /1)

meaning that #7P7, 5 = 2(2°/¢?). So we conclude that

~ ncz/ log £ 7’LC3/ log ¢
pio=d=0("y . J=0("y).
for some positive constant c3. Hence, using the fact that d’ € [n/2%2,n], we have

c3/lo
Pr[¢p = ¢ mod d'] = O ((2€/dl +1)- (n 2; gf)) =0 (n_(l_%/log@) . (20)

Plugging in (19) and (20) into (17), we finally obtain

kK
_ _ —(2—c7/log¥)
Pr [d d’} o (n)

for some positive constant c7, as claimed. This completes the proof of the lemma.
O

Combining (15) and Lemma 5 we know that (with n = 2°) there exists a
positive constant v such that

#5550 (Dmin)T) = O (n*77). (21)

Using the bounds from Lemma 6 and (21) and the fact that 7 = 29¢) with
g(£)/€ = o(1), we get, for some positive constant ¢’ that

T #5% 5,0 (Amin/T) - p* = O (29(4) -n?27/2 n_(2_c7/1°g5)) =0 (2_5/'0 :
(22)
Finally, plugging in the bounds from (14) and (22) into (9), we conclude that
there exist positive constants ¢ and ¢y such that (8) holds. This completes the
proof of the theorem. O

6 Conclusions

We obtained converse results to the Wiener attack on low secret-exponent RSA
and its extensions. Our results show that the Wiener approach alone cannot
lead to a subexponential-time attack when the RSA secret exponent d > N1/4,
Obtaining converse results for the lattice-based Boneh-Durfee attack and its
extensions, which heuristically succeed in polynomial-time when d < N%292 is
currently an interesting open problem. We believe our results are a first step
towards a solution to this open problem.

198 Ron Steinfeld et al.

Acknowledgements

We would like to thank Igor Shparlinski for helpful discussions and assistance
with the proof of Lemma 3. This work was supported by ARC Discovery Grants
DP0345366 and DP0451484.

References

10.

. J. Blomer and A. May. Low Secret Exponent RSA Revisited. In CaLC 2001,
volume 2146 of LNCS, pages 110-125, Berlin, 2001. Springer-Verlag.

. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N°-2%2,

IEEE Trans. on Info. Theory, 46(4):1339-1349, 2000.

A. Dujella. Continued Fractions and RSA with Small Secret Exponents. Tatra Mt.

Math. Publ. (to appear), 2004. Available at

http://www.math.hr/ duje/papersl.html.

G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford

University Press, London, 1965.

W.J. LeVeque. Fundamentals of Number Theory. Dover Publications, New York,

1996.

L. Lovész. An Algorithmic Theory of Numbers, Graphs and Convezxity. Society for

Industrial and Applied Mathematics, Philadelphia, 1986.

J.B. Rosser and L. Schoenfeld. Approximate Formulas for Some Functions of Prime

Numbers. Illinois. J. Math., 6:64-94, 1962.

. E. Verheul and H. van Tilborg. Cryptanalysis of ‘Less Short’ RSA Secret Expo-

nents. Applicable Algebra in Engineering, Communication and Computing, 8:425—

435, 1997.

I.M. Vinogradov. Elements of Number Theory. Dover Publications, New York,

1954.

M.J. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Trans. on

Information Theory, 36:553-558, 1990.

RSA with Balanced Short Exponents
and Its Application to Entity Authentication

Hung-Min Sun! and Cheng-Ta Yang?

! Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan 30055
hmsun@cs.nthu.edu.tw
2 Department of Computer Science and Information Engineering,
National Cheng Kung University

Abstract. In typical RSA, it is impossible to create a key pair (e, d) such
that both are simultaneously much shorter than ¢(IN). This is because
if d is selected first, then e will be of the same order of magnitude as
@(N), and vice versa. At Asiacrypt’99, Sun et al. designed three variants
of RSA using prime factors p and ¢ of unbalanced size. The first RSA
variant is an attempt to make the private exponent d short below N2
and N°%292 which are the lower bounds of d for a secure RSA as argued
first by Wiener and then by Boneh and Durfee. The second RSA variant
is constructed in such a way that both d and e have the same bit-length
é logy N + 56. The third RSA variant is constructed by such a method
that allows a trade-off between the lengths of d and e. Unfortunately,
at Asiacrypt’2000, Durfee and Nguyen broke the illustrated instances of
the first RSA variant and the third RSA variant by solving small roots
to trivariate modular polynomial equations. Moreover, they showed that
the instances generated by these three RSA variants with unbalanced
p and ¢ in fact become more insecure than those instances, having the
same sizes of exponents as the former, in RSA with balanced p and q.
In this paper, we focus on designing a new RSA variant with balanced d
and e, and balanced p and ¢ in order to make such an RSA variant more
secure. Moreover, we also extend this variant to another RSA variant in
which allows a trade-off between the lengths of d and e. Based on our
RSA variants, an application to entity authentication for defending the
stolen-secret attack is presented.

Keywords: RSA, Short Exponent Attack, Lattice Reduction, Entity
Authentication

1 Introduction

RSA [14], the most popular public key cryptosystem, was announced in 1978 by
Rivest, Shamir, and Adleman at MIT. However, RSA suffers from heavy com-
putation because it requires exponentiation operations modulo a large integer N
(N = pq, a product of two large primes). The RSA encryption and decryption
time is almost proportional to the number of bits in the exponent. In order to

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 199-215, 2005.
© International Association for Cryptologic Research 2005

200 Hung-Min Sun and Cheng-Ta Yang

reduce the RSA encryption (signature verification) time or decryption (signa-
ture generation) time, it is important to choose a small public exponent or a
short private exponent. Generally speaking, in standard RSA, encryption are
much faster than decryption because the public exponent is usually selected as
216 41, while the private exponent is of the same order of magnitude as ¢(N). In
some applications, one would like to accelerate decryption process. Thus select-
ing a short private exponent is preferred. In such a case, the encryption will be
cost-ineflicient because the size of public exponent will be of the same order of
magnitude as ¢(N). Towards to the use of RSA with short private exponent, one
must be careful with the short exponent attacks on RSA. In 1990, Wiener [21]
first showed that the instances of RSA cryptosystem with short secret exponent
(d < N%25) are insecure because one could find the short private exponent d
in polynomial time by using the continued fractions algorithm. In 1999, Boneh
and Durfee [2] showed how to improve the bound of Wiener up to d < N9292,
Their attack is based on the famous L3-lattice reduction algorithm [10] by Cop-
persmith [4] on finding small roots of particular bivariate modular polynomial
equations.

At Asiacrypt’99, Sun, Yang, and Laih [17, 18] designed three variants of RSA
using prime factors p and ¢ of unbalanced size. The first RSA variant is an at-
tempt to make the private exponent d short below Wiener’s bound [21] and
Boneh and Durfee’s bound [2]. In this variant, the RSA system is constructed
from p and q of different sizes in order to defend against the well-known short pri-
vate exponent attacks. They claimed that when p and ¢ are unbalanced enough,
d can be even smaller than N%25. A suggested choice of parameters is: p of 256
bits, g of 768 bits, and d of 192 bits. Note that in this variant, e is determined
as that in typical RSA, hence e is of 1024 bits. The second RSA variant is con-
structed in such a way that both d and e have the same bit-length ; log, N + 56
by choosing unbalanced p of ; logy N — 112 bits and q of ; logy N + 112 bits re-
spectively. The motivation of this variant is for balancing and minimizing both
public and private exponents. A suggested choice of parameters is: p of 400 bits, ¢
of 624 bits, d of 568 bits, and e of 568 bits. The third RSA variant is constructed
by such a method that allows a trade-off between the lengths of d and e (that
is log, e + log, d = logy N + li, where [j, is a predetermined constant, e.g., 112)
under the limitation of log, p + log, d < logy N (assuming p < ¢). The purpose
of this variant is for rebalancing the computation cost between encryption and
decryption. By this method, one may shift the work from decryptor to encryptor.
An illustrated instance of RSA has the parameters: p of 256 bits, ¢ of 768 bits,
d of 256 bits, and e of 880 bits. Unfortunately, Durfee and Nguyen [5] broke the
illustrated instances of the first RSA variant and the third RSA variant by solv-
ing small roots to trivariate modular polynomial equations. They also showed
that the instances generated by these three RSA variants with unbalanced p and
q in fact become more insecure than those instances, having the same sizes of
exponents as the former, in RSA with balanced p and ¢. In this paper, we are
interested in enhancing the security of Sun et al.’s RSA variants by using bal-
anced p and ¢. It is clear that for the first RSA variant, the improved one with

RSA with Balanced Short Exponents 201

balanced p and ¢ is in fact the standard RSA. Hence, it is impossible to make d
short below Boneh and Durfee’s bound and Wiener’s bound. Therefore, we will
not focus on the first variant. For the second RSA variant, it is unable to make p
and ¢ balanced because p is of % logy N — 112 bits and q is of % logy N + 112 bits
in this variant. For the third RSA variant, the possible constructed RSA with
balanced p and ¢ are only those instances of RSA with d of ;log2 N bits and
e of é logy N +), bits. This is due to the limitation of log, p + log, d < log, V.
In this paper, we focus on designing a new RSA variant with balanced p and
¢, and balanced d and e in order to make such an RSA variant more secure
against the Durfee-Nguyen attack and the other existing attacks. Moreover, we
also extend our variant to another RSA variant in which p and ¢ are balanced
and log, e +log, d =~ logy N +[,. Compared with RSA using CRT-based decryp-
tion (RSA-CRT for short), our schemes seem not to provide better performance
for decryption. However it is still an interesting topic like those short exponent
attacks [2,21] working on the standard RSA. Moreover, based on our schemes,
we present an application to entity authentication for defending the stolen-secret
attack. On the contrary, RSA-CRT can not be applied to the application. We
refer the readers to Section 7.

This paper is organized as follows. In Section 2, we review the standard RSA,
RSA-CRT, Sun et al.’s RSA variants, and recall some well-known attacks on RSA
with short private exponent. In Section 3, we present a new RSA variant with
balanced p and ¢, and balanced e and d; and show the flexibility for constructing
such an RSA variant. In Section 4, we analyze the security of this proposed RSA
variant. In Section 5, we extend the proposed RSA variant in Section 3 to another
RSA variant in which p and ¢ are balanced and log, e + logy d =~ logy N + .
In Section 6, we show the experimental results of our implementations for our
schemes. In Section 7, we compare our RSA variants with RSA-CRT, and give
an application based on our RSA variants. Finally, we conclude this paper in
Section 8.

2 Preliminaries

2.1 Description of Notations

The notations in Table 1 are used throughout this paper.

2.2 The Standard RSA and RSA-CRT

In standard RSA, N = p X ¢ is the product of two large primes p and ¢. The
public exponent e and private exponent d satisfy e x d = 1 mod ¢(N), where
d(N) = (p—1)(¢ — 1) is the Euler totient function of N. Here, N is called the
RSA modulus. The public key is the pair (N, e) that is used for encryption (or
signature verification): ¢ = m® mod N. The private key d is to enable decryption
of ciphertext (or signature generation): m = ¢? mod N. Traditionally, we select
two primes (of 512 bits) p and ¢ first, and then multiply them to obtain N (about
1024 bits). Next, we pick the public exponent e first, and then determine the

202 Hung-Min Sun and Cheng-Ta Yang

Table 1. Notations.

D, q: The two large primes of RSA.

N : The product of two large prime factors p and ¢, i.e. N =p X q.
e, d: The public exponent and private exponent, ed = 1 mod ¢(IV).
A The prime difference, A = |p — ¢|.

S d=N°.

w : e=N".

v lp—ql=N".

Ix : The bit-length of a variable X.

private exponent d by d = e~ ! mod ¢(N), or we select the private exponent d
first, and then compute the public exponent e by e = d~! mod ¢(N). For the
deduction mentioned above, either e or d is of the same order of magnitude as
#(N). Instead of computing m = ¢? mod N, RSA-CRT computes m; =c% mod
p, and mo=c% mod ¢, where dp = dmodp —1 and d; = d mod ¢ — 1, then
applying the Chinese Remainder Theorem, one may easily recover m by mq
and mo.

2.3 Sun, Yang, and Laih’s RSA Variants

At Asiacrypt’99, Sun et al. [17,18] designed three variants of RSA using prime
factors p and q of unbalanced size. The first variant of RSA is an attempt to make
the private exponent d short below Wiener’s bound and Durfee and Nguyen’s
bound. In this variant, the RSA system is designed by unbalanced p and ¢ in
order to defend against all existing attacks on short private exponent. The second
variant of RSA is an attempt to balance and minimize both public and private
exponents. It is constructed in such a way that both d and e have the same
size of ; logy N + 56 bits by choosing unbalanced p of é logy N — 112 bits and
q of ;logQ N + 112 bits respectively. The third variant of RSA is an attempt
to rebalance the computation cost between encryption and decryption. By this
variant, one may shift the work from decryptor to encryptor. It is constructed
by such a method that allows a trade-off between the lengths of d and e (that is
log, e + log, d =~ log, N + 112) under the limitation of log, p + log, d < log, N.
Due to the limit of space, we describe the details of these three RSA variants in
Appendix A.

Very soon, Durfee and Nguyen [5] broke the illustrated instances of the first
RSA variant and the third RSA variant. Moreover, they showed that the in-
stances generated by these three RSA variants with unbalanced p and ¢ in fact
become more insecure than those instances, having the same sizes of exponents
as the former, in RSA with balanced p and q. We describe their attack later.

2.4 Attacks on RSA with Short Private Exponent

Wiener’s Attack and Its Extensions. Wiener’s attack [21] is based on con-
tinued fractions algorithm to find the numerator and denominator of a fraction

RSA with Balanced Short Exponents 203

in polynomial time when a sufficiently close estimate of the fraction is known. He
showed that the RSA system can be totally broken if the private exponent is up
to approximately one-quarter as many bits as the modulus under both p and ¢ of
approximately the same size. For simplicity, we slightly modify Wiener’s attack
in the following way. Since ed = 1 mod ¢(N), there exists a k, ged(d, k) = 1, such
that ed = k¢(N) + 1. So, |¢(eN) — Z| = d(sz)' Hence, ; is an approximation of
s(N)- We can rewrite the equation: ed = kEp(N)+1 as: ed = k(N —(p+q)+1)+1.
As pointed out by Pinch [12],if p < ¢ < 2pand d < J N2, then p+q—1 < 3N
and k < d < éNO'%. Using N in place of ¢(IN), we obtain:

1

e k|:k(p—|—q 1 ’f)g 1 <1<1'

d dN dNO-25 " 3d2 242

Thus ann be found because it is one of the log N convergents of the continued
fraction for .

The extension of Wiener’s attack was proposed by Verheul and Tilborg [19].
When d > N%2, their attack needs to do an exhaustive search for about 2t + 8
bits, where ¢t ~ logs(Ng?%). In addition, Weger [20] further proposed another
extension of Wiener’s attack in the case when the prime difference of N, A =
|p — ¢l, is small. Let the prime difference A = |p — q| = N7 for 0.25 < v < 0.5,
and d = N°. Weger showed that if § < i — 7, one could find the short private
exponent d using Wiener’s attack. Thus Weger improved Wiener’s bound from

§<025t0d0 <3 —n.

The Boneh-Durfee Attack and Its Extension. Based on solving the small
inverse problem, Boneh and Durfee [2] proposed another attack on RSA with
short private exponent, which leads to a better bound than that proposed by
Wiener [21]. They concluded that if e ~# N and d < N°292) then the private
exponent d can be found efficiently.

In typical RSA system, ed = k¢(N) + 1, e = N¥ and d = N°. So, ed =
kp—1)(g=1)+1=k(N+1)=(p+q)+1 Lt A=N+1,5s=—(p+q),
and t = —k. Then ed + t(A + s) = 1. Thus, t(A + s) = 1(mod e) and we can
bound s and ¢ by |¢]| < 3e!+°=" and |s| < 2e =) . Boneh and Durfee took w ~ 1
and ignored small constants, and ended up with the following problem: finding
integer ¢ and s such that ¢(A + s) = 1(mod e) where |s| < €% and |t| < €.

Now, we have a simple review of the lattice theory first. Let vy,..., v, € Z"
be linearly independent vectors with w < n. A lattice L spanned by (vy, ...,
Uy) is the set of all integer combinations of vy,..., v,,. We denote by v7,..., v}

w
the vectors obtained by applying the Gram-Scmidt process to the vectors vy,...,

w
vy. We define the determinant of the lattice L as det(L) := _Hl||v;-k |, where
1=
[|.]| denotes the Euclidean norm on vectors. We say that the lattice is full rank
if w = n. For a lattice L spanned by (v1, ..., vy), the LLL algorithm runs in
polynomial time and produces a new basis (r1, ..., 7,) of L as |[r1|| < 2% det(L) »

(w—1) 1 .
and ||r2]] < 2 2 "det(L)-v, r; and ro are two shortest vectors in the new
basis.

204 Hung-Min Sun and Cheng-Ta Yang

Boneh and Durfee solved the small inverse problem by using Coppersmith’s
approach [4]. Recall that let h(x,y) € Z[x,y] be a polynomial which is a sum of
at most w monomials. Suppose that (1) h(zg,yo) = 0 mod e™ for some positive
integer m where |zo| < X and |yo| <Y, and (2) [|h(zX,yY)|| < e™/y/w, then
h(zo,yo) = 0 holds over the integers.

The small inverse problem is the following: given a polynomial f(x,y) =
2(A+y) — 1, find an (z0,v0) as f(zo,%0) = O(mod e) where |zo| < e’ and
lyo| < €. We would find a polynomial with a small norm that has (zg,yo)
as a root modulo e™ for some positive integer m. Boneh and Durfee defined
the polynomials g; 1 (z,y) = 2* f¥(x,y)e™ % and h; (2, y) = v/ f*(z,y)e™ " for
k = 0,...,m, where g; x(z,y) is called x-shifts and h;x(z,y) is called y-shifts.
For each k, they used g¢; x(zX,yY) for ¢ = 0,...,m — k and used h;,(zX,yY)
for 7 = 0,...,t, where t is minimized based on m. Observe that the matrix is
triangular and has a dimension (m+1)2(m+2) + t(m 4+ 1). The determinant of the
lattice can be easily computed as the product of the diagonal entries

det, = em(m+l)(m+2)/3 . Xm(m+1)(m+2)/3 . Ym(m+l)(m+2)/6
dety _ etm(erl)/Q . Xtm(erl)/Q . Yt(m+1)(m+t+l)/2'

Let det(L) = det, - det,. By Ignoring the denominator in order to simplify the

derivations, we get the condition det(L) < e™". Finally, on the basis of the
lattice theory and Coppersmith’s approach, We deduce that

7 1 16 4 5
o< - \/7+ + .+ .
m

6 3 m 6m
For large m, this converges to § < g — ‘g ~ 0.285. By working on a sub-

lattice, the bound on ¢ can be improved to § < 1 — 42 ~ 0.292.
Another improvement was proposed by Wager [20]. He showed that RSA is

insecure when the length § of the private exponent isin 2—4y < § < 1— \/27 — ;,
where [p — q| = N7 and d = N°.

The Cubic Attack. Here, we review the cubic attack in [17,18]. In RSA,
N = pq and ed = k(p — 1)(¢ — 1) + 1, therefore, the modular equations are
k(p—1)(g—1) +1 = 0(mod e) and pg = N(mod e). According to the above
two equations, we can obtain one cubic equation with two variables k and p :
k(p —1)(N — p) +p = 0(mod e). If log, k + logy p < 3 log, €, we can solve such
a cubic equation heuristically using Coppersmith’s technique [4].

2.5 The Durfee-Nguyen Attack and Its Extension

Extending the Boneh-Durfee attack, Durfee and Nguyen [5] attacked Sun et al.’s
RSA variants by solving small roots to trivariate modular polynomial equations
using Coppersmith’s lattice technique. From the RSA equation ed = k¢(N)+1 =
k(p—1)(g—1)+1,let A= N +1, it implies 1 + k(4 — p — ¢) = 0(mod e).

RSA with Balanced Short Exponents 205

Table 2. Largest § (where d < N‘;) for which Durfee-Nguyen’s attack can be completed.

logy (€)

1.0 09 08 08 07 06 055

0.5 0.284 0.323 0.339 0.363 0.406 0.451 0.475

0.4 0.296 0.334 0.350 0.374 0.415 0.460 0.48311

logy(p) 0.3 0.334 0.369 0.384 0.406 0.446 0.487 0.510
0.25 0.3641 0.398 0.412111 0.433 0.471 0.511 0.532

0.2 0.406 0.437 0.450 0.470 0.505 0.542 0.562

0.1 0.539 0.563 0.573 0.588 0.615 0.644 0.659

They treated the above equation as a trivariate equation modular e with three
unknown variables, k, p, ¢, with the special property that the product pg of
two of them is the known quantity N. Here, the problem is regarded as given a
polynomial f(z,y,z) =xz(4A+y+ z) — 1, finding an integer solution (zq, Yo, 20)
satisfying the equation f(zo,yo,20) = 0(mod e) where |zg| < X, |yo| < Y,
|z0| < Z, and ypzo = N. Note that the bounds are X = %17 Y ~p, and Z =~ q.

To search for low-norm integer linear combinations of these polynomials of
the form e™~Vz¥ly 2243, f¥(z,y, 2), they chose the polynomials g ; »(x,y, 2) :=
e Friyazb fF(z,y, 2), for k = 0..(m — 1), i = 1..(m — k),and b = 0, 1; and,
hij(z,y,2) = e™ Fy*tifF(z,y, 2), for k = 0.m and j = 0.., then fixed an
integer m, and let a and ¢ > 0 be integers which would be optimized later.
Following the LLL algorithm [4], they obtained two short vectors correspond-
ing to polynomials hy(z,y, 2), he(z,y,z) that had (k,p,q) as a root over the
integers; and letting z =}, they deduced these polynomials to bivariate poly-
nomials H; (x, y) and Ha(z,y) which had (k, p) as a solution. Taking the resultant
Res,(Hy(x,y), Hz(z,y)) produced an univariate polynomial H(y) which had p
as a root. They summarized the largest possible ¢ for which their attack could
succeed as shown in Table 2.

From Table 2, we conclude that instances from RSA with unbalanced p and
q are in fact more insecure than those from RSA with unbalanced p and ¢.An
improvement of Durfee-Nguyen’s largest ¢ was proposed by Hong et al. in [7].
They showed how to improve the bound from 0.483 to 0.486 when log (p) ~ 0.4,
logy(e) = 0.55 using Coppersmith’s theorem [4]. Because their attack is very
similar to the Durfee-Nguyen attack, we omit to review the details of their attack.

3 New RSA Variant with Balanced Exponents
and Balanced Prime Factors

Sun et al.’s second variant is designed for balancing and minimizing both public
and private exponents. An illustrated instance of this variant was given in [17,
18]. The illustrated instance has parameters: p of 400 bits, ¢ of 624 bits, d of 568
bits, and e of 568 bits. Although this instance is still secure against the Durfee-
Nguyen attack, however, as shown in Table 2, an instance of RSA with the same
size of d and e, and balanced p and ¢ is more secure than the illustrated instance

206 Hung-Min Sun and Cheng-Ta Yang

in [17,18]. Unfortunately, it is impossible to make p and ¢ balanced in Sun et
al.’s second variant because p is of } log, N — 112 bits and ¢ is of } logy N + 112
bits. In this section, we present a new RSA variant in which d and e are balanced,
and p and q are also balanced.

3.1 The Proposed Scheme

Our scheme is based on the Extended Euclidean algorithm [6]. Recall that for
two integers a,b > 1, if ged(a,b) = 1, then we can find a unique pair (up, vy)
satisfying aup — bvp, = 1,where (h — 1)b < up, < hb and (h — 1)a < v;, < ha, for
any integer h > 1. Our method is as follows:

Scheme A: input: [y and w; output: e, d,p,q and N.

Step 1. Randomly select a prime p of %l N bits.

Step 2. Randomly select a number k', such that &’ (p—1)isof ;lN + w bits,
where w is a security parameter, e.g., w = 56.

Step 3. Randomly select a number d of ;ZN + w bits, such that gcd(k/ (p—
1),d) = 1.

Step 4. Determine u',v" such that du — k' (p— 1)’UI = 1, where 0 < ' <
E(p—1)and 0 <o <d.

Step 5. If I, < 3ln + w, then assign w=u+k(p—1)andv =0 +d.

Step 6. Try to find v = k//q/, where [, = w and q/ + 1 is a prime. If this
fails, go to Step 3.

Step 7. Let e =u', g=¢ + 1, and N = pq.

The algorithm will generate RSA instances in which both p and ¢ are approxi-
mately ; log, N bits long, and both e and d are approximately (} logy N+w) bits
long. Also the resulting e and d will satisfy ed = k'k” (p—1)(q—1)+1 = k¢(N)+1,
where k = k'k”. Note that the prime p generated in Step 1 can be determined
arbitrarily, e.g., by selecting a strong prime p, but the prime ¢ generated in Step
7 cannot. Fortunately, for an RSA key the requirement that p and ¢ are strong
primes is no longer needed due to [15]. As an example, we construct an instance
of RSA that p is of 512 bits, ¢ is of 513 bits, and e and d are 568 bits (assigning
logy N ~ 1024, and w = 56). We show this instance in Appendix B.

3.2 Feasibility for the Algorithm

In this section, we show that the proposed algorithm in Section 3.1 is feasible.
Without loss of generality, we assume logy N =~ 1024, and w = 56. The critical
step in the above algorithm is Step 6. Because v’ is about of 568 or 569 bits, we
will try to find a lower bound for the probability of that being given a random
number x of 568 or 569 bits, it can be expressed in the form = = yz satisfying
ly =568 or 569, [, = 56, [, = 512 or 513 or 514, and z + 1 being a prime.

RSA with Balanced Short Exponents 207

Theorem 1. The probability that given a randomly selected number x of 568

or 569 bits, it can be expressed in the form x = yz satisfying l, = 568 or 569,

ly =56, [, =512 or 513 or 514, and z + 1 being a prime is much higher than
1

387618 *

Proof. We omit the details due to the limit of space.

Based on Theorem 1, the existence and its probability for a random number
which can go through Step 6 in the proposed scheme has been evaluated. Now
we consider the cost for factoring a 568-bit v’ into the form: k”ql, where [;,n =
56, in Step 6. Given a number v,, it is easy for us to find all prime factors of
v" which are less than 56 bits by some well-known factoring algorithms, such as
ECM algorithm [8]. Then we can try to combine these prime factors to form a
56-bit k& in polynomial time.

4 Security Considerations

In this section, we analyze our scheme to thwart the previous well-known attacks
on short private exponent, including Wiener’s attack [21], the Boneh-Durfee
attack [2], the Durfee-Nguyen attack [5], the cubic attack [17,18], and their
extensions [7, 19, 20].

Defending Against Wiener’s Attack. We will check the security of our RSA
variant according to Wiener’s attack. It is clear that

K k|7kxp+q—1—i Jka

N d d N dN’
In our variant, p and ¢ are about of 512 bits, and e and d are about of 568 bits,
s0 2511 < p < 9512 9l < o 9112 9567 < o - 9568 9567 < j ~ 9568 Now, we

111 511

can obtain | 5 — Z| > Z]% > 3568 X 221024 = 29170 > 2;2 ~ 21}36. Thus, Wiener’s
attack does not apply to our scheme.

Defending Against the Boneh-Durfee Attack and the Durfee-Nguyen
Attack. Following Boneh and Durfee’s approach, let A=N+1, s = —(p+ q),
and t = —k. Thus t(A+5s) = 1(mod e). Let |s| < e* and |t| < €. The sufficient
condition for solving the small inverse problem is: 4a(28+a—1) < 3(1—B—a)%.

In our example, p and ¢ are about of 512 bits, and e and d are about of
568 bits, therefore, 2911 < p < 2512 211 < |k < 2112 92567 < o < 2568 9511 <
d < 2%12. We can calculate |s| = |[p + q| = €%, |k| = €, ie. 2512 < (2568),
2112 < (2968)8 we can get a ~ gég, 8 =~ éég respectively. It is clear that
4a(28 + a — 1) = 1.06645 > 0.02916 = 3(1 — 3 — a)?. So, the Boneh-Durfee
attack cannot succeed.

Next, we examine the largest § (where d < N?) for which the Durfee-Nguyen
attack [5] can succeed. Our p is of 512 bits, then logy (p) = 0.5; e is of 568 bits,

568

then logy(e) = 0.55; and d is of 568 bits. So, we can figure out d ~ N 1021 =
NO-55 > NO0-475 So our RSA variant is secure against the Durfee-Nguyen attack.

208 Hung-Min Sun and Cheng-Ta Yang

Finally, we check the prime difference that Weger proposed.

2-dy=2-4x}=0and1— /29— L =1 /2x} -1 =1-05=
0.29289. In our RSA variant, the private exponent is of 568 bits. Therefore,
§ = 208 —0.5546875 which is out of the range of 0 < § < 0.29289. So our RSA

1024
variant is secure against Weger’s attack [20].

Defending Against the Cubic Attack. According to Section 2.3.3 for the
cubic attack, in our variant, k is of 112 bits, p is of 512 bits, and e is of 568 bits.
It is clear that logy k +logy p =~ 112 + 512 = 624 >> é logy e = :1,) X 568, In such
a case, the cubic attack cannot work.

Defending Against an Exhaustive Search. One can check a guess for k
since p(N) = N +1—(p+q) = (—k)"! (mod e¢) andso (p+q) =N+ 1+ k!
(mod €). Since p 4+ ¢ < e, this gives p + ¢ exactly and then we can test the
guess by checking whether aV*+1~(P+9) = 1(mod N) for a random value a. In
our proposed scheme, k is large enough (112 bits), an exhaustive search method
can not work effectively.

Defending Against Other Attacks. We also consider the extensions of the
above attacks, including the Verheul and Tilborg attack [19], the Weger attack
[20], and Hong et al.” attack [7]. There is no evidence showing that the proposed
scheme is insecure under these extensions. We also try to construct new poly-
nomial equations in which we expect to solve their roots using Coppersmith’s
lattice technique. So far we are unable to find any useful polynomial equation to
do that. Note that it is still an open problem if there exists any polynomial-time
algorithm for breaking Sun et al.’s second RSA variant. This also implies that so
far no feasible attacks can work well on the new RSA variant because breaking
the new RSA variant would be more difficult than breaking Sun et al.’s second
RSA variant.

5 New RSA Variant with Balanced Prime Factors
and Trade-Off Exponents

Sun et al.’s third RSA variant is designed for rebalancing the computation cost
between encryption and decryption. By this method, one may shift the work
from decryptor to encryptor due to log, e + logy d =~ logy N + I, where [is
a predetermined constant, e.g., [;=112. However, the constructed RSA has the
limitation of logy, p + logy d < logy N (assuming p < ¢). That means that if
we make both p and ¢ have the same length, élogQ N, the instances that can
be constructed by Sun et al.’s scheme are only those instances whose d are of
;logQN bits, and e are of élogQN + I, bits. Note that in the past, Sakai et
al. [16] proposed a key generation algorithm for RSA which provides the similar
goal as Sun et al.’s third variant. Regrettably, their algorithm is insecure due to
[17,18]. In this section, we present a new RSA variant with balanced p and ¢
and log, e + log, d =~ log, N + [}, without any other constraint. Without loss of
generality, we assume d < e. If d > e, we need only interchange them.

RSA with Balanced Short Exponents 209

Scheme B: input: Iy, 4, and li; output: e, d, p,q and N.

Step 1. Randomly select a prime p of él N bits.

Step 2. Randomly select a number k" such that &’ (p—1)isof iy + 1k — lg
bits, where [is a security parameter, e.g., I = 112, and [4 is the
bit-length of d.

Step 3. Randomly select a number d of Iy bits, such that ged(k' (p—1),d) = 1.

Step 4. Determine u',v" such that du’ — k' (p — 1)1)/ =1, where 0 < v’ <
E(p—1)and 0 < v <d.

Step 5. If [,/ < 14, then assign u=u 4k (p—1) and v =0 +d.

Step 6. (Case I) If Ig > }ly, try to find v =k"q, where I, = (I — 5ln)
and q, + 1 is a prime. If it fails, go to Step 3; else e = ul, q= q, +1,
and N = pq.

(Case I) If Iy < L, try to find k" = k¢, where ;s = I and tv' +1
is a prime. If it fails, go to Step 3; else e = u, q = tv' + 1, and
N =pq.

Here we omit to analyze the feasibility for this algorithm and the security for
this variant because these analyses are very similar to those of Scheme A. Instead,
we illustrate two instances constructed from this variant. The first instance has
p and ¢ of 512 bits, d of 540 bits, and e of 596 bits; and the other one has p and
q of 512 bits primes, d of 512 bits, and e of 624 bits. These two examples are
shown in Appendix C.

6 Implementations for the Proposed Schemes

In order to show that our schemes are actually feasible, we implemented our
algorithms and measured the average running time for three different sizes of
RSA. The main component in our implementations is the factorization method.
In our implementations, we select Pollard p — 1 method [13] as our fundamen-
tal factorization method. Furthermore, the programming language used for our
implementations is C under NTL with GMP (GNU Multi-Precision library) on
Windows systems using Cygwin tools. The machine we used is a personal com-
puter (PC) with 2.8GHz CPU and 512MB DRAM. We consider three different
cases for comparisons. The first case has p and ¢ of 512 bits, d and e of 568 bits;
the second case has p and q of 512 bits, d of 540 bits, and e of 596 bits; the third
case has p and ¢ of 512 bits, d of 512 bits, and e of 624 bits.

Table 3 shows the results and conditions for generating RSA key pairs in our
schemes. The item “B Bound”, a predetermined integer using the Pollard p — 1
method, denotes the upper bound for all prime power divisors of p — 1. This
value is chosen by experience in our program. The item “AverageTime” denotes
the average running time for each case upon testing 100 samples. The item
“AverageLoopNum” counts the number of loops running from Step 3 to Step 6.
Note that what we are doing in Step 6 of our implementations is only to find
small factors of v" and then try to compose part of these small factors into what
we need. According to our experiments, if one tries to factor v completely, then
“AverageLoopNum” will be smaller, but “AverageTime” will be longer because

210 Hung-Min Sun and Cheng-Ta Yang

Table 3. Experimental results in PC platform of 2.8GHz CPU, 512M DRAM.

Scheme A Scheme B
In = 1024 In =1024 Iy = 1024
Input le =568 le =596 [l.=1624
(Bit-length) lg = 568 lg =540 Iy =512
w = 56 ly =112 [=112
B Bound 150 30
AverageTime (sec) 1060.93 20.61 0.46
AverageLoopNum 290490 29273 319

the time will be dominated by the factorization. From Table 3, we know that the
more balanced e and d are, the more time-consuming our algorithms are. The
most time-consuming case is exactly Scheme A. The average time for generating
such a key pair is about 16 minutes under our implementations. This may be
heavy for the end user’s use. However, it can be much improved by some parallel
techniques and/or high-end computers in the case when the RSA key pair must
be generated and issued by centralized control. For example, a trusted CA issues
smart cards in which every user’s private key, public key, and the corresponding
certificate are embedded by a smart card writer.

7 Discussion and Application

Comparing with the typical RSA with small e and randomly determined d,
Scheme A is about twice faster in decryption, but the public exponent e is about
of %l n bits. On the other hand, RSA-CRT achieves 4 times faster and can choose
small e, e.g. e=2'941. Thus, our variants can not provide better performance
than RSA-CRT. However RSA-CRT needs to keep more secrets (d,, dg, p, and q)
than our schemes. Besides, RSA-CRT usually brings on some additional security
problems [9]. In the following, we further propose an application, based on RSA,
to entity authentication for defending a type of attack, called the stolen-secret
attack. It is remarked that our RSA variants can be applied to realize such an
application, while RSA-CRT can not.

With two-party authentication protocols in place, it would be easy for one
participant to establish trusted communication with the other. In general, there
are three approaches to designing authentication protocols. The first approach
is based on the public-key cryptosystem (involving signature mechanism). This
approach works under PKI environment and needs a trusted CA to support. The
second approach is based on a shared password which is easy to remember by
user. This approach usually need to be designed to defend the dictionary attack.
The third approach is based on a shared secret-key of a symmetric cryptosystem.
This approach uses symmetric-key encryption to validate the identity of protocol
participants. Here we consider the stolen-secret attack in which an adversary who
has stolen the secret (a private key, or a shared password, or a shared secret-key)
from one party can use it directly to masquerade as the other party. Among these

RSA with Balanced Short Exponents 211

three approaches, the first approach is secure against the stolen-secret attack
because one party’s private key leaked will not lead to a forgery of the other party.
However, it is only suitable for the environment with CA and PKI supporting.
For the password-based protocol, because two parties share a common password,
therefore it is insecure against the stolen-secret attack. An improvement for this
approach is called the verifier-based protocol in which one party (client) keeps
a password and the other one (server) keeps the corresponding verifier (usually
it is a hashed image of the password). Thus if the verifier is leaked, it will not
lead a forgery of the client. However, if the password is leaked (on the client
side), this will lead to a successful forgery of the server because the verifier can
be easily computed from password. As for the third approach, it is clear that
the stolen-secret attack can work well.

As mentioned above, the stolen-secret attack is a baffling problem in authen-
tication protocols. Here we attempt to enhance the secret-key based protocol
to defend the stolen-secret attack. In general, RSA system generates a key pair
(e,d), where the public key e is disclosed and the private key d is disguised. If
both e and