

Lecture Notes in Computer Science 3386
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Serge Vaudenay (Ed.)

Public Key
Cryptography –
PKC 2005

8th International Workshop
on Theory and Practice in Public Key Cryptography
Les Diablerets, Switzerland, January 23-26, 2005
Proceedings

13

Volume Editor

Serge Vaudenay
Ecole Polytechnique Fédérale de Lausanne
School of Computer and Communication Sciences
Security and Cryptography Laboratory
1015 Lausanne, Switzerland
E-mail: serge.vaudenay@epfl.ch

Library of Congress Control Number: 2004117654

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, K.4.4, K.6.5

ISSN 0302-9743
ISBN 3-540-24454-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© International Association for Cryptologic Research 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11376477 06/3142 5 4 3 2 1 0

Preface

The 2005 issue of the International Workshop on Practice and Theory in Public
Key Cryptography (PKC 2005) was held in Les Diablerets, Switzerland during
January 23–26, 2005. It followed a series of successful PKC workshops which
started in 1998 in Pacifico Yokohama, Japan. Previous workshops were succes-
sively held in Kamakura (Japan), Melbourne (Australia), Cheju Island (South
Korea), Paris (France), Miami (USA), and Singapore. Since 2003, PKC has been
sponsored by the International Association for Cryptologic Research (IACR). As
in previous years, PKC 2005 was one of the major meeting points of worldwide
research experts in public-key cryptography. I had the honor to co-chair the
workshop together with Jean Monnerat and to head the program committee.
Inspired by the fact that the RSA cryptosystem was invented on ski lifts, we
decided that the best place for PKC was at a ski resort. Jean Monnerat and I
hope that this workshop in a relaxed atmosphere will lead us to 25 more years
of research fun.

PKC 2005 collected 126 submissions on August 26, 2004. This is a record
number. The program committee carried out a thorough review process. In to-
tal, 413 review reports were written by renowned experts, program committee
members as well as external referees. Online discussions led to 313 additional
discussion messages and 238 emails. The review process was run using email and
the Webreview software by Wim Moreau and Joris Claessens. Every submitted
paper received at least 3 review reports. We selected 28 papers for publication on
October 28, 2004. Authors were then given a chance to revise their submission
over the following two weeks. This proceedings includes all the revised papers.
Due to time constraints the revised versions could not be reviewed again.

Double submissions, where authors send the same or almost the same paper
to multiple conferences that explicitly prohibit such practices, is an increasing
problem for the research community worldwide. I do regret that we had to reject
6 such submissions without consideration of their scientific merits. I would like
to thank the program chairs of other events who collaborated in this effort, in
particular Anne Canteaut, Joe Kilian, Choonsik Park, and Seongtaek Chee.

With the approval of the IACR Board of Directors, PKC 2005 delivered the
PKC Best Paper Award for the first time. The purpose of the award is to formally
acknowledge authors of outstanding papers and to recognize excellence in the
cryptographic research fields. Committee members were invited to nominate
papers for this award. A poll then yielded a clear majority. This year, we were
pleased to deliver the PKC Best Paper Award to Yevgeniy Dodis and Aleksandr
Yampolskiy for their brilliant paper “A Verifiable Random Function with Short
Proofs and Keys.” This paper concluded the workshop.

I would like to thank Jean Monnerat who accepted the responsibility to co-
chair the PKC 2005 workshop. I would like to thank the PKC steering committee
for their support and trust. The program committee and external reviewers

VI Preface

worked extremely hard under a tight schedule. I heartily thank them for this
volunteer work. Acknowledgments also go to the authors of submitted papers
and the speakers who made the real meat of PKC 2005. I am grateful to Antoine
Junod and Julien Brouchier for their support with the Webreview software. I also
thank my assistants Pascal Junod, Thomas Baignères, Yi Lu, Gildas Avoine, and
Matthieu Finiasz for their help in the PKC 2005 organization. Special thanks
to Martine Corval who orchestrated the PKC 2005 logistics. We appreciate the
kind help of Christian Cachin in the advertising and registration process. We also
owe our gratitude to Kevin McCurley for spending a substantial amount of his
valuable time to set up the online registration website. We thank our generous
sponsors Gemplus and personally David Naccache, and HP Labs and personally
Wenbo Mao, for supporting PKC 2005. We also thank EPFL and IACR for
sponsoring this event. It was a very pleasant experience. Crypto is fun!

Lausanne, November 19, 2004 Serge Vaudenay

PKC Steering Committee (as of November 2004)

Yvo Desmedt University College London, UK
Hideki Imai (Chair) University of Tokyo, Japan
Kwangjo Kim Information and Communications University,

South Korea
David Naccache Gemplus, France,

and Royal Holloway, University of London, UK
Jacques Stern Ecole Normale Supérieure, France
Moti Yung Columbia University, USA
Yuliang Zheng (Secretary) University of North Carolina at Charlotte, USA
Ronald Cramer CWI and Leiden University, The Netherlands
Tatsuaki Okamoto NTT Labs, Japan

Organizing Committee

General Co-chairs Jean Monnerat
Serge Vaudenay

Local Organization Martine Corval
Assistants Gildas Avoine

Thomas Baignères
Matthieu Finiasz
Pascal Junod
Yi Lu

VIII Organization

Program Committee

Carlisle Adams University of Ottawa, Canada
Feng Bao Institute for Infocomm Research, Singapore
Yvo Desmedt University College London, UK
Juan Garay Bell Labs – Lucent Technologies, USA
Martin Hirt ETH Zurich, Switzerland
Kwangjo Kim Information and Communications University,

South Korea
Kaoru Kurosawa Ibaraki University, Japan
Anna Lysyanskaya Brown University, USA
Wenbo Mao HP Labs Bristol, UK
David Naccache Gemplus, France and

Royal Holloway, University of London, UK
Kaisa Nyberg Nokia, Finland
Tatsuaki Okamoto NTT Labs, Japan
Josef Pieprzyk Macquarie University, Australia
David Pointcheval CNRS-ENS, France
Reihaneh Safavi-Naini University of Wollongong, Australia
Kazue Sako NEC, Japan
Claus-Peter Schnorr University of Frankfurt am Main, Germany
Berry Schoenmakers Technische Universiteit Eindhoven, The Netherlands
Nigel Smart University of Bristol, UK
Edlyn Teske University of Waterloo, Canada
Serge Vaudenay EPFL, Switzerland
Moti Yung University of Columbia, USA
Yuliang Zheng University of North Carolina at Charlotte, USA

Organization IX

External Reviewers

Masayuki Abe Toshiyuki Isshiki Hans-Georg Rueck
Ben Adida Kouichi Itoh Ryuichi Sakai
Gildas Avoine Michael Jacobson Takakazu Satoh
Joonsang Baek Marc Joye Katja Schmidt-Samoa
Thomas Baignères Pascal Junod Michael Scott
Mihir Bellare Charanjit Jutla Hovav Shacham
Daniel Bleichenbacher Jonathan Katz Andrey Sidorenko
Colin Boyd Tetsutaro Kobayashi Johan Sjödin
Emmanuel Bresson Robert König Martijn Stam
Eric Brier Byoungcheon Lee Andreas Stein
Duncan Buell Arjen Lenstra Ron Steinfeld
Srdjan Capkun Moses Liskov Makoto Sugita
Dario Catalano Javier Lopez Willy Susilo
Liqun Chen Yi Lu Koutarou Suzuki
Benôıt Chevallier-Mames John Malone-Lee Tsuyoshi Takagi
Jean-Sébastien Coron Toshihiko Matsuo Keisuke Tanaka
Ronald Cramer Noel McCullagh Isamu Teranishi
Jean-François Dhem Anton Mityagin Jacques Traoré
Christophe Doche Atsuko Miyaji Shigenori Uchiyama
Atsushi Fujioka Jean Monnerat Frederik Vercauteren
Eiichiro Fujisaki Waka Nagao Duong Quang Viet
Jun Furukawa Phong Q. Nguy˜̂en Jorge L. Villar
Steven Galbraith Satoshi Obana Guilin Wang
Pierrick Gaudry Takeshi Okamoto Huaxiong Wang
Louis Granboulan Katsuyuki Okeya Stephen Weis
Rob Granger Dan Page Claire Whelan
Jaime Gutierrez Pascal Paillier Christopher Wolf
Darrel Hankerson Jacques Patarin Go Yamamoto
Anwar Hasan Kenneth Paterson Chung-Huang Yang
Alex Healy Chris Peikert Danfeng Yao
Jason Hinek Krzysztof Pietrzak Sung-Ming Yen
Susan Hohenberger Bartosz Przydatek Huafei Zhu
Thomas Holenstein Tal Rabin
Heng Swee Huay Peter Roelse

Table of Contents

Cryptanalysis

A New Related Message Attack on RSA . 1
Oded Yacobi and Yacov Yacobi

Breaking a Cryptographic Protocol with Pseudoprimes 9
Daniel Bleichenbacher

Experimenting with Faults, Lattices and the DSA . 16
David Naccache, Phong Q. Nguyễn, Michael Tunstall,
and Claire Whelan

Key Establishment

Securing RSA-KEM via the AES . 29
Jakob Jonsson and Matthew J.B. Robshaw

One-Time Verifier-Based Encrypted Key Exchange . 47
Michel Abdalla, Olivier Chevassut, and David Pointcheval

Password-Based Authenticated Key Exchange
in the Three-Party Setting . 65

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Optimization

On the Optimization of Side-Channel Attacks
by Advanced Stochastic Methods . 85

Werner Schindler

Symmetric Subgroup Membership Problems . 104
Kristian Gjøsteen

Building Blocks

Optimizing Robustness While Generating Shared Secret Safe Primes 120
Emil Ong and John Kubiatowicz

Fast Multi-computations with Integer Similarity Strategy 138
Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

XII Table of Contents

Efficient Proofs of Knowledge of Discrete Logarithms and Representations
in Groups with Hidden Order . 154

Endre Bangerter, Jan Camenisch, and Ueli Maurer

Efficient k-Out-of-n Oblivious Transfer Schemes
with Adaptive and Non-adaptive Queries . 172

Cheng-Kang Chu and Wen-Guey Tzeng

RSA Cryptography

Converse Results to the Wiener Attack on RSA . 184
Ron Steinfeld, Scott Contini, Huaxiong Wang, and Josef Pieprzyk

RSA with Balanced Short Exponents and Its Application
to Entity Authentication . 199

Hung-Min Sun and Cheng-Ta Yang

The Sampling Twice Technique for the RSA-Based Cryptosystems
with Anonymity . 216

Ryotaro Hayashi and Keisuke Tanaka

From Fixed-Length to Arbitrary-Length
RSA Encoding Schemes Revisited . 234

Julien Cathalo, Jean-Sébastien Coron, and David Naccache

Multivariate Asymmetric Cryptography

Tractable Rational Map Signature . 244
Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou,
and Bo-Yin Yang

Cryptanalysis of the Tractable Rational Map Cryptosystem 258
Antoine Joux, Sébastien Kunz-Jacques, Frédéric Muller,
and Pierre-Michel Ricordel

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems . . 275
Christopher Wolf and Bart Preneel

Cryptanalysis of HFEv and Internal Perturbation of HFE 288
Jintai Ding and Dieter Schmidt

Signature Schemes

A Generic Scheme Based on Trapdoor One-Way Permutations
with Signatures as Short as Possible . 302

Louis Granboulan

Table of Contents XIII

Cramer-Damg̊ard Signatures Revisited:
Efficient Flat-Tree Signatures Based on Factoring . 313

Dario Catalano and Rosario Gennaro

The Security of the FDH Variant
of Chaum’s Undeniable Signature Scheme . 328

Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

Efficient Threshold RSA Signatures with General Moduli
and No Extra Assumptions . 346

Ivan Damg̊ard and Kasper Dupont

Identity-Based Cryptography

Improved Identity-Based Signcryption . 362
Liqun Chen and John Malone-Lee

Efficient Multi-receiver Identity-Based Encryption and Its Application
to Broadcast Encryption . 380

Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

CBE from CL-PKE: A Generic Construction and Efficient Schemes 398
Sattam S. Al-Riyami and Kenneth G. Paterson

Best Paper Award

A Verifiable Random Function with Short Proofs and Keys 416
Yevgeniy Dodis and Aleksandr Yampolskiy

Author Index . 433

A New Related Message Attack on RSA

Oded Yacobi1 and Yacov Yacobi2

1 Department of Mathematics, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

oyacobi@math.ucsd.edu
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

yacov@microsoft.com

Abstract. Coppersmith, Franklin, Patarin, and Reiter show that given
two RSA cryptograms xe mod N and (ax + b)e mod N for known con-
stants a, b ∈ ZN , one can compute x in O(e log2 e) ZN -operations with
some positive error probability. We show that given e cryptograms ci ≡
(aix + bi)

e mod N , i = 0, 1, ...e − 1, for any known constants ai, bi ∈ ZN ,
one can deterministically compute x in O(e) ZN -operations that depend
on the cryptograms, after a pre-processing that depends only on the con-
stants. The complexity of the pre-processing is O(e log2 e) ZN -operations,
and can be amortized over many instances. We also consider a special
case where the overall cost of the attack is O(e) ZN -operations. Our
tools are borrowed from numerical-analysis and adapted to handle for-
mal polynomials over finite-rings. To the best of our knowledge their use
in cryptanalysis is novel.

1 Introduction

Messages with known relations may occur for example if an attacker pretends
to be the recipient in a protocol that doesn’t authenticate the recipient, and
in addition the message is composed of the content concatenated with a serial
number. In that case the attacker can claim that she didn’t receive the transmis-
sion properly and ask that it be sent again. The next transmission will have the
same content as the original but an incremented serial number. If the increment
is known we have a known relation. Other examples appear in [4].

Related message attacks can be avoided all together if before RSA-encryption
the message M is transformed using e.g. the OAEP function ([3]; There are
other methods and some issues are not settled yet, see [5]). This transformation
destroys the relations between messages and increases the message length.

Nevertheless it is useful to know the ramifications in case for some reason
one chooses not to use OAEP or similar methods (even though it is highly
recommended). For example RFID tags may pose tough engineering challenges of
creating very compact cryptosystems, and the trade-off must be known precisely.

In [4] it was shown that given two RSA cryptograms xe mod N , and (ax + b)e

mod N for any known constants a, b ∈ ZN one can compute x in O(e log2 e) ZN -
operations with some small error probability.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 1–8, 2005.
c© International Association for Cryptologic Research 2005

2 Oded Yacobi and Yacov Yacobi

We show that given e cryptograms ci ≡ (aix+bi)e mod N , i = 0, 1, ...e−1, for
any known constants ai, bi ∈ ZN , one can deterministically compute x in O(e)
ZN -operations, after doing O(e log2 e) pre-computations that depend only on
the known constants. The descriptions of the protocol and the attack determine
the values of these constants. For example the attack described at the beginning
of this section has for all i ai = bi = 1. The cost of the pre-computations can be
amortized over many instances of the problem.

Our problem could be solved by using the Newton expansion of ci ≡ (aix +
bi)e mod N , renaming zj = xj and using linear algebra to find z1. However, our
method is more efficient.

We also show that in the special case where ci ≡ (ax + b · i)e mod N , i =
0, 1, ...e− 1, for any known constants a, b ∈ ZN , where gcd(a, N) = gcd(b, N) =
gcd(e!, N) = 1, one can deterministically compute x in overall O(e) ZN -oper-
ations using

x ≡ a−1b[(bee!)−1
e−1∑
i=0

(
e − 1

i

)
· ci · (−1)e−1+i − e − 1

2
] mod N

If any of the above gcd conditions do not hold then the system is already broken.
It remains an open problem whether the new approach can improve the

general case of implicit linear dependence, i.e., suppose for known constants
ai, i = 0, 1, 2, ...k, there is a known relation

∑k
i=1 aixi = a0 among messages

x1, x2, ...xk. The current complexity of attacking this problem is O(ek/2k2) [4].
Our major attack-tools are divided-differences and finite-differences. These

tools are borrowed from numerical-analysis, and adapted to handle formal poly-
nomials over finite-rings. To the best of our knowledge their use in cryptanalysis
is novel.

For a survey of the work on breaking RSA see [2].

2 Main Result

2.1 Divided Differences

We borrow the concept of divided-differences from numerical analysis and adapt
it to handle formal polynomials over finite rings. This will allow us to extract the
message from a string of e cryptograms whose underlying messages are linearly
related. We specialize our definitions to the ring of integers modulo N, a product
of two primes (the “RSA ring”). All the congruences in this paper are taken
mudulo N.

Definition 1. Let h be a polynomial defined over the ring of integers modulo N ,
and let x0, x1, ...xn be distinct elements of the ring such that (x0 − xi)−1 mod N
exist for i = 0, 1, ...n. The nth divided-difference of h relative to these elements
is defined as follows:

A New Related Message Attack on RSA 3

[xi] ≡ h(xi),

[x0, x1] ≡ [x0] − [x1]
x0 − x1

,

[x0, x1,xn] ≡ [x0, x1, ...xn−1] − [x1, x2, ...xn]
x0 − xn

.

Let x be an indeterminate variable, and for i = 0, 1, ...n, let xi ≡ x + bi

for some known constants bi (these are the general explicit linear relations that
we assume later). We can now view the above divided differences as univariate
polynomials in x defined over ZN .

The following lemma is true for the divided difference of any polynomial
mod N , but for our purposes it is enough to prove it for the RSA polynomial
xe mod N . Related results are stated in [8]. Before beginning the proof we intro-

duce some notation borrowed from [7]. Let πk(y) ≡
k∏

i=0

(y−xi). Then taking the

derivative of πk with respect to y we have for i ≤ k

π′
k(xi) ≡

∏
0≤j≤k

j �=i

(xi − xj)

By induction on k the following equality easily follows

[x0, ..., xk] ≡
k∑

i=0

h(xi)
π′

k(xi)
(1)

Let Ct(p) denote the tth coefficient of the polynomial p, starting from the
leading coefficients (the coefficients of the highest powers). We use Ct[x0, ..xk]
as a shorthand for Ct([x0, ..xk]).

Lemma 1. Let [x0, ..., xn] be the nth divided difference relative to the RSA poly-
nomial h(x) ≡ xe mod N, and let x0, x1, ...xn be distinct elements of the ring
such that (x0 − xi)−1 mod N exist for i = 0, 1, ...n. Then (i) for 0 ≤ n ≤ e, if(

e
e−n

) �= 0 modN then deg[x0, ..., xn] = e − n. (ii) Ce−n[x0, x1, .., xn] ≡ (
e

e−n

)
(an important special case is C1[x0, x1, .., xe−1] ≡ e modN).

Comment: In practice the condition in claim (i) always holds, since e << N.

Proof. The claim is trivial for n = 0. For n ≥ 1 we prove the equivalent propo-
sition that Ct [x0, ..., xn] = 0 for t = e, e− 1, ..., e− n + 1 and Ce−n[x0, ..., xn] is
independent of the bi and is not congruent to 0. We use the notations 1/b and
b−1 interchangeably. We induct on n. When n = 1

[x0, x1] ≡ (x + b0)e − (x + b1)e

b0 − b1
≡
∑e

i=0

(
e
i

)
xi[be−i

0 − be−i
1]

b0 − b1

Note that by our assumption (b0 − b1)−1 mod N exist. So Ce[x0, x1] ≡ 0
and Ce−1[x0, x1] ≡ e and indeed our claim is true for n = 1. For the inductive
hypothesis let n = k − 1 and assume that Ct [x0, ..., xk−1] ≡ 0 for t = e, e −

4 Oded Yacobi and Yacov Yacobi

1, ..., e − (k − 1) + 1 and Ce−(k−1)[x0, ..., xk−1] is independent of the bi and is
not congruent to 0. We want to show that when n = k, Ct[x0, ..., xk] ≡ 0 for
t = e, e − 1, ..., e − k + 1 and Ce−k[x0, ..., xk] is independent of the bi and is not
congruent to 0.

The fact that Ct [x0, ..., xk] ≡ 0 for t = e, e−1, ..., e−k+1 follows immediately
from the inductive hypothesis and Definition 1. It takes a little more work to
show that Ce−k[x0, ..., xk] is independent of the bi.

Using (1):

[x0, x1, ..., xk] ≡
k∑

i=0

(x + bi)e

π′
k(xi)

≡
e∑

j=0

(
e

j

)
xj [

be−j
0

π′
k(x0)

+
be−j
1

π′
k(x1)

+ ... +
be−j
k

π′
k(xk)

]

We want to show that Ce−k[x0, x1, ..., xk] is independent of the bi.

Ce−k[x0, x1, .., xk] ≡
(

e

e − k

)
[

bk
0

π′
k(x0)

+
bk
1

π′
k(x1)

+ ... +
bk
k

π′
k(xk)

] (2)

So now it is sufficient to show that

(−1)0
bk
0

(b0 − b1) · · · (b0 − bk)
+... + (−1)k bk

k

(b0 − bk) · · · (bk−1 − bk)
(3)

is independent of the bi.
We first multiply (3) by the necessary terms to get a common denominator.

We introduce some compact notation that will simplify the process. For a given
set of constants b0, b1, ...bk define

δ(h, i) ≡ (bh − bi)
δ(h, i, j) ≡ (bh − bi)(bh − bj)δ(i, j)

...
δ(i0, ..., ik) ≡ (bi0 − bi1)(bi0 − bi2) · · · (bi0 − bik

)δ(i1, ..., ik)

Similarly we can also define δj ≡ δ(0, 1, ..., j, ..., k) where the bar denotes
that the index is missing (so if k = 4 then δ3 = δ(0, 1, 2, 4,)). Then (3) becomes:

bk
0δ0 − bk

1δ1 + · · · + (−1)kbk
kδk

δ(0, 1, ..., k)
(4)

We want to show that (4) is independent of the bi. In fact it equals 1. To see
this consider the Vandermonde matrix:

V ≡

⎡⎢⎢⎢⎣
1 b0 b2

0 · · · bk
0

1 b1 b2
1 · · · bk

1
...

...
...

. . .
...

1 bk b2
k · · · bk

k

⎤⎥⎥⎥⎦
We conclude from (2) that Ce−k[x0, x1, .., xk] ≡ (

e
e−k

)
, which is certainly

independent of the bi. This also implies that Ce−k[x0, x1, .., xk] is not congruent
to 0 when k ≤ e. By induction we are done.

A New Related Message Attack on RSA 5

2.2 Related-Messages Attack

Here we consider the general case where for i = 0, 1, ...e−1, xi ≡ aix+bi mod N .
N = pq is an RSA composite (p and q are large primes, with some additional
restrictions which are irrelevant in the current discussion), and the constants
ai, bi are known. Of course it is sufficient to consider just the case where xi ≡
x+ bi. We now show how to deterministically compute x in O(e) ZN -operations
after some pre-computation that depends only on the known constants. If the
constants bi hold for many unknown values of cryptograms xe then the cost of
pre-computations can be amortized and discarded. We show that the cost of the
additional computations that depend on the value of x is O(e).

Specifically, π′
n(xk) is independent of y and of x, hence for all k these

coefficients can be computed in advance. In that case the cost of computing
[x0, x1, ...xe−1] ≡ ux + v ≡ w(x) is O(e).

For each particular value x we know how to compute the value w(x) with-
out knowing x using Lemma 1 and Formula (1). More explicitly, Let ci ≡
(x + bi)e mod N, i = 0, 1, 2, ...e − 1, be the given cryptograms, whose under-

lying messages are linearly related, and let π′
e−1(xk) ≡

e−1∏
i=0
i�=k

(bk − bi). We use pk

as a shorthand for π′
e−1(xk). Then

w(x) ≡
e−1∑
k=0

[xk]
π′

e−1(xk)
≡

e−1∑
k=0

ck

pk
.

Here we assume that the inverses (bk − bi)−1 modN exist. Note that if for
some k, i this isn’t true then we can factor the RSA-modulus N, by computing
gcd(N, (bk − bi)).

From Lemma 1 (ii) we know that u = e. Note also that w(0) ≡ v ≡∑e−1
k=0 be

k · p−1
k mod N, and we can compute it in the pre-computation phase (be-

fore intercepting the cryptograms). So we can find x ≡ (w(x) − v)e−1 mod N.
The following algorithm summarizes the above discussion:

Algorithm 1

Given cryptograms ci ≡ (x+bi)e mod N, i = 0, 1, 2, ...e−1, with known constants
bi, find x.

Method:

1. Pre computation:

For k = 0, ...e−1, compute p−1
k ≡

e−1∏
i=0
i�=k

(bk−bi)−1; (If for some k, i, (bk −bi)−1

does not exist then factor N using gcd(bk − bi, N) and halt);
v ≡∑e−1

k=0 be
k · p−1

k mod N ;
2. Real-time computation: x ≡ e−1 · ((∑e−1

k=0 ckp−1
k) − v)mod N.

6 Oded Yacobi and Yacov Yacobi

The complexity of the pre-computation is O(e log2(e)) (see Appendix), and
the complexity of the real time computations is O(e).

3 Special Case

3.1 Finite Differences

We now consider the special case where the e cryptograms are of the form ci ≡
(ax + b · i)e mod N, i = 0, 1, ...e − 1, for any known constants a, b ∈ ZN , where
gcd(a, N) = gcd(b, N) = gcd(e!, N) = 1. The special linear relations among
these cryptograms allows us to deterministically compute x in overall O(e) ZN -
operations. As before x denotes an indeterminate variable.

Definition 2. For h a polynomial over any ring let Δ(0)(x) ≡ h(x), and let

Δ(i)(x) ≡ Δ(i−1)(x + 1) − Δ(i−1)(x), i = 1, 2, ...

It is easy to see that the degree of the polynomials resulting from this simpler
process keep decreasing as in the case of divided-differences. More precisely:

Lemma 2. In the special case where xi ≡ x+i, and gcd(n!, N)=1, [x0, x1,xn]
≡ Δ(n)(x)/n!

A similar relation can be derived when xi ≡ ax + ib, for known constants
a, b. The next two lemmas are stated for general polynomials h(x), although
eventually we use them for h(x) ≡ xe mod N. Let m = deg(h), and 0 ≤ k ≤ m.
By induction on k:

Lemma 3. Δ(k)(x) ≡∑k
i=0

(
k
i

) · h(x + i) · (−1)k−i mod N.

For the algorithm we will need explicit formulas for the two leading terms
of Δ(k)(x). Let h(x) =

∑m
i=0 aix

i and let T
(k)
am,am−1(x) denote the two leading

terms of Δ(k)(x).

Lemma 4. T
(k)
am,am−1(x) ≡ (m−1)!

(m−k)!x
m−k−1(amm(x+k(m−k)/2)+am−1(m−k)).

Proof. We induct on k. The basis step is trivial. We verify one more step that
is needed later.

T (1)
am,am−1

(x) ≡ xm−2(amm(x +
m − 1

2
) + am−1(m − 1)) (5)

Δ(1)(x) ≡ h(x + 1) − h(x), whose two leading terms are indeed equal to
T

(1)
am,am−1(x) above. Now assume that the two leading terms of Δ(k−1)(x) are

T
(k−1)
am,am−1(x) ≡ αxm−k+1 + βxm−k, where α ≡ (m−1)!

(m−k)!amm, and

β ≡ (m−1)!
(m−k)! [ammk(m − k)/2 + am−1(m − k)].

The proof can be completed by showing that T
(1)
α,β(x) ≡ T

(k)
am,am−1(x). This can

be done by computing the first difference of T
(k−1)
am,am−1(x), substituting α for am

and β for am−1 in equation (5) to get the claim.

A New Related Message Attack on RSA 7

3.2 Related-Messages Attack with Lowered Complexity

Using the results of section 3.1 we consider the special case where xi ≡ x + i
(or likewise xi ≡ ax + bi, for known a, b) and use the simpler finite-differences
to yield overall complexity O(e).

In lemmas 3 and 4 let h(x) ≡ xe mod N, where e ≥ 3. Thus an ≡ 1, an−1 ≡ 0,

and T
(e−1)
1,0 ≡ e!(x + (e − 1)/2)(modN). Lemmas 1 and 2 imply that after the

e − 1 finite difference we have a linear congruence ux + v ≡ w. Then lemma 4
gives us the values of u and v, and lemma 3 tells us how to compute w given the
e cryptograms.

Specifically u ≡ e!, v = e!(e − 1)/2 and w ≡ ∑e−1
i=0

(
e−1

i

) · ci · (−1)e−1+i

where ci ≡ (x + i)e (all the congruences are taken modN). This equation is
solvable iff e!−1 mod N exists, which holds for practical (small) values of e. The
computation of w dominates, and takes O(e) operations in ZN (since

(
e−1

i

)
can

be computed from
(
e−1
i−1

)
using one multiplication and one division).

If xi ≡ ax+ bi modN, i = 0, 1, 2...e−1, for known a and b, with gcd(a, N) =
gcd(b, N) = 1, we can likewise compute x. Given cryptogram

ci ≡ (ax+b·i)e mod N we can transform it into c′i ≡ ci ·b−e ≡ (z+i)e mod N,
where z ≡ xab−1 mod N. So

x ≡ a−1b[bee!)−1
e−1∑
i=0

(
e − 1

i

)
· ci · (−1)e−1+i − e − 1

2
] mod N.

which is computable in O(e) ZN operations.

4 Conclusions

We have shown new attacks on RSA-encryption assuming known explicit lin-
ear relations between the messages. Our attacks require more information (i.e.,
intercepting more cryptograms), but they run faster than previously published
attacks. In some practical cases they run three orders of magnitudes faster than
previous attacks. This should be taken into consideration when designing very
compact cryptosystems (e.g., for RFID tags), although the default should be us-
ing some form of protection like OAEP+ to destroy such known relations. Our
attack tools are borrowed from numerical analysis and adapted to handle formal
polynomials defined over finite rings.

Open problems: Can these or similar tools be used to attack other cases of
known relations, such as implicit linear relations or explicit non-linear relations?

Acknowledgements

Special thanks go to Gideon Yuval who suggested looking into divided differ-
ences, and to Peter Montgomery who made numerous valuable suggestions and
corrections. We also thank Don Coppersmith, Kamal Jain, Adi Shamir, and
Venkie (Ramarathnam Venkatesan), for helpful discussions on earlier applica-
tions of the finite difference technique. Finally, we thank PKC’05 reviewers who
made valuable suggestions that improved this paper.

8 Oded Yacobi and Yacov Yacobi

References

1. Aho Hopcroft and Ullman: “The Design and Analysis of Computer Algorithms”,
Addison Wesley, 1974, ISBN 0-201-00029-6.

2. D. Boneh: “Twenty Years of Attacks on the RSA Cryptosystem”, in Notices of the
American Mathematical Society (AMS), Vol. 46, No. 2, pp. 203–213, 1999.

3. M. Bellare and P. Rogaway: “Optimal asymmetric encryption”, Eurocrypt’94: 92-
111.

4. Don Coppersmith, Matthew Franklin, Jacques Patarin, Michael Reiter: “Low-
Exponent RSA with related Messages”, Proc. of Eurocrypt’96, LNCS 1070, pp.
1-9.

5. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern: “RSA-OAEP Is Secure Under the
RSA Assumption”, J. Crypt. Vo. 17, No.2, March’04, pp. 81-104 (Springer Verlag).

6. Ronald Rivest, Adi Shamir, Leonard M. Adleman: “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, CACM 21(2): 120-126 (1978).

7. Volkov, E.A., “Numerical Methods”. New York: Hemisphere Publishing Corpora-
tion, pp.48, 1987.

8. Whittaker, E. T. and Robinson, “The Calculus of Observations: A Treatise on Nu-
merical Mathematics”, 4th ed. New York: Dover, pp. 20-24, 1967.

Appendix: The Complexity of the Pre-processing

The following algorithm, due to Peter Montgomery, computes the pre-processing
phase of Algorithm 1 in O(e log2 e) time. We currently do not know of a better
algorithm for the general case.

For k = 0, ...e−1, we need to compute pk = π′
k(y) ≡

e−1∏
i=0
i�=k

(bk − bi). We use the

observation stated before Formula (1). The algorithm proceeds as follows (time
complexity for each step is included in the brackets):

1. Expand the formal polynomial π(y) ≡
e−1∏
i=0

(y − xi) in indeterminate variable

y (O(e log2 e),as explained below).
2. Compute the formal derivative of π(y) (O(e)).
3. Simultaneously evaluate the value of the derivative in the given points bi, i =

0, 1, ...e− 1 (O(e log2 e), see [1] pp. 294, Corollary 2).

Expanding step (1) above:
Suppose we have a polynomial multiplication algorithm that works in time

O(n log n), where n is the degree of the polynomials. Multiply pairs (there are
n/2 many pairs). Then multiply the resulting n/4 pairs at cost O(2 log 2) each.
And so on. There are log e many levels. Let e = 2k. The total cost is e

∑k
i=0 i =

O(e log2 e).
Note that if the bi happen to be some powers of one primitive nth root of

unity, w ∈ ZN , then we can use DFT in O(n log n). However, for arbitrary b′is
chances to have this condition with n = O(e) are negligible.

Breaking a Cryptographic Protocol
with Pseudoprimes

Daniel Bleichenbacher

Bell Labs, Lucent Technologies

Abstract. The Miller-Rabin pseudo primality test is widely used in
cryptographic libraries, because of its apparent simplicity. But the test is
not always correctly implemented. For example the pseudo primality test
in GNU Crypto 1.1.0 uses a fixed set of bases. This paper shows how this
flaw can be exploited to break the SRP implementation in GNU Crypto.
The attack is demonstrated by explicitly constructing pseudoprimes that
satisfy the parameter checks in SRP and that allow a dictionary attack.
This dictionary attack would not be possible if the pseudo primality test
were correctly implemented.

Often important details are overlooked in implementations of cryptographic pro-
tocols until specific attacks have been demonstrated. The goal of the paper is to
demonstrate the need to implement pseudo primality tests carefully. This is done
by describing a concrete attack against GNU Crypto 1.1.0. The pseudo primality
test of this library is incorrect. It performs a trial division and a Miller-Rabin
test with a fixed set of bases. Because the bases are known in advance an attacker
can find composite numbers that pass the primality test with probability 1. A
protocol implemented in GNU Crypto that requires a reliable primality test is
SRP. The security of SRP depends on a group for which computing DL is hard.
In SRP the server chooses the group parameters and sends them to the client.
It is then important that the client verifies that computing DLs in the chosen
group is indeed hard. Otherwise, the client could expose his password to a dic-
tionary attack. This paper shows that the flaw in the GNU Crypto primality
test indeed weakens the SRP implementation by explicitly constructing weak
parameters for SRP. The weakness would not exist if a reliable primality test
were implemented.

1 The Miller-Rabin Pseudo-primality Test

A well-known Theorem by Fermat states that if n is a prime and b is coprime
to n then

bn−1 ≡ 1 (mod n) (1)

Hence if Equation (1) is not satisfied for a pair (b, n) that is coprime then n is
composite. Unfortunately, there also exist pairs (b, n) that satisfy Equation (1),
but where n is composite. Composite numbers n that satisfy Equation (1) for all
b coprime to n are called Carmichael numbers. Korselt proposed the following
criterion for such numbers [7].

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 9–15, 2005.
c© International Association for Cryptologic Research 2005

10 Daniel Bleichenbacher

Korselt’s Criterion. A composite number n is a Carmichael number if and
only if n is squarefree and all prime divisors p of n satisfy

p − 1|n − 1.

Because of the existence of Carmichael numbers [4] Equation (1) alone cannot
be used to distinguish composites from primes. Miller and Rabin proposed a
stronger test based on the following observation. Let n be an odd integer and
write n = u2v + 1 with u odd. Then for every odd prime n and every base
1 ≤ b < n one of the following two conditions is satisfied:

bu ≡ 1 (mod n) (2)

or there exists 0 ≤ i < v such that

bu2i ≡ −1 (mod n) (3)

A composite n is called a strong pseudoprime for the base b if one of the condi-
tions is satisfied. Rabin showed that if n is composite n is a strong pseudoprime
for less than n/4 bases b ∈ [2, n − 1] [10]. Thus any composite number n can
be recognized as composite with probability at least 1 − (1/4)k by selecting k
random bases and testing whether n fails the test for at least one base.

Damgard, Landrock, and Pomerance prove a bound much lower than (1/4)k

on the average probability that a composite number passes a Miller-Rabin test
with k bases [5]. This result, however, cannot be applied in cryptographic proto-
cols for a parameter verification. If a party has to verify that a received integer is
prime, then the party should assume the worst case, i.e., that the integer might
have been chosen to maximize the probability of passing a Miller-Rabin test.

2 SRP

GNU Crypto implements SRP-6 [11]. The goal of the SRP protocol is to avoid
offline dictionary attacks and thus increase the security of password based au-
thentications in the case that the clients password has not much entropy. In
particular, a server that does not know the clients password or a value v, which
is derived from it should only be able to confirm or reject one password guess
per login. This section reviews one version of the SRP protocol and describes
why it is important that the client performs a proper parameter verification in
step 2.

Client Server

1.
I−→ (lookup s, v, g, N)

2. (verify g, N)
s,g,N←−

x = H(s, I, P)
3. (choose random a) (choose random b)

4. A = ga mod N
A−→ B = 3v + gb mod N

5. u = H(A, B)
B←− u = H(A, B)

6. S = (B − 3gx)a+ux mod N S = (Avu)b mod N

7. M1 = H(A, B, S)
M1−→ (verify M1)

8. (verify M2)
M2←− M2 = H(A, M1, S)

9. K = H(S) K = H(S)

Breaking a Cryptographic Protocol with Pseudoprimes 11

In step 1 the client sends its identity I to the server and the server looks up the
corresponding values s, v, g, N , where s is a salt value, g is a generator of ZZ/(N)∗

and v is encryption of the clients password defined by v = gH(s,I,P) mod N .
In step 2 s and optional g and N are sent to the client. The client must verify

that N is a strong prime > 2512, i.e. N and (N − 1)/2 are both prime and that
g has order N − 1 in ZZ/(N)∗.

In step 3 both client and server choose some random values a and b respec-
tively and derive two values A and B, which are then exchanged in step 4 and
5. Both server and client can now compute a mutual secret S. This value S is
subsequently used for a mutual authentication in step 7 and 8.

An outsider, or even a malicious server not knowing v should not be able to
verify the correctness of a guessed password P from the values observed during
a protocol run.

Attacking SRP with Bogus Parameters. MacKenzie noticed that Tom Wu’s SRP
implementations before version 1.6.0 are susceptible to an offline dictionary at-
tack [8]. In particular, MacKenzie noticed that while the SRP documentation
requires that N and (N − 1)/2 are primes the implementation does not perform
any primality checks when a client receives new parameters from a server. But
these checks are crucial for the protocol.

If an attacker posing as a server is able to submit parameters g, N , such that
computing the discrete logarithm of gx mod N is computable then the following
attack is possible.

Client Attacker

1.
I−→ (select s, g, N)

2. (verify g, N)
s,g,N←−

x = H(s, I, P)
3. (choose random a)

4. A = ga mod N
A−→ (choose any B)

5. u = H(A, B)
B←− u = H(A, B)

6. S = (B − 3gx)a+ux mod N

7. M1 = H(A, B, S)
M1−→ (abort)

Hence after aborting the protocol in step 7 the attacker has now enough in-
formation for an offline dictionary attack. SRP was designed to prevent such
attacks. From the assumption that DLs mod N are computable follows that the
server can compute a such that ga = A mod N . Now, the attacker can perform
an offline dictionary attack by first guessing P ′, computing x′ = H(s, I, P) and
S′ = (B − 3gx)a+ux mod N . Finally if H(A, B, S′) equals M1 then P ′ is likely
the client’s password.

3 GNU Crypto

An analysis of the primality test in GNU Crypto 1.1.0 shows a serious flaw.
The primality test, first performs a trial division test and then calls the routine

12 Daniel Bleichenbacher

gnu.util.prime.passEulerCriterion. This routine is a Miller-Rabin with the
primes up to 41 as bases. Since the bases are fixed it is possible to find counter
examples that pass the test with probability 1.

4 Constructing Pseudoprimes

Requirements. Composite numbers that pass the GNU Crypto 1.1.0 primality
test are well known. For example Arnault has previously constructed a composite
337 digit number that is a strong pseudoprime for the 200 smallest prime bases
[3]. The construction that Arnault used generates integers that are the product of
a small (i.e. 2 or 3) number of large primes. While these number would incorrectly
pass the parameter checks they cannot be used to break SRP.

The goal of this paper is to find parameters that pass the checks for the SRP
in GNU Cryptos implementation and allow a server to find a users password. This
requires to construct a triple (g, N, q) such that computing discrete logarithms
of gx (mod N) is easy, N = 2q + 1 > 2512, both N and q pass the primality
test, N > 2512, and gq ≡ −1 (mod N).

The construction given in this paper constructs q such that it is the product
of small primes. Then computing DLs modulo N = 2q + 1 is easy, because the
algorithm by Pohlig and Hellman [9] can be applied.

Description of the Method. The method used here is based on an idea by Erdös [6]
to estimate the distribution of Carmichael numbers. Erdös suggested to construct
Carmichael numbers as follows. First choose an even integer M that has many
divisors. Let R be the set of primes r such that r − 1 is a divisor of M . If a
subset T ⊂ R can be found such that

C =
∏
r∈T

r ≡ 1 (mod M), (4)

then C is a Carmichael number, because C satisfies Korselt’s criterion. One can
hope to find such sets T if R contains more than about log2 M primes.

Erdös estimates were only heuristic. But Alford, Granville and Pomerance
extended his idea and were able to prove that there exist infinitively many
Carmichael numbers [2]. The main difficulty of this proof was to show that
for suitably chosen integers M the corresponding set of primes R is large enough
to guarantee that Equation 4 can be solved for a subset T ⊂ R.

Additionally, a Carmichael number C is a strong pseudoprime for a base b if
the order of b modulo r is divisible by the same power of 2 for all primes factors
r of C. If all prime factors r are congruent 3 modulo 4 then this condition is
satisfied when b is a quadratic residue modulo either all prime factors r or none
at all, because in that case the order of b modulo r is either even or odd for all
r. In particular, it is possible to construct a Carmichael number that is strong
pseudoprime for a set of bases B as follows: Choose a suitable integer M . Then
find a set R of primes, such that for all bases bi ∈ B there exists ci ∈ {−1, 1}
with

(
bi

r

)
= ci for all r ∈ R. Finally, find a subset T ⊂ R can be found that

satisfies Equation 4.

Breaking a Cryptographic Protocol with Pseudoprimes 13

The results by Alford, Granville and Pomerance are strong enough to show
that even under these restrictions large enough sets R can be found. In particular,
they showed the existence of infinitively many counter examples to a Miller-
Rabin test with a fixed set of bases [1].

To pass the parameter checks in GNU Crypto the pseudoprime C needs
the additional property that 2C + 1 is prime or pseudoprime. Because of this
additional property it appears difficult to prove the existence of counter examples
for arbitrary sets of bases.

However, the goal of this paper is to construct a pseudoprime for a given set
of bases only, i.e. the set B = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41} that is
used in GNU Crypto. To do so let

M = 2 · 53 · 72 · 112 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 61.

Next a set R of all integers r satisfying

256 < r < 260,

r − 1 | M,

r is prime,(
bi

r

)
= ci for all 1 ≤ i ≤ 13,

where the pairs (bi, ci) are defined as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13
bi 2 3 5 7 11 13 17 19 23 29 31 37 41
ci -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1

The values ci should are chosen in such a way that
(

bi

r

)
= ci is possible for

primes r ≡ 1 (mod bi). The set R can be found efficiently, by first constructing
all divisors d of M and checking if r = d + 1 satisfies the remaining conditions.

The set of integers satisfying all these conditions contains 64 primes R =
{r1, . . . r64}. Next find subsets T ⊂ R with at least 2 elements satisfying Equa-
tion 4, i.e.,

∏
r∈T r ≡ 1 (mod M). These subsets T can be found using a meet-

in-the-middle approach. I.e., R is divided into two distinct subsets R1 and R2.
The values (

∏
r∈T1

r)−1 mod M are precomputed for all T1 ⊆ R1 and stored in a
table. Then for all T2 ⊆ R2 the value

∏
r∈T2

r mod M is computed. If this value
is contained in the table then set T = T1 ∪ T2 and C =

∏
r∈T r. If furthermore

N = 2C + 1 is prime and N > 2512 then N passes the parameter test for SRP
in GNU Crypto. This is shown in the next paragraph.

Correctness of the Construction. Since N is prime it remains to show that C
passes the primality test. The assumption 256 < r implies that no prime factor
of C is found during the trial division test. Thus it is sufficient to show that C
is a strong pseudoprime for the bases bi where 1 ≤ i ≤ 13.

Since r − 1 divides M and C ≡ 1 (mod M) it follows that r − 1 divides
C − 1 for all prime factors r of C. Thus by Korselt’s criterion C is a Carmichael

14 Daniel Bleichenbacher

number [7]. Because of
(

2
r

)
= −1 we have r ≡ 3 (mod 4) for all primes factor

r of C. Moreover, from
(

bi

r

)
= ci for all 1 ≤ i ≤ 13 follows that bi is either a

quadratic residue for all prime factors r or a quadratic nonresidue for all prime
factors r. Hence it follows that C is a strong pseudoprime for the base bi.

Results. An implementation of the algorithm needed less than 10 days on a 250
MHz CPU to find about 30 examples that pass the parameter checks in GNU
crypto. One example is the 1095 bit number

C = 398462957079251·28278016308851·268974870654491·1239515532971·
12941222544251·2825874899·182200861571·480965007251·8028415890251·
761874633627251·10326412038251·105324823451·7128348371·29542620251·
251906132167691·64654312451·226698699371·130685132579·9167201891·
432876391197251·3077983389251·17767646051·9371850251·954045342251·
112810627931 · 6297653304192251 · 20842025454251

5 GNU Crypto 2.0.1

The authors of GNU Crypto were informed in January 2004 about the flaws in
the primality test. Most of the problems have been fixed in version 2.0.1. How-
ever, an analysis of the source code reveals that GNU Crypto implementation
of SRP still calls the function gnu.util.prime.passEulerCriterion and that
this function has not been changed. Therefore the attack presented in this paper
still exists more than 8 month after the authors have been notified. The next
implementation error can be found just 2 lines later where SRP accepts g ≡ −1
(mod N) as a generator of ZZ/(N)∗ allowing a simple impersonation attack.
Consequently, I do not recommend the use of GNU Crypto.

6 Proposed Parameter Verification for SRP

To verify that N > 2512 is a safe prime (that is both N and q = (N − 1)/2 are
prime) and g is a generator of ZZ/(N)∗ with an error probaility < 2−2k one can
perform the following tests:

– Check N > 2512.
– Test the primality of q with k rounds of Miller-Rabin with random bases.
– Test that 1 < g < N − 1 and gq ≡ −1 (mod N).

The k rounds of Miller-Rabin guarantee that a composite q is detected with a
probability > 1−2−2k. Assuming that q is indeed prime gq ≡ −1 (mod N) now
implies that the order of g modulo N is even and divides 2q. Hence the order
is either 2 or 2q. But g2 ≡ 1 (mod N) would imply g ≡ gq ≡ −1 (mod N)
which is impossible because of 1 < g < N − 1. Thus the order of g must be 2q
and N = 2q + 1 must be prime. Hence no primality test for N is needed here.

Breaking a Cryptographic Protocol with Pseudoprimes 15

References

1. W. R. Alford, A. Granville, and C. Pomerance. On the difficulty of finding reliable
witnesses. In Algorithmic number theory, volume 877 of Lecture Notes in Computer
Science, pages 1–16, Berlin, 1994. Springer Verlag.

2. W. R. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Annals of Mathematics, 140(3):703–722, 1994.

3. F. Arnault. Rabin-Miller primality test: Composite numbers which pass it. Math-
ematics of Computation, 64(209):355–361, Jan. 1995.

4. R. D. Carmichael. On composite numbers P which satisfy the Fermat congruence
aP−1 ≡ 1 mod P . American Math. Monthly,, 19:22–27, 1912.

5. I. Damg̊ard, P. Landrock, and C. Pomerance. Average case error estimates for the
strong probable prime test. Mathematics of Computation, 61(203):177–194, 1993.

6. P. Erdös. On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen, 4:201–
206, 1956.

7. A. Korselt. Problème chinois. L’intermédiaire des mathématiciens, 6:142–143,
1899.

8. P. MacKenzie. Personal communications.
9. S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms

over GF (p) and its cryptographic significance. IEEE Trans. Inform. Theory, IT-
24:106–110, Jan. 1978.

10. M. Rabin. Probabilistic algorithms for testing primality. J. Number Theory, 12:128–
138, 1980.

11. T. Wu. SRP-6: Improvements and refinements to the secure remote password pro-
tocol. http://srp.stanford.edu/doc.html, Oct. 2002.

Experimenting with Faults, Lattices and the DSA

David Naccache1,2,�, Phong Q. Nguyẽ̂n3,�,
Michael Tunstall2,4, and Claire Whelan5,��

1 Gemplus Card International, Applied Research & Security Centre,
34 rue Guynemer, Issy-les-Moulineaux, F-92447, France

david.naccache@gemplus.com
2 Royal Holloway, University of London, Information Security Group,

Egham, Surrey TW20 0EX, UK
david.naccache@rhul.ac.uk

3 CNRS/École normale supérieure, Département d’Informatique,
45 rue d’Ulm, F-75230 Paris Cedex 05, France

Phong.Nguyen@di.ens.fr

http://www.di.ens.fr/~pnguyen
4 Gemplus Card International, Applied Research & Security Centre,

Avenue des Jujubiers, La Ciotat, F-13705, France
michael.tunstall@gemplus.com

5 School of Computing, Dublin City University,
Ballymun, Dublin 9, Ireland
cwhelan@computing.dcu.ie

Abstract. We present an attack on DSA smart-cards which combines
physical fault injection and lattice reduction techniques. This seems to be
the first (publicly reported) physical experiment allowing to concretely
pull-out DSA keys out of smart-cards. We employ a particular type of
fault attack known as a glitch attack, which will be used to actively
modify the DSA nonce k used for generating the signature: k will be
tampered with so that a number of its least significant bytes will flip
to zero. Then we apply well-known lattice attacks on El Gamal-type
signatures which can recover the private key, given sufficiently many
signatures such that a few bits of each corresponding k are known. In
practice, when one byte of each k is zeroed, 27 signatures are sufficient
to disclose the private key. The more bytes of k we can reset, the fewer
signatures will be required. This paper presents the theory, methodology
and results of the attack as well as possible countermeasures.

Keywords: DSA, fault injection, glitch attacks, lattice reduction.

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

�� Supported by the Irish Research Council for Science, Engineering and Technology
(IRCSET).

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 16–28, 2005.
c© International Association for Cryptologic Research 2005

Experimenting with Faults, Lattices and the DSA 17

1 Introduction

Over the past few years fault attacks on electronic chips have been investigated
and developed. The theory developed was used to challenge public key cryp-
tosystems [4] and symmetric ciphers in both block [3] and stream [8] modes.

The discovery of fault attacks (1970s) was accidental. It was noticed that
elements naturally present in packaging material of semiconductors produced
radioactive particles which in turn caused errors in chips [11]. These elements,
while only present in extremely minute parts (two or three parts per million),
were sufficient to affect the chips’ behaviour, create a charge in sensitive silicon
areas and, as a result, cause bits to flip. Since then various mechanisms for fault
creation and propagation have been discovered and researched. Diverse research
organisations such as the aerospace industry and the security community have
endeavoured to develop different types of fault injection techniques and devise
corresponding preventative methods. Some of the most popular fault injection
techniques include variations in supply voltage, clock frequency, temperature or
the use of white light, X-ray and ion beams.

The objectives of all these techniques is generally the same: corrupt the
chip’s behaviour. The outcomes have been categorised into two main groups
based on the long term effect that the fault produced. These are known as
permanent and transient faults. Permanent faults, created by purposely inflicted
defects to the chip’s structure, have a permanent effect. Once inflicted, such
destructions will affect the chip’s behavior permanently. In a transient fault,
silicon is locally ionized so as to induce a current that, when strong enough, is
falsely interpreted by the circuit as an internal signal. As ionization ceases so
does the induced current (and the resulting faulty signal) and the chip recovers
its normal behavior.

Preventive measures come in the form of software and hardware protections
(the most cost-effective solution being usually a combination of both). Current
research is also looking into fault detection where, at stages through the exe-
cution of the algorithm, checks are performed to see whether a fault has been
induced [10]. For a survey of the different types of fault injection techniques
and the various software and hardware countermeasures that exist, we refer the
reader to [2].

In this paper we will focus on a type of fault attack known as a glitch attack.
Glitch attacks use transient faults where the attacker deliberately generates a
voltage spike that causes one or more flip-flops to transition into a wrong state.
Targets for insertion of such ‘glitches’ are generally machine instructions or data
values transferred between registers and memory. Results can include the replace-
ment of critical machine instructions by almost arbitrary ones or the corruption
of data values.

The strategy presented in this paper is the following: we will use a glitch
to reset some of the bytes of the nonce k, used during the generation of DSA
signatures. As the attack ceases, the system will remain fully functional. Then,
we will use classical lattice reduction techniques to extract the private signature
key from the resulting glitched signatures (which can pass the usual verification

18 David Naccache et al.

process). Such lattice attacks (introduced by Howgrave-Graham and Smart [9],
and improved by Nguyẽ̂n and Shparlinski [14]) assume that a few bits of k are
known for sufficiently many signatures, without addressing how these bits could
be obtained. In [14], it was reported that in practice, the lattice attack required
as few as three bits of k, provided that about a hundred of such signatures were
available. Surprisingly, to the authors’ knowledge, no fault attack had previously
exploited those powerful lattice attacks.

The paper is organised as follows: In section 2 we will give a brief description
of DSA, we will also introduce the notations used throughout this paper. An
overview of the attack’s physical and mathematical parts will be given in section
3. In section 4 we will present the results of our attack while countermeasures
will be given in section 5.

Related Work: In [1] an attack against DSA is presented by Bao et al., this
attack is radically different from the one presented in this paper and no physical
implementation results are given. This attack was extended in [6] by Dottax.
In [7], Knudsen and Giraud introduce another fault attack on the DSA. Their
attack requires around 2300 signatures (i.e. 100 times more than the attack pre-
sented here). The merits of the present work are thus twofold: we present a
new (i.e. unrelated to [7, 1, 6]) efficient attack and describe what is, to the au-
thors’ best knowledge, the first (publicly reported) physical experiment allowing
to concretely pull-out DSA keys out of smart-cards. The present work shows
that the hypotheses made in the lattice attacks [9, 14] can be realistic in certain
environments.

2 Background

In this section we will give a brief description of the DSA.

2.1 DSA Signature and Verification

The system parameters for DSA [12] are {p, q, g}, where p is prime (at least 512
bits), q is a 160-bit prime dividing p−1 and g ∈ Z∗

p has order q. The private key
is an integer α ∈ Z∗

q and the public key is the group element β = gα (mod p).

Signature: To sign a message m, the signer picks a random k < q and computes:

r ← (
gk (mod p)

)
(mod q) and s ← SHA(m) + αr

k
(mod q)

The signature of m is the pair: {r, s}.

Verification: To check {r, s} the verifier ascertains that:

r
?=
(
gwhβwr (mod p)

)
(mod q) where w ← 1

s
(mod q) and h ← SHA(m)

Experimenting with Faults, Lattices and the DSA 19

3 Attack Overview

The attack on DSA proceeds as follows: we first generate several DSA signatures
where the random value generated for k has been modified so that a few of k’s
least1 significant bytes are reset2. This faulty k will then be used by the card
to generate a (valid) DSA signature. Using lattice reduction, the secret key α
can be recovered from a collection of such signatures (see [14, 9]). In this section
we will detail each of these stages in turn, showing first how we tamper with
k in a closed environment and then how we apply this technique to a complete
implementation.

3.1 Experimental Conditions

DSA was implemented on a chip known to be vulnerable to Vcc glitches. For
testing purposes (closed environment) we used a separate implementation for
the generation of k.

A 160-bit nonce is generated and compared to q. If k ≥ q − 1 the nonce is
discarded and a new k is generated. This is done in order to ascertain that k is
drawn uniformly in Z

∗
q (assuming that the source used for generating the nonce

is perfect). We present the code fragment (modified for simplicity) that we used
to generate k:

PutModulusInCopro(PrimeQ);

RandomGeneratorStart();

status = 0;

do {
IOpeak();

for (i=0; i<PrimeQ[0]; i++) {
acCoproMessage[i+1] = ReadRandomByte();

}
IOpeak();

acCoproMessage[0] = PrimeQ[0];

LoadDataToCopro(acCoproMessage);

status = 1;

for (j=0; j<(PrimeQ[0]+1); j++) {
if (acCoproResult[j] != acCoproMessage[j]) {
status = 0;

}
}

}
while (status == 0);

RandomGeneratorStop();

1 It is also possible to run a similar attack by changing the most significant bytes of
k. This is determined by the implementation.

2 It would have also been possible to run a similar attack if these bytes were set to FF.

20 David Naccache et al.

Note that IOpeaks3, featured in the above code was also included in the
implementation of DSA. The purpose of this is to be able to easily identify the
code sections in which a fault can be injected to produce the desired effect. This
could have been done by monitoring power consumption but would have greatly
increased the complexity of the task.

The tools used to create the glitches can be seen in figure 1 and figure 2.
Figure 1 is a modified CLIO reader which is a specialised high precision reader
that allows one glitch to be introduced following any arbitrarily chosen number of
clock cycles after the command sent to the card. Figure 2 shows the experimental
set up of the CLIO reader with the oscilloscope used during our experiments. A
BNC connector is present on the CLIO reader which allows the I/O to be easily
read; another connector produces a signal when a glitch is applied (in this case
used as a trigger). Current is measured using a differential probe situated on top
of the CLIO reader.

Fig. 1. A Modified CLIO Reader.

3.2 Generating a Faulty k

The command that generated k was attacked in every position between the two
IOpeaks in the code. It was found that the fault did not affect the assignment of k
to the RAM i.e. the instruction acCoproMessage[i+1] = ReadRandomByte();
which always executed correctly. However, it was possible to change the evalua-
tion of i during the loop. This enabled us to select the number of least significant
bytes to be reset. In theory, this would produce the desired fault in k with prob-
ability q/2160, as if the modified k happens to be larger than q, it is discarded

3 The I/O peak is a quick movement on the I/O from one to zero and back again.
This is visible on an oscilloscope but is ignored by the card reader.

Experimenting with Faults, Lattices and the DSA 21

Fig. 2. Experimental Set Up.

anyway. In practice this probability is likely to be lower as it is unusual for a
fault to work correctly every time.

An evaluation of a position that resetted the last two bytes was performed.
Out of 2000 attempts 857 were corrupted. This is significantly less than what
one would expect, as the theoretical probability is � 0.77. We expected the
practical results to perform worse than theory due to a slight variation in the
amount of time that the smart card takes to arrive at the position where the
data corruption is performed. There are other positions in the same area that
return k values with the same fault, but not as often.

3.3 The Attack: Glitching k During DSA Computations

The position found was equated to the generation of k in the command that
generates the DSA signature. This was done by using the last I/O event at the
end of the command sent as a reference point and gave a rough position of where
the fault needs to be injected.

As changes in the value of k were not visible in the signature, results would
only be usable with a certain probability. This made the attack more complex,
as the subset signatures having faulty k values had to be guessed amongst those
acquired by exhaustive search.

To be able to identify the correct signatures the I/O and the current consump-
tion signals were monitored during the attacks. An example of such a monitoring
is given in figure 3. The object of these acquisitions was to measure the time T
elapsed between the end of the command sent to the card and the beginning of
the calculation of r. This can be seen in the current consumption, as the chip
will require more energy when the crypto-coprocessor is ignited. If we denote
by t the time that it takes to reach the start of the calculation of r knowing
that the picked k was smaller that q (i.e. that it was not necessary to restart

22 David Naccache et al.

Fig. 3. I/O and Current Consumption (Beginning of the Trace of the Command Used
to Generate Signatures).

the picking process) then, if T = t we know that the command has executed
properly and that k was picked correctly the first time. If T > t then any fault
targeting k would be a miss (as k was regenerated given that the value of k orig-
inally produced was greater than q). Signatures resulting from commands that
feature such running times can be discarded as the value of k will not present
any exploitable weaknesses. When T < t we know that the execution of the code
generating k has been cut short, so some of the least significant bytes will be
equal to zero. This allows signatures generated from corrupted k values to be
identified a posteriori.

As the position where the fault should be injected was only approximately
identified, glitches were injected in twenty different positions until a position
that produced signatures with the correct characteristics (as described above)
was found. The I/O peaks left in the code were used to confirm these results.
Once the correct position identified, more attacks were conducted at this position
to acquire a handful of signatures. From a total of 200 acquisitions 38 signatures
where T < t were extracted.

This interpretation had to be done by a combination of the I/O and the
current consumption, as after the initial calculation involving k the command
no longer takes the same amount of time. This is because 0 < k ≤ q and therefore
k does not have a fixed size; consequently any calculations k is involved in will
not always take the same amount of time.

3.4 Use of Lattice Reduction to Retrieve α

We are now in a position to apply the well-known lattice attacks of [9, 14] on El
Gamal-type signature schemes: given many DSA signatures for which a few bits

Experimenting with Faults, Lattices and the DSA 23

of the corresponding k are known, such attacks recover the DSA signer’s private
key. In our case, these known bits are in fact 0 bits, but that does not matter for
the lattice attack. We recall how the lattice attacks work, using the presentation
of Nguyẽ̂n and Shparlinski [14]. Roughly speaking, lattice attacks focus on the
linear part of DSA, that is, they exploit the congruence s ← SHA(m)+αr

k (mod q)
used in the signature generation, not the other congruence r ← (

gk (mod p)
)

(mod q) which is related to a discrete log problem. When no information on k is
available, the congruence reveals nothing, but if partial information is available,
each congruence discloses something about the private key α: by collecting suffi-
ciently many signatures, there will be enough information to recover α. If � bits
of k are known for a certain number of signatures, we expect that about 160/�
signatures will suffice to recover α. Here is a detailed description of the attack.

For a rational number z and m ≥ 1 we denote by �zm the unique integer a,
0 ≤ a ≤ m − 1 such that a ≡ z (mod m) (provided that the denominator of z
is relatively prime to m). The symbol |.|q is defined as |z|q = minb∈Z |z − bq| for
any real z.

Assume that we know the � least significant bits of a nonce k ∈ {0, . . . , q−1}
which will be used to generate a DSA signature (for the case of other bits, like
most significant bits or bits in the middle, see [14]).

That is, we are given an integer a such that 0 ≤ a ≤ 2� − 1 and k − a = 2�b
for some integer b ≥ 0. Given a message m (whose SHA hash is h) signed with
the nonce k, the congruence

αr ≡ sk − h (mod q),

can be rewritten for s �= 0 as:

αr2−�s−1 ≡ (a − s−1h)2−� + b (mod q). (1)

Now define the following two elements

t =
⌊
2−�rs−1

⌋
q
,

u =
⌊
2−�(a − s−1h)

⌋
q

and remark that both t and u can easily be computed by the attacker from the
publicly known information. Recalling that 0 ≤ b ≤ q/2�, we obtain

0 ≤ �αt − uq < q/2�.

And therefore:
|αt − u − q/2�+1|q ≤ q/2�+1. (2)

Thus, the attacker knows an integer t and a rational number v = u + q/2�+1

such that:
|αt − v|q ≤ q/2�+1.

In some sense, we know an approximation of αt modulo q. Now, suppose we can
repeat this for many signatures, that is, we know d DSA signatures {ri, si} of

24 David Naccache et al.

hashes hi (where 1 ≤ i ≤ d) such that we know the � least significant bits of the
corresponding nonce ki. From the previous reasoning, the attacker can compute
integers ti and rational numbers vi such that:

|αti − vi|q ≤ q/2�+1.

The goal of the attacker is to recover the DSA private key α. This problem is
very similar to the so-called hidden number problem introduced by Boneh and
Venkatesan in [5]. In [5, 14], the problem is solved by transforming it into a lattice
closest vector problem (for background on lattice theory and its applications to
cryptography, we refer the reader to the survey [16]; a similar technique was
recently used in [13]).

More precisely, consider the (d + 1)-dimensional lattice L spanned by the
rows of the following matrix:⎛⎜⎜⎜⎜⎜⎜⎝

q 0 · · · 0 0

0 q
. . .

...
...

...
. 0

...
0 . . . 0 q 0
t1 td 1/2�+1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

The inequality |vi − αti|q ≤ q/2�+1 implies the existence of an integer ci such
that:

|vi − αti − qci| ≤ q/2�+1. (4)

Notice that the row vector c = (αt1 + qc1, . . . , αtd + qcd, α/2�+1) belongs to L,
since it can be obtained by multiplying the last row vector by α and then sub-
tracting appropriate multiples of the first d row vectors. Since the last coordinate
of this vector discloses the hidden number α, we call c the hidden vector. The
hidden vector is very close to the (publicly known) row vector v = (v1, . . . , vd, 0).
By trying to find the closest vector to v in the lattice L, one can thus hope to
find the hidden vector c and therefore the private key α. The article [14] presents
provable attacks of this kind, and explains how the attack can be extended to
bits at other positions. Such attacks apply to DSA but also to any El Gamal-type
signature scheme (see for instance [15] for the case of ECDSA).

In our case, we simply build the previously mentioned lattice and the target
vector v, and we try to solve the closest vector problem with respect to v, using
the so-called embedding technique that heuristically reduces the lattice closest
vector problem to the shortest vector problem (see [14] for more details). From
each close vector candidate, we derive a candidate y for α from its last coordinate,
and we check that the public key satisfies β = gy (mod p).

4 Results

As already mentioned in Section 3.3, using a glitch attack, we were able to gen-
erate 38 DSA signatures such that the least significant byte of the corresponding

Experimenting with Faults, Lattices and the DSA 25

k was expected to be zero. Next, we applied the lattice attack of Section 3.4,
using NTL’s [18] implementation of Schnorr–Euchner’s BKZ algorithm [17] with
block size 20 as our lattice basis reduction algorithm. Out of the 38 signatures,
we picked 30 at random to launch the lattice attack, and those turned out to
be enough to disclose the DSA private key α after a few seconds on an Apple
PowerBook G4. We only took 30 because we guessed from past experiments that
30 should be well sufficient.

Table 1. Experimental Attack Success Rates: n is the Number of Bytes Reset in k,
and d is the Number of Signatures.

Number d of Signatures
n ↓ 2 3 4 5 6 7 8 10 11 12 22 23 24 25 26 27

1 0% 10% 39% 63% 87% 100%
2 0% 69% 100%
3 0% 69% 100%
4 0% 100%
5 0% 2% 100%
6 0% 100%
7 0% 96% 100%

10 6% 100%
11 100%

To estimate more precisely the efficiency of the lattice attack, we computed
success rates, by running the attack 100 times with different parameters. Results
can be seen in Table 1. Because the number of signatures is small, the lattice
dimension is relatively small, which makes the running time of the lattice attack
negligible: for instance, on an Apple PowerBook G4, the lattice attack takes
about 1 second for 25 signatures, and 20 seconds for 38 signatures. Table 1
shows how many signatures are required in practice to make the lattice attack
work, depending on the number of least significant bytes reset in k. Naturally,
there will be a tradeoff between the fault injection and the lattice reduction:
when generating signatures with nonces with more reset bytes, the lattice phase
of the attack will require less signatures. When only one signature is available,
the lattice attack cannot work because there is not enough information in the
single congruence used. However, if ever that signature is such that k has a
large proportion of zero bytes, it might be possible to compute k by exhaustive
search (using the congruence ← (

gk (mod p)
)

(mod q)), and then recover α.
From Table 1, we see that when two signatures are available, the lattice attack
starts working when 11 bytes are reset in each k. When only one byte is reset in
k, the lattice attack starts working (with non-negligible probability) with only
23 signatures.

It should be stressed that the lattice attack does not tolerate mistakes. For
instance, 27 signatures with a single byte reset in k are enough to make the
attack successful. But the attack will not work if for one of those 27 signatures,
k has no reset bytes. It is therefore important that the signatures input to the
lattice attack satisfy the assumption about the number of reset bytes. Hence,
if ever one is able to obtain many signatures such that the corresponding k is

26 David Naccache et al.

expected (but not necessarily all the time) to have a certain number of reset
bytes, then one should not input all the signatures to the lattice attack. Instead,
one should pick at random a certain number of signatures from the whole set
of available signatures, and launch the lattice attack on this smaller number of
signatures: Table 1 can be used to select the minimal number of signatures that
will make the lattice attack successful. This leads to a combination of exhaustive
search and lattice reduction.

5 Countermeasures

The heart of this attack lies with the ability to induce faults that reset some of
k’s bits. Hence, any strategy allowing to avoid or detect such anomalies will help
thwart the attacks described in this paper. Note that checking the validity of
the signature after generation will not help, contrary to the case of fault attacks
on RSA signatures [4]: the faulty DSA signatures used here are valid signatures
which will pass the verification process. We recommend to use simultaneously
the following tricks that cost very little in terms of code-size and speed:

– Checksums can be implemented in software. This is often complementary
to hardware checksums, as software CRCs can be applied to buffers of data
(sometimes fragmented over various physical addresses) rather than machine
words.

– Execution Randomization: If the order in which operations in an algorithm
are executed is randomized it becomes difficult to predict what the machine
is doing at any given cycle. For most fault attacks this countermeasure will
only slow down a determined adversary, as eventually a fault will hit the
desired instruction. This will however thwart attacks that require faults in
specific places or in a specific order.
For instance, to copy 256 bytes from buffer a to buffer b, copy

b[f(i)] ← a[f(i)] for i = 0, . . . , 255

where f(i) = (x×(i⊕w)+y (mod 256))⊕z and {x, y, z, w} are four random
bytes (x odd) unknown to the attacker.

– Ratification Counters and Baits: baits are small (< 10 byte) code fragments
that perform an operation and test its result. A typical bait writes, reads
and compares data, performs xors, additions, multiplications and other op-
erations whose results can be easily checked. When a bait detects an error
it increments an NVM counter and when this counter exceeds a tolerance
limit (usually three) the card ceased to function.

– Repeated Refreshments: refresh k by generating several nonces and exclusive-
or them with each other, separating each nonce generation from the previous
by a random delay. This forces the attacker to inject multiple faults at ran-
domly shifting time windows in order to reset specific bits of k.

Finally, it may also be possible to have a real time testing of the random num-
bers being generated by the smart card, such as that proposed in the FIPS140-2.

Experimenting with Faults, Lattices and the DSA 27

However, even if this is practical it may be of limited use as our attack requires
very few signatures to be successful. Consequently, our attack may well be com-
plete before it gets detected.

What is very important is that no information on k is leaked, and that k is
cryptographically random.

6 Conclusion

We described a method for attacking a DSA smart card vulnerable to fault
attacks. Similar attacks can be mounted on any other El Gamal-type signature
scheme, such as ECDSA and Schnorr’s signature. The attack consisted of two
stages. The first stage dealt with fault injection. The second involved forming a
lattice for the data gathered in the previous stage and solving a closest vector
problem to reveal the secret key.

The attack was realised in the space of a couple of weeks and was made
easier by the inclusion of peaks on the I/O. This information could have been
derived by using power or electromagnetic analysis to locate the target area, but
would have taken significantly longer. The only power analysis done during this
attack was to note when the crypto-coprocessor started to calculate a modular
exponentiation.

References

1. F. Bao, R. Deng, Y Han, A. Jeng, A. Narasimhalu and T. Hgair, Breaking Public
Key Cryptosystems and Tamper Resistant Devices in the Presence of Transient
Faults, 5-th Security Protocols Workshop, Springer-Verlag, LNCS 1361, pp. 115–
124, 1997.

2. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall and C. Whelan, The Sorcerers
Apprentice Guide to Fault Attacks, Workshop on Fault Diagnosis and Tolerence
in Cryptography in association with DSN 2004 – The International Conference on
Dependable Systems and Networks, pp. 330–342, 2004.

3. E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
Advances in Cryptology - CRYPTO’97, Springer-Verlag, LNCS 1294, pp. 513–525,
1997.

4. D. Boneh, R. DeMillo and R. Lipton, On the Importance of Checking Crypto-
graphic Protocols for Faults, Journal of Cryptology, Springer-Verlag, nol. 14, no.
2, pp. 101–119, 2001.

5. D. Boneh and R. Venkatesan, Hardness of Computing the Most Significant Bits
of Secret Keys in Diffie-Hellman and Related Schemes, Advances in Cryptology –
CRYPTO’96, Springer-Verlag, LNCS 1109, pp. 126–142, 1996.

6. E. Dottax, Fault Attacks on NESSIE Signature and Identification Schemes,
NESSIE Technical Report, October 2002.

7. C. Giraud and E. Knudsen, Fault Attacks on Signature Schemes, Workshop on
Fault Diagnosis and Tolerence in Cryptography in association with DSN 2004 –
The International Conference on Dependable Systems and Networks, 2004.

8. J. Hoch and A. Shamir, Fault Analysis of Stream Ciphers, Cryptographic Hardware
and Embedded Systems – CHES 2004, Springer-Verlag, LNCS 3156, pp. 240–253,
2004.

28 David Naccache et al.

9. N.A. Howgrave-Graham and N.P. Smart, Lattice Attacks on Digital Signature
Schemes, Design, Codes and Cryptography, vol. 23, pp. 283–290, 2001.

10. N. Joshi, K. Wu and R. Karri, Concurrent Error Detection Schemes for involution
Ciphers, Cryptographic Hardware and Embedded Systems – CHES 2004, Springer-
Verlag, LNCS 3156, pp. 400-412, 2004.

11. T. May and M. Woods, A New Physical Mechanism for Soft Errors in Dynamic
Memories, Proceedings of the 16-th International Reliability Physics Symposium,
April, 1978.

12. National Institute of Standards and Technology, FIPS PUB 186-2: Digital Signa-
ture Standard, 2000.

13. P.Q. Nguyẽ̂n, Can we trust Cryptographic Software? Cryptographic Flaws in GNU
Privacy Guard v1.2.3, Advances in Cryptology – EUROCRYPT 2004, Springer-
Verlag, LNCS 3027, pp. 555–570, 2004.

14. P.Q. Nguyẽ̂n and I.E. Shparlinski, The Insecurity of the Digital Signature Algo-
rithm with Partially Known Nonces, Journal of Cryptology, vol. 15, no. 3, pp.
151–176, Springer, 2002.

15. P.Q. Nguyẽ̂n and I.E. Shparlinski, The Insecurity of the Elliptic Curve Digital Sig-
nature Algorithm with Partially Known Nonces, Design, Codes and Cryptography,
vol. 30, pp. 201–217, 2003.

16. P.Q. Nguyẽ̂n and J. Stern, The two faces of lattices in cryptology, Cryptography
and Lattices – CALC’01), Springer-Verlag, LNCS 2146, pp. 146–180, 2001.

17. C.P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems, Math. Programming, vol. 66, pp. 181–199,
1994.

18. V. Shoup, Number Theory C++ Library (NTL), http://www.shoup.net/ntl/

Securing RSA-KEM via the AES

Jakob Jonsson1 and Matthew J.B. Robshaw2

1 Department of Mathematics, KTH
SE-100 44 Stockholm, Sweden

jakobj@math.kth.se
2 Information Security Group,

Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, UK

m.robshaw@rhul.ac.uk

Abstract. RSA-KEM is a popular key encapsulation mechanism that
combines the RSA trapdoor permutation with a key derivation function
(KDF). Often the details of the KDF are viewed as orthogonal to the
RSA-KEM construction and the RSA-KEM proof of security models the
KDF as a random oracle. In this paper we present an AES-based KDF
that has been explicitly designed so that we can appeal to currently held
views on the ideal behaviour of the AES when proving the security of
RSA-KEM. Thus, assuming that encryption with the AES provides a
permutation of 128-bit input blocks that is chosen uniformily at ran-
dom for each key k, the security of RSA-KEM against chosen-ciphertext
attacks can be related to the hardness of inverting RSA.

Keywords: RSA-KEM, AES, key derivation function.

1 Introduction

The RSA [16] public key cryptosystem has been used for more than twenty
years and, during that time, a good understanding of how we might best use
the basic encryption primitive has evolved [3, 17, 18]. One recent addition to the
literature is the RSA Key Encapsulation Method (RSA-KEM) due to Shoup [18];
see [2, 8, 11, 20] for similar constructions. Two attractive features of RSA-KEM
are its natural simplicity and its excellent security properties. Very loosely, we
can summarise the encapsulation process in the following way:
1. Generate an input w (of appropriate size) at random.
2. Encrypt w using RSA for transport to the recipient.
3. Generate keying material y = KDF(w) for use in the subsequent symmetric-

based session encryption.
It is clear that the intended recipient can recover w from the received ciphertext
and then generate y so that both sender and receiver can agree on the same
symmetric key. When the underlying key derivation function (KDF) is modelled
as a random oracle or a black box, the security of RSA-KEM (in a chosen-
ciphertext attack model) can be provably related to the hardness of inverting
the RSA primitive.

In this paper we consider the role of the KDF. The properties of the KDF
are such that a hash function is often used to build the KDF and there are

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 29–46, 2005.
c© International Association for Cryptologic Research 2005

30 Jakob Jonsson and Matthew J.B. Robshaw

many dedicated and thoroughly suitable designs. However, since we are likely to
appeal to the AES [12] for any subsequent symmetric-based session encryption,
it might be preferable to build our KDF out of the AES rather than support an
additional algorithm. Furthermore, it might be desirable to have a design based
on the AES which would provide some immunity from continued cryptanalysis
of current hash function proposals [4, 19].

Of course, it is well-known that a hash function can be built out of a block
cipher [5, 9] and, at first sight, it appears that one of these constructions might
suffice. However, our work is further motivated by the following goal. Instead
of modelling the KDF as a random oracle, we would like to provide an explicit
KDF construction that allows us to demonstrate the security of RSA-KEM based
upon reasonable assumptions about the underlying block cipher (i.e. the AES).
Thus our goal is to obtain a security proof for RSA-KEM under the assumption
that the block cipher used in our KDF construction acts as an ideal family of
random permutations indexed by the choice of key. Such an assumption on the
block cipher is often referred to as the Shannon, ideal cipher, or black-box model
and it is used widely (see for example Black et al. [5]).

Now our goal is not difficult to achieve for a block cipher with a sufficiently
large block length (say at least twice the desired security level in bits). However,
we would particularly like to use the AES, and the only block length permitted
for the AES is 128 bits (even though the original cipher Rijndael [6] offered
more flexibility in this regard). This is a problem since typical approaches for
a block cipher-based KDF appear to be at the mercy of birthday attacks; the
security level is bound by only half the block length (i.e., 64 bits in the case
of a 128-bit block cipher). Since the standardized block ciphers at our disposal
have a block length of either 64 or 128 bits, the security level attained using such
mechanisms might not be viewed as adequate. While these birthday attacks may
not immediately break the security of the full scheme RSA-KEM, they do seem
to make it difficult to achieve a sufficiently-tight security proof.

So the goal of our work has been to achieve the level of security offered by
conventional constructions that use a 256-bit block cipher, but to do so via a
construction built around a 128-bit block cipher. More generally, in the ideal
cipher model and using our construction built around a block cipher with block
size kb, an adversary making q oracle queries should not be able to exploit any
weakness with a probability better than

c · q2

22kb
(1)

for some reasonably small constant c. This is approximately as hard as finding
collisions for an ideal hash function with output 2kb bits. Our trick in accom-
plishing this with a 128-bit block cipher is to use an encryption key that is twice
the length of the input block; i.e. to use a 128-bit block cipher with a 256-bit
key. Thus, our specific construction is valid for the AES and all AES finalists,
as well as a range of block ciphers that use 64- and 128-bit block lengths1.
1 Though the security level for 64-bit block lengths is unlikely to be appropriate.

Securing RSA-KEM via the AES 31

2 Notation and Specification

Establishing some of the machinery that we need in our construction might
initially appear to be somewhat complicated. However the description of the
scheme itself is straightforward and can be found in Section 2.2.

2.1 Pre-requisites

Our particular key derivation function KDFE is defined in terms of any block
cipher E with the property that the key length is at least twice the block length.
Let E be a block cipher with block length kb bits and key length at least 2kb

bits. We will assume that the key length is exactly 2kb; in the case of a longer
key only the first 2kb bits will be used and the other bits will be fixed to some
prescribed value. Moreover, we will assume that kb is a multiple of 8. For each
integer k > 0 let {0, 1}k denote the set of bit-strings of length k. For integers
j ≥ 0 and k > 0 with j < 2k, let (j)k be the k-bit big-endian representation of
j (e.g., (13)6 = 001101). The concatenation of two bit-strings X and Y will be
denoted X‖Y . For two bit-strings r1 and r2 of the same length, r1 ⊕ r2 denotes
the bitwise exclusive-or of r1 and r2. In situations where a bit-string r of length
k and an integer j < 2k are combined, the expression r ⊕ j denotes the sum
r ⊕ (j)k. We also use the following notational shorthand. For an integer m and
a bit-string s = v0‖v1 consisting of 2 blocks v0 and v1, each of length k, we set
s � m = (v0 ⊕ m)‖(v1 ⊕ m).

In our specification of KDFE we will appeal to a function δ that “tweaks”
the most significant two bits of a string in the following way. Given a bit-string
r of length kb, write r = (a)2‖r′ (clearly a ∈ {0, 1, 2, 3} and r′ ∈ {0, 1}kb−2) and
define δ(r) = δ((a)2‖r′) = ((a + 1) mod 4)2‖r′. The effect of δ is summarized in
the following table:

r 00‖r′ 01‖r′ 10‖r′ 11‖r′
δ(r) 01‖r′ 10‖r′ 11‖r′ 00‖r′

2.2 Definition of KDFE

Formally, we define KDFE as KDFE(w, L) with two input arguments w and L.
The first argument w is the secret input, while the second argument L is an
optional label to be associated with the key. Let Valid be the set of valid input
pairs (w, L) to KDFE . To process a pair (w, L) ∈ Valid, we need to apply a deter-
ministic encoding function β to (w, L) to give an input string of an appropriate
form (i.e., a sequence of blocks, each of bit length kb). We also need to generate
an initial value of bit length kb from (w, L) using a deterministic IV generator
τ : Valid → {0, 1}kb.

The output from the encoding function β is a string R = (r1, . . . , rn) of
blocks ri, each of bit length kb. We assume that there is an upper bound nmax

on the maximum number of blocks in an output (r1, . . . , rn) = β(w, L) with
(w, L) ∈ Valid. We require that it be computationally straightforward to recover

32 Jakob Jonsson and Matthew J.B. Robshaw

w and L in an unambiguous and unique manner from β(w, L) and the initial
value t0 = τ(w, L). Our recommended encoding function β(w, L) is specified as
β(w, L) = w‖L‖0k1‖(l(L))64; k1 is the minimum value such that the bit length
of β(w, L) becomes a multiple of kb.

The initial value t0 = τ(w, L) should contain the length in octets of w (even
in applications where the length is fixed) along with a “KDF Mode” indicator.

The output from KDFE will be a sequence U = (u1, . . . , uλ) of blocks ui,
each of bit length kb. We fix the number λ of blocks to be a constant. For a
shorter output, we just truncate U to the desired number of bits.

The specification of KDFE(w, L) now follows and consists of two stages. This
process is illustrated in Figure 1 provided in Appendix A.

1. Apply the encoding rule to give β(w, L) = (r1, . . . , rn) and set the initial
value t0 = τ(w, L).

2. Extend t0 to a padded initial value s0 = t0||t0 of length 2kb.
3. Process the blocks r1, . . . , rn as follows with i running from 1 to n:

ti,0 = Esi−1(ri) ⊕ ri ;
ti,1 = Esi−1(δ(ri)) ⊕ ri ;
si = ti,0‖ti,1 . (2)

4. Generate λ blocks of output from sn as follows:

um = Esn�m(m) (1 ≤ m ≤ λ) (3)

(the kb-bit representation of m is encrypted). The output is the string

U = u1‖u2‖ . . . ‖uλ ,

which can be truncated to a smaller number of bits if desired.

2.3 Properties of KDFE

Our construction has some similarity to mechanisms for providing double block-
length hash functions out of a block cipher [9]. Schemes such as MDC-2 [10] were
designed to give a collision-resistant hash function when using the block cipher
DES [13] (with its short block and key sizes as well as unusual complementation
and weak key properties) as a building block. While the underlying motivation –
to gain a level of security greater than the block size initially allows – is common
to both applications, our KDF construction differs in many important ways, not
least in how the chaining variables are specified and used.

To gauge the performance of our proposal, we observe that to produce λ
blocks of output from n blocks of input, KDFE requires 2n+λ applications of E
with n + λ different keys. The computation can be carried out on p ≥ 2 parallel
processors, each applying the block cipher at most n + �λ/p� times. The last λ
applications of E are fully parallelizable, whereas the first 2n applications are
inherently serial with only two computations performed in parallel.

Securing RSA-KEM via the AES 33

We note that while the AES is a fast cipher, the rate of encryption [7] for
the AES with a 256-bit key (which is what we require in our construction) is
comparable to the hashing rate of SHA-256 [14] (the NIST hash function that
offers a similar level of security to that offered in our construction). Since two
invocations of the AES are required at each step of the first stage of KDFE ,
we would expect our construction to compare reasonably well to one based on a
standardized hash function. Further, since the AES has a particularly lightweight
key schedule, even though there is considerable re-keying, we would not expect
the overhead to be too significant. Of course, it should also be stressed that
if KDFE is used as a component within RSA-KEM, then the RSA operation
is already likely to be a dominating factor (particularly the RSA private key
operation) in an application.

2.4 Design Rationale

An overall goal has been to design KDFE in a manner that puts minimal con-
straints on the encoding method β; the security of KDFE should not rely on how
inputs are encoded as long as β is reversible. Here we give our rationale behind
other aspects to the design of KDFE .

The First Stage in KDFE

The purpose of the first stage of the algorithm is to translate the input into a
secret sn in a collision-resistant manner. Specifically, it should be hard to find
two distinct inputs (w, L), (w′, L′) such that the corresponding outputs sn, s′n′

from the first stage are equal. This is to provide a high level of assurance that
different sets of keys are used in the second stage of the algorithm for different
inputs. Note that it is easy to find inputs such that the outputs are related in a
prescribed manner. Specifically, if we replace the last block rn in the first stage
with δ(rn), then the rightmost kb bits of the new output key coincide with the
rightmost kb bits of the old output key, except that the two leftmost positions in
each block may differ. Yet in the ideal cipher model, such a correlation cannot
be exploited in a useful manner by an adversary.

In round i of the first stage, the same key si−1 is used for both encryptions.
This introduces an effect that we may actually benefit from. Namely, we can con-
trol the behaviour of the output key si in such a way that collisions with padded
initial values are impossible. Indeed, si cannot be equal to a padded initial value
since this would imply that Esi−1(ri) = Esi−1 (δ(ri)), which is impossible. The
same is true for sn �m; if Esn−1(rn)⊕ rn ⊕m = Esn−1(δ(rn))⊕ rn ⊕m, then we
would again have Esn−1(rn) = Esn−1(δ(rn)), which is impossible. If such colli-
sions had been possible then it would have been difficult to achieve our desired
security bound (1) without putting undesirable restrictions on the size of the set
of possible initial values.

The Second Stage in KDFE

In the second stage we use different keys to derive the blocks um and our
approach has some similarity to the counter mode of operation for a block

34 Jakob Jonsson and Matthew J.B. Robshaw

cipher [15]. If we were to use a single key, then we would see a small bias in
the output due to the non-existence of collisions Es(r) = Es(r′). This would
result in a violation of (1). Indeed, in applications where plenty of output is
desirable, the security bound would be weak enough to be a concern in practice.

To minimize the probability of reusing a key, we derive the mth key from sn

by adding a simple counter m to sn. In this manner, if

sn � m = s′n′ � m′ (4)

for some m, m′ ∈ {0, . . . , λ}, then

sn = s′n′ � (m′ ⊕ m) = s′n′ � m′′

for some m′′ ∈ {0, . . . , λ̂}, where

λ̂ =
{

0 when λ = 0;
2�log2 λ+1 − 1 otherwise.

(5)

Consequently, while there are (1 + λ)2 pairs (sn � m, s′n′ � m′) to be considered
in (4), there are only 1 + λ̂ values on s′n′ for each sn that give a collision in
(4). In particular, the constant c in our security bound (1) will turn out to be
proportional to λ rather than to λ2.

The keys in the second stage are obtained from sn by adding the same counter
value to each of the two blocks in sn. This is to ensure that the derived blocks do
not collide with padded initial values. The counter starts at 1 to avoid undesirable
collisions between keys used in the first stage and keys used in the second stage.
For instance, there may be two inputs for which, in the first case, sn is used as
a key in some round n + 1 of the first stage, while in the second case, the same
sn is used in the second stage2. It seems worth taking the precaution to provide
this separation.

The Use of the Function δ
The function δ is chosen so that δ(δ(r)) �= r. Otherwise a function δ′ (e.g.
one that maps r to r ⊕ d for some d) would suffer from the property that if
Esi−1(ri) ⊕ ri = Esi−1 (δ′(ri)) ⊕ δ′(ri), then ri and δ′(ri) both yield the same
intermediate si in (2). This would result in a violation of our bound (1) and a
modified security bound would contain a term of the form c · q/2kb .

We have chosen δ to be simple, modifying only two bits of the input. As well
as having little impact on efficiency this facilitates the security analysis. To see
this, consider the order of an element r defined as the smallest integer j such
that r = δj(r), where δj is shorthand for δ applied j times. Clearly the order of
any element r with respect to δ is only four. While it seems that any order larger
than two would result in a security bound of the form we require (1), analysis
could be harder. The reason is as follows.

We say that an input pair (s, r) to the block cipher E is of relevance in the
ith round of the first stage if (s, r) = (si−1, ri) or (s, r) = (si−1, δ(ri)). This
2 Essentially the set of possible sequences (r1, . . . , rn) is not necessarily “prefix-free”.

Securing RSA-KEM via the AES 35

means that the pair (s, r) is related to the two pairs (s, δ(r)) and (s, δ−1(r)) in
an obvious manner. Similarly, (s, δ(r)) is related to (s, δ2(r)), (s, δ2(r)) is related
to (s, δ3(r)), and so on and so forth. Consequently, if the order of r were large,
then we would have a long chain of related input pairs. This would make it hard
to analyse dependencies between pairs of inputs in the first stage of KDFE ,
which we require in the context of RSA-KEM. Thus the main benefit of δ as we
have defined it is to ensure that the corresponding chain of pairs is short; for
the given choice of δ, any set of the form {(s, r), (s, δ(r)), (s, δ2(r)), (s, δ3(r))}
has the property that each pair in the set is only related to other pairs in the
set and not to any pairs outside the set. This property makes it easier to obtain
stream-lined security proofs.

2.5 Some Related Applications

While an AES-based key derivation function (KDF) for use within RSA-KEM
is the focus of our work, we have actually designed something more flexible.
Very simple variants and extensions of our KDF design could be used as a mask
generating function MGFE , a block-cipher based hash function construction,
and as a block-cipher based message authentication code. However, these may
compare unfavourably with other, more established, mechanisms [9].

For instance, it is easy to modify KDFE(w, L) for use as a hash function and
we define the hash function HashE(M) as

HashE(M) = KDFE(M, φ) ,

where φ is the empty string. However, we need to make a few minor changes.
First, we change the encoding function and set

βhash(M) = β(M, φ) = M‖0k1‖(l(M))64 .

Here, l(M) is the length in bits (or bytes) of the message M and k1 is the
minimum value such that the bit length of βhash(M) becomes a multiple of
kb. Second, we fix the initial value t0, which should contain a “Hash Mode”
indicator, and we set λ = 2, which would give a hash function with a 256-bit
output.

KDFE(w, L) can also be used as the basis for a message authentication code.
Let the first argument w be the secret key and let the second argument L be the
message M to be authenticated (possibly a concatenation of the message and
other data). We can define the message authentication code MACE(w, M) as

MACE(w, M) = KDFE(w, M) ,

using the same encoding function β as in key derivation mode;

βmac(w, M) = w‖M‖0k1‖(l(M))64 .

The initial value t0 should be fixed and include the length in octets of w (even
in applications where the length is fixed) and also a “MAC Mode” indicator. A
typical parameter choice would be λ = 1 or 2 (the latter if collision-resistance is
desired). Of course, another possibility would be to define a message authenti-
cation code as HMAC [1] with HashE as the underlying hash function.

36 Jakob Jonsson and Matthew J.B. Robshaw

3 KDFE Within RSA-KEM (and f -KEM)

KDFE is intended for use as an AES-based key derivation function within RSA-
KEM [2, 18, 20]. However, to make the discussion as general as possible, we
consider an arbitrary trapdoor permutation f : Xf → Xf ; see below for a
formal treatment of trapdoor permutations. We briefly discuss even more general
encryption schemes at the end of Section 4. Let

KDF : Xf × L → {0, 1}∗

be a key derivation function, where L is a set of labels and {0, 1}∗ is the set of all
finite bit-strings. Then f -KEM is defined as follows, where the input to f -KEM
is a label L ∈ L.

1. Generate an element w ∈ Xf uniformly at random.
2. Compute y = f(w).
3. Compute U = KDF(w, L).
4. Output y, the ciphertext, and U , the derived secret.

In Section 4 we will analyse f -KEM in the special case that the underlying KDF
is KDFE .

For a security parameter k, let Fk be a finite family of pairs (f, f−1) with the
property that f is a permutation with inverse f−1; f takes as input an element x
in a set X = Xf and returns an element y in the same set X . We assume that the
running time of each of f and f−1 is polynomial in k. Let G be a probabilistic
polynomial-time (PPT) algorithm that on input 1k (i.e., k uniformly random
bits) outputs a pair (f, f−1) ∈ Fk. G is a trapdoor permutation generator. An
f -inverter I is an algorithm that on input (f, y) tries to compute f−1(y) for a
random y ∈ X . I has success probability ε = ε(k) and running time T = T (k) if

Pr
(
(f, f−1) ← G(1k), y R← Xf : I(f, y) = f−1(y)

)
≥ ε

and the running time for I is at most T . In words, I should be able to com-
pute f−1(y) with probability ε within time T , where (f, f−1) is derived via the
trapdoor permutation generator and y is random. I solves the f problem.

Fk is a trapdoor permutation family with respect to (ε, T) if there is no
f -inverter with success probability ε within running time T . The individual per-
mutation f is referred to as a trapdoor permutation.

4 Security Analysis

In this section we prove the security of f -KEM based on KDFE .
With the random oracle assumption on KDF it is straightforward to prove

that f -KEM based on KDF is secure against a chosen-ciphertext adversary if
f is a secure trapdoor permutation; see Shoup [18] for details. The purpose of
this section is to analyse f -KEM when KDFE (see Section 3) is used as the

Securing RSA-KEM via the AES 37

underlying KDF. Our goal is to show that the security of f -KEM can be related
to the hardness of inverting f if the block cipher E is modelled as an indexed
family of random permutations.

The attack model against f -KEM is defined as follows and aligns with the
security model for key encapsulation schemes defined in Shoup [18]. The adver-
sary is given free access to a decryption oracle that on input (y, L) decrypts y
and outputs the corresponding secret U = KDFE(f−1(y), L). This means that
we consider the family of adaptive chosen-ciphertext attacks (typically referred
to as CCA2). The adversary also has free access to an E-oracle and a D-oracle
simulating encryption and decryption with the block cipher E.

The task for the adversary is to distinguish a secret U0 corresponding to a
certain challenge ciphertext (y∗, L∗) from a random string. To make the chal-
lenge nontrivial, we do not allow the adversary to query the challenge cipher-
text (y∗, L∗) at the decryption oracle after the challenge ciphertext has been
published. However, there are no other restrictions on decryption queries; the
adversary may well include either of y∗ and L∗ in a decryption query as long as
the query does not include both.

The attack experiment runs as follows. First, the adversary is given a trap-
door permutation f generated at random. The adversary is allowed to send
queries to her oracles during the entire attack and they may be chosen in an
adaptive manner depending on responses to previous queries. At any time of the
attack – but only once – the adversary sends a label L∗ to a challenge generator.
The challenge generator applies the f -KEM operation, producing a ciphertext
y∗ and a secret output U0. In addition, the generator selects a uniformly ran-
dom string U1 and flips a fair coin b. The generator returns y∗ and Ub; thus the
response depends on b.

At the end, the adversary outputs a bit b′. The distinguishing advantage ε of
the adversary is defined as

ε = Pr(b′ = b) − Pr(b′ �= b) = 2Pr(b′ = b) − 1

where the probability is computed over all possible trapdoor permutations. The
adversary is referred to as an IND-CCA2 adversary. The main result now follows.

Theorem 1. Let A be an IND-CCA2 adversary against f -KEM based on KDFE

making qE queries to the E- and D-oracles and qf queries to the decryption
oracle (including one query to the challenge generator). Let

q = qE + (nmax + λ) · qf ,

where nmax is defined in Section 2.1. Assume that q ≤ 2kb/24. Moreover, assume
that the distinguishing advantage of A is ε′ and that the running time is bounded
by T ′. Then, viewing the block cipher E in the ideal cipher model, there is an
f -inverter I with success probability ε and running time T such that

ε = ε′ − 18(λ̂ + 1) · q2

22kb
− qf

|Xf | (6)

with λ̂ defined in (5) and

38 Jakob Jonsson and Matthew J.B. Robshaw

T = T ′ + O(q · Tf) + O(λ · qf) , (7)

where Tf is the time needed to compute f on a given input.

The proof of Theorem 1 is given in Appendix B. Here we comment on the security
bounds in Theorem 1.

First, consider the difference ε′ − ε in success probabilities for the adversary
and the inverter. For typical applications, λ will be quite small, say at most 100;
this would give 100kb bits of (symmetric) key material as output. Assuming that
λ̂ = 27 − 1 and q = 2kb−μ ≤ T ′ for some μ, the significant term in (6) is equal to

18 · 27

22μ
<

212

22μ
= 212−2μ .

Defining a success probability of an algorithm to be “negligible” if the time-
success ratio (time/probability) of the algorithm is at least 2kb , we may conclude
that ε′ − ε is “negligible” as long as q is at most 2kb−12; the running time of the
adversary is assumed to be at least q.

Next, consider the running time of the adversary in terms of the inverter.
A close examination of the proof of Theorem 1 yields that the term O(q · Tf)
in (7) is approximately 4Tf · q ≤ 4Tf · T ′. Namely, for each application of the
E-oracle simulation, the inverter applies f up to four times. As a consequence,
T ′/T is approximately 1/(4Tf). We may ignore the rightmost term O(λ · qf) in
(7) as qf is typically bounded by a fairly small value such as 248. Note that the
factor Tf is not due to the specific KDFE construction but rather it is a generic
factor that is also present when the entire key derivation function is modelled as
a random oracle; see Shoup [18]. Hence, only the factor 4 is actually related to
the specifics of KDFE . To conclude, we lose approximately two bits of tightness
with respect to running time when replacing the random oracle with KDFE .

Remark. While we only consider trapdoor permutations, we conjecture that the
proof might extend to general deterministic public-key encryption algorithms [8].

5 Conclusion

In this paper we have introduced and analysed a new key derivation function
KDFE . Defined in terms of a block cipher E, KDFE has been specifically de-
signed as an AES-based key derivation function for use within the key encapsula-
tion mechanism RSA-KEM [18]. However the KDFE construction could also be
used as the basis for a mask generating function, a hash function, or a message
authentication code. While the KDFE construction might be somewhat unusual,
there is considerable value in considering designs that allow us to demonstrate
the security of RSA-KEM under reasonable assumptions on the behaviour of
AES rather than the black-box behaviour of some ad-hoc construction. We leave
the definition of alternative proposals as a matter for further research.

Securing RSA-KEM via the AES 39

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message au-
thentication. In N. Koblitz, editor, Advances in Cryptology – Crypto ’96, LNCS
1109, pp. 1–15, Springer-Verlag, 1996.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. Proceedings of the First Annual Conference on Computer
and Communications Security. ACM, 1993.

3. M. Bellare and P. Rogaway. Optimal Asymmetric encryption - How to Encrypt
with RSA. In A. De Santis, editor, Advances in Cryptology – Eurocrypt’94, LNCS
950, pp. 92–111, Springer-Verlag, 1995.

4. E. Biham and R. Chen. Near-collisions in SHA-0. In M. Franklin, editor, Advances
in Cryptology – Crypto ’04, LNCS 3152, pp. 290–305, Springer-Verlag, 2004.

5. J. Black, P. Rogaway, and T. Shrimpton. Block-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In M. Yung, editor, Advances in
Cryptology – Crypto ’02, LNCS 2442, pp. 320–335, Springer-Verlag, 2002.

6. J. Daemen and V. Rijmen. AES Proposal: Rijndael. Version 2. 1999.
7. W. Dai. Performance figures. Available via www.eskimo.com/~weidai/.
8. A. Dent. A Designer’s Guide to KEMs. In K. Paterson, editor, 9th IMA Conference

on Coding and Cryptography, LNCS 2898, 133–151, Springer-Verlag, 2004.
9. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-

phy. CRC Press. 1997.
10. C.H. Meyer and M. Schilling. Secure program load with manipulation detection

code. In Proceedings of SECURICOM ’88, pp. 111–130, 1998.
11. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric

Cryptosystem Transform. In D. Naccache, editor, Topics in Cryptology – CT-RSA
2001, LNCS 2020, pp. 159–175. Springer-Verlag, 2001.

12. National Institute of Standards and Technology. FIPS 196: The Advanced Encryp-
tion Standard. October, 2001. Available via csrc.nist.gov.

13. National Institute of Standards and Technology. FIPS 46-2: The Data Encryption
Standard. December, 1993. Available via www.itl.nist.gov/fipspubs/.

14. National Institute of Standards and Technology. FIPS 180-2: The Secure Hash
Standard. August, 2002. Available via csrc.nist.gov.

15. National Institute of Standards and Technology. Special Publication SP-800-38A:
Recommondation for Block Cipher Modes of Operation – Methods and Techniques.
December, 2001. Available via csrc.nist.gov.

16. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21 (2), 120–126,
February 1978.

17. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. June 14, 2002.
Available via www.rsasecurity.com.

18. V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Preprint,
December 2001. Available via eprint.iacr.org/2001/112.

19. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,
Haval-128 and RIPEMD. Available via http://eprint.iacr.org/2004/199.

20. Y. Zheng and J. Seberry. Practical Approaches to Attaining Security Against
Adaptively Chosen Ciphertext Attacks. In E.F. Brickell, editor, Advances in Cryp-
tology – Crypto ’92, LNCS 740,pp. 292-304. Springer-Verlag, 1992.

40 Jakob Jonsson and Matthew J.B. Robshaw

A Pictorial Representation of KDFE

ri

� �

�

�δ
�

� �� �

E E
�� ��

si−1 �

� �

� �

� �
ti,0 ti,1

si

�

ri+1

�

� �

�δ
�

� �� �

E E
�� ��

si �

� �

� �

� �
ti+1,0 ti+1,1

si+1 �

1

�

E
��sn � 1 �

�

2

�

E
��sn � 2 �

�

· · ·

λ

�

E
��sn � λ �

�
u1 u2 uλ

U

Fig. 1. The two stages of KDFE ; E represents a kb-bit block cipher with a 2kb-bit key.

Securing RSA-KEM via the AES 41

B Proof of Theorem 1

Theorem 1. Let A be an IND-CCA2 adversary against f -KEM based on
KDFE making qE queries to the E- and D-oracles and qf queries to the
decryption oracle (including one query to the challenge generator). Let

q = qE + (nmax + λ) · qf ,

where nmax is defined in Section 2.1. Assume that q ≤ 2kb/24. Moreover,
assume that the distinguishing advantage of A is ε′ and that the running
time is bounded by T ′. Then, viewing the block cipher E in the ideal cipher
model, there is an f -inverter I with success probability ε and running time
T such that

ε = ε′ − 18(λ̂ + 1) · q2

22kb
− qf

|Xf |
with λ̂ defined in (5) and

T = T ′ + O(q · Tf) + O(λ · qf) ,

where Tf is the time needed to compute f on a given input.

Let A be the adversary. We will define an inverter I in terms of A where I
stores information on several lists:

1. f -List: Entries of the form (y, w) (with y = f(w)), sorted in alphabetic order
with respect to y. Refer to an entry starting with y as a y-entry.

2. KEM-List: Entries of the form (y, L, U) where L, w = f−1(y), and U satisfy
KDFE(w, L) = U . The entries are sorted alphabetically with respect to y
and then L. Refer to an entry starting with y as a y-entry.

3. History List: Entries of the form (si; (s0, r1, . . . , ri)), sorted with respect to
si where si is derived from s0 and r1, . . . , ri via i < nmax rounds of (2). Refer
to an entry starting with si as an si-entry.

4. E- and D-List: Entries of the form (s, (r1, v1), . . . , (rd, vd)) where vi = Es(ri)
sorted with respect to s. Within each entry pairs are sorted with respect to ri

on the E-list and with respect to vi on the D-list. Refer to an entry starting
with s as an s-entry. Since the E- and D-lists are essentially the same, we
suppress the D-list. Whenever I requires an output value v, it is implicitly
assumed that I looks on the D-list rather than on the E-list.

Let S0 be the set of possible padded initial values s0. Introduce additional
sets S1 and S2 as follows. S1 is the set of elements s such that there is an s-entry
on the history list, whereas S2 is the set of elements queried to the E- and D-
oracles (by either A or I) that are not contained in S0 or S1. At the beginning
of the experiment, all lists and all sets except S0 are empty.

Suppose that A sends a decryption query (y, L). Then I proceeds as follows.

42 Jakob Jonsson and Matthew J.B. Robshaw

F1 If (y, L) is on KEM-list, output the corresponding U and exit.
F2 If no (y, L) is found on KEM-list, check if there is some y-entry on f -list

to examine whether w = f−1(y) is known. If w is known, simulate the
encryption oracle as specified below to compute U = KDFE(w, L), output
U , and exit.

F3 In the case that w is unknown, generate a string U as the concatenation of
λ uniformly random blocks of length kb, add (y, L, U) to KEM-list, output
U , and exit.
At some point during the attack, the adversary A requests a challenge ci-

phertext, providing as input a label L∗. I proceeds as follows; y∗ is the value
that he wants to invert.
C1 If (y∗, L∗) is a previous decryption query, output Error and exit.
C2 Generate uniformly random strings U0 and U1 of length λkb. Add (y∗, L∗, U0)

to KEM-list, flip coin b, output (y∗, Ub, U1−b), and exit.
Suppose that A sends an E-query (s, r). Say that Es(r) = v is consistent

if there is no conflict between this assignment and the pairs (ri, vi) within the
s-entry on E-list. I proceeds as follows.
E1 If v = Es(r) is already known, output v and exit.
E2 If s /∈ S0 ∪ S1, generate a uniformly random v such that the assignment

v = Es(r) is consistent. Add the pair (r, v) to the s-entry on E-list (introduce
the entry if necessary), output v, and exit.

E3 If s ∈ S0 ∪S1, for each j ∈ {0, 1, 2, 3} generate a uniformly random string vj

such that the four assignments vj = Es(δj(r)) are consistent. Add the pairs
(δj(r), vj) to the s-entry on E-list (introduce the entry if necessary).

E4 For 0 ≤ j ≤ 3, let sj = (vj ⊕ δj(r))‖(v(j+1) mod 4 ⊕ δj(r)). The simulation
fails if any of the 4(1 + λ) elements in

{sj � m : 0 ≤ j ≤ 3, 0 ≤ m ≤ λ} (8)

are contained in S1 ∪ S2 or collide with each other. Let E4-Err be the event
that this failure occurs at some point during the attack.

E5 If s ∈ S1, there is a (unique) s-entry (s = si; (s0, r1, . . . , ri)) on the history
list. If s ∈ S0, consider the “empty” entry (s; (s,−)) and let i = 0 and s0 = s.
If i+ 1 < nmax, then add the entries (sj , (s0, r1, . . . , ri, δ

j(r))) to the history
list.

E6 For each j ∈ {0, 1, 2, 3}, check whether s0 and (r1, . . . , ri, δ
j(r)) correspond

to a valid input (w, L) to KDFE (meaning that s0 is the padded initial value
corresponding to (w, L) and β(w, L) = (r1, . . . , ri, δ

j(r))). If this is the case:
1. Compute y = f(w) and add (y, w) to f -list (if not present).
2. If there is an entry (y, L, U) on KEM-list, then KDFE(w, L) has already

been defined (implicitly) as U = u1‖u2‖ . . . ‖uλ. If this is the case, for
1 ≤ m ≤ λ assign

Esj�m(m) = um . (9)

For each m introduce an (sj � m)-entry on E-list, add (m, um) to the
(sj � m)-entry, and remove (y, L, U) from KEM-list.

E7 Output v0 = Es(r) and exit.

Securing RSA-KEM via the AES 43

The s-entry in step E5 being unique follows from the fact that E5 is the only
step where we add new entries to the history list; if some of the added keys
sj were already there (thus already contained in the set S1), the error E4-Err
would have occurred in step E4. The assignments in (9) are trivially consistent;
arriving at step E6 means that no error occurred in step E4, which implies that
sj � m has never been used as a key before.

Now consider a D-query (s, v) by A. I proceeds as follows.

D1 If r = Ds(v) is already known, output r and exit.
D2 Generate a random string r such that the assignment r = Ds(v) is consistent

and add (r, v) to the s-entry on E-list (introduce the entry if necessary).
D3 Check whether s ∈ S0 ∪ S1. If this is not the case, output r, and exit.
D4 Proceed with steps E3-E6 in the simulation above with s and r, keeping in

mind in step E3 that Es(r) has already been defined as v.
D5 Output r = Ds(v) and exit.

We need to analyse what could go wrong in this simulation. First, we have a
possible error in step C1, but this error occurs only if the adversary picks y∗ in
one of her decryption queries preceding the challenge ciphertext query; denote
this event as C1-Err. Since the adversary has no prior information about y∗,
Pr(C1-Err) ≤ qf/|Xf |. Note that this value is an extremely small value if f is
RSA with key size at least 1024 bits.

The remaining source of error is related to how I simulates the E- and D-
oracles. Besides the event E4-Err in step E4, we also have the potential error that
the uniformly random strings generated in steps C2 and F3 may not be consis-
tent with other values. To analyse the probability of this error, we introduce an
auxiliary algorithm J that can compute inverses of f . To make J indistinguish-
able from I for the adversary, we let J do exactly what I does during the whole
experiment until the adversary exits. At the very end, we add a checking phase,
where J proceeds with each entry (y, L, U) on KEM-list, computes w = f−1(y),
and simulates the encryption oracle as specified above on all inputs necessary
to compute KDFE(w, L) (keeping in mind as specified in step E6 that the end
result should be U).

Now J , and hence I, will provide a perfect simulation unless an error occurs
in step C1 or the error E4-Err occurs in step E4, either during the original exper-
iment or during the additional checking phase. Namely, as long as all responses
are consistent and chosen uniformly at random, there is no way for the adversary
to distinguish the two simulations.

Before we can estimate the probability of the error E4-Err, we need to count
the number of keys s for which J ever provides some assignment v = Es(r). Now,
while J simulates the E-oracle on some inputs not queried by A, the underlying
key is always part of some other explicit or implicit query from A. This implies
that the total number of keys is at most q = qE +(nmax +λ) · qf ; the latter term
(nmax + λ) · qf estimates the total number of keys used when responding to the
decryption queries and the challenge ciphertext query. In particular, the size of
S2 is at most q, as is the number of applications of each of the steps E1-E7.

44 Jakob Jonsson and Matthew J.B. Robshaw

We also need an upper bound on the total number of assignments v = Es(r)
for any fixed key s. Such a bound is given by 4q. Namely, each E- and D-
query results in at most four assignments, whereas each decryption query and
the challenge ciphertext query results in at most 4nmax assignments in the first
stage and at most λ assignments in the second stage. For the last claim, note
that step E6.2 is applied at most once for each entry on KEM-list; the number
of entries on this list is bounded by qf .

In step E3, there are four assignments vj = Es(δj(r)). We refer to the set
Q = {(s, δj(r)) : 0 ≤ j ≤ 3} as a 4-set and to a pair of the form {(s, r), (s, δ(r))}
as a window. Within a 4-set Q there are four windows {(s, δj(r)), (s, δj+1(r))}
for 0 ≤ j ≤ 3.

To estimate Pr(E4-Err), consider a set of assignments to be made in step E3
(steps D2 and E3 in case of a decryption query) corresponding to a 4-set Q and
let s be the underlying key. Since s ∈ S0 ∪ S1 and since it is impossible for a
key once in S2 to end up in S1 (this would result in an error in step E4), each
previous application of the key s must have been an assignment of values for
a full 4-set (as opposed to an assignment of a single value as would have been
the case if s ∈ S2). As a consequence, the four values Es(δi(r)) all remain to be
assigned.

First, assume that the underlying query was not a decryption query; we did
not arrive at step E3 from step D4. For i ∈ {0, 1, 2, 3}, the adversary cannot
predict the two values vj = Es(δj(r)) and vj+1 = Es(δj+1(r)), and hence not
the value sj, with probability better than

1
(2kb − 4q)2

<
1

22kb
· 1
1 − 8q/2kb

≤ 1
22kb

· 1
1 − 1/3

=
3

22kb+1
=: ρ . (10)

The value 4q in the denominator is the upper bound derived above on the number
of previous queries with the key s; each such query corresponds to a value Es(r′)
that must be different from all Es(δi(r)). The second inequality follows from the
assumption q ≤ 2kb/24.

Next, assume that we arrived at step E3 from step D4. Thus the first of the
four queries in step E3 is a new D-query (s, v0). As in (10), the adversary cannot
predict any two of the four values

r = Ds(v0), v1 = Es(δ(r)), v2 = Es(δ2(r)), v3 = Es(δ3(r))
with probability better than ρ, not even if the two other values were revealed.
In particular, since the adversary needs at least two of these values to determine
any sj , no sj can be determined with probability better than ρ.

We may now easily compute a bound on the probability that we have a
collision between some element in the set (8) and some element in S2; refer to
this event as E4-Err2. Specifically, for any j and m, sj � m collides with any
fixed element in S2 with probability at most ρ. Since there are a total of at most
4(λ+1) · q values in (8) to be considered during the entire experiment and since
|S2| ≤ q, we have that

Pr(E4-Err2) ≤ ρ · 4(λ + 1) · q2 =
3 · 4(λ + 1) · q2

22kb+1
≤ 6(λ̂ + 1) · q2

22kb
; (11)

λ̂ was defined in (5).

Securing RSA-KEM via the AES 45

Next, consider the probability of a collision either between two of the elements
in the set (8) or between one of these elements and some element in the set S1;
refer to this event as E4-Err1. In such an eventuality, we have distinct (s, r) and
(s′, r′) such that {

Es(r) ⊕ r = Es′ (r′) ⊕ r′ ⊕ m

Es(δ(r)) ⊕ r = Es′ (δ(r′)) ⊕ r′ ⊕ m
(12)

for some integer m (with 0 ≤ m ≤ λ̂). Now, each element in S1 corresponds to
a 4-set generated in a previous application of steps E3 and E4. This means that
we are effectively looking for collisions of the kind (12) with both keys in S0∪S1

and we have up to q different 4-sets among which we want to find a collision.
For any fixed previously known window W , and for each of the four windows

within the 4-set Q under consideration, the probability that the two windows
satisfy (12) is at most (λ̂ + 1) · ρ; use (10) and the fact that there are λ̂ + 1
possibilities for m. At the end of the experiment, there are a total of at most
42q(q − 1)/2 = 8q(q − 1) pairs of known windows from different 4-sets. This
implies that the probability that (12) holds for some pair of this kind is bounded
by

(λ̂ + 1) · ρ · 8q(q − 1) . (13)

Next, we turn our attention to windows within the same 4-set. Let Wi be
the window {(s, δi(r)), (s, δi+1(r))}. For 0 ≤ i ≤ 3, the pair (Wi, Wi+1) (indices
computed modulo 4) cannot satisfy (12). Namely, if{

vi ⊕ δi(r) = vi+1 ⊕ δi+1(r) ⊕ m

vi+1 ⊕ δi(r) = vi+2 ⊕ δi+1(r) ⊕ m ,

then vi = vi+2, which is impossible. The remaining two cases (W0, W2) and
(W1, W3) both result in the same system of equations{

v2 = v0 ⊕ c ⊕ m

v3 = v1 ⊕ c ⊕ m ;

c = r ⊕ δ2(r) = δ(r) ⊕ δ3(r) = 100 . . .0. By (10), the left-hand side cannot be
predicted with probability better than ρ even if the right-hand side (i.e., v0 and
v1) is known. As a consequence, since there are at most q known 4-sets and since
m can be chosen in λ̂ + 1 ways, the probability that (12) holds for some pair of
known windows from the same 4-set is bounded by

(λ̂ + 1) · ρ · q . (14)

Combining (13) and (14), we obtain that

Pr(E4-Err1) ≤ (λ̂ + 1) · ρ · 8q(q − 1) + (λ̂ + 1) · ρ · q

< 8(λ̂ + 1) · ρ · q2 =
12(λ̂ + 1) · q2

22kb
. (15)

46 Jakob Jonsson and Matthew J.B. Robshaw

Summing (11) and (15), we conclude that

Pr(E4-Err) ≤ Pr(E4-Err1) + Pr(E4-Err2)

≤ 12(λ̂ + 1) · q2

22kb
+

6(λ̂ + 1) · q2

22kb
=

18(λ̂ + 1) · q2

22kb
. (16)

Now return to the original inverter I. Assume that A is able to guess the bit
b with advantage ε′ in a perfect simulation model. In the model provided by I,
the advantage of A is at least

ε = ε′ − Pr(E4-Err) − Pr(C1-Err) ≥ ε′ − 18(λ̂ + 1) · q2

22kb
− qf

|Xf | ,

the subtracted terms bounding the probability that J fails, in which case I does
not necessarily provide a perfect simulation. To demonstrate that ε is at least
the success probability of I, note that the only situation where the interactions
between I and A depend on b is in step E6 when the underlying values y and
L coincide with y∗ and L∗. Namely, this is the only place where U0 is used in
a way distinguishable from U1. However, if I obtains y∗ in step E6, then by
construction I obtains it from w∗ = f−1(y∗); hence I wins.

One-Time Verifier-Based
Encrypted Key Exchange

Michel Abdalla1, Olivier Chevassut2, and David Pointcheval1

1 Dépt d’informatique, École normale supérieure, 75230 Paris Cedex 05, France
{Michel.Abdalla,David.Pointcheval}@ens.fr

http://www.di.ens.fr/users/{mabdalla,pointche}
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

OChevassut@lbl.gov

http://www.itg.lbl.gov/~chevassu

Abstract. “Grid” technology enables complex interactions among com-
putational and data resources; however, to be deployed in production
computing environments “Grid” needs to implement additional secu-
rity mechanisms. Recent compromises of user and server machines at
Grid sites have resulted in a need for secure password-authentication
key-exchange technologies. AuthA is an example of such a technology
considered for standardization by the IEEE P1363.2 working group. Un-
fortunately in its current form AuthA does not achieve the notion of
forward-secrecy in a provably-secure way nor does it allow a Grid user to
log into his account using an un-trusted computer. This paper addresses
this void by first proving that AuthA indeed achieves this goal, and then
by modifying it in such a way that it is secure against attacks using
captured user passwords or server data.

1 Introduction

Motivation. Next generation distributed infrastructures integrate the ongoing
work in Web Services (WS) with the state-of-the-art in distributed systems to en-
able seamless interaction among computational and data resources. “Grid” tech-
nology for example links computers, storage systems, and other devices through
common interfaces and infrastructure to create powerful distributed comput-
ing capabilities [9, 11]. In this model of distributed computing, researchers and
businesses not only plug into a global network of computer systems to access
information but also to access distributed processing power. In parallel with the
growth of Grid concepts and software in the scientific communities, commer-
cial interests have been developing Web Services (WS) for the next generation
business-to-business applications. Interest in both communities has grown to
combine the techniques and concepts of Grid computing with the functionality
of WS. This has led to the development of the Web Service Resource Framework
(WSRF) specification and other elements of the Open Grid Services Architec-
ture (OGSA) within several standard bodies such as the OASIS [19] and the
Global Grid Forum (GGF) [13].

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 47–64, 2005.
c© International Association for Cryptologic Research 2005

48 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Security is one of the major requirements of Grid computing. Any Grid de-
ployment must provide the security services of authentication, authorization,
and secure session establishment. These services are provided by the Grid secu-
rity infrastructure which was initially built upon the Transport Layer Security
(TLS) protocol [10] and with the migration towards Web Services is now being
built upon the WS-security primitives [9]. The current implementation of the
Grid security infrastructure is based on public-key certificates. Recent security
hacks of Grid sites due to the compromise of client and server machines, however,
have led to a trend where many Grid sites are changing their security policies.
The new policy prohibits long-term private keys from being stored on the Grid
user’s machines but requires that the keys are stored on servers in data centers
where their integrity can be better protected. Grid users will authenticate to
the data centers using a (one-time) human-memorable password and be issued
short-lived certificates. Human-memorable passwords are short strings (e.g, 4
decimal digits) chosen from a relatively small dictionary so that they can be
remembered easily.

The unique requirement of Grid provides security researchers with the oppor-
tunity to design and develop “provably-secure” cryptographic technologies that
will play an essential role in securing next generation distributed infrastruc-
tures. The most immediate cryptographic need is certainly a “provably-secure”
One-time Password-authentication and Key-eXchange technology (OPKeyX) for
two-party [8].

Contributions. This paper is the third tier in the treatment of Encrypted Key
Exchange (EKE), where the Diffie-Hellman key-exchange flows are encrypted
using a password, in the direct model of Bellare-Pointcheval-Rogaway [1]. The
first tier showed that under the computational Diffie-Hellman (CDH) assumption
the AuthA password-authenticated key-exchange protocol is secure in both the
random-oracle and ideal-cipher models [6]; the encryption primitive used is a
password-keyed symmetric cipher. The second tier provided a very ”elegant”
and compact proof showing that under the CDH assumption the AuthA protocol
is secure in the random-oracle model only [7]; the encryption primitive used is a
mask generation function. In the present paper, we propose a slightly different
variant of AuthA, where both flows are encrypted using separate mask generation
functions, similarly to [18]. This Two-Mask Encrypted Key Exchange (EKE– both
flows are encrypted) was not created for the sake of having one more variant,
but simply because it allows us to provide the first complete proof of forward-
secrecy for AuthA. The forward-secrecy of AuthA was indeed explicitly stated as
an open problem in [2, 18]. Our result shows that under the Gap Diffie-Hellman
assumption [20] this variant of AuthA is forward-secure in the random-oracle
model. This is a significant achievement over other works which we hope will
leverage our work to obtain tighter and more meaningful security measurements
for the forward-secrecy of their EKE-like protocols.

We have furthermore augmented the Two-Mask protocol with two crypto-
graphic mechanisms to reduce the risk of corruption of the server and the client.
Corruption of a server occurs when an attacker gains access to the server’s local

One-Time Verifier-Based Encrypted Key Exchange 49

database of passwords. If client’s passwords are stored directly in the database,
then the attacker can immediately use any of these passwords to impersonate
these clients. Fortunately, there is a means to prevent an attacker from doing just
that: verifier-based password-authentication. Of course, this mechanism will not
prevent an adversary from mounting (off-line) dictionary attacks but it will slow
him or her down and thus give the server’s administrator time to react appro-
priately and to inform its clients. Corruption of a client occurs when a client is
using an un-trusted machine which happens frequently these days as hackers run
password sniffers on the Internet. There is a means to prevent a client’s password
from being captured: one-time password-based authentication. Passwords sniffed
by hackers are of no use since users’ passwords change from one session to the
other. The end result is a “provably-secure” One-time Password-authentication
and Key-eXchange (OPKeyX) technology for Grid computing.

The remainder of the paper is organized as follows. We first present the
related work. In Section 2, we define the formal security model which we use
through the rest of the paper. In Section 3, we present the computational as-
sumptions upon which the security of Two-Mask and, thus, our OPKeyX tech-
nology are based upon. In Section 4, we describe the Two-Mask protocol itself
and prove that the latter is forward-secure via a reduction from the Two-Mask
protocol to the Gap Diffie-Hellman problem. In Section 5, we augment the Two-
Mask protocol to reduce the risk of stolen server databases and captured client
passwords to construct a technology for OPKeyX.

Related Work. The seminal work in this area is the Encrypted Key Exchange
(EKE) protocol proposed by Bellovin and Merritt in [3, 4]. EKE is a classical
Diffie-Hellman key exchange wherein either or both flows are encrypted using
the password as a common symmetric key. The encryption primitive can be in-
stantiated via either a password-keyed symmetric cipher or a mask generation
function computed as the product of the message with the hash of a password.
Bellare et al. sketched a security proof for the flows at the core of the EKE proto-
col in [1], and specified a EKE-structure (called the AuthA protocol) in [2]. Boyko
et al. proposed very similar EKE-structures (called the PAK suite) and proved
them secure in Shoup’s simulation model [5, 18]. The PPK protocol in the PAK
suite is similar to our Two-Mask Encrypted Key Exchange protocol; however,
arguments in favor of forward-secrecy under the computational Diffie-Hellman
(CDH) assumption do not give many guarantees on its use in practice [18]. The
KOY protocol [16] is also proved to be forward-secure but it is not efficient
enough to be used in practice.

The PAK suite is in the process of being standardization by the IEEE P1363.2
Standard working group [15]. Server machines store images of the password un-
der a one-way function instead of a plaintext password when the “augmented”
versions of the PAK suite are used. ”Augmented” EKE-like protocols indeed
limit the damage due to the corruption of a server machine, but do not pro-
tect against attacks replaying captured users’ passwords. On the other hand,
One-Time Password (OTP) systems protect against the latter kind of attacks
but provide neither privacy of transmitted data nor protection against active

50 Michel Abdalla, Olivier Chevassut, and David Pointcheval

attacks such as session hijacking [14]. The present paper designs and develops
a cryptographic protocol for one-time “augmented” password-authenticated key
exchange.

2 Password-Based Authenticated Key Exchange

In this section, we recall the security model of Bellare et al. [1] for password-
based authenticated key exchange protocol.

2.1 Overview

A password-based authenticated key exchange protocol P is a protocol between
two parties, a client A ∈ client and a server S ∈ server. Each participant in a
protocol may have several instances, called oracles, involved in distinct, possibly
concurrent, executions of P . We let U i denote the instance i of a participant U ,
which is either a client or a server.

Each client A ∈ client holds a password pwA. Each server S ∈ server holds a
vector pwS = 〈pwS [A]〉A∈client with an entry for each client, where pwS [A] is the
derived-password defined in [1]. In the symmetric model, pwS [C] = pwC , but
they may be different in general, as in our verifier-based scheme. pwC and pwS

are also referred to as the long-lived keys of client C and server S. Each password
pwA is considered to be a low-entropy string, drawn from the dictionary Password
according to the distribution PW. As in [7], we let PW(q) denote the probability
to be in the most probable set of q passwords:

PW(q) = max
P⊆Password

{
Pr

pw∈PW
[pw ∈ P |#P ≤ q]

}
.

Note that, if we denote by UN the uniform distribution among N passwords,
then UN (q) = q/N .

2.2 The Security Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [1, 7].) The types of oracles available to the ad-
versary are as follows:

– Execute(Ai, Sj): The output of this query consists of the messages exchanged
during the honest execution of the protocol.

– Reveal(U i): This query is only available to A if the attacked instance actually
“holds” a session key and it releases the latter to A.

– Send(U i, m): The output of this query is the message that the instance U i

would generate upon receipt of message m. A query Send(Ai, Start) initial-
izes the key exchange protocol, and thus the adversary receives the initial
flow that client instance Ai would send to the server S.

One-Time Verifier-Based Encrypted Key Exchange 51

2.3 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A.
In this game, we first draw a password pw from Password according to the dis-
tribution PW, provide coin tosses and oracles to A, and then run the adversary,
letting it ask any number of queries as described above, in any order.

AKE Security. In order to model the privacy (semantic security) of the session
key, we consider a new game Gameake(A, P), in which an additional oracle is
available to the adversary: the Test(U i) oracle.

– Test(U i): This query tries to capture the adversary’s ability to tell apart a
real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U i (i.e., the value that a query Reveal(U i) would output) if b = 1 or
a random key of the same size if b = 0.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U i is Fresh (which roughly means that
the session key is not “obviously” known to the adversary). When playing this
game, the goal of the adversary is to guess the hidden bit b involved in the Test-
query, by outputting a guess b′. Let Succ denote the event in which the adversary
is successful and correctly guesses the value of b. The AKE advantage of an
adversary A is then defined as Advake

P (A) = 2 Pr[Succ]−1. The protocol P is said
to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary A
running with time t. Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of the probabilities.

Forward-Secrecy. One additional security property to consider is that of for-
ward secrecy. A key exchange protocol is said to be forward-secure if the security
of a session key between two participants is preserved even if one of these par-
ticipants is later compromised. In order to consider forward secrecy, one has to
account for a new type of query, the Corrupt-query, which models the compromise
of a participant by the adversary. This query is defined as follows:

– Corrupt(U): This query returns to the adversary the long-lived key pwU for
participant U . As in [1], we assume the weak corruption model in which the
internal states of all instances of that user are not returned to the adversary.

In order to define the success probability in the presence of this new type of
query, one should extend the notion of freshness so as not to consider those
cases in which the adversary can trivially break the security of the scheme. In
this new setting, we say that a session key sk is FS-Fresh if all of the following
hold: (1) the instance holding sk has accepted, (2) no Corrupt-query has been
asked since the beginning of the experiment; and (3) no Reveal-query has been
asked to the instance holding sk or to its partner (defined according to the

52 Michel Abdalla, Olivier Chevassut, and David Pointcheval

session identification). In other words, the adversary can only ask Test-queries
to instances which had accepted before the Corrupt query is asked.

Let Succ denote the event in which the adversary successfully guesses the
hidden bit b used by Test oracle. The FS-AKE advantage of an adversary A
is then defined as Advake−fs

P (A) = 2 Pr[Succ] − 1. The protocol P is said to be
(t, ε)-FS-AKE-secure if A’s advantage is smaller than ε for any adversary A
running with time t.

Verifier-Based and One-Time-Password Protocols. In order to mitigate
the amount of damage that can be caused by corruptions in the server and in
the client, we consider two extensions to the standard notion of EKE protocols
which we call Verifier-Based and One-Time-Password protocols.

In a Verifier-Based protocol, the goal is to keep the attacker capable of cor-
rupting the server from obtaining the password for all the clients in the system.
To achieve this goal, we need to adopt the asymmetric model in which the server
no longer knows the password of a user, but only a function of it, which we call
the verifier. In other words, only the client should know its password in a verifier-
based protocol. Even though off-line dictionary attacks cannot be avoided in this
case, the main idea of such protocols is to force an adversary who breaks into
a server to have to perform an off-line dictionary attack for each password that
it wants to crack based on its verifier. Therefore, the security of verifier-based
protocols is directly related to the difficulty of recovering the original password
from the verifier. In a One-Time-Password protocol, on the other hand, the goal
is to limit the damage caused by an attacker who breaks into a client’s machine
or sniffs the password. This is achieved by forcing the user to use a different
password in each session. That is, passwords are good for one session only and
cannot be reused.

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = 〈g〉 of order a �-bit prime number
q, where the operation is denoted multiplicatively. We also denote by G� the
subset G\{1} of the generators of G.

A (t, ε)-CDHg,G attacker, in a finite cyclic group G of prime order q with
g as a generator, is a probabilistic machine Δ running in time t such that its
success probability Succcdh

g,G(Δ), given random elements gx and gy to output gxy,
is greater than ε:

Succcdh
g,G(Δ) = Pr[Δ(gx, gy) = gxy] ≥ ε.

We denote by Succcdh
g,G(t) the maximal success probability over every adversaries

running within time t. The CDH-Assumption states that Succcdh
g,G(t) ≤ ε for any

t/ε not too large.
A (t, n, ε)-GDHg,G attacker is a (t, ε)-CDHg,G attacker, with access to an

additional oracle: a DDH-oracle, which on any input (gx, gy, gz) answers whether
z = xy mod q. Its number of queries is limited to n. As usual, we denote by

One-Time Verifier-Based Encrypted Key Exchange 53

Client Server

pw ∈ Password, PWas = G(A‖S‖pw), PWsa = G(S‖A‖pw) ∈ G

accept ← false accept ← false

x
R← Zq y

R← Zq

X ← gx Y ← gy

X� ← X × PWas A, X�

−−−−−−−−→ X ← X�/PWas

Y ← Y �/PWsa S, Y �

←−−−−−−−− Y � ← Y × PWsa

sk = H(A‖S‖X�‖Y �‖pw‖Y x) sk = H(A‖S‖X�‖Y �‖pw‖Xy)

accept ← true accept ← true

Fig. 1. An execution of the EKE protocol.

Succgdh
g,G(t) the maximal success probability over every adversaries running within

time t. The GDH-Assumption states that Succgdh
g,G(t) ≤ ε for any t/ε not too large.

4 The EKE Protocol: Encrypted Key Exchange

4.1 Description of the Scheme

A hash function from {0, 1}� to {0, 1}� is denoted H. While G denotes a full-
domain hash function from {0, 1}� into G. As illustrated on Figure 1 (with an
honest execution of the EKE protocol), the protocol runs between two parties
A and S, and the session-key space SK associated to this protocol is {0, 1}�

equipped with a uniform distribution. It works as follows. The client chooses at
random a private random exponent x and computes its Diffie-Hellman public
value gx. The client encrypts the latter value using a password-based mask, as
the product of a Diffie-Hellman value with a full-domain hash of the password,
and sends it to the server. The server in turn chooses at random a private random
exponent y and computes its Diffie-Hellman public value gy which it encrypts
using another password-based mask1. The client (resp. server) then decrypts the
flow it has received and computes the session key.

4.2 Security Result

In this section, we assert that under the intractability of the Diffie-Hellman prob-
lem, the EKE protocol, securely distributes session keys: the key is semantically
secure. The proof, which is an improvement of [7], can be found in the full version
of this paper.
1 This differs from the classical EKE protocol, which uses a common mask [7]. But

this helps to improve the security result.

54 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Theorem 1 (AKE Security). Let us consider the above EKE protocol, over
a group of prime order q, where Password is a dictionary equipped with the dis-
tribution PW. Let A be an adversary against the AKE security within a time
bound t, with less than qs active interactions with the parties (Send-queries) and
qp passive eavesdroppings (Execute-queries), and, asking qg and qh hash queries
to G and H respectively. Then we have

Advake
eke(A) ≤ 2 × PW(qs) + 4q2

h × Succcdh
g,G(t + 5τe) +

(qp + qs)2 + 3(qg + qh)2

2q
,

where τe denotes the computational time for an exponentiation in G.

Let us now enhance the result to cover forward-secrecy. The proof will be
different from previous proofs for EKE-like protocols since the simulation still
must be independent of any password (so that we can say that the adversary
has a minute of chance to guess the correct one), while after a corruption the
adversary will be able to check the consistency. To reach this aim, we will need to
rely on a stronger assumption: the Gap Diffie-Hellman problem. The Decisional
Diffie-Hellman oracle will be used to identify the public random oracle H to the
private one H′ when the input is a valid Diffie-Hellman value.

Theorem 2 (FS-AKE Security). Let us consider the above EKE protocol,
over a group of prime order q, where Password is a dictionary equipped with the
distribution PW. Let A be an adversary against the FS-AKE security within
a time bound t, with less than qs active interactions with the parties (Send-
queries) and qp passive eavesdroppings (Execute-queries), and, asking qg and qh

hash queries to G and H respectively. Then we have

Advake−fs
eke (A) ≤ 2×PW(qs)+4×Succgdh

g,G(qh, t+5τe)+
(qp + qs)2 + 3(qg + qh)2

2q
,

where τe denotes the computational time for an exponentiation in G.

Proof. As usual, we incrementally define a sequence of games starting at the
real game G0 and ending up at G5. We are interested in the event S, which
occurs if the adversary correctly guesses the bit b involved in the Test-query.
Let us remember that in this attack game, the adversary is provided with the
Corrupt-query.

Game G0: This is the real protocol, in the random-oracle model. By definition
of event S0, which means that the adversary correctly guesses the bit b involved
in the Test-query, we have

Advake−fs
eke (A) = 2 Pr[S0] − 1.

Game G2: In this game, we simulate the hash oracles (G and H, but also an
additional hash function H′ : {0, 1}� → {0, 1}� that will appear in the Game G3)
as usual by maintaining hash lists ΛG , ΛH and ΛH′ (see Figure 2). Except that

One-Time Verifier-Based Encrypted Key Exchange 55
G

a
n
d
H

o
ra

cl
es

For a hash-query G(q) such that a record (q, r, �) appears in ΛG , the answer is
r. Otherwise the answer r is defined according to the following rule:

�Rule G(1)

Choose a random element r ∈ G. The record (q, r,⊥) is
added to ΛG .

Note: the third component of the elements of this list will be explained later.
For a hash-query H(q) such that a record (q, r) appears in ΛH, the answer is r.
Otherwise, q is parsed as (A‖S‖X�‖Y �‖pw‖K), one first asks for G(A‖S‖pw)
and G(S‖A‖pw), using the above simulation, then the answer r is defined
according to the following rule:

�Rule H(1)

Choose a random element r ∈ {0, 1}�.

One adds the record (q, r) to ΛH.
For a hash-query H′(q), such that a record (q, r) appears in ΛH′ , the answer
is r. Otherwise, one chooses a random element r ∈ {0, 1}�, answers with it,
and adds the record (q, r) to ΛH′ .

Fig. 2. Simulation of the EKE protocol (random oracles)

we query G(A‖S‖pw) and G(S‖A‖pw) as soon as A, S and pw appear in a
H-query. This just increases the number of G queries. We also simulate all the
instances, as the real players would do, for the Send-queries and for the Execute,
Reveal, Test and Corrupt-queries (see Figure 3).

From this simulation, we easily see that the game is perfectly indistinguish-
able from the real attack.

Game G2: First, we cancel games in which some collisions appear:

– collisions on the transcripts ((A, X�), (S, Y �));
– collisions on the output of G.

Pr[Coll2] ≤ (qp + qs)2

2q
+

(qg + qh)2

2q
.

Game G3: In this game, we do not compute the session key sk using the oracle
H, but using the private oracle H′ so that the value sk is completely independent
not only from H, but also from pw and thus from both KA and KS . We reach
this aim by using the following rule:

�Rule A3/S3(3)

Compute the session key skA/S = H′(A‖S‖X�‖Y �).

Since we do no longer need to compute the values KA and KS, we can also
simplify the second rules:

�Rule A2/S2(3)

Do nothing.

56 Michel Abdalla, Olivier Chevassut, and David Pointcheval
S
en

d
-q

u
er

ie
s

to
A

We answer to the Send-queries to an A-instance as follows:

– A Send(Ai, Start)-query is processed according to the following rule:
�Rule A1(1)

Choose a random exponent θ ∈ Zq, compute X = gθ and
X� = X × PWas.

Then the query is answered with (A, X�), and the instance goes to an
expecting state.

– If the instance Ai is in an expecting state, a query Send(Ai, (S, Y �)) is
processed by computing the session key. We apply the following rules:

�Rule A2(1)

Compute Y = Y �/PWsa and KA = Y θ.

�Rule A3(1)

Compute the session key skA = H(A‖S‖X�‖Y �‖pw‖KA).

Finally the instance accepts.

S
en

d
-q

u
er

ie
s

to
S

We answer to the Send-queries to a S-instance as follows:

– A Send(Sj , (A, X�))-query is processed according to the following rules:
�Rule S1(1)

Choose a random exponent ϕ ∈ Zq, compute Y = gϕ and
Y � = Y × PWsa.

Then the query is answered with (S, Y �), and the instance applies the
following rules.

�Rule S2(1)

Compute X = X�/PWas and KS = Xϕ.

�Rule S3(1)

Compute the session key skS = H(A‖S‖X�‖Y �‖pw‖KS).

Finally, the instance accepts.

O
th

er
q
u
er

ie
s An Execute(Ai, Sj)-query is processed using successively the above simu-

lations of the Send-queries: (A, X�) ← Send(Ai, Start) and (S, Y �) ←
Send(Sj , (A, X�)), and outputting the transcript ((A,X�), (S, Y �)).
A Reveal(U)-query returns the session key (skA or skS) computed by the
instance I (if the latter has accepted).
A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we
return the value of the session key sk, otherwise we return a random value
drawn from {0, 1}�.
A Corrupt(U)-query returns password pw of the user U .

Fig. 3. Simulation of the EKE protocol (Send, Reveal, Execute, Test and Corrupt
queries)

The games G3 and G2 are indistinguishable unless A queries the hash function
H on either A‖S‖X�‖Y �‖pw‖KA or A‖S‖X�‖Y �‖pw‖KS, for some execution
transcript ((A, X�), (S, Y �)). We hope to prove that for all the transcripts of
accepted sessions, the probability of such an event is negligible. However, there
is no hope for proving it about sessions accepted after the corruption of the

One-Time Verifier-Based Encrypted Key Exchange 57

password, since the adversary may know the x and thus KA (or y and KS). One
should note that sessions accepted after the corruption may have been started
before. There is no way in our simulation to anticipate different answers for the
Send-queries according to that. Therefore, we have to make answers from H and
H′ (when they correspond to the same query, which can be checked with the
DDH-oracle) to be the same for sessions accepted after the corruption of the
password:

�Rule H(3)

– Before the corruption, randomly choose r ∈ {0, 1}�.
– After the corruption, knowing the correct password, if

• pw is the correct password;
• A, S, X�, Y � corresponds to the session ID of a session ac-

cepted after the corruption;
• K = CDHg,G(X�/PWas, Y �/PWsa) (checked using the DDH-

oracle);
then r is set to H′(A‖S‖X�‖Y �).
Else, choose a random element r ∈ {0, 1}�.

This new rule for the simulation of H just replaces some random values by other
random values. The games G3 and G2 are now indistinguishable unless A queried
the hash function H on either A‖S‖X�‖Y �‖pw‖KA or A‖S‖X�‖Y �‖pw‖KS, for
some accepted-session transcript ((A, X�), (S, Y �)), before corrupting the pass-
word: event AskHbC. This means that, for some transcript ((A, X�), (S, Y �)),
the tuple (A, S, X�, Y �, pw , CDHg,G(X�/PWas, Y �/PWsa)) lies in the list ΛH.

On the other hand, the session key (associated to a session accepted before the
corruption) is computed with a random oracle that is private to the simulator,
then one can remark that it cannot be distinguished by the adversary unless
the same transcript ((A, X�), (S, Y �)) appeared in another session, for which
a Reveal-query has been asked (which event has been excluded in the previous
game). The adversary correctly guesses the bit b involved in the Test-query (event
S3) only by chance: Pr[S3] = 1/2.

Actually, one does not need the Diffie-Hellman values KA or KS for comput-
ing sk, but the password: we can formally simplify again some rules but thus
without modifying anything w.r.t. the probabilities:

�Rule A1(3)

Choose a random element x ∈ Zq and compute X� = gx.

�Rule S1(3)

Choose a random element y ∈ Zq and compute Y � = gy.

Game G4: In order to evaluate the probability of event AskHbC, let us modify
the simulation of the oracle G, with two random elements P, Q ∈ G\{1} (which
are thus generators of G, since the latter has a prime order q). The simulation
introduces values in the third component of the elements of ΛG , but does not use
it. It would let the probabilities unchanged, but we exclude the cases PWas = 1
or PWsa = 1:

58 Michel Abdalla, Olivier Chevassut, and David Pointcheval

�Rule G(4)

– If q = “A‖S‖�′′, randomly choose k ∈ Z�
q , and compute r = P−k;

– If q = “S‖A‖�′′, randomly choose k ∈ Z�
q , and compute r = Q−k;

– Else, choose a random element r ∈ G, and set k = ⊥.

The record (q, r, k) is added to ΛG .

Since we just exclude k = 0, we have:

|Pr[AskHbC4] − Pr[AskHbC3] | ≤ qg + qh

q
.

Game G5: It is now possible to evaluate the probability of the event AskHbC.
Indeed, one can remark that the password is never used during the simula-
tion, before the corruption. It thus does not need to be chosen in advance,
but at the time of the corruption (or at the very end only). At that time, one
can check whether the event AskHbC happened or not. To make this evalu-
ation easier, we cancel the games wherein for some pair (X�, Y �) ∈ G2, in-
volved in a communication, there are two passwords pw such that the tuple
(A, S, X�, Y �, pw , CDHg,G(X�/PWas, Y �/PWsa)) is in ΛH (which event is de-
noted CollH5). Hopefully, event CollH5 can be upper-bounded, granted the fol-
lowing Lemma:

Lemma 1. For any pair (X�, Y �) involved in a communication, there is at most
one password pw such that (A, S, X�, Y �, pw , CDHg,G(X�/PWas, Y �/PWsa)) is in
ΛH, unless one can solve the Diffie-Hellman problem:

Pr[CollH5] ≤ Succgdh
g,G(qh, t + 5τe).

Proof. Assume there exist (X� = gx, Y � = gy) ∈ G2 involved in a commu-
nication, PWas

0 = P−k0 �= 1, PWsa
0 = Q−k′

0 �= 1, and PWas
1 = P−k1 �= 1,

PWsa
1 = Q−k′

1 �= 1 such that the two following tuples (for i = 0, 1) are in ΛH:

(A, S, X�, Y �, pw i, Zi = CDHg,G(X�/PWas
i , Y �/PWsa

i)).

Then, Zi = CDHg,G(X�×P ki , Y �×Qk′
i). Since (X�, Y �) ∈ G2 has been involved

in a communication (either from Send-queries or an Execute-query), one of X� =
gx or Y � = gy, has been simulated: at least one of x or y is known. Without loss
of generality, we can assume we know x:

Zi = (Y � × Qk′
i)x × CDHg,G(Y �, P)ki × CDHg,G(P, Q)kik

′
i

Zk0
1 /Zk1

0 =
(
Y �k0−k1 × PWsa

0
k1/PWsa

1
k0
)x

× CDHg,G(P, Q)k0k1(k
′
1−k′

0)

CDHg,G(P, Q) =
(
((PWsa

1 /Y �)xZ1)
k0 / ((PWsa

0 /Y �)xZ0)
k1
)u

,

where u is the inverse of k0k1(k′
1−k′

0) in Zq. The latter exists since PWas
0 , PWsa

0 ,
PWas

1 , PWsa
1 �= 1, and they are all distinct from each other (we have excluded

collisions for G). Since we have access to a DDH-oracle, one can find the two
useful H-queries. ��

One-Time Verifier-Based Encrypted Key Exchange 59

For a more convenient analysis, we can split the event AskHbC in two disjoint
sub-cases:

1. AskHbC-Passive, where the transcript ((A, X�), (S, Y �)) involved in the cru-
cial H-query comes as an answer from an Execute-query;

2. AskHbC-Active, the other cases.

About the active case (the event AskHbC-Active5), the above Lemma 1 ap-
plied to games where the event CollH5 did not happen states that for each pair
(X�, Y �) involved in an active transcript, there is at most one pw such that the
corresponding tuple is in ΛH:

Pr[AskHbC-Active5] ≤ PW(qs).

Moreover, in the particular case of passive transcripts, one can state a stronger
result:

Lemma 2. For any pair (X�, Y �) ∈ G2, involved in a passive transcript, there
is no password pw such that (A, S, X�, Y �, pw , CDHg,G(X�/PWas, Y �/PWsa)) is
in ΛH, unless one can solve the Diffie-Hellman problem:

Pr[AskHbC-Passive5] ≤ Succgdh
g,G(qh, t + 4τe).

Proof. Assume there exist (X� = gx, Y � = gy) ∈ G2 involved in a passive
transcript, and values PWas = P−k �= 1, PWsa = Q−k′ �= 1 such that the tuple

(A, S, X�, Y �, pw , Z = CDHg,G(X�/PWas, Y �/PWsa))

is in ΛH. Then, as above (but with x and y known),

CDHg,G(P, Q) =
(
Z × PWsax × PWasy/gxy

)u
,

where u is the inverse of kk′ in Zq. By using the DDH-oracle, one easily gets the
crucial H-query. ��

As a conclusion,

Pr[AskHbC5] ≤ Succgdh
g,G(qh, t + 4τe) + PW(qs).

Combining all the above equations, one gets

Advake−fs
eke (A) ≤ 2 ×

⎛⎝PW(qs) + Succgdh
g,G(qh, t + 4τe) + Succgdh

g,G(qh, t + 5τe)

+
qg + qh

q
+

(qg + qh)2

2q
+

(qp + qs)2

2q

⎞⎠ .

��

60 Michel Abdalla, Olivier Chevassut, and David Pointcheval

5 The OPKeyX Protocol

The basic EKE protocol withstands password corruption, by providing forward-
secrecy. But this just protects the secrecy of session keys established before the
corruption. Nothing is guaranteed for future sessions. We can even show that one
easily breaks the semantic security of their session keys, by simply impersonating
one of the parties with the knowledge of the password.

In the above protocol, the password can be extracted from both machines:
the server and the client. And moreover, the server stores many passwords (since
its is aimed at establishing sessions with many clients), then the corruption of
the server does not just leak one password, but a huge number of them. This
would be quite useful to be able to reduce the damages of such a corruption. We
propose below two different ways to achieve this task.

5.1 Stealing the Server Database

In a verifier-based protocol, the client owns a password, but the server just knows
a verifier of the latter (which is actually a hash value, or the image by a one-
way function), not the password itself. Hence, the corruption of the server just
reveals this verifier. Of course, an off-line dictionary attack thereafter leads to
the password. Such an exhaustive search cannot be prevented but should be the
most efficient one: by including salts (sent back to the client by the server in the
first flow) would reduce even more the impact of the corruption, since a specific
dictionary attack should be performed towards each specific user, and could not
be generic.

A verifier-based enhancement of EKE is proposed on Figure 4. It is basically
the previous EKE scheme using first the verifier as common password. Then,
the client furthermore proves his knowledge of the password which matches the
password-verifier relation. In our proposal, the relation is the pairs (x, gx), and
thus the proof is a Schnorr-like proof of knowledge of a discrete logarithm [21],
with a multi-collision resistant function f [12]. To prevent dictionary attacks, we
introduce the Diffie-Hellman secret in the hash input to get the challenge e, so
that the latter can be computed by the two parties only: it is semantically secure
for external adversaries for exactly the same reasons the session key is. Because of
this semantic security, dictionary attacks are still prevented, since the additional
proof of knowledge does not reveal any information: the verification relation
is actually secret, because of the secrecy of e. As a consequence, the private
property of e makes that the proof does not leak any information about both
the password and the verifier to external parties. The zero-knowledge property of
this proof makes that even the server does not learn any additional information
about the password.

To improve efficiency, we also swapped the flows, so that the protocol remains
a 2-pass one. Indeed, the client has to be the last, since it has to send its proof of
knowledge of the password. By swapping the two flows of the basic EKE protocol,
the latter proof of knowledge can be concatenated to the last flow, which does
not increase the communication cost.

One-Time Verifier-Based Encrypted Key Exchange 61

Client Server

pw ∈ Zq pw = gpw

PWas = G(A‖S‖pw), PWsa = G(S‖A‖pw) ∈ G

accept ← false accept ← false

x
R← Zq, X ← gx y

R← Zq, Y ← gy

Y ← Y �/PWsa S, Y �

←−−−−−−−− Y � ← Y × PWsa

X� ← X × PWas

r
R← Zq, R ← gr, ρ = f(R)

e = H1(A‖S‖X�‖Y �‖ρ‖pw‖Y x)

s = r − e · pw mod q
A,X�, ρ, s−−−−−−−−→ X ← X�/PWas

e = H1(A‖S‖X�‖Y �‖ρ‖pw‖Y x)
if ρ = f(gspwe),

then accept ← true

sk = H(A‖S‖X�‖Y �‖ρ‖pw‖Y x) sk = H(A‖S‖X�‖Y �‖ρ‖pw‖Xy)

accept ← true

Fig. 4. An execution of the VB-EKE protocol.

From a more practical point of view, this inversion better suits the Transport
Layer Security (TLS) protocol [22]. The flows of the VB-EKE protocol thus have
to comply with the key-exchange phase, which happens right after the hello flows
(the first is from the client to the server, then the second goes back from the
server to the client) and precedes the finish phase (the first finish message is
again from the client to the server). In short, the first message of the VB-EKE
protocol would simply map to the ServerKeyExchange flows while the second
message to the ClientKeyExchange message.

5.2 Capturing the Client Password

The above modified scheme does not really increase the communication cost,
since additional data can be concatenated to existing flows. But both parties
have more computation to do, and namely a few exponentiations. The password-
verifier relation can be more efficient, using any one-way function. However, for
such a general function, a zero-knowledge proof of knowledge of the password
may not be easy to perform. But the zero-knowledge property is not required,
if we move to the one-time password scenario: f(pw) is first used as a common
password, then the client eventually reveals the password, which will thereafter
be the future common data (or verifier) if pw = fn(seed) [17]. The computa-
tion of fn(pw) is performed by a one-time password generator which derives

62 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Client Server

pw ∈ Password, n, pwn = fn(pw) n, pw = f(pwn)
PWas = G(A‖S‖pw), PWsa = G(S‖A‖pw) ∈ G

accept ← false accept ← false

x
R← Zq, X ← gx y

R← Zq, Y ← gy

n correct?
S, Y �, n←−−−−−−−− Y � ← Y × PWsa

Y ← Y �/PWsa

X� ← X × PWas

s = H1(A‖S‖X�‖Y �‖pw‖Y x)

c = Es(pwn)
A, X�, c−−−−−−−−→ X ← X�/PWas

s = H1(A‖S‖X�‖Y �‖pw‖Y x)
p = Ds(c), if pw = f(p),
then pw ← p, n ← n − 1,

accept ← true

sk = H(A‖S‖X�‖Y �‖pw‖Y x) sk = H(A‖S‖X�‖Y �‖pw‖Xy)

accept ← true

Fig. 5. An execution of the OPKeyX protocol.

successive passwords from a seed. Since one-time password generators do not
require reader devices they are much more adapted for the Grid environment
than contact tokens (e.g, smart-card, USB tokens). This discussion leads to the
One-time Password-enhanced version of VB-EKE which is proposed on Figure 5.
The communication of the password has indeed to be sent in a private way, since
it will become the future common data, hence the use of an ephemeral session
key, which is trivially semantically secure (due to Theorem 2).

6 Conclusion

This paper provides strong security arguments to support the EKE-like protocols
being standardized by the IEEE P1363.2 Standard working group (namely the
PPK series). We have reached this aim by slightly modifying the original AuthA
protocol (the two encryption primitives are instantiated using separate mask
generation functions but derived from a unique shared password) to be able
to achieve the security notion of forward-secrecy in a provably-secure way. Our
result is a slight departure from previously known results on EKE-like structures
since the security of AuthA is now based on the Gap Diffie-Hellman problem.
Moreover, we have extended AuthA into a One-time Password-authentication
and Key eXchange (OPKeyX) technology which allows a user to securely log
into his account using a remote un-trusted computer and limits the damages of
corruption of the server.

One-Time Verifier-Based Encrypted Key Exchange 63

Acknowledgments

The authors would like to thanks Frank Siebenlist for invaluable discussions re-
lated to Grid computing. The first and third authors have been supported in part
by the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. The second author was supported by the Director, Office
of Science, Office of Advanced Scientific Computing Research, Mathematical In-
formation and Computing Sciences Division, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098. This document is report LBNL-56212.
Disclaimer available at http://www-library.lbl.gov/disclaimer.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Se-
cure Against Dictionary Attacks. In Eurocrypt ’00, LNCS 1807, pages 139–155.
Springer-Verlag, Berlin, 2000.

2. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenti-
cated Key Exchange. Contributions to IEEE P1363. March 2000.

3. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72–84. IEEE, 1992.

4. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In Proc. of the 1st CCS, pages 244–250. ACM Press, New York, 1993.

5. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman. In Eurocrypt ’00, LNCS 1807, pages 156–171.
Springer-Verlag, Berlin, 2000.

6. E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient
password-based key exchange. In Proc. of the 10th CCS, pages 241–250. ACM
Press, New York, 2003.

7. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted
Key Exchange. In PKC ’04, LNCS, pages 145–159. Springer-Verlag, Berlin, 2004.

8. L. Fang, S. Meder, O. Chevassut, and F. Siebenlist. Secure Password-based Au-
thenticated key Exchange for Web Services In Proc. of the ACM Workshop on
Secure Web Services, 2004.

9. I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2004.

10. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. Security Architecture for
Computational Grids. In Proc. of the 5th CCS, pages 83–92. ACM Press, New
York, 1998.

11. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International J. Supercomputer Applications, 15(3),
2001.

12. M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in
Identification Schemes. In Crypto ’94, LNCS 839, pages 202–215. Springer-Verlag,
Berlin, 1994.

13. The Global Grid Forum (GGF). http://www.ggf.org.
14. N. Haller, C. Metz, P. Nesser, and M. Straw. RFC 2289: A One-Time Password

System. Internet Activities Board, February 1998.

64 Michel Abdalla, Olivier Chevassut, and David Pointcheval

15. IEEE Standard 1363.2 Study Group. Password-Based Public-Key Cryptography.
http://grouper.ieee.org/groups/1363/passwdPK.

16. J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in password-only key ex-
change protocols. In SCN’02, LNCS 2576, pages 29–44. Springer-Verlag, Berlin,
2002.

17. L. Lamport. Password Authentication with Insecure Communication. Communi-
cations of the ACM 24, 11:770–771, November 1981.

18. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key ex-
change. Technical Report 2002-46, DIMACS, 2002.

19. The Oasis standard body. http://www.oasis-open.org.
20. T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for

the Security of Cryptographic Schemes. In PKC ’01, LNCS 1992. Springer-Verlag,
Berlin, 2001.

21. C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology, 4(3):161–174, 1991.

22. M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher
Suite for TLS. ACM Transactions on Information and System Security (TISSEC),
4(2):134–157, 2001.

Password-Based Authenticated Key Exchange
in the Three-Party Setting

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Departement d’Informatique
École normale supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,Pierre-Alain.Fouque,David.Pointcheval}@ens.fr

http://www.di.ens.fr/users/{mabdalla,fouque,pointche}

Abstract. Password-based authenticated key exchange are protocols
which are designed to be secure even when the secret key or password
shared between two users is drawn from a small set of values. Due to
the low entropy of passwords, such protocols are always subject to on-
line guessing attacks. In these attacks, the adversary may succeed with
non-negligible probability by guessing the password shared between two
users during its on-line attempt to impersonate one of these users. The
main goal of password-based authenticated key exchange protocols is
to restrict the adversary to this case only. In this paper, we consider
password-based authenticated key exchange in the three-party scenario,
in which the users trying to establish a secret do not share a password
between themselves but only with a trusted server. Towards our goal, we
recall some of the existing security notions for password-based authen-
ticated key exchange protocols and introduce new ones that are more
suitable to the case of generic constructions. We then present a natural
generic construction of a three-party protocol, based on any two-party
authenticated key exchange protocol, and prove its security without mak-
ing use of the Random Oracle model. To the best of our knowledge, the
new protocol is the first provably-secure password-based protocol in the
three-party setting.

Keywords: Password, authenticated key exchange, key distribution,
multi-party protocols.

1 Introduction

Motivation. A fundamental problem in cryptography is how to communicate
securely over an insecure channel, which might be controlled by an adversary.
It is common in this scenario for two parties to encrypt and authenticate their
messages in order to protect the privacy and authenticity of these messages. One
way of doing so is by using public-key encryption and signatures, but the cost as-
sociated with these primitives may be too high for certain applications. Another
way of addressing this problem is by means of a key exchange protocol, in which
users establish a common key which they can then use in their applications.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 65–84, 2005.
c© International Association for Cryptologic Research 2005

66 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

In practice, one finds several flavors of key exchange protocols, each with
its own benefits and drawbacks. Among the most popular ones is the 3-party
Kerberos authentication system [25]. Another one is the 2-party SIGMA pro-
tocol [17] used as the basis for the signature-based modes of the Internet Key
Exchange (IKE) protocol. Yet another flavor of key exchange protocols which
has received significant attention recently are those based on passwords.

Password-Based Key Exchange. Password-based key exchange protocols as-
sume a more realistic scenario in which secret keys are not uniformly distributed
over a large space, but rather chosen from a small set of possible values (a four-
digit pin, for example). They also seem more convenient since human-memorable
passwords are simpler to use than, for example, having additional cryptographic
devices capable of storing high-entropy secret keys. The vast majority of proto-
cols found in practice do not account, however, for such scenario and are often
subject to so-called dictionary attacks. Dictionary attacks are attacks in which
an adversary tries to break the security of a scheme by a brute-force method, in
which it tries all possible combinations of secret keys in a given small set of val-
ues (i.e., the dictionary). Even though these attacks are not very effective in the
case of high-entropy keys, they can be very damaging when the secret key is a
password since the attacker has a non-negligible chance of winning. Such attacks
are usually divided in two categories: off-line and online dictionary attacks.

To address this problem, several protocols have been designed to be secure
even when the secret key is a password. The goal of these protocols is to restrict
the adversary’s success to on-line guessing attacks only. In these attacks, the
adversary must be present and interact with the system in order to be able to
verify whether its guess is correct. The security in these systems usually relies
on a policy of invalidating or blocking the use of a password if a certain number
of failed attempts has occurred.

3-Party Password-Based Key Exchange. Passwords are mostly used be-
cause they are easier to remember by humans than secret keys with high entropy.
Consequently, users prefer to remember very few passwords but not many. How-
ever, in scenarios where a user wants to communicate with many other users, then
the number of passwords that he or she would need to remember would be linear
in the number of possible partners. In order to limit the number of passwords
that each user needs to remember, we consider in this paper password-based
authenticated key exchange in the 3-party model, where each user only shares
a password with a trusted server. The main advantage of this solution is that
it provides each user with the capability of communicating securely with other
users in the system while only requiring it to remember a single password. This
seems to be a more realistic scenario in practice than the one in which users
are expected to share multiple passwords, one for each party with which it may
communicate privately. Its main drawback is that the server is needed during the
establishment of all communication as in the Needham and Schroeder protocol.

Key Privacy. One potential disadvantage of a 3-party model is that the privacy
of the communication with respect to the server is not always guaranteed. Since

Password-Based Authenticated Key Exchange in the Three-Party Setting 67

we want to trust as little as possible the third party, we develop a new notion
called key privacy which roughly means that, even though the server’s help is
required to establish a session key between two users in the system, the server
should not be able to gain any information on the value of that session key. Here
we assume that the server is honest but curious. Please note that key distribution
schemes usually do not achieve this property.

Insider Attacks. One of the main differences between the 2-party and the
3-party scenarios is the existence of insider attacks. To better understand the
power of these attacks, consider the protocol in Figure 1, based on the encrypted
key exchange of Bellovin and Merritt[9], in which the server simply decrypts
the message it receives and re-encrypts it under the other user’s password. In
this protocol, it is easy to see that one can mount an off-line dictionary by
simply playing the role of one of the involved parties. Notice that both A and
B can obtain the necessary information to mount an off-line dictionary attack
against each other simply by eavesdropping on the messages that are sent out
by the server. More specifically, A and B can respectively learn the values X�

S =
EPWB (XS) and Y �

S = EPWA(YS) and mount a dictionary attack against each
other using the fact that XS = XA and YS = YB . Insider attacks do not need
be considered explicitly in the case of 2-party protocols due to the independence
among the passwords shared between pairs of honest users and those shared with
malicious users.

A New Security Model. In order to analyze the security of 3-party password-
based authenticated key exchange protocols, we put forward a new security
model and define two notions of security: semantic security of the session key and
key privacy with respect to the server. The first of these notions is the usual one
and is a straight-forward generalization of the equivalent notion in the 2-party

Public information: G, g, p, E ,D, H

Client A Server Client B
pwA ∈ Password pwA, pwB ∈ Password pwB ∈ Password

x
R← Zp ; XA ← gx y

R← Zp ; YB ← gy

X�
A ← EpwA

(XA) Y �
B ← EpwB

(YB)

X�
A−→ Y �

B←−
XS ← DpwA

(X�
A)

YS ← DpwB
(Y �

B)

Y �
S ← EpwA

(YS)

X�
S ← EpwB

(XS)

Y �
S←− X�

S−→
YA ← DpwA

(Y �
S) XB ← DpwB

(X�
S)

KA ← Y x
A KB ← Xy

B

SKA ← H(A ‖B ‖S ‖KA) SKB ← H(A ‖B ‖S ‖KB)

Fig. 1. An insecure 3-party password-based encrypted key exchange protocol.

68 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

password-based authenticated key exchange model. The second one is new and
particular to the new setting, and captures the privacy of the key with respect
to the trusted server to which all passwords are known.

A Generic Construction. In this paper, we consider a generic construction
of 3-party password-based protocol. Our construction is a natural one, building
upon existing 2-party password-based key exchange and 3-party symmetric key
distribution schemes, to achieve provable security in the strongest sense. More-
over, our construction is also modular in the sense that it can be broken into two
parts, a 3-party password-based key distribution protocol and 2-party authenti-
cated key exchange. The second part is only needed if key privacy with respect
to the server is required.

The Need for New Security Notions. Surprisingly, the proof of security for
the new scheme does not follow from the usual security notions for the underlying
schemes as one would expect and requires a new and stronger notion of security
for the underlying 2-party password-based scheme (see Section 2). In fact, this
new security notion is not specific to password-based schemes and is one of the
main contributions of this paper. Fortunately, we observe that most existing 2-
party password-based schemes do in fact satisfy this new property [11, 13, 16,
21]. More specifically, only a few small changes are required in their proof in
order to achieve security in the new model. The bounds obtained in their proof
remain essentially unchanged.

Contributions. In this paper, we consider password-based (implicitly) authen-
ticated key exchange in the 3-party model, where each user only shares a pass-
word with a trusted server.

New Security Models. Towards our goal, we put forth a new formal security
model that is appropriate for the 3-party password-based authenticated key ex-
change scenario and give precise definitions of what it means for it to be secure.
Our model builds upon those of Bellare and Rogaway [7, 8] for key distribution
schemes and that of Bellare, Pointcheval, and Rogaway [5] for password-based
authenticated key exchange.

New Security Notions. We also present a new and stronger model for 2-
party authenticated key exchange protocols, which we call the Real-Or-Random
model. Our new model is provably stronger than the existing model, to which we
refer to as the Find-Then-Guess model, in the sense that a scheme proven secure
in the new model is also secure in the existing model. However, the reverse is not
necessarily true due to an unavoidable non-constant factor loss in the reduction.
Such losses in the reduction are extremely important in the case of password-
based protocols.

A Generic Construction in the Standard Model. We present a generic
and natural framework for constructing a 3-party password-based authenticated
key exchange protocol from any secure 2-party password-based one. We do so by
combining a 3-party key distribution scheme, an authenticated Diffie-Hellman
key exchange protocol, and the 2-party password-based authenticated key ex-
change protocol. The proof of security relies solely on the security properties of

Password-Based Authenticated Key Exchange in the Three-Party Setting 69

underlying primitives it uses and does not assume the Random Oracle model [6].
Hence, when appropriately instantiated, this construction yields a secure proto-
col in the standard model.

A Separation Between Key Distribution and Key Exchange. In addi-
tion to semantic security of the session key, we present a new property, called key
privacy, which is specific to key exchange protocols. This new notion captures in
a quantitative way the idea that the session key shared between two instances
should be only known to these two instances and no one else, including the
trusted server.

Related Work. Password-based authenticated key exchange has been exten-
sively studied in the last few years [5, 10–15,18–20, 23, 26], with a portion of the
work dealing with the subject of group key exchange and the vast majority deal-
ing with different aspects of 2-party key exchange. Only a few of them (e.g., [12,
18, 26]) consider password-based protocols in the 3-party setting, but none of
their schemes enjoys provable security. In fact, our generic construction seems to
be the first provably-secure 3-party password-based authenticated key exchange
protocol.

Another related line of research is authenticated key exchange in the 3-party
setting. The first work in this area is the protocol of Needham and Schroeder [22],
which inspired the Kerberos distributed system. Later, Bellare and Rogaway
introduced a formal security model in this scenario along with a construction
of the first provably-secure symmetric-key-based key distribution scheme [8]. In
this paper, we consider the special but important case in which the secret keys
are drawn from a small set of values.

Organization. In Section 2, we recall the existing security model for 2-party
password-based authenticated key exchange and introduce a new one. Next,
in Section 3, we introduce new models for 3-party password-based authenti-
cated key exchange. Section 4 then presents our generic construction of a 3-party
password-based authenticated key exchange protocol, called GPAKE, along with
the security claims and suggestions on how to instantiate it. Some future exten-
sions of this work are presented in Section 5. In Appendix A, we describe the
cryptographic primitives and assumptions on which GPAKE is based. We con-
clude by presenting some results in Appendix B regarding the relation between
the existing security notions and the new ones being introduced in this paper.

2 Security Models
for 2-Party Password-Based Key Exchange

A secure 2-party password-based key exchange is a 2PAKE protocol where the
parties use their password in order to derive a common session key sk that will
be used to build secure channels. Loosely speaking, such protocols are said to be
secure against dictionary attacks if the advantage of an attacker in distinguishing
a real session key from a random key is less than O(n/|D|) + ε(k) where |D| is

70 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

the size of the dictionary D, n is the number of active sessions and ε(k) is a
negligible function depending on the security parameter k.

In this section, we recall the security model for 2-party password-based au-
thenticated key exchange protocols introduced by Bellare, Pointcheval, and Ro-
gaway (BPR) [5] and introduce a new one. For reasons that will soon become
apparent, we refer to the new model as the Real-Or-Random (ROR) model and
to the BPR model as the Find-Then-Guess (FTG) model, following the termi-
nology of Bellare et al. for symmetric encryption schemes [4].

2.1 Communication Model

Protocol Participants. Each participant in the 2-party password-based key
exchange is either a client C ∈ C or a server S ∈ S. The set of all users or
participants U is the union C ∪ S.

Long-Lived Keys. Each client C ∈ C holds a password pwC . Each server
S ∈ S holds a vector pwS = 〈pwS [C]〉C∈C with an entry for each client, where
pwS [C] is the transformed-password, as defined in [5]. In a symmetric model,
pwS [C] = pwC , but they may be different in some schemes. pwC and pwS are
also called the long-lived keys of client C and server S.

Protocol Execution. The interaction between an adversary A and the pro-
tocol participants occurs only via oracle queries, which model the adversary
capabilities in a real attack. During the execution, the adversary may create
several concurrent instances of a participant. These queries are as follows, where
U i denotes the instance i of a participant U :

– Execute(Ci, Sj): This query models passive attacks in which the attacker
eavesdrops on honest executions between a client instance Ci and a server
instance Sj . The output of this query consists of the messages that were
exchanged during the honest execution of the protocol.

– Send(U i, m): This query models an active attack, in which the adversary
may intercept a message and then either modify it, create a new one, or
simply forward it to the intended participant. The output of this query is
the message that the participant instance U i would generate upon receipt of
message m.

2.2 Security Definitions

Partnering. We use the notion of partnering based on session identifications
(sid), which says that two instances are partnered if they hold the same non-null
sid. In practice, the sid is taken to be the partial transcript of the conversation
between the client and the server instances before the acceptance.

Freshness. In order to properly formalize security notions for the session key,
one has to be careful to avoid cases in which adversary can trivially break the
security of the scheme. For example, an adversary who is trying to distinguish

Password-Based Authenticated Key Exchange in the Three-Party Setting 71

the session key of an instance U i from a random key can trivially do so if it
obtains the key for that instance through a Reveal query (see definition below) to
instance U i or its partner. Instead of explicitly defining a notion of freshness and
mandating the adversary to only perform tests on fresh instances as in previous
work, we opted to embed that notion inside the definition of the oracles.

Semantic Security in the Find-Then-Guess Model. This is the definition
currently being used in the literature. In order to measure the semantic security
of the session key of user instance, the adversary is given access to two additional
oracles: the Reveal oracle, which models the misuse of session keys by a user, and
the Test oracle, which tries to capture the adversary’s ability (or inability) to
tell apart a real session key from a random one. Let b be a bit chosen uniformly
at random at the beginning of the experiment defining the semantic security in
the Find-Then-Guess model. These oracles are defined as follows.

– Reveal(U i): If a session key is not defined for instance U i or if a Test query
was asked to either U i or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

– Test(U i): If no session key for instance U i is defined or if a Reveal query
was asked to either U i or to its partner, then return the undefined symbol
⊥. Otherwise, return the session key for instance U i if b = 1 or a random of
key of the same size if b = 0.

The adversary in this case is allowed to ask multiple queries to the Execute,
Reveal, and Send oracles, but it is restricted to ask only a single query to the
Test oracle. The goal of the adversary is to guess the value of the hidden bit
b used by the Test oracle. The adversary is considered successful if it guesses b
correctly.

Let Succ denote the event in which the adversary is successful. The ftg-ake-
advantage of an adversary A in violating the semantic security of the protocol
P in the Find-Then-Guess sense and the advantage function of the protocol
P , when passwords are drawn from a dictionary D, are respectively

Advftg−ake
P,D (A)=2 Pr[Succ]−1 and Advftg−ake

P,D (t, R)=max
A

{Advftg−ake
P,D (A) },

where the maximum is over all A with time-complexity at most t and using
resources at most R (such as the number of queries to its oracles). The definition
of time-complexity that we use henceforth is the usual one, which includes the
maximum of all execution times in the experiments defining the security plus
the code size [1]. Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of the probabilities.

Semantic Security in the Real-Or-Random Model. This is a new defini-
tion. In the Real-Or-Random model, we only allow the adversary to ask Execute,
Send, and Test queries. In other words, the Reveal oracle that exists in the Find-
Then-Guess model is no longer available to the adversary. Instead, we allow the
adversary to ask as many Test queries as it wants to different instances. All Test
queries in this case will be answered using the same value for the hidden bit b
that was chosen at the beginning . That is, the keys returned by the Test oracle

72 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

are either all real or all random. However, in the random case, the same random
key value should be returned for Test queries that are asked to two instances
which are partnered. Please note that the Test oracle is the oracle modeling the
misuse of keys by a user in this case. The goal of the adversary is still the same:
to guess the value of the hidden bit b used to answer Test queries. The adversary
is considered successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ror-ake-
advantage Advror−ake

P,D (A) of an adversary A in violating the semantic security
of the protocol P in the Real-Or-Random sense and the advantage function
Advror−ake

P,D (t, R) of the protocol P are then defined as in the previous definition.

Relation Between Notions. As we prove in Appendix B, the Real-Or-
Random (ROR) security model is actually stronger than the Find-Then-Guess
(FTG) security model. More specifically, we show that proofs of security in the
ROR model can be easily translated into proofs of security in the FTG model
with only a 2 factor loss in the reduction (see Lemma 1). The reverse, however,
is not necessarily true since the reduction is not security preserving. There is a
loss of non-constant factor in the reduction (see Lemma 2). Moreover, the loss in
the reduction cannot be avoided as there exist schemes for which we can prove
such a loss in security exists (see Proposition 1).

To better understand the gap between the two notions, imagine a password-
based scheme that was proven secure in the FTG model. By definition, the
advantage of any adversary is at most O(n/|D|) + ε(k), where n is the number
of active sessions and ε(k) is a negligible term. By applying the reduction, we
can show that no adversary can do better than O(n2/|D|)+n ·ε(k), which is not
enough to guarantee the security of the same scheme in the ROR model. Note
that such a gap is not as important in the case where high-entropy keys are used
since both terms in the expression would be negligible.

As a consequence, we cannot take for granted the security of the existing
schemes and new proofs of security need be provided. Fortunately, we would like
to point out here that the security proof for several of the existing schemes can be
easily modified to meet the new security goals with essentially the same bounds.
The reason for that is that the security proofs of most existing password-based
schemes in fact prove something stronger than what is required by the security
model. More specifically, most proofs generally show that not only the session
key being tested looks random, but all the keys that may be involved in a reveal
query also look random to an adversary that does not know the secret password,
thus satisfying the security requirements of our new model. In particular, this is
the case for the KOY protocol [16] and its generalization [13], and some other
schemes based on the encrypted key exchange scheme of Bellovin and Merritt [9]
(e.g., [11, 21]).

Since most existing password-based schemes do seem to achieve security in
the new and stronger security model and since the latter appears to be more ap-
plicable to situations in which one wishes to use a password-based key exchange
protocol as a black box, we suggest the use of our new model when proving the
security of new password-based schemes.

Password-Based Authenticated Key Exchange in the Three-Party Setting 73

3 Security Models
for 3-Party Password-Based Key Exchange

In this section, we put forward new formal security models for 3-party password-
authenticated key exchange and key distribution protocols. Our models are gen-
eralizations of the model of Bellare and Rogaway [8] for 3-party key distribution
schemes to the password case and that of Bellare, Pointcheval, and Rogaway [5]
for 2-party password-based authenticated key exchange.

3.1 Protocol Syntax

Protocol Participants. Each participant in a 3-party password-based key
exchange is either a client U ∈ U or a trusted server S ∈ S. The set of clients
U is made up of two disjoint sets: C, the set of honest clients, and E , the set of
malicious clients. For simplicity, and without loss of generality1, we assume the
set S to contain only a single trusted server.

The inclusion of the malicious set E among the participants is one the main
differences between the 2-party and the 3-party models. Such inclusion is needed
in the 3-party model in order to cope with the possibility of insider attacks. The
set of malicious users did not need to be considered in the 2-party due to the
independence among the passwords shared between pairs of honest participants
and those shared with malicious users.

Long-Lived Keys. Each participant U ∈ U holds a password pwU . Each server
S ∈ S holds a vector pwS = 〈pwS [U]〉U∈U with an entry for each client, where
pwS [U] is the transformed-password, following the definition in [5]. In a sym-
metric model, pwS [U] = pwU , but they may be different in some schemes. The
set of passwords pwE , where E ∈ E , is assumed to be known by the adversary.

3.2 Communication Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack.
These queries are as follows:
– Execute(U i1

1 , Sj , U i2
2): This query models passive attacks in which the at-

tacker eavesdrops on honest executions among the client instances U i1
1 and

U i2
2 and trusted server instance Sj . The output of this query consists of the

messages that were exchanged during the honest execution of the protocol.
– SendClient(U i, m): This query models an active attack, in which the adver-

sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U i would generate upon receipt of message m.

– SendServer(Sj , m): This query models an active attack against a server. It
outputs the message that server instance Sj would generate upon receipt of
message m.

1 This is so because we are working in the concurrent model and because all servers
in the general case know all users’ passwords.

74 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

3.3 Semantic Security
The security definitions presented here build upon those of Bellare and Rog-
away [7, 8] and that of Bellare, Pointcheval, and Rogaway [5].

Notation. Following [7, 8], an instance U i is said to be opened if a query
Reveal(U i) has been made by the adversary. We say an instance U i is unopened
if it is not opened. Similarly, we say a participant U is corrupted if a query
Corrupt(U) has been made by the adversary. A participant U is said to be un-
corrupted if it is not corrupted. We say an instance U i has accepted if it goes
into an accept mode after receiving the last expected protocol message.

Partnering. Our definition of partnering follows that of [5], which uses session
identifications (sid). More specifically, two instances U i

1 and U j
2 are said to be

partners if the following conditions are met: (1) Both U i
1 and U j

2 accept; (2) Both
U i

1 and U j
2 share the same session identifications; (3) The partner identification

for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and U j

2 accepts
with a partner identification equal to U i

1 or U j
2 . In practice, as in the 2-party

case, the sid could be taken to be the partial transcript before the acceptance of
the conversation among all the parties involved in the protocol, a solution which
may require the forwarding of messages.
Freshness. As in the 2-party case, we opted to embed the notion of freshness
inside the definition of the oracles.

Semantic Security in Find-Then-Guess Model. This definition we give
here is the straight-forward generalization of that of Bellare, Pointcheval, and
Rogaway [5] for the 2-party case, combined with ideas of the model of Bellare and
Rogaway [8] for 3-party key distribution. As in the 2-party case, we also define
a Reveal oracle to model the misuse of session keys and a Test oracle to capture
the adversary’s ability to distinguish a real session key from a random one. Let b
be a bit chosen uniformly at random at the beginning of the experiment defining
the semantic security in the Find-Then-Guess model. These oracles are defined
as follows:
– Reveal(U i): If a session key is not defined for instance U i or if a Test query

was asked to either U i or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

– Test(U i): If no session key is defined for instance U i or if the intended partner
of U i is part of the malicious set or if a Reveal query was asked to either U i

or to its partner, then return the invalid symbol ⊥. Otherwise, return either
the session key for instance U i if b = 1 or a random of key of the same size
if b = 0.

Consider an execution of the key exchange protocol P by an adversary A, in
which the latter is given access to the Reveal, Execute, SendClient, SendServer,
and Test oracles and asks a single Test query, and outputs a guess bit b′. Such an
adversary is said to win the experiment defining the semantic security if b′ = b,
where b is the hidden bit used by the Test oracle.

Let Succ denote the event in which the adversary wins this game. The
ftg-ake-advantage Advftg−ake

P,D (A) of an adversary A in violating the semantic

Password-Based Authenticated Key Exchange in the Three-Party Setting 75

security of the protocol P in the Find-Then-Guess sense and the advantage
function Advftg−ake

P,D (t, R) of the protocol P are then defined as in previous
definitions.

We say a 3-party password-based key exchange protocol P is semantically
secure in the Find-Then-Guess sense if the advantage Advftg−ake

P,D is only negligi-
bly larger than kn/|D|, where n is number of active sessions and k is a constant.
Note that k = 1 in the best scenario since an adversary that simply guesses the
password in each of the active sessions has an advantage of n/|D|.
Semantic Security in Real-Or-Random Model. This is a new definition.
In the Real-Or-Random model, Reveal queries are no longer allowed and are
replaced by Test queries. In this case, however, the adversary is allowed to ask
as many Test queries as it wants.

The modifications to the Test oracle are as follows. If a Test query is asked
to a client instance that has not accepted, then return the undefined ⊥. If a
Test query is asked to an instance of an honest client whose intended partner
is dishonest or to an instance of a dishonest client, then return the real session
key. Otherwise, the Test query returns either the real session key if b = 1 and a
random one if b = 0, where b is the hidden bit selected at random prior to the
first call. However, when b = 0, the same random key value should be returned
for Test queries that are asked to two instances which are partnered. The goal
of the adversary is still the same: to guess the value of the hidden bit used by
the Test oracle. The adversary is considered successful if it guesses b correctly.

Consider an execution of the key exchange protocol P by an adversary A,
in which the latter is given access to the Execute, SendClient, SendServer, and
Test oracles, and outputs a guess bit b′. Such an adversary is said to win the
experiment defining the semantic security in the ROR sense if b′ = b, where b
is the hidden bit used by the Test oracle. Let Succ denote the event in which
the adversary wins this game. The ror-ake-advantage Advror−ake

P,D (A) of an
adversary A in violating the semantic security of the protocol P in the Real-Or-
Random sense and the advantage function Advror−ake

P,D (t, R) of the protocol
P are then defined as in previous definitions.

3.4 Key Privacy with Respect to the Server
Differently from previous work, we define the notion of key privacy to capture, in
a quantitative way, the idea that the session key shared between two instances
should only be known to these two instances and no one else, including the
trusted server. The goal of this new notion is to limit the amount of trust put
into the server. That is, even though we rely on the server to help clients establish
session keys between themselves, we still want to guarantee the privacy of these
session keys with respect to the server. In fact, this is the main difference between
a key distribution protocol (in which the session key is known to the server) and
a key exchange protocol (for which the session key remains unknown to the
server).

In defining the notion of key privacy, we have in mind a server which knows
the passwords for all users, but that behaves in an honest but curious manner.

76 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

For this reason, we imagine an adversary who has access to all the passwords as
well as to the Execute and SendClient oracles but not to a Reveal oracle or to a
SendServer oracle, since the latter can be easily simulated using the passwords.
To capture the adversary’s ability to tell apart the real session key shared be-
tween any two instances from a random one, we also introduce a new type of
oracle, called TestPair, defined as follows, where b is a bit chosen uniformly at
random at the beginning of the experiment defining the notion of key privacy.

– TestPair(U i
1, U

j
2): If client instances U i

1 and U j
2 do not share the same key,

then return the undefined symbol ⊥. Otherwise, return the real session key
shared between client instances U i

1 and U j
2 if b = 1 or a random key of the

same size if b = 0.

Consider an execution of the key exchange protocol P by an adversary A
with access to the Execute, SendClient, and TestPair oracles and the passwords
of all users, and let b′ be its output. Such an adversary is said to win the exper-
iment defining the key privacy if b′ = b, where b is the hidden bit used by the
TestPair oracle. Let Succ denote the event in which the adversary guesses b cor-
rectly. We can then define the kp-advantage Advkp−ake

P,D (A) of A in violating
the key privacy of the key exchange protocol P and the advantage function
Advkp−ake

P,D (t, R) of P as in previous definitions.
Finally, we say an adversary A succeeds in breaking the key privacy of a

protocol P if Advkp−ake
P,D (A) is non-negligible.

4 A Generic Three-Party Password-Based Protocol

In this section, we introduce a generic construction of a 3-party password-based
key exchange protocol in the scenario in which we have an honest-but-curious
server. It combines a 2-party password-based key exchange, a secure key distribu-
tion protocol and a 2-party MAC-based key exchange and has several attractive
features. First, it does not assume the Random Oracle (RO) model [6]. That is,
if the underlying primitives do not make use of the RO model, neither does our
scheme. Hence, by using schemes such as the KOY protocol [16] for the 2-party
password-based key exchange and the 3-party key distribution scheme in [8],
one gets a 3-part password-based protocol whose security is in the standard
model. Second, if 2-party password-based key exchange protocols already exist
between the server and its users in a distributed system, they can be re-used in
the construction of our 3-party password-based key exchange.

Description of the Generic Solution. Our generic construction can be seen
as a form of compiler transforming any secure 2-party password-based key ex-
change protocol P into a secure password-based 3-party key exchange protocol
P ′ in the honest-but-curious security model using a secure key distribution KD,
a secure MAC scheme, and generic number-theoretic operations in a group G for
which the DDH assumption holds (see Appendix A).

The compiler, depicted in Figure 2, works as follows. First, we use the pro-
tocol P between a user A and the server S to establish a secure high-entropy

Password-Based Authenticated Key Exchange in the Three-Party Setting 77

pwB

2PAKE(skA) 2PAKE(skB)

KD(skB, km)KD(skA, km)

gx, MAC(km, gx, B, A)

gy, MAC(km, gy, A, B)

BA S
pwA pwA pwB

Fig. 2. GPAKE: a generic three-party password-based key exchange.

session key skA. Second, we use the protocol P between the server S and the user
B in order to establish a session key skB. Third, using a key distribution KD, we
have the server S first select a MAC key km, using the key generation of the lat-
ter, and then distribute this key to A and B using the session keys skA and skB,
respectively, generated in the first two steps. Finally, A and B use a MAC-based
key exchange to establish a session key CDH in an authenticated way.

Semantic Security in the Real-Or-Random Model. As the following the-
orem states, the generic scheme GPAKE depicted in Figure 2 is a secure 3-party
password-based key exchange protocol as long as the Decisional Diffie-Hellman
assumption holds in G and the underlying primitives it uses are secure. The
proof can be found in the full version of this paper [2].

Theorem 1. Let 2PAKE be a secure 2-party password-based Key Exchange, KD
be a secure key distribution, and MAC be a secure MAC algorithm. Let qexe

and qtest represent the number of queries to Execute and Test oracles, and let
qA
send, qB

send, qkd, and qake represent the number of queries to the SendClient
and SendServer oracles with respect to each of the two 2PAKE protocols, the KD
protocol, and the final AKE protocol. Then,

Advror−ake
GPAKE,D(t, qexe, qtest, q

A
send, q

B
send, qkd, qake) ≤

4 · (qexe + qkd) · Advftg−kd
KD (t, 1, 0) + 2 · qake · Adveuf−cma

MAC (t, 2, 0)

+ 2 ·Advddh
G (t + 8(qexe + qake)τe) + 4 ·Advror−ake

2PAKE,D(t, qexe, qexe + qA
send, qA

send)

+ 4 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send) ,

where τe denotes the exponentiation computational time in G.

Key Privacy with Respect to the Server. As the following theorem states,
whose proof can be found in the full version of this paper [2], the generic scheme
GPAKE depicted in Figure 2 has key privacy with respect to the server as long
as the Decisional Diffie-Hellman assumption holds in G.

Theorem 2. Let GPAKE be the 3-party password-based authenticated key ex-
change scheme depicted in Figure 2. Then,

78 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Advkp−ake
GPAKE,D(t, qexe, qtest, q

A
send, q

B
send, qkd, qake) ≤ 2 · Advddh

G (t′) ,

where t′ = t + 8 · (qexe + qake) · τe and the other parameters are defined as in
Theorem 1.

Instantiations. Several practical schemes can be used in the instantiation of the
2-party password-based key exchange of our generic construction. Among them
are the KOY protocol [16] and its generalization [13], the PAK suite [21], and
several other schemes based on the encrypted key exchange scheme of Bellovin
and Merritt [9] (e.g., [11]).

In the instantiation of the key distribution scheme, one could use the original
proposal in [8] or any other secure key distribution scheme. In particular, the
server could use a chosen-ciphertext secure symmetric encryption scheme to
distribute the keys to the users. Independently of the choice, one should keep
in mind that the security requirements for the key distribution scheme are very
weak. It only needs to provide security with respect to one session.

For the instantiation of the MAC, any particular choice that makes the MAC
term in Theorem 1 negligible will do. Possible choices are the HMAC [3] or the
CBC MAC.

It is important to notice that, in order for GPAKE to be secure, the underlying
2-party password-based protocol must be secure in the ROR model. In view of
the computational gap that exists between the ROR and the FTG models (see
Proposition 1), a 2-party password-based secure in the FTG model does not
suffice to prove the security of GPAKE.

5 Concluding Remarks

Authentication. In order to take (explicit) authentication into account, one
can easily extend our model using definitions similar to those of Bellare et al. [5]
for unilateral or mutual authentication. In their definition, an adversary is said
to break authentication if it succeeds in making any oracle instance terminate
the protocol without a partner oracle. Likewise, one could also use their generic
transformation to enhance our generic construction so that it provides unilateral
or mutual authentication. The drawback of using their generic transformation is
that it requires the random oracle model.

More Efficient Constructions. Even though the generic construction pre-
sented in this paper is quite practical, more efficient solutions are possible. One
example of such an improvement is a generic construction in which the key dis-
tribution and the final key exchange phases are combined into a single phase.
One can easily think of different solutions for this scenario that are more efficient
that the one we give. However, the overall gain in efficiency would not be very
significant since the most expensive part of these two phases, the Diffie-Hellman
protocol, seems to be necessary if key privacy with respect to the server is to be
achieved. Perhaps the best way to improve the efficiency of 3-party password-
based schemes is to adapt specific solutions in the 2-party model to the 3-party
model, instead of treating these schemes as black boxes.

Password-Based Authenticated Key Exchange in the Three-Party Setting 79

Relation to Simulation Models. In [24], the Find-Then-Guess model of [8]
is shown to be equivalent to simulation models in the sense that a scheme that is
proven secure in one model is also secure in the other model. By closely examining
their proof, one can easily see that the equivalence does not apply to the case of
password-based protocols due to the non-security-preserving reduction. It seems,
however, that their proof of equivalence can be adapted to show the equivalence
between the simulation model and the Real-Or-Random model that we introduce
in this paper in the case of password-based protocols. This is also the subject of
ongoing work.

Acknowledgements

The work described in this document has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In CT-RSA 2001, LNCS 2020, Springer-Verlag, Apr.
2001.

2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key
exchange in the three-party setting. Full version of current paper. Available from
authors’ web pages.

3. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO’96, LNCS 1109, Springer-Verlag, Aug. 1996.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, Oct. 1997.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, LNCS 1807, Springer-Verlag,
May 2000.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, Nov. 1993.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO’93, LNCS 773, Springer-Verlag, Aug. 1994.

8. M. Bellare and P. Rogaway. Provably secure session key distribution – the three
party case. In 28th ACM STOC, May 1996.

9. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and
Privacy, May 1992.

10. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In EUROCRYPT 2000, LNCS 1807, Springer-
Verlag, May 2000.

11. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted
key exchange. In PKC 2004, LNCS 2947, Springer-Verlag, Mar. 2004.

12. J. W. Byun, I. R. Jeong, D. H. Lee, and C.-S. Park. Password-authenticated
key exchange between clients with different passwords. In ICICS 02, LNCS 2513,
Springer-Verlag, Dec. 2002.

13. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In EUROCRYPT 2003, LNCS 2656, Springer-Verlag, May 2003.

80 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

14. O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
In CRYPTO 2001, LNCS 2139, Springer-Verlag, Aug. 2001.

15. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. In
ACM Transactions on Information and System Security, pages 524–543. ACM,
1999.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In EUROCRYPT 2001, LNCS 2045,
Springer-Verlag, May 2001.

17. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the ike protocols. In CRYPTO 2003, LNCS 2729, Springer-
Verlag, Aug. 2003.

18. C.-L. Lin, H.-M. Sun, and T. Hwang. Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review, 34(4):12–20, Oct. 2000.

19. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key ex-
change based on RSA. In ASIACRYPT 2000, LNCS 1976, Springer-Verlag, Dec.
2000.

20. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenti-
cated key exchange. In CRYPTO 2002, LNCS 2442, Springer-Verlag, Aug. 2002.

21. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key ex-
change. Contributions to IEEE P1363.2, 2002.

22. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(21):993–999, Dec. 1978.

23. M. D. Raimondo and R. Gennaro. Provably secure threshold password-authen-
ticated key exchange. In EUROCRYPT 2003, LNCS 2656, Springer-Verlag, May
2003.

24. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120,
IBM, 1999.

25. J. G. Steiner, B. C. Neuman, and J. L. Schiller. Kerberos: An authentication
service for open networks. In Proceedings of the USENIX Winter Conference,
pages 191–202, 1988.

26. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Operating Systems Review, 29(3):22–30, July 1995.

A Building Blocks

Decisional Diffie-Hellman Assumption: DDH. The DDH assumption
states, roughly, that the distributions (gu, gv, guv) and (gu, gv, gw) are computa-
tionally indistinguishable when u, v, w are drawn at random from {1, . . . , |G|}.
This can be made more precise by defining two experiments, Expddh-real

G (A)
and Expddh-rand

G (A). In both experiments, we compute two values U = gu and
V = gv to be given to A. But in addition to that, we also provide a third input,
which is guv in Expddh-real

G (A) and gz for a random z in Expddh-rand
G (A). The

goal of the adversary is to guess a bit indicating the experiment it thinks it is in.
We define the advantage of A in violating the DDH assumption, Advddh

G (A), as
Pr[Expddh-real

G (A) = 1] − Pr[Expddh-rand
G (A) = 1]. The advantage function

of the group, Advddh
G (t) is then defined as the maximum value of Advddh

G (A)
over all A with time-complexity at most t.

Password-Based Authenticated Key Exchange in the Three-Party Setting 81

Message Authentication Codes (MAC). A Message Authentication Code
MAC = (Key, Tag, Ver) is defined by the following three algorithms: (1) A MAC
key generation algorithm Key, which on input 1k, produces a �-bit secret-key sk
uniformly distributed in {0, 1}�; (2) A MAC generation algorithm Tag, possibly
probabilistic, which given a message m and a secret key sk ∈ {0, 1}�, produces
an authenticator μ; and (3) A MAC verification algorithm Ver, which given an
authenticator μ, a message m, and a secret key sk , outputs 1 if μ is a valid
authenticator for m under sk and 0 otherwise.

Like in signature schemes, the classical security level for a MAC is to prevent
existential forgeries, even for an adversary which has access to the generation
and verification oracles. We define the advantage of A, Adveuf−cma

MAC (A), as

Pr
[
sk ← {0, 1}�, (m, μ) ← ATag(sk ;·),Ver(sk ;·,·)() : Ver(sk ; m, μ) = 1

]
,

and the advantage function of the MAC, Adveuf−cma
MAC (t, qg, qs), as the max-

imum value of Adveuf−cma
MAC (A) over all A that asks up to qg and qv queries to

the generation and verification oracles, respectively, and with time-complexity
at most t. Note that A wins the above experiment only if it outputs a new valid
authenticator.

3-Party Key Distribution. A secure key distribution protocol KD is a 3-party
protocol between 2 parties and a trusted server S where S picks a session key at
random and securely sends it to the users. The security model, formally intro-
duced in [8], is a generalization of that for 2-party authenticated key exchange
protocols, to which a new oracle was added to represent the trusted server.
Their security is in the Find-Then-Guess model, using the terminology that we
introduced for key exchange protocols.

In our generic construction, we only need a KD secure with respect to a
single session since the symmetric keys used as input to the key distribution
protocol differ from session to session. They are the session keys obtained from
the 2-party password-based authenticated key exchange protocols between the
server and each of the two parties. Since in this case, both the Find-Then-Guess
and Real-Or-Random notions are equivalent, we opted to use their definition
(i.e. FTG) adapted to our terminology. That is, we define Advftg−kd

KD (A) as the
advantage of adversaryA in violating the semantic security of a key distribution
KD in the FTG sense, and Advftg−kd

KD (t, s, r) as the advantage function of KD,
which is the maximum value of Advftg−kd

KD (A) over all A with time-complexity
at most t, asking Send queries with respect to at most s sessions and asking at
most r Reveal queries.

B Relations Between Notions

In this section, we prove the relation between the Find-Then-Guess (FTG) and
Real-Or-Random (ROR) notions of security for authenticated key exchange pro-
tocols. The relation is not specific to password-based schemes, but its implica-
tions are more important in that scenario. We do not present proofs for the

82 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

forward-secure case as these proofs can be easily derived from the proofs in the
non-forward-secure case.

Lemma 1. For any AKE, Advftg−ake
AKE (t, qsend, qreveal, qexe) ≤ 2 · Advror−ake

AKE (t,
qsend, qreveal + 1, qexe).

Proof. In order to prove this lemma, we show how to build an adversary Aror

against the semantic security of an authenticated key exchange AKE protocol
in the ROR model given an adversary Aftg against the semantic security of the
same protocol AKE in the FTG model. We know that Aftg has time-complexity
at most t and that it asks at most qsend, qreveal, and qexe queries to its Send,
Reveal, and Execute oracles, respectively.

The description of Aror is as follows. Aror starts by choosing a bit b uniformly
at random and starts running Aftg. If Aftg asks a Send query, then Aror asks the
corresponding query to its Send oracle. If Aftg asks a Execute query, then Aror

asks the corresponding query to its Execute oracle. If Aftg asks a Reveal query,
then Aror asks a Test query to its Test oracle and uses the answer it receives
as the answer to the Reveal query. If Aftg asks a Test query, then Aror asks the
corresponding query to its Test oracle. If b = 1, then Aror uses the answer it
received as the answer to the Test query. Otherwise, it returns a random key to
Aftg. Let b′ be the final output of Aftg. If b′ = b, then Aror outputs 1. Otherwise,
it outputs 0.

Note that Aror has time-complexity at most t and asks at most qsend, qreveal+
1, and qexe queries to its Send, Test, and Execute oracles, respectively.

In order to analyze the advantage of Aror, first consider the case in which
its Test oracle returns random keys. It is easy to see that, in this case, Aftg

cannot gain any information about the hidden bit b used to answer its single
Test query. Therefore, the probability that Aror outputs 1 is exactly 1

2 . Now
consider the case in which its Test oracle returns the actual sessions keys. In
this case, the simulation of Reveal is perfect and Aror runs Aftg exactly as in the
experiment defining the semantic security of Aftg in the FTG model. Therefore,
the probability that Aror outputs 1 is exactly 1

2 + 1
2Advftg−ake

AKE (Aftg) and, as a
result, Advftg−ake

AKE (Aftg) ≤ 2 · Advror−ake
AKE (Aror) ≤ Advror−ake

AKE (t, qsend, qreveal +
1, qexe). The lemma follows easily. ��
Lemma 2. For any AKE, Advror−ake

AKE (t, qsend, qtest, qexe) ≤ qtest · Advftg−ake
AKE (t,

qsend, qtest − 1, qexe).

Proof. In order to prove this lemma, we show how to build a sequence of ad-
versaries Ai

ftg against the semantic security of an authenticated key exchange
AKE protocol in the FTG model given an adversary Aror against the semantic
security of the same protocol AKE in the ROR model. We know that Aror has
time-complexity at most t and that it asks at most qsend, qtest, and qexe queries
to its Send, Test, and Execute oracles, respectively.

The proof uses a standard hybrid argument, in which we define a sequence of
qtest+1 hybrid experiments Vi, where 0 ≤ i ≤ qtest. In experiment Vi, the first i−1
queries to the Test oracle are answered using a random key and all remaining Test

Password-Based Authenticated Key Exchange in the Three-Party Setting 83

queries are answered using the real key. Please note that the hybrid experiments
at the extremes correspond to the real and random experiments in the definition
of semantic security in the ROR model. Hence, in order to prove the bound in
the lemma, it suffices to prove that the difference in probability that adversary
Aror returns 1 between any two consecutive experiments Vi and Vi−1 is at most
Advftg−ake

AKE (t, qsend, qtest−1, qexe). This is achieved by building a sequence of qtest

adversaries Ai
ftg, as described below.

Let Ai
ftg be a distinguisher Ai

ftg for experiments Vi and Vi−1, where 1 ≤ i ≤
qtest. Ai

ftg starts running Aror answering to its queries as follows. If Aror asks a
Send or Execute query, then Aftg answers it using its corresponding oracle. If
Aror asks a Test query, then Aftg answers it with a random key if this query is
among the first i − 1. If this is the i-th Test, then Aftg uses its Test oracle to
answer it. All remaining Test queries are answered using the output of the Reveal
query. Aftg finishes its execution by outputting the same guess bit b outputted
by Aror.

Note that Ai
ftg has time-complexity at most t and asks at most qsend, qtest−1,

and qexe queries to its Send, Reveal, and Execute oracles, respectively.
In order to analyze the advantage of Ai

ftg, first notice that when Test oracle
returns a random key, Ai

ftg runs Aror exactly as in the experiment Vi. Next,
notice that when Test oracle returns the real key, Ai

ftg runs Aror exactly as in
the experiment Vi. It follows that the difference in probability that adversary
Aror returns 1 between experiments Vi and Vi−1 is at most Advftg−ake

AKE (Aror) ≤
Advftg−ake

AKE (t, qsend, qtest − 1, qexe). The lemma follows easily. ��
Even though the reduction in Lemma 2 is not security-preserving (i.e., there

is a non-constant factor loss in the reduction), it does not imply that a gap
really exists – there might exist a tight reduction between the two notions that
we have not yet found. In order to prove that the non-constant factor loss in the
reduction is indeed intrinsic, we need to show that there exist schemes for which
the gap does exist.

To achieve this goal, one can use techniques similar to those used to prove
that a gap exists between the Left-Or-Right and Find-Then-Guess notions of
security for symmetric encryption schemes [4]. In that paper, they show how
to construct a new symmetric encryption scheme E ′ from a secure encryption
scheme E such that E ′ exhibits the gap. E ′ was constructed in such a way that
its encryption function works like the encryption function of E most of the time,
except in a few cases (which are easily identifiable) in which the ciphertext it
generates contains the plaintext. The probability in which such bad cases happen
in their construction is exactly 1/q, where q is the non-constant factor in the
reduction.

A similar technique can be applied to authenticated key exchange protocols.
Imagine a secure authenticated key exchange protocol AKE exists. For simplicity,
assume qtest = 2l, for some integer l. We can construct a new scheme AKE′ such
that the session key k that it generates equals the one generated by AKE most
of the time except when the first l bits are 0. In this case, we just make k = 0.
Using a proof technique similar to that used in [4], one can prove the the gap

84 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

in Lemma 2 cannot be avoided and we thus omit the detail. But before stating
our proposition, we make a final remark that when the underlying scheme AKE
is a password-based key exchange, not every choice of parameters will yield the
desired result claimed in the proposition. However, there are (easy) choices of
parameters for which the gap does exist and that suffices for the purpose of the
proposition. We are now ready to state our claim.

Proposition 1. The gap exhibited in Lemma 2 is intrinsic and cannot be
avoided.

On the Optimization of Side-Channel Attacks
by Advanced Stochastic Methods

Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI),
Godesberger Allee 185–189,

53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

Abstract. A number of papers on side-channel attacks have been pub-
lished where the side-channel information was not exploited in an opti-
mal manner, which reduced their efficiency. A good understanding of the
source and the true risk potential of an attack is necessary to rate the
effectiveness of possible countermeasures. This paper explains a general
approach to optimize the efficiency of side-channel attacks by advanced
stochastic methods. The approach and its benefits are illustrated by ex-
amples.

Keywords: Side-channel attack, Montgomery’s multiplication algo-
rithm, stochastic process, statistical decision problem, optimal decision
strategy.

1 Introduction

At Crypto 1996 and Crypto 1998 Kocher, resp. Kocher et al., introduced timing
and power attacks [5, 8]. Since then side-channel attacks have attracted enour-
mous attention in the scientific community and the smart card industry as they
constitute serious threats against cryptosystems. Their targets are usually smart
cards but also software implementations may be vulnerable, even against remote
attacks ([1, 2] etc.). In a side-channel attack the attacker guesses the secret key
portion by portion. The correctness of the partial guesses cannot be verified (at
least not with certainty) until all parts of the key have been guessed. If the ver-
ification of the whole key guess fails (e.g. by checking a digital signature) this
does not provide the position(s) of the wrong guess(es).

A large number of research papers on timing attacks, power attacks, radiation
attacks and combined timing / power attacks have been published. A variety of
countermeasures have been proposed that shall prevent these attacks.

In ‘real life’ the number of measurements is often limited, or it is at least
costly to perform a large number of measurements. From the attacker’s point of
view it is hence desirable to minimize the error probabilities for the guesses of
the particular key parts (for a given number of measurements) or vice versa, to
minimize the number of measurements which is necessary for a successful attack.
If the outcome of the previous guesses has an impact on the guessing strategy of

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 85–103, 2005.
c© International Association for Cryptologic Research 2005

86 Werner Schindler

the present key part it is additionally desirable to have criteria with which the
correctness of the previous guesses can be verified with reasonable probability.

In order to achieve these goals the side-channel information should be ex-
ploited in an optimal manner. Many papers present ingenious ideas but lack of
sound mathematical methods. As a consequence, only a fraction of the overall
side-channel information is indeed used which in turn lowers the efficiency of the
attack. As a consequence it may even be difficult to rate the true risk potential
of these attacks and to assess the effectiveness of the proposed countermeasures.
By applying appropriate stochastic methods it was possible to increase the effi-
ciency of a number of known attacks considerably ([12, 14–16]; Sects. 4, 6, 7 in
this paper), in one case even by factor 50. Moreover, some attacks were gener-
alized, and new attacks were detected due to the better understanding of the
situation ([13, 16, 17], Sects. 5, 6 in this paper).

The focus of this paper are the applied mathematical methods themselves
but not new attacks. This shall put the reader into the position to apply and to
adjust these methods when considering side-channel attacks that are tailored to
a specific target. An individual treatment should in particular be necessary for
most of the power and radiation attacks. Often the (timing, power, radiation)
behaviour of the attacked device can be modelled as a stochastic process, and
the attack can be interpreted as a sequence of statistical decision problems.
Roughly speaking, in a statistical decision problem the optimal decision strategy
minimizes the expected loss which primarily depends on the probabilities for
wrong guesses but also on the a priori information and the consequences of
errors. In fact, depending on the concrete situation particular types of errors
may be easier to detect and correct than others (e.g., in the examples explained
in Sects. 6 and 7).

We refer readers who are generally interested in stochastic and statistical
applications in cryptography to ([10]) and to various papers of Meier and Staffel-
bach, Golic, Vaudenay and Junod, for instance.

Our paper is organized as follows: In Section 2 we introduce the concept of
statistical decision theory, and in Section 3 we exemplarily work out a stoch-
astic model for Montgomery’s multiplication algorithm. Then we illustrate our
approach by various examples and give final conclusions.

2 A Survey on Statistical Decision Theory

We interpret side-channel measurements as realizations of random variables, i.e.
as values assumed by these random variables. The relevant part of the inform-
ation is covered by noise but an attacker clearly aims to exploit all of the available
information in an optimal way. Therefore, he interprets the side-channel attack
as a sequence of statistical decision problems. Each decision problem corresponds
to the guessing of a particular key part. Previous guesses may have an impact
on the present guess (cf. Sects. 4, 5), or all guesses may be independent (cf. Sect.
6). Statistical decision theory quantifies the impact of the particular pieces of
information on the decision so that the search for the optimal decision strategy

On the Optimization of Side-Channel Attacks 87

can be formalized. In this section we introduce the concept of statistical decision
theory as far it is relevant for our purposes, namely to improve the efficiency of
side-channel attacks.

Formally, a statistical decision problem is defined by a 5-tuple (Θ, Ω, s,D, A).
The statistician (in our context: the attacker) observes a sample ω ∈ Ω that he
interprets as a realization of a random variable X with unknown distribution
pθ. On basis of this observation he estimates the parameter θ ∈ Θ where Θ
denotes the parameter space, i.e., the set of all admissible hypotheses (= possible
parameters). Further, the set Ω is called the observation space, and the letter A
denotes the set of all admissible alternatives the statistician can decide for. In
the following we assume Θ = A where Θ and A are finite sets.

Example 1. (i) Assume that the attacker guesses a single RSA key bit and that
his decision is based upon N timing or power measurements. Then Θ = A =
{0, 1}, Ω = IRN.
(ii) Consider a power attack on a DES implementation where the attacker guesses
a particular 6-bit-subkey that affects a single S-box in the first round. Then
Θ = A = {0, 1}6.

A deterministic decision strategy is given by a mapping τ : Ω → A (cf. Remark
1 (ii)). If the statistician applies the decision strategy τ he decides for τ(ω) ∈
A = Θ whenever he observes ω ∈ Ω.

Finally, the loss function s: Θ × A → [0,∞) quantifies the harm of a wrong
decision, i.e., s(θ, a) gives the loss if the statistician decides for a ∈ A although
θ ∈ Θ = A is the correct parameter. In our context this quantifies the efforts
(time, money etc.) to detect, to localize and to correct a wrong decision, i.e. a
wrong guess of a key part. Clearly, s(θ, θ) := 0 since a correct guess does not cause
any loss. For some attacks (as in Sects. 6, 7) specific types of errors are easier to
correct than others. The optimal decision strategy takes such phenomena into
account.

Assume that the statistician uses the deterministic decision strategy τ : Ω →
A and that θ is the correct parameter. The expected loss (= average loss if the
hypothesis θ is true) is given by the r isk function

r(θ, τ) :=
∫

Ω

s(θ, τ(ω)) pθ(dω). (1)

Our goal clearly is to apply a decision strategy that minimizes this term. Unfor-
tunately, usually there does not exist a decision strategy that is simultaneously
optimal for all admissible parameters θ ∈ Θ. However, in the context of side-
channel attacks one can usually determine (at least approximate) probabilities
with which the particular parameters occur. This is quantified by the so-called
a priori distribution η, a probability measure on the parameter space Θ.

Example 2. (i) (Continuation of Example 1(i)) Assume that k exponent bits
remain to be guessed and that the attacker knows that r of them equal 1. If
the secret key was selected randomly then it is reasonable to assume that the
present bit is 1 with probability η(1) = r/k.
(ii) (Continuation of Example 1(ii)) Here η(x) = 2−6 for all x ∈ {0, 1}6.

88 Werner Schindler

Assume that η denotes the a priori distribution. If the statistician applies the
deterministic decision strategy τ : Ω → A the expected loss equals

R(η, τ) :=
∑
θ∈Θ

r(θ, τ)η(θ) =
∑
θ∈Θ

∫
Ω

s(θ, τ(ω)) pθ(dω) η(θ). (2)

A decision strategy τ ′ is optimal against η if it minimizes the right-hand term.
Such a decision strategy is also called a Bayes strategy against η.

Remark 1. (i) For specific decision problems (e.g. minimax problems) it is rea-
sonable to consider the more general class of randomized decision strategies
where the statistician decides randomly (quantified by a probability measure)
between various alternatives when observing a particular ω ([20]). In our con-
text we may restrict our attention to the deterministic decision strategies (cf.
Theorem 1). We point out that deterministic decision strategies can be viewed
as specific randomized decision strategies.
(ii) Theorem 1 is tailored to our situation. It provides concrete formulae that
characterize the optimal decision strategy. Although Theorem 1 can be deduced
from more general theorems (e.g., Hilfssatz 2.137 and Satz 2.138(i) in [20] imme-
diately imply assertion (i)) we give an elementary proof (cf. Theorem 2.48 in [20]
for the special case t = 2) in order to illustrate the background. We restricted
our attention to the case |Θ| < ∞ and left out mathematical difficulties as the
concept of σ-algebras and measurability. We mention that the optimal decision
strategy τ from Theorem 1 is measurable.

Theorem 1. Assume that (Θ, Ω, s,D, A) describes a statistical decision prob-
lem with finite parameter space Θ = {θ1, . . . , θt} = A where D contains the
deterministic decision strategies. Further, let μ denote a σ-finite measure on Ω
with pθi = fθi · μ, i.e. pθi has μ-density fθi , for each i ≤ t.
(i) The deterministic decision strategy τ : Ω → A,

τ(ω) := a if
t∑

i=1

s(θi, a)η(θi)fθi(ω) = min
a′∈A

{
t∑

i=1

s(θi, a
′)η(θi)fθi(ω)

}
(3)

is optimal against the a priori distribution η. (If the minimum is attained for
several decisions, we chose a ∈ A according to any (fixed) order on A.)
(ii) If Θ = {0, 1} and s(0, 1), s(1, 0) > 0 the indicator function

τ(ω) := 1f0(ω)/f1(ω)≤s(1,0)η(1)/s(0,1)η(0)(ω) (4)

is optimal against η. (We set τ(ω) :=1 if f0(ω)=f1(ω)=0 or f0(ω)=f1(ω)=∞.)
(iii) Assume that C ⊆ Ω with pθi(C) = p > 0 for all θi ∈ Θ. Then (i) and (ii)
remain valid if fθ is replaced by the conditional density fθ|C.

Proof. Let κ: Ω × P(A) → [0, 1] denote any randomized decision strategy (cf.
[20], for instance). Fubini’s Theorem implies

R(η, κ) =
t∑

i=1

⎛⎝∫
Ω

t∑
j=1

s(θi, θj)κ(ω, θj)fθi(ω)μ(dω)

⎞⎠ η(θi)

On the Optimization of Side-Channel Attacks 89

∫
Ω

⎛⎝ t∑
i=1

t∑
j=1

s(θi, θj)κ(ω, θj)fθi(ω)η(θi)

⎞⎠ μ(dω).

Since κ(ω, ·) is a probability measure, reordering the integrand yields

t∑
j=1

κ(ω, θj)
t∑

i=1

s(θi, θj)fθi(ω)η(θi) ≥ min
a′∈A

{
t∑

i=1

s(θi, a
′)fθi(ω)η(θi)

}

which proves (3). Assertion (ii) is an immediate consequence from (i) since
f0(ω) = f1(ω) = 0 and f0(ω) = f1(ω) = ∞ occur only with probability zero.
Assertion (iii) is a corollary from (i) and (ii) since fθ|C = fθ/p.

Remark 2. (i) A σ-finite measure μ on Ω with the properties claimed in Theorem
1 does always exist (e.g. μ = pθ1 + · · · + pθt).
(ii) For Ω = IRn the well-known Lebesgue measure λn is σ-finite (The Lebesgue
measure on IRn is given by λn([a1, b1] × · · · [an, bn]) =

∏n
i=1(bi − ai) if bi ≥ ai

for all i ≤ n.) If Ω is finite or countable the counting measure μC is σ-finite.
The counting measure is given by μC(ω) = 1 for all ω ∈ Ω. In particular, the
probabilities Probθ(X = ω) = pθ(ω) can be interpreted as densities with respect
to μC .
(iii) The examples mentioned in (ii) and combinations thereof cover the cases
that are relevant in the context of side-channel attacks.

With regard to Theorem 1 we will restrict our attention to decision problems of
the type

(Θ, Ω, s,DS , A = Θ) with finite Θ = A (5)

where DS denotes the set of all deterministic decision strategies. At first the
attacker has to define the sets Θ = A and an appropriate loss function s. Then he
determines the a priori distribution η and, in particular, the probability densities
pθi for all i ≤ t. In our context the latter will be the most difficult part but
gives the most significant impact on the decision strategy. For timing attacks
on public key algorithms, for instance, these distributions depend essentially on
the implemented arithmetic algorithms, for power and radiation attacks on the
internal activity within the attacked device or specific areas thereof when the
measurements are taken. Finally, the attacker applies Theorem 1 to determine
an optimal decision strategy τ (= Bayes strategy against the a priori distribution
η). In specific situations the attacker may also be interested in the value R(η, τ).

3 Montgomery’s Modular Multiplication Algorithm

In this section we investigate the timing behaviour of Montgomery’s modular
multiplication algorithm ([9], Alg. 14.36) as it is implemented in most of the
smart cards that compute modular exponentiations (e.g., RSA-based digital sig-
natures).

90 Werner Schindler

3.1 Algebraic Background and Montgomery’s Algorithm

In this subsection we briefly describe the algebraic background and formulate the
multiprecision variant of Montgomery’s algorithm. We begin with a definition.

Definition 1. As usually, ZM := {0, 1, . . . , M − 1}, and for an integer b ∈ Z
the term b(modM) denotes the unique element of ZM that is congruent to b
modulo M .

In order to compute yd(modM) a sequence of modular multiplications and
squarings have to be carried out. If ‘ordinary’ modular multiplication algorithms
are used this requires a large number of time-consuming integer divisions by the
modulus M . Montgomery’s multiplication algorithm saves these operations.

In the following we assume that M is an odd modulus (e.g., an RSA modulus
or a prime factor) and that R := 2x > M is a power of two (e.g. x = 512). The
elementary variant of Montgomery’s algorithm transfers the modular multipli-
cations from the modulus ZM to ZR. The term R−1 ∈ ZM denotes the multi-
plicative inverse of R in ZM , i.e. RR−1 ≡ 1 (mod M). The integer M∗ ∈ ZR

satisfies the integer equation RR−1 − MM∗ = 1. For input a, b ∈ ZM Mont-
gomery’s multiplication algorithm returns MM(a, b; M) := abR−1(mod M). We
point out that the mappings Ψ, Ψ∗: ZM → ZM , given by Ψ(x) := xR (mod M)
and Ψ∗(x) := xR−1 (mod M), induce inverse operations on ZM .

Usually, a time-efficient multiprecision variant of Montgomery’s algorithm is
implemented which is tailored to the device’s hardware architecture. Assume that
ws denotes the word size for the arithmetic operations (e.g. ws = 32) and that
ws divides the exponent x. Then r := 2ws and R = rv with v = x/ws (Example:
x = 512, ws = 32, v = 16). For the moment let further a = (av−1, . . . , a0)r,
b = (bv−1, . . . , b0)r, and s = (sv−1, . . . , s0)r denote the r-adic representations of
a, b and s, resp., and let m′ := M∗(mod r).

Algorithm 1: Montgomery’s Algorithm (Multiprecision Variant)
1.) s:=0
2.) for i=0 to v-1 do {

u_i:= (s_0+a_i*b_0)m’ (mod r)
s:= (s+a_ib+u_iM) /r }

3.) if s≥M then s:=s-M
4.) return s (= MM(a,b;M) = abR^{-1} (mod M))

In the following we assume that for fixed parameters M, R and r the run
times needed for Step 1 and Step 2 are identical for all pairs of operands. (This
assumption is reasonable, in particular for smart cards. Software implementa-
tions may process small operands (i.e., those with leading zero-words) faster
due to optimizations of the integer multiplication algorithms. This is absolutely
negligible for the attacks considered in Sects. 4 and 6 but may cause additional
difficulties for particular chosen-input attacks as described in Sect. 5, for in-
stance (cf. [1]).) Timing differences are caused by the fact whether in Step 3 the
subtraction, the so-called extra reduction, has to be carried out. Hence

Time (MM(a, b; M)) ∈ {c, c + cER} (6)

On the Optimization of Side-Channel Attacks 91

where the time c is required iff no extra reduction is necessary. The constant
cER quantifies the time needed for an integer subtraction by M . The values of
the constants c and cER surely depend on the concrete implementation. Lemma
1 below (cf. [13] (Remark 1) or [11] (Lemma 1)) says that the fact whether an
extra reduction is necessary does only depend on a, b, M and R but not on the
word size ws.

Lemma 1. For each word size ws the intermediate result after Step 2 equals
s = (ab + uM)/R with u = abM∗(mod R).

3.2 The Stochastic Model

In this subsection we study the timing behaviour of Montgomery’s multiplication
algorithm within modular exponentiation algorithms. It will turn out that the
probability for an extra reduction (ER) in a squaring operation differs from
the probabiliy for an extra reduction in a multiplication with a particular value
a ∈ ZM . The latter depends linearly on the ratio a/M . We point out that
the probabilities, or more general, the stochastic properties of random extra
reductions do not depend on the size of the modulus M but on the ratio M/R.

Lemma 2. (i) MM(a,b;M)
M =

(
a
M

b
M

M
R + abM∗ (mod R)

R

)
(mod1). That is, an

extra reduction is carried out iff the sum within the bracket is ≥ 1 iff MM(a,b;M)
M <

a
M

b
M

M
R .

(ii) Assume that the random variable B is equidistributed on ZM . Then the
intermediate result in Algorithm 1 before the ER step is (in good approximation)
distributed as

M

R

a

M
U + V for MM(a, B; M) (7)

M

R
U2 + V for MM(B, B; M). (8)

where U and V denote independent random variables that are equidistributed on
[0, 1).

Sketch of the Proof. Assertion (i) follows immediately from Lemma 1. For a proof
of (ii) we refer the interested reader to [12], Lemma A.3. The central idea is that
a small deviation of B/M causes ‘vast’ deviations in the second summand and
that the distribution of the second summand is close to the equidistribution on
[0, 1] for nearly all values of a. An alternate proof for a related assertion is given
in [11]. (Both proofs use plausible heuristic arguments (Assumption DIS in [11]).
We further mention that (7) and (8) yield probabilities for extra reductions (cf.
(11)) which were confirmed by a large number of simulation experiments.

Modular exponentiation algorithms initialize a variable (in the following de-
noted with temp) with the base y or, in case of table methods, with a power
of y. A sequence of modular squarings of temp and multiplications of temp

92 Werner Schindler

with particular table values are carried out until temp equals yd(mod M). Pseu-
doalgorithm 2 below combines modular exponentiation algorithms with Mont-
gomery’s multiplication algorithm. The modular exponentiation algorithm may
be the ‘square and multiply’ algorithm ([9], Alg. 14.79; cf. Sect. 4), a table
method (e.g. left-to right b-ary exponentiation, cf. [9], Alg. 14.82 and Sect. 6)
or the sliding windows exponentiation algorithm ([9], Alg. 14.85). In Pseudoal-
gorithm 2 the table values equal (yjR) (mod M) (unlike (yj)(mod M) if ‘ordi-
nary’ modular multiplication algorithms are used) and hence temp = ydR(mod
M) after Step 2.

Pseudoalgorithm 2: Modular Exponentiation with Montgomery’s
Multiplication Algorithm

1.) \bar y_{1}:=MM(y,R^2;M) (= yR (mod M))
2.) Modular Exponentiation algorithm

a) table initialization (if necessary)
b) exponentiation phase

(Replace modular squarings and multiplications in
2a) and 2b) with the respective Montgomery operations)

3.) return temp:=MM(temp,1;M) (=y^d (mod M))

We interpret the normalized intermediate values temp0/M, temp1/M, . . . from
the exponentiation phase as realizations of [0, 1)-valued random variables S0, S1,
. . .. Consequently, the time needed for the ith Montgomery operation (squaring
or multiplication of temp with a particular table value), is interpreted as a re-
alization of c + Wi · cER, where Wi is a {0, 1}-valued random variable, assuming
1 iff an extra reduction is necessary. The understanding of the stochastic pro-
cess W1, W2, . . . will turn out to be necessary to determine the optimal decision
strategies in the following sections.

From Lemma 2 we deduce the following relations where the right-hand sides
denote the possible types of the ith Montgomery operation within the exponen-
tiation phase.

Si+1 :=
{

M
R S2

i + Vi+1(mod 1) for MM(temp, temp; M)
ȳj

M
M
R Si + Vi+1(mod 1) for MM(temp, ȳj; M)

(9)

The term ȳj denotes the jth table entry (j ≡ 1 for the square & multiply
algorithm). With regard to Lemma 2(ii) we may assume that the random vari-
ables V1, V2, . . . are iid equidistributed on [0, 1). As an immediate consequence,
the random variables S1, S2, . . . are also iid equidistributed on [0, 1). From the
random variables S0, S1, . . . one derives the random variables W1, W2, . . . that
describe the (random) timing behaviour of the Montgomery operations within
the exponentiation phase. To be precise, from Lemma 2(i) we conclude

Wi :=
{

1Si<S2
i−1(M/R) for MM(temp, temp; M)

1Si<Si−1(ȳj/M)(M/R) for MM(temp, ȳj; M).
(10)

We mention that the sequence W1, W2, . . . is neither independent nor identically
distributed but Wi and Wi+1 are negatively correlated. On the other hand, the

On the Optimization of Side-Channel Attacks 93

tuples (Wi, Wi+1, . . . , Wi+j) and (Wk, Wk+1, . . . , Wk+t) (but not their compo-
nents!) are independent if k > i + j + 1. In particular, (10) implies

E(Wi) =
{

1
3

M
R for MM(temp, temp; M)

1
2

ȳj

M
M
R for MM(temp, ȳj; M).

(11)

Remark 3. In this section we have derived a stochastic process W1, W2, . . . that
models the timing behaviour of the Montgomery multiplications within modular
exponentiation algorithms. Clearly, a similar approach is at least principally
feasible for other arithmetic algorithms, too.

4 Timing Attacks on RSA Without CRT

A timing attack on RSA implementations was first described (and experimentally
verified) in [5]. Two years later a successful timing attack on a preliminary version
of the Cascade chip was presented at the Cardis conference ([4]). Kocher’s attack
was generalized and optimized in [12]. In this section we consider the attack
presented in [4]. Our approach improves its efficiency by factor 50.

4.1 The Optimal Decision Strategy

In this section we assume that the attacked smart card (e.g., a preliminary ver-
sion of the Cascade chip) calculates the modular exponentiations y �→ yd(mod
n) with the square & multiply algorithm, combined with Montgomery’s algo-
rithm (cf. Pseudoalgorithm 2). We assume further that the secret exponent d
(target of the attack) remains fixed for all observed exponentiations and that no
blinding techniques are applied (cf. Remark 4) so that repetitions with identical
bases require equal running times. The binary representation of the secret expo-
nent d reads (dv−1, . . . , d0)2, and in Phase 2b of Pseudoalgorithm 2 the exponent
bits are processed from the left to the right.

In a pre-step the attacker measures the exponentiation times t̃(j) :=
Time(yd

(j) (modn)) + tErr(j) for a sample y(1), . . . , y(N) where tErr(j) denotes the
measurement error for sample j. To be precise, we have

t̃(j) = tErr(j)+tS(j)+(v+ham(d)−2)c+
(
w(j)1 + . . . + w(j)v+ham(d)−2

)
cER (12)

where w(j)i ∈ {0, 1} equals 1 iff the ith Montgomery operation requires an
extra reduction for sample j and 0 else. The term tS(j) summarizes the time
needed for all operations apart from the Montgomery multiplications (input,
output, handling the loop variable, evaluating the if-statements, pre- and post-
multiplication). We may assume that the attacker knows tS(j) exactly as possible
errors can be interpreted as part of the measurement error tErr(j). We may fur-
ther assume that the attacker had guessed the parameters v, ham(d), c and cER

in a pre-step of the attack (cf. [14], Sect. 6).
The exponent bits are guessed from the left to the right. For the moment

we assume that the most significant exponent bits dv−1, . . . , dk+1 have already

94 Werner Schindler

been guessed, and that all guesses d̃v−1, . . . , d̃k+1 are correct. Our goal is to
derive an optimal decision strategy to guess the exponent bit dk. At first the
attacker subtracts the time needed to process the (correctly) guessed exponent
bits dv−1, . . . , dk+1 from the measured exponentiation time in order to obtain
the time needed for the remaining bits dk, . . . , d0 (beginning with ‘if (dk = 1)
then MM(temp(j), ȳ1(j); n)’), and from ham(d) he further computes the number
m of remaining Montgomery multiplications with ȳ1(j). If the random exponent
d has been selected randomly it is reasonable to assume that η(1) := Prob(dk =
1) = (m − 1)/k since d0 = 1. That is, the a priori distribution is given by
(η(0), η(1)) = ((k + 1 − m)/k, (m − 1)/k). Clearly, Θ = A = {0, 1}. Since the
differences of the running times are caused by the number of extra reductions
(and maybe by measurement errors) we consider the ‘normalized’ remaining time

t̃d,rem(j) : =
t̃(j) − tS(j) − (v + ham(d) − 2)c

cER
−

v+ham(d)−2−k−m∑
i=1

wi(j) (13)

= tdErr(j) +
v+ham(d)−2∑

i=v+ham(d)−k−m−1

wi(j).

where the last sum equals the number of extra reductions in the remaining
Mongomery multiplications. The remaining Montgomery operations are labelled
by the indices v + ham(d) − k − m − 1, . . . , v + ham(d) − 2. The normalized
measurement error tdErr(i) = tErr(i)/ cER is assumed to be a realization of
an N(0, α2(= σ2

Err/ cER
2))-distributed random variable that is independent of

W1, W2, . . . (cf. [12], Sect. 6).
The attacker bases his decision on the 4N -tuple(

t̃drem(j), uM(j), uS(j), tS(j)

)
j≤N

(‘observation’) where uM(j), uS(j), tS(j) ∈ {0, 1} quantify the timing of sample
j until the next decision (i.e., when guessing dk−1). To be precise, uM(j) = 1
(resp. uS(j) = 1, resp. tS(j) = 1) iff θ = 1 and the next multiplication with
ȳ1(j) (resp., iff θ = 1 and the subsequent squaring, resp. iff θ = 0 and the next
squaring) requires an extra reduction. That is, uM(j) and uS(j) are summands
of the right-hand side of (13) if θ = 1 whereas tS(j) is such a summand if
θ = 0. Next, we study the stochastic process W1(j), W2(j), . . . that quantifies
the (random) timing behaviour of these Montgomery multiplications. Although
these random variables are neither independent nor stationary distributed they
yet meet the central limit theorem ([12], Lemma 6.3(iii)). Since Wi(j) and Wr(j)

are independent if |i − r| > 1 (cf. Subsection 3.2) we conclude

Var
(
W1(j) + . . . + Wt(j)

)
=

t∑
i=1

Var(Wi(j)) + 2
t−1∑
i=1

Cov(Wi(j), Wi+1(j)) (14)

Concerning the variances we have to distinguish between two cases (squaring,
multiplication with ȳ(j); cf. (11)), for the covariances between three cases, namely

On the Optimization of Side-Channel Attacks 95

that Wi(j) and Wi+1(j) correspond to two squarings (covSS), resp. to a squaring
followed by a multiplication with ȳ(j) (covSM(j)), resp. to a multiplication with
ȳ(j) followed by a squaring (covMS(j)). Exploiting (10) and (9) the random vec-
tor (Wi(j), Wi+1(j)) can be expressed as a function of the iid random variables
Si−1(j), Si(j), Si+1(j). For instance, CovMS(WiWi+1) =∫

[0,1)3
1{si<si−1ȳj/R} · 1{si+1<s2

i
n/R}(si−1, si, si+1) dsi−1dsidsi+1 −

ȳ(j)

2R
· n

3R
(15)

Careful but elementary computations yield

covMS(j) = 2p3
jp∗ − pjp∗, covSM(j) =

9
5
pjp

2
∗ − pjp∗ (16)

covSS =
27
7

p4
∗ − p2

∗ with pj :=
ȳ(j)

2R
and p∗ :=

n

3R
.

Since the random variables W1(j), W2(j), . . . are not independent the distribution
of Wi+1(j)+· · ·+Wt(j) depends on the preceding value wi(j). Theorem 2 considers
this fact (cf. [12]). We first introduce some abbreviations.

Notation. hn(0, j) := (k − 1)p∗(1 − p∗) + mpj(1 − pj) + 2(m − 1)covMS(j) +
2(m − 1)covSM(j) + 2(k − m − 1)covSS + 2k−m

k−1 covSM(j) + 2m−1
k−1 covSS + α2,

hn(1, j) := (k − 1)p∗(1 − p∗) + (m − 1)pj(1 − pj) + 2(m − 2)covMS(j) +
2(m − 2)covSM(j) + 2(k − m)covSS + 2k−m+1

k−1 covSM(j) + 2m−2
k−1 covSS + α2,

ew(0, j | b) := (k − 1)p∗ + mpj + k−m
k−1 (p∗S(b) − p∗) + m−1

k−1 (pjS(b) − pj),
ew(1, j | b) := (k−1)p∗+(m−1)pj + k−m+1

k−1 (p∗S(b)−p∗)+ m−2
k−1 (pjS(b)−pj) with

p∗S(1) := 27
7 p3

∗, p∗S(0) := p∗−p∗p∗S(1)

1−p∗
, pjS(1) := 9

5p∗pj and pjS(0) := pj−p∗pjS(1)

1−p∗
.

A false guess d̃k �= dk implies wrong assumptions about the intermediate temp
values for both hypotheses dt = 0 and dt = 1 for all the forthcoming decisions
(when guessing dt for t < k). Consequently, these guesses cannot be reliable, and
hence we use the loss function s(0, 1) = s(1, 0) = 1. (For this setting the expected
loss R(η, τ) equals the error probability Prob(dk �= d̃k).) For a complete proof
of Theorem 2 we refer the interested reader to [12], Theorem 6.5 (i).

Theorem 2. (Optimal decision strategy) Assume that the guesses d̃v−1,...,d̃k+1

are correct and that ham(dk, . . . , d0) = m. Let

ψN,d : (IR × {0, 1}3)N → IR, ψN,d((̃tdrem(1), uM(1), . . . ,uS(N), tS(N))) :=

−1
2

N∑
j=1

((
t̃drem(j) − tS(j) − ew(0, j | tS(j))

)2
hn(0, j)

−
(
t̃drem(j) − uM(j) − uS(j) − ew(1, j | uS(j))

)2
hn(1, j)

)
.

Then the deterministic decision strategy τd: (IR × {0, 1}3)N → {0, 1}, defined by

τd = 1
ψN,d<log(m−1

k−m+1)+ 1
2

∑N

j=1
log (1+cj)

with cj :=
hn(0, j) − hn(1, j)

hn(1, j)
(17)

is optimal (i.e., a Bayes strategy against the a priori distribution η).

96 Werner Schindler

Sketch of the Proof. To apply Theorem 1(ii), (iii) we first have to determine
the conditional probability densities hθ,∗j|Cj

(t̃drem(j), uM(j), uS(j), tS(j)) (normal
distribution) of the random vectors Xj := (T̃drem(j), UM(j), US(j), TS(j)) for θ =
0, 1 and j ≤ N with Cj = (UM(j) = uM(j), US(j) = uS(j), TS(j) = tS(j)). (We
point out that the Xj are independent but not their components.) The products∏N

j=1 hθ,∗j|Cj
(·) are inserted in (4), and elementary computations complete the

proof of Theorem 2.
The overall attack is successful iff all the guesses d̃v−1, . . . , d̃0 are correct.

Theorem 6.5 (ii) in [12] quantifies the probability for individual wrong guesses.
In particular, guessing errors will presumably only occur in the first phase of the
attack since the variance of the sum Wv+ham(d)−k−m−1(j) + . . .+Wv+ham(d)−2(j)

decreases as k tends to 0. Due to the lack of space we skip this aspect but give
a numerical example.

Example 3. Assume that the guesses d̃v−1, . . . , d̃k+1 have been correct. For ran-
domly chosen bases y(1), . . . , y(N), for n/R = 0.7, α2 = 0, N ≥ 5000, and . . .

(a) . . . (k, m) = (510, 255) we have Prob(d̃k �= dk) ≤ 0.014.
(b) . . . (k, m) = (440, 234) we have Prob(d̃k �= dk) ≤ 0.010.
(c) . . . (k, m) = (256, 127) we have Prob(d̃k �= dk) ≤ 0.001.

4.2 Error Detection, Error Location and Error Correction

In order to guess the secret exponent d the attacker considers a sequence of
statistical decision problems (one for each exponent bit). The ψN,d-values them-
selves can be interpreted as realizations of random variables Zv−1, Zv−2, . . . with
the pleasant property that their distributions change noticeably after the first
wrong guess. For instance, the decision strategy from Theorem 2 then yields the
guess 1 only with a probability of about 0.20 (The exact probability depends
on the concrete parameters; cf. [12], Theorem 6.5(iii)). The interested reader is
referred to Section 3 of [15] where a new stochastic strategy was introduced to
detect, locate and correct guessing errors, which additionally reduces the sample
size by about 40%.

4.3 Practical Experiments/Efficiency of the Optimized Attack

Reference [15] distinguishes two cases. In the ideal case it is assumed that the
time measurements are exact, that the attacker knows the constants and param-
eters c, cER, v and ham(d) and that he is able to determine the setup time t(S)

exactly. For the ‘real-life’ case the timing measurements were performed using
an emulator which predicts the running time of a program in clock cycles. The
code we used was the ready-for-transfer version of the Cascade library, i.e. with
critical routines directly written in the card’s native assemble language. Since the
emulator is designed to allow implementors to optimize their code before ‘burn-
ing’ the actual smart cards, its predictions should match almost perfectly. In
the ‘real-life’ case the attacker did not know c, cER, v, ham(d), and t(S). Instead,
these values were guessed in a pre-step ([14], Sect. 6).

On the Optimization of Side-Channel Attacks 97

Applying the optimized decision strategy and the error detection strategy
mentioned in the previous subsection we obtained for sample size N = 5000
success rates of 85% (ideal case) and 74% (‘real-life’ case). For N = 6000 we
obtained success rates of 95% and 85%, respectively. The original attack ([4])
yet required 200.000 − 300.000 measurements. In other words: The optimized
decision strategy from Theorem 2, combined with an efficient new error detection
strategy, improved the efficiency of the original attack by factor 50. Moreover,
the success rates for the ideal and the ‘real-life’ case are of the same size, which
additionally underlines that our stochastic model is very appropriate.

Remark 4. (Countermeasures). The attacker exploits that the secret exponent
d is the same for each exponentiation and that he knows both the bases and
the modulus. In fact, this type of timing attack can be prevented with expo-
nent blinding or base blinding techniques ([5]; Sect. 10). The latter is yet not
sufficient to prevent combined timing and power attacks (cf. Sect. 6). Constant
processing times for all Montgomery operations clearly is an alternative coun-
termeasure. This goal can be reached by omitting all extra reductions within
the exponentiation phase at cost of a larger modulus R > 4M ([18]). Alterna-
tively, an integer subtraction may be carried out in each Montgomery operation.
(The dummy subtractions should be implemented carefully since otherwise the
compiler might ignore them.)

5 A Timing Attack on RSA with CRT

In the previous section we considered a timing attack on RSA implementations
that do not use the CRT. It was essential that the attacker knew the base y,
the modulus n and the intermediate results of the computation. These require-
ments are obviously not fulfilled if the CRT is used. Consequently, it had been
assumed for some years that CRT implemenations were not vulnerable to tim-
ing attacks. In [13] a new type of timing attack against RSA with CRT and
Montgomery’s multiplication algorithm was introduced (adaptive chosen-input
attack). Unlike the attack from the previous section it does not guess the secret
exponent d bit by bit but factorizes the modulus n = p1p2. The attack would
not have been detected without the understanding of the stochastic behaviour
of Montgomery’s multiplication algorithm. We point out that also this timing
attack can be prevented with the countermeasures mentioned in Remark 4.

If the CRT is applied xi := (y(modpi))di ≡ yd(modpi) is computed for
i = 1, 2 with di = d(mod (pi − 1)). Finally, yd(mod n) is computed from these
intermediate results. We assume that the square & multiply exponentiation al-
gorithm and Montgomery’s algorithm are used to calculate x1 and x2. As in the
previous section R > pi denotes the Montgomery constant (which is assumed to
be the same for p1 and p2), while R−1 stands for the multiplicative inverse of R
in Zn. For input y := uR−1(mod n) the constant factor in the computation of
xi equals ȳi;1 = yR ≡ u (mod pi) (cf. Step 1 of Pseudoalgorithm 2).

Let 0 < u1 < u2 < n with u2 − u1 � p1, p2. Three cases are possible:
The ‘interval set’ {u1 + 1, . . . , u2} contains no multiple of p1 and p2 (Case A),

98 Werner Schindler

resp. contains a multiple of p1 or p2 but not of both (Case B), resp. contains
multiples of both p1 and p2 (Case C). The computation of xi requires about
log2(n)/2 squarings and log2(n)/4 multiplications with ȳi;1. The running time
for input y := uR−1 (mod n), denoted with T (u), is interpreted as a realization
of a normally distributed random variable Xu (cf. [13]), and from (11) we obtain

E(Xu2 − Xu1) ≈

⎧⎪⎨⎪⎩
0 for Case A
− cER

8

√
n

R for Case B
− cER

4

√
n

R for Case C.
(18)

where ‘E(·)′ denotes the expectation of a random variable. This observation can
be used for a timing attack that factorizes the modulus n. In Phase 1 the attacker
determines an ‘interval set’ {u1 + 1, . . . , u2} with u2 − u1 ≈ 2−6p1, 2−6p2 that
contains a multiple of p1 or p2. The attacker is convinced that this is the case iff
T (u2)− T (u1) > − cER

√
n/16R. (There is no need to distinguish between Case

B and Case C.) Starting with this interval {u1 +1, . . . , u2} in Phase 2 he applies
the same decision rule to decide whether its upper halve contains a multiple of p1

or p2, and he replaces current interval by that halve (upper halve or lower halve)
that contains a multiple of p1 or p2. In the elementary form of the attack this
process is continued until the actual subset {u1 + 1, . . . , u2} is sufficiently small
so that it is feasible to calculate gcd(u, n) for all u within this subset (Phase 3).
If all decisions within Phase 1 and Phase 2 have been correct the final subset
indeed contains a multiple of p1 or p2, and Phase 3 yields the factorization of n.

At any instant within Phase 2 the attacker can verify with high probability
whether his decisions have been correct so far, i.e. whether a given interval
{u1+1, . . . , u2} really contains a multiple of p1 or p2. He just applies the decision
rule to the time difference required for neighboured values of u1 and u2, for
instance to T (u2 − 1) − T (u1 + 1). If this confirms the preceding decisions it is
verified with overwhelming probability that the interval {u1 + 1, . . . , u2} truly
contains a multiple of p1 or p2. Consequently, we then call {u1 + 1, . . . , u2} a
confirmed interval. Otherwise, the attacker evaluates a further time difference
(e.g. T (u2−2)−T (u1+2)). Depending on this difference he either finally confirms
the interval {u1 + 1, . . . , u2} or restarts the attack at the preceding confirmed
interval, denoted with {u1;c + 1, . . . , u2;c}, using values u′

1 and u′
2 that are close

to u1;c and u2;c, respectively.
Under ideal conditions (no measurement errors) this attack required 570 time

measurements to factorize 1024 bit moduli n ≈ 0.7 · 21024. Confirmed intervals
were tried to establish after each 42 steps ([13]). When attacking a prime pi

directly (instead of any multiple) it suffices to reconstruct the upper half of the
bit representation of p1 or p2 ([3]). For the parameters from above this reduces
the number of time measurements from 570 to 300.

Also this attack may be interpreted as a sequence of decision problems with
|Θ| = 2, s(1, 0) = s(0, 1) = 1 and η(0) = η(1) = 0.5. However, the loss function
and the a priori distribution do not yield any additional information in this
case. We point out that this attack can be generalized to table methods ([13])
although its efficiency decreases due to a lower signal-to-noise ratio. In [1] this
attack was modified to attack OpenSSL implementations over local networks.

On the Optimization of Side-Channel Attacks 99

6 A Combined Timing and Power Attack

In this section we assume that the attacked device computes modular expo-
nentiations y �→ yd(mod n) with a modular exponentiation algorithm that uses
a b-bit-table ([9], Alg. 14.82) and Montgomery’s multiplication algorithm (cf.
Pseudoalgorithm 2). The b-bit table stores the values ȳ1, . . . , ȳ2b−1 with ȳj+1 =
MM(ȳj , ȳ1; M) (cf. Sect. 3). We assume that the attacked device is resistant
against pure power attacks but that the power measurements (SPA; cf. [16], Re-
mark 3) enable the attacker to identify the beginning and the end of the partic-
ular Montgomery multiplications, i.e., whether an extra reduction is carried out.
Due to base blinding (which prevents pure timing attacks) the attacker does
not any of the table values, that is, the operands of the Montgomery multiplic-
ations. (If the attacker knew the table entries the attack was indeed elementary
([19], Subsect. 3.3).) In [19] only the special case b = 2 was considered. In [16]
this attack was optimized and generalized to arbitrary b. Reference [17] treats
the sliding windows exponentiation algorithm ([9], Alg. 14.85) with a modified
variant of Montgomery’s exponentiation algorithm where an extra reduction is
carried out iff s ≥ R (cf. Sect. 3, Alg. 1). Although the general approach remains
the same this increases the mathematical difficulties considerably.

The attack falls into four phases. At first the attacker measures the power
consumption for a sample y1, . . . , yN , and therefrom he determines those Mont-
gomery operations that require extra reductions. On basis of this information he
guesses the types (‘S′, ‘M ′

1, . . . , ‘M ′
2b−1) of all Montgomery operations within the

exponentiation phase. The attacker guesses blocks of f ≥ 1 consecutive Mont-
gomery operations independently. (The attack becomes more efficient for f > 1
since the extra reductions of consecutive Montgomery multiplications are not in-
dependent. At the same time the computations become more complex.) Finally,
the attacker tries to correct possible guessing errors and checks the resulting
guess d̃ for the secret exponent d (e.g. by a known digital signature).

Theorem 3 specifies the optimal decision strategy. The {0, 1}-valued random
variables W1(k), W2(k), . . . describe the random timing behaviour of the Mont-
gomery multiplications in the exponentiation phase (see Sect. 3) where ‘(k)’
indicates sample k. Equation (11) quantifies the probabilities for extra reduc-
tions which yet depend on the unknown table values. The ‘source’ of the attack
is the initialization phase where the table values ȳ1(k), . . . , ȳ2b−1(k) computed.
Although the attacker does not know the particular operands he at least knows
the type of these operation (ȳj+1(k) = MM(ȳj(k), ȳ1(k); M)). The random timing
behaviour in the initialization phase is quantified by another stochastic process
W ′

1(k), . . . , W
′
2b−1(k) (cf. [16], Equation (3)). Theorem 3 uses Theorem 1(iii). For

its proof we refer the interested reader to [16].

Theorem 3. Let τopt

(
(wi(k), . . . , wi+f−1(k), w

′
1(k), . . . , w

′
2b−1(k))1≤k≤N

)
:= θ∗ if

∑
θ∈Θ

s(θ, θ′)η(θ)
N∏

k=1

Probθ

(
Wi(k) = wi(k) , . . . , Wi+f−1(k) = wi+f−1(k) |

W ′
r(k) = w′

r(k), r = 1, . . . , 2b − 1
)

100 Werner Schindler

is minimal for θ′ = θ∗. The decision strategy τopt is optimal among all the
decision strategies that guess the types T (i), . . . , T (i + f − 1) simultaneously.

Apart from additional technical difficulties the conditional probabilities
Probθ(· | ·) are computed in a similar manner as in (15). We refer the interested
reader to Section 4 of [16]. Due to the lack of space we restrict our attention to
the a priori distribution and the loss function where we exclusively consider the
case f = 1. (The general case f ≥ 1 is treated in [16], Sect. 5.) In particular,
Θ = {‘S′, ‘M ′

1 . . . , ‘M ′
2b−1}. In the exponentiation phase ≈ log2(d) squarings and

≈ log2(d)/(b2b) multiplications with any particular table entry ȳj are carried out.
This yields the a priori distribution

η(‘M ′
1) = · · · = η(‘M ′

2b−1) =
1

b2b

2b−1
b2b + 1

=
1

b2b(2b − 1)
, η(‘S′) =

b2b

b2b(2b − 1)
. (19)

The following example underlines that unlike in Sects. 4 and 5 it is reasonable
to distinguish between different types of guessing errors.

Example 4. Let b = 4 and let the correct type sequence be given by
. . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M12‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
whereas a), b) and c) are possible guesses.
a) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘M11‘, ‘M12‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
b) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
c) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M14‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .

Each of the subsequences a), b), and c) contains exactly one wrong guess. The
error in Sequence a) (‘M11’) is obvious as the number of squarings between two
multiplications with table entries must be a multiple of b = 4. Type-a errors
(‘Mj ’ instead of ‘S’) are easy to detect and to correct if they occur isolated, i.e.
if there are no further type-a or type-b errors (‘S’ instead of ‘Mj ’; cf. Sequence b))
in their neighbourhood. The correction of type-b-errors is not as obvious as that
of type-a errors. (Reasonably, the attacker tries that alternative a ∈ Θ \ {‘S′}
that yields the second lowest expected loss.) The detection and location of type-a
errors and type-b errors can be interpreted as a decoding problem. (Therefore,
‘S′ is replaced by 0 and ‘M ′

j by 1. Valid code words consist of isolated 1s and
subsequences of 0s with lengths that are multiples of b.) Most cumbersome are
the type-c errors (‘Mj ’ instead of ‘M ′

t) as not even their detection is obvious.
Clearly, the attacker wants to avoid false guesses. However, the optimal decision
strategy need not minimize the total number of errors (which was achieved by
defining s(θi, θj) := 1 for all θi �= θj ∈ Θ) but should ‘favour’ type-a and
type-b errors in comparison with type-c errors. Consequently, it is reasonable to
choose a loss function that punishes type-c errors more than type-a and type-b
errors, In our practical experiments we used for b = 4, for instance, the values
s(‘S′, ‘M ′

j) = 1, s(‘M ′
j, ‘S

′) = 1.5, s(‘M ′
t , ‘M

′
j) = 8 (cf. [16]). We point out

that the attack can be prevented with suitable exponent blinding or constant
processing times for all Montgomery operations in the exponentiation phase (cf.
Remark 4 and [16], Sect. 11) but not with base blinding.

On the Optimization of Side-Channel Attacks 101

Recall that whether a Montgomery operation requires an extra reduction nei-
ther depends on the concrete hardware platform nor on the used multiprecision
variant of Montgomery’s multiplication algorithm but only on d, n, R and the
base y(k) (cf. Subsect. 3.1). Hence we emulated the modular exponentiations on a
computer, outputting which Montgomery operations required extra reductions.
This clearly corresponds with an attack under ideal conditions (also consid-
ered in [19] and [16]) where the attacker knows definitely whether a particular
Montgomery operation needs an extra reduction. We point out that the attack,
though less efficient, will also work under less favourable conditions. An attack
was counted as successful iff the closest code word yielded the location of all
type-a and type-b errors, and if there was at most one type-c error. For RSA
without CRT, b = 2, n/R ≈ 0.99, log2(d) ≈ 384 and (f = 3, N = 200) we ob-
tained a success rate of about 90% whereas the attack in [19] required N = 1000
samples. (The efficiency of the attack increases as the ratio n/R increases.) For
b = 4, n/R ≈ 0.70 (average case), log2(d) ≈ 512 and (f = 1, N = 550) about of
94% of the attacks were successful. We point out that also CRT implementations
are vulnerable to this attack (cf. [16], Sect. 10).

For b = 4, n/R ≈ 0.70, log2(d) ≈ 512 and (f = 1, N = 550), resp. (f =
1, N = 450) the optimal decision strategy was successful in about 94%, resp.
67% of the trials. Neglecting the a priori distribution and the different classes
of errors, i.e. when using the maximum-likelihood estimator, the success rates
decreased to 74% and 12%, resp., for these two parameter sets. For the optimal
decision strategy the average numbers of type-c errors per trial were about 0.3
and 0.8, respectively. When using the maximum-likelihood estimator about 0.8,
resp. 2.4, type-c errors occurred per trial in average.

These results underline that the probabilities pθ have the most significant
impact on the efficiency of the decision rule. Depending on the concrete situa-
tion, however, also the a priori distribution and the definition of an appropriate
loss function may have non-negligible impact on the efficiency of the decision
statrategy, especially for small sample sizes.

7 A Timing Attack on a Weak AES Implementation

Reference [7] considers a timing attack on a careless AES implementation. In
the MixColumn transformation multiplications over GF (28) by ‘02′ and ‘03′ =
‘01′ + ‘02′ are carried out. Essentially, only the multiplications by ‘02′ need
to be calculated, and this is done by shifting the respective state byte by one
position to the left. If a carry occurs the hexadecimal constant ‘1B′ is XORed to
the shifted value. In the attacked implementation these conditional operations
caused differences in the encryption times since the other AES transformations
required identical time for all input values. In [7] the key bytes k1, k2, . . . , k16

were treated independently, and all combinations of key byte candidates were
checked by a known plaintext/ciphertext pair.

Clearly, the larger the candidate sets the more time-consuming is the checking
phase. On the other hand, if a correct key byte is rejected the attack must fail.

102 Werner Schindler

In [15] the efficiency of this attack was increased noticeably by interpreting the
encryption times as realizations of random variables and by applying statistical
decision theory. The candidate sets for the particular key bytes were reduced in
two steps, considering one further key byte in each step. Each reduction step itself
consists of many decisions, tolerating errors in some of these individual decision
problems. Due to the lack of space we omit details and refer the interested reader
to [15]. We merely point out that the sample size was reduced from 48000 to 4000
with a success rate of more than 90%. Moreover, this two-step sieving process
can be adjusted to other side-channel attacks (e.g., to power attacks) where
different parts of the key influence the measurements simultaneously.

8 Final Remarks

This paper proposes a general method to optimize the efficiency of side-channel
attacks by advanced stochastic methods, especially by applying the calculus of
stochastic processes and statistical decision theory. The proposed method is not
a ‘ready-to-use’ tool for any application but requires some work to apply it to
specific problems. We yet believe that the above examples have illustrated the
central principles. We emphasize that a good understanding of the potential
power of an attack is necessary to be able to rate its true risk potential and to
design adequate and reliable countermeasures.

References

1. D. Brumley, D. Boneh: Remote Timing Attacks are Practical. In: Proceedings of
the 12th Usenix Security Symposium, 2003.

2. B. Canvel, A. Hiltgen, S. Vaudenay, M. Vuagnoux: Password Interception in a
SSL/TSL Channel. In: D. Boneh (ed.): Crypto 2003, Lecture Notes in Computer
Science 2729, Springer, Heidelberg (2003), 583–599.

3. D. Coppersmith: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. Cryptology 10 (no. 4) (1997) 233–260.

4. J.-F. Dhem, F. Koeune, P.-A. Leroux, P.-A. Mestré, J.-J. Quisquater, J.-L.
Willems: A Practical Implementation of the Timing Attack. In: J.-J. Quisquater
and B. Schneier (eds.): Smart Card – Research and Applications, Springer, Lecture
Notes in Computer Science 1820, Berlin (2000), 175–191.

5. P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: N. Koblitz (ed.): Crypto 1996, Springer, Lecture Notes in Com-
puter Science 1109, Heidelberg (1996), 104–113.

6. K. Gandolfi, C. Mourtel, F. Olivier: Electromagnetic Analysis: Concrete Results.
In: Ç.K. Koç, D. Naccache, C. Paar (eds.): Cryptographic Hardware and Embedded
Systems – CHES 2001, Springer, Lecture Notes in Computer Science 2162, Berlin
(2001), 251–261.

7. F. Koeune, J.-J. Quisquater: A Timing Attack against Rijndael. Catholic Univer-
sity of Louvain, Crypto Group, Technical report CG-1999/1, 1999.

8. P. Kocher, J. Jaffe, B. Jub: Differential Power Analysis. In: M. Wiener (ed.): Crypto
1999, Springer, Lecture Notes in Computer Science 1666, Berlin (1999), 388–397.

On the Optimization of Side-Channel Attacks 103

9. A.J. Menezes, P.C. van Oorschot, S.C. Vanstone: Handbook of Applied Crypto-
graphy, Boca Raton, CRC Press (1997).

10. D. Neuenschwander: Probabilistic and Statistical Methods in Cryptology. An In-
troduction by Selected Topics. Springer, Lecture Notes in Computer Science 3028,
Berlin (2004).

11. H. Sato, D. Schepers, T. Takagi: Exact Analysis of Montgomery Multiplication.
TU Darmstadt, Technical Report TI-6/04.

12. W. Schindler: Optimized Timing Attacks against Public Key Cryptosystems.
Statist. Decisions 20 (2002), 191–210.

13. W. Schindler: A Timing Attack against RSA with the Chinese Remainder Theo-
rem. In: Ç.K. Koç, C. Paar (eds.): Cryptographic Hardware and Embedded Sys-
tems – CHES 2000, Springer, Lecture Notes in Computer Science 1965, Berlin
(2000), 110–125.

14. W. Schindler, F. Koeune, J.-J. Quisquater: Unleashing the Full Power of Timing
Attack. Catholic University of Louvain, Technical Report CG-2001/3.

15. W. Schindler, F. Koeune, J.-J. Quisquater: Improving Divide and Conquer Attacks
Against Cryptosystems by Better Error Detection / Correction Strategies. In: B.
Honary (ed.): Cryptography and Coding – IMA 2001, Springer, Lecture Notes in
Computer Science 2260, Berlin (2001), 245–267.

16. W. Schindler: A Combined Timing and Power Attack. In: P. Paillier, D. Naccache
(eds.): Public Key Cryptography – PKC 2002, Springer, Lecture Notes in Computer
Science 2274, Berlin (2002), 263–279.

17. W. Schindler, C. Walter: More Detail for a Combined Timing and Power Attack
against Implementations of RSA. In: K.G. Paterson (ed.): Cryptography and Cod-
ing – IMA 2003, Springer, Lecture Notes in Computer Science 2898, Berlin (2003),
245–263.

18. C.D. Walter: Precise Bounds for Montgomery Montgomery Modular Multiplica-
tion and Some Potentially Insecure RSA Moduli. In: B. Preneel (ed.): Topics in
Cryptology – CT-RSA 2002, Springer, Lecture Notes in Computer Science 2271,
Berlin (2002), 30–39.

19. C.D. Walter, S. Thompson: Distinguishing Exponent Digits by Observing Mod-
ular Subtractions. In: D. Naccache (ed.): Topics in Cryptology – CT-RSA 2001,
Springer, Lecture Notes in Computer Science 2020, Berlin (2001), 192–207.

20. H. Witting.: Mathematische Statistik I, Stuttgart, Teubner (1985).

Symmetric Subgroup Membership Problems

Kristian Gjøsteen

Department of Matematical Sciences,
Norwegian University of Science and Technology, 7491 Trondheim, Norway

kristian.gjosteen@math.ntnu.no

Abstract. We define and discuss symmetric subgroup membership
problems and their properties, including a relation to the Decision Diffie-
Hellman problem. We modify the Cramer-Shoup framework, so that we
can derive a chosen ciphertext secure cryptosystem in the standard model
from symmetric subgroup membership problems. We also discuss how
chosen ciphertext secure hybrid cryptosystems based on a symmetric
subgroup membership can be constructed in the standard model, giving
a very efficient cryptosystem whose security relies solely on the symmet-
ric subgroup membership problem.

Keywords: public key encryption, hybrid encryption, standard model,
subgroup membership problem.

1 Introduction

Public key cryptography was first proposed by Diffie and Hellman [5]. The most
general security notion for public key cryptosystems is security against adaptive
chosen ciphertext attacks (CCA) [10]. While many efficient schemes achieve this
in the random oracle model, Cramer and Shoup [2, 4] designed the first efficient
scheme to achieve this security level in the standard model.

The security proofs for many public key cryptosystems essentially rely on
subgroup membership problems. The most famous subgroup membership prob-
lem is the Decision Diffie-Hellman problem [1], on which the Cramer-Shoup
cryptosystem relies. Yamamura and Saito [11] catalogued many subgroup mem-
bership problems that have appeared in the literature. Cramer and Shoup [3]
gave a framework for turning general subgroup membership problems into secure
cryptosystems, generalising their previous work and giving several new instances
with interesting properties.

We study symmetric subgroup membership problems (Sect. 2), and show how
they relate to the Decision Diffie-Hellman problem (Sect. 3). We also extend
the framework of Cramer and Shoup to make efficient use of symmetric sub-
group membership problems, giving very efficient cryptosystems secure against
chosen ciphertext attacks in the standard model (Sect. 4). Finally, we discuss
new developments in hybrid encryptions (Sect. 5) and construct a very efficient
cryptosystem provably chosen ciphertext secure in the standard model, relying
solely on the symmetric subgroup membership problem.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 104–119, 2005.
c© International Association for Cryptologic Research 2005

Symmetric Subgroup Membership Problems 105

1.1 Notation

If S is a non-empty finite set, we denote by NS the set {0, . . . , |S| − 1}.
Let X be a distribution on a set S. We denote by x ← X the act of sampling

x from S according to the distribution X . The notation x ← S is used to denote
sampling x from S according to the uniform distribution. We denote by x ← s
the assignment of the value s to x.

We use the following notation to describe new distributions. Let X1, . . . , Xn

be distributions on sets S1, . . . , Sn, and let f : S1 × · · · × Sn → S be a function.
Then by

X = {f(x1, . . . , xn) | x1 ← X1, . . . , xn ← Xn}
we denote the distribution on S defined by

Pr[x = s | x ← X] = Pr[f(x1, . . . , xn) = s | x1 ← X1, . . . , xn ← Xn] .

The distance between two distributions X and Y on a set S is

Dist(X, Y) =
1
2

∑
s∈S

|Pr[X = s] − Pr[Y = s]| .

We say that two distributions X and Y are δ-close if Dist(X, Y) ≤ δ.

2 Symmetric Subgroup Membership Problem

A subgroup membership problem consists of a finite abelian group G along with
a proper, non-trivial subgroup K. The problem is to decide if a group element
x ∈ G is in K or in G \ K. We denote this subgroup membership problem by
SM(G,K), and the advantage of an adversary A is

AdvSM(G,K)

A = |Pr[A(G, K, x) = 1 | x ← K]− Pr[A(G, K, x) = 1 | x ← G \ K]| .

Let G be a finite abelian group, and let K and H be subgroups of G such
that K ∩ H = {1} and G = KH . Then K × H � G, and the isomorphism is
simply the group operation: (k, h) �→ kh. If gcd(|K|, |H |) = 1, then if d ≡ |H |−1

(mod |K|), we get that c �→ (c|H|d, c1−|H|d) is the inverse map. So anyone who
knows |K| and |H | can compute the reverse isomorphism.

The symmetric subgroup membership problem SSM(G,K,H) is the subgroup
membership problem SM(G×G,K×H). It is easy to show that distinguishing K×
H is equivalent to distinguishing either K or H or both, and that considering
maximum advantages for algorithms using some fixed amount of resources, we
get

AdvSM(G,K) − |K| − 1
|G| − 1

≤ AdvSSM(G,K,H) ≤ AdvSM(G,K) + AdvSM(G,H) .

We shall assume that there are efficient algorithms available for sampling the
subgroups K and H from a distribution that is δ-close to the uniform distri-
bution, for some negligible δ ≥ 0. Typically, these algorithms simply choose a

106 Kristian Gjøsteen

random exponent and exponentiate a generator for the subgroup. If δ cannot be
zero, it is always easy to make δ arbitrarily small.

We describe two instances of the symmetric subgroup membership problem.
Let n = pq be an RSA modulus, and let G be a group of order n. Let K be

the subgroup of order p and let H be the subgroup of order q. Then we have a
symmetric subgroup membership problem SSM(G,K,H).

If p′ = 2n + 1 is prime, the set of quadratic residues in GF (p′)∗ is exactly
such a group structure, and it seems plausible that it gives a hard symmetric
subgroup membership problem. It was discussed in [8] and [9]. We could also
consider p′ = 2sn + 1 for some small integer s, with little additional complexity.

As an alternative, let a, b, c, d, p = 2ab + 1 and q = 2cd + 1 be primes, let
n = pq, and let G be the subgroup of Z∗

n with Jacobi symbol 1. Let K be the
subgroup of order 2ac and H be the subgroup of order bd. It is plausible that
the resulting symmetric subgroup membership problem is hard. Note also that
ac can be made much smaller than bd.

To see how this group structure can be used, we briefly describe a key encap-
sulation method (KEM) [4], and show that it is secure against passive attacks if
and only if the symmetric subgroup membership problem is hard.

The key generation algorithm simply selects a suitable symmetric subgroup
membership problem SSM(G,K,H), and outputs a public key (G, K, H). The
private key is (G, |K|, |H |).

To sample a symmetric key and encipher it, (x, y) ∈ G × G is sampled
(almost) uniformly at random from K × H , using the sampling algorithms for
SSM(G,K,H). The key is (x, y) and the ciphertext is the product xy.

To decipher c ∈ G, the knowledge of |K| and |H | is used to compute (x, y) ∈
K × H such that c = xy, as described above.

It is clear that distinguishing the decryption (x, y) of a ciphertext c from a
random pair (x′, y′) ∈ G × G such that x′y′ = c is equivalent to deciding the
symmetric subgroup membership SSM(G,K,H).

To discuss the efficiency of the above KEM, we shall compare it with three
other schemes. The first is the cryptosystem proposed in [9] (NBD), the second
is Diffie-Hellman in G (DH/G), and the third is Diffie-Hellman in the subgroup
K (DH/K).

It was shown in [9] that NBD is secure if the symmetric subgroup membership
problem is hard. Sect. 3 will show that Diffie-Hellman in G is not less secure than
the above KEM. Sect. 4 will show that Diffie-Hellman in K can be turned into
a cryptosystem with messages in G that is secure if the symmetric subgroup
membership problem is hard.

DH/G requires two exponentiations in G to encrypt, and one to decrypt.
DH/K requires two exponentiations in K to encrypt, and one to decrypt. NBD
requires one exponentiation in K and one in H to encrypt, and approximately
1.3 exponentiations in G to decrypt. Our KEM requires essentially one exponen-
tiation in K and one in H , both to encrypt and decrypt.

As we can see, Diffie-Hellman in K is the best option, especially if exponen-
tiations in K can be made cheaper than exponentiations in H .

Symmetric Subgroup Membership Problems 107

3 The Decision Diffie-Hellman Problem

We keep the notation introduced in Sect. 2. Let x be a generator for G. The
Decision Diffie-Hellman (DDH) problem is to distinguish the two distributions
{(x, xu, xv, xuv) | u, v ← NG} and {(x, xu, xv, xw) | u, v, w ← NG}. Some defini-
tions require w �≡ uv (mod |G|), but the difference is negligible. The advantage
of an algorithm A taking four group elements as input and answering 0 or 1
against DDH is defined to be

AdvDDHG

A =
1
2
|Pr[A(x, xu, xv, xuv) | u, v ← NG]−

Pr[A(x, xu, xv, xw) | u, v, w ← NG]| .

We shall need the following result later on, so we state it as a separate lemma.

Lemma 1. Let G be a finite cyclic group, and let K and H be non-trivial sub-
group of G such that K ∩ H = {1} and G = KH. Let g be a generator for K.
Consider the two distributions given by U = {(gu, y, yu) | u ← NG, y ← G \ K}
and V = {(gu, y, yuz | u ← NG, y ← G \ K, z ← H}. Then

Dist(U, V) ≤ |H | − φ(|H |)
|H | .

Proof. Let u1 = u mod |K| and u2 = u mod |H |, and let y = y1y2 with y1 ∈ K,
y2 ∈ H . It is easy to see that

U = {(gu1 , yu1
1 yu2

2) | u1 ← NK , u2 ← NH , y1 ← K, y2 ← H \ {1}}
and

V = {(gu1 , yu1
1 yu2

2 z) | u1 ← NK , u2 ← NH , y1 ← K, y2 ← H \ {1}, z ← H} .

With U ′ = {yu2
2 | u2 ← NH , y2 ← H \ {1}} and V ′ = {yu2

2 z | u2 ← NH , y2 ←
H \ {1}, z ← H}, it is clear that

Dist(U, V) = Dist(U ′, V ′)

and that V ′ is exactly the uniform distribution on H . If y2 is a generator, then
U ′ is also uniformly distributed on H . It follows that

Dist(U ′, V ′) ≤ |H | − φ(|H |)
|H | ,

which concludes the proof. �

Theorem 1. Let SSM(G,K,H) be a symmetric subgroup membership problem
such that G is cyclic, and suppose that the sampling algorithms for K and H
are δ-close to uniform. Let A be an algorithm that decides the Decision Diffie-
Hellman problem in G. Then for any δ′ > 0 there are algorithms A1, A2 and A3

108 Kristian Gjøsteen

that use A once as an oracle and otherwise do O(log 1/δ′) exponentiations in G,
such that

AdvDDHG

A ≤ AdvSM(G,K)

A1
+ AdvSM(G,K)

A2
+ AdvSM(G,H)

A3
+

|G| − φ(|G|)
|G| − |K| +

|K| − φ(|K|)
|K| +

|H | − φ(|H |)
|H | +

|G| − φ(|G|)
|G| − |H | +

7δ′ + 4δ .

Proof. We shall need the following three experiments.

Experiment 1
Input: A, G, x ∈ G

1. u, v, w ← NG.
2. y ← xv.
3. b ← {0, 1}.
4. If b = 1, then

z ← yu, otherwise
z ← xw.

5. b′ ← A(x, xu, y, z).
6. If b = b′, output 1,

otherwise output 0.

Output: 0 or 1.

Experiment 2
Input: A, G, y ∈ G

1. u, v ← NG.
2. x ← K.
3. b ← {0, 1}.
4. If b = 1, then

z ← yu, otherwise
z ← yw.

5. b′ ← A(x, xu, y, z).
6. If b = b′, output 1,

otherwise output 0.

Output: 0 or 1.

Experiment 3
Input: A, G, h ∈ G

1. u, v ← NG.
2. x ← K, y ← G \ K.
3. b ← {0, 1}.
4. If b = 1, then

z ← yuh, otherwise
z ← yw.

5. b′ ← A(x, xu, y, z).
6. If b = b′, output 1,

otherwise output 0.

Output: 0 or 1.

In each experiment, Step 1 and 2 requires sampling certain elements from
certain uniform distributions. It may be impossible to implement these steps,
but we can implement approximations.

For Step 1, we note that the numbers sampled are used as exponents. There-
fore, we can sample uniformly from a larger set to get an element distribution
close to uniform. The cost is exponentiating to the larger exponent, but it is
easy to show that for any δ′ > 0, O(1/ log δ′) extra work suffices for a δ′-close to
uniform distribution.

For Step 2, we simply use the algorithms provided by the subgroup member-
ship problem, which are δ-close to uniform.

Consider first Experiment 1. If the input x is a generator for G, then this
experiment measures the advantage of A against DDH. Let T1 denote the event
that the experiment outputs 1 when the input x is sampled from G\K. An easy
computation shows that

AdvDDHG

A ≤ |Pr[T1] − 1/2|+ |G| − φ(|G|)
|G| − |K| . (1)

Let T ′
1 denote the event that the Experiment 1 outputs 1 when the input x is

sampled from K. By the comments above, we can use Experiment 1 to construct
a distinguisher A1 for K, and

|Pr[T1] − Pr[T ′
1]| ≤ AdvSM(G,K)

A1
+ 3δ′ . (2)

Symmetric Subgroup Membership Problems 109

Next, we consider Experiment 2. Let T ′
2 be the event that Experiment 2 out-

puts 1 when the input y is sampled from K. Suppose the input x to Experiment 1
and y to Experiment 2 are sampled uniformly from K. In either case, if the x
sampled generates K, the two experiments proceed identically. In other words,

|Pr[T ′
1] − Pr[T ′

2]| ≤
|K| − φ(|K|)

|K| . (3)

Let T2 be the event that Experiment 2 outputs 1 when the input y is sampled
from G \K. As above, we can use Experiment 2 to construct a distinguisher A2

for K, and
|Pr[T2] − Pr[T ′

2]| ≤ AdvSM(G,K)
A2

+ 2δ′ + δ . (4)

Then we consider Experiment 3. Let T ′
3 be the event that the experiment

outputs 1 when the input h is sampled from H . When the input y to Experi-
ment 2 is sampled from G \K and the input h to Experiment 3 is sampled from
H , Lemma 1 shows that

|Pr[T2] − Pr[T ′
3]| ≤

|H | − φ(|H |)
|H | . (5)

Let T3 be the event that the experiment outputs 1 when the input h is sampled
from G \H . As above, we can use Experiment 3 to construct a distinguisher A3

for H , and
|Pr[T3] − Pr[T ′

3]| ≤ AdvSM(G,H)
A3

+ 2δ′ + 3δ . (6)

To conclude, we need only observe that in Experiment 3, when the input h
is sampled from G \H and y is a generator, the distribution of z is independent
of b, and therefore

|Pr[T3] − 1/2| ≤ |G| − φ(|G|)
|G| − |H | . (7)

Combining equations (1)–(7) proves the theorem. �

4 Chosen Ciphertext Security

4.1 Hash Proof Systems

We give a brief presentation of hash proof systems. It is only superficially differ-
ent from [3], so we refer the reader there for further details.

Let G be a set, and let K be a subset of G. We say that W is a witness set for
K if there is an easily computable bijection ρ : W → K. This bijection allows
one to prove that an element x ∈ G really is in K by presenting an element
w ∈ W such that ρ(w) = x. This obviously assumes that it is easy to recognise
elements of W .

For two sets S, S′, denote by Map(S, S′) the set of maps from S to S′.
Let L be a group. We are interested in looking at maps from G to L. There
is a natural map Map(G, L) → Map(K, L) given by restriction. From ρ we get

110 Kristian Gjøsteen

a bijection ρ∗ : Map(K, L) → Map(W, L). We also denote the natural map
Map(G, L) → Map(W, L) by ρ∗.

A projective hash family is a tuple (G, K, L, W, ρ, M), where G is a set, K is
a subset of G, L is a group, W is a witness set for K with isomorphism ρ, M is a
subset of Map(G, L), and for any f ∈ M , the image of K under f is a subgroup
of L. We also suppose that L has a subgroup L′, such that L′ ∩ f(K) = {1} and
L = L′f(K). This gives us a subgroup membership problem SM(L,L′). (This
corresponds to the definition sketched in Section 8.2.4 of [3].)

Let (G, K, L, W, ρ, M) be a projective hash family. The projective hash family
is ε-universal if for any f ′ ∈ ρ∗(M), x ∈ G \ K and y ∈ L, we have that

Pr[f(x) = y ∧ ρ∗(f) = f ′|f ← M] ≤ εPr[ρ∗(f) = f ′|f ← M] .

The projective hash family is ε-universal-2 if for any f ′ ∈ ρ∗(M), x0 ∈ G \ K,
x ∈ G \ (K ∪ {x0}) and y, y0 ∈ L, we have that

Pr[f(x) = y ∧ f(x0) = y0 ∧ ρ∗(f) = f ′|f ← M]
≤ εPr[f(x0) = y0 ∧ ρ∗(f) = f ′|f ← M] .

It is clear that ε-universal follows from ε-universal-2.
Let (G, K, L, W, ρ, M) be a projective hash family. Define the two distribu-

tions

U = {(x, ρ∗(f), f(x)) | x ← G \ K, f ← M},
V = {(x, ρ∗(f), f(x)y) | x ← G \ K, f ← M, y ← L′} .

We say that the projective hash family is ε-smooth if

Dist(U, V) ≤ ε .

A hash proof system Π for a subgroup membership problem SM(G,K) is
a projective hash family (G, K, L, W, ρ, M), along with efficient algorithms for
sampling W and M δ′-close to uniform, and for evaluating the hash functions
on points in G and W .

An extended hash proof system Π̂ for SM(G,K) is a projective hash family
(G × S, K × S, L̂, W, ρ̂, M̂), where S is some set depending on G, along with
efficient algorithms for sampling W and M̂ δ′-close to uniform, and for evaluating
the hash functions on points in G × S and W × S.

A (extended) hash proof system Π (Π̂) is ε-smooth (ε-universal-2) if the
projective hash family is ε-smooth (ε-universal-2).

Let SSM(G,K,H) be a symmetric subgroup membership problem such that
G is cyclic, and suppose that a generator g is available for K. We shall describe
a hash proof system Π and an extended hash proof system Π̂ for SSM(G,K,H).
The group L will be G, and L′ = H .

Let W = Z|K| and ρ([w]) = gw. Let L = G and let L′ = H . Since G is
cyclic, the homomorphism group Hom(G, G) is isomorphic to Z|G|, and we let
M = Hom(G, G). For any f ∈ M , a useful description of the function ρ∗(f)

Symmetric Subgroup Membership Problems 111

is the group element f(g), since for any [w] ∈ W , f(gw) = f(g)w. The projec-
tive hash family is (G, K, G, Z|K|, ρ, Hom(G, G)), with the obvious sampling and
evaluation algorithms.

By Lemma 1, this hash proof system is ε-smooth, for ε = 1 − φ(|H |)/|H |.
The extended hash proof system Π̂ is slightly more complicated. Let � be the

smallest prime dividing |H |. We shall suppose that for some sufficiently large l,
a 1-1 function h : G × G → {0, . . . , � − 1}l is available. Then M̂ is the set of
functions of the form

f̂(x, e) = f0(x)
l∏

i=1

fi(x)γi ,

where h(x, e) = (γ1, . . . , γl), and fi ∈ Hom(G, G).
The witness set for K ×G is Z|K| ×G, and the map ρ̂ is given by ρ̂([w], e) =

(gw, e), where g is a generator for K. It is clear that

ρ̂∗(f̂)([w], e) = f0(g)w
l∏

i=1

fi(g)wγi ,

where h(gw, e) = (γ1, . . . , γl). So a useful description of the function ρ̂∗(f̂) is the
tuple (s0, s1, . . . , sl) = (f0(g), f1(g), . . . , fl(g)).

By Theorem 3 of [3], the extended hash proof system Π̂ described above is
1/�-universal-2. Just as in [4], it is possible to replace the 1-1 function h with
a collision resistant hash function, to get a computationally secure construction
with l = 1.

4.2 The Cryptosystem

The standard goal for a public key cryptosystem is indistinguishability of cipher-
texts against a adaptive chosen ciphertext adversary. We consider adversaries A
consisting of a pair of algorithms (A1, A2), where A1 receives the public key and
outputs a pair of messages (m0, m1). A2 then receives an encryption of one of
the messages and must decide which one. Both A1 and A2 are allowed to have
arbitrary ciphertexts decrypted (the challenge ciphertext excepted, obviously).
If T is the event that A decides correctly, we say that A wins the game, and its
advantage is defined to be

AdvCCA
A = |Pr[T] − 1/2| .

Suppose we have a subgroup membership problem SM(G,K), a hash proof
system Π for SM(G,K), and an extended hash proof system Π̂ for SM(G,K)

such that the projective hash families are (G, K, L, W, ρ, M) and (G × L, K ×
L, L̂, W, ρ̂, M̂), respectively.

We derive the cryptosystem CS′ described in Fig. 1 from the two hash proof
systems. Note that M , M̂ and W are sampled using the algorithms from the
hash proof systems.

The security analysis closely follows the analysis in [3].

112 Kristian Gjøsteen

Key Generation
Input: SM(G,K), Π , Π̂.

1. f ← M , f̂ ← M̂ .
2. sk ← (G, L, L̂, f, f̂).
3. pk ← (G, W, L, L̂, ρ,

ρ∗(f), ρ̂∗(f̂)).

Output: (pk, sk).

Encryption
Input: pk, m ∈ L.

1. w ← W .
2. x ← ρ(w).
3. y ← ρ∗(f)(w).
4. e ← ym.
5. ŷ ← ρ∗(f̂)(w, e).

Output: (x, e, ŷ).

Decryption
Input: sk, (x, e, ŷ).

1. ŷ′ ← f̂(x, e).
2. If ŷ′ 	= ŷ, output ⊥.
3. y ← f(x).
4. m ← ey−1.
5. Output m.

Output: A message m or ⊥.

Fig. 1. The cryptosystem CS′.

Key Generation
Input: SSM(G,K,H), g ∈ K.

1. (k, k0, k1, . . . , kl) ← {0, . . . , |G| − 1}l+2.
2. (s, s0, s1, . . . , sl) ← (gk, gk0 , gk1 , . . . , gkl).
3. pk ← (G, g, s, s0, s1, . . . , sl, h).
4. sk ← (G, k, k0, k1, . . . , kl, h).

Output: (pk, sk).

Encryption
Input: pk, m ∈ G.

1. w ← {0, . . . , |K| − 1}.
2. x ← gw.
3. y ← sw.
4. e ← ym.
5. (γ1, . . . , γl) ← h(x, e).
6. ŷ ← sw

0

∏l
i=1 swγi

i .

Output: (x, e, ŷ) ∈ G × G × G.

Decryption
Input: sk, (x, e, ŷ) ∈ G × G × G.

1. (γ1, . . . , γl) ← h(x, e).
2. ŷ′ ← xk0

∏l
i=1 xkiγi .

3. If ŷ 	= ŷ′, then output ⊥.
4. y ← xk.
5. m ← ey−1.

Output: A message m ∈ G or ⊥.

Fig. 2. The cryptosystem CS′ instantiated with a symmetric subgroup membership
problem SSM(G,K,H).

Suppose that Π is ε-smooth, that Π̂ is ε′-universal-2, that the sampling
algorithms for Π and Π̂ are δ′-close to uniform, and that the sampling algorithms
for the subgroup membership problems are δ-close to uniform.

Suppose A = (A1, A2) is a chosen ciphertext adversary against CS′. We
shall use the following experiment to construct a distinguisher A′ for (G, K).
Again, note that M and M̂ are sampled using the algorithms from the hash
proof systems.

Symmetric Subgroup Membership Problems 113

Experiment 4
Input: A = (A1, A2), (G, K), Π , Π̂ , x0 ∈ G.

1. f ← M , f̂ ← M̂ .
2. sk ← (G, L, L̂, f, f̂).
3. pk ← (G, W, L, L̂, ρ, ρ∗(f), ρ̂∗(f̂)).
4. Initialise decryption oracle Dsk.
5. (m0, m1, s) ← A1(pk), giving A1 access to Dsk.
6. b ← {0, 1}.
7. y0 ← f(x0), e0 ← y0mb, ŷ0 ← f̂(x0, e0).
8. Initialise restricted decryption oracle D′

sk.
9. b′ ← A2(pk, m0, m1, s, x0, e0, ŷ0), giving A2 access to D′

sk.
10. If b = b′, output 1, otherwise output 0.

Output: 0 or 1.

Note that Steps 1–3 do exactly as the key generation algorithm would do.
Let T ′ be the event that Experiment 4 outputs 1 when the input x0 is in K.

Since Step 7 produces exactly the same result as the encryption algorithm when
the input x0 ∈ K, it is clear that the only difference between Experiment 4 and
a real attack is that x0 has been sampled uniformly from K, and not via the
sampling algorithm for W . Since Experiment 4 outputs 1 when the adversary
wins, we have that

AdvCCA
A ≤ |Pr[T ′] − 1/2|+ δ′, (8)

since the sampling algorithm for W is δ′-close to uniform.
Let T be the event that Experiment 4 outputs 1 when the input x0 is in

G \ K. It is clear that from Experiment 4 we can derive an algorithm A′ for
distinguishing K from G \ K such that

|Pr[T ′] − Pr[T]| ≤ AdvSM(G,K)
A′ . (9)

To analyse the event T , we shall make a series of modifications to Experiment 4.
We number the modified experiments as 4′, 4′′, etc. Note that these modifications
need not be efficiently implementable.

First Modification. We change Step 1 so that f and f̂ are sampled from the
uniform distribution, and not using the algorithms provided by the hash proof
systems.

Let T1 be the event that Experiment 4′ outputs 1 when the input x0 is in
G \K. Since the algorithms provided by the hash proof systems were δ′-close to
uniform, we obviously have that

|Pr[T] − Pr[T1]| ≤ 2δ′ . (10)

114 Kristian Gjøsteen

Second Modification. We change the decryption oracles so that they refuse to
decrypt a ciphertext (x, e, ŷ) if x �∈ K. Let T2 be the event that Experiment 4′′

outputs 1 when the input x0 is in G \ K.
It is clear that this modification only affects the outcome if the adversary

produces a valid ciphertext (x′, e′, ŷ′) with x �∈ K, so |Pr[T2] − Pr[T1]| is upper-
bounded by the probability of this happening.

Since Π̂ is ε′-universal-2, we can show, using the same arguments as in [3],
that if A1 and A2 make Q decryption queries in total, then

|Pr[T2] − Pr[T1]| ≤ Qε′ . (11)

Third Modification. We change Step 7 to be

7. y′ ← L′, y0 ← f(x0), e0 ← y0mby
′, ŷ0 ← f̂(x0, e0).

Let T3 be the event that Experiment 4′′′ outputs 1 when the input x0 is in G\K.
Since A1 and A2 cannot query the decryption oracle with ciphertexts (x, e, ŷ)

where x �∈ K, their only information about f is ρ∗(f). Since Π is ε-smooth, we
get that

|Pr[T3] − Pr[T2]| ≤ ε . (12)

Fourth Modification. We change Step 7 to be

7. y′ ← L \ L′, y0 ← f(x0), e0 ← y0mby
′, ŷ0 ← f̂(x0, e0).

Let T4 be the event that Experiment 4′′′′ outputs 1 when the input x0 is in G\K.
It is quite clear that if y′ had been sampled uniformly from L, then there

would be no information about mb present in the ciphertext, and the probability
that Experiment 4′′′′ output 1 when the input x0 was in G \ K would be 1/2.
Since Experiment 4′′′′ samples from L \ L′, we get that

|Pr[T4] − 1/2| ≤ 2|L′|
|L| . (13)

We need to bound |Pr[T4]−Pr[T3|. To do this, we introduce another experi-
ment.

Experiment 5
Input: A = (A1, A2), (G, K), Π , Π̂ , y′ ∈ L.

Steps 1–6 are as in Experiment 4.
7. x0 ← G \ K, y0 ← f(x0), e0 ← y0mby

′, ŷ0 ← f̂(x0, e0).
Steps 8–10 are as in Experiment 4.

Output: 0 or 1.

It is quite clear that we can repeat the two first modifications to Experiment 4
on Experiment 5, and the analysis remains the same. Let R′ be the event that
Experiment 5′′ outputs 1 when the input y′ is in L′, and let R be the event that
Experiment 5′′ outputs 1 when the input y′ is in L \ L′.

Symmetric Subgroup Membership Problems 115

If the input y′ to Experiment 5′′ is in L′, then it behaves exactly as Experi-
ment 4′′′. Hence, Pr[R′] = Pr[T3].

If the input y′ to Experiment 5′′ is in L \ L′, then it behaves exactly as
Experiment 4′′′′. Hence, Pr[R] = Pr[T4].

It is clear that we from Experiment 5 can derive an algorithm A′′ to distin-
guish L′ from L \ L′, by sampling x0 not uniformly from G \ K, but via the
subgroup membership problem’s algorithms, and that

|Pr[T4] − Pr[T3]| = |Pr[R] − Pr[R′]| ≤ Adv
SM(L,L′)
A′′ + 2δ′ + δ + Qε′ . (14)

Summing Up. Combining (8)–(14), we have proved the following theorem.

Theorem 2. Let CS′ be the cryptosystem described above, based on a subgroup
membership problem SM(G,K) and hash proof systems Π and Π̂. Let L be the
group associated to G by Π, and let L′ be the subgroup of L. Suppose that Π
is ε-smooth, that Π̂ is ε′-universal-2, that the sampling algorithms for Π and
Π̂ are δ′-close to uniform, and that the sampling algorithms for the subgroup
membership problem are δ-close to uniform. Then for any chosen ciphertext
adversary A against CS′, we have that

AdvCCA
A ≤ AdvSM(G,K)

A′ + Adv
SM(L,L′)
A′′ + 5δ′ + δ + 2Qε′ + ε +

2|L′|
|L| ,

where A′ and A′′ are algorithms that invoke each stage of A once, and Q is the
number of decryption queries made by A

It is clear that when instantiated with the hash proof systems described in
Sect. 4.1, then if the extended hash proof system is removed, the cryptosystem
CS′ reduces to Diffie-Hellman in K, and the above proof is easily modified to
show that it is secure, as was claimed in Sect. 2.

Finally, we briefly discuss the performance of the scheme when instantiated
with the hash proof systems described in Sect. 4.1 (using a hash function instead
of a 1-1 function) and the symmetric subgroup membership problems discussed
in Sect. 2.

Two things should be noted. For encryption, three exponentiations in CS′

are in K, while the fourth exponent has bit length equal to the length of the hash
value used. Second, when Z∗

n is used, K can be made very small compared to G.
It is not unreasonable that for a t bit security level, log2 |K| ≈ 4t is sufficient.

The length of the hash should be 2t. This means that the work required for
an exponentiation corresponds roughly to one exponentiation with exponent bit
length 14t. For 80 bit security level this is 1120, and 1792 for 128 bit security
level. This compares well with the corresponding modulus lengths 1024 and 3096.

For decryption, slightly more than two exponentiations in G are required
(exactly two if GF (2n + 1)∗ is used and |G| = n is known). If the order of K
is known to the private key holder, then roughly three exponentiations in K
are required, but since they are all to the same base, the actual cost is smaller,
say roughly equivalent to two exponentiations. For Z∗

n, this corresponds to one
exponentiation in G with exponent bit length 8t.

116 Kristian Gjøsteen

Of course, if Z∗
n is used and the factorisation of n is known to the private key

holder, Chinese remainder tricks are also available.
Compared to the instantiations of the Cramer-Shoup construction given in

[3], our two instantiations are significantly faster, except for the elliptic curve
variants of Cramer-Shoup. Asymptotically, they are faster than our variants, but
at 80 bit security level, our variants would seem to have an advantage, at least
for encryption.

5 Hybrid Encryption

When a key encapsulation method is all that is required, the Cramer-Shoup key
encapsulation method [4] using a subgroup of a finite field will be faster than
our two constructions in the previous section. However, recent advances in [7]
and [6] show that it is possible to construct secure hybrid encryption schemes
from key encapsulation methods that are by themselves not secure.

The basic idea is that an ε-universal-2 hash proof system by itself will do,
when its output is split into two bit strings, where one is used as a key for a sym-
metric cryptosystem, and the other is used as a key to a message authentication
code.

We sketch a variant of this construction based on the symmetric subgroup
membership problem in Z

∗
n. We do not believe that it will be faster than other

instantiations, but we believe it is possible to construct a very fast cryptosystem
based only on the hardness of the subgroup membership problem, which is in
itself interesting.

The basic scheme requires five parts, a subgroup membership problem, a key
derivation function, a MAC, a symmetric encryption scheme, and a hash func-
tion. Note that there are information theoretically secure MACs and symmetric
encryption schemes.

The subgroup membership problem is based on Z
∗
n, where n = (2ab+1)(2cd+

1) as described in Sect. 2. To simplify things, G shall be the subgroup of quadratic
residues. (It may be possible to use the subgroup with Jacobi symbol 1 instead.)
We are given a generator g for K, of order ac.

The key derivation function κ : G → {0, 1}l1 × {0, 1}l2 should return bit
strings indistinguishable from random when applied to group elements sampled
uniformly at random from certain subsets of G. Universal hashing techniques
should provide an information-theoretically secure key derivation function.

The interesting point, however, is the hash function. What we need is a hash
function h : G → Hom(G, G) that is target collision resistant, where we count
as a collision two homomorphisms that happen to be the same on any subgroup
of G (this is why we restrict to the quadratic residues, and why GF (2n + 1)∗

cannot be used).
Note that Hom(G, G) � Zφ(n)/2. The hash function is simply h(x) = x, since

x ∈ G can be represented by an integer in the set {1, . . . , n−1} (we will consider
the group elements to be integers when convenient). We claim that the advantage
of any collision finder against this hash function is less than AdvSSM(G,K,H) .

Symmetric Subgroup Membership Problems 117

So suppose we have some algorithm that on input of G and g outputs distinct
x1, x2 such that h(x1) and h(x2) collide on some subgroup of G. We consider
all possibilities in turn.

If they collide on G itself, this means that x1 ≡ x2 (mod abcd), or that abcd
divides x1−x2. Let z be any element with Jacobi symbol −1. Then zx1−x2 must
be congruent to 1 modulo p and −1 modulo q, or vice versa. In other words,
zx1−x2 gives a factorisation of n.

If they collide on K or H , but not both, then ac or bd divides x1−x2, but not
both. This may not lead to a factorisation of n, but it is clear that any multiple
of ac = |K| or bd = |H | can be used to distinguish K or H .

If they collide modulo a, but not modulo c, or vice versa, we use the subgroup
membership problems sampling algorithm to get an element z ∈ K. Unless we
by chance have already got a factorisation of n, zx1−x2 will give us one. Likewise,
for b and d.

This proves the claim. (Note that we prove collision resistance, which is
stronger than target collision resistance.)

The key generation algorithm takes as input G and g. It samples k0, k1

uniformly at random from {1, . . . , �n/4}. The public key is (G, g, s0, s1) =
(gk0 , gk1), the private key is (G, k0, k1).

The encryption algorithm takes the public key as input, as well as a message
encoded as a bit string. It samples w uniformly at random from {1, . . . , N}
(where N is sufficiently much larger than |K|). It computes x = gw, x′ =
s2w
0 s

2wh(x)
1 . Then it applies the key derivation function to x′ to get encryption

and MAC keys. It uses the encryption key to encrypt the message into ciphertext
e and the MAC key to compute a tag t for e. The ciphertext is (x, e, t).

The decryption algorithm computes x2(k0+h(x)k1) and applies the key deriva-
tion function to the result. It checks the tag t with the derived MAC key, and if
it is correct, decrypts the ciphertext e with the encryption key and outputs the
result.

Key Generation
Input: G ⊆ Z

∗
n, g ∈ G.

1. (k0, k1) ←
{0, . . . , �n/4�}2.

2. (s0, s1) ← (gk0 , gk1).
3. Select kdf .
4. pk ← (G, g, s0, s1, kdf).
5. sk ← (G, k0, k1, kdf).

Output: (pk, sk).

Encryption
Input: pk, m ∈ G.

1. w ← {0, . . . , |K| − 1}.
2. x ← gw.
3. x′ ← s2w

0 s
2wh(x)
1 .

4. (κ1, κ2) ← kdf(x′).
5. e ← E(κ1, m).
6. t ← T (κ2, e).

Output: (x, e, t).

Decryption
Input: sk, (x, e, t).

1. x′ ← x2(k0+h(x)k1).
2. (κ1, κ2) ← kdf(x′).
3. t′ ← T (κ2, e).
4. If t 	= t′, output ⊥.
5. m ← D(κ1, e).
6. Output m.

Output: A message m or ⊥.

Fig. 3. The hybrid cryptosystem using a symmetric cryptosystem (E ,D) and MAC
algorithm T .

118 Kristian Gjøsteen

The security analysis for this scheme should be essentially the same as in [6],
which is very similar to the proof in Sect. 4. Note that the extra squaring makes
the cryptosystem benignly malleable, in the sense that (x, e, t) and (−x, e, t)
both decrypt to the same message. This is not a security problem.

Compared to the scheme described in Sect. 4, the encryption cost measured
in total exponent length is 8t + log2 n. For 80 bit security level, this is roughly
1664, and 4120 for 128 bit security level. The decryption cost is roughly 480
and 768, respectively. The advantage is that we only depend on the subgroup
membership problem.

6 Concluding Remarks

We have defined and discussed symmetric subgroup membership problems. The
main result of the theoretic discussion is a relation between the Decision Diffie-
Hellman problem and the symmetric subgroup membership problem.

Then we have designed and analysed a chosen ciphertext secure public key
cryptosystem based on a symmetric subgroup membership problem, by extend-
ing the framework of Cramer and Shoup. The resulting scheme is quite efficient
compared to other instances of the Cramer-Shoup framework, although it re-
quires a new hardness assumption.

Finally, we have sketched how to design a hybrid cryptosystem with chosen
ciphertext security based only on a symmetric subgroup membership problem.
In the immediate aftermath of CRYPTO’04, not relying on a target collision
resistant hash function seems to be a conservative move. The full security proof
for this cryptosystem will appear at a later time.

References

1. D. Boneh. The Decision Diffie-Hellman problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, volume 1423 of LNCS, pages 48–63. Springer-
Verlag, 1998.

2. Ronald Cramer and Victor Shoup. A practical public key cryptosystem secure
against adaptive chosen cipher text attacks. In Hugo Krawczyk, editor, Proceedings
of CRYPTO ’98, volume 1462 of LNCS, pages 13–25. Springer-Verlag, 1998.

3. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, Proceedings of EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer-Verlag, 2002.

4. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

5. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

6. Rosario Gennaro and Victor Shoup. A note on an encryption scheme of Kurosawa
and Desmedt. Cryptology ePrint Archive, Report 2004/194, 2004.
http://eprint.iacr.org/.

Symmetric Subgroup Membership Problems 119

7. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In Matt Franklin, editor, Proceedings of CRYPTO 2004, volume 3152 of LNCS.
Springer-Verlag, 2004.

8. W. Mao. Fast Monte-Carlo primality evidence shown in the dark. Technical Report
HPL-1999-30R1, HP Laboratories, October 1999.

9. Juan Manuel González Nieto, Colin Boyd, and Ed Dawson. A public key cryp-
tosystem based on the subgroup membership problem. In S. Quing, T. Okamoto,
and J. Zhou, editors, Proceedings of ICICS 2001, volume 2229 of LNCS, pages
352–363. Springer-Verlag, 2001.

10. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Joan Feigenbaum, editor, Proceedings of CRYPTO
’91, volume 576 of LNCS, pages 433–444. Springer-Verlag, 1992.

11. Akihiro Yamamura and Taiichi Saito. Private information retrieval based on the
subgroup membership problem. In V. Varadharajan and Y. Mu, editors, Pro-
ceedings of ACISP 2001, volume 2119 of LNCS, pages 206–220. Springer-Verlag,
2001.

Optimizing Robustness
While Generating Shared Secret Safe Primes

Emil Ong and John Kubiatowicz

University of California, Berkeley

Abstract. We develop a method for generating shared, secret, safe
primes applicable to use in threshold RSA signature schemes such as
the one developed by Shoup. We would like a scheme usable in practical
settings, so our protocol is robust and efficient in asynchronous, hostile
environments. We show that the techniques used for robustness need spe-
cial care when they must be efficient. Specifically, we show optimizations
that minimize the number and size of the proofs of knowledge used. We
also develop optimizations based on computer arithmetic algorithms, in
particular, precomputation and Montgomery modular multiplication.

Keywords: Distributed key generation, safe primes, threshold RSA sig-
natures.

1 Introduction

Shoup’s scheme [1] for threshold RSA signatures was a great leap forward in
making threshold signature schemes practical. Its ability to avoid interaction
while signing makes the scheme efficient and easy to implement. Unfortunately,
Shoup’s scheme required the use of a safe prime product modulus for its proof
of correctness. Moreover, the scheme assumes a trusted dealer to create and
distribute this modulus and the private key shares. Since the development of
Shoup’s scheme, several works ([2–4]) have been published to try to eliminate the
single dealer, but none have shown the costs associated with a robust solution.

In this paper, we show the cost required for a robust implementation of a
distributed safe prime generation scheme. We follow the basic form of the al-
gorithm in [2], but we also show that the changes necessary for robustness are
non-trivial if we want efficiency. We develop several techniques for reducing the
number of proofs of knowledge while maintaining security. Our methods are
based on computer arithmetic, number theory, and simple protocol analysis to
reduce redundancy.

1.1 Algorithm Overview

Before diving into the details of our safe prime generation algorithm, we will give
a high-level overview. Our approach to prime finding is very familiar: effectively
we generate candidate numbers and test them until we find a safe prime. First
we use the usual techniques for improving our search – we make sure that our

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 120–137, 2005.
c© International Association for Cryptologic Research 2005

Optimizing Robustness While Generating Shared Secret Safe Primes 121

1. Find a candidate number φ which has no small prime factors and has the property
φ ≡ 3 mod 4.

2. If the number 2 is a Miller-Rabin witness to the compositeness of φ or φ−1
2

, return
to step 1.

3. Run the Miller-Rabin test repeatedly on φ with random inputs a sufficient number
of times to ensure primality with a small error probability.

Fig. 1. Algorithm Overview.

candidate prime is not composed of small prime factors. However instead of doing
trial division, we produce our candidate in a constructive way following the lead
of Malkin, Wu, and Boneh [5]. We modify their algorithm however by making
it robust through contributing several zero-knowledge proofs. This method is
detailed in Section 3.

After finding such a candidate, we then proceed to do more rigorous tests.
Specifically, we follow the techniques outlined by Cramer and Shoup in [6]. The
procedure recommended in that work involves two specialized Miller-Rabin tests
followed by a generic Miller-Rabin test of compositeness. To do Miller-Rabin
compositeness tests, we have to perform modular exponentiation. In our case the
modulus is secret, a fact which is the main source of difficulty in our algorithm.
Sections 4.1 and 4.2 are dedicated to optimizing the performance of this type
of modular exponentiation. Specifically, we generalized the modular exponenti-
ation method given in [2] and provided a new modular multiplication algorithm
based on Montgomery multiplication. The high-level algorithm is summarized
in Figure 1.

1.2 Application: RSA Signatures

After successfully generating two shared, safe primes with this algorithm, the
players can simply multiply their shares of these primes together and reveal
the result. The factorization of the composite number is not revealed because
the VSS and multiplication schemes conceal. At this point, the players have
all generated a public RSA modulus for which no player knows the factors.
Moreover, the players can compute secret shares of the Euler totient function of
the modulus. This fact allows them to use the algorithm of Catalano et al. [7]
to compute secret shares of an RSA private key. These key shares are then
immediately usable for Shoup’s RSA signature scheme [1].

1.3 Related Work

Shoup’s proof of correctness required the use of safe primes in the RSA modulus
(i.e. n = pq where p, q are primes of the form p = 2p′ + 1, q = 2q′ + 1 with p′, q′

also being primes). [3, 4] noted that this requirement is a bit strong and replaced
it with assumptions relating to the computational difficulty of certain operations
in RSA groups. Safe primes meet and exceed the requirements set by [3, 4] and
these works both showed RSA moduli with lesser constraints are suitable for
Shoup’s scheme. The assumptions made are non-standard, but reasonable.

122 Emil Ong and John Kubiatowicz

Works by Boneh et al. [8, 5] developed ways to generate and verify RSA moduli
and inverses, but do not necessarily produce primes suitable to Shoup’s thresh-
old scheme. Moreover, these schemes are secure only in the honest-but-curious
setting. An optimization in [5], called distributed sieving, however is very useful
and we will develop a robust version in section 3.

Frankel, MacKenzie, and Yung [9] developed a robust method for RSA key
generation, but also do not produce safe prime product moduli. Many of their
techniques will be very useful in our protocol, however.

Algesheimer, Camenish, and Shoup [2] were the first to suggest an algorithm
for distributively generating safe primes and we follow their exposition closely.
Our work expands on their algorithm by making it robust and optimizing within
this robust framework.

1.4 Contributions

Our contributions to this field are three-fold:

– We provide a robust version of the Malkin, Wu, and Boneh [5] distributed
sieving algorithm,

– We improve the Miller-Rabin algorithm of Algesheimer, Camenish, and Shoup
[2] by (1) generalizing the modular exponentiation method and (2) introducing
Montgomery multiplication into a distributed computational framework for
faster modular arithmetic.

2 Preliminaries: Model and Commitments

We deal with two preliminaries before proceeding to our algorithm, the compu-
tational and network models and the commitment and verified secret sharing
schemes we use.

2.1 Model

We assume an asynchronous network only offering point-to-point messages. We
view the network as an adversary that can choose to drop or delay the messages
sent between two parties. The protocols we use require authenticated messages
however, so we will assume that there exists some way of ensuring the integrity
of messages which are delivered. We rely on the work of Goldwasser and Lindell
[10] which provides a broadcast protocol which is simpler than full, authenticated
Byzantine agreement, but is sufficient for both serial and parallel composition
of secure computation.

For the secrecy and binding of our commitment and secret sharing protocols,
we rely on the assumption that computing discrete logarithms is difficult. We
will build our protocols to be secure in the random oracle model since we intend
them to be used for Shoup’s RSA signature scheme [1], which uses a random
oracle for non-interactivity. This assumption can be removed by reintroducing
additional interactivity, though at significant cost, as usual.

Optimizing Robustness While Generating Shared Secret Safe Primes 123

In describing these multiparty protocols, we will borrow the notation of [2]
for secret sharing. We assume familiarity with both additive and polynomial
secret sharing (also known as Shamir secret sharing [11]). Our algorithms will
only involve polynomial secret sharing and we shall denote player j’s polynomial
share of a as [a]pj ∈ Zp. In general, we will use these notations to show the format
of the input and output values of our multiparty protocols, but refer to the shared
value directly in the body of the protocol for clarity.

2.2 Commitments

We will need a commitment scheme where the properties of the integers hold
because we may need to deal with negative numbers to prove relative primality.
We will also need a verifiable secret sharing scheme that works using integer
commitments. This property will give us the ability to prove statements about
the numbers we share. These two primitives are the basis for robustness in our
algorithm.

We will use a scheme discussed in [7] which uses a prime finite field of very
large order and relies on the discrete logarithm problem. In truth, these are not
commitments over the integers, but the finite field on which they are defined is
large enough that relations we are trying to prove also hold in these fields. We
prefer this technique over that of [12] in our case. A more complete explanation
of the differences is available in the extended version of this paper1.

Setup. The prime number that we use needs to be larger than any term we will
use in our commitments and computations. Since our goal is to create an RSA
modulus by multiplying shared primes, the players can agree to a specific RSA
key size a priori and this size will determine the maximum size of our committed
numbers. For example, if we are trying to generate a key of size 1024, we can set
the bound for candidate safe prime numbers at B = 2512.

There are two computations for which we need to be careful: those involved
in verifiable secret sharing (VSS) and the proofs of k-roughness. For VSS, if
we create a t-out-of-n sharing using a method similar to Pedersen’s VSS [13],
then we are creating a random polynomial of degree t which will be evaluated
at the integers {1, 2, ..., n}. In order to make Lagrange interpolation calculations
remain in the integers, we will need to multiply our secret by n! and choose the
coefficients of this polynomial to be bound by ±Bn!. As a consequence, no shared
point on the polynomial should exceed 2Btntn!. We choose prime p > 2Btntn!
and work over the field GF (p). [7] contains a VSS protocol in which obeying this
bound is a requirement for secret share verification. This protocol is the one we
will use to share secrets.

We will give a brief discussion here of k-roughness proofs in order to de-
velop our commitment scheme with full details to follow in Section 3.1. We say
that a number a is k-rough if it has no small prime factors less than k. Let
Mb =

∑
i≤b pi, where pi is the ith prime. The proof that a number is pb+1-rough

involves showing that a is relatively prime to Mb. Specifically, we will compute
1 Visit http://oceanstore.cs.berkeley.edu for the extended version.

124 Emil Ong and John Kubiatowicz

Setup
Input: A bound B on the size of prime candidates, a number b such that Mb =∏

i≤b pi < B, and a bound β for the prime p (usually either β = 2Btntn! or β = 2BMb).

1. Perform three β-bit joint coin-flipping protocols in parallel. Call the results x, y,
and z.

2. Let p be the smallest prime greater than x.
3. Let g = y mod p and h = z mod p.

Making commitments
To make a commitment to x ∈ Zp, a party chooses rx ∈R Zp and the commitment is
gxhrx mod p.

Fig. 2. The integer commitment scheme.

and commit to x and y such that ax + Mby = 1. We need to make sure that
our commitment scheme is sufficient to contain ax and Mby, both of which are
bounded by BMb. Since we will never use ax or Mby in conjunction with VSS
however, we can set the bounds for the prime field in our commitment scheme
to be p > 2B max(Mb, tntn!).

Usually, the Mb term will dominate the tntn! term, unless there are a large
number of players. Because of the way that we create the prime candidates, we
must choose b such that Mb < B to ensure that the candidates are not too
large. Choosing a large b means that we will be more likely to find a safe prime
quickly, but increases our commitment size. However, if the number of players
in our generation scheme is large, we can use a large b without this difficulty
because of the tntn! term. As an example, suppose we are trying to generate a
1024-bit RSA key with factors of size 512-bits. Thus B = 2512. We can choose
b = 71, which makes the bit size of Mb be |Mb|2 = 475. Suppose t = 5 and
n = 11. Then |tntn!)|2 = 45. In this case p must be greater than 2988 since
475 > 45.

As an optimization, after we prove the k-roughness of a number a, we can use
the secret share conversion methods of [2] to reshare a over a prime field of size
p with 2Btntn! < p < 2BMb. This step will reduce the size of messages for the
more communication intensive modular multiplication protocol.

A summary of the commitment scheme is given in Figure 2.

3 Distributed Sieving

In this section, we show how to generate safe prime candidates in a robust way.
We begin with a technique by Malkin, Wu, and Boneh [5] called distributed siev-
ing which aims to improve the efficiency of distributed random prime generation.
Specifically, the technique constructively produces numbers without small prime
factors, rough numbers. Using such numbers is a common approach in classical
prime number generation. The technique described in [2] to find rough numbers
is distributed trial division on random candidates. Unfortunately this approach
is probabilistic and may take many iterations. Distributed sieving requires only

Optimizing Robustness While Generating Shared Secret Safe Primes 125

Input: A bound, B, for generated prime candidates. Let Mb =
∏

i≤b pi < B be a
product of the first b primes.
Output: A number a + rMb relatively prime to Mb.

1. Each server sieves to find a random integer ai relatively prime to Mb. In other words,
each server finds a random integer with no prime factors smaller than pb. The ai

are multiplicative shares of a (i.e. a =
∏

i=1..n ai). Note that a also has no prime
factors less than pb.

2. The servers produce an additive sharing of a such that each server has a share bi

with a =
∑

i=1..n bi.
3. The servers choose a random number ri ∈R [0.. B

Mb
], then locally compute bi +riMb.

At this point, each server has an additive share of a + rMb (where r =
∑

i=1..n ri)
which is also relatively prime to Mb.

Fig. 3. Malkin, Wu, and Boneh Distributed Sieving in the Honest-but-Curious Model.

a small constant number of multiparty computations. The algorithm of Malkin,
Wu, and Boneh is listed in Figure 3.

The empirical experiments of [5] showed a factor of 10 improvement in the
speed of prime generation using this method. However this protocol is secure
only in the honest-but-curious model. Specifically, there is no check that the
multiplicative shares ai are being produced correctly. In other words, if even one
of the servers chooses a number with a prime factor less than or equal to pb,
the protocol will never find a prime number as the sum a + rMb will always be
divisible by that prime. Moreover, unverified additive sharing is central in this
protocol and thus requires that a fixed threshold set of the servers be available
and honest throughout the protocol.

Thus we need a way to prove and verify that each ai is relatively prime to Mb

using a non-interactive zero-knowledge argument (assuming the random oracle
model2). After these proofs, we will create a verifiable polynomial sharing of a
(resistant to failing or malicious servers) that allows easy computation of a+rMb

and with comparable efficiency to the scheme used in [5].

3.1 Proving a Number is k-Rough

In order for distributed sieving to work correctly, each player needs to produce
a number which is relatively prime to Mb (equivalently, we say that the number
is pb+1-rough or has no prime factors less than pb+1, where pi is the ith prime
number). The protocol of [5] assumes honesty on the part of the players, but
this assumption may not always be acceptable.

Using the properties of integer commitment and the multiplication proof pro-
tocol of [12], we can prove that a number is relatively prime to Mb. Note that
showing relatively primality of a and Mb is equivalent to showing that there
exist integers x, y such that ax + Mby = 1. Since we are actually working in a
finite field however, we also need to make sure that none of a, x, or y is 0 since a
2 Shoup’s RSA signature scheme already invokes the random oracle model, so we lose

no security in making this assumption.

126 Emil Ong and John Kubiatowicz

Step Bits

Find integers xi, yi such that aixi + Mbyi = 1 holds using the extended
Euclidean algorithm.

–

Prove that xi �= 0, yi �= 0, and ai �= 0. 33|p|2
Produce gaihrai , gxihrxi , gyihryi , and gaixihraixi , integer commitments
to ai, xi, yi, and aixi, respectively.

4|p|2

Show the multiplicative relationship between the commitments of ai, xi

and aixi.
8|p|2

Prove aixi+Mbyi to be 1 by showing knowledge of the discrete logarithm
loghg−1(gaixihraixi)(gyihryi)Mb .

2|p|2

Total 47|p|2

Fig. 4. Proof that ai is pb+1-rough. Sizes given are for the random oracle, non-
interactive proof versions. See the extended version of this paper for more information.

dishonest prover could make y = M−1
b mod p and x = 0 to prove ax+Mby = 1

while making a of any form the prover desires. A protocol for this proof is given
in the extended version of the paper. Thus each player distributing an ai proves
its pb-roughness by the protocol in Figure 4. If we invoke the random oracle
model, we can do all of these proofs without interaction.

Although the integer commitments that we are using are homomorphic and
are the basis of our VSS scheme, we will not use the commitment of ai directly in
the sharing. Recall that because we want to make Lagrange interpolation easier,
we multiply the secret in our VSS scheme by n!. Thus, we commit to ai and prove
the properties we need, then share n!ai and prove the multiplicative relationship
between the two commitments. As mentioned in Section 2.2, the commitment
scheme we use for this proof may be larger than the one we need for the rest of
the computations. We may choose to reshare a + rMb over a smaller finite field
after its computation.

At this point, each player should also prove that 2ai + 1 is relatively prime to
Mb as well. This fact will assure us that 2(a + rMb) + 1 is also pb+1-rough – a
helpful optimization when we later test for safe primality. Each proof of relative
primality requires a message of size 47|p|2 in addition to the commitment of
ai, so each player will need to send messages of size 95|p|2 for each ai. If we
consider the example from Section 2.2 where |p|2 = 988, the message size is
95|p|2 ≈ 11732 bytes ≈ 11kB.

3.2 Computing the Primality Candidate

The previous section showed how to produce a polynomial secret sharing of
pb+1-rough number ai. Now we need to multiply the ai together to produce
a. Note of course that we do not need all the ai of the previous section to
create a pb+1-rough number for primality testing – any subset of {ai} will do.

Optimizing Robustness While Generating Shared Secret Safe Primes 127

This fact is convenient if one of the players was malicious or unavailable in the
previous sharing round. The classic technique for multiplying a number shared
polynomially was shown in [14]. This method simply multiplies two polynomial
shares together, rerandomizes the new (double degree) polynomial, then reduces
the degree of the polynomial through a linear transformation. We will need to do
this step once for each remaining good player. This multiplication requires the
same amount of communication as the multiplication scheme in [5], but produces
a polynomial (instead of additive) sharing of a at the conclusion.

Finally, each player chooses a random number ri ∈R [0.. B
Mb

]. The players all
share and commit to these numbers, then each player multiplies their share by
Mb and adds the result to their share of a. This arithmetic is all done non-
interactively. Now each player has a polynomial share of a + rMb. Note that
each player should prove that their ri is within the range [0.. B

Mb
] so that the

final prime is of the appropriate size. To this end, will use Mao’s proof of bit
length [15]. This proof requires B

Mb
(6|p|2 + 1) bits in the non-interactive form.

3.3 Ensuring a + rMb ≡ 3 mod 4

We would like to use an algorithm from [2] for safe primality testing, however this
algorithm makes one additional requirement on a + rMb: it must be congruent
to 3 mod 4. Going back to the distribution of the ai, each player needs to
produce a claim and a proof of each ai mod 4 in addition to the proofs of
relative primality of ai and Mb. The proofs for ai mod 4 ensure that no player
can force a + rMb �≡ 3 mod 4, thus avoiding progress in the safe primality
generation. A full description of this technique is given in the extended paper.

A similar procedure must be performed for the ri. Then all the players can
compute a+rMb mod 4 and if a+rMb ≡ 3 mod 4, they do nothing, otherwise
they add 2 to their share of a + rMb.

Notice that the proof of congruence mod 4 serves another purpose: it proves
that the length of ai is correct. Thus although the proof seems expensive, it is
actually necessary and dual use.

3.4 Communication Efficiency

We now summarize the efficiency of the robust distributed sieving protocol.
Specifically we address the size of all the messages sent by a single player. The
proofs necessary for each players ai are the roughness proofs (95|p|2 bits), the
bit length proof of ri (B

Mb
(6|p|2 + 1) bits), the claims of congruence mod 4

((|B|2(|p|2 + 1) − 9|p|2) + (4|p|2 + B
Mb

(6|p|2 + 1) + 2) bits), and the proofs of
equivalence of the commitment of ai to the VSS commitment of ain! (2|p|2).
Using the example numbers from Section 2.2 (B = 2512 and p > 2988), we see
that the proof size is approximately 418267 bytes or about 408kB. These proofs
must be broadcast.

We also have to share ai and ri using VSS. Sharing two values requires us to
broadcast 2t|p|2 bits to all players. We can reasonably assume3 that there is a
3 Practical Byzantine broadcast schemes can use secure hashes of the message to verify

correct transmission.

128 Emil Ong and John Kubiatowicz

small constant c such that n(2t|p|2 + c) is cost of this broadcast to n players.
The remaining messages4 are point-to-point and total 2 · 2n|p|2 bits. Assuming
the player and threshold numbers from Section 2.2 (t = 5 and n = 11) along
with c = 1kB, we see that each player will broadcast about 24.3kB and send
about 5.3kB in point-to-point messages. Broadcasting the proofs above costs
approximately 4.3MB and dominates the communication costs. This number is
large, but as we will see in Section 4.3, we can amortize the cost with a reuse
trick.

We also have to multiply the ai together. Recall from [14] that the communi-
cation required for multiplication is simply a secret sharing with a polynomial
of order 2t. We need n such random polynomials. The broadcast cost for these
larger polynomials is again 24.3kB, but we only need 2.7kB in point-to-point
messages.

In terms of round efficiency, we have only two concerns: the secret sharing of
ai and ri and the multiplication of the ai. Thus the number of communication
rounds that we use is 2 + n. Section 4.3 also shows how to parallelized this
procedure to use only 1 round of multi-secret VSS.

3.5 Application in Safe Prime Finding

We performed a simulation of this algorithm to get an empirical estimate on the
number of iterations required to find a safe prime. When we constructed 4858
1024-bit prime candidates of the form a + rM128, we found that the median
number of iterations between finding safe primes is approximately 45,000 and
the mean is approximately 63,000. When using purely random numbers, we
found that the mean number of iterations was about 436,000 and the median
was 275,000. Safe primes are unfortunately less dense than unrestricted primes,
but distributed sieving seems to be a great help in finding them. Based on our
experiment, sieving requires only about 15% of the time required by random
searching.

4 Optimizing the Distributed Miller-Rabin Test

In this section, we describe the distributed Miller-Rabin test we will use to
check for safe primes. We also give two improvements which improve on the
performance of the test, namely optimization of modular exponentiation and
multiplication.

The algorithm for our distributed Miller-Rabin test is given in Figure 5. On
the whole, the test is not significantly different than the version given in [2],
so we will not discuss it thoroughly. The main differences between our version
and the original is our preparation for the modular exponentiation step. Instead
of converting from additive shares of the candidate to polynomial shares of the
bits, we convert from polynomial shares of the candidate to polynomial shares
4 We ignore the size of complaint messages, which are relatively small.

Optimizing Robustness While Generating Shared Secret Safe Primes 129

Input: Shares of the prime candidate φ.

1. Locally compute e = φ−1
2

(recall that since φ ≡ 3 mod 4, we can do the division
correctly in the finite field).

2. Compute shares of the base-η representation of e, [eη0]pj , [eη1]pj , · · · , [eηω−1]pj .
3. Precompute the values needed for modular exponentiation and multiplication.
4. Repeat the following step m times (in parallel):

(a) Choose [r]pj ∈R {0, 1}2B and set [g]pj = MOD([r]pj , [φ]pj , [φ̃]pj)
(b) Compute ge mod q
(c) If ge mod q /∈ {−1, 1} (using the SETMEM algorithm of [2]), output failure.

5. Output success.

Fig. 5. Distributed Miller-Rabin Algorithm.

Input: [g]pj , [e]pj , [φ]pj .
Output: [ge mod φ]pj .

1. Reshare the bits of e as β1, ..., βn where βn is the most significant bit.
2. c = (g − 1) ∗ βn + 1
3. For i = n − 1 downto 1, Do

(a) d = (g − 1) ∗ βi + 1
(b) c = ((c2 mod φ) ∗ d) mod φ

4. Output c.

Fig. 6. Algesheimer et al. Modular Exponentiation.

of the base-η representation. We also do precomputations of the values needed
for the modular exponentiation and multiplication procedures. In the next few
sections, we describe our optimizations to algorithms used by the Miller-Rabin
test.

4.1 Optimizing Modular Exponentiation

The modular exponentiation method of [2], shown in Figure 6, uses the familiar
square-and-multiply technique with a clever trick to decide when to square and
when to multiply. Suppose that β1, ..., βn are the bits of the exponent e and
are shared polynomially among the players (the details of how to perform this
sharing are given in Section 5.4). The algorithm uses the observation that gβi =
(g − 1) ∗ βi − 1 to decide when to square and when to multiply.

We generalize this algorithm to improve the running time by a constant factor.
Suppose we think of step 3a as a lookup instead of a algebraic manipulation –
when βi is 0, we assign d the value 1 and when βi is 1, we assign d the value g.
Thus the modular exponentiation procedure is based on (albeit very immediate)
precomputations of the values 1 and g which are referenced based on the value of
βi. We can extend this idea of a precomputed lookup table. Suppose that instead
of a shared binary representation of e, we have a shared base-η representation

130 Emil Ong and John Kubiatowicz

Input: [κ]pj and [g0 mod φ]pj ,

[g1 mod φ]pj , · · · , [gη−1 mod φ]pj .
Output: [gκ mod φ]pj .

1. In parallel:
For i = 0 to η − 1, Do

σi = 1 − ||κ − i||
2. In parallel:

For i = 0 to η − 1, Do
ρi = σi ∗ (gi mod φ)

3. Locally compute
∑

i=0..η−1 ρi.

Fig. 7. Lookup.

Input: [g]pj , [e]pj , [φ]pj .
Output: [ge mod φ]pj .

1. Reshare e in base-η: e(η0), ..., e(ηω−1)

where e(ηω−1) is the most significant
digit.

2. c = LOOKUP(e(ηω−1))
3. For i = ω − 2 downto 0, Do

(a) d = LOOKUP(e(ηi))
(b) c = ((cη mod φ) ∗ d) mod φ

4. Output c.

Fig. 8. Revised Modular Exponentiation.

and we precompute the values g0 mod q, g1 mod q, · · · , gη−1 mod q. Then we
can use the algorithm in Figure 7 to perform a lookup of these values.

Note that in this algorithm, we use a “normalization” procedure defined simply
as:

||x|| =

{
0 if x = 0,

1 otherwise

The implementation of this procedure is given later in Section 5.1.
With this lookup procedure, we can now rewrite the modular exponentiation

algorithm of Algesheimer et al. to use generic lookups. The revised algorithm
is shown in Figure 8. (The technique for resharing a secret in a different base
is given in Section 5.4.) Clearly, this approach uses a smaller number of outer
loops, but there is still one concern in step 3b. Specifically, this step requires
exponentiating by η in Zq and would appear at first glance to remove the ad-
vantage of the reduced outer loop. There are however two reasons that this step
saves time. First, we are exponentiating by a known, public constant. Thus no
extra lookups are necessary in this step. Second, we still only have to perform
ω lookups and multiplications by d. Overall we have reduced the number of
modular multiplications from 2|e|2 to |e|2 + ω.

Our generic lookup procedure is clearly more expensive than the special case
used in [2]. Specifically, it requires η normalizations. However, we use it only
ω times during the loop. Moreover, the normalization protocol of Section 5.1 is
simpler than modular multiplication, though it requires larger message sizes.

4.2 Optimizing Modular Multiplication

We present an alternative algorithm for modular multiplication which is based
on the Montgomery method [16]. In [17], Bajard et al. modified Montgomery
multiplication to work by manipulating representations in two different residue
number systems (RNS’s). We use a highly specialized case of this technique
in which the two RNS’s are simply prime finite fields. Although this approach
requires us to do some pre- and post-computations, we are able to parallelize
slightly more than with the algorithm of [2] and we also avoid some additional
zero-knowledge proofs in the robust case. The algorithm is listed in Figure 9.

Optimizing Robustness While Generating Shared Secret Safe Primes 131

Let p be the prime associated with our VSS scheme. Let p′ be the smallest prime
greater than p.
Input: [A]pj , [B]pj , and [φ]pj .
Output: [ABp−1 mod φ]pj .

Precomputation

1. Reshare A, B, and φ over Zp′ .
2. Compute shares of φ−1 mod p and φ−1 mod p′.

Multiplication

1. Compute −A ∗ B mod p and A ∗ B mod p′ simultaneously.
2. Compute q = (−A ∗ B mod p) ∗ (φ−1 mod p).
3. Convert q to a sharing over p′.
4. Compute q ∗ φ mod p′.
5. Locally compute r = (A ∗ B mod p′) + (q ∗ φ mod p′) ∗ (p−1 mod p′).
6. Convert r to shares over p.

Fig. 9. Modular Multiplication.

Most of the operations performed during the multiplication are familiar: they
are modular multiplication and addition in the same field as our shared secrets.
These steps are performed relatively quickly. The conversion steps 3 and 6 are
new. To convert a sharing over Zp to a sharing over Zp′ , we use the method of [2]
which entails converting the polynomial sharing over Zp to an additive sharing
over Zp, converting that sharing to an additive sharing over the integers, con-
verting that sharing to an additive sharing over Zp′ , and finally converting that
additive sharing to a polynomial sharing over Zp. This approach is complicated
and expensive, but the best way known.

In comparing the algorithm here to the one in [2], we notice that the lat-
ter has a much simpler form. Specifically, the algorithm of Algesheimer et al.
simply multiplies in the finite field, then takes the remainder of the product
mod φ. The complexity of the algorithm is in the remainder functionality. Tak-
ing a remainder requires two multiplications, a subtraction, and two truncation
operations. The truncations involve converting a polynomial sharing mod p to
an additive sharing over the integers, shifting the additive shares right by some
number of bits, then resharing the shifted shares as polynomial shares mod p.
Our algorithm has the same number of multiplication and addition rounds, but
we avoid this additional bit shifting. In the honest-but-curious model, the bit
shifting is a local operation, so at first it may seem cheap. However since we are
in the robust setting, each player must produce a proof of correctness of their
truncated share, so we do end up saving some processing time5.

Moreover, more of the multiplications in this algorithm are grouped together,
rather than being split by conversions as in the [2] algorithm. As mentioned
5 We are not able to avoid truncation proofs entirely – truncation is necessary for the

algorithm to convert from additive shares over a finite field to additive shares over
the integers [2]. We provide an interactive proof for truncation correctness in the
extended paper.

132 Emil Ong and John Kubiatowicz

in [14], we can multiply polynomial shares together several times before reran-
domizing so long as the degree of the polynomial does not exceed the number
of players. The closeness of the multiplications makes this optimization feasible
here, but not in [2].

Note that we are doing Montgomery multiplication in this algorithm; the
output is actually (ABp−1 mod φ), the Montgomery product. When we do ex-
ponentiation, we will work with Montgomery products and then at the end, we
will convert this product by removing the p−1 factor [18]. This step requires
one additional Montgomery multiplication at the beginning and the end of the
exponentiation.

4.3 Parallel Optimizations

There are (at least) two parallelization tricks that we can employ to improve the
speed of our algorithm. The most obvious trick is to generate and test several
k-rough candidates simultaneously. Unfortunately, the message sizes required for
robustness in the distribute sieving algorithm can grow to be quite large when
trying to generate safe primes suitable for RSA.

Thus we suggest that each player can generate and share some small number
of k-rough components (i.e. the ai). The proofs will be large initially, but once
the players have shared these numbers, they can recombine them in different
ways to produce new candidates. Specifically, let the number of players be l and
have each player share m different k-rough numbers. Then if we require that
each player gets to contribute one component rough number to each primality
candidate, then there are lm different combinations possible. Recombinations
can proceed in the usual lexigraphical order, for example. A more thorough
exploration of these and other parallel techniques is available in the full paper.

5 Multiparty Arithmetic Circuits

This section develops the multiparty circuits that we will need to convert a
polynomial secret sharing into a sharing of the same number in base-η. Proofs
of secrecy and correctness for the protocols in this section are straightforward
since they are the composition of secure protocols.

Input: [x]pj .
Output: [||x||]pj .

1. Generate p2 shared secret pairs (ri, si) ∈ Zp × Zp

2. Compute in parallel for each pair ui = ri ∗ (1 − ri ∗ si) and vi = si ∗ (1 − si ∗ ri)
3. Reveal all the ui and vi

4. For every i such that ui = vi = 0, compute and reveal x − ri

5. Let s = si where i is the smallest index such that x − ri = 0 or return to step 1 and
try again if no such i exists

6. Output ||x|| = x ∗ s

Fig. 10. Normalization based on Bar-Ilan and Beaver’s algorithm.

Optimizing Robustness While Generating Shared Secret Safe Primes 133

5.1 Normalization

Recall the normalization procedure we used previously in Section 4.1. Note that
the output from this procedure is a shared secret containing ||x||; ||x|| is neither
public nor revealed. We derive our algorithm for normalization from Bar-Ilan
and Beaver’s algorithm for “extended inverses” [19]. Their method computes
either the inverse x−1 ∈ Zp of an element x ∈ Zp if x �= 0 and 0 otherwise.
We compute this value as well, then multiply x by x−1 or 0, respectively, to
obtain ||x||. The full procedure is given in Figure 10. Note that we optimistically
generate only p2 shared secret pairs in step 1, a reduction from the suggested p4

of [19].
We usually expect we will need only one iteration of this algorithm to calculate

||x||. During one iteration, we must generate and share 2p2 random numbers,
do 4p2 multiplications, and reveal between 2p2 and 4p2 numbers. While this
complexity may seem high at first, we are saved by the fact that p will quite
small in practice.

Notice that these multiplications and random number generations can be
batched in advance (as described in Section 4.3) and the addition and scalar
multiplications are local operations. All the revelations can be done in parallel.

We will consider the bandwidth required by one normalization. Suppose we
choose p = 37 (for reasons we will see in the next few sections). We will need
to share p2 = 1369 random pairs and do 4p2 + 1 = 5477 multiplications with
upto 4p2 = 5476 revelations. The random pairs and multiplications are simply
VSS operations, which we can batch. Each random number we share requires
broadcasting t|p|2 bits and sending 2n|p|2 bits point-to-point. Batching makes
the broadcast costs much smaller (since in practice, confirmation messages are
secure hashes of the broadcast message), so we will generously assume there is
a 1kB per player overhead for this operation. Random secret sharing for multi-
plication requires a polynomial of degree 2t, so broadcast costs are higher, but
point-to-point bits remain the same. For p = 37, |p|2 = 6, so we arrive at a total
of 5477 · n · |p|2(2t + 2) + 1369 · n · |p|2(t + 2) + 1024n bits. If we again use the
example t = 5 and n = 11 from Section 2.2, we need to send about 608kB.

We also need to account for the revelations. Each revelation requires broad-
casting 2 numbers to all parties. We can batch these revelations, but we need
two steps instead of one because of a dependency in the normalization algo-
rithm. Each batch of revelations requires broadcasting (at most) 2 ∗ 2p2 = 5476
numbers. The total, with broadcast costs, is n(5476 ∗ |p|2 + 1024) ≈ 55kB for
the revelations. To summarize our example, each normalization requires sending
about 718kB over 3 rounds. This primitive is our most expensive.

Input: [x]pj and a publicly known set S ⊂ Zp.
Output: [0]pj if x �∈ S and [1]pj otherwise.

1. δ =
∏

s∈S(x − s)
2. Output 1 − ||δ||.

Fig. 11. Secret set membership protocol.

134 Emil Ong and John Kubiatowicz

5.2 Secret Set Membership

In this section, we describe an algorithm for “secret set membership.” Given
x ∈ Zp and S ⊂ Zp, this algorithm outputs a shared secret containing 1 if x ∈ S
and a shared secret containing 0 otherwise. We denote this method as computing
x ∈? S. Readers familiar with the SETMEM algorithm in [2] should notice that our
algorithm is much simpler than SETMEM. This reduction is possible because we do
not test whether a shared secret is congruent to a member of S modulo another
shared secret modulus p′ – we need only test congruence modulo p, which is
public. See Figure 11.

Computation of the product in step 1 requires |S| multiplications which we
must do in serial. Note of course that we can share all the rerandomizing polyno-
mials for this step in advance, so we only incur one round of secret sharing. The
secret set membership algorithm is dominated by the cost of the normalization
in step 2. See Section 5.1 for the complexity of that step.

5.3 Base-η Addition Circuit

Assume we have shared base-η representations of two numbers x and y. We will
show how to add these numbers together via the normal “elementary school
algorithm.” While there are more advanced circuits to perform this addition,
we describe this simple addition to show the underlying mechanisms at play.
Smaller depth circuits may be possible using these mechanisms.

We draw inspiration from the classic binary-coded-decimal addition algorithm.
Since we can easily do arithmetic on shared secrets over fields a prime p > 2η,
this model makes sense. See Figure 12 for the full details.

We now give an example to illustrate the costs associated with the protocol.
Suppose we have 512-bit numbers x and y with η = 16. Then we may choose
p = 37 since two base-16 digits with carry can add to at most 31. All the additions
and subtractions are local operations, so we ignore them. Choosing the initial
carry bit in step 1 requires one degree t secret sharing and the multiplication in
step 2c requires us to do ω = 128 degree 2t secret sharings.

Input:

– A radix η = 2ν which is a power of 2
– Numbers x and y shared in base-η representation over Zp. Let x =

∑ω−1
i=0 x(ηi)ηi

and y =
∑ω−1

i=0 y(ηi)ηi.

Assume without loss of generality that |x|2 = |y|2, ν
∣
∣|x|2, and ω = |x|2

ν
.

Output: Shares of z(ηi) for i = 0, · · · , ω − 1, where z = x + y.

1. Generate shared zero c0 = 0
2. For i = 0 to ω − 1 Do

(a) z(ηi) = x(ηi) + y(ηi) + ci

(b) ci+1 = z(ηi) ∈? {η, η + 1, ..., 2η − 1}
(c) z(ηi) = z(ηi) + (p − η) ∗ ci+1

Fig. 12. Addition in base-η representation.

Optimizing Robustness While Generating Shared Secret Safe Primes 135

Input:

– A radix η = 2ν which is a power of 2
– Polynomial shares of secret x.

Assume without loss of generality that ν
∣
∣|x|2 and and ω = |x|2

ν
.

Output: Polynomial shares of the base-η representation of x, [x(η0)]pj , · · · , [x(ηω−1)]pj .

1. Convert the polynomial shares of x to additive shares such that x =
∑

j=1..n xj .
(Recall that we also have verifiers for the additive shares when we use the poly-to-
sum protocol of [20].)

2. Reshare each ν-bit block of xj in polynomial form as x
(η0)
j , x

(η1)
j , · · · , x

(ηω−1)

j .

(a) Prove that these numbers are the base-η form of xj by showing that the com-

mitment, gxihrxi , to xi contains the same value as
∏

i=0..ω−1(g
x
(ηi)
j h

r
x
(ηi)
j)ηi

.
(b) Prove that |x(ηi)

j |2 = ν for each i = 0, · · · , ω − 1.

3. Convert all the shares x
(ηi)
j over p to shares over a smaller prime (e.g. the smallest

prime p′ > 2η).
4. Add all the base-eta shares of the xj together.

Fig. 13. Conversion to base-η representation.

Clearly the cost of the set membership to compute the carry bit in step 2b
dominates this algorithm. Our set has size η − 1 = 15, so we must perform this
many multiplications in each round. We must also perform 128 total normaliza-
tions. Thus we end up doing 1 degree t secret sharing, 15 ∗ 128 + 128 = 2048
degree 2t secret sharings, and 128 normalizations. The normalizations dwarf the
other costs. With t = 5 and n = 11 as before, the messages sent for the whole
protocol will total between 70MB and 80MB, depending on the random factors
in the normalization algorithm.

5.4 Converting a Number to Base-η Representation

We now have all the tools that we need to convert a polynomial secret sharing of
a number x to its base-η representation. The method we use is inspired by the
one from [2] which produces the binary representation of a number. The basic
idea is that the secret is reshared as an additive secret, each η digit is reshared as
a polynomial, then we use the addition circuit to add all the numbers together
in base-η. The conversion algorithm is detailed in Figure 13.

Most of the cost of this algorithm is in the addition step which we addressed
in the previous section. The proofs in step 2 are non-trivial, however. Step 2a is
relatively simple because of the homomorphic commitment scheme – it requires
only 2|p|2 additional bits to be broadcast. Step 2b requires a proof of size pro-
portional to the size of x. Specifically, each base-η digit requires a proof of size
η(6|p|2 + 1) (See the extended paper for more details). Since we have ω of these
digits, the proof expands to ωη(6|p|2 + 1) = |x|2(6|p|2 + 1).

136 Emil Ong and John Kubiatowicz

6 Summary

We presented a robust algorithm to generate shared secret, safe prime numbers.
Our algorithm owes much to the work of [2] and [5] in the general form. Us-
ing this framework, we developed efficient zero-knowledge proofs of knowledge
making the algorithm robust. We also borrowed ideas ([17]) from the computer
arithmetic world that reduced the number of such proofs we have to transmit
during the algorithm. We generalized the modular exponentiation algorithm of
[2] to general precomputed lookup tables. We believe our techniques make shared
generation of a safe prime much more feasible in the robust setting. Using this
primitive and the works of Catalano et al. [7], Shoup’s RSA scheme is much
closer to practical use without a trusted dealer.

References

1. Shoup, V.: Practical Threshold Signatures. Lecture Notes in Computer Science
1807 (2000)

2. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Pro-
ceedings of CRYPTO 2002, Springer Verlag (2002) 417–432

3. Fouque, P.A., Stern, J.: Fully distributed threshold RSA under standard assump-
tions. In: Proceedings of Asiacrypt. (2001) 310–330

4. Damg̊ard, I.B., Koprowski, M.: Practical Threshold RSA Signatures Without a
Trusted Dealer. Technical Report RS-00-30, Basic Research in Computer Science,
University of Aarhus (2000)

5. Malkin, M., Wu, T., Boneh, D.: Experimenting with Shared Generation of RSA
keys. In: Symposium on Network and Distributed System Security. (1999) 43–56

6. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
ACM Transactions on Information and System Security 3 (2000) 161–185

7. Catalano, D., Gennaro, R., Halevi, S.: Computing inverses over a secret shared
modulus. In: EUROCRYPT 2000. Volume 1807 of LNCS., Springer-Verlag (2000)
190–207

8. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. Journal of the
ACM (JACM) 48 (2001) 702–722

9. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust Efficient Distributed RSA-Key
Generation. In: Annual ACM Symposium on Theory of Computing. (1998)

10. Goldwasser, S., Lindell, Y.: Secure Multi-Party Computation Without Agreement.
In: 16th International Symposium on DIStributed Computing. Volume 2508 of
LNCS. (2002) 17–32

11. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979)
12. Damg̊ard, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme

Based on Groups with Hidden Order. In: ASIACRYPT. (2002) 125–142
13. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO 1991. Volume 576 of LNCS. (1991) 129–140
14. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In: Annual ACM Sympo-
sium on Theory of Computing. (1988) 1–10

Optimizing Robustness While Generating Shared Secret Safe Primes 137

15. Mao, W.: Guaranteed Correct Sharing of Integer Factorization with Off-line
Shareholders. In: Public Key Cryptography. Volume 1431 of LNCS. (1998) 60–71

16. Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics
of Computation 44 (1985) 519–521

17. Bajard, J.C., Didier, L.S., Kornerup, P.: Modular Multiplication and Base Exten-
sions in Residue Number Systems. In: Proceedings of the 15th IEEE Symposium
on Computer Arithmetic. (2001) 59–65

18. Ç.K. Koç, Acar, T.: Fast Software Exponentiation in GF(2k). In: Symposium on
Computer Arithmetic. (1997) 225–231

19. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Con-
stant Number of Rounds of Interaction. In: 8th ACM Symposium on Principles
of Distributed Computation. (1989) 201–209

20. Frankel, Y., MacKenzie, P., Yung, M.: Adaptively secure distributed public-key
systems. Theoretical Computer Science 287 (2002) 535–561

Fast Multi-computations
with Integer Similarity Strategy�

Wu-Chuan Yang1, Dah-Jyh Guan2, and Chi-Sung Laih1

1 Department of Electrical Engineering, National Cheng Kung University,
Tainan, Taiwan 701, R.O.C.

2 Department of Computer Science, National Sun Yat Sen University,
Kaohsiung, Taiwan 804, R.O.C.

wcyang77@ms32.hinet.net, guan@cse.nsysu.edu.tw, laihcs@eembox.ncku.edu.tw

Abstract. Multi-computations in finite groups, such as multiexponenti-
ations and multi-scalar multiplications, are very important in ElGamal-
like public key cryptosystems. Algorithms to improve multi-computa-
tions can be classified into two main categories: precomputing methods
and recoding methods. The first one uses a table to store the precom-
puted values, and the second one finds a better binary signed-digit (BSD)
representation. In this article, we propose a new integer similarity strat-
egy for multi-computations. The proposed strategy can aid with precom-
puting methods or recoding methods to further improve the performance
of multi-computations. Based on the integer similarity strategy, we pro-
pose two efficient algorithms to improve the performance for BSD sparse
forms. The performance factor can be improved from 1.556 to 1.444 and
to 1.407, respectively.

Keywords: ElGamal-like public key cryptosystems, binary signed-digit
(BSD) representations, sparse forms, multi-computations, multiexponen-
tiations, multi-scalar multiplications

1 Introduction

Multi-computations in finite groups, such as multiexponentiations, e.g. c =
axby, and multi-scalar multiplications, e.g. C = xA + yB (A, B, and C de-
note points in one elliptic curve), are very important in many ElGamal-like
public key cryptosystems [8, 21, 9]. In addition to the algorithms for single com-
putations (some good surveys can be found in [13, 5, 10]), the performance of
multi-computations can be improved by the concept of multiexponentiation [8,
Section V.B]. This concept was generalized to the small window methods by
Yen, Laih, and Lenstra [23].

Based on the concept of multiexponentiations, many algorithms have been
proposed to improve the performance of multi-computations. In general, these

� This work was supported by the National Science Council, Taiwan, under contract
NSC 92-2213-E-232-002.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 138–153, 2005.
c© International Association for Cryptologic Research 2005

Fast Multi-computations with Integer Similarity Strategy 139

algorithms can be classified into two categories: precomputing methods and re-
coding methods. Precomputing methods use a large table to store the precom-
puted values, such as the BGMW method [4] and the Lim-Lee method [14].
Precomputing methods are very suitable for memory sufficient environment and
have the better performance indeed. Since the binary signed-digit (BSD) repre-
sentation of an integer is not unique, recoding methods try to recode the BSD
representations of x and y such that their joint Hamming weight ω(x, y) is as
minimal as possible [7, 22]. The joint Hamming weight can be defined by the
number of digit pairs, at least one of which is nonzero. Recoding methods are
very useful in memory limited environments, such as IC cards or smart consumer
electronic devices. Recently, this topic has been discussed in many articles [15,
18, 2, 3, 16, 19].

In this article, we focus on the memory limited environment and intro-
duce a new integer similarity strategy to improve the performance of multi-
computations. When computing c = axby or C = xA + yB, the recoding meth-
ods match the zeros or nonzeros as possible by recoding x and y in advance,
therefore the performance of multi-computations can be improved. Instead of
recoding x and y, the new strategy is by deleting or inserting some digits in
x and y, such that x and y have as much similarity as possible. For example, if
x = 0101010112 and y = 1010101012, we can match the zeros by deleting the
first zero in x and inserting a zero before the last digit in y as follows.

x 0 1 0 1 0 1 0 1 1
Original computation y 1 0 1 0 1 0 1 0 1 ω(x, y) = 9

x 0 1 0 1 0 1 0 1 1
adjusted computation y 1 0 1 0 1 0 1 01 ω(x, y) = 5

↑ ↑
deleted inserted

Obviously, the computation must be modified for evaluating the correct result
if some digits in x or y were deleted or inserted. As the above example, we only
compute the deleted digit which is the beginning digit of x. Afterwards the digit
with the same value can be computed simultaneously. Finally, the inserted digit
in y should be computed with the last digit pair. Different from the recoding
methods, our proposed methods improve the performance by shifting the digits.
Thus our methods are very promising ones to improve performance in memory
limited environments.

Since the performance of the multi-computation algorithms is determined
by the computations of nonzero columns, we use a performance factor, ρ, to
evaluate the performance of multi-computations. The performance factor can
be defined as follows, note that “1” refers to the necessary computations of
square (in multiexponentiation) or double (in multi-scalar multiplication).

ρ = 1 +
number of nonzero digit pairs
number of total digit pairs

.

140 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

The performance of multi-computations by BSD representations can be de-
scribed as follows: ρ = 1.556 by using sparse forms directly [13], ρ′ = 1.534
[7] by using the Dimitrov-Jullien-Miller method, and ρ′′ = 1.500 [22] by using
joint sparse forms, respectively. The proposed integer similarity strategy has
practical applications for the above BSD methods. Based on the integer similar-
ity strategy, we propose two efficient algorithms to improve the performance for
BSD sparse forms; the performance factor can be reduced from 1.556 to 1.444
and to 1.407, respectively. The proposed strategy can also be used in binary rep-
resentations since it does not recode the representation. Based on the proposed
strategy, ρ can be reduced from 1.75 to 1.667 in binary method.

The rest of this article is organized as follows. In Section 2, we first review
the basic multi-computation algorithms. The concept of integer similarity strat-
egy and the proposed algorithms are illustrated in Section 3. And we also prove
the performance of the proposed algorithms. In Section 4, we compare the per-
formances of some well-known recoding methods and our proposed methods.
Besides, the application of the proposed strategy to binary representations is
also discussed in Section 4. Finally, our conclusion is presented in Section 5.

2 Preliminaries of Multi-computations

To simplify the description, the integer similarity strategy is described by multi-
scalar multiplication, C = xA + yB, with BSD representations only. Note that
our strategy can also be applied to multiexponentiation, c = axby, with binary
representations [11]. The notations used in this article are described as follows.
The uppercase alphabet, such as A or B, denotes the discrete point in elliptic
curve public key cryptosystems. The lowercase alphabet, such as x or y, denotes
an n-bit integer. Because the minimal weight BSD representations need an extra
BSD, x can be represented by n + 1 BSDs as follows (1̄ denotes −1).

x =
n∑

i=0

xi2i = (xnxn−1 · · ·x1x0)2, where xi ∈ {1̄, 0, 1}.

Symbol |x| represents the bit-length of x, ω(x) represents the Hamming weight of
x, i.e. the number of nonzero digits. In multi-computation, we put our emphasis
on whether the digit is zero or not. Therefore we use “o” to denote zero value,
and “ι” to denote the nonzero values. Hence the digits can be classified into
two sets: the zero set So and the nonzero set Sι. xi ∼ yi denotes xi, yi ∈ So or
xi, yi ∈ Sι. The expression xi �∼ yi denotes xi ∈ So, yi ∈ Sι or xi ∈ Sι, yi ∈ So.

For integer pairs, |(x, y)| = max(|x|, |y|), the joint Hamming weight ω(x, y) is
defined by the total number of (xi, yi) �= (0, 0), for all i. Thus, the performance
factor ρ can be simplified to ρ = 1 + ω(x,y)

|(x,y)| .

2.1 The Basic BSD Method for Multi-scalar Multiplications

The expected ω(x) in minimal weight BSD representations is 1
3n [1]. Many algo-

rithms can be used to recode the binary representation or any BSD representa-

Fast Multi-computations with Integer Similarity Strategy 141

tion to minimum weight BSD representation [20, 11, 12]. Notice that an integer
may have many minimal weight BSD representations, the most famous one is
called the sparse form since no two consecutive digits are both nonzeros. Sparse
forms are also called canonical forms or non-adjacent forms [10]. Minimal weight
BSD representations are especially suitable for elliptic curve scalar multiplica-
tions since the inverse of a point is easy to compute. The basic BSD method
for multi-scalar multiplications is shown in Algorithm 1. Symbol O denotes the
identity element of the elliptic curve, this point is also called “point at infinity.”
The value of all possible xiA + yiB must be precomputed in Line 6 of Algorithm
1. Therefore it needs 5 registers to store the value of A, B, A + B, A − B,
and C. The inverse value −A, −B, −A − B and −A + B are easily to obtain
from the precomputed table, so we do not need to precompute these value. The
performance factor of Algorithm 1, ρ1, is equal to 1.556. The proof is shown in
Theorem 1.

Algorithm 1. The Basic BSD Method for multi-computations
I/P: A, B, x, y

O/P: C = xA + yB

1: Recode x and y to the minimum weight BSD representations;
2: Prepare the following values: A, B, A ± B;
3: C = O;
4: for i = n downto 0 do {
5: C = 2C;
6: if (xi, yi) �= (0, 0) then C = C + (xiA + yiB);
7: }

Theorem 1. The performance factor of Algorithm 1 is ρ1 = 1 5
9 � 1.556.

Proof. In Line 6, the probability of (xi, yi) �= (0, 0) is 1 − (2
3)2 = 5

9 .
Therefore the performance factor ρ1 = 1 + 5

9 � 1.556. ��

2.2 The Recoding Methods for BSD Representations

Since there are many minimal weight BSD representations, the result of Algo-
rithm 1 can be improved by recoding the representations. Dimitrov, Jullien, and
Miller proposed 8 reduction rules to recode x and y (called the DJM method
in this article) [7]. In their method, if the scanned segment of three consecutive
digits matches one of the upper part of Table 1, the algorithm recode the seg-
ment to the corresponding lower part. The performance factor can be reduced
from 1.556 to 1.534 by using the DJM method.

On the view of sparse form for the single integer, Solinas proposed the con-
cept of joint sparse form (JSF) for pairs of integers, the properties of JSF are
illustrated as follows [22]:

142 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 1. The DJM reduction rules.

Original xi+2xi+1xi 010 010 01̄0 01̄0 101̄ 101̄ 1̄01 1̄01
digits yi+2yi+1yi 101̄ 1̄01 101̄ 1̄01 010 01̄0 010 01̄0
After x′

i+2x
′
i+1x

′
i 010 010 01̄0 01̄0 011 011 01̄1̄ 01̄1̄

Adjusted y′
i+2y

′
i+1y

′
i 011 01̄1̄ 011 01̄1̄ 010 01̄0 010 01̄0

1. Of any 3 consecutive digits, at least one is double zeros.
2. Adjacent digits do not have opposite signs.
3. If xi+1xi �= 0, then yi+1 �= 0 and yi = 0.

If yi+1yi �= 0, then xi+1 �= 0 and xi = 0.

Solinas also proposed two efficient recoding algorithms to generate the joint
sparse form from binary representation and sparse form, respectively. The per-
formance factor can be improved to 1.500 when n approaches infinite, and this
value is the minimum of all the recoding methods.

3 The Integer Similarity Strategy

By observing above recoding methods, we find two major limitations in those
method. First, they can not recode the binary representations since the binary
representation for an integer is unique. Second, they cannot recode the digits
with the same signs, such as 101 or 1̄01̄, because they are unique minimum
weight form. For example, if x = (10101010)2 and y = (01010101)2, all recoding
methods cannot improve the computation. Based on the observation, we propose
a totally new strategy, the integer similarity strategy, to improve the performance
of multi-computations. Our idea is to shift some digits by deleting and insert-
ing so that two different integers can be as much similarity as possible. For
example x = (01010101)2 and y = (10101010)2, x can be adjusted by deleting
the first zero and inserting a zero in the end. When the digit of x or y is deleted
or inserted, the corresponding computation must be defined for evaluating the
correct result. In order to use the proposed strategy for multi-computations, the
following items must be taken into consideration.

1. The Condition for Deleting or Inserting
For improving the performance, we have to define the condition to let the
integers be as much similarity as possible. The condition depends on both
integer representations and memory space.

2. The Corresponding Computation of Deletion or Insertion
In computing C = xA + yB, C = 2C + xiA is computed when deleting xi

and C = 2(C + yi+1B) + (xiA + yiB) when inserting yi.
3. The Computation After Deletion or Insertion

After deletion, the corresponding digits of x and y will be shifted, that is
the corresponding digits of xi−1 is yi after deleting xi. The corresponding
computation after deletion is C = 2C + (xi−1A + yi2B).

Fast Multi-computations with Integer Similarity Strategy 143

The simplest case of the integer similarity strategy is that one insertion in
an integer follows one deletion in another integer, we name it the single-stage
version. The deletion can be acted on only one integer, called the single-integer
version, and it can be also acted on both the integers, call double-integer version.
In this article, in order to point out the essence of the integer similarity strategy,
two basic methods are taken into consideration. The first one, called the single-
stage single-integer (1S1I) method, is to delete one digit in x then to insert
another digit in y at an appropriate position. The second one, called the single-
stage double-integer (1S2I) method, is to delete one digit in x or y and insert
another digit in its opposite integer. The single stage can be generalized to multi-
stage. However, we do not discuss the generalization of 1S1I and 1S2I method
in this article due to the page limitation.

3.1 The 1S1I Method for Sparse Forms

The BSD sparse form has an important property – of any 2 consecutive digits,
at least one is zero. According to this property, if we want to match the zeros
and nonzeros, xi �∼ yi is a suitable condition to delete one digit in x. When one
digit in x is deleted, the computation should be modified, which is called “Delete
x” state, denoted by Dx. On the contrary, if the computation is the same with
the original algorithm, the state can be called the “Normal” state, denoted by
Nr. Thus the state diagram of the 1S1I method is shown in Fig. 1.

��
��

��
��

Nr Dx

�

�

xi �∼ yi
xi ∼ yi

�

�

xi ∼ yi
xi �∼ yi

Fig. 1. The state diagram of the 1S1I method.

Consider the following condition, xu is deleted in x and yv is inserted in y.

x = (xn · · · � xu xu−1 · · · xv xv−1 · · · x0)2
y = (yn · · · yu · · · yv+1yv yv−1 · · · y0)2

Before deleting xu and after inserting yv (i > u or i < v), the computation is
2C +(xiA+yi+1B). It is the same as Algorithm 1. When deleting xu (i = u), the
computation is 2C + xuA. After deleting xu and before inserting yv (u > i > v),
the computation is 2C + (xiA + yi+12B) and the state is transferred into Dx.
When inserting yv (i = v), the computation is C = 2(C +yv+1B)+(xvA+yvB).
The corresponding digits are (xi, yi) in Nr, and (xi, yi+1) in Dx. Therefore, the
corresponding computations can be illustrated in Table 2. To summarize the
above, Algorithm 1 can be modified to the following Algorithm 2.

144 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 2. The corresponding computations of the proposed algorithm.

State Corresponding computation
Nr C = 2C + (xiA + yiB)

Nr → Dx C = 2C + xiA

Dx C = 2C + (xiA + yi+12B)
Dx → Nr C = 2(C + yi+1B) + (xiA + yiB)

Algorithm 2. The 1S1I method for sparse forms
I/P: A, B, x = (xn−1, · · · , x1, x0)2, y = (yn−1, · · · , y1, y0)2
O/P: C = xA + yB

1: Prepare the value of A, B, A ± B, A ± 2B;
2: C = O, State = Nr;
3: for i = n downto 0 do {
4: if (State = Nr) {
5: if (xi ∼ yi) then C = 2C + (xiA + yiB);
6: else State = Dx, C = 2C + xiA;
7: }
8: else {
9: if (xi �∼ yi) then C = 2C + (xiA + yi+12B);
10: else State = Nr, C = 2(C + yi+1B) + (xiA + yiB);
11: }
12: }

The rules in Fig. 1 are very simple and efficient. Theorem 2 proves that Algorithm
2 is guaranteed to further improvement of the performance of Algorithm 1 with
BSD sparse forms.

Theorem 2. Let ρ1 and ρ2 be the performance factor of Algorithm 1 and Algo-
rithm 2, respectively. If x and y are both sparse forms, then ρ2 ≤ ρ1.

Proof. The performance factor is analyzed by considering the computation of
Nr and of Dx.

First, we consider the computation in state Nr of Algorithm 2. In Line 5, it
is the same with Algorithm 1. In Line 6, if yi is zero, ρ will be decreased by 1,
otherwise ρ remains the same with Algorithm 1.

Then we consider the computation of state Dx. if xi �∼ yi for u ≥ i ≥ v,
therefore Dx is occurred for (u − 1) ≥ i ≥ (v − 1), thus the corresponding
computation digits are shown as follows.

Nr Nr→ Dx Dx · · · Dx Dx Dx→ Nr
xu+1 � xu xu−1 · · · xv+1 xv xv−1

yu+1 yu · · · yv+2 yv+1 yvyv−1

Fast Multi-computations with Integer Similarity Strategy 145

Suppose the length of the above interval of Dx is k, then k = u − v + 1. We can
get xi ∼ yi+1 for (u − 1) ≥ i ≥ v, because of the property of sparse forms and
xi �∼ yi for u ≥ i ≥ v. Thus ρ can be considered into the following 4 conditions:

1. Led by deleting o and ended by inserting ι: ρ = 3k+1
2 , k = 1, 3, 5, · · ·.

2. Led by deleting ι and ended by inserting o: ρ = 3k+1
2 , k = 1, 3, 5, · · ·.

3. Led by deleting o and ended by inserting o: ρ = 3k
2 , k = 2, 4, · · ·.

4. Led by deleting ι and ended by inserting ι: ρ = 3k
2 + 1, k = 2, 4, · · ·.

ρ will be decreased by k−1
2 , k−1

2 , k
2 , and k

2 − 1 for the above 4 conditions,
respectively, because ρ = 2k in Algorithm 1. Thus ρ will never be increased either
in Dx.

For the above discussion, ρ2 ≤ ρ1. ��
According to the proof of Theorem 2, the computation cost will not be in-

creased even if in the worst case. The average performance of Algorithm 2 is
analyzed as follows. We now concern the conditional probability of xi when xi+1

is given. We know Po = 2
3 and Pι = 1

3 in sparse forms have been proved in [20].
Lemma 1 illustrates the conditional probability Pxi|xi+1 , and it can be extended
to pairs of integers, Pxiyi|xi+1yi+1 , as described in Lemma 2.

Lemma 1. Let Pxi|xi+1 be the conditional probability of xi given xi+1. Then
Po|o = Pι|o = 1

2 , Po|ι = 1, and Pι|ι = 0 in BSD sparse forms.

Proof. Since no two consecutive digits are nonzeros, Po|ι = 1 and Pι|ι = 0.
Let Po|o = p and Pι|o = 1 − p.
Po = Po · Po|o + PιPo|ι, therefore 2

3 = 2
3 · p + 1

3 · 1 → p = 1
2 .

We can get Po|o = p = 1
2 and Pι|o = 1 − p = 1

2 . ��
Lemma 2. Let Pxiyi|xi+1yi+1 be the conditional probability of xiyi given xi+1yi+1.
Then Poo|ιι = 1, Poo|oι = Pιo|oι = Poo|ιo = Poι|ιo = 1

2 , Poo|oo = Poι|oo = Pιo|oo =
Pιι|oo = 1

4 , Poι|ιι = Pιo|ιι = Pιι|ιι = Poι|oι = Pιι|oι = Pιo|ιo = Pιι|ιo = 0.

Proof. Because the digits in x and y are independent, the probability Pxiyi|xi+1yi+1

= Pxi|xi+1 × Pyi|yi+1 . Thus the proof of this Lemma is completed. ��
According to Lemma 3, the corresponding computations and their proba-

bilities of Algorithm 2 are illustrated in Table 3, where the symbols “P.S.” and
“N.S.” stand for “Present state” and “Next state”, respectively. The items “com-
putations,” “nxiyi ,” “Pxi+1xiyi+1yi ,” and “Line” denote the corresponding com-
putations, the number of additions, the probability of the computation of this
row, and the corresponding line number in Algorithm 2. In Theorem 3, we show
that the performance factor ρ2 of Algorithm 2 is 1.444. In comparison with 5
registers in Algorithm 1, Algorithm 2 needs 2 extra registers to store the value
of A ± 2B.

Lemma 3. Among the 16 possible xi+1xiyi+1yi, there are 9nonzero Pxi+1xiyi+1yi ,
i.e. Poooo, Poooι, Poιoo, Poιoι, Pιoιo, Pooιo, Poιιo, Pιooo, and Pιooι, and all of them
are all equal to 1

9 .

146 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 3. Performance Analysis of Algorithm 2.

P.S. xi+1yi+1 xiyi N.S. computations nxiyi Pxi+1xiyi+1yi Line
Nr oo oo Nr C = 2C 1 1/9 5

Nr oo oι Dx C = 2C 1 1/9 6

Nr oo ιo Dx C = 2C ± A 2 1/9 6

Nr oo ιι Nr C = 2C ± (A ± B) 2 1/9 5

Nr ιι oo Nr C = 2C 1 1/9 5

Dx oι oo Nr C = 2(C ± B) 2 1/9 10
Dx oι ιo Dx C = 2C ± (A ± 2B) 2 1/9 9

Dx ιo oo Nr C = 2C 1 1/9 10
Dx ιo oι Dx C = 2C 1 1/9 9

Proof. The value of Pxi is Po = 2
3 and Pι = 1

3 , then the value of Pxiyi is Poo = 4
9 ,

Poι = Pιo = 2
9 , and Pιι = 1

9 .
The value of Pxi+1xiyi+1yi is equal to Pxi+1yi+1 ×Pxiyi|xi+1yi+1 . Thus, accord-

ing to Lemma 2 and the above fact, all the nonzero Pxi+1xiyi+1yi are as shown
in this Lemma, and the values are all 1

9 . ��
Theorem 3. The performance factor of Algorithm 2 is ρ2 = 1 4

9 � 1.444.

Proof. The performance factor is computed by
∑

(nxiyi × Pxi+1xiyi+1yi).
According to Table 3,
ρ2 = 1·1+1·1+1·2+1·2+1·1+1·2+1·2+1·1+1·1

9 = 13
9 � 1.444. ��

3.2 The 1S2I Method for Sparse Forms

When the deleted digit is equal to zero, it only needs one computation. Therefore
if xi = ι and yi = o, it is more suitable to delete yi instead of xi. When we
delete yi, the state is transferred into the state “Delete y,” denote by Dy. In
this subsection, we propose a method which deletes one digit of xi or yi rather
than deletes xi only. The method is called the 1s2I method. The corresponding

Table 4. The corresponding computations of the 1S2I algorithm.

State Corresponding computations
Nr C = 2C + (xiA + yiB)

Nr → Dx C = 2C

Nr → Dy C = 2C

Dx C = 2C + (xiA + yi+12B)
Dx → Nr C = 2(C + yi+1B) + (xiA + yiB)

Dy C = 2C + (xi+12A + yiB)
Dy → Nr C = 2(C + xi+1A) + (xiA + yiB)

Fast Multi-computations with Integer Similarity Strategy 147

��
��

��
��

��
��

Dy Nr Dx
� �

� �

� � �

xi = ι
yi = o

xi = o
yi = ι

xi ∼ yi xi ∼ yi

xi �∼ yi xi ∼ yi xi �∼ yi

Fig. 2. The state diagram for the 1S2I method.

computation is illustrated in Table 4 and the state diagram of the 1S2I method
is shown in Fig. 2. Thus Algorithm 2 can be modified in the 1S2I method, as
shown in Algorithm 3.

Algorithm 3. The 1S2I method for sparse forms
I/P: A, B, x = (xn−1, · · · , x1, x0)2, y = (yn−1, · · · , y1, y0)2
O/P: C = xA + yB

1: Prepare the value of A, B, A ± B, A ± 2B, 2A ± B;
2: C = O, State = Nr;
3: for i = n downto 0 do {
4: if (State = Nr) {
5: if (xi ∼ yi) then C = 2C + (xiA + yiB);
6: else if (xi = o and yi = ι) then State = Dx, C = 2C;
7: else State = Dy, C = 2C;
8: }
9: else if (State = Dx) {
10: if (xi �∼ yi) then C = 2C + (xiA + yi+12B);
11: else State = Nr, C = 2(C + yi+1B) + (xiA + yiB);
12: }
13: else {
14: if (xi �∼ yi) then C = 2C + (xi+12A + yiB);
15: else State = Nr, C = 2(C + xi+1A) + (xiA + yiB);
16: }
17: }

The performance analysis of Algorithm 3 is similar to Algorithm 2. In order
to get the performance analysis table like Table 3, we compute the probability
of all the state beforehand. We first find that the deleted digit is always zero and
the corresponding digit is always nonzero. Therefore, the state Dx is separated
into Dx′ (xi = o and yi = ι) and Dx′′ (xi = ι and yi = o); the state Dy is
separated into Dy′ (xi = ι and yi = o) and Dy′′ (xi = o and yi = ι). Then
according to Lemma 1 and Lemma 2, the probability of the state diagram is

148 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

��
��

��
��

��
��

��
��

��
��

D′
y Nr D′

x

D′′
y D′′

x

� �
� �

�

� �

� �

�
�

�
�

�
��

	
	

	
	

	
	
1

5
1
5

3
5

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 3. The detail state probability of Algorithm 3.

illustrated as Fig. 3. The probability of state Nr, Dx′, Dx′′, Dy′, and Dy′′ are
illustrated in Lemma 4. Thus the performance analysis is illustrated in Table 5.
In Theorem 4, the performance factor ρ3 is proved to be 1.407. In comparison
with 5 registers in Algorithm 1, Algorithm 3 needs 4 extra registers to store the
value of A ± 2B and 2A ± B.

Lemma 4. Suppose p0, p′1, p′′1 , p′2, and p′′2 denote the probabilities of state Nr,
Dx′, Dx′′, Dy′, and Dy′′, respectively. Then p0 = 5

9 , p′1 = 4
27 , p′′1 = 2

27 , p′2 = 4
27 ,

and p′′2 = 2
27

Proof. Consider the probability in Fig. 2, we can get
p′′2 = 1

2p′2 → p′2 = 2p′′2 ,
p′2 = 1

5p0 + 1
2p′′2 → p0 = 15

2 p′′2 ,
p′′1 = 1

2p′1 → p′1 = 2p′′1 ,
p′1 = 1

5p0 + 1
2p′′1 → p0 = 15

2 p′′1 ,
Suppose p′′2 = p′′1 = a, and p′2 = p′1 = 2a, p0 = 15

2 a,
We can get (1 + 1 + 2 + 2 + 15

2)a = 1 → a = 2
27 ,

Therefore p0 = 5
9 , p′1 = 4

27 , p′′1 = 2
27 , p′2 = 4

27 , and p′′2 = 2
27 . ��

Theorem 4. The performance factor of Algorithm 3 is ρ3 = 1 11
27 � 1.407.

Proof. The performance factor is computed by
∑

(nxiyi × Pxi+1xiyi+1yi).
According to Table 5,
ρ3 = 1·1+1·1+1·1+1·2+1·1

9 + 2·2+2·2+1·1+1·1+2·2+2·2+1·1+1·1
27 = 38

27 � 1.407. ��

4 Comparison and Discussion

The performance of multi-computations can be improved by integer similarity
strategy. Consider the 1S1I and 1S2I methods with sparse forms, ρ1 = 1.556
is improved to ρ2 = 1.444 and ρ3 = 1.407. The performance of the proposed
algorithm seems to be further improve by combining with recoding methods.

Fast Multi-computations with Integer Similarity Strategy 149

Table 5. Performance analysis of Algorithm 3.

P.S. xi+1yi+1 xiyi N.S. computations nxiyi Pxi+1xiyi+1yi Line
Nr oo oo Nr C = 2C 1 1/9 5

Nr oo oι Dx C = 2C 1 1/9 6

Nr oo ιo Dx C = 2C 1 1/9 7

Nr oo ιι Nr C = 2C ± (A ± B) 2 1/9 5

Nr ιι oo Nr C = 2C 1 1/9 5

Dx oι oo Nr C = 2(C ± B) 2 2/27 11

Dx oι ιo Dx C = 2C ± (A ± 2B) 2 2/27 10
Dx ιo oo Nr C = 2C 1 1/27 11

Dx ιo oι Dx C = 2C 1 1/27 10
Dy oι oo Nr C = 2C 1 1/27 15

Dy oι ιo Dy C = 2C 1 1/27 14

Dy ιo oo Nr C = 2(C ± A) 2 2/27 15

Dy ιo oι Dy C = 2C ± (2A ± B) 2 2/27 14

Thus, using recoding methods in Algorithm 2 and Algorithm 3 is an interesting
approach. As described in proof of Theorem 2, the computation in Dx can be
divided into 4 conditions, and the performance factor can be increased in each
condition. Thus our proposed methods will also improve the performance when
combined with recoding methods. Unfortunately, the performance is poorer than
directly using sparse forms. The reason is that zeros (or nonzeros) have been
aligned between x and y in recoding methods. If we try to apply our method
to the recoded BSD representations, the ratio of the improvement is less than
the ratio that we apply the method on sparse forms. In our simulation (10000
pairs of 1024-bit integers generated by java.security.SecureRandom object in
Java 2 platform), the performance factor is shown in Table 6. Thus the proposed
strategy is suitable for spars forms especially. We illustrate improvement of the
1S1I method of the by given instance in Example 1. Furthermore, the proposed
strategy seems to be similar to the width-w nonadjacent form (w-NAF) encoding
method [6, 17]. In order to achieve the unique w-NAF, the digits in w-NAF
should be zero or odds. If the digits is in {−2,−1, 0, 1, 2}, the effect is very
near to the proposed integer similarity strategy, but the integer will be many
representations. It does not exist an exact method to find a good “w-NAF(-2,-
1,0,1,2)” for multi-computations. Based on the proposed strategy, Algorithm 2
and Algorithm 3 exactly define the rules of deleting or inserting digits. However,
the w-NAF encoding is a very interesting research topic in multi-computations.

Example 1. Let x = (101̄01̄0101010101̄0)2 and y = (010101̄01̄01̄0101̄00)2. The
performance factor of the combination with recoding methods and the 1s1I
method is shown as follows. In this example, we first find that ρ1 = 1.938 is
improved to ρ′

1 = ρ′′
1 = 1.563 by using the DJM method and JSF, respectively.

Second, we find that ρ1 = 1.938 is improved to ρ2 = 1.500 by using the 1S1I
method. Finally, ρ2 can not be improved by using the DJM method and JSF.

150 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 6. The comparison of some algorithms.

Performance Factor Original with 1S1I with 1S2I
Sparse Forms 1.556 1.444 1.407

recode by DJM 1.534 1.453 1.414

recode to JSF 1.500 1.469 1.438

Sparse forms 1 0 1̄ 0 1̄ 0 1 0 1 0 1 0 1̄ 0 1̄ 0
0 1 0 1 0 1̄ 0 1̄ 0 1̄ 0 1 0 1̄ 0 0 ρ1 = 1.938

with 1S1I � 1 0 1̄ 0 1̄ 0 1 0 1 0 1 0 1̄ 0 1̄ 0
0 1 0 1 0 1̄ 0 1̄ 0 1̄ 0 1 0 1̄ 00 ρ2 = 1.500

recode by DJM 0 1̄ 1̄ 0 1̄ 0 1 0 1 0 0 1 0 1 1 0
0 1 0 0 1 0 1 0 1 1 0 1 0 1̄ 0 0 ρ′

1 = 1.563
with 1S1I 0 1̄ � 1̄ 0 1̄ 0 1 0 1 � 0 0 1 0 1 � 1 0

0 1 00 1 0 1 0 1 10 1 0 1̄ 00 ρ′
2 = 1.563

recode to JSF 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0
0 1 0 1 0 0 1 0 1 1 0 1 0 1̄ 0 0 ρ′′

1 = 1.563
with 1S1I 0 1 0 1 � 1 0 1 0 1 � 0 0 1 0 1 � 1 0

0 1 0 1 00 1 0 1 10 1 0 1̄ 00 ρ′′
2 = 1.563

Besides, our proposed strategy can also be applied to multiexponentiation
with binary representations. With regard to state Dx, the corresponding digits
are (xi, yi+1), xi �= yi+1 is suitable to insert yi. But the value of (c × byi+1)β ×
axibyi must be computed by inserting yi. The computation needs 1 square and
2 multiplications. Therefore, the condition, xi = yi and yi �= yi+1 (denoted by
xi = yi �= yi+1) is more suitable. Since the number of multiplication can be
reduced by 1. The conditions of deletion and insertion for binary representations
are shown in Fig. 4. Apply the strategy to the binary method (the square-
and-multiply method), the modified algorithm is shown in Algorithm 4. The
performance factor can be reduced from 1.75 to 1.667 and only increase one
extra register to store ab2.

��
��

��
��

Nr Dx

�

�

xi �= yi
xi = yi

�

�

xi = yi �= yi+1
xi = yi+1 or

yi = yi+1 �= xi

Fig. 4. The state diagram for binary representations.

Fast Multi-computations with Integer Similarity Strategy 151

Algorithm 4 Apply the integer similarity strategy to binary methods
I/P: a, b, x = (xn−1 · · ·x1x0)2, y = (yn−1 · · · y1y0)2
O/P: c = axby

1: Precompute and store the values of a, b, ab, and ab2.
2: c = 1, state = Nr;
3: for i = n − 1 downto 0 do {
4: if (state = Nr) {
5: if (xi �= yi) then state = Dx, c = c2 × axi ;
6: else c = c2 × (axibyi);
7: }
8: else {
9: if (xi �= yi+1) then {
10: if (xi = yi) then state = Nr, c = (c × byi+1)2 × (axibyi);
11: else c = (c × byi+1)2 × axi ;
12: }
13: else c = c2 × (axib2yi);
14: }
15: }

5 Conclusion

In this article, we propose a totally new strategy, the integer similarity strat-
egy, for multi-computations. In order to match zeros and nonzeros in multi-
computation, the proposed strategy modifies the computing sequences by delet-
ing and inserting some digits. According to the strategy, we propose two efficient
algorithms, named the 1S1I and 1S2I method for multi-scalar multiplications
with BSD sparse forms. The performance factor is improved from 1.556 to 1.444
and to 1.407, respectively. The memory space only required 2 and 4 extra regis-
ters, respectively. Thus the proposed algorithms is suitable for memory limited
environments.

Our proposed algorithms can also be combined with recoding methods, in-
cluding the DJM method and joint sparse forms. However, this way turns out to
be far from desirable. Besides, the proposed strategy can be still used in binary
representations. In binary methods for multiexponentiation, the performance
factor can be improved form 1.75 to 1.667 with only one extra register.

Based on the integer similarity strategy, all the proposed methods are all
single stage in this article, that is one insertion must appear after one deletion.
In general case, the deletion and insertion should be appeared without any lim-
itations. The multi-stage version of the proposed strategy is an interesting work
in the future.

152 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

References

1. S. Arno and F. S. Wheeler. Signed digit representations of minimal hamming
weight. IEEE Trans. Computers, 42(8):1007–1010, 1993.

2. R. M. Avanzi. On multi-exponentiation in cryptography. IACR Cryptology ePrint
Archive 2002/154, http://eprint.iacr.org, 2002.

3. D. J. Bernstein. Pippenger’s exponentiation algorithm.
http://cr.yp.to/antiforgery.html, 2002.

4. E. F. Brickelland, D. M. Gordon, K. S. McCurley, and D. Wilson. Fast exponentia-
tion with precomputation. Advances in Cryptology-EUROCRYPT’92, LNCS 658,
Springer-Verlag, pages 200–207, 1992.

5. Ç. K. Koç. High-speed RSA implementations. RSA Laboratories, Technique Notes
TR201, http://www.rsasecurity.com/rsalabs, pages 9–32, Nov. 1994.

6. H. Cohen, A. Miyagi, and T. Ono. Efficient elliptic curve exponentiation us-
ing mixed coordinates. Advances in Cryptology-AISACRYPT’98, LNCS 1514,
Springer-Verlag, pages 51–65, 1998.

7. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Complexity and fast algorithms
for multiexponentiation. IEEE Trans. Computers, 49(2):141–147, Feb. 2000.

8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4):469–472, Jul. 1985.

9. FIPS186-2. Digital signature standard(DSS). NIST Computer Security FIPS page,
http://csrc.nist.gov/publications/fips/, 2001.

10. D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129–146, 1998.

11. J. Jedwab and C. J. Mitchell. Minimum weight modified signed-digit representa-
tions and fast exponentiation. Electronics Letters, 25(17):1171–1172, 1989.

12. M. Joye and S. M. Yen. Optimal left-to-right binary signed-digit recoding. IEEE
Trans. Computers, 49(7):740–748, 2000.

13. D. E. Knuth. The Art of Computer Programming, Seminumerical Algorithms,
volume 2. Addison-Wesley, 3rd edition, 1998.

14. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation.
Advances in Cryptology-CRYPTO’94, LNCS 839, Springer-Verlag, pages 95–107,
1994.

15. B. Möller. Algorithms for multi-exponentiations. 8th Annual Workshop on Selected
Areas in Cryptography -SAC 2001, LNCS 2259, Springer-Verlag, pages 165–180,
2001.

16. P. K. Mishra. Scalar multiplication in elliptic curve cryptosystems: Pipelining with
pre-computations.
IACR Cryptology ePrint Archive 2004/191, http://eprint.iacr.org, 2004.

17. J. Muir and D. Stinson. Minimality and other properties of the width-w nonadja-
cent form. Technique Report CORR 2004-08, http://www.cacr.math.uwaterloo.ca,
2004.

18. K. Okeya and K. Sakurai. Fast multi-scalar multiplication methods on elliptic
curves with precomputation using montgomery trick. 4th International Workshop
on Cryptographic Hardware and Embedded Systems - CHES 2002, LNCS 2523,
Springer-Verlag, pages 564–578, 2003.

19. K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi. Signed binary representa-
tions revisited. IACR Cryptology ePrint Archive 2004/195, http://eprint.iacr.org,
2004.

20. G. W. Reitwiesner. Binary arithmetic. Advance in computers, pages 231–308, 1960.

Fast Multi-computations with Integer Similarity Strategy 153

21. C. P. Schnorr. Efficient identification and signatures for smart cards. Advances in
Cryptology-CRYPTO’89, LNCS 435, Springer-Verlag, pages 239–252, 1989.

22. J. A. Solinas. Low-weight binary representations for pairs of integers. Technique
Report CORR 2001-41, http://www.cacr.math.uwaterloo.ca, 2001.

23. S. M. Yen, C. S. Laih, and A. K. Lenstra. Multiexponentiation. IEE Proc., Com-
puters and Digital Techniques, 141(6):325–326, 1994.

Efficient Proofs of Knowledge
of Discrete Logarithms and Representations

in Groups with Hidden Order

Endre Bangerter1, Jan Camenisch1, and Ueli Maurer2

1 IBM Research, Zurich Research Lab, CH-8803 Rueschlikon, Switzerland
{eba,jca}@zurich.ibm.com

2 Departement of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. For many one-way homomorphisms used in cryptography,
there exist efficient zero-knowledge proofs of knowledge of a preimage.
Examples of such homomorphisms are the ones underlying the Schnorr
or the Guillou-Quisquater identification protocols.
In this paper we present, for the first time, efficient zero-knowledge proofs
of knowledge for exponentiation ψ(x1)

.= hx1
1 and multi-exponentiation

homomorphisms ψ(x1, . . . , xl)
.= hx1

1 · . . . · hxl
l with h1, . . . , hl ∈ H (i.e.,

proofs of knowledge of discrete logarithms and representations) where H
is a group of hidden order, e.g., an RSA group.

1 Introduction

Consider mappings ψ : G → H , where the domain is the group (G, +) and
the co-domain is (H, ·). A mapping ψ is called a homomorphism if ψ(g + g′) =
ψ(g) · ψ(g′) for all g and g′ from G. A proof of knowledge of a preimage under
a homomorphism is a two-party protocol between a prover and a verifier. The
parties’ common input is a homomorphism ψ and an element y ∈ H . As a result
of the protocol the verifier either accepts or rejects. Informally speaking, a proof
of knowledge has the property that if a prover succeeds in making the verifier
accept with a probability larger than some threshold probability (the knowledge
error), then the prover must “know” a preimage x of y, i.e., an element x ∈ G
such that y = ψ(x). That is, there exists an algorithm (the knowledge extractor)
for the protocol that can compute a preimage x of y given rewinding oracle
access to such a prover.

For all (computable) homomorphisms there exists a proof of knowledge: the
well known commitment-challenge-response protocol, often called Σ-protocol
[17, 18], with binary challenges. Due to the binary challenges, the protocol has
a knowledge error of 1/2 and therefore it needs to be repeated sequentially suf-
ficiently many times to achieve a reasonably small knowledge error (i.e., a small
success probability for a cheating prover). However, some homomorphisms al-
low one to use the Σ-protocol with larger challenges, which results in a smaller
knowledge error. Thus, the protocol needs to be repeated only a few times or

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 154–171, 2005.
c© International Association for Cryptologic Research 2005

Efficient Proofs of Knowledge of Discrete Logarithms 155

just once, which is an order of magnitude more efficient. Examples of homomor-
phisms for which this is known to be possible are for instance those underlying
the Schnorr and the Guillou-Quisquater identification schemes [32, 27]. In fact,
Cramer [17] remarks that all the homomorphisms for which this is the case al-
low one to compute some information (e.g., the order of the group) from their
description that enables the knowledge extractor, together with the information
extracted from a convincing prover, to compute a preimage. Cramer calls such
homomorphisms special.

Unfortunately, many homomorphisms widely used in cryptographic proto-
cols are not known to be special and hence the most efficient proofs of knowl-
edge known for them is the Σ-protocol with binary challenges. Prominent ex-
amples of such homomorphisms are exponentiations ψ(x1)

.= hx1
1 and multi-

exponentiations ψ(x1, . . . , xl)
.= hx1

1 · . . . · hxl

l with h1, . . . , hl ∈ H in hidden
order groups H , e.g., where H is a class group [7, 22] or an RSA group. Such
homomorphisms are for instance the basis of recent group signature and iden-
tity escrow schemes, credential systems, and fair exchange protocols [2, 1, 8–10,
28, 5, 25, 11]. In fact in these schemes, the authors often employ the Σ-protocol
with non-binary challenges, sometimes wrongly relying on them to be proofs of
knowledge in this setting as well.

Related Work. Girault [26] suggests an efficient proof of knowledge for discrete
logarithms in the RSA group based on the Σ-protocol. His approach is to publish
the order of the sub-group in which the images lies. This requires, on the one
hand, that the RSA modulus has a special form and, on the other hand, the
non-standard assumption that giving away the order of the sub-group does not
allow one to factor the RSA modulus. Also, one can no longer make use of the
RSA-trapdoor for this subgroup with this approach.

Poupard and Stern [30] describe an identification scheme based on the Σ-
protocol, where the private key is a discrete logarithm of a generator of a sub-
group of the RSA group. They show that from an adversary that breaks the
identification scheme, a discrete logarithm can be extracted. While their con-
struction is appropriate to prove the security of their identification scheme, their
protocol is not a proof of knowledge of a discrete logarithm in the RSA group.

The most relevant work in the field is that by Damg̊ard and Fujisaki [21]
(based on work by Fujisaki and Okamoto [24]). They show that the Σ-protocol
can be used in certain cases to demonstrate knowledge of a discrete logarithm
(or representation) in hidden order groups provided that the prover is not given
the group’s order. Let us refer in the following to the Damg̊ard and Fujisaki
scheme as the DF scheme. As pointed out and explained in detail by its au-
thors [21], the DF scheme is not a (computational) proof of knowledge accord-
ing to the standard definition [4]. Rather, it only works in a stronger definitional
setting resulting in “weak proofs of knowledge”. Technically, the DF scheme
demonstrates knowledge only over a suitable probability distribution of (multi-)
exponentiations. This distribution is enforced in a setup phase prior to the proof
protocol. While for some applications this is appropriate, it often leads to com-
plicated and error-prone proofs of security as one can no longer consider each

156 Endre Bangerter, Jan Camenisch, and Ueli Maurer

proof protocol separately (as one could with standard proofs of knowledge) but
has to analyze all of them in conjunction with each other. In fact, many authors
seem not to be aware of this fact and correspondingly the security analysis of
their applications using the DF scheme are incomplete or false.

Our Results. In this paper we provide two independent, new methods to obtain,
for the first time, efficient zero-knowledge proofs of knowledge for (multi-) ex-
ponentiations in hidden order groups H , where the order H is not known to at
least the verifier.

Our first method is based on the Σ-protocol. It relies on the new idea to pro-
vide auxiliary information to the verifier (and thus to the knowledge extractor)
to obtain proofs of knowledge for homomorphisms for which the Σ-protocol is
not known to work otherwise. The method applies to (multi-) exponentiation
homomorphisms in hidden order groups H , provided that the prover (but not
the verifier) knows the order H . The method relies on the hardness of a new com-
putational problem, which we call the pseudo-preimage problem. We prove the
pseudo-preimage problem to be hard under standard assumptions, e.g., the RSA
assumption. This result is of potential independent interest for the construction
of new cryptographic schemes.

Our second method is based on a new protocol, which we call the Σ+-
protocol. The Σ+-protocol yields efficient proofs of knowledge for any (multi-)
exponentiation homomorphism in groups H with hidden order. The efficiency
of the proof depends on the smallest factor of the order of the homomorphism’s
image. Thus, we obtain for instance efficient proofs for discrete logarithm-based
homomorphisms in RSA groups whose modulus is a product of two safe primes.
Technically, we apply the ideas underlying the DF scheme and extend them to
obtain standard proofs of knowledge. As a consequence one can always use our
protocol instead of the DF scheme to obtain standard proofs of knowledge. Yet,
compared to the DF scheme, our protocol is applicable to a wider number of
settings and is also more efficient in certain application scenarios.

A Remark on the Presentation. We formulate all our new results for multi-
exponentiation ψM : Zl → H in hidden order groups H , i.e., mappings
ψM (x1, . . . , xl)

.= hx1
1 · . . . · hxl

l with h1, . . . , hl ∈ H . We would like to emphasize
that the results (trivially) specialize to the practically relevant cases such as
when H is an RSA group or a class group and also to simple exponentiations
ψM (x) = hx. We recall that what we call a proof of knowledge for a multi-
exponentiation homomorphism is often referred to as a proof of knowledge of a
representation.

Outline. The remainder of this paper is structured as follows: In § 2 we introduce
the basic concepts and the notation we use. In § 3 we introduce the notion of a
pseudo-preimage and the related pseudo-preimage problem, which we prove to
be hard under standard assumptions. In § 4 we review the Σ-protocol and its
properties and then making use of the hardness of the pseudo-preimage problem
we discuss the first of our new methods, i.e., the one based on the Σ-protocol
where the verifier is given auxiliary information. In § 5 we discuss our second
method which is based on the Σ+-protocol.

Efficient Proofs of Knowledge of Discrete Logarithms 157

2 Preliminaries

Let M be an algorithm. By y ← M(x), we denote that y was obtained by running
M on input x. If M is deterministic, then this y is unique; if M is probabilistic,
then y is a random variable.

By k we denote an integer security parameter. A negligible function is a
function that, asymptotically in k, is smaller than one divided by any polynomial
in k.

We call a computational problem hard if there is a probability ensemble D(k)
on problem instances such that for any probabilistic polynomial-time algorithm,
the probability of solving the problem over choices according to D(k) is negligi-
ble. If there is a probabilistic polynomial-time algorithm that is successful over
choices D(k) with probability 1 − ν(k), where ν(k) is a negligible function, we
call the problem easy.

Let (G, +) and (H, ·) be abelian groups, with their identity elements de-
noted 0 and 1, respectively. By |H | we denote the order of the group H , and
by |h| the order of the element h ∈ H . We say that a group H has hidden
order if there is a description of H such that it is hard to compute a non-
zero multiple of |H |. A (group) homomorphism ψ is a mapping ψ : G → H
such that ψ(g1 + g2) = ψ(g1) · ψ(g2) for all g1, g2 ∈ G. We recall that the im-
age of a homomorphism, denoted image(ψ), is a subgroup of its co-domain H .
In the following we assume that H is a finite group. Throughout the paper
ψM stands for a multi-exponentiation homomorphism ψM : Zl → H , where
ψM (x1, . . . , xl) = hx1

1 ·. . .·hxl

l and h1, . . . , hl ∈ H . We always assume that groups
and homomorphisms are computationally tractable. That is, there shall be de-
scriptions of groups and homomorphisms such that in (probabilistic) polynomial-
time one can evaluate the group operation, invert group elements, test member-
ship in the group, uniformly choose an element from the group (for finite groups),
and evaluate a homomorphism.

By a collection of homomorphisms Ψ we refer to a (finite or infinite) set
of homomorphisms together with a probability ensemble DΨ (k) on Ψ . We as-
sume that there is a probabilistic polynomial-time algorithm that allows one to
chose homomorphisms ψ according to DΨ (k). Also, we consider sequences of sets
Ψ(k) .= {ψ : ψ ∈ Ψ, ψ : G → H, and log(|H |)� = k}. The notion of a collection
of homomorphisms Ψ comprises as special cases sequences of homomorphisms,
where Ψ is an infinite set of homomorphisms indexed by the security parameter,
and single homomorphisms, i.e., Ψ = {ψ}.

Given a binary relation R, we denote the corresponding language by LR.
Homomorphism collections give rise to what we call a homomorphism relation

R[Ψ] .= {((ψ, y), x) : ψ ∈ Ψ, ψ : G → H, x ∈ G, y
.= ψ(x)} or

R[Ψ(k)] .= {((ψ, y), x) : ψ :∈ Ψ(k), ψ : G → H, x ∈ G, y
.= ψ(x)} .

Our results on (computational) proofs of knowledge are formulated with respect
to the corresponding definitions put forth by Bellare and Goldreich [4].

158 Endre Bangerter, Jan Camenisch, and Ueli Maurer

3 The Pseudo-preimage Problem

In this section we introduce the notion of a pseudo-preimage of a homomor-
phism and a related computational problem termed the pseudo-preimage prob-
lem. While the pseudo-preimage problem has not been explicitly considered in
existing work, it is implicit in the construction of all known knowledge extractors
for the Σ-protocol. In fact, these constructions crucially rely on the existence of
easy instances of the pseudo-preimage problem. In the following we prove that
for a large class of multi-exponentiation homomorphisms the pseudo-preimage
problem is hard.

Definition 1 (Pseudo-preimage). Consider a homomorphism ψ : G → H
and y ∈ H. A pseudo-preimage of y under ψ is a pair (v, w) such that yv = ψ(w),
where v is a non-zero integer and w ∈ G . We refer to v as the exponent of the
pseudo-preimage (v, w).

Note that when ψ is not surjective, then there are pseudo-preimages (v, w)
of y ∈ H under ψ even for elements y /∈ image(ψ).

Definition 2 (Pseudo-preimage Problem). The pseudo-preimage (PP)
problem for a homomorphism ψ is to compute a preimage x of y under ψ given
a pseudo-preimage (v, w) of y under ψ, with y ∈ image(ψ).

For homomorphisms that are easy to invert, the PP problem trivially is easy.
More interestingly, the PP problem is also easy for certain one-way homomor-
phisms. In fact, as we will see in § 4.1, the existence of easy instances of the PP
problem for one-way homomorphisms is key for the construction of knowledge
extractors for the Σ-protocol. Examples of such one-way homomorphisms are
the ones underlying the Schnorr and the Guillou-Quisquater schemes.

In the following we show that the PP problem is hard for multi-exponentia-
tions in groups for which the ROOT problem, i.e., computing roots, is hard. Let
us introduce concepts and notation used for the formulation of this result. We
recall the ROOT problem for an arbitrary abelian group H . It is to compute a
h ∈ H such that he = u given an integer e > 1 and a group element u ∈ H . Next,
we define generators DR and DP for the ROOT and PP problem, respectively.
Let H be an arbitrary multiplicative abelian group and let l be an arbitrary
integer parameter. The generator DR(H) works as follows: 1) Choose u ∈U H
and an integer e > 1 such that gcd(|H |, e) = 1, whereas the distribution of e
may be arbitrary. 2) Output the ROOT problem instance (u, e).

In the definition of the generator for the PP problem we use as a subroutine
a probabilistic polynomial-time algorithm D̃(H, l) with the following properties.
The algorithm D̃(H, l) outputs tuples (v, (w1, . . . , wl), (e1, . . . , el)), where v is
an integer and (w1, . . . , wl) and (e1, . . . , el) are elements of Zl, such that v �

(e1w1 + . . . + elwl) and gcd(|H |, v) = 1. Apart from this, the tuples may be
distributed arbitrarily. Note that the latter condition can be fulfilled by D̃(H, l)
without being given |H |. It suffices if one can compute a λ+ ≥ |H | from the
description of H . Then one can, for instance, choose a v as a prime ≥ λ+.

Efficient Proofs of Knowledge of Discrete Logarithms 159

Now, the generator DP(H, |H |, l) is as follows: 1) Choose (v, (w1, . . . , wl),
(e1, . . . , el)) ← D̃(H, l) and an element h ∈U H . 2) Set h1

.= he1 , . . . , hl
.= hel

and define the homomorphism ψM : Zl → H by ψM (x1, . . . , xl)
.= hx1

1 · . . . · hxl

l .
3) Set (z1, . . . , zl)

.= (w1v−1 (mod |H |), . . . , wlv
−1 (mod |H |)) and let

y
.= ψM (z1, . . . , zl) = hz1

1 · . . . · zzl

l . (Note that by construction (v, (w1, . . . , wl))
is a pseudo-preimage of y under ψM .) 4) Output the PP problem instance
((v, (w1, . . . , wl)), y, ψM).

Let be given computational problems P1 and P2 and the respective generators
D1 and D2. We say P2 is reducible to P1, if given a probabilistic polynomial-time
solver M with non-negligible success probability for P1 over choices of D1, one
can construct a probabilistic polynomial-time solver given black box access to M
that has non-negligible success probability for P2 over choices of D2. We denote
this by P1[D1] ≥ P2[D2].

Theorem 1. For the generators DR(H) and DP(H, |H |, l) (as defined above)
we have PP[DP(H, |H |, l)] ≥ ROOT[DR(H)].

Proof. Let M denote a probabilistic polynomial-time solver of the PP problem
that is successful with non-negligible probability over choices of DP .

Given an instance of the ROOT problem (u, e) ← DR(H) we construct an
instance of the PP problem as follows. Choose (v′, (w′

1, . . . , w′
l), (e

′
1, . . . , e′l)) ←

D̃(H, l). Then we set h′ .= uv, h′
1

.= h′e1 , . . . , h′
l

.= h′e′
l and define the ho-

momorphism ψ′
M : Zl → H by ψ′

M (x1, . . . , xl)
.= h′

1
x1 · . . . · h′

l
xl . We set

y′ .= u(e′
1w′

1+...+e′
lw

′
l). It is easy to see that we have constructed an instance

(v′, (w′
1, . . . , w′

l), y′, ψ′
M) of the PP problem.

Now, we invoke M on input (v′, (w′
1, . . . , w′

l), y′, ψ′
M) and let us assume that

M outputs a preimage (z1, . . . , zl) of y′ under ψ′
M . Thus we have y′v′

= (h′z1
1 ·

. . . · h′zl

l)v′
= h′(e′

1z1+...+e′
lzl)v

′
and y′v′

= h′
1
w′

1 · . . . · h′
l
w′

l = h′(e′
1w′

1+...+e′
lw

′
l).

Using λ
.= (e′1w′

1 + . . . + e′lw
′
l) − (e′1z1 + e′2z2 + . . . + e′lzl)v we have h′λ = 1. By

assumption v � (e′1w′
1 + . . .+e′lw

′
l) and thus λ �= 0, i.e., λ is a non-zero multiple of

the order of h′. As h′ and u have the same order, λ is also a multiple of the order
of u. This allows us to compute the e-th root of u as follows. We note that λ is
not necessarily co-prime to e. However, we have by assumption gcd(e, |H |) = 1.
Thus we can easily find a multiple λ′ of |u| that is co-prime to e, if we set λ′ .= λ
and compute λ′ .= λ′/ gcd(e, λ′) until gcd(e, λ′) = 1. Finally we compute 1/e
modulo λ′ to obtain u1/e.

It remains to show that the distribution of instances (v′, (w′
1, . . . , w′

l), y′, ψ′
M)

of the PP problem constructed above is equal to the distribution of instances gen-
erated by DP(H, |H |, l). From yv = ψM (w1, . . . , wl) and gcd(v, |H |) = 1 we have
that the image element y is uniquely determined by ψM and (v, (w1, . . . , wl))
and the same is true for ((v′, (w′

1, . . . , w′
l), y′, ψ′

M). Hence, it suffices to show
that the distribution of v′, (w′

1, . . . , w′
l), and ψ′

M is indistinguishable from the
distribution of the corresponding quantities chosen by DP(H, |H |, l). By con-
struction the distribution of tuples (v′, (w′

1, . . . , w′
l), (e

′
1, . . . , e′l)) chosen above is

the same as the one of those output by DP(H, |H |, l). It remains to see that ψ′
M

and ψM have the same distribution. To this end, note that h′ = uv, where u

160 Endre Bangerter, Jan Camenisch, and Ueli Maurer

is a uniform random element of H . From gcd(v, |H |) = 1 it follows that h′ is
uniformly distributed in H , and thus has the same distribution as the element
h chosen by the generator DP(H, |H |, l). The claim now follows immediately, as
the homomorphism ψ′

M is constructed from h′ in the same way as is ψM from h
by the generator DP(H, |H |, l). ��

Theorem 1 implies that the PP problem is hard for multi-exponentiations
in groups for which the ROOT problem is hard. This is widely assumed to
be the case for RSA groups [31] and class groups [7]. Moreover, Damg̊ard and
Koprowski [22] have shown that if a group has hidden order and if the order of
that group contains a large prime factor, then the ROOT problem is hard for
generic algorithms.

Corollary 1. There is a probabilistic polynomial-time algorithm M such that
the probability distributions ((v, (w1, . . . , wl)), y, ψM) ← DP(H, |H |, l) and
((v, (w1, . . . , wl)), y, ψM) ← M(H, l) are equal.

Corollary 1 follows from the proof of Theorem 1. It implies that instances of
the PP problem as output by DP(H, |H |, l)) do not reveal any computational
information on the order of H .

4 Efficient Proofs of Knowledge
Using Auxiliary Pseudo-preimages

This section presents a new technique that uses the hardness of the pseudo-
preimage problem to yield proofs of knowledge for multi-exponentiations ψM

in groups for which the ROOT problem is hard (e.g., RSA groups and class
groups). The proofs are based on the Σ-protocol. The technique requires that
the honest prover is given the order of H , while it ensures that the verifier does
not learn the order of H . The resulting proofs are efficient, they achieve in fact
an arbitrarily small knowledge error in a single execution of the Σ-protocol.

4.1 Preliminaries: The Σ-Protocol and Its Properties

In this section we review known properties of the Σ-protocol. For a detailed
discussion we refer to Cramer [17] and Damg̊ard [20].

Definition 3 (Σ-Protocol). Let Ψ be a collection of homomorphisms with a
finite domain and let ((ψ, y), x) ∈ R[Ψ(k)]. Let (P, V) be a pair of interactive
machines with common input (ψ, y), the private input of P being x. A Σ-protocol
with challenge set C .={0, . . . , c+(k)} is (P, V) performing the following joint com-
putation.

1. P : Choose r ∈U G, compute t
.= ψ(r), and send t to V .

2. V : Choose c ∈U C and send c to P .
3. P : Set s

.= r + cx and send s to V .
4. V : If ψ(s) = tyc output 1; otherwise output 0.

Efficient Proofs of Knowledge of Discrete Logarithms 161

The Σ-protocol is honest-verifier zero-knowledge but not known to be zero-
knowledge unless the cardinality of C is polynomially bounded in k. In case
one requires real zero-knowledge or the even stronger notion of concurrent zero-
knowledge, one can apply one of numerous constructions, e.g., [19, 23, 15]. Most
notably, the technique by Damg̊ard [19] achieves concurrent zero-knowledge at
almost no computational and communicational overhead. In Definition 3, the Σ-
protocol is only defined for homomorphisms with a finite domain. However, there
is a standard variant of the Σ-protocol that is defined for multi-exponentiations
ψM : Zl → H (which have an infinite domain). That variant of the protocol is
statistical zero-knowledge instead of perfect zero-knowledge; apart from this, the
above comments and results stated in the following are valid for both variants
of the Σ-protocol.

We call Ψ a (collection of) special homomorphisms, if there is a probabilistic
polynomial-time algorithm M that on input any (ψ, y) ∈ LR[Ψ] outputs a pseudo-
preimage (v, w) of y under ψ. The algorithm M is called a pseudo-preimage
finder (for Ψ). An example of a special homomorphism is the one used in the
Schnorr protocol, i.e., the mapping ψ : Zq → Z∗

p defined by ψ(x) .= hx with
q | (p − 1) and |h| = q. From the description of this mapping, the pseudo-
preimage finder can derive (q, 0). Now yq = 1 = ψ(0) for all y ∈ image(ψ)
and therefore the pair (q, 0) is a pseudo-preimage of y under ψ. More generally,
homomorphisms ψ : G → H for which a multiple of the order image(ψ) can be
efficiently computed from the description of ψ are easily seen to be special. An
example of a special homomorphism with hidden order co-domain is the mapping
ψ : Z∗

n → Z∗
n given by ψ(x) .= xe, where e is an integer, which is used in the

Guillou and Quisquater [27] scheme. For such mappings we have ye = ψ(y) and
hence (y, e) is a pseudo-preimage of y under ψ.

To simplify the subsequent discussion we make the following assumption
on collections Ψ and pseudo-preimage finders M . For (ψ, y) ∈ LR[Ψ(k)] and
(v, w) ← M(ψ, y) we assume that the exponents v are all equal for a given
value of the security parameter k, i.e., that v = v(k). It is straightforward to
generalize our discussion and results to the setting where this assumption is not
made. Moreover, all known examples of (collections of) special homomorphisms
fulfill this assumption.

Theorem 2. The Σ-protocol with challenge set C = {0, . . . , c+(k)} is a proof of
knowledge for R[Ψ],

(a) with knowledge error 1/2 if c+(k) = 1.
(b) with knowledge error 1/(c++1) if Ψ is a collection of special homomorphisms

and c+(k) < p(k), where p(k) is the smallest prime dividing the pseudo-
preimage exponent v(k) output by a pseudo-preimage finder M for Ψ .

Pseudo-preimages have the property that given two (appropriate) pseudo-
preimages of y under ψ one can compute a preimage of y as follows.

Lemma 1 (Shamir’s Trick). Let be given two pseudo-preimages (v1, w1) and
(v2, w2) of y for ψ. If gcd(v1, v2) = 1, then x = aw1 + bw2 is a preimage of
y under ψ, where a and b are integers (computed using the extended Euclidean
algorithm) such that av1 + bv2 = 1.

162 Endre Bangerter, Jan Camenisch, and Ueli Maurer

Proof (Theorem 2). Let us describe a knowledge extractor for the Σ-protocol.
Let P ∗ be an arbitrary prover that is successful in the Σ-protocol on common
input (ψ, y) ∈ LR[Ψ] and arbitrary private input with probability ε > κ

.=
1/(c+ +1). It is well known that given rewinding access to P ∗, one can obtain a
pair of tuples (t, c, s) and (t′, c′, s′) that fulfill the verification equation in step 4
of the Σ-protocol, with t = t′ and c �= c′. We refer to this property of the Σ-
protocol as the collision extractibility property. For a detailed analysis of this
property we refer to Damg̊ard [20]. Now, using �c

.= c′ − c and �s
.= s − s′,

where wlog we assume �c > 0, one gets

y�c = ψ(�s). (1)

In the case where the challenge set is C = {0, 1} we have �c = 1 and thus
y = ψ(�s). This proves part (a) of the theorem. To prove part (b) we may
assume that ψ is special. Now, we in invoke a pseudo-preimage finder for ψ
on input (ψ, y) to obtain a pseudo-preimage (v, w) of ψ under y. Using that
�c ≤ c+(k) and the assumption c+(k) < p(k), it follows that gcd(v,�c) = 1,
and by Lemma 1 we can compute a preimage of y under ψ. ��

We call the knowledge extractor described in the proof of Theorem 2 the
standard knowledge extractor (for the Σ-protocol). The standard knowledge ex-
tractor, informally speaking, is the “only knowledge extractor that is known for
the Σ-protocol”. More precisely, Cramer [17] points out that all existing knowl-
edge extractors for the Σ-protocol with a challenge set of cardinality larger than
two use the collision extractability property, the existence of pseudo-preimage
finders for special homomorphisms, and Shamir’s trick to compute a preimage.

It is worthwhile to note that the standard knowledge extractor is only suc-
cessful when the instances (1) of the PP problem (obtained from the prover P ∗)
are easy to solve. In fact, we can distinguish two classes of PP instances that
are easy to solve. One class consists of PP problem instances ((v, w), y, ψ) with
v = 1, where w is a preimage of y under ψ, in which case the PP problem is
trivial to solve. The other class consists of easy PP problem instances for special
homomorphisms. In fact, let ψ be a special homomorphism, y ∈ image(ψ), and
(v, w) be the pseudo-preimage output by a pseudo-preimage finder for ψ. Then
by Lemma 1 all instances ((v′, w′), y, ψ) of the PP problem with gcd(v, v′) = 1
are easy. The former class of easy instances underlies the proof of part (a) and
the latter the proof of part (b) of Theorem 2.

For non-special homomorphisms, such as multi-exponentiations in groups
with hidden order, the PP problem instances (1) extracted from the Σ-protocol
with non-binary challenge set are not known to be easy. Hence, the standard
knowledge extractor does not work for non-special homomorphisms.

4.2 Σ-Protocol with Auxiliary Pseudo-preimages: Basic Idea

Our idea in the following is to enhance the common input of the Σ-protocol
by a pseudo-preimage. That is, we consider the Σ-protocol on common input
(ψ, y) and a pseudo-preimage (v, w) (of y under ψ). The prover’s private input

Efficient Proofs of Knowledge of Discrete Logarithms 163

remains to be a preimage x (of y under ψ). This allows us to obtain proofs of
knowledge for non-special homomorphisms using the Σ-protocol with challenge
sets of cardinality larger than two.

Let us refer to the pseudo-preimage in the common input as an “auxiliary
pseudo-preimage”. In fact, auxiliary pseudo-preimages enable us to use the stan-
dard knowledge extractor for non-special homomorphisms. This claim is easy to
verify: The common input and thus the auxiliary pseudo-preimage is by defini-
tion given to the knowledge extractor [4]. We recall that the standard knowl-
edge extractor (described in §4.1) first computes a pseudo-preimage (�c,�s)
from the prover P ∗. It then uses a second pseudo-preimage to compute the
desired preimage using Shamir’s trick. For special homomorphisms the second
pseudo-preimage can be obtained using a corresponding pseudo-preimage finder.
In our approach, this second preimage is the auxiliary preimage contained in the
common input. In the following we formalize this idea and discuss under what
conditions it can be used to obtain practically useful proofs of knowledge.

Definition 4. Let v(k) be an arbitrary integer parameter and Ψ a collection
of homomorphisms. We call R(v)[Ψ] .= {((ψ, y, (v(k), w)), x) : ψ ∈ Ψ(k), ψ :
G → H, x ∈ G, y = ψ(x), and (v(k), w) is a pseudo-preimage of y under ψ} a
pseudo-preimage relation.

Note that while in Definition 3 we describe the Σ-protocol only for homomor-
phism relations, it is clear it is also defined for pseudo-preimage relations R(v)[Ψ]
(i.e., where the common input is (ψ, y, (v, w)) ∈ LR(v)[Ψ]).

Corollary 2. The Σ-protocol with challenge set C .= {0, . . . , c+(k)} is a proof of
knowledge for the pseudo-preimage relation R(v)[Ψ] if the smallest prime factor
of v(k) is larger than c+(k). The knowledge error is 1/(c+(k) + 1).

Corollary 2 follows from the proof of Theorem 2. Let us consider a collection
of homomorphisms Ψ , a homomorphism relation R[Ψ], and the pseudo-preimage
relation R(v)[Ψ]. We observe that a proof of knowledge for a ((ψ, y), x) ∈ R[Ψ]
and a proof of knowledge for ((ψ, y, (v, w)), x) ∈ R(v)[Ψ] both are proofs of
knowledge of a preimage x of y under ψ (possibly with different knowledge
errors). Thus to prove knowledge of a preimage under a homomorphism one
can use proofs of knowledge for pseudo-preimage relations. In the following we
pursue this idea of using pseudo-preimage relations for proving knowledge of a
preimage of a homomorphism. We refer to a proof of knowledge for a collection
of homomorphisms Ψ using a pseudo-preimage relation R(v)[Ψ] as a proof of
knowledge in the auxiliary setting and call R(v)[Ψ] anauxiliary relation.

A desirable property of the auxiliary setting is that it allows one to obtain
very efficient proofs of knowledge for any homomorphism collection Ψ . In fact,
using the Σ-protocol in the auxiliary setting, we can achieve an arbitrary small
knowledge error for any Ψ . Therefore, we use the auxiliary relation R(v)[Ψ], where
v(k) is prime, and the Σ-protocol with the challenge set C .= {0, . . . , (v(k)− 1)}.
By Corollary 2, the resulting knowledge error is 1/v(k), which can be made
arbitrarily small by choosing v(k) appropriately. This is in contrast to existing
proofs of knowledge for homomorphisms (i.e., not in the auxiliary setting) based

164 Endre Bangerter, Jan Camenisch, and Ueli Maurer

on Σ-protocol, where the knowledge error can not be made arbitrarily small and
is in fact often quite large (see Theorem 2).

Our discussion so far was focused on obtaining proofs of knowledge of a
preimage. We have seen that within this focus proofs in the auxiliary setting
and conventional proofs (i.e., proofs for homomorphism relations without using
auxiliary pseudo-preimages) are equivalent and thus one can use the former in-
stead of the latter. However, if we widen our focus, then the auxiliary setting is in
general not equivalent to the conventional setting. The reason is that providing
auxiliary pseudo-preimages might reveal information that is not available other-
wise. For instance, the auxiliary pseudo-preimage could suddenly allow a verifier
to compute a preimage from the common input to the Σ-protocol. Thus, in the
following we need to additionally consider what (computational) information the
prover and the verifier obtain from an auxiliary pseudo-preimage.

4.3 Σ-Protocol with Auxiliary Pseudo-preimages:
Applied to Multi-exponentiations in Hidden Order Groups

In the following we look at proofs of knowledge in the auxiliary setting for
multi-exponentiations ψM : Zl → H in groups H for which the ROOT problem
is hard. In particular, we consider the information the prover and the verifier can
derive from an auxiliary pseudo-preimage. It turns out that, on the one hand,
the verifier does not get any additional (computational) information on |H | and
the preimage x. On the other hand, we see that |H | is required by the (honest)
prover.

Let us first consider a (possibly dishonest) verifier in the auxiliary setting.
The results from §3 allow us to exclude that the verifier can either compute
a preimage or information about the order of H from an auxiliary pseudo-
preimage. In fact, by Theorem 1 (under the ROOT assumption) it is impossible
for the verifier to compute a preimage from a pseudo-preimage, i.e., to solve the
PP problem. Concerning the order of H , Corollary 1 implies that instances of the
PP problem for multi-exponentiations in a group H , and thus the common input
to the Σ-protocol in the auxiliary setting, can be generated without knowing the
order of H . Hence, an auxiliary pseudo-preimage gives the verifier no advantage
in computing the order of H either. Finally, as the Σ-protocol is (honest verifier)
zero-knowledge (c.f. §4.1), the verifier does not get an advantage in computing a
preimage or information on the order of H from running the protocol with the
prover.

Next, we consider the information the (honest) prover learns on |H | in the
auxiliary setting. We note that the prover in addition to the common input is also
given a preimage as private input. It is easy to see that from the honest prover’s
input (ψM , y, (v, w), x) ∈ R(v) (where ψM (z) = hz), one can compute the order
of h (assuming v � w). Moreover, in certain groups, such as RSA groups with
moduli being a safe-prime product, this allows one to factor the modulus and to
obtain the group’s order. For the case where ψM is a multi-exponentiation, we
don’t know how to show that the (honest) prover obtains information on |H |.
But neither can we prove that it does not get information on |H |. Thus, unless
we want to put forth a corresponding (and “rather questionable”) computational

Efficient Proofs of Knowledge of Discrete Logarithms 165

assumption, we should expect that the prover can compute |H |. Moreover, we
only know how to generate the protocol’s input in the auxiliary setting, i.e.,
(ψM , y, (v, w), x) when the order of H is given. (For a possible way to generate
the input we refer to the description of the PP instance generator DP in §3.)
Thus, in the context of an application where the input to the Σ-protocol in the
auxiliary setting is generated by the (honest) prover, then the (honest) prover
explicitly needs to be privy to |H |.

Finally, we note that if one uses our auxiliary setting to obtain a proof of
knowledge as a sub-protocol in some application, one needs to consider the infor-
mation an auxiliary pseudo-preimage reveals in the context of the whole system–
in the same way one has to do this for the image y itself. Such an analysis,
however, must be outside the scope of this paper.

A property of practical interest of proofs of knowledge in the auxiliary set-
ting is that one can use techniques from groups with known order for proving
relations among preimages of different multi-exponentiations [6, 14]. As an ex-
ample one can prove knowledge of two discrete logarithms of two different group
elements with respect to different bases and also that the discrete logarithms
are equal. That is, using notation introduced by Camenisch and Stadler [13], on
can realize a proof PK({α1, α2} : y1 = hα1

1 ∧ y2 = hα2
2 ∧α1 = α2}. The approach

to obtain such an equality proof in the auxiliary setting is to choose the auxil-
iary pseudo-preimage (v, w) to be the same for (y1, ψM ,1(x1) = h1

x1) and for
(y2, ψM ,2(x2) = h2

x2). Using this approach it is straightforward to verify that
the knowledge extractor indeed is able to find a value x = logh1

y1 = logh2
y2.

5 The Σ+-Protocol

In this section we introduce a new protocol that we call the Σ+-protocol. The
Σ+-protocol is a an efficient zero-knowledge (computational) proof of knowl-
edge for multi-exponentiations ψM in arbitrary groups H and, in particular, in
groups with hidden order. The knowledge error of the Σ+-protocol is governed
by the smallest prime in | image(ψM)|. The computational validity property of
the Σ+-protocol holds under the Strong RSA assumption [3, 24] and under the
computational binding property of the commitment scheme used in the protocol.
The Σ+-protocol is a proof of knowledge regardless of whether the prover or the
verifier knows the order of H .

Technically, the construction of the Σ+-protocol takes up and extends ideas
underlying the DF scheme (c.f. § 1) to obtain standard proofs of knowledge
according to [4]. In fact, the Σ+-protocol can always be used to replace the DF
scheme to obtain standard proofs of knowledge.

Yet, compared to the DF scheme, the Σ+-protocol works under weaker con-
ditions and hence can be used more broadly. In fact, when applied to a multi-
exponentiation ψM : Zl → H , the DF scheme requires that H is a group (with
hidden order) for which the generalized root assumption1 holds, and that the

1 The assumption is that given h ∈U H it is hard to compute an integer e �= 1 and
u ∈ H such that ue = h.

166 Endre Bangerter, Jan Camenisch, and Ueli Maurer

prover must not know the order of H . The Σ+-protocol needs neither of these
requirements. Additionally, in certain application scenarios the Σ+-protocol is
more efficient than the DF scheme. We recall that the DF scheme consists of two
parts. A rather inefficient setup part that is run once and an efficient proof of
knowledge part using the Σ-protocol, which is typically executed several times.
The computational cost of the Σ+-protocol, which is an atomic protocol, is
roughly three times the cost of the Σ-protocol. As a consequence, the Σ+-
protocol is more efficient than the DF protocol in settings when few proofs of
knowledge are required, while the DF scheme is more efficient when one requires
many proofs of knowledge.

5.1 Preliminaries

The Strong RSA assumption [3, 24] states that there is a generator DS(k) such
that given (n, g) ← DS(k), with g ∈ Z∗

n, it is hard to compute a u ∈ Z∗
n and an

integer e > 1 fulfilling ue = g. In the following we assume that n = (2p+1)(2q+1)
with p, q, (2p + 1), and (2q + 1) being primes, and that g ∈ QRn, where QRn is
the subgroup of quadratic residues of Z∗

n.
We define a generator Dϑ(l, k) that outputs multi-exponentiations ϑ : Zl →

QRn as follows: 1) Choose (n, g) ← DS(k). 2) For i = 1, . . . , (l−1) choose ρi ∈U

[0, 2k�n/4�]. 3) Set gi
.= gρi . 4) Define the multi-exponentiation ϑ(x1, . . . , xl)

.=
gx1
1 · . . . · g

xl−1
l−1 · gxl . 5) Output (ϑ, n). Using this notation the following holds.

Theorem 3. Under the Strong RSA assumption, it is hard given (n, ϑ) ←
Dϑ(l, k) to compute a y ∈ Z∗

n and a pseudo-preimage (v, (w1, . . . , wl)) of y under
ϑ such that v �= 1 and v � wi for some i ∈ {1, . . . , l}.

Theorem 3 underlies the construction of the knowledge extractor of the DF
scheme as well as the one for our Σ+-protocol. A similar statement was recently
proved by Camenisch and Shoup [12, Theorem 3].

Let commit(·, ·) be a computationally binding and statistically hiding com-
mitment scheme such as the one by Pedersen [29]. To commit to value γ, one
computes C ← commit(γ, r), where r is a random value. To open the commit-
ment C, one reveals γ and r to a verifier, who checks that C = commit(γ, r).

5.2 The Σ+-Protocol and Its Properties

In this section we define the Σ+-protocol. For simplicity, we describe the protocol
only for simple-exponentiations ψM (x) .= hx with h ∈ H . This allows us to focus
on the key ideas underlying the protocol construction. It is a straightforward
exercise to extend the definition of the protocol and the results given below to
multi-exponentiations ψM (x1, . . . , xl)

.= hx1
1 · . . . · hxl

l with h1, . . . , hl ∈ H . Let
�x

.= �x(k) and lz
.= lz(k) denote integer parameters.

Definition 5 (Σ+-Protocol). Let Ψ be a collection of simple-exponentiation
homomorphisms and ((ψM , y), x) ∈ R[Ψ] with x ∈ [−�x, +�x]. Let (P, V) be
a pair of interactive Turing machines with common input (ψM , y), the private
input of P being x. A Σ+-protocol with challenge set C .={0, . . . , c+} consists of
(P, V) performing the joint computation described in Fig. 1.

Efficient Proofs of Knowledge of Discrete Logarithms 167

Note that x ∈ [−�x, +�x] in Definition 5 is necessary for the Σ+-protocol
to be statistical zero-knowledge (i.e., one needs to know how large x can be
to blind x in the messages sent by the prover). The tightness of the statistical
zero-knowledge property of the Σ+-protocol is controlled by the parameter lz.

Next, we sketch the key features underlying the proof of knowledge and
zero-knowledge property of the Σ+-protocol. Let us therefore consider the Σ+-
protocol on input ((ψM , y), x).

First, we look at the proof of knowledge property, i.e., the features that allow
us to construct a knowledge extractor. In step 1, the verifier chooses a multi-
exponentiation ϑ(·, ·) by executing the steps of the generator Dϑ(2, k) (as defined
in the previous section). The description of ϑ(·, ·) is sent to the prover. In step
2, the prover first computes y

.= ϑ(x, x), where x is the preimage of y under ψM

and x is random value to ensure that y does not reveal information about x.
Now, we observe that the remainder of step 2 and steps 3, 4, and 7 essentially
correspond to two Σ-protocols run in parallel for each of the homomorphisms ψ
and ϑ. (For the matter of this observation, we may forget about the commitment
commit(·, ·) used in steps 2 and 7, and assume that the message sent at the end
of step 2 is (t, t).) These two Σ-protocols are run in parallel as one would do in
a proof of equality in groups of known order to demonstrate that the preimage
of y equals the first component of the preimage of y (cf. [16]). In fact, in all
evaluations of ψM and ϑ (see steps 2 and 7) the argument of ψM and the first
argument of ϑ are equal. This allows us to obtain a knowledge extractor for the
Σ+-protocol as follows. As the Σ-protocol uses essentially the same verification
equations (step 7) as the Σ+-protocol, the knowledge extractor can retrieve from
a convincing prover a pseudo-preimage (�c,�s) of y under ψM and a pseudo-
preimage (�c, (�s,�s)) of y under ϑ. That is, we have

y�c = ψM (�s) = h�s (2)

y�c = ϑ(�s,�s) = g�sg�s
1 . (3)

As we run the two Σ-protocols in parallel as described above, the same integers
�c and �s occur in (2) and (3). Now, as ϑ was chosen according to Dϑ(2, k),
Theorem 3 implies that in (3) we must have �c | �s and �c | �s. Thus, (if we,
e.g., additionally assert that gcd(�c, | image(ψM)|) = 1) the knowledge extractor
can compute a preimage x

.= �s/�c of y under ψM . Finally we note, that the
Σ+-protocol is not a proof of knowledge for the multi-exponentiation ϑ; the role
of ϑ is just to enable the construction of the knowledge extractor for ψM .

It remains to discuss the statistical zero-knowledge property of the Σ+-
protocol. We have seen that for the knowledge extractor to work, the prover
needs to provide to the verifier the values (t, s) and (t, (s, s)) that fulfill the ver-
ification equations in step 7. As these are the same verification equations as for
the Σ-protocol, we can use the standard zero-knowledge simulation technique for
the Σ-protocol, i.e., given (ψM , y) and (ϑ, y) we can simulate tuples (t, c, s) and
(t, c, (s, s)) fulfilling the respective verification equations. This approach works
fine for given (ψM , y) and (ϑ, y), respectively. However, in the Σ+-protocol (ϑ, y)
are chosen within the protocol. Thus, for the Σ+-protocol to be zero-knowledge,

168 Endre Bangerter, Jan Camenisch, and Ueli Maurer

P ((ψM , y), x) V (ψM , y)

1.
(n, g) ← DS(k)

ρ ∈U [0, 2k�n/4�]; g1
.= gρ mod n

ϑ(x1, x2)
.= gx1

1 gx2 mod n

2. (g1, g, n)�
x ∈U [0, �n/4�]; y

.= ϑ(x, x)

r ∈U [−2lz c+	x, 2lz c+	x]; t
.= ψM (r)

r ∈U [−2lzc+�n/4�], 2lz c+�n/4�]; t
.= ϑ(r, r)

Choose ry; ȳ
.= commit(y, ry)

Choose rt; t̄
.=commit(t, rt)

(ȳ, t̄, t) � 3.

c ∈U C = {0, . . . , c+}
4. c�

s
.= r + cx

s
.= r + cx

(s, s) � 5.

6. ρ�
If g1 �≡ gρ (mod n), then halt.

((t, rt), (y, ry))� 7.
If the equalities

ȳ = commit(y, ry); t̄ = commit(t, rt)
ψM (s) = tyc; ϑ(s, s) ≡ tyc (mod n)
hold, then output 1; else output 0

Fig. 1. Description Σ+-Protocol.

we additionally need to simulate the choices of y. Choices of y can be easily
simulated when ϑ(x1, x2) = gx1

1 gx2 is formed correctly, i.e., g1 ∈ 〈g〉. Then, over
the choices of x, y = ϑ(x, x) = gx

1 gx is a uniform random element in 〈g〉 (we
recall that x ∈U [0, �n/4�] is statistically close to uniform on Z|g|). However, a
dishonest verifier could choose a malformed ϑ such that y = ϑ(x, x) would leak
information about the preimage x and thus ruin the zero-knowledge property
of the Σ+-protocol. To overcome this problem, we use the commitment scheme
commit(·, ·) as follows. In step 2, the prover does not know whether ϑ is correctly
chosen, and thus only sends the commitments to t and y instead of these values
themselves. Then, in steps 5 and 6 the verifier convinces the prover that ϑ is
correctly formed., i.e., that g1 ∈ 〈g〉. To this end, it sends the discrete logarithm

Efficient Proofs of Knowledge of Discrete Logarithms 169

ρ of g1 with respect to g to the prover. Finally, when the prover is convinced
of the correctness of ϑ, it opens the commitments from step 2 and reveals the
values t and y. It is important that the verifier reveals the discrete logarithm ρ
only after the prover has answered the challenge (steps 3 and 4). This is because
for Theorem 3 to be applicable in the construction of the knowledge extractor,
�s and �s in (3) and thus s and s in step 4 of the protocol need to be computed
by the prover without being given the discrete logarithm ρ. (In fact, Theorem 3
does not hold when one is given the discrete logarithms (with respect to some
base element) of the gi defining ϑ).

Note that the simulator sketched above only works when the cardinality of
C is bounded by some polynomial in the security parameter. This is because the
simulator needs to be able to guess the challenge value for which it computes
the simulated view. However, applying Damg̊ard’s technique [19], we turn the
Σ+-protocol into a concurrent-zero knowledge protocol simply by additionally
committing to t in step 2 and correspondingly open the commitment in step 6.

Now, along the lines sketched above one can prove the following theorem.
Theorem 4. Let Ψ be a collection of simple-exponentiation homomorphisms
and c+(k) be a positive integer parameter such that for any ψM ∈ Ψ(k), c+(k)
is smaller than the smallest prime dividing | image(ψM)|. Then the Σ+-protocol
with challenge set C .= {0, . . . , c+(k)} is a computational proof of knowledge
for R[Ψ]. The computational validity property holds under the computational
binding property of the commitment scheme and the Strong RSA assumption.
The knowledge error is 1/|C| + 1/p(k), where p(·) is an arbitrary polynomial.

Let us conclude with a technical remark. Consider the DF scheme and the
Σ+-protocol computed for, e.g., common input a simple-exponentiation
ψM (x) = hx and an image element y. We note that the knowledge extractors
of both schemes rely on obtaining a pseudo-preimage (�c,�s) of y under ψM ,
i.e., y�c = h�s such that the divisibility �c | �s (which allows one to compute
a preimage of y) holds. (In fact, the Σ+-protocol can guarantee the divisibility
under weaker conditions.) Technically, this is the reason why the Σ+-protocol
works in all cases where the DF scheme is known to work. In particular, the Σ+-
protocol can also be used to obtain so called interval or range proofs [5]. Finally,
the DF scheme is often considered under different conditions than formulated in
Theorem 4, allowing one, e.g., only to prove that one knows b and z such that
y = bhz with b2 = 1. Given the foregoing observation, it is clear that such proofs
can also be obtained using the Σ+-protocol.

References

1. G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures.
In Proc. 6th ACM Conference on Computer and Communications Security, pp.
138–146. ACM press, Nov. 1999.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology –
CRYPTO 2000, vol. 1880 of Lecture Notes in Computer Science, pp. 255–270.
Springer Verlag, 2000.

170 Endre Bangerter, Jan Camenisch, and Ueli Maurer

3. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Advances in Cryptology – EUROCRYPT ’97, vol. 1233
of LNCS, pp. 480–494. Springer Verlag, 1997.

4. M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology – CRYPTO ’92, vol. 740 of Lecture Notes in Computer Science, pp.
390–420. Springer-Verlag, 1992.

5. F. Boudot. Efficient proofs that a committed number lies in an interval. In Ad-
vances in Cryptology – EUROCRYPT 2000, vol. 1807 of Lecture Notes in Computer
Science, pp. 431–444. Springer Verlag, 2000.

6. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In Advances in Cryptology – EUROCRYPT ’97, vol. 1233 of Lecture Notes in
Computer Science, pp. 318–333. Springer Verlag, 1997.

7. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal Of Cryptology, 1(2):107 – 118, 1998.

8. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Advances in Cryp-
tology – EUROCRYPT 2001, vol. 2045 of LNCS, pp. 93–118. Springer Verlag,
2001.

9. J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed
verifiers. In Advances in Cryptology – CRYPTO 2001, vol. 2139 of LNCS, pp.
388–407. Springer Verlag, 2001.

10. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In Advances in Cryptology – CRYPTO
2002, vol. 2442 of LNCS, pp. 61–76. Springer Verlag, 2002.

11. J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
In Advances in Cryptology – ASIACRYPT ’98, vol. 1514 of LNCS, pp. 160–174.
Springer Verlag, 1998.

12. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology – CRYPTO 2003, vol. 2729 of
LNCS, pp. 126–144, 2003.

13. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Advances in Cryptology – CRYPTO ’97, vol. 1296 of Lecture Notes in Computer
Science, pp. 410–424. Springer Verlag, 1997.

14. J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12520,
Hartung Gorre Verlag, Konstanz.

15. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge.
pp. 235–244. ACM Press, 2000.

16. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology – CRYPTO ’92, vol. 740 of Lecture Notes in Computer Science, pp.
89–105. Springer-Verlag, 1993.

17. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocol. PhD
thesis, University of Amsterdam, 1997.

18. R. Cramer and I. Damg̊ard. Zero-knowledge proof for finite field arithmetic, or:
Can zero-knowledge be for free? In Advances in Cryptology – CRYPTO ’98, vol.
1642 of Lecture Notes in Computer Science, pp. 424–441, Berlin, 1998. Springer
Verlag.

19. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model.
In Advances in Cryptology – EUROCRYPT 2000, vol. 1807 of Lecture Notes in
Computer Science, pp. 431–444. Springer Verlag, 2000.

Efficient Proofs of Knowledge of Discrete Logarithms 171

20. I. Damg̊ard. On sigma-protocols. Lecture Notes, 2002.
21. I. Damg̊ard and E. Fujisaki. An integer commitment scheme based on groups with

hidden order. In Advances in Cryptology – ASIACRYPT 2002, vol. 2501 of LNCS.
Springer, 2002.

22. I. Damg̊ard and M. Koprowski. Generic lower bounds for root extraction and sig-
nature schemes in general groups. In Advances in Cryptology – EUROCRYPT’02,
vol. 2332 of Lecture Notes in Computer Science, pp. 256–271 Springer Verlag, 2002.

23. C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In Proc. 30th
Annual ACM Symposium on Theory of Computing (STOC), 1998.

24. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology – CRYPTO ’97, vol. 1294 of
Lecture Notes in Computer Science, pp. 16–30. Springer Verlag, 1997.

25. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In Advances in Cryptology –
EUROCRYPT ’98, vol. 1403 of LNCS, pp. 32–46. Springer Verlag, 1998.

26. M. Girault. An identity-based identification scheme based on discrete logarihtms
modulo a composite number. In Advances in Cryptology – EUROCRYPT ’90, vol.
473 of Lecture Notes in Computer Science, pp. 481–486. Springer-Verlag, 1991.

27. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology – EUROCRYPT ’88, vol. 330 of Lecture Notes in Computer Science,
pp. 123–128. Springer Verlag, 1988.

28. P. MacKenize and M. K. Reiter. Two-party generation of DSA signatures. In
Advances in Cryptology – CRYPTO 2001, vol. 2139 of LNCS, pp. 137–154. Springer
Verlag, 2001.

29. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology – CRYPTO ’91, vol. 576 of Lecture Notes in
Computer Science, pp. 129–140. Springer Verlag, 1992.

30. G. Poupard and J. Stern. Security analysis of a practical “on the fly” authentication
and signature generation. In Advances in Cryptology – EUROCRYPT ’98, vol. 1403
of Lecture Notes in Computer Science, pp. 422–436. Springer Verlag, 1998.

31. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb.
1978.

32. C. P. Schnorr. Efficient signature generation for smart cards. Journal Of Cryptol-
ogy, 4(3):239–252, 1991.

Efficient k-Out-of-n Oblivious Transfer Schemes
with Adaptive and Non-adaptive Queries

Cheng-Kang Chu and Wen-Guey Tzeng

Department of Computer and Information Science,
National Chiao Tung University,

Hsinchu, Taiwan 30050
{ckchu,tzeng}@cis.nctu.edu.tw

Abstract. In this paper we propose efficient two-round k-out-of-n obliv-
ious transfer schemes, in which R sends O(k) messages to S, and S sends
O(n) messages back to R. The computation cost of R and S is reasonable.
The choices of R are unconditionally secure. For the basic scheme, the se-
crecy of unchosen messages is guaranteed if the Decisional Diffie-Hellman
problem is hard. When k = 1, our basic scheme is as efficient as the most
efficient 1-out-of-n oblivious transfer scheme. Our schemes have the nice
property of universal parameters, that is each pair of R and S need nei-
ther hold any secret key nor perform any prior setup (initialization). The
system parameters can be used by all senders and receivers without any
trapdoor specification. Our k-out-of-n oblivious transfer schemes are the
most efficient ones in terms of the communication cost, in both rounds
and the number of messages.
Moreover, one of our schemes can be extended in a straightforward way
to an adaptive k-out-of-n oblivious transfer scheme, which allows the re-
ceiver R to choose the messages one by one adaptively. In our adaptive-
query scheme, S sends O(n) messages to R in one round in the commit-
ment phase. For each query of R, only O(1) messages are exchanged and
O(1) operations are performed. In fact, the number k of queries need
not be pre-fixed or known beforehand. This makes our scheme highly
flexible.

Keywords: k-out-of-n Oblivious Transfer, Adaptive Oblivious Transfer

1 Introduction

Oblivious transfer (OT) is an important primitive used in many cryptographic
protocols [GV87,Kil88]. An oblivious transfer protocol involves two parties, the
sender S and the receiver R. S has some messages and R wants to obtain some
of them via interaction with S. The security requirement is that S wants R to
obtain the message of his choice only and R does not want S to know what
he chooses. The original OT was proposed by Rabin [Rab81], in which S sends
a message to R, and R gets the message with probability 0.5. On the other
hand, S does not know whether R gets the message or not. Even, et al. [EGL85]
suggested a more general scheme, called 1-out-of-2 OT (OT1

2). In this scheme, S

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 172–183, 2005.
c© International Association for Cryptologic Research 2005

Efficient k-Out-of-n Oblivious Transfer Schemes 173

has two messages m1 and m2, and would like R to obtain exactly one of them.
In addition, S remains oblivious to R’s choice. Brassard, et al. [BCR86] further
extended OT1

2 to 1-out-of-n OT (OT1
n) for the case of n messages.

Oblivious transfer has been studied extensively and in many flavors. Most
of them consider the case that R chooses one message. In this paper we are
concerned about the case that R chooses many messages at the same time. A
k-out-of-n OT (OTk

n) scheme is an OT scheme in which R chooses k messages at
the same time, where k < n. A straightforward solution for OTk

n is to run OT1
n

k times independently. However, this needs k times the cost of OT1
n. The com-

munication cost is two-round, O(k) messages from R to S, and O(kn) messages
from S to R even using the most efficient OT1

n schemes [NP01,Tze02].
Oblivious transfer with adaptive queries (Adpt-OT) allows R to query the

messages one by one adaptively [NP99a]. For the setting, S first commits the
messages to R in the commitment phase. Then, in the transfer phase, R makes
queries of the messages one by one. The cost is considered for the commitment
and transfer phases, respectively. It seems that the adaptive case implies the
non-adaptive case. But, the non-adaptive one converted from an adaptive one
usually needs more rounds (combining the commitment and transfer phases), for
example, the scheme in [OK02]. Since our scheme needs no trapdoors, there is
no entailed cost due to conversion. Adaptive OTk

n is natural and has many appli-
cations, such as oblivious search, oblivious database queries, private information
retrieval, etc.

In this paper we propose efficient two-round OTk
n schemes, in which R sends

O(k) messages to S, and S sends O(n) messages back to R. The computation cost
of R and S is reasonable. The choices of R are unconditionally secure. For the
basic scheme, the secrecy of unchosen messages is guaranteed if the Decisional
Diffie-Hellman (DDH) problem is hard. When k = 1, our scheme is as efficient as
the one in [Tze02]. Our schemes have the nice property of universal parameters,
that is, each pair of R and S need neither hold any secret key nor perform any
prior setup (initialization). The system parameters can be used by all senders
and receivers without any trapdoor specification. Our OTk

n schemes are the most
efficient one in terms of the communication cost, either in rounds or the number
of messages.

Moreover, one of our schemes can be extended in a straightforward way to
an Adpt-OTk

n scheme. In our adaptive-query scheme, S sends O(n) messages
to R in one round in the commitment phase. For each query of R, only O(1)
messages are exchanged and O(1) operations are performed. In fact, the number
k of queries need not be fixed or known beforehand. This makes our scheme
highly flexible.

1.1 Previous Work and Comparison

Rabin [Rab81] introduced the notion of OT and presented an implementation to
obliviously transfer one-bit message, based on quadratic roots modulo a compos-
ite. Even, Goldreich and Lempel [EGL85] proposed an extension of bit-OT1

2, in
which m1 and m2 are only one-bit. Brassard, Crépeau and Robert [BCR86]

174 Cheng-Kang Chu and Wen-Guey Tzeng

proposed OT1
n soon after in the name “all-or-nothing disclosure of secrets”

(ANDOS). After that, OT1
n has become an important research topic in cryp-

tographic protocol design. Some OT1
n schemes are built by invoking basis OT1

2

several times [BCR87,BCS96,NP99b], and the others are constructed directly
from basic cryptographic techniques [SS90,NR94,Ste98,NP01,Tze02]. Some OT1

n

schemes derived from computational private information retrieval (CPIR) have
polylogarithmic communication cost [Lip04]. Nevertheless, the privacy of the
receiver’s choice is computationally secure. Besides, there are various oblivious
transfer schemes developed in different models and applications, such as OT
in the bounded storage model [CCM98,Din01], distributed OT [NP00,BDSS02],
Quantum OT [BBCS91,CZ03], and so on. Lipmaa [Lip] provided a good collec-
tion of these works.

For OTk
n, Bellare and Micali [BM89] proposed an OTn−1

n scheme. Naor and
Pinkas [NP99b] proposed a non-trivial OTk

n scheme. The scheme invokes a ba-
sis OT1

2 scheme O(wk log n) times, where w > log δ/ log(k4/
√

n) and δ is the
probability that R can obtain more than k messages. The scheme works only
for k ≤ n1/4. After then, they also took notice of adaptive queries and provided
some Adpt-OTk

n schemes [NP99a]. In one scheme (the two-dimensional one), each
query needs invoke the basis OT1√

n
scheme twice, in which each invocation of

OT1√
n

needs O(
√

n) initialization work. In another scheme, each adaptive query
of messages need invoke the basis OT2

1 protocol log n times. Mu, Zhang, and
Varadharajan [MZV02] presented some efficient OTk

n schemes1. These schemes
are designed from cryptographic functions directly. The most efficient one is
a non-interactive one. To be compared fairly, the setup phase of establishing
shared key pairs of a public-key cryptosystem should be included. Thus, the
scheme is two-round and R and S send each other O(n) messages. However, the
choices of R cannot be made adaptive since R’s choices are sent to S first and
the message commitments are dependent on the choices. Recently, Ogata and
Kurosawa [OK02] proposed an efficient adaptive OT scheme based on the RSA
cryptosystem. Each S needs a trapdoor (the RSA modulus) specific to him. The
scheme is as efficient as our Adpt-OTk

n scheme. But, if the adaptive OT scheme
is converted to a non-adaptive one, it needs 3 rounds (In the first round, S sends
the modulus N to R).

Ishai, Kilian, Nissim and Petrank [IKNP03] proposed some efficient protocols
for extending a small number of OT’s to a large number of OT’s. Chen and Zhu
[CZ03] provided an OTk

n in the quantum computation model. We won’t compare
these schemes with ours since they are in different categories.

In Table 1 we summarize the comparison of our, Mu, Zheng, and Varad-
harajan’s, and Naor and Pinkas’s OTk

n schemes. In Table 2 we summarize the
comparison of our and Naor and Pinkas’s Adpt-OTk

n schemes.

1 Yao, Bao, and Deng [YBD03] pointed out some security issues in [MZV02].

Efficient k-Out-of-n Oblivious Transfer Schemes 175

Table 1. Comparison of OTk
n schemes in communication cost.

Ours (this paper) Mu, et al. [MZV02] Naor, et al. [NP99b]

rounds 2 2 O(wk log n)
messages (R → S) O(k) O(n) O(wk log n))
messages (S → R) O(n) O(n) O(n + wk log n)

universal parameters Yes Yes No (need setup)
made to adaptiveness Yes (OTk

n-II) No Yes

Table 2. Comparison of Adpt-OTk
n schemes in communication cost.

Ours 2-dimensional one, OTk
n,

(this paper) Naor, et al. [NP99a] Ogata, et al.[OK02]

commitment rounds 1 1 1
phase messages O(n) O(n) O(n)

transfer rounds 2 3* 2
phase messages O(1) O(

√
n)** O(1)

* Two invocations of OT1√
n in parallel.

** Use the most round-efficient OT1√
n scheme as the basis.

2 Preliminaries

Involved Parties. The involved parties of an OT scheme is the sender and
receiver. Both are polynomial-time-bounded probabilistic Turing machines
(PPTM). A party is semi-honest (or passive) if it does not deviate from the steps
defined in the protocol, but tries to compute extra information from received
messages. A party is malicious (or active) if it can deviate from the specified
steps in any way in order to get extra information.

A malicious sender may cheat in order or content of his possessed messages.
To prevent the cheat, we can require the sender to commit the messages in a
bulletin board. When the sender sends the encrypted messages to the receiver
during execution of an OT scheme, he need tag a zero-knowledge proof of show-
ing equality of committed messages and encrypted messages. However, in most
applications, the sender just follows the protocol faithfully. Therefore, we con-
sider the semi-honest sender only and the semi-honest/malicious receiver.

Indistinguishability. Two probability ensembles {Xi} and {Yi}, indexed by i, are
(computationally) indistinguishable if for any PPTM D, polynomial p(n) and
sufficiently large i, it holds that

|Pr[D(Xi) = 1] − Pr[D(Yi) = 1]| ≤ 1/p(i).

Correctness of a Protocol. An OT scheme is correct if the receiver obtains the
messages of his choices when the sender with the messages and the receiver with
the choices follow the steps of the scheme.

176 Cheng-Kang Chu and Wen-Guey Tzeng

Security Model. Assume that S holds n messages m1, m2, . . . , mn and R’s k
choices are σ1, σ2, . . . , σk. Note that only semi-honest sender is considered. We
say that two sets C and C′ are different if there is x in C, but not in C′, or vice
versa. An OTk

n scheme with security against a semi-honest receiver should meet
following requirements:

1. Receiver’s privacy – indistinguishability: for any two different sets of choices
C = {σ1, σ2, . . . , σk} and C′ = {σ′

1, σ′
2, . . . , σ′

k}, the transcripts, correspond-
ing to C and C′, received by the sender are indistinguishable. If the received
messages of S for C and C′ are identically distributed, the choices of R are
unconditionally secure.

2. Sender’s security – indistinguishability: for any choice set C={σ1,σ2, . . . ,σk},
the unchosen messages should be indistinguishable from the random ones.

An OTk
n scheme with security against a malicious receiver should meet fol-

lowing requirements:

1. Receiver’s privacy – indistinguishability: the same as the case of the semi-
honest receiver.

2. Sender’s security – compared with the Ideal model: in the Ideal model, the
sender sends all messages and the receiver sends his choices to the trusted
third party (TTP). TTP then sends the chosen messages to the receiver. This
is the securest way to implement the OTk

n scheme. The receiver R cannot
obtain extra information from the sender S in the Ideal model. We say that
the sender’s security is achieved if for any receiver R in the real OTk

n scheme,
there is another PPTM R′ (called simulator) in the Ideal model such that
the outputs of R and R′ are indistinguishable.

Computational Model. Let Gq be a subgroup of Z∗
p with prime order q, and p =

2q+1 is also prime. Let g be a generator of Gq. We usually denote gx mod p as gx,
where x ∈ Zq. Let x ∈R X denote that x is chosen uniformly and independently
from the set X .

Security Assumptions. For our OTk
n schemes against semi-honest and malicious

receiver, we assume the hardness of Decisional Diffie-Hellman (DDH) problem
and Chosen-Target Computational Diffie-Hellman (CT-CDH) problem, respec-
tively.

Assumption 1 (Decisional Diffie-Hellman (DDH)). Let p = 2q + 1 where
p, q are two primes, and Gq be the subgroup of Z∗

p with order q. The following
two distribution ensembles are computationally indistinguishable:

– Y1 = {(g, ga, gb, gab)}Gq , where g is a generator of Gq, and a, b ∈R Zq.
– Y2 = {(g, ga, gb, gc)}Gq , where g is a generator of Gq, and a, b, c ∈R Zq.

For the scheme against malicious receiver, we use the assumption introduced
by Boldyreva [Bol03], which is analogous to the chosen-target RSA inversion
assumption defined by Bellare, et al. [BNPS01].

Efficient k-Out-of-n Oblivious Transfer Schemes 177

– System parameters: (g, h, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R chooses two polynomials f(x) = a0 + a1x + · · · + ak−1x
k−1 + xk and f ′(x) =

b0 + b1x + · · ·+ bk−1x
k−1 + xk where a0, a1, . . . , ak−1 ∈R Zq and b0 + b1x + · · ·+

bk−1x
k−1 + xk ≡ (x − σ1)(x − σ2) · · · (x − σk) mod q.

2. R −→ S : A0 = ga0hb0 , A1 = ga1hb1 , . . . , Ak−1 = gak−1hbk−1 .
3. S computes ci = (gki , miB

ki
i) where ki ∈R Z∗

q and Bi = gf(i)hf ′(i) =
A0A

i
1 · · ·Aik−1

k−1 (gh)ik

mod p, for i = 1, 2, . . . , n.
4. S −→ R: c1, c2, . . . , cn.
5. Let ci = (Ui, Vi), R computes mσi = Vσi/U

f(σi)
σi mod p for each σi.

Fig. 1. OTk
n-I: k-out-of-n OT against semi-honest receiver.

Assumption 2 (Chosen-Target Computational Diffie-Hellman (CT-
CDH)). Let Gq be a group of prime order q, g be a generator of Gq, x ∈R Z∗

q .
Let H1 : {0, 1}∗ → Gq be a cryptographic hash function. The adversary A is given
input (q, g, gx, H1) and two oracles: target oracle TG(·) that returns a random
element wi ∈ Gq at the i-th query and helper oracle HG(·) that returns (·)x. Let
qT and qH be the number of queries A made to the target oracle and helper oracle
respectively. The probability that A outputs k pairs ((v1, j1), (v2, j2), . . . , (vk, jk)),
where vi = (wji)x for i ∈ {1, 2, . . . , k}, qH < k ≤ qT , is negligible.

3 k-Out-of-n OT Schemes

We first present a basic OTk
n scheme for the semi-honest receiver in the standard

model. Then, we modify the scheme to be secure against the malicious receiver
in the random oracle model. Due to the random oracle model, the second scheme
is more efficient in computation.

3.1 k-Out-of-n OT Against Semi-honest Receiver

The sender S has n secret messages m1, m2, . . . , mn. Without loss of generality,
we assume that the message space is Gq, that is, all messages are in Gq. The
semi-honest receiver R wants to get mσ1 , mσ2 , . . . , mσk

. The protocol OTk
n-I with

security against the semi-honest receiver is depicted in Figure 1.
For system parameters, let g, h be two generators of Gq where logg h is un-

known to all, and Gq be the group with some descriptions. These parameters
can be used repeatedly by all possible senders and receivers as long as the value
logg h is not revealed. Therefore, (g, h, Gq) are universal parameters.

The receiver R first constructs a k-degree polynomial f ′(x) such that f ′(i) =
0 if and only if i ∈ {σ1, . . . , σk}. Then R chooses another random k-degree
polynomial f(x) to mask the chosen polynomial f ′(x). The masked choices
A0, A1, . . . , Ak−1 are sent to the sender S.

178 Cheng-Kang Chu and Wen-Guey Tzeng

When S receives these queries, he first computes Bi = gf(i)hf ′(i) by com-
puting A0Ai

1 · · ·Aik−1

k−1 (gh)ik

mod p. Because of the random polynomial f(x), S
does not know which f ′(i) is equal to zero, for i = 1, 2, . . . , n. Then S treats Bi

as the public key and encrypts each message mi by the ElGamal cryptosystem.
The encrypted messages c1, c2, . . . , cn are sent to R.

For each ci, i ∈ {σ1, σ2, . . . , σk}, since Bi = gf(i)hf ′(i) = gf(i)h0 = gf(i), R
can get these messages by the decryption of ElGamal cryptosystem with secret
key f(i). If i /∈ {σ1, σ2, . . . , σk}, since R can not compute (gf(i)hf ′(i))ki with the
knowledge of gki and f(i), f ′(i) only, the message mi is unknown to R.

Correctness. Let ci = (Ui, Vi), we can check that the chosen messages mσi ,
i = 1, 2, . . . , k, are computed as

Vσi/Uf(σi)
σi

= mσi · (gf(σi)hf ′(σi))kσi /gkσi
f(σi)

= mσi · (gf(σi) · 1)kσi /gkσi
f(σi)

= mσi .

Security Analysis. We now prove the security of OTk
n-I.

Theorem 1. For scheme OTk
n-I, R’s choices are unconditionally secure.

Proof. For every tuple (b′0, b′1, . . . , b′k−1) representing the choices σ′
1, σ′

2, . . . , σ′
k,

there is a tuple (a′
0, a′

1, . . . , a′
k−1) that satisfies Ai = ga′

ihb′i for i = 0, 1, . . . , k−1.
Thus, the receiver R’s choices are unconditionally secure. �

Theorem 2. Scheme OTk
n-I meets the sender’s security requirement. That is, by

the DDH assumption, if R is semi-honest, he gets no information about messages
mi, i /∈ {σ1, σ2, . . . , σk}.
Proof. We show that for all i /∈ {σ1, σ2, . . . , σk}, ci’s look random if the DDH
assumption holds. First, we define the random variable for the unchosen messages

C =(g, h, (gki1 , mi1(g
f(i1)hf ′(i1))ki1), ..., (gkin−k , min−k

(gf(in−k)hf ′(in−k))kin−k)),

where ki1 , ki2 , . . . , kin−k
∈R Z∗

q . Since the polynomial f(x) and f ′(x) are chosen
by the receiver, and f ′(i1), . . . , f ′(in−k) �= 0, we can simplify C as

C′ = (g, h, (gki1 , hki1), . . . , (gkin−k , hkin−k))

Since the indistinguishability is preserved under multiple samples, we just need
to show that if the following two distributions

– C̃ = (g, h, gr, hr), where h �= 1, r ∈R Z∗
q

– X̃ = (g, h, x1, x2), where h �= 1, x1, x2 ∈R Gq

are distinguishable by a polynomial-time distinguisher D, we can construct an-
other polynomial-time machine D′, which takes D as a sub-routine, to solve the
DDH problem:

Efficient k-Out-of-n Oblivious Transfer Schemes 179

– System parameters: (g,H1, H2, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

1. R computes wσj = H1(σj) and Aj = wσj gaj , where aj ∈R Z∗
q and j = 1, 2, . . . , k.

2. R −→ S: A1, A2, . . . , Ak.
3. S computes y = gx, Dj = (Aj)x, wi = H1(i), and ci = mi ⊕ H2(wx

i), where
x ∈R Z∗

q , i = 1, 2, . . . , n, and j = 1, 2, . . . , k.
4. S −→ R: y, D1, D2, . . . , Dk, c1, c2, . . . , cn

5. R computes Kj = Dj/yaj and gets mσj = cσj ⊕ H2(Kj) for j = 1, 2, . . . , k.

Fig. 2. OTk
n-II: k-out-of-n OT against malicious receiver.

Machine D′

Input: (g, u, v, w) (either from Y1 or Y2 in DDH)
Output: D(g, u, v, w)

If D distinguishes C̃ and X̃ with non-negligible advantage ε (Should be ε(n, t), we
omit the security parameter n and t here for simplicity, where t is the security
parameter.), D′ distinguishes Y1, Y2 in the DDH problem with at least non-
negligible advantage ε − 2/q, where dist(C̃, Y1) = 1/q and dist(X̃, Y2) = 1/q.

�

Complexity. The scheme uses two rounds (steps 2 and 4), the first round sends
k + 1 messages and the second round sends 2n messages. For computation, R
computes 3k + 2 and S computes (k + 2)n modular exponentiations.

3.2 k-Out-of-n OT Against Malicious Receiver

A malicious player may not follow the protocol dutifully. For example, in scheme
OTk

n-I, a malicious R might send some special form of Ai’s in step 2 such that he
is able to get extra information, such as the linear combination of two messages
(even though we don’t know how to do such attack). So, we present another
scheme OTk

n-II that is provable secure against the malicious R. The scheme is
depicted in Figure 2.

Let Gq be the subgroup of Z∗
p with prime order q, g be a generator of Gq,

and p = 2q + 1 is also prime. Let H1 : {0, 1}∗ → Gq, H2 : Gq → {0, 1}l be two
collision-resistant hash functions. Let messages be of l-bit length. Assume that
CT-CDH is hard under Gq.

Correctness. We can check that the chosen messages mσj , j = 1, 2, . . . , k, are
computed as

cσj ⊕ H2(Kj) = mσj ⊕ H2(wx
σj

) ⊕ H2(wx
σj

)
= mσj .

Security Analysis. We need the random oracle model in this security analysis.

180 Cheng-Kang Chu and Wen-Guey Tzeng

Theorem 3. In OTk
n-II, R’s choice meets the receiver’s privacy.

Proof. For any Aj = wjgaj and wl, l �= j, there is an a′
l that satisfies Aj = wlg

a′
l .

For S, Aj can be a masked value of any index. Thus, the receiver’s choices are
unconditionally secure. �

Theorem 4. Even if R is malicious, the scheme OTk
n-II meets the requirement

for the sender’s security assuming hardness of the CT-CDH problem the random
oracle model.

Proof. Since we treat H2 as a random oracle, the malicious R has to know
Ki = wx

i in order to query the hash oracle to get H2(wx
i). For each possible

malicious R, we construct a simulator R∗ in the Ideal model such that the
outputs of R and R∗ are indistinguishable.

R∗ works as follows:

1. R∗ simulates R to obtain A∗
1, A∗

2, . . . , A∗
k. When R queries H1 on index i, we

return a random w∗
i (consistent with the previous queries.)

2. R∗ simulates S (externally without knowing mi’s) on inputs A∗
1, A∗

2, . . . , A∗
k

to obtain x∗, y∗, D∗
1 , D∗

2 , . . . , D∗
k.

3. R∗ randomly chooses c∗1, c∗2, . . . , c∗n.
4. R∗ simulates R on input (y∗, D∗

1 , D∗
2 , . . . , D∗

k, c∗1, c∗2, . . . , c∗n) and monitors the
queries closely. If R queries H2 on some vj = (w∗

j)x∗
, R∗ sends j to the TTP

T to obtain mj and returns c∗j ⊕mj as the hash value H2((w∗
j)x∗

), otherwise,
returns a random value (consistent with previous queries).

5. Output (A∗
1, A∗

2, . . . , A∗
k, y∗, D∗

1 , D∗
2 , . . . , D∗

k, c∗1, c∗2 . . . , c∗n).

If R obtains k + 1 decryption keys, R∗ does not know which k indices are
really chosen by R. The simulation would fail. Therefore we show that R can
obtain at most k decryption keys by assuming the hardness of chosen-target CDH
problem: In the above simulation, if R queries H1, we return a random value
output by the target oracle. When R∗ simulates S on input A∗

1, A∗
2, . . . , A∗

k, we
forward these queries to the helper oracle, and return the corresponding outputs.
Finally, if R queries H2 on legal vji for all 1 ≤ i ≤ k + 1, we can output k + 1
pairs (vji , ji), which contradicts to the CT-CDH assumption. Thus, R obtains
at most k decryption keys.

Let σ1, σ2, . . . , σk be the k choices of R. For the queried legal vσj ’s, cσj

is consistent with the returned hash values, for j = 1, 2, . . . , k. Since no other
(w∗

l)x∗
, l �= σ1, σ2, . . . , σk, can be queried to the H2 hash oracle, cl has the right

distribution (due to the random oracle model). Thus, the output distribution is
indistinguishable from that of R. �

Complexity. OTk
n-II has two rounds. The first round sends k messages and the

second round sends n + k + 1 messages. For computation, R computes 2k, and
S computes n + k + 1 modular exponentiations.

Efficient k-Out-of-n Oblivious Transfer Schemes 181

– System parameters: (g,H1, H2, Gq);
– S has messages: m1, m2, . . . , mn;
– R’s choices: σ1, σ2, . . . , σk;

Commitment Phase

1. S computes ci = mi ⊕ H2(wx
i) for i = 1, 2, . . . , n, and y = gx where wi = H1(i),

and x ∈R Z∗
q .

2. S −→ R : y, c1, c2, . . . , cn.

Transfer Phase
For each σj , j = 1, 2, . . . , k, R and S execute the following steps:

1. R chooses a random aj ∈ Z∗
q and computes wσj = H1(σj), Aj = wσj gaj .

2. R −→ S : Aj .
3. S −→ R : Dj = (Aj)x.
4. R computes Kj = Dj/yaj and gets mσj = cσj ⊕ H2(Kj).

Fig. 3. Adpt-OTk
n: Adaptive OTk

n.

4 k-Out-of-n OT with Adaptive Queries

The queries of R in our schemes can be adaptive. In our schemes, the commit-
ments ci’s of the messages mi’s of S to R are independent of the key masking.
Therefore, our scheme is adaptive in nature. Our Adpt-OTk

n scheme, which re-
phrases the OTk

n-II scheme, is depicted in Figure 3.
The protocol consists of two phases: the commitment phase and the transfer

phase. The sender S first commits the messages in the commitment phase. In
the transfer phase, for each query, R sends the query Aj to S and obtains the
corresponding key to decrypt the commitment cj .

Correctness of the scheme follows that of OTk
n-II.

Security Analysis. The security proofs are almost the same as those for OTk
n-II.

We omit them here.

Complexity. In the commitment phase, S needs n + 1 modular exponentiations
for computing the commitments ci’s and y. In the transfer phase, R needs 2
modular exponentiations for computing the query and the chosen message. S
needs one modular exponentiation for answering each R’s query. The commit-
ment phase is one-round and the transfer phase is two-round for each adaptive
query.

5 Conclusion

We have presented two very efficient OTk
n schemes against semi-honest receivers

in the standard model and malicious receivers in the random oracle model. Our
schemes possess other interesting features, such as, it can be non-interactive and
needs no prior setup or trapdoor. We also proposed an efficient Adpt-OTk

n for

182 Cheng-Kang Chu and Wen-Guey Tzeng

adaptive queries. The essential feature allowing this is the reversal of the orders of
key commitment and message commitment. In most previous schemes (including
OTk

n-I), the key commitments (for encrypting the chosen messages) are sent
to S first. The message commitments are dependent on the key commitments.
Nevertheless, in our scheme OTk

n-II the message commitments are independent
of the key commitment. Thus, the message commitments can be sent to R first.

References

[BBCS91] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène
Skubiszewska. Practical quantum oblivious transfer. In Proceedings of
Advances in Cryptology - CRYPTO ’91, volume 576 of LNCS, pages 351–
366. Springer-Verlag, 1991.

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In Proceedings of Advances in Cryptology - CRYPTO
’86, volume 263 of LNCS, pages 234–238. Springer-Verlag, 1986.

[BCR87] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information the-
oretic reductions among disclosure problems. In Proceedings of 28th Annual
Symposium on Foundations of Computer Science (FOCS ’87), pages 427–
437. IEEE, 1987.

[BCS96] Gilles Brassard, Claude Crépeau, and Miklós Sántha. Oblivious trans-
fers and intersecting codes. IEEE Transactions on Information Theory,
42(6):1769–1780, 1996.

[BDSS02] Carlo Blundo, Paolo D’Arco, Alfredo De Santis, and Douglas R. Stinson.
New results on unconditionally secure distributed oblivious transfer. In
Proceedings of Selected Areas in Cryptography - SAC ’02, volume 2595 of
LNCS, pages 291–309. Springer-Verlag, 2002.

[BM89] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and
applications. In Proceedings of Advances in Cryptology - CRYPTO ’89,
volume 435 of LNCS, pages 547–557. Springer-Verlag, 1989.

[BNPS01] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. Power of rsa inversion oracles and the security of Chaum’s RSA-
based blind signature scheme. In Proceedings of Financial Cryptography
(FC ’01), pages 319–338. Springer-Verlag, 2001.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme. In Pro-
ceedings of the Public-Key Cryptography (PKC ’03), pages 31–46. Springer-
Verlag, 2003.

[CCM98] Christian Cachin, Claude Crepeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In Proceedings of 39th Annual Sympo-
sium on Foundations of Computer Science (FOCS ’98), pages 493–502.
IEEE, 1998.

[CZ03] Zhide Chen and Hong Zhu. Quantum m-out-of-n oblivious transfer. Tech-
nical report, arXiv:cs.CR/0311039, 2003.

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In
Proceedings of Advances in Cryptology - CRYPTO ’01, volume 2139 of
LNCS, pages 155–170. Springer-Verlag, 2001.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Communications of the ACM, 28(6):637–647,
1985.

Efficient k-Out-of-n Oblivious Transfer Schemes 183

[GV87] Oded Goldreich and Ronen Vainish. How to solve any protocol problem
- an efficiency improvement. In Proceedings of Advances in Cryptology -
CRYPTO ’87, volume 293 of LNCS, pages 73–86. Springer-Verlag, 1987.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Proceedings of Advances in Cryptology
- CRYPTO ’03, volume 2729 of LNCS, pages 145–161. Springer-Verlag,
2003.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings
of the 20th Annual ACM Symposium on the Theory of Computing (STOC
’88), pages 20–31. ACM, 1988.

[Lip] Helger Lipmaa. Oblivious transfer.
http://www.tcs.hut.fi/˜helger/crypto/link/protocols/oblivious.html.

[Lip04] Helger Lipmaa. An oblivious transfer protocol with log-squared commu-
nication. Technical report, Cryptology ePrint Archive: Report 2004/063,
2004.

[MZV02] Yi Mu, Junqi Zhang, and Vijay Varadharajan. m out of n oblivious transfer.
In Proceedings of the 7th Australasian Conference on Information Security
and Privacy (ACISP ’02), volume 2384 of LNCS, pages 395–405. Springer-
Verlag, 2002.

[NP99a] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evalua-
tion. In Proceedings of the 31th Annual ACM Symposium on the Theory of
Computing (STOC ’99), pages 245–254. ACM, 1999.

[NP99b] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries.
In Proceedings of Advances in Cryptology - CRYPTO ’99, volume 1666 of
LNCS, pages 573–590. Springer-Verlag, 1999.

[NP00] Moni Naor and Benny Pinkas. Distributed oblivious transfer. In Proceedings
of Advances in Cryptology - ASIACRYPT ’00, volume 1976 of LNCS, pages
200–219. Springer-Verlag, 2000.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
Proceedings of the 12th Annual Symposium on Discrete Algorithms (SODA
’01), pages 448–457. ACM/SIAM, 2001.

[NR94] Valtteri Niemi and Ari Renvall. Cryptographic protocols and voting. In
Results and Trends in Theoretical Computer Science, volume 812 of LNCS,
pages 307–317. Springer-Verlag, 1994.

[OK02] Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Journal
of Complexity, 20(2-3):356–371, 2004.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[SS90] Arto Salomaa and Lila Santean. Secret selling of secrets with several buy-
ers. Bulletin of the European Association for Theoretical Computer Science
(EATCS), 42:178–186, 1990.

[Ste98] Julien P. Stern. A new and efficient all or nothing disclosure of secrets
protocol. In Proceedings of Advances in Cryptology - ASIACRYPT ’98,
volume 1514 of LNCS, pages 357–371. Springer-Verlag, 1998.

[Tze02] Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In Proceed-
ings of the Public-Key Cryptography (PKC ’02), pages 159–171. Springer-
Verlag, 2002.

[YBD03] Gang Yao, Feng Bao, and Robert Deng. Security analysis of three oblivious
transfer protocols. Workshop on Coding, Cryptography and Combinatorics,
Huangshan City, China, 2003.

Converse Results to the Wiener Attack on RSA

Ron Steinfeld, Scott Contini, Huaxiong Wang, and Josef Pieprzyk

Dept. of Computing, Macquarie University, North Ryde, Australia
{rons,scontini,hwang,josef}@ics.mq.edu.au

http://www.ics.mq.edu.au/acac/

Abstract. A well-known attack on RSA with low secret-exponent d was
given by Wiener about 15 years ago. Wiener showed that using continued
fractions, one can efficiently recover the secret-exponent d from the public
key (N, e) as long as d < N1/4. Interestingly, Wiener stated that his
attack may sometimes also work when d is slightly larger than N1/4. This
raises the question of how much larger d can be: could the attack work
with non-negligible probability for d = N1/4+ρ for some constant ρ > 0?
We answer this question in the negative by proving a converse to Wiener’s
result. Our result shows that, for any fixed ε > 0 and all sufficiently large
modulus lengths, Wiener’s attack succeeds with negligible probability
over a random choice of d < Nδ (in an interval of size Ω(Nδ)) as soon
as δ > 1/4 + ε. Thus Wiener’s success bound d < N1/4 for his algorithm
is essentially tight. We also obtain a converse result for a natural class
of extensions of the Wiener attack, which are guaranteed to succeed
even when δ > 1/4. The known attacks in this class (by Verheul and
Van Tilborg and Dujella) run in exponential time, so it is natural to ask
whether there exists an attack in this class with subexponential run-time.
Our second converse result answers this question also in the negative.

1 Introduction

The RSA public-key cryptosystem is one of the most popular systems in use
today. Accordingly, the study of the security of special variants of RSA designed
for computational efficiency is a major area of research. One natural RSA vari-
ant which is attractive for speeding up secret operations (signature generation
or decryption) is Low Secret-Exponent RSA. In this variant the RSA secret ex-
ponent d is chosen to be small compared to the RSA modulus N . A well-known
attack on RSA with low secret-exponent d was given by Wiener[10] about 15
years ago. Wiener showed that using continued fractions, one can efficiently re-
cover the secret-exponent d from the public key (N, e) as long as d < N1/4.
Interestingly, Wiener stated that his attack may sometimes also work when d is
slightly larger than N1/4. This raises the question of how much larger d can be:
could the attack work with non-negligible probability for d = N1/4+ρ for some
constant ρ > 0?

In this paper, we answer the above question in the negative by proving a
converse to Wiener’s result. Our result shows that, for any fixed ε > 0 and
all sufficiently large modulus lengths, Wiener’s attack succeeds with negligible

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 184–198, 2005.
c© International Association for Cryptologic Research 2005

Converse Results to the Wiener Attack on RSA 185

probability over a random choice of d < N δ (in an interval of size Ω(N δ)) as soon
as δ > 1/4+ ε. Thus Wiener’s bound d < N1/4 for his attack is essentially tight.
We also obtain a converse result for a natural class of extensions of the Wiener
attack, which are guaranteed to succeed even when δ > 1/4. The known attacks
in this class (by Verheul and Van Tilborg [8] and Dujella [3]) run in exponential
time, so it is natural to ask whether there exists an attack in this class with
subexponential run-time. Our second converse result answers this question also
in the negative.

Related Work. To our knowledge, the converse results in this paper provide the
first proven evidence for the limitations of the Wiener attack [10] and its ex-
tensions by Verheul and Van Tilborg [8] and Duejlla [3]. Essentially, our results
prove that when δ > 1/4, the linear equation (satisfied by the secret key) which
is exploited by the Wiener attack cannot lead by itself to a key-recovery attack
which runs in subexponential time (because there are too many solutions). In or-
der to obtain a subexponential attack when δ > 1/4 one must exploit some other
property of the secret key. Indeed, the lattice-based Boneh-Durfee attack [2] and
its variant given by Blömer and May [1], exploit a non-linear equation satisfied
by the secret key, which gives an attack that heuristically succeeds in polynomial-
time when δ < 0.292. Finding proven limitations on the Boneh-Durfee attack
and its variants is currently an open problem, but we believe our results on
provable limitations of the Wiener attack are a first step in this direction.

Organization of This Paper. Section 2 presents definitions and known results
from number theory that we use. In Section 3, we define the standard RSA
key-generation algorithm that our results apply to and review Wiener’s result.
In Section 4, we state and prove our converse to Wiener’s result. In Section 5,
we present our generalized converse result which applies to a natural class of
extensions of the Wiener attack. Section 6 concludes the paper.

2 Preliminaries

2.1 Continued Fractions

Here we collect several known results that we use about continued fractions,
which can be found in [5, 6].

For positive integers a1, . . . , an, we define the rational number

x
def=

1
a1 + 1

a2+...+ 1
an

.

For brevity, we write x = (a1, a2, . . . , an), and we call the sequence (a1, . . . , an)
a continued fraction expansion of length n for x.

Theorem 1 (Continued Fractions). Let x = r
s for positive integers r, s with

gcd(r, s) = 1 and r < s. Then the rational x has a unique continued fraction
expansion x = (a1, . . . , an) with an > 1, which can be computed in time O(log2 s)
by the following algorithm:

186 Ron Steinfeld et al.

1. Initialize x0 = x.
2. Compute iteratively xi = 1

xi−1−�xi−1� for i = 1, . . . , n, where n ≤ 2 log(s) is
the smallest value of i such that �xi� = xi.

3. Return (a1, . . . , an), where ai = �xi� for i = 1, . . . , n.

Let (a1, . . . , an) denote the continued fraction expansion of rational x. For
i = 1, . . . , n, the rationals yi = ri

si

def= (a1, . . . , ai) are called the convergents
of (the continued fraction expansion for) x. The convergents yi to x become
successively closer to x with increasing index i until the last convergent yn which
is equal to x.

Theorem 2 (Convergents). Let y1, . . . , yn denote the convergents of a ra-
tional x = r

s for positive integers r, s with gcd(r, s) = 1 and r < s. For
i = 1, . . . , n − 1, let us write yi = ri

si
for integers ri, si with gcd(ri, si) = 1.

Then the following statements hold:

(1) For i ∈ {1, . . . , n − 1}, yi = ri

si
is a best approximation to x in the sense

that |si · x − ri| < |s′ · x − r′| for all r′, s′ such that 0 < s′ ≤ si and r′
s′ �= yi

(note: this implies that | ri

si
− x| < | r′

s′ − x| for all r′, s′ such that 0 < s′ ≤ si

and r′
s′ �= yi).

(2) For i ∈ {1, . . . , n − 1}, | ri

si
− x| < 1

s2
i

and si+1 ≥ 2si.

(3) Let y = r̂

ŝ
be any rational such that | r̂

ŝ
− x| < 1

2ŝ2
. Then y is equal to one of

the convergents of x, i.e. y = yi for some i ∈ {1, . . . , n}.

3 Review of Wiener’s Attack

3.1 The RSA Key-Generation Algorithm

In this paper we assume the following natural key-generation algorithm
RSAKGδ,β1,β2(�) for RSA, which would typically be used when the goal is to
produce a modulus N in the order of 2 and a secret exponent d in the order
of N δ for some fixed 0 < δ ≤ 1. The fixed real-valued parameters β1 > 0 and
β2 > 0 control the size of the intervals from which the prime factors of N and
the secret exponent d are chosen from (typically, we set β1 = β2 = 1, to fix a
certain bit-length for p, q and d).

All the probabilities computed in this paper are evaluated over the random
choices of algorithm RSAKGδ,β1,β2(�).

RSAKGδ,β1,β2(�): RSA Key-Generation Algorithm

1 Pick uniformly at random a prime p ∈ P/2,β1 (Here P/2,β1 denotes the set
of all primes in the interval [2/2−β1 , 2/2] and typically we set β1 = 1).

2 Pick uniformly at random a prime q ∈ P/2,β1.
3 Compute integers N = pq and φ = (p − 1)(q − 1).

Converse Results to the Wiener Attack on RSA 187

4 Pick uniformly at random a secret exponent d ∈ D,δ,β2(φ) (Here D,δ,β1(φ)
denotes the set of all integers in the interval [2δ·−β2, 2δ·] which are coprime
to φ, and typically we set β2 = 1).

5 Compute e = d−1 mod φ (note: this implicitly defines the integer k =
(ed − 1)/φ).

6 Return secret-exponent d and public key (N, e).

3.2 Wiener’s Attack

The idea behind Wiener’s attack on RSA with small secret-exponent d is that
for small d, the publicly known fraction e/N is a very good approximation to
the secret fraction k/d (here k = (ed − 1)/φ), and hence k/d can be found from
the convergents of the continued-fraction expansion of e/N , using the results of
Section 2.1.

WienAtk(N, e): Wiener Attack Algorithm

1 Compute the continued fraction convergents
(

k1
d1

, . . . , kn

dn

)
of e

N using the
algorithm of Theorem 1.

2 Return
(

k1
d1

, . . . , kn

dn

)
.

We say that algorithm WienAtk succeeds on input (N, e) if it outputs(
k1
d1

, . . . , kn

dn

)
with ki

di
= k

d for some i ∈ {1, . . . , n} (where d = e−1 mod φ and
k = (ed − 1)/φ).

To obtain Wiener’s sufficient condition for the success of algorithm WienAtk,
we observe that, from the equation ed−1 = kφ it follows that the approximation
error of k/d by e/N is given by:

k

d
− e

N
= e ·

(
1
φ
− 1

N

)
− 1

φ · d
(1)

= e ·
(

1
N − s

− 1
N

)
− 1

(N − s) · d
where s = p + q − 1 (2)

=
(

s

N − s

) (
e

N
− 1

d · s

)
(3)

<
s

N − s
<

22β1+1

2/2
. (4)

The last bound uses the fact that s < 2/2+1 since p and q are not even. Note
also that k

d − e
N > 0.

From Theorem 2 part (3), we know that k/d will be one of the convergents of
the continued fraction expansion of e/N if k

d − e
N < 1

2d2 . Using the above bound
on k

d − e
N and the fact that d < 2δ·, we conclude that a sufficient condition for

success of algorithm WienAtk is that 22β1+1

2�/2 < 1
22δ·�+1 . This immediately gives us

the following result due to Wiener [10].

188 Ron Steinfeld et al.

Theorem 3 (WienAtk Sufficient Condition). Suppose that the key-generation
parameters (δ, β1, β2, �) satisfy the condition

δ < 1/4 − β1 + 1
�

.

Then on input (N, e), where (N, e, d) = RSAKGδ,β1,β2(�), the Wiener attack
algorithm WienAtk succeeds with probability 1.

4 A Converse to Wiener’s Result

The following statement is our necessary condition for success of Wiener’s al-
gorithm. It shows that whenever δ exceeds the Wiener sufficiency threshold 1/4
by any positive constant ε, the Wiener attack algorithm succeeds with negligible
probability 2−c· for some constant c > 0.

Theorem 4 (WienAtk Necessary Condition). Fix positive constants 0 < ε <
3/4, β1 and β2, and suppose that the key-generation parameter δ satisfies the
condition

δ = 1/4 + ε.

Then there exist positive constants c and �0 (depending on ε,β1 and β2) such that
on input (N, e), where (N, e, d) = RSAKGδ,β1,β2(�), the Wiener attack algorithm
WienAtk succeeds with probability at most 2−c· for all � ≥ �0.

Proof. By definition, if WienAtk succeeds on input (N, e), then one of the con-
vergents

(
k1
d1

, . . . , kn

dn

)
of e

N is equal to k
d . But by Theorem 2 part (2), it follows

that k
d − e

N < 1
d2 . Using d > 2δ·−β2 and δ = 1/4 + ε, we obtain the necessary

success condition
k

d
− e

N
< 22β2−(1/2+2ε)·. (5)

We now show that, for any ε > 0, the probability that (5) holds is negligible
over the random choice of d ∈ D,δ,β2(φ). We first reduce the problem to upper
bounding the probability that e

N is negligibly small.

Lemma 1. Fix positive constants c1 and η1. Then there exist positive constants
c2 and η2 such that

Pr
[

k

d
− e

N
< c1 · 2−(1/2+η1)·

]
≤ Pr

[e

N
< c2 · 2−η2·

]
.

Proof. Let Δ = k
d − e

N . From (3) in Section 3.2 we have Δ =
(

s
N−s

)
·(e

N − 1
d·s

)
,

and using s = p+q−1 > N1/2 we get Δ > N−1/2·(e
N − 1

dN1/2

)
. Using d > 2δ·−β2

and N > 2−2β1 we get Δ > N−1/2 · (
e
N − 2β1+β2−(1/2+δ)·), and then using

Converse Results to the Wiener Attack on RSA 189

N < 2 we get Δ > 2−/2 · (
e
N − 2β1+β2−(1/2+δ)·). Let C = 2β1+β2−(1/2+δ)·.

Then we have

Pr
[
Δ < c1 · 2−(1/2+η1)·

]
≤ Pr

[
2−/2 ·

(e

N
− C

)
< c1 · 2−(1/2+η1)·

]
= Pr

[e

N
< c1 · 2−η1· + C

]
≤ Pr

[e

N
< c2 · 2−η2·

]
,

for positive constants c2 = 2 max(c1, 2β+1+β2) and η2 = min(η1, 1/2 + δ), as
claimed. ��

To bound Pr
[

e
N < c2 · 2−η2·], we need an upper bound on the number of

d ∈ D,δ,β2(φ) such that e
N < c2 ·2−η2· holds, and a lower bound on the total size

of the set D,δ,β2(φ). These bounds are provided by the following two counting
results.

Lemma 2. Fix positive constants c1, c2 and δ. The size of the set M of secret-
exponents d < 2δ· such that the corresponding public exponent e = d−1 mod φ
satisfies e

N < c1 · 2−c2· is bounded as follows:

#M = O
(
2(δ−c2+

c3
log �)·

)
,

with constant c3 = 2(1 + δ).

Proof. For each d ∈ M , we have e · d = 1 + k · φ for some positive integer k,
where k < ed

φ = O
(
2(δ−c2)·) using the fact that N/φ = O(1). So, to get an upper

bound on the number of (e, d) pairs, we only need to consider the possibilities
for k, from 1 up to some integer K = O

(
2(δ−c2)·).

For each k ∈ {1, . . . , K}, let m = 1+k·φ = O
(
2(1+δ−c2)·). The possible (e, d)

pairs for this k correspond to factorizations of m as a product of two integers.
The number of such factorizations is equal to τ(m), the number of divisors of
m. It is known (see Theorem 317 of [4]) that τ(m) = O

(
2

2 log m
log log m

)
, and using

the bounds m = O(k · φ) = O
(
2(1+δ)·) and m = Ω(N) = Ω

(
2

)
we conclude

that τ(m) = O
(
2

2(1+δ)
log � ·

)
.

Thus the total number of possible (e, d) pairs satisfying the required con-
ditions is bounded as #M = O (K · τ(m)) = O

(
2(δ−c2+

c3
log �)·

)
where c3 =

2(1 + δ), as required. ��
Lemma 3. Fix positive constants β1, β2 and δ. The size of the set D,δ,β1(φ) of
all integers in the interval [2δ·−β2 , 2δ·] which are coprime to φ is lower bounded
as follows:

#D,δ,β1(φ) = Ω
(
2(δ− log log �

�)·
)

.

190 Ron Steinfeld et al.

Proof. For an integer d ≥ 1, we denote by μ(m) the Möbius function. We recall
that μ(1) = 1, μ(d) = 0 if d ≥ 2 is not square-free and μ(d) = (−1)ω(d) otherwise,
where for integer d we denote by ω(d) the number of distinct prime factors of d.

Fix any integers m, J ≥ 1. Using the Möbius function μ(d) over the divisors
of q to detect the co-primality condition (see Section 3.d of Chapter 2 of [9]) and
interchanging the order of summation, we obtain the Legendre formula

J∑
j=1

gcd(j,m)=1

1 =
∑
d|m

μ(d)
⌊

J

d

⌋
= J

∑
d|m

μ(d)
d

+ O

⎛⎝∑
d|m

|μ(d)|
⎞⎠ . (6)

Observe that ∑
d|m

|μ(d)| =
ω(m)∑
k=0

|(−1)k|
(

ω(m)
k

)
= 2ω(m),

and recall that the Möbius function satisfies∑
d|m

μ(d)
d

=
ϕ(m)

m
,

where ϕ(m) denotes Euler’s phi function evaluated at m. So, for any integers
Jmax > Jmin ≥ 1, applying (6) to both intervals [1, . . . , Jmin] and [1, . . . , Jmax]
and subtracting gives us∑

Jmin≤j≤Jmax
gcd(j,m)=1

1 =
ϕ(m)

m
(Jmax − Jmin) + O(2ω(m)).

But 2ω(m) is the number of square-free divisors of m, which is upper bounded
by the total number τ(m) of divisors of m. It is known (see Theorem 317 of [4])
that τ(m) = O

(
2

2 log m
log log m

)
. Setting m = φ, Jmin = 2δ·/2β2 and Jmax = 2δ·, we

get

#D,δ,β2(φ) = Ω

(
ϕ(φ)

φ
· 2δ·

)
+ O

(
2

2 log φ
log log φ

)
. (7)

We now observe that φ = Θ(2) so 2
2 log φ

log log φ = O
(
2

c5�

log �

)
for some positive con-

stant c5. Furthermore, it is known [7] that φ
ϕ(φ) = O(log log φ) = O(2log log).

Plugging these results in (7) and using the fact that 2
c5�

log � = o
(
2δ·−log log

)
we

obtain the claimed result #M = Ω
(
2(δ− log log �

�)·
)
. ��

Using Lemma 1 and the fact that d is chosen uniformly at random from
the set D,δ,β2(φ), we conclude that WienAtk’s success probability p is upper
bounded as p ≤ #M

#D�,δ,β2(φ) , where M denotes the set of all secret-exponents

d < 2δ· such that the corresponding public exponent e = d−1 mod φ satisfies
e
N < c2 · 2−η2·. Taking the ratio of the bounds on #M and #D,δ,β2(φ) from

Converse Results to the Wiener Attack on RSA 191

Lemma 2 and Lemma 3, we have that p = O
(
2−(η2− c3

log �− log log �
�)·

)
for some

positive constants η2 and c3. It follows that there exists a constant �0 such that
p ≤ 2−c· for all � ≥ �0, where c = η2/2 > 0. This completes the proof of the
theorem. ��

5 A Converse Result
for Improved Variants of Wiener Attack

Since Wiener’s attack fails as soon as δ > 1/4, it is natural to investigate im-
proved variants of the Wiener attack which may succeed even in this case. In
particular, Verheul and Van Tilborg (VVT) [8], and more recently Dujella [3],
presented improved variants of Wiener’s attack which are guaranteed to succeed
even when δ > 1/4. However, the run-time of these attacks when δ = 1/4+ε (for
some positive constant ε) is exponential in ε · �, so these attacks are asymptoti-
cally slower than the generic attack of factoring the RSA modulus, which runs
in subexponential time. As we explain below, both the VVT and Dujella attacks
can be viewed as members of a natural class of extensions of the Wiener attack
(which are all guaranteed to succeed when δ > 1/4), which we call the Wiener
Search Variant (WSV) class of attacks (essentially, a WSV attack searches an
interval near the known fraction e/N for the secret fraction k/d – see below
for a precise definition). It is interesting to ask whether one can substantially
improve on the VVT and Dujella attacks – in particular: does there exist an
attack in the WSV class which has subexponential run-time? In this section, we
answer this question in the negative by proving the following ‘converse’ result:
For any attack algorithm in the WSV class and any subexponential run-time
bound T , the probability (over the random choices of the key generation algo-
rithm RSAKG) that the attack halts with success after a run-time less than T is
negligible whenever δ = 1/4 + ε for any constant ε > 0. Thus there are no WSV
attacks which are asymptotically faster than factoring (and hence the VVT and
Dujella attacks are optimal in the sense that all WSV attacks must have at least
exponential run-time).

The Wiener Search Variant (WSV) Attack Class. Recall that the central idea
behind Wiener’s attack is that the public fraction e/N is a good approximation
to the secret fraction k/d. Indeed, when δ < 1/4−ε, k/d is the best approximation
to e/N among all fractions with denominator at most d (see Theorem 2), and
Wiener’s continued fractions attack efficiently finds this best approximation. Our
converse result in the previous section shows that when δ > 1/4, k/d is likely
to no longer be the best approximation to e/N in the set of all fractions with
denominator at most d, but it is still likely to be a good approximation. So, a
natural extension of the Wiener attack is to search through the set of fractions
with denominator less than 2δ· (and greater than 2δ·−β2) in an interval close
to e/N , until k/d is found. This leads to the following definition.

Definition 1 (Wiener Search Variant Attack Class – WSV). An attack
algorithm Aδ,β2, is said to belong to the Wiener Search Variant (WSV) attack
class if it has the following form.

192 Ron Steinfeld et al.

Aδ,β2,(N, e): WSV Attack Algorithm
1 Enumerate a set S(N, e) of approximations to k

d , where S(N, e) is guaran-
teed to contain the set Ŝ(N, e) of all fractions k′

d′ in the interval [e
N , k

d] with
denominator d′ ∈ [2δ·−β2 , 2δ·].

2 Return a list containing all elements of the set S(N, e).

We note that the above definition gives rise to a class of attacks, since it allows
any choice for the set S(N, e) (subject to the constraint that S(N, e) contains
Ŝ(N, e)). As in the case of the original Wiener attack, we say that a WSV attack
succeeds if it outputs a set of approximations S(N, e) which contains the desired
secret fraction k/d. From the definition, it is in fact clear that any WSV attack
succeeds with probability 1 because of the requirement that S(N, e) ⊇ Ŝ(N, e)
and the fact that k/d ∈ Ŝ(N, e). The central question is, therefore, how large is
the running-time of the attack for δ = 1/4 + ε. The running-time depends on
the size of the set S(N, e) output by the attack, and on the efficiency by which
the elements of S(N, e) are enumerated.
Known WSV Attacks. The VVT [8] and Dujella [3] attacks are both mem-
bers of the WSV class. Let δ = 1/4 + ε with ε > 0. In the VVT attack [8],
it is shown, using continued fraction techniques, how to enumerate a set of
approximations SV V T (N, e) (containing Ŝ(N, e) as defined in Def. 1) of size
#SV V T (N, e) = O(A2 · 22ε·) in time TV V T = O(�2#SV V T (N, e)), where the
integer A is proportional to certain coefficients in the continued fraction expan-
sion of e/N and heuristically expected to be small with high probability. The
Dujella attack [3] improves on the VVT attack by using results from diophantine
approximation to enumerate a smaller set #SDuj(N, e) (containing Ŝ(N, e)) of
size #SDuj(N, e) = O(log(A) · 22ε·) in time TDuj = O(�2#SDuj(N, e)), where
the integer A is the same as in the VVT attack. Moreover, Dujella proves that
#SDuj(N, e) = O(� · 22ε·).
Our Result: A Lower Bound on WSV Attack Running-Time. The known WSV
attacks have exponential run-times for δ = 1/4 + ε with ε > 0. We now address
the following question: Does there exist a WSV attack with subexponential run-
time for δ = 1/4+ε? The following result shows that the answer is no. Therefore,
the WSV class does not contain an attack faster than factoring.
Theorem 5 (WSV Attack Lower Bound). Let Aδ,β2, denote any ‘Wiener
Search Variant’ (WSV) attack algorithm (see Def. 1). Let T (�) = 2g() denote
any subexponential function, where g(�) = o(�). Fix positive constants 0 < ε <
3/4, β1 and β2, and suppose that the key-generation parameter δ satisfies the
condition

δ = 1/4 + ε.

Then there exist positive constants c and �0 (depending on ε,β1, β2 and g(�))
such that on input (N, e), where (N, e, d) = RSAKGδ,β1,β2(�), the running-time
of the WSV attack algorithm Aδ,β2, is less than T (�) with probability at most
2−c· for all � ≥ �0.

Proof. The set S(N, e) output by Aδ,β2, is guaranteed by Def. 1 to contain the
set Ŝ(N, e), where

Converse Results to the Wiener Attack on RSA 193

Ŝ(N, e) = (F2δ·� \ F2δ·�−β2) ∩ [
e

N
,

k

d
],

and for any m > 0, we denote by Fm the Farey set of order m which consists
of all rational numbers k′/d′ with k′, d′ ∈ ZZ, 0 < d′ ≤ m and 0 ≤ k′ < d′.
So the running-time TA of Aδ,β2, on input (N, e) is certainly lower bounded
as TA = Ω(#Ŝ(N, e)). To prove the theorem, it therefore suffices to show that
for any subexponential bound T = 2g() with g(�) = o(�), there exist positive
constants c and �0 such that

Pr[#Ŝ(N, e) < T] ≤ 2−c· for all � ≥ �0. (8)

We will first reduce this problem to several simpler problems. To do so, we
introduce the following definitions. For an element k′

d′ ∈ F2δ·�\F2δ·�−β2 , we denote
by A−

δ,β2,(
k′
d′) the adjacent element of k′

d′ in F2δ·� \ F2δ·�−β2 in the ‘−’ direction,
i.e. the largest element of F2δ·� \F2δ·�−β2 which is strictly less than k′

d′ . We will be
interested in elements k′

d′ for which the gap k′
d′ −A−

δ,β2,(
k′
d′) is ‘large’. Accordingly,

for positive Δ̂, let Ŝ∗
δ,β2,(Δ̂) denote the set of all elements k′

d′ in F2δ·� \ F2δ·�−β2

such that k′
d′ − A−

δ,β2,(
k′
d′) ≥ Δ̂.

We now have the following result.

Lemma 4. For any Δmin > 0, we have

Pr[#Ŝ(N, e) < T] ≤ T · #Ŝ∗
δ,β2,

(
Δmin

T

)
· p∗ + Pr

[
k

d
− e

N
< Δmin

]
, (9)

where

p∗ = max
k′
d′ ∈F2δ·�\F2δ·�−β2

(
Pr

[
k

d
=

k′

d′

])
.

Proof. For a positive integer i, let ki

di
denote the ith closest element in F2δ·� \

F2δ·�−β2 to k
d in the ‘−’ direction (if i exceeds the number of elements of F2δ·� \

F2δ·�−β2 which are less than k
d then we define ki

di
= 0). Also, we define k0

d0
= k

d .
Then #Ŝ(N, e) < T implies that k

d − kT

dT
> Δ, where Δ = k

d − e
N , and hence

that
T−1∑
r=0

(
kr

dr
− A−

δ,β2,

(
kr

dr

))
> Δ.

It follows that there exists r∗ ∈ {0, . . . , T − 1} such that kr∗
dr∗

−A−
δ,β2,(

kr∗
dr∗

) > Δ
T .

So, for any Δmin > 0:

Pr[#Ŝ(N, e) < T]

≤ Pr
[
∃r∗ < T :

kr∗

dr∗
− A−

δ,β2,

(
kr∗

dr∗

)
>

Δ

T

]
= Pr

[(
∃r∗ < T :

kr∗

dr∗
− A−

δ,β2,

(
kr∗

dr∗

)
>

Δ

T

)
and Δ ≥ Δmin

]

194 Ron Steinfeld et al.

+ Pr
[(

∃r∗ < T :
kr∗

dr∗
− A−

δ,β2,

(
kr∗

dr∗

)
>

Δ

T

)
and Δ < Δmin

]
≤ Pr

[
∃r∗ < T :

kr∗

dr∗
− A−

δ,β2,

(
kr∗

dr∗

)
>

Δmin

T

]
+ Pr[Δ < Δmin]

≤
(

T−1∑
r=0

pr

)
+ Pr[Δ < Δmin], (10)

where, for each r ∈ {0, . . . , T − 1},

pr = Pr
[

kr

dr
− A−

δ,β2,

(
kr

dr

)
>

Δmin

T

]
= Pr

[
kr

dr
∈ Ŝ∗

δ,β2,(Δmin/T)
]

(11)

≤ #Ŝ∗
δ,β2,(Δmin/T) · p∗r , (12)

and
p∗r = max

k′
d′ ∈Ŝ∗

δ,β2,�
(Δmin/T)

(
Pr

[
kr

dr
=

k′

d′

])

≤ max
k′
d′ ∈F2δ·�\F2δ·�−β2

(
Pr

[
k

d
=

k′

d′

])
= p∗ for all r, (13)

where the last inequality follows because the probability that kr

dr
= k′

d′ is equal to
the probability that k

d coincides with the rth closest element in F2δ·� \ F2δ·�−β2

to k′
d′ in the ‘+’ direction.
Plugging (13) into (12) and the result into (10), the claimed bound on

Pr[#Ŝ(N, e) < T] follows immediately. ��
Let us now apply Lemma 4 with the parameter Δmin = 2−(1/2+η2)· for some

positive constant η2 such that η2 < 2·ε (recall that δ = 1/4+ε), and upper bound
each of the terms on the right-hand side of (9). First, combining Lemmas 1, 2
and 3 from the proof of Theorem 4, we conclude that there exists a positive
constant c3 such that

Pr
[

k

d
− e

N
< Δmin

]
= O

(
2−c3·) . (14)

Next, we upper bound #Ŝ∗
δ,β2,

(
Δmin

T

)
. Let us define n = 2δ· = 2(1/4+ε)·. Then

we have, using T = 2g() with g(�)/� = o(1), that there exist positive constants
ε̂ and �̂0 such that

Δmin

T
=

1
2(η2+g()/)· · 2/2

=
22ε·

2(η2+g()/)· ·
(

1
22ε· · 2/2

)
= n(2ε−(η2+g()/))/δ · n−2

≥ n−2·(1−ε̂) for all � ≥ �̂0, (15)

where we have used the fact that 0 < η2 < 2ε to obtain the last inequality.

Converse Results to the Wiener Attack on RSA 195

The following lemma shows that ‘large’ gaps (exponentially larger than n−2)
between adjacent elements of the set Fn \Fn/2β2 are very ‘rare’ (negligible frac-
tion).

Lemma 5. Fix positive constants β2, ν, and δ. For any n = 2δ·, and any ν′ > ν
we have

#Ŝ∗
δ,β2,(n

−(2−ν′)) = O(n2−ν).

Proof. For brevity, in the following we let F denote the set Fn \Fn/2β2 . For each
x ∈ F , let d(x) = x − A−

δ,β2,(x) denote the distance to the adjacent element to
x in F in the ’-’ direction (and d(0) = 0). Notice that Ŝ∗

δ,β2,(n
−(2−ν)) = {x ∈

F : d(x) > n−(2−ν)}.
Let X denote a random variable uniformly distributed in F . The expected

value of d(X) is

E[d(X)] =
1

#F ·
∑
x∈F

d(x) <
1

#F ,

since
∑

x∈F d(x) = maxx∈F x < 1. Now recall that by the Markov inequality, the
probability that d(X) exceeds r · E[d(X)] is at most 1/r for any r > 0. Hence,
for any constant c > 0, we have:

Pr
[
d(X) ≥ c · nν

#F
]
≤ Pr [d(X) ≥ c · nν · E[d(X)]] ≤ c−1n−ν .

Since X is uniformly random in F , it follows that

#Ŝ∗
δ,β2,

(
c · nν

#F
)

≤ c−1 · n−ν · #F ≤ c−1 · n2−ν , (16)

using #F ≤ n2. Below we will show that #F = Ω(n2−h()) where h(�) =
o(�). Plugging this in (16) we obtain #Ŝ∗

δ,β2,

(
nν+h(�)

n2

)
= O(n2−ν) and hence

#Ŝ∗
δ,β2,

(
nν′

n2

)
= O(n2−ν) for any any 0 < ν′ < ν, as claimed.

It remains to show that #F = Ω(n2−h()) where h(�) = o(�). Indeed, for
every d′ ∈ [n/2β2, n] there are ϕ(d′) fractions k′/d′ ∈ F with gcd(k′, d′) = 1,
and from [7] we know that ϕ(d′) = Ω(d′/ log log d′) = Ω(n/ log log n). Since
there are Ω(n) choices for d′, we have #F = Ω(n2/ log log n) = Ω(n2−h())
with h(�) = log log δ�/(δ�) = o(�), as required. This completes the proof of the
lemma. ��

The next lemma shows that, thanks to the uniformly random choice of p and
q in P/2,β1 and d in D,δ,β2(φ), the resulting probability distribution of k/d is
‘close’ to uniform in the set Fn \ Fn/2β2 .

Lemma 6. Fix positive constants β1, β2 and set n = 2δ·. There exists a positive
constant c7 such that

p∗ = max
k′
d′ ∈F2δ·�\F2δ·�−β2

(
Pr

[
k

d
=

k′

d′

])
= O

(
n−(2−c7/ log)

)
.

196 Ron Steinfeld et al.

Proof. The algorithm RSAKG always generates k and d such that gcd(k, d) =
1 and k

d ∈ F2δ·� \ F2δ·�−β2 . So, in bounding p∗ it is enough to consider any
fixed k′ and d′ with gcd(k′, d′) = 1 and k

d ∈ F2δ·� \ F2δ·�−β2 , and we have
Pr[k/d = k′/d′] = Pr[k = k′ and d = d′]. But from ed − 1 = kφ we have that
k = −φ−1 mod d and hence

Pr
[

k

d
=

k′

d′

]
= Pr[−φ−1 mod d = k′ and d = d′]

= Pr[−φ−1 mod d′ = k′ and d = d′]
= Pr[−φ−1 ≡ k′ (mod d′) and d = d′]
= Pr[φ ≡ (−k′)−1 (mod d′) and d = d′]
= Pr[φ ≡ (−k′)−1 (mod d′)] · Pr[d = d′|φ ≡ (−k′)−1 (mod d′)] (17)

We now upper bound each of the two probabilities in the right-hand side of (17).
First we upper bound the probability Pr[d = d′|φ ≡ (−k′)−1 (mod d′)]. To do
so, observe that for any fixed φ′ in the support of φ and any fixed d′ ∈ ZZ we
have

Pr[d = d′|φ = φ′] ≤ 1/#D,δ,β2(φ) ≤ p, (18)

for some fixed p = O
(

n−(1− log �
δ·�)

)
, using Lemma 3. Letting Φ denote the set of

φ′ in the support of φ satisfying φ ≡ (−k′)−1 (mod d′), we have

Pr
[
d = d′|φ ≡ (−k′)−1 mod d′] =

Pr[d = d′ and φ ≡ (−k′)−1 (mod d′)]
Pr[φ ≡ (−k′)−1 (mod d′)]

=

∑
φ′∈Φ Pr[d = d′ and φ = φ′]

Pr[φ ≡ (−k′)−1 (mod d′)]

=

∑
φ′∈Φ Pr[d = d′|φ = φ′] · Pr[φ = φ′]

Pr[φ ≡ (−k′)−1 (mod d′)]

≤
∑

φ′∈Φ p · Pr[φ = φ′]
Pr[φ ≡ (−k′)−1 (mod d′)]

= p = O
(

n−(1− log �
δ·�)

)
, (19)

where we used (18) to get the inequality in the fourth line.
Fix φ′=(−k′)−1 modd′. We now focus on upper bounding Pr[φ≡φ′ (mod d′)].

First, observe that φ < N < 2. So

Pr[φ ≡ φ′ mod d′] ≤ #{φ̂ ∈ ZZ2� : φ̂ ≡ φ′ (mod d′)} · max
2�/4<φ̂<2�

Pr[φ = φ̂].

But

#{φ̂ ∈ ZZ2� : φ̂ ≡ φ′ (mod d′)} = #{h ∈ ZZ : h ≥ 0 and φ′+h·d′ < 2} ≤ 2

d′ +1.

Now recall that φ = (p − 1) · (q − 1). So, for any φ̂ < 2, we have using the
uniform distribution of (p, q) in P2

/2,β1
, that Pr[φ = φ̂] = #{(p, q) ∈ P2

/2,β1
:

(p − 1)(q − 1) = φ̂}/#P2
/2,β1

≤ τ(φ̂)/#P2
/2,β1

, where τ(φ̂) denotes the total

Converse Results to the Wiener Attack on RSA 197

number of divisors of φ̂. It is known (see Theorem 317 of [4]) that τ(φ̂) =
O

(
22 log(φ̂)/ log log(φ̂)

)
= O(nc2/ log) for some positive constant c2, using the

fact that 2/4 < φ̂ < 2. Also, from the prime number theorem (see Theorem 6
of [4]), we have that cL ·x/ ln x < π(x) < cH ·x/ ln x for any constants cL < 1 and
cH > 1 for all sufficiently large x, where π(x) denotes the number of primes less
than or equal to x. It follows that #P/2,β1 = π(2/2) − π(2/2−β1) = Ω(2/2/�)
meaning that #P2

/2,β1
= Ω(2/�2). So we conclude that

Pr[φ = φ̂] = O

(
nc2/ log

2/�2

)
= O

(
nc3/ log

2

)
,

for some positive constant c3. Hence, using the fact that d′ ∈ [n/2β2, n], we have

Pr[φ ≡ φ′ mod d′] = O

((
2/d′ + 1

) · (nc3/ log

2

))
= O

(
n−(1−c3/ log)

)
. (20)

Plugging in (19) and (20) into (17), we finally obtain

Pr
[

k

d
=

k′

d′

]
= O

(
n−(2−c7/ log)

)
for some positive constant c7, as claimed. This completes the proof of the lemma.

��
Combining (15) and Lemma 5 we know that (with n = 2δ·) there exists a

positive constant ν such that

#Ŝ∗
δ,β2, (Δmin/T) = O

(
n2−ν

)
. (21)

Using the bounds from Lemma 6 and (21) and the fact that T = 2g() with
g(�)/� = o(1), we get, for some positive constant ε′ that

T · #Ŝ∗
δ,β2, (Δmin/T) · p∗ = O

(
2g() · n2−ν/2 · n−(2−c7/ log)

)
= O

(
2−ε′·

)
.

(22)
Finally, plugging in the bounds from (14) and (22) into (9), we conclude that
there exist positive constants c and �0 such that (8) holds. This completes the
proof of the theorem. ��

6 Conclusions

We obtained converse results to the Wiener attack on low secret-exponent RSA
and its extensions. Our results show that the Wiener approach alone cannot
lead to a subexponential-time attack when the RSA secret exponent d > N1/4.
Obtaining converse results for the lattice-based Boneh-Durfee attack and its
extensions, which heuristically succeed in polynomial-time when d < N0.292, is
currently an interesting open problem. We believe our results are a first step
towards a solution to this open problem.

198 Ron Steinfeld et al.

Acknowledgements

We would like to thank Igor Shparlinski for helpful discussions and assistance
with the proof of Lemma 3. This work was supported by ARC Discovery Grants
DP0345366 and DP0451484.

References

1. J. Blömer and A. May. Low Secret Exponent RSA Revisited. In CaLC 2001,
volume 2146 of LNCS, pages 110–125, Berlin, 2001. Springer-Verlag.

2. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292 .
IEEE Trans. on Info. Theory, 46(4):1339–1349, 2000.

3. A. Dujella. Continued Fractions and RSA with Small Secret Exponents. Tatra Mt.
Math. Publ. (to appear), 2004. Available at
http://www.math.hr/ duje/papers1.html.

4. G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, London, 1965.

5. W.J. LeVeque. Fundamentals of Number Theory. Dover Publications, New York,
1996.

6. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. Society for
Industrial and Applied Mathematics, Philadelphia, 1986.

7. J.B. Rosser and L. Schoenfeld. Approximate Formulas for Some Functions of Prime
Numbers. Illinois. J. Math., 6:64–94, 1962.

8. E. Verheul and H. van Tilborg. Cryptanalysis of ‘Less Short’ RSA Secret Expo-
nents. Applicable Algebra in Engineering, Communication and Computing, 8:425–
435, 1997.

9. I.M. Vinogradov. Elements of Number Theory. Dover Publications, New York,
1954.

10. M.J. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Trans. on
Information Theory, 36:553–558, 1990.

RSA with Balanced Short Exponents
and Its Application to Entity Authentication

Hung-Min Sun1 and Cheng-Ta Yang2

1 Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan 30055

hmsun@cs.nthu.edu.tw
2 Department of Computer Science and Information Engineering,

National Cheng Kung University

Abstract. In typical RSA, it is impossible to create a key pair (e, d) such
that both are simultaneously much shorter than φ(N). This is because
if d is selected first, then e will be of the same order of magnitude as
φ(N), and vice versa. At Asiacrypt’99, Sun et al. designed three variants
of RSA using prime factors p and q of unbalanced size. The first RSA
variant is an attempt to make the private exponent d short below N0.25

and N0.292 which are the lower bounds of d for a secure RSA as argued
first by Wiener and then by Boneh and Durfee. The second RSA variant
is constructed in such a way that both d and e have the same bit-length
1
2

log2 N + 56. The third RSA variant is constructed by such a method
that allows a trade-off between the lengths of d and e. Unfortunately,
at Asiacrypt’2000, Durfee and Nguyen broke the illustrated instances of
the first RSA variant and the third RSA variant by solving small roots
to trivariate modular polynomial equations. Moreover, they showed that
the instances generated by these three RSA variants with unbalanced
p and q in fact become more insecure than those instances, having the
same sizes of exponents as the former, in RSA with balanced p and q.
In this paper, we focus on designing a new RSA variant with balanced d
and e, and balanced p and q in order to make such an RSA variant more
secure. Moreover, we also extend this variant to another RSA variant in
which allows a trade-off between the lengths of d and e. Based on our
RSA variants, an application to entity authentication for defending the
stolen-secret attack is presented.

Keywords: RSA, Short Exponent Attack, Lattice Reduction, Entity
Authentication

1 Introduction

RSA [14], the most popular public key cryptosystem, was announced in 1978 by
Rivest, Shamir, and Adleman at MIT. However, RSA suffers from heavy com-
putation because it requires exponentiation operations modulo a large integer N
(N = pq, a product of two large primes). The RSA encryption and decryption
time is almost proportional to the number of bits in the exponent. In order to

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 199–215, 2005.
c© International Association for Cryptologic Research 2005

200 Hung-Min Sun and Cheng-Ta Yang

reduce the RSA encryption (signature verification) time or decryption (signa-
ture generation) time, it is important to choose a small public exponent or a
short private exponent. Generally speaking, in standard RSA, encryption are
much faster than decryption because the public exponent is usually selected as
216+1, while the private exponent is of the same order of magnitude as φ(N). In
some applications, one would like to accelerate decryption process. Thus select-
ing a short private exponent is preferred. In such a case, the encryption will be
cost-inefficient because the size of public exponent will be of the same order of
magnitude as φ(N). Towards to the use of RSA with short private exponent, one
must be careful with the short exponent attacks on RSA. In 1990, Wiener [21]
first showed that the instances of RSA cryptosystem with short secret exponent
(d < N0.25) are insecure because one could find the short private exponent d
in polynomial time by using the continued fractions algorithm. In 1999, Boneh
and Durfee [2] showed how to improve the bound of Wiener up to d < N0.292.
Their attack is based on the famous L3-lattice reduction algorithm [10] by Cop-
persmith [4] on finding small roots of particular bivariate modular polynomial
equations.

At Asiacrypt’99, Sun, Yang, and Laih [17, 18] designed three variants of RSA
using prime factors p and q of unbalanced size. The first RSA variant is an at-
tempt to make the private exponent d short below Wiener’s bound [21] and
Boneh and Durfee’s bound [2]. In this variant, the RSA system is constructed
from p and q of different sizes in order to defend against the well-known short pri-
vate exponent attacks. They claimed that when p and q are unbalanced enough,
d can be even smaller than N0.25. A suggested choice of parameters is: p of 256
bits, q of 768 bits, and d of 192 bits. Note that in this variant, e is determined
as that in typical RSA, hence e is of 1024 bits. The second RSA variant is con-
structed in such a way that both d and e have the same bit-length 1

2 log2 N +56
by choosing unbalanced p of 1

2 log2 N − 112 bits and q of 1
2 log2 N + 112 bits re-

spectively. The motivation of this variant is for balancing and minimizing both
public and private exponents. A suggested choice of parameters is: p of 400 bits, q
of 624 bits, d of 568 bits, and e of 568 bits. The third RSA variant is constructed
by such a method that allows a trade-off between the lengths of d and e (that
is log2 e + log2 d ≈ log2 N + lk, where lk is a predetermined constant, e.g., 112)
under the limitation of log2 p + log2 d ≤ log2 N (assuming p < q). The purpose
of this variant is for rebalancing the computation cost between encryption and
decryption. By this method, one may shift the work from decryptor to encryptor.
An illustrated instance of RSA has the parameters: p of 256 bits, q of 768 bits,
d of 256 bits, and e of 880 bits. Unfortunately, Durfee and Nguyen [5] broke the
illustrated instances of the first RSA variant and the third RSA variant by solv-
ing small roots to trivariate modular polynomial equations. They also showed
that the instances generated by these three RSA variants with unbalanced p and
q in fact become more insecure than those instances, having the same sizes of
exponents as the former, in RSA with balanced p and q. In this paper, we are
interested in enhancing the security of Sun et al.’s RSA variants by using bal-
anced p and q. It is clear that for the first RSA variant, the improved one with

RSA with Balanced Short Exponents 201

balanced p and q is in fact the standard RSA. Hence, it is impossible to make d
short below Boneh and Durfee’s bound and Wiener’s bound. Therefore, we will
not focus on the first variant. For the second RSA variant, it is unable to make p
and q balanced because p is of 1

2 log2 N − 112 bits and q is of 1
2 log2 N +112 bits

in this variant. For the third RSA variant, the possible constructed RSA with
balanced p and q are only those instances of RSA with d of 1

2 log2 N bits and
e of 1

2 log2 N + lk bits. This is due to the limitation of log2 p + log2 d ≤ log2 N .
In this paper, we focus on designing a new RSA variant with balanced p and
q, and balanced d and e in order to make such an RSA variant more secure
against the Durfee-Nguyen attack and the other existing attacks. Moreover, we
also extend our variant to another RSA variant in which p and q are balanced
and log2 e+log2 d ≈ log2 N + lk. Compared with RSA using CRT-based decryp-
tion (RSA-CRT for short), our schemes seem not to provide better performance
for decryption. However it is still an interesting topic like those short exponent
attacks [2, 21] working on the standard RSA. Moreover, based on our schemes,
we present an application to entity authentication for defending the stolen-secret
attack. On the contrary, RSA-CRT can not be applied to the application. We
refer the readers to Section 7.

This paper is organized as follows. In Section 2, we review the standard RSA,
RSA-CRT, Sun et al.’s RSA variants, and recall some well-known attacks on RSA
with short private exponent. In Section 3, we present a new RSA variant with
balanced p and q, and balanced e and d; and show the flexibility for constructing
such an RSA variant. In Section 4, we analyze the security of this proposed RSA
variant. In Section 5, we extend the proposed RSA variant in Section 3 to another
RSA variant in which p and q are balanced and log2 e + log2 d ≈ log2 N + lk.
In Section 6, we show the experimental results of our implementations for our
schemes. In Section 7, we compare our RSA variants with RSA-CRT, and give
an application based on our RSA variants. Finally, we conclude this paper in
Section 8.

2 Preliminaries

2.1 Description of Notations

The notations in Table 1 are used throughout this paper.

2.2 The Standard RSA and RSA-CRT

In standard RSA, N = p × q is the product of two large primes p and q. The
public exponent e and private exponent d satisfy e × d ≡ 1 mod φ(N), where
φ(N) = (p − 1)(q − 1) is the Euler totient function of N . Here, N is called the
RSA modulus. The public key is the pair (N, e) that is used for encryption (or
signature verification): c = me mod N . The private key d is to enable decryption
of ciphertext (or signature generation): m = cd mod N . Traditionally, we select
two primes (of 512 bits) p and q first, and then multiply them to obtain N (about
1024 bits). Next, we pick the public exponent e first, and then determine the

202 Hung-Min Sun and Cheng-Ta Yang

Table 1. Notations.

p, q : The two large primes of RSA.
N : The product of two large prime factors p and q, i.e. N = p × q.
e, d : The public exponent and private exponent, ed ≡ 1 mod φ(N).
Δ : The prime difference, Δ = |p − q|.
δ : d = Nδ .
� : e = N�.
γ : |p − q| = Nγ .
lX : The bit-length of a variable X.

private exponent d by d ≡ e−1 mod φ(N), or we select the private exponent d
first, and then compute the public exponent e by e ≡ d−1 mod φ(N). For the
deduction mentioned above, either e or d is of the same order of magnitude as
φ(N). Instead of computing m = cd mod N , RSA-CRT computes m1 =cdp mod
p, and m2=cdq mod q, where dp = d mod p − 1 and dq = d mod q − 1, then
applying the Chinese Remainder Theorem, one may easily recover m by m1

and m2.

2.3 Sun, Yang, and Laih’s RSA Variants

At Asiacrypt’99, Sun et al. [17, 18] designed three variants of RSA using prime
factors p and q of unbalanced size. The first variant of RSA is an attempt to make
the private exponent d short below Wiener’s bound and Durfee and Nguyen’s
bound. In this variant, the RSA system is designed by unbalanced p and q in
order to defend against all existing attacks on short private exponent. The second
variant of RSA is an attempt to balance and minimize both public and private
exponents. It is constructed in such a way that both d and e have the same
size of 1

2 log2 N + 56 bits by choosing unbalanced p of 1
2 log2 N − 112 bits and

q of 1
2 log2 N + 112 bits respectively. The third variant of RSA is an attempt

to rebalance the computation cost between encryption and decryption. By this
variant, one may shift the work from decryptor to encryptor. It is constructed
by such a method that allows a trade-off between the lengths of d and e (that is
log2 e + log2 d ≈ log2 N + 112) under the limitation of log2 p + log2 d ≤ log2 N .
Due to the limit of space, we describe the details of these three RSA variants in
Appendix A.

Very soon, Durfee and Nguyen [5] broke the illustrated instances of the first
RSA variant and the third RSA variant. Moreover, they showed that the in-
stances generated by these three RSA variants with unbalanced p and q in fact
become more insecure than those instances, having the same sizes of exponents
as the former, in RSA with balanced p and q. We describe their attack later.

2.4 Attacks on RSA with Short Private Exponent

Wiener’s Attack and Its Extensions. Wiener’s attack [21] is based on con-
tinued fractions algorithm to find the numerator and denominator of a fraction

RSA with Balanced Short Exponents 203

in polynomial time when a sufficiently close estimate of the fraction is known. He
showed that the RSA system can be totally broken if the private exponent is up
to approximately one-quarter as many bits as the modulus under both p and q of
approximately the same size. For simplicity, we slightly modify Wiener’s attack
in the following way. Since ed ≡ 1 mod φ(N), there exists a k, gcd(d, k) = 1, such
that ed = kφ(N) + 1. So, | e

φ(N) − k
d | = 1

dφ(N) . Hence, k
d is an approximation of

e
φ(N) . We can rewrite the equation: ed = kφ(N)+1 as: ed = k(N−(p+q)+1)+1.

As pointed out by Pinch [12], if p < q < 2p and d < 1
3N0.25, then p+q−1 < 3

√
N

and k < d < 1
3N0.25. Using N in place of φ(N), we obtain:

| e

N
− k

d
| =

k(p + q − 1 − 1
k)

dN
≤ 1

dN0.25
<

1
3d2

<
1

2d2
.

Thus k
d can be found because it is one of the log N convergents of the continued

fraction for e
N .

The extension of Wiener’s attack was proposed by Verheul and Tilborg [19].
When d > N0.25, their attack needs to do an exhaustive search for about 2t + 8
bits, where t ≈ log2(

d
N0.25). In addition, Weger [20] further proposed another

extension of Wiener’s attack in the case when the prime difference of N , Δ =
|p − q|, is small. Let the prime difference Δ = |p − q| = Nγ for 0.25 ≤ γ ≤ 0.5,
and d = N δ. Weger showed that if δ < 3

4 − γ, one could find the short private
exponent d using Wiener’s attack. Thus Weger improved Wiener’s bound from
δ < 0.25 to δ < 3

4 − γ.

The Boneh-Durfee Attack and Its Extension. Based on solving the small
inverse problem, Boneh and Durfee [2] proposed another attack on RSA with
short private exponent, which leads to a better bound than that proposed by
Wiener [21]. They concluded that if e ≈ N and d < N0.292, then the private
exponent d can be found efficiently.

In typical RSA system, ed = kφ(N) + 1, e = N� and d = N δ. So, ed =
k(p − 1)(q − 1) + 1 = k((N + 1) − (p + q)) + 1. Let A = N + 1, s = −(p + q),
and t = −k. Then ed + t(A + s) = 1. Thus, t(A + s) ≡ 1(mod e) and we can
bound s and t by |t| < 3e1+ δ−1

� and |s| < 2e
1

(2�) . Boneh and Durfee took � ≈ 1
and ignored small constants, and ended up with the following problem: finding
integer t and s such that t(A + s) ≡ 1(mod e) where |s| < e0.5 and |t| < eδ.

Now, we have a simple review of the lattice theory first. Let v1,..., vw ∈ Zn

be linearly independent vectors with w ≤ n. A lattice L spanned by 〈v1, ...,
vw〉 is the set of all integer combinations of v1,..., vw. We denote by v∗

1 ,..., v∗
w

the vectors obtained by applying the Gram-Scmidt process to the vectors v1,...,

vw. We define the determinant of the lattice L as det(L) :=
w

Π
i=1

||v∗
i ||, where

||.|| denotes the Euclidean norm on vectors. We say that the lattice is full rank
if w = n. For a lattice L spanned by 〈v1, ..., vw〉, the LLL algorithm runs in
polynomial time and produces a new basis 〈r1, ..., rw〉 of L as ||r1|| ≤ 2

w
2 det(L)

1
w

and ||r2|| ≤ 2
(w−1)

2 det(L)
1

(w−1) , r1 and r2 are two shortest vectors in the new
basis.

204 Hung-Min Sun and Cheng-Ta Yang

Boneh and Durfee solved the small inverse problem by using Coppersmith’s
approach [4]. Recall that let h(x, y) ∈ Z[x, y] be a polynomial which is a sum of
at most w monomials. Suppose that (1) h(x0, y0) ≡ 0 mod em for some positive
integer m where |x0| < X and |y0| < Y , and (2) ||h(xX, yY)|| < em/

√
w, then

h(x0, y0) = 0 holds over the integers.
The small inverse problem is the following: given a polynomial f(x, y) =

x(A + y) − 1, find an (x0, y0) as f(x0, y0) ≡ 0(mod e) where |x0| < eδ and
|y0| < e0.5. We would find a polynomial with a small norm that has (x0, y0)
as a root modulo em for some positive integer m. Boneh and Durfee defined
the polynomials gi,k(x, y) = xifk(x, y)em−k and hj,k(x, y) = yjfk(x, y)em−k,for
k = 0, ..., m, where gi,k(x, y) is called x-shifts and hj,k(x, y) is called y-shifts.
For each k, they used gi,k(xX, yY) for i = 0, ..., m − k and used hj,k(xX, yY)
for j = 0, ..., t, where t is minimized based on m. Observe that the matrix is
triangular and has a dimension (m+1)(m+2)

2 + t(m + 1). The determinant of the
lattice can be easily computed as the product of the diagonal entries

detx = em(m+1)(m+2)/3 · Xm(m+1)(m+2)/3 · Y m(m+1)(m+2)/6

dety = etm(m+1)/2 · Xtm(m+1)/2 · Y t(m+1)(m+t+1)/2.

Let det(L) = detx · dety. By Ignoring the denominator in order to simplify the
derivations, we get the condition det(L) < emw. Finally, on the basis of the
lattice theory and Coppersmith’s approach, We deduce that

δ <
7
6
− 1

3

√
7 +

16
m

+
4

m2
+

5
6m

.

For large m, this converges to δ < 7
6 −

√
7

3 ≈ 0.285. By working on a sub-
lattice, the bound on δ can be improved to δ < 1 −

√
2

2 ≈ 0.292.
Another improvement was proposed by Wager [20]. He showed that RSA is

insecure when the length δ of the private exponent is in 2−4γ < δ < 1−
√

2γ − 1
2 ,

where |p − q| = Nγ and d = N δ.

The Cubic Attack. Here, we review the cubic attack in [17, 18]. In RSA,
N = pq and ed = k(p − 1)(q − 1) + 1, therefore, the modular equations are
k(p − 1)(q − 1) + 1 ≡ 0(mod e) and pq ≡ N(mod e). According to the above
two equations, we can obtain one cubic equation with two variables k and p :
k(p − 1)(N − p) + p ≡ 0(mod e). If log2 k + log2 p < 1

3 log2 e, we can solve such
a cubic equation heuristically using Coppersmith’s technique [4].

2.5 The Durfee-Nguyen Attack and Its Extension

Extending the Boneh-Durfee attack, Durfee and Nguyen [5] attacked Sun et al.’s
RSA variants by solving small roots to trivariate modular polynomial equations
using Coppersmith’s lattice technique. From the RSA equation ed = kφ(N)+1 =
k(p − 1)(q − 1) + 1, let A = N + 1, it implies 1 + k(A − p − q) ≡ 0(mod e).

RSA with Balanced Short Exponents 205

Table 2. Largest δ (where d < Nδ) for which Durfee-Nguyen’s attack can be completed.

logN (e)
1.0 0.9 0.86 0.8 0.7 0.6 0.55

0.5 0.284 0.323 0.339 0.363 0.406 0.451 0.475
0.4 0.296 0.334 0.350 0.374 0.415 0.460 0.483II

logN (p) 0.3 0.334 0.369 0.384 0.406 0.446 0.487 0.510
0.25 0.364I 0.398 0.412III 0.433 0.471 0.511 0.532
0.2 0.406 0.437 0.450 0.470 0.505 0.542 0.562
0.1 0.539 0.563 0.573 0.588 0.615 0.644 0.659

They treated the above equation as a trivariate equation modular e with three
unknown variables, k, p, q, with the special property that the product pq of
two of them is the known quantity N . Here, the problem is regarded as given a
polynomial f(x, y, z) = x(A + y + z) − 1, finding an integer solution (x0, y0, z0)
satisfying the equation f(x0, y0, z0) ≡ 0(mod e) where |x0| < X , |y0| < Y ,
|z0| < Z, and y0z0 = N . Note that the bounds are X ≈ ed

N , Y ≈ p, and Z ≈ q.
To search for low-norm integer linear combinations of these polynomials of

the form em−vxu1yu2zu3 ·fv(x, y, z), they chose the polynomials gk,i,b(x, y, z) :=
em−kxiyazbfk(x, y, z), for k = 0..(m − 1), i = 1..(m − k),and b = 0, 1; and,
hk,j(x, y, z) := em−kya+jfk(x, y, z), for k = 0..m and j = 0..t, then fixed an
integer m, and let a and t > 0 be integers which would be optimized later.
Following the LLL algorithm [4], they obtained two short vectors correspond-
ing to polynomials h1(x, y, z), h2(x, y, z) that had (k, p, q) as a root over the
integers; and letting z = y

N , they deduced these polynomials to bivariate poly-
nomials H1(x, y) and H2(x, y) which had (k, p) as a solution. Taking the resultant
Resx(H1(x, y), H2(x, y)) produced an univariate polynomial H(y) which had p
as a root. They summarized the largest possible δ for which their attack could
succeed as shown in Table 2.

From Table 2, we conclude that instances from RSA with unbalanced p and
q are in fact more insecure than those from RSA with unbalanced p and q.An
improvement of Durfee-Nguyen’s largest δ was proposed by Hong et al. in [7].
They showed how to improve the bound from 0.483 to 0.486 when logN (p) ≈ 0.4,
logN (e) ≈ 0.55 using Coppersmith’s theorem [4]. Because their attack is very
similar to the Durfee-Nguyen attack, we omit to review the details of their attack.

3 New RSA Variant with Balanced Exponents
and Balanced Prime Factors

Sun et al.’s second variant is designed for balancing and minimizing both public
and private exponents. An illustrated instance of this variant was given in [17,
18]. The illustrated instance has parameters: p of 400 bits, q of 624 bits, d of 568
bits, and e of 568 bits. Although this instance is still secure against the Durfee-
Nguyen attack, however, as shown in Table 2, an instance of RSA with the same
size of d and e, and balanced p and q is more secure than the illustrated instance

206 Hung-Min Sun and Cheng-Ta Yang

in [17, 18]. Unfortunately, it is impossible to make p and q balanced in Sun et
al.’s second variant because p is of 1

2 log2 N − 112 bits and q is of 1
2 log2 N +112

bits. In this section, we present a new RSA variant in which d and e are balanced,
and p and q are also balanced.

3.1 The Proposed Scheme

Our scheme is based on the Extended Euclidean algorithm [6]. Recall that for
two integers a, b > 1, if gcd(a, b) = 1, then we can find a unique pair (uh, vh)
satisfying auh − bvh = 1,where (h − 1)b < uh < hb and (h − 1)a < vh < ha, for
any integer h ≥ 1. Our method is as follows:

Scheme A: input: lN and w; output: e, d, p, q and N .

Step 1. Randomly select a prime p of 1
2 lN bits.

Step 2. Randomly select a number k
′
, such that k

′
(p− 1) is of 1

2 lN + w bits,
where w is a security parameter, e.g., w = 56.

Step 3. Randomly select a number d of 1
2 lN + w bits, such that gcd(k

′
(p −

1), d) = 1.
Step 4. Determine u

′
, v

′
such that du

′ − k
′
(p − 1)v

′
= 1, where 0 < u

′
<

k
′
(p − 1) and 0 < v

′
< d.

Step 5. If lv′ < 1
2 lN + w, then assign u

′
= u

′
+ k

′
(p − 1) and v

′
= v

′
+ d.

Step 6. Try to find v
′

= k
′′
q
′
, where lk′′ = w and q

′
+ 1 is a prime. If this

fails, go to Step 3.
Step 7. Let e = u

′
, q = q

′
+ 1, and N = pq.

The algorithm will generate RSA instances in which both p and q are approxi-
mately 1

2 log2 N bits long, and both e and d are approximately (1
2 log2 N +w) bits

long. Also the resulting e and d will satisfy ed = k
′
k

′′
(p−1)(q−1)+1 = kφ(N)+1,

where k = k
′
k

′′
. Note that the prime p generated in Step 1 can be determined

arbitrarily, e.g., by selecting a strong prime p, but the prime q generated in Step
7 cannot. Fortunately, for an RSA key the requirement that p and q are strong
primes is no longer needed due to [15]. As an example, we construct an instance
of RSA that p is of 512 bits, q is of 513 bits, and e and d are 568 bits (assigning
log2 N ≈ 1024, and w = 56). We show this instance in Appendix B.

3.2 Feasibility for the Algorithm

In this section, we show that the proposed algorithm in Section 3.1 is feasible.
Without loss of generality, we assume log2 N ≈ 1024, and w = 56. The critical
step in the above algorithm is Step 6. Because v

′
is about of 568 or 569 bits, we

will try to find a lower bound for the probability of that being given a random
number x of 568 or 569 bits, it can be expressed in the form x = yz satisfying
lx = 568 or 569, ly = 56, lz = 512 or 513 or 514, and z + 1 being a prime.

RSA with Balanced Short Exponents 207

Theorem 1. The probability that given a randomly selected number x of 568
or 569 bits, it can be expressed in the form x = yz satisfying lx = 568 or 569,
ly = 56, lz = 512 or 513 or 514, and z + 1 being a prime is much higher than

1
387618 .

Proof. We omit the details due to the limit of space.

Based on Theorem 1, the existence and its probability for a random number
which can go through Step 6 in the proposed scheme has been evaluated. Now
we consider the cost for factoring a 568-bit v

′
into the form: k

′′
q
′
, where lk′′ =

56, in Step 6. Given a number v
′
, it is easy for us to find all prime factors of

v
′
which are less than 56 bits by some well-known factoring algorithms, such as

ECM algorithm [8]. Then we can try to combine these prime factors to form a
56-bit k

′′
in polynomial time.

4 Security Considerations

In this section, we analyze our scheme to thwart the previous well-known attacks
on short private exponent, including Wiener’s attack [21], the Boneh-Durfee
attack [2], the Durfee-Nguyen attack [5], the cubic attack [17, 18], and their
extensions [7, 19, 20].

Defending Against Wiener’s Attack. We will check the security of our RSA
variant according to Wiener’s attack. It is clear that

| e

N
− k

d
| =

k

d
× p + q − 1 − 1

k

N
>

k

d

q

N
.

In our variant, p and q are about of 512 bits, and e and d are about of 568 bits,
so 2511 ≤ p < 2512, 2111 ≤ k < 2112, 2567 ≤ e < 2568, 2567 ≤ d < 2568. Now, we
can obtain | e

N − k
d | > k

d
q
N > 2111

2568 × 2511

21024 = 1
2970 � 1

2d2 ≈
1

21136 . Thus, Wiener’s
attack does not apply to our scheme.

Defending Against the Boneh-Durfee Attack and the Durfee-Nguyen
Attack. Following Boneh and Durfee’s approach, let A = N + 1, s = −(p + q),
and t = −k. Thus t(A + s) ≡ 1(mod e). Let |s| < eα and |t| < eβ. The sufficient
condition for solving the small inverse problem is: 4α(2β+α−1) < 3(1−β−α)2.

In our example, p and q are about of 512 bits, and e and d are about of
568 bits, therefore, 2511 ≤ p < 2512, 2111 ≤ k < 2112, 2567 ≤ e < 2568, 2511 ≤
d < 2512. We can calculate |s| = |p + q| = eα, |k| = eβ , i.e. 2512 < (2568)α,
2112 < (2568)β , we can get α ≈ 512

568 , β ≈ 112
568 respectively. It is clear that

4α(2β + α − 1) = 1.06645 � 0.02916 = 3(1 − β − α)2. So, the Boneh-Durfee
attack cannot succeed.

Next, we examine the largest δ (where d < N δ) for which the Durfee-Nguyen
attack [5] can succeed. Our p is of 512 bits, then logN (p) ≈ 0.5; e is of 568 bits,
then logN (e) ≈ 0.55; and d is of 568 bits. So, we can figure out d ≈ N

568
1024 ≈

N0.55 > N0.475. So our RSA variant is secure against the Durfee-Nguyen attack.

208 Hung-Min Sun and Cheng-Ta Yang

Finally, we check the prime difference that Weger proposed.

2 − 4γ = 2 − 4 × 1
2 = 0 and 1 −

√
2γ − 1

2 = 1 −
√

2 × 1
2 − 1

2 = 1 − √
0.5 =

0.29289. In our RSA variant, the private exponent is of 568 bits. Therefore,
δ = 568

1024 = 0.5546875 which is out of the range of 0 < δ < 0.29289. So our RSA
variant is secure against Weger’s attack [20].

Defending Against the Cubic Attack. According to Section 2.3.3 for the
cubic attack, in our variant, k is of 112 bits, p is of 512 bits, and e is of 568 bits.
It is clear that log2 k + log2 p ≈ 112 + 512 = 624 >> 1

3 log2 e ≈ 1
3 × 568, In such

a case, the cubic attack cannot work.

Defending Against an Exhaustive Search. One can check a guess for k
since φ(N) = N + 1 − (p + q) ≡ (−k)−1 (mod e) and so (p + q) ≡ N + 1 + k−1

(mod e). Since p + q < e, this gives p + q exactly and then we can test the
guess by checking whether aN+1−(p+q) ≡ 1(mod N) for a random value a. In
our proposed scheme, k is large enough (112 bits), an exhaustive search method
can not work effectively.

Defending Against Other Attacks. We also consider the extensions of the
above attacks, including the Verheul and Tilborg attack [19], the Weger attack
[20], and Hong et al.’ attack [7]. There is no evidence showing that the proposed
scheme is insecure under these extensions. We also try to construct new poly-
nomial equations in which we expect to solve their roots using Coppersmith’s
lattice technique. So far we are unable to find any useful polynomial equation to
do that. Note that it is still an open problem if there exists any polynomial-time
algorithm for breaking Sun et al.’s second RSA variant. This also implies that so
far no feasible attacks can work well on the new RSA variant because breaking
the new RSA variant would be more difficult than breaking Sun et al.’s second
RSA variant.

5 New RSA Variant with Balanced Prime Factors
and Trade-Off Exponents

Sun et al.’s third RSA variant is designed for rebalancing the computation cost
between encryption and decryption. By this method, one may shift the work
from decryptor to encryptor due to log2 e + log2 d ≈ log2 N + lk, where lk is
a predetermined constant, e.g., lk=112. However, the constructed RSA has the
limitation of log2 p + log2 d ≤ log2 N (assuming p < q). That means that if
we make both p and q have the same length, 1

2 log2 N , the instances that can
be constructed by Sun et al.’s scheme are only those instances whose d are of
1
2 log2 N bits, and e are of 1

2 log2 N + lk bits. Note that in the past, Sakai et
al. [16] proposed a key generation algorithm for RSA which provides the similar
goal as Sun et al.’s third variant. Regrettably, their algorithm is insecure due to
[17, 18]. In this section, we present a new RSA variant with balanced p and q
and log2 e + log2 d ≈ log2 N + lk without any other constraint. Without loss of
generality, we assume d < e. If d > e, we need only interchange them.

RSA with Balanced Short Exponents 209

Scheme B: input: lN , ld, and lk; output: e, d, p, q and N .

Step 1. Randomly select a prime p of 1
2 lN bits.

Step 2. Randomly select a number k
′

such that k
′
(p − 1) is of lN + lk − ld

bits, where lk is a security parameter, e.g., lk = 112, and ld is the
bit-length of d.

Step 3. Randomly select a number d of ld bits, such that gcd(k
′
(p−1), d) = 1.

Step 4. Determine u
′
, v

′
such that du

′ − k
′
(p − 1)v

′
= 1, where 0 < u

′
<

k
′
(p − 1) and 0 < v

′
< d.

Step 5. If lv′ < ld, then assign u
′
= u

′
+ k

′
(p − 1) and v

′
= v

′
+ d.

Step 6. (Case I) If ld > 1
2 lN , try to find v

′
= k

′′
q
′
, where lk′′ = (ld − 1

2 lN)
and q

′
+ 1 is a prime. If it fails, go to Step 3; else e = u

′
, q = q

′
+ 1,

and N = pq.
(Case II) If ld ≤ 1

2 lN , try to find k
′
= k

′′
t, where lk′′ = lk and tv

′
+1

is a prime. If it fails, go to Step 3; else e = u
′
, q = tv

′
+ 1, and

N = pq.

Here we omit to analyze the feasibility for this algorithm and the security for
this variant because these analyses are very similar to those of Scheme A. Instead,
we illustrate two instances constructed from this variant. The first instance has
p and q of 512 bits, d of 540 bits, and e of 596 bits; and the other one has p and
q of 512 bits primes, d of 512 bits, and e of 624 bits. These two examples are
shown in Appendix C.

6 Implementations for the Proposed Schemes

In order to show that our schemes are actually feasible, we implemented our
algorithms and measured the average running time for three different sizes of
RSA. The main component in our implementations is the factorization method.
In our implementations, we select Pollard p − 1 method [13] as our fundamen-
tal factorization method. Furthermore, the programming language used for our
implementations is C under NTL with GMP (GNU Multi-Precision library) on
Windows systems using Cygwin tools. The machine we used is a personal com-
puter (PC) with 2.8GHz CPU and 512MB DRAM. We consider three different
cases for comparisons. The first case has p and q of 512 bits, d and e of 568 bits;
the second case has p and q of 512 bits, d of 540 bits, and e of 596 bits; the third
case has p and q of 512 bits, d of 512 bits, and e of 624 bits.

Table 3 shows the results and conditions for generating RSA key pairs in our
schemes. The item “B Bound”, a predetermined integer using the Pollard p − 1
method, denotes the upper bound for all prime power divisors of p − 1. This
value is chosen by experience in our program. The item “AverageTime” denotes
the average running time for each case upon testing 100 samples. The item
“AverageLoopNum” counts the number of loops running from Step 3 to Step 6.
Note that what we are doing in Step 6 of our implementations is only to find
small factors of v

′
and then try to compose part of these small factors into what

we need. According to our experiments, if one tries to factor v
′
completely, then

“AverageLoopNum” will be smaller, but “AverageTime” will be longer because

210 Hung-Min Sun and Cheng-Ta Yang

Table 3. Experimental results in PC platform of 2.8GHz CPU, 512M DRAM.

Scheme A Scheme B

Input
(Bit-length)

lN = 1024
le = 568
ld = 568
w = 56

lN = 1024
le = 596
ld = 540
lk = 112

lN = 1024
le = 624
ld = 512
lk = 112

B Bound 150 30
AverageTime (sec) 1060.93 20.61 0.46

AverageLoopNum 290490 29273 319

the time will be dominated by the factorization. From Table 3, we know that the
more balanced e and d are, the more time-consuming our algorithms are. The
most time-consuming case is exactly Scheme A. The average time for generating
such a key pair is about 16 minutes under our implementations. This may be
heavy for the end user’s use. However, it can be much improved by some parallel
techniques and/or high-end computers in the case when the RSA key pair must
be generated and issued by centralized control. For example, a trusted CA issues
smart cards in which every user’s private key, public key, and the corresponding
certificate are embedded by a smart card writer.

7 Discussion and Application

Comparing with the typical RSA with small e and randomly determined d,
Scheme A is about twice faster in decryption, but the public exponent e is about
of 1

2 lN bits. On the other hand, RSA-CRT achieves 4 times faster and can choose
small e, e.g. e=216+1. Thus, our variants can not provide better performance
than RSA-CRT. However RSA-CRT needs to keep more secrets (dp, dq, p, and q)
than our schemes. Besides, RSA-CRT usually brings on some additional security
problems [9]. In the following, we further propose an application, based on RSA,
to entity authentication for defending a type of attack, called the stolen-secret
attack. It is remarked that our RSA variants can be applied to realize such an
application, while RSA-CRT can not.

With two-party authentication protocols in place, it would be easy for one
participant to establish trusted communication with the other. In general, there
are three approaches to designing authentication protocols. The first approach
is based on the public-key cryptosystem (involving signature mechanism). This
approach works under PKI environment and needs a trusted CA to support. The
second approach is based on a shared password which is easy to remember by
user. This approach usually need to be designed to defend the dictionary attack.
The third approach is based on a shared secret-key of a symmetric cryptosystem.
This approach uses symmetric-key encryption to validate the identity of protocol
participants. Here we consider the stolen-secret attack in which an adversary who
has stolen the secret (a private key, or a shared password, or a shared secret-key)
from one party can use it directly to masquerade as the other party. Among these

RSA with Balanced Short Exponents 211

three approaches, the first approach is secure against the stolen-secret attack
because one party’s private key leaked will not lead to a forgery of the other party.
However, it is only suitable for the environment with CA and PKI supporting.
For the password-based protocol, because two parties share a common password,
therefore it is insecure against the stolen-secret attack. An improvement for this
approach is called the verifier-based protocol in which one party (client) keeps
a password and the other one (server) keeps the corresponding verifier (usually
it is a hashed image of the password). Thus if the verifier is leaked, it will not
lead a forgery of the client. However, if the password is leaked (on the client
side), this will lead to a successful forgery of the server because the verifier can
be easily computed from password. As for the third approach, it is clear that
the stolen-secret attack can work well.

As mentioned above, the stolen-secret attack is a baffling problem in authen-
tication protocols. Here we attempt to enhance the secret-key based protocol
to defend the stolen-secret attack. In general, RSA system generates a key pair
(e,d), where the public key e is disclosed and the private key d is disguised. If
both e and d are kept secret by two parties respectively, and p and q are un-
known to any one. Thus we can regard RSA as a secret-key cryptosystem. We
imagine that a key distribution center generates an RSA key pair (e,d) by using
the key generating algorithm in Scheme A. And then e is kept secret by Alice
and d is kept secret by Bob. The RSA modulus N is public but no one knows p
and q exactly. Thus, neither Alice nor Bob can obtain the secret of each other.
Note that it is clear that RSA-CRT can not be used in such a situation because
p and q are unknown by any party.

In 1993, Bellare and Rogaway [1] proposed two provably secure symmetric-
key authentication protocols, MAP1 and MAP2. MAP1 is a mutual authenti-
cation protocol for two parties, and MAP2 allows arbitrary text strings to be
authenticated along with its flows. As our examples of defending the stolen-
secret attack, we modify MAP1 and MAP2 in the following. A brief outline
of these two protocols and our improvements are presented in Fig. 1 and Fig.
2. Here Aa and Ba denote that Alice keeps a shared secret key a with Bob;
and Ae and Bd denote that Alice keeps e and Bob keeps d, where (e,d) is a
key pair of RSA using our scheme A. Let RX denote a random challenge from
X and [x]k = (x, fk(x)),where fk(x) is a pseudorandom function family spec-
ified by key k. It is commonly believed that pseudorandom functions can be
well-implemented by encryption primitives in practice. Here we replace fk(x)
by either a symmetric-key encryption with key k (in MAP1 and MAP2) or an
encryption of RSA with exponent k (in the improved MAP1 and the improved
MAP2). Here we remark that the plain RSA encryption can not be used directly
for practical purpose, some padding techniques, such as PKCS #1 and OAEP,
are required. We also note that although we limit our discussion to authentica-
tion protocols, there exists the even more important concept of key-distribution,
often coupled with authentication. Our improvements to defend the stolen-secret
attack can be also applied to those key distribution protocols whose security are
based on symmetric-key encryption.

212 Hung-Min Sun and Cheng-Ta Yang

Aa Ba Ae Bd

RA−→ RA−→
[B.A.RA.RB]a←−−−−−−−−−−

=⇒ [B.A.RA.RB]d←−−−−−−−−−−
[A.RB]a−−−−−→

[A.RB]e−−−−−→
Fig. 1. MAP1 and Improved MAP1.

Aa Ba Ae Bd

RA.T ext1−−−−−−→ RA.T ext1−−−−−−→
[B.A.RA.RB .T ext1.T ext2]a←−−−−−−−−−−−−−−−−−−−−

=⇒ [B.A.RA.RB .T ext1.T ext2]d←−−−−−−−−−−−−−−−−−−−−
[A.RB .T ext3]a−−−−−−−−−−→

[A.RB .T ext3]e−−−−−−−−−−→
Fig. 2. MAP2 and Improved MAP2.

8 Conclusions

As shown by Durfee and Nguyen, the more unbalanced the prime factors are,
the more insecure Sun et al.’s RSA variants are. In this paper, we propose a new
RSA variant with balanced prime factors and balanced exponents. It is clear
that this proposed variant is more secure than Sun et al.’s second RSA variant
with unbalanced prime factors and balanced exponents. As an example, we can
construct an instance of RSA with p of 512 bits, q of 513 bits, and d and e of
568 bits. In addition, for repairing the security of Sun, Yang, and Laih’s third
RSA variant, we also present another RSA variant with balanced prime factors
and log2 e + log2 d ≈ log2 N + lk . This variant is designed for rebalancing the
computation cost between encryption and decryption. It should be noted that
in this variant the private exponent d must be large enough to defend against
the Durfee-Nguyen attack and its extensions. Based on RSA, we also give an
application to entity authentication in order to defend the stolen-secret attack.
Our RSA variants can be applied to realize such an application, while RSA-CRT
can not.

Acknowledgements

The authors wish to acknowledge the anonymous reviewers for valuable com-
ments and thank helpful discussions with Chiung-Hsun Chen, Mu-En Wu and
Ting-Yao Lin on several points in the paper. This research was supported in
part by the National Science Council, Taiwan, under contract NSC-93-2213-E-
007-102.

References

1. Bellare,M., Rogaway, P.: Entity authentication and key distribution. Proceedings
of Crypto ’93 , LNCS 773 (1994) 232-249

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292 .
Proceedings of Eurocrypt ’99, LNCS 1592 (1999) 1–11

RSA with Balanced Short Exponents 213

3. Cavallar, S., Dodson B., Lenstra, A. K., Lioen, W., Montgomery, P. L., Murphy,
B., te Riele, H., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P., Marchand, J.,
Morain, F., Muffett, A., Putnam, C., Putnam, C., Zimmermann,P.: Factorization
of 512-bit RSA key using the number field sieve. Proceedings of Eurocrypt’00,
LNCS 1807 (2000) 1-18

4. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. Proceedings of Eurocrypt’96, LNCS 1070 (1996) 178–189

5. Durfee, G., Nguyen, P.: Cryptanalysis of the RSA Schemes with Short Secret Ex-
ponent from Asiacrypt’99. Proceedings of Asiacrypt’00, LNCS 1976 (2000) 14–29

6. Herstein, I. N.: Topics in Algebra, Xerox Corporation. (1975)
7. Hong, H. S., Lee, H. K., Lee, H. S., Lee, H. J.: The better bound of private key in

RSA with unbalanced primes. Applied Mathematics and Computation, Vol. 139
(2003) 351-362

8. http://www.alpertron.com.ar/ECM.HTM
9. Joye,M., Quisquater, J. J., Yen, S. M., Yung, M.: Security paradoxes: how improv-

ing a cryptosystem may weaken it. Proceedings of the Ninth National Conference
on Information Security (1999) 27-32

10. Lenstra,A., Lenstra, H., Lovasz, L.: Factoring polynomial with rational coefficients.
Mathematiche Annalen, Vol. 261 (1982) 515-534

11. Lenstra Jr, H. W.: Factoring integers with elliptic curves. Annuals of Mathematics,
vol. 126 (1987) 649–673

12. Pinch, R.: Extending the Wiener attack to RSA-type cryptosystems. Electronics
Letters, Vol. 31 (1995) 1736-1738

13. Pollard, J.: Theorems of factorization and primality testing. Proc. Cambridge Phi-
los. Soc., (1974) 76:521–528

14. Rivest, R. L., Shamir, A., Adleman, L. M.: A method for obtaining digital signa-
tures and public-key cryptosystems. Comm. ACM, Vol. 21 (1987) 120-126

15. Rivest, R., Silverman, R. D.: Are strong primes needed for RSA?. The 1997 RSA
Laboratories Seminar series, Seminar Proceedings (1997)

16. Sakai, R., Morii, M., Kasahara, M.: New key generation algorithm for RSA cryp-
tosystem. IEICE Transactions on Fundamentals, Vol. E77-A (1994) 89-97

17. Sun, H. M., Yang, W. C., Laih, C. S.: On the design of RSA with short secret
exponent. Proceedings of Asiacrypt’99, LNCS 1716 (1999) 150–164

18. Sun, H. M., Yang, W. C., Laih, C. S.: On the design of RSA with short secret
exponent. Journal of Inforamtion Science and Engineering, Vol.18 No.1 (January
2002) 1-18

19. Verheul, E., van Tilborg, H.: Cryptanalysis of less short RSA secret exponents.
Applicable Algebra in Engineering, Communication and Computing, Vol. 8 (1997)
425-435

20. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing, Vol. 13 (2002) 17-28

21. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory, Vol. 36, no. 3 (1990) 553–558

Appendix A: Sun, Yang, and Laih’s RSA Variants

Scheme(I). input: lN , lp, ld, and γ; output: e, d, p, q and N .

Step 1. Select two random primes p < q such that both p and N are suf-
ficiently large to defend factorization algorithms such as ECM [11]
and NFS [3].

214 Hung-Min Sun and Cheng-Ta Yang

Step 2. Randomly select the secret exponent d such that ld + lp > 1
3 lN and

d > 2γp0.5, where γ is the security parameter (larger than 64).
Step 3. If the public exponent e defined by ed ≡ 1(modφ(N)) is not larger

than φ(N)
2 , one restarts the previous step.

It is clear that for the first RSA variant, the improved one with balanced
p and q is, in fact, the standard RSA. Hence, it is impossible to make d short
below Boneh and Durfee’s bound and Wiener’s bound.

Scheme(II). input: lN ; output: e, d, p, q and N.

Step 1. Randomly select a prime p of 1
2 lN − 112 bits, and a k of 112 bits.

Step 2. Randomly select a d of 1
2 lN + 56 bits coprime with k(p − 1).

Step 3. We can unique determined two numbers u and v, such that du −
k(p − 1)v = 1,where 0 < u < k(p − 1) ,0 < v < d.

Step 4. If gcd(v + 1, d) �= 1,then go to step 2.
Step 5. Select a number h of 56 bits until q = v + hd + 1 is prime.
Step 6. Let p,q,e = u + hk(p − 1),d, and N = pq are the parameters of RSA.

For the second RSA variant, it is impossible to make p and q balanced because
p is of 1

2 log2 N − 112 bits and q is of 1
2 log2 N + 112 bits in this variant.

Scheme(III). input: lN , lp, ld,and lk; output: e, d, p, q and N.

Step 1. Randomly select a prime number p of length lp, such that it is large
enough to make an ECM [11] attack infeasible.

Step 2. Randomly select a number k of length lk.
Step 3. Randomly select a number d of length ld and gcd(k(p − 1), d) = 1.
Step 4. we can uniquely determine two numbers u

′
and v

′
such that du

′ −
k(p − 1)v

′
= 1, where 0 < u

′
< k(p − 1) and 0 < v

′
< d.

Step 5. If gcd(v
′
+ 1, d) �= 1, then go to Step 3.

Step 6. Randomly select a number h of length lN − lp − ld , then compute
u = u

′
+ hk(p − 1) and v = v

′
+ hd.

Step 7. If v + 1 is not a prime number, go to Step 6.
Step 8. Let p, q = v + 1, e = u, d, and N = pq are the parameters of RSA.

For the third RSA variant, the possibly constructed RSA with balanced p and
q are only those instances of RSA with d of 1

2 log2 N bits and e of 1
2 log2 N + lk

bits, e.g., lk=112. This is due to the limitation of log2 p + log2 d ≤ log2 N .

Appendix B: An Instance of RSA
with Balanced Prime Factors and Balanced Exponents

As an example for Scheme A, we construct an instance of RSA with p of 512
bits, q of 513 bits, d and e of 568 bits.
p = EB73E838 FE3A755B 1B08C0A5 4070CF38 62046A3D 77E26D54 73EB8541

6662E060 25388EC1 17129F9F D3F7E81A 81CC11DC 0ED30F96 39E201C4

FAC77E73 73B75CDD

RSA with Balanced Short Exponents 215

q = 1 E47C6F97 82515CEE 69DA0782 A1D1DEF3 A7F15B88 F513242F
CF505867 24AB9F4F 39349987 006B5AE6 3A0FBFA7 A7BBFAC7 8D6B0BEE

04089C0C 7F82C605 85A66B79

d = F34255 6EB55834 5EB2023d 33DA5792 8C373385 86B72B71 D0A19BB6

4B490155 74BBB648 287F297F 865313B7 4F17982D D854F694 82C19436

91F7FB5B B73BE6CB 66952AC4 1A416E69

e = D01CD7 7DA75CA6 39247A84 45E39813 B98BF2DC 13DEEC98 D31725A4

52F83345 0647E852 0CA70032 600B582B 1B2BB83F 9DF38D6E 1F73069C
C2B05BCB 81710127 D33D9414 D5654D39

Appendix C: Two Instances of RSA
with Balanced Prime Factors and Trade-off Exponents

As an example for Scheme B, we construct an instance of RSA with p and q of
512 bits, d of 540 bits, and e of 596 bits.
p = DE7332C0 6DDB34F5 86598C8F 2F103983 EE86007F DFB44CBF F503F1EB

F4BCD507 23EA54EA 5E9AE43F 7FC54021 CD026D8B C23B48CD D00ECDA2
9054EBB5 C5A6D063

q = 89575BE4 F0310066 113CF04C 1220DAB7 25DD3F2F DD59BA09 3CC31FAC

467D17F9 2FA38A26 72D92E32 B91333FA 88F1D013 E5EB1A74 E4DE793E

E9A299A9 A7C0D24B

e = 88E33 2BF9879D 6AD5324B 6763FB22 E6D21B8D CB28E5E5 437AA101
D27D7992 42E507D3 D2639902 C58C4978 D79D5A0A CF515FA0 028662AF
5F26F0FB AF60DF38 8E4409F3 63AE6806 B2045771

d = 8BB9953 6F0577AC DF1D6DB8 0F76A4CF 992F8538 FC89BEB6 5DEA50E1

124AB868 9BD989B3 D20A8EC9 B3D697AF 76F1C16F 4BD09BBC C8E53CCB

AC16B232 FD39134E 7E913009
As another example for Scheme B, we construct an instance of RSA with p

and q of 512 bits primes, d of 512 bits, and e of 624 bits.
p = 84A0CC27 66ACCDA9 57646FC5 924AA056 5E2AC1DA 1137B9DB AC6BE9D2

DD09FA82 193D6205 0E62C4BD 0D2A0304 037DED34 03290E3A 748C6AF4

80FB6880 828CF3A3

q = B187BA5F AB9CABEC 765897BA B364DB52 D8959D5C B765A725 1A1EDCA3

19F9601D 2CE5D8A9 570386BB 1F016B40 6DDBE6C2 EBEA445F 14D48FD4

B7177E03 F4959BFF

e = D260 A347D9C1 76B8BC8B DB527877 F09489C0 E634E313 4A7FAB5C

A135EB1D A6410CBC CD497FB7 092C3CB2 2BA23E7D D02201B3 ABD9E989

584ED3C7 262A3ED0 CEFD6757 00E7B6DC 414D77BA 050BF525

d = 91273082 5084AB61 D38E2142 3AED897E 97FBDCEC 00081122 3FCF3B70
E3D5D8BE A5AD07F5 B0D67990 6C253F89 30A26574 F80CD0F6 A007AE0A
6C131816 E85A4B35

The Sampling Twice Technique for the
RSA-Based Cryptosystems with Anonymity

Ryotaro Hayashi and Keisuke Tanaka

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

{hayashi9,keisuke}@is.titech.ac.jp

Abstract. We say that an encryption scheme or a signature scheme pro-
vides anonymity when it is infeasible to determine which user generated
a ciphertext or a signature. To construct the schemes with anonymity,
it is necessary that the space of ciphertexts or signatures is common to
each user. In this paper, we focus on the techniques which can be used
to obtain this anonymity property, and propose a new technique for ob-
taining the anonymity property on RSA-based cryptosystem, which we
call “sampling twice.” It generates the uniform distribution over 2k by
sampling the two elements from ZN where |N | = k. Then, by applying
the sampling twice technique, we construct the schemes for encryption,
undeniable and confirmer signature, and ring signature, which have some
advantage to the previous schemes.

Keywords: RSA, anonymity, encryption, undeniable and confirmer sig-
nature, ring signature

1 Introduction

We say that an encryption scheme or a signature scheme provides anonymity
when it is infeasible to determine which user generated a ciphertext or a sig-
nature. A simple observation that seems to be folklore is that standard RSA
encryption, namely, a ciphertext is xe mod N where x is a plaintext and (N, e)
is a public key, does not provide anonymity, even when all moduli in the sys-
tem have the same length. Suppose an adversary knows that the ciphertext y
is created under one of two keys (N0, e0) or (N1, e1), and suppose N0 ≤ N1. If
y ≥ N0 then the adversary bets it was created under (N1, e1), else the adversary
bets it was created under (N0, e0). It is not hard to see that this attack has non-
negligible advantage. To construct the schemes with anonymity, it is necessary
that the space of ciphertexts is common to each user. We can say the same thing
about RSA-based signature schemes.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a new security re-
quirement of the encryption schemes called “key-privacy” or “anonymity.” It
asks that the encryption provide (in addition to privacy of the data being en-
crypted) privacy of the key under which the encryption was performed. In [1],
they provided the key-privacy encryption scheme, RSA-RAEP, which is a vari-
ant of RSA-OAEP (Bellare and Rogaway [2], Fujisaki, Okamoto, Pointcheval,

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 216–233, 2005.
c© International Association for Cryptologic Research 2005

The Sampling Twice Technique for the RSA-Based Cryptosystems 217

and Stern [3]), and made the space of ciphertexts common to each user by re-
peating the evaluation of the RSA-OAEP permutation f(x, r) with plaintext x
and random r, each time using different r until the value is in the safe range.
For deriving a value in the safe range, the number of the repetition would be
very large (the value of the security parameter). In fact, their algorithm can fail
to give a desired output with some (small) probability.

The anonymous encryption scheme has various applications. For example,
anonymous authenticated key exchange protocol such as SKEME (Krawczyk [4]),
anonymous credential system (Camenisch and Lysyanskaya [5]), and auction
protocols (Sako [6]).

Chaum and Antwerpen provided undeniable signature which cannot be ver-
ified without the signer’s cooperation [7, 8]. The validity or invalidity of an un-
deniable signature can be ascertained by conducting a protocol with the signer,
assuming the signer participates. Chaum provided confirmer signature [9] which
is undeniable signature where signatures may also be verified by interacting
with an entity called the confirmer who has been designated by the signer. Gal-
braith and Mao proposed a new security notion for undeniable and confirmer
signature named “anonymity” in [10]. We say that an undeniable or confirmer
signature scheme provides anonymity when it is infeasible to determine which
user generated the message-signature pair. In [10], Galbraith and Mao provided
the undeniable and confirmer signature scheme with anonymity. They made the
space of signatures common to each user by applying a standard RSA permu-
tation to the signature and expanding it to the common domain [0, 2k) where
N is a public key for each user and |N | = k. This technique was proposed by
Desmedt [11].

Rivest, Shamir, and Tauman [12] proposed the notion of ring signature, which
allows a member of an ad hoc collection of users S to prove that a message
is authenticated by a member of S without revealing which member actually
produced the signature. Unlike group signature, ring signature has no group
managers, no setup procedures, no revocation procedures, and no coordination.
The signer does not need the knowledge, consent, or assistance of the other ring
members to put them in the ring. All the signer needs is knowledge of their
regular public keys. They also proposed the efficient schemes based on RSA
and Rabin. In their RSA-based scheme, the trap-door RSA permutations of the
various ring members will have ranges of different sizes. This makes it awkward
to combine the individual signatures, so one should construct some trap-door
one-way permutation which has a common range for each user. Intuitively, in
the ring signature scheme, Rivest, Shamir, and Tauman solved this problem by
encoding the message to an Ni-ary representation and applying a standard RSA
permutation f to the low-order digits where Ni is a public key for each user.
This technique is considered to be essentially the same as that by Desmedt. As
mentioned in [12], for deriving a secure permutation g with a common range,
the range of g would be 160 bits larger than that of f .

Hayashi, Okamoto, and Tanaka [13] recently proposed the RSA family of
trap-door permutations with a common domain denoted by RSACD. They

218 Ryotaro Hayashi and Keisuke Tanaka

showed that the θ-partial one-wayness of RSACD is equivalent to the one-wayness
of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent to the
one-wayness of RSA which is the standard RSA family of trap-door permuta-
tions. They also proposed the applications of RSACD to the key-privacy encryp-
tion scheme and ring signature scheme. Their schemes have some advantages to
the previous schemes.

1.1 Our Contribution

In this paper, we focus on the techniques which can be used to obtain this
anonymity property.

From the previous results mentioned above, we can find three techniques,
repeating, expanding, and using RSACD, for anonymity of cryptosystems based
on RSA.

Repeating. Repeating the evaluation of the encryption (respectively the sign-
ing) with plaintext x (resp. message m), random r, and the RSA function,
each time using different r until the value is smaller than any public key N
of each user.
In [1], Bellare, Boldyreva, Desai, and Pointcheval used this technique for the
encryption scheme.

Expanding. Doing the evaluation of the encryption (respectively the signing)
with plaintext x (resp. message m), random r, and the RSA function, and
expanding it to the common domain.
This technique was proposed by Desmedt [11]. In [10], Galbraith and Mao
used this technique for the undeniable signature scheme. In [12], Rivest,
Shamir, and Tauman also used this technique for the ring signature.

RSACD. Doing the evaluation of the encryption (respectively the signing) with
plaintext x (resp. message m), random r, and the RSACD function. This
function was proposed by Hayashi, Okamoto, and Tanaka [13].

In this paper, we propose a new technique for obtaining the anonymity prop-
erty of RSA-based cryptosystems. We call this technique “sampling twice.” In
our technique, we employ an algorithm ChooseAndShift. It takes two numbers
x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k) where |N | = k, and if x1

and x2 are independently and uniformly chosen from ZN then y is uniformly
distributed over [0, 2k).

Sampling Twice. Doing the evaluation of the encryption (respectively the
signing) twice with plaintext x (resp. message m), random r1 and r2, and
the RSA function, and applying our proposed algorithm ChooseAndShift
for the two resulting values.

Then, by applying the sampling twice technique, we construct the schemes
for encryption, undeniable and confirmer signature, and ring signature (See Fig-
ure 1.).

We summarize the (dis)advantage of our proposed schemes.

The Sampling Twice Technique for the RSA-Based Cryptosystems 219

Sampling Twice Repeating Expanding RSACD

Encryption this paper Bellare et al. - Hayashi et al.
Undeniable and

Confirmer Signature this paper - Galbraith et al. -

Ring Signature this paper - Rivest et al. Hayashi et al.

Fig. 1. The previous and our proposed schemes.

Our proposed encryption scheme with sampling twice is efficient with respect
to the size of ciphertexts and the decryption cost. It is also efficient with respect
to the encryption cost in the worst case. On the other hand, that in the average
case is larger than that of the previous schemes. More precisely, in our encryption
scheme, the number of modular exponentiation to encrypt in the worst case is
2, while those in the previous schemes are 1 or 1.5.

Our proposed undeniable and confirmer signature scheme with sampling
twice is efficient with respect to the size of signatures. On the other hand, the
number of exponentiations for signing and that of computation of square roots
is always 2, while those of the other schemes are 1 or 1.5 in the average case.

Our proposed ring signature scheme with sampling twice is efficient with
respect to the size of signatures and the verification cost. On the other hand,
the signing cost of our scheme is larger than those of the previous schemes.

If we use the RSACD function, the resulting value is calculated by applying
the RSA function either once or twice. Fortunately, since applying the RSA
function twice does not reduce security, we can prove that the RSACD function is
one-way if the RSA function is one-way. Generally speaking, a one-way function
does not always have this property, and we cannot construct a one-way functions
with a common domain.

On the other hand, in the sampling twice, repeating, and expanding tech-
niques, the resulting value is calculated by applying the RSA function once.
Therefore, it might be possible to apply these techniques to other one-way func-
tions and prove the security of the resulting schemes.

The organization of this paper is as follows. In Section 2, we review the
definitions of families of functions and the standard RSA family. In Section 3,
we construct the algorithm ChooseAndShift and propose the sampling twice
technique. We propose the encryption schemes with anonymity in Section 4,
the undeniable and confirmer signature schemes with anonymity in Section 5,
and the ring signature schemes with anonymity in Section 6. We conclude in
Section 7.

2 Preliminaries

We describe the definitions of families of functions, families of trap-door permu-
tations, and θ-partial one-way.

Definition 1 (Families of Functions [1]). A family of functions F =(K,S,E)
consists of three algorithms. The randomized key-generation algorithm K takes

220 Ryotaro Hayashi and Keisuke Tanaka

as input a security parameter k ∈ N and returns a pair (pk, sk) where pk is a
public key and sk is an associated secret key. (In cases where the family is not
trap-door, the secret key is simply the empty string.) The randomized sampling
algorithm S takes input pk and returns a random point in a set that we call the
domain of pk and denote by DomF (pk). The deterministic evaluation algorithm
E takes input pk and a point x ∈ DomF (pk) and returns an output we denote by
Epk(x). We let RngF (pk) = {Epk(x) |x ∈ DomF (pk)} denote the range of the
function Epk(·).
Definition 2 (Families of Trap-Door Permutations [1]). We say that F
is a family of trap-door functions if there exists a deterministic inversion al-
gorithm I that takes input sk and a point y ∈ RngF (pk) and returns a point
x ∈ DomF (pk) such that Epk(x) = y. We say that F is a family of trap-door
permutations if F is a family of trap-door functions, DomF (pk) = RngF (pk),
and Epk is a bijection on this set.

Definition 3 (θ-Partial One-Way [1]). Let F = (K, S, E) be a family of
functions. Let b ∈ {0, 1} and k ∈ N be a security parameter. Let 0 < θ ≤ 1 be a
constant. Let A be an adversary. Now, we consider the following experiments:

Experiment Expθ-pow-fnc
F,A (k)

(pk, sk) ← K(k)
x

R← DomF (pk)
y ← Epk(x)
x1 ← A(pk, y) where |x1| = θ · |x|�
if

(
Epk(x1||x2) = y for some x2

)
return 1 else return 0

Here “ ||” denotes concatenation and “ x
R← DomF (pk)” is the operation of

picking an element x uniformly from DomF (pk). We define the advantages of
the adversary via

Advθ-pow-fnc
F,A (k) = Pr[Expθ-pow-fnc

F,A (k) = 1]

where the probability is taken over K, x
R← DomF (pk), E, and A. We say that

the family F is θ-partial one-way if the function Advθ-pow-fnc
F,A (·) is negligible for

any adversary A whose time complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus
the size of the code of the adversary, in some fixed RAM model of computation.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the
standard notion of one-wayness. We say that the family F is one-way when F is
1-partial one-way.

We describe the standard RSA family of trap-door permutations denoted by
RSA.

Definition 4 (The Standard RSA Family of Trap-Door Permutations).
The specifications of the standard RSA family of trap-door permutations RSA =
(K, S, E) are as follows. The key generation algorithm takes as input a security

The Sampling Twice Technique for the RSA-Based Cryptosystems 221

parameter k and picks random, distinct primes p, q in the range 2
k/2�−1 <
p, q < 2
k/2� and 2k−1 < pq < 2k. It sets N = pq. It picks e, d ∈ Z

∗
φ(N) such that

ed = 1 (mod φ(N)) where φ(N) = (p− 1)(q − 1). The public key is N, e, k and
the secret key is N, d, k. The sets DomRSA(N, e, k) and RngRSA(N, e, k) are both
equal to Z

∗
N . The evaluation algorithm EN,e,k(x) = xe mod N and the inversion

algorithm IN,d,k(y) = yd mod N . The sampling algorithm returns a random point
in Z∗

N .

Fujisaki, Okamoto, Pointcheval, and Stern [3] showed that the θ-partial one-
wayness of RSA is equivalent to the one-wayness of RSA for θ > 0.5.

3 The Sampling Twice Technique

In this section, we propose a new technique for obtaining the anonymity property
of RSA-based cryptosystems. We call this technique “sampling twice.” In our
technique, we employ the following algorithm ChooseAndShift. It takes two
numbers x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k) where |N | = k.

Algorithm ChooseAndShiftN,k(x1, x2)

if (0 ≤ x1, x2 < 2k − N)

return

{
x1 with probability 1

2

x1 + N with probability 1
2

elseif (2k − N ≤ x1, x2 < N)
return x1

else
y1 ← min{x1, x2}; y2 ← max{x1, x2}
%%% Note that 0 ≤ y1 < 2k − N and 2k − N ≤ y2 < N. %%%

return

⎧⎨⎩
y1 with probability (1

2 + N
2k+1) × 1

2

y1 + N with probability (1
2 + N

2k+1) × 1
2

y2 with probability 1
2 − N

2k+1

Note that 2k−1 < N < 2k ensures 2k − N < N , 0 < 1
2 − N

2k+1 < 1, and
0 < 1

2 + N
2k+1 < 1. In order to run this algorithm, it is sufficient to prepare only

k + 3 random bits.
We prove the following theorem on the property of ChooseAndShift.

Theorem 1. If x1 and x2 are independently and uniformly chosen from ZN

then the output of the above algorithm is uniformly distributed over [0, 2k).

Proof. To prove this theorem, we show that if x1 and x2 are independently and
uniformly chosen from ZN then Pr[ChooseAndShift(x1, x2) = z] = 1/2k for any
z ∈ [0, 2k). For any z ∈ [0, 2k − N), we have

Pr[ChooseAndShift(x1, x2) = z]
= Pr[x1 = z ∧ 0 ≤ x2 < 2k − N] × 1

2
+ Pr[(x1 = z ∧ 2k − N ≤ x2 < N) ∨ (x2 = z ∧ 2k − N ≤ x1 < N)]
×(1

2 + N
2k+1) × 1

2

= 1
N × 2k−N

N × 1
2 + (1

N × 2N−2k

N) × 2 × (1
2 + N

2k+1) × 1
2 = 1

2k .

222 Ryotaro Hayashi and Keisuke Tanaka

It is clear that Pr[ChooseAndShift(x1, x2) = z′] = Pr[ChooseAndShift(x1, x2)
= z′ + N] for any z′ ∈ [0, 2k − N). Therefore, for any z ∈ [N, 2k), we have
Pr[ChooseAndShift(x1, x2) = z] = 1/2k.

Furthermore, for any z ∈ [2k − N, N), we have

Pr[ChooseAndShift(x1, x2) = z]
= Pr[x1 = z ∧ 2k − N ≤ x2 < N]

+ Pr[(x1 = z ∧ 0 ≤ x2 < 2k − N) ∨ (x2 = z ∧ 0 ≤ x1 < 2k − N)]
×(1

2 − N
2k+1)

= 1
N × 2N−2k

N + (1
N × 2k−N

N) × 2 × (1
2 − N

2k+1) = 1
2k . ��

By using the algorithm ChooseAndShift, we propose a new technique for
obtaining the anonymity property. We call this technique “sampling twice.”

Sampling Twice. Doing the evaluation of the encryption (respectively the
signing) twice with plaintext x (resp. message m), random r1 and r2, and
the RSA function, and applying our proposed algorithm ChooseAndShift
for the two resulting values.

In the following sections, by applying the sampling twice technique, we con-
struct the schemes for encryption, undeniable and confirmer signature, and ring
signature.

4 Encryption

4.1 Definitions

In [1], Bellare, Boldyreva, Desai, and Pointcheval proposed a new security re-
quirement of encryption schemes called “key-privacy.” It asks that the encryp-
tion provide (in addition to privacy of the data being encrypted) privacy of the
key under which the encryption was performed. In [1], a public-key encryption
scheme with common-key generation is described as follows.

Definition 5. A public-key encryption scheme with common-key generation PE
= (G,K, E ,D) consists of four algorithms. The common-key generation algorithm
G takes as input some security parameter k and returns some common key I.
The key generation algorithm K is a randomized algorithm that takes as input the
common key I and returns a pair (pk, sk) of keys, the public key and a matching
secret key. The encryption algorithm E is a randomized algorithm that takes the
public key pk and a plaintext x to return a ciphertext y. The decryption algorithm
D is a deterministic algorithm that takes the secret key sk and a ciphertext y to
return the corresponding plaintext x or a special symbol ⊥ to indicate that the
ciphertext was invalid.

In [1], they formalized the property of “key-privacy.” This can be considered
under either the chosen-plaintext attack or the chosen-ciphertext attack, yielding
two notions of security, IK-CPA and IK-CCA. (IK means “indistinguishability
of keys.”)

The Sampling Twice Technique for the RSA-Based Cryptosystems 223

Definition 6 (IK-CPA, IK-CCA [1]). Let PE = (G, K, E ,D) be an encryp-
tion scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1

cpa, A2
cpa), Acca =

(A1
cca, A2

cca) be adversaries that run in two stages and where Acca has access to
the oracles Dsk0(·) and Dsk1 (·). Note that si is the state information. It contains
pk0, pk1, and so on. For atk ∈ {cpa, cca}, we consider the following experiments:

Experiment Expik-atk-b
PE,Aatk

(k)
I ← G(k); (pk0, sk0) ← K(I); (pk1, sk1) ← K(I)
(x, si) ← A1

atk(pk0, pk1); y ← Epkb
(x); d ← A2

atk(y, si)
return d

Above it is mandated that A2
cca never queries Dsk0(·) and Dsk1(·) on the challenge

ciphertext y. For atk ∈ {cpa, cca}, we define the advantages via

Advik-atk
PE,Aatk

(k) =
∣∣∣Pr[Expik-atk-1

PE,Aatk
(k) = 1] − Pr[Expik-atk-0

PE,Aatk
(k) = 1]

∣∣∣.
The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the
function Advik-cpa

PE,Acpa
(·) (resp. Advik-cca

PE,Acca
(·)) is negligible for any adversary A

whose time complexity is polynomial in k.

4.2 Encryption with Sampling Twice

In this section, we propose the encryption scheme with the sampling twice tech-
nique.

Definition 7. The common-key generation algorithm G takes a security param-
eter k and returns parameters k, k0 and k1 such that k0(k)+k1(k) < k for all k >
1. This defines an associated plaintext-length function n(k) = k − k0(k)− k1(k).
The key generation algorithm K takes k, k0, k1, runs the key-generation algo-
rithm of RSA, and gets N, e, d. The public key pk is (N, e), k, k0, k1 and the
secret key sk is (N, d), k, k0, k1. The other algorithms are depicted below. Let G
: {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note
that [x]n denotes the n most significant bits of x and [x]m denotes the m least
significant bits of x. Note that the valid ciphertext y satisfies y ∈ [0, 2k) and
(y mod N) ∈ Z∗

N .

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)

r1, r2
R← {0, 1}k0 v ← y mod N

s1 ← (x||0k1) ⊕ G(r1); t1 ← r1 ⊕ H(s1) s ← [vd]n+k1 ; t ← [vd]k0

v1 ← (s1||t1)e mod N r ← t ⊕ H(s)
s2 ← (x||0k1) ⊕ G(r2); t2 ← r2 ⊕ H(s2) x ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

v2 ← (s2||t2)e mod N if (p = 0k1) z ← x else z ←⊥
y ← ChooseAndShift(v1, v2) return z
return y

4.3 Analysis

We compare the four schemes with sampling twice, repeating, RSACD, and
expanding.

224 Ryotaro Hayashi and Keisuke Tanaka

Security. Bellare, Boldyreva, Desai, and Pointcheval [1] proved that the scheme
with repeating (RSA-RAEP) is secure in the sense of IND-CCA2 and IK-CCA in
the random oracle model assuming RSA is θ-partial one-way for θ > 0.5. Hayashi,
Okamoto, and Tanaka [13] proved that the encryption scheme with RSACD is
also secure in the sense of IND-CCA2 and IK-CCA in the random oracle model
assuming RSACD is θ-partial one-way for θ > 0.5.

In order to prove that the scheme with sampling twice is secure in the sense
of IK-CCA, we need the restriction as follows.

Since if c is a ciphertext of m for pk = (N, e, k) and c < 2k −N then c+N is
also a ciphertext of m, the adversary can ask c + N0 to decryption oracle Dsk0

where c is a challenge ciphertext such that c < 2k − N0 and pk0 = (N0, e0, k),
and if the answer of Dsk0 is m, then c is encrypted by pk0.

To prevent this attack, we add some natural restriction to the adversaries
in the definitions of IK-CCA. That is, it is mandated that the adversary never
queries Dsk0 on (c mod N0) + β0N0 where β0 ∈ �(2k − (c mod N0))/N0�, and
Dsk1 on (c mod N1) + β1N1 where β1 ∈ �(2k − (c mod N1))/N1�.

Similarly, in order to prove that the scheme with sampling twice is secure in
the sense of IND-CCA2, we need the same restriction. That is, in the definition of
IND-CCA2, it is mandated that the adversary never queries Dsk on (c mod N)+
γN where γ ∈ �(2k − (c mod N))/N�.

We think these restrictions are natural and reasonable. Actually, in the case
of undeniable and confirmer signature schemes, Galbraith and Mao [10] defined
the anonymity on undeniable signature schemes with the above restriction.

If we add these restrictions then we can prove that the scheme with sampling
twice is secure in the sense of IK-CCA in the random oracle model assuming
RSA is θ-partial one-way for θ > 0.5. More precisely, we can prove the following
theorem.

Theorem 2. If RSA is partial one-way then the encryption scheme Π with sam-
pling twice is secure in the sense of IK-CCA in the random oracle model. More
precisely, for any adversary A attacking the anonymity of our scheme under
an adaptive chosen-ciphertext attack, and making at most qdec decryption oracle
queries, qgen G-oracle queries, and qhash H-oracle queries, there exists a θ-partial
inverting adversary B for the RSA family, such that for any k, k0(k), k1(k), and
θ = k−k0(k)

k ,

Advik-cca
Π,A (k) ≤ 8qhash · ((1 − ε1) · (1 − ε2) · (1 − ε3))

−1 · Advθ-pow-fnc
RSA,B (k)

+qgen · qhash · (1 − ε3)−1 · 2−k+3

where

ε1 =
1
2
; ε2 =

1
2k/2−3 − 1

; ε3 =
2qgen + qdec + 2qgenqdec

2k0
+

2qgen

2k1
+

2qhash

2k−k0
,

and the running time of B is that of A plus qgen · qhash · O(k3).

Noticing that the range of valid ciphertexts changes, the proof is similar to
that for RSA-RAEP (See Appendix C in the full version of [1].), and will be
available in the full version of this paper.

The Sampling Twice Technique for the RSA-Based Cryptosystems 225

Sampling Twice Repeating [1] RSACD [13] Expanding
of mod. exp. to encrypt

(average / worst) 2 / 2 1.5 / k1 1.5 / 2 1 / 1

of mod. exp. to decrypt
(average / worst) 1 / 1 1 / 1 1.5 / 2 1 / 1

size of ciphertexts k k k k + 160
of random bits to encrypt

(average / worst)
2k0 + k + 3
/ 2k0 + k + 3

1.5k0 / k1k0 1.5k0 / 1.5k0
k0 + 160
/ k0 + 160

Fig. 2. The comparison of the encryption schemes.

We can also prove that the scheme with sampling twice is secure in the sense
of IND-CCA2 in the random oracle model assuming RSA is θ-partial one-way
for θ > 0.5. More precisely, we can prove that if there exists a CCA2-adversary
A = (A1, A2) attacking indistinguishability of our scheme with advantage ε,
then there exists a CCA2-adversary B = (B1, B2) attacking indistinguishability
of RSA-OAEP with advantage ε/2. We construct B as follows.

1. B1 gets pk and passes it to A1. B1 gets (m0, m1, si) which is an output of
A1, and B1 outputs it.

2. B2 gets a challenge ciphertext y and sets y′ ← y + tN where t
R← {0, 1}. If

y′ ≥ 2k then B2 outputs Fail and halts; otherwise B2 passes (y′, si) to A2.
B2 gets d ∈ {0, 1} which is an output of A2, and B2 outputs it.

If B does not output Fail, A outputs correctly with advantage ε. Since Pr[B
outputs Fail] < 1/2, the advantage of B is greater than ε/2.

Efficiency. We show the number of modular exponentiations to encrypt and
decrypt, the size of ciphertexts, and the bit-length of randomness to encrypt in
Figure 2. We assume that N is uniformly distributed in (2k−1, 2k).

5 Undeniable and Confirmer Signature

5.1 Definitions

Digital signatures are easily verified as authentic by anyone using the corre-
sponding public key. This property can be advantageous for many users, but
it is unsuitable for many other users. Chaum and Antwerpen provided unde-
niable signature which cannot be verified without the signer’s cooperation [7,
8]. The validity or invalidity of an undeniable signature can be ascertained by
conducting a protocol with the signer, assuming the signer participates. Chaum
provided confirmer signature [9] which is undeniable signature where signatures
may also be verified by interacting with an entity called the confirmer who has
been designated by the signer, and many undeniable and confirmer signature
schemes were proposed. We describe the definition of undeniable and confirmer
signature.

Definition 8. An undeniable signature scheme SIG = (Cgen, Kgen, Sign,
Conf, Deny) consists of three algorithms and two protocols.

226 Ryotaro Hayashi and Keisuke Tanaka

– Cgen is a (randomized) common-key generation algorithm that takes as in-
put some security parameter k and returns a common key I.

– Kgen is a (randomized) key generation algorithm that takes as input the
common key I and returns a pair (pk, sk) of keys, the public key and a
matching secret key.

– Sign is a (randomized) signing algorithm that takes as input a secret key sk
and a message m and outputs a signature s.

– Conf is a confirmation protocol between a signer and a verifier which takes
as input a message m, a signature s, and signer’s public key pk and allows
the signer to prove to a verifier that the signature s is valid for the message
m and the key pk.

– Deny is a denial protocol between a signer and a verifier which takes as
input a message m, a signature s, and signer’s public key pk and allows the
signer to prove to a verifier that the signature s is invalid for the message
m and the key pk.

A confirmer signature scheme is essentially the same as above, except the role
of confirmation and denial can also be performed by a third party called a con-
firmer. The significant modification is that the key generation algorithm produces
a confirmation key ck which is needed for the confirmation or denial protocol.

Galbraith and Mao proposed a new security notion of undeniable and con-
firmer signatures named “anonymity” in [10]. We say that an undeniable or con-
firmer signature scheme provides anonymity when it is infeasible to determine
which user generated the message-signature pair.

We slightly modify the definition of anonymity in [10] in order to put a
common key generation into it explicitly.
Definition 9 ([10]). Let SIG = (Cgen, Kgen, Sign, Conf, Deny) be an un-
deniable or confirmer signature scheme. Let b ∈ {0, 1} and k ∈ N (security pa-
rameter). Let A = (A1, A2) be adversaries that run in two stages. A has access to
the oracles Signsk0 , Signsk1 and A can execute confirmation and denial protocols
Confsk0 , Confsk1 , Denysk0 , Denysk1 on any message-signature pair. However,
it is mandated that A2 never execute Confsk0 , Confsk1 , Denysk0 , Denysk1 on
(m′, σ′) ∈ EC(m, σ, pk0) ∪ EC(m, σ, pk1) (EC means “equivalence class.” If we
get a message-signature pair (m, σ) under the key pk, then we can easily compute
all elements in EC(m, σ, pk).). Note that si be a state information. It contains
common keys, public keys, and so on. Now we consider the following experiments:

Experiment ExpAnonym-b
SIG,A (k)

I ← Cgen(1k); (pk0, sk0) ← Kgen(I); (pk1, sk1) ← Kgen(I)
(m, si) ← A1(pk0, pk1); σ ← Signskb

(m); d ← A2(m, σ, si)
return d

We define the advantages of the adversaries via:

AdvAnonym
SIG,A (k) =

∣∣∣Pr[ExpAnonym-1
SIG,A (k) = 1] − Pr[ExpAnonym-0

SIG,A (k) = 1]
∣∣∣.

The scheme SIG provides anonymity if the function AdvAnonym
SIG,A (·) is negligible

for any adversary A whose time complexity is polynomial in k.

The Sampling Twice Technique for the RSA-Based Cryptosystems 227

5.2 Undeniable and Confirmer Signature with Sampling Twice

In this section, we propose the undeniable and confirmer signature schemes with
the sampling twice technique.

Definition 10. The common-key generation algorithm Cgen takes a security
parameter k and returns parameters k, k0 and k1 such that k0(k) + k1(k) < k
for all k > 1. The key generation algorithm Kgen takes k, k0, k1, runs the key-
generation algorithm of RSA, and gets N, e, d, p, q where p, q are the safe primes
(i.e. (p − 1)/2 and (q − 1)/2 are also primes)1. It picks g from Z∗

N and sets
h ← gd mod N . The public key pk is (N, g, h), k, k0, k1 and the secret key sk is
(N, e, d, p, q), k, k0, k1. Let G0 : {0, 1}∗ → {0, 1}k1, G1 : {0, 1}k1 → {0, 1}k0, G2

: {0, 1}k1 → {0, 1}k−k0−k1−1, and F : {0, 1}k → {0, 1}k be hash functions. The
signing algorithm is as follows.

Sign(m)
r1, r2

R← {0, 1}k0

m̄1 ← Sign2(m, r1); t1
R← {c ∈ ZN | c2 = ±m̄1 (mod N)}; s1 ← (t1)d mod N

m̄2 ← Sign2(m, r2); t2
R← {c ∈ ZN | c2 = ±m̄2 (mod N)}; s2 ← (t2)d mod N

s ← ChooseAndShift(s1, s2)
if (s mod N = s1) r ← r1 else r ← r2

return (s, r)

where

Sign2(m, r)
w ← G0(m||r); r∗ ← G1(w) ⊕ r; M ← 0||w||r∗||G2(w); m̄ ← M
while

((
m̄
N

) �= 1
)
repeat m̄ ← F (m̄)

return m̄

Conf (respectively Deny) is a non-interactive designated verifier proof which
proves the knowledge of an integer e such that g = he (mod N) and s2e =
±Sign2(m, r) (mod N) (resp. g = he (mod N) and s2e �= ±Sign2(m, r)
(mod N)). To construct such proofs, we first employ protocols similar to those
in [14] by Galbraith, Mao, and Paterson. Then, we transform them to corre-
sponding non-interactive designated verifier proofs by the method of Jakobsson,
Sako, and Impagliazzo [15] 2. The equivalence class of this scheme is
EC(m, (s, r), pk) = {(m, (±s′ ± uN, r)) | s′ = s mod N ∧ u ∈ �(2k − s′)/N�}.

In our scheme (and also the scheme by Galbraith and Mao), we have to use
RSA moduli which are the products of safe primes for obtaining the anonymity
property. Gennaro, Krawczyk, and Rabin [16] proposed the RSA-based undeni-
able signature schemes where RSA moduli are restricted to the products of safe
primes, and the confirmation and denial protocols in [16] is more efficient than

1 We need this restriction for proving anonymity.
2 These proof transcripts must be encrypted when sent to the verifier if anonymity is

to be preserved.

228 Ryotaro Hayashi and Keisuke Tanaka

Sampling Twice Expanding [10] Repeating
of mod. exp. to sign

(average / worst) 2 / 2 1 / 1 1.5 / k1

of computation of square root
(average / worst) 2 / 2 1 / 1 1.5 / k1

size of signatures k + k0 2k + k0 (k − 1) + k0

of random bits to sign
(average / worst)

k0 + k + 5
/ k0 + k + 5

k0 + k + 2
/ k0 + k + 2

1.5(k0 + 2)
/ k1(k0 + 2)

Fig. 3. The comparison of the undeniable and confirmer signature schemes.

those by Galbraith, Mao, and Paterson [14]. Therefore, it seems better to use the
protocols in [16]. However, if we use the protocols in [16], the prover will have to
prove that her RSA modulo has the proper form (i.e. a product of safe primes)
during the protocols, and it needs a costly proof. To avoid this, Galbraith, Mao,
and Paterson [14] constructed different scheme where there is no restriction for
the RSA moduli.

5.3 Analysis

We compare the four schemes with sampling twice, expanding, and repeating.

Security. Galbraith and Mao [10] proved that their scheme provides anonymity
in the random oracle model under the assumption that the composite decision
Diffie-Hellman problem is hard (Given (g, h, u, v) ∈ (Z∗

N)4, it is infeasible to
determine whether the two equations h = gr (mod N) and v = αur (mod N)
hold, where r ∈ Z∗

φ(N) and ord(α) = 2. See [10] for details.). They also proved
that their scheme is existential unforgeable in the random oracle model under
the assumption that factoring integers which are products of safe primes is hard.
We can prove that the scheme with sampling twice provides anonymity in the
random oracle model under the assumption that the composite decision Diffie-
Hellman problem is hard, and is existential unforgeable in the random oracle
model under the assumption that factoring integers which are products of safe
primes is hard. Noticing that the signature space changes, the proofs are similar
to those for the Galbraith–Mao scheme (See Appendices B and C in [10].).

Efficiency. We show the number of modular exponentiations to sign, the num-
ber of computation of square root, the size of signatures, and the number of
random bits to sign in Figure 3. We assume that N is uniformly distributed in
(2k−1, 2k).

6 Ring Signature

6.1 Definitions

In [12], Rivest, Shamir, and Tauman proposed the notion of ring signature, which
allows a member of an ad hoc collection of users S to prove that a message

The Sampling Twice Technique for the RSA-Based Cryptosystems 229

is authenticated by a member of S without revealing which member actually
produced the signature. Unlike group signature, ring signature has no group
managers, no setup procedures, no revocation procedures, and no coordination.

Definition 11 (Ring Signature [12]). One assumes that each user Ui (called
a ring member) has received (via a PKI or a certificate) a public key Pi, for
which the corresponding secret key is denoted by Si. A ring signature scheme
consists of the following algorithms.

– ring-sign(m, P1, P2, · · · , Pr, s, Ss) which produces a ring signature σ for the
message m, given the public keys P1, P2, · · · , Pr of the r ring members, to-
gether with the secret key Ss of the s-th member (who is the actual signer).

– ring-verify(m, σ) which accepts a message m and a signature σ (which in-
cludes the public key of all the possible signers), and outputs either valid or
invalid.

The signer does not need the knowledge, consent, or assistance of the other
ring members to put them in the ring. All he needs is knowledge of their regular
public keys. Verification must satisfy the usual soundness and completeness con-
ditions, but in addition the signature scheme must satisfy “signer-ambiguity,”
which is the property that the verifier is unable to determine the identity of the
actual signer with probability greater than 1/r+ ε, where r is the size of the ring
and ε is negligible. Furthermore, the signature scheme must satisfy “existential
unforgeability under adaptive chosen message attack.”

The formal concept of ring signature can be related to an abstract concept
called combining functions. In [12], Rivest, Shamir, and Tauman proposed a
combining function based on a symmetric encryption scheme E modeled by a
(keyed) random permutation

Ck,v(y1, · · · , yr) = Ek(yr ⊕ Ek(yr−1 ⊕ · · ·Ek(y2 ⊕ Ek(y1 ⊕ v)) · · ·)).
For any k, v, z, any index s, and any fixed values of {yi}i�=s, we can easily find
ys such that Ck,v(y1, · · · , yr) = z by using the following equation:

ys = E−1
k

(
ys+1 ⊕ · · ·E−1

k (yr ⊕ E−1
k (z)) · · ·) ⊕ Ek

(
ys−1 ⊕ · · ·Ek(y1 ⊕ v) · · ·).

6.2 Ring Signature with Sampling Twice

In this section, we propose a ring signature scheme with the sampling twice
technique. To verify the signatures deterministically, we add some information
ci to the signature.

Definition 12. Let �, k be security parameters. Let E be a symmetric encryption
scheme over {0, 1}k using �-bit keys, and let h be a hash function which maps
strings of arbitrary length to �-bit strings. Each user Ui has public key Pi =
(Ni, ei, k) and secret key Si = (Ni, di, k) by running the key generation algorithm
of RSA with security parameter k (i.e. the size of Ni is k). Let r be the number
of ring members. The signing algorithm is as follows.

230 Ryotaro Hayashi and Keisuke Tanaka

ring-sign(m, P1, P2, · · · , Pr, s, Ss)
for each i ∈ {1, · · · , s − 1, s + 1, · · · , r} do

x1
i , x2

i
R← Z∗

Ni

y1
i ← (x1

i)
ei mod Ni; y2

i ← (x2
i)

ei mod Ni

yi ← ChooseAndShift(y1
i , y2

i)
if (yi mod Ni = y1

i) xi ← x1
i else xi ← x2

i

if (yi ≥ Ni) ci ← 1 else ci ← 0

v
R← {0, 1}k

find ys s.t. Ch(m),v(y1, · · · , yr) = v
if (ys ≥ Ns) cs ← 1 else cs ← 0
xs ← (ys)ds mod Ns

return σ = (P1, P2, · · · , Pr, v, (x1, c1), (x2, c2), · · · , (xr , cr))

The verification algorithm ring-verify(m, σ) computes yi ← ((xi)ei mod Ni) +
ci ·Ni for each (xi, ci) and z ← Ch(m),v(y1, · · · , yr). It returns valid if and only
if z = v.

6.3 Analysis

We compare the four schemes with sampling twice, expanding, RSACD, and
repeating.

Security. Rivest, Shamir, and Tauman [12] proved that their scheme is un-
conditionally signer-ambiguous and provably secure in the ideal cipher model
assuming RSA is one-way. Hayashi, Okamoto, and Tanaka [13] proved that their
scheme is unconditionally signer-ambiguous and provably secure in the ideal
cipher model assuming RSACD is one-way.

We can prove that our scheme is unconditionally signer-ambiguous, since
for each k and v the equation Ch(m),v(y1, · · · , yr) = v has exactly (2k−1)r−1

solutions, and all of them are chosen by the signature generation procedure with
equal probability, regardless of the signer’s identity.

Sampling Twice Expanding [12] RSACD [13] Repeating
of mod. exp.

to sign
(average / worst)

2r / 2r r / r 1.5r / 2r 1.5r / kr

of mod. exp.
to verify

(average / worst)
r / r r / r 1.5r / 2r r / r

size of signatures (3r + 1)k + r
(3r + 1)k

+160(r + 1)
(3r + 1)k (3r + 1)k − 1

of random bits
to sign

(average / worst)

3(k + 1)(r − 1) + k
/ 3(k + 1)(r − 1) + k

(k + 160)r
/ (k + 160)r kr / kr

1.5k(r − 1) + k − 1
/ k2(r − 1) + k − 1

Fig. 4. The comparison of the ring signature schemes (|Ni| = k).

The Sampling Twice Technique for the RSA-Based Cryptosystems 231

We can also prove that our scheme is existential unforgeable under adaptive
chosen message attack in the ideal cipher model assuming RSA is one-way. The
proof is almost the same as that for the Rivest–Shamir–Tauman scheme. The
difference is as follows.

In the proof of unforgeability for the Rivest–Shamir–Tauman scheme, given
y ∈ Z∗

N , one slips y as a “gap” between two consecutive E functions along the
ring. Then, the forger has to compute the e-th root of y, and this leads one to
obtain the e-th root of y.

In the proof for our scheme, given y ∈ Z∗
N , we pick a random bit t ∈ {0, 1},

set y′ ← y + tN . If y′ < 2k then one slips y′ as a “gap” between two consecutive
E functions along the ring. The rest of the proof is the same as that for the
Rivest–Shamir–Tauman scheme (See Section 3.5 in [12].).

Recently, Bresson, Stern, and Szydlo [17] improved the ring signature scheme
of Rivest, Shamir, and Tauman. They showed that its security can be based on
the random oracle model, which is strictly weaker than the ideal cipher model.
Furthermore, this greatly simplified the security proof provided in [12]. We can
apply their construction to the schemes with sampling twice and RSACD.

Efficiency. We show the number of modular exponentiations to sign and to
verify, the size of signatures, and the number of random bits to sign in Figure 4.
We assume that each Ni is uniformly distributed in (2k−1, 2k).

In the schemes with sampling twice and RSACD, it is necessary for each ring
member to choose her RSA modulo with the same length, and in the scheme
with repeating, it is necessary for each ring member to choose her RSA modulo
with almost the same length. In contrast to these schemes, in the scheme with
expanding, there is no restriction on the lengths of users’ moduli. However, if
there is one ring member whose RSA modulo is much larger than the other
member’s moduli, then the size of the signature and the number of random
bits depends on the largest modulo. For example, if there is a user whose RSA
modulo has length k + � and the other users’ moduli have lengths k, then the
size of signature is (3r + 1)k + 160(r + 1) + �(r + 4) and the number of random
bits to sign is r(k + 160) + r�.

7 Concluding Remarks

In this paper, we have proposed a new technique for obtaining the anonymity
property of RSA-based cryptosystems, which we call “sampling twice.” By ap-
plying the sampling twice technique, we have constructed the schemes for en-
cryption, undeniable and confirmer signature, and ring signature.

In our analysis, we have observed that the scheme with sampling twice is
efficient with respect to the sizes of ciphertexts and signatures, the computational
costs to decrypt ciphertexts and to verify signatures in the average and worst
cases, and the computational costs to encrypt messages and to sign messages in
the worst case.

232 Ryotaro Hayashi and Keisuke Tanaka

Acknowledgements

We thank the anonymous referees for valuable comments.

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. [18] 566–582 Full version of this paper, available via
http://www-cse.ucsd.edu/users/mihir/.

2. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with
RSA. [19] 92–111

3. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is Secure under
the RSA Assumption. In Kilian, J., ed.: Advances in Cryptology – CRYPTO 2001.
Volume 2139 of Lecture Notes in Computer Science., Santa Barbara, California,
USA, Springer-Verlag (2001) 260–274

4. Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Inter-
net. In: Proceedings of the 1996 Internet Society Symposium on Network and
Distributed System Security, San Diego, CA, USA (1996) 114–127

5. Camenisch, J., Lysyanskaya, A.: Efficient Non-Transferable Anonymous Multi-
Show Credential System with Optional Anonymity Revocation. In Pfitzmann, B.,
ed.: Advances in Cryptology – EUROCRYPT 2001. Volume 2045 of Lecture Notes
in Computer Science., Innsbruck, Austria, Springer-Verlag (2001) 93–118

6. Sako, K.: An Auction Protocol Which Hides Bids of Losers. In Imai, H., Zheng,
Y., eds.: Public Key Cryptography – PKC 2000. Volume 1751 of Lecture Notes in
Computer Science., Melbourne, Victoria, Australia, Springer-Verlag (2000) 422–
432

7. Chaum, D., Antwerpen, H.V.: Undeniable Signatures. In Brassard, G., ed.: Ad-
vances in Cryptology – CRYPTO ’89. Volume 435 of Lecture Notes in Computer
Science., Santa Barbara, California, USA, Springer-Verlag (1989) 212–217

8. Chaum, D.: Zero-Knowledge Undeniable Signatures. In Damg̊ard, I., ed.: Advances
in Cryptology – EUROCRYPT ’90. Volume 473 of Lecture Notes in Computer
Science., Aarhus, Denmark, Springer-Verlag (1990) 458–464

9. Chaum, D.: Designated Confirmer Signatures. [19] 86–91
10. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer

Signatures. In Joye, M., ed.: Topics in Cryptology – CT-RSA 2003. Volume 2612
of Lecture Notes in Computer Science., San Francisco, CA, USA, Springer-Verlag
(2003) 80–97

11. Desmedt, Y.: Securing traceability of ciphertexts: Towards a secure software escrow
scheme. In Guillou, L.C., Quisquater, J.J., eds.: Advances in Cryptology – EU-
ROCRYPT ’95. Volume 921 of Lecture Notes in Computer Science., Saint-Malo,
France, Springer-Verlag (1995) 147–157

12. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. [18] 552–565
13. Hayashi, R., Okamoto, T., Tanaka, K.: An RSA Family of Trap-door Permutations

with a Common Domain and its Applications. In Bao, F., Deng, R.H., Zhou, J.,
eds.: Public Key Cryptography – PKC 2004. Volume 2947 of Lecture Notes in
Computer Science., Singapore, Springer-Verlag (2004) 291–304

14. Galbraith, S.D., Mao, W., Paterson, K.G.: RSA-based Undeniable Signatures for
General Moduli. In Preneel, B., ed.: Topics in Cryptology – CT-RSA 2002. Volume
2271 of Lecture Notes in Computer Science., San Jose, CA, USA, Springer-Verlag
(2002) 200–217

The Sampling Twice Technique for the RSA-Based Cryptosystems 233

15. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and their
Applications. In Maurer, U., ed.: Advances in Cryptology – EUROCRYPT ’96.
Volume 1070 of Lecture Notes in Computer Science., Saragossa, Spain, Springer-
Verlag (1996) 143–154

16. Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based Undeniable Signatures. In
Kaliski, Jr., B.S., ed.: Advances in Cryptology – CRYPTO ’97. Volume 1294 of
Lecture Notes in Computer Science., Santa Barbara, California, USA, Springer-
Verlag (1997) 132–149

17. Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures and Applications
to Ad-hoc Groups. In Yung, M., ed.: Advances in Cryptology – CRYPTO 2002.
Volume 2442 of Lecture Notes in Computer Science., Santa Barbara, California,
USA, Springer-Verlag (2002) 465–480

18. Boyd, C., ed.: Advances in Cryptology – ASIACRYPT 2001. Volume 2248 of
Lecture Notes in Computer Science., Gold Coast, Australia, Springer-Verlag (2001)

19. De Santis, A., ed.: Advances in Cryptology – EUROCRYPT ’94. Volume 950 of
Lecture Notes in Computer Science., Perugia, Italy, Springer-Verlag (1994)

From Fixed-Length to Arbitrary-Length
RSA Encoding Schemes Revisited

Julien Cathalo1, Jean-Sébastien Coron2, and David Naccache2,3

1 UCL Crypto Group,
Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

cathalo@dice.ucl.ac.be
2 Gemplus Card International,

34 rue Guynemer, 92447 Issy-les-Moulineaux, France
{jean-sebastien.coron,david.naccache}@gemplus.com

3 Royal Holloway, University of London,
Information Security Group,

Egham, Surrey TW20 0EX, UK
david.naccache@rhul.ac.uk

Abstract. To sign with RSA, one usually encodes the message m as
μ(m) and then raises the result to the private exponent modulo N . In
Asiacrypt 2000, Coron et al. showed how to build a secure RSA encoding
scheme μ′(m) for signing arbitrarily long messages from a secure encod-
ing scheme μ(m) capable of handling only fixed-size messages, without
making any additional assumptions. However, their construction required
that the input size of μ be larger than the modulus size. In this paper
we present a construction for which the input size of μ does not have to
be larger than N . Our construction shows that the difficulty in building
a secure encoding for RSA signatures is not in handling messages of ar-
bitrary length, but rather in finding a secure encoding function for short
messages, which remains an open problem in the standard model.

1 Introduction

A common practice for signing with RSA is to first apply some encoding function
μ to the message m, and then raise the result to the signature exponent modulo
N . This is the basis of numerous standards such as iso/iec-9796-1 [7], iso
9796-2 [8] and pkcs#1 v2.0 [11].

For digital signature schemes, the strongest security notion was defined by
Goldwasser, Micali and Rivest in [6], as existential unforgeability under an adap-
tive chosen message attack. This notion captures the property that an attacker
cannot produce a valid signature, even after obtaining the signature of (polyno-
mially many) messages of his choice.

Many RSA encoding schemes have been designed and many have been broken
(see [9] for a survey). The Full Domain Hash (FDH) scheme and the Probabilistic
Signature Scheme (PSS) [3] were among the first practical and provably secure
RSA signature schemes. Those schemes are provably secure in the random oracle

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 234–243, 2005.
c© International Association for Cryptologic Research 2005

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited 235

model [2], wherein the hash function is assumed to behave as a truly random
function. However, security proofs in the random oracle model are not “real”
proofs, and can be only considered as heuristic, since in the real world random
oracles are necessarily replaced by functions which can be computed by all par-
ties. A famous result by Canneti, Goldreich and Halevi [4] shows that a security
proof in the random oracle model does not necessarily imply security in the “real
world”.

In this paper, we focus on the problem of finding a secure encoding scheme for
arbitrarily long messages, given a secure encoding scheme for fixed-size messages.
It is well known that this can be done using a collision-resistant hash function
H : {0, 1}∗ → {0, 1} for both signing and verifying, where � is the input size
of μ(m). A standard argument shows that if the original signature scheme is
secure against existential forgery under a chosen-message attack, then so is the
signature scheme with the hash.

In Asiacrypt 2000, Coron, Koeune and Naccache [5] showed that for RSA
signatures, the same result can be obtained without assuming the existence of
collision-resistant hash-functions. Namely, they construct an encoding scheme
μ′(m) for messages in {0, 1}∗, given an encoding scheme μ(m) for messages of
fixed-size. They show that if RSA signature with μ(m) is secure against existen-
tial forgery under a chosen-message attack (in the standard model), then so is
RSA with μ′(m) for messages of arbitrary size, without any additional assump-
tions.

However, their construction requires that the input size � of μ(m) be larger
than the size of N (hereafter denoted k). Several standards (for example the
ISO/IEC 9796-1 standard [7]) fail to comply with this property. The authors
left as an open problem the case � ≤ k.

In this paper, we solve this open problem and provide a construction for any
input size �. A variant of this problem was already solved by Arboit and Robert
in [1], who proposed a construction similar to [5] that works for any �, but at
the cost of a new security assumption, namely the division intractability of the
encoding function μ(m). The advantage of our construction is that we do not
make any additional assumptions, namely if RSA signature with μ(m) is secure
against existential forgery under a chosen-message attack, then so is RSA with
μ′(m) for messages of arbitrary size. As is the case for the constructions in [5]
and [1], a practical advantage of our construction is that it allows to perform
some pre-computations on partially received messages, e.g. on IP packets which
are typically received in random order.

We believe that our result focuses more sharply the question of finding a
secure encoding for RSA signatures, by showing that the difficulty is not in
handling messages of arbitrary length, but rather in finding a securing encoding
for short messages, which remains an open problem in the standard model.

236 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

2 Definitions

2.1 Signature Schemes

The digital signature of a message m is a string that depends on m and on some
secret known only to the signer, in such a way that anyone can check the validity
of the signature. The following definitions are based on [6].

Definition 1 (Signature Scheme). A signature scheme is defined by the fol-
lowing:
– The key generation algorithm Generate is a probabilistic algorithm which

given 1k, outputs a pair of matching public and secret keys, (pk, sk).
– The signing algorithm Sign takes the message M to be signed and the secret

key sk and returns a signature x = Signsk(M). The signing algorithm may
be probabilistic.

– The verification algorithm Verify takes a message M , a candidate signature
x′ and the public key pk. It returns a bit Verifypk(M, x′), equal to one if the
signature is accepted, and zero otherwise. We require that if x ← Signsk(M),
then Verifypk(M, x) = 1.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in an asymptotic setting by
Goldwasser, Micali and Rivest [6]. Here we use the definitions of [3] which pro-
vide a framework for the concrete security analysis of digital signatures. Re-
sistance against adaptive chosen-message attacks is considered: a forger F can
dynamically obtain signatures of messages of its choice and attempt to output
a valid forgery. A valid forgery is a message/signature pair (M, x) such that
Verifypk(M, x) = 1 whilst the signature of M was never requested by F .

Definition 2. A forger F is said to (t, qsig, ε)-break the signature scheme (Gene-
rate, Sign, Verify) if after at most qsig(k) signature queries and t(k) processing
time, it outputs a valid forgery with probability at least ε(k) for any k > 0.

Definition 3. A signature scheme (Generate, Sign, Verify) is (t, qsig , ε)-secure
if there is no forger who (t, qsig , ε)-breaks the scheme.

2.3 The RSA Primitive

RSA [10] is the most widely used public-key cryptosystem. It can be used to
provide both encryption schemes and digital signatures.

Definition 4 (The RSA Cryptosystem). RSA is a family of trapdoor per-
mutations. It is specified by:

– The RSA generator RSA, which on input 1k, randomly selects two distinct
k/2-bit primes p and q and computes the modulus N = p · q. It randomly
picks an encryption exponent e ∈ Z∗

φ(N) and computes the corresponding
decryption exponent d such that e · d = 1 mod φ(N). The generator returns
{N, e, d}.

– The encryption function f : Z
∗
N → Z

∗
N defined by f(x) = xe mod N .

– The decryption function f−1 : Z∗
N → Z∗

N defined by f−1(y) = yd mod N .

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited 237

2.4 RSA Encoding and Signature

Let μ be a encoding function taking as input a message of size � bits and returning
a k-bit integer. We consider in figure 1 the classical RSA signature scheme which
signs fixed-length �-bits messages.

System parameters
- two integers k > 0 and � > 0
- a function μ : {0, 1}� → {0, 1}k

Key generation: Generate
- (N, e, d) ← RSA(1k)
- public key: (N, e)
- private key: (N, d)

Signature generation: Sign
- let y ← μ(m)
- return yd mod N

Signature verification: Verify
- let y ← xe mod N
- let y′ ← μ(m)
- if y = y′ then return one else return zero.

Fig. 1. The Classical RSA Paradigm: Using μ for Signing Fixed-Length Messages.

3 The Coron-Koeune-Naccache Construction

We recall in figure 2 the construction proposed in [5]. It assumes that the encod-
ing function μ can handle inputs of size k +1 where k is the size of the modulus
and allows to sign 2a ·(k−a) bit messages where 0 ≤ a ≤ k−1. The construction
can be recursively iterated to sign messages of arbitrary length. Throughout this
paper, m1||m2 will denote the concatenation of m1 and m2.

It is shown in [5] that the scheme described in figure 2 is secure against
existential forgery under a chosen message attack:

Theorem 1. If the signature scheme (Generate, Sign, Verify) is (t, qsig , ε) secure,
then the signature scheme (Generate*, Sign*, Verify*) which signs 2a · (k − a) bit
messages is (t∗, q∗sig , ε∗) secure, where:

t∗(k) = t(k) − 2a · qsig(k) · O(k2) , (1)
q∗sig(k) = qsig(k) − 2a+1 , (2)

ε∗(k) = ε(k) . (3)

4 Bimodular Encoding

The drawback of the previous construction is that the the input size � of μ(m)
needs to be larger than the size of the modulus N . In this section, we describe a

238 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

System parameters
- two integers k > 0 and a ∈ [0, k − 1]

- a function μ : {0, 1}k+1 → {0, 1}k

Key generation: Generate∗

- (N, e, d) ← RSA(1k)
- public key: (N, e)
- private key: (N, d)

Signature generation: Sign∗

- Split the message m into (k − a)-bit blocks
such that m = m[1]|| . . . ||m[r].

- let α =
r∏

i=1

μ(0||i||m[i]) mod N

where i in 0||i||m[i] is an a-bit string representing i.
- let y ← μ(1||α)
- return yd mod N

Verification: Verify∗

- let y ← xe mod N

- let α =
r∏

i=1

μ(0||i||m[i]) mod N

- let y′ ← μ(1||α)
- if y = y′ then return one else return zero.

Fig. 2. Coron-Koeune-Naccache Encoding of Arbitrary Length Messages.

construction wherein the input size � of the encoding function μ does not need
larger than k. We denote by �(k) the input size of the encoding function μ as a
function of the security parameter k. In the following, we assume that �(k) is an
increasing function of k. For example, for the ISO/IEC 9796-1 standard [7], we
have �(k) � k/2.

The new signature scheme (Generate’, Sign’, Verify’) is described in figure 3.
The new signature scheme is parameterized by two security parameters k1, k2

such that k1 < k2. As the previous construction, it is a deterministic signature
scheme. The construction uses the same encoding function μ with two distinct
moduli N1 and N2 of sizes k1 and k2 bits, respectively. For the sake of clarity
and since encoding functions take the modulus as a parameter, we will write
μi when μ is used with modulus Ni. We denote by �1 = �(k1), �2 = �(k2) the
input sizes of μ1, μ2 respectively. Our construction requires that �2 ≥ k1. Since
by assumption �(k) is an increasing function of k, this means that a sufficiently
large security parameter k2 must be selected in order to have �2 = �(k2) ≥ k1

Our construction enables to sign 2a·(�1−a) bit messages where 0 ≤ a ≤ �1−1.
The maximum length that can be handled by the new construction is therefore
21−1 bits for a = �1 − 1 or a = �1 − 2 and, as in [5], the construction can be
recursively iterated so as to sign arbitrarily long messages.

A possible realization example is the following: assume that we are given
an encoding function μ that takes as input k/2-bit messages and outputs k-bit
strings, for signing with a k-bit RSA modulus. If we take for example k1 = 1024,
k2 = 2048 and a = 24, then messages of size up to 224 · 488 � 8.2 · 109 bits can

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited 239

System parameters
- two positive integers k1, k2 such that k2 > k1

- an integer a ∈ [0, k1 − 1]
- two functions μi : {0, 1}�i → {0, 1}ki for i = 1, 2
such that �2 ≥ k1.

Key generation: Generate′

- (N1, e1, d1) ← RSA(1k1)
- (N2, e2, d2) ← RSA(1k2)
- public key: (N1, N2, e2)
- private key: (N1, N2, d2)

Signature generation: Sign′

- Split the message m into (�1 − a)-bit blocks
such that m = m[1]|| . . . ||m[r].

- let α =
r∏

i=1

μ1(i||m[i]) mod N1

where i in i||m[i] is an a-bit string representing i.
- let y ← μ2(α)
- return yd2 mod N2

Verification: Verify′

- y ← xe2 mod N2

- let α =
r∏

i=1

μ1(i||m[i]) mod N1

- let y′ ← μ2(α)
- if y = y′ then return one else return zero.

Fig. 3. Bimodular Encoding of Arbitrary Length Messages.

be signed. First, one applies the encoding function μ1 : {0, 1}512 → {0, 1}1024

to the 224 blocks of 488 bits; then one multiplies together the resulting 1024-bit
integers modulo N1 and obtains a 1024-bit integer which is finally signed using
the encoding function μ2 : {0, 1}1024 → {0, 1}2048 modulo N2. Notice that d1 is
not used for signing and e1 is not needed for the verification either; thus (e1, d1)
is to be deleted after the generation of N1.

The following theorem states that this construction preserves the resistance
against chosen message attacks of the original signature scheme:

Theorem 2. If the signature scheme (Generate, Sign, Verify) is (t, qsig , ε) secure,
then the signature scheme (Generate’, Sign’, Verify’) which signs 2a · (�1 − a) bit
messages is (t′, q′sig , ε′) secure, where:

t′(k1, k2) = t(k1) − q′sig · 2a · (Tμ(k2) + O(k2
3)

)
, (4)

q′sig(k1, k2) = qsig(k1) − 2a+1 , (5)
ε′(k1, k2) = 4 · ε(k1) . (6)

and Tμ(k2) is the time required to compute μ(m) for security parameter k2.

Proof. Without loss of generality, we can assume that t(k), qsig(k) and Tμ(k)
are increasing functions of k, and that ε(k) is a decreasing function of k.

240 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

Let F ′ be a forger that breaks the signature scheme (Generate’, Sign’, Verify’)
for the parameters (k1, k2). We construct a forger F1 for the signature scheme
(Generate, Sign, Verify) for the parameter k = k1 and a forger F2 for same
signature scheme with parameter k = k2. When the same property holds for
both F1 and F2, we write this property for a generic forger F . The forger F will
run F ′ in order to produce a forgery; it will answer the signature queries of F ′

by itself. F has access to a signing oracle S for (Generate, Sign, Verify).
First, we pick a random bit b. If b = 1, we construct a forger F1 for the

parameter k = k1. If b = 0, we construct a forger F2 for the parameter k = k2.
F is first given as input (N, e) where N, e were obtained by running Generate

for the parameter k defined previously. The forger F then starts running F ′ with
the public key (N1, N2, e2), where N1, N2, e2 are defined as follows:

If b = 1, the forger F1 sets N1 ← N , e1 ← e and runs RSA(1k2) to obtain
(N2, e2, d2). Otherwise (if b = 0) the forger F2 sets N2 ← N , e2 ← e and runs
RSA(1k1) to obtain (N1, e1, d1).

We observe that the view of the forger F ′ in independent of the bit b, since in
both cases the moduli N1 and N2 are generated using RSA(1k1) and RSA(1k2),
either by F itself or through (N, e) given as input to F .

When F ′ asks the signature of the j-th message mj with mj = mj [1]|| . . . ||
mj [rj], F computes:

αj =
rj∏

i=1

μ1(i||mj [i]) mod N1

If b = 0 then F2 requests the signature sj of αj from S. If b = 1 then F1 can
compute sj = μ2(αj)d2 mod N2 directly since it knows d2. Let q′sig be the total
number of signatures requested by F ′.

Eventually F ′ outputs a forgery (m′, s′) for the signature scheme (Generate’,
Sign’, Verify’) with m′ = m′[1]|| . . . ||m′[r′], from which F computes:

α′ =
r′∏

i=1

μ1(i||m′[i]) mod N1 (7)

We denote by β the probability that α′ /∈ {α1, . . . , αq}. Note that since the view
of F ′ is independent of b, this event is independent of b as well. We distinguish
three cases:

First Case: α′ /∈ {α1, . . . , αq} and b = 0. From the remark above, this happens
with probability β/2. In which case F2 outputs the forgery (α′, s′) and halts.
This is a valid forgery for the signature scheme (Generate, Sign, Verify) since
s′ = μ2(α′)d2 mod N2 and the signature of α′ was never asked to the signing
oracle S.

Second Case: α′ ∈ {α1, . . . , αq} and b = 1. This happens with probability
(1 − β)/2. Let c be such that α = αc. We write m = mc, α = αc and r = rc,
which gives using (7):

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited 241

r′∏
i=1

μ1(i||m′[i]) mod N1 =
r∏

i=1

μ1(i||m[i]) mod N1 (8)

We show that the previous equation leads to a multiplicative forgery for the
modulus N1 = N , which enables F1 to compute a forgery.

First, the message m′ must be distinct from m because the signature of m
has been requested by F ′ whereas the signature of m′ was never requested by
F , since m′ is the message for which a forgery was obtained. Consequently there
exists an integer j such that either:

j||m′[j] /∈ {1||m[1], . . . , r||m[r]} (9)

or:
j||m[j] /∈ {1||m′[1], . . . , r′||m′[r′]} (10)

We assume that condition (9) is satisfied (condition (10) leads to the same re-
sult). Therefore from (8) we can write:

μ(j||m′[j]) =
(∏

i

μ(i||m[i]
)(∏

i�=j

μ(i||m′[i])
)−1

mod N1 (11)

Consequently, F1 asks the signing oracle S for the signatures xi of the messages
i||m[i], 1 ≤ i ≤ r, and for the signatures x′

i of the messages i||m′[i], 1 ≤ i ≤ r′,
i �= j. Using (11), F1 can compute the signature of j||m′[j] from the other
signatures:

x′
j = μ(j||m′[j])d1 =

(∏
i

xi

)(∏
i�=j

x′
i

)−1

mod N1

and F1 finally outputs the forgery (j||m′[j], x′
j). This is a valid forgery for the

signature scheme (Generate, Sign, Verify) since the signature of j||m′[j] was never
asked to the signing oracle.

Third Case: α′ /∈ {α1, . . . , αq} and b = 1, or α′ ∈ {α1, . . . , αq} and b = 0. In
this case, F fails. This happens with probability 1/2.

To summarize, from a forger F ′ that breaks the signature scheme (Generate’,
Sign’, Verify’) with probability ε′(k1, k2) for the parameters (k1, k2), we construct
a forger F that breaks the signature scheme (Generate, Sign, Verify) with prob-
ability ε′ · β/2 for the parameter k2, and with probability ε′ · (1 − β)/2 for the
parameter k1, for some (unknown) β.

Therefore, if we assume that the signature scheme (Generate, Sign, Verify)
cannot be broken in time t(k) with probability greater than ε(k) for all k, we
must have:

ε′(k1, k2) · β/2 ≤ ε(k2)

and
ε′(k1, k2) · (1 − β)/2 ≤ ε(k1)

which implies using ε(k2) ≤ ε(k1) that:

ε′(k1, k2) ≤ 4 · ε(k1)

which gives (6).

242 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

If b = 0, then for each of the q′sig queries of F ′, the forger F2 makes at most
2a multiplications modulo N1 and one query to S. Thus F2 runs in time

t(k2) = t′(k1, k2) + q′sig · 2a · (Tμ(k1) + O(k1
2)

)
(12)

If b = 1 then for each query of F ′, the forger F1 makes at most 2a multiplications
modulo N1 and one exponentiation modulo N2. After it has received the forgery,
it makes at most 2a+1 multiplications modulo N1 to compute its own forgery.
Thus F1 runs in time:

t(k1) = t′(k1, k2) + q′sig · (2a · (Tμ(k1) + O(k1
2)

)
+ Tμ(k2) + O(k2

3)
)

(13)

From inequalities (12) and (13), and using t(k1) ≤ t(k2) and Tμ(k1) ≤ Tμ(k2)
we obtain (4).

Finally, the forger F2 makes at most q′sig queries to the signing oracle, and the
forger F1 makes at most 2a+1 queries to the signing oracle. This gives qsig(k2) ≤
q′sig(k1, k2) and qsig(k1) ≤ 2a+1. Using qsig(k1) ≤ qsig(k2), we obtain

qsig(k1) ≤ 2a+1 + q′sig(k1, k2),

which gives (5). ��

5 Conclusion

In this paper, we showed how to construct a secure RSA encoding scheme for
signing arbitrarily long messages, given any secure encoding scheme for signing
fixed-size messages. This solves a problem left open by Coron et al. in [5]. We
believe that our work focuses the question of finding a secure encoding for RSA
signatures, by showing that the difficulty in building secure encoding schemes
for RSA is not in handling messages of arbitrary length, but rather in finding a
secure redundancy function for short messages, which remains an open problem
in the standard model.

References

1. G. Arboit and J.M. Robert, From Fixed-Length to Arbitrary-Length Messages
Practical RSA Signature Padding Schemes, in LNCS 2020 – Topics in Cryptology
CT-RSA 2001, Springer-Verlag, p. 44-51.

2. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing
efficient protocols, proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

3. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin, proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

4. R. Canetti, O. Goldreich and S. Halevi, The Random Oracle Methodology, Revis-
ited, STOC ’98, ACM, 1998.

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited 243

5. J.S. Coron, F. Koeune, D. Naccache, From fixed-length to arbitrary-length RSA
padding schemes, Proceedings of Asiacrypt 2000, LNCS vol. 1976, Springer-Verlag,
2000.

6. S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal of computing, 17(2):281-308, april
1988.

7. ISO/IEC 9796, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 1: Mechanisms using redundancy, 1999.

8. ISO/IEC 9796-2, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 2: Mechanisms using a hash-function, 1997

9. J.F. Misarsky, How (not) to design signature schemes, proceedings of PKC’98,
Lecture Notes in Computer Science vol. 1431, Springer Verlag, 1998.

10. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public key cryptosystems, CACM 21, 1978.

11. RSA Laboratories, pkcs #1: RSA cryptography specifications, version 2.0,
September 1998.

Tractable Rational Map Signature

Lih-Chung Wang1,�, Yuh-Hua Hu2, Feipei Lai3,
Chun-Yen Chou4,��, and Bo-Yin Yang5,���

1 Department of Applied Mathematics,
National Donghwa University, Hualien 974, Taiwan

lcwang@mail.ndhu.edu.tw
2 Department of Computer Science and Information Engineering,

National Taiwan University, Taipei 106, Taiwan
d92015@csie.ntu.edu.tw

3 Departments of Electrical Engineering &
of Computer Science and Information Engineering,

National Taiwan University, Taipei 106, Taiwan
flai@ntu.edu.tw

4 Department of Mathematical Education,
National Hualien Teachers College, Hualien 970, Taiwan

choucy@mail.nhltc.edu.tw
5 Dept. of Mathematics, Tamkang University, Tamsui 251, Taiwan

by@moscito.org

Abstract. Digital signature schemes are crucial for applications in elec-
tronic commerce. The effectiveness and security of a digital signature
scheme rely on its underlying public key cryptosystem. Trapdoor func-
tions are central to public key cryptosystems. However, the modular ex-
ponentiation for RSA or the discrete logarithms for ElGamal/DSA/ECC,
as the choice of the trapdoor functions, are relatively slow in perfor-
mance. Some multivariate schemes has potentially much higher perfor-
mance than other public key cryptosystems. We present a new multivari-
ate digital signature scheme (TRMS) based on tractable rational maps.
We also give some security analysis and some actual implementation data
in comparison to some other signature schemes.

Keywords: multivariate, public key, digital signature, finite field, tract-
able rational maps

1 Introduction

Digital signature schemes are crucial for applications in electronic commerce. For
example, to improve the efficiency and maintain the order of stock exchange, each
on-line transaction needs to be verified to be validated. The effectiveness and
security of a digital signature scheme rely on its underlying public key cryp-
tosystem. Trapdoor functions are central to public key cryptosystems. Only a
� Partially supported by National Science Council Grant NSC-93-2115-M-259-003.

�� Partially supported by National Science Council Grant NSC-93-2115-M-026-001.
��� Partially supported by National Science Council Grant NSC-93-2115-M-032-008.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 244–257, 2005.
c© International Association for Cryptologic Research 2005

Tractable Rational Map Signature 245

handful of the many schemes attempted reached practical deployment. How-
ever, the modular exponentiation for RSA or the discrete logarithms for ElGa-
mal/DSA/ECC, as the choice of the trapdoor functions, are relatively slow in
performance. One main reason is the size of the single operand which (at the
required security levels) tends to be huge, and this slows the performance.

Some multivariate schemes distinguish themselves from other public key cryp-
tosystems by showing potential for higher performance. For example, Courtois,
Goubin and Patarin proposed SFLASH, which has been selected by Nessie Con-
sortium and recommended for low-cost smart cards. The newest version of this
signature scheme, SFLASHv3 may be found in [12]. Also, Chen and Yang gave
a class of signature (TTS) scheme based on tame transformations in [4, 5, 38].
The newest version of TTS, called Enhanced TTS, outperforms ([40]) all previ-
ously known digital signature schemes of comparable security levels, including
SFLASHv3. A summary of this newest instance may be found in [38].

Here we will present a new class of multivariate digital signature scheme
(TRMS) based on tractable rational maps. TRMS has similar security and per-
formance as Enhanced-TTS. However there is a small yet non-negligible chance
(around 7%) that signing takes perceptibly longer in the newer versions of TTS.
In contrast, the signing time for TRMS is constant, which can do no harm and
may be an improvement.

Fix a finite field K and a natural number n. Tractable rational maps on
Kn are invertible affine transformations or, after a rearrangement of indices if
necessary, functions of the following form ϕ : K

n → K
n,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = r1(x1)

y2 = r2(x2)
p2(x1)
q2(x1)

+
f2(x1)
g2(x1)

...

yk = rk(xk)
pk(x1, x2, . . . , xk−1)
qk(x1, x2, . . . , xk−1)

+
fk(x1, x2, . . . , xk−1)
gk(x1, x2, . . . , xk−1)

...

yn = rn(xn)
pn(x1, x2, . . . , xn−1)
qn(x1, x2, . . . , xn−1)

+
fn(x1, x2, . . . , xn−1)
gn(x1, x2, . . . , xn−1)

where for i = 2, 3, . . . , n, pi, qi, fi, gi are polynomials, and for i = 1, 2, . . . , n, ri

is a permutation polynomial on K. That is, ri is a polynomial function which is
also a bijection from K onto itself.

Let S = {(x1, x2, . . . , xn) | ∏n
j=2 pjqjgj �= 0}. For any point in the image

set of S, it is very easy to find point-wise inverse for tractable rational maps:
Given a point (y1, y2, . . . , yn) ∈ ϕ(S), we can easily compute (x1, x2, . . . , xn)
∈ Kn such that ϕ(x1, x2, . . . , xn) = (y1, y2, . . . , yn). When ϕ is an invertible
affine transformation, we can easily write the inverse transformation ϕ−1 in an
explicit and simultaneous way. That is, we have an explicit formula from which
we can compute x1, x2, . . . , xn simultaneously. When ϕ is not an invertible affine
transformation, although it is computationally infeasible to write the inverse in
an explicit and simultaneous way, given any point (y1, y2, . . . , yn) ∈ ϕ(S), it

246 Lih-Chung Wang et al.

is very easy to compute x1, x2, . . . , xn in a sequential way. We simply apply a
sequence of substitutions as follows. We refer to this as substitution property.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r−1
1 (y1)

x2 = r−1
2

(
(y2 − f2(x1)

g2(x1)
)
q2(x1)
p2(x1)

)
...

xk = r−1
k

(
(yk − fk(x1, x2, . . . , xk−1)

gk(x1, x2, . . . , xk−1)
)
qk(x1, x2, . . . , xk−1)
pk(x1, x2, . . . , xk−1)

)
...

xn = r−1
n

(
(yn − fn(x1, x2, . . . , xn−1)

gn(x1, x2, . . . , xn−1)
)
qn(x1, x2, . . . , xn−1)
pn(x1, x2, . . . , xn−1)

)
Note that, by Lagrange interpolation, any map over a finite field is a poly-

nomial map. There are both computational and categorical reasons that we put
our maps in rational form. For computational reasons, it is faster to compute
the division between two function values by low degree polynomial maps than to
compute a single function value by a much higher degree polynomial map. For

example, it is much easier to compute
1
x

than to compute x254 over GF (256).

And categorically, even given a tractable rational map without denominator,
by the direct computation above, the inverse of that map is most naturally de-
scribed as a rational map. Therefore we choose to put the map in the rational
form. For details, see [36].

TRMS is the result of exploring the combination of substitution property of
tractable rational maps and other mathematical ideas into application of digital
signatures.

In [26], T. Moh invented a public key cryptosystem (TTM) based on tame
automorphisms which also have the substitution property. It is easily seen that
tame transformations are special cases of tractable rational maps with the term

rk(xk)
pk(x1, x2, . . . , xk−1)
qk(x1, x2, . . . , xk−1)

replaced by xk. Therefore it is not surprising at all

that TRMS based on tractable rational maps can achieve similar security and
performance as TTS based on tame automorphisms. However, there are also sub-
stantial differences between TRMS and TTS with respect to other mathematical
ideas and designs.

In section 2, we give the details of TRMS. In section 3, we give some actual
implementation data. In section 4, we give some analysis and compare TRMS
to other signature schemes, in particular, including TTS.

2 Details of TRMS

We show an implement scheme of TRMS. It can be seen that there are a variety
of schemes of TRMS which are all based on tractable rational maps.

Let K = GF (28). We will construct 3 maps ϕ1 : K28 → K28, ϕ2 : K28 → K20,
ϕ3 : K20 → K20 where ϕ1, ϕ3 are invertible affine transformations, ϕ2 = π◦ ϕ̃2 ◦ i

Tractable Rational Map Signature 247

with π a projection, i an imbedding, and ϕ̃2 identified as a tractable rational
map over some extension field over K. All the details are given below.

The public key or the verification map V is the result of the composition
map ϕ3 ◦ ϕ2 ◦ ϕ1. Therefore the public key will only be seen as 20 quadratic
polynomials in 28 variables whose size is about 8.7KB as shown below.

The private key or the key part in the signing map S is the triple (ϕ1, ϕ2, ϕ3)
in some specified structured form whose size is about 0.4KB as shown below.
As mentioned in the introduction, each ϕi gives direct instruction to find the
point-wise inverse for any concrete instance. Therefore the private key holder or
the signer can directly apply ϕ−1

i point-wisely.
To sign a message M , first find its hash z = H(M) ∈ K20 by a publicly agreed

hash function. Then do y = ϕ−1
3 (z), where the indices of y is starting at 9. Then

choose 8 nonzero random numbers r1, r2, . . . , r8. Then get x by identifying it
with (ϕ̃2

−1◦i)(r1, r2, . . . , r8, y) which is computed by a sequence of substitutions.
Then get the signature w = ϕ−1

1 (x).
To verify a signature w, simply check if V (w) = (ϕ3 ◦ ϕ2 ◦ ϕ1)(w) = (ϕ3 ◦

π ◦ ϕ̃2 ◦ i)(x) = (ϕ3 ◦ π)(r1, r2, . . . , r8, y) = ϕ3(y) = z = H(M).

2.1 Details of ϕ1 and ϕ3

Since GF (232) is finite extension fields of K of degree 4, therefore we can iden-
tify an element in K4 as an element in GF (232). Furthermore, we can de-
compose (x1, x2, . . . , x28) ∈ K28 into seven groups: for i = 1, 2, . . . , 7, Xi =
(x4i−3, x4i−2, x4i−1, x4i) and identify Xi ∈ GF (232), i = 1, 2, . . . , 7. Hence we
can identify K28 with GF (232)7. Similarly, we can identify K20 with GF (232)5.

Let ϕ1, ϕ3 be invertible affine maps on K28 and K20 respectively such that
ϕ1 = S1 ◦ T1 ◦ L1 ◦ D1 ◦ U1 and ϕ3 = T3 ◦ L3 ◦ D3 ◦ U3 ◦ S3 where

1. S1 is a circular shift on K28 and S3 is a circular shift on K20.
2. T1 is a translation on K28 and T3 is a translation on K20. T3 is used to

cancel the constant terms in the public key. Therefore T3 is not chosen but
determined.

3. L1 is a 7 × 7 lower triangular matrix over GF (232) and L3 is a 5 × 5 lower
triangular matrix over GF (232) such that both with diagonal entries equal
to 1 ∈ GF (232).

4. D1 is a 28×28 invertible upper triangular matrix over K and D3 is a 20×20
invertible upper triangular matrix over K in the following form:

D1 =

⎛⎜⎜⎜⎜⎜⎝
d1 d2

1 d3
1 . . . d28

1

0 d2 d2
2 . . . d27

2

0 0 d3 . . . d26
3

...
...

. . .
...

0 0 0 . . . d28

⎞⎟⎟⎟⎟⎟⎠
5. U1 is a 7 × 7 upper triangular matrix over GF (232) and U3 is a 5 × 5 upper

triangular matrix over GF (232) such that both with diagonal entries equal
to 1 ∈ GF (232).

248 Lih-Chung Wang et al.

Note that circular shifts on Kn are indeed linear transformations on Kn and
each Ti above represents the translation part in the corresponding affine transfor-
mation. The LDU decomposition above covers quite a part of general invertible
linear transformations. Moreover, our construction enjoys some benefits in key
size. With L1, U1 linear on GF (232)7 and L3, U3 linear on GF (232)5, key size of
the private key is reduced. Also, the calculation speed of additions is optimized
on current 32-bit computer hardware structure. The diagonal entries in L’s and
U ’s are 1 implies that when we solve Lu = v or Uu = v we only have to do
additions and multiplications and don’t have to bother to do any division. Fur-
thermore, with D1 and D3 both linear over K but not on GF (232), and also the
circular shifts over Kn, we can choose ϕ1, ϕ3 linear over K, but not linear over
GF (232). The purpose is to maintain security at the level over K.

2.2 Details of ϕ2

Let L, L′, L′′ be the finite extension fields of K such that K ⊂ L′′ ⊂ L′ ⊂ L and
[L′′ : K] = 2, [L′ : L′′] = 3, [L : L′] = 3. Therefore we can identify an element
in K2 as an element in L′ = GF (216) ⊂ L′ ⊂ L, an element in K6 as an element
in L′ = GF (248) ⊂ L, and an element in K18 as an element in L = GF (2144).

Decompose (x1, x2, . . . , x28) ∈ K28 into five groups: X1 = (x1, x2, . . . , x8),
X2 = (x9, x10, x11, x12, x13, x14), X3 = (x15, x16), X4 = (x17, x18, x19) and X5 =
(x20, x21, . . . , x28). Identify X1 with (0, . . . , 0, x1, x2, . . . , x8) ∈ L. Identify X2 ∈
K6 as an element in L′ ⊂ L. Identify X3 ∈ K2 as an element in L′′ ⊂ L′ ⊂ L

and X4 ∈ K3 with (0, x17, 0, x18, 0, x19) ∈ L′′ ⊂ L. Identify X5 ∈ K9 with
(0, x20, 0, x21, . . . , 0, x28) as an element in L. Hence we have a natural imbedding
i : K28 ↪→ L5 by i(x1, x2, . . . , x28) = (X1, X2, X3, X4, X5). Similarly, decompose
(y9, y10, . . . , y32) ∈ K20 into four groups: Y2 = (y9, y10, y11, y12, y13, y14), Y3 =
(y15, y16), Y4 = (y17, y18, y19) and Y5 = (y20, y21, . . . , y28) and identify them as
elements in L. For any ri ∈ K, i = 1, 2, . . . , 8, identify R1 = (r1, r2, . . . , r8) ∈ K8

with (0, . . . , 0, r1, r2, . . . , r8) ∈ L. Then we also have

i(r1, r2, . . . , r8, y9, y10, . . . , y28) = (R1, Y2, Y3, Y4, Y5) ∈ L
5.

Furthermore, since K20 is a subspace of L5 = K90, we have the projection π :
L

5 → K
20 such that (π ◦ i)(r1, r2, . . . , r8, y9, y10, . . . , y28) = (y9, y10, . . . , y28)

Let ϕ̃2 : L5 → L5 be a tractable rational map of the following form.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R1 = X1

Y2 = X2 p2(X1) + f2(X1)
Y3 = r3(X3) + f3(X1, X2)
Y4 = X4 p4(X1, X2, X3) + f4(X1, X2, X3)
Y5 = X5 p5(X1, X2, X3, X4) + f5(X1, X2, X3, X4)

such that ϕ2 = π ◦ ϕ̃2 ◦ i, and we have the following in ϕ2:

1. R1 = X1 induces (r1, r2, . . . , r8) = (x1, x2, . . . , x8).
2. Y2 = X2 p2(X1) + f2(X1) induces

Tractable Rational Map Signature 249⎛⎜⎜⎜⎝
y9

y10

...
y14

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x9

x10

...
x14

⎞⎟⎟⎟⎠ ∗6

⎛⎜⎜⎜⎝
x1

x2

...
x6

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
c1x1x2

c2x2x3

...
c6x6x7

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
c7x3

c8x4

...
c12x8

⎞⎟⎟⎟⎠
where ci’s are constant parameters of user’s choice and u ∗n v denotes first
identifying u, v ∈ Kn in the extension field with degree n then carrying out
the multiplication there. For details see Appendix.

3. Y3 = r3(X3) + f3(X1, X2) induces(
y15

y16

)
=

(
x15

x16

)2

+
(

c13x1x2 + c14x3x4 + · · · + c19x13x14

c20x14x1 + c21x2x3 + · · · + c26x12x13

)
+

(
c27x1

c28x2

)

where
(

x15

x16

)2

=
(

x15

x16

)
∗2

(
x15

x16

)
and ci’s are constant parameters of user’s

choice.
4. Y4 = X4 p4(X1, X2, X3) + f4(X1, X2, X3) induces⎛⎝y17

y18

y19

⎞⎠ =

⎛⎝x17

x18

x19

⎞⎠ ∗3

⎛⎝ x8

x9 + x11 + x12

x13 + x15 + x16

⎞⎠ +

⎛⎝ c29x4x16

c30x5x10

c31x15x16

⎞⎠ +

⎛⎝ c32x9

c33x10

c34x11

⎞⎠
where ci’s are constant parameters of user’s choice.

5. Y5 = X5 p5(X1, X2, X3, X4) + f5(X1, X2, X3, X4) induces

⎛⎜⎜⎜⎝
y20

y21

...
y28

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x20

x21

...
x28

⎞⎟⎟⎟⎠ ∗9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2 + x6 + x11

x3 + x7 + x12

x4 + x8 + x13

x5 + x9 + x14

x10 + x14 + x16

x11 + x15 + x17

x12 + x16 + x18

x13 + x17 + x19

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c35x18x19

c36x17x13

c37x16x14

c38x12x13

c39x15x14

c40x19x12

c41x18x10

c42x12x6

c43x13x5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝
c44x1

c45x2

...
c52x9

⎞⎟⎟⎟⎠

where ci’s are constant parameters of user’s choice.

The reason why the formulas in the above assignments represents a permu-
tation polynomial r3 and polynomials p2, f2, f3, p4, f4, p5, f5 is as follows.

1. We identify X3 = (x15, x16) as an element in L′′ = GF (216) which is of
characteristic 2. For any finite field of characteristic 2, X #→ X2 is an auto-
morphism. Hence let r3(X) = X2, then r3 is an automorphism on L′′, hence

a permutation polynomial. And
(

x15

x16

)
#→

(
x15

x16

)2

surely represents r3.

2. For polynomials p2, f2, f3, p4, f4, p5, f5, simply notice that on a finite field,
any map is a polynomial map. See [36] for details. For example, we show the
case of p2 for illustration. Consider a map P on L as follows

250 Lih-Chung Wang et al.

P(X1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
0
x1

x2

x3

x4

x5

x6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if X1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
x1

x2

x3

x4

x5

x6

x7

x8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

−→0 otherwise.

Simply let p2 to be the polynomial representation for P .

It is worth to mention the following.

1. For theoretical purpose we showed above that ϕ2 is viewed as π◦ ϕ̃2◦ i where
ϕ̃2 : L5 → L5 is a tractable rational map with polynomials p2, f2, f3, p4, f4,
p5, f5 possibly very complicated. Computationally, we actually follow the
other way around. That is, ϕ2 is a computationally efficient representation
for ϕ̃2 when restricted to the subspace i(K28). We get benefits on calculation
speed due the following. The second assignment in ϕ2 can be carried out in
the subfield GF (248) instead of in L = GF (2144). For details see appendix.
Similarly, the third assignment in ϕ2 can be carried out in L′′ = GF (216)
instead of in L = GF (2144). Both these contribute on calculation speed.

2. It is easily seen that our ϕ2 representation is quadratic in xi’s. Since ϕ1, ϕ3

are affine maps, the public key is 20 general quadratic polynomials in 28
variables without constant terms.

2.3 Information on Keys

As shown above, ϕ1 = S1 ◦ T1 ◦ L1 ◦ D1 ◦ U1, ϕ3 = T3 ◦ L3 ◦ D3 ◦ U3 ◦ S3, and
there are 52 parameters c1, c2, . . . , c52 for the private key user to choose in ϕ2.
Therefore the size for private key is [0+ 28+ 4(1+ 2+3+4+5+6)+28+ 4(6+
5 + 4 + 3 + 2 + 1)] + [20+ 4(1 + 2 + 3 + 4)+ 20 + 4(4 + 3 + 2 + 1)+ 0] + 52 = 396
Bytes. However, T3 in ϕ3 is not chosen but determined. Hence it is to choose
376 nonzero elements in K to generate the private key.

Also, since the public key is 20 general quadratic polynomials in 28 variables

without constant terms, its size is 20·(28 · 29
2

+28) = 8680 bytes. In general, there

are two ways to generate the public keys. One way is the method of undetermined
coefficients, the other one is to make the composition by direct computation.
Both have many optimized variants. Our major concern is on the structure of
TRMS, therefore we did not put much effort in the optimization of the key
generation.

Tractable Rational Map Signature 251

3 Performance

Test Platform: CPU: P4 2.4GHz; RAM: 1024MB; OS: Linux + gcc 3.3;
ARG: gcc -O3 -march=pentium4 -fomit-frame-pointer

Signature Public Private Key
Scheme Name size Key Size Key Size Sign Verify Generation

(byte) (byte) (byte) (μs) (μs) (ms)
TTS(20,28) 28 8680 1399 7 20 2.2

TRMS(20,28) 28 8680 396 4.8 20 1.2

Table: NESSIE signature report, TTS and TRMS tested as above

Unit:
{

Signature/key size:Bytes,
Sign/Verify/Key Generation: cycles/invocation

Scheme Name Signature Public Private Sign Verify Key
size Key Size Key Size Generation

ECDSA 48 48 24 1971K 5415K 1758K
ESgin 144 145 96 4434K 936K 269M

RSA-PSS 128 128 320 82M 1587K 3206M
SFLASHv2 37 ≈ 15K ≈ 28K 5106K 765K 2929M
SQARTZ 16 ≈ 71K ≈ 4K 6261M 144K 3167M
ACESign 425 620 748 26M 20M 9645M

TTS(20,28) 28 ≈ 8.7K ≈ 1.4K 16.8K 48K 5.28M
TRMS(20,28) 28 ≈ 8.7K 396 11.4K 48K 2.67M

4 Analysis and Comparison

4.1 Security Analysis

For brevity, we fix the following notations for our TRMS example:

– m = 20 denotes the dimension of the hash space.
– n = 28 denotes the dimension of the signature space.
– q = 28 denotes the size of the base field GF (256).

There are several known attacks for multivariate cryptosystems.

Rank Attack: Goubin and Courtois shows that the MinRank attack for Tri-
angular-Plus-Minus systems. Yang and Chen generalized the idea to Rank
attack for multivariate systems in [38]. The complexity of the Rank attack

is about qr · (m2(n
2 − m

6) + mn2)
k

multiplications, where k is the number of

linear combinations of the components of ϕ2 which reach the minimal rank
r. The minimal rank for our example is at least 12, and k is 6. Therefore the
complexity is about 2107 multiplications or 2101 3DES units (1 unit of 3DES
≈ 26 multiplications).

252 Lih-Chung Wang et al.

Dual Rank Attack: Coppersmith et al first ([6]) used the Dual Rank attack
against multivariate scheme of Shamir; Yang and Chen to generalize this
attack to all tame-like multivariate systems in [38]. The complexity of the

Dual Rank attack is about qu(un2 +
n3

6
) multiplications where u is the

minimal number of appearances in ϕ2 for any variable xi. When u = 9 for
our sample scheme, the complexity is about 286 multiplications or 280 3DES
units.

Unbalanced Oil and Vinegar Attack: As in [38], Let an “oil-set” be any
set of independent variables xi, such that any of their cross-products never
appears in any equation in ϕ2. Suppose the maximum size of an oil set is
k, then then we may determine in time k4qn−2k−1 the “vinegar” and the
“oil” subspaces. After that, several possible techniques may be used to find
a solution. If case k = 9, so the time taken to identify the vinegar and oil
subspaces is about 286 multiplications, or 280 3DES units.

Patarin Relations Attack for C∗ Family: In ϕ2 of our TRMS example,
there is no Patarin relation, which means the attack for C∗ family is not
feasible for our system.

Affine Parts Distillation: Geiselmann et al. in [19, 20] pointed out the possi-
bility that if the middle portion of any multivariate system is homogeneous
of degree two, then it is possible to find the constant parts of both affine
mappings easily. The ϕ2 in our TRMS example is not homogeneous.

XL Family and Gröbner Bases: Courtois et al proposed the XL method for
solving overdetermined quadratic system (which can be viewed as a refine-
ment of the relinearization method by Kipnis-Shamir, [24]) and its variant
FXL in [11]. Faugère ([15, 16]) have been improving algorithms for comput-
ing Gröbner Bases, and the current state-of-the art variant is F5, which was
used as the critical equation solver in breaking the HFE challenge 1 ([17]).
The consensus of current research ([1–3,13, 39, 41]) is that Gröbner/XL-like
equation solvers on generic equations are exponential in the number of vari-
ables. The best variant will be FF5 if O(n2+ε) timing can be achieved, and
FXL otherwise. The time complexity for the two methods on a system with
m = 20 equations will be respectively 274 and 276 3DES units, still bet-
ter than RSA-1024 (see [29]). If m = 24, then we would get 280 and 281

respectively.

Remark: The speed estimates on nongeneric equations are still being de-
bated, but the converse to Moh’s lemma was proved in [39], which shows that
it is likely that all Gröbner/XL-like equation solvers will run into trouble if
the dimension of the projective solution set at infinity (denoted dim H∞) is
non-zero. It is not very easy to benefit from this, however, because the UOV
attack means that the last stage of our sample TRMS scheme or something
similar cannot be too large, and the dual rank attack dictates that it cannot
be too small! Thus for m = 20, we cannot benefit dim H∞ > 0, because the
last stage is forced to be 9 variables. For larger TRMS schemes, say m = 28
upwards, we can start to do better with optimal selection of parameters.

Tractable Rational Map Signature 253

Finding Minus and Vinegar Variables: These are very specialized meth-
ods designed against what is generally called “Big-Field” multivariate
schemes such as C∗−−. They do not work against tame-like multivariates
with non-constant central parts.

Patarin’s IP Approach: Patarin et al proposed an attack method for fixed
middle map schemes in [31, 32]. Since there are variable parameters in the
middle map, the IP attack is not applicable.

Search Methods: Courtois et al proposed some search methods at PKC 2002
in [7]. However, they are mainly designed for small finite fields, and we may
follow the computations of [4] to find a complexity of 2120 3DES units.

4.2 Comparison to Enhanced-TTS

The structure of the latest version of TTS, Enhanced-TTS is as follows. Fix
a finite field K. Choose three natural numbers m, n, k such that m < n and
k < n − m. Let ϕ1, ϕ3 are invertible affine maps on Kn and Km respectively.
Let ϕ2 : Kn → Km be of the following form. (Below fi’s are all quadratic and
y = (yn−m+1, . . . , yn).)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = x1

r2 = x2

...
...

...
rn−m = xn−m⎛⎜⎜⎜⎝

yn−m+1

yn−m+2

...
yn−k−j

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
invertible
matrix of

linear
expressions of
x1, . . . , xn−m

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xn−m+1

xn−m+2

...
xn−k−j

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
column
vector of
quadratic

expressions of
x1, . . . , xn−m

⎞⎟⎟⎟⎟⎠
yn−k−j+1 = xn−k−j+1 + fn−k−j+1(x1, x2, . . . , xn−k−j)

...
...

...
yn−k = xn−k + fn−k(x1, x2, . . . , xn−k−1)⎛⎜⎜⎜⎝

yn−k+1

yn−k+2

...
yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
invertible
matrix of

linear
expressions of
x1, . . . , xn−k

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xn−k+1

xn−k+2

...
xn

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
column
vector of
quadratic

expressions of
x1, . . . , xn−k

⎞⎟⎟⎟⎟⎠
The verification map V can be decomposed as w ∈ K

n ϕ1#→ x
ϕ2#→ y

ϕ3#→ z ∈ K
m.

That is, V = ϕ3 ◦ϕ2 ◦ϕ1, where x = ϕ1(w) = M1w+ c1, z = ϕ3(y) = M3y+ c3

and (r1, r2, . . . , rn−m, y) = ϕ2(x).
To sign a message, Enhanced-TTS needs to solve two systems of equations

for finding one inverse image point of the middle map. There is about 1/25
chance of redoing the signing procedure for the implement in [38]. However, our
TRMS example has constant signing time, since the non-zero element in a field
is always invertible.

254 Lih-Chung Wang et al.

Regarding to signing time, TRMS is better than TTS. One reason is that
TRMS utilizes special field extension structure to reduce the computation time
for ϕ−1

2 , the details is in the Appendix, while TTS only uses the common method
of Gaussian elimination. Another reason is that during computation of the affine
transformations ϕ1, ϕ3, part of it is also carried out in a larger field, which will
benefit the computation, too. We like to point out that there are a lot of ways
to construct ϕ1, ϕ3. One reason for us to use the LU -decomposition is that it
has advantages when implemented on smart cards.

The main external differences between TRMS(20,28) and Enhanced-
TTS(20,28) can be tabulated as follows.

1. The private key size for TTS is 1.4KB, while for TRMS it is 396 bytes.
2. Regarding to signing time, TRMS is better than TTS.
3. TTS has at most 7% chance of redoing the signing procedure while the

signing time for TRMS is constant.

5 Appendix: Implement of Field Extension

Firstly, GF (2) = {(0)2, (1)2}, where (·)2 means the binary representation. Then
t2 + t + (1)2 is irreducible over GF (2). Let GF (4) = GF (2)[t]/(t2 + t + (1)2)
and (ab)2 denote the equivalent class of at + b. Then we have the following
multiplication table.

(00)2 (01)2 (10)2 (11)2
(00)2 (00)2 (00)2 (00)2 (00)2
(01)2 (00)2 (01)2 (10)2 (11)2
(10)2 (00)2 (10)2 (11)2 (01)2
(11)2 (00)2 (11)2 (01)2 (10)2

Similarly, we have t2 + t + (10)2 is irreducible over GF (4). Let GF (16) =
GF (4)[t]/(t2+t+(10)2) and (abcd)2 denote the equivalent class of (ab)2t+(cd)2.
Then we can construct a multiplication table of size 16 × 16.

Similarly, we have t2 + t+(1000)2 is irreducible over GF (16). Let GF (256) =
GF (16)[t]/(t2 + t + (1000)2) and (abcdefgh)2 denote the equivalent class of
(abcd)2t+(efgh)2. Then we can construct a multiplication table of size 256×256.

Similarly, we have t2 + t + (1000, 0000)2 is irreducible over GF (256). Let
α1 = (1000, 0000)2. Let GF (216) = GF (256)[t1]/(t21 + t1 + α1). However, we
do not construct the multiplication table of GF (216). For a, b, c, d ∈ GF (256),
(at1 + b)(ct1 + d) = act21 + (ad + bc)t1 + bd = ac(t1 + α1) + (ad + bc)t1 + bd =
[(a + b)(c + d) + bd]t1 + [acα1 + bd].

Similarly, we have t2+t+(1000, 0000, 0000, 0000)2 is irreducible over GF (216).
Let α2 = (1000, 0000, 0000, 0000)2. Let GF (232) = GF (216)[t2]/(t22 + t2 + α2).
For A, B, C, D ∈ GF (216), (At2 + B)(Ct2 + D) = [(A + B)(C + D) + BD]t2 +
[ACα2 + BD].

Note that we now have a recursive definition for GF ((28)(2
i)). With a proper

choice of αi, we let GF ((28)(2
i)) = GF ((28)(2

i−1))[ti]/(t2i +ti+αi). For a, b, c, d ∈
GF ((28)(2

i−1)),

Tractable Rational Map Signature 255

(ati + b)(cti + d) = [(a + b)(c + d) + bd]ti + [acαi + bd]
where the addition is the bitwise XOR and the multiplication of expressions of
a, b, c, d and αi are done in GF ((28)(2

i−1)).
To find the inverse of ati + b, first we let (ati + b)(Ati + B) = 1, that is,

(aA + aB + Ab)ti + aAαi + bB = 1 or, in vector form, by considering {ti, 1}
as a basis,

(
a + b a
aαi b

) (
A
B

)
=

(
0
1

)
. Hence

(
A
B

)
=

(
a + b a
aαi b

)−1 (
0
1

)
=

(ab + b2 + a2αi)−1

(
b a

aαi a + b

) (
0
1

)
= (ab + b2 + a2αi)−1

(
a

a + b

)
. Therefore

(ati + b)−1 = (ati + a + b)(ab + b2 + a2αi)−1.
Here we give an example of field extension of degree 12 to illustrate how we

can accelerate the computation of large field. We let K = GF (28) and L, L′, L′′

be the finite extension fields of K such that K ⊂ L′′ ⊂ L′ ⊂ L and [L′′ : K] = 2,
[L′ : L

′′] = 2, [L : L
′] = 3. Therefore L

′ = GF (216), L
′ = GF (232) ⊂ L, and

L = GF (296) and we need to discuss the field extension of degree 3 below.
Since t3 + t + 1 is irreducible over GF (232)[t], we can identify GF (296) with

GF (232)[t]/(t3 + t + 1). If we use

⎛⎝a
b
c

⎞⎠ to represent at2 + bt + c, then

⎛⎝a
b
c

⎞⎠ ∗12

⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝ (a + c) b a
(a + b) (a + c) b

b a c

⎞⎠ ⎛⎝x1

x2

x3

⎞⎠
where ∗12 denotes the multiplication in L and the right hand side is just the
usual matrix multiplication. In signing a message, we need to solve ax = y for
x in L. That is, to solve⎛⎝ (a + c) b a

(a + b) (a + c) b
b a c

⎞⎠ ⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝y1

y2

y3

⎞⎠
for x1, x2, x3. Therefore, we have⎛⎝x1

x2

x3

⎞⎠ =
1
�

⎡⎣adj

⎛⎝ (a + c) b a
(a + b) (a + c) b

b a c

⎞⎠⎤⎦ ⎛⎝y1

y2

y3

⎞⎠ .

Write out adj

⎛⎝ (a + c) b a
(a + b) (a + c) b

b a c

⎞⎠ as

⎛⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎠, then

A31 = A12 = A23 = a2 + bc
A11 = A22 = a(b + c) + c2

A32 = A13 = ac + (a + b)2

A21 = A31 + A13

A33 = A22 + A32

� = aA31 + bA32 + cA33

According to the calculation above, to solve ax = y, we need 21 multiplica-
tions and one inverse operation in GF (232), which is roughly 342 multiplications

256 Lih-Chung Wang et al.

in K. Comparing to TTS, doing the Gaussian elimination for two 9×9 matrices,
it takes at least about 2 × 93/3 ≈ 500 multiplications in K.
Note: There will be a extended version at IACR eprint archive.

References

1. G. Ars and J.-C. Faugère, Comparison of XL and Gröbner Bases Algorithms over
Finite Fields, preprint. Will appear as one half of an article at Asiacrypt 2004 and
LNCS.

2. M. Bardet, J.-C. Faugère, and B. Salvy, Complexity of Gröbner Basis Computa-
tions for Regular Overdetermined Systems, INRIA Rapport de Recherche No. 5049;
a slightly modified preprint is accepted by the International Conference on Poly-
nomial System Solving.

3. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang, Asymptotic Complexity of
Gröbner Basis Algorithms for Semi-regular Overdetermined Systems over Large
Fields, manuscript in preparation.

4. J.-M. Chen and B.-Y. Yang, Tame Transformations Signatures With Topsy-Turvy
Hashes, proc. IWAP 2002, Taipei.

5. J.-M. Chen and B.-Y. Yang, A More Secure and Efficacious TTS Scheme, ICISC
2003, LNCS v. 2971, pp. 320-338; full version at eprint.iacr.org/2003/160.

6. D. Coppersmith, J. Stern, and S. Vaudenay, Attacks on the Birational Permutation
Signature Schemes, Crypto 1993, LNCS v. 773, pp. 435–443.

7. N. Courtois, L. Goubin, W. Meier, and J. Tacier, Solving Underdefined Systems of
Multivariate Quadratic Equations, PKC 2002, LNCS v. 2274, pp. 211-227

8. N. Courtois, Generic Attacks and the Security of Quartz, PKC 2003, LNCS v. 2567,
pp. 351-364.

9. N. Courtois, Algebraic Attacks over GF (2k), Cryptanalysis of HFE Challenge 2
and SFLASHv2, accepted for PKC 2004.

10. N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations, EUROCRYPT 2000,
LNCS v. 1807, pp. 392-407.

11. N. Courtois and J. Patarin, About the XL Algorithms over GF (2), CT-RSA 2003,
LNCS v. 2612, pp. 141-157.

12. N. Courtois, L. Goubin, and J. Patarin, SFLASHv3, a Fast Asymmetric Signature
Scheme, preprint

13. C. Diem, The XL-algorithm and a Conjecture from Commutative Algebra, preprint
(to appear Asiacrypt 2004 and LNCS) and private communication.

14. W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans. Info. The-
ory, vol. IT-22, no. 6, pp. 644-654.

15. J.-C. Faugére, A New Efficient Algorithm for Computing Gröbner Bases (F4),
Journal of Pure and Applied Algebra, 139 (1999), pp. 61–88.

16. J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero (F5), Proc. ISSAC 2002, pp. 75-83, ACM Press 2002.

17. J.-C. Faugère and A. Joux, Algebraic Cryptanalysis of Hidden Field Equations
(HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS v. 2729, pp. 44-60.

18. M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory
of NP-completeness, 1979, p. 251.

19. W. Geiselmann, R. Steinwandt, and T. Beth, Attacking the Affine Parts of
SFLASH, 8th International IMA Conference on Cryptography and Coding, LNCS
v. 2260, pp. 355-359.

Tractable Rational Map Signature 257

20. W. Geiselmann, R. Steinwandt, and T. Beth, Revealing the 441 Key Bits of
SFLASHv2, Third NESSIE Workshop, 2002.

21. L. Goubin and N. Courtois, Cryptanalysis of the TTM cryptosystem, Asiacrypt
2000, LNCS v. 1976, pp. 44-57.

22. A. Kipnis and A. Shamir, Cryptanalysis of the Oil and Vinegar Signature Scheme,
Crypto’98, LNCS v. 1462, pp. 257-266

23. A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Sigature
Schemes, Crypto’99, LNCS v. 1592, pp. 206-222

24. A. Kipnis and A. Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization, Crypto’99, LNCS v. 1666, pp. 19-30

25. T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption, EUROCRYPT’88, LNCS v. 330,
pp. 419-453.

26. T. Moh, A Public Key System with Signature and Master Key Functions,
Communications in Algebra, 27 (1999), pp. 2207-2222.

27. T. Moh and J. -M. Chen, On the Goubin-Courtois Attack on TTM, published
electronically by Cryptology ePrint Archive (2001/072).

28. New European Schemes for Signatures, Integrity, and Encryption, project
homepage at http://www.cryptonessie.org.

29. Performance of Optimized Implementations of the NESSIE primitives, version 2.0
http://www.cryptonessie.org.

30. J. Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88, Crypto’95, LNCS v. 963, pp. 248-261.

31. J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP) Two New Families of Asymmetric Algorithms, EUROCRYPT’96, LNCS
v. 1070, pp. 33-48.

32. J. Patarin, L. Goubin, N. Courtois, Improved Algorithm for Isomorphisms of
Polynomials, EUROCRYPT’98, LNCS v. 1403, pp. 184-200.

33. J. Patarin, N. Courtois, and L. Goubin, QUARTZ, 128-Bit Long Digital Signa-
tures, CT-RSA 2001, LNCS v. 2020, pp. 282-297. Updated version available at
http://www.cryptonessie.org.

34. J. Patarin, N. Courtois, and L. Goubin, FLASH, a Fast Multivariate Signature
Algorithm, CT-RSA 2001, LNCS v. 2020, pp. 298-307. Updated version available
at http://www.cryptonessie.org.

35. A. Shamir and E. Tromer, Factoring Large Numbers with the TWIRL Device,
Crypto 2003, LNCS v. 2729, pp. 1-26.

36. Lih-Chung Wang and Fei-Hwang Chang, Tractable Rational Map Cryptosystem,
available at http://eprint.iacr.org/2004/046.

37. C. Wolf, Efficient Public Key Generation for Multivariate Cryptosystems, preprint,
available at http://eprint.iacr.org/2003/089.

38. B.-Y. Yang and J.-M. Chen, Rank Attacks and Defence in Tame-Like Multivariate
PKC’s, see http://eprint.iacr.org/2004/061.

39. B.-Y. Yang and J.-M. Chen, All in the XL Family: Theory and Practice, to appear
at ICISC 2004 and LNCS.

40. B.-Y. Yang, Y.-H. Chen, and J.-M. Chen, TTS: High-Speed Signatures on a
Low-End Smart Card , Proc. CHES ’04, LNCS v. 3156, pp. 371-385.

41. B.-Y. Yang, J.-M. Chen, and N. Courtois, On Asymptotic Security Estimates
in XL and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS 2004, LNCS
v. 3269, pp. 401-413.

Cryptanalysis of the Tractable
Rational Map Cryptosystem

Antoine Joux1, Sébastien Kunz-Jacques2,
Frédéric Muller2, and Pierre-Michel Ricordel2

1 SPOTI
Antoine.Joux@m4x.org

2 DCSSI Crypto Lab 51, Boulevard de La Tour-Maubourg,
75700 Paris 07 SP France

{Sebastien.Kunz-Jacques,Frederic.Muller,Pierre-Michel.Ricordel}
@sgdn.pm.gouv.fr

Abstract. In this paper, we present the cryptanalysis of a public key
scheme based on a system of multivariate polynomial equations, the
“tractable rational map” cryptosystem. We show combinatorial weak-
nesses of the cryptosystem, and introduce a variant of the XL resolution
algorithm, the Linear Method, which is able to leverage these weaknesses
to invert in short time the trapdoor one-way function defined by the ci-
pher using only the public key, and even rebuild a private key. We also
interpret the behavior of the Linear Method on random instances of the
scheme, and show that various generalizations of the cipher, as well as
an increase of the security parameter, cannot lead to a secure scheme.

Keywords: Public Key Cryptography, Polynomial Systems, Tractable
Rational Map Cryptosystem, XL, Gröbner Bases, Isomorphism of Poly-
nomials

1 Introduction

Several recent public key cryptosystems use multivariate polynomial systems of
equations instead of number-theoretic constructions. The “public” operation in
such a system is to evaluate the system output on a given input value: this is
a very simple operation even for devices with limited resources such as smart
cards, although the system needs to be stored. The “private” operation is to find
a preimage of a given value.

Determining whether a random system of n polynomial equations with n
variables over any finite field has a solution is known to be a NP-complete prob-
lem, and thus seems to be a good starting point to build a cryptosystem. But the
polynomial systems used in cryptographic applications must have a special form
to make the solving operation possible given the knowledge of a secret backdoor.
Thus the cryptanalyst does not have to solve random polynomial systems, but
rather random instances of a special subfamily of polynomial systems.

The first cryptosystems based on polynomial equations were defeated. For
example the Matsumoto-Imai scheme introduced in 1988 [6] was cryptanalyzed

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 258–274, 2005.
c© International Association for Cryptologic Research 2005

Cryptanalysis of the Tractable Rational Map Cryptosystem 259

by J. Patarin (Crypto 95, [14]). More recently, some attacks against stronger
schemes, such as HFE (Eurocrypt 96, [15]) or SFLASH (RSA Conference 2001,
[13]), have emerged. In addition, a 80-bit HFE challenge was broken by J.-C.
Faugere in 2002 [4]. It was later described by Faugère and Joux how to attack
HFE using an optimized Gröbner basis algorithm and a linear algebra approach
(see [7]).

All these cryptosystems share some common properties:
– They use only quadratic equations on the ground field. We can however

notice that, in general, an equation of degree more than 2 is equivalent to a
quadratic system with more variables.

– Public and private keys are systems of equations related by a linear or affine
masking: a composition with a linear or affine transformation on the left,
and a linear or affine substitution of variables on the right is performed on
the private key to hide its structure, and the result constitutes the public
key.
Finding whether two random systems are equal under such a transformation
is a difficult problem (it is referred to as the “Isomorphisms of Polynomials”
(IP) problem, and is studied in [12]), thus the linear/affine masking seems a
strong enough barrier between the public and the private key.
These cryptosystems also generally use the relation between n-variable poly-

nomials over a field F , and univariate polynomials over an extension G of de-
gree n of F : any system composed of n equations in n variables over F can be
transformed into a unique 1-variable polynomial over G. For example, the HFE
private key is a sparse polynomial over an extension of GF (27); the function it
defines can be inverted using the Berlekamp algorithm. But the system can also
be expressed using several polynomials over the ground field GF (27).

The Tractable Rational Map Cryptosystem (TRMC, [2]) also follows this
framework: its private key comprises equations on various extensions of GF (28).
It is in a block triangular form: a subset of the equations can be solved, and then
the result injected into other equations to further solve the system. We will show
that this structure is not well hidden by a linear masking. In fact, an attacker
can solve the public system using essentially the same resolution technique as
the owner of the private key (of course, the resolution time will be higher, albeit
still feasible in a reasonable time).

The outline of this paper is as follows: first, we present techniques used to
solve systems of polynomial equations, and in particular the technique we imple-
mented to break TRMC. Then, we introduce the cryptosystem and compute the
complexity of finding preimages of some fixed values with the resolution method
we have chosen. We then present our experimental results, and discuss the secu-
rity of variants of the cryptostem that would use more unknowns and/or more
equations. Finally, me discuss a method that can rebuild a “pseudo-private key”,
a system almost as easy to invert as the private key itself.

2 Algorithms for Solving Polynomial Systems

In this section, we review some known algorithms that allow to solve a system
of multivariate polynomial equations. These algorithms fall into two categories:

260 Antoine Joux et al.

special-purpose solving algorithms that only apply to systems having a unique
solution (at least without further work), and Gröbner basis algorithms.

Since the method we used in the case of the TRMC is inspired by linear
algebra solving techniques and not by Gröbner basis techniques, we will not
discuss this second category of algorithms extensively. We will however make a
quick review of the Buchberger algorithm, which is the historical Gröbner basis
algorithm, and on more recent algorithms like F4 and F5. Reference material on
Gröbner basis can be found in [1].

From now on, we will deal only with systems having a unique solution or
“zero-dimensional ideals”, and deal with Gröbner basis computation algorithms
only in the case of such systems. Moreover, since systems of interest for us are
quadratic, we will freely assume in the description of the algorithms that we deal
with sets of quadratic polynomials.

2.1 Linearization, Relinearization

Linearization is the most simple and natural resolution technique. The idea
behind linearization is to consider each quadratic monomial of the system as a
new unknown. If the system has n variables, this introduces at most n(n + 1)/2
unknowns. Each equation is then viewed as a line vector of a matrix, with higher
degree monomials leftmost. Then Gaussian elimination is applied to the system.
If there are enough linearly independent equations, this will hopefully yield new
polynomials without quadratic terms. Since the size of the matrix is O

(
n2

)
, the

simplest reduction algorithm has a cost of O
(
n6

)
additions and multiplications in

the finite field. Note that as soon as the number of linearly independent equations
exceeds the total number of quadratic monomials present in the system, the
gaussian elimination will yield at least one linear polynomial in the ideal, which
will allow to eliminate one unknown in the original system and to iterate the
method to finish the resolution.

Unfortunately, linearization requires approximately n2/2 equations, which is
not suitable for most practical situations (there are systems with n equations or
more that have a unique solution, therefore linearization leaves many systems
with a unique solution unsolved).

Relinearization is a method introduced by A. Kipnis and A. Shamir to crypt-
analyze HFE in [8], and further analyzed (and compared to XL) in [11]. It is
a generalization of the linearization method that works with less equations. In
fact, there are several variants of the relinearization method, that are able to
cope with various lower bounds for the ratio m/n2, where n is the number of
unknowns and m the number of equations.

The simplest relinearization technique, the fourth degree relinearization, goes
as follows. Build the linearized matrix as in the linearization method. This time,
we have less linearly independent polynomials than quadratic monomials in the
system, thus the matrix has a non-trivial kernel. Parameter the kernel space
by new unknowns z1, . . . , zk (k = n(n+1)

2 + n + 1 − m). Now, each quadratic
monomial of the original system xixj = yij is viewed as a linear combination

Cryptanalysis of the Tractable Rational Map Cryptosystem 261

of the zi. We can write quadratic equations on the zi by writing compatibility
equations on the yij :

xixjxkx = yijyk = yikyj = yiyjk

We can write 2
(

n

4

)
=

n(n − 1)(n − 2)(n − 3)
12

such equations. Thus we have

about n4/12 quadratic equations for the zi. These equations can be proven to
be linearly independent. If we linearize the new quadratic system, this gives us a
new (relinearized) system with n4/12 equations and

(
n2/2 − m

)2
/2 unknowns.

This new system will have more equations than unknowns if

m >

(
1
2
− 1√

6

)
n2 ≈ 0.09n2

This degree 4 relinearization solves the original system if the above condition
is met.

Higher degree relinearizations are able to cope with systems with less equa-
tions. They consist in writing higher degree consistency equations on the zi, like
for example for a degree 6 relinearization, yijykypq = yikyjpyq. Even for degree
6 relinearization, it is difficult to perfom a precise computation of the threshold
m/n2 above which systems become solvable. This is related to the fact that many
consistency equations are linearly dependent, and we cannot precisely estimate
the number of equations needed.

2.2 XL

XL was introduced by N. Courtois, A. Klimov, J. Patarin and A. Shamir in
[11]. It relates to some works peformed by formal calculus researchers like D.
Lazard (see, for example, [9]), aimed at improving the efficiency of Gröbner
basis computation by using linear algebra and Gaussian reduction.

XL is partly inspired from an idea introduced to use the Buchberger algorithm
to explicitly solve systems of equations having a unique solution. The Bucherger
algorithm allows to eliminate monomials in the polynomials of an ideal, that is
to find new polynomials of the ideal that are written using only a specific set of
monomials. Thus to solve a system, one can try to eliminate all the monomials
but the powers of a selected unknown of the system, say x1. If this succeeds,
this leads to at least one univariate polynomial in x1 that is in the ideal. One
can then use the Berlekamp algorithm to solve such a univariate polynomial
equation, replace x1 by its value in the original system, and run the algorithm
again with the new system that has one unknown less than the original one.

Let S be a system of multivariate polynomial equations having a unique
solution, I the ideal generated by the polynomials in S and p ∈ I. Since p is a
sum of elements of S with polynomial coefficients, p is also a sum with scalar
coefficients of all the multiples of elements of S by all monomials of degree ≤ d,
for some degree d. This applies in particular to the univariate polynomials of the
ideal (we know there are such polynomials in I since S has a unique solution).

262 Antoine Joux et al.

Following the preceding observations, XL looks for univariate polynomials
built from the elements of S as follows. First, a monomial order is chosen where
all the powers of some unkown, say x1, come last. Then the matrix of all the
polynomials that are multiple of some element in S by some monomial of degree
d is built. The polynomials are mapped to lines in the matrix and each column
gives the coefficient of the polynomials with respect to some particular mono-
mial. Monomials that come first in the order are leftmost in the matrix. Then
a Gaussian reduction is performed. If d is high enough, this step yields at least
one non-zero univariate polynomial in x1. The algorithm then loops as described
above.

Note that at this point, there is no need for a combinatorial argument about
the number of polynomials built and the number of monomials of a given degree
to ensure that, for some d, we will find univariate polynomials. It suffices to see
that such polynomials are in the ideal and that they can be written as polynomial
combinations of elements of S.

In [11], it was proven that XL is more powerful than the relinearization
algorithm, in the following sense: if a d-degree relinearization succeeds in solving
a system S, then XL will also succeed by building the matrix of (total) degree
d from S. Moreover, the system size of the matrix in XL will be lower than the
relinearization matrix. Estimates of the complexity of XL are also given.

2.3 Gröbner Bases, Buchberger, F4, F5

In general, a system of polynomial equations does not have a unique solution
thus “solving” it does not necessarily make sense. The relevant concept is the
Gröbner basis of a polynomial system. A Gröbner basis of an ideal is a family of
polynomials of the ideal that plays the same role in the multivariate case, than
the polynomial generating an ideal in the univariate case. Indeed, with a Gröbner
basis of an ideal I, it can be quickly decided whether a polynomial p belongs to
I or not. This is done with an euclidian division algorithm generalized to the
multivariate case that reduces p on the basis. The special property of Gröbner
bases is that a polynomial reduces to 0 iff it belongs to the ideal. This is not true
in general for a family F generating an ideal I: if a polynomial reduces to 0 on
F , it belongs to the ideal (since it is a sum of elements of F), but the converse
needs not to be true.

In the case of a system having a unique solution x1 = a1, . . . , xn = an, the
family X1 − a1, . . . , Xn − an generates the ideal of the system and is a Gröbner
basis. More generally, any (minimal) Gröbner basis of such a system will contain
only degree 1 polynomials, and there will be sufficiently many of them to recover
the solution of the system. Thus Gröbner basis algorithms are of interest for us.

In the univariate case, the euclidian division crucially uses the properties of
the degree. The degree enables to totally order the monomials of a polynomial
and then, by only considering the leading terms of two polynomials (p1, p2), one
can decide whether p1 can be reduced by p2 or not. In a similar fashion, in the
multivariate case, we use monomial orderings (total, well-funded, compatible
with multiplication). These monomial orderings are at the heart of reduction

Cryptanalysis of the Tractable Rational Map Cryptosystem 263

algorithms because they associate to each polynomial a leading monomial in a
consistent way, and reduction decisions are made only by considering leading
monomials.

– The Buchberger Algorithm
The central notion in the Buchberger algorithm is the S-polynomial S formed
from a pair of polynomials (p1, p2). S is the simplest polynomial combination
of p1 and p2 that has a leading term strictly smaller than the least common
multiple of the leading terms of p1 and p2. It is formed by mutiplying p1

and p2 by appropriate monomials so that in the sum of the results, the two
leading terms cancel each other.
A Gröbner basis has the characteristic property that all S-polynomials built
upon it reduce to zero on the base; this results from the special property of
Gröbner bases since S-polynomials belong to the ideal. Based on this observa-
tion, the Buchberger algorithm works as follows: starting from a polynomial
family F , one builds all the S-polynomials that can be formed from F , then
reduces them on F . If all polynomials reduce to zero, F is a Gröbner basis.
If not, non-zero polynomials that have been found after reduction are added
to F . This yields new pairs to examine. This algorithm always terminates,
but the execution time and the size of the resulting basis are hard to predict;
in particular, the resulting family is not in general a minimal Gröbner basis.
It usually contains many redundant polynomials and can be “cleaned up”.
One of the problems of the Buchberger algorithm is that once it has built a
Gröbner basis of an ideal, there are usually many pairs left to examine and
the algorithm will terminate only when all these pairs have been reduced
to zero. This termination phase usually represents a significant part of the
computation. It is possible to avoid reducing some pairs, but we will see that
in F5 or in linear algebraic approaches, an efficient criterion can be found to
avoid considering polynomials trivially reducing to zero.

– F4 and F5

Both of these algorithms were engineered by J.C. Faugère and his team.
F4 was introduced in [5] and F5 in [3]. F4 uses some ideas from the Buch-
berger algorithm combined with linear algebra. Its performance is roughly
equivalent to XL for a system that has a unique solution.
F5 is built upon F4 but has the additional property to avoid trivial reductions
to zero. This is performed by maintaining a set of known generators G of
the ideal, and avoiding to form polynomial relations gh−hg = 0 (g, h ∈ G).
Other trivial relations may also arise from the Frobenius map of the finite
field, but F5 avoids considering them too.

3 A Variant of XL: The Linear Method

In this section, we describe the variant of XL that we implemented. We call
it the Linear Method. Just like XL tries to build univariate polynomials, our
method looks for linear polynomials in the ideal. Once sufficiently many (linearly
independent) linear polynomials have been built, the solution of the system can

264 Antoine Joux et al.

be found. This purely linear approach has provable properties that will be very
useful to break TRMC, even if XL might be more efficient.

3.1 Principles of the Linear Method

Let S be a set of polynomials and I =< S > the ideal it generates. The basic
operation of the algorithm, for a target degree d, unfolds as follows. Consider
p ∈ S, of degree d′ ≤ d. Every multiple of p by a monomial m of degree d′ − d
is in I, and of degree d. The algorithm builds a matrix description of all the
polynomials of degree d obtained this way, for all p ∈ S of degree ≤ d and all
suitable m. Each line in the matrix describes a polynomial, and each column gives
the coefficient of a particular monomial in the polynomials. Monomials of lower
degree correspond to rightmost columns in the matrix. Starting with m quadratic

polynomials with n variables in S, the degree d matrix has m

(
n − 1 + d − 2

d − 2

)
rows and

d∑
d′=0

(
n − 1 + d′

d′

)
columns.

The matrix can then be row reduced by the Gauss algorithm. Since this
reduction cancels the coefficients of the higher degree monomials in the polyno-
mials described by the matrix, it may yield new polynomials of degree < d. They
are in I, since they are expressed as linear combinations of polynomials of I.

The aim of the algorithm is to build linear polynomials in the ideal by building
and reducing degree d matrices for various values of d. Having built and reduced
the degree d matrix, what degree should we analyze next? Since reducing degrees
smaller than d is far less costly than reducing degree d, one could choose to always
reduce degree d′ when new polynomials of degree d′ < d have been found during
the reduction of degree d, and reduce degree d + 1 otherwise. Another variant
would be to go into degree d′ as soon as one polynomial of degree d′ < d is found
when reducing degree d. In general, it is difficult to find an optimal strategy.
Moreover, the behavior of the algorithm is heavily dependent on the structure
of the system solved. For random systems, the choice of strategy is usually not
so important, because no fall of degree will happen before the critical degree for
which the corresponding matrix has mores lines than columns.

We specialized our algorithm to solve TRMC, and since we wanted to explore
in detail the combinatorial behavior of the system, we did not implement any
particular stategy and rather opted for a manual sequencing.

– Numerical Data for TRMC
With 40 variables such as in the case of the TRMC, and 48 polynomials in
S, the degree 4 matrix is 39360× 123410. It is only feasible to go to degree
4 or 5 on a typical 32-bit machine, e.g. a PC with 2 GB of RAM.

– An Alternative to the Gauss Reduction: Sparse Matrix Algebra
Let A be the the degree d matrix before Gauss reduction. The columns of A
represent monomials of degree ≤ d: split A horizontally in A1, corresponding
to monomials of degree d, and A2, corresponding to monomials of degree < d.
If v is a nontrivial kernel vector of tA1, then vA2 represents a polynomial

Cryptanalysis of the Tractable Rational Map Cryptosystem 265

of I of degree < d. Any such v can be found using sparse algebra resolution
techniques like Lanczos or Wiedemann. Since lines in A are sparse, this
technique saves memory for high values of d.

– Room for Improvement
• Starting with degree 4, if the polynomials of the system have degree 2,

the matrices that are built yield many polynomials trivially reducing
to zero arising from the relations fg − gf = 0 (see section 5.1 for an
example). This can be avoided by selectively removing some polynomial
multiples when building the matrix.

• When a linear polynomial � has been found, it can be used to reduce the
number of unknowns in the system by a direct susbstitution, instead of
adding multiples of � to the known polynomials. The same polynomials
are found in both cases, but the first approach is faster and saves memory.

In the case of TRMC however, these optimizations are not relevant since
they would save very little computation time.

3.2 Properties of the Linear Method

Here, we present two key properties of the Linear Method which enable it to
break TRMC. The proofs are given in annex A.

In the course of the resolution of a system, we are interested in the number
of linearly independent polynomials of degree d′ < d that appear when reducing
the degree d matrix. These falls of degree are strongly related to the ability to
solve a system. The number of falls of degree that appear at all degrees d and
for all sequencing choices of the algorithm when solving a system S are what we
call the combinatorial properties of S.

Independence from Linear-Affine Masking Two systems equal up to left
linear and right affine invertible transformations have the same combinatorial
properties w.r.t. the linear method.

Independence from Subfield Projection If the Linear Method is able to
solve a system S expressed on a finite extension G of a field F by reducing
degrees less than d, it will also be able to solve S expressed on F by reducing
degrees less than d.

In the case of TRMC, these properties mean that the public key and private
key systems have the same combinatorial properties. In particular, the Linear
Method will give the same results on both systems.

4 The Tractable Rational Map Cryptosystem

The Tractable Rational Map Cryptosystem was introduced in [2] by F. Chang
and L. Wang. Its private key is a system of 48 quadratic equations with 40
unknowns over F = GF (28). In the public key, these equations are masked by
affine transformations on the left (before the polynomial system) and on the right
(after the polynomial system). Some equations of the private key are derived

266 Antoine Joux et al.

from extensions of F , GF (216), GF (232) and GF (2128). As in [2], we will use the
notation xi,...,i+k−1 for a k-uple of elements xi, . . . , xi+k−1 of GF (28) viewed as
an element of the extension GF (28k) of GF (28).

The input of the private system is x1, . . . , x40, and its output is y1, . . . , y48.
The system can be written as follows:

y1,2 = q1(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (1)
y3,4 = q2(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (2)
y5,6 = q3(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (3)
y7,8 = q4(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (4)

y9,10 = q5(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (5)
y11,12 = q6(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (6)
y13,14 = q7(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (7)
y15,16 = q8(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (8)
y17,18 = q9(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (9)
y19,20 = q10(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (10)
y21,22 = q11(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (11)

y23,...,26 = x15,...,18(x256
2,...,5 + x2,...,5 + a) + b x6,...,9x10,...,13 (12)

y27 = x19 + f1(x1, . . . , x18) (13)
y28 = x20 + f2(x1, . . . , x19) (14)
y29 = x21 + f3(x1, . . . , x20) (15)
y30 = x22 + f4(x1, . . . , x21) (16)
y31 = x23 + f5(x1, . . . , x22) (17)
y32 = x24 + f6(x1, . . . , x23) (18)

y33,48 = x25,...,40(x256
7,...,22 + x7,...,22 + c) + f7,...,22(x1, . . . , x24) (19)

where:
– a, b and c are random values in GF (28),
– f1, . . . , f6 are random quadratic polynomials over GF (28) (the number of

variables of each polynomial ranges from 18 to 23),
– f7,...,22 is a random system of 16 quadratic polynomials over GF (28) with

24 variables,
– q1, . . . , q11 are random quadratic polynomials with 7 variables over GF (216).

Note that in any extension of F = GF (28), viewed as a F -vector space,
x #→ x256 is linear, and each multiplication coordinate is a quadratic form. There-
fore all equations, including equations 12 and 19, yield quadratic equations when
expressed over F .

As far as our attack is concerned, we will only retain the following aspects
of the structure of the system: it has a block triangular structure; it contains a
random susbsystem of 11 equations with 7 variables over GF (216), that must
be solved first. The next equations allow to retrieve one or several variables at
a time (depending on the field on which they are written).

Cryptanalysis of the Tractable Rational Map Cryptosystem 267

5 Combinatorial Properties
of the Public and Private Key of TRMC

By section 3.2, we know that the combinatorial properties of the public and
private key of TRMC are the same. That means that the Linear Method is able
to break TRMC without exploring a higher degree than the one needed to solve
the private key system expressed over GF (28). In this section, we show that the
private key system can be solved by analyzing degrees ≤ 4.

We first review the behavior of the Linear Method on the subsystem of 11
equations with 7 variables over GF (216).

We do not have to consider the role of field equations (x|k|−x = 0) since the
maximum degree of the polynomials we will consider, 4, is less than the size of
the smallest field considered, GF (28).

5.1 Resolution of the Subsystem over GF (216)

Let us compute the number of monomials of a given degree with 7 variables.
There are

(
n−1+d

d

)
monomials of degree d with n variables, thus we have

degree 1 2 3 4
monomials 7 28 84 210

We also need the number of polynomials of a given degree d that can be
formed from the 11 original polynomials:

degree 2 3 4
polynomials 11 77 308

Suppose now we try to build linear polynomials by multiplying the original
polynomials by quadratic polynomials. Will we find some? This is equivalent
to saying that we are looking for linear combinations of the 11+77+308=396
polynomials of the preceding table, that are linear. We thus need to cancel
210+84+28=322 terms in these polynomials. Unfortunately, our 396 polynomials
are not linearly independent, because there are

(
11
2

)
= 55 relations in degree 4 of

the form fg−gh = 0 with g �= h belonging to the set of the original polynomials.
This leaves us with 396-55-322=19 linear polynomials. They cannot be linearly
independent. Indeed, since we only have 7 variables and since our system has a
unique solution, the dimension of the linear polynomials in the system is 7. Thus
we have 12 more cancellations, which are in fact caused by the redundancy of
the original equations (with very high probability, not all of the equations of the
original system are needed for the system to have a unique solution).

We know by section 3.2 that when translated over GF (28), the subsystem,
which becomes a system of 22 equations with 14 variables, is still solvable by
exploring degrees 4, 3, 2 then 1.

These theoretical observations are confirmed when running our algorithm on
such a system. Building and reducing the matrices of degrees 4, then 3, 2 and

268 Antoine Joux et al.

1 of the system expressed over GF (216) yields the solution as expected. The
total number of cancellations occuring during the computation is 67, which cor-
responds to the 55 “fg−gh” cancellations and the 12 redundancy cancellations.
Over GF (28), the system can be solved as well, but the number of cancella-
tions observed (255) is higher than 2 × 67, because many parasistic redundant
equations are induced by the projections.

5.2 Behavior of the Linear Method over the Full Private Key

Because of the results of section 5.1, when reducing degrees 4, 3, 2, then 1, we
expect to find 14 linearly independent linear polynomials in the ideal. Then, by
adding multiples of these polynomials to the degree 2 matrix (which amounts
to using these relations to reduce the number of variables in the original sys-
tem), and reducing degree 2 again, we expect to find 4 more linear polynomials
(because once x1, . . . , x14 have been found and their value substituted into the
system, equation 12 becomes linear in x15, . . . , x18). Substituting into the degree
2 polynomials and reducing will yield x19, and so on. In our experiments, this
phenomenon was observed as predicted. The only surprise is that we do not
have to know x1, . . . , x24 to get a partial information on x25, . . . , x40. Indeed,
once x1, . . . , x22 are known, equation 19 becomes linear in x25, . . . , x40, and thus
equations 17, 18 and 19 form a set of 18 equations over GF (28) with 18 lin-
ear terms and only 3 quadratic terms (x2

23, x23x24, and x2
24): their reduction

gives 15 linear polynomials, among which there is x23, one linear combination of
x24, . . . , x40 and 13 linear combinations of x25, . . . , x40. The next step is identical
except that x23 and x2

23 are now constants; there is now only one quadratic term
left, instead of 3, and thus reduction gives x24 and another linear combination
of x25, . . . , x40. The last step yields the last linear relation needed to compute
the values of x25, . . . , x40.

6 Experimental Results and Complexity Estimates

6.1 Linear Method Used over Instances of TRMC Public Keys

To be in a realistic cryptanalysis situation, we built a random public key with
Magma [10], computed the image of a random vector by the public key, and built
the system composed of the value obtained substracted to the key. We then tried
to solve the resulting system using the Linear Method1.

The resolution process follows exactly the steps described in subsection 5.2:
reduction of degrees 4 downto 1 yields 14 linear polynomials, and then we only
have to loop between degrees 1 and 2 to get 4, then 1, 1, 1, 1, 15, 2 and 1
linear equations. The longest step is the degree 4 reduction, which we have
performed using a lanczos algorithm. The computation time of the lanczos al-
gorithm is proportional to the number of vectors computed. Thus, instead of
1 The resulting system is guaranteed to have at least one solution (the random vector)

but combinatorial arguments show that this solution is very likely to be unique. Thus
we can apply the Linear Method.

Cryptanalysis of the Tractable Rational Map Cryptosystem 269

looking for degree 3 polynomials in the degree 4 matrix M , we tried to build
directly quadratic polynomials: this gave us 23 polynomials instead of the 273
cubic polynomials that can be buit from M (these are experimental figures ob-
tained from experiments on a system of 11 equations with 7 variables on GF (216)
and expressed over GF (28)). Overall, the lanczos resolution took 5 hours on a
cluster of 6 bi-pentium IV PCs and used 400MB of RAM on each machine (data
was duplicated on every machine). In that case, a Gauss reduction would have
probably been faster but broke the 2GB per process limit, and could not be
implemented simply on a 32-bit PC.

The other steps are performed in a few minutes on an average PC.

6.2 Asymptotic Security of TRMC

Here, we estimate the computation time ratio between the legitimate user of the
system and the cryptanalyst who tries to decrypt a message, first for the “plain”
TRMC algorithm, and then in the asymtptotic limit of a generalized TRMC
with more variables and equations.

The preimage computation method suggested by the authors of TRMC is to
solve first the random subsystem using XL, and then to substitute the result into
the other equations. Using the Linear Method instead of XL, solving the random
subsystem S requires to build the degree 4 matrix from the 11 equations with
7 variables of S. The complexity of a legitimate inversion is thus roughly equal
to the computation of the kernel of a

[
11 ∗ (

7−1+2
2

)
= 308

] × [(
7−1+4

4

)
= 210

]
matrix. On the other hand, the cryptanalyst must deal with 48 equations with
40 unknowns, and thus compute the kernel of a matrix of size 39360 × 123410.
Suppose this computation is performed using a Gauss reduction, and that the
cost of a reduction of a a × b matrix is a2b, then the complexity ratio between
the cryptanalyst and the legitimate user is about 223.

Now, put TRMC in the following more general setting: suppose we have a
random quadratic system of m equations with n variables that can be solved by
building and reducing matrices of degree less than or equal to d with the Linear
Method, and that this subsystem is embedded in a block triangular system of
m′ > m equations with n′ > n variables. Then the Linear Method is able to
solve the big system by iterative explorations of polynomials of degree ≤ d built
from the m′ equations with n′ variables.

For the legitimate user, the biggest matrix that must be built is

m

(
n − 1 + d − 2

d − 2

)
×

(
n − 1 + d

d

)
≈ mnd−2 × nd

For the cryptanalyst, it is

m′
(

n′ − 1 + d − 2
d − 2

)
×

(
n′ − 1 + d

d

)
≈ m′n′d−2 × n′d.

At degree d since the systems can be solved, we have mnd−2 ≥ nd and
m′n′d−2 ≥ n′d. Thus with ♣

270 Antoine Joux et al.

Note that since the system has more equations than unknowns, not every
value has a preimage by the system; this is why we had to compute first an image
value.a Gaussian elimination algorithm as before, the ratios of the running times

is ≤
(

m′n′d−2

nd

)3

. This rough estimate is sufficient to show that an increase in
the number of variables of the big system, n′, increases the overall security of
the scheme at most polynomially in n′.

In this analysis, we did not consider the degrees of the field extensions in-
volved as a security parameter. The idea to use extensions of variable degree is
used, for instance, in HFE, and is analyzed in [7]. Although the authors of [2]
do not explicitly state what the security parameter of TRMC is, the algorithm
does not seem to be designed with extensions of variable degree in mind.

7 Computing a Pseudo-private Key

Here, we show that the knowledge of the combinatorial properties of the system
of equations of the public key allows the attacker to build a system equivalent
to the public or the private key and that has the block triangular form of the
private key. Although this pseudo-private key is not necessarily equal to the
private key, it enables the attacker to speed up further attacks.

As we saw in section 5.2 and 6.1, linear equations are computed in several
passes during the course of the resolution. For example, the first group of linear
equations obtained corresponds to the innermost subsystem hidden in the public
key. This subsystem can be extracted from the public key in the following way.
Let S bet the first group of 14 linear equations obtained during resolution, with
their constant part removed. Complete S with other linear equations to obtain
an invertible linear system with 40 variables. Apply the inverse of this change
of variables to the public key. Let us call the new variables z1, . . . , z40, with
z1 to z14 corresponding to elements of S. In the resulting system, there are 22
linear combinations of the equations that only depend on the z1, . . . , z14. These
equations can be computed by a Gaussian elimination on this system, by putting
linear and quadratic monomials depending only on z1, . . . , z14 leftmost.

Since z1, . . . , z14 are only equal to x1, . . . , x14 up to an invertible linear trans-
formation, the resulting subsystem is not necessarily equal to the subsystem of
the private key.

We can iterate this method to further mimic the structure of the original sys-
tem, but the main interest of this technique is to recover the random subsystem
up to a linear transform.

Each preimage computation now requires from the cryptanalyst to find the
kernel of the degree 4 matrix built from 22 polynomials with 14 variables, a
matrix that is 2310× 2380. This computation is roughly 29 times slower than a
legitimate preimage computation.

8 Conclusion

In this article, we performed a practical and full cryptanalysis of a public key
scheme using sets of polynomial equations over finite field, the Tractable Rational

Cryptanalysis of the Tractable Rational Map Cryptosystem 271

Map Cryptosystem. To do so, we used a variant of the XL algorithm which we
call the Linear Method. Our cryptanalysis is two-staged. A first resolution step is
performed using the Linear Method to find a preimage of some value; depending
on the usage of TRMC, this might correspond for example to a signature forgery
or to a decryption of some message. This operation has a cost of 223 legitimate
preimage computations. Using its result and additional information about the
process of the computation, we can then build a pseudo-private key that reduces
the cost of finding a new preimage to only 29 legitimate preimage computations.

We also showed that the very principle of TRMC is flawed in that its security
parameter cannot be reasonably increased to make it secure.

The Linear Method behaves identically on a system whether it is masked by
linear or affine transformations or not. These masking techniques are used to
separate the public key from the private key not only in TRMC but also in well-
known schemes such as HFE or sFLASH. As with other cryptanalysis techniques
like relinearization ([8]), the difficulty in breaking HFE with the linear method
comes from the combination of a projection on a subfield and a linear masking,
and not from the linear masking alone.

References

1. W. Adams and P. Loustaunau. An introduction to Gröbner Bases, volume 3 of
Graduate Studies in Mathematics. American Mathematical Society, 1994.

2. L. Wang F. Chang. Tractable Rational Map Cryptosystem. Cryptology ePrint
archive, Report 2004/046, available at http://eprint.iacr.org.

3. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases without
reduction to zero (F5). In T. Mora, editor, ISSAC 2002, pages 75–83, 2002.

4. J.-C. Faugère. Report on a Successful Attack of HFE Challenge 1 with Gröbner
Basis Algorithm F5/2. Announcement on sci.crypt newsgroup, in April 19th 2002.

5. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

6. T. Matsumoto H. Imai. Public Quadratic Polynomial-tuples for Efficient Signa-
ture Verification and Message Encryption. In C. G. Günther, editor, Advances in
Cryptology - Eurocrypt’88, volume 330 of LNCS, pages 419–453. Springer Verlag,
1988.

7. A. Joux J.-C. Faugère. Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In D. Boneh, editor, Advances in Cryptology
- Crypto’2003, volume 2729 of LNCS, pages 44–60. Springer Verlag, 2003.

8. A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public-key Cryptosystem.
In M. Wiener, editor, Advances in Cryptology - Crypto’99, volume 1666 of LNCS,
pages 19–30. Springer Verlag, 1999.

9. D. Lazard. Gröbner Basis, Gaussian Elimination and Resolution of Systems of
Algebraic Equations. In J. A. van Hulzen, editor, EUROCAL ’83, European Com-
puter Algebra Conference, volume 162 of LNCS, pages 146–156. Springer Verlag,
1983.

10. The magma home page. http://www.maths.usyd.edu.au/u/magma.
11. J. Patarin N. Courtois, A. Klimov and A. Shamir. Efficient Algorithms for Solving

Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel, editor,
Advances in Cryptology - Eurocrypt’2000, volume 180 of LNCS, pages 392–407.
Springer Verlag, 2000.

272 Antoine Joux et al.

12. J. Patarin N. Courtois, L. Goubin. Improved Algorithms for Isomorphisms of
Polynomials. In K. Nyberg, editor, Advances in Cryptology - Eurocrypt’98, volume
1403 of LNCS, pages 184–200. Springer-Verlag, 1998.

13. J. Patarin N. Courtois, L. Goubin. Flash, a Fast Multivariate Signature Algo-
rithm. In D. Naccache, editor, The Cryptographers’ Track at RSA Conference
2001, volume 2020 of LNCS, pages 298–307. Springer-Verlag, 2001.

14. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt’88. In D. Coppersmith, editor, Advances in Cryptology - Crypto’95, volume
963 of LNCS, pages 248–261. Springer Verlag, 1995.

15. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In Advances in Cryptology -
Eurocrypt’96, volume 1070 of LNCS, pages 33–48. Springer Verlag, 1996.

A Proofs of the Properties of the Linear Method

In this section, we prove the two results stated in section 3.2.

A.1 Notions of d-Relations and Depth

Let S = {pi} be a finite set of polynomials. We are looking for the existence of
d-relations of the form ∑

mjej = p (1)

where ∀ j, deg(mjej) ≤ d. p is the result of the relation. The polynomials ej are
either elements of S or results of other d-relations, thus relation results always
belong to the ideal generated by S, denoted < S >. Note that substituting one
d-relation into another yields a e-relation for e > d, that is not in general a d-
relation. This means that such a relation can be found in two passes by exploring
degrees at most d, but in one pass by exploring degree e. We introduce the notion
of depth that captures the number of degree d explorations needed to compute
a polynomial as element of < S >.

Let p ∈< S >. The d-depth of p is defined recursively as follows: elements of
S have d-depth 0. If p is obtained by a d-relation

∑
j

mjej ,

depthd(p) = 1 + max
j

depthd(ej)

If p is the multiple of a depth k polynomial by a monomial, then depth(p) = k.
The depth of a polynomial p might not be uniquely defined. This is because

there may be several sequences of reductions (relations) and multiplications that
lead to p. In this case, we define the depth of p as the minimum of all depths
of p.

The d-depth of a polynomial p is thus the minimal number of d-relations re-
quired to construct p as an element of < S >. Some polynomials p in < S > might
never be reached through d-relations, and for these p we set depthd(p) = ∞.

The depth is an useful tool to perform recursions on relations.

Cryptanalysis of the Tractable Rational Map Cryptosystem 273

A.2 Behavior of the Linear Method
with Respect to Linear of Affine Masking

Here we prove that two systems equal up to left linear and right affine invert-
ible transformations, have the same combinatorial properties w.r.t. the Linear
Method.

First, let us show that a change of variables has no influence on relations.
Intuitively, this is clear because multiples of polynomials in the transformed sys-
tem are just transformed of multiples of the original system. To prove the result
formally, we show that there is a one-to-one depth-preserving correspondence
between the d-relations of the two systems for any d.

We fix some value of d and perform a recursion on the relation depth.
Let S = {pj} and T = {qj} be two families of polynomials satisfying

∀ j, qj = pj ◦ A

where A is an invertible affine transformation of the variables. This exactly means
that ϕ : p #→ p ◦ A is a one-to-one correspondence between depth 0 polynomials
of < S > and < T >.

Suppose that ϕ establishes a one-to-one correspondence between polynomials
of d-depth k in < S > and < T >, and that p is a polynomial of d-depth k + 1
w.r.t. S: ∑

mjej = p

with ∀ j, deg(mjej) ≤ d and depthd(ej) ≤ k.
Then for T , depthd(ej ◦ A) ≤ k, hence∑

(mj ◦ A)(ej ◦ A) = p ◦ A

is a d-relation. Since A is affine, ∀ j, deg((mj ◦ A)(ej ◦ A)) ≤ d, thus

depthd(p ◦ A) ≤ k + 1

Therefore we have shown that the right affine invertible transformations do
not change the relations results. Similarily, left invertible linear transformations
do not change at all relations results since they do not change the vector space
spanned by a polynomial family.

Left affine transformations do change relations in general. Indeed, such an
operation can even transform a system having a unique solution into a system
that does not have this property. In TRMC or other cryptosystems, left affine
transformations are used, but the systems to which we apply the linear resolution
method are not masked systems, but masked systems minus a masked image
value. Thus the constant of the affine transformation is cancelled, and we only
have to consider left linear transformations.

A.3 Behavior of the Linear Method
w.r.t Projection on a Smaller Field

Here, we prove that if the Linear Method is able to solve a system S = {pj}
expressed on a finite extension G of a field F by reducing degrees less than d,

274 Antoine Joux et al.

it is also able to solve S expressed over F by reducing degrees no more than d.
Roughly said, this is because the projected system contains all the projections
of the relations of the original system.

Let [G : F] = �, and pk, 1 ≤ k ≤ �, be the projections from G to F associated
to some basis {b1, . . . , b} of G over F . If q is a polynomial over G with u
unknowns, it defines a function f : F ul → G that can be composed with any pk.
pk(q) is the polynomial over F corresponding to the k-th coordinate of f (this
polynomial is unique with some extra conditions on its degree). Each equation
e ∈ S is translated into � equations p1(e), . . . , p(e) over F . Thus the starting
point of the Linear Method over F is the set S′ = {pk(e)|1 ≤ k ≤ �, e ∈ S}.

We only have to prove that, for any d and q ∈ < S >, if the d-depth of q is
n, then for 1 ≤ k ≤ �, the d-depth of pk(q) is at most n.

Indeed, if that result holds, then by applying it to the case where q is linear,
we get that as soon as the algorithm in G computes enough linear relations to
solve the system, the algorithm running over F solves the system too.

For depth 0, the result is true because S′ contains the pk(S), 1 ≤ k ≤ �.
Suppose it is true at depth n. Let q ∈ < S > of depth n + 1 output by the
relation ∑

j

mjej = q

with deg(mjej) ≤ d and depth(ej) ≤ n.

pk(q) = pk

⎛⎝∑
j

mjej

⎞⎠ =
∑

j

pk (mjej)

Since ∀ i, j, depth(pi(ej)) ≤ n, we only have to show that for all j, the
pk(mjej) can be written

∑
i

mijpi(ej), with ∀ i, j, deg(mijpi(ej)) ≤ d.

This is true because for any polynomial r over G, a projection of a multiple
of r pk(mr) can be expressed as a sum of multiples of projections of r∑

i

mipi(r)

with mi polynomials over F and ∀ i, deg mi ≤ deg m.
Let αijk ∈ F such that ∀ i, j, bibj =

∑
k

αijk bk. Then since r =
∑
i

pi(r)bi

and m =
∑
j

pj(m)bj ,

mr =
∑
i,j

pi(r)pj(m)bibj =
∑

k

⎛⎝∑
i,j

αijk pj(m)pi(r)

⎞⎠ bk

thus

pk(mr) =
∑

i

⎛⎝∑
j

αijk pj(m)

⎞⎠ pi(r)

Large Superfluous Keys
in Multivariate Quadratic Asymmetric Systems

Christopher Wolf and Bart Preneel

K.U.Leuven, ESAT-COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
{Christopher.Wolf,Bart.Preneel}@esat.kuleuven.ac.be

chris@Christopher-Wolf.de

http://www.esat.kuleuven.ac.be/cosic/

Abstract. In this article, we show that public key schemes based on
multivariate quadratic equations allow many equivalent, and hence su-
perfluous private keys. We achieve this result by investigating several
transformations to identify these keys and show their application to
Hidden Field Equations (HFE), C∗, and Unbalanced Oil and Vinegar
schemes (UOV). In all cases, we are able to reduce the size of the private
– and hence the public – key space by at least one order of magnitude. We
see applications of our technique both in cryptanalysis of these schemes
and in memory efficient implementations.

Keywords: Multivariate Quadratic Equations, Public Key Schemes

1 Introduction

One way to achieve more variety in asymmetric cryptology are schemes based on
the problem of solving Multivariate Quadratic equations (MQ-problem). This
is very important to have alternatives ready if large scale quantum computing
becomes feasible. In particular, the existence of quantum computers in the range
of 1000 bit would be a threat to systems based on factoring, e.g., RSA, as there
is a polynomial time factoring algorithm available for quantum computers [13].
The same algorithm would also solve the discrete log problem in polynomial time
– and therefore defeat schemes based on elliptic curves.

In the last two decades, several such public key schemes were proposed, e.g.,
[8, 11, 6]. All of them use the fact that the MQ-problem, i.e., finding a solution
x ∈ Fn for a given system of m quadratic polynomial equations in n variables
each ⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,

for given y1, . . . , ym ∈ F and unknown x1, . . . , xn is difficult, namely NP-
complete (cf [4, p. 251] and [12, App.] for a detailed proof)). In the above system
of equations, the polynomials pi have the form

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 275–287, 2005.
c© International Association for Cryptologic Research 2005

276 Christopher Wolf and Bart Preneel

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). This polynomial-vector P := (p1, . . . , pm) forms the public key
of these systems. Moreover, the private key consists of the triple (S,P ′, T) where
S ∈ AGLn(F), T ∈ AGLm(F) are affine transformations and P ′ ∈ MQm(Fn) is
a polynomial-vector P ′ := (p′1, . . . , p′m) with m components; each component is
a polynomial in n variables x′

1, . . . , x′
n. Throughout this paper, we will denote

components of this private vector P ′ by a prime ′. In contrast to the public
polynomial vector P ∈ MQm(Fn), the private polynomial vector P ′ does allow
an efficient computation of x′

1, . . . , x′
n for given y′

1, . . . , y′
m. At least for secure

MQ-schemes, this is not the case if the public key P alone is given. The main
difference between MQ-schemes lies in their special construction of the central
equations P ′ and consequently the trapdoor they embed into a specific class of
MQ-problems.

Having a large private (and consequently public) key space is a desirable prop-
erty for any public key scheme. In this paper, we will show that many schemes
based on multivariate quadratic polynomial equations have a large number of
“equivalent” private keys. Hence, they have many superfluous private keys and
consequently a smaller private and public key space than initially expected. Our
main tool for this purpose are so-called “sustaining transformations”, which will
be formally introduced in Sect. 2.

1.1 Related Work

In their cryptanalysis of HFE, Kipnis and Shamir report the existence of “isomor-
phic keys” [7]. A similar observation for Unbalanced Oil and Vinegar Schemes
can be found in [6]. In both cases, there has not been a systematic study of the
structure of equivalent key classes. In addition, Patarin observed the existence of
some equivalent keys for C∗ [10] – however, his method is different from the one
presented in this paper, as he concentrated on modifying the central monomial.
Moreover, Toli observed that there exists an additive sustainer (cf Sect. 3.1) in
the case of Hidden Field Equations [14]. In the case of symmetric ciphers, [1]
used a similar idea in the study of S-boxes.

1.2 Outline

The remainder of this paper is organised as follows: first, we introduce the nec-
essary mathematical background and concentrate on useful properties of linear
and affine transformations. Second, we identify several candidates for sustaining
transformations. Third, we apply these candidates to the Hidden Field Equa-
tions, the C∗ scheme, and Unbalanced Oil and Vinegar schemes. Sect. 5 concludes
this paper.

2 Mathematical Background

After giving some basic definitions in the following section, we will move on to
observations about affine transformations.

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 277

2.1 Basic Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 1. We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ AGLm(F) ×MQm(Fn) × AGLn(F)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In order to find equivalent keys, we consider the following transformations:

Definition 2. Let (S,P ′, T) ∈ AGLm(F)×MQm(Fn)×AGLn(F) where σ, σ−1∈
AGLn(F) and τ, τ−1 ∈ AGLm(F). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ AGLn(F) × AGLm(F) “sustaining transformations”
for an MQ-system if the “shape” of P ′ is invariant under the transformations
σ and τ . For short, we write (σ, τ) • (S,P ′, T) for (1) and (σ, τ) sustaining
transformations.

Remark 1. In the above definition, the meaning of “shape” is still open. In fact,
its meaning has to be defined for each MQ-system individually. For example, in
HFE (cf Sect. 4.1), it is the bounding degree d ∈ N of the polynomial P ′(X ′),
while it is the fact that the oil-variables do not mix with other oil-variables,
while vinegar-variables do, in the case of the UOV (cf Sect. 4.3). However, for
σ, τ sustaining transformations, we are now able to produce equivalent keys
for a given private key by (σ, τ) • (S,P ′, T). A trivial example of sustaining
transformations is the identity transformation, i.e., to set σ = τ = id.

Lemma 1. Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H :=
(τ, ◦) form a subgroup of the affine transformations, they produce equivalence
relations within the private key space.

Proof. We prove the statement for G := (σ, ◦). The proof for H := (τ, ◦) is
analogous. First, we have reflexivity as the identity transformation is contained
in G. Second, we have symmetry as a subgroup is closed under inversion. Third,
we also have transitivity as a subgroup is closed under composition. Therefore,
the groups G and H partition the private key space into equivalence classes.

Remark 2. We want to point out that the above proof does not use special
properties of sustaining transformations, but the fact that these are a subgroup
of the group of affine transformations. Hence, the proof does not depend on the
term “shape” and is therefore valid even if the latter is not rigorously defined yet.
In any case, instead of proving that sustaining transformations form a subgroup
of the affine transformations, we can also consider normal forms of private keys.

278 Christopher Wolf and Bart Preneel

After these initial observations over equivalent keys, we concentrate on bijec-
tions between ground fields and their extension fields. Let F be a finite field with
q := |F| elements. Using a polynomial i(t) ∈ F[t], irreducible over F, we generate
an extension field E := F[t]/i(t) of dimension n. This means we view elements
of E as polynomials in t of degree less than n. Addition and multiplication are
defined as for polynomials modulo i(t). In addition, we can view elements from
E as vectors over the vector-space Fn. We will therefore view elements a ∈ E

and b ∈ Fn as

a := αntn−1 + . . . + α2t + α1 and b := (β1, . . . , βn) ,

for αi, βi ∈ F with 1 ≤ i ≤ n. Moreover, we define a bijection between E and
Fn by identifying the coefficients αi ↔ βi. We use this bijection throughout this
paper.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2. Let F be a finite field with q := |F| elements. Then we have∏n−1
i=0 qn − qi invertible (n × n)-matrices over F.

Next, we recall some basic properties of affine transformations over the finite
fields F and E.

Definition 3. Let MS ∈ F
n×n be an invertible (n × n) matrix and vs ∈ F

n a
vector and let S(x) := MSx+vs. We call this the “matrix representation” of the
affine transformation S.

Definition 4. Moreover, let s1, . . . , sn be n polynomials of degree 1 at most
over F, i.e., si(x1, . . . , xn) := βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and
αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) as a vector over
Fn. We call this the “multivariate representation” of the affine transformation S.

Remark 3. The multivariate and the matrix representation of an affine transfor-
mation S are interchangeable. We only need to set the corresponding coefficients
to the same values: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the extension
field E of the transformation S.

Definition 5. Let 0 ≤ i < n and A, Bi ∈ E. Moreover, let the polynomial
S(X) :=

∑n−1
i=0 BiX

qi

+ A be an affine transformation. We call this the “uni-
variate representation” of the affine transformation S(X).

Lemma 3. An affine transformation in univariate representation can be trans-
fered efficiently in multivariate representation and vice versa.

Remark 4. This lemma follows from [7, Lemmata 3.1 and 3.2] by a simple ex-
tension from the linear to the affine case.

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 279

3 Sustaining Transformations

In this section, we give several examples for sustaining transformations. In addi-
tion, we will consider their effect on the central transformation P ′. The authors
are not convinced that the transformations stated here are the only ones pos-
sible but encourage the search for other and maybe more powerful sustaining
transformations.

3.1 Additive Sustainer

For n = m, let σ(X) := (X + A) and τ(X) := (X + A′) for some elements
A, A′ ∈ E. Moreover, as long as they keep the shape of the central equations P ′

invariant, they form sustaining transformations.
In particular, we are able to change the constant parts vs, vt ∈ Fn or VS , VT ∈

E of the two affine transformations S, T ∈ AGLn(F) to zero, i.e., to obtain a
new key (Ŝ, P̂ ′, T̂) with Ŝ, T̂ ∈ GLn(F).

Remark 5. This is a very useful result for cryptanalysis as it allows us to “collect”
the constant terms in the central equations P ′. For cryptanalytic purposes, we
therefore need only to consider the case of linear transformations S, T ∈ GLn(F).

The additive sustainer also works if we interpret it over the vector space Fn

rather than the extension field E. In particular, we can also handle the case
n �= m now. However, in this case it may happen that we have a′ ∈ F

m and
consequently τ : Fm → Fm. Nevertheless, we can still collect all constant terms
in the central equations P ′.

If we look at the central equations as multivariate polynomials, the additive
sustainer will affect the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A similar observation is true for central equations over the extension field E:
in this case, the additive sustainer affects the additive constant A ∈ E and the
linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have
σ(X) := (BX) and τ(X) := (B′X) for B, B′ ∈ E∗. Again, we obtain a sustain-
ing transformation if this operation does not modify the shape of the central
equations as (BX), (B′X) ∈ AGLn(F).

The big sustainer is useful if we consider schemes defined over extension fields
as it does not affect the overall degree of the central equations over this extension
field.

3.3 Small Sustainer

We now consider multiplications over the (small) ground field F, i.e., we have
σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b′m)x for the coefficients
b1, . . . , bn, b′1, . . . , b′m ∈ F∗ and Diag(b) the diagonal matrix on a vector b ∈ Fn

and b′ ∈ Fm, respectively.

280 Christopher Wolf and Bart Preneel

In contrast to the big sustainer, the small sustainer is useful if we consider
schemes which define the central equations over the ground field F as it only
introduces a scalar factor in the polynomials (p′1, . . . , p′m).

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central
equations while for the transformation τ , it permutes the polynomials of the cen-
tral equations themselves. As each permutation has a corresponding, invertible
permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine transformations.
The effect of the central equations is limited to a permutation of these equations
and their input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permu-
tations, multiplication of rows and columns by scalars from the ground field F,
and the addition of two rows/columns. As all these operations can be performed
by invertible matrices; they form a subgroup of the affine transformations and
are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and
the small sustainer. In addition, it allows the addition of multivariate quadratic
polynomials. This will not affect the shape of some MQ-schemes.

Remark 6. We want to point out that all five sustainers in this section form
groups and hence partition the private key space into equivalence classes (cf
Lemma 1).

4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section
to several MQ-schemes. Due to space limitations in this paper, we will only
outline some central properties of each scheme. In particular, we will not explain
how they can be used to derive signatures but refer the reader to the original
papers for this purpose. We want to stress that the reductions in size we achieve
are only lower, no upper limits: as soon as new sustaining transformations are
identified, they will reduce the key space of the schemes in questions. At present,
we prefer not to attempt to give an upper limit for the reductions possible, as
the subject is far too new.

4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [11].

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 281

Definition 6. Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jXqi+qj

+
∑

0≤k≤d

qk≤d

BkXqk

+ A

where

⎧⎨⎩
Ci,jXqi+qj

for Ci,j ∈ E are the quadratic terms,
BkXqk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term

and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Using a generalisation of the Kipnis-Shamir Theorem (cf Lemma 3), we see that
we can express the univariate polynomial over E as multivariate polynomials
over F. Moreover, as the degree of the polynomial P is bounded by d, this allows
efficient inversion of the equation P (X) = Y for given Y ∈ E. So the “shape”
of HFE is in particular this degree d of the private polynomial P . Moreover,
we observe that there are no restrictions on its coefficients Ci,j , Bk, A ∈ E for
i, j, k ∈ N and qi, qi + qj ≤ d. Hence, we can apply both the additive and the
big sustainer (cf sect. 3.1 and 3.2) without changing the shape of this central
equation.

Theorem 1. For K := (S, P, T) ∈ AGLn(F) × E[X] × AGLn(F) a private key
in HFE, we have

q2n.(qn − 1)2

equivalent keys. Hence, the key-space of HFE can be reduced by this number.

Proof. To prove this theorem, we consider normal forms of private keys: we
first apply the additive sustainer to reduce the constant parts of the two affine
transformations S and T to zero. Second, we apply the big sustainer on the
univariate representation of S and T to reduce one of its coefficients to the neutral
element of multiplication. W.l.o.g., let B0 be the non-zero coefficient of the lowest
power in the univariate representation of S. Applying σ−1(X) := B−1

0 X will
reduce this coefficient to one. Similar, we can reduce one coefficient of the affine
transformation T . Hence, we have now computed a unique normal form for any
given private key. Moreover, we can “reverse” these computations and derive an
equivalence class of size q2n.(qn − 1)2 this way as we have

(BX + A, B′X + A) • (S,P ′, T) for B, B′ ∈ E
∗ and A, A′ ∈ E .

Remark 7. The idea presented in this section also works against the variations
HFEv (adding vinegar variables) and HFE- (removing public equations). How-
ever, for HFE- we have to take into account that some rows of the private matrix
T do not influence the public key. Hence, the number of equivalent keys is even
larger. Due to space limitations in this paper, we just point out this fact.

For the case q = 2 and n = 107, the number of redundant keys is 2428. In
comparison, the number of choices for S and T is 222,894. This special choice of
parameters has been used in a repaired version of Quartz [2, 15].

282 Christopher Wolf and Bart Preneel

4.2 Class of C∗ Schemes

As HFE, the scheme C∗, due to Matsumoto and Imai [8], uses a finite field F

and an extension field E. However, the choice of the central equations is far more
restricted than in HFE as we only have one monomial here.

Definition 7. Let E be an extension field of dimension n over the finite field F

and λ ∈ N an integer with gcd(qn−1, qλ+1) = 1. We then say that the following
central equation is of C∗-shape:

P (X) := Xqλ+1 .

The restriction gcd(qn − 1, qλ +1) = 1 is necessary first to obtain a permutation
polynomial and second to allow efficient inversion of P (X). In this setting, we
cannot apply the additive sustainer, as this monomial does not allow any linear
or constant terms. Moreover, the monomial requires a factor of one. Hence, we
have to preserve this property. At present, the only sustainer suitable seems to
be the big sustainer (cf Sect. 3.2). We use it in the following theorem.

Theorem 2. For K := (S, P, T) ∈ AGLn(F) × E[X] × AGLn(F) a private key
in C∗, we have

(qn − 1)

equivalent keys. Hence, the key-space of C∗ can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in C∗. In
particular, we concentrate on a normal form of the affine transformation S where
S is in univariate representation. As for HFE and w.l.o.g., let B0 be the non-zero
coefficient of the lowest power in the univariate representation of S. Applying
σ−1(X) := B−1

0 X will reduce this coefficient to one. In order to “repair” the
monomial P (X), we have to apply an inverse transformation to T . So let τ(X) :=
(Bqλ+1

0)−1X . This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B(qλ+1).(−1)
0 .Bqλ+1

0 .Xqλ+1) ◦ S̃

= T̃ ◦ P ◦ S̃ ,

where S̃ has its coefficient B0 reduced to one. In contrast to HFE (cf Thm. 1),
we cannot chose the transformations σ and τ independently: each choice of σ
implies a particular τ and vice versa. So we have

(BX, B−qλ−1X) • (S, P, T) where B ∈ E
∗

and can hence compute a total of (qn − 1) equivalent keys for any given key.
Since all these keys form equivalence classes, we reduced the private key space
of C∗ by this factor.

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 283

Remark 8. Patarin observed that it is possible to derive equivalent keys by
changing the monomial P [10]. As the aim of this paper is the study of equivalent
keys by chaining the affine transformations S, T alone, we did not make use of
this property.

Moreover, we observed in this section that it is not possible for C∗ to change
the transformations S, T from affine to linear. In this context, we want to point
out that Geiselmann showed how to reveal the constant parts of these transfor-
mations [5]. Hence, having S, T affine instead of linear does not seem to enhance
the overall security of C∗.

Finally, we want to note that C∗ itself is insecure, due to a very efficient
attack by Patarin [9]. However, due to space limitations in this paper, we will
not investigate equivalent keys of the more secure version C∗−−.

For q = 128 and n = 67, we obtain 2469 equivalent private keys per class.
The number of choices for S, T is 262,848 in this case. This particular choice of
parameters has been used in Sflashv3 [3].

4.3 Unbalanced Oil and Vinegar Schemes

In contrast to the two schemes before, we now consider a class of MQ-schemes
which does not mix operations over two different fields E and F but only performs
computations over the ground field F. Moreover, Unbalanced Oil and Vinegar
schemes (UOV) omit the affine transformation T but use S ∈ AGLn(F). To
fit in our framework, we set it to be the identity transformation, i.e., we have
T = τ = id. UOV were proposed in [6].

Definition 8. Let F be a finite field and n, m ∈ N with n ≥ 2m. Moreover, let
α′

i, β′
i,j , γ′

i,j,k ∈ F. We say that the polynomials below are central equations in
UOV-shape:

pi(x′
1, . . . , x′

n) :=
m∑

j=1

n∑
k=1

γ′
i,j,kx′

jx′
k +

n∑
j=1

β′
i,jx′

j + α′
i .

In this context, the variables x′
i for 1 ≤ i ≤ n − m are called the “vinegar”

variables and x′
i for n − m < i ≤ n the “oil” variables. Note that the vinegar

variables are combined quadratically while the oil variables are only combined
with vinegar variables in a quadratic way. Therefore, assigning random values to
the vinegar variables, results in a system of linear equations in the oil variables
which can than be solved, e.g., using Gaussian elimination. So the “shape” of
UOV is the fact that a system in the oil variables alone is linear. Hence, we may
not mix oil variables and vinegar variables in our analysis but may perform affine
transformations within one set of these variables. So for UOV, we can apply the
additive sustainer and also the Gauss sustainer (cf sect. 3.1 and 3.5). However,
in order to ensure that the shape of the central equations does not change, we
have to ensure that the Gauss sustainer influences the vinegar and oil variables
separately.

284 Christopher Wolf and Bart Preneel

Theorem 3. Let K := (S, P, id) ∈ AGLn(F) × MQm(Fn) × AGLn(F) be a
private key in UOV. Then we have

qn
n−m−1∏

i=0

(qn−m − qi)
m−1∏
i=0

(qm − qi)

equivalent keys. Hence, the key-space of UOV can be reduced by this number.

Proof. As in the case of the schemes before, we compute a normal form for
a given private key. First, applying the additive sustainer reduces the affine
transformation S to a linear transformation. This gives us a factor of qn in
terms of equivalent keys. Second, applying the Gauss sustainer separately within
vinegar and oil variables, we can enforce the following structure, denoted R ∈
Fn×n, on the matrix MS ∈ Fn×n of the (now only) linear transformation S:

R :=

⎛⎝ Im 0 Am

0 In−2m Bn−2m
m

Im Cm
n−2m Dm

⎞⎠ .

In this context, the matrices Im, In−2m are the identity elements of F
m×m and

F(n−2m)×(n−2m), respectively. Moreover, we have the matrices Am, Dm ∈ Fm×m,
the matrix Bn−2m

m ∈ F(n−2m)×m and Cm
n−2m ∈ Fm×(n−2m). For a given central

equation P ′, each possible matrix R leads to the same number of equivalent keys.
Let

E :=
(

Gn−m 0
0 Hm

)
be an (n×n)-matrix. Here, we require that the matrices Gn−m ∈ F(n−m)×(n−m)

and Hm ∈ Fm×m are invertible (cf Lemma 2). This way, we define the trans-
formation σ(x) := Ex where x ∈ Fn. Note that these transformations σ form a
subgroup within the affine transformations. So we have

(Ex + a, id) • (S,P ′, id) for a ∈ F
n and E as defined above.

As this choice of σ partitions the private key space into equivalence classes of
equal size, and due to the restrictions on E, we reduced the size of the private
key space by an additional factor of

∏n−m−1
i=0 (qn−m − qi)

∏m−1
i=0 (qm − qi) .

5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations (HFE),
C∗ and Unbalanced Oil and Vinegar (UOV) that it is possible to reduce the
number of keys in these multivariate quadratic public key schemes by at least
one order of magnitude. For UOV, the reduction was the most drastic one as it
allowed to reduce the number of possible keys by more than half of the number of
possible affine transformations S, cf Table 1 and Table 2 for numerical examples.

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 285

Table 1. Summary of the Reduction Results of this Paper.

Scheme Reduction
Hidden Field Equations q2n(qn − 1)2

C∗ qn − 1

Unbalanced Oil and Vinegar qn
∏n−m−1

i=0 (qn−m − qi)
∏m−1

i=0 (qm − qi)

Table 2. Numerical Examples for the Reduction Results of this Paper.

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 107 22,894 428
C∗ q = 128, n = 67 62,846 469

UOV q = 2, m = 64, n = 192 36,862 20,668
q = 2, m = 64, n = 256 65,534 41,212

The results in this paper can be used in various contexts. First, it is possible to
employ them for implementing these schemes in a memory-efficient way: instead
of storing the original private key, one can reduce the key to its normal form
and omit storing the superfluous parts. Due to the fact that the sustaining
transformations in this paper form sub-groups of the affine transformation, this
reduction can be done without any loss of security. In addition, we can use the
results of this paper in cryptanalysis by enforcing a special structure to either
the affine transformations S, T (as done here), or on the central equations P ′.
This way, it is possible to concentrate on the parts of the scheme which actually
contribute to the security of multivariate quadratic schemes and neglect others,
e.g., constant parts of the affine transformations in HFE or UOV. However,
we want to point out that the key space for any of these schemes is still far
larger than, e.g., in the case of RSA, cf Table 2 for the number of choices on
S, T alone. So even with the results in this paper, we are not able to break any
of these schemes by exhaustive key search. On the other hand, it is not clear
at present if the sustainers presented in this paper are the only ones possible.
Therefore, the existence of other sustaining transformations is stated as an open
problem.

Finally, we want to remark that the techniques in this paper are quite general,
see the list of possible sustaining transformations in Sect. 3. Hence, it is not only
possible to apply them on HFE, C∗, and UOV, but also on other multivariate
quadratic schemes, such as enTTS [16]. However, due to space limitations in this
paper, we needed to make a choice and decided to concentrate on HFE, C∗, and
UOV.

Acknowledgments

This work was supported in part by the Concerted Research Action (GOA)
Mefisto-2000/06 of the Flemish Government.

Moreover, we want to thank An Braeken for helpful remarks and Micheal
Quisquater for fruitful discussions (COSIC, KU Leuven, Belgium).

286 Christopher Wolf and Bart Preneel

References

1. Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A toolbox
for cryptanalysis: Linear and affine equivalence algorithms. In Advances in Cryp-
tology – EUROCRYPT 2003, Lecture Notes in Computer Science, pages 33–50. Eli
Biham, editor, Springer, 2003.

2. Nicolas Courtois, Louis Goubin, and Jacques Patarin. Quartz: Primitive specifi-
cation (second revised version), October 2001.
https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/quartzv21-
b.zip, 18 pages.

3. Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFlashv3, a fast asymmetric
signature scheme – Revised Specificatoin of SFlash, version 3.0, October 17th 2003.
ePrint Report 2003/211, http://eprint.iacr.org/, 14 pages.

4. Michael R. Garay and David S. Johnson. Computers and Intractability – A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979. ISBN
0-7167-1044-7 or 0-7167-1045-5.

5. W. Geiselmann, R. Steinwandt, and Th. Beth. Attacking the affine parts of SFlash.
In Cryptography and Coding - 8th IMA International Conference, volume 2260 of
Lecture Notes in Computer Science, pages 355–359. B. Honary, editor, Springer,
2001.

6. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar sig-
nature schemes. In Advances in Cryptology – EUROCRYPT 1999, volume 1592 of
Lecture Notes in Computer Science, pages 206–222. Jacques Stern, editor, Springer,
1999.

7. Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryp-
tosystem. In Advances in Cryptology – CRYPTO 1999, volume 1666 of Lecture
Notes in Computer Science, pages 19–30. Michael Wiener, editor, Springer, 1999.
http://www.minrank.org/hfesubreg.ps or
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html.

8. Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature verification and message-encryption. In Advances in Cryptology
– EUROCRYPT 1988, volume 330 of Lecture Notes in Computer Science, pages
419–545. Christoph G. Günther, editor, Springer, 1988.

9. Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In Advances in Cryptology – CRYPTO 1995, volume 963 of Lecture
Notes in Computer Science, pages 248–261. Don Coppersmith, editor, Springer,
1995.

10. Jacques Patarin. Asymmetric cryptography with a hidden monomial. In Advances
in Cryptology – CRYPTO 1996, volume 1109 of Lecture Notes in Computer Science,
pages 45–60. Neal Koblitz, editor, Springer, 1996.

11. Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of asymmetric algorithms. In Advances in Cryptology –
EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Science, pages
33–48. Ueli Maurer, editor, Springer, 1996. Extended Version:
http://www.minrank.org/hfe.pdf.

12. Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and multivari-
ate polynomials. In International Conference on Information Security and Cryp-
tology 1997, volume 1334 of Lecture Notes in Computer Science, pages 356–368. In-
ternational Communications and Information Security Association, Springer, 1997.
Extended Version: http://citeseer.nj.nec.com/patarin97trapdoor.html.

Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 287

13. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, October 1997.

14. Ilia Toli. Cryptanalysis of HFE, June 2003. arXiv preprint server,
http://arxiv.org/abs/cs.CR/0305034, 7 pages.

15. Christopher Wolf and Bart Preneel. Asymmetric cryptography: Hidden field equa-
tions. In European Congress on Computational Methods in Applied Sciences and
Engineering 2004. P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux,
and D. Knörzer, editors, Jyväskylä University, 2004. 20 pages, extended version:
http://eprint.iacr.org/2004/072/.

16. Bo-Yin Yang and Jiun-Ming Chen. Rank attacks and defence in Tame-like mul-
tivariate PKC’s. Cryptology ePrint Archive, Report 2004/061, 23rd March 2004.
http://eprint.iacr.org/, 21 pages.

Cryptanalysis of HFEv
and Internal Perturbation of HFE

Jintai Ding1 and Dieter Schmidt2

1 Department of Mathematical Sciences,
University of Cincinnati, Cincinnati, OH, 45221, USA

ding@math.uc.edu
2 Department of Electrical & Computer Engineering and Computer Science,

University of Cincinnati, Cincinnati, OH, 45221, USA
dieter.schmidt@uc.edu

Abstract. Hidden field equation (HFE) multivariable cryptosystems
were first suggested by Patarin. Kipnis and Shamir showed that to make
the cryptosystem secure, a special parameter D of any HFE cryptosys-
tem can not be too small. Consequently Kipnis, Patarin and Goubin
proposed an enhanced variant of the HFE cryptosystem by combining
the idea of Oil and Vinegar construction with the HFE construction. Es-
sentially they “perturb” the HFE system with some external variables.
In this paper, we will first present a new cryptanalysis method for the
HFEv schemes. We then use the idea of internal perturbation to build a
new cryptosystem, an internally perturbed HFE cryptosystem (IPHFE).

Keywords: Public-key, multivariable, quadratic polynomials, Hidden
field equation, internal perturbation.

1 Introduction

Since the invention of the RSA scheme, there has been great interest in construct-
ing other public key cryptosystems. One of the directions is to use multivariable
polynomials, in particular, quadratic polynomials. This construction relies on
the proven theorem that solving a set of multivariable polynomial equations
over a finite field is, in general, an NP-hard problem [GJ79]. Nevertheless, it is
not enough to guarantee the security of such a cryptosystem.

One of the basic designs in this directions was started by Matsumoto and
Imai [MI88]. They suggested to use a map F over a large field K̄, which is a
degree n extension of a smaller finite field k. By identifying K̄ with kn the map
F produces a multivariable polynomial map from kn to kn, which is denoted by
F̃ . Then one “hides” this map F̃ by composing from the left and the right by
two invertible affine linear maps L1 and L2 on kn. This generates a quadratic
map F̄ :

F̄ = L1 ◦ F̃ ◦ L2

from kn to kn (◦ means composition of two maps). Matsumoto and Imai sug-
gested the map F : X #−→ X1+qi

, where q is the number of elements in k, X is an

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 288–301, 2005.
c© International Association for Cryptologic Research 2005

Cryptanalysis of HFEv and Internal Perturbation of HFE 289

element in K̄ and k is of characteristic 2. However Patarin [Pat95] showed that
this scheme is insecure under an algebraic attack when linearization equations
are used.

Since then, Patarin and his collaborators have made a great effort to find
secure modifications of the Matsumoto-Imai system. These modified cryptosys-
tems can be divided into two types:

1) Minus-Plus method [PGC98]: The Minus method was first suggested in [Sha98]
and is the simplest idea among all. In the Minus method one removes a few of
the components of F̄ , and in the Plus method one adds a few randomly chosen
quadratic polynomials. It is possible to combine both methods. The main reason
to take the “Minus” action is the necessity to make the corresponding equations
more difficult to solve so that the linearization equations can no longer be used.
Minus (only) method is well suited for signature schemes. One such scheme,
Sflashv2 [ACDG03,PCG01], was last year accepted as one of the final selections
in the New European Schemes for Signatures, Integrity, and Encryption: IST-
1999-12324, although Patarin has now proposed that Sflashv2 should be replaced
by the new version Sflashv3 [CGP03].

2) Hidden Field Equation Method (HFE) [Pat95]: Patarin believes that this
construction is the strongest. The difference of this scheme to the original system
of Matsumoto-Imai is that F is substituted by a new map (function)

F : X #−→
D∑
0,0

aijXqi+qj

+
D∑
0

biX
qi

+ c,

where the polynomial coefficients are randomly chosen. The total degree of F can
not be too large, because the decryption process needs to solve the polynomial
equation F (X) = Y ′ for a constant Y ′. However a new algebraic attack by
Kipnis and Shamir [KS99] using both Minrank and relinearization shows that
the number D can also not be too small. This is confirmed by [Cou01,FJ03].

Another direction Patarin and his collaborators have pursued is inspired by
the linearization equations mentioned above. This type of construction includes
Dragon [Pat96a], Little Dragon [Pat96a], Oil and Vinegar [Pat97], and Unbal-
anced Oil and Vinegar [KPG99]. From the point view of our paper, the interest-
ing ones are the last two schemes, where the basic idea is that certain quadratic
equations can be easily solved if we are allowed to guess a few variables. The
key map is a map O from kn = ko+v to ko:

O(x1, ..., xo, x′
1, ..., x′

v) = (O1(x1, ..., xo, x′
1, ..., x′

v), ..., Oo(x1, ..., xo, x′
1, ..., x′

v)),

such that each Oi is a Oil and Vinegar polynomial in the form:

Oi(x1, . . . , xo, x′
1, . . . , x′

v) =
∑

aijxix
′
j +

∑
bijx′

ix
′
j +

∑
cixi +

∑
dix

′
j + e

where the xi’s are called Oil variables and the x′
j ’s Vinegar variables. One can

see the similarity of the above formula with the linearization equations. This

290 Jintai Ding and Dieter Schmidt

family of cryptosystems are designed specially for signature schemes, where we
need only to find one solution of a given equation not a unique solution.

In order to enhance the security of the HFE system, Patarin and his col-
laborators proposed later a new scheme, which is a combination of the HFE
system with the Unbalanced Oil and Vinegar system. They denote it by the
Hidden Field Equation Vinegar (HFEv) schemes. The basic idea besides the
HFE method is to add a few new (Vinegar) variables to make the system more
complicated [Pat96b]. This method essentially replaces F with an even more
complicated map from K̄ × kr to K̄ of the form:

Fv(X, x′
1, . . . , x′

r) = (1)
D,D∑
0,0

aijXqi+qj

+
D∑
0

biX
qi

+
D∑
0

Ωi(x′
1, . . . , x′

r)X
qi

+ U0(x′
1, . . . , x′

r),

where Ωi is a randomly chosen k linear affine injective map from kr to K̄ and
U0 is a randomly chosen quadratic map from kr to K̄.

One can see that these new variables are mixed in a special way with the orig-
inal variables (like oil and vinegar). The decryption process requires a search on
these added small number of variables. For the signature case, the Vinegar vari-
ables can be selected at random. It has a good probability to succeed, otherwise
another selection is made until a correct answer is found.

As far as we know, there does not exist any algebraic attack using the struc-
ture of HFEv. However, in this paper, we will show that it is possible that the
attack in [KS99] can also be applied here to separate the Vinegar variables and
attack the system if both D and r are small. The basic idea is to use the alge-
braic method to find a way to purge out the Vinegar variables. The complexity
of such an attack is, however, exponential in term of r.

After all the papers mentioned above, it seems that all possible extensions
and generalizations of the Matsumoto-Imai system are exhausted, but recently a
new idea was proposed by Ding [Din04] to enhance the Matsumoto-Imai system.
It is called internal perturbation and represents a very general idea.

In a very broad context the HFE and Oil-Vinegar methods can also be seen
as an extension of a commonly used idea in mathematics and physics, namely
perturbation. A good way to deal with a continuous system often is to “perturb”
the system at a minimum scale. In terms of this view, the HFEv and Oil-Vinegar
methods can be viewed as perturbations of the HFE method by the newly added
Vinegar variables. However, the perturbation is in some sense more an “external”
perturbation, as a few extra (external) variables (Vinegar) are introduced. The
idea of internal perturbation is to use internal variables instead, which map to
a small subspace of the original variables.

We call the new system an internally perturbed HFE (IPHFE) system. For
a IPHFE system, this method essentially replaces F with a new function:

F : (X) #−→
D,D∑
0,0

aijXqi+qj

+
D∑
0

biX
qi

+
D,n−1∑

0,0

ci,jXqi

X̃qj

r +
n−1,n−1∑

0,0

αijX̃qi+qj

r +
n−1∑

0

βiX̃
qi

r +γ.

Cryptanalysis of HFEv and Internal Perturbation of HFE 291

The new internal perturbation variable X̃r is given by X̃r =
∑n−1

0 aiX
qi

. The
function Z(X) =

∑n−1
0 aiX

qi

, when viewed as a linear map from kn to kn, has
an image space of low dimension r, which we call the perturbation dimension.

This perturbation is performed through a small set of variables “inside” the
space kn (therefore they are “internal” variables) and one does not introduce
any new variables. Namely given a quadratic multivariable system F̄ over kn,
we randomly find a linear map Z from kn to kn with the image space of a small
dimension r, then we try to “perturb” the system through the small number
variables related to Z.

Although we use the same basic idea of internal perturbation as in [Din04],
the perturbation here is done differently. In the original method only terms like
U0 were used, whereas here a mixing of the linear terms from the original and
perturbation variables Z(X) occurs, so that the perturbation variables and the
original variables are fully mixed. This makes the system more complicated.

The motivation for our work came from our attack method to purge out the
external perturbation. This lead us to construct new systems that are resistant
to the algebraic attack [Pat95,KS99] and its extensions like XL, but without
sacrificing much of the efficiency of the system. An additional advantage of the
new systems is that the internal perturbation makes the process of elimination
of unnecessary candidates in the decryption process much faster.

In the first section of the paper, we will introduce, in detail, our idea of
how to attack an HFEv system. Then we will present the IPHFE system and a
practical implementation example of an 89 bits cryptosystem system, where we
choose the perturbation dimension to be 2. We will show that it should have a
very high security level against all known attacking methods. We will analyze
the security and efficiency of the system.

2 Cryptanalysis of HFEv Cryptosystem

2.1 The HFEv Cryptosystem

Let K̄ be a degree n extension of a finite field k of characteristic 2 with q
elements, and K̄ ∼= k[x]/g(x), where g(x) is a degree n irreducible polynomial
over k. That k has characteristic 2 is not essential here.

Let φ be the standard k-linear map that identifies K̄ with kn:

φ : K̄ #−→ kn,

such that

φ(a0 + a1x + a2x2 + · · · + an−1xn−1) = (a0, a1, a2, · · · , an−1).

The idea of lifting a map over spaces of a small finite field [KS99] to a larger
field is the key idea, which leads us to a new formulation of the HFEv explained
in the introduction.

Lemma 1 [KS99] Let Q(x1, . . . , xn) = (Q1(x1, . . . , xn), . . . , Qn(x1, . . . , xn)) be
a linear map from kn into kn. Then there exist a0, . . . , an−1 in K̄, such that

292 Jintai Ding and Dieter Schmidt

φ−1 ◦ Q(x1, . . . , xr) =
n−1∑
i=0

aiX
qi

,

where X = φ−1(x1, . . . , xn).

From this lemma, we have

Lemma 2 Let Q(x′
1, . . . , x′

r) = (Q1(x′
1, . . . , x′

r), . . . , Qn(x′
1, . . . , x′

r)) be a linear
map from kr into kn. Then there exist a0, . . . , an−1 in K̄, such that

φ−1 ◦ Q(x′
1, . . . , x′

r) =
n−1∑
i=0

aiX̄
qi

r ,

where X̄r = φ−1(x′
1, . . . , x′

r, 0, . . . , 0).

This lemma is a simple corollary from Lemma 1 above from [KS99]. It allows
us to reformulate the key function (1) and give an equivalent description:

F : (X, Xr) #−→
D,D∑
0,0

aijXqi+qj

+
D∑
0

biX
qi

+
D,n−1∑

0,0

ci,jXqi

X̄qj

r +
n−1,n−1∑

0,0

αijX̄qi+qj

r +
n−1∑

0

βiX̄
qi

r +γ,

where Xr = (x′
1, . . . , x′

r) represents the new Vinegar variables. The first two
terms are the same as in (1), the third term here is derived from the third term
in (1), and the last three terms come from U0.

This new formulation is the key to our attack. Let F̃ be a map from kn+r to
kn and

F̃ (x1, . . . , xn, x′
1, . . . , x′

r) = φ ◦ F ◦ (φ−1 × Id)(x1, . . . , xn, x′
1, . . . , x′

r) =

(F̃1(x1, ..., xn, x′
1, ..., x′

r), F̃2(x1, ..., xn, x′
1, ..., x′

r), · · · , F̃n(x1, ..., xn, x′
1, ..., x′

r)).

Here F̃i(x1, . . . , xr, x′
1, . . . , x′

r) are quadratic polynomials of n + r variables.
Let L1 and L2 be two randomly chosen invertible affine linear maps one over

kn and the other over kn+r.

F̄ (x1, . . . , xn, x′
1, . . . , x′

r) = L1 ◦ F̃ ◦ L2(x1, . . . , xn, x′
1, . . . , x′

r) =

(F̄1(x1, ..., xn, x′
1, ..., x′

r), F̄2(x1, ..., xn, x′
1, ..., x′

r), ..., F̄n(x1, ..., xn, x′
1, ..., x′

r))

is the cipher for the HFEv system. No effective algebraic attack method exists
for it yet, which uses the properties of the map F .

2.2 Cryptanalysis for the Case r = 1

In this section, we will present a new attack method for the HFEv cryptosystem,
which is an extension of an idea of Kipnis and Shamir. We will show how it works
when r = 1, which we will assume throughout this section.

Cryptanalysis of HFEv and Internal Perturbation of HFE 293

When r = 1, the map F from K̄ × k to K̄, which is used to define the HFEv
system, is:

F : (X, x′
1) #−→

D∑
0,0

aijXqi+qj

+
D∑
0

biX
qi

+
D∑
0

ciX
qi

T1(x′
1) + αT1(x′

1)
2 + βT1(x′

1) + γ

where x′
1 represents the new Vinegar variables, X̄ = φ−1(x′

1, 0, . . . , 0) is the
image of a k linear embedding map T1 from k to K̄: T1(x) = φ−1(x, 0, . . . , 0).

Let K̂ be the n + 1 dimensional k subspace in K̄ × K̄ such that for any
element X̂ = (X1, X2),

φ(X2) = (x′
1, 0, . . . , 0).

The map F (X, x′
1) can be reinterpreted as a map from K̂ to K, so that we

have
F : (X, X̄) #−→

D∑
i,j

aijXqi+qj

+
D∑
0

biX
qi

+
D∑
i

ciX
qi

X̄ + αX̄2 + βX̄ + γ,

with
φ(X̄) = (x′

1, 0, . . . , 0).

We should recall that
X̄q = X̄,

and this is why the formula above has no high power terms of X̄. Let P1 be the
projection such that

P1(x1, . . . , xn) = x1.

Let φ1 = φ × (P1 ◦ φ) be the standard map from K̂ to kn+1, then

F̃ = φ ◦ F ◦ φ−1
1

and the cipher (public key) is given as

F̄ = L1 ◦ F̃ ◦ L2,

where L1 is an invertible affine linear map on kn and L2 is an affine linear map
on kn+1.

The public key consists of the polynomial components of K̄. The private key
is L1, L2 and F and its related field structure.

One way to attack the system is to find L1 and L2 such that if we compose
from the two ends with their inverses we would recover F .

To attack, the first observation we have is that:

F̂ = φ−1 ◦ F̄ ◦ φ1 = φ−1 ◦ L1 ◦ F̃ ◦ L2 ◦ φ1

= (φ−1 ◦ L1 ◦ φ) ◦ F ◦ (φ−1
1 ◦ L2 ◦ φ1).

We know what (φ ◦L1 ◦φ−1) is like from Lemma 1 and for φ1 ◦L2 ◦ φ−1
1 , we

have the following lemma

294 Jintai Ding and Dieter Schmidt

Lemma 3 Let Q(x1, . . . , xn, x′
1) = (Q1(x1, . . . , x′

1), . . . , Qn+1(x1, . . . , x′
1)) be a

linear map from kn+1 to kn+1. Then there exist a0, . . . , an−1, a′
0, a, b in K̄, such

that

φ−1
1 ◦ Q(x1, . . . , xn, x′

1) = (
n−1∑

0

aiX
qi

+ a′
0X̄, bX̄ +

n−1∑
0

aqi

Xqi

),

as a k linear map over K̂, where X̄ = φ−1(x′
1, 0, . . . , 0), X = φ−1(x1, . . . , xn)

and φ(b) = (b, 0, . . . , 0).

This can be proven with the same argument as the one for Lemma 1 in
[KS99].

In order to simplify the presentation, from now on we will assume that L1

and L2 and F are homogeneous. Our attack works the same way for the non–
homogeneous case, because we can simply drop all lower degree terms.

In this case,

F : (X, X̄) #−→
D∑
0,0

aijXqi+qj

+
D∑
0

ciX
qi

X̄ + αX̄2.

From the lemma above, we can set

L̄1(X) = φ ◦ L1 ◦ φ−1(X) =
n−1∑

0

l1iX
qi

,

as in Lemma 1;

L̄2(X, X̄) = φ1 ◦ L2 ◦ φ−1
1 (X, X̄) = (

n−1∑
0

l2iX
qi

+ l′2,0X̄, l′2,1X̄ +
n−1∑

0

lq
i

2 Xqi

),

as in Lemma 3. This means that

F̂ (X, X̄) =
n−1,n−1∑

0,0

âijXqi+qj

+
D∑
0

ĉiX
qi

X̄ + α̂X̄2.

Once we have the public key, it is clear that F̂ can be easily found by solving
a set of a linear equations, once we fix the field structure of K̄. Because all finite
fields with the same size are isomorphic, any choice would work in this case as
was pointed out in [KS99].

Our formulation changes the problem of finding L1 and L2 into a problem of
finding L̄1 and L̄2.

Now we will use the same method as in [KS99], namely we treat the map F̂
and F as a quadratic form, to which we associate a (n + 1)× (n + 1) matrix for
a corresponding bilinear form.

Cryptanalysis of HFEv and Internal Perturbation of HFE 295

In this case, we associate a symmetric matrix Â with F̂ such that

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 â0,1 + â1,0 â0,n−1 + ân−1,0 ĉ0

â0,1 + â1,0 0 â1,n−1 + ân−1,1 ĉ1

â0,2 + â2,0 â1,2 + â2,1 â2,n−1 + ân−1,2 ĉ2

.

.
â0,n−1 + ân−1,0 â0,n−1 + ân−1,0 0 ĉn−1

ĉ0 ĉ1 ĉn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We associate a matrix A to F as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a0,1 + a1,0 ... a0,D + aD,0 0 .. 0 c0

a0,1 + a1,0 0 ... a1,D + aD,1 0 .. 0 c1

a0,2 + a2,0 a1,2 + a2,1 ... a2,D + aD,2 0 .. 0 c2

.
a0,D + aD,0 0 0 .. 0 cD

0 0 cD+1

.
0 0 cn−1

c0 c1 ... cD . .. cn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we can show that the matrix Ā associated to F ◦ L̄2 is:

Ā = Bt
2 A B2,

and

B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

l2,0 l2,1 l2,n−2 l2,n−1 l′2,0

lq2,n−1 lq2,0 lq2,n−3 lq2,n−2 l′2,0
q

lq
2

2,n−2 lq
2

2,n−1 lq
2

2,n−4 lq
2

2,n−3 l′2,0
q2

.
lq

n−1

2,1 lq
n−1

2,2 lq
n−1

2,n−4 lq
n−1

2,n−3 l′2,0
qn−1

l2 lq2 lq
n−2

2 lq
n−1

2 l′21

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Ã associated to L̄1 ◦ F is:

Ã = l1,0A + l1,1A1 + ... + l1,n−1An−1,

where Al corresponding to the polynomial F ql

and we can see that

(Al)i,j = Aql

i−l(mod(n)),j−l(mod(n)), for 0 < i, j < n + 1;

(Al)n+1,j = Aql

n+1,j−l(mod(n)), for j < n + 1;

(Al)j,n+1 = Aql

j−l(mod(n)),n+1, for j < n + 1;

(Al)n+1,n+1 = 0.

296 Jintai Ding and Dieter Schmidt

Therefore we have

Ā = Bt
2(l1,0A + l1,1A1 + · · · + l1,n−1An−1)B2.

What we know is Ā, because the invertibility of L1 and L2, the problem to
attack the system becomes a problem to find L̄−1

1 and L̄−1
2 or equivalently to

find B−1
2 and L̄−1

1 (X) =
∑n−1

0 l′1iX
qi

. This will allow us to recover A because

A = (Bt
2)

−1(l′1,0Ā + l′1,1Ā1 + · · · + l′1,n−1Ān−1)B−1
2

where Āl is the matrix corresponding to (F̄)ql

similar to the case of Al.
One more point we notice is that if we do a change of variable X by aX , it

does not affect the rank of F at all, therefore this freedom allows us to assume
that l2 = 1, which we will assume now.

Now we can see that we have reduced our problem to exactly the same
problem that was dealt with in [KS99], and we can apply the whole machinery
developed in [KS99]. But here we suggest an improved method of applying the
Minrank attack method for HFE in [Cou01], such that we first find L̄−1

1 and then
find B−1

2 . We know that the rank of A is at most and in general D + 1. Using
results in [Cou01], we know that recovering the secret key (or equivalent key)
has a complexity of (n+1)3(D+1)+O(1). This means our attack is subexponential,
and in general, if D = 3 and n ≤ 26, the security is less than 280. We did some
computer simulations with n < 20 and D = 1, 2 and the results are as predicted.

For the more general r > 1 case our method can be extended directly and
our initial analysis shows that the attack complexity is (n + r)3(D+r)+O(1). But
the details of the attack are much more complicated, and we will present them
in the full version of this paper. This attack complexity depends on n, r and D
and the exponent depends on D and r. It would be much better if we could find
some attack such that r would not be in the exponent. But from a point view
of symmetry, this is impossible. If we consider the case when r is large (bigger
than n), then the property of the HFEv polynomial should be dominated by the
r Vinegar variables and these polynomials are more or less than what can be
treated with randomly chosen polynomials. From this point of view, we think
that this attack complexity must include r in some way in the exponent and we
speculate our attack method could be very close to what might be achieved in
general.

In addition, we think our attack could lead to some new ways of attacking
HFEv using the XL family of methods, see [Cou01].

3 Internal Perturbation of HFE

From the above, we can see that HFEv is indeed a cryptosystem derived through
perturbation of HFE through some external variable. It is possible to purge the
external variables using the method we proposed above. Now we will suggest a
new cryptosystem through internal perturbation, which we will call an internally
perturbed HFE cryptosystem – IPHFE.

Cryptanalysis of HFEv and Internal Perturbation of HFE 297

In this section, we will present the new cryptosystem. The idea is very simple,
namely we will not add new variables, but instead we will perturb the system
by using some internal variables, such that the above attack can no longer be
used.

3.1 The IPHFE Cryptosystem

Here we will use the same notations as in the section above, namely K̄, a degree
n extension of the finite field k of characteristic 2 with q elements. That k is of
characteristic 2 is not essential. Let K̄ ∼= k[x]/g(x) and φ : K̄ #−→ kn again be
the standard k-linear map that identifies K̄ with kn. Let D > 1, r ≥ 1 be two
small integers.

Let Z(X) =
∑n−1

0 ziX
qi

be a randomly chosen k linear map from K̄ to K̄
such that the dimension of the image space of Z in kn is r. We can also say that
the linear map φ ◦ Z ◦ φ−1 from kn to kn has a kernel of dimension n − r.

Let F be a map from K̄ to K̄, and

F : (X) #−→
D∑
0,0

aijXqi+qj

+
D∑
0

biX
qi

+
D,n−1∑

0,0

ci,jXqi

X̃qj

r +
n−1,n−1∑

0,0

αijX̃qi+qj

r +
n−1∑

0

βiX̃
qi

r +γ,

where the new internal perturbation variable X̃r is given as X̃r =
∑n−1

0 ziX
qi

.
Let L1 and L2 be two randomly chosen invertible affine linear maps on kn

and let F̄ = L1 ◦ φ ◦ F̃ ◦ φ−1 ◦ L2.
For this public-key cryptosystem, F̄ , that is the set of n quadratic polyno-

mials of F̄ and the structure of the field k form the public key. L1, L2, the field
structure of K̄, F , and Z are the secret key.

To encrypt a message (x′
1, . . . , x′

n), one just finds the value of F̄ (x′
1, . . . , x′

n).
To decrypt a message, one just “inverts” each component of the composition.

It is easy to invert everything except the function F . Here, by “inverting” F , we
mean to solve the equation

F (x1, . . . , xn) = (y′
1, . . . , y′

n).

What we do is plug in all possible values of X̃r ∈ Z(K̄) into the equation, which
consists of qr elements, and then solve the corresponding degree q2D polynomial
equations. This is why both q and r must be small. It is possible for many
of the cases, that there is no solution at all, but we should have at least one
solution among all the possibilities. For each case of X̃ , if we have any solution
X = (x1, . . . , xn), we then have to make sure that the solution is consistent
with the corresponding elements in X̄ ∈ Z(K̄), namely the solution X must also
satisfy the equation X̄ = Z(X), otherwise the solution is discarded. This process
helps us to eliminate efficiently most of the unwanted solutions.

In general, we should have a good chance to have only one solution, but due
to the definition of F , we know that the map F is not necessarily injective, which

298 Jintai Ding and Dieter Schmidt

requires us to add something extra just like in the case of HFE [Pat96b]. One can
add hash functions or just add (Plus method) more randomly chosen quadratic
polynomials.

Similarly we can apply the Minus method [Sha98] to build authentication
schemes.

3.2 A Practical Realization of an IPHFE Cryptosystem

For a practical realization, we have chosen K̄ to be a degree n = 89 extension
of the finite field k = Z2 with q = 2 elements. We use D = 3, and r = 2. In
this case, we will choose the terms X23+23

to be zero. In terms of key size, the
public key is the largest, which is the size of about 400,000 bits (50 KBytes).
This implementation is comparable with any of the existing multivariable cryp-
tosystems.

In this case, the decryption process requires us to solve four times an equation
of degree 16 over a finite field of size 289, which can be done easily.

3.3 Cryptanalysis

We will now show that existing algebraic attacking methods for multivariable
cryptosystems can no longer be used efficiently against IPHFE. This includes the
method, which was suggested above for attacking HFEv. The reason is that the
internal perturbation is fully mixed with the original system and can no longer
be distinguished.

We will take a careful look at two algebraic methods. We start first with the
attack method of [KS99,Cou01] for HFE. From the formula for Z we can see
that F , when described as a polynomial of X , looks far more complicated than
F in the HFE system. Essentially it has all possible terms of Xqi+qj

, and the
corresponding symmetric matrix for its related bilinear form is expected to have
a very high rank in general. In all of our computer simulations it turns out that
the rank of this matrix is exactly D + r + 1. Therefore, we conjecture that the
rank of this matrix is exactly D + r + 1, and we believe it is possible to actually
prove this statement.

Let’s now try to use the method of Kipnis-Shamir to attack our system. In
the fist step, the Minrank method is used to recover part of the key L1 and we
know that for this step, the computational complexity for our implementation
is 893×6, which is bigger than 2120. Let’s now further assume that this can be
done, and that we already have part of the key, namely L1. In the case of the
attack by Kipnis-Shamir, the second step is essentially trivial due to fact that
we know that the symmetric matrix corresponding to the original n × n matrix
has the shape: (

Ω 0
0 0

)
where Ω is a submatrix of size (D + 1) × (D + 1), whose null space therefore is
known to us and can be used to find the second part of the key L2. However,

Cryptanalysis of HFEv and Internal Perturbation of HFE 299

in our case, even if we successful recover L1, we have no idea what the matrix
corresponding to the original polynomial is. As we mentioned above, it is far
more complicated and we have no way of knowing what its null space is like and
therefore we still can not recover L2, which is what happened in our computer
simulations. Therefore the Kipnis-Shamir method and the key part, the Minrank
method, can not be used anymore to attack IPHFE efficiently.

Second, we look at the method we use in this paper to attack HFEv. In the
case of “internal” perturbations we can no longer use our method to differentiate
what are the perturbation variables, or put into a more intuitive term, internal
perturbation allows the perturbation to be fully “mixed” with the original vari-
ables. This is unlike the Oil-Vinegar “mixing” of the HFEv. Therefore we can
no longer use the attack method in this paper to attack the IPHFE.

The only possible attack method we can see is the XL method or the method
of improved Gröbner basis. But we can not see any reason why they would
perform well against our construction, especially after experimenting with some
examples. In order to really check how our system can resist such attacks, we
need to find out how the attack complexity changes as r changes with a fixed D.
Computer simulations should give us some reasonable way of estimating it, but
it is in general a rather daunting time consuming task. A referee of our paper
pointed out, that the results in [AFI+04], to be presented in Asiacrypt’04, show
that the new Gröbner basis algorithm is actually more powerful than the XL
method. This implies that we will only need to find out how our new schemes
behave under the attack by the new Gröbner basis algorithm. We are now using
an implementation of the new Gröbner basis algorithm in Magma to study this
problem and preliminary results seem to be very supportive of our speculation
on the security of our new schemes.

Overall, in accordance with our own estimates the attack complexity of all
existing methods should be at least 280. We believe that it could be much higher
so that the best method to attack the IPHFE system might be brute force, that
is, checking all possible answers one by one.

4 Conclusion

In this paper, we presented a new algebraic method to attack the HEFv cryp-
tosystem. This is the first attack using the algebraic structure of the HFEv.
The basic idea is to view the new Vinegar variables as an external perturbation
and to try to separate them. This method allows us, for the cases when D + r is
small, to attack the system efficiently. However, the complexity of such an attack
is indeed exponential in terms of r.

Then we used the method of internal perturbation developed by Ding [Din04]
to improve the system such that this attack can no longer be applied. It gives
us the internally perturbed HFE cryptosystem. This system, at this moment,
seems to be very secure and can be implemented efficiently. However more work,
in particular, large scale simulation should be done to study the explicit rela-
tion between the level of the security and the level of perturbation and confirm

300 Jintai Ding and Dieter Schmidt

the claims in this paper. In general, it seems that internal perturbation is a
method that can be used to improve substantially the security of multivariable
cryptosystem without sacrificing much of the efficiency of such a system.

Acknowledgment

We would like to thank the anonymous referees for their suggestions. Jintai Ding
would also like to thank Dingfeng Ye and Lei Hu for their useful discussions.

References

[ACDG03] Mehdi-Laurent Akkar, Nicolas T. Courtois, Romain Duteuil, and Louis
Goubin. A fast and secure implementation of Sflash. In PKC-2003, LNCS,
volume 2567, pages 267–278. Springer, 2003.

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison between XL and Gröbner basis algorithms,
2004. To be presented in Asiacrypt–2004.

[CGP03] Nicolas Courtois, Louis Goubin, and Jacques Patarin. Sflashv3, a fast
asymmetric signature scheme, 2003. http://eprint.iacr.org.

[Cou01] Nicolas T. Courtois. The security of hidden field equations (HFE). In
C. Naccache, editor, Progress in cryptology, CT-RSA, LNCS, volume 2020,
pages 266–281. Springer, 2001.

[Din04] Jintai Ding. A new variant of the Matsumoto-Imai cryptosystem through
perturbation. In F. Bao, R. Deng, and J. Zhou, editors, Public Key Cryp-
tosystems, PKC-2004, LNCS, volume 2947, pages 305–318. Springer, 2004.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hid-
den field equation (HFE) cryptosystems using Gröbner bases. In Dan
Boneh, editor, Advances in cryptology – CRYPTO 2003, LNCS, volume
2729, pages 44–60. Springer, 2003.

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability, A Guide
to the theory of NP-completeness. W.H. Freeman, 1979.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Eurocrypt’99, LNCS, volume 1592, pages
206–222. Springer, 1999.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryp-
tosystem by relinearization. In M. Wiener, editor, Advances in cryptology
– Crypto ’99, LNCS, volume 1666, pages 19–30. Springer, 1999.

[MI88] T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for effi-
cient signature verification and message encryption. In C. G. Guenther,
editor, Advances in cryptology – EUROCRYPT ’88, LNCS, volume 330,
pages 419–453. Springer, 1988.

[Pat95] J. Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme
of Eurocrypt’88. In D. Coppersmith, editor, Advances in Cryptology –
Crypto ’95, LNCS, volume 963, pages 248–261, 1995.

[Pat96a] J. Patarin. Asymmetric cryptography with a hidden monomial. In
N. Koblitz, editor, Advances in cryptology, CRYPTO ’96, LNCS, volume
1109, pages 45–60. Springer, 1996.

Cryptanalysis of HFEv and Internal Perturbation of HFE 301

[Pat96b] J. Patarin. Hidden field equations (HFE) and isomorphism of polynomials
(IP): Two new families of asymmetric algorithms. In U. Maurer, editor,
Eurocrypt’96, LNCS, volume 1070, pages 33–48. Springer, 1996.

[Pat97] J. Patarin. The oil and vinegar signature scheme. Dagstuhl Workshop on
Cryptography, September 1997, 1997.

[PCG01] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Flash, a fast mul-
tivariate signature algorithm. In LNCS, volume 2020, pages 298–307.
Springer, 2001.

[PGC98] Jacques Patarin, Louis Goubin, and Nicolas Courtois. C∗
−+ and HM: vari-

ations around two schemes of T. Matsumoto and H. Imai. In K. Ohta
and D. Pei, editors, ASIACRYPT’98, LNCS, volume 1514, pages 35–50.
Springer, 1998.

[Sha98] Adi Shamir. Efficient signature schemes based on birational permutations.
In LNCS, Advances in cryptology – CRYPTO ’98 (Santa Barbara, CA,
1998), volume 1462, pages 257–266. Springer, 1998.

A Generic Scheme
Based on Trapdoor One-Way Permutations

with Signatures as Short as Possible

Louis Granboulan�

École Normale Supérieure

Abstract. We answer the open question of the possibility of building a
digital signature scheme with proven security based on the one-wayness
of a trapdoor permutation and with signatures as short as possible.
Our scheme is provably secure against existential forgery under chosen-
message attacks (with tight reduction) in the ideal cipher model. It is a
variant of the construction used in QUARTZ [11], that makes multiple
calls to the trapdoor permutation to avoid birthday paradox attacks. We
name our scheme the generic chained construction (GCC) and we show
that the k-rounds GCC based on a k-bit one-way permutation with k-bit
security generates k-bit signatures with almost k-bit security.

1 Introduction

The size of the signature is one of the measures of the efficiency of a digital
signature scheme. In the security model where the threat is existential forgery,
one obvious lower bound is that k-bit signatures cannot provide better than k-bit
security, because the probability that a signature is valid is at least 2−k.

The quest for short signatures is long and many schemes have been proposed.
One approach to obtain signatures as short as possible for a given security level of
k bits has been initiated by Boneh et al. [5, 4], who use pairing in elliptic curves
to generate 2k-bit signatures. This approach permits relatively fast signature
generation and signature verification, its main drawback is that the signature
have twice the minimal possible length. Other schemes with short signatures
based on the hardness of the elliptic curve discrete logarithm have been proposed
[17, 18] but they use message recovery and the signed message is not shorter than
with Boneh et al.. The approach of Patarin, Courtois et al. [11,9, 10] is to use new
hard problems (based on multivariate equations or coding theory) to generate
αk-bit signatures with α < 2. But their security is based on ad hoc assumptions
(see section 4.3 for more details). Granboulan [13] uses the ideal cipher model to
generate k-bit signatures based on any trapdoor one-way permutation, but the
main weakness of his technique is that these are signature schemes with message
recovery. This result is extended in [14].

� This work is supported in part by the French government through X-Crypt, in part
by the European Commission through ECRYPT.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 302–312, 2005.
c© International Association for Cryptologic Research 2005

A Generic Scheme Based on Trapdoor One-Way Permutations 303

In this paper, we introduce a new technique, which can be seen as a mix of
[11, 9] and [13], that allows to have k-bit signatures with appendix with security
based on the sole one-wayness of a permutation, in the ideal cipher model.

The next section recalls classical definitions and previous results. It includes
well known results on Full Domain Hash schemes and emphasises the fact that its
generic security proof is optimal. It describes the Chained Patarin (or Feistel-
Patarin) construction for digital signature schemes and makes an overview of
its known properties. The material of this section is similar to the one that
introduces Courtois’ study of Quartz [9].

The third section describes our new generic chained construction for digital
signature schemes, and shows that it can have an optimal generic security proof
and that it can be used to design schemes that are as close as needed to the
theoretical lower bound on the length of signatures. Our chained construction is
based on iterating a trapdoor permutation, and therefore can be linked to the
techniques by Lysyanskaya et al. [16] that generate aggregate signatures.

The fourth section compares GCC with some other techniques, and gives
some comments and open questions.

2 Preliminaries

2.1 Definitions

Digital Signatures Schemes. A digital signature scheme (“with appendix”,
not “with message recovery”) is defined by the following sets and algorithms:

– M is the set of messages,
– PK is the set of public keys and SK the set of secret keys,
– for any pk ∈ PK, Spk is the (finite) set of possible signatures,
– Gen is a randomised key generation algorithm that outputs a pair (pk, sk) ∈

PK × SK,
– Signpk,sk : M → Spk is the signature algorithm for the public key pk,
– Verpk : M×Spk → {0, 1} is the corresponding verification algorithm.

The scheme is consistent if for all (pk, sk) generated by Gen and all m we have
Verpk(m, Signpk,sk(m)) = 1.

Security of a Digital Signatures Scheme. The scheme is secure under cho-
sen message attack with qS queries if no attacker allowed to adaptively ask qS

signatures of chosen messages can with high success probability output a valid
signature that was not one of the qS answers. Such a machine is called an exis-
tential forger1. For qS = 0 it is said that the scheme is secure under a no-message
attack.

1 A slightly less strong definition is more common in the literature, where the forgery
needs to be with a new message. We prefer the stronger definition even if it may not
be necessary [1].

304 Louis Granboulan

Exact Security. The scheme is (t, ε)-secure if no forger is a (t, ε)-forger, where
a (t, ε)-forger is a forger running in expected time at most t (where the unit for
time measurement is e.g. the average time necessary to run Verpk) and with a
probability of successfully outputting a forgery less than ε.

The scheme is said to have k-bit security if there is no (t, ε)-forger such that
t/ε < 2k.

To avoid technical subtleties about the exact running time and success proba-
bility, we will introduce a new definition: a scheme is [t, ε]-secure if it is (αtt, αεε)-
secure for 1/β < αt, αε < β, for a small β (typically 2 or 10). Another equivalent
definition of [t, ε]-security applies to the case where the scheme depends on a
complexity parameter n (e.g. the size of the public key), and the condition is
that β is a constant independent of n. [k]-bit security is defined in a similar way.

Trapdoor One-Way Permutations. For any pk ∈ PK, let Spk be a set of 2pk

elements. The family fpk : Spk → Spk is said to be a family of trapdoor one-way
permutations if fpk is easy to compute for any pk and if pk can be randomly
generated by some algorithm Gen in such a way that it comes with a trapdoor
sk that makes easy to compute f−1

pk . It is (t, ε)-secure if any machine running in
expected time t (the unit for time measurement is e.g. the average time necessary
to compute fpk) on a random input pk and s ∈ Spk cannot compute f−1

pk with
better probability than ε. Such a machine is called an inverter. The permutation
is said to have k-bit security if there is no (t, ε)-inverter such that t/ε < 2k.

It is obvious that an exhaustive search can be used to invert fpk, therefore
it is impossible to have k-bit security for k > � where � is the average value
of �pk for random pk generated by Gen. It is an open problem whether if it is
possible to reach this lower bound or not. The best candidates are some discrete
logarithm-based functions, which apparently have [�/2]-bit security, and some
specific functions (e.g. based on quadratic multivariate equations [11] or error
correcting codes [10]) that may have [α�]-bit security for α > 1/2.

Another obvious property is that trapdoor one-way permutations that are
random-self-reducible or based on claw-free functions have another upper bound
for their security: an attack based on the birthday paradox shows that it is
impossible to have k-bit security for k > �/2. It is the case for trapdoor one-way
permutations based on classical number theoretical problems (factorisation or
discrete logarithm).

A [�]-bit secure trapdoor one-way permutation is called optimal trapdoor one-
way permutation.

2.2 Previous Results on Full Domain Hash

Full Domain Hash (FDH) has been named by Bellare and Rogaway [2] and is
one of the most classical techniques to construct digital signature schemes.

Definition 1 (FDH). Let Hpk : M → Spk be a family of cryptographic hash
functions and fpk : Spk → Spk be a family of trapdoor one-way permutations. A
valid signature s of a message m under the key pk is the unique value such that
Hpk(m) = fpk(s). It can be generated using the trapdoor by s = f−1

pk ◦ Hpk(m).

A Generic Scheme Based on Trapdoor One-Way Permutations 305

Generic Attack by Birthday Paradox. The forger computes 2pk/2 hash on
random messages and 2pk/2 images of random signatures. Birthday paradox2

shows that there is probably a collision such that Hpk(m) = fpk(s).
Therefore FDH cannot have better than [�/2]-bit security.

Security Proof. The classical security proof for FDH needs the random oracle
model. This means that the forger is forced to use an external oracle when
it wants to compute the hash function. The number of queries to this oracle
is bounded by qH . The security proof shows that if there exists a (t, ε) forger
against FDH that makes qS signature queries and qH hash queries, then one can
design an algorithm that uses this forger as a black box, that controls the oracle
for Hpk, and that is a [t, ε/qH]-inverter for the trapdoor permutation.

Therefore FDH based on a k-bit secure trapdoor one-way permutation has
at least [k/2]-bit security.

Conclusion. If there exists an optimal family of trapdoor one-way permuta-
tions, then the security proof and the generic attack show that FDH based on
this family has exactly [�/2]-bit security. Therefore the previous security proof is
optimal, because a better proof would imply the non-existence of optimal trap-
door one-way permutations. It can be improved only with additional properties
of fpk, e.g. claw-free function [7, 12].

2.3 Previous Results on Chained Patarin Construction

It has been introduced for the QUARTZ signature scheme [11], and is named
The Chained Patarin Construction (CPC) [19] or Feistel-Patarin Construction
[9]. It depends on an integer parameter r (the number of rounds). QUARTZ
uses r = 4 and FDH is the special case where r = 1. Here we describe the basic
CPC. QUARTZ uses a generalisation of CPC to trapdoor functions that are not
permutations.

Definition 2 (CPC). For any pk ∈ PK let Spk be a set of 2pk elements with
a group operation ⊕. For i = 1...r let Hpk,i : M → Spk be a cryptographic hash
function and fpk,i : Spk → Spk be a trapdoor one-way permutation. A signature
s ∈ Spk for the message m under the key pk is checked with the following pro-
cedure: let sr = s and for i > 0 let si−1 = fpk,i(si) ⊕ Hpk,i(m), the signature
is valid if s0 = 0. The signature is generated using the trapdoors by s0 = 0, for
i = 1...r, si = f−1

pk,i(si−1 (Hpk,i(m)) and s = sr.

Generic Attack by Birthday Paradox. The forger chooses 2
r

r+1 pk random
messages and computes Hpk,1(m) and chooses 2

r
r+1 pk random values x1 and

computes their images y1 = fpk,1(x1). Birthday paradox shows that there are

2 Usually the birthday paradox is invoked when looking at collisions when randomly
selecting a single set from a larger superset. Here collisions between two indepen-
dently selected sets from the same superset are examined. The same principle applies,
up to a small constant in the probability of collision (1/

√
2).

306 Louis Granboulan

2
r−1
r+1 pk collisions such that fpk,r(x1) = Hpk,1(m). After one round, we have

2
r−1
r+1 pk candidate pairs (m, x1). Then the forger chooses 2

r
r+1 pk random values

x2 and computes their images y2 = fpk,2(x2). For each candidate pair, there is
a probability 2−

1
r+1 pk that x1 (Hpk,2(m) is equal to some y2. Therefore after

2 rounds we have 2
r−2
r+1 pk candidate pairs (m, x2). And after i rounds we have

2
r−i
r+1 pk candidate pairs (m, xi). After r rounds all candidate pairs (m, xr) are

valid signatures, and the expected number of such pairs is roughly one.
Therefore the r-rounds CPC cannot have better than [r

r+1�]-bit security.

Security Proof. The security proof of FDH applies to CPC. There is no known
better security proof for CPC. The most comprehensive study of the security of
CPC is by Courtois [9].

Conclusion. There is a gap between the security proof and the best generic
attack known on CPC.

3 The Generic Chained Construction and Its Security

3.1 Introduction

The Generic Chained Construction (GCC) is a generalisation of CPC where a
block encryption is used instead of just xoring the current value with the result
of a hash function.

Definition 3 (GCC). For any pk ∈ PK and let Spk be a set of 2pk elements.
For i = 1...r let Epk,i : M×Spk → Spk be a block cipher and fpk,i : Spk → Spk be
trapdoor one-way permutations. A signature s ∈ Spk for the message m under
the key pk is generated using the trapdoors by s = f−1

pk,r ◦ E−1
pk,r[m] ◦ ... ◦ f−1

pk,1 ◦
E−1

pk,1[m](0). The signature verification computes v = Epk,1[m]◦fpk,1◦...◦Epk,r [m]◦
fpk,r(s). The signature is valid if v = 0.

The special case where Epk,i[m](x) = x⊕Hpk,i(m) is exactly the chained Patarin
construction.

The public key should contain the description of all Epk,i and of all fpk,i.
NB: the security proof of theorem 1 below shows that these r functions don’t
need to be distinct.

Generic Attack by Birthday Paradox. This is the same attack as the attack
against CPC.

The forger chooses 2
r

r+1 pk random messages and computes E−1
pk,1[m](0) and

chooses 2
r

r+1 pk random values x1 and computes their images y1 = fpk,1(x1).
Birthday paradox shows that there are 2

r−1
r+1 pk collisions such that fpk,1(x1) =

E−1
pk,1[m](0). After one round, we have 2

r−1
r+1 pk candidate pairs (m, x1). Then

the forger chooses 2
r

r+1 pk random values x2 and computes their images y2 =

fpk,2(x2). For each candidate pair, there is a probability 2−
�pk
r+1 that E−1

pk,2[m](x1)

A Generic Scheme Based on Trapdoor One-Way Permutations 307

is equal to some y2. Therefore after 2 rounds we have 2
r−2
r+1 pk candidate pairs

(m, x2). And after i rounds we have 2
r−i
r+1 pk candidate pairs (m, xi). After r

rounds all candidate pairs (m, xr) are valid signatures, and the expected number
of such pairs is roughly one.

Therefore the r-rounds GCC cannot have better than [r
r+1�]-bit security.

3.2 Security Proof Against a Chosen Message Attack

Theorem 1. If there exists a (t, ε)-forger against r-rounds GCC based on trap-
door one-way permutations of 2 elements that makes at most qE cipher queries
and qS signature queries then one can design an algorithm that uses this forger as
a black box, that controls the oracle for Epk,i, and is a [t, (qE +qS)−1/rε]-inverter
against one of the trapdoor one-way permutations.

Proof. The forger receives a public key and makes at most qE cipher queries and
qS signature queries, corresponding to N ≤ qE + qS messages m. The algorithm
that answers those queries should simulate the behaviour of an algorithm that
knows the secret key, it is called the simulator. The challenge is pk and a value
x̄ ∈ Spk, and the simulator wins the game if it computes one of the f−1

pk,i(x̄).
We denote yj the intermediate values that occur in the computation of the

signature. They depend on the message, and are denoted yj [m]. More precisely,
for each message m that appear in some query, we let y0[m] = 0 and for j = 1...r,
let xj [m] = E−1

pk,j [m](yj−1[m]) and yj [m] = f−1
pk,j [m](xj [m]). The last value yr[m]

is the signature.

– Simulation
Game 0. For each m, the simulator chooses random values for yj[m], com-
putes xj [m] = fpk,j [m](yj [m]), and fixes Sign(m) = yr[m] and Epk,j [m] :
xj [m] #→ yj−1[m]. All other cipher queries are answered with random values.
All the answers to cipher queries are kept in a table, that restricts the choice
of the random answers to the queries to the ones such that all Epk,j [m] are
permutations. It is a perfect simulator.
Game j, for j = 1...r. This game is similar to Game j-1, but the values
yj [m] are not fixed in advance but only when needed. Therefore, yj [m] is
fixed only if Sign(m) or E−1

pk,j [m](yj−1[m]) are queried.
All values yj+1[m], ..., yr[m] are still fixed in advance. That means that
all xj+1[m], ..., xr[m] are computed in advance, but that xj [m] is unknown.
Therefore (unless yj [m] is fixed) the simulator does not know when a Epk,j [m]
for xj [m] is made, and answers random values to all Epk,j [m] queries.
Event Bad(j) happens when some Epk,j [m](x̂) query is answered yj−1[m]
and afterwards the signature of m is queried, because the simulator needs
to know the value of yj [m] hence needs to find f−1

pk,j(x̂). For each Epk,j [m]
cipher query, the probability that the answer is yj−1[m] is 2−.

– A study of Game r
There are at most qE queries that may cause some event Bad(j), therefore
this failure happens with probability less than qE2−. But we can make the
hypothesis that the forger is at least as efficient as the one based on the

308 Louis Granboulan

birthday paradox, therefore (qE + qS) ≤ 2
r

r+1 . Game 0 and Game r can be
distinguished with probability at most 2−

�
r+1 , which is less than 1

2 if r ≤ l−1.
Let X(j) be the set of the messages such that y1[m], ..., yj [m] are fixed by
cipher queries. Let nj be the size of X(j).
If m is a random message in X(j) with j < r, then with probability nj+1

nj

it is also an element of X(j + 1) and the simulator does not need to know
yj [m] when answering xj [m] to the cipher query Epk,j [m](yj−1[m]), because
it will learn it when Epk,j [m](yj [m]) is queried.
If m is a random message in X(r), then with probability 1

nr
it is the message

that is output by the forger and the simulator does not need to know yr[m]
when answering xr[m] to the cipher query Epk,r[m](yr−1[m]), because it will
learn it when the forger outputs its forgery.

– Inversion
Game j’ for j = 1...r. The simulator runs a game identical to Game j with
the exception of one value yj [m] that is unknown to the simulator but fixed
with xj [m] = x̄. Therefore with probability nj+1

nj
the simulator learns the

value of f−1
pk,j(x̄).

Last Game. The simulator runs at random one of the Games j’.
One of the probabilities n2

n1
, ..., nj+1

nj
, ..., nr

nr−1
, 1

nr
is greater than n

−1/r
1 ,

which is greater than (qE + qS)−1/r, therefore, if r ≤ l − 1, the probability
of successfully learning one of the f−1

pk,j(x̄) is greater than 1
2r (qE + qS)−1/r

��
This theorem shows that r-rounds GCC based on a [t, ε]-bit secure trapdoor

one-way permutation has (t, (qE + qS)1/rε)-bit security in a chosen-message at-
tack. This implies that for k-bit secure permutations the scheme is [k− 1

r log2(qE+
qS)]-secure. The running time of an attacker is necessarily greater than qE + qS ,
therefore log2(qE+qS) ≤ k− 1

r log2(qE+qS) or equivalently log2(qE+qS) ≤ r
r+1k,

which means that the scheme is [k − 1
r+1k]-secure.

Our theorem shows that r-rounds GCC based on a k-bit secure trapdoor
one-way permutation has [r

r+1k]-bit security in a chosen-message attack. There-
fore r-rounds GCC based on optimal trapdoor one-way permutations has at
least [r

r+1�]-bit security, which is the efficiency of the generic attack by birthday
paradox.

One surprising fact is that chosen-message attacks of GCC are not more
powerful than no-message attacks.

4 Comments on GCC

4.1 Optimality

k-Round GCC Has Almost the Best Possible Security for a Generic
Scheme Based on Trapdoor One-Way Permutations. If a scheme can
be based on any k-bit secure trapdoor one-way permutation, then it should be
secure in the case where there exist an algorithm that computes inverses of the

A Generic Scheme Based on Trapdoor One-Way Permutations 309

permutation in time 2k and with probability 1. Then, the forger that uses this
algorithm to implement the signature algorithm runs in time r2k where r is the
number of inverses needed to sign. This proves that a digital signature scheme
based on a k-bit secure trapdoor one-way permutation cannot have better than
[k]-bit security3.

For any constant α, αk-round GCC has asymptotically [k−log k]-bit security,
which is almost the best possible result.

k-Round GCC Based on an Optimal Trapdoor One-Way Permutation
Is a Digital Signature Scheme with the Shortest Possible Signatures.
This is a consequence from the previous remark. If there exists an optimal trap-
door one-way permutation, we can obtain [k]-bit security with signature as short
as k + log k bits.

This seems to contradict the result of Coron [8, annex E], which implies that a
hash-and-sign digital signature with k-bit security cannot have shorter signature
than k + log qS bits. But our scheme is not a hash-and-sign scheme.

4.2 Implementation and Practical Use

The Ideal Cipher Model. The ideal cipher model is a technique to prove
the security of a cryptographic scheme in an idealised world where an oracle
exists which implements random permutations. It is similar to the random oracle
model, where the oracle implements random functions. The random oracle model
has been proven4 to be impossible to instantiate in general [6], and it is very likely
that this result extends to the ideal cipher model. However, there is no reason
for a block cipher with no other properties than being a strong pseudo-random
permutation generator to fail to instantiate the ideal cipher in GCC.

Choosing the Cipher. The key space of the cipher is the set of all possible
messages. No cipher has such an infinite key space, but this problem can easily be
solved. For k-bit security, we need a collision-resistant hash function H with a 2k-
bit output, and a block cipher C with 2k-bit keys and, then E[m](x) = CH(m)(x)
can be used in GCC.

A more difficult problem is that the cipher should encrypt blocks that are
in the set Spk of 2pk elements permuted by the fpk,i. Current block cipher only
handle the cases where �pk ∈ {64, 128, 256}, while we may want to use arbitrary
integer and non-integer values. There is some literature on the subject [3] but
no well-established solution exist.

A problem may arise if the domain Spk depends on pk, because implementing
a block cipher depending on pk is costly.
3 A scheme based on a k-bit secure trapdoor one-way permutation may have better

than [k]-bit security if there is no such inverter for the permutation. For example
if the best k-bit inverter runs in time 2k−1 and succeeds with probability 1/2, the
previous argument describes a forger that succeeds with probability 2−r, which is a
[k + r]-bit forger.

4 The applicability of this proof to realistic cryptographic schemes is debatable [15],
because it uses a specific ad hoc and unrealistic construction of a counter-example.

310 Louis Granboulan

The Trapdoor One-Way Permutations. The description of the r-round
scheme uses r trapdoor permutations fpk,i. But the security proof does not make
the hypothesis that these permutations are distinct ones. If the size of the public
key matters, we recommend to use the same trapdoor permutation for all rounds.
This is also true for CPC, and for example Quartz uses a unique fpk,i.

However, if the attacker is able to easily invert one of the fpk,i, then the
effect is that one round of GCC is cancelled. Therefore the attack by birthday
paradox is more efficient and the security proof is less efficient. The use of distinct
permutations for fpk,i allows to combine their one-wayness without increasing the
size of the signature.

4.3 Comparison with Some Other Schemes

Theoretical Message Signature Heuristic Proven Based
design recovery length security security5 on
r-round GCC k r

r+1k r
r+1k one-way

r-round CPC [11] k r
r+1k k/2 one-way

CFS-like scheme [10] k k k/2 one-way
FDH 2k k k one-way
Improved PSS [14] 2k k k − 1 claw-free
OPSS-R [13, 14] X k k k one-way
Boneh et al. [5, 4] 2k k k pairing
Naccache-Stern [17] X 2.5k k k discrete log
Pintsov-Vanstone [18] X 2k k k discrete log

Quartz. Our security proof for GCC is different from the study of CPC made
by Courtois, because the security proof in [9, section 4] is based on an addi-
tional assumption for the underlying one-way function: the assumption that the
best algorithm that computes many inverses is the one that computes them
independently. This assumption is likely to hold for optimal trapdoor one-way
permutations, but does not hold in general.

Moreover, both the structure of Quartz and of the Differential Signature
Scheme [9, annex A.4] are insecure if the underlying one-way function F is ho-
momorphic (i.e. F (x+y) = F (x)+F (y)) while our structure makes no hypothesis
other than the one-wayness.

It is an open problem to prove the security of the CPC construction under
the hypothesis of non-homomorphism and one-wayness.

Code-Based Schemes [10]. The authors describe a scheme that generates
81-bit signatures and claims to have 83-bit security against no-message attacks.
The scheme is constructed using a non-proven generalisation of FDH to trapdoor
injective functions where fpk : Spk → Hpk where membership in fpk(Spk) is diffi-
cult to test without the trapdoor. It is likely that a security proof for this scheme
will suffer the same problem as the security proof of FDH: that it is not tight.
5 If the underlying function is one-way.

A Generic Scheme Based on Trapdoor One-Way Permutations 311

4.4 Conclusion

We decribe a new technique that allows to generate digital signature schemes
based on trapdoor one-way permutations, that are secure in the ideal cipher
model and have a signature length as short as possible. However, their running
time (for k-bit security) is k times the running time of Full Domain Hash.

An open question is whether it is possible to have short signatures with less
than k calls to the trapdoor function or not. Another open question is whether it
is possible to have signatures of similar length that are provably secure without
an idealised model or not.

References

1. J. H. An, Y. Dodis, and T. Rabin, “On the security of joint signature and encryp-
tion.” in Proceedings of Eurocrypt’02 (L. R. Knudsen, ed.), no. 2332 in Lecture
Notes in Computer Science, pp. 83–107, Springer-Verlag, 2002.

2. M. Bellare and P. Rogaway, “The exact security of digital signature – how to sign
with RSA and Rabin.” in Proceedings of Eurocrypt’96 (U. Maurer, ed.), no. 1070 in
Lecture Notes in Computer Science, pp. 399–416, Springer-Verlag, 1996. Revised
version available at
http://www-cse.ucsd.edu/users/mihir/papers/exactsigs.html.

3. J. Black and P. Rogaway, “Ciphers with arbitrary finite domains.” in Proceedings
of CT-RSA’02 (B. Preneel, ed.), no. 2271 in Lecture Notes in Computer Science,
pp. 114–130, Springer-Verlag, 2002.

4. D. Boneh and X. Boyen, “Short signatures without random oracles.” in Proceedings
of Eurocrypt’04 (C. Cachin and J. Camenisch, eds.), no. 3027 in Lecture Notes in
Computer Science, pp. 56–73, Springer-Verlag, 2004.

5. D. Boneh, B. Lynn, and H. Shacham, “Short signature from the Weil pairing.” in
Proceedings of Asiacrypt’01 (C. Boyd, ed.), no. 2248 in Lecture Notes in Computer
Science, pp. 514–532, Springer-Verlag, 2001.

6. R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology, revis-
ited.” in Proceedings of Symposium on Theory of Computing – STOC’98 , pp. 209–
218, ACM Press, 1998.

7. J.-S. Coron, “On the exact security of Full Domain Hash.” in Proceedings of
Crypto’00 (M. Bellare, ed.), no. 1880 in Lecture Notes in Computer Science,
pp. 229–235, Springer-Verlag, 2000.

8. J.-S. Coron, “Optimal security proofs for PSS and other signature schemes.” in
Proceedings of Eurocrypt’02 (L. R. Knudsen, ed.), no. 2332 in Lecture Notes in
Computer Science, pp. 272–287, Springer-Verlag, 2002. Also available at
http://eprint.iacr.org/2001/062/.

9. N. T. Courtois, “Generic attacks and the security of Quartz.” in Proceedings of
Public Key Cryptography – PKC’03 (Y. Desmedt, ed.), no. 2567 in Lecture Notes
in Computer Science, pp. 351–364, Springer-Verlag, 2003.

10. N. T. Courtois, M. Finiasz, and N. Sendrier, “How to Achieve a McEliece-Based
Digital Signature Scheme.” in Proceedings of Asiacrypt’01 (C. Boyd, ed.), no. 2248
in Lecture Notes in Computer Science, pp. 157–175, Springer-Verlag, 2001.

11. N. T. Courtois, L. Goubin, and J. Patarin, “Quartz, 128-bit long digital signature.”
in Proceedings of CT-RSA’01 (D. Naccache, ed.), no. 2020 in Lecture Notes in
Computer Science, pp. 282–297, Springer-Verlag, 2001. See also
http://www.minrank.org/quartz/.

312 Louis Granboulan

12. Y. Dodis and L. Reyzin, “On the power of claw-free permutations.” in Proceedings
of SCN’02 (S. Cimato, C. Galdi, and G. Persiano, eds.), vol. 2576 of Lecture Notes
in Computer Science, Springer-Verlag, 2002. Also available at
http://eprint.iacr.org/2002/103/.

13. L. Granboulan, “Short signatures in the random oracle model.” in Proceedings of
Asiacrypt’02 (Y. Zheng, ed.), no. 2501 in Lecture Notes in Computer Science,
pp. 364–378, Springer-Verlag, 2002.

14. J. Katz and N. Wang, “Efficiency improvements for signature schemes with tight
security reductions.” in Proceedings of CCS’03 , ACM Press, 2003.

15. N. Koblitz and A. Menezes, “Another Look at ‘Provable Security’ ”. 2004. Available
at http://eprint.iacr.org/2004/152/.

16. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, “Sequential aggregate sig-
natures from trapdoor permutations.” in Proceedings of Eurocrypt’04 (C. Cachin
and J. Camenisch, eds.), no. 3027 in Lecture Notes in Computer Science, pp. 74–90,
Springer-Verlag, 2004.

17. D. Naccache and J. Stern, “Signing on a postcard.” in Proceedings of Financial
Cryptography – FC’00 (Y. Frankel, ed.), no. 1962 in Lecture Notes in Computer
Science, pp. 121–135, Springer-Verlag, 2000.

18. L. A. Pintsov and S. A. Vanstone, “Postal revenue collection in the digital age.”
in Proceedings of Financial Cryptography – FC’00 (Y. Frankel, ed.), no. 1962 in
Lecture Notes in Computer Science, pp. 105–120, Springer-Verlag, 2000.

19. NESSIE consortium, “NESSIE Security report.” Deliverable report D20, NESSIE,
2002. Available from http://www.cryptonessie.org/.

Cramer-Damg̊ard Signatures Revisited:
Efficient Flat-Tree Signatures Based onFactoring

Dario Catalano1 and Rosario Gennaro2

1 CNRS – École normale supérieure, Laboratoire d’informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

dario.catalano@ens.fr
2 I.B.M. T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598

rosario@us.ibm.com

Abstract. At Crypto 96 Cramer and Damg̊ard proposed an efficient,
tree-based, signature scheme that is provably secure against adaptive
chosen message attacks under the assumption that inverting RSA is com-
putationally infeasible.
In this paper we show how to modify their basic construction in order
to achieve a scheme that is provably secure under the assumption that
factoring large composites of a certain form is hard.
Interestingly our scheme is as efficient as the original Cramer Damg̊ard
solution while relying on a seemingly weaker intractability assumption.

1 Introduction

Digital Signatures are arguably the most important primitive of public-key cryp-
tography [10]. Using digital signatures the receiver of a message can be assured
that the message originated with a specific sender, and even more importantly,
she will be able to prove such thing to a third party (non-repudiation). Because
of the centrality of this concept it is very important to find signature schemes
which are provably secure and efficient.

The concept of provable security for signature schemes (i.e. forgery should be
equivalent to the solution of a well-defined conjectured hard problem) was for-
malized in the seminal paper by Goldwasser et al. [14] where an exact definition
of what “forgery” means is given.

Starting from the scheme described in [14], several other provably secure sig-
nature schemes have been proposed in the literature that follows their paradigm.
An important line of research has been to try to identify the minimal assumption
needed to construct provably secure signature schemes. The assumption used in
[14] was the existence of trapdoor claw-free permutations. Later, Bellare and Mi-
cali [2] showed that any trapdoor permutation would suffice. A breakthrough
result came with Naor and Yung [18] who showed that it is possible to construct
provably secure signatures out of one-way permutations, disposing of the trap-
door assumption which was considered essential. Finally Rompel [23] relaxed the
assumption to the mere existence of one-way functions (which is easily seen to
be the minimal assumption required).

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 313–327, 2005.
c© International Association for Cryptologic Research 2005

314 Dario Catalano and Rosario Gennaro

However, the schemes mentioned above fall short in terms of their efficiency
(which is measured as of computing time needed to produce and verify signatures
and as of signature length). For example the original scheme in [14] builds a
binary tree of height d, and the signature lenght and the computing time is O(d).
The parameter d is chosen so that 2d is larger than the number of messages that
the signer will ever sign.

It is thus important to research if using the properties of specific number-
theoretic problems (like Factoring, RSA or Discrete Log) it is possible to devise
provably secure yet efficient signature schemes.

For the case of the RSA function, Dwork and Naor [11] propose such a scheme,
which was later improved by Cramer and Damg̊ard [7]. The idea proposed in
[11, 7] is to use specific properties of the RSA function to modify the original
scheme in [14] to work with a “flat”tree, i.e. a tree with large branching factor
l > 2. In the [11, 7] schemes, computation time and signature length are still
O(d) but now d is much smaller because all we need is that ld is larger than the
total number of signed messages.

At the same time Cramer [5] extended the basic GMR [14] technique to
work with a flat-tree. The resulting scheme allows to obtain signatures that are
somewhat shorter than GMR. This however comes at the cost of requiring much
larger keys and public parameters: for example the signer is required to keep
l + 1 different “trapdoors” and users of the scheme must agree on a common
list of l random numbers (the latter is required also in [11]). In particular this
means that the private storage for the signer is larger by a factor of l with respect
to [11, 7]. The computational efficiency of Cramer’s scheme [5] is comparable to
[14], which is less efficient than [7].

Thus from a purely computational point of view (i.e. regardless of the as-
sumption used), the method presented in [7] is more desirable since it uses less
time and space. The open question, then, is to see if one can achieve the same
efficiency as [7], only relying on a factoring assumption.

Our Contribution. In this paper we give a positive answer to this question, by
showing how to construct an efficient flat-tree signature scheme whose security
is based on the assumption that factoring large RSA moduli of a special form
is hard. The restriction on the moduli N is that we require that the product
of the smallest l primes divides φ(N). This restriction does not seem to affect
the security of the factoring assumption, nor does it seem to make finding these
moduli any harder.

Some components of our scheme (particularly the basic authentication step)
are identical to the ones proposed by Cramer and Damg̊ard in [7]. The secu-
rity reduction to factoring is achieved by changing the key generation protocol
and the choice of the public parameters. Because the basic authentication step
remains the same, however, the efficiency of our scheme is pretty much equiva-
lent to the efficiency of the scheme proposed in [7], while relying on a seemingly
weaker assumption.

Efficient Flat-Tree Signatures Based on Factoring 315

1.1 Other Related Work

Besides the works already mentioned in the Introduction, we point out that ef-
ficient provably secure signature schemes have been proposed using a variation
on the RSA assumption. These works [13, 8] present efficient, state-free (all the
above schemes, including ours, require the signer to keep some state) signatures
based on a stronger assumption on the inversion of the RSA function. Although
these schemes are more efficient than ours we stress that our goal was to prove
the security of a reasonably efficient signature scheme based on the weaker as-
sumption about factoring large integers, which subsumes both the regular and
the strong RSA Assumptions.

A different approach followed in the literature is to try to prove “as much
as possible” the security of efficient signature schemes like traditional RSA and
schemes of the ElGamal family [12]. Starting from the work of Bellare and Ro-
gaway [3] several papers proved that these schemes are secure (according to the
[14] definition) in an idealized model of computation where a random oracle (an
oracle that returns the result of a random function) is available to all parties.
The random oracle is used to model “complicated hash functions” on which the
security of the scheme relies. Although a proof in the random oracle model is
better than no proof at all, it should not be automatically construed as a proof of
security in the real model of computation. Indeed this is not the case, as proven
in a result by Canetti et al. [4]. Since our scheme does not use a random oracle,
we do not further discuss the random oracle model in this paper.

2 Definitions and Notations

We start with some definitions and notations. Given a probability space C we
indicate with x ← C the algorithm which assigns to x a random element accord-
ing to C. In the case in which C is a finite set, x ← C indicates the algorithm
which assigns to x a random (uniformly chosen) element of C.

We say that a function ε(·) is negligible if for every constant c ≥ 0 there exists
an integer kc such that for all k > kc ε(k) < k−c

In the rest of the paper we assume that N is an n-bit composite modulus
obtained as the product of two Blum primes p and q (i.e. p and q are such that
p ≡ q ≡ 3 mod 4). We denote such moduli as Blum modului. We denote with
λ(N) = lcm(p − 1, q − 1). It is well known that for all x ∈ Z∗

N we have that
xλ(N) = 1 mod N .

Consider now l (small) odd primes ρ1, . . . , ρl and let σ be their product. We
are going to consider Blum moduli N , such that ∀ i ρi is a divisor of λ(N), but ρ2

i

is not, and moreover N >> σ4. Let’s denote then with BLUM(k, ρ1, ρ2, . . . , ρl)
the set of such Blum moduli with the property that λ(N)/σ is of length k, i.e.

BLUM(k, ρ1, ρ2, . . . , ρl) = {N = pq : p, q ≡ 3 mod 4 ,

ρi|λ(N) , ρ2
i � |λ(N) , |λ(N)/(ρ1 · · ·ρl)| = k}

In the following we will assume that factoring such integers is hard even when
given knowledge of the product σ of the small primes that divides λ(N).

316 Dario Catalano and Rosario Gennaro

Assumption 1 (Factoring). For every polynomial-time algorithm A, and for
every set of small primes ρ1, . . . , ρl, the following probability is negligible in k:

P r

[
N ← BLUM(k, ρ1, ρ2, . . . , ρl) ,
A(N, ρ1, . . . , ρl) = (p, q) : N = pq

]

Families of Hash Functions. We consider families of hash functions mapping
strings of arbitrary length to strings of fixed length. Namely we consider a family
H = {Hk}k where each Hk is a collection of functions of the form H : {0, 1}∗ →
{0, 1}k for some integer k. Hk is polynomially samplable. We will be interested
in hash functions that are collision intractable. A family H of hash functions is
said to be collision intractable if it is infeasible to find two different inputs that
map to the same output for a randomly chosen member of the family.

Definition 1 (Collision Intractability [9]). We say that H is collision in-
tractable if, for every probabilistic polynomial time algorithm A there exists a
negligible function ε(·) such that

P r[H ← Hk; A(H) = (x1, x2) s.t. x1 �= x2 and H(x1) = H(x2)] ≤ ε(k)

We now define digital signatures.

Definition 2 (Digital Signatures). Let k be a security parameter, we define
a digital signature as the triplet (G,SIG,VER), where

– G is a polynomial time randomized algorithm that on input 1k outputs a pair
(P K, SK) of matching public and secret keys.

– SIG is the signing algorithm. It takes as input a message m, the keys
P K, SK and possibly keeps some internal state. It produces as output a sig-
nature σ for m. This algorithm can be probabilistic.

– VER is the verification algorithm. It receives as input a message m, the
public key P K and a signature σ, and checks if σ is valid according to m
and P K. In other words VER(m, P K, σ) = 1 if σ = SIG(m, P K, SK).

The strongest notion of security for signature schemes was given by Goldwasser,
Micali and Rivest [14]

Definition 3 (Secure Signatures). A signature scheme (G,SIG,VER) is ex-
istentially unforgeable against an adaptive chosen message attack if it is com-
putationally infeasible for a forger, who knows just the public key, to produce a
valid signature σ on a message m even after having obtained polynomially many
signatures on messages mi of his choice from the signer.

More formally, for every probabilistic polynomial time algorithm F , there
exists a negligible function ε(·) such that

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
(P K, SK) ← G(1k)
for i = 1 . . . n

mi ← F(P K, m1, σ1, . . . , mi−1, σi−1)
σi ← SIG(mi, P K, SK)

(m, σ) ← F(P K, m1, σ1, . . . mn, σn);
m �= mi for i = 1 . . . n, and VER(m, P K, σ) = 1

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ ε(k)

Efficient Flat-Tree Signatures Based on Factoring 317

3 The New Scheme

Our scheme will make use of a l-ary tree (i.e. with branching degree l), which we
call the signature tree. The root of the tree will be a random value S included in
the public key of the signer. The tree has depth d+1 with a branching degree of
l in the first d levels and a branching degree of 1 in the last level. By this setting
we will allow the signer to sign up to ld messages (we are going to assume ld to be
polynomial in k the security parameter). We now introduce some terminology:
The first d levels of the tree are denoted as expanding levels, since every parent
node Sj at level j (j ∈ {1, . . . , d}) has l children (we have the root as S0 = S).
We call these nodes expanding nodes. The remaining level, level d + 1, is called,
the terminal level. Every parent node belonging to this levels has exactly one
child. The parent nodes at the terminal level are denoted as terminal nodes. As
usual, each terminal node’s only child is called a leaf of the tree. We call an
item a parent together with all his children and an arc a parent with one of his
children. This means that every item has l arcs. A path from a node A to a node
B is is the sequence of arcs that connects A with B.

Informally the signature algorithm will start “filling up” this tree. To sign
the ith message mi, the signer will place mi as the ith leaf and will output an
authentication chain that links mi to the root of the tree (which is part of the
public key). The verifier, will follow this authentication chain and if the end
result matches the value in the public key, accepts the signature. Formal details
follow.

3.1 Formal Description on the Scheme

We now give a formal detailed description of our scheme.

Key Generation. The signer chooses l odd distinct primes1 ρi < 2v (for some
small enough parameter v) and sets p̂ =

∏l/2
i=1 ρi, q̂ =

∏l
i=l/2+1 ρi and σ = p̂q̂. He

then randomly picks two (distinct) large primes p′ and q′ of length k/2 such that
p = 2p′p̂ + 1 and q = 2q′q̂ + 1 are two (k + ω)/2-bit primes (for some parameter
ω that depends on v and l). Then he sets N = pq as the public modulus.

Note that by this position we have that N is a Blum integer such that ρi

(but not ρ2
i) divides λ(N), and of the appropriate length. Notice also that 2 (but

not 22 = 4) divides λ(N).
Denote with E = 2σ = 2ρ1 · · · ρl. The signer chooses uniformly and at ran-

dom two E-th residues h, S in Z∗
N and a function H from a family of collision

intractable hash functions. We will assume that H outputs a value in {0, 1},
for some security parameter �. For technical reasons, that will become apparent
in the proof of security, the signer sets e = 2+1 and for each i = 1, . . . , l sets
ei = ρi

i , where �i is the minimum integer such that ei > 2. The signer publishes
(N, h, S, e, e1, . . . , el, H, d), where d represents the depth of the tree, as his public
key and keeps private the factorization of the modulus. Note that this allows the
signer to sign up to ld messages.
1 The choice of these primes needs not satisfy any special requirement. For efficiency

reason these primes could be chosen as the first l odd primes.

318 Dario Catalano and Rosario Gennaro

Remark 1. The key generation algorithm is very similar to the one proposed
by Naccache and Stern in [17]. They showed that the extra requirement on the
choice of p, q in practice slows down the generation of N by around 9% with
respect to the generation of a regular RSA modulus (see [17] for more details).

Signature Algorithm. The signer holds a tree of depth d with root S. All
the nodes in the tree at the beginning are empty.

To sign the ith message mi the signer proceeds as follows:

1. He visits the path on the tree from the root to the ith leaf, which is labeled
with mi. If a node j on this path has not been visited before, the signer
labels it with a random E-residue Sj .

2. Let (S, i1, Si1 , . . . , id, Sid
) be the visited path (where each ij is an index in

{1, . . . , l}). Then he solves the following equations

y
ei1
i1

= S · hH(Si1) mod N

and for all j = 2, . . . , d

y
eij

ij
= Sij−1 · hH(Sij

) mod N

To conclude the signature he computes a zi such that

ze
i = Sid

· hH(mi) mod N

3. The output signature on mi is sig(mi) = (zi, yi1 , i1, . . . , yid
, id).

Signature Verification. The receiver, given a message m, the public key
(N, h, S, e, e1, . . . , el, H, d) and a purported signature sig(m) = (zi, yi1 , i1, . . . ,
yid

, id), computes the following

Sid
= ze

i · h−H(mi) mod N

followed by
Sij−1 = y

eij

ij
· h−H(Sij

) mod N

for all j = d downto 1.
If the final value S0 ≡ S mod N the signature is accepted as valid.

Remark 2. Note that even though we perform iterated root extractions during
the signing procedure we just need to assume that h and the Sj ’s above are E-th
residues to make the above procedure work. Indeed we have that gcd(ei, λ(N)) =
ρi, so we can find αi, βi such that αiei + βiλ(N) = ρi. This means that, in order
to compute the ei = ρi

i -th root of an E-residue x, the signer should first compute
Δ = xαi which by the above GCD computation is an ei-root of xρi and then
compute a ρi-root of Δ. A similar argument holds for e-roots.

Now let Δ be an E-residue and let δi one of its ρi-roots, i.e. δρi

i = Δ mod N . In
general the value δi can be computed in O(ρi) time if we know the factorization

Efficient Flat-Tree Signatures Based on Factoring 319

of N (cf. [1]). Note that this is not a problem if one assumes that the primes ρi

are all very small. However, if one wants to use slighly larger primes, the O(ρi)
solution may become too inefficient. In Appendix A we show a method to extract
ρi-roots at the cost of a single modular exponentiation in Z∗

N .
The security of the scheme is stated in the following Theorem.

Theorem 1. If Assumption 1 holds and H is a collision resistant hash function,
then the digital signature scheme presented above is secure against an adaptive
chosen message attack.

The proof appears in the following Section 4. In the proof we use the following
fact: Assume to have an algorithm A that on input N, e and an e-th residue y
outputs an eth root of y. In Appendix B we prove that it is then possible to
construct a different algorithm B, having black box access to A, that factors the
modulus with probability 1 − 1/e.

Remark 3. Our presentation of the scheme, and consequently the theorem state-
ment, assume the existence of collision-resistant hash functions. However it
should be noted that factoring does imply the existence of collision-resistant
hashing, thus we are not introducing any extra computational assumption. More-
over, using techniques similar to the ones presented in [7], one can completely
dispense with the hash function H in our scheme. Either solution (implementing
a factoring-based hashed function or changing the scheme so not to need one)
would be however much more expensive than using, say, SHA-1. In order to keep
the presentation simple, we decided to present the scheme this way, since we be-
lieve it is also conceptually clearer to “separate” the role of the hash function
from the number-theoretic authentication step. In the final version of the paper
we will show how to adapt the techniques in [7] to our scheme to avoid using H
altogether.

4 Proof of Security

The proof goes by reductio ad absurdum. We assume that the proposed scheme
is not secure, meaning that there exists an adversary A that can forge signatures
with some non-negligible probability ε. Then we prove that if such an adversary
exists, then it is possible to construct a probabilistic polynomial time algorithm
B (a simulator) that, using A as an oracle, can factor with non negligible prob-
ability, thus contradicting the hypothesis of the theorem.

If we assume that such A exists, then his interaction with the signer would
be as follows. First A gets the public key. Then for i = 1, . . . , t (where t is
the maximum number of signatures the adversary is allowed to ask) he asks for
the signature on a message mi and receives back a valid signature Sig(mi) =
(zi, yi1 , i1, . . . , yid

, id). Then he will output m �= mi and a valid signature Sig(mj)
= (zj , yj1 , j1, . . . , yjd

, jd) on it.
We argue that the public key and the verification tests on a valid signature

imply that the forged signature must satisfy one of the following (mutually ex-
clusive) conditions (where with Si0 we denote S the root of the tree contained
in the public key):

320 Dario Catalano and Rosario Gennaro

Type I. For some 1 ≤ i ≤ t, one has that yjk
= yik

for each k = 1, . . . , d,
Sid

= Sjd
, but zj �= zi.

Type II. For some 1 ≤ i ≤ t, there exist an index 1 ≤ k′ < d such that for all
k ≤ k′, yjk

= yik
, Sik′ = Sjk′ but yjk′+1

�= yik′+1
.

If there is a forger that succeeds with non negligible probability, then there
must be a forger that can successfully produce either a Type I forgery, or a Type
II forgery with non negligible probability.

In the rest of the proof we will distinguish two cases, depending on the type of
expected forgery. Since these two cases are exhaustive, one of them must happen
with probability at least ε/2.

Forgery of Type I. The algorithm B (the simulator) is given as input a
Blum modulus N of the appropriate form together with a set of l small primes
(ρ1, . . . ρl) such that for every ρi one has that ρi|λ(N) but ρ2

i � |λ(N). We want
to show how B can use the forgery received from A to factor N . Let t be the
maximum number of sign-queries the adversary is allowed to ask (for simplicity
we will assume that A will ask exactly t queries). The simulator generates his
public key as follows. First it generates the public exponents e, e1, . . . el as a
real signer would do. Next, it sets F = 2 · e1 · · · el, choses α, β uniformly and at
random in Z∗

N and sets h = αF mod N and S = βF mod N . Notice that we can
take ei-roots of h, S (for any i) but not e-roots (since e = 2+1).

All the internal node, except those of depht d are computed in a similar
way. The simulator sets Sk = xF

k mod N (where, once again, the xk’s are chosen
randomly in Z∗

N) and stores the xk’s for future usage. Observe that all the nodes
generated this way – as well as S and h – are random E-residues in Z∗

N , so they
are distributed exactly as in the real signing process (more details below).

The simulator can generate valid signatures as follows. To sign the i-th mes-
sage mi, it chooses zi at random in Z∗

N and sets

Sid
= ze

i h−H(mi) mod N

All the remaining relations can be easily computed as follows. For each index
ik in the path of the signature, the simulator sets

yik
= x

F/eik

ik−1
(αF/eik)H(Sik

) mod N

Finally it outputs the signature

Sig(mi) = (zi, yi1 , i1, . . . , yid
, id)

Observe that the signatures produced by the simulator are perfectly indis-
tinguishable with respect to the signatures a real signer would generate. As a
matter of fact the only difference between a real signature and a simulated one
is the following. In the first case all the nodes of the tree – as well as the root
S and the public value h – are E-residues (recall that E = 2 · ρ1 · · · ρl), whereas
in the simulation they are F -residues (with F = 2 · e1 · · · el). However, since
ei = ρi

i (for each index i = 1, . . . , l) and N is a Blum modulus, every ρi-th

Efficient Flat-Tree Signatures Based on Factoring 321

residue is also an ρi

i power. Consequently any E-residue is also an F -residue.
Moreover, notice that, according to the simulation method described so far, the
value α is never revealed to the adversary. In the terminal levels the (simulated)
authentication procedure does not involve any e-root extraction. On the other
hand, in the expanding levels, the authentication method requires the simulator
to extract ei-roots, but it is always the case that ei �= e. In other words the
simulation is information-theoretically independent from α.

Now let Sig(mj) = (zj , yj1 , j1, . . . , yjd
, jd) be the forgery produced by the ad-

versary on a (up to now) unsigned message mj . Since we are assuming the
adversary creates a Type I forgery, for some previously produced signature
Sig(mi) = (zi, yi1 , i1, . . . , yid

, id) we have that yjk
= yik

for each k = 1, . . . , d
but zj �= zi.

This yields to the following system of equations:

(zj)e = Sid
hH(mj) mod N

(zi)e = Sid
hH(mi) mod N

Moreover, since H is collision resistant mi �= mj implies that H(mi) �=
H(mj) and we can write H(mi)−H(m) = 2ωq for some ω ≤ � and an odd q ≥ 1.

From the two equations above we can compute(
zj

zi

)e

= (hq)2
ω

mod N = (αqF/2)2
ω+1

mod N

Recall now that e = 2+1 so we get that(
zj

zi

)2�+1−ω

= hq mod N

Now, hq has two square roots, of which we already know one: αqF/2. From the
above equation we get that (zjz−1

i)2
�−ω

is also a square root of hq. Notice that
� − ω ≥ 0 so we can easily compute the value without computing square-roots.

Observe that the adversary has no information at all regarding the original
α chosen by the simulator (in an information theorethic sense). Consequently
the value (zjz−1

i)2
�−ω

is a square root of hq that is different from αqF/2 with
probability 1/2. This immediately allows to factor the modulus.

Forgery of Type II. The algorithm B is given as input a Blum modulus N of
the appropriate form together with a set of l small primes (ρ1, . . . ρl) such that
for every ρi one has that ρi|λ(N) but ρ2

i � |λ(N).
The simulator starts generating the signing public key by choosing a random

index 1 ≤ δ ≤ l. This random choice can be interpreted as the simulator “guess-
ing” the value of jk′+1, the index of the first child where the forgery and the
regular signature path of the tree will differ.

Next it creates the public exponents e, e1, . . . el as prescribed by the key
generation algorithm. Then it chooses a random element α ∈ Z∗

N , computes
G = e · e1 · · · eδ−1 · ρδ · eδ+1 · · · eτ and sets h = αG mod N .

322 Dario Catalano and Rosario Gennaro

The simulation proceeds by letting B precompute the authentication tree in
order to be able to produce t valid signatures. This precomputation phase goes
very similarly to the one described before. The main difference here is that the
root and the internal nodes of the tree are computed in a bottom-up fashion
(rather than top-down, as for the forgeries of type one).

For each node Sid
(nodes of depth d) the simulator chooses a random element

xid
and sets Sid

= xG
id

mod N . Once the nodes of level d are prepared, one can
construct the expanding nodes, item by item.

Here, for simplicity, we show the method for a generic item I. The basic idea
is to construct the parent node SI0 in terms of its δ-th child SIδ

. In particular
the simulator chooses a random value xI ∈ Z∗

N , sets

SI0 = x
G·ρ�δ−1

δ

I h−H(SIδ
) mod N

and stores the values SI0 and xI (in the following, for each item I, we will refer
to xI as to the basis of SI0).

Using this methodology the simulator can (inductively) generate the entire
tree. Each new level is obtained by combining the items of the previous level in
a tree structure (the roots of the items of level k play the role of the leaves to
construct the items of level k − 1). At the end of this phase the simulator comes
up with a global root S, which is included as part of the public key.

On top of this construction to sign the message mi, the simulator does as
follows. First he computes the path (i1, . . . , id) from the root to the ith leaf of
the tree. Then he proceeds according to the following procedure:

for k = 1 to d
Assume Sik

is the b-th child of Sik−1

Let xik
be the basis of Sik−1

if b == δ

Set yik
= x

G/ρδ

ik

if b �= δ

Set yik
= x

G/eb·ρ�δ−1
δ

ik
· (αG/eb)H(Sik

)

Set zi = x
G/e
id

(αG/e)H(mi)

Output the signature Sig(mi) = (zi, yi1 , i1, . . . , yid
, id)

In other words, the adversary easily computes e-roots and ei-roots (for i �= δ)
because all the values are G-residues and he knows G-roots of them. For the
case i = δ it is not necessary to compute eδ-roots thanks to the way in which
the internal nodes have been prepared.

If the adversary produces a valid forgery Sig(mj) = (zj , yj1 , j1, . . . , yjd
, jd),

one can “use” it to break Assumption 1 as follows. Since we are dealing with a
forgery of the second type, there exists and index k (such that 1 ≤ k ≤ d) for
which one has that Sik−1 = Sjk−1 but yik

�= yjk
. Moreover, since B simulates a

real signer perfectly, with probability 1/l one has that Sjk
is the δ-th child of

Sjk−1 . If this is the case we can then consider the following equations:

Efficient Flat-Tree Signatures Based on Factoring 323

yeδ

jk
= Sik−1hH(Sjk

) mod N

yeδ
ik

= Sik−1hH(Sik
) mod N

which dividing term by term become

Y eδ = hΔH mod N

where we set Y = (yjk
/yik

) and ΔH = H(Sjk
) − H(Sik

).
Once again since H is collision resistant, from the fact that Sjk

�= Sik
we can

assume that ΔH �= 0. Therefor we can write ΔH = ρω
δ q with q ≥ 1, such that

gcd(q, ρδ) = 1. Moreover ω < �δ, because of the way we chose �δ.
The above equation can then be rewritten as

Y ρ
�δ
δ =

(
α

qG
ρδ

)ρω+1
δ

mod N

which implies that the value Z = Y ρ
�δ−ω−1
δ is an ρδ root of hq, that is different

with respect to α
qG
ρδ with probability 1− 1/ρδ. Again notice that �δ − ω − 1 ≥ 0

so the value Z can be easily computed without computing ρδ-roots.

5 Security Analysis

For lack of space we cannot discuss in more details our intractability assumption.
In the full version of this paper we give some evidence why assuming N >> σ4

seems to be safe. We point out here, however, that the same analysis was already
presented in [17]. The interested reader is referred to [17] for details.

5.1 Comparison with GMR

In [14] Goldwasser, Micali and Rivest proposed the first example of digital sig-
nature scheme secure against adaptive chosen message attack. The scheme relies
on the existence of claw free permutations, but the authors propose a concrete
implementation based on the hardness of factoring. The reader is referred to
[14] for the technical details; here we compare the practical performance of our
scheme with respect to the one presented in [14].

Their scheme is based on a binary tree. As we mentioned before the depth
of the tree is d̂ = log K. Let us denote with δ > 1 the ratio d̂/d.

The length of the signature is about 2d̂n bits, i.e. 2n bits per level of the
tree. Notice that this is a factor of 2δ longer than our signatures.

The basic authentication step, performed at each level of the tree, consists of
taking repeated square roots. In the original scheme in [14] the number of square
roots taken at each level is about 2n, where n is the length of the modulus. This
happens because the number of square roots taken is proportional to the length of
the information being authenticated. However to obtain a fair comparison with
our scheme, we should improve the scheme in [14] by introducing a separate
collision-resistant hash function H , like we did in our scheme. If one hashes the

324 Dario Catalano and Rosario Gennaro

information at each step, before applying the authentication step, we reduce the
work to 2� square-root computations per level of the tree. By using the speed-up
trick suggested by Goldreich (cf. Section 10.2 of [14]) this is equivalent to one
exponentiation with an � bit exponent, and one full exponentiation modN , per
level of the tree, i.e. roughly 1.5(� + n) multiplications. Thus the worst-case cost
of computing a signature is 1.5d̂(�+n) multiplications, which is a factor δ slower
than ours.

To compute the amortized complexity of signatures in [14] we need to multi-
ply the cost of the basic authentication step, by 2d̂ (the number of nodes divided
by two)2 and then divide by 2d̂ (the number of signatures). The net result is
that the amortized cost is 1.5(� + n) multiplications per signature, the same as
ours.

Similarly the verification of a signature requires the computation of about 2�
squarings at each level of the tree, for a total of 2�d̂ multiplications. Verification
in [14] is thus a factor of 2δ/3 slower than in ours.

Let us consider a specific example in which n = 1024, d = 80, l = 32 (i.e.
d̂ = 16) and � = 160. In this case δ = 5 and we immediately obtain that
our signatures are a factor of 10 shorter than the ones in [14]. The worst case
complexity of computing a signature is also 5 times smaller in our scheme, while
the amortized complexity is the same. Finally verification time is about three
times as fast in our scheme.

5.2 Comparison with Cramer-Damg̊ard

It is not hard to see that our scheme is very similar to the scheme proposed by
Cramer and Damg̊ard in [7]. Thus the efficiency of our scheme is identical to the
one of the scheme proposed there, while relying on a weaker assumption.

6 Conclusions

We presented a new and efficient signature scheme, which is provably secure
against adaptive chosen message attack under the assumption that factoring
large composites of a certain form is infeasible.

Our scheme shows that the “flat-tree” approach can lead also to efficient
signatures under a factoring assumption, while previous proposals relied either
on the seemingly stronger RSA Assumption or were less efficient.

In terms of efficiency our scheme is equivalent to the RSA-based scheme
presented in [7], and much better than the factoring-based ones in [14] and
in [5].

Acknowledgements

We thank Pascal Paillier for helpful discussions.
2 This is because a basic authentication step in [14] requires to authenticate an entire

(binary) item.

Efficient Flat-Tree Signatures Based on Factoring 325

References

1. E. Bach and J. Shallit. Algorithmic Number Theory. Vol.1 Efficient Algorithms.
MIT Press. 1996.

2. M. Bellare and S. Micali How to sign given any trapdoor permutation Journal of
the ACM no. 39(1), pages 214-233, 1992

3. M. Bellare and P. Rogaway Random Oracles are Practical: A paradigm for design-
ing efficient protocols. Proc. of First ACM Conference on Computer and Commu-
nications Security, pages 62-73, 1993

4. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revis-
ited. Proc. 30th ACM Symposium on Theory of Computing, 1998

5. R. Cramer Modular design of secure yet practical cryptographic protocols. Ph.D.
Thesis, University of Amsterdam, 1996.

6. R. Cramer and I. Damg̊ard. Secure signature schemes based on interactive proto-
cols. Proc. of Crypto ’95 LNCS no. 963, pp.297-310.

7. R. Cramer and I. Damg̊ard. New Generation of Secure and Practical RSA-based
signatures. Proc. of Crypto ’96 LNCS no. 1109, pages 173-185.

8. R. Cramer and V. Shoup. Signature schemes based on the Strong RSA assumption.
Proc. of 6th ACM Conference on Computer and Communication Security 1999.

9. I. Damg̊ard. Collision free hash functions and public key signature schemes. Proc.
of Eurocrypt ’87 LNCS no. 304, pages 203-216.

10. W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22(6):644-654, November 1976.

11. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme
and its applications. J. of Cryptology 11(3) 1998, pages 187-208.

12. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. Proc. of Cryypto ’84 LNCS no. 196, pages 10-18.

13. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. Proc. of Eurocrypt ’99 LNCS no. 1592, pages 123-139.

14. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen message attacks. SIAM J. on Computing 17(2):281-308 1988.

15. N. Koblitz A course in number theory and cryptography, 2nd ed., Springer Verlag
16. R. Merkle. A Digital Signature based on a Conventional Encryption Function.

Advances in Cryptology–Crypto’87. LNCS, vol.293, pp. 369–378, Springer–Verlag,
1988.

17. D. Naccache and J. Stern. A new cryptosystem based on higher residues. Proc. of
the 5th ACM conference on on computer and communication security, ACM press
(1998), pp.59-66.

18. M. Naor, M. Yung. Universal one-way hash functions and their cryptographic
applications Proc. of 21st ACM STOC pages 33-43, 1989.

19. B. Pfitzmann. Digital Signatures Schemes - General Framework and Fail-Stop
Signatures. Lecture Notes in Computer Science no. 1100 Springer.

20. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. J. of Cryptology. 13(3):361–396. Springer. Summer 2000.

21. M. Rabin. Digital Signatures and Public Key Encryptions as Intractable as Fac-
torization. MIT Technical Report no. 212, 1979

22. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

23. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
Proc. of 22nd STOC 1990, pages 387-394.

326 Dario Catalano and Rosario Gennaro

A Efficient Root Extractions

With the following lemma we show a simple method (taking advantage of the
fact that the ρi’s are all odd primes) to extract ρi-roots in a (asyntotically) more
efficient way.

Lemma 1. Let p be a Blum prime of size k. Let e be a prime such that e|p−1 but
e2 � |p − 1. Then there exists an efficient algorithm, taking as input an e-residue
a, that returns as output an e-root of a in time O(k3).

Proof. First note that the prime p can be written as p = 2em + 1 where m is
an odd integer such that gcd(e, m) = 1. Since a is an e-residue in Z

∗
p it must be

true that
a

p−1
e ≡ 1 mod p

Now let B such that p−1
e + B = Ae for some A over the integers. The equation

above can the be rewritten as

a
p−1

e · aB ≡ aAe mod p

or better
aAe ≡ aB mod p

Furthemore observe that since gcd(2m, e) = 1 it has to be the case that
gcd(B, e) = 1. This means that, using the extended Euclidean algorithm, it
is possible to compute two values λ and μ such that λB + μe = 1 over the
integers. Thus the equation above becomes

aλB+μe ≡ (aA)eλ · aμe mod p

and then
a ≡ (

aAλ+μ
)e

mod p

Thus aAλ+μ is an e-root of a.
The cost of the described method is dominated by the cost of the Extended

Euclidean Algorithm which requires O(k3) bit operations.

B Two Simple Lemmas

The following two lemmas are invoked during the proof of security of the signa-
ture scheme.

Lemma 2. Let N = pq be the product of two primes. Let e be a divisor of λ(N)
with multiplicity one (i.e. e2 does not divide λ(N)) such that e divides either p−1
or q − 1 but not both of them. Then every e-th residue has exactly e different
e-th roots.

Efficient Flat-Tree Signatures Based on Factoring 327

Proof. It is a well known fact from number theory [15] that in every finite cyclic
group G, the equation xd = a has gcd(d, ord(G)) different solutions. This fact,
however, cannot be immediately applied to Z∗

N because it is not a cyclic group,
but can be applied to the cyclic groups Z∗

q and Z∗
p having order, respectively,

φ(q) = (q − 1) and φ(p) = (p − 1) (see [15] for details).
Without loss of generality assume that e divides p− 1 but does not divide q− 1.
Now from the equation y = xe mod N , we derive the equations

y = xe mod p (1)

and
y = xe mod q (2)

Equation 1 has then gcd(e, (p − 1)) = e different solutions and equation 2
has gcd(e, (q − 1)) = 1 different solutions. Using the Chinese Remainder Theo-
rem [15], these can be combined to yield e different solutions modulo N .

Lemma 3. Let N = pq be the product of two primes. Let e be a divisor of
p − 1 (resp. q − 1) but not a divisor of q − 1 (resp. p − 1) with multiplicity one.
Let a be an e-residue in Z∗

N and y1, y2 two distinct solutions of the equation
xe = a mod N . Then there is an efficient algorithm that on input y1 and y2

returns the factorization of N .

Proof. Without loss of generality assume that e divides p−1. Since the equation
xe = a mod q has only one solution, it must be the case that

y1 ≡ y2 mod q (3)

On the other hand since y1 �= y2 mod N it has to be the case that

y1 �≡ y2 mod p (4)

Equation 3 tells us that y1 − y2 ≡ 0 mod q and thus, since y1, y2 < N , gcd(y1 −
y2, N) is a non trivial factor of N .

The two lemmas above have the following consequence. Assume to have an al-
gorithm A that on input N, e and an e-th residue y outputs an eth root of y.
From the lemmas above it is immediate to see that is then possible to construct
a different algorithm B, having black box access to A, that factors the modulus
with probability 1 − 1/e (just feed A with y = xe mod N , where x is chosen
randomly, and with probability 1 − 1/e A will return a root different than x).

The Security of the FDH Variant
of Chaum’s Undeniable Signature Scheme

Wakaha Ogata1, Kaoru Kurosawa2, and Swee-Huay Heng3

1 Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku,Tokyo, 152-8552 Japan

wakaha@craft.titech.ac.jp
2 Department of Computer and Information Sciences, Ibaraki University,

4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
kurosawa@cis.ibaraki.ac.jp

3 Multimedia University,
Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia

shheng@mmu.edu.my

Abstract. In this paper, we first introduce a new kind of adversarial
goal called forge-and-impersonate in undeniable signature schemes. Note
that forgeability does not necessarily imply impersonation ability. We
then classify the security of the FDH variant of Chaum’s undeniable
signature scheme according to three dimensions, the goal of adversaries,
the attacks and the ZK level of confirmation and disavowal protocols. We
finally relate each security to some well-known computational problem.
In particular, we prove that the security of the FDH variant of Chaum’s
scheme with NIZK confirmation and disavowal protocols is equivalent
to the CDH problem, as opposed to the GDH problem as claimed by
Okamoto and Pointcheval.

Keywords: Undeniable signature, security analysis

1 Introduction

1.1 Background

The notion of undeniable signature schemes was introduced by Chaum and van
Antwerpen in 1989 [11]. Since then, there have been a wide range of research
covering a variety of different schemes for undeniable signatures. The validity or
invalidity of an undeniable signature can only be verified with the signer’s consent
by engaging interactively or non-interactively in a confirmation or disavowal
protocol respectively, as opposed to a digital signature in which its validity is
universally verifiable. Extended schemes possess variable degrees of security and
additional features such as convertibility [6, 15, 23], designated-verifier technique
[21], designated-confirmer technique [9], and so on. Among others, we also include
[8, 12, 19,18, 17].

Undeniable signatures have various applications in cryptography such as in
licensing softwares, electronic voting and auctions. The most popular application
is in licensing softwares. For example, software vendors might want to sign on

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 328–345, 2005.
c© International Association for Cryptologic Research 2005

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 329

their products to provide authenticity to their paying customers. Nevertheless,
they strictly disallow dishonest users who have illegally duplicated their softwares
to verify the validity of these signatures. Undeniable signature scheme plays an
important role here as it allows only legitimate users to verify the validity of the
signatures on the softwares.

The first proposal of undeniable signature which is based on the intractability
of the computational Diffie-Hellman (CDH) problem was due to Chaum and van
Antwerpen [11] and it was further improved by Chaum [8]. It is a simple and
nice scheme.

On the other hand, in general, each undeniable signature scheme may have
three variants of confirmation and disavowal protocols, namely, the perfect zero-
knowledge protocol (ZKIP), the 3-move honest-verifier zero-knowledge protocol
(HVZK) and the non-interactive zero-knowledge protocol (NIZK) with design-
ated-verifier technique.

However, the unforgeability of Chaum’s undeniable signature scheme (under
any types of confirmation and disavowal protocols) has been an open problem
for a long time. Recently, Okamoto and Pointcheval [25] proved the security
of the full-domain hash (FDH) [5, 13] variant of Chaum’s scheme with NIZK
confirmation and disavowal protocols. They proved that its security is equivalent
to the gap Diffie-Hellman (GDH) problem in the random oracle model, where
one is allowed to use the decisional Diffie-Hellman (DDH) oracle to solve the
CDH problem.

1.2 Our Contributions

In this paper, we first introduce a new kind of adversarial goal called forge-and-
impersonate in undeniable signature schemes. In the past, the main adversarial
goal is forging and thus the most desirable security notion is the security against
existentially forgery under adaptive chosen message attack [20]. In the new ad-
versary model, the adversary not only attempts to forge but it also attempts
to impersonate a legitimate signer. More precisely, an adversary first forges a
message-signature pair and next executes a confirmation protocol with a veri-
fier, trying to convince the verifier that the signature is indeed valid. Note that
forgeability does not necessarily imply impersonation ability.

We then classify the security of the FDH variant of Chaum’s undeniable sig-
nature scheme according to three dimensions, the adversarial goals, the attacks
and the ZK level of confirmation and disavowal protocols. Finally, we prove the
equivalence between each security and some well-known computational problem
under various types of confirmation and disavowal protocols as shown in Table
1. However, we cannot solve the three cells marked “?” and it will be a further
work to make them clear.

In our result, we also point out that the claim of Okamoto and Pointcheval as
mentioned at the end of Section 1.1 is wrong. Following our result from Theorem
1 which is indicated in Table 1, we show that the unforgeability of the FDH
variant of Chaum’s scheme with NIZK confirmation and disavowal protocols is
equivalent to the CDH problem, as opposed to the GDH problem as claimed by
them (cf. Claim 1). Further comments on their flaw will be given in Section 3.1.

330 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

Table 1. The Equivalence.

forge (F) forge-and-impersonate (FI)
passive active passive active

ZKIP CDH ? ?
(Theorem 2)

HVZK CDH ? DLOG ≥ one-more DLOG
(Theorem 3) (Theorem 4) (Theorem 6)

NIZK CDH − DLOG or break PKS −
(Theorem 1) (Theorem 5)

*PKS denotes the verifier’s public key system

Following is some explanation on Table 1. In the passive attack, the adversary
does not interact with the prover. What the adversary does is eavesdropping and
she is in possession of transcripts of conversations between the prover and the
verifier. In the active attack, the adversary gets to play the role of a cheating
verifier, interacting with the prover several times, in an effort to extract some
useful information before the forgery or forge-and-impersonate attempt. We re-
mark that if the scheme employs the NIZK confirmation and disavowal protocols
then it is not necessary to consider the active attack.

Meanwhile, there exists another security notion for undeniable signatures
called invisibility which was first introduced by Chaum et al. [12]. This notion
is essentially the inability to determine whether a given message-signature pair
is valid for a given user. We can prove the invisibility of the FDH variant of
Chaum’s scheme and show the similar result as in Table 1.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we recall the
definitions for some computational problems and the definition for undeniable
signatures. We also describe the FDH variant of Chaum’s scheme and all the con-
firmation and disavowal protocols associated with it. In Section 3, we explore the
unforgeability of the FDH variant of Chaum’s scheme with NIZK protocols. In
particular, we point out the flaw in Okamoto and Pointcheval’s claim in Section
3.1 and provide a correct formal proof in Section 3.2. In Section 4, we present
a new adversary model for undeniable signatures. In Section 5, we analyze and
discuss the security of the FDH variant of Chaum’s scheme under various confir-
mation and disavowal protocols comprehensively. Finally, we conclude this paper
in Section 6.

2 Preliminaries

2.1 Some Computational Problems

Let G be an Abelian group of prime order q, and let g be a generator of G. We
say that (g, gx, gr, gz) is a DH-tuple if z = xr mod q.

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 331

The DDH problem is to decide if (g, gx, gr, gz) is a DH-tuple. The CDH
problem is to compute gxr from (g, gx, gr). The GDH problem is to solve the
CDH problem with the help of a DDH oracle. (Informally, it means that the
CDH problem is hard but the DDH problem is easy.) The DLOG problem is to
compute x from gx.

We also briefly define the one-more DLOG problem as follows [3, 4]:
A one-more DLOG adversary is a randomized, polynomial time algorithm M
that gets input g and has access to two oracles, namely, a DLOG oracle that
given y ∈ G returns x ∈ Zq such that gx = y, and a challenge oracle that each
time it is invoked (it takes no inputs), returns a random challenge point y ∈ G.
We say that the adversary M wins if for arbitrary (polynomially bounded) t
challenge oracle access, it can find the DLOGs of all the challenges with at most
t − 1 (strictly less than t) DLOG oracle access.

2.2 Undeniable Signatures

We briefly review the concept of undeniable signatures introduced by Chaum
and van Antwerpen [11].

Definition 1. An undeniable signature scheme consists of the following two
polynomial time algorithms and two possibly interactive polynomial time pro-
tocols (note that in some schemes confirmation and disavowal protocols can be
combined as a single protocol and they are usually zero-knowledge protocols).

– Key Generation. On input the security parameter 1k, the algorithm pro-
duces a pair of matching public and secret keys (pk, sk).

– Signing. On input a secret key sk and a message m, the algorithm returns
a signature σ.

– Confirmation Protocol. A protocol between a signer and a verifier such
that when given a message m, a signature σ and a public key pk, allows the
signer to convince the verifier that σ is indeed a valid signature on m for a
public key pk, with the knowledge of the secret key sk. If (m, σ) is invalid,
then no signer can prove it with non-negligible probability.

– Disavowal Protocol. A protocol between a signer and a verifier such that
when given a message m, a signature σ and a public key pk, allows the signer
to convince the verifier that σ is an invalid signature on m for a public key
pk, with the knowledge of the secret key sk. If (m, σ) is valid, then no signer
can prove it with non-negligible probability.

In the existing literature, the unforgeability for undeniable signatures is sim-
ilar to the one for ordinary digital signatures, which is the notion of existential
unforgeability against adaptive chosen message attack [20]. The only difference
is that besides the signing oracle access, the forger of an undeniable signature
is also allowed to access to the confirmation/disavowal oracle. The confirma-
tion/disavowal oracle is simulated based on the types of attacks mounted, i.e.
passive attack and active attack.

332 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

Informally speaking, the forger is given the public key, and after some adap-
tive signing queries and confirmation/disavowal queries, the forger attempts
to produce a valid message-signature pair (m, σ) such that m has never been
queried to the signing oracle and (m, σ) has never been queried to the confirma-
tion/disavowal oracle earlier. We say that the forger is successful if it can output
such a valid forgery.

2.3 The FDH Variant of Chaum’s Undeniable Signature Scheme

The FDH variant of Chaum’s scheme is described as follows. Let G be an Abelian
group of prime order q, and let g be a generator of G.

– Key Generation. On input the security parameter 1k, choose x ∈ Zq

randomly and compute y = gx. Choose a cryptographic hash function H :
{0, 1}∗ → G. Set the public key as (g, y, H) and the secret key as x.

– Signing. On input the public key (g, y, H), the secret key x and a message
m ∈ {0, 1}∗, the algorithm returns the signature as σ = H(m)x.

– Confirmation Protocol. Given a message-signature pair (m, σ), the signer
proves that (g, y, H(m), σ) is a DH-tuple.

– Disavowal Protocol. Given a message-signature pair (m, σ), the signer
proves that (g, y, H(m), σ) is not a DH-tuple.

Confirmation and Disavowal Protocols. There are various confirmation
and disavowal protocols associated with Chaum’s scheme, each with variable
degrees of zero-knowledgeness and efficiency. We make an effort to summarize
the various confirmation and disavowal protocols as follows.

Zero-Knowledge Interactive Proof (ZKIP). The first proposal by Chaum and
van Antwerpen was not zero-knowledge [11]. In [8], an improved version with
zero-knowledgeness was proposed. The confirmation protocol is a 4-move ZKIP
for language of DH-tuples. For brevity, we describe the complete protocol in
Fig. 1-(a).

A somewhat inefficient ZKIP disavowal protocol which requires more than
4-move was also proposed in [8]. A single execution of the protocol is as depicted
in Fig. 1-(b). In this figure, com(s) denotes the commitment of s and decom(s)
denotes the revealing of s.

3-Move Honest-Verifier Zero-Knowledge Proof (HVZK). A 3-move honest-veri-
fier zero-knowledge (HVZK) confirmation protocol is depicted in Fig. 2-(a). The
corresponding 3-move HVZK disavowal protocol was shown by Camenisch and
Shoup recently [7]. We describe the protocol in Fig. 2-(b).

Non-interactive Zero-Knowledge Proof (NIZK). In general, a 3-move honest-
verifier zero-knowledge protocol can be transformed to a more efficient non-
interactive zero-knowledge (NIZK) protocol by using the Fiat-Shamir transfor-
mation [16, 1], where we need to employ another random oracle H ′. However, we
cannot use the above solution as a confirmation protocol or a disavowal protocol
because such NIZK proof is just an ordinary digital signature.

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 333

Signer Verifier

a, b
R← Zq

c←− c = gaH(m)b

r
R← Zq

z1 = cgr

z2 = zx
1

z1,z2−→
a,b←−

c
?= gaH(m)b r−→

z1
?= ga+rH(m)b

z2
?= ya+rσb

(a) Confirmation protocol

Signer Verifier

s
R← {0, 1, . . . , k}

a
R← Zq

c = gaH(m)s

c,c′←− c′ = yaσs

find s′ s.t.

(cx/c′) = (H(m)x/σ)s′ com(s′)−→
a←−

c
?= gaH(m)s′ decom(s′)−→

s′
?= s

(b) A single execution of disavowal protocol

Fig. 1. ZKIP protocols.

Signer Verifier

r
R← Zq

z1 = gr

z2 = H(m)r z1,z2−→
c←− c

R← Zq

d = r + cx mod q
d−→

gd ?= z1y
c

H(m)d ?= z2σ
c

(a) Confirmation protocol

Signer Verifier

s, r, r′
R← Zq

w = (H(m)x/σ)s

z1 = gr/yr′

z2 = H(m)r/σr′ w,z1,z2−→ w
?

�= 1
c←− c

R← Zq

d = r + cxs mod q

d′ = r′ + cs mod q
d,d′
−→

gd/yd′ ?= z1

H(m)d/σd′ ?= z2w
c

(b) Disavowal protocol

Fig. 2. HVZK protocols.

To overcome this problem, designated-verifier technique was introduced in
[21] by Jakobsson et al. In a designated-verifier confirmation proof, the signer
proves that “(g, y, H(m), σ) is a DH-tuple” or “he knows the verifier’s secret key”
(the signer knows the former, but not the latter). In other words, the verifier
is able to produce such a valid proof himself using his secret key. By using the
designated-verifier technique, one can thereby prevent illegal copies of the proof.

Using the technique shown in [14], a designated-verifier proof can be con-
structed for a public-secret key pair of any well-known public key system. The
obtained NIZK proof is zero-knowledge in the random oracle model.

We do not give the concrete NIZK designated-verifier confirmation and dis-
avowal protocols since different protocols are associated with different public key
systems used by the verifier.

334 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

3 Unforgeability of NIZK Scheme

Chaum’s original scheme (which does not employ a cryptographic hash function)
is not secure as it is existentially forgeable. Most precisely, it succumbed to the
basic multiplicative attack: suppose that an adversary has two message-signature
pairs (m1, σ1) and (m2, σ2), where σ1 = mx

1 and σ2 = mx
2 . Then it is obvious

that σ1σ2 is a signature of m1m2.
Okamoto and Pointcheval [25] made the first attempt to analyze the security

of Chaum’s scheme by incorporating the full-domain hash (FDH) technique [5,
13]. In other words, they studied the security of the FDH variant of Chaum’s
scheme in the random oracle model by modeling the hash function H as a random
oracle1. Okamoto and Pointcheval further claimed that they have solved the more
than 10 years open problem, i.e. the security of the FDH variant of Chaum’s
scheme with NIZK protocols is equivalent to the GDH problem.

However, we are going to disprove their claim in this section. In the sequel,
we first restate their claim and point out the major flaw in their proof. We
then prove that the security of the FDH variant of Chaum’s scheme with NIZK
protocols is in fact equivalent to the CDH problem, a more difficult problem
than GDH.

In the NIZK scheme, the public key is (g, y, H, H ′), where H ′ is a hash
function which is used for Fiat-Shamir transformation (which transforms a 3-
move HVZK protocol to an NIZK proof).

3.1 The Flaw in Okamoto and Pointcheval’s Claim

Their claim is as follows.

Claim 1. [25, Theorem 9]. An existential forgery under adaptively chosen mes-
sage attack for the FDH variant of Chaum’s undeniable signature scheme is
equivalent to the GDH problem in the random oracle model, where the confirma-
tion and disavowal protocols are NIZK.

The correctness of the above claim was shown by proving the following [25]:

(1) If there exists an algorithm M that solves the GDH problem, then one
can construct a forger F that manage to forge a message-signature pair by
running M as its subroutine.

(2) If there exists a forger F that forges a message-signature pair, then one can
construct an algorithm M that can solve the GDH problem by running F
as its subroutine.

The proof of (1) is wrong. In the proof, the forger F runs the algorithm M
as follows. At first, the forger F is given the public key (g, y, H, H ′) (H ′ is used
to transform HVZK to a non-interactive one). F then chooses m randomly and
runs M on input (g, y, H(m)). If M submits (g, y, H(m′), σ′) to the DDH oracle,
1 Another merit in the FDH variant is that messages may be arbitrary bit strings and

do not need to be encoded as group elements as in the original scheme.

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 335

then F queries to its confirmation/disavowal oracle and returns the answer to
M . M finally outputs H(m)x with non-negligible probability from our assump-
tion. Therefore, F can forge the signature on m as H(m)x with non-negligible
probability.

However, suppose that M submits (g, y, H(m′), σ′) to the DDH oracle. Then
what F can query to its confirmation/disavowal oracle is (m′, σ′), but not
(H(m′), σ′). Since F cannot compute m′ from H(m′), so it cannot query (m′, σ′).
More precisely, since a prover in the confirmation/disavowal protocol takes only
the message m′ and its signature σ′ as input, simulating a DDH oracle would
require to inverse the hash function H , which is obviously impossible! Therefore,
F fails to simulate the DDH oracle correctly. This is indeed a critical flaw.

The proof of (2) is redundant. In the proof, the confirmation/disavowal oracle
is simulated by the DDH oracle. More precisely, to decide whether the given
(m, σ) is a valid pair or not, M asks (g, y, H(m), σ) to the DDH oracle, and then
simulates the confirmation/disavowal oracle by itself. However, notice that M
can decide the validity of (m, σ), since it can simulate the signing oracle by itself
and furthermore the signing algorithm is deterministic. Thus the DDH oracle is
totally redundant here as it plays no function at all.

3.2 Correct Equivalence

Based on the above argument, we have indirectly proven Theorem 1, i.e. the
existence of F is equivalent to the existence of M that solves the CDH problem
(without the DDH oracle access). For clarity and completeness, we provide a
formal proof for the theorem.
Theorem 1. The security of the FDH variant of Chaum’s undeniable signature
scheme with NIZK confirmation and disavowal protocols is equivalent to the CDH
problem in the random oracle model.

Proof. Firstly, we show that if there exists an algorithm M that solves the CDH
problem with advantage εM , then one can construct a forger F that can forge
in the universal way with advantage εF , by running M as a subroutine. The
forger F is given the public key (g, y, H, H ′) where y = gx. For any message
m, F computes h = H(m) and gives the triple (g, y, h) as input to M . When
M outputs hx, F simply outputs the forgery as (m, σ = hx). It is clear that
εF = εM . This completes the first half of our proof.

Secondly, we show that if there exists a forger F that manage to forge with
advantage εF , then one can construct an algorithm M that can solve the CDH
problem with advantage εM , by running F as a subroutine. Suppose the input
to M is (g, gx, gr). M then starts running F by feeding F with the public key
(g, y = gx, H, H ′) where H and H ′ are random oracles that will be simulated by
M . M also simulates the signing oracle and the confirmation/disavowal oracle
itself. Let qS and qH be the number of signing queries and H-queries that F issues
respectively. We assume that when F makes a confirmation/disavowal query for
a message-signature pair (mi, σ′

i), it has already made the corresponding signing
query on mi. We also assume that when F requests a signature on a message
mi, it has already made the corresponding H-query on mi.

336 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

When F makes a H-query for a message mi, M responds with hi = H(mi) =
gαi with probability δ and hi = H(mi) = (gr)αi with probability 1−δ, where αi

is chosen randomly from Zq and δ is a fixed probability which will be determined
later.

When F makes a H ′-query for a new str, where str is the string that F
would like to know its H ′ value. M always responds with a random number.
In fact, M assigns some values to H ′(str) for some str in order to simulate
the confirmation/disavowal oracle. When F makes a H ′-query for such str, M
returns H ′(str) to F .

When F makes a signing query for a message mi, if hi = gαi then M returns
σi = yαi as the valid signature (since yαi = (gx)αi = hx

i = H(mi)x). Otherwise,
M aborts and it fails to solve the CDH problem.

Next, we consider the case that F makes a confirmation/disavowal query for
a message-signature pair (mi, σ′

i). In this case, M has to do in two steps. In
the first step, it checks the validity of (mi, σ′

i) using the signing oracle. From
our assumption, F has already made a signing query for mi, and M answered
with a valid signature σi with probability δ (with probability (1− δ) M aborts).
Therefore, if σi = σ′

i then it is valid, otherwise it is invalid. Remember that the
signing algorithm is deterministic. In the second step, M does the following. If
(mi, σ′

i) is a valid pair then M returns the transcript of the confirmation protocol.
Otherwise, it returns the transcript of the disavowal protocol. As mentioned
before, M can manipulate H ′-oracle and thus it can generate a transcript of the
confirmation or disavowal protocol. (In fact, it is possible that collision occurs for
str, meaning that str is being asked to H ′-oracle by F earlier before M assigns
a value to H ′(str). However, this probability is negligible and thus it will not
affect the overall success probability for M .)

Eventually, F halts and outputs a forgery (m, σ). We assume that F has
queried the H-oracle on m and so m = mi for some i. If hi = (gr)αi , then we
have σ = hx

i = (grαi)x. Consequently, M outputs gxr = σ1/αi and thus it solves
the CDH problem. Otherwise, M aborts and it fails to solve the CDH problem.

To complete the proof, it remains to calculate the probability that M does
not abort. The probability that M answers to all the signing queries is δqS and
M outputs gxr with probability 1 − δ. Therefore, the probability that M does
not abort during the simulation is δqS (1− δ). This value is maximized at δopt =
1−1/(qS+1). This shows that M ’s advantage εM is at least (1/e(1+qS))εF , where
e is the base of the natural logarithm. This is because the value (1−1/(qS +1))qS

approaches 1/e for large qS . This completes our proof. ��

4 New Adversary Model

In this section, we present a new adversary model for undeniable signatures that
incorporates a new adversarial goal called forge-and-impersonate. In the past,
the main adversarial goal is forging, i.e. one considers an undeniable signature
scheme to be secure if it is existentially unforgeable against adaptive chosen
message attack. In our new proposal, the adversary not only attempts to forge
but it also attempts to impersonate a legitimate signer.

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 337

It is clear that forgeability does not necessarily imply impersonation ability.
Hence the new adversarial goal is stronger. (On the other hand, the latter implies
the former because if (m, σ) is invalid, then any signer can convince the verifier
with only negligible probability in the confirmation protocol. See Section 2.2.)

Now, we present our proposal and explain what motivates us to consider this
new adversarial goal.

4.1 Adversarial Goals

As usual, we classify adversaries by their ultimate adversarial goals. Normally, an
adversary with the motive to forge a new message-signature pair (m, σ) is given
the name forger. As mentioned earlier, this is the traditional security notion.

Now, we introduce a new type of adversary. The new adversarial goal is to
forge a message-signature pair (m, σ) and further convincing a (honest) verifier
that σ is indeed a valid signature on m, by executing the confirmation protocol
with the verifier. To avoid confusion, we stick to the following notation. We
denote the former type of adversary as forge (F) and the latter as forge-and-
impersonate (FI).

It is pretty hard for this new adversary to gain a success, but let us look at
the motivation for the adversary. As noted earlier in the introduction part, the
most common application of undeniable signatures is in licensing softwares. If
an adversary succeeds in forging a signature (but not in convincing the verifier
by executing a confirmation protocol), no doubt it would cause some damage
to the legitimate signer (e.g. Microsoft). On the other hand, if an adversary
succeeds in forging as well as in impersonating, then it can sell its own softwares
by impersonating an agent of Microsoft. In this case, it can actively earn some
fast money through its wicked deed. This is the motivation behind the attack.

Intuitively, the security against a FI adversary is equivalent to a problem
which is no easier than the problem which is equivalent to the security against
a F adversary. We shall exemplify this with some security analyses in the next
section.

On the other hand, we also remark that the security against FI does not
imply unforgeability from the definitions. From the definition of FI adversary,
the adversary forges (m, σ) and succeeds in the confirmation protocol. However,
notice that there is a possibility that even if (m, σ) is invalid, the adversary
succeeds in the confirmation protocol. Hence, the security against FI adversary
does not imply unforgeability. We also note that if we use a ZKIP confirmation
protocol, then the security against FI adversary does imply unforgeability, due
to the soundness of the ZKIP protocol.

4.2 Types of Attacks

We can also classify adversaries by their capabilities or types of attacks. More
precisely, there exist two types of attacks, namely, passive attack and active
attack. Obviously, passive attack is a weaker attack.

Both the passive and active adversaries have access to the signing oracle
as well as the confirmation/disavowal oracle. The signing oracle plays the role

338 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

similar to those in the ordinary signature scheme. We highlight the difference
between a passive attack and an active attack below.

Whenever an adversary submits a confirmation/disavowal query (m, σ), the
oracle responds based on whether a passive attack or an active attack is mounted.
In a passive attack, the confirmation/disavowal oracle first checks the validity
of (m, σ) using the signing oracle. If it is a valid pair, then the oracle returns
“yes” and a transcript of confirmation protocol. Otherwise, the oracle returns
“no” and a transcript of disavowal protocol. In an active attack, the confirma-
tion/disavowal oracle first checks the validity of (m, σ) using the signing oracle.
If it is a valid pair, then the oracle returns “yes” and proceeds with the execution
of the confirmation protocol with the adversary (acting as a cheating verifier).
Otherwise, the oracle returns “no” and executes the disavowal protocol with the
adversary accordingly.

4.3 Formal Security Definitions

In this section, we provide the formal security definitions by considering the two
adversarial goals, namely forge (F) and forge-and-impersonate (FI) and the two
types of attacks mounted by the adversary.

Definition 2 (Unforgeability). An undeniable signature scheme is said to be
existential unforgeable under adaptive chosen message attack if no probabilistic
polynomial time (PPT) forger F has a non-negligible advantage in the following
game:
1. Let pk be the input to F .
2. The forger F is permitted to issue a series of queries:

– Signing queries: F submits a message m and receives a signature σ on m.
(We consider adaptive queries here – subsequent queries is made based
on previously obtained signatures.)

– Confirmation/disavowal queries: F submits a message-signature pair
(m, σ), and the oracle responds based on whether a passive attack or
an active attack is mounted.
In a passive attack, the confirmation/disavowal oracle first checks the
validity of (m, σ) using the signing oracle. If it is a valid pair, then the
oracle returns “yes” and a transcript of confirmation protocol. Otherwise,
the oracle returns “no” and a transcript of disavowal protocol.
In an active attack, the confirmation/disavowal oracle first checks the
validity of (m, σ) using the signing oracle. If it is a valid pair, then the
oracle returns “yes” and proceeds with the execution of the confirmation
protocol with the forger F (acting as a cheating verifier). Otherwise, the
oracle returns “no” and executes the disavowal protocol with F accord-
ingly.

3. At the end of this attack game, F outputs a message-signature pair (m, σ)
such that m has never been queried to the signing oracle and that (m, σ) has
never been queried to the confirmation/disavowal oracle earlier.

The forger F wins the game if σ is a valid signature on m. F ’s advantage in
this game is defined to be Adv(F) = Pr[Fwins].

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 339

Definition 3 (Unforgeability-and-Unimpersonation). An undeniable sig-
nature scheme is said to be secure against forgery and impersonation under adap-
tive chosen message attack if no PPT adversary A has a non-negligible advantage
in the following game:

1. Let pk be the input to A.
2. The adversary A enters the learning phase where it performs a series of

queries: signing queries and confirmation/disavowal queries as in the pre-
vious definitions (based on whether a passive attack or an active attack is
mounted). At the end of this forgery phase, A outputs a forged message-
signature pair (m, σ) such that m has never been queried to the signing oracle
and that (m, σ) has never been queried to the confirmation/disavowal oracle
earlier.

3. In the impersonation phase, A proceeds to execute the confirmation protocol
with a verifier on input (m, σ), trying to convince the verifier that (m, σ) is
a valid pair.

The adversary A wins the game if it can convince the verifier that (m, σ) is a valid
message-signature pair. A’s advantage in this game is defined to be Adv(A) =
Pr[Awins].

4.4 FI-Security in NIZK

For undeniable signature schemes with designated-verifier NIZK proofs, we have
to carefully define the security against FI attack. This is because in such scheme,
besides breaking the undeniable signature scheme, an adversary can also imper-
sonate by breaking the public key system of a verifier.

Therefore, we first specify the key generation algorithm of the public key
system PKS of the target verifier. We denote the FI attack in this situation with
FIPKS attack. We then adopt the following adversary model.

1. As usual, after making some oracle queries, the adversary A outputs a forged
message-signature pair (m, σ).

2. Now, A is given a public key of a verifier randomly.
3. Next, it outputs a non-interactive non-transferable confirmation transcript

corresponding to the given public key.

We say that A succeeds in FIPKS attack if the proof is accepted with non-
negligible probability, where the probability is taken over the key generation
algorithm of PKS as well.

5 The Equivalence

5.1 Our Objective

Following from the previous section, it is thus clear that we need to consider
four types of adversaries, namely, the passive F, the active F, the passive FI and
the active FI.

340 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

There are various confirmation and disavowal protocols associate with the
FDH variant of Chaum’s scheme, namely, ZKIP, 3-move HVZK and 1-move
NIZK.

We intend to explore further on the equivalence between the security of the
scheme (with various confirmation and disavowal protocols) and some compu-
tational problems, under the various types of adversaries. In other words, our
objective is to fill up Table 1.

We remark that if the scheme employs the non-interactive confirmation and
disavowal protocols (NIZK), then it is not necessary to consider active attack.

In what follows, a xxx scheme denotes the scheme with xxx confirmation
and disavowal protocols, where xxx is ZKIP, HVZK or NIZK.

5.2 On F Attacks

First of all, recall that in Theorem 1 of Section 3.1, we have shown that the
passive F attack to the scheme with NIZK protocols is equivalent to the CDH
problem.

Theorem 2. The ZKIP scheme is secure against each of passive/active F attack
in the random oracle model if and only if the CDH problem is hard.

Proof. The only if part is trivial. The if part can be shown almost similarly to
Theorem 1. However, notice that M does not need to simulate the H ′-oracle here.
The signing oracle, H-oracle and the first step of the confirmation/disavowal or-
acle are simulated similarly (see the proof of Theorem 1). The only difference is
in the second step of the confirmation/disavowal oracle simulation. Please refer
to the full version of this paper [24] for the concrete simulation of confirma-
tion/disavowal oracle in an active attack. Intuitively, the zero-knowledge prop-
erty of the protocols assures that M can simulate the confirmation/disavowal
oracle. Therefore, it is also clear that M can simulate the confirmation/disavowal
oracle in a passive attack, since passive attack is weaker than active attack. ��
Theorem 3. The HVZK scheme is secure against passive F attack in the ran-
dom oracle model if and only if the CDH problem is hard.

Proof. The only if part is trivial. The if part can be shown almost similarly
to Theorem 2 except in the confirmation/disavowal oracle simulation. Please
refer to [24] for the concrete perfect simulation of the transcripts of confirma-
tion/disavowal protocol. ��

5.3 On Passive FI Attacks

Theorem 4. The passive FI attack on the HVZK scheme is equivalent to the
DLOG problem in the random oracle model.

Proof. Firstly, we show that if there exists an algorithm M that solves the DLOG
problem, then an adversary A can succeed in FI attack by running M as a

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 341

subroutine. The adversary A is given the public key (g, y, H) where y = gx.
Since A can obtain the secret key x by feeding y to algorithm M , it can succeed
in the FI attack. This completes the first half of the proof.

Secondly, let A be a passive FI adversary. We show that one can construct an
algorithm M that can solve the DLOG problem by running A as a subroutine.
Suppose that the input to M is (g, gx), M then starts running A by feeding A
with the public key (g, y = gx, H), where H is a random oracle that will be simu-
lated by M . M also simulates the signing oracle and the confirmation/disavowal
oracle itself. We assume that when A makes a confirmation/disavowal query for
a message-signature pair (mi, σ′

i), it has already made the corresponding signing
query on mi. We also assume that when A requests a signature on a message
mi, it has already made the corresponding H-query on mi.

When A makes a H-query for a message mi, M responds with hi = gαi , where
αi is chosen randomly from Zq. When A makes a signing query for a message mi,
M returns σi = yαi as the valid signature (since yαi = (gx)αi = hx

i = H(mi)x).
When A makes a confirmation/disavowal query for a message-signature pair

(mi, σ′
i), A can distinguish between a valid pair and an invalid pair by checking

the signing queries record. Further, M can simulate the confirmation/disavowal
oracle perfectly since the views of the honest-verifier zero-knowledge protocols
are simulatable (see [24]).

Eventually, A outputs a forgery (m, σ). It then proceeds to prove that σ is
indeed a valid signature by executing the confirmation protocol with the honest-
verifier. Since the confirmation protocol is a proof of knowledge of x, thus M can
extract x by using the reset technique [2]. Please refer to [24] for the details. ��

The following theorem states the security of the scheme against passive FI
attack when non-interactive zero-knowledge proofs are used.
Theorem 5. The passive FIPKS attack on the NIZK scheme is equivalent to
“solving the DLOG problem” or “breaking PKS” in the random oracle model.
Here, “breaking PKS” means that the adversary obtains the secret key corre-
sponding to the given public key which is chosen randomly in PKS.

Proof. Consider an algorithm M whose input is ((g, y), P k) where y is a random
element of G and P k is a randomly chosen public key in PKS. If M outputs x
such that y = gx or Sk such that (P k, Sk) is a public-secret key pair in PKS,
then we can say that M succeeds in “solving the DLOG problem or breaking
PKS”. Clearly, if there exists such algorithm M , then an adversary A can succeed
in FIPKS attack by running M as a subroutine. Thus the first half of the proof
was shown.

Secondly, let A be a passive FIPKS adversary. We show that one can construct
an algorithm M that can solve the DLOG problem or can break PKS by running
A as a subroutine. Suppose that the input to M is ((g, y), P k). At first, M starts
running A by feeding A with the public key (g, y, H, H ′). We assume that when
A makes a confirmation/disavowal query for a message-signature pair (mi, σ′

i),
it has already made the corresponding signing query on mi. We also assume
that when A requests a signature on a message mi, it has already made the
corresponding H-query on mi.

342 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

The simulation of the H-oracle and the signing oracle are the same as in
the previous proof. The simulation of the H ′-oracle is the same as the proof of
Theorem 1. The simulation of the confirmation/disavowal oracle is also almost
the same as those in the proof of Theorem 1, except that now when A makes a
signing query for mi, M answered with a valid signature σ with probability 1.

Eventually, A outputs a forgery (m, σ) and requests a verifier’s public key.
M then hands P k to A. A next generates a non-interactive non-transferable
confirmation transcript corresponding to P k and returns the transcript to M .
After that, M resets A. Unlike in the previous proof, M has to rewind A to the
point that it has made the H ′-query for str where H ′(str) is used as a random
challenge in the confirmation transcript. Using the same argument of forking
lemma [26], if A outputs a NIZK confirmation transcript with non-negligible
probability, then rewinding A with a different H ′ value will result M in getting
two confirmation transcripts for a common input (m, σ), with non-negligible
probability. From these two transcripts, M can obtain a witness W . At last M
outputs W . Remember that the designated-verifier confirmation transcript is a
proof of knowledge of x (the signer’s secret key) or the verifier’s secret key Sk.
Therefore, we have W = x or W = Sk, that is, M succeeds in solving the DLOG
problem or breaking PKS. ��

From the above theorem, if the target verifier uses ElGamal cryptosystem,
then the passive FI attack on NIZK scheme is equivalent to the DLOG problem.
If the target verifier uses RSA cryptosystem, then the passive FI attack on NIZK
scheme is equivalent to “solving the DLOG problem” or “factoring the RSA
modulus N” [22].

5.4 On Active FI Attacks

Finally, we consider the last case, the active FI attack. In the active FI attack, the
adversary has additional power, i.e. to execute confirmation and disavowal proto-
cols interactively with the signer. M plays the role of the signer in this scenario,
interacting with the adversary whenever it receives a confirmation/disavowal
query.

The proof of the following theorem is given in [24].

Theorem 6. The HVZK scheme is secure against active FI attack in the random
oracle model if the one-more DLOG problem is hard.

5.5 Discussion

We have analyzed the security of the FDH variant of Chaum’s scheme under
various types of confirmation/disavowal protocols using the newly proposed ad-
versary model. Their equivalence with some known computational problems are
proven. In conclusion, the results we obtained are as summarized in Table 1,
which follows from Theorem 1 to Theorem 6.

The three cells marked “?” are still unsolved at the moment due to the
following reasons. In the proofs of Theorem 4 and Theorem 5, M can extract
x from y = gx because the confirmation protocol is a proof of knowledge of x,

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 343

thus there exists a knowledge extractor for x. On the other hand, the perfect
zero-knowledge confirmation protocol shown in Fig. 1-(a) is a proof of language
and not a proof of knowledge. Therefore, it is impossible for us to construct
such a knowledge extractor. This is the reason why we are unable to prove the
equivalence between FI attack and and some well-known computational problem
by using the same approach. May be there exist some other approaches to prove
the equivalence, however we are yet to discover it at the moment.

However, we conjecture that the problem which should be equivalent to the
security against passive FI and active FI attacks when ZKIP protocols are em-
ployed and the problem which should be equivalent to the security against active
F attack when HVZK protocols are employed, should be no easier than the CDH
problem. We anticipate the solution in the near future and we encourage more
attempts on them.

There exists another security notion for undeniable signatures called invisi-
bility which was first introduced by Chaum et al. [12]. This notion is essentially
the inability to determine whether a given message-signature pair is valid for
a given signer. We can prove the invisibility of the FDH variant of Chaum’s
scheme and show the similar results as in Table 1. Due to the space limitation,
the details will be given in the final paper.

6 Conclusion

In this paper, we introduced another new adversarial goal called forge-and-
impersonate in undeniable signature schemes, and this leads to a new adversary
model which is slightly stronger than the existing one. We also classified the
security of the FDH variant of Chaum’s undeniable signature scheme accord-
ing to three dimensions, the attacks, the adversarial goals and the ZK level of
confirmation and disavowal protocols, and then related each security to some
well-known computational problem. In addition, we also pointed out the flaw in
Okamoto and Pointcheval’s claim, i.e. we proved that the unforgeability of the
FDH variant of Chaum’s scheme with NIZK confirmation and disavowal pro-
tocols is equivalent to the CDH problem, as opposed to the GDH problem as
claimed by them.

References

1. M. Abdalla, J. An, M. Bellare and C. Namprempre. From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. Advances in Cryptology – EUROCRYPT ’02, LNCS 2332, pp.
418–433, Springer-Verlag, 2002.

2. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: proofs of
security against impersonation under active and concurrent attacks. Advances in
Cryptology – CRYPTO ’02, LNCS 2442, pp. 162–177, Springer-Verlag, 2002.

3. M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko. The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme.
Financial Cryptography ’01, LNCS 2339, pp. 319–338, Springer-Verlag, 2002.

344 Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng

4. M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, vol. 16, no. 3, pp. 185–215, Springer-Verlag, 2003.

5. M. Bellare and P. Rogaway. The exact security of digital signatures – how to sign
with RSA and Rabin. Advances in Cryptology – EUROCRYPT ’96, LNCS 1070,
pp. 399–416, Springer-Verlag, 1996.

6. J. Boyar, D. Chaum, I. Damg̊ard and T. Pedersen. Convertible undeniable signa-
tures. Advances in Cryptology – CRYPTO ’90, LNCS 537, pp. 189–208, Springer-
Verlag, 1990.

7. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. Advances in Cryptology – CRYPTO ’03, LNCS 2729, pp.
126–144, Springer-Verlag, 2003.

8. D. Chaum. Zero-knowledge undeniable signatures. Advances in Cryptology – EU-
ROCRYPT ’90, LNCS 473, pp. 458–464, Springer-Verlag, 1990.

9. D. Chaum. Designated confirmer signatures. Advances in Cryptology – EURO-
CRYPT ’94, LNCS 950, pp. 86–91, Springer-Verlag, 1995.

10. T. Chaum and T. P. Pedersen. Wallet databases with observers. Advances in
Cryptology – CRYPTO ’92, LNCS 740, pp. 89–105, Springer-Verlag, 1993.

11. D. Chaum and H. van Antwerpen. Undeniable signatures. Advances in Cryptology
– CRYPTO ’89, LNCS 435, pp. 212–216, Springer-Verlag, 1989.

12. D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeni-
able signatures, unconditionally secure for the signer. Advances in Cryptology –
CRYPTO ’91, LNCS 576, pp. 470–484, Springer-Verlag, 1991.

13. J. Coron. On the exact security of full domain hash. Advances in Cryptology –
CRYPTO ’00, LNCS 1880, pp. 229–235, Springer-Verlag, 2000.

14. R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. Advances in Cryptology – CRYPTO
’94, LNCS 839, pp. 174–187, Springer-Verlag, 1994.

15. I. Damg̊ard and T. Pedersen. New convertible undeniable signature schemes. Ad-
vances in Cryptology – EUROCRYPT ’96, LNCS 1070, pp. 372–386, Springer-
Verlag, 1996.

16. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. Advances in Cryptology – CRYPTO ’86, LNCS 263, pp.
186–194, Springer-Verlag, 1987.

17. S. Galbraith and W. Mao. Invisibility and anonymity of undeniable and confirmer
signatures. Topics in Cryptology – CT-RSA ’03, LNCS 2612, pp. 80–97, Springer
Verlag, 2003.

18. S. Galbraith, W. Mao and K. G. Paterson. RSA-based undeniable signatures for
general moduli. Topics in Cryptology – CT-RSA ’02, LNCS 2271, pp. 200–217,
Springer Verlag, 2002.

19. R. Gennaro, H. Krawczyk and T. Rabin. RSA-based undeniable signatures. Ad-
vances in Cryptology – CRYPTO ’97, LNCS 1294, pp. 132–149, Springer-Verlag,
1997.

20. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptative chosen-message attacks. SIAM Journal of Computing, vol. 17, no. 2,
pp. 281–308, 1988.

21. M. Jakobsson, K. Sako and R. Impagliazzo. Designated verifier proofs and their
applications. Advances in Cryptology – EUROCRYPT ’96, LNCS 1070, pp. 143–
154, Springer-Verlag, 1996.

The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 345

22. A. May. Computing the RSA secret key is deterministic polynomial time equivalent
to factoring. Advances in Cryptology – CRYPTO ’04, LNCS 3152, pp. 213–219,
Springer-Verlag, 2004.

23. M. Michels and M. Stadler. Efficient convertible undeniable signature schemes.
Selected Areas in Cryptography – SAC ’97, pp. 231–244, Springer-Verlag, 1997.

24. W. Ogata, K. Kurosawa and S.-H. Heng. The security of the FDH variant of
Chaum’s undeniable signature scheme. The full version of this paper. Available
from the Cryptology ePrint Archive, http://www.iacr.org/.

25. T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes. Public Key Cryptography – PKC ’01, LNCS
1992, pp. 104–118, Springer-Verlag, 2001.

26. D. Pointcheval and J. Stern. Security proofs for signature schemes. Advances in
Cryptology – EUROCRYPT ’96, LNCS 1070, pp. 387–398, Springer-Verlag, 1996.

Efficient Threshold RSA Signatures
with General Moduli and No Extra Assumptions

Ivan Damg̊ard and Kasper Dupont�

Dept. of Computer Science, Aarhus University

Abstract. We propose techniques that allow construction of robust
threshold RSA signature schemes that can work without a trusted dealer
using known key generation protocols and is as efficient as the best pre-
vious schemes. We do not need special conditions on the RSA modulus,
extra complexity or set-up assumptions or random oracles. An “opti-
mistic” variant of the scheme is even more efficient in case no faults
occur. Some potential more general applications of our basic idea are
also pointed out.

1 Introduction

In a threshold public-key system we have a standard public key (for the RSA
system, for instance), while the private key is shared among a set of servers,
in such a way that by collaborating, these servers can apply the private key
operation to a given input, to decrypt it or sign it, as the case may be. If there
are l servers, such schemes typically ensure that even if an active adversary
corrupts less than l/2 servers, he will not learn additional information about
the private key, and will be unable to force the network to compute incorrect
results. Thus threshold cryptography is an important concept because it can
improve substantially the reliability and security of applications in practice of
public-key systems.

The most efficient known robust threshold RSA signature scheme was pro-
posed by Shoup [25] (see [9] for some of the first work in this direction and [18]
for a more efficient solution in case of passive attacks). Shoup’s scheme needs the
RSA modulus n to be a product of safe primes, that is, besides n = pq where
p, q are prime, we require p = 2p′+1, q = 2q′+1 and p′, q′ are also primes. When
Shoup proposed his scheme, it was not known how to generate efficiently such
an RSA key in a distributed way, i.e., such that the servers generate the key from
scratch without the secret key ever becoming known to a single entity. Shoup’s
scheme therefore assumed a trusted dealer generating the keys – although a
distributed key generation would of course have been more satisfactory since it
completely avoids any single points of attack.

� Both authors supported BRICS, Basic Research in Computer Science, Center of the
Danish National Research Foundation, and FICS, Foundations in Cryptography and
Security, Center of the Danish Science Research Council.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 346–361, 2005.
c© International Association for Cryptologic Research 2005

Efficient Threshold RSA Signatures with General Moduli 347

It was already known how to generate general (random) RSA keys via a
distributed protocol [2, 10], but such keys are safe prime products with only
negligible probability. Later, in [1], Algesheimer, Camenisch and Shoup propose
a RSA key generation protocol that can also generate safe prime products in a
reasonable amount of time, in the sense that their method will be much faster
than employing generic multiparty computation methods.

Despite this result, there are good reasons for considering threshold RSA
schemes that can use general RSA keys: we do not know if there are infinitely
many safe primes, and in any case, safe prime products constitute a small fraction
of the possible RSA keys. Thus it could in principle be the case that safe prime
products are easy to factor, while the general RSA assumption is still true.
We stress that nothing is known to suggest that this is the case, but in general
most experts agree that the most sound approach is to use RSA keys with as few
special constraints as possible. Furthermore, generating safe primes is slower than
generating random primes, simply because there are so few of them: to generate
a random k-bit prime, we need to examine O(k) candidates before finding a
prime, but (from heuristic arguments) we need O(k2) candidates before finding
a safe prime. Most candidates can be ruled out using trial division, so the extra
cost for safe primes may not be so significant in a traditional scenario where
a single party generates keys. But it is much more painful in a distributed key
generation protocol, since here even a simple trial division costs communication.

It is in fact possible to use more general RSA moduli: in [8], Damg̊ard and
Koprowski propose a threshold RSA scheme which is as efficient as Shoup’s and
which can use a much more general class of moduli. However, this comes at the
expense an extra and non-standard intractability assumptions, on top of the
basic RSA assumption (which is of course necessary). Independently, Fouque
and Stern [14] suggested a different approach that is based only on the RSA
assumption, but is significantly less efficient than [25, 8]. All these schemes need
the random oracles to make the signing protocol be non-interactive. One can
do without them at the expense of extra interaction, but doing it in a constant
number of rounds requires extra set-up assumptions.

More recently, Cramer and Damg̊ard propose a technique known as secret-key
zero-knowledge[5]. They suggest applying this to threshold RSA, this way one
obtains non-interactive protocols without random oracles. On the other hand,
the modulus is restricted in the same way as for Shoup’s scheme and extra key
set-up assumptions are needed.

In this paper, we propose new threshold RSA schemes which are as efficient
as [25, 8], they do not need the extra intractability assumptions introduced in [8],
nor extra key set-up assumptions. To understand how this is possible, recall that
in virtually any proposed threshold RSA scheme, each server must contribute a
partial result computed from its own share of the private key, plus it must prove
in zero-knowledge to the client requesting the signature that this partial result is
correct. We then observe that a minor change in the algorithm that computes the
signature from all contributions allows us to make do with a much larger (non-
negligible) error probability for the zero-knowledge proofs. This is a very generic

348 Ivan Damg̊ard and Kasper Dupont

idea that can be applied to most known threshold RSA schemes. Now, since the
restrictions on the RSA moduli in previous schemes were typically nedeed to
have a negligible error probability, we no longer need these restrictions.

Working out the details of this can be more or less straightforward, depend-
ing on which of the previous RSA schemes we start from. For instance, if we
start from Shoup’s scheme, there are indeed a few technicalities to sort out, and
we do this in detail in the last part of the paper. Since we want to avoid random
oracles and extra set-up assumptions, we cannot get a protocol that is always
non-interactive, but we can get one that requires at most 3 moves, and only 1
if servers behave correctly (as they would most of the time in practice). Note
that this would not have been possible if we had used zero-knowledge proofs in
the standard way. In any case, the total communication and computational com-
plexity is comparable to that of [25, 8]. Our schemes comes in several variants:

– The most efficient variant can be proved secure, based on an assumption that
implies the RSA assumption. We conjecture that they are in fact equivalent
(and we can prove this in the random oracle model). The modulus n = pq
must satisfy that (p−1)/2, (q−1)/2 have no prime factors smaller than 3t2,
where t is the maximal number of corrupted severs.

– A slightly more complex version that is slower than the basic one by a
constant factor, but can be proved secure under the RSA assumption. It
uses the same clas of moduli as the basic one.

– A variant that can use any RSA modulus and is secure under the RSA
assumption. Its complexity is higher than the basic one by a factor of log2 3+
2 log2 t – in practice, this is usually a rather small price to pay.

In the last section of the paper, we point out some more general applica-
tions of our basic idea, in particular, any threshold signature scheme, but also
threshold cryptosystems based on polynomial secret sharing could benefit from
our technique.

2 Model

Here we describe the model for threshold signature schemes we use, rather in-
formally, due to space limitations. In the type of schemes we consider there are l
servers and one client. In the generation phase on input a security parameter k
the public key pk and secret key shares s1, ..., sl are created, where si belongs to
server number i. There is a signing protocol defined for the servers and the client,
which takes a message M as input and outputs (publically) a signature σ.1 Fi-
nally, there is a verification predicate V , which is efficiently computable, takes
pk, message M and signature σ as inputs, and returns accept or reject. Both
1 Thus, we are in fact asuming (as usual in threshold signature schemes) that the client

and servers agree on which message is to be signed. In practice, the implementation
or application will have to ensure this. This is reflected in the model by not allowing
the adversary to send inconsistent signing requests to servers, even if the client is
corrupted.

Efficient Threshold RSA Signatures with General Moduli 349

the signing protocol and the verification predicate may make use of a random
oracle (although most of the schemes we consider here do not).

To define security, we assume a polynomially bounded static and active ad-
versary A, who corrupts initially t < l/2 of the l servers, and possibly the client.
Thus, the adversary always learns pk and the si’s of corrupted servers. As the
adversary’s algorithm is executed, he may issue two types of requests:

– An oracle request, where he queries the random oracle used, he is then given
the oracle’s answer to the query he specified. Of course, this is only relevant
if the protocol uses a random oracle.

– A signature request, where the adversary specifies a message M . This causes
the signing protocol to be executed on input M , where the adversary controls
the behaviour of corrupted servers and of the client if he is corrupt. The
adversary will of course see whatever information is made public by honest
servers.

At the end, A outputs a message M0 and a signature σ0.
We say the scheme is secure if the following two conditions hold for any

adversary A:

Robustness: If the client is honest, each signature request results in the client
computing a correct signature on M in expected polynomial time.

Unforgeability: The following happens with probability negligible in k: A out-
puts M0, σ0 such that M0 was not used in a previous signature request, and
V (pk, M0, σ0) = accept

3 Some Observations on Error Probabilities

Our first observations can be understood without bothering about the lower level
details of threshold RSA schemes. So assume we start from the schemes of [25]
or [8] which on a high level are completely similar: we are given as RSA public
key n, e, and each of the l servers hold a share of the private key, si for the i’th
server. In addition, there are some public verification keys, a global one v and a
special verification key vi for each server. These are used to verify that servers
behave correctly. It is assumed that an adversary may initially corrupt up to
t < l/2 servers and make them behave as he likes.

Given an input x to sign. We assume that x is the message as it looks after
possible hashing and padding, so that the purpose is simply to compute the cor-
rect RSA root of x. We denote by H whatever process that leads from the actual
message M to x, so that x = H(M). Now, server i computes a signature share
xi, and gives a zero-knowledge proof proofi, that xi was correctly computed.
Now, computing the signature takes place in two steps: First we discard all xi

corresponding to proofs that were rejected, leaving a set {xi| i ∈ S0} of signa-
ture shares, where S0 = {i| proofi was accepted}. We have |S0| ≥ t + 1, since at
least t + 1 servers are honest. Second, we run an algorithm Combine on inputs
{xi| i ∈ S0}, m, n, e which is guaranteed to output the correct signature on m,
if |S0| ≥ t + 1 and all shares in {xi| i ∈ S0} are correct. This last condition is

350 Ivan Damg̊ard and Kasper Dupont

satisfied except with negligible probability since in [8, 25] the proofs are designed
such that the adversary can give an acceptable proof for an incorrect xi with
only negligible probability.

Now, an initial observation – first made in [23] – is that since one can always
verify if the output from R is correct, one can always compute the signature,
even if no proofs were available:

– For every subset S ⊂ {1, 2, ..., l} of size t +1, do: Compute sig := R({xi| i ∈
S}, m, n, e). If sig is a correct signature on m w.r.t. public key n, e, output
sig and stop.

The problem with this algorithm is of course that it is inefficient for large l, t,
in fact it takes exponential time in l, if t ≈ l/2 because there are exponentially
many subsets to try, so this may be unpleasant already for moderately large t, l.

However, a similar idea might still work, if we first use the proofs to reduce
the number of incorrect signature shares from t down to something “sufficiently
close” to 0. Our main point is that this can be done, even if there is a non-
negligible chance of giving an acceptable proof for a bad signature share. We do
the following:

Algorithm Extended-Combine

– For all i = 1..l receive signature share xi from server i, and let server i give
a proof proofi that xi is correct. Let S0 = {i| proofi was accepted}.

– For every subset S ⊂ S0 of size t + 1, do: Compute sig := Combine({xi| i ∈
S}, m, n, e), where Combine is the algorithm mentioned above. If sig is a
correct signature on m w.r.t. public key n, e, output sig and stop.

Assume a worst case situation, where t is maximal, so that we have only t+1
honest servers, and furthermore all corrupt servers supply incorrect signature
shares. Let p(t) be the soundness error for the interactive proofs that servers
use to prove correctness of signature shares. In other words, if a signature share
xi is incorrect, then the proof given by server i is accepted with probability at
most p(t) (we assume we can control this error probability so that it is some
function of t). Then, for any i ∈ {0, 1, ..., t}, the probability that i of the t proofs
for incorrect signature schares are accepted is at most

(
t
i

)
p(t)i(1 − p(t))t−i. If i

proofs are accepted, S0 contains t + 1 + i signature shares, and we need to find
the subset of size t+1 corresponding to the t+1 correct signature shares. Hence,
the expected time spent to compute the signature using the algorithm sketched
above is proportional to (at most)

E(t) :=
t∑

i=0

(
t + 1 + i

t + 1

)(
t

i

)
p(t)i(1 − p(t))t−i

Lemma 1. If p(t) ≤ 1/ct2 for some constant c > 2, then (as a function of l
and and t), the expected number of subsets tested by Extended − Combine is in
O(1).

Efficient Threshold RSA Signatures with General Moduli 351

Proof. It is sufficient to show that E(t) is in O(1). Choose a c′ such that 2 <
c′ < c, then for any t > 1/(c′ − 2):

E(t) =
t∑

i=0

(
t + 1 + i

t + 1

)(
t

i

)
p(t)i(1 − p(t))t−i (1)

≤
t∑

i=0

(
t + 1 + i

t + 1

)(
t

i

)
p(t)i (2)

≤
t∑

i=0

(t + 1 + i)itip(t)i (3)

≤
t∑

i=0

(c′t)itip(t)i (4)

=
t∑

i=0

(c′t2p(t))i (5)

≤
t∑

i=0

(c′t2
1

ct2
)i (6)

=
t∑

i=0

(
c′

c
)i (7)

=
1 − (c′/c)t+1

1 − c′/c
(8)

≤ 1
1 − c′/c

(9)

In (3) we use the fact that
(
a
b

) ≤ ab. In (4) we use the assumption about t and
the fact i ≤ t. In (6) we use the assumption about p(t) In (8) we use the well
known formula

∑n
i=0 xi = 1−xn+1

1−x for x �= 1.

We remark that concrete caluations suggest that it may be possible to prove
this lemma assuming p(t) ≤ 1/cta for a slightly smaller than 2, but that a = 1
would not work.

4 A Threshold RSA Scheme

The scheme we describe in this section follows to a large extent the approach
of [8, 25]. The new ingredient is the way in which signatures shares are verified,
where we use the observations we made in the previous section. Concretely, this
means that the zero-knowledge proofs given for correctness of signature shares
are interactive, using 3 moves. But on the other hand, since we can make do with
a non-negligible soundness error, we only need short random challenges from the
verifier, and this means that the proofs can be shown to be zero-knowledge and
sound in the standard model without using random oracles.

352 Ivan Damg̊ard and Kasper Dupont

4.1 Key Set-Up

We describe here the setup of keys as a trusted dealer D would do it. However,
this dealer can be replaced by any of the known distributed RSA key generation
protocols. Using a particular such protocol may affect slightly the way the secret
sharing of the secret exponent is done (see below). Any such change can easily
be accomodated, however.

1. D chooses a k-bit RSA modulus n = pq where the primes p, q satisfy that
(p−1)/2, (q−1)/2 have no prime factors less than 3t2, where t is the maximal
number of corrupted servers we want to tolerate. Let l be the total number of
servers, and Δ = l!. In addition, φ(n) must be prime to the public exponent
e, which must be a prime such that e > l. We set d = e−1 mod φ(n).

2. D chooses a random polynomial f(x) of degree at most t with integer coef-
ficients, such that f(0) = d;

f(x) = d + c1x + ... + ctx
t

where the ci’s are random independent integers chosen from the interval
[0..Δn2t2L], where L is a secondary security parameter. The secret share of
the i’th server is si = f(i). With the given choice of coefficients, it can be
shown that, if we compare the distribution of any t shares resulting from
sharing d with the one resulting from sharing any other d′, the statistical
distance between the two is at most 2−L [19].

3. D chooses a random square v modulo n. For the i’th server, the verification
key vi is vi = vΔsi mod n.

4. The public information is now n, e, v, v1, ..., vl, while each server i has si as
its private information.

Note that by construction of n, any square modulo n has order not divisible
by any prime less than 3t2.

4.2 An Auxiliary Protocol

Suppose we are given elements in Z∗
n, v, w, α, β. Also given is an integer B of

size polynomial in k, the security parameter. We assume it is guranteed that
the orders of v, w, α and β are not divisible by any prime less than B. Finally,
a prover P is given an integer s such that vs = w mod n, and now P wants
to convince us that αs = β mod n. We use the following variant of a standard
protocol (a similar protocol was used in [13, 8, 25]):

1. P chooses r, a random integer of bitlength log2(s) + log2(B) + L. and sends
a = vr, b = αr.

2. The verifier chooses a random challenge c, with 0 ≤ c < B.
3. P replies by sending z = r + cs
4. To check the proof, one verifies that vz = awc and αz = bβc.

It is trivial to see that if αs = β and P follows the protocol, the verifier will
always accept. Moreover, a standard rewinding argument shows that the protocol

Efficient Threshold RSA Signatures with General Moduli 353

is statistical zero-knowledge, since the number of challenges is polynomial and
r is chosen to be exponentially (in L) larger than cs. For the soundness part,
we have the following result, which asserts that if the claim is wrong, then the
prover can only have the verifier accept with unusually large probability if he
can solve a supposedly hard problem:

Lemma 2. Let n, v, w, α, β, s, B be given as described above, and suppose αs �=
β mod n. Let P ∗ be any prover in the above protocol, and fix any set of random
coins for P ∗. If the probability (given these random coins) that the verifier accepts
is larger than 1/B, then: using P ∗ as oracle, one can easily compute either a
μ’th root of v modulo n , 1 < μ < B, or a multiple of the order of v in Z∗

n.

Remark 1. A very similar protocol and analysis was presented in [13]. The dif-
ference is that here, we are satisfied with a non-negligible error probability and
hence we can use small challenges. This is what implies that to break the sound-
ness, the adversary must find a root of v with “public exponent” in a very small
set (between 1 and B). We can therefore base security essentially on the standard
RSA assumption, rather than the strong RSA assumption as in [13].

Proof. The claimed algorithm will simply send all possible challenges to P ∗

(rewinding in between) and record all answers. Since the number of possible
challenges is B and the accept probability was larger than 1/B, we must get good
answers to at least 2 distinct challenges c, c′. So we have values a, b, c, c′, z, z′ such
that vz = awc, αz = bβc, vz′

= awc′ and αz′
= bβc′ (all equations modulo n).

It follows that
vz−z′

= wc−c′ , αz−z′
= βc−c′ .

Now, let d = gcd(z − z′, c − c′) < B. By assumption on the orders of v, w, α, β

v(z−z′)/d = w(c−c′)/d, α(z−z′)/d = β(c−c′)/d.

Now, if d < c − c′, take integers γ, δ such that 1 = γ(z − z′)/d + δ(c − c′)/d.
Using the relation we just derived, we get:

v = vγ(z−z′)/d+δ(c−c′)/d = (wγvδ)(c−c′)/d

which is, as promised, a non trivial μ’th root of v, where μ = (c − c′)/d. On the
other hand, if d = c − c′, we have in fact that

v(z−z′)/(c−c′) = w, α(z−z′)/(c−c′) = β.

It must be the case that s �= (z − z′)/(c − c′) since otherwise we get a contra-
diction with αs �= β, so this and vs = w implies that the order of v divides
s − (z − z′)/(c − c′).

4.3 Signing a Message

We can now describe how the threshold RSA scheme will work. We give first a
basic version, which we later show how to modify to get a more practical scheme
or to reduce the necessary assumptions.

354 Ivan Damg̊ard and Kasper Dupont

– When a client requests that message x = H(M) be signed, server i will
compute a signature share as xi = x2Δsi mod n.

– The server then proves that xi is correct. This proof will consist of proving
in ZK that the discrete log of x2

i base x4 equals the discrete log of vi base v
(namely Δsi), although the proof will have a non-negligible error probability.
For this we may use the auxiliary protocol given above, with parameters
n, B = 3t2, v, w = vi, α = x4 mod n, β = x2

i mod n and s = Δsi. It is easy
to see that with our choices of n, v, this will satisfy the conditions we stated
for the auxiliary protocol.

– The client now attempts to find a t + 1-subset of signature shares with
accepted proofs that leads to the correct signature being computed, i.e., we
use the Extended − Combine from the previous section. Concretely, let S
be a t + 1-subset of the indices 1, .., l, and define interpolation coefficients

λS
0,j = Δ

∏
i∈S\{j}

i

i − j

These are integers, and we have dΔ = f(0)Δ =
∑

j∈S λS
0,jsj . If for all

signature shares in S, it is indeed the case that server’s claim about xi is
true, i.e., (x4)Δsi = x2

i mod n, then we can compute

ω =
∏
j∈S

x
2λS

0,j

j = x4Δ2d mod n

– Note that ωe = x4Δ2
mod n. But since e is prime to 4Δ2, we can take integers

a, b such that a4Δ2 + be = 1. It now follows easily that y = ωaxb mod n is
the desired RSA signature, provided the subset we tried consisted of correct
signature shares. If the signature does not verify, we try the next subset.

We base the security on the following assumptions. First a variant of the
standard RSA assumption:

Conjecture 1. Let a k-bit RSA modulus n and t chosen as described above be
given, and let w ∈ Z∗

n be uniformly chosen. Given this input, any probabilistic
polynomial time algorithm computes a μ’th root of w mod n, where 1 < μ < 3t2,
with negligible probability (in k).

The only difference to standard RSA is that the public exponent is not fixed to
a single value but must be in a small given set. This is in contrast to the strong
RSA assumption, where the adversary can choose an arbitrary public exponent.

Conjecture 2. Let n, e, t be chosen as described above be given and let w ∈ Z∗
n

be uniformly chosen. Suppose an oracle is also given that on input message
M will return y such that ye = H(M) mod n. Given this input and oracle, any
probabilistic polynomial time algorithm computes a μ’th root of w mod n, where
1 < μ < 3t2, with negligible probability.

Efficient Threshold RSA Signatures with General Moduli 355

The second assumption is clearly at least as strong as the first, but they
may well be equivalent, namely if access to the e’th root oracle does not help to
compute μ’th roots. This seems reasonable since e is by assumption prime to any
allowed μ-value, and the adversary cannot even choose freely the numbers on
which e’th roots are computed. Indeed, if we model H as a (full domain)random
oracle, the assumptions are provably equivalent since then, using standard tricks,
the e’th root oracle is easy to implement without knowing the factors of n.

The basic variant of the threshold RSA scheme that we already presented can
be proved secure under Conjecture 2. Before doing this, we need two auxiliary
lemmas:

Lemma 3. Let n, e, distributed as the honest dealer chooses them, be given. Fur-
thermore, let w, a random square in Z∗

n be given. Based on this, the information
the adversary learns from the honest dealer initially can be simulated efficiently
with a statistically close distribution, and with v = we mod n.

Proof. Note that the information seen by the adversary is n, e, v, the shares of
corrupted players, and the public verification values vi of all players.

We begin by setting v = we mod n, and so we have w = vd mod n. Without
loss of generality, assume the adversary corrupts the first t players. Perform
now a sharing of an arbitrary value d′ (say, d′ = 1) according to the algorithm
used by the dealer, and let s1, ..., st be the shares for the corrupted players
resulting from this. By the privacy of the secret sharing, this is statistically
close to the distribution resulting from sharing the correct d. Hence, except with
negligible probability, there exists a polynomial f(x) of degree at most t and
with coefficients in the correct range, such that f(0) = d and f(i) = si, i = 1...t.
So we have w = vd = vf(0) mod n. Define S = {0, 1, ..., t}. Recall that we earlier
defined λS

i,j , the standard Lagrange interpolation coefficients multiplied by Δ.
We can now compute, for honest plyer i:

w ·
t∏

j=1

(vsj)λS
i,j =

t∏
j=0

(vf(j))λS
i,j = vΔf(i)

which is by definition exactly the public verification values that results for honest
players when the dealer chooses f(x) for the sharing of d. We can therefore output
n, e, s1, ..., st, v, vΔf(1), ..., vΔf(l).

Lemma 4. Assume we are given a set of values distributed by the honest dealer
to the adversary, i.e., n, e, v, v1, v2, ..., vl and the si’s sent to the corrupt servers.
Let also a message M , and the signature H(M)d mod n be given. Based on this,
the contributions from honest servers in the protocol where M is signed can be
simulated efficiently with the correct distribution.

Proof. Let f(x) be the polynomial used by the dealer to share d. Since we are
given H(M)d = H(M)f(0) mod n, and we know the shares of corrupted players,
we can compute what we need by interpolation “in the exponent” similarly to
the proof of the previous lemma. Assume without loss of generality that the first
t players are corrupt. We then compute, for honest player i:

356 Ivan Damg̊ard and Kasper Dupont

t∏
j=0

(H(M)f(j))λS
i,j = H(M)Δf(i)

which is by definition the signature share contributed by this player.

Theorem 1. The threshold RSA scheme defined in this section is secure under
Conjecture 2 and assuming the underlying RSA signature scheme is chosen mes-
sage attack secure. In the random oracle model, we can replace Conjecture 2 by
Conjecture 1.

Proof. We will show that if there exists an adversary A that breaks the above
threshold RSA scheme, there exists an expected poly-time adversary A′ that
either breaks the underlying RSA signature scheme under a chosen message
attack, or contradicts Conjecture 2.

Our claimed adversary A′ will be given just public key n, e and access to
an e’th root oracle, or equivalently, a chosen message attack on the underlying
signature scheme. Then A′ will start a copy of A, choose w as a random square
modulo n and run the simulation from Lemma 3 and in this way produce values
v, vi for everyone, and si for those t servers A wanted to corrupt.

When A wants to have some x signed, A′ uses the chosen message attack
to get a signature on x, uses Lemma 4 to compute the xi of honest servers and
the zero-knowledge property to simulate their proofs. Note that if the client is
corrupt, this involves simulating the proofs of honest servers where A acts as
verifier. If the client is honest, A′ just executes the normal client algorithm. In
this way, A′ simulates an entire execution of A and outputs whatever A outputs.

Note that to break the threshold scheme, A must either violate robustness or
unforgeability. Since A′ does a statistically close simulation of A’s attack, either
event happens with essentially the same probability in A′’s execution as in real
life.

Assume first that A violates robustness. Since the client by definition keeps
going until it finds a correct signature (and eventually it will always succeed), A
can only violate this property by creating a situation whete the expected time
spent by the client is larger than specified. By Lemma 1, this can only happen,
if at least one incorrect signature share is accepted with probability larger than
1/ct2, which is 1/3t2 in this particular case. By Lemma 2, this implies that
either that we can find a μ’th root of v where 1 < μ < 3t2, and hence of w since
w = ve mod n and e is guaranteed to be prime to μ. Or we can find a multiple
of the order of v and hence of w. Note that instead of choosing w, A′ could take
a random input and use this as w. Such an input will be a square with large
probability (1/4). Hence, in the first case, we can directly break Conjecture 2,
in the second case we note that ability to find the order of random elements
in Z∗

n implies we can factor n using a well known reduction, and so we can in
particular break Conjecture 2.

Now, assume A violates unforgeability and not robustness. This clearly means
that A′ runs in expected polynomial time, and produces with non-negligible
probability a new message with valid signature. Since A′ runs only with access
to a chosen message attack on the underlying signature scheme, we have broken
this scheme.

Efficient Threshold RSA Signatures with General Moduli 357

4.4 An “Optimistic” Variant

We show how to modify the basic scheme so it becomes more efficient and also
non-interactive in case the severs behave correctly, which in a practical scenario
is likely to be the case almost all the time.

The client will send requests to the servers to sign x. Each server returns
xi, ai where ai is the first message in the proof of correctness for xi. Moreover,
the randomness used in computing ai is computed by applying a pseudorandom
function on x. That is, the random coins are computed as φKi(x) where Ki

is a secret key server i stores together with its secret share si, and φ·(·) is
a pseudorandom function (say, built from AES encryption). The client tries
to compute the signature, assuming all servers sent correct xi’s. If it fails, it
sends requests to the servers for proofs that the xi’s were correct, including x, xi

and challenge e in the request to server i. The servers can verify that indeed
xi = x2Δsi mod n, and if so, recompute ai using the pseudorandom function.
The proofs can then be completed exactly as in the original scheme.

Note that servers do not need to remember anything from the intial request
to sign x, the proof can be conducted only from the public data, x, xi and the
private values si, Ki. This idea can also be used with the two variants given
below.

4.5 A Variant Based on Reduced Assumptions

In this subsection, we present a variant that can be proved secure, only from
Conjecture 1, without relying on random oracles. It is less efficient than the
basic one, but only by a constant factor. We only sketch the solution informally.

The idea is to use 2 RSA moduli n, n′, chosen independently but of the
same form as in previous sections. The public exponent e is defined w.r.t. n,
the secret key is shared as before, and signature shares are still computed as
xi = x2Δ2si mod n.

The change applies to the way in which we verify the signature shares. We
generate a public key modulo n′ for the integer commitment scheme of [6], i.e.,
h, g ∈ Z∗

n′ , such that h is random square modulo n′ and g = hz mod n′ for secret
z. Then the verification key vi is a commitment to si under public key n′, g, h,
i.e., vi = gsihri mod n′ for random ri of suitable size, given to server i initially.
This commitment scheme is unconditionally hiding, and is binding relative to
the RSA assumption.

Note that since commitments are always random elements in the group gen-
erated by h (no matter the value committed to) it is easy to simulate the vi’s
without knowing the si’s. Therefore results analogous to Lemmas 3,4 also hold
in this scenario.

Now, in [6], a protocol of the standard 3-move form is presented for proving
knowledge of how to open a commitment. An easy modification of this protocol
also allows proving that the contents of a commitment is the same as a given
discrete log, for instance the one defined by input x and a signature share xi.

Soudness of this protocol is proved in [6] relative to the strong RSA assump-
tion. However, in our scenario, we can make do with a larger error probability, in

358 Ivan Damg̊ard and Kasper Dupont

particular, challenges for this protocol are chosen between 0 and B. Therefore,
the proof of soundness from [6] now works relative to Conjecture 1 (w.r.t n′). We
can therefore prove security of this new scheme following the same strategy as for
the basic one. In particular, if we are given an adversary that breaks robustness,
this implies we can break Conjecture 1 w.r.t. n′, assuming we are given an oracle
that generates signatures w.r.t. n. But we can then do a reduction that it takes
n′ as input, generates n with known factors, and does the generation of secret
exponent and secret shares itself. This means that requests to sign messages can
be handled without any oracle access, and so security follows from Conjecture 1
alone.

4.6 A Variant Using Any RSA Modulus

The basic scheme imposes some restrictions on the RSA moduli that can be
used. In this section we describe a variant that can use a completely arbitrary
RSA modulus and can be proved secure assuming only that the underlying RSA
signature scheme is secure.

This is done using the basic scheme we already described, with only one
difference: in the proofs of correctness of a signature share, we use the auxiliary
protocol from Section 4.2 with a 1-bit challenge, instead of choosing it in [0..B[.
The protocol is then repeated in parallel log B times (where we choose as before
B = 3t2, and t is the number of corruptible servers). More precisely, given xi

that is to be verified against x, v, vi, the server starts log B copies of the auxiliary
protocol, sends the initial messages a

(1)
i , ..., a

(log B)
i , the client sends a random

log B-bit challenge b1, ..., blog B and the server answers this, using bj as challenge
in the j’th instance of the protocol.

Now, if a server can answer more than one challenge, there is at least one
instance j where it can answer both bj = 0 and bj = 1. It is now trivial to see
from the proof of Lemma 2 that given such answers, and if the server’s claim
is false, one can find a multiple of the order of v, and hence factor n, without
assuming anything about the form of n, except that it is a valid RSA modulus.
Hence the proof of security of this modified scheme goes through in exactly the
same way as before. The only difference is that in this case we know that if the
verification of the signature shares fail, the adversary can factor n, and hence
also break the underlying signature scheme (in the basic scheme, we can only
prove he can break Conjecture 2). We obtain:
Theorem 2. The modified threshold RSA scheme defined in this section is se-
cure no matter how the RSA modulus is chosen, assuming the underlying RSA
signature scheme is chosen message attack secure.

Note that it is not known how to use arbitrary RSA moduli for threshold RSA
unless 1-bit challenge proofs are used. Furthermore, without the observations we
made earlier about the required error probability, one would need to repeat the
1-bit challenge protocol enough times to make the error probability be negligible,
e.g., k repetitions where k is the security parameter. Being able able to do with
log B = log 3 + 2 log t iterations will be a significant advantage in most practical
cases.

Efficient Threshold RSA Signatures with General Moduli 359

5 General Applications of the Main Idea

Let us try to generalize the basic idea from this paper to other threshold cryp-
tosystems or signature schemes. Let the input be x, and suppose server i con-
tributes string xi that hopefully enables decryption or signing of x. We will
assume that we have t + 1 honest servers and at most t corrupt ones. Suppose
finally that the servers prove interactively that each xi is correct, that the sound-
ness error for these proofs satisfy the bound stated in Lemma 1, and that from
any set of t + 1 correct contributions, we can easily decrypt or sign x.

Lemma 1 now guarantees us that we can compute the correct output ef-
ficiently, by searching exhaustively through all t + 1-subsets of the accepted
contributions; assuming, however, that we can recognize the correct subset when
we get to it during the exhaustive search.

For a signature scheme, this is easy because we can tentatively assume that
the subset is correct, attempt to produce a signature, and verify the output value
using the public verification key. The same is true for most RSA encryption
schemes, namely those that map a message m to some number y(m, r) ∈ Zn

where r denotes some random coins chosen internally by the decryption process,
n is the modulus, and where the ciphertext is x = y(m, r)e mod n. In such a
case, each guess at a subset will produce a candidate value for y(m, e) which can
be checked by verifying the relation x = y(m, r)e mod n.

For a probabilistic encryption scheme such as El-Gamal, however, the sit-
uation is less clear. The problem is that for El Gamal and related encryption
schemes, one cannot easily check whether a given plaintext is contained in a
given ciphertext. Simply encrypting the suggested plaintext m under the public
key most likely results in a ciphertext different from x even if m was the correct
answer.

However, if t < l/3 where l is the total number of servers, there is an al-
ternative way to recognize the set of correct contributions: for threshold El-
Gamal, like for most threshold cryptosystems, we have for a correct contri-
bution xj that xj = xsj where sj is a secret exponent held by server i, and
where in fact sj = f(j) where f is a polynomial of degree at most t over some
finite field, typically GF (q) for a prime q in case of threshold El-Gamal encryp-
tion.

Now, by the assumption t < l/3 we have in the worst case t incorrect con-
tributions and 2t + 1 correct ones. Some of the incorrect contributions will be
discarded by the proofs of correctness, and among the remaining ones, we can
search for a subset of 2t + 1 values xj , such that all xj ’s in the subset are of
form xj = xf ′(j) for a polynomial f ′ of degree at most t. This can be verified by
Lagrange interpolation: assume without loss of generality that {xi|i = 1...2t+1}
is the set we are checking. Then, for i > t + 1, and any polynomial f ′ of degree
at most t, we have f ′(i) =

∑t+1
j=1 αi,jf ′(j) for fixed and public coefficients αi,j .

We can therefore verify for all i = t+2, ..., 2t+1 that xi =
∏t+1

j=1 x
αi,j

j . Assuming
this verifies for all i = t + 2, ..., 2t +1, we know that the subset is of the required
form. It is now easy to see that since t < l/3, the polynomial f ′ we implicitly
define here must agree with the polynomial f defined by the honest players in

360 Ivan Damg̊ard and Kasper Dupont

at least t+1 points, hence f = f ′ and therefore the plaintext suggested by this
subset is correct.

For this situation, we can do a computation similar to the one for Lemma 1.
We obtain that is this case, the expected number of subsets to test is in O(1) if
the soundness error of the correctness proofs is at most 1/ct2 where c > 3.

References

1. Algesheimer, Camenisch and Shoup: Efficient computations modulo a shared secret
with applications to generation of shared safe-prime products, proc. of Crypto 2002.

2. D. Boneh and M. Franklin Efficient generation of shared RSA keys, Proc. of Crypto’
97, Springer-Verlag LNCS series, nr. 1233.

3. R. Canetti, Security and Composition of Multiparty Cryptographic Protocols, Jour-
nal of Cryptology, vol.13, 2000. On-line version at
http://philby.ucsd.edu/cryptolib/1998/98-18.html.

4. R.Canetti, A unified framework for analyzing security of protocols , Cryptology
Eprint archive 2000/67, http://eprint.iacr.org/2000/067.ps

5. Cramer and Damg̊ard: Secret-Key Zero-Knowledge, Proc. of TCC 2003, Springer
Verlag LNCS.

6. Damg̊ard and Fujisaki: A statistically hiding integer commitment scheme based on
groups with hidden order, proc. of AsiaCrypt 2002.

7. Damg̊ard and Jurik: A Generalization and some Applications of Paillier’s Proba-
bilistic Public-key System, to appear in Public Key Cryptography 2001.

8. Damg̊ard and Koprowski: Practical threshold RSA signatures without a trusted
dealer, Proc. of EuroCrypt 2001.

9. Alfredo De Santis, Yvo Desmedt, Yair Frankel, Moti Yung: How to share a function
securely, STOC 1994: 522-533

10. Yair Frankel, Peter Gemmell, Philip D. MacKenzie and Moti Yung Optimal-
Resilience Proactive Public-Key Cryptosystems Proc. of FOCS 97.

11. Yair Frankel, Philip D. MacKenzie and Moti Yung Robust Efficient Distributed
RSA-Key Generation, Proc. of STOC 98.

12. P. Fouque, G. Poupard, J. Stern: Sharing Decryption in the Context of Voting or
Lotteries, Proceedings of Financial Crypto 2000.

13. E. Fujisaki and E. Okamoto: Statistical Zero-Knowledge Protocols to prove Modular
Polynomial Relations, proc. of Crypto 97, Springer Verlag LNCS series 1294.

14. Pierre-Alain Fouque and Jacques Stern: Fully Distributed Threshold RSA under
Standard Assumptions, IACR Cryptology ePrint Archive: Report 2001/008, Febru-
ary 2001

15. Gennaro, Jarecki, Krawczyk and Rabin: Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems, Proc. of EuroCrypt 99, Springer Verlag LNCS
series, nr. 1592.

16. Gennaro, Rabin, Jarecki and Krawczyk: Robust and Efficient Sharing of RSA Func-
tions, J.Crypt. vol.13, no.2.

17. Shingo Miyazaki, Kouichi Sakurai and Moti Yung On Threshold RSA-Signing with
no Dealer, Proc. of ICISC 1999, Springer Verlag LNCS series, nr.1787.

18. Brian King: Improved Methods to Perform Threshold RSA., ASIACRYPT 2000,
pp.359-372, Springer Verlag LNCS.

19. M. Koprowski: Threshold Integer Secret Sharing, manuscript, 2003.

Efficient Threshold RSA Signatures with General Moduli 361

20. P.Pallier: Public-Key Cryptosystems based on Composite Degree Residue Classes,
Proceedings of EuroCrypt 99, Springer Verlag LNCS series, pp. 223-238.

21. Pedersen: A Threshold cryptosystem without a trusted third party, proc. of Euro-
Crypt 91, Springer Verlag LNCS nr. 547.

22. T.Rabin: A Simplified Approach to Threshold and Proactive RSA, proc. of Crypto
98, Springer Verlag LNCS 1462.

23. M.K.Reiter and K.P.Birman: How to securely replicate services, ACM Transactions
on programming languages and systems 1994, vol 16, nr.3, pp.986–1009.

24. J. B. Rosser and L. Schoenfeld: Approximate formulas for some functions of prime
numbers, Ill. J. Math. 6 (1962), 64–94.

25. Victor Shoup Practical Threshold Signatures, Proceedings of EuroCrypt 2000,
Springer Verlag LNCS series nr. 1807.

Improved Identity-Based Signcryption

Liqun Chen1 and John Malone-Lee2

1 Hewlett-Packard Laboratories, Filton Road,
Stoke Gifford, Bristol, BS34 8QZ, UK

liqun.chen@hp.com
2 University of Bristol, Department of Computer Science,

Woodland Road, Brsitol, BS8 1UB, UK
malone@cs.bris.ac.uk

Abstract. Identity-based cryptography is form of public-key cryptog-
raphy that does not require users to pre-compute key pairs and obtain
certificates for their public keys. Instead, public keys can be arbitrary
identifiers such as email addresses. This means that the corresponding
private keys are derived, at any time, by a trusted private key generator.
The idea of signcryption is to provide a method to encrypt and sign data
together in a way that is more efficient than using an encryption scheme
combined with a signature scheme.
We present an identity-based signcryption solution that we believe is
the most efficient, provably-secure scheme of its type proposed to date.
Our scheme admits proofs of security in the random oracle model under
the bilinear Diffie-Hellman assumption using the definitions proposed by
Boyen.

1 Introduction

Two of the most important services offered by cryptography are those of pro-
viding private and authenticated communications. Much research has been done
into creating encryption schemes to meet highly developed notions of privacy [3,
16]. Similarly, designing unforgeable signature schemes to give authenticity and
non-repudiation is also a well studied problem [10]. It is possible to combine en-
cryption schemes and signature schemes, using methods such as those described
in [1], to obtain private and authenticated communications.

In 1997, Zheng proposed a primitive that he called signcryption [20]. The idea
of a signcryption scheme is to combine the functionality of an encryption scheme
with that of a signature scheme. It must provide privacy; signcryptions must be
unforgeable; and there must be a method to settle repudiation disputes. This
must be done in a more efficient manner than a composition of an encryption
scheme with a signature scheme. Along with the concept, Zheng also proposed
an efficient, discrete logarithm based scheme.

The first formal security treatment for signcryption appeared in [1]. This work
formalised notions of privacy and unforgeability. Subsequently, several provably
secure signcryption schemes have been designed, for example [12].

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 362–379, 2005.
c© International Association for Cryptologic Research 2005

Improved Identity-Based Signcryption 363

The concept identity-based cryptography was proposed by Shamir in 1984 [18].
The idea of an identity-based system is that public keys can be derived from arbi-
trary strings. This means that if a user has a string corresponding to its identity,
this string can be used to derive the user’s public key. For this to work there is a
trusted authority (TA henceforth) that generates private keys using some master
key related to the global parameters for the system. In [18] Shamir proposed
an identity-based signature scheme, but for many years identity-based encryp-
tion remained an open problem. The problem was solved nearly two decades
after it was originally proposed [5, 9]. In [9] Cocks proposed a solution based on
quadratic residuosity and in [5] Boneh and Franklin gave a scheme using bilinear
pairings on elliptic curves. It is pairings on elliptic curves that have become the
most popular building block for identity-based cryptography and many schemes
have been designed using this primitive.

The idea of identity-based signcryption was first proposed by Malone-Lee
in [13] along with a security model. This model dealt with notions of privacy
and unforgeability. A weakness in the scheme from [13] was subsequently pointed
out by Libert and Quisquater in [11] where a new scheme was proposed. The
new scheme came with proofs of security in the model of [13]. This model was
developed by Boyen in [6]. Three new security notions were added: ciphertext
unlinkability, ciphertext authentication and ciphertext anonymity. We discuss
these notions in Section 3. Boyen also proposed a scheme in [6] and analysed it
in the enhanced model.

We take the model from [6] as the starting point for this work. We describe a
scheme that admits security proofs in this model. We show that our scheme
compares favourably with other provably-secure signcryption schemes in the
literature.

The paper proceeds as follows. In Section 2 we formally define what we mean
by identity-based signcryption. Section 3 recalls the security model from [6]. We
present our scheme in Section 4 and provide security results for it in Section 5.
A comparison is made with existing schemes in Section 6. The paper ends with
some concluding remarks.

2 Identity-Based Signcryption

Before formally defining what we mean by identity-based signcryption we de-
scribe the notation that we will use throughout the paper.

Notation. Let S be a set. We write v ← S to denote the action of sampling
from the uniform distribution on S and assigning the result to the variable v.
If S contains one element s we use v ← s as shorthand for v ← {s}. If A is
an algorithm we denote the action of running A on input I and assigning the
resulting output to the variable v by v ← A(I).

If E is an event defined in some probability space, we denote the probability
that E occurs by Pr[E] (assuming the probability space is understood from the
context). Let Zq denote the non-negative integers modulo q and let Z∗

q denote
the corresponding multiplicative group.

364 Liqun Chen and John Malone-Lee

An identity-based signcryption scheme consists of the following six algo-
rithms: Setup, Extract, Sign, Encrypt, Decrypt and Verify. We describe
the functions of each below.

– Setup: On input of a security parameter 1k the TA uses this algorithm to
produce a pair (params, s), where params are the global public parameters
for the system and s is the master secret key. The public parameters include
a global public key QTA. We will assume that params are publicly known so
that we do not need to explicitly provide them as input to other algorithms.

– Extract: On input of an identity IDU and the master secret key s, the TA
uses this algorithm to compute a secret key SU corresponding to IDU .

– Sign: User A with identity IDA and secret key SA uses this algorithm with
input (m, SA) to produce a signature σ on m valid under the public key
derived from IDA. It also produces some ephemeral data r.

– Encrypt: On input of (SA, IDB, m, σ, r), IDA uses this algorithm to pro-
duce a ciphertext c. This is the encryption of m, and IDA’s signature on m,
which can be decrypted using the secret key of the user with identity IDB.

– Decrypt: User B with identity IDB and secret key SB uses this algorithm
with input (c, SB) to produces (m, IDA, σ) where m is a message and σ is a
purported signature by IDA on m.

– Verify: On input of (m, IDA, σ), this algorithm outputs) if σ is IDA’s
signature on m and it outputs ⊥ otherwise.

The above algorithms have the following consistency requirement. If

(m, σ, r) ← Sign(m, SA), c ← Encrypt(SA, IDB, m, σ, r) and

(m̂, ˆIDA, σ̂) ← Decrypt(c, SB),

then we must have

ˆIDA = IDA, m = m̂ and) ← Verify(m̂, ˆIDA, σ̂).

Note that in some models for signcryption [20] and identity-based signcryp-
tion [13, 11], the Sign and Encrypt algorithms are treated as one “signcryption”
algorithm, as are the Decrypt and Verify algorithms. Our scheme supports a
separation and so we stick with the above definition as in [6]. One advantage of
this approach, where it is possible, is that it makes non-repudiation of messages
a straightforward consequence of unforgeability. This follows from the fact that
after decryption there is a publicly verifiable signature that can be forwarded to
a third party.

3 Security Notions

In this section we review the security model for identity-based signcryption pro-
posed in [6]. This model uses the notions of insider security and outsider security
from [1]. Informally insider security is security against a legitimate user of the
scheme while outsider security is security against an outside third party. Where
appropriate, this makes insider security a stronger notion. We will comment on
the significance of the distinction at relevant points in this section.

Improved Identity-Based Signcryption 365

3.1 Ciphertext Authentication

A scheme offering ciphertext authentication provides the guarantee to the re-
cipient of a signed and encrypted message that the message was encrypted by
the same person who signed it. This means that the ciphertext must have been
encrypted throughout the transmission and so it cannot have been the victim of
a successful man-in-the-middle attack. It also implies that the signer chose the
recipient for its signature.

We define this notion via a game played by a challenger and an adversary.

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Probing: The challenger is probed by the adversary who makes the following
queries.
• Sign/Encrypt: The adversary submits a sender identity, a receiver

identity and a message to the challenger. The challenger responds with
the signature of the sender on the message, encrypted under the public
key of the receiver.

• Decrypt/Verify: The adversary submits a ciphertext and a receiver
identity to the challenger. The challenger decrypts the ciphertext under
the secret key of the receiver. It then verifies that the resulting decryption
is a valid message/signature pair under the public key of the decrypted
identity. If so the challenger returns the message, its signature and the
identity of the signer, otherwise it returns ⊥.

• Extract: The adversary submits an identity to the challenger. The chal-
lenger responds with the secret key of that identity.

– Forge: The adversary returns a recipient identity IDB and a ciphertext c.
Let (m, IDA, σ) be the result of decrypting c under the secret key correspond-
ing to IDB. The adversary wins if IDA �= IDB; Verify(m, IDA, σ) =);
no extraction query was made on IDA, or IDB; and c did not result from a
sign/encrypt query with sender IDA and recipient IDB.

Definition 1. Let A denote an adversary that plays the game above. If the
quantity Adv[A] = Pr[A wins] is negligible we say that the scheme in question
is existentially ciphertext-unforgeable against outsider chosen-message attacks,
or AUTH-IBSC-CMA secure.

Here we have an example of outsider security since the adversary is not able to
extract the secret key corresponding to IDB. This models the true adversarial
scenario where an attack would be re-encrypting a signed message using a public
key with unknown secret key.

3.2 Message Confidentiality

The accepted notion of security with respect to confidentiality for public key
encryption is indistinguishability of encryptions under adaptive chosen ciphertext
attack, as formalised in [16]. The notion of security defined in the game below is
a natural adaptation of this notion to the identity-based signcryption setting.

366 Liqun Chen and John Malone-Lee

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Phase 1: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1. At the end of Phase 1 the adversary outputs two
identities {IDA, IDB} and two messages {m0, m1}. The adversary must not
have made an extract query on IDB.

– Challenge: The challenger chooses a bit b uniformly at random. It signs mb

under the secret key corresponding to IDA and encrypts the result under the
public key of IDB to produce c. The challenger returns c to the adversary.

– Phase 2: The adversary continues to probe the challenger with the same
type of queries that it made in Phase 1. It is not allowed to extract the private
key corresponding to IDB and it is not allowed to make a decrypt/verify
query for c under IDB.

– Response: The adversary returns a bit b′. We say that the adversary wins
if b′ = b.

Definition 2. Let A denote an adversary that plays the game above. If the quan-
tity Adv[A] = |Pr[b′ = b] − 1

2 | is negligible we say that the scheme in question
is semantically secure against adaptive chosen-ciphertext attack, or IND-IBSC-
CCA2 secure.

Note that Definition 2 deals with insider security since the adversary is assumed
to have access to the private key of the sender of a signcrypted message. This
means that confidentiality is preserved even if a sender’s key is compromised.

3.3 Signature Non-repudiation

A signcryption scheme offering non-repudiation prevents the sender of a sign-
crypted message from disavowing its signature. Note that non-repudiation is not
as straightforward for signcryption as it is for digital signature schemes since we
are dealing with encrypted data. As a consequence, by default, only the intended
recipient of a signcryption can verify.

We define the notion of non-repudiation via the following game played by a
challenger and an adversary.

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Probing: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1.

– Forge: The adversary returns a recipient identity IDB and a ciphertext c.
Let (m, IDA, σ) be the result of decrypting c under the secret key correspond-
ing to IDB. The adversary wins if IDA �= IDB; Verify(m, IDA, σ) =); no
extraction query was made on IDA; no sign/encrypt query (m, IDA, IDB′)
was responded to with a ciphertext whose decryption under the private key
of IDB′ is (m, IDA, σ).

Improved Identity-Based Signcryption 367

This model is a natural adaptation of existential unforgeability (EUF) under
adaptive chosen message attack, the accepted notion of security for digital sig-
nature schemes [10].

Definition 3. Let A denote an adversary that plays the game above. If the
quantity Adv[A] = Pr[A wins] is negligible we say that the scheme in question is
existentially unforgeable against insider chosen-message attacks, or EUF-IBSC-
CMA secure.

In Definition 3 we allow the adversary access to the secret key of the recipient
of the forgery. It is this that gives us insider security. Also note that the adver-
sary’s advantage is with respect to its success in forging the signature within
the ciphertext. This is indeed the correct definition for non-repudiation in this
context because it is the signature and not the ciphertext that contains it that
is forwarded to a third party in the case of a dispute.

3.4 Ciphertext Anonymity

Ciphertext anonymity is the property that ciphertexts contain no third-party
extractable information that helps to identify the sender of the ciphertext or the
intended recipient. It is defined via the following game.

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Phase 1: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1. At the end of Phase 1 the adversary outputs a
message m; two sender identities {IDA0 , IDA1}; and two recipient identities
{IDB0 , IDB1}. The adversary must not have made an extract query on either
of {IDB0 , IDB1}.

– Challenge: The challenger chooses two bits (b, b̂) uniformly at random. It
signs m under the secret key SAb

corresponding to IDAb
. It then encrypts

the result under the public key of IDBb̂
to produce a ciphertext c. The

challenger returns c to the adversary.
– Phase 2: The adversary continues to probe the challenger with the same

type of queries that it made in Phase 1. It is not allowed to extract the
private key corresponding to IDB0 or IDB1 and it is not allowed to make a
decrypt/verify query for c under IDB0 or under IDB1 .

– Response: The adversary returns two bits (b′, b̂′). We say that the adversary
wins if b = b̂ or b′ = b̂′.

Definition 4. Let A denote an adversary that plays the game above. If the
quantity Adv[A] = |Pr[b′ = b ∨ b̂′ = b̂] − 3

4 | is negligible we say that the scheme
in question is ciphertext-anonymous against insider adaptive chosen-ciphertext
attack, or ANON-IBSC-CCA2 secure.

368 Liqun Chen and John Malone-Lee

Note that in the equivalent definition from [6] the adversary only wins if b = b̂

and b′ = b̂′. It is stated there that the scheme is ANON-IBSC-CCA2 secure if
the quantity Adv[A] = |Pr[b′ = b∧ b̂′ = b̂]− 1

4 | is negligible. The two definitions
are clearly equivalent. We prefer our formulation because it explicitly states that
the adversary should not be able to guess either of the bits. The intuition is that
it gains no information about the sender of a message or the intended recipient.
Definition 4 follows from the fact that the adversary is always able to guess at
least one of the bits correctly with probability 3/4.

An additional security definition dubbed ciphertext unlinkability is described
in [6]. Informally this notion means that Alice is able to deny having sent a given
ciphertext to Bob, even if the ciphertext decrypts under Bob’s secret key to a
message bearing Alice’s signature. This property is demonstrated for the scheme
in [6] by showing that given a message signed by Alice, Bob is able to create a
valid ciphertext addressed to himself for that message. It is easily verified that
our scheme also has this property.

4 The Scheme

In this section we describe how our identity-based signcryption scheme works.
We will refer to the scheme as IBSC henceforth.

Before explaining our scheme we must briefly summarise the mathematical
primitives necessary for pairing based cryptography. We require two groups G1

and G2 of large prime order q. These groups must be such that there exists a
non-degenerate, efficiently computable map ê : G1 × G1 → G2. This map must
be bilinear i.e. for all P1, P2 ∈ G1 and all a, b ∈ Z∗

q we have ê(aP1, bP2) =
ê(P1, P2)ab. A popular construction for such groups uses supersingular elliptic
curves over finite fields. The bilinear map is realised using a modification of the
Tate pairing or the Weil pairing. For details of such instantiations see [2, 5].

We also require three hash functions H0 : {0, 1}k1 → G1, H1 : {0, 1}k0+n →
Z∗

q and H2 : G2 → {0, 1}k0+k1+n. Here k0 is the number of bits required to
represent an element of G1; k1 is the number of bits required to represent an
identity; and n is the number of bits of a message to be signed and encrypted.

Setup
Establish parameters G1, G2, q, ê, H0 : {0, 1}k1 → G1, H1 : {0, 1}k0+n → Z∗

q

and H2 : G2 → {0, 1}k0+k1+n as described above; choose P such that 〈P 〉 = G1;
choose s ← Z∗

q and compute the global public key QTA ← sP .

Extract
To extract the private key for user U with IDU ∈ {0, 1}k1: Compute the public
key QU ← H0(IDU) and the secret key SU ← sQU .

Sign
For user A with identity IDA to sign m ∈ {0, 1}n with private key SA corre-
sponding to public key QA ← H0(IDA): Choose r ← Z∗

q ; compute X ← rQA,
h1 ← H1(X ||m) and Z ← (r + h1)SA; return the signature (X, Z) and forward
(m, r, X, Z) to Encrypt.

Improved Identity-Based Signcryption 369

Encrypt
For user A with identity IDA to encrypt m using r, X, Z output by Sign for
receiver IDB: Compute QB ← H0(IDB), w ← ê(rSA, QB) and y ← H2(w) ⊕
(Z||IDA||m); return ciphertext (X, y).

Decrypt
For user B with identity IDB to decrypt (X, y) using SB = sH0(IDB): Com-
pute w ← ê(X, SB) and Z||IDA||m ← y⊕H2(w); forward message m, signature
(X, Z) and purported sender IDA to Verify.

Verify
To verify user A’s signature (X, Z) on message m where A has identity IDA:
Compute QA ← H0(IDA) and h1 ← H1(X ||m); if ê(Z, P) = ê(QTA, X +h1QA),
return); else, return ⊥.

Note that, as was the case in [6], the key setup used by our scheme is that
proposed in [17], and the signing algorithm is that proposed in [7]. Also, the
encryption is done in a manner similar to the BasicIdent scheme from [5]. The
integrity checking necessary for security against adaptive adversaries comes from
the signature in our case.

5 Security Results

In this section we state our security results. Owing to space constraints, we only
provide a proof of the ciphertext authentication property here. The proofs of the
other properties may be found in the full version of the paper [8].

All our results are relative to the bilinear Diffie-Hellman (BDH) problem.
Informally, using the notation of Section 4, this is the problem of computing
ê(P, P)abc from (P, aP, bP, cP) where a, b, c are chosen at random from Z

∗
q and

P generates G1. For further details see [5].
To prove our results we model H0, H1 and H2 as random oracles [3]. We

assume that the adversary makes qi queries to Hi for i = 0, 1, 2. The number of
sign/encrypt and decrypt/verify queries made by the adversary are denoted qs

and qd respectively.

Ciphertext Authentication

Theorem 1. If there is an AUTH-IBSC-CMA adversary A of IBSC that suc-
ceeds with probability ε, then there is a simulator B running in polynomial time
that solves the BDH problem with probability at least

ε ·
(

1 − qs(q1 + q2 + 2qs)
q

)
· 1

q0(q0 − 1)(qs + qd)(q2 + qs)
.

Proof. We will show how an AUTH-IBSC-CMA adversary A of IBSC may be
used to construct a simulator B that solves the BDH problem for (P, aP, bP, cP).

370 Liqun Chen and John Malone-Lee

We now describe the construction of the simulator B. The simulator runs A
with trusted third party public key QTA ← cP . It also creates algorithms to re-
spond to queries made by A during its attack. To maintain consistency between
queries made by A, the simulator keeps the following lists: Li for i = 0, 1, 2 of
data for query/response pairs to random oracle Hi; Ls of signcryptions generated
by the simulator; and Ld of some of the queries made by A to the decrypt/verify
oracle. We will see in the construction of the sign/encrypt simulator that the list
Ls stores other information that will be useful to B. Its use will become apparent
in the subsequent analysis, as will the use of Ld.

Simulator: H0(IDU)
At the beginning of the simulation choose ia, ib uniformly at random from
{1, . . . , q0} (ia �= ib). We respond to the i-th query made by A as follows (as-
suming A does not make repeat queries).

– If i = ia then respond with H0(IDU) ← aP and set IDA ← IDU .
– If i = ib then respond with H0(IDU) ← bP and set IDB ← IDU .
– Else choose x ← Z∗

q ; compute QU ← xP ; compute SU ← xQTA; store
(IDU , QU , SU , x) in L0 and respond with QU .

Simulator: H1(X ||m)

– If (X ||m, h1) ∈ L1 for some h1, return h1.
– Else choose h1 ← Z∗

q ; add (X ||m, h1) to L1; return h1.

Simulator: H2(w)

– If (w, h2) ∈ L2 for some h2, return h2.
– Else choose h2 ← {0, 1}k0+k1+n; add (w, h2) to L2; return h2.

Simulator: Extract(IDU)
We assume that A queries H0(IDU) before it makes the extraction query IDU .

– If IDU = IDA or IDU = IDB, abort the simulation.
– Else search L0 for the entry (IDU , QU , SU , x) corresponding to IDU and

return SU .

Simulator: Sign/Encrypt(m, ID1, ID2)
We will assume that A makes the queries H0(ID1) and H0(ID2) before it makes
a sign/encrypt query using these identities. We have five cases to consider.

Case 1: ID1 �= IDA and ID1 �= IDB

– Find the entry (ID1, Q1, S1, x) in L0; choose r ← Z∗
q ; compute X ← rQ1;

compute h1 ← H1(X ||m) (where H1 is the simulator above); compute Z ←
(r + h1)S1; compute Q2 ← H0(ID2) (where H0 is the simulator above);
compute w ← ê(rS1, Q2); compute y ← H2(w) ⊕ (Z||ID1||m) (where H2 is
the simulator above); return (X, y).

Improved Identity-Based Signcryption 371

Case 2: ID1 = IDA, ID2 �= IDA and ID2 �= IDB

– Choose r, h1 ← Z∗
q ; compute X ← rP − h1QA; compute Z ← rQTA;

add (X ||m, h1) to L1; find the entry (ID2, Q2, S2, x) in L0; compute w ←
ê(X, S2); compute y ← H2(w) ⊕ (Z||IDA||m) (where H2 is the simulator
above); return (X, y).

Case 3: ID1 = IDB, ID2 �= IDA and ID2 �= IDB

Use the simulation of Case 2 replacing (IDA, QA) with (IDB , QB).

Case 4: ID1 = IDA and ID2 = IDB

– Follow the first four steps of Case 2; choose h2 ← {0, 1}k0+k1+n; compute
y ← h2 ⊕ Z||IDA||m; add (IDA, IDB, X, y, Z, m, r, h1, h2) to Ls; return
(X, y).

Case 5: ID1 = IDB and ID2 = IDA

Use the simulation of Case 4 swapping (IDA, QA, IDB) with (IDB , QB, IDA).

Decrypt/Verify:(X, y), ID2

We assume that A makes the query H0(ID2) before making a decryption query
for ID2. We have the following three cases to consider.

Case 1: ID2 �= IDA and ID2 �= IDB

– Find the entry (ID2, Q2, S2, x) in L0; compute w = ê(X, S2); initialise b ← 1.
– If w ∈ L2, compute Z||ID1||m ← y ⊕ H2(w), else b ← 0 .
– If b = 1 and ID1 ∈ L0, let Q1 ← H0(ID1), else b ← 0.
– If b = 1 and X ||m ∈ L1, let h1 ← H1(X ||m), else b ← 0.
– If b = 1 and ê(Z, P) = ê(QTA, X + h1Q1), return m, (X, Z) and ID1, else

step through the list Ls as follows.
• If the current entry has the form (IDA, IDB, X ′, y, Z, m′, r, h′

1, h2) then
test if ê(X ′, QB) = ê(X, xP). If so continue, else move on to the next
element of Ls and begin again.

• Else if the current entry has the form (IDB, IDA, X ′, y, Z, m′, r, h′
1, h2)

then test ê(X ′, QA) = ê(X, xP). If so continue, else move on to the next
element of Ls and begin again.

• Compute Z||ID1||m ← y ⊕ h2.
• If ID1 = ID2 move to the next element in Ls and begin again.
• If ID1 ∈ L0 let Q1 ← H0(ID1), else move to the next element in Ls.
• If X ||m ∈ L1 let h1 ← H1(X ||m), else move to the next element in Ls.
• Check that ê(Z, P) = ê(QTA, X +h1Q1), if so return m, (X, Z) and ID1,

if not move on to the next element in Ls and begin again.
– If no message has been returned, return ⊥.

Case 2: ID2 = IDB

– If (IDA, IDB, X, y, Z, m, r, h1, h2) ∈ Ls for some m, return m, (X, Z), IDA.

372 Liqun Chen and John Malone-Lee

– Else, add (X, y), IDB to Ld and step through the list L2 with entries (w, h2)
as follows.
• Compute Z||ID1||m ← y ⊕ h2.
• If ID1 = IDA or ID1 = IDB, move to the next element in L2 and begin

again.
• If ID1 ∈ L0 let Q1 ← H0(ID1) and find S1 in L0 , else move to the next

element in L2 and begin again.
• If X ||m ∈ L1 let h1 ← H1(X ||m), else move on to the next element in

L2 and begin again.
• Check that w = ê(Z −h1S1, QB) and if not move on to the next element

in L2 and begin again.
• Check that ê(Z, P) = ê(QTA, X +h1Q1), if so return m, (X, Z) and ID1,

else move on to the next element in L2 and begin again.
– If no message has been returned after stepping through the list L2, step

through the list Ls as follows.
• If the current entry has the form (IDA, IDB, X ′, y, Z, m′, r, h′

1, h2) then
check that X ′ = X . If so continue, else move on to the next element of
Ls and begin again.

• Else if the current entry has the form (IDB, IDA, X ′, y, Z, m′, r, h′
1, h2)

then check that ê(X ′, QA) = ê(X, QB). If so continue, if not move on to
the next element of Ls and begin again.

• Compute Z||ID1||m ← y ⊕ h2.
• If ID1 = IDB, move to the next element in Ls and begin again.
• If ID1 ∈ L0 let Q1 ← H0(ID1), else move to the next element in Ls.
• If X ||m ∈ L1 let h1 ← H1(X ||m), else move to the next element in Ls.
• Check that ê(Z, P) = ê(QTA, X +h1Q1), if so return m, (X, Z) and ID1,

else move on to the next element in Ls and begin again.
– If no message has been returned, return ⊥.

Case 3: ID2 = IDA

Use the simulation of Case 2 replacing (IDB, QB, IDA) with (IDA, QA, IDB).

Once A has been run, B does one of two things.

1. With probability qs/(qs+qd) choose a random element from Ls and a random
element (w, h2) from L2. We call this event Ch1 in the analysis below (Ch
for choice). The significance of the probability will become apparent in the
subsequent analysis we only mention here that we are assuming |Ls| = qs at
the end of our simulation. This is the worst case scenario.
– If the chosen element has form (IDA, IDB, X, y, Z, m, r, h1, h2), compute

B =
(
w/ê(rbP, cP)

)−1/h1
.

– If the chosen element has form (IDB, IDA, X, y, Z, m, r, h1, h2), compute

B =
(
w/ê(raP, cP)

)−1/h1
.

Improved Identity-Based Signcryption 373

2. With probability qd/(qs + qd) choose a random element from Ld and a ran-
dom element (w, h2) from L2. We call this event Ch2 in the analysis below.
Again, the significance this probability will become apparent in the sub-
sequent analysis. As above, we are assuming |Ld| = qd at the end of our
simulation. This is the worst case scenario.
– If the chosen element from Ld has the form (X, y), IDB compute y⊕h2.

If y ⊕ h2 has the form Z||IDA||m for some Z, m, compute

B =
(
w/ê(Z, bP)

)−1/h1
.

If y ⊕ h2 does not have this form B has failed.
– If the chosen element from Ld has the form (X, y), IDA compute y⊕h2.

If y ⊕ h2 has the form Z||IDB||m for some Z, m, compute

B =
(
w/ê(Z, aP)

)−1/h1
.

If y ⊕ h2 does not have this form B has failed.

The rational for these probabilities and computations will become apparent in
the discussion of equations (1), (2), (4) and (5) below.

Let us now analyse our simulation. The simulations for the random oracles
and the extraction queries are trivial. The simulation of the sign/encrypt queries
uses standard techniques. We make some remarks about the decrypt/verify sim-
ulation since this is less obvious. We will treat each case separately.

Case 1: In this case the simulator B knows the secret key of the receiver and so
it is able to compute the correct ephemeral encryption key. The first six steps in
this case are therefore those that would be followed in genuine decryption and
verification. The reason that it does not stop at this point is that the sign/encrypt
simulator implicitly defines H2(w) for values of w that are unknown to the sim-
ulator. It must check that the ephemeral encryption key w that it has computed
is not one of these values. For example, suppose that there is an entry of the
form (IDA, IDB, X ′, y, Z, m, r, h′

1, h2) in Ls. Referring back to the construction
of the sign/encrypt simulator, it needs to know if

ê(X ′, SB) = ê(X, S2).

The simulator knows that S2 = xQTA = xcP and it know SB = bQTA = bcP =
cQB so this test becomes

ê(X ′, QB) = ê(X, xP).

Case 2: In this case the simulator B does not know the secret key of the receiver
and so it is unable to compute the ephemeral encryption key ê(X, SB). The first
loop, through the list L2, determines whether the H2 value of the ephemeral
encryption key is in L2 itself i.e. for each w in L2 it wants to know if w =

374 Liqun Chen and John Malone-Lee

ê(X, SB). Since by construction QTA = cP this test becomes w = ê(cX, QB)
and, under the assumption that the ciphertext is correctly formed, it becomes
ê(Z−h1S1, QB). Note that if the ciphertext is not correctly formed the simulator
does not care whether the value of H2(w) is defined since it is correct to reject.
The final test in this loop is just the standard test for verification.

The second loop, through Ls, determines whether the value of H2(w) that B
is looking for has been determined by the sign/encrypt simulator. If it is search-
ing Ls for an entry of form (IDA, IDB, X ′, y, Z, m, r, h′

1, h2) then the receiver
identities are the same in this entry and in the decrypt/verify query that we are
trying to respond to. The check is then simply on the values of X and X ′.

If B is looking at an entry of Ls of the form (IDB, IDA, X ′, y, Z, m, r, h′
1, h2)

then the receivers identities are not the same in this entry and in the de-
crypt/verify query that it is trying to respond to. The check that it wishes
to perform is ê(X ′, SA) = ê(X, SB). This is clearly equivalent to the check
ê(X ′, QA) = ê(X, QB).

Case 3: The analysis is identical to that of Case 2 with A and B reversed.

Let us now consider how our simulation could fail i.e. describe events that
could cause A’s view to differ when run by B from its view in a real attack. We
call such an event an error and denote it ER.

It is clear that the simulations for H0 and H1 are indistinguishable from real
random oracles. Let us now consider the H2 simulator. The important point here
is that H2 is not only defined at points where the H2 simulator is called by A
or by the simulator itself. It is also defined at certain points implicitly by the
sign/encrypt simulator. For example, suppose that the sign/encrypt simulator re-
sponds to a query m, IDA, IDB. In this case it adds an entry (IDA, IDB, X, y, Z,
m, r, h1, h2) to Ls. This implicitly defines H2(ê(X, SB)) = h2 although it is not
actually able to compute ê(X, SB). If the H2 simulator is subsequently called
with w = ê(X, SB) it will not recognise it and so it will not return h2. We denote
such events H-ER. However, if such an event occurs we have

w = ê(X, SB) = ê(rP − h1QA, SB)

from which it is possible to compute

ê(P, P)abc = ê(QA, SB) =
(
w/ê(rQB, QTA)

)−1/h1 =
(
w/ê(rbP, cP)

)−1/h1
. (1)

Similarly if the H2 simulator is called with w that is implicitly defined by an
entry (IDB, IDA, X, y, Z, m, r, h1, h2) ∈ Ls we can compute.

ê(P, P)abc = ê(QB, SA) =
(
w/ê(rQA, QTA)

)−1/h1 =
(
w/ê(raP, cP)

)−1/h1
. (2)

Let us now consider how the simulation for sign/encrypt could fail. We denote
such an event S-ER. The most likely failure will be caused by the sign/encrypt
simulator responding to a query of the form Case 4 or Case 5 (see simulator).

Improved Identity-Based Signcryption 375

Since we do not know how often each case will occur we will be conservative
and assume that each query will be one of these, 4 say. The only possibilities for
introducing an error here are defining H1(X ||m) when it is already defined or
defining H2(ê(X, SB))/H2(ê(X, SA)) when it is already defined. Since X takes
its value uniformly at random in 〈P 〉, the chance of one of these events occurring
is at most (q1 + q2 + 2qs)/q for each query. The 2qs comes from the fact that
the signing simulator adds elements to L1 and L2. Therefore, over the whole
simulation, the chance of an error introduced in this way is at most

qs(q1 + q2 + 2qs)/q. (3)

We now turn our attention to the decrypt/verify simulator. An error in this
simulator is denoted D-ER. It is clear that this simulator never accepts an invalid
encryption. What we have to worry about is the possibility that it rejects a valid
one. This can only occur with non-negligible probability in Case 2 or Case 3.
Suppose that we are trying to decrypt (X, y), IDB (i.e. Case 2). An error will
only occur if while stepping through L2 there is an entry (w, h2) such that
Z||IDA||m ← y ⊕ h2 and (X, y) is a valid encryption of m from IDA to IDB.
In this case we must have

w = ê(Z − h1SA, QB) = ê(Z, QB) · ê(−h1SA, QB) = ê(Z, bP) · ê(−h1acP, bP),

where h1 = H1(X ||m). From the above we can compute

ê(P, P)abc =
(
w/ê(Z, bP)

)−1/h1
. (4)

Suppose now that we are trying to decrypt (X, y), IDA (i.e. Case 3). An error
will only occur if while stepping through L2 there is an entry (w, h2) such that
Z||IDB||m ← y ⊕ h2 and (X, y) is a valid encryption of m from IDB to IDA.
In this case we must have

w = ê(Z − h1SB, QA) = ê(Z, QA) · ê(−h1SB, QA) = ê(Z, aP) · ê(−h1bcP, aP),

from which we can compute

ê(P, P)abc =
(
w/ê(Z, aP)

)−1/h1
. (5)

The final simulator is the extract simulator. Note that the adversary will
only succeed in its task with non-negligible probability if it queries H0 with
the two identities under which the encrypted and signed message it produces is
supposed to be valid. Looking at the H0 simulator we see that it chooses two H0

queries made by the adversary and responds to these with group elements from
the BDH instance that it is trying to solve. The simulator hopes that these will
be the identities for the adversary’s encrypted and signed message. This will be
the case with probability at least

1/q0(q0 − 1). (6)

376 Liqun Chen and John Malone-Lee

If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for these identities, the
simulator would abort. An error in the extract simulator is denoted E-ER.

Once A has been run by the simulator B, there are two courses of action:
Ch1 and Ch2 (as described above). If Ch1 has been chosen, we denote the event
that B selects the correct elements to solve the BDH problem from Ls and H2

by CG1 (under the assumption that there are such correct elements in the lists
at the end of the simulation). Likewise if Ch2 has been chosen, we denote the
event that B selects the correct elements from Ld and H2 by CG2.

With the events described above we have
Adv[B] ≥ Pr[¬E-ER ∧ H-ER ∧ ¬S-ER ∧ Ch1 ∧ CG1]

+ Pr[D-ER ∧ ¬E-ER ∧ ¬H-ER ∧ ¬S-ER ∧ Ch2 ∧ CG2]. (7)

Also,
Pr[¬E-ER ∧ H-ER ∧ ¬S-ER ∧ Ch1 ∧ CG1]

= Pr[¬E-ER ∧ ¬S-ER] · Pr[Ch1 ∧ CG1] · Pr[H-ER], (8)

and,
Pr[D-ER ∧ ¬E-ER ∧ ¬H-ER ∧ ¬S-ER ∧ Ch2 ∧ CG2]

= Pr[D-ER] ·Pr[¬E-ER ∧ ¬H-ER ∧ ¬S-ER] · Pr[Ch2 ∧ CG2]. (9)

Note that, in the event ¬E-ER∧¬H-ER∧¬S-ER, the adversary A is run by B in
exactly the same way that it would be run in a real attack until the event D-ER
occurs. Moreover, in the event ¬E-ER ∧ ¬H-ER ∧ ¬S-ER, A winning and D-ER
are equivalent. This means that (9) becomes

Pr[D-ER ∧ ¬E-ER ∧ ¬H-ER ∧ ¬S-ER ∧ Ch2 ∧ CG2]
= ε ·Pr[¬E-ER ∧ ¬S-ER] · Pr[Ch2 ∧ CG2] ·Pr[¬H-ER]. (10)

From the definitions of Ch1, CG1, Ch2 and CG2 above it is clear that

Pr[Ch1 ∧ CG1] =
qs

qs + qd
· 1

qs(q2 + qs)
=

1
(qs + qd)(q2 + qs)

and (11)

Pr[Ch2 ∧ CG2] =
qd

qs + qd
· 1

qd(q2 + qs)
=

1
(qs + qd)(q2 + qs)

. (12)

Note that we are assuming a worst case scenario here i.e. |Ls| = qs and |Ld| = qd.
We will make this assumption throughout the remaining analysis without further
comment. From the fact that Pr[H-ER]+Pr[¬H-ER] = 1, (7), (8), (10), (11) and
(12) we have

Adv[B] ≥ (Pr[H-ER] + ε ·Pr[¬H-ER]) ·Pr[¬E-ER ∧ ¬S-ER] · 1
(qs + qd)(q2 + qs)

≥ ε · (Pr[H-ER] + Pr[¬H-ER]) ·Pr[¬E-ER ∧ ¬S-ER] · 1
(qs + qd)(q2 + qs)

= ε ·Pr[¬E-ER ∧ ¬S-ER] · 1
(qs + qd)(q2 + qs)

. (13)

Improved Identity-Based Signcryption 377

Finally, by the independence of E-ER and S-ER, using (3), (6) and (13) we have

Adv[B] ≥ ε ·
(

1 − qs(q1 + q2 + 2qs)
q

)
· 1

q0(q0 − 1)(qs + qd)(q2 + qs)
. (14)

��
Message Confidentiality

Theorem 2 describes the security of our scheme under Definition 2. We provide
a proof in the full version of the paper[8].

Theorem 2. If there is an IND-IBSC-CCA2 adversary A of IBSC that succeeds
with probability ε, then there is a simulator B running in polynomial time that
solves the BDH problem with probability at least

ε ·
(

1 − qs(q1 + qs)
q

)
· 1

q0q2
.

Signature Non-repudiation

In Theorem 3 we state the security result for our scheme under Definition 3. The
proof will be found in the full version of the paper[8].

Theorem 3. If there is an EUF-IBSC-CMA adversary A of IBSC that succeeds
with probability ε, then there is a simulator B running in polynomial time that
solves the BDH problem with probability at least

ε ·
(

1 − qs(q1 + qs)
q

)2

· 1
4q2

0(q1 + qs)2
.

Ciphertext Anonymity

Our final security result is Theorem 4. This deals with security under Defini-
tion 4. The proof appears in the full version of the paper[8].

Theorem 4. If there is an ANON-IBSC-CCA2 adversary A of IBSC that suc-
ceeds with probability ε, then there is a simulator B running in polynomial time
that solves the BDH problem with probability at least

ε ·
(

1 − qs(q1 + q2 + 2qs)
q

)
· 1

q0(q0 − 1)(2 + qs)(q2 + qs)
.

6 Performance and Security Comparison

We compare our scheme with other schemes appearing in the literature in Ta-
ble 1. We assume that all schemes are implemented with the same G1, G2, ê and
q as defined in Section 4.

378 Liqun Chen and John Malone-Lee

Table 1. A comparison between various schemes in the literature.

scheme security ciphertext size sign/encrypt ops. decrypt/verify ops.
1 2 3 4 G1 G2 ê G1 G2 ê

[6] y y y y 2n1 + nid + m 3 1 1 2 0 4

[11] ? y y n n1 + nq + m 2 2 2 0 2 4

[13] y n y n 2n1 + m 3 0 1 0 1 4

[14] ? ? ? n 3n1 + m 3 1 0 1 0 2
[15] ? ? ? n 2n1 + m 2 1 1 0 1 3

[19] ? y y ? 2n1 + nid + m 4 0 1 1 0 3

ours y y y y 2n1 + nid + m 3 0 1 1 0 3

The 1, 2, 3 and 4 in the “security” column refer to security under Definition 1,
2, 3 and 4 respectively. A y means that the scheme provably meets the definition,
a n means that the scheme is not secure under the definition, and a ? means
that the status is unknown.

In the “ciphertext size” column we let n1 be the number of bits required to
represent an element of G1, nq be the number of bits required to represent an
element of Fq, nid be the number of bits required to represent an identity, and
m be the number of bits in the message being signcrypted. The ciphertext size
is therefore measured in bits.

In the “sign/encrypt ops.” and “decrypt/verify ops.” columns, the sub-
columns G1, G2 and ê hold the number of multiplications in G1, exponentia-
tions in G2 and computations of ê respectively.

Note that the scheme in [14] has a slight computational overhead for comput-
ing public keys when compared to the other schemes we have mentioned. This
is not reflected in the table above.

7 Conclusions

We have proposed an identity-based signcryption scheme that is the most ef-
ficient among the provably secure schemes of its type proposed to date. Our
scheme admits a full security analysis in the model of Boyen [6].

Our security analysis, like the security analysis for all provably secure identity-
based signcryption schemes, requires the random oracle model [3]. Techniques
have recently been developed for designing identity-based encryption schemes
with provable security in the standard model [4]. It would be interesting to know
if these, or other, techniques can be applied to identity based signcryption.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Advances in Cryptology - EUROCRYPT 2002, volume 2332 of LNCS, pages 83–
107. Springer-Verlag, 2002.

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
paring-based cryptosystems. In Advances in Cryptology - CRYPTO 2002, volume
2442 of LNCS, pages 354–368. Springer-Verlag, 2002.

Improved Identity-Based Signcryption 379

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

4. D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
In Advances in Cryptology - CRYPTO 2004, volume 3152 of LNCS, pages 443–459.
Springer-Verlag, 2004.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology - CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer-Verlag, 2001.

6. X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In Advances in Cryptology - CRYPTO 2003, volume
2729 of LNCS, pages 382–398. Springer-Verlag, 2003.

7. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Public Key Cryptography - PKC 2003, volume 2567 of LNCS, pages
18–30. Springer-Verlag, 2003.

8. L. Chen and J. Malone-Lee. Improved identity-based sincryption. Cryptology
ePrint Archive, Report 2004/114, 2004. http://eprint.iacr.org/.

9. C. Cocks. An identity-based encryption scheme based on quadratic residues. In
Cryptography and Coding, volume 2260 of LNCS, pages 360–363. Springer-Verlag,
2001.

10. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

11. B. Libert and J. J. Quisquater. New identity-based signcryption schemes from
pairings. In IEEE Information Theory Workshop 2003. Full version available at
http://eprint.iacr.org/2003/023/.

12. B. Libert and J. J. Quisquater. Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In Public Key Cryptography - PKC 2004, volume 2947 of
LNCS, pages 187–200. Springer-Verlag, 2004.

13. J. Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098, 2002. http://eprint.iacr.org/.

14. Noel McCullagh and Paulo S. L. M. Barreto. Efficient and forward-secure identity-
based signcryption. Cryptology ePrint Archive, Report 2004/117, 2004.
http://eprint.iacr.org/.

15. D. Nalla and K. C. Reddy. Signcryption scheme for identity-based cryptosystems.
Cryptology ePrint Archive, Report 2003/066, 2003. http://eprint.iacr.org/.

16. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’91, volume 576
of LNCS, pages 433–444. Springer-Verlag, 1992.

17. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairings. In
Symposium on Cryptography and Information Security, 2000.

18. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO ’84, volume 0193 of LNCS, pages 47–53. Springer-Verlag,
1984.

19. T. H. Yuen and V. K. Wei. Fast and proven secure blind identity-based signcryption
from pairings. Cryptology ePrint Archive, Report 2004/121, 2004.
http://eprint.iacr.org/.

20. Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption) <<
cost(signature) + cost(encryption). In Advances in Cryptology - CRYPTO ’97,
volume 1294 of LNCS, pages 165–179. Springer-Verlag, 1997.

Efficient Multi-receiver
Identity-Based Encryption

and Its Application to Broadcast Encryption

Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Centre for Information Security Research,
School of Information Technology and Computer Science,

University of Wollongong,
Wollongong NSW 2522, Australia
{baek,rei,wsusilo}@uow.edu.au

Abstract. In this paper, we construct an efficient “multi-receiver iden-
tity-based encryption scheme”. Our scheme only needs one (or none if
precomputed and provided as a public parameter) pairing computation
to encrypt a single message for n receivers, in contrast to the simple con-
struction that re-encrypts a message n times using Boneh and Franklin’s
identity-based encryption scheme, considered previously in the litera-
ture. We extend our scheme to give adaptive chosen ciphertext security.
We support both schemes with security proofs under precisely defined
formal security model. Finally, we discuss how our scheme can lead to
a highly efficient public key broadcast encryption scheme based on the
“subset-cover” framework.

Keywords: Multi-Receiver Identity-Based Encryption, Formal Security
Analysis, Public Key Broadcast Encryption

1 Introduction

Motivation. Assume that there are n receivers, numbered 1, . . . , n, and that each
of them keeps a private and public key pair denoted by (ski, pki). A sender then
encrypts a message Mi directed to receiver i using pki for i = 1, . . . , n and sends
(C1, . . . , Cn) as a ciphertext. Upon receiving the ciphertext, receiver i extracts
Ci and decrypts it using its private key ski. This setting of public key encryption
is generally referred to as “multi-receiver (recipient) public key encryption” in
the literature [2, 3, 16].

Now consider a situation where “Identity-Based Encryption (IBE)” [7, 10] is
incorporated to the above setting. In this setting, the public key pki is replaced by
receiver i’s identifier information (identity) IDi, which will be used as encryption
key. Receiver i has a private key associated with IDi, obtained from the trusted
Private Key Generator (PKG), so that it can correctly decrypt Ci. This setting,
which we call “multi-receiver identity-based encryption”, is a main theme of this
paper.

As one can easily see, any multi-receiver public key encryption scheme can
be transformed into a natural broadcast encryption scheme: Receivers are given

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 380–397, 2005.
c© International Association for Cryptologic Research 2005

Efficient Multi-receiver Identity-Based Encryption 381

private/public key pairs which may be generated by the sender. A single message
M is then encrypted by running the multi-receiver encryption algorithm with
all messages Mi for i = 1, . . . , n set to M to produce a ciphertext which is sent
to all receivers.

In the non-identity-based setting, the above broadcast encryption has re-
ceived a great attention from the research community, while relatively little
research has been done on the identity-based setting. One may, however, argue
that the natural construction of a broadcast encryption scheme derived from the
multi-receiver public key encryption scheme can trivially be transformed into
the one in the identity-based setting. That is, a single message M is encrypted n
times using IDi for i = 1, . . . , n and the resulting ciphertext (C1, . . . , Cn) is sent
to the receivers. However, what one should not overlook here is that when the
most widely used IBE scheme proposed by Boneh and Franklin [7] is employed
to realize such scheme, we need at least n bilinear pairing computations, which
is very expensive. (In fact, this was suggested in [18] and [11]).

Our Contributions. Following the above discussion, a natural question one can
ask is how to design a multi-receiver identity-based encryption scheme that
broadcasts a message with a high-level of computational efficiency while re-
taining security. In this paper, we answer this question affirmatively, providing
an efficient multi-receiver IBE scheme that only requires “one” (or “none” if
precomputed) pairing computation to encrypt a single message for multiple re-
ceivers. We provide formal security notions for multi-receiver IBE schemes based
on the “selective identity attack” model in which an attacker outputs ahead of
time the identities of multiple receivers that it wishes to challenge [8, 4]. We then
prove that our schemes are secure against chosen plaintext attack (CPA) and
adaptive ciphertext attack (“CCA2 [5]”) in the random oracle model [6] assum-
ing the standard assumptions related to the Bilinear Diffie-Hellman problems
[7] are computationally hard. Finally, we show how our schemes lead to very
efficient public key broadcast encryption schemes based on the “subset-cover”
framework [18]. As an independent interest, we discuss in Section 5 how the
selective identity attack model plays an important role in obtaining an efficient
reduction in the security analysis of our efficient multi-receiver IBE schemes.

Related Work. The concept of multi-receiver public key encryption was in-
dependently formalized by Bellare, Boldyreva, and Micali [2], and Baudron,
Pointcheval, and Stern [1]. Their main result is that the security of public
key encryption in the single-receiver setting implies the security in the multi-
receiver setting. Hence, for example, one can construct a semantically secure
multi-receiver public key encryption scheme by simply encrypting a message un-
der n different public keys of a semantically secure single-receiver public key
encryption scheme. Later, Kurosawa proposed a technique called “randomness
re-use” to improve the computational efficiency and bandwidths of an ElGamal
[13] version of multi-receiver public key encryption scheme. Kurosawa’s work was
refined in [3] in a sense that a general test to determine whether a given public
key encryption scheme permits the randomness re-use to build up an efficient
multi-receiver encryption scheme.

382 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

To our knowledge, identity-based encryption in the multi-receiver setting has
not been much treated in the literature. Chen, Harrison, Soldera, and Smart [9],
and Smart [21] considered the problem of “conjunction” and “disjunction” of
private keys associated with multiple identities in Boneh and Franklin’s IBE
scheme. In terms of conjunction, a user who has all the private keys associ-
ated with the identities that were used to encrypt a message can decrypt the
ciphertext. Regarding disjunction, a user who possesses one of the private keys
associated with identities that were used to create the ciphertext can decrypt.
The authors of [9] and [21] showed how Boneh and Franklin’s IBE scheme can
be modified to solve the conjunction and disjunction problems efficiently. Espe-
cially, Smart presented a scheme that realizes the general logic formula called
“conjunctive-disjunctive normal form (CDNF)” and showed how it can be used
in access control to broadcast encrypted data. However, one criticism about the
work of [9] and [21] is that their schemes are not supported by appropriate formal
security model and proofs. Although our motivation is somewhat similar to those
of [9] and [21] in terms of realizing “disjunction” in identity-based encryption,
our constructions are different from theirs and importantly, we provide formal
model and security proofs for our schemes.

Our work is also related to broadcast encryption [14] based on the “subset-
cover” framework proposed by Naor, Naor, and Lotspiech [18]. In Section 6, we
discuss it in detail.

2 Definitions for Multi-receiver
Identity-Based Encryption

Model. We present a generic model for multi-receiver IBE schemes. Note that in
the multi-receiver IBE setting, either a single message or multiple messages can
be encrypted. However, throughout the rest of the paper including the following
definition, we assume that a single message is broadcast to the multiple receivers,
which leads to interesting schemes and applications.

Definition 1 (Multi-receiver IBE). A generic multi-receiver IBE scheme for
broadcasting a single message, denoted by Π , consists of the following algo-
rithms.

• PKG’s key generation algorithm KeyGen: The PKG runs this algorithm to generate
a PKG’s master key and a common parameter, denoted by mkPKG and cpPKG re-
spectively. Note that cpPKG is given to all interested parties while mkPKG is kept
secret.

• PKG’s private key extraction algorithm Extract: Providing an identity ID received
from a user and its master key mkPKG as input, the PKG runs this algorithm
to generate a private key associated with ID, denoted by skID. We write SID =
Extract(mkPKG, ID).

• Encryption algorithm Encrypt: Providing multiple identities (ID1, . . . , IDn) of the
receivers, the PKG’s common parameter cpPKG, and a plaintext message M as input,
the sender runs this algorithm to generates a ciphertext C which is an encryption of
M under (ID1, . . . , IDn). We write C = Encrypt(cpPKG, (ID1, . . . , IDn), M).

Efficient Multi-receiver Identity-Based Encryption 383

• Encryption algorithm Encrypt: Providing multiple identities (ID1, . . . , IDn) of the
receivers, the PKG’s common parameter cpPKG, and a plaintext message M as input,
the sender runs this algorithm to generates a ciphertext C which is an encryption of
M under (ID1, . . . , IDn). We write C = Encrypt(cpPKG, (ID1, . . . , IDn), M).

• Decryption Algorithm Decrypt: Providing its private key skIDi , the PKG’s common
parameter cpPKG, and a ciphertext C as input, the receiver numbered i runs this
algorithm to get a decryption D, which is either a certain plaintext message or a
“Reject” message. We write D = Decrypt(cpPKG, skIDi , C)

Security Notions. We present security notions for multi-receiver IBE schemes. In
these notions, we consider the “selective identity attack” [8] in which an attacker
commits ahead of time the identity that it intends to attack, which is slightly
weaker than the model proposed in [7], where the attacker adaptively chooses the
identity that will be challenged on rather than outputting it at the beginning.

We assume that this type of attacker outputs ahead of time a number of
identities (of the receivers) that it wishes to attack, which we call a “selective
multi-ID attack ”. We then define “indistinguishability of encryptions under
selective multi-ID, chosen plaintext attack”, which we refer to as “IND-sMID-
CPA” as follows.

Definition 2 (IND-sMID-CPA). Let A denote an attacker. Let Π be a
generic multi-receiver IBE scheme. Consider the following game in which A in-
teracts with the “Challenger”:

Phase 1: A outputs target multiple identities, denoted by (ID∗1, . . . , ID∗n).
Phase 2: The Challenger runs the PKG’s key generation algorithm KeyGenPKG(k)
to generate a master key and a common parameter (mkPKG, cpPKG). The Challenger
gives cpPKG to A while keeps mkPKG secret from A.
Phase 3: A issues a number of private key extraction queries, each of which is
denoted by ID. Upon receiving ID, the Challenger runs the private key extraction
algorithm to get SID = Extract(mkPKG, ID). A restriction here is that ID �= ID∗i for
i = 1, . . . , n.
Phase 4: A outputs a target plaintext pair (M0, M1). Upon receiving (M0, M1),
the Challenger picks β ∈ {0, 1} at random and creates a target ciphertext C∗ =
Encrypt(cpPKG, (ID∗1, . . . , ID∗n), Mβ). The Challenger returns C∗ to A.
Phase 5: A issues a number of private key extraction queries as in Phase 3.
Phase 6: A outputs its guess β′ ∈ {0, 1}.

We define A’s guessing advantage AdvIND−sMID−CPA
Π (A) = |Pr[β′ = β]− 1

2 |. A
breaks IND-sMID-CPA of Π with (t, qex, ε) if and only if the guessing advantage
of A that makes qex private key extraction queries is greater than ε within
running time t. The scheme Π is said to be (t, qex, ε)-IND-sMID-CPA secure if
there is no attacker A that breaks IND-sMID-CPA of Π with (t, qex, ε).

We now define “indistinguishability of encryptions under selective multi-ID,
adaptive chosen ciphertext attack”, which we refer to as “IND-sMID-CCA”.

Definition 3 (IND-sMID-CCA). Let A denote an attacker. Let Π be a
generic multi-receiver IBE scheme. Phases 1, 2, 4, and 6 of the attack game
for IND-sMID-CCA are identical to those of IND-sMID-CPA. We only describe
Phase 3 and 5 in the following:

384 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Phase 3: A issues private key extraction queries as in Phase 3 of IND-sMID-CPA.
Additionally, it issues decryption queries for target identities, each of which is de-
noted by (C, ID∗i) for some i ∈ [1, n]. Upon receiving this, the Challenger gen-
erates a private key associated with ID∗i , which is denoted by skID∗i , and returns
D = Decrypt(cpPKG, SIDi , C) to A.
Phase 5: As in Phase 3, A issues a number of private key extraction and decryption
queries for target identities. However, this time, A is not allowed to issue a target
ciphertext C∗ as a decryption query.

We define A’s guessing advantage AdvIND−sMID−CCA
Π (A) = |Pr[β′ = β] − 1

2 |.
A breaks IND-sMID-CCA of Π with (t, qex, qd, ε) if and only if the guessing
advantage of A that makes qex private key extraction queries and qd decryption
queries is greater than ε within running time t. The scheme Π is said to be
(t, qex, qd, ε)-IND-sMID-CCA secure if there is no attacker A that breaks IND-
sMID-CCA of Π with (t, qex, qd, ε).

3 Bilinear Pairing and Related Computational Problems

As preliminaries, we review the bilinear pairing and related computational prob-
lems on which our efficient multi-receiver IBE schemes are based.

Definition 4 (Bilinear Pairing). An admissible bilinear pairing [7], which
we denote by “ê”, is defined over two groups of the same prime-order q denoted
by G and F in which the Computational Diffie-Hellman problem is intractable.
We will use an additive notation to describe the operation in G while we will
use a multiplicative notation for the operation in F . In practice, the group G
is implemented using a group of points on certain elliptic curves, each of which
has a small MOV exponent [17], and the group F will be implemented using
a subgroup of the multiplicative group of a finite field. The admissible bilinear
map has the following properties. 1) Bilinear: ê(aP1, bP2) = ê(P1, P2)ab, where
P1, P2 ∈ G and a, b ∈ ZZ∗

q ; 2) Non-degenerate: ê does not send all pairs of points
in G × G to the identity in F . (Hence, if P is a generator of G then ê(P, P)
is a generator of F).; 3)Computable: For all P1, P2 ∈ G, the map ê(P1, P2) is
efficiently computable.

We now review the “Bilinear Decision Diffie-Hellman (BDDH)” problem,
which is a “decisional” version of the Bilinear Diffie-Hellman problem on which
Boneh and Franklin’s IBE scheme [7] is based.

Definition 5 (BDDH). Let G and F be two groups of the same prime order
q. Let P be a generator of G. Suppose that there exists a bilinear map ê :
G × G → F . Let A be an attacker. A tries to solve the following problem: Given
(P, aP, bP, cP, κ) for uniformly chosen a, b, c ∈ ZZ∗

q and κ ∈ F , decide whether
κ = ê(P, P)abc.

We define A’s guessing advantage AdvBDDH
G (A) by

Pr[A(P, aP, bP, cP, ê(P, P)abc) = 1] − Pr[A(P, aP, bP, cP, γ) = 1],

Efficient Multi-receiver Identity-Based Encryption 385

where γ ∈ F is chosen uniformly at random. A solves the BDDH problem with
(t, ε) if and only if the guessing advantage of A is greater than ε within running
time t. The BDDH problem is said to be (t, ε)-intractable if if there is no attacker
A that solves the BDDH problem with (t, ε).

It is widely believed that the BDDH problem is computationally hard [4,
8]. Hence, we can define a Gap-Bilinear Diffie-Hellman (Gap-BDH) problem
which belongs to the new class of computational problems, called “Gap Prob-
lems” proposed by Okamoto and Pointcheval [19]. Informally, the intractability
of the Gap-BDH means that it is hard to compute a Bilinear Diffie-Hellman key
ê(P, P)abc of (P, aP, bP, cP) although one has access to a BDDH oracle that,
given a tuple (P, aP, bP, cP, κ), decides whether κ = ê(P, P)abc. A formal defini-
tion follows.

Definition 6 (Gap-BDH). Let G and F be two groups of order the same
prime order q. Let P be a generator of G. Suppose that there exists a bilinear
map ê : G×G → F . Let A be an attacker. A tries to solve the following problem:
Given (P, aP, bP, cP), compute a Bilinear Diffie-Hellman key ê(P, P)abc with
the help of the Bilinear Decisional Diffie-Hellman (BDDH) oracle, which, given
(P, aP, bP, cP, κ), outputs 1 if κ = ê(P, P)abc and 0 otherwise.

We define A’s advantage AdvGap−BDH
G (A)=Pr[A(P ,aP ,bP ,cP)= ê(P ,P)abc].

A solves the Gap-BDH problem with (t, qo, ε) if and only if the guessing advan-
tage of A that makes qo BDDH-oracle queries is greater than ε within running
time t. The Gap-BDH problem is said to be (t, qo, ε)-intractable if if there is no
attacker A that solves the Gap-BDH problem with (t, qo, ε).

4 Proposed Schemes

CPA Secure Scheme. We present our efficient multi-receiver IBE scheme based
on the bilinear pairing. Our scheme is motivated by the binary-tree scheme
of Canetti, Halevi, and Katz [8], which bears some similarities to Gentry and
Silverberg’s [15], and Boneh and Boyen’s [4] hierarchical IBE schemes. However,
the purpose and structure of our scheme are different from those of all the
previous ones.

• KeyGenPKG: Choose two groups G = 〈P 〉 and F of the same prime order q.
Construct a bilinear pairing ê : G × G → F . Choose Q ∈ G∗ uniformly at
random. Choose s ∈ ZZ∗

q uniformly at random and compute T = sP . Also,
select a hash function H1 : {0, 1}∗ → G∗. Return cpPKG = (q, G, F , ê, P , Q,
T , H1) and mkPKG=(q, G, F , ê, P , s) as a PKG’s common parameter and a
master key respectively.

• Extract(mkPKG, ID): Compute SID = sH1(ID). Return SID as a private key
associated with identity ID.

• Encrypt(cpPKG, (ID1, . . . , IDn), M): Choose r ∈ ZZ∗
q uniformly at random and

compute C = (U, V1, . . . , Vn, W,L) such that

(U, V1, . . . , Vn, W,L) = (rP, rH1(ID1) + rQ . . . , rH1(IDn) + rQ, ê(Q, T)rM,L),

386 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

where L is a label that contains information about how “Vi” is associated
with each receiver. Return C as a ciphertext. (Notice that ê(Q, T) can be
precomuted and provided as a PKG’s common parameter. In this case, there
is no need for the sender to perform a pairing computation).

• Decrypt(cpPKG, SIDi
, C) for some i ∈ [1, n]: Parse C as (U, V1, . . . , Vn, W,L).

Using L, find appropriate Vi. Then, compute

M =
ê(U, SIDi

)
ê(T, Vi)

W

and return M as a plaintext.

It is easy to see that the above decryption algorithm is consistent. Indeed, if
C is a valid ciphertext,

ê(U, SIDi
)

ê(T, Vi)
W =

ê(rP, sH1(ID))
ê(sP, rH1(IDi) + rQ)

W =
ê(rP, sH1(ID))

ê(rP, sH1(IDi) + sQ)
W

=
ê(rP, sH1(ID))

ê(rP, sH1(IDi))ê(rP, sQ)
ê(Q, T)rM = M.

Security Analysis. We now prove that the hardness of the BDDH problem (Def-
inition 5) is sufficient for the above scheme to be IND-sMID-CPA secure in the
random oracle model [6].
Theorem 1. The above scheme is (t, qH1 , qex, ε)-IND-sMID-CPA secure in the
random oracle model assuming that the BDDH problem is (t′, ε′)-intractable,
where t′ > t + qH1O(τ1). (τ1 denotes the computing time for an exponentiation
in G).

Proof. Assume that an attacker A breaks IND-sMID-CPA of the above scheme
with probability greater than ε within time t making qex private key extraction
queries. We show that using A, one can construct an attacker B for solving the
BDDH problem (Definition 5).

Suppose that B is given (q, G, F , P , aP , bP , cP , κ) as an instance of the
BDDH problem. By ε′ and t′, we denote B ’s winning probability and running
time respectively. B can simulate the Challenger’s execution of each phase of
IND-sMID-CPA game for A as follows.
[Simulation of Phase 1] Suppose that A outputs target multiple identities (ID∗1,
. . ., ID∗n).
[Simulation of Phase 2] B sets Q = bP and T = cP , and gives A (q, G, F , ê,
P , T , Q, H1) as the PKG’s common parameter, where H1 is a random oracle
controlled by B as follows.

Upon receiving a random oracle query IDj to H1:
• If there exists (IDj , lj, Lj) in H1List, return Lj . Otherwise, do the follow-

ing:
∗ If IDj = ID∗i for some i ∈ [1, n], compute Lj = ljP − Q.
∗ Else choose lj ∈ ZZ∗

q uniformly at random and compute Lj = ljP .
∗ Put (IDj , lj, Lj) in H1List and return Lj as answer.

Efficient Multi-receiver Identity-Based Encryption 387

[Simulation of Phase 3] B answers A’s private key extraction queries as follows.

Upon receiving a private key extraction query IDj (Note that by the assump-
tion of the IND-sMID-CPA game, IDj �= ID∗i for i = 1, . . . , n).:
• If (IDj , lj , Lj) exists in H1List, compute SIDj = ljT . Otherwise do the

following:
∗ Choose lj ∈ ZZ∗

q uniformly at random and compute SIDj
= ljT .

∗ Put (IDj , lj , Lj) in H1List and return SIDj as answer. (Note that
SIDj

= ljT = ljcP = cljP = cH1(IDj) for all j �= i).

[Simulation of Phase 4] B creates a target ciphertext C∗ as follows.

Upon receiving (M0, M1):
• Choose β ∈ {0, 1} at random.
• Search H1List to get li that corresponds to ID∗i for i = 1, . . . , n.
• Compute liaP for i = 1, . . . , n and κMβ.
• Return C∗ = (aP, l1aP, . . . , lnaP, κMβ) as a target ciphertext. Note here

that.

[Simulation of Phase 5] B answers A’s random oracle/private key extraction
queries as in Phase 3.
[Simulation of Phase 6] A outputs its guess β′. If β′ = β, B outputs 1. Otherwise,
it outputs 0.
[Analysis] We note that if κ = ê(P, P)abc, κMβ = ê(bP, cP)aMβ = ê(Q, T)aMβ.
Note also that liaP = liaP − aQ + aQ = a(liP − Q) + aQ = aH1(ID∗i) + aQ for
i = 1, . . . , n. Hence C∗ is a valid ciphertext. On the other hand, if κ is uniform
and independent in F , so is κMβ. It is clear that from the construction above, B
perfectly simulates the random oracle H1 and the key private key extraction in
Phase 3 and 5. Hence, we get Pr[B(P, aP, bP, cP, ê(P, P)abc) = 1] = Pr[β′ = β],
where |Pr[β′ = β] − 1

2 | > ε, and Pr[B(P, aP, bP, cP, γ) = 1] = Pr[β′ = β] = 1
2 ,

where γ is uniform in F . Consequently, we get

|Pr[B(P, aP, bP, cP, ê(P, P)abc) = 1] − Pr[B(P, aP, bP, cP, γ) = 1]|
>

∣∣∣(1
2
± ε

) − 1
2

∣∣∣ = ε.

Note that t′ > t + qH1O(τ1), where τ1 denotes the computing time for an
exponentiation in G. ��
CCA Secure Scheme. In order to enhance security, we modify our scheme to pro-
vide (adaptive) chosen ciphertext security. Considering efficiency and simplicity,
we employ the technique used in the REACT scheme proposed by Okamoto and
Pointcheval’ [20].

• KeyGenPKG: Choose two groups G = 〈P 〉 and F of the same prime order q.
Construct a bilinear pairing ê : G × G → F . Choose Q ∈ G∗ uniformly at
random. Choose s ∈ ZZ∗

q uniformly at random and compute T = sP . Also,
select hash functions H1 : {0, 1}∗ → G, H2 : F → {0, 1}k1, and H3 : G × · · · ×
G ×F ×{0, 1}k1 → {0, 1}k2. Return cpPKG = (q, G, F , ê, q, P , Q, T , H1, H2,
H3) and mkPKG=(q, G, F , ê, P , s) as PKG’s common parameter and master
key respectively.

388 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

• Extract(mkPKG, ID): Compute SID = sH1(ID). Return SID as a private key
associated with identity ID.

• Encrypt(cpPKG, (ID1, . . . , IDn), M) where M ∈ {0, 1}k1: Choose R ∈ F and
r ∈ ZZ∗

q at random and compute compute C = (U, V1, . . . , Vn, W1, W2,L, σ)
such that

(U, V1, . . . , Vn, W1, W2,L, σ)
= (rP, rH1(ID1) + rQ . . . , rH1(IDn) + rQ, ê(Q, T)rR, M ⊕ H2(R),

H3(R, M, U, V1, . . . , Vn, W1, W2,L))

Return C as a ciphertext. (Notice that the “tag” σ guarantees the integrity
of entire sequence of a ciphertext.)

• Decrypt(cpPKG, SIDi
, C, IDi) for some i ∈ [1, n]: Parse C as (U, V1, . . . , Vn, W1,

W2,L, σ). Using L, find appropriate Vi. Then, subsequently compute R =
ê(U,SIDi

)

ê(T,Vi)
W1, M = W2 ⊕ H2(R), and σ′ = H3(R, M, V1, . . . , Vn, W1, W2,L). If

σ′ = σ, return M as a plaintext and “Reject” otherwise.

Security Analysis. We prove that the hardness of the Gap-BDH problem (Defi-
nition 6) is sufficient for the above scheme to be IND-sMID-CCA secure in the
random oracle model. (The proof is given in Appendix A).

Theorem 2. The above scheme is (t, qH1 , qH2 , qH3 , qex, qd, ε)-IND-sMID-CCA
secure in the random oracle model assuming that the Gap-BDH problem is
(t′, qo, ε′)-intractable, where ε′ > ε− qd

2k2 and t′ > t+(qH1 +qex)O(τ1)+qdO(τ2)+
(qH2 + qH3)O(1), qo = qH2 + qH3 (τ1 and τ2 respectively denote the computing
time for an exponentiation in G and a pairing ê).

5 Discussions on Efficiency and Security of Our Scheme

Efficiency Gains. We compare the major computational overhead and transmis-
sion rate (the length of the ciphertext) of our scheme with those of the obvious
construction of multi-receiver IBE that simply re-encrypt a message M n times
using Boneh and Franklin’s IBE scheme, which we call “n-sequential composition
of BF-IBE”. In this scheme, M is encrypted to (r1P, M⊕H2(ê(H1(ID1), T)r1)),
..., (rnP, M ⊕H2(ê(H1(IDn), T)rn)), where r1, . . . , rn ∈ ZZ∗

q are uniformly chosen
at random and (s, T = (sP)) is the PKG’s master key and common parameter
respectively. As one can see, it is clear that our scheme provides much better
performance: To encrypt a message M , our scheme only needs one pairing com-
putation (none if ê(Q, T) is precomputed), n additions in group G (to compute
H1(IDi) + Q), n + 1 scalar multiplications with elements from G (to compute
rP and r(H1(IDi) + Q) = rH1(IDi) + rQ), and 1 exponentiation in group F (to
compute ê(Q, T)r). The transmission rate is (n+1)l1 + l2 where l1 and l2 denote
the bit-length of the element in G and F respectively. On the other hand, the
n-sequential composition of BF-IBE needs n pairing computations (to compute
ê(H1(IDi), T), n scalar multiplications with elements in G (to compute riP), n
exponentiations in group F (to compute ê(H1(IDi), T)ri). The transmission rate
of this scheme is nl1 + nl3 where l3 denotes the bit-length of the message.

Efficient Multi-receiver Identity-Based Encryption 389

In the following table, we summarize the above comparison.

Pairings Add. in G Mult. in G Exp. in F Trans. Rate
Our scheme 1 (or 0) n n + 2 1 (n + 1)l1 + l2
n-seq. comp. of BF-IBE n 0 n n nl1 + nl3

One might argue, however, that the randomness re-use technique [16, 3] can
be employed to reduce the number of multiplications in group G. This indeed
helps, but the n pairings and n exponentiations in group F still cannot be
removed.

Fully Adaptive Multi-ID Attack. We notice that our scheme can also be proven
secure in the “fully adaptive multi-ID attack” model where the attacker adap-
tively chooses which identity to attack and outputs target multiple identities in
the challenger phase after it sees public parameters (rather than ahead of time).
Unfortunately, the reduction is not very tight in that it introduces qn

ex factor,
where n denotes the number of receivers. The difficulty in getting an efficient re-
duction for our scheme stems from the difficulty in simulating a target ciphertext
while handling the random oracle and key extraction queries.

To get a feeling for this, we sketch a security proof for our scheme in the
fully adaptive multi-ID attack model. Let B be a BDDH attacker which is given
(P, aP, bP, cP, κ), where κ is either ê(P, P)abc or a random element in F , as
an instance. Let A be a CPA attacker for our scheme in the fully adaptive
multi-ID attack model. B first sets Q = bP and T = cP , which will serve as
the PKG’s public key. Upon receiving a query ID to the random oracle H1, B
generates a random coin δ such that Pr[δ = 0] = ρ and responds to the query
with lP , where l ∈ ZZ∗

q is chosen at random, if δ = 0, and lP − Q otherwise.
B puts (ID, l, δ) in H1List, and if the same query is asked, B searches this list
to respond to it. Upon receiving a private key extraction query ID, B runs the
above algorithm for simulating H1 to get (ID, l, δ) and answers with lT if δ = 0,
and aborts the simulation otherwise. Upon receiving target multiple identities
(ID∗1, . . . , ID∗n) and target plaintexts (M0, M1), B runs the above algorithm for
simulating H1 to get (ID∗1, l1, δ1), . . . , (ID∗n, ln, δn). Unless δ1 = · · · = δn = 1, B
aborts the simulation, otherwise, creates a target ciphertext as follows: C∗ =
(aP, l1aP, . . . , lnaP, κMβ) for a random β ∈ {0, 1}. The rest of the simulation
are the same as the proof of Theorem 1.

As long as B does not abort the game, A’s view in the simulation is identical
to the view in the real attack from the same argument given in the proof of
Theorem 1. The probability that B does not abort the simulation is ρqex(1−ρ)n,
which is maximized at 1 − n

qex+n . Consequently, this introduces qn
ex factor in

the reduction cost. In the selective multi-ID attack model, we do not have this
problem as H1(ID∗i) values can be “programmed” at the beginning.

On the other hand, we notice that one can get an efficient reduction for the
security of the n-sequential composition of BF-IBE in the fully adaptive multi-
ID attack model, due to its structural property which results in more pairing
computations.

390 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Trading off between security and efficiency is subjective. However, as seen
from the beginning of this section, the efficiency gain in our scheme is huge,
especially when there are a large number of receivers. In the following section, we
show this is indeed a merit when our scheme is applied to broadcast encryption.

6 Application to Public Key Broadcast Encryption
Based on Subset-Cover Framework

Broadcast Encryption Based on the Subset-Cover Framework. “Broadcast en-
cryption” [14] deals with the problem of one party transmitting data to a large
group of receivers so that only qualified subsets can decrypt the data. There are
a number of applications of such scheme, e.g. pay-TV applications, distribution
of copyright material, streaming audio/video, and etc. Since its introduction
[14], broadcast encryption has been extensively studied in the literature. How-
ever, in this paper, we only focus on the “stateless receiver” case for broadcast
encryption in the public key setting [18]. (Note that “stateless receiver” means
that each user is given a fixed set of keys that cannot be changed through the
lifetime of the system).

In the symmetric setting of broadcast encryption, only the trusted designer of
the system, which we refer to as “Center”, can broadcast a message. On the other
hand, in the public key setting, the Center publishes a short public key which
enables any party to broadcast data. Formally, a generic broadcast encryption
scheme in the public key setting can be defined as follows [11].

Definition 7 (Public Key Broadcast Encryption). A public key broadcast
encryption scheme consists of the following algorithms.

• Center’s key generation algorithm KeyGenCTR: Providing possibly a revocation
threshold z (the maximum number of users that can be revoked) as input, the Center
runs this algorithm to generate the Center’s private key and public key, denoted by
skCTR and pkCTR respectively.

• Registration algorithm Reg: Providing the Center’s private key and an index i as-
sociated with a user as input, the Center runs this algorithm to generate the secret
initialization data, denoted by ski, to be delivered to a new user when he subscribes
to the system. We write ski = Reg(skCTR, i).

• Encryption algorithm Encrypt: Providing the Center’s public key, a session key K,
and a set R of revoked users (with |R| ≤ z if a threshold was specified to the Center’s
key generation algorithm) as input, the sender runs this algorithm to generate a
ciphertext C to be broadcast. We write C = Encrypt(pkCTR, K,R).

• Decryption algorithm Decrypt: Providing the secret data ski of a user and c cipher-
text C, the user runs this algorithm to generate a decryption D, which is either a
certain plaintext or a “Reject” message. We write D = Decrypt(ski, C).

Subset-Cover Framework. In brief, the basic idea behind the “subset-cover”
framework for broadcast encryption (in the symmetric setting) proposed by
Naor, Naor, and Lotspiech [18] is to define a family S of subsets of the set
N of users, and to assign a key to each subset. Note that all the users in the

Efficient Multi-receiver Identity-Based Encryption 391

subset have access to the assigned key. If the Center wants to broadcast a mes-
sage to all the “non-revoked” users, it first determines a partition of N/R, where
R denotes the set of “revoked” users, and then encrypts the session key used
to masquerade the message with all the keys associated to the subsets in the
partition, which are elements of S.

In [18], two specific methods that realize the above subset-cover framework:
The “Complete Subtree (CS)” method and “Subset Difference (SD)” method.
Since our scheme is well applicable to the CS method, we review it in detail
as follows. In the CS scheme, users are organized in a full binary tree, denoted
by T : For simplicity, assume that there are N = 2h users in the system. Then,
associate each user to a leaf of the full binary tree T of height h. The Subset-
Cover family S is now the collection of all the full subtrees of T . That is, if vi

is a node in T , Si ∈ S is the set of all the leaves of the full subtree of T rooted
at vi. To associate a key with each element of S, the Center simply assigns a
random number ki to each node vi. ki is then be used as encryption/decryption
key for the subset Si. Since each user needs to know the keys corresponding to
all the subsets he/she belongs to, during the registration step, the Center gives
the user all the keys ki assigned to each node vi in the path from the root to the
leaf representing the user. Hence, each user is required to store O(log N) keys.
Note that the Center needs to keep track of all these keys given to each user.
However, it was suggested in [18] that the Center derive all the 2N −1 keys from
some short seed using a pseudo-random function.

A New Public Key Broadcast Encryption from Our Efficient Multi-receiver IBE
Scheme. The CS method described above can also be realized in the public
key setting as envisioned in [18]. Namely, one can assign a public key pki to
each node vi. However, as already mentioned in [18], this is very inefficient in
that total 2N − 1 public keys should explicitly be stored in some directory. To
overcome this deficiency, the authors of [18] suggest that the IBE scheme be
employed, which requires only O(1) space. According to Dodis and Fazio [11],
this can be explained as follows: First, assign an identifier ID(Si) to each subset
Si of the family S. As an example, assign each edge of the full binary tree T with
0 or 1 depending on whether the edge connects the node with its left or right
child, and assign to the subset Si rooted at vi the bit-string obtained reading off
all the labels in the path from the root down to vi. Then, the Center runs the
key generation algorithm of IBE scheme to generate public parameters and the
description of the mapping used to assign an identifier to each subset. Namely,
the Center plays the role of the PKG in the IBE scheme. For each subset Si ∈ S,
the Center generates a private key associated with it by running the private key
extraction algorithm of the IBE scheme with the identifier ID(Si). The Center
then distributes the private data needed to decrypt the broadcast ciphertext, as
in the symmetric key setting. Now, when a party wants to broadcast a message,
it encrypts the session key used to protect the message under the public keys
ID(Sji) relative to all the subsets that cover all the non-revoked users. Note that
this party only needs to know the public key of the Center and the description
of the mapping ID(·).

392 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

As a concrete instantiation, Dodis and Fazio apply the simple sequential
composition of Boneh and Franklin’s [7] IBE scheme to realize the above. More
precisely, one can encrypt a session key K as follows: (r1P, K⊕H2(ê(H(ID(S1)),
T)r1)), . . . , (rtP, K⊕H2(ê(H(ID(St)), T)rt)) where S1, . . . , St denote the subsets
that cover N/R and (s, T = (sP)) is the Center’s private and public key pair.
Note that t = μ log N

μ where μ = |R| and N = |N |. Hence, at least t pairing
computations are needed.

Our Proposal. In contrast, using our multi-receiver IBE scheme presented in
Section 4, one can design a very efficient public key broadcast encryption scheme
that realizes the CS mechanism. In this new scheme, a session key K is encrypted
as follows:

(rP, rH1(ID(S1)) + rQ . . . , rH1(ID(St)) + rQ, ê(Q, T)rK),

where (P, Q, T (= sP)) and s are the Center’s public and private keys respec-
tively, and r ∈ ZZ∗

q is uniformly chosen at random.
Note that in the above scheme, the length of the broadcast message remains

the same as that of the original scheme of [18]. That is, t = μ log N
μ . The main

advantage of our scheme over those considered in [18, 11], however, is that it
is computationally much more efficient as we just need to compute t additions
in group G instead of t pairings. Note also that compared with the scheme
based on the SD method, which is proposed in [11], our scheme turns out to be
more efficient in that the hierarchical IBE scheme [15] adopted in [11] results
in expansion of the length of the encryption proportional to the depth in the
hierarchy and more pairing computations proportional to the number of subset
covers.

The above scheme can also be extended to provide chosen ciphertext security
using our CCA scheme proposed in Section 4. More precisely, the security of the
this scheme is relative to the following notion, which is weaker than the (public
key version of) security notion for broadcast encryption presented in [18] in a
sense that the the attacker outputs a set of revoked user before it sees a public
key but stronger in a sense that it provides adaptive chosen ciphertext security.
Note that the security notion given in [18] only considers non-adaptive chosen
ciphertext attack, sometimes referred to as “CCA1 [5]”.

Definition 8 (IND-sREV-CCA). Let A denote an attacker. Consider the
following game in which A interacts with the “Challenger”:

Phase 1: A outputs a set of revoked users denoted by R.
Phase 2: The Challenger runs the Center’s key generation algorithm KeyGenCTR to
generate a private and public key pair (skCTR, pkCTR) of the Center. The Challenger
gives cpCTR to A while keeps skCTR secret from A.
Phase 3: A requests the private data relative to the revoked users. Upon receiving
each request, the Challenger runs the registration algorithm Reg(skCTR, i) to give
A the private data relative to the revoked users. A also queries arbitrary ciphertexts
to see any non-revoked users decrypt them. Upon receiving each decryption query,
the Challenger runs Decrypt(ski, C) and give the resulting decryption to A.

Efficient Multi-receiver Identity-Based Encryption 393

Phase 4: A outputs a target session key pair (K0, K1). Upon receiving (K0, K1),
the Challenger picks a coin β ∈ {0, 1} at random and returns a target ciphertext
C∗ = Encrypt(pkCTR, Kβ ,R).
Phase 5: A issues a number of decryption queries C as in Phase 3 with a restriction
that C �= C∗.
Phase 6: A outputs its guess β′ ∈ {0, 1}.

The reduction from IND-sMID-CCA (Definition 3) of our CCA-version of
multi-receiver IBE scheme presented in Section 4 to IND-sREV-CCA of the pub-
lic key broadcast scheme described above is almost obvious: When the attacker
A for the above broadcast encryption scheme outputs the set R of revoked users,
the attacker B for the multi-receiver IBE scheme computes subsets S1, . . . , S1

that cover N/R and then outputs ID1(S1), . . . , IDt(S1) as a target multiple iden-
tities. B then gives A the obtained PKG’s common parameter as the Center’s
public key. B proceeds to answer A’s queries in Phase 3 by querying its pri-
vate key extraction and decryption oracles. When A outputs a target key pair
(K0, K1) in Phase 4, B forwards it to its Challenger to get an encryption of K0

or K1 under the target multiple identities ID1(S1), . . . , IDt(S1). B gives this as
a target ciphertext to A and proceeds to answer A’s decryption queries, which
are different from the target ciphertext. When A outputs β′ ∈ {0, 1} in Phase 6,
B returns it as its final guess.

7 Concluding Remarks

In this paper, we proposed provably secure multi-receiver IBE schemes that
broadcast encrypted data with a high-level of efficiency. We also discussed how
the proposed schemes can be used to enhance the efficiency of public key broad-
cast encryption schemes for stateless receivers, based on the subset-cover frame-
work.

Acknowledgement

The authors are grateful to anonymous referees for their helpful comments.

References

1. O. Baudron, D. Pointcheval, and J. Stern, Extended Notions of Security for Multi-
cast Public Key Cryptosystems, In ICALP 2000, LNCS 1853, pp. 499–511, Springer-
Verlag, 2000.

2. M. Bellare, A. Boldyreva, and S. Micali, Public-key Encryption in a Multi-User
Setting: Security Proofs and Improvements, In Eurocrypt 2000, LNCS 1807, pp.
259–274, Springer-Verlag, 2000.

3. M. Bellare, A. Boldyreva, and D. Pointcheval, Multi-Recepient Encryption
Schemes: Security Notions and Randomness Re-Use, In PKC 2003, LNCS 2567,
pp. 85–99, Springer-Verlag, 2003.

394 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

4. D. Boneh and X. Boyen, Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles, In Eurocrypt 2004, LNCS 3027, pp. 223–238, Springer-
Verlag, 2004.

5. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, Relations Among Notions
of Security for Public-Key Encryption Schemes, In Crypto ’98, LNCS 1462, pp.
26–45, Springer-Verlag, 1998.

6. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, In ACM CCCS ’93, pp. 62–73, 1993.

7. D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, Ad-
vances in Cryptology - In Crypto 2001, LNCS 2139, pp. 213–229, Springer-Verlag,
2001.

8. R. Canetti, S. Halevi, and J. Katz, A Forward-Secure Public-Key Encryption
Scheme, Advances in Cryptology - In Eurocrypt 2003, LNCS 2656, pp. 255–271,
Springer-Verlag, 2003.

9. L. Chen, K. Harrison, D. Soldera, and N. P. Smart: Applications of Multiple Trust
Authorities in Pairing Based Cryptosysems, In InfraSec 2002, LNCS 2437, pp.
260–275, Springer-Verlag, 2002.

10. C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, In
IMA 2001, LNCS 2260, pp. 360–363, Springer-Verlag, 2001.

11. Y. Dodis and N. Fazio, Public Key Broadcast Encryption for Stateless Receivers,
In ACM-DRM, 2002.

12. Y. Dodis and N. Fazio, Public Key Trace and Revoke Scheme Secure against Adap-
tive Chosen Ciphertext Attack, In Public Key Cryptography 2003 (PKC 2003),
LNCS 2567, pp. 100–115, Springer-Verlag 2002.

13. T. ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory, Vol. 31, pp. 469–472,
IEEE, 1985.

14. A. Fiat and M. Naor, Broadcast Encryption, In Crypto ’94, LNCS 773, pp. 480–491,
Springer-Verlag, 1994.

15. C. Gentry and A. Silverberg, Hierarchical ID-Based Cryptography, In Asiacrypt
2002, LNCS 2501, pp. 548–566, Springer-Verlag, 2002.

16. K. Kurosawa, Multi-Recepient Public-Key Encryption with Shortened Ciphertext,
In PKC 2002, LNCS 2274, pp. 48–63, Springer-Verlag, 2002.

17. A. J. Menezes, T. Okamoto, and S. A. Vanstone: Reducing Elliptic Curve Log-
arithms to a Finite Field, IEEE Tran. on Info. Theory, Vol. 31, pp. 1639–1646,
IEEE, 1993.

18. D. Naor, M. Naor, and J. Lotspiech, Revocation and Tracing Schemes for Stateless
Receivers, In Crypto 2001, LNCS 2139, pp. 41-62, Springer-verlag, 2001.

19. T. Okamoto and D. Pointcheval, The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes, In PKC 2001, LNCS 1992, pp. 104–118,
Springer-Verlag, 2001.

20. T. Okamoto and D. Pointcheval, REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform, In CT-RSA 2001, LNCS 2020, pp. 159–174, Springer-
Verlag, 2001.

21. N. P. Smart, Access Control Using Pairing Based Cryptography, In CT-RSA 2003,
LNCS 2612, pp. 111–121, Springer-Verlag, 2003.

Efficient Multi-receiver Identity-Based Encryption 395

A Proof of Theorem 2

Proof. We first define a normal public key encryption (non-IBE) scheme, which
we call “Bilinear ElGamal” as follows.
• KeyGen: Choose two groups G = 〈P 〉 and F of the same prime order q. Construct a

bilinear pairing ê : G ×G → F . Choose Q ∈ G∗ uniformly at random. Choose s ∈ ZZ∗
q

uniformly at random and compute T = sP . Return pk = (q, G, F , ê, P , Q, T) and
sk=(q, G, F , ê, P , T , s) as a public key and a private key key respectively.

• Encrypt(pk, M): Choose r ∈ ZZ∗
q at random and compute C = (U, W) such that

(U, W) = (rP, ê(Q,T)rM) for M ∈ F . Return C as a ciphertext.
• Decrypt(sk, C): Parse C as (U, W), compute M = W/ê(U, Q)s, and return M as a

plaintext.

In [20], a security notion for public key encryption called “One-Way-ness
under Plaintext Checking Attack (OW-PCA)” is defined. Informally, a pub-
lic key encryption scheme is (t′, qo, ε′)-OW-PCA secure if for any t′-time at-
tacker B making qo queries to the Plaintext Checking (PC) oracle, which, given
a ciphertext-plaintext message pair (C, M), outputs 1 if C encrypts M and 0
otherwise, B ’s advantage that finds a pre-image of a given ciphertext is less
than ε′.

It is easy to see that the above Bilinear ElGamal scheme is OW-PCA secure
assuming that the Gap-BDH problem (Definition 6) is intractable: Taking a
public key (P, Q, T), a ciphertext (U, W), and a certain plaintext M ′ as input, the
PC oracle checks whether (P, U, Q, T, W/M ′) is a Bilinear Diffie-Hellman tuple.
Hence, the running time and advantage of the OW-PCA attacker is exactly the
same as those of Gap-BDH attacker.

Now, assume that an attacker A breaks IND-sMID-CCA of the proposed
scheme in Section 4 with probability greater than ε within time t making qH1 ,
qH2 and qH3 random oracle queries and qex private key extraction queries and qd

decryption queries. We show that using this A, one can construct an OW-PCA
attacker B for the Bilinear ElGamal Scheme.

Suppose that B is given (q, G, F , ê, P , Q, T) as a public key, and (U∗, W ∗) =
(r∗P, ê(Q, T)r∗

R∗) as a target ciphertext of the Bilinear ElGamal Scheme. Sup-
pose also that B ’s makes qo queries to the PCA oracle of the Bilinear ElGamal
scheme within time t′. We denote B ’s winning probability by ε′, which will be
determined later. B can simulate the Challenger’s execution of each phase of
IND-sMID-CCA game for A as follows.
[Simulation of Phase 1] Suppose that A outputs target multiple identities (ID∗1,
. . ., ID∗n).
[Simulation of Phase 2] B gives A (q, G, F , ê, P , Q, T , H1, H2, H3) as the PKG’s
common parameter, where H1, H2, and H3 are random oracles controlled by B
as follows.

Upon receiving a query IDj to the random oracle H1 for some j ∈ [1, qH1]:
• If (IDj , lj , Lj) exists in H1List, return Lj . Otherwise do the following:

∗ If IDj = ID∗i for some i ∈ [1, n], compute Lj = ljP − Q.
∗ Else choose lj ∈ ZZ∗

q uniformly at random and compute Lj = ljP .
∗ Put (IDj , lj , Lj) in H1List and return Lj as answer.

396 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Upon receiving a query Rj to the random oracle H2 for some j ∈ [1, qH2]:
• If (Rj , Kj) exists in H2List, return Lj . Otherwise do the following:

∗ Check whether (U∗, W ∗) encrypts Rj using the PC oracle. If it is, return
Rj and terminate the game. (In this case, B has achieved its goal as the
pre-image of (U∗, W ∗) has been found). Otherwise, do the following:

· Pick Kj ∈ {0, 1}k1 uniformly at random.
· Put (Rj , Kj) in H2List and return Kj as answer.

Upon receiving a query (Rj , Mj , Uj , Vj1 , . . . , Vjn , Wj1 , Wj2 ,Lj) to the random or-
acle H3 for some j ∈ [1, qH3]:
• If ((Rj , Mj , Uj , Vj1 , . . . , Vjn , Wj1 , Wj2 ,Lj), σj) exists in H3List, return σj . Oth-

erwise do the following:
∗ Check whether (U∗, W ∗) encrypts Rj using the PC oracle. If it is, return

Rj and terminate the game. (In this case, B has achieved its goal as the
pre-image of (U∗, W ∗) has been found). Otherwise, do the following:

· Pick σj ∈ {0, 1}k2 uniformly at random.
· Put ((Rj , Mj , Uj , Vj1 , . . . , Vjn , Wj1 , Wj2 ,Lj), σj) in H3List and return

σj as answer.

[Simulation of Phase 3] B then answers A’s queries in Phase 3 as follows.

Upon receiving a private key extraction query IDj for some j ∈ [1, qex] (By as-
sumption, IDj �= ID∗i for i = 1, . . . , n).:
• If (IDj , lj , Lj) exists in H1List, compute SIDj = ljT . Otherwise do the following:

∗ Choose lj ∈ ZZ∗
q uniformly at random and compute SIDj = ljT .

∗ Put (IDj , lj , Lj) in H1List and return SIDj as answer.

Upon receiving a decryption query (Cj , ID
∗
i) for some i ∈ [1, n] and j ∈ [1, qd],

where Cj = (Uj , Vj1 , . . . , Vjn , Wj1 , Wj2 ,Lj , σj):
• If ((Rj , Mj , Uj , Vj1 , . . . , Vjn , Wj1 , Wj2 ,Lj), σj) exists in H3List do the following:

∗ Compute H2(Rj) using the simulation of H2 above and check whether
H2(Rj) ⊕ Mj = Wj2 . If not, return “Reject”, otherwise do the following:

· Check whether (Uj , Wj1) encrypts Rj using the PC oracle,
· Check ê(Uj , H1(ID∗i) + Q) = ê(P, Vji).
· If both of the above equations hold, return Mj and “Reject” otherwise.

• Else return “Reject”.

[Simulation of Phase 4] Using the target ciphertext (U∗, W ∗) = (r∗P,
ê(Q, T)r∗

R∗) of the Bilinear ElGamal scheme, B creates a target ciphertext
C∗ as follows.

Upon receiving (M0, M1):
• Choose β ∈ {0, 1} at random and search H1List to get li that corresponds to

ID∗i for i = 1, . . . , n. Then, compute liU
∗ for i = 1, . . . , n.

• Choose K∗ ∈ {0, 1}k1 uniformly at random and set K∗ = H2(R∗). Also, create
a label L∗.

• Choose σ∗ ∈ {0, 1}k2 uniformly at random and set

σ∗ = H3(R∗, Mβ , U∗, l1U
∗, . . . , lnU∗, W ∗, K∗ ⊕ Mβ ,L∗).

• Return C∗ = (U∗, l1U∗, . . . , lnU∗, W ∗, K∗⊕Mβ,L∗, σ∗) as a target ciphertext.

Efficient Multi-receiver Identity-Based Encryption 397

[Simulation of Phase 5] B answers A’s random oracle, decryption and private
key extraction queries as before. Note that, this time, if (R∗, Mβ, U∗, l1U∗, . . .,
lnU∗, W ∗, K∗ ⊕ Mβ , L∗) is asked to the the random oracle H3, the value σ∗

created in Simulation of Phase 4 is returned. (The value R∗ can be detected with
the help of the PC oracle).
[Simulation of Phase 6] A outputs its guess β′. If β′ = β, B outputs 1. Otherwise,
it outputs 0.
[Analysis] Note first that the private keys associated with each IDj(�= ID∗i) cre-
ated in Simulation of Phase 3 are identically distributed as those in the real
attack since SIDj

= ljT = ljsP = sljP = sH1(IDj). The simulations of the
random oracle H2 and H3 are also perfect unless R∗ has been asked to one of
the random oracles H2 and H3. However, if these event happen, B breaks the
OW-PCA of the Bilinear ElGamal scheme.

Note also that the distribution of the simulated target ciphertext is identical
to that of the target ciphertext in the real attack since liU

∗ = lir
∗P = lir

∗P −
r∗Q + r∗Q = r∗(liP − Q) + r∗Q = r∗H1(ID∗i) + r∗Q for all i = 1, . . . , n.

The simulation of the decryption oracle is nearly perfect but there are cases
when a valid ciphertext is rejected since, in the simulation of decryption oracle,
if (R, M, U, V1, . . . , Vn, W1, W2,L) has not been queried to H3, the ciphertext
is rejected straight way. Note that this leads to two cases: 1) A uses the value
σ∗ which is a part of a target ciphertext as a part its decryption query; 2) A
has guessed a right value for the output of H3 without querying it. However, in
the first case, since (U∗, l1U∗, . . . , lnU∗, W ∗, K∗ ⊕ Mβ,L∗) as well as (R∗, Mβ)
is provided as input to H3, the decryption query A would ask is the same as the
target ciphertext which is not allowed to query. The second case may happen
but with a negligible probability 1/2k2 .

Following the above discussion, if B does not correctly guess the output of H3,
the view of A in the simulation is identical to the view in the real attack. Hence,
we have Pr[B(P, aP, bP, cP) = ê(P, P)abc] = Pr[β′ = β|¬GuessH3] − 1

2

∣∣, where
GuessH3 denotes an event that A correctly guesses the output of H3. In the mean
time, by definition of A, we have |Pr[β′ = β] − 1

2 | > ε. Consequently, we have∣∣ Pr[β′ = β|¬GuessH3]− 1
2

∣∣ >
∣∣ Pr[β′ = β| −Pr[GuessH3]− 1

2

∣∣ > ε −Pr[GuessH3].
Since A makes total qd decryption queries during the attack Pr[GuessH3] ≤

qd/2k2 . Thus, we have ε′ > ε − qd

2k2 . The running time t′ and the number qo of
PC oracle queries of B are readily checked. ��

CBE from CL-PKE:
A Generic Construction and Efficient Schemes

Sattam S. Al-Riyami and Kenneth G. Paterson

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX,
United Kingdom

sattam@gmail.com, kenny.paterson@rhul.ac.uk

Abstract. We present a new Certificateless Public Key Encryption (CL-
PKE) scheme whose security is proven to rest on the hardness of the
Bilinear Diffie-Hellman Problem (BDHP) and that is more efficient than
the original scheme of Al-Riyami and Paterson. We then give an analysis
of Gentry’s Certificate Based Encryption (CBE) concept, repairing a
number of problems with the original definition and security model for
CBE. We provide a generic conversion showing that a secure CBE scheme
can be constructed from any secure CL-PKE scheme. We apply this
result to our new efficient CL-PKE scheme to obtain a CBE scheme that
improves on the original scheme of Gentry.

Keywords: Certificateless Public Key Encryption, CL-PKE, Certificate
based Encryption, CBE, pairings.

1 Introduction

Gentry introduced the concept of Certificate Based Encryption (CBE) in [7]. His
concept provides an efficient implicit certification mechanism for PKI and allows
a form of automatic revocation. Independently, [2] introduced and developed the
notion of certificateless public key cryptography (CL-PKC). CL-PKC is designed
to overcome the key-escrow limitation of identity-based cryptography [9] without
introducing certificates and the management overheads that this entails. CL-
PKC is a model for the use of public key cryptography that is intermediate
between the identity-based and traditional PKI approaches.

On the surface, CBE and CL-PKC appear to be quite different. In [2], it was
recognized, though not explored in any detail, that the two concepts of CBE
and certificateless public key encryption (CL-PKE) are in fact related. In this
paper, we revisit the work of [2] and [7], providing more efficient schemes and
exploring the connections between the concepts of CBE and CL-PKE.

Our first contribution is a new certificateless public key encryption (CL-PKE)
scheme that improves on the main scheme of [2] in two ways. Firstly our scheme
is more efficient than the scheme in [2]. Secondly, we show that the security of
the new scheme rests on the hardness of the Bilinear Diffie-Hellman Problem
(BDHP), rather than the non-standard generalized BDHP that was the basis of

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 398–415, 2005.
c© International Association for Cryptologic Research 2005

CBE from CL-PKE: A Generic Construction and Efficient Schemes 399

security for the scheme in [2]. Our security result is proved in the full security
model of [2].

Our second contribution is to provide a detailed analysis of the CBE concept
of [7]. We point out a number of shortcomings in the definition of CBE as
given in [7]. We repair these and then examine Gentry’s security model for
CBE. Comparing it to the model for CL-PKE given in [2] justifies us in making
small changes to Gentry’s security model. These still allow the security model
to capture the kinds of attacks seen in real-world applications.

The small changes we make to Gentry’s model also allow us to make our
third contribution: a generic conversion that takes any CL-PKE scheme as input
and produces from it a CBE scheme. The security of the CBE scheme in our
adaptation of Gentry’s model is tightly related to that of the CL-PKE scheme
in the security model of [2]. Our result shows that the two concepts – CBE and
CL-PKE – are indeed closely connected. We go on to explain why a generic
construction going in the opposite direction, starting with a secure CBE scheme
and yielding a secure CL-PKE scheme, is unlikely to be forthcoming.

Finally, we apply the generic conversion with our new CL-PKE scheme as
input. The result is a secure CBE scheme that is more efficient than the original
concrete scheme of [7].

1.1 Related Work

Kang, Park and Hahn [8] considered the signature analogue of certificate-based
encryption. Since any certifying information can always be sent along with the
actual signature, this concept seems less useful than that of CBE. Yum and Lee
[11] gave a generic construction or a certificateless signature scheme from an
ID-based signature scheme, proving the former to be secure (in an appropriate
model) if the latter is. These authors also considered a generic construction
for CL-PKE from identity-based encryption (IBE) [10] and the relationships
between IBE, CBE and CL-PKE [12]. However, none of the results concerning
the security of CL-PKE schemes proved in [10, 12] actually establishes security
in the full security model developed in [2]: certain additional restrictions are
always placed on the adversaries. For example, the Type I CL-PKE adversaries
in [10, 12] are never permitted to extract the partial private key for the challenge
identity. This restriction limiting the power of the adversary was not imposed
in [2]. Moreover, no attempt is made in [10, 12] to properly handle decryption
queries for identities whose public keys have been changed by the adversary. This
issue was dealt with in [2] for concrete schemes by developing novel knowledge-
extraction techniques. Thus the generic construction of CL-PKE schemes, secure
in the full model of [2], from IBE or CBE schemes, remains an open problem.
We return to this issue in Section 5.1.

2 Certificateless Public Key Encryption

In this section, we review the definition and security model for CL-PKE from
[2]. We also provide some criticisms of the scheme in [2].

400 Sattam S. Al-Riyami and Kenneth G. Paterson

Definition 1. [2] A CL-PKE scheme is specified by seven algorithms (Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,
Encrypt, Decrypt) such that:

– Setup is a probabilistic algorithm that takes security parameter k as input and
returns the system parameters params and master-key. The system parame-
ters includes a description of the message space M and ciphertext space C.

– Partial-Private-Key-Extract is a deterministic algorithm that takes params,
master-key and an identifier for entity A, IDA ∈ {0, 1}∗, as inputs. It returns
a partial private key DA.

– Set-Secret-Value is a probabilistic algorithm that takes as input params1 and
outputs a secret value xA.

– Set-Private-Key is a deterministic algorithm that takes params, DA and xA

as input. The algorithm returns SA, a (full) private key.
– Set-Public-Key is a deterministic algorithm that takes params and xA as input

and outputs a public key PA.
– Encrypt is a probabilistic algorithm that takes params, M ∈ M, PA and

IDA as inputs and returns either a ciphertext C ∈ C or the null symbol ⊥
indicating an encryption failure2.

– Decrypt is a deterministic algorithm that takes as inputs params, C ∈ C and
SA. It returns a message M ∈ M or a message ⊥ indicating a decryption
failure.

Naturally, an output M should result from applying algorithm Decrypt with inputs
params, SA on a ciphertext C generated by using algorithm Encrypt with inputs
params, PA, IDA on message M .

Algorithms Set-Private-Key and Set-Public-Key are normally run by an en-
tity A for itself, after running Set-Secret-Value. Usually, A is the only entity in
possession of SA and xA. Algorithms Setup and Partial-Private-Key-Extract are
usually run by a trusted third party, called a key generating centre (KGC) [2].

2.1 Security Model for CL-PKE

The full IND-CCA security model for CL-PKE of [2] is an extension of the
IND-ID-CCA model for IBE described in [4]. Below, we list the actions that an
IND-CCA adversary A against a CL-PKE scheme may carry out and discuss
how each action should be handled by the challenger for that adversary.

1. Extract Partial Private Key of Entity A: Challenger C responds by
running algorithm Partial-Private-Key-Extract to generate DA for entity A.

1 Note that the original definition of this algorithm in [2] also takes IDA as input;
however this string is not used in defining xA in any concrete schemes, so we omit
it here.

2 The concrete encryption schemes in [2] could fail because the public key fails to have
the correct structure. A general encryption algorithm could fail because the public
key is not in the right group, for example.

CBE from CL-PKE: A Generic Construction and Efficient Schemes 401

2. Extract Private Key for Entity A: If A’s public key has not been re-
placed then C can respond by running algorithm Set-Private-Key to generate
the private key SA for entity A. It is assumed, as in [2], that the adversary
does not make such queries for entities whose public keys have been changed.

3. Request Public Key of Entity A: C responds by running algorithm
Set-Public-Key to generate the public key PA for entity A (first running Set-
Secret-Value for A if necessary).

4. Replace Public Key of Entity A: Adversary A can repeatedly replace
the public key PA for any entity A with any value P ′

A of its choice. The
current value of an entity’s public key is used by C in any computations or
responses to A’s requests.

5. Decryption Query for Ciphertext C and Entity A: In the model of [2],
adversary A can issue a decryption query for any entity and any ciphertext.
It is assumed in [2] that C should properly decrypt ciphertexts, even for
those entities whose public keys have been replaced. This is a rather strong
property for the security model (after all, the challenger may no longer know
the correct private key). However, it ensures that the model captures the fact
that changing an entity’s public key to a value of the adversary’s choosing
may give that adversary an advantage in breaking the scheme. For further
discussion of this feature, see [2].

The IND-CCA security model of [2] distinguishes two types of adversary. A
Type I adversary is able to change public keys of entities at will, but does not
have access to the master-key. A Type II adversary is equipped with master-
key but is not allowed to replace public keys. This adversary models security
against an eavesdropping KGC. The security game proceeds in three phases; in
the middle challenge phase, the adversary selects a challenge identifier IDch and
corresponding public key Pch, and is given a challenge ciphertext C∗. We provide
a detailed description of the two adversary types and the security game next.

CL-PKE Type I IND-CCA Adversary: Adversary AI does not have access
to master-key. However, AI may request public keys and replace public keys with
values of its choice, extract partial private and private keys and make decryption
queries, all for identities of its choice. AI cannot extract the private key for IDch

at any point, nor request the private key for any identifier if the corresponding
public key has already been replaced. AI cannot both replace the public key for
the challenge identifier IDch before the challenge phase and extract the partial
private key for IDch in some phase. Furthermore, in Phase 2, AI cannot make a
decryption query on the challenge ciphertext C∗ for the combination (IDch, Pch)
that was used to encrypt Mb.

CL-PKE Type II IND-CCA Adversary: Adversary AII does have access
to master-key, but may not replace public keys of entities. Adversary AII can
compute partial private keys for itself, given master-key. It can also request public
keys, make private key extraction queries and decryption queries, all for identities
of its choice. The restrictions on this type of adversary are that it cannot replace
public keys at any point, nor extract the private key for IDch at any point.

402 Sattam S. Al-Riyami and Kenneth G. Paterson

Additionally, in Phase 2, AII cannot make a decryption query on the challenge
ciphertext C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

Definition 2. A CL-PKE scheme is said to be IND-CCA secure if no polyno-
mially bounded adversary A of Type I or Type II has a non-negligible advantage
in the following game:
Setup: C takes a security parameter k as input and runs the Setup algorithm. It
gives A the resulting system parameters params. If A is of Type I, then C keeps
master-key to itself, otherwise, it gives master-key to A.
Phase 1: A issues a sequence of requests described above. These queries may
be asked adaptively, but are subject to the rules on adversary behaviour defined
above.
Challenge Phase: Once A decides that Phase 1 is over it outputs the challenge
identifier IDch and two equal length plaintexts M0, M1 ∈ M. Again, the adver-
sarial constraints given above apply. C now picks a random bit b ∈ {0, 1} and
computes C∗, the encryption of Mb under the current public key Pch for IDch.
Then C∗ is delivered to A.
Phase 2: Now A issues a second sequence of requests as in Phase 1, again
subject to the rules on adversary behaviour above.
Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]− 1

2 |.

2.2 The Concrete Scheme of Al-Riyami and Paterson

In [2], we presented a concrete IND-CCA secure CL-PKE scheme, named FullCL-
PKE. The scheme is an adaptation of the pairing-based IBE scheme of [4]; we do
not replicate it here. Instead we list three drawbacks of the scheme FullCL-PKE:

1. FullCL-PKE requires three pairing calculations for each encryption (though
two of these are required to check the structure of the public key and all
three can be eliminated for any subsequent encryptions to the same party).
It would be preferable to have a less computationally intensive CL-PKE
scheme.

2. Each public key in FullCL-PKE consists of two elements of a group G1. Shorter
keys would be preferable.

3. The security of FullCL-PKE rests on the hardness of the Generalized Bilinear
Diffie-Hellman Problem (GBDHP). This problem is less well-established and
no harder than the BDHP introduced in [4]. It would be preferable to have
a CL-PKE scheme with a more solid security foundation. We will comment
further on this point in Section 3.3.

3 A New CL-PKE Scheme

In this section we present a new CL-PKE scheme and study its security. The
scheme can be regarded as resulting from the optimization of a double encryption
construction for CL-PKE, using the IBE scheme of [4] and the ElGamal public

CBE from CL-PKE: A Generic Construction and Efficient Schemes 403

key encryption scheme [5] as components. This immediately suggests a generic
construction for a CL-PKE scheme from the combination of an IBE scheme and
a (normal) public key encryption (PKE) scheme. Indeed such a construction is
possible (and was first suggested to us by Boneh), but it seems to be difficult to
prove the resulting scheme secure in the full model of [2] using standard security
assumptions about the component IBE and PKE schemes. For that reason we
have concentrated here on the concrete scheme and its proof of security.

Before we give our new scheme, we provide some background on pairings and
a related computational problem.

3.1 Review of Pairings

Let G1 denote an additive group of prime order q and G2 a multiplicative group
also of order q. We let P denote a generator of G1. A pairing is a map ê :
G1 × G1 → G2 with the following properties:

1. Bilinear: given any Q, W ∈ G1 and a, b ∈ Zq, we have

ê(aQ, bW) = ê(Q, W)ab = ê(abQ, W) etc.

2. Non-degenerate: ê(P, P) �= 1G2 .
3. Efficiently computable.

The map ê is usually derived from either the Weil or Tate pairing on an
elliptic curve over a finite field; see [2, 4] for further details and references. The
following computational problem was introduced in [4]:

Bilinear Diffie-Hellman Problem (BDHP): Let G1, G2, P and ê be as
above. The BDHP in 〈G1, G2, ê〉 is as follows: Given 〈P, aP, bP, cP 〉 with uni-
formly random choices of a, b, c ∈ Z∗

q , find ê(P, P)abc ∈ G2.

BDH Parameter Generator: As in [4], a randomized algorithm IG is a BDH
parameter generator if IG: (1) takes as input security parameter k ≥ 1, (2) runs
in polynomial time in k, and (3) outputs the description of groups G1, G2 of
prime order q and a pairing ê : G1 × G1 → G2. Formally, the output of the
algorithm IG(1k) is 〈G1, G2, ê〉.

3.2 The New Scheme

The algorithms for our new CL-PKE scheme FullCL-PKE� are:

Setup: This algorithm runs as follows:

1. Run IG on input k to generate output 〈G1, G2, ê〉.
2. Choose an arbitrary generator P ∈ G1.
3. Select a random master-key s ∈ Z∗

q and set P0 = sP .
4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗

1, H2 : G2 → {0, 1}n,
H3 : {0, 1}n × {0, 1}n → Z∗

q , H4 : {0, 1}n → {0, 1}n and H5 : G1 → {0, 1}n.
Here n will be the bit-length of plaintexts.

404 Sattam S. Al-Riyami and Kenneth G. Paterson

The system parameters are params= 〈G1, G2, ê, n, P, P0, H1, H2, H3, H4, H5〉.
The master-key is s ∈ Z

∗
q . The message space is M = {0, 1}n and the ciphertext

space is C = G1 × {0, 1}2n.

Partial-Private-Key-Extract: This algorithm takes as input an identifier IDA ∈
{0, 1}∗ for entity A, and carries out the following steps to construct the partial
private key for A:

1. Compute QA = H1(IDA) ∈ G∗
1.

2. Output the partial private key DA = sQA ∈ G∗
1.

Set-Secret-Value: This algorithm takes as inputs params and an identifier IDA.
It selects a random xA ∈ Z∗

q and outputs xA as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, entity A’s partial private
key DA and A’s secret value xA ∈ Z

∗
q . The output of the algorithm is the pair

SA = 〈DA, xA〉. So the private key for A is just the pair consisting of the partial
private key and the secret value.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈ Z∗
q

as inputs and constructs A’s public key as PA = xAP .

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and a
public key PA, perform the following steps:

1. Check that PA is in G∗
1, if not output ⊥ .

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random σ ∈ {0, 1}n.
4. Set r = H3(σ, M).
5. Compute and output the ciphertext:

C = 〈rP, σ ⊕ H2(ê(QA, P0)r) ⊕ H5(rPA), M ⊕ H4(σ)〉.
Notice that H2(ê(QA, P0)r) is identical to the mask used in the IBE scheme in
[4], while H5(rPA) is a mask computed using the term rPA used in the ElGamal
encryption scheme.

Decrypt: Suppose C = 〈U, V, W 〉 ∈ C. To decrypt this ciphertext using the
private key SA = 〈DA, xA〉:
1. Compute V ⊕ H2(ê(DA, U)) ⊕ H5(xAU) = σ′.
2. Compute W ⊕ H4(σ′) = M ′.
3. Set r′ = H3(σ′, M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext. Otherwise, output M ′ as the decryption of C.

When C is a valid encryption of M using PA and IDA, it is easy to see that
decrypting C will result in an output M ′ = M . This concludes the description
of FullCL-PKE�.

CBE from CL-PKE: A Generic Construction and Efficient Schemes 405

Theorem 1. Let hash functions Hi, 1 ≤ i ≤ 5, be random oracles. Suppose
further that there is no polynomially bounded algorithm that can solve the BDHP
with non-negligible advantage. Then FullCL-PKE� is IND-CCA secure.

A sketch of the proof of this result is given in Appendix A. A full proof can
be found in [1].

3.3 Comparing FullCL-PKE� to FullCL-PKE

The scheme FullCL-PKE of [2] is in many ways superseded by our new scheme
FullCL-PKE�:
1. The new scheme only requires one pairing computation per encryption. The

only test of validity for public keys PA in FullCL-PKE� is a simple group
membership test PA ∈ G

∗
1, while testing validity in FullCL-PKE requires two

pairing computations. As with FullCL-PKE, the single pairing computation
can be replaced with an exponentiation in G2 if repeated encryption to the
same recipient is performed. Decryption costs for the two schemes are similar.

2. Public keys in FullCL-PKE� consist of only one element of G1 rather than
the two required in FullCL-PKE.

3. FullCL-PKE� has better security guarantees as its security is related to the
BDHP, rather than the GBDHP (in which the output is a pair 〈Q, ê(P, Q)abc〉
for input aP , bP , cP). The GBDHP is an easier problem than the BDHP, in
that an algorithm to solve the latter can be used to solve the former simply
by setting Q = P . Note also that there do exist triples 〈G1, G2, ê〉 for which
the GBDHP is trivial, but the BDGHP is presumed to be hard. For example,
if the order q of G1 and G2 is not prime, but instead divisible by a small
prime q0, then to solve the GBDHP with non-negligible probability 1/q0, we
can select Q = q

q0
P and guess a solution 〈Q, ê(P, Q)x〉, where x is picked at

random from {0, 1, . . . , q0 − 1}. It would be interesting to determine if the
BDHP and GBDHP are of equal hardness of in the groups of prime order
usually selected for applications.
There is one further difference between FullCL-PKE and FullCL-PKE� that

we note here. The public keys in the scheme FullCL-PKE, being of the form
〈XA = xAP, YA = xP0〉, are constructed with reference to a specific P0 and hence
a particular KGC. Therefore, the decrypting party can mandate a particular
centralised point of control (that is, a particular KGC) from whom its partial
private keys will be obtained. On the other hand, the public keys in the scheme
FullCL-PKE� do not have this restriction. This means that an encrypting party
can select an arbitrary KGC (so long as it uses the same group G1 in its params
as the decrypting party does – though this restriction can be removed using
a slightly less efficient scheme) and force the decrypting party to obtain its
partial private key from that KGC. The merits and demerits of this property
are discussed further in [1].

4 Certificate-Based Encryption

We now turn to a discussion of Certificate-Based Encryption (CBE), as intro-
duced in [7]. In certificate-updating CBE, a Certification Authority (CA) is

406 Sattam S. Al-Riyami and Kenneth G. Paterson

responsible for pushing fresh certificates to clients in each time period. Infor-
mally, a client needs to be in possession of its current certificate in order to be
able to decrypt ciphertexts sent to it by other parties during that time period.

We begin by noting some incompatibilities between the generic definition of
CBE and the concrete CBE schemes in [7]. We then present a simplified and
corrected definition for CBE.
1. As can be seen from the first property in [7, Definition 1], combining an IBE

scheme with a standard public key encryption (PKE) scheme is explicitly
required when building a CBE scheme. This limits the ways in which CBE
schemes can be constructed and, as we shall see, is an unnecessary restriction.

2. The first property of [7, Definition 1] requires that P KIBE be an identifiable
element of the IBE scheme’s parameters that can be labelled as a public key
(notice that P KIBE is also used as a distinct computational element during
encryption). Given that not every IBE scheme need have this property, this
definition limits the IBE schemes that can be used to build CBE schemes.
Again, the limitation is unnecessary.

3. Although the combination of IBE and PKE is required by the generic defini-
tion of CBE, none of the concrete CBE schemes in [7] actually makes use of
explicitly defined IBE or PKE schemes in their construction. It is fairly clear
how the concrete CBE schemes have evolved from the IBE scheme of [4], but
strictly speaking, none of them meet the generic definition in [7, Definition 1].

4. The generic definition of CBE in [7, Definition 1] uses six algorithms GenIBE,
GenPKE, Upd1, Upd2, Enc and Dec, while the concrete schemes in [7, Section
3] use instead five algorithms Setup, Certification, Encryption and Decryption.
Essentially algorithms Upd1 and Upd2 are combined to yield algorithm Cer-
tification, but there are no explicit key generation algorithms in the concrete
schemes.
To summarize, there are incompatibilities in [7] between the definition of

CBE on the one hand and the concrete CBE schemes on the other, as well as
a number of unnecessary restrictions in the CBE definition. We now provide an
alternative definition for CBE. The concrete schemes in [7] are compatible with
our simplified definition.

Definition 3. A (certificate-updating) CBE scheme is defined by six algorithms
(Setup, Set-Key-Pair, Certify, Consolidate, Enc, Dec) such that:

– Setup is a probabilistic algorithm taking as input a security parameter k. It
returns SKCA (the certifier’s master-key) and public parameters params that
include the description of a string space Λ. Usually, this algorithm is run by
the CA.

– Set-Key-Pair is a probabilistic algorithm that takes params as input. When
run by a client, it returns a public key P K and a private key SK.

– Certify is a deterministic certification algorithm that takes as input 〈SKCA,
params, τ , λ ∈ Λ, P K〉. It returns Cert′τ , which is sent to the client. Here
τ is a string identifying a time period, while λ contains other information
needed to certify the client such as the client’s identifying information, and
P K is a public key.

CBE from CL-PKE: A Generic Construction and Efficient Schemes 407

– Consolidate is a deterministic certificate consolidation algorithm taking as
input 〈params, τ , λ, Cert′τ 〉, and optionally Certτ−1. It returns Certτ , the
certificate used by a client in time period τ .

– Enc is a probabilistic algorithm taking as inputs 〈τ , λ, params, P K, M〉,
where M ∈ M is a message. It returns a ciphertext C ∈ C for message M3.

– Dec is a deterministic algorithm taking 〈params, Certτ , SK, C〉 as input in
time period τ . It returns either a message M ∈ M or the special symbol ⊥
indicating a decryption failure.

Naturally, we require that if C is the result of applying algorithm Enc with input
〈τ , λ, params, P K, M〉 and 〈SK, P K〉 is a valid key-pair, then M is the result
of applying algorithm Dec on input 〈params, Certτ , SK, C〉, where Certτ is the
output of the Certify and Consolidate algorithms on input 〈SKCA, params, τ ,
λ ∈ Λ, P K〉. We write:

DecCertτ ,SK(Encτ,λ,PK(M)) = M.

We note that a concrete CBE scheme need not involve certificate consolida-
tion – see [7, Section 3] for examples. In this situation, algorithm Consolidate
will simply output Certτ = Cert′τ .

4.1 Security Model for CBE

In this section, we present an amended security model for CBE, in accordance
with our new definition for CBE. We will comment later on how this model
can be further strengthened; however it is not our intention here to completely
overhaul the work of [7].

As in [7], security for CBE is defined using two different games and the
adversary chooses which game to play. In Game 1, the adversary models an
uncertified entity and in Game 2, the adversary models the certifier in possession
of the master-key SKCA attacking a fixed entity’s public key.

CBE Game 1: The challenger runs Setup, gives params to the adversaryA1 and
keeps SKCA to itself. The adversary then interleaves certification and decryption
queries with a single challenge query. These queries are answered as follows:

– On certification query 〈τ, λ, P K, SK〉, the challenger checks that λ ∈ Λ and
that 〈P K, SK〉 is a valid key-pair. If so, it runs Certify on input 〈SKCA,
params, τ , λ, P K〉 and returns Cert′τ ; else it returns ⊥ .

– On decryption query 〈τ, λ, P K, SK, C〉, the challenger checks that λ ∈ Λ
and that 〈P K, SK〉 is a valid key-pair. If so, it generates Certτ by using
algorithms Certify and Consolidate with inputs 〈SKCA, params, τ , λ, P K〉,
and outputs DecCertτ ,SK(C); else it returns ⊥ .

– On challenge query 〈τch, λch, P Kch, SKch, M0, M1〉, where M0, M1 ∈ M are
of equal length, the challenger checks that λch ∈ Λ and that 〈P Kch, SKch〉
is a valid key-pair. If so, it chooses a random bit b and returns C∗ =
Encτch,λch,PKch(Mb); else it returns ⊥ .

3 We assume that Enc might also output ⊥ if PK is not a valid public key.

408 Sattam S. Al-Riyami and Kenneth G. Paterson

Finally, A1 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′

and 〈τch, λch, P Kch, SKch, C∗〉 was not the subject of a decryption query after
the challenge, and 〈τch, λch, P Kch, SKch〉 was not the subject of any certification
query. We define A1’s advantage in this game to be Adv(A1) := 2|Pr[b = b′]− 1

2 |.
CBE Game 2: The challenger runs Setup, gives params and SKCA to the adver-
saryA2. The challenger then runs Set-Key-Pair to obtain a key-pair 〈P Kch, SKch〉
and gives P Kch to the adversary A2. The adversary then interleaves certification
and decryption queries with a single challenge query. These queries are answered
as follows:

– On decryption query 〈τ, λ, C〉, the challenger checks that λ ∈ Λ. If not, it re-
turns ⊥ . If so, it generates Certτ by using algorithms Certify and Consolidate
with inputs 〈SKCA, params, τ , λ, P Kch〉. It then outputs DecCertτ ,SKch

(C).
– On challenge query 〈τch, λch, M0, M1〉, the challenger checks that λch ∈ Λ.

If so, it chooses random bit b and returns C∗ = Encτch,λch,PKch(Mb); else it
returns ⊥ .

Finally, A2 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′

and 〈τch, λch, C∗〉 was not the subject of a decryption query after the challenge.
We define A2’s advantage in this game to be Adv(A2) := 2|Pr[b = b′] − 1

2 |.
Definition 4. A certificate-updating CBE scheme is said to be secure against
adaptive chosen ciphertext attack (or IND-CBE-CCA secure) if no probabilistic
polynomial-time adversary has non-negligible advantage in either CBE Game 1
or CBE Game 2.

Let us now analyse the CBE security model, and compare it to Gentry’s
original model in [7]. The only technical difference between our CBE security
model and that of [7] is in Game 2. In Gentry’s model, the Game 2 adversary
is allowed to specify a fresh params in each of its queries. It also supplies the
CBE master-key SKCA in decryption queries, so that the challenger is able to
provide decryptions. In our model, params and the master-key SKCA are fixed
at the beginning of Game 2, and are supplied to the adversary. In both models,
the Game 2 adversary attacks a fixed key-pair that is specified by the challenger.
We argue that, while the model of [7] is more flexible in Game 2, our adaptation
accurately models the kinds of attacks that might be attempted by a CA. One
would not expect a CA to change its public parameters on a frequent basis;
rather it is more natural to model a CA with fixed public parameters and in
possession of the master-key.

In the next section, we will show a generic conversion from CL-PKE to CBE
that preserves security. Essentially, this conversion maps CL-PKE to CBE by
using extended identifiers in the CL-PKE scheme, while the certificates in the
CBE scheme are obtained from the partial private keys in the CL-PKE scheme.
The conversion process naturally highlights some strengths and weaknesses in
the CBE security model of [7]:

1. A CBE Game 1 adversary must provide a private key SK along with the
corresponding public key P K in all of its queries. This enables the challenger
to handle decryption queries. By contrast, in CL-PKE, a Type I adversary is

CBE from CL-PKE: A Generic Construction and Efficient Schemes 409

allowed to change an entity’s public key without needing to show the private
key. This gives the adversary more flexibility. For example, the adversary can
replace the public key of one entity with that of another (without knowing
the corresponding private key). The proofs of security for CL-PKE schemes
in [3] and the full version of this paper handle decryption queries using special
purpose knowledge extractors. The proof of security for the concrete scheme
FullCBE in [7] is also able to remove the requirement of showing the private
key.

2. A CBE Game 2 adversary does not get to choose a challenge public key
to attack. Instead, it is given a specific public key by the challenger at the
start of the game. This is unlike a CL-PKE Type II adversary, who has the
freedom to work with multiple public keys and to select any one of them for
the challenge query.

3. By contrast, the CBE Game 2 adversary in [7] is allowed to work with
multiple values of params and the master-key. So this adversary can change
the CBE scheme in each query. Both our CBE Game 2 adversary and a
Type II CL-PKE adversary are given a fixed params and the master-key
at the start of the game. This allows the adversary to ‘break’ that part of
the scheme which the trusted third party is always able to break. We have
already justified our making this restriction in CBE above.

5 CBE from CL-PKE

In this section, we present a construction for a CBE scheme using the algorithms
of a generic CL-PKE scheme as components. After providing the construction,
we prove that the resulting CBE scheme is IND-CBE-CCA secure (according to
Definition 4), provided the CL-PKE scheme is IND-CCA secure (in the sense of
Definition 2).

Suppose then that ΠCL is a CL-PKE scheme with algorithms SetupCL,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, En-
crypt and Decrypt. We define a CBE scheme ΠCBE by defining the six CBE al-
gorithms (SetupCBE, Set-Key-Pair, Certify, Consolidate, Enc, Dec) in terms of the
CL-PKE algorithms.

– SetupCBE: This algorithm takes a security parameter k and returns SKCA

and public parameters paramsCBE that includes the description of a string
space Λ. We run algorithm SetupCL to obtain master-keyCL and paramsCL.
We set SKCA of ΠCBE to be master-keyCL. We allow Λ to be any subset
of {0, 1}∗. We then define paramsCBE by extending paramsCL to include a
description of Λ.

– Set-Key-Pair: For a client A, this algorithm takes paramsCBE as input. We
extract paramsCL from paramsCBE then run Set-Secret-Value and then Set-
Public-Key of ΠCL to obtain values xA and then PA. The output 〈P K, SK〉
is defined to be the pair 〈PA, xA〉.

410 Sattam S. Al-Riyami and Kenneth G. Paterson

– Certify: This algorithm takes as input 〈SKCA, paramsCBE, τ, λ, P K〉. We ex-
tract paramsCL from paramsCBE and obtain master-keyCL from SKCA. We
then set ID′

A = paramsCBE‖τ‖λ‖P K and run algorithm Partial-Private-Key-
Extract of ΠCL on input 〈paramsCL, master-keyCL, ID′

A〉 to obtain a partial
private key DA. The output Cert′τ is defined to be DA.

– Consolidate: This algorithm takes as input 〈paramsCBE, τ, λ, Cert′τ 〉. It simply
outputs the value Cert′τ .

– Enc: This algorithm takes 〈τ, λ, paramsCBE, P K, M〉 as input. Here, we as-
sume M ∈ M, the message space for ΠCL. We extract paramsCL from
paramsCBE. We set ID′

A = paramsCBE‖τ‖λ‖P K and use the Encrypt algo-
rithm of ΠCL with input 〈paramsCL, M, P K, ID′

A〉 to obtain a ciphertext
C ∈ C. The output of Enc is defined to be C.

– Dec: This algorithm takes 〈paramsCBE, Certτ , SK, C〉 as input in time period
τ . We extract paramsCL from paramsCBE, set DA = Certτ , set xA = SK,
and run algorithm Set-Private-Key of ΠCL on input 〈paramsCL, DA, xA〉 to
obtain a private key SA. Finally, we run algorithm Decrypt of ΠCL on input
〈paramsCL, C, SA〉 to obtain the output of algorithm Dec.

It is evident from the construction that the message and ciphertext spaces of
ΠCBE are the same as those of ΠCL. It’s also clear that partial private keys in
ΠCL are (roughly speaking) transformed into certificates in ΠCBE. In the CBE
scheme, we allow Λ to be any subset of {0, 1}∗ for maximum flexibility, while
identifiers of the form paramsCBE‖τ‖λ‖P K where λ ∈ Λ are used in the CL-PKE
scheme.

Next is our main theorem about the IND-CBE-CCA security of the CBE
scheme constructed using a CL-PKE scheme as above.

Theorem 2. Suppose that ΠCL is an IND-CCA secure CL-PKE scheme, and
suppose that ΠCL is used to build a CBE scheme ΠCBE as above. Then ΠCBE

is IND-CBE-CCA secure.

Proof. The proof can be found in Appendix B. The proof demonstrates a tight
relationship between the advantage of a CBE adversary against ΠCBE and that
of a CL-PKE adversary against ΠCL.

It can be seen from examining Appendix B that the security argument used
there to prove the CBE scheme secure does not require the use of private keys
SK from the CBE scheme in answering any queries. It is therefore possible to
prove that ΠCBE is secure in a somewhat stronger security model than we have
developed in Section 4.1. In the stronger model, the adversary is not required to
show any private keys when making queries. As well as being stronger, this seems
like a more natural model of real adversarial behaviour. The original model of
[7] can also be strengthened in the same way. Thus we see that the CL-PKE
concept can lead to improvements in the security of CBE schemes.

5.1 CL-PKE from CBE?

By composing the generic constructions of an IBE scheme from a CBE scheme
and a CL-PKE scheme from an IBE scheme in [12], it is possible to use the six

CBE from CL-PKE: A Generic Construction and Efficient Schemes 411

algorithms of a generic CBE scheme to construct a CL-PKE scheme. The overall
construction uses the encryption and decryption algorithms of the IBE scheme
twice in defining the corresponding algorithms of the CL-PKE scheme. The KGC
is responsible for setting the keys and parameters for one pair of encryption and
decryption algorithms, while individual users control the setting for the other
pair. This ensures that the key-escrow property of the IBE scheme is overcome.
Note, however, that the security results of [12] only establish the security of the
CL-PKE scheme in a security model that is significantly weaker than the full
CL-PKE security model developed in [2] and reproduced here in Section 2.1.
So the generic construction of a secure CL-PKE scheme from a CBE scheme
remains an open problem.

One might consider the direct construction of a CL-PKE scheme from a single
instance of a generic CBE scheme, that is, without going via an intermediate IBE
scheme and using the algorithms of the CBE scheme only once in defining the CL-
PKE scheme. In a generic construction, the Partial-Private-Key-Extract algorithm
of the CL-PKE scheme would presumably need to be constructed from the Certify
algorithm of the CBE scheme. Then one obstacle to a generic construction is that
a CBE scheme requires certain parameters (namely τ and P K) to be included
in the inputs to the Certify algorithm, while these are not provided as inputs
to the Partial-Private-Key-Extract algorithm in a CL-PKE scheme. This would
mean that the necessary parameters would not in general be available as inputs
to the Certify algorithm. This implies an important functional difference between
the CBE and CL-PKE concepts: in CBE, the algorithm Set-Key-Pair needs to
be run before Certify, while in CL-PKE, the corresponding algorithm Partial-
Private-Key-Extract can be run before or after algorithm Set-Public-Key. In this
respect, CL-PKE is more flexible than CBE.

We note that if one is prepared to consider only the special class of CL-PKE
schemes in which identifiers include public keys, then one can construct a (spe-
cial) CL-PKE scheme generically from a single instance of a CBE scheme. One
trick needed in the construction is to set τ to a fixed value for every CBE certi-
fication query. This kind of CL-PKE scheme was considered in [2], where it was
shown that the binding technique allows the CL-PKE scheme to attain a level
of trust closer to that of a traditional PKI. Even so, to prove this scheme secure,
one must further modify the CBE security model to remove the requirement on
the adversary to supply private keys SK in queries. One must also restrict the
CL-PKE Type I adversary to not extract the partial private key for the chal-
lenge identifier, to prevent a corresponding CBE adversary from having to make
a disallowed certification query. This means that the proof would not be in the
full security model of [2].

It may well be possible to modify any particular concrete CBE scheme to
produce a CL-PKE scheme that can be proven secure. For example, one might
omit certain inputs to the Certify and Consolidate algorithms in order to define
Partial-Private-Key-Extract. This is certainly true of the scheme FullCBE of [7].
However, this is not the same as obtaining a truly generic, security-preserving
construction of one primitive from the other. Our discussion in this section points

412 Sattam S. Al-Riyami and Kenneth G. Paterson

to the fact that, while similar in many respects, CBE and CL-PKE are not
equivalent concepts. Indeed, we suspect that the generic construction of a fully
secure CL-PKE scheme from a CBE scheme may be impossible. We reiterate
that this does not contradict the result of Yum and Lee in [12], because they
did not use the full security model of [2] when studying the security of their
CL-PKE constructions.

5.2 A New CBE Scheme

Our generic construction in Section 5 applies to any CL-PKE scheme and pro-
duces an IND-CBE-CCA secure CBE scheme. For example, it can be applied to
FullCL-PKE of [2] or to the scheme FullCL-PKE� developed in Section 3. Let us
denote the CBE scheme obtained from FullCL-PKE� by FullCBE�. We do not give
this scheme explicitly here. Instead we merely note that FullCBE� is more com-
putationally efficient than the scheme FullCBE of [7], requiring only one pairing
computation for encryption compared to the two needed in FullCBE.

6 Summary

In this paper, we have examined the relationship between the separate but re-
lated concepts of CBE [7] and CL-PKE [2]. We have given a generic construction
producing a secure CBE scheme from a secure CL-PKE scheme. In order to ob-
tain this construction, we have had to analyze and repair the CBE definition
and security model. We have also given a new, secure CL-PKE scheme FullCL-
PKE� that improves on the scheme FullCL-PKE of [2]. The generic construction
applied to FullCL-PKE� produces the scheme FullCBE�, which is computationally
superior to the scheme FullCBE of [7].

References

1. S.S. Al-Riyami, Cryptographic schemes based on elliptic curve pairings, Ph.D. the-
sis, University of London, 2004.

2. S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. In Ad-
vances in Cryptology – ASIACRYPT 2003, LNCS vol. 2894, pp. 452–473. Springer,
2003.

3. S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. Cryp-
tology ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.org/.

4. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, Proc. CRYPTO 2001, LNCS vol. 2139, pp. 213–229. Springer,
2001.

5. T. ElGamal A public key cryptosystem and a signature scheme based on Discrete
logarithm In G.R. Blakley and D. Chaum, editor, Proc. CRYPTO 1984, LNCS
vol. 196, pp. 10–18. Springer, 1985.

6. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In M. J. Wiener, editor, Proc. CRYPTO 1999, LNCS vol.
1666, pp. 537–554. Springer, 1999.

CBE from CL-PKE: A Generic Construction and Efficient Schemes 413

7. C. Gentry. Certificate-based encryption and the certificate revocation problem.
In E. Biham, editor, Proc. EUROCRYPT 2003, LNCS vol. 2656, pp. 272–293.
Springer, 2003.

8. G. Kang, J.H. Park and S.H. Hahn. A certificate-based signature scheme. In
CT-RSA 2004, LNCS vol. 2964, pp. 99–111, 2004.

9. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. CRYP-
TO 1984, LNCS vol. 196, pp. 47–53. Springer, 1984.

10. D.H. Yum and P.J. Lee. Generic construction of certificateless encryption. In
ICCSA 2004, LNCS vol. 3043, pp. 802–811, 2004.

11. D.H. Yum and P.J. Lee. Generic construction of certificateless signature. In ACISP
2004, LNCS vol. 3108, pp. 200–211, 2004.

12. D.H. Yum and P.J. Lee. Identitiy-based cryptography in public key management.
In EuroPKI 2004, LNCS vol. 3093, pp. 71–84, 2004.

A Sketch Proof of Theorem 1

We provide a sketch of the main ideas in the proof of Theorem 1; the details can
be found in [1]. We need to introduce five intermediate encryption schemes. The
first, BasicCL-PKE�, is a simpler version of FullCL-PKE� which omits the Fujisaki-
Okamoto hybridisation technique [6]. We also make use of the schemes BasicPub
and BasicPubhy from [4], and we introduce two ElGamal-like schemes called ElG-
BasicPub and ElG-HybridPub. The second of these is obtained from the first by
applying the technique of [6]. A key-pair in ElG-BasicPub is of the form 〈PA, xA〉
and the encryption of message M is defined to be C = 〈rP, M ⊕H5(rPA)〉 for r
selected at random from Z∗

q .
As in [3], the proof of the theorem is performed in two parts. We relate

the advantage of a Type I or Type II attacker against FullCL-PKE� to that of
an algorithm to solve BDHP or CDHP respectively. We first consider a Type I
adversary.

Type I Adversary: We provide a reduction relating the IND-CCA security
of FullCL-PKE� to the IND-CPA security of the standard PKE schemes ElG-
HybridPub and BasicPubhy. The reduction is similar to the one provided in [3],
but simulates H5 in a special way to ensure that it behaves consistently in
the course of the attack. This reduction also makes use of a special-purpose
knowledge extraction algorithm to handle decryption queries. Furthermore, in
order for this knowledge extractor to have a high success probability, we require
(and prove) that the scheme BasicCL-PKE is OWE secure if the BDHP is hard.
Thereafter, we use a series of fairly standard results to reduce the security of
ElG-HybridPub and BasicPubhy to the hardness of the CDHP in G1 or BDHP in
〈G1, G2, ê〉, respectively.

Type II Adversary: We show that the IND-CCA security of FullCL-PKE�

can be reduced to the usual IND-CCA security of a related (normal) public
key encryption scheme ElG-HybridPub. The security of ElG-HybridPub is reduced
to that of a second public key encryption scheme ElG-BasicPub against OWE
adversaries using results of [6]. Finally, we relate the security of ElG-BasicPub to
the hardness of the CDHP in G1.

414 Sattam S. Al-Riyami and Kenneth G. Paterson

Since any algorithm to solve the CDHP in G1 (output by IG(k)) can be used
to solve the BDHP in 〈G1, G2, ê〉, we finally have that the security of FullCL-
PKE� is related to the hardness of the BDHP. For the concrete relationship we
refer the reader to the full version of this paper.

B Proof of Theorem 2

We begin by considering in detail the case of a Game 1 adversary against ΠCBE.
Let A1 be a Game 1 IND-CCA adversary against ΠCBE with advantage ε.

We show how to construct from A1 a Type I IND-CCA adversary BI against
ΠCL. Let C denote a ΠCL-challenger against BI . C begins by supplying BI with
the parameters of ΠCL. BI mounts an IND-CCA attack on ΠCL using help from
A1 as follows.

Adversary BI simulates the algorithm SetupCBE of ΠCBE for A1. This is
done by BI setting Λ to be an arbitrary subset of {0, 1}∗ and paramsCBE to
be an extension of paramsCL which includes a description of Λ. BI then gives
paramsCBE to A1. Now A1 launches its attack, and BI launches Phase 1 of its
attack. AI interleaves queries of three types, during which BI transitions from
Phase 1 to the Challenge Phase and on to Phase 2 in a manner to be specified
below. These queries are handled by BI as follows:

– On certification query 〈τ, λ, P K, SK〉, adversary BI makes a replace public
key query for the entity with identifier ID′

A = paramsCBE‖τ‖λ‖P K, replacing
the public key with the value P K. Then BI makes a partial-private-key
extract query to C for the identifier ID′

A and returns the resulting partial
private key to BI .

– On decryption query 〈τ, λ, P K, SK, C〉, BI makes a replace public key query
for the entity with identifier ID′

A = paramsCBE‖τ‖λ‖P K, replacing the public
key with the value P K. Then BI makes a decryption query on ciphertext C
for the entity with identifier ID′

A to C. BI relays C’s response to A1.
– On receiving a challenge query 〈τch, λch, P Kch, SKch, M0, M1〉, adversary

BI makes a replace public key query for the entity with identifier ID′
ch =

paramsCBE‖τch‖λch‖P Kch, replacing the public key with the value P Kch.
Then BI terminates Phase 1 of its attack and enters the challenge phase,
sending ID′

ch and messages M0, M1 to C. Challenger C responds with a chal-
lenge ciphertext C∗ which is the encryption of message Mb (for some bit b)
for identifier ID′

ch and public key P Kch in the scheme ΠCL. Then BI forwards
C∗ to A1 as the response to A1’s challenge query and begins Phase 2 of its
attack. It is easy to see from the definition of ΠCBE that C∗ is equal to the
output of algorithm Enc of ΠCBE on input 〈τch, λch, paramsCBE, P Kch, Mb〉.

We further insist that, if BI is forced during the course of its simulation to replace
the public key for ID′

ch before the challenge phase and make a partial-private-key
extract query on ID′

ch in some phase, then BI aborts. Likewise, we insist that if
BI is in Phase 2 and is forced to relay a decryption query on ciphertext C∗ for
identifier ID′

ch and public key P Kch, then BI aborts. Since ID′
ch is the challenge

CBE from CL-PKE: A Generic Construction and Efficient Schemes 415

identifier relayed to BI ’s challenger and C∗ is the challenge ciphertext, these
abort conditions ensure that BI is a well-behaved CL-PKE Type I adversary
whenever it does not abort.

Guess: Eventually, A1 should make a guess b′ for b. Then BI outputs b′ as its
guess for b.

Analysis: We now analyze the behaviour of BI and A1 in this simulation. We
claim that if algorithm BI does not abort during the simulation then algorithm
A1’s view is identical to its view in the real attack. Moreover, if BI does not
abort then 2|Pr[b = b′] − 1

2 | = ε. We justify this claim as follows. Adversary
BI ’s responses to decryption and certification queries are as seen by A1 in a real
attack, provided of course that BI does not abort. Furthermore, the challenge
ciphertext C∗ is a valid ΠCBE encryption of Mb where b ∈ {0, 1} is random.
Thus, by definition of algorithm A1 we have that 2|Pr[b = b′] − 1

2 | = ε.
The probability that BI does not abort during the simulation remains to be

calculated. BI can abort for two reasons. The first reason is that BI may be
forced to replace the public key for ID′

ch before the challenge phase and make
a partial-private-key extract query on ID′

ch in some phase. This combination of
replace public key query and partial-private-key extract query can only arise
from A1 making a Certify query on an input 〈τch, λch, P Kch, SKch〉. But this is
exactly the certification query which A1 is forbidden from making. So this event
never occurs in BI ’s simulation. The second reason is that BI may be forced to
relay a decryption query on ciphertext C∗ for identifier ID′

ch and public key P Kch

in Phase 2. Because of the way that BI relays ciphertexts, this event happens
only if A1 makes a decryption query on input 〈τch, λch, P Kch, SKch, C∗〉 after
having received its challenge ciphertext. However, A1 is forbidden from making
precisely this decryption query. So this event never occurs in BI ’s simulation.

To summarize, Algorithm BI never aborts, provides a perfect simulation of
A1’s challenger and has an advantage ε in guessing bit b. Thus we have shown
that a Game 1 CBE adversary against ΠCBE with advantage ε can be used to
construct a CL-PKE Type I adversary against ΠCL with an identical advantage.
Since ΠCL is secure against CL-PKE Type I adversaries, we can deduce the
ΠCBE is secure against CBE Game 1 adversaries.

Using similar ideas, we can also show that a CBE Game 2 adversary against
ΠCBE can be used to construct a CL-PKE Type II adversary against ΠCL. Since
ΠCL is secure against CL-PKE Type II adversaries, we can deduce that ΠCBE

is secure against CBE Game 2 adversaries. This completes the proof.

A Verifiable Random Function
with Short Proofs and Keys

Yevgeniy Dodis1,� and Aleksandr Yampolskiy2,��

1 Department of Computer Science, New York University,
251 Mercer Street, New York, NY 10012, USA

dodis@cs.nyu.edu
2 Department of Computer Science, Yale University,

51 Prospect Street, New Haven, CT 06511, USA
aleksandr.yampolskiy@yale.edu

Abstract. We give a simple and efficient construction of a verifiable
random function (VRF) on bilinear groups. Our construction is direct.
In contrast to prior VRF constructions [14, 15], it avoids using an in-
efficient Goldreich-Levin transformation, thereby saving several factors
in security. Our proofs of security are based on a decisional bilinear
Diffie-Hellman inversion assumption, which seems reasonable given cur-
rent state of knowledge. For small message spaces, our VRF’s proofs and
keys have constant size. By utilizing a collision-resistant hash function,
our VRF can also be used with arbitrary message spaces. We show that
our scheme can be instantiated with an elliptic group of very reasonable
size. Furthermore, it can be made distributed and proactive.

1 Introduction

The notion of a verifiable random function (VRF) was introduced by Micali,
Rabin, and Vadhan [15]. A VRF is a pseudo-random function that provides a
non-interactively verifiable proof for the correctness of its output. Given an input
value x, the knowledge of the secret key SK enables computing the function value
y = FSK(x) together with the proof of correctness πx. This proof convinces every
verifier that the value y = FSK(x) is indeed correct with respect to the public
key of the VRF. We can thus view a VRF as a commitment to an exponential
number of random-looking bits.

Since their introduction, VRFs have found useful applications in protocol
design. To give a few examples, in [16], VRFs were used to reduce the num-
ber of rounds for resettable zero-knowledge proofs to three in the bare model.
Micali and Rivest [17] used VRFs to construct a non-interactive lottery system
employed in micropayments. Recently, Jarecki and Shmatikov [12] constructed

� Supported in part by NSF CAREER award CCR-0133806 and NSF grant CCR-
0311095.

�� Supported by NSF grants CCR-0098078, ANI-0207399, CNS-0305258, and CNS-
0435201.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 416–431, 2005.
c© International Association for Cryptologic Research 2005

A Verifiable Random Function with Short Proofs and Keys 417

a verifiable transaction escrow scheme, which preserves users’ anonymity while
enabling automatic de-escrow, again with the help of VRFs.

Unfortunately, despite their utility, VRFs are not very well studied. As of
this moment, there exist only a handful of constructions in the standard model:
[8, 14, 15]. With the exception of [8], these works first construct a verifiable
unpredictable function (VUF), whose output is hard to predict but does not
necessarily look random. Then, they use an inefficient Goldreich-Levin hardcore
bit [10] to convert a VUF into a VRF, thereby losing a factor in security. The
size of proofs and keys of VRFs in [8,14] is linear in the input size, which may
be undesirable in resource-constrained environments. Meanwhile, the VRF of
Micali-Rabin-Vadhan [15] operates over a large multiplicative group Z∗

n which
has to be very large to achieve reasonable security. Before the VRF value can be
computed, it requires inputs to be mapped to primes in a complicated fashion.

In this paper, we construct a simple VRF on groups equipped with bilinear
maps. Our construction is direct; it does not use a Goldreich-Levin hardcore bit,
saving several factors in security. The inputs need not be primes or codewords of
some special encoding. For small inputs, our VRF has constant size proofs and
keys. We show that by utilizing a collision-resistant hash function, we can use
our VRF with arbitrary inputs as well. Our VRF can be made distributed and
proactive.

We begin in Section 2 by formalizing the notions of a VRF and a VUF. We
also review the definition of bilinear groups, which are used in our constructions.
These groups, recently discovered by Joux and Nguyen [13], have the property
that decisional Diffie-Hellman (DDH) assumption (given g, ga, and gb, distin-
guish gab from random) becomes easy, but computational Diffie-Hellman (CDH)
assumption (given g, ga, and gb, compute gab) still remains hard. This fact gives
us many useful properties like verifiability.

Our proofs of security rely on two assumptions, which we describe in Sec-
tion 3. Informally, they are:

− q-Diffie-Hellman inversion assumption (q-DHI) states that no efficient
algorithm can compute g1/x on input

(
g, gx, . . . , g(xq)

)
[18];

− q-decisionalbilinearDiffie-Hellman inversion assumption (q-DBDHI)
states that no efficient algorithm can distinguish e(g, g)1/x from random even
after seeing

(
g, gx, . . . , g(xq)

)
[3]. (Here e(·, ·) is a bilinear map, which we de-

fine later.)

In Section 4, we give our constructions and analyze their efficiency.
First, in Section 4.1, we consider a signature due to Boneh and Boyen [4]. On

input x and a secret key SK, the signature is SignSK(x) = g1/(x+SK). Boneh
and Boyen proved this signature to be existentially unforgeable against non-
adaptive adversaries. By restricting inputs to have slightly superlogarithmic
size (in security parameter), we are able to prove security against adaptive
adversaries. As a result, our proof is more involved, but necessarily less tight than
the proof of [4]. We thus obtain a VUF, which is secure for small inputs. This
VUF can then be converted into a VRF using the approach of prior works [14,15].
Specifically, we could use the Goldreich-Levin hardcore bit [10] to convert it into

418 Yevgeniy Dodis and Aleksandr Yampolskiy

a VRF with output size 1, amplify the output size to match the size of the input,
and then follow a tree-based construction to get a VRF with arbitrary input size.
Needless, to say this is rather inefficient.

Instead, we prefer to construct a VRF directly (Section 4.2), saving several
factors in security. We give a simple direct VRF construction for small inputs,
which is secure under the q-DBDHI assumption. On input x and a secret key
SK, our VRF computes (FSK(x), π(x)), where FSK(x) = e(g, g)1/(x+SK) is the
VRF value and π(x) = g1/(x+SK) is the proof of correctness. We can apply
a collision-resistant hash function to large inputs to transform our VRF into
a VRF with unrestricted input length. By making the group size sufficiently
large, we can construct a VRF with inputs of size roughly 160 bits, which is
the length of SHA-1 digests. In theory, we do not have to assume existence of
collision-resistant hash functions, and could also apply a variant of a generic tree
transformation to amplify the input size. Even though keys and proofs no longer
have constant size, they are still shorter than the keys and proofs in constructions
of [14,15]. We analyze how large the group has to be and how our VRF compares
with other constructions in Section 4.4.

Evaluating the VRF at a single server is a performance bottleneck and a
single point of failure. Naturally, in Section 5, we sketch how to make our VRF
distributed and proactive.

In Section 6, we analyze the q-DBDHI assumption in the generic group model
à la Shoup [21]. We show that if the adversary can distinguish e(g, g)1/x from
random with probability 1

2 + ε, he will need to perform (at least) Ω(
√

εp/q)
generic group operations in a group of size p.

We conclude in Section 7.

2 Definitions

Before presenting our results, we review some basic definitions and assumptions.
Let k be a security parameter. As customary, we model the protocol partic-

ipants by probabilistic Turing machines whose running time is polynomial in k
(abbreviated as PPTs). Hereafter, we use negl(k) to refer to a negligible function
in the security parameter k.1

2.1 VRFs and VUFs

Let a : N #→ N∪{∗} and b : N #→ N be any functions for which a(k) and b(k) are
computable in poly(k) time (except when a takes the value ∗)2.

Intuitively, a verifiable random function (VRF) behaves like a pseudo-
random function, but also provides proofs of its outputs’ correctness.

Definition 1. A function family F(·)(·) : {0, 1}a(k) #→ {0, 1}b(k) is a family of
VRFs if there exists a PPT algorithm Gen and deterministic algorithms Prove

1 A function negl(k) : N �→ (0, 1) is negligible if for every c > 0, for all sufficiently
large k, negl(k) < 1/kc. See any standard reference, such as [11], for details.

2 When a(k) takes the value of ∗, it means the VRF is defined for inputs of all length.

A Verifiable Random Function with Short Proofs and Keys 419

and Ver such that Gen(1k) outputs a pair of keys (P K, SK); ProveSK(x)
computes

(
FSK(x), πSK(x)

)
, where πSK(x) is the proof of correctness; and

VerPK(x, y, π) verifies that y = FSK(x) using the proof π. Formally, we re-
quire:

1. Uniqueness: no values (P K, x, y1, y2, π1, π2) can satisfy VerPK(x, y1, π1)
= VerPK(x, y2, π2) when y1 �= y2.

2. Provability: if (y, π) = ProveSK(x), then VerPK(x, y, π) = 1.
3. Pseudorandomness: for any PPT algorithm A = (A1, A2), who does not

query its oracle on x (see below),

Pr

⎡⎢⎣b = b′
(P K, SK) ← Gen(1k); (x, st) ← A

Prove(·)
1 (P K);

y0 = FSK(x); y1 ← {0, 1}b(k);
b ← {0, 1}; b′ ← A

Prove(·)
2 (yb, st)

⎤⎥⎦ ≤ 1
2

+negl(k)

A verifiable unpredictable function (VUF) is a close relative of a VRF.
Essentially, it is a signature scheme, whose verification algorithm accepts at most
one signature for every public key and message.

Definition 2. A function family F(·)(·) : {0, 1}a(k) #→ {0, 1}b(k) is a family of
VUFs, if it satisfies the same syntax, uniqueness and provability properties of the
VRFs, except the pseudorandomness property is replaced by the following weaker
property:

3’. Unpredictability: for any PPT algorithm A, who does not query its oracle
on x (see below),

Pr
[

y = FSK(x) (P K, SK) ← Gen(1k); (x, y) ← AProve(·)(P K)
] ≤ negl(k)

For exact security bounds, we will occasionally say that F(·)(·) is an
(s′(k), ε′(k)) secure VRF (resp., VUF) if no adversary A, running in time s′(k),
can break the pseudorandomness (resp., unpredictability) property with ε′(k)
advantage.

2.2 Bilinear Groups

Our constructions utilize bilinear maps. We briefly review their properties below.
Let G and G1 be two (multiplicative) cyclic groups of prime order p. Let g

be a generator of G. We shall call a mapping bilinear if it is linear with respect
to each of its variables. Formally:

Definition 3. An (admissible) bilinear map e : G × G #→ G1 is a map with the
following properties:

1. Bilinear: for all u, v ∈ G and x, y ∈ Z, we have e(ux, vy) = e(u, v)xy.
2. Non-degenerate: e(g, g) �= 1.
3. Computable: there is an efficient algorithm to compute e(u, v) for all

u, v ∈ G.

420 Yevgeniy Dodis and Aleksandr Yampolskiy

We say that a group G is bilinear if the group action in G is efficiently
computable and there exists a group G1 and an admissible bilinear map e :
G × G #→ G1. Henceforth, we shall use G∗ to stand for G\{1G}.

Bilinear maps provide an algorithm for solving the decisional Diffie-Hellman
problem (DDH) in G;3 this property comes in handy for constructing a verifica-
tion algorithm for our VRF. Such maps can be constructed from Weil and Tate
pairings on elliptic curves or abelian varieties [5,9,13].

3 Complexity Assumptions

We now state the hardness assumptions on which our constructions are based.
In what follows, we let G be a bilinear group of prime order p, and let g be its
generator.

3.1 Diffie-Hellman Inversion Assumption

Our VUF construction relies on the Diffie-Hellman inversion (DHI) assumption,
which was originally proposed in [18].

The q-DHI problem in G asks: given the tuple
(
g, gx, . . . , g(xq)

) ∈ (G∗)q+1 as
input, compute g1/x. An algorithm A has advantage ε in solving q-DHI in G if

Pr
[
A(g, gx, . . . , g(xq)) = g1/x

]
≥ ε,

where probability is taken over the coin tosses of A and the random choice of
x ∈ Z∗

p.4

Definition 4. (q-DHI Assumption). We say that (t, q, ε)-DHI assumption holds
in G if, no t-time algorithm A has advantage at least ε in solving the q-DHI
problem in G.

Boneh and Boyen [3] pointed out that the q-DHI assumption implies the
(q + 1)-generalized Diffie-Hellman assumption (GDH), on which many crypto-
graphic constructions are based (e.g., [6, 19, 22] as well as the VUF in [14]).
Therefore, security of our VUF rests on an equivalent complexity assumption to
the one made before.

3.2 Decisional Bilinear Diffie-Hellman Inversion Assumption

In order to construct a VRF directly, we need to make a decisional bilinear
Diffie-Hellman inversion assumption (DBDHI). It was previously used in [3] to
construct a selective-ID secure identity based encryption scheme.

3 Specifically, to determine whether (g, gx, gy, gz) is a DDH tuple, we can check if
e(gx, gy) = e(g, gz).

4 To simplify the notation, from now on, we assume that algorithms implicitly get a
description of the bilinear group (G, ◦, p), on which they operate, as input.

A Verifiable Random Function with Short Proofs and Keys 421

The q-DBDHI problem asks: given the tuple
(
g, gx, . . . , g(xq)

)
as input, dis-

tinguish e(g, g)1/x from random. Formally, an algorithm A has advantage ε in
solving the q-DBDHI problem if∣∣∣ Pr

[
A(g, gx, . . . , g(xq), e(g, g)1/x) = 1

]
− Pr

[
A(g, gx, . . . , g(xq), Γ) = 1

]∣∣∣ ≤ ε,

where the probability is taken over the internal coin tosses of A and choices of
x ∈ Z∗

p and Γ ∈ G1.

Definition 5. (q-DBDHI Assumption). We say that the (t, q, ε)-DBDHI as-
sumption holds in G if no t-time algorithm A has advantage at least ε in solving
the q-DBDHI problem in G.

Clearly, q-DBDHI is a stronger assumption than q-DHI. To provide more
confidence in its validity, we analyze this assumption in the generic group model
in Section 6.

4 Our Constructions

In Section 4.1, we show that a signature scheme due to Boneh and Boyen [4] is in
fact a VUF for small inputs. We could then use a Goldreich-Levin hardcore bit
to convert the resulting VUF into a VRF. However, the generic transformation is
rather inefficient, so we choose to forego it. Instead, in Section 4.2, we construct
our VRF directly for inputs of small size. We then show how to extend the VRF
input size in Section 4.3. Finally, we evaluate our construction’s efficiency in
Section 4.4.

Fix input length a(k), output length b(k), and security s(k). For notational
convenience, we will usually omit the security parameter k, writing, for example,
a or s, instead of a(k) or s(k). Let G (|G| = p) be a bilinear group, whose order
p is a k-bit prime. Let g be a generator of G. Throughout, we shall assume that
messages can be encoded as elements of Z

∗
p.

4.1 A Verifiable Unpredictable Function

In order to build the intuition for our next proof, we first describe how to con-
struct a simple VUF (Gen, Sign, Ver), which is secure for small (superlogarith-
mic) inputs.

Algorithm Gen(1k): Chooses a secret s ∈r Z∗
p and sets the secret key to

SK = s and a public key to P K = gs.
Algorithm SignSK(x): Outputs the signature SignSK(x) = g1/(x+SK). Note

that the proof is embedded in the output value so we do not need to include
it explicitly.

Algorithm VerP K(x, y): Outputs 1 if e(gx · P K, y) = e(g, g); otherwise,
outputs 0. Indeed, if the VRF value y was correctly computed, we have:

e(gx · P K, y) = e(gxgs, g1/(x+s)) = e(g, g).

422 Yevgeniy Dodis and Aleksandr Yampolskiy

Boneh and Boyen [4] proved this scheme to be existentially unforgeable
against non-adaptive adversaries for inputs of arbitrary size. In our proof, we
restrict inputs to have slightly superlogarithmic size in k (just like [15] do); that
is, we set a(k) = log s(k) = Ω(log k). This enables us to enumerate all possible
messages in s(k) time and to respond to adversary’s queries adaptively. Fur-
ther, the proof of [4] is based on a q-strong Diffie-Hellman assumption (q-SDH),
which is implied by a weaker q-DHI assumption used in our proof. Correspond-
ingly, our proof is more involved but necessarily less tight than the proof of [4].

Theorem 1. Suppose the (s(k), 2a(k), ε(k))-DHI assumption holds in a bilinear
group G (|G| = p). Let the input size be a(k) and output size be b(k) = log2 p.
Then (Gen, Sign, Ver) is a (s′(k), ε′(k)) verifiable unpredictable function, where
s′(k) = s(k)/(2a(k) · poly(k)) and ε′(k) = ε(k) · 2a(k).

Proof. It is easy to see that uniqueness and provability properties of Definition 2
are satisfied. We thus concentrate on residual unpredictability.

We shall use a shortcut and write q = 2a(k). Suppose there exists an adversary
A, running in time s′(k), which guesses the value of the function at an unseen
point with non-negligible probability ε′(k). We shall construct an algorithm B
that by interacting with A breaks the q-DHI assumption with non-negligible
probability.

Input to the Reduction: Algorithm B is given a tuple
(
g, gα, . . . , g(αq)

) ∈
(G∗)q+1, for some unknown α ∈ Z∗

p. Its goal is to compute g1/α.
Key Generation: We guess that A will output a forgery on message x0 ∈r

{0, 1}a(k). We are right with probability 1/2a(k); error probability can be
decreased by repeating the algorithm sufficiently many times. Let β = α −
x0.5 We don’t know what β is because α is secret. However, we can use the
Binomial Theorem to compute

(
gβ , . . . , g(βq)

)
from

(
gα, . . . , g(αq)

)
. Because

a(k) = log(s(k)), we can enumerate all possible inputs in s(k) time. Let f(z)
be the polynomial

f(z) =
∏

w∈{0,1}a,w �=x0

(z + w) =
q−1∑
j=0

cjzj (for some coefficients c0, . . . , cq−1).

We can compute

h = gf(β) =
q−1∏
j=0

(
g(βj)

)cj

and hβ =
q∏

j=1

(
g(βj)

)cj−1

.

Finally, we set h to be the generator and give P K = hβ to A. The secret
key is SK = β, which we don’t know ourselves.

Responding to Oracle Queries: Without loss of generality, we assume that
A never repeats a query. Consider the ith query (1 ≤ i < q) on message xi. If

5 For the sake of readability, we slightly abuse the notation. We should really have
written β = α − ψ(x0), where ψ : {0, 1}a(k) �→ Z

∗
p.

A Verifiable Random Function with Short Proofs and Keys 423

xi = x0, then we fail. Otherwise, we must compute SignSK(xi) = h1/(xi+β).
Let fi(z) be the polynomial

fi(z) = f(z)/(z + xi) =
q−2∑
j=0

djzj (for some coefficients d0, . . . , dq−2).

We can compute

gfi(β) =
q−2∏
j=0

(
g(βj)

)dj

= h1/(xi+β)

and return it as the signature.
Outputting the Forgery: Eventually, A outputs a forgery (x∗, σ∗). If x∗ �=

x0, then our simulation failed. Because the signature is unique, we must
have σ∗ = h1/(x0+β) = gf(β)/(x0+β). Compute

f(z)/(z + x0) =
q−2∑
j=0

γjzj +
γ−1

z + x0
,

where γ−1 �= 0. Hence,⎛⎝σ∗ ·
q−2∏
j=0

(
g(βi)

)−γi

⎞⎠1/γ−1

= g1/(x0+β) = g1/α.

Let ε′(k) = ε(k) · 2a(k) and s′(k) = s(k)/(2a(k) · poly(k)). To finish the
proof, note that algorithm B succeeds with probability ε′(k)/2a(k) = ε(k).
Its running time is dominated by answering oracle queries, and each query
takes (2a(k) − 2) · poly(k) time to answer. Therefore, B will run in roughly
s′(k) · 2a(k)poly(k) = s(k) time. ��

Remark 1. The security reduction of Theorem 1 is not tight. It allows to con-
struct VUFs with input roughly a(k) = Ω(log s(k)). In theory, this means that
the input size we can achieve might be only slightly superlogarithmic in k (sim-
ilar to [15]). First, it might be reasonable to assume subexponential hardness
of the q-DHI assumption which will immediately allow one to support input of
size kΩ(1). Also, by utilizing a collision-resistant hash function, we will anyway
only need to construct VUFs with relatively small input size such as 160 bits.
Indeed, in Section 4.4, we show that our construction seems to yield a practical
and secure VUF for inputs of arbitrary length already when k = 1, 000 bits.

4.2 A Verifiable Random Function

Our main contribution is a direct construction of a verifiable random function
from a slightly stronger q-DBDHI assumption. The VRF (Gen, Prove, Ver) is
as follows.

424 Yevgeniy Dodis and Aleksandr Yampolskiy

Algorithm Gen(1k): Chooses a secret s ∈r Z∗
p and sets the secret key to

SK = s and the public key to P K = gs.
Algorithm ProveSK(x): We let ProveSK(x) =

(
FSK(x), πSK(x)

)
where

FSK(x) = e(g, g)1/(x+SK) is the VRF output and πSK(x) = g1/(x+SK) is
the proof of correctness.

Algorithm VerP K(x, y, π): To verify whether y was computed correctly,
check if e(gx · P K, π) = e(g, g) and whether y = e(g, π). If both checks
succeed, output 1; otherwise, output 0.

We can prove this scheme to be secure (in the sense of Definition 1) for small
inputs (superlogarithmic in k). We then show how to convert it into a VRF with
unrestricted input size.

Theorem 2. Suppose the (s(k), 2a(k), ε(k))-decisional BDHI assumption holds
in a bilinear group G (|G| = p). Let the input size be a(k) and the output size be
b(k) = log2 p. Then (Gen, Prove, Ver), as defined above, is a (s′(k), ε′(k))
verifiable random function, where s′(k) = s(k)/(2a(k) · poly(k)) and ε′(k) =
ε(k) · 2a(k).

Proof. It is trivial to show that uniqueness and provability properties of Defini-
tion 1 are satisfied. We thus concentrate on the pseudorandomness property.

We shall use q = 2a(k) as a shortcut. For sake of contradiction, suppose there
exists an algorithm A = (A1, A2), which runs in time s′(k), and can distinguish
between FSK(x) = e(g, g)1/(x+s) (for some x) and a random element in G1 with
probability at least 1/2 + ε′(k). We shall construct an algorithm B that uses A
to break the q-DBDHI assumption in G.

Input to the Reduction: Algorithm B is given a tuple (g, gα, . . . , g(αq), Γ) ∈
(G∗)q+1 ×G1, where Γ is either e(g, g)1/α ∈ G1 or a random element in G1.
Its goal is to output 1 if Γ = e(g, g)1/α and 0 otherwise.

Key Generation: We guess that A will choose to distinguish the VRF value
on message x0 ∈ {0, 1}a(k). Let β = α−x0 (see footnote 5). We generate the
public and private keys for algorithm A as in the proof of Theorem 1. Using
the Binomial Theorem, we compute the tuple

(
gβ , . . . , g(βq)

)
. We define

f(z) =
∏

w∈{0,1}a,w �=x0

(z + w) =
q−1∑
j=0

cjzj.

This enables us to compute the new base

h = gf(β) =
q−1∏
j=0

(
g(βj)

)cj

.

Finally, we give P K = hβ =
∏q

j=1

(
g(βj)

)cj−1

as the public key to A. The
secret key is SK = β, which we don’t know.

A Verifiable Random Function with Short Proofs and Keys 425

Responding to Oracle Queries: Consider the ith query (1 ≤ i < q) on mes-
sage xi. If xi = x0, we fail. Otherwise, we must respond with the correspond-
ing proof πSK(xi) and a VRF value FSK(xi).
As in Theorem 1, we define

fi(z) = f(z)/(z + xi) =
q−2∑
j=0

djzj (for some coefficients d0, . . . , dq−2).

We can thus compute

πSK(xi) =
q−2∏
j=0

(
g(βj)

)dj

= h1/(β+xi)

and
FSK(xi) = e(h, πSK(xi)) = e(h, h)1/(β+xi),

and return them to algorithm A.
Challenge: Eventually, A outputs a message x∗ on which it wants to be chal-

lenged. If x∗ �= x0, then we fail. Otherwise, A claims to be able to distinguish
e(h, h)1/(β+x0) = e(h, h)1/α from a random element in G1. Recall that

f(z) =
q−1∑
i=0

ciz
i.

Because f(z) is not divisible by (z + x0), we have:

f ′(z) = f(z)/(z + x0) − γ

z + x0

=
q−2∑
j=0

γjzj (for some γ �= 0 and coefficients γ0, . . . , γq−2).

Let Γ0 be

Γ0 =

⎛⎝q−1∏
i=0

q−2∏
j=0

e
(

g(βi), g(βj)
)ciγj

⎞⎠ ·
(

q−2∏
m=0

e
(

g, g(βt)
)γ· γm

)

= e
(

gf(β), gf ′(β)
)
· e

(
gγ , gf ′(β)

)
(1)

= e(g, g)(f(β)2− γ2)/α.

Set Γ ∗ = Γ (γ2) ·Γ0. Notice that if Γ = e(g, g)1/α, then Γ ∗ = e(gf(β), gf(β)/α)
= e(h, h)1/α. Meanwhile, if Γ is uniformly distributed, then so is Γ ∗. We give
Γ ∗ to algorithm A.

Note: It may seem as though computing Γ0 is very expensive. However,
from Equation (1), we see that the computation only takes two bilinear map
evaluations.

426 Yevgeniy Dodis and Aleksandr Yampolskiy

Guess: Algorithm A makes some more queries to which we respond as before.
Finally, A outputs a guess b ∈ {0, 1}. We return b as our guess as well.
The running time of the reduction is dominated by simulating oracle queries.

Per every query, we must perform one bilinear map evaluation (this takes poly(k)
time) and (2a − 2) multiplications and exponentiations (this takes 2a · poly(k)
time). Because A can make at most s′(k) queries, the running time of B is alto-
gether s′(k)(2a(k) ·poly(k)). The advantage of B in this experiment is ε′(k)/2a(k).
Setting s′(k) = s(k)/(2a(k) ·poly(k)) and ε′(k) = ε(k) ·2a(k) completes the proof.

��
4.3 Extending the Input Size

We constructed a VRF (Gen, Prove, Ver), which is provably secure for inputs
of small size a(k) = Ω(log(k)). We now explain how to handle inputs of arbitrary
size.

Hashing the Input. Notice that if we have a VRF ProveSK(·) : {0, 1}a(k) #→
{0, 1}b(k) and a collision-resistant hash function H(·) : {0, 1}∗ #→ {0, 1}a(k),
then their composition ProveSK(H(·)) : {0, 1}∗ #→ {0, 1}b(k) is trivially secure.
Although our security reduction is relatively loose, we can make the size of a
bilinear group large enough (we give exact numbers in Section 4.4) to have inputs
of length roughly a(k) = 160 bits, the length of SHA-1 digests. Restriction to
small inputs is therefore not limiting because we can always hash longer inputs.

Tree Construction. Although, we recommend using the previous construction
(by making the group large enough), in theory, we could always use the (ineffi-
cient) generic tree construction to extend the input length. Then, we do not have
to assume the existence of a collision-resistant hash function; having a universal
hash function suffices.

We shall use the following proposition:
Proposition 1 ([15]). If there is a VRF with input length a(k), output length
1, and security s(k), then there is a VRF with unrestricted input length, output
length 1 and security at least min(s(k)1/5, 2a(k)/5).

The construction first converts a VRF with output length 1 into a VRF with
output length (a−1). This transformation loses a factor of a in security. Because
our VRF has output length much larger than 1, we can omit this step. Instead,
we apply a universal hash function to VRF’s output and let the VRF’s value be
the first (a − 1) bits of hash function’s output (it is easily seen that these bits
will be pseudo-random as well).

The rest of the transformation proceeds as usual. We construct a binary trie
whose nodes are labeled with strings of length (a − 1). The root is labeled with
0a−1 and the children of node y are labeled with VRF values on inputs (y ◦ 0)
and (y ◦1). Computing the VRF value on input x ∈ {0, 1}∗ amounts to tracing a
path through the trie to the leaf corresponding to x. The VRF value is the label
of the leaf, and the proof of correctness is a tuple of VRF proofs – one proof per
each node on the path traced by x.6

6 The inputs have to be prefix-free for this tree construction to work. This can be
accomplished using techniques of [15].

A Verifiable Random Function with Short Proofs and Keys 427

We also note that both of the aforementioned techniques can be used to
convert the VUF in Section 4.1 into a VUF with unrestricted input length.

4.4 Efficiency

We now compare the efficiency of our construction with that of prior VRF con-
structions. We fix inputs to be a(k) = 160 bits, the length of SHA-1 digests, and
let q = 2a(k).

Our VRF. According to Theorem 2, if (s(k), q, ε(k))-DBDHI holds on G, then
our VRF is secure against adversaries running in time s′(k) = s(k)/(2a(k) ·
poly(k)) that have advantage ε′(k) = ε(k) · 2a(k). To be generous, we instantiate
ε′(k) = 2−80, s′(k) = 280, and poly(k) = 230. Then, we have: ε(k) = 2−240

and s(k) = 2270. Suppose no better algorithm exists for breaking the q-DBDHI
assumption than a generic group algorithm. Then, by Theorem 3 (which we
prove in Section 6), for these security parameters a bilinear group must have
size:

p ≥ 2(s(k) + q + 3)2q

ε(k)

=
2

(
2270 + 2160 + 3

)2 2160

2−240

≈ 2940.

Therefore, making the group size be a 1,000 bit prime seems sufficient to guar-
antee security of the VRF that takes 160 bit inputs. Proofs and keys consist of a
single group element and will roughly be 125 bytes each. We can generate such
groups using the standard parameter generator of [5].

VRF by Micali-Rabin-Vadhan [15]. This VRF operates over a multiplica-
tive group Z

∗
n, where n = pq is a k-bit RSA modulus. The fastest general-purpose

factoring algorithm today is the number field sieve [7]; it takes approximately
O

(
e1.9223(k1/3(log k)2/3)

)
time to factor a k bit number. The RSA based VUF

(not even a VRF) constructed in [15] has security s′(k) = s(k)/(2a(k) · poly(k))
where s(k) is hardness of RSA. Letting s′(k) = 280 and poly(k) = 230 as before,
we obtain an RSA security lower bound s(k) = 280 · (2160 · 230) = 2270. Because
RSA is only secure as long as we cannot factor n, to get 270 bits of security, we
need n to be a k-bit number, where

1.9223k1/3(log k)2/3 = 270.

Hence, n must be at least 14, 383 bits long if we want to use this VUF on
160 bit inputs. After following the tree construction, proofs for 160 bit inputs
will have size 280 kilobytes.

VRF by Dodis [8] and VUF by Lysyanskaya [14]. These constructions
work on elliptic curve groups, whose size is usually a 160 bit prime. At the bare

428 Yevgeniy Dodis and Aleksandr Yampolskiy

minimum, 160 bit messages yield keys and proofs of size 160 · 160 = 25, 600 bits,
which is about 3.2 kilobytes. In fact, they will probably have larger size due to
use of error-correcting codes and other encoding expansions.

To summarize, none of the prior VRF constructions come close to the 1,000
bit proofs and keys of our construction. If our VRF is used with the generic
tree construction, its keys and proofs consist of |x| group elements (one group
element per input bit) when the input is x ∈ {0, 1}∗. This is less than the |x|2
group elements (|x| group elements per input bit) needed by the VRF of [14].

5 Distributed VRF

We point out that our VUF/VRF constructions can be easily made distributed
(or even proactive). Indeed, both of the constructions simply amount to a secure
computation of the function πSK(x) = g1/(x+SK) when the servers have shares
of the secret SK. Because it is well known how to do multiparty addition, in-
version, and exponentiation [1, 2], this extension follows immediately. We notice
however that unlike the construction of Dodis [8], our distributed VUF/VRF is
interactive.

6 Generic Security of the q-DBDHI Assumption

In this section, we examine the q-DBDHI assumption in the generic group model
of Shoup [21]. We proceed to derive a lower bound on the computational com-
plexity of a generic adversary who breaks this assumption.

In the generic group model, elements of G and G1 are encoded as unique
random strings. We define an injective function θ : Zp #→ {0, 1}∗, which maps
a ∈ Zp to the string representation θ(ga) of ga ∈ G. Similarly, we define a
function θ1 : Zp #→ {0, 1}∗ for G1. The encodings are such that non-group
operations are meaningless. There exist three oracles which compute the group
action in G, the group action in G1, and the bilinear pairing e : G × G #→ G1

from elements’ encodings.

Theorem 3. Let A be an algorithm that solves the q-DBDHI problem. Assume
both x ∈ Z∗

p and the encoding functions θ, θ1 are chosen at random. If A makes at
most qG queries to oracles computing the group action in G, G1 and the bilinear
mapping e : G × G #→ G1, then∣∣∣∣∣Pr

[
A (

p, θ(1), θ(x), . . . , θ(xq),
θ1(Γ0), θ1(Γ1)

)
= b

b
r← {0, 1};

Γb ← 1/x; Γ1−b
r← Z∗

p

]
− 1

2

∣∣∣∣∣
≤ 2(qG + q + 3)2q

p
.

Proof. Instead of letting A interact with the actual oracles, we play the following
game.

A Verifiable Random Function with Short Proofs and Keys 429

We maintain two lists: L = { (Fi, si) : i = 0, . . . , t − 1} and L′ = { (F ′
i , s′i) :

i = 0, . . . , t′ − 1}. Here si, s′i ∈ {0, 1}∗ are encodings and Fi, F ′
i ∈ Zp[X, Γ0, Γ1]

are multivariate polynomials in X, Γ0, and Γ1. The total length of lists at step
τ ≤ qG in the game must be

t + t′ = τ + q + 3. (2)

In the beginning of the game, we initialize the lists to F0 = 1, F1 = X, . . . , Fq =
Xq and F ′

0 = Γ0, F ′
1 = Γ1. The corresponding encodings are set to arbitrary

distinct strings in {0, 1}∗. The lists have length t = q + 1 and t′ = 2.
We start the game by providing A with encodings (s0, . . . , sq, s′0). Algorithm

A begins to issue oracle queries. We respond to them in the standard fashion:

Group Action: Given a multiply/divide bit and two operands si and sj (0 ≤
i, j < t), we compute Ft = Fi ±Fj accordingly. If Ft = Fl for some l < t, we
set st = sl. Otherwise, we set st to a random string in {0, 1}∗\{s0, . . . , st−1},
and increment t by 1. Group action in G1 is computed similarly, except we
operate on list L′.

Bilinear Pairing: Given two operands si and sj (0 ≤ i, j < t), we compute the
product Ft′ = FiFj . If Ft′ = Fl for some l < t′, we set st′ = sl. Otherwise
we set it to a random string in {0, 1}∗\{s0, . . . , st′−1}. We then increment t′

by 1.

After making at most qG queries, A halts with a guess b̂ ∈ {0, 1}. We now
choose x, y

r← Z∗
p and consider Γb ← 1/x, Γ1−b = y for both choices of b. Our

simulation is perfect and reveals nothing to A about b unless the values that we
chose for indeterminates give rise to some non-trivial equality relation. Specifi-
cally, algorithm A wins the game if for any Fi �= Fj or any F ′

i �= F ′
j , either of

these hold:

1. Fi(x, 1/x, y) − Fj(x, 1/x, y) = 0
2. Fi(x, y, 1/x) − Fj(x, y, 1/x) = 0
3. F ′

i (x, 1/x, y) − F ′
j(x, 1/x, y) = 0

4. F ′
i (x, y, 1/x) − F ′

j(x, y, 1/x) = 0

Notice that A can never engineer an encoding of an element whose cor-
responding polynomial would have a 1/X term unless he is explicitly given it.
Therefore, we can only get a non-trivial equality relation as a result of numerical
cancellation.

For all i, deg(Fi) ≤ q and deg(F ′
i) ≤ 2q. We can use the Schwartz-Zippel

Theorem [20] to bound the probability of a cancellation. It tells us that for all
i, j, Pr[Fi − Fj = 0] ≤ q/p and Pr[F ′

i − F ′
j = 0] ≤ 2q/p. Thus A’s advantage is

ε ≤ 2 ·
((

t

2

)
q

p
+

(
t′

2

)
2q

p

)
< 2(qG + q + 3)2

q

p
(plugging into (2))

= O

(
q2
Gq + q3

p

)
. ��

430 Yevgeniy Dodis and Aleksandr Yampolskiy

It turns out that in a generic group model algorithm A that solves the q-
DBDHI problem has advantage, which is roughly twice as much as an advantage
of an algorithm solving the q-SDH problem (see [4], Section 5). The asymptotic
complexities are the same.

The following corollary is immediate.

Corollary 1. Any adversary that breaks the q-DBDHI assumption with proba-
bility 1

2 + ε (0 < ε < 1/2) in generic groups of order p such that q < o(3
√

p)
requires Ω(

√
εp/q) generic group operations.

7 Conclusion

We have presented a simple and efficient construction of a verifiable random
function. Our VRF’s proofs and keys have constant size regardless of the size of
the input. Our proofs of security are based on a decisional bilinear Diffie-Hellman
inversion assumption, which seems reasonable given current state of knowledge.
We also demonstrated that our scheme can be instantiated with elliptic groups
of very reasonable size which makes our constructions quite practical.

Acknowledgments

The authors would like to thank James Aspnes, Dan Boneh, Salil Vadhan, and
the anonymous referees for their helpful comments.

References

1. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
a constant number of rounds. In Proceedings of the ACM Symposium on Principles
of Distributed Computation, pages 201–209, 1989.

2. Michael Ben-or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computing. In Proceedings of the
20th Annual ACM Symposium on the Theory of Computing, pages 1–10, 1988.

3. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based en-
cryption without random oracles. In Advances in Cryptology – EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Berlin:
Springer-Verlag, 2004.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-
puter Science, pages 56–73. Berlin: Springer-Verlag, 2004.

5. Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing.
Lecture Notes in Computer Science, 2139:213–229, 2001.

6. Dan Boneh and Alice Silverberg. Application of multilinear forms to cryptography.
Cryptology ePrint Archive, Report 2002/080, 2002.
http://eprint.iacr.org/2002/080/.

7. Johannes A. Buchmann, J. Loho, and J. Zayer. An implementation of the general
number field sieve. Lecture Notes in Computer Science, 773:159–166, 1994.

A Verifiable Random Function with Short Proofs and Keys 431

8. Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions.
In Proceedings of 6th International Workshop on Theory and Practice in Public Key
Cryptography, pages 1–17, 2003.

9. Steven D. Galbraith. Supersingular curves in cryptography. Lecture Notes in
Computer Science, 2248:495–513, 2001.

10. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21th Annual ACM Symposium on the Theory of Computing,
pages 25–32, 1989.

11. S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer Course
“Cryptography and Computer Security” at MIT, 1996–1999, 1999.

12. Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother : an abuse-
resilient transaction escrow scheme. In Advances in Cryptology - Proceedings of
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
590–608. Springer-Verlag, 2004.

13. Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from Diffie-
Hellman in cryptographic groups. Cryptology ePrint Archive, Report 2001/003,
2001. http://eprint.iacr.org/2001/003/.

14. Anna Lysyanskaya. Unique signatures and verifiable random functions from DH-
DDH separation. In Proceedings of the 22nd Annual International Cryptology Con-
ference on Advances in Cryptology, pages 597–612, 2002.

15. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science,
pages 120–130, 1999.

16. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. Lecture Notes
in Computer Science, 2139:542–565, 2001.

17. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In CT-RSA, pages
149–163, 2002.

18. Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing.
IEICE Trans. Fundamentals, pages 481–484, 2002.

19. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, pages 458–467, 1997.

20. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the Association for Computing Machinery, 27:701–717, 1980.

21. Victor Shoup. Lower bounds for discrete logarithms and related problems. Lecture
Notes in Computer Science, 1233:256–266, 1997.

22. Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distribu-
tion extended to group communication. In Proceedings of the 3rd ACM Conference
on Computer and Communications Security, pages 31–37, 1996.

Author Index

Abdalla, Michel 47, 65
Al-Riyami, Sattam S. 398

Baek, Joonsang 380
Bangerter, Endre 154
Bleichenbacher, Daniel 9

Camenisch, Jan 154
Catalano, Dario 313
Cathalo, Julien 234
Chen, Liqun 362
Chevassut, Olivier 47
Chou, Chun-Yen 244
Chu, Cheng-Kang 172
Contini, Scott 184
Coron, Jean-Sébastien 234

Damg̊ard, Ivan 346
Ding, Jintai 288
Dodis, Yevgeniy 416
Dupont, Kasper 346

Fouque, Pierre-Alain 65

Gennaro, Rosario 313
Gjøsteen, Kristian 104
Granboulan, Louis 302
Guan, Dah-Jyh 138

Hayashi, Ryotaro 216
Heng, Swee-Huay 328
Hu, Yuh-Hua 244

Jonsson, Jakob 29
Joux, Antoine 258

Kubiatowicz, John 120
Kunz-Jacques, Sébastien 258
Kurosawa, Kaoru 328

Lai, Feipei 244
Laih, Chi-Sung 138

Malone-Lee, John 362
Maurer, Ueli 154
Muller, Frédéric 258

Naccache, David 16, 234
Nguyẽ̂n, Phong Q. 16

Ogata, Wakaha 328
Ong, Emil 120

Paterson, Kenneth G. 398
Pieprzyk, Josef 184
Pointcheval, David 47, 65
Preneel, Bart 275

Ricordel, Pierre-Michel 258
Robshaw, Matthew J.B. 29

Safavi-Naini, Reihaneh 380
Schindler, Werner 85
Schmidt, Dieter 288
Steinfeld, Ron 184
Sun, Hung-Min 199
Susilo, Willy 380

Tanaka, Keisuke 216
Tunstall, Michael 16
Tzeng, Wen-Guey 172

Wang, Huaxiong 184
Wang, Lih-Chung 244
Whelan, Claire 16
Wolf, Christopher 275

Yacobi, Oded 1
Yacobi, Yacov 1
Yampolskiy, Aleksandr 416
Yang, Bo-Yin 244
Yang, Cheng-Ta 199
Yang, Wu-Chuan 138

	Frontmatter
	Cryptanalysis
	A New Related Message Attack on RSA
	Breaking a Cryptographic Protocol with Pseudoprimes
	Experimenting with Faults, Lattices and the DSA

	Key Establishment
	Securing RSA-KEM via the AES
	One-Time Verifier-Based Encrypted Key Exchange
	Password-Based Authenticated Key Exchange in the Three-Party Setting

	Optimization
	On the Optimization of Side-Channel Attacks by Advanced Stochastic Methods
	Symmetric Subgroup Membership Problems

	Building Blocks
	Optimizing Robustness While Generating Shared Secret Safe Primes
	Fast Multi-computations with Integer Similarity Strategy
	Efficient Proofs of Knowledge of Discrete Logarithms and Representations in Groups with Hidden Order
	Efficient {\itshape k}-Out-of-{\itshape n} Oblivious Transfer Schemes with Adaptive and Non-adaptive Queries

	RSA Cryptography
	Converse Results to the Wiener Attack on RSA
	RSA with Balanced Short Exponents and Its Application to Entity Authentication
	The Sampling Twice Technique for the RSA-Based Cryptosystems with Anonymity
	From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

	Multivariate Asymmetric Cryptography
	Tractable Rational Map Signature
	Cryptanalysis of the Tractable Rational Map Cryptosystem
	Large Superfluous Keys in \mathcal{M}ultivariate \mathcal{Q}uadratic Asymmetric Systems
	Cryptanalysis of HFEv and Internal Perturbation of HFE

	Signature Schemes
	A Generic Scheme Based on Trapdoor One-Way Permutations with Signatures as Short as Possible
	Cramer-Damg{\aa}rd Signatures Revisited: Efficient Flat-Tree Signatures Based on Factoring
	The Security of the FDH Variant of Chaum's Undeniable Signature Scheme
	Efficient Threshold RSA Signatures with General Moduli and No Extra Assumptions

	Identity-Based Cryptography
	Improved Identity-Based Signcryption
	Efficient Multi-receiver Identity-Based Encryption and Its Application to Broadcast Encryption
	CBE from CL-PKE: A Generic Construction and Efficient Schemes

	Best Paper Award
	A Verifiable Random Function with Short Proofs and Keys

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

