

Lecture Notes in Computer Science 3357
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Helena Handschuh M. Anwar Hasan (Eds.)

Selected Areas
in Cryptography

11th International Workshop, SAC 2004
Waterloo, Canada, August 9-10, 2004
Revised Selected Papers

13

Volume Editors

Helena Handschuh
Gemplus, Issy-les-Moulineaux, France
E-mail: Helena.Handschuh@gemplus.com

M. Anwar Hasan
University of Waterloo, Waterloo, Ontario, Canada
E-mail: ahasan@ece.uwaterloo.ca

Library of Congress Control Number: 2004117402

CR Subject Classification (1998): E.3, D.4.6, K.6.5, F.2.1-2, C.2, H.4.3

ISSN 0302-9743
ISBN 3-540-24327-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11376224 06/3142 5 4 3 2 1 0

Preface

SAC 2004 was the eleventh in a series of annual workshops on Selected Areas
in Cryptography. This was the second time that the workshop was hosted by
the University of Waterloo, Ontario, with previous workshops being held at
Queen’s University in Kingston (1994, 1996, 1998 and 1999), Carleton University
in Ottawa (1995, 1997 and 2003), the Fields Institute in Toronto (2001) and
Memorial University of Newfoundland in St. John’s (2002). The primary intent
of the workshop was to provide a relaxed atmosphere in which researchers in
cryptography could present and discuss new work on selected areas of current
interest. This year’s themes for SAC were:

– Design and analysis of symmetric key cryptosystems.
– Primitives for symmetric key cryptography, including block and stream ci-

phers, hash functions, and MAC algorithms.
– Efficient implementation of cryptographic systems in public and symmetric

key cryptography.
– Cryptographic solutions for mobile (web) services.

A record of 117 papers were submitted for consideration by the program
committee. After an extensive review process, 25 papers were accepted for pre-
sentation at the workshop (two of these papers were merged). Unfortunately,
many good papers could not be accommodated this year. These proceedings
contain the revised versions of the 24 accepted papers. The revised versions
were not subsequently checked for correctness.

Also, we were very fortunate to have two invited speakers at SAC 2004.

• Eli Biham arranged for some breaking news in his talk on “New Results on
SHA-0 and SHA-1.” This talk was designated as the Stafford Tavares Lec-
ture.

• Yevgeniy Dodis enlightened us with “Basing Cryptography on Biometrics and
Other Noisy Data.”

We are very grateful to the program committee and to the numerous external
reviewers for their hard work and precious help. They collectively produced over
380 review reports in less than two months, which was quite a challenge. We
have tried to list all of them in these proceedings and we sincerely hope we did
not omit anyone.

We are also indebted to the University of Waterloo, Queen’s University
Kingston, Mitsubishi Electric Corporation, and Research in Motion Ltd. for
their financial support of the workshop.

Special thanks are due to K.U.Leuven for kindly providing the Webreview
software, Julien Brouchier for running both the submission server and Webre-
view, Janet Bullock for perfectly handling registrations, and Jaewook Chung and

VI Preface

the local arrangements committee from the University of Waterloo for setting
up the website and organizing a very nice and entertaining workshop.

Last but not least we would like to thank all submitters and all the partici-
pants who made this year’s workshop a great success.

November 2004 Helena Handschuh and M. Anwar Hasan

11th Annual Workshop on Selected
Areas in Cryptography

August 9–10, 2004, Waterloo, Ontario, Canada

Program and General Chairs

Helena Handschuh . Gemplus, France
M. Anwar Hasan . University of Waterloo, Canada

Program Committee

Carlisle Adams .University of Ottawa, Canada
Henri Gilbert .France Télécom, France
Mike Just . Carleton University, Canada
Charanjit Jutla . IBM, USA
Arjen Lenstra .Lucent Technologies, USA

and T.U. Eindhoven, The Netherlands
Stefan Lucks . Universität Mannheim, Germany
Mitsuru Matsui .Mitsubishi Electric, Japan
Alfred Menezes . University of Waterloo, Canada
Shiho Moriai . Sony Computer Entertainment Inc., Japan
Kaisa Nyberg . Nokia, Finland
Bart Preneel .Katholieke Universiteit Leuven, Belgium
Matt Robshaw . Royal Holloway University of London, UK
Douglas R. Stinson . University of Waterloo, Canada
Serge Vaudenay . EPFL, Switzerland
Michael Wiener . Cryptographic Clarity, Canada

Local Arrangements Committee

Janet Bullock, Jaewook Chung, Agustin Dominguez, M. Anwar Hasan, Arash
Reyhani-Masoleh, and Siavash B. Sarmadi

Sponsors

University of Waterloo
Mitsubishi Electric Corporation
Research in Motion Ltd.
Queen’s University Kingston

VIII Organization

External Referees

Frederik Armknecht
Gildas Avoine
Steve Babbage
Thomas Baignères
Lejla Batina
Come Berbain
Florent Bersani
Eli Biham
Olivier Billet
Antoon Bosselaers
Eric Brier
Jaewook Chung
Carlos Cid
Jean-Sébastien Coron
Nicolas Courtois
Paolo D’Arco
Christophe De Cannière
Nevine Ebeid
Soichi Furuya
Guang Gong
Louis Goubin
Shai Halevi
Darrel Hankerson

Jason Hinek
Daisuke Inoue
Tetsu Iwata
Shaoquan Jiang
Antoine Joux
Pascal Junod
Masayuki Kanda
John Kelsey
Kazukuni Kobara
Matthias Krause
Ulrich Kühn
Joseph Lano
Yi Lu
Jonathan Lutz
Kazuhiko Minematsu
Serge Mister
Jean Monnerat
Sumio Morioka
James Muir
Sean Murphy
Junko Nakajima
Kazuomi Oishi
Sıddıka Berna Örs

Matthew Parker
Kenny Paterson
Josyula R. Rao
Arash Reyhani-Masoleh
Pankaj Rohatgi
Taiichi Saito
Fumihiko Sano
Akashi Satoh
Werner Schindler
Jasper Scholten
Kyoji Shibutani
Takeshi Shimoyama
Taizo Shirai
Dirk Stegemann
Daisuke Suzuki
Jacques Traoré
Dai Watanabe
Brecht Wyseur
Yongjin Yeom
Erik Zenner
Robert Zuccherato

Table of Contents

Stream Cipher Cryptanalysis

An Improved Correlation Attack on A5/1
Alexander Maximov, Thomas Johansson, Steve Babbage 1

Extending the Resynchronization Attack
Frederik Armknecht, Joseph Lano, Bart Preneel . 19

A New Simple Technique to Attack Filter Generators and Related
Ciphers

H̊akan Englund, Thomas Johansson . 39

Side-Channel Analysis

On XTR and Side-Channel Analysis
Daniel Page, Martijn Stam . 54

Provably Secure Masking of AES
Johannes Blömer, Jorge Guajardo, Volker Krummel 69

Block Cipher Design

Perfect Diffusion Primitives for Block Ciphers – Building Efficient MDS
Matrices

Pascal Junod, Serge Vaudenay . 84

Security of the MISTY Structure in the Luby-Rackoff Model: Improved
Results

Gilles Piret, Jean-Jacques Quisquater . 100

FOX: A New Family of Block Ciphers
Pascal Junod, Serge Vaudenay . 114

Efficient Implementations

A Note on the Signed Sliding Window Integer Recoding and a
Left-to-Right Analogue

Roberto Maria Avanzi . 130

X Table of Contents

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis of
Low Complexity

Soonhak Kwon, Chang Hoon Kim, Chun Pyo Hong 144

Modular Number Systems: Beyond the Mersenne Family
Jean-Claude Bajard, Laurent Imbert, Thomas Plantard 159

Efficient Doubling on Genus Two Curves over Binary Fields
Tanja Lange, Marc Stevens . 170

Secret Key Cryptography I

About the Security of Ciphers (Semantic Security and Pseudo-Random
Permutations)

Duong Hieu Phan, David Pointcheval . 182

A Subliminal Channel in Secret Block Ciphers
Adam Young, Moti Yung . 198

Blockwise Adversarial Model for On-line Ciphers and Symmetric
Encryption Schemes

Pierre-Alain Fouque, Antoine Joux, Guillaume Poupard 212

Cryptanalysis

Cryptanalysis of a White Box AES Implementation
Olivier Billet, Henri Gilbert, Charaf Ech-Chatbi 227

Predicting Subset Sum Pseudorandom Generators
Joachim von zur Gathen, Igor E. Shparlinski . 241

Collision Attack and Pseudorandomness of Reduced-Round Camellia
Wu Wenling, Feng Dengguo, Chen Hua . 252

Cryptographic Protocols

Password Based Key Exchange with Mutual Authentication
Shaoquan Jiang, Guang Gong . 267

Product Construction of Key Distribution Schemes for Sensor Networks
Reizhong Wei, Jiang Wu . 280

Table of Contents XI

Deterministic Key Predistribution Schemes for Distributed Sensor
Networks

Jooyoung Lee, Douglas R. Stinson . 294

On Proactive Secret Sharing Schemes
Ventzislav Nikov, Svetla Nikova . 308

Secret Key Cryptography II

Efficient Constructions of Variable-Input-Length Block Ciphers
Sarvar Patel, Zulfikar Ramzan, Ganapathy S. Sundaram 326

A Sufficient Condition for Optimal Domain Extension of UOWHFs
Mridul Nandi . 341

Author Index . 355

An Improved Correlation Attack on A5/1

Alexander Maximov1, Thomas Johansson1, and Steve Babbage2

1 Dept. of Information Technology, Lund University, Sweden
2 Vodafone Group R&D, UK

Abstract. A new approach to attack A5/1 is proposed. The proposed
attack is a refinement of a previous attack by Ekdahl and Johansson.
We make two important observations that lead to a new attack with
improved performance.

1 Introduction

The security of GSM conversation is based on usage of the A5 family of stream
ciphers. Many hundred million customers in Europe are protected from the over-
the-air piracy by the stronger version in this family, the A5/1 stream cipher.
Other customers on other markets use the weaker version A5/2. The approximate
design of A5/1 was leaked in 1994, and in 1999 the exact design of both A5/1
and A5/2 was discovered by Briceno [1]. As the result, a lot of investigations of
the A5 stream ciphers were done.

The first analysis of the A5/1 cipher resulted in “Guess-and-Determine” type
of attacks [2]. Then a time-memory trade-off attack was proposed by Biryukov,
Shamir, and Wagner [3], which in some cases can break A5/1 in seconds. Unfortu-
nately, it needs to use a huge precomputational time and about 4×73Gb of hard
memory. The attack complexity grows exponentially depending on the length of
the LFSRs in the design of the cipher. Another attack was presented by Biham
and Dunkelman [4]. Their attack breaks the cipher within 239.91 A5/1 clocking
assuming 220.8 bits of keystream available. This attack has expensive assymp-
totic behaviour. In 2002, Krause, [5] presented a general attack on LFSR-based
stream ciphers, called BDD-based cryptanalysis. This attack requires compu-
tation complexity of nO(1)2an, a < 1 polynomial time operations, where a is a
constant depending on the cipher and n is the combined shift registers length.
For A5/1, the attack achieves a = 0.6403, so the complexity is again exponential
in the shift registers length.

A completely different way to attack A5/1 was proposed by Ekdahl and
Johansson in 2001 [6]. The attack needs a few minutes for computations, and
2-5 minutes of conversation (plaintext). The idea behind the attack came from
correlation attacks. This is the only attack for which the complexity does not
grow exponentially with the shift register length.

Finally, very recently Barkan, Biham and Keller [7] investigated the usage of
the A5 ciphers in GSM. They demonstrated an active attack where a false base
station can intercept a conversation and perform a man in the middle attack.
By asking for usage of the weak A5/2 algorithm in the conversation with the

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Maximov, T. Johansson, and S. Babbage

base station and then breaking it, the false base station finds the session key
which is also used in the A5/1 protected conversation with the mobile unit. In
[7] the authors also propose the passive memory-time trade-off ciphertext only
attack. As one of the examples, if 5 minutes of conversation is available, then the
attack needs one year of precomputations with 140 computers working together,
22×200GBs hard discs. Then the attack can be done in time 228 by one PC.
Obviously, the authors did not try to implement the attack and the complexity
was just estimated.

In this paper a new approach to attack the A5/1 stream cipher is proposed.
We consider the Ekdahl-Johansson attack as the basis, and apply several new
improvements. As the result, the new attack now needs only less then 1 minute
of computations, and a few seconds of known conversation. It does not need any
notable precomputation time, and needs reasonable space of operation memory.

For the case of a ciphertext-only attack on A5/1, we use the fact that some
redundancy is part of the plaintext. There are at least two kinds of redundancy
that are explicit and may be used in an attack where only ciphertext is available.
The first kind is the fact that coding is done before encryption, which results
in linear relationships in the plaintext since the parity check symbols are also
encrypted. This observation was used in [7]. The second kind of redundancy is
the fact that during silence, a special frame including a large number of zeros is
sent [8]. Silence occurs very often, but unfortunately these frames used for silence
are transmitted less frequently, one to initialise a period of silence and then two
each second. The attack that we propose can be considered in a ciphertext-only
scenario, in which case we use this redundancy during silence to get some known
outputs from the cipher.

Although several of the previous attacks are sufficient to break A5/1 in a
known plaintext attack, we believe that further progress is very important. The
A5/1 stream cipher is perhaps the most used cipher in the world, and from the
wireless communication channel interception of the communication is very easy.
Mobile base stations are not expensive to buy and they can be used to record
GSM conversations.

The paper is organized as follows. In Section 2 a short description of the cipher
A5/1 is given. The basic Ekdahl-Johansson attack on A5/1 is briefly described
in Section 3. Then, in Section 4, we give new ideas to improve the attack in
general. The details and particulars of the attack simulations are described in
Section 4.2. Then in Section 5 the results of our simulations are presented.

2 Description of A5/1

A GSM conversation between A and B is a sequence of frames, each sent in
about 4.6 milliseconds. Each frame consists of 228 bits – 114 bits of which is the
message from A to B, and the second half bits are representing communication
from B to A. One session is encrypted with a secret session key K. For the jth
frame the running key generator is initialised with mixture of K and the publicly
known frame counter, denoted by Fj . It then generates 228 bits of running key

An Improved Correlation Attack on A5/1 3

for the current frame. The ciphertext is a binary xor of the running key and the
plaintext.

A5/1 consists of 3 LFSRs of lengths 19, 22,
and 23, which are denoted R1, R2, and R3, respec-
tively. The LFSRs are clocked in an irregular fash-
ion. Each of them has one tap-bit, C1, C2, and C3,
respectively. In each step, 2 or 3 LFSRs are clocked,
depending on the current values of the bits C1, C2,
and C3. Thus, the clocking control device imple-

values of clocking
C1 C2 C3 R1 R2 R3

1 ⊕ c c c × √ √
c 1 ⊕ c c

√ × √
c c 1 ⊕ c

√ √ ×
c c c

√ √ √

ments the majority rule, shown in the table on the right. Note, for each step the
probability that an individual LFSR is being clocked is 3/4.

After the initialisation procedure for the LFSRs, 228 bits of running key are
produced, using irregular clocking. In each step one bit of the running key is
calculated as the binary xor of the current output bits from the LFSRs.

The initialisation process uses the session key K and the known frame counter
Fn. First the LFSRs are initialised to zero. They are then clocked 64 times,
ignoring the irregular clocking, and the key bits of K are consecutively xored in
parallel to the feedback of each of the registers. In the second step the LFSRs
are clocked 22 times, ignoring the irregular clocking, and the successive bits of
Fn are again xored in parallel to the feedback of the LFSRs. Let us call the state
of LFSRs at this time the initial state of the frame. In the third step the LFSRs
are clocked 100 times with irregular clocking, but ignoring outputs. Then, the
LFSRs are clocked 228 times with the irregular clocking, producing 228 bits of
the running key. For a more detailed description of A5/1 we refer to [1].

0 107 20 22

0 10 2120

0 8 13 16 17 18

Clocking tap C1

Clocking tap C2

21

Clocking tap C3

Keystream

Clocking tap C1

Clocking tap C2

Clocking tap C3

Clock
controlling

circuit

R1 clocking control

R2 clocking control

R3 clocking control

Fig. 1. The structure of A5/1 cipher

4 A. Maximov, T. Johansson, and S. Babbage

3 A Short Description of the Ekdahl-Johansson Attack
on A5/1

This attack was proposed in 2002 by Ekdahl and Johansson. The idea behind
the attack came from correlation attacks, and is based on the linearity of the
initialisation procedure. The attack needs a set of m frames (about 20000-50000
in their attack), during one session, i.e., when the session key K is not changed.

For notation purposes, let the key K = (k1, . . . , k64), and the frame counter
Fj = (f1, . . . , f22), where ki, fj ∈ F2, i = 1..64, j = 1..22. Denote by uj

1(l1),
uj

2(l2), and uj
3(l3) the output bits of LFSRs, if they are independently clocked

l1, l2, and l3 times, respectively, after the LFSRs being in the initial state, and
when the current frame is number j. The 228 bits of the running key are then
denoted as vj(101), . . . , vj(100+228), and every vj(t) = uj

1(l1)⊕uj
2(l2)⊕uj

3(l3),
for some unknown l1, l2, l3.

Note, that uj
1(l1) is a linear combination of K and Fj bits, since all operations

before the initial state are linear. I.e., uj
1(l1) can be represented as uj

1(l1) =
X1,l1(Fj) + Y1,l1(K), where X1,l1(Fj) is a known fixed value and Y1,l1(K) =∑64

i=1 y1,l1,i · ki is a linear function with known coefficients y1,l1,i ∈ F2.
With the same arguments we define

uj
1(l1) = X1,l1(Fj) + Y1,l1(K),

uj
2(l2) = X2,l2(Fj) + Y2,l2(K),

uj
3(l3) = X3,l3(Fj) + Y3,l3(K),

whereXa,la(Fj) and the coefficients ya,la,i ∈ F2, for a = 1, 2, 3, la = 0, 1, . . . , 100+
228, i = 1, . . . , 64 are precomputed and fixed. Let us write

s1(l1) = Y1,l1(K), s2(l2) = Y2,l2(K), s3(l3) = Y3,l3(K). (1)

Our target is to estimate 19 bits from the first LFSR s1(0), . . . , s1(18), 22
bits from the second LFSR s2(0), . . . , s2(21), and 23 bits from the third LFSR
s3(0), . . . , s3(22). These 64 bits map one-to-one to 64 bits of the key K, if the
frame counter Fj is given.

For notation purposes we write E
p
= Ê, when Ê appears to be an estimator

for E, such that Pr{E = Ê} = p, for some probability p. Ê can be derived from
accessible data, or assumed (guessed).

One can think about the data we have access to as a binary table of m frames
in the form ⎛⎜⎜⎜⎝

v1(101) v1(102) . . . v1(100 + 228)
v2(101) v2(102) . . . v2(100 + 228)

...
vm(101) vm(102) . . . vm(100 + 228)

⎞⎟⎟⎟⎠ .

The idea behind the attack is to observe that vj(101)
p
= s1(l1) + s2(l2) +

s3(l3) + X1,l1(Fj) + X2,l2(Fj) + X3,l3(Fj) for some p �= 1/2, if l1, l2, l3 are
chosen properly. The probability p = 1

2 + 1
2Pr{(l1, l2, l3) at time t}, where

Pr{(l1, l2, l3) at time t} is the probability that at time 101 the LFSRs were

An Improved Correlation Attack on A5/1 5

regularly clocked exactly l1, l2, l3 times, respectively. The probability that at
time t ∈ {101 . . . 100 + 228}, the LFSRs have been clocked (l1, l2, l3) times is

Pr{(l1, l2, l3) at time t} =

(
t

t−l1

)(
t−(t−l1)

t−l2

)(
t−(t−l1)−(t−l2)

t−l3

)
4t

. (2)

Let us now define the known value Ôj
l1,l2,l3

(t) = vj(t)⊕X1,l1(Fj)⊕X2,l2(Fj)⊕
X3,l3(Fj). Then

Ôj
l1,l2,l3

(t)
p
= s1(l1) ⊕ s2(l2) ⊕ s3(l3). (3)

The case when Ôj
l1,l2,l3

(t) is equal to the value s1(l1) ⊕ s2(l2) ⊕ s3(l3) can
happen only in two ways,
a) The LFSRs are really clocked l1, l2, l3 at time t, happening with probability

Pr{(l1, l2, l3) at time t}. If so, the expression will be true with probability 1.
b) If the condition in a) is not fulfilled, the expression will still be true with

probability 1/2.

This means that the relation (3) is biased (p > 1/2).
From the given frames we can estimate many of the linear combinations

s1(l1)⊕s2(l2)⊕s3(l3) for different triples (l1, l2, l3). But we only need 64 correct
estimates in order to recover the key K uniquely.

To minimise the amount of frames m and perform the estimation with
low probability of error, Ekdahl and Johansson suggested to use the values of
vj(101), . . . , vj(164) for all j for better estimation of s1(l1)⊕s2(l2)⊕s3(l3). They
used the expression

Pr{s1(l1) ⊕ s2(l2) ⊕ s3(l3) = 1, for the frame j} = pj
(l1,l2,l3)

=

=
∑

t∈{101...164}
Pr{(l1, l2, l3) at time t} ·

[
Ôj

l1,l2,l3
(t) = 0

]

+ 1/2 ·
⎛⎝1 −

∑
t∈{101...164}

Pr{(l1, l2, l3) at time t}
⎞⎠ .

This probability gives the estimation of the corresponding linear combination
for one frame j. We will increase the possibility to estimate the value of s1(l1)+
s2(l2)+s3(l3) correctly, when m frames (samples) v1(101 . . . 328), . . . , vm(101 . . .
328) are given, as each of them provides some small contribution. By calculating
the likelihood ratio

Λl1,l2,l3 =
m∑

j=1

log2

[
pj
(l1,l2,l3)

1 − pj
(l1,l2,l3)

]
we achieve a likelihood value (estimate) which is taken over all m frames. This
can be turned into a binary estimate by

s1(l1) ⊕ s2(l2) ⊕ s3(l3)
p
=

{
0 if Λl1,l2,l3 ≥ 0
1 if Λl1,l2,l3 < 0 ,

where p > 0.5 depends mainly on m. In [6] the authors finally examine different
strategies for implementing the recovery of the key bits as efficient as possible.

6 A. Maximov, T. Johansson, and S. Babbage

4 Explaining the New Attack

In this section we describe our discovered improvements in general. Our main
purpose is to reduce the number of frames m, which is needed for the attack.

4.1 Statistical Analysis of m Frames

We mentioned before that we have identified two general ideas for improving the
previous results. The first is the fact that it is beneficial to study the derivative
sequences instead of the sequences themselves. Assume that at time t the LFSRs
are clocked l1, l2, and l3 times, respectively. Then we also assume that at time
t+ 1 the third LFSR is not clocked. In this case we have the equalities,

Ôj
l1,l2,l3

(t) = s1(l1) ⊕ s2(l2) ⊕ s3(l3),

Ôj
l1+1,l2+1,l3

(t+ 1) = s1(l1 + 1) ⊕ s2(l2 + 1) ⊕ s3(l3).
(4)

Then the probability Pr{Ôj
l1,l2,l3

(t) ⊕ Ôj
l1+1,l2+1,l3

(t + 1) = s1(l1) ⊕ s2(l2) ⊕ s1
(l1 + 1) ⊕ s2(l2 + 1)} = 1

4 · Pr{(l1, l2) at time t}, where

Pr{(l1, l2) at time t} =

(
t

t−l1

)(
l1

t−l2

)
23t−(l1+l2)

.

Note, that 1
4 · Pr{(l1, l2) at time t} > Pr{(l1, l2, l3) at time t} so it gives us a

larger bias when estimating the value of linear combinations of si(li)’s. Below is
a comparison of these probabilities.

(l1, l2, l3), t Pr{(l1, l2, l3) at t} · 104 1
4Pr{(l1, l2) at t} · 104

(76, 76, 76), 101 9.7434 22.1207
(79, 79, 79), 105 9.2012 21.2840
(80, 80, 80), 105 6.6388 19.3778
(79, 80, 81), 106 8.3858 20.8899
(82, 82, 82), 109 8.7076 20.5083

The first idea to improve the attack is then to consider two consecutive
expressions (4). Their sum only depends on two LFSRs, and the probability of
the event is higher than before. We also note that we can similarly assume that
LFSR-1 and LFSR-2 are not clocked at some time t. This gives us 3 cases. We
define

1ẑ
j
l2,l3

(t) = Ôj
l1,l2,l3

(t) ⊕ Ôj
l1,l2+1,l3+1(t+ 1)

p
= s2(l2) ⊕ s3(l3) ⊕ s2(l2 + 1) ⊕ s3(l3 + 1),

2ẑ
j
l1,l3

(t) = Ôj
l1,l2,l3

(t) ⊕ Ôj
l1+1,l2,l3+1(t+ 1)

p
= s1(l1) ⊕ s3(l3) ⊕ s1(l1 + 1) ⊕ s3(l3 + 1),

3ẑ
j
l1,l2

(t) = Ôj
l1,l2,l3

(t) ⊕ Ôj
l1+1,l2+1,l3

(t+ 1)
p
= s1(l1) ⊕ s2(l2) ⊕ s1(l1 + 1) ⊕ s2(l2 + 1).

(5)
The case when 3ẑ

j
l1,l2

(t) is equal to the value s1(l1) ⊕ s2(l2) ⊕ s1(l1 + 1) ⊕
sj
2(l2 + 1) can happen in two ways,

An Improved Correlation Attack on A5/1 7

a) The first and the second LFSRs are indeed clocked l1, l2 times at time t
occuring with probability Pr{(l1, l2) at time t}, AND at time t+1 the third
LFSR is not clocked, with probability 1/4. The expression is always true in
this case.

b) If the condition in a) is not fulfilled the expression will still be true with
probability 1/2.

The second idea is to consider d consecutive estimators jointly as one d-
dimension estimator. If we look at the sequence of d estimators of the form
3ẑ

j
l1,l2

(t), . . . ,3 ẑ
j
l1+d−1,l2+d−1(t + d − 1), then we note that they are dependent

on each other. To use this fact we suggest to consider not binary expressions,
but vectors of d bits. Introduce a new d-bits vector, derived from the frame j,

3Ẑj
l1,l2

(t) =

⎛⎜⎜⎜⎜⎝
3ẑ

j
l1,l2

(t)

3ẑ
j
l1+1,l2+1(t+ 1)

...
3ẑ

j
l1+d−1,l2+d−1(t+ d− 1)

⎞⎟⎟⎟⎟⎠ (6)

=

⎛⎜⎜⎜⎝
vj(t) ⊕ vj(t+ 1) ⊕ X1,l1(j) ⊕ X2,l2(j) ⊕ X1,l1+1(j) ⊕ X2,l2+1(j)

vj(t+ 1) ⊕ vj(t+ 2) ⊕ X1,l1+1(j) ⊕ X2,l2+1(j) ⊕ X1,l1+2(j) ⊕ X2,l2+2(j)
...

vj(t+ d− 1) ⊕ vj(t+ d) ⊕ X1,l1+d−1(j) ⊕ X2,l2+d−1(j) ⊕ X1,l1+d(j) ⊕ X2,l2+d(j)

⎞⎟⎟⎟⎠ .

Define the d-dimension vector 3Sl1,l2 (which is unknown for the attacker) as

3Sl1,l2 =

⎛⎜⎜⎜⎝
s1(l1) + s2(l2) + s1(l1 + 1) + s2(l2 + 1)

s1(l1 + 1) + s2(l2 + 1) + s1(l1 + 2) + s2(l2 + 2)
...

s1(l1 + d− 1) + s2(l2 + d− 1) + s1(l1 + d) + s2(l2 + d)

⎞⎟⎟⎟⎠ . (7)

Then, from (5) it follows that

3Sl1,l2
p
= 3Ẑj

l1,l2
(t), (8)

with some biased probability p. Note that the symbols are now of alphabet size
2d.

Examining this in more detail, consider d consecutive irregular steps. The
total number of possible scenarios is 4d, since in each step one of four types
of irregular clockings can be chosen, according to the bits C1, C2, C3. If we as-
sume that at time t the first and the second LFSRs are clocked exactly l1, l2
times, then we can classify the bits of the vector 3Ẑj

l1,l2
(t). They can be either

Correct (i.e., the next clocking is the required one so the bit has the same value
as the corresponding bit in the vector 3Sl1,l2), or Random (i.e., the bit can be 0
or 1, with probability 1/2). For each possible pattern {Correct,Random}d we
calculate the corresponding number of scenarios out of 4d possible, by exhaus-
tively trying all the scenarios. For example, when d = 4, we have the following
distribution:

8 A. Maximov, T. Johansson, and S. Babbage

3Ẑj
l1,l2

(t)
Condition 3ẑ

j
l1,l2 3ẑ

j
l1+1,l2+1 3ẑ

j
l1+2,l2+2 3ẑ

j
l1+3,l2+3 Probability Event

(t) (t+ 1) (t+ 2) (t+ 3)
Assumption Random Random Random Random 1 − P0 ER

is NOT correct
Assumption Correct Correct Correct Correct P0 · 1/28 E0
is correct Random Correct Correct Correct P0 · 1/28 E1

Correct Random Correct Correct P0 · 1/28 E2
Random Random Correct Correct P0 · 1/28 E3
Correct Correct Random Correct P0 · 1/28 E4
Random Correct Random Correct P0 · 1/28 E5
Correct Random Random Correct P0 · 1/28 E6
Random Random Random Correct P0 · 1/28 E7
Correct Correct Correct Random P0 · 3/28 E8
Random Correct Correct Random P0 · 3/28 E9
Correct Random Correct Random P0 · 3/28 E10
Random Random Correct Random P0 · 3/28 E11
Correct Correct Random Random P0 · 11/28 E12
Random Correct Random Random P0 · 11/28 E13
Correct Random Random Random P0 · 43/28 E14
Random Random Random Random P0 · 171/28 E15

where P0 = Pr{(l1, l2) at time t} and
the assumption is that the first two
LFSRs have clocked (l1, l2) at time t.

Let us assume that we have received
the vector 3Ẑj

l1,l2
(t) = (0, 1, 1, 0)T

at time t from the frame j. If
we consider the hypothesis that
3Sl1,l2 = (0, 0, 1, 1), then the error
pattern is Ed = 3Sl1,l2 ⊕ 3Ẑj

l1,l2
(t) =

(0, 1, 0, 1). This error pattern Ed can
be the result of one of the follow-
ing events: ER, E10, E11, E14, E15.
Thus, the conditional probability
Pr{3Sl1,l2 = (0, 0, 1, 1)|3Ẑj

l1,l2
(t) = (0, 1,

1, 0)} = Pr{Ed = (0, 1, 0, 1)} =
Pr{ER}

24 + Pr{E10}
22 + Pr{E11}

23 + Pr{E14}
23 +

Pr{E15}
24 = (1 − P0)/24 + P0 · 275/212.

Continuing in this way, the complete
table for Pr{Ed} can be derived. The

Ed = 3Sl1,l2 ⊕ 3Ẑj
l1,l2

(t)
Ed Pr{Ed}

(0, 0, 0, 0) (1 − P0)/24 + P0 · 431/212

(1, 0, 0, 0) (1 − P0)/24 + P0 · 229/212

(0, 1, 0, 0) (1 − P0)/24 + P0 · 293/212

(1, 1, 0, 0) (1 − P0)/24 + P0 · 183/212

(0, 0, 1, 0) (1 − P0)/24 + P0 · 341/212

(1, 0, 1, 0) (1 − P0)/24 + P0 · 199/212

(0, 1, 1, 0) (1 − P0)/24 + P0 · 263/212

(1, 1, 1, 0) (1 − P0)/24 + P0 · 173/212

(0, 0, 0, 1) (1 − P0)/24 + P0 · 377/212

(1, 0, 0, 1) (1 − P0)/24 + P0 · 211/212

(0, 1, 0, 1) (1 − P0)/24 + P0 · 275/212

(1, 1, 0, 1) (1 − P0)/24 + P0 · 177/212

(0, 0, 1, 1) (1 − P0)/24 + P0 · 323/212

(1, 0, 1, 1) (1 − P0)/24 + P0 · 193/212

(0, 1, 1, 1) (1 − P0)/24 + P0 · 257/212

(1, 1, 1, 1) (1 − P0)/24 + P0 · 171/212

distribution for d = 4 is given as in the
table on the right.

An Improved Correlation Attack on A5/1 9

For each frame j and for each vector (b0, . . . , bd−1)T we calculate

Pr{3Sl1,l2 = (b0, . . . , bd−1)T in jth frame} = 3p
j
l1,l2

(b0, . . . , bd−1)

=
∑

t∈{101...164}
Pr{(l1, l2) at time t} · Pr{Ed = 3Ẑj

l1,l2
(t) ⊕ (b0, . . . , bd−1)T }

+
1
2

⎛⎝1 −
∑

t∈{101...164}
Pr{(l1, l2) at time t}

⎞⎠ .

(9)

All the m frames give us a more precise estimation:

Pr{3Sl1,l2 = (b0, . . . , bd−1)T } = 3pl1,l2(b0, . . . , bd−1)

=
m∏

j=1
3p

j
l1,l2

(b0, . . . , bd−1) = 2
∑m

j=1 log2 (3pj
l1,l2

(b0,...,bd−1)).
(10)

In this formula the last two values should both be divided by a factor equal
to their sum over all possible values of (b0, . . . , bd−1). This factor has been
left out because we are really interested in the relative values of the proba-
bilities for different values of (b0, . . . , bd−1). To simplify numerical calculations,
3pl1,l2(b0, . . . , bd−1) can be normalised through division by any constant.

We have just found the way how to calculate the probability Pr{3Sl1,l2 =
(b0, . . . , bd−1)T }, for every d-dimension value (b0, . . . , bd−1)T . In a similar fash-
ion, based on the equation (5), we can derive the d-dimension vectors 1Ẑj

l2,l3
(t)

and 2Ẑj
l1,l3

(t), and then define the vectors 1Sl2,l3 and 2Sl1,l3 . The formulas to cal-
culate Pr{1Sl2,l3 = (b0, . . . , bd−1)T } and Pr{2Sl1,l3 = (b0, . . . , bd−1)T } are similar
to equations (9) and (10).

Finally, we have a set of h tables like Pr{rSli,lj = (b0, . . . , bd−1)}. If we
“guess” the key K̂, then in each such distribution table one row (probability)
can be selected, corresponding to K̂. The measure of likelihood acceptance of K̂
is the product of the selected probabilities through all the h tables.

Our task is then to select a set of “guessed” keys K̂ with maximum probabil-
ities, and then perform a test whether the real key K can be one of the selected.
More details depend on the exact structure of simulations, which we discuss in
the next section.

4.2 Creating Candidate Tables of s(l)-Sequences

In the previous subsection we have found how to create a distribution table
for d-dimension random variables rSli,lj . If we have h such distributions, then
a “guessed” key K̂ is measured by its probability, as described above. We are
now faced with the problem of how to select the most likely K̂’s in an efficient
way. For this purpose we partly use the idea that was introduced in the Ekdahl-
Johansson attack, but in a modified way. In this section we show the technical
details of searching for the best K̂’s, and focus on computation aspects.

10 A. Maximov, T. Johansson, and S. Babbage

The idea is that first we choose some interval I1 = [I1,a . . . I1,b] and then we
construct h1 distribution tables for 3Sl1,l2 , where l1, l2 ∈ I1. I.e., the number of
distribution tables will be h1 = (I1,b − I1,a + 1)2, and the number of s1(l)’s and
s2(l)’s that are involved in the linear expressions for 3Sl1,l2 is 2·(I1,b−I1,a+1+d),
see formula (7).

Let us consider some choice of values for s1(I1,a), . . . , s1(I1,b+d), s2(I1,a), . . . ,
s2(I1,b +d) to be a pair of vectors (S1,I1 ,S2,I1) (note, the vector of interest ends
with I1,b + d, rather then I1,b + d − 1; the reason can be seen from (7), where
l1, l2 ∈ I1), i.e.,

(s1(I1,a), . . . , s1(I1,b + d), s2(I1,a), . . . , s2(I1,b + d))
p
= (S1,I1 ,S2,I1). (11)

The measure of the choice is the probability mass defined as∏
l1,l2∈I1

Pr{3Sl1,l2 |(S1,I1 ,S2,I1)}. (12)

Now, by exhaustive search the most likely r pairs (S1,I1 ,S2,I1) form a set
3TI1 = {(S1,I1 ,S2,I1)}. The size of the exhaustive search is 22·(I1,b−I1,a+1+d).
In a similar way we can perform the same exhaustive search to create the sets
1TI1 = {(S2,I1 ,S3,I1)} and 2TI1 = {(S1,I1 ,S3,I1)}, each containing the r most
likely candidates.

To understand better how the exhaustive search for 3TI1 is done, one can
think of the matrix multiplication:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0 0 . . . 0 0 0 . . . 0 0 1 1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

...
. . .

...
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 . . . 0 0 0 . . . 0 0 0 0 0 0 . . . 1 1 0 . . . 0 0 0 . . . 0 0
1 1 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 1 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

...
. . .

...
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 . . . 0 0 0 . . . 0 0 0 0 0 0 . . . 0 1 1 . . . 0 0 0 . . . 0 0
...

...
0 0 0 . . . 0 0 . . . 1 1 0 . . . 0 0 0 0 0 0 . . . 0 0 0 . . . 1 1 0 . . . 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . 0 0 0 . . . 1 1 0 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(Ia)
...

s1(Ib + d)
s2(Ia)

...
s2(Ib + d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3ZIa,Ia

3ZIa,Ia+1

...

3ZIb,Ib

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where for every “guessed” vector (S1,I1 ,S2,I1) (exhaustive search) the set of
vectors 3Sl1,l2

p
= 3Zl1b,l2 is determined uniquely by the matrix multiplication.

We can then calculate the value of our choice by formula (12). After that, the
most likely r pairs are selected and stored in the list (or table) 3TI1 .

Recall that to recover the key K uniquely, we need to have 64 bits: 19 bits of
s1(l)’s, 22 bits of s2(l)’s, and 23 bits of s3(l)’s. It means that for d = 4 it might
be enough to have only one interval I1 of size 19. When we try to reduce the
number of frames m needed for the attack, then there are two reasons for why
this simple scenario is not working:

An Improved Correlation Attack on A5/1 11

a) to create one likelihood table 3TI1 the exhaustive search will be of size
22·(19+4) = 246 – this is practically impossible;

b) when the number of frames m is reduced, then the number of candidates r
must be increased significantly, so that the correct pairs are present in the
tables 1TI1 , 2TI1 , and 3TI1 . Otherwise, the joint intersection of these sets
will not give us the correct triple (S1,I1 ,S2,I1 ,S3,I1).

To overcome these problems, we could take I1 of a short size, and introduce
one more interval, I2 = [I2,a . . . I2,b], and then we construct two kinds of tables
∗TI1 and ∗TI2 each of size r. We need to take I2 such that it intersects I1, other-
wise the intersection would be r2, and, hence, r cannot be large. Now in a similar
way we can create the sets 1TI2 = {(S2,I2 ,S3,I2)}, 2TI2 = {(S1,I2 ,S3,I2)}, and
3TI2 = {(S1,I2 ,S2,I2)}, each containing the r most likely pairs, the measure of
which is calculated similar to the formula (12). Due to the intersection

Si,I1×Si,I2 =

{
Si,I1∪I2 , if the end of Si,I1 corresponds to the beginning of Si,I2

∅, otherwise

the intersection of these two sets is

3TI1∪I2 = 3TI1 ∩ 3TI2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(S1,I1∪I2 ,S2,I1∪I2) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(S1,I1 ,S2,I1) ∈ 3TI1

(S1,I2 ,S2,I2) ∈ 3TI2

S1,I1 × S1,I2 �= ∅
S2,I1 × S2,I2 �= ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The larger the intersection of the intervals I1 and I2, the smaller the inter-
section set, i.e. |3TI1∪I2 | 	 |3TI1 | · |3TI2 | = r2. Let us call this type of intersec-
tions as horizontal intersection. Similar horizontal intersections are 1TI1∪I2 and
2TI1∪I2 .

By vertical intersection we call the intersections of the form:

1,2TIi
= 1TIi

∩ 2TIi
=

{
(S1,Ii

,S2,Ii
,S3,Ii

) :

{
(S2,Ii ,S3,Ii) ∈ 1TIi

(S1,Ii ,S3,Ii) ∈ 2TIi

}
,

and 2,3TIi
, 1,3TIi

are defined in a similar way. One more triple vertical intersec-
tion is defined as

1,2,3TIi = 1TIi∩2TIi∩3TIi =

⎧⎪⎨⎪⎩(S1,Ii ,S2,Ii ,S3,Ii) :

⎧⎪⎨⎪⎩
(S2,Ii ,S3,Ii) ∈ 1TIi

(S1,Ii ,S3,Ii) ∈ 2TIi

(S1,Ii
,S2,Ii

) ∈ 3TIi

⎫⎪⎬⎪⎭ .

4.3 Design of Intervals

Let us take one interval I ′
1 = [87 . . . 97]. Two extreme situations are when

(l1, l2) = (87, 87) and (l1, l2) = (97, 97). In each frame j there are only 228
bits are accessible vj(101), . . . , vj(100 + 228). In Figure 2 we see that the prob-
ability Pr{(l1, l2) at time t} for this interval gets its maximum value on around

12 A. Maximov, T. Johansson, and S. Babbage

t ≈ (116 . . . 129). Hence, the bits around v(116) . . . v(129) give us the most infor-
mation about the d-dimension vectors, when l1, l2 ∈ I1. We can also say that for
this interval the informative bits are around v(105) . . . v(145), because for any
other v’s the probability is almost 0.

110 120 130 140 150 160 170 180
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
(l

1
, l

2
)=(87, 87)

(l
1
, l

2
)=(97, 97)

v(101) . . . v(101 + 228)

P
r{

(l
1
,l

2
)

at
ti

m
e

t}

Fig. 2. The density of Pr{(l1, l2) at time t} when (l1, l2) = (87, 87) and (l1, l2) =
(97, 97)

Let us now consider three more intervals I ′
2 = [63 . . . 73], I ′

3 = [165 . . . 175],
and I ′

4 = [231 . . . 241]. In Figure 3 the bounded densities for each interval are
shown. The interval I ′

2 is moved to the left below t < 101, where the valuable v’s
are unaccessible for us. It means that this choice is not appropriate. On the other
hand, the interval I ′

4 is moved to the right and very close to the right border of
accessible v’s. This interval can be considered as the last appropriate interval.
Also note that as the interval is moved to the righ the amplitute decreases, i.e.
the error probability of the random variables estimation is higher.

In our simulations we decided to choose the size of each interval to be 11.
Independently of the parameter d ≥ 1 in each table 3TIi

we store only the pairs
(S1,Ii

,S2,Ii
) of vectors each of size 12 bits only. The schematical structure of

intervals is depicted below in Figure 4.
Two neighbour intervals intersect in 6 positions, whereas the last d− 1 posi-

tions are assumed to be badly estimated (tail bits). I.e., any horizontal intersec-
tion of two tables 3TIi

and 3TIi+1 will be done by 12 bits (6 bits are s1(Ii+1),
. . . , s1(Ii+1 + 5), and similar 6 bits are s2(Ii+1), . . . , s2(Ii+1 + 5)). Also note
that any vertical intersection will be done in 12 bits also. The choice of this
structure of the intervals allowed us to introduce several efficient strategies to
intersect the tables.

An Improved Correlation Attack on A5/1 13

120 140 160 180 200 220 240 260 280 300 320
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

v(101) . . . v(101 + 228)

P
r{

(l
1
,l

2
)

at
ti

m
e

t}

I′
1 = [87 . . . 97]

I′
2 = [63 . . . 73]

I′
3 = [165 . . . 175]

I′
4 = [231 . . . 241]

Fig. 3. The bounded densities for I′
1 = [87 . . . 97], I′

2 = [63 . . . 73], I′
3 = [165 . . . 175],

and I′
4 = [231 . . . 241]

+d=4Size=11

6 intersection bits

s69s70s71s72s73s74s75s76s77s78s79s80s81s82s83s84s85s86s87s88s89s90s91s92s93s94s95s96

I0 ⇒

I1 ⇒

I2 ⇒

. . .

...

Fig. 4. The structure of intervals used in simulations

Since the size of each interval is 11, it means that the number of distribution
tables of ∗Sli,lj -random variables is 112 = 121. When d = 4, the number of
variables involved in ∗Sli,lj ’s is 2 · (11 + 4) = 30. Hence, to create one ∗TIi-set
of the r most likelihood pairs, we need to perform an exhaustive search of size
230. The number of such sets ∗TIi

is 9 (3 intervals times 3 cases for ’*’).
In our simulations we have considered 28 intervals:{

I0 = [69 . . . 79]
Ik = 6 · k + I0 for k = 1, 2, . . . , 27.

(13)

So, the last interval is I27 = [231 . . . 241] (see also Figure 3). When for a chosen
interval Ii we estimate the probability Pr{3Sl1,l2 = (b0, . . . , bd−1)T } with the

14 A. Maximov, T. Johansson, and S. Babbage

formula (9), then we only need to look through the bits vj that are valuable for
Ii. Let us set the “window” of valuable bits to be of size 64, then, for example,
for the interval I1 on the Figure 3 the “window” is t1 = [101 . . . 164], for I3 ⇒
t3 = [203 . . . 266], and for I4 ⇒ t4 = [266 . . . 329]. Actually, the “window” can
be less, but 64 bits completely cover the most valueable v’s for any interval Ii.

The likelihood sets ∗TIi
, each containing r pairs, can be presented in the

following table:

I0 I1 . . . I27

Case 1 1TI0 =
(S2,I0 ,S3,I0)

1TI1 =
(S2,I1 ,S3,I1)

1TI27 =
(S2,I27 ,S3,I27)

Case 2 2TI0 =
(S1,I0 ,S2,I0)

2TI1 =
(S1,I1 ,S2,I1)

2TI27 =
(S1,I27 ,S2,I27)

Case 3 3TI0 =
(S1,I0 ,S2,I0)

3TI1 =
(S1,I1 ,S2,I1)

3TI27 =
(S1,I27 ,S2,I27)

The time complexity to form these data is O(3 ·28 · (112 ·2d ·m ·64+222+2d)).
This is because there are 84 sets ∗Ti; to create each set requires 112 distribution
tables of size 2d; to calculate each value in the table requires m · 64 operations;
and the exhaustive search complexity for each set is 222+2d.

4.4 Strategies for Intersection of the Tables ∗TIi

When the first part of the attack is done, the second part is just intersection of
the sets until we get the set of triples 1,2,3T∗ of appropriate size. Here are several
strategies that we can follow to achieve our goal:

I. Intersection of 9 tables, large r. Try all triples of intervals (Ik, Ik+1, Ik+2),
for k = 0, 1, . . . , 25. The intersection of 9 tables gives us the
table 1,2,3TIk∪Ik+1∪Ik+2 of triples (S1,Ik∪Ik+1∪Ik+2 ,S2,Ik∪Ik+1∪Ik+2 ,
S3,Ik∪Ik+1∪Ik+2). Each S contains 24 bits, but we need only 19, 22, and
23 bits for LFSR-1, LFSR-2, and LFSR-3, respectively. We can do first
vertical intersections and get 1,2,3TIi

, and then perform horizontal inter-
section. Since any of the intersections is done by 12 bits, the number of
the most likely pairs in ∗TIi

can be quite large. For this strategy we can
safely use r ≈ 50000;

II. Intersection of 6 tables, medium r. The same as Strategy I, but for each
interval one table is discarded. We just assume that the discarded tables
do not contain the correct pairs. Then perform the intersection of the
remaining 6 tables. The number of assumptions is 33. The parameter r is
about r ≈ 30000.

III. Intersection of 4 tables, small r. Try all pairs of intervals (Ik, Ik+2), for
all k = 0, 1, . . . , 25. We assume also that one of the tables ∗TIk

and one
of ∗TIk+2 do not contain the correct pair. The number of assumptions is
32. For the remaining 4 tables we perform the intersection. Note, there is
no horizontal intersection, but only 2 vertical intersections, one for Ik and
one for Ik+2. Due to this the critical value for the parameter r is about

An Improved Correlation Attack on A5/1 15

r ≈ 10000. The appropriate choice of the intersection scheme made this
strategy work.

IV. Intersection of 4 tables, small r, version 2. The same as Strategy III,
but the pairs of intervals (Ik1 , Ik2) can be so that k1 = 0, 1, . . . , 25, and
k2 = k1 + 2, . . . , 28. Unfortunately, it can happen that some outputs from
LFSR’s in the second interval Ik2 will be a linear combination of s(l)’s from
Ik1 . For LFSR-1, the size of which is 19, it is not very critical because we
achieve 24 bits of information. It means that even if 5 bits will depend
on others, we still have a full rank in translation from s(l)’s to 19 bits of
the key K. It is more critical for LFSR-3, which is of length 23. Anyway,
if the system will not be of full rank, then some bits we can just guess.
That makes this strategy work in general (implementation is then more
complicated).

V. Heuristic procedure, r is dynamic. Can be introduced in the following way:
If in some step for some intersection T′ ∩T′′ we get ∅, or a very small set,
then increase the value r for T′ and T′′ selectively, until their intersection
give us a set of size at least r0, for some threshold value. Thus, we can
start creating the sets ∗TIi with a small value of r, and then increase it
selectively, when necessary.

So, here is a wide choice to choose a strategy. In our simulations we have
tried several of them.

5 Simulation Results

The attack can basically be divided into three steps,

1) Statistical analysis of m frames,
2) Decoding process and generating the tables ∗TIi

,
3) Intersection of the tables and check estimated keys K̂.

For the first two steps we present the actual time. The attack was imple-
mented on Pentium-4, CPU 2.4GHz, 256Mb RAM, OS Windows XP Pro SP1.

1st step/ 2nd step m=2000 m=5000 m=10000
d=1 11 sec/ 18 sec 26 sec / 18 sec 58 sec / 18 sec
d=2 14 sec/ 8 min 32 sec / 8 min 72 sec / 8 min
d=4 40 sec/ 7 hrs 94 sec / 7 hrs 190 sec / 7 hrs

The measure of “goodness” of the attack can be expressed in terms of the
number of frames m needed and its success rate. The attack was successfully
implemented on a usual PC-computer, and it performs the attack from several
seconds to several minutes, depending on the choice of strategy, and parameters
m, d, and r.

Success rate of the attack depends on the choice of the design parameters d
and r, and the strategy that is used. For some values of m and d here we present
in Figure 5 the plots for the probabilities:

Pr{ the correct vector is in ∗TIi , for given parameter r}.

16 A. Maximov, T. Johansson, and S. Babbage

When the tables are constructed, in the intersection process it is very impor-
tant that the correct pair is present in the corresponding table. Otherwise, the
intersection will never give us a correct key.

In Figure 5 we show the real estimated success rates for different strategies,
with different number of frames m and the attack design parameter d. In Fig-
ure 5 (upper left) consider the curve corresponding to d = 1 and to Strategy I,
when m = 10000 frames. For r = 15000 we have the success rate of the attack
around 58%, whereas for Strategies II-IV the success rate is almost 100%.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

for d=1
for d=2

m = 10000

The size of the tables r = |∗TIi |

Su
cc

es
s

R
at

e
of

th
e

A
tt

ac
k

St.I

St.II
St.IIISt.IV

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1
for d=1
for d=2

m = 5000

The size of the tables r = |∗TIi |

Su
cc

es
s

R
at

e
of

th
e

A
tt

ac
k

St.I

St.II

St.III

St.IV

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5
for d=1
for d=2

m = 2000

The size of the tables r = |∗TIi |

Su
cc

es
s

R
at

e
of

th
e

A
tt

ac
k

St.ISt.II
St.III

St.IV

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1
m = 10000, Strategy I

The size of the tables r = |∗TIi |

Su
cc

es
s

R
at

e
of

th
e

A
tt

ac
k

d = 1 (335 points)
d = 2 (210 points)

d = 4 (7 points)

Fig. 5. Strategies comparison for m = 10000 (top left), m = 5000 (top right), and m =
2000 (down left). The effect of d on the success rate on the example when m = 10000
and Strategy I is applied (down right)

From the plots below the Strategy IV looks the most attractive. In this strat-
egy we need to intersect only 4 tables, but the disadvantage is that there is no
horizontal intersection. And then after two vertical intersections we need to try
all possible combinations of elements in two tables. One more disadvantage is
that we could get some equation dependencies between two intervals, so then
the actual time complexity will grow. On the contrary, strategy III looks the
next the most attractive, and there are no problems with intervals. Since there
are no horizontal intersections in these strategies, this forces us to reduce the

An Improved Correlation Attack on A5/1 17

parameter r significantly. The critical value of this parameter is rcr = 10000,
and the optimal is ropt = 2000 from the computational and memory points of
view. Strategy II avoids such problems mostly because of the presence of vertical
intersections, which are intersecting on 12 bits.

A practical solution to overcome the time-memory problems related to inter-
sections of the tables can be the use of the Heuristic Strategy V, combined with
one of the previous strategies. The idea of Heuristic is to control the size of the
intersection. If the size is likely to be increased by some threshold criteria, then
try to increase the initial parameter r until the limit is reached, or solution is
found. Heuristic can also control the size of the tables independently, and this
will give the best performance of the attack.

Dramatic advantage of use the proper design parameter d is seen in the same
Figure 5. To make the advantage clearer, the bottom right subplot shows how
much we gain when d is 1, 2, and 4. When r = 15000, the change of the parameter
d from d = 1 to d = 2 significantly increases the success rate from 58% to 70%.
These simulations were done for m = 10000 frames, and with the application of
Strategy I.

Finally, we show the advantage of our attack in comparison with the previous
Ekdahl-Johansson attack in the following two tables:

Success Rate/ Ekdahl-Johansson Attack (2002)
(Time of the Attack) Number of Frames/(time of GSM conversation in min/sec)

Configuration 30000 50000 70000
(2m30s) (3m45s) (5m20s)

3 Intervals of size 7 0.02/(1min) 0.13/(2min) 0.49/(3min)
3 Intervals of size 8 0.02/(2min) 0.20/(3min) 0.57/(4min)
2 Intervals of size 9 0.03/(3min) 0.33/(4min) 0.76/(5min)

Success Rate/ Our Proposed Attack
(Time of the Attack) Number of Frames/(time of GSM conversation in min/sec)

Configuration 2000 5000 10000
(9sec) (43sec) (46sec)

St.I, d=2, r=10K 0.01/(8min) 0.05/(8min) 0.60/(8min)
St.II, d=1, r=5K 0.01/(29sec) 0.15/(44sec) 0.93/(76sec)
St.III, d=2, r=5K 0.02/(8min) 0.40/(8min) 0.99/(8min)
St.IV, d=2, r=5K 0.05/(10min) 0.85/(10min) 0.9999(10min)

6 Conclusions

We have demonstrated how two new ideas provide improved performance for
a correlation attack against A5/1. In simulation we get a high success rate for
only 2000-5000 frames, using very little computation. But there is still deviation
in performance depending on the strategies we choose, which means that there
may very well be further improvements to come if we can find the best attack
strategies. Another interesting topic is to examine how small m can be made if

18 A. Maximov, T. Johansson, and S. Babbage

we allow a substantial increase in attack complexity. If m can be decreased a bit
further, ciphertext only attack may be practically possible, as discussed briefly
in the introduction of the paper.

Acknowledgments

We thank Eli Biham for his useful comments on the paper.

References

1. M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation of A5/1.
Available at http://jya.com/a51-pi.htm, Accessed August 18, 2003, 1999.

2. J.D. Golić. Cryptanalysis of alleged A5 stream cipher. In W. Fumy, editor, Advances
in Cryptology—EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 239–255. Springer-Verlag, 1997.

3. A. Biryukov, A. Shamir, and D. Wagner. Real time cryptanalysis of A5/1 on a
PC. In B. Schneier, editor, Fast Software Encryption 2000, volume 1978 of Lecture
Notes in Computer Science, pages 1–13. Springer-Verlag, 2000.

4. E. Biham and O. Dunkelman. Cryptanalysis of the A5/1 GSM stream cipher. In
B. E. Roy and E. Okamoto, editors, Progress in Cryptology—INDOCRYPT 2000,
volume 1977 of Lecture Notes in Computer Science, pages 43–51. Springer-Verlag,
2000.

5. M. Krause. BDD-based cryptanalysis of keystream generators. In L.R. Knudsen,
editor, Advances in Cryptology—EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 222–237. Springer-Verlag, 2002.

6. P. Ekdahl and T. Johansson. Another attack on A5/1. In Proceedings of Interna-
tional Symposium on Information Theory, page 160. IEEE, 2001.

7. E. Barkan, E. Biham, and N. Keller. Instant ciphertext only cryptanalysis of GSM
encrypted communication. In D. Boneh, editor, Advances in Cryptology—CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 600–616. Springer-
Verlag, 2003.

8. ETSI EN 300 963 v8.0.1 (2000-11) Standard. Digital cellular telecommunications
system (Phase 2+) (GSM); Full rate speech; Comfort noise aspect for full rate speech
traffic channels (GSM 06.12 version 8.0.1 Release 1999), 2000.

0 The work described in this paper has been supported in part by Grant VR 621-2001-
2149, in part by the Graduate School in Personal Computing and Communication
PCC++, and in part by the European Commission through the IST Program under
Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Extending the Resynchronization Attack�

Frederik Armknecht1,��, Joseph Lano2,� � �, and Bart Preneel2

1 Universität Mannheim, Theoretische Informatik,
68131 Mannheim, Germany

armknecht@th.informatik.uni-mannheim.de
2 Katholieke Universiteit Leuven,

Dept. Elect. Eng.-ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

{joseph.lano, bart.preneel}@esat.kuleuven.ac.be

Abstract. Synchronous stream ciphers need perfect synchronization be-
tween sender and receiver. In practice, this is ensured by a resync mech-
anism. Daemen et al. [10] first described attacks on ciphers using such a
resync mechanism. In this paper, we extend their attacks in several ways
by combining the standard attack with cryptanalytic techniques such as
algebraic attacks and linear cryptanalysis. Our results show that using
linear resync mechanisms should be avoided, and provide lower bounds
for the nonlinearity required from a secure resync mechanism.

1 Introduction

Synchronous stream ciphers generate a key stream independently from the plain-
text. They typically consist of a finite state machine from which at each iteration
a key stream bit is generated by an output function. Synchronous stream ciphers
have the advantage that there is no error propagation. On the other hand, per-
fect synchronization between sender and receiver is required. In order to prevent
synchronization loss or to restore synchronization after synchronization loss is
detected, a resynchronization mechanism is used. Such a mechanism generates a
new initial state for the finite state machine from the secret key and a unique
initialization vector IV and thus prevents the reuse of key stream. For the sake
of efficiency the resynchronization mechanism should be as fast as possible.

Daemen, Govaerts and Vandewalle [10] observed that this resynchronization
mechanism can lead to a new type of attacks on synchronous stream ciphers.
They also showed an efficient attack on nonlinearly filtered systems using a linear
resynchronization mechanism and using an output Boolean function with few

� This work was supported by the Concerted Research Action (GOA) Mefisto-
2000/04 of the Flemish Government.

�� This work has been supported by grant 620307 of the DFG (German Research
Foundation).

� � � Research financed by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 19–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 F. Armknecht, J. Lano, and B. Preneel

inputs. Golic and Morgari [13] extended this attack to the case where the output
function is unknown. Borissov et al. [7] showed that a ciphertext-only attack is
also possible in some cases.

In this paper, we extend the resynchronization attack to overcome some limi-
tations of the original attack of Daemen et al. We achieve this by further refining
the original resynchronization attack and by combining the attack with other
attack methodologies, notably with algebraic attacks. We do not show practical
applications of our attacks in this article, but describe such attacks on E0, A5
and the summation generator in the extended version of our paper [2].

The paper is organized as follows. In Sect. 2, we present some preliminary
notions: Boolean functions, the general framework of a stream cipher, algebraic
attacks and resynchronization attacks. In Sect. 3 we present the Daemen et al.
attack and its limitations. In Sect. 4 we show how to perform the Daemen et
al. attack in real-time by precomputation. In Sect. 5 we describe several meth-
ods to mount a resync attack when the number of resyncs is small. Section 6
describes methods to mount attacks when the output function has many inputs.
In Sect. 7, we describe attacks on stream ciphers with memory and in Sect. 8 we
discuss attacks on stream ciphers with nonlinear resynchronization mechanism.
We conclude in Sect. 9.

2 Preliminaries

2.1 Boolean Functions and Related Inputs

In this section we repeat some definitions and known facts about Boolean func-
tions. Additionally, we provide some theorems about Boolean functions and re-
lated inputs. All calculations are done over the finite field GF(2).

Definition 1. For α = (α1, . . . , αn) and x = (x1, . . . , xn) ∈ {0, 1}n, we define
mα(x) :=

∏
i x

αi
i and the degree degmα := |α| := #{i|αi = 1}.

Theorem 2. (Algebraic Normal Form) Let f : {0, 1}n → {0, 1} be a Boolean
function. Then, f(x) can be written as f(x) =

⊕
α∈{0,1}n cα ·mα(x) for unique

coefficients cα ∈ {0, 1}. Hence, the value max{degmα|cα �= 0} is unique and is
called the degree deg f of f .

Definition 3. For α = (α1, . . . , αn), α′ = (α′
1, . . . , α

′
n) ∈ {0, 1}n we say that

α′ ≤ α if ∀i : α′
i ≤ αi (treated as integers). Consequently, we say that α′ < α if

α′ ≤ α but α′ �= α. For α′ ≤ α we define α− α′ := (α1 − α′
1, . . . , αn − α′

n).

Obviously, α′ ≤ α (resp. α′ < α) implies degmα′ ≤ degmα (resp. degmα′ <
degmα).

Lemma 4. Let α, δ(1), δ(2) ∈ {0, 1}n be arbitrary. For i = 1, 2 it holds that
mα(x⊕ δ(i)) =

⊕
α′≤α mα′(x)mα−α′(δ(i)) and mα(x⊕ δ(1))⊕mα(x⊕ δ(2)) has a

degree ≤ degmα − 1.

Extending the Resynchronization Attack 21

Proof. The first equation is obvious. The second one is because of:
mα(x+ δ(1)) +mα(x+ δ(2))
=

∑
α′≤α

(
mα′(x)mα−α′(δ(1)) +mα′(x)mα−α′(δ(2))

)
= mα(x) +mα(x)︸ ︷︷ ︸

=0

+
∑

α′<α

(
mα′(x)mα−α′(δ(1)) +mα′(x)mα−α′(δ(2))

)
. ��

Theorem 5. Let f be a Boolean function with deg f = d. Then, f(x ⊕ δ(1)) ⊕
f(x⊕ δ(2)) has a degree ≤ d− 1.

Proof. By Theorem 2 we can write f(x) as
∑

α,|α|≤d cαmα(x). Then, by lemma 4

it is f(x⊕ δ(1)) ⊕ f(x⊕ δ(2)) =
⊕

α,|α|≤d cα

(
mα(x⊕ δ(1)) ⊕mα(x⊕ δ(2))

)
︸ ︷︷ ︸

deg≤d−1

. ��

The following corollary is obvious:

Corollary 6. For any even number m and any vectors δ(1), . . . , δ(m), the degree
of the function

⊕m
i=1 f(x⊕ δ(i)) is ≤ deg f − 1.

Theorem 7 is a special case of theorem 5 and will be of use in this paper:

Theorem 7. Let f be a Boolean function with deg f = d. Let ei ∈ {0, 1}n be the
unit vector with its only 1 in position i. Then the function f1(x′) = f(x)⊕f(x⊕ei)
has degree ≤ d− 1, where x′ = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1}n−1.

Proof. We first split the function f(x) into two parts, the first part consisting of
the monomials containing xi, and the second part consisting of the monomials
not containing xi as a factor:

f(x) = xi · f1(x′) ⊕ f2(x′) , (1)

where it is straightforward to see that deg f1 ≤ d− 1 and deg f2 ≤ d. We do the
same for the function f(x⊕ ei):

f(x⊕ ei) = (xi ⊕ 1) · f1(x′) ⊕ f2(x′) . (2)

Taking the XOR of the equations (1) and (2) and eliminating terms occurring
twice yields: f(x) ⊕ f(x⊕ ei) = f1(x′). ��

2.2 General Framework for Synchronous Stream Ciphers

We consider a synchronous stream cipher with n-bit state S updated by a linear
function represented by a matrix L (e.g., one or more LFSRs) over Z2, and with
a nonlinear output function f that takes ϕ input bits coming from S to produce
one output bit zt. Some designs (e.g., the combiners with memory) also include
a m-bit memory M that has a nonlinear update function h. This results in the
following general framework for a synchronous stream cipher:⎧⎪⎪⎨⎪⎪⎩

zt = f(St,Mt)
ct = pt ⊕ zt

St+1 = L · St

Mt+1 = h(St,Mt) ,

(3)

22 F. Armknecht, J. Lano, and B. Preneel

where pt, zt and ct are respectively the plaintext, the key stream and the cipher-
text at time t = 0, 1, 2 . . .

The initial state (S0,M0) is determined by the resynchronization mechanism,
which combines a k-bit secret key K and a ι-bit known initialization vector IV i

with an initialization function finit, i.e., (S0,M0) = finit(K, IV i).

2.3 Algebraic Attacks

In this section we repeat some facts about algebraic attacks against LFSR-based
key stream generators. We describe the general attack on combiners with memory
introduced in [3] as this includes the special case of memoryless combiners [8].

An algebraic attack works as follows: first find a Boolean function F �≡ 0
(called an ad-hoc equation) such that for all t

0 = F (Lt ·K, . . . , Lt+r−1 ·K, zt, . . . , zt+r−1). (4)

Such a function F can be found with the algorithm of [3] if ϕ · r is not too large.
Secondly, recover the secret key K by solving this system of equations. For this

purpose, several methods (Linearization, XL, XSL, Groebner bases algorithms
such as F4 and F5,. . .) exist. Amongst them only the linearization method al-
lows a general estimation of the work effort. We give now a description of the
linearization method. Due to the linearity of L, all equations (4) have degree
≤ d := degF . Therefore, the number M of different monomials occurring is
upper bounded by β(k, d) :=

(
k
0

)
+ . . .+

(
k
d

)
.

By replacing each monomial by a new variable, the attacker gets a linear
system of equations in M unknowns. It can be solved by Gaussian elimination
or more refined methods like the one by Strassen [27]. As β(k, d) ∈ O(kd), the
lower the degree d, the faster the attack.

2.4 Resynchronization Attacks

For a synchronous stream cipher, perfect synchronization between sender and
receiver is required. The aim of the resynchronization mechanism is to achieve
this in a secure fashion.

A first solution is fixed resync. In this scenario, the message is divided into
frames, and each frame i is encrypted with a unique IV i, a frame counter up-
dated in a deterministic way. An attack under this scenario is called a known IV
resynchronization attack. The frequency at which resynchronization should occur
depends on the risk of synchronization loss. Examples of stream ciphers that use
fixed resync are the E0 algorithm used in the Bluetooth [6] wireless communica-
tion standard, and A5 [1] used in GSM cellular voice and data communication.

A second scenario is that the receiver sends a resynchronization request to the
sender as soon as synchronization loss is detected. This is called requested resync.
In this scenario, the receiver may be allowed to choose the nonce IV i used in the
frame. This may enable a chosen IV resynchronization attack, as described e.g.
by Joux and Muller [16]. Security under the chosen IV attack scenario implies

Extending the Resynchronization Attack 23

security under the known IV attack scenario. Hence, a good resynchronization
mechanism should be resistant against a chosen IV attack.

We now describe a first resynchronization attack by Daemen et al. [10] on a
simplified version of this framework and point out its limitations.

3 The Daemen et al. Resynchronization Attack

3.1 Description

The resynchronization attack of Daemen et al. is a known plaintext attack for
the special case of a simple memoryless combiner with a linear resynchronization
mechanism.

The framework of the attack can be described as follows:⎧⎨⎩Si
0 = A ·K ⊕B · IV i

zi
t = f(Π · Si

t)
Si

t+1 = L · Si
t .

(5)

In these equations, A, B, L and Π are known binary matrices, A ∈ Zn×k
2 , B ∈

Zn×ι
2 , L ∈ Zn×n

2 and Π ∈ Zϕ×n
2 . The matrices A and B represent the fact that

the resync mechanism is linear, the projection matrix Π shows that the output
function f uses only a subset of ϕ bits of Si

t . The initialization vector of the ith
frame is IV i, and zi

t is the key stream bit at time t of the ith frame.
We introduce the key-dependent unknown values kt and the known values ivi

t

as follows: {
kt = Π · Lt ·A ·K
ivi

t = Π · Lt ·B · IV i .
(6)

The attacker can set up a system of equations built as follows:

zi
t = f(kt ⊕ ivi

t) for 0 ≤ i ≤ R− 1, 0 ≤ t ≤ T − 1 , (7)

where R is the number of resynchronizations and T is the number of key stream
bits we know in each frame. We try to find a solution of this system of equations
for each t. Assume without loss of generality that t = 0. If ϕ is not too large, we
can perform an exhaustive search over k0, and check whether the guess satisfies
the R equations for t = 0. If R ≥ ϕ, it is expected that a unique solution for k0
exists. Hence the correct value of k0 has been found, and thus ϕ linear equations
in the bits of the secret key. This is repeated for t = 1, 2, ..., p − 1, such that
p = �k/ϕ�, until the entire secret key is deduced.

The complete attack requires on average �k/ϕ� · 2ϕ evaluations of the func-
tion f , at least ϕ resyncs and about k bits of key stream in total (ϕ frames of
length �k/ϕ�). Note that the computational complexity of the attack increases
exponentially with the number ϕ of inputs of the Boolean function f .

3.2 Limitations

The Daemen et al. attack can be seen as a divide-and-conquer attack. Standard
cryptanalytic attacks such as correlation and algebraic attacks work chronolog-
ically on a key stream, which corresponds to the output of one frame. On the

24 F. Armknecht, J. Lano, and B. Preneel

contrary, the Daemen et al. attack tries to solve the system by working on one
specific time over all frames. One of the motivations of the paper is to combine
both approaches. Of special interest is the combination of the resynchronization
attack with algebraic attacks.

In many cases, it is not obvious whether the approach by Daemen et al. works
or not. We have identified the following limitations:

1. The attack does not work in real time.
2. The number of resyncs R has to be at least the number ϕ of input bits of the

output function f .
3. The complexity is prohibitively large for large values of ϕ.
4. The divide-and-conquer approach does not work if the key stream generator

uses additional memory.
5. The initialization function finit has to be linear.

In this paper, we will address each of these limitations and show how to
overcome them.

4 Real-Time Attack

The attack of Daemen et al. shows that ciphers that use a linear resynchronization
mechanism and that have a Boolean function f with few inputs are insecure. This
enables a passive attack on such designs. A real-time attack in which the attacker
can discover the plaintext immediately (and even modify it in a controlled way) is
not possible, because the time required to perform the p exhaustive searches will
be too high. Here we show how to easily replace this iterated exhaustive search
by a precomputation step. This enables real-time active attacks on such ciphers.

We start from the realistic assumption that the IV is are chosen in a deter-
ministic way, for instance by a counter or a fixed update mechanism. In the
precomputation step, we first calculate the values ivi

t for 0 ≤ i ≤ ϕ − 1 and
0 ≤ t ≤ T − 1. Then we calculate the following ϕ bits, and repeat this for all
values of gt (a guess for kt) going from 0 to 2ϕ − 1, and this for all t.⎧⎪⎪⎨⎪⎪⎩

f(gt ⊕ iv0
t) = b0gt,t

f(gt ⊕ iv1
t) = b1gt,t

...

f(gt ⊕ ivϕ−1
t) = bϕ−1

gt,t .

(8)

For each time t, we obtain 2ϕ sequences b0gt,tb
1
gt,t . . . b

ϕ−1
gt,t . Because the length

of these sequences is ϕ, every value of gt is expected to correspond with a unique
sequence b0gt,tb

1
gt,t . . . b

ϕ−1
gt,t . We then sort the gt values based on the numerical

value of the corresponding sequence, and store this in memory.
The attack now goes as follows. We group the outputs observed at say t = 0

in a sequence z0
0z

1
0 ...z

ϕ−1
0 . We jump to this position in our table built for t = 0,

and the value found there is the correct value of k0. We do the same for the times
t = 1, 2, ...p− 1, and we have then found the necessary ki to directly determine
the secret key K.

Extending the Resynchronization Attack 25

The total complexity of the precomputation step is about k · 2ϕ evaluations
of f (but this can of course be replaced by 2ϕ evaluations of f and k · 2ϕ table
look-ups). The memory requirement is about k ·2ϕ bits, which is feasible for many
stream ciphers (e.g., for a secret key of k = 256 bits, and a Boolean function with
ϕ = 20 inputs, 32 Mbyte is required).

5 Attack with a Small Number of Resynchronizations

In [10], the authors made the assumption that the number of solutions converges
to 1 if R � ϕ. Actually, the number of required resyncs depends on the cipher
and the observed public parameters IV i. In [15], Golic and Morgari discussed the
number of IV s that are needed for the Daemen et al. attack to work. They showed
that with a non-negligible probability more than ϕ known IV s are necessary. This
results in an increased attack complexity, both for the original attack and for the
precomputation attack.

We will here follow different approaches. We want the attacks to work in any
case and with a minimal number of known IV s. Simulations on various Boolean
functions have confirmed that the standard resynchronization attack does not
always work in practice with ϕ IV s. This is due to two reasons, the first being
imperfect behavior of the function f . However, this effect is not very important
because in most stream ciphers the function f has good statistical properties,
which typically include balancedness and high nonlinearity. A second reason is
that sometimes collisions occur between two values iva

t and ivb
t where a �= b. We

will show several ways to overcome this problem.

5.1 Computational Approach

Two-Phase Attack. We implement the algorithm in two steps. The first step,
the resynchronization attack, retains a set of values for each of the k0,k1 . . .kp−1.
In a second step, we then search through all possible combinations until we have
found the correct secret key.

Simulations have shown that for ϕ (or more) known IV s, the time complexity
of the second step is negligible. In other words, the resynchronization attack (ex-
tended with the fast search step) is always successful under realistic assumptions
with ϕ known IV s.

Using this two-step algorithm, one can also mount a resynchronization attack
with R < ϕ known IV s. The time complexity of the second step can then be
shown to be about 2(ϕ−R)· k

ϕ . Even if this complexity increases exponentially
with decreasing R, this shows that a resynchronization attack is still feasible for
R smaller than (but close to) ϕ.

Overlapping Bits. There is also another interesting way to perform a resyn-
chronization attack when R < ϕ. Let’s take the case R = ϕ− 1. For kt, we will
get two possibilities after the exhaustive search. But looking at the bits of these
two possibilities kt,1 and kt,2, about half of these will be equal, and will therefore

26 F. Armknecht, J. Lano, and B. Preneel

certainly be the correct values for these bits of kt. This implies that we have still
found ϕ/2 linear equations in K, and we will just need frames that are twice as
long as in the standard attack, i.e., have length T ≥ 2k/ϕ each. This is still very
realistic in most cases. We can develop a similar reasoning for smaller values of
R, but the length of the frames and the complexity required increases rapidly:
they can be shown to be 22ϕ−R−1 · k/ϕ and 22ϕ−R−1 · k/ϕ · 2ϕ respectively (see
the extended version of this paper [2]).

5.2 Using Algebraic Attacks

The resync scenario implies the following system of equations:

zi
t = f(kt ⊕ ivi

t), 0 ≤ i ≤ R− 1, 0 ≤ t ≤ T − 1. (9)

Hence, another possibility is to try to solve it as a whole instead of working
time per time. The linearization method described in Sect. 2.3 requires that the
number of linearly independent equations exceeds the number M of occurring
monomials. This requires T ·R ≥ M. As M is upper bounded by β(k, d′) ∈ O(kd′

)
with d′ = deg f , the lower the degree of the equations the faster the attack.
In the literature [8, 9, 19, 5], several conditions and methods are described for
transforming (9) into a new system of equations

g(kt ⊕ ivi
t, z

i
t) = 0, 0 ≤ i ≤ R− 1, 0 ≤ t ≤ T − 1. (10)

with d := deg g < deg f . Next, we will show how to use the resync setting to
decrease the degree of (10) further.

The Degree-d-1 Attack. The first approach is to construct new equations of
degree ≤ d− 1. We express g by

g(kt ⊕ ivi
t, z

i
t) =

⊕
j

gj(kt ⊕ ivi
t) · g̃j(zi

t) . (11)

Observe that the functions gj and g̃j depend only on g and are all known to
the attacker. The idea is to find appropriate linear combinations of (11) to reduce
the degree. Let I := {j|deg gj = d} and rewrite (11) to

g =
⊕
j∈I

gj · g̃j︸ ︷︷ ︸
deg gj = d

⊕
⊕
j �∈I

gj · g̃j︸ ︷︷ ︸
deg gj<d

. (12)

Theorem 8 provides a method for decreasing the degree at least by 1:

Theorem 8. Let g be expressed as described in (11). For any known iv0
t , . . . , iv

|I|
t

and corresponding known outputs zi
t, coefficients c0, . . . , c|I| ∈ {0, 1} with at least

one ci �= 0 can be computed such that the degree of
⊕|I|

i=0 ci · g(kt ⊕ ivi
t, z

(i)
t) is

≤ deg g − 1.

Extending the Resynchronization Attack 27

Proof. We set gi
j := gj(kt ⊕ ivi

t) and g̃i
j := g̃j(zi

t) ∈ {0, 1}. With (11), we can
write

|I|⊕
i=0

ci · g(kt ⊕ ivi
t, z

i
t) =

⊕
j∈I

|I|⊕
i=0

ci · g̃i
j · gi

j ⊕
⊕
j �∈I

|I|⊕
i=0

ci · g̃i
j · gi

j .

The second part of the right hand side has a degree ≤ d − 1 by definition of
I. The idea is to find coefficients c0, . . . , c|I| ∈ {0, 1} such that the first part of
the right hand side has degree ≤ d − 1 too. By Corollary 6, it is sufficient that∑|I|

i=0 ci · g̃i
j (treated as an integer) is an even number for all j ∈ I.

We show now that it is always possible. For each i we define the vector
−→
Vi :=(

g̃
(i)
1 , . . . , g̃

(i)
|I|

)
∈ {0, 1}|I|. Then the assumption above is equivalent to

⊕
i ci·

−→
Vi =

−→
0 . By the theory of linear algebra, the |I|+1 vectors of the |I|-dimensional vector
space {0, 1}|I| are linearly dependent. Therefore, such coefficients ci exist. ��

Let Me be the number of monomials of degree ≤ e occurring in (10). The
attack complexity is as follows. First we have to calculate (for a fixed clock t) the
coefficients ci. This requires O(|I|3) operations. Then, the computation of the
function of degree ≤ d− 1 is equivalent to the summation of (several) vectors of
size Md−1. The two steps have to be repeated about Md−1 times to get enough
linearly independent equations of degree ≤ d−1. The final step is to use Gaussian
elimination to solve the linearized system of equations ≈ (Md−1)3. Therefore the
overall number of operations is about

(|I|3 +Md−1
) ·Md−1 + (Md−1)3. Because

of Me ≤ β(k, e), an upper bound is
(|I|3 + β(k, d− 1)

) ·β(k, d−1)+β(k, d−1)3.
Note that it may happen that

⊕
i ci · g(kt ⊕ ivi

t, z
i
t) is equal to zero for some t.1

As opposed to fast algebraic attacks [9, 4], this approach does not require the
highest-degree monomials to be independent of the key stream bits. Moreover,
the number of key stream bits required is ≤ β(k, d− 1)+ |I| instead of ≤ β(k, d).
On the other hand, fast algebraic attacks benefit from the fact that the most
time consuming part can be sourced out in a precomputation step. This is not
possible here. Another advantage is that its applicability is independent of the
values of ivi

t and zi
t and that it does not require ϕ to be low.

The Degree-e Attack. So far, we concentrated only on decreasing the degree
by 1. But clever combinations may reduce the degree even further. In the worst
case these combinations may be linear, even if the degree of g is high. This is for
example the case for the E0 key stream generator.2 We develop now the theory
how to compute the lowest possible degree. In the following, we treat k as ϕ
unknowns.

Definition 9. We set S(g) := {g(k⊕ iv, z) | iv ∈ {0, 1}ϕ, z ∈ {0, 1}} and define
by < g >:=< S(g) > the linear span of S(g) (i.e., all possible linear combina-

1 For example, this cannot be avoided if g is linear. But in this case, the cipher is
weak anyhow.

2 The best before was a system of equations of degree 3 (see [9]).

28 F. Armknecht, J. Lano, and B. Preneel

tions). <g> is a vector space over the finite field GF(2). By dim g we define the
dimension of <g > and by B(g) an arbitrary basis of <g >. Further on we set
Md(g) to be all monomials of degree ≤ d which occur in S(g).

From the theory of linear algebra, the following theorem is obvious:

Theorem 10. A function of degree ≤ e exists in < g > only if the vectors in
B(g) ∪Me(g) are linearly dependent.

Let S be a set of Boolean functions. We now describe an algorithm to compute
a linearly independent set of functions < S > with the lowest possible degree e:
We treat the functions in S as rows of a matrix where each column reflects one
occuring monomial. Then, we apply Gaussian elimination in such way that the
monomials with the highest degree are eliminated first and so on. Finally, we just
pick those functions in the result with the lowest degree.

If S = B(g), the algorithm computes the lowest possible value for e. Let
B̃ := {g(kt ⊕ ivi

t, z
i
t) | 0 ≤ i ≤ R − 1} be the set of functions available to the

attacker. < B̃ > might be only a subset of < g >. In this case, the lowest possible
degree can be higher.

We try now to estimate the complexity of the Degree-e attack. The first
step is to find an appropriate linear combination in B̃. The effort is about
(dim g)2 · |Md(g)| to find the linear combination and about Me to compute
the corresponding vector of size Me. This has to be repeated at least Me times.
Finally, a system of equations in Me has to be solved (≈ M3

e). Hence, the overall
number of operations is about ((dim g)2 · |Md(g)|+Me) ·Me +M3

e. Because of
Me ≤ β(k, e) and dim g ≤ Md ≤ β(k, d), the following expression is an upper
bound for the complexity (β(ϕ, d)3 + β(k, d)) · β(k, e) + β(k, e)3.

In the individual case, the applicability of this attack depends on many param-
eters: the function g, the number R of accessible frames and the corresponding
values of ivi and zi

t. Hence the attack does not work in every case. On the other
hand, it puts on the designer the responsibility of making sure that these attacks
are not feasible.

Moreover, if the set B̃ is a basis of < g >, then an equation of the lowest
possible degree can be constructed. What is the probability that this happens?
Let s := dim g and R ≥ s. If we assume that each expression g(kt ⊕ ivi

t, z
i
t) is a

random vector in {0, 1}s then by [30], the probability that B̃ is a basis of <g>
is Prob =

∏m
i=R−s+1

(
1 − 1/2i

)
.

6 Resynchronization Attacks with Large ϕ

The Daemen et al. attack only works when the number ϕ of inputs to the Boolean
function is not too large. However, we will show in this section that using a
linear resynchronization mechanism will inevitably induce weaknesses into stream
ciphers, even when ϕ is very large. We will show a chosen IV attack, a known
IV attack and an algebraic attack.

Extending the Resynchronization Attack 29

6.1 A Chosen IV Attack

The standard attack has a large time complexity of �n/ϕ� · 2ϕ evaluations of the
function f , but it only requires ϕ resyncs. We will now show that a tradeoff is
possible.

Let kt in (7) consist of the bits k0, k1, . . . kϕ−1. We make the reasonable as-
sumption that in the chosen IV attack, the attacker can control the values of ivi

t,
consisting of the bits iv0, iv1, . . . ivϕ−1. We now start the chosen IV attack. We
first take a constant C. We then perform resyncs with all the values ivi

t = C ⊕ i,
where we let i take all values3 going from 0 (00 . . . 0) to 2u −1 (00. . . 011. . . 1) for
some u. Let’s consider the first two values of our resynchronization attack. We
denote ki ⊕ iv i as xi. We know that:{

f(x0, x1, . . . xϕ−1) = z0
0

f(x0, x1, . . . xϕ−1 ⊕ 1) = z1
0 .

(13)

By XORing both equations and using Theorem 7 we get:

f1(x0, x1, . . . xϕ−2) = z0
0 ⊕ z1

0 , (14)

where the Boolean function f1 has many properties that are desirable for an
attacker. The degree of f1 is lower, it has fewer monomials and it depends on less
variables than f . This makes many attacks much easier.

In our attack, we will apply this method with 2u chosen IV s in an iterative
way. As an illustration, these are the equations for u = 2.

f(. . . xϕ−2, xϕ−1) = z0
0

f(. . . xϕ−2, xϕ−1 ⊕ 1) = z1
0

}
⇒ f1(. . . xϕ−2) =

z0
0 ⊕ z1

0
f(. . . xϕ−2 ⊕ 1, xϕ−1) = z2

0
f(. . . xϕ−2 ⊕ 1, xϕ−1 ⊕ 1) = z3

0

}
⇒ f1(. . . xϕ−2 ⊕ 1) =

z2
1 ⊕ z3

0

⎫⎪⎪⎬⎪⎪⎭ ⇒ f2(x0 . . . xϕ−3) =
z0
0 ⊕ z1

0 ⊕ z2
0 ⊕ z3

0

(15)
The basic attack requires at every time 2u · ϕ resyncs, in order to obtain ϕ − u
equations in the Boolean function fu(x0 . . . xϕ−u−1) which can then be used in a
normal resynchronization attack.

In practice, however, we note that the number of monomials, variables and
the degree of the equation decreases very rapidly, making the attack work with
very small complexity.

6.2 A Known IV Attack

We now describe another attack, which shows that the linear resynchronization
mechanisms introduces weaknesses in the fixed resync setting for all Boolean
functions.

3 The impact of this choice of i is that the last u input bits of f will take all possible
values. Of course we can do the same with any combination of u bits by choosing
i as needed.

30 F. Armknecht, J. Lano, and B. Preneel

The principle of the attack is similar to the linear cryptanalysis method,
developed by Matsui for attacking block ciphers [18]. First we search for a linear
expression for the Boolean function that holds with probability p �= 0.5. We then
collect sufficiently many resyncs such that we can determine key bits using a
maximum likelihood method. We will now describe this in more detail.

Our starting point is the fact that for any ϕ-input nonlinear Boolean function
f , we can always find a subset S ⊂ {0, 1, . . . ϕ− 1} for which the equation⊕

i∈S

xi = f(x0, . . . xϕ−1) (16)

holds with probability 0.5 + ε, where ε �= 0. Suppose that the best bias we have
found is ε (0 < ε ≤ 0.5). For each time t, with R known IV s, we get the following
equations: ⎧⎪⎨⎪⎩

⊕
i∈S ki =

⊕
i∈S iv0

i ⊕z1
t

...⊕
i∈S ki =

⊕
i∈S iv I−1

i ⊕zI−1
t ,

(17)

each of which holds with probability 0.5+ε. We now count for how many of these
equations the right hand side is 1 respectively 0. We assume then that the correct
right hand side is the value (0 or 1) that occurs most if ε > 0, and the value that
occurs least if ε < 0.

We now have found one linear equation in the state bits that is true with some
probability. This probability increases with the value of R and is dependent on
the magnitude of ε. As in [18], the probability that the equation is correct, given
R resyncs and a bias ε, is equal to:∫ ∞

−2·√R·|ε|

1√
2 · π · e−x2/2 · dx = 0.5 + 0.5 · erf (

√
2 ·R · |ε|) , (18)

where erf is the error function. If we want the probability of correctness to
approach one, we need the number of resyncs R to be c · ε−2 for a small constant
value c.

The output of a Boolean function is correlated to at least one linear function
of the inputs, see Xiao and Massey [29]. The smallest bias ε that can be found4 is
at least 2− ϕ

2 −1. This implies that any linear resynchronization mechanism with a
ϕ-input Boolean function f can be broken by this resynchronization attack using
at most about 2ϕ+2 known IV s.

How to search for the best linear approximation has been well-studied. The
Walsh-Hadamard transform can be used to find the best linear approximation,

4 This lower bound for ε follows from the universal nonlinearity bound for Boolean
functions. Equality applies to the so-called bent functions. Stream ciphers typically
do not use bent functions because they are not balanced. The size of the smallest
bias to be found in balanced Boolean functions is still an open problem, but some
bounds have been presented, see [12] for an overview. For simplicity, we take the
bias of bent functions, but the bias for actual functions will be higher and therefore
less resyncs will be needed in practice.

Extending the Resynchronization Attack 31

see [24] for a thorough treatment. In the context of correlation attacks, such
linear approximations have been studied in the literature, both for memoryless
combiners and nonlinear filter generators [24] as for combiners with memory [13,
20].

The biases found in actual Boolean functions used in stream ciphers will
be much higher than the lower bounds described above. This is due to several
reasons: the functions have to be balanced, they have to be easily implementable,
and for combiners they will also have to take into account the trade-off that has
to be made between nonlinearity and resilience, see Sarkar and Maitra [26]. It
can be expected that most Boolean functions used in practice are vulnerable to
this known IV attack on a linear resynchronization mechanism.

6.3 An Algebraic Attack

As said in Sect. 5.2, the goal is to find a solution to the system of equations as
described in (10). Again, the approaches to reduce the degree as described in
Sect. 5.2 can be also applied here.

If all bits of kt are uniquely specified by the equations, use Gröbner bases
or the linearization method to solve (10) clock by clock. If the degree of the
equations is low (e.g., Toyocrypt), it might be faster and require less IV s than
the approach described in Sect. 6.2.

6.4 The Degree-1 Attack

Another approach is to apply the methods described in Sect. 5.2 if e = 1 is
possible. In this case, we get at least one linear equation in the bits of kt directly.
If we repeat this for enough values of t the corresponding K can be reconstructed
by solving a system of linear equations.

The exact effort depends on many parameters: the function g, the number R
of frames, the corresponding values of ivi and zi

t and so on (see also Sect. 1). The
number of operations is about ((dim g)2 · |Md(g)| + k) · k + k3 or more general
(β(ϕ, d)3 + k) · k + k3. This indicates that the approach might be feasible if the
degree d is small.

7 Attacks on Combiners with Memory

Many stream ciphers use their linear state in conjunction with a (small) non-
linear memory in order to avoid the trade-off between correlation immunity and
nonlinearity for the combining function, see Rueppel [23].

In this section we demonstrate that resynchronization attacks can also be
performed on stream ciphers with memory. Note that the known IV attack of
Sect. 6 can also be applied on combiners with memory.

32 F. Armknecht, J. Lano, and B. Preneel

7.1 A Standard Resynchronization Attack

We will use the following model based on the general case of the combiners with
memory:

Si
0 = A ·K ⊕B · IV i (19)

M i
0 = const (20)

Si
t+1 = C · Si

t (21)

M i
t+1 = h(D · Si

t ,M
i
t) = h(kt ⊕ ivi

t,M
i
t) (22)

zi
t = f(D · Si

t , E ·M i
t) = f(kt ⊕ ivi

t, E ·M i
t) . (23)

In practice, some designs only start outputting key stream when t = μ; this
results in an improved diffusion of the key and the initialization vector into the
nonlinear state. We will discuss both the cases μ = 0 and μ > 0. Note that in
some designs M i

0 is also dependent on the key and the IV . This can in our model
be treated in the same way as the case μ > 0.

μ = 0. In the case μ = 0, the resynchronization attack can easily be adapted
to work also with combiners with memory. We again describe the attack with ϕ
resyncs.

The first series of outputs can be written as zi
0 = f(k0 ⊕ ivi

0,M
i
0). Because

M i
0 is known, the attacker can recover k0 by exhaustive search. He can then

determine M i
1 for all the resyncs using (22). Now he knows all inputs to (23) for

t = 1 except k1, which he can again recover through exhaustive search, and so
on. All complexities of this attack are exactly the same as for the case without
memory. The only difference is that each step now consists of one evaluation of
f and of ϕ evaluations of h.

μ > 0. The attacker does not know the initial contents of the m-bit memory
M . Moreover, this memory is different for each resync. The attack now works
exactly as above, except that the attacker will first have to guess the contents of
M at t = μ. The time complexity of the attack now becomes 2ϕ·m · �n/ϕ� · 2ϕ

evaluations of the f and h function. As ϕ and m are quite small in most actual
designs, the attacks are feasible.

Let’s take as an example a combiner consisting of 5 LFSRs with total length
320 bits, and with 5 memory bits. The complexity of the resynchronization attack
is then equal to 236 function evaluations.

Practical Considerations of the Attack. As for the case without memory,
we would like that the attack always works with ϕ resyncs. At some times, we
will have several possible values for ki. In a second phase, we cannot use the
exhaustive search method of the memoryless case, because we would then have
to try all possible values for updating the memory bits, which would increase the
complexity enormously.

Extending the Resynchronization Attack 33

This problem can be easily overcome by implementing the algorithm with a
depth-first search. When at some time t we have several possibilities for kt, we
pick the first one and go to t + 1. If we have no solution at time t, we go back
to t− 1 and try the next possibility there. When we have arrived at time �k/ϕ�,
we have found a sufficient number of values and we check if we have found the
correct key. Simulations indicate that when the number of resyncs R is equal to
or larger than ϕ, the attack will find the correct values very quickly and has to
search very few states.

The same approach can also be used when the attacker disposes of less than
ϕ resyncs, i.e., R < ϕ. In the case μ > 0 this may even be advantageous from a
complexity viewpoint, because we have to perform an exhaustive search over less
than ϕ initial memory states. But again the complexity of the search algorithm
will increase exponentially with decreasing R, making this attack feasible only
when R is close to ϕ.

A particularity is the case when the Boolean output function f is linear. In
that case we don’t get new information at each new resync, because all equations
zi
0 = f(k0 ⊕ ivi

0,M
i
0) are equivalent. This problem can be easily overcome by

using the memory update function h to do the checks during the search. An
example of such a linear output function is E0.

7.2 Using Ad-Hoc Equations

Another possibility is the use of ad-hoc equations which have been introduced in
[3]. The authors showed that for a combiner with memory with m memory bits
Mt, an equation

F (Si
t , . . . , S

i
t+m, z

i
t, . . . , z

i
t+m) = 0 (24)

of degree ≤ �ϕ·(m+1)
2 � always exists which is completely independent of the mem-

ory bits. They also propose an algorithm to find ad-hoc equations

G(Si
t , . . . , S

i
t+r−1, z

i
t, . . . , z

i
t+r−1) = 0 (25)

with the lowest possible degree d if ϕ · r is not too large. For example, an ad-hoc
equation of degree 4 using r = 4 successive clocks exists for the E0 key stream
generator.

As (25) is independent of the memory bits, these equations can be used for
all attacks described in the previous sections. An additional requirement is now
that the attacker knows enough successive key stream bits.

If ϕ·r is small the Daemen et al. attack is applicable. The number of operations
is about �k/(ϕ · r)� · 2ϕ·r + k3. The methods described in Sect. 5.2 to reduce the
degree of the equations can be easily adapted to the case of ad-hoc equations.

8 Attacks on Stream Ciphers with Nonlinear
Resynchronization

In this section, we will show that stream ciphers with a nonlinear resynchro-
nization mechanism can also be vulnerable to resynchronization attacks. A first

34 F. Armknecht, J. Lano, and B. Preneel

attack is a chosen IV attack; its principle is similar to that of Daemen et al. The
second attack is a known IV attack that uses the principle of linear approxima-
tions as used in the known IV attack of Sect. 6.2. We will demonstrate these
attacks on the two-level memoryless combiner. The framework of the attack is
shown in Fig. 1. In a first level, the key and an IV are linearly loaded into the
LFSRs. The input to f at time t of the level 1 initialization is denoted xt. The
following holds:

xt = (x0
t , x

1
t , . . . , x

ϕ−1
t) = kt ⊕ ivt = (k0

t ⊕ iv0
t , k

1
t ⊕ iv1

t , . . . , k
ϕ−1
t ⊕ ivϕ−1

t) . (26)

The output yi of level 1 is collected and is used as the initial state for the level 2
generator. We use here the simplified setting shown in the figure. Level 2 generates
the key stream zi.

Fig. 1. Model for a two-level combiner

8.1 A Chosen IV Attack

We will show an attack scenario on this construction which holds under the
assumption that the attacker can choose the value of the ivs which go into the
Boolean function (this is for instance the case when the initial state equals the
XOR of the key and the initialization vector).

We start with t = 0. We let iv0 take j different values, while keeping the other
ivs constant. We obtain the following equations:⎧⎪⎪⎨⎪⎪⎩

f(f(k0 ⊕ iv1
0), y1, . . . yϕ−1) = z1

0
f(f(k0 ⊕ iv2

0), y1, . . . yϕ−1) = z2
0

. . .

f(f(k0 ⊕ ivj
0), y1, . . . yϕ−1) = zj

0 .

(27)

Denote the vector (y1, . . . yϕ−1) by r. In half of the cases, we will see that all zi
0

are equal (either all 0 or all 1). This is due to the fact that f(0,r) = f(1,r). In
the other half of the cases, which is of interest here, the zi

0 take both the values
0 and 1 in a random-looking way; which is due to the fact that f(0,r) �= f(1,r).

Assume that we are in the latter case. We now guess the ϕ− 1 bits of r, let’s
call this guess g. If f(0,g) = f(1,g), then our guess is certainly not correct and
we proceed to the next guess. If f(0,g) �= f(1,g), the guess is possible; we now
get j equations in k0 of the form:

f(k0 ⊕ ivi
0) = zi

0 ⊕ f(0,g) . (28)

Extending the Resynchronization Attack 35

The equations we have obtained are exactly the same as in the case of the
linear resynchronization mechanism. If j is large enough, we expect to find a
unique solution for k0 over all the guesses for g. It can be shown that we need
about 2 · ϕ chosen IV s to achieve this.

In the same way, we can also recover k1,k2, . . . which gives us the whole secret
key of the system. The attack requires a total of about 2 ·k chosen IV s and has a
time complexity of �k/ϕ� · 22·ϕ−1. This attack has been implemented on various
8-bit Boolean functions, and we can easily recover the key.

8.2 A Known IV Attack

In this attack, we extend the approach in which we search a bias in the ϕ-input
Boolean function (see the known IV attack in Sect. 6) in a straightforward way to
the case of the two-level combiners. Each bit now goes twice through the function
f , but we can show that a bias still persists. The equation we want to hold is as
follows: ⊕

j∈BS

kj =
⊕

j∈BS

iv i
j ⊕ zi

0 , (29)

where the set BS consists of the bits of the set S involved in the linear bias, for
all times t ∈ S of the first level of the combiner. Similar equations can be written
for the next iterations. Let’s denote the cardinality of the set S by s. Of course
it holds that s ≤ ϕ. The cardinality of the set BS is then evidently s2.

The piling-up lemma [18] learns that the probability that this equation holds
is equal to 1/2+2s · εs+1, where ε is the bias of the Boolean function. The bias of
this equation is thus 2s · εs+1, which means we need R = 2−2·s · ε−2·s−2 resyncs
to break this system by a known IV attack.

We will show what this implies for actual Boolean functions. We take Boolean
functions with ϕ inputs and resilience ρ. We will use two well-known lower bounds
for the bias ε: {

ε ≥ 2−ϕ/2−1

ε ≥ 2ρ+1−ϕ ,
(30)

where the first bound is due to Parseval’s relation and the second to the trade-off
between nonlinearity and resilience, see [28]. The cardinality of the set S is now5

s = ρ + 1. We can calculate an upper bound for the number of resyncs needed
for a successful attack as a function of ϕ and of the resilience ρ. This is shown in
Fig. 2 for some values of ϕ. These graphs show that memoryless combiners with
few inputs cannot be made resistant against resynchronization attacks on a two-
level combiner. For larger functions it should be checked whether the Boolean

5 We conjecture that we will find the bias for ρ + 1 in practice. We will certainly
find a bias for ρ + 1, as f is ρ-th order correlation immune but not ρ + 1-th order
correlation immune. As the cases we discuss are optimal from a designer’s point of
view, we expect the Walsh spectrum to be flattened as much as possible over the
values with Hamming weight > ρ and therefore to find a bias (very close) to ε for
Hamming weight ρ + 1. This conjecture can be easily verified for a popular class of
functions, the plateaued functions [31].

36 F. Armknecht, J. Lano, and B. Preneel

function is strong enough to withstand the above attack. The bounds given here
may be refined by a more careful examination of the properties of the various
classes of Boolean functions.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

resiliency of the function

lo
g2

(M
ax

im
um

 n
um

be
r

of
 r

es
yn

cs
 n

ee
de

d)

phi=5
phi=10
phi=15
phi=20

Fig. 2. Upper bound for the number of resyncs as a function of the resilience ρ with as
parameter the number ϕ of input bits of the Boolean function

8.3 Implications of the Attacks

The known IV attack described above for the two-level memoryless combiner
can be easily extended to other nonlinear resynchronization mechanisms. It is
also possible to apply the attack on other designs, such as combiners with mem-
ory, nonlinearly filtered generators and irregularly clocked shift registers. We can
use techniques as described by Golic [13, 14] to find suitable linear approxima-
tions. Our attack can be used to evaluate the strength of any resynchronization
mechanism, and resistance against this attack is a minimum requirement for any
design. We are currently investigating the impact of this attack on some actual
designs, such as the resynchronization mechanisms of E0 and the NESSIE [22]
candidates.

9 Conclusions

In [10], Daemen, Govaerts and Vandewalle presented the original resynchroniza-
tion attack on synchronous stream ciphers. In this paper, we have extended this
resynchronization attack in several directions, by using new attack methods and
by combining the attack with cryptanalytic techniques such as algebraic attacks
and linear cryptanalysis.

Our attacks on linear resynchronization mechanisms show that a linear resyn-
chronization mechanism should never be used in practice. Even if the system uses

Extending the Resynchronization Attack 37

few resyncs, has an input function with many inputs and has a non-linear mem-
ory, it will still very likely contain weaknesses that can be exploited by one of
our attack scenarios.

Nowadays, resynchronization mechanisms are typically designed in an ad hoc
manner, by making them nonlinear to an extent that seems to be sufficient. Our
attacks on nonlinear resynchronization mechanisms lead to a better understand-
ing of the strength of such mechanisms and can be used to provide a lower bound
for the nonlinearity required from a secure resynchronization mechanism. This
allows designers to consider the trade-offs between the speed and the security of
a resynchronization mechanism.

Acknowledgements

The authors would like to thank An Braeken, Joe Cho, Matthias Krause, Ste-
fan Lucks, Erik Zenner and the anonymous referees for helpful comments and
discussions.

References

1. R. Anderson, A5 (Was: Hacking Digital Phones), sci.crypt post, June 1994.
2. F. Armknecht, J. Lano, B. Preneel, Extending the Resynchronization Attack (ex-

tended version), Cryptology ePrint Archive, Report 2004/232, 2004.
3. F. Armknecht, M. Krause, Algebraic Attacks on Combiners with Memory, Crypto

2003, LNCS 2729, D. Boneh, Ed., Springer-Verlag, pp. 162-176, 2003.
4. F. Armknecht, Improving Fast Algebraic Attacks, FSE 2004, LNCS 3017, B. Roy,

W. Meier, Eds., Springer-Verlag, pp. 65–82, 2004.
5. F. Armknecht, On the Existence of Low-degree Equations for Algebraic Attacks,

Cryptology ePrint Archive, Report 2004/185, 2004.
6. Bluetooth S.I.G., Specification of the Bluetooth System, Version 1.2, available from

www.bluetooth.org/spec, 2003.
7. Y. Borissov, S. Nikova, B. Preneel, J. Vandewalle, On a Resynchronization Weak-

ness in a Class of Combiners with Memory, SCN 2002, LNCS 2576, S. Cimato,
C. Galdi, G. Persiano, Eds., Springer-Verlag, pp. 164–173, 2002.

8. N. Courtois, W. Meier, Algebraic Attacks on Stream Ciphers with Linear Feedback,
Eurocrypt 2003, LNCS 2656, E. Biham, Ed., Springer-Verlag, pp. 345–359, 2003.

9. N. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Crypto
2003, LNCS 2729, D. Boneh, Ed., Springer-Verlag, pp. 177–194, 2003.

10. J. Daemen, R. Govaerts, J. Vandewalle, Resynchronization Weaknesses in Syn-
chronous Stream Ciphers, Eurocrypt 1993, LNCS 765, T. Helleseth, Ed., Springer-
Verlag, pp. 159–167, 1993.

11. S. Fluhrer, Improved key recovery of level 1 of the Bluetooth Encryption System,
Cryptology ePrint Archive, Report 2002/068, 2002.

12. C. Fontaine, Contribution à la Recherche de Fonctions Booléennes Hautement Non
Linéaires, et au Marquage d’Images en Vue de la Protection des Droits d’Auteur,
PhD Thesis, Paris University, 1998.

13. J. Golic, Correlation via Linear Sequential Circuit Approximation of Combin-
ers with Memory, Eurocrypt 1992, LNCS 658, R. Rueppel, Ed., Springer-Verlag,
pp. 113–123, 1992.

38 F. Armknecht, J. Lano, and B. Preneel

14. J. Golic, Linear Cryptanalysis of Stream Ciphers, FSE 1994, LNCS 1008, B. Preneel,
Ed., Springer-Verlag, pp. 154–169, 1994.

15. J. Golic, G. Morgari, On the Resynchronization Attack, FSE 2003, LNCS 2887,
T. Johansson, Ed., Springer-Verlag, pp. 100–110, 2003.

16. A. Joux, F. Muller, A Chosen IV Attack against Turing, SAC 2003, LNCS 3006,
M. Matsui, R. Zuccherato, Eds., Springer-Verlag, pp. 194–207, 2003.

17. D. Lee, J. Kim, J. Hong, J. Han, D. Moon, Algebraic Attacks on Summation Gen-
erators, FSE 2004, LNCS 3017, B. Roy, W. Meier, Eds., Springer-Verlag, pp. 34–48,
2004.

18. M. Matsui, Linear Cryptanalysis Method for DES Cipher, Eurocrypt 1993,
LNCS 765, T. Helleseth, Ed., Springer-Verlag, pp. 386–397, 1993.

19. W. Meier, E. Pasalic, C. Carlet, Algebraic Attacks and Decomposition of Boolean
Functions, Eurocrypt 2004, LNCS 3027, C. Cachin, J. Camenisch, Eds., Springer-
Verlag, pp. 474-491, 2004.

20. W. Meier, O. Staffelbach, Correlation Properties of Combiners with Memory in
Stream Ciphers (extended abstract), Eurocrypt 1990, LNCS 473, I. Damgard, Ed.,
Springer-Verlag, pp. 204–213, 1990.

21. M. Mihaljević, H. Imai, Cryptanalysis of Toyocrypt-HS1 stream cipher, IEICE
Transactions on Fundamentals, vol. E85-A, pp. 66–73, Jan. 2002. Available at
http://www.csl.sony.co.jp/ATL/papers/IEICEjan02.pdf.

22. New European Schemes for Signature, Integrity and Encryption,
http://www.cryptonessie.org

23. R. Rueppel, Correlation Immunity and the Summation Generator, Crypto 1985,
LNCS 218, H. Williams, Ed., Springer-Verlag, pp. 260–272, 1985.

24. R. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.
25. M. Saarinen, Bluetooth und E0, sci.crypt post, February 2002.
26. P. Sarkar, S. Maitra, Nonlinearity Bounds and Constructions of Resilient Boolean

Functions, Crypto 2000, LNCS 1880, M. Bellare, Ed., Springer-Verlag, pp. 515–532,
2000.

27. V. Strassen, Gaussian Elimination is Not Optimal, Numerische Mathematik, vol 13,
pp. 354–356, 1969.

28. Y. Tarannikov, On Resilient Boolean Functions with Maximum Possible Nonlin-
earity, Indocrypt 2000, LNCS 1977, B. Roy, E. Okamoto, Eds., Springer-Verlag,
pp. 19–30, 2000.

29. G. Xiao, J. Massey, A Spectral Characterization of Correlation-immune Combining
Functions, IEEE Trans. Inf. Theory, Vol. IT-34, pp. 569–571, 1988.

30. K. Zeng, C. Yang, T. Rao, On the Linear Consistency Test (LCT) in Cryptanaly-
sis with Applications, Crypto 1989, LNCS 435, G. Brassard, Ed., Springer-Verlag,
pp. 164–174, 1990.

31. Y. Zheng, X. Zhang, Plateaued Functions, ICICS 1999, LNCS 1726, V. Varadhara-
jan, Y. Mu, Eds., Springer-Verlag, pp. 284–300, 1999.

A New Simple Technique to Attack Filter
Generators and Related Ciphers

H̊akan Englund and Thomas Johansson

Dept. of Information Techonolgy, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. This paper presents a new simple distinguishing attack that
can be applied on stream ciphers constructed from filter generators or
similar structures. We demonstrate the effectiveness by describing key
recovery attacks on the stream cipher LILI-128. One attack on LILI-128
requires 247 bits of keystream and a computational complexity of roughly
253. This is a significant improvement compared to other known attacks.

1 Introduction

Much work has been put into trying to understand the security of stream ciphers.
Stream ciphers can be made very efficient in software and in hardware, but their
security has not been as widely studied as for example block ciphers. In this
paper we investigate filter generators, a linear feedback shift register (LFSR)
from which the output is filtered by a nonlinear filter function. This output is
added modulo two to the plaintext. See for example [18] for more details on filter
generators.

Several different kinds of attacks can be considered on stream ciphers. We
usually consider the plaintext to be known, i.e. the keystream is known and we
try to recover the key. A popular technique is to exploit some correlation in the
keystream. This idea was introduced by Siegenthaler [23] in 1984, a consequence
of this attack is that designers of nonlinear functions must use functions with
high nonlinearity. This attack was later followed by the fast correlation attack by
Meier and Staffelbach [17]. Since then many improvements have been introduced
on this topic, see [1, 2, 14, 13, 15]. In a fast correlation attack one first try to find
a low weight parity check polynomial of the LFSR and then apply some iterative
decoding procedure.

Algebraic attacks have received much interest lately. These attacks try to
reduce the key recovery problem to the problem of solving a large system of
algebraic equations [6, 5].

Another class of key recovery attacks on filter generators was proposed by
Golić, the so-called inversion attacks, see [10, 11, 12]. In an inversion attack one
tries to “invert” the nonlinear function and recover the initial state.

A distinguishing attack is a different type of attack. Here we try to distinguish
the output of the cipher from a truly random source. In some specific cases these

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 39–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 H. Englund and T. Johansson

attacks can be used to create a key recovery attack. Distinguishing attacks have
received a lot of attention recently, see for example [8, 4].

In this paper we present a very simple distinguishing attack that can be
applied on stream ciphers using a filter generator or a similar structure as a part
of the cipher.

Recently, Leveiller et. al. [16] proposed methods involving iterative decoding
and the use of vectors instead of the binary symmetric channel. We use a similar
idea, but much simpler in its form and more powerful in its performance, to
mount a distinguishing attack. In the basic algorithm we first find a low weight
multiple of the LFSR. We then consider the entries of the parity check equation
as a vector. Such vectors, regarded as random variables, are non-uniformly dis-
tributed due to the parity check, and this is the key observation that we use to
perform a distinguishing attack. This allows us to detect statistical deviations
in the output sequence, creating the distinguishing attack. We can also present
ideas on how to improve the performance by using slightly more complex algo-
rithms.

In order to demonstrate the effectiveness of the proposed ideas, we apply them
on a recently proposed cipher called LILI-128. The attack is a key recovery attack.
LILI-128 has one LFSR controlling the clock of another LFSR. Our approach
is to guess the first 39 bits of the key, those bits that are used in the LFSR
that controls the clocking. If our guess is correct we will be able to detect some
bias in the output sequence through the proposed distinguishing attacks. The
complexity for one of the proposed attacks is roughly 253 binary operations and
it needs about 247 keystream bits, a significant improvement compared to other
known attacks.

The paper is organized as follows. In Section 2 we give a basic description
of filter generators. In Section 3 we present some theory on hypothesis testing.
After this we describe our new distinguishing attack in Section 4, here we also
present some ideas on how to improve this distinguishing attack. In Section 5
we turn this attack into a key recovery attack on LILI-128. Finally in Section 6
some future work and conclusions are discussed.

2 Preliminaries

In this paper we consider binary stream ciphers where the output from a LFSR
is filtered by a nonlinear function. The keystream generator is divided into two
parts, one linear, i.e., the LFSR, and one nonlinear function. LFSRs are known
to produce long pseudo-random data sequences and can be made very efficient
in both hardware and software. Usually the feedback polynomial of the shift
register is primitive and the LFSR sequence will have maximum period. Since
the initial state of an LFSR is very simple to recreate from the output stream
we need to destroy the linearity in the keystream. This is the purpose of the
nonlinear function. Much work on nonlinear functions has been done, see for
example [21].

A New Simple Technique to Attack Filter Generators and Related Ciphers 41

Fig. 1. Description of a filter generator

A filter generator can be described as follows. Let ut, ut+1, . . . denote the
output sequence from a length r LFSR with feedback polynomial g(x). Let f
denote the nonlinear function as can be seen in Figure 1. At each time t this
function takes d input values from the LFSR register and produces on output
bit zt. The variables used as inputs to f at time t are the entries in the vec-
tor Ut = (ut+t1 , ut+t2 , . . . , ut+td

)T . We denote the output sequence from the
Boolean function, i.e., the keystream, by zt, zt+1, We thus have zt = f(Ut).
This is modeled in Figure 1.

3 Hypothesis Testing

In a distinguishing attack we try to decide whether the data origins from the con-
sidered cipher or from a random source. To make this decision we use hypothesis
testing. The problem stated above can be reformulated. We have two hypotheses,
where H0 denotes the hypothesis that the observed data comes from our cipher
and H1 that the data origins from a random source. We will now shortly explain
how the decision is made and how we can calculate the number of samples we
need to make a correct decision. For a more thorough description of hypothesis
testing, see [7].

Assume that we have a sequence of m independent and identically distributed
(i.i.d.) random variables X1, X2, . . . , Xm taken from the alphabet X . The distri-
bution of the random variables, Xi, are denoted P (x) = Pr(Xi = x), 1 ≤ i ≤ m,
where x1, x2, . . . , xm denotes observed values. If we denote the distribution of
Xi under hypothesis H0 with P0 and the uniform distribution by P1, we can
write our hypothesizes as H0 : P = P0 and H1 : P = P1. To perform the actual
hypothesis test we use the Neyman-Pearson lemma.

Lemma 1. (Neyman-Pearson lemma) Let X1, X2, . . . , Xm be drawn i.i.d. ac-
cording to mass function P . Consider the decision problem corresponding to the
hypotheses P = P0 vs. P = P1. For T ≥ 0 define a region.

42 H. Englund and T. Johansson

Am(T) =
{

(x1, x2, . . . , xm) :
P0(x1, x2, . . . , xm)
P1(x1, x2, . . . , xm)

> T

}
.

Let α = P0(Ac
m(T)) and β = P1(Am(T)) be the error probabilities corresponding

to the decision region Am, (Ac
m denotes the complement of the region Am). Let

Bm be any other decision region with associated error probabilities α∗ and β∗. If
α∗ ≤ α, then β∗ ≥ β.

The region Am(T) minimizes α and β. In our case we set α and β to be equal and
hence T = 1. As all xn are assumed independent we can rewrite the Newman-
Pearson as a log-likelihood test,

I =
m∑

n=1

(
log2

P0(xn)
P1(xn)

)
> 0 ? (1)

We also need to know how many keystream bits we need to observe in order
to make a correct decision. In [4] the statistical distance is used. The statistical
distance, denoted ε, between two distributions P0, P1 defined over the finite
alphabet X , is defined as

ε = |P0 − P1| =
∑
x∈X

|P0(x) − P1(x)|, (2)

where x is an element of X . Since 0 ≤ ε ≤ 2 we use the more natural ε = ε/2. If
the distributions are smooth, the number of variables N we need to observe is
N ≈ 1/ε2, see [4]. Note that the error probabilities are decreasing exponentially
with N .

4 Description of the New Attack

In this section we will give a description of the different steps of our attack. If
the feedback polynomial of the LFSR is of low weight from the beginning, we
can apply our attack directly. Usually this is not the case, and our first step is
then to try to find a low weight multiple of the feedback polynomial.

4.1 Finding a Low Weight Multiple

There exist many methods for finding low weight multiples (of weight w) of
a feedback polynomial g(x). Because the degree of the multiple gives a lower
bound of the number of samples we need to observe, we wish to minimize this
degree. In [9] it is stated that the critical degree when the polynomial multiples of
weight w starts to appear is (w−1)!1/(w−1)2r/(w−1), where r is the degree of the
original feedback polynomial. In [9] an algorithm to find multiples is described.
First one calculates the residues xi mod g(x), then one computes the residues
xi1 + . . . xik mod g(x) for all

(
n
k

)
combinations 1 ≤ i1 ≤ . . . ≤ ik ≤ n, with n

A New Simple Technique to Attack Filter Generators and Related Ciphers 43

being the maximum degree of the multiples. Use fast sorting to find all of the zero
and one matches of the residues from the second step. The complexity of this
algorithm is approximately O(S logS) with S = (2k)!1/2

k! 2r/2 for odd multiples of

weight w = 2k+1, and S = (2k−1)!k/(2k−1)

k! 2rk/(2k−1) for even multiples of weight
w = 2k .

Wagner [24] presented a generalization of the birthday problem, i.e., given k
lists of r-bit values, find a way to choose one element from each list, so that these
k values XOR to zero. This algorithm finds a multiple of weight w = k+ 1 with
lower complexity, k ·2r/(1+�log k�), than [9] but with higher degrees, 2r/(1+�log k�),
on the multiples. Since the number of samples is of high concern to us we have
chosen to work with the method described in [9]. Continuing, we now assume
that the LFSR sequence is described by a low weight recursion.

4.2 Building a Distinguisher

The technique we use for building a distinguisher is inspired by the work in [16].
However in [16] the authors describe a key recovery attack and use iterative
decoding methods, etc. We construct instead a very simple distinguisher. A
usual description of a stream cipher is to model it as a binary symmetric channel
(BSC), using linear approximations. But we proceed differently. Instead we write
the terms in the weight w parity check equation as a length w vector. This way
we use our knowledge of the nonlinear function better than in the BSC model.
Assume that we have a LFSR of weight w with the parity check equation

ut + ut+τ1 + . . .+ ut+τw−1 = 0. (3)

We write the terms in this relation as a vector, and by noticing that ut+τw−1 is
fully determined by the sum of the other components we get (τ0 = 0),

(ut, ut+τ1 , . . . , ut+τw−1) = (ut, ut+τ1 , . . . ,

w−2∑
i=0

ut+τi
). (4)

From the LFSR, d different positions are taken as input to the nonlinear function
f . For each of these positions, where t1, t2, . . . , td denotes its position relative to
time t, we can write a vector similar to (4). If we consider the following matrix,

At =

⎛⎜⎜⎜⎝
ut+t1 ut+t1+τ1 . . .

∑w−2
i=0 ut+t1+τi

ut+t2 ut+t2+τ1 . . .
∑w−2

i=0 ut+t2+τi

...
...

...
ut+td

ut+td+τ1 . . .
∑w−2

i=0 ut+td+τi

⎞⎟⎟⎟⎠ ,

then by writing Ut+τl
= (ut+t1+τl

, ut+t2+τl
, . . . , ut+td+τl

)T we get

At = (Ut,Ut+τ1 , . . . ,

w−2∑
i=0

Ut+τi
). (5)

44 H. Englund and T. Johansson

In the attack we will not have access to the LFSR output, instead we have
access to the output bits from the nonlinear function f . The output values
(zt, zt+τ1 , . . . , zt+τw−1), denoted by Zt, can be described as

Zt = (zt, zt+τ1 , . . . , zt+τw−1) = (f(Ut), f(Ut+τ1), . . . , f(
w−2∑
i=0

Ut+τi
)). (6)

As we run through Ut,Ut+τ1 , . . . ,Ut+τw−1 in a nonuniform manner (not all
values of Ut,Ut+τ1 , . . . ,Ut+τw−1 are possible), we will (in general) generate a
nonuniform distribution of (zt, zt+τ1 , . . . , zt+τw−1). In [16] it is shown that the dis-
tribution of these vectors only depends on the parity. If the number of output bits
is large enough, we can perform a hypothesis test according to Section 3. In this
hypothesis test we need the probability distribution P0(Zt). This distribution can
be calculated by running through all different values of Ut,Ut+τ1 , . . . ,Ut+τw−1 .
If d and w are large, the complexity for such a direct approach is too high. Then
we can use slightly more advanced techniques based on building a trellis, that
have much lower complexity.

The new basic distinguishing attack is summarized in Figure 2.

1. Find a weight w multiple of g(x).
2. Calculate the distribution P0(Zt).
3. Calculate the length N we need to observe.
4. for t = 0 . . . N

Zt = (zt, zt+τ1 , . . . , zt+τw−1)
end for

5. Calculate I =
∑N

t=0

(
log2

P0(Zt)
1/2w

)
.

6. if (I > 0)
output “cipher” otherwise “random”.

Fig. 2. Summary of the new basic distinguishing attack

4.3 Example of the Attack Applied on a Filter Generator

To really show the simplicity of the attack we will demonstrate with an example.
We use an example from [16] in which we consider a three weight multiple from
which the output is filtered by an 8-input, 2-resilient plateaued function.

f(x) = x1 + x4 + x5 + x6 + x7 + x1(x2 + x7) + x2x6 + x3(x6 + x8)+
+x1x2(x4 + x6 + x7 + x8) + x1x3(x2 + x6) + x1x2x3(x4 + x5 + x8).

For a parity of weight three and using the notation from Section 4.2 we can
write the vectors as

(zt, zt+τ1 , zt+τ2) = (f(Ut), f(Ut+τ1), f(Ut + Ut+τ1)).

If we try all possible inputs to this function and determine the distribution
P0(zt, zt+τ1 , zt+τ2) we get Table 1. Since we know that the probability only

A New Simple Technique to Attack Filter Generators and Related Ciphers 45

Table 1. The probability distribution P0(zt, zt+τ1 , zt+τ2)

zt, zt+τ1 , zt+τ2 P0(zt, zt+τ1 , zt+τ2)
000 8320/216

001 8064/216

010 8064/216

011 8320/216

100 8064/216

101 8320/216

110 8320/216

111 8064/216

depends on the parity of these vectors we translate these probabilities into
binary probabilities. Using the binary probabilities we can calculate the bias,
ε = P (zt + zt+τ1 + zt+τ2 = 0) = 4 · 8320

216 − 1
2 = 7.8125 · 10−3. As described before

we use the thumb rule, N ≈ 1/ε2, for the number of output bits we need to ob-
serve in order to make a correct decision in the hypothesis test. This means that
we need approximately 16384 bits to distinguish the cipher from a truly random
source. Of course, we can use several weight three recursions (using squaring
technique) and decrease the number of required bits. However, there are more
powerful possibilities, as we will show in the next section.

4.4 Using More Than One Parity Check Equation

The distinguishing attack described in the previous section is in a very simple
form. We can improve the performance by using a slightly more advanced tech-
nique. If we can find more than one low weight parity check equation, we can use
them simultaneously to improve performance. Assume that we have the two par-
ity check equations, ut+ut+τ1+. . .+ut+τw−1 = 0 and ut+ut+τw +. . .+ut+τ2w−2 =
0, giving rise to

Ut + Ut+τ1 + . . .+
∑w−2

i=0 Ut+τi
= 0,

Ut + Ut+τw
+ . . .+

∑2w−3
i=w Ut+τi

= 0.
(7)

We introduce in this case

Zt = (zt, zt+τ1 , . . . , zt+τ2w−2).

In this case two of the variables are totally determined by the other variables,

Zt = (f(Ut), . . . , f(
w−2∑
i=0

Ut+τi), f(Ut+τw), . . . , f(Ut +
2w−3∑
i=w

Ut+τi)). (8)

In a similar manner we can use more than two parity checks in the vectors.
Assume that we have N parity check equations. Then we have N positions in
the vector that are fully determined by other positions. This means a more skew
distribution of the output vector in (8). For the particular case of two parity
check equations, the algorithm is described in Figure 3.

46 H. Englund and T. Johansson

1. Find two weight w multiples of g(x).
2. Calculate the distribution P0(Zt).
3. Calculate the length, N we need to observe.
4. for t = 0 . . . N

Zt = (ztt , zt+τ1 , . . . , zt+τ2w−2)
end for

5. Calculate I =
∑N

t=0

(
log2

P0(Zt)
1/2w

)
.

6. if (I > 0)
output “cipher” otherwise “random”.

Fig. 3. Summary of the new distinguishing attack using two parity check equations

4.5 Example of the Attack Applied on a Filter Generator, Cont’d

In this section we consider the same example as in Section 4.3, but we use two
recursions as described in Section 4.4. Hence we observe the keystream vectors

(zt, zt+τ1 , . . . , zt+τ4) = (f(Ut), f(Ut+τ1), f(Ut + Ut+τ1), f(Ut+τ3), f(Ut + Ut+τ3)),

when (Ut,Ut+τ1 ,Ut+τ3) runs through all values. In this case we use statistical
distance, as defined in Section 3, in order to determine the number of vectors
N we need to make a correct decision. The statistical distance is approximately
ε = 0.01172 and hence we need N ≈ 1/ε2 = 7282 vectors to distinguish the key
stream. We see that the result is a significant improvement. If we extend the
reasoning and use three weight three recursions we get ε = 0.01276 and hence
we need N ≈ 1/ε2 = 6145 vectors. The gain of using three recursions instead of
two is smaller.

4.6 The Weight Three Attack

If we can find many multiples of weight three of a feedback polynomial we can
simplify the description of our attack. With a d-input nonlinear function we
write one parity check as

Ut + Ut+τ1 + Ut+τ2 = 0.

If Ut = 0 we notice that Ut+τ1 = Ut+τ2 . If this is the case, then obviously
zt+τ1 = zt+τ2 (we assume that f(0) = 0). Now, we have m weight three parity
checks, say

Ut + Ut+τ1 + Ut+τ2 = 0,

Ut + Ut+τ3 + Ut+τ4 = 0,
...

Ut + Ut+τ2m−1 + Ut+τ2m
= 0.

Again assuming Ut = 0 we see that we must have zt+τ1 = zt+τ2 , zt+τ3 =
zt+τ4 , . . . , zt+τ2m−1 = zt+τ2m . So, since P (Ut = 0) = 2−d we will have

P (zt+τ1 = zt+τ2 , zt+τ3 = zt+τ4 , . . . , zt+τ2m−1 = zt+τ2m) > 2−d. (9)

A New Simple Technique to Attack Filter Generators and Related Ciphers 47

For a purely random sequence, however, this probability is 2−m. It is impor-
tant to note that when (9) holds for some t, it is very probable that Ut = 0,
i.e., we have recovered a part of the key. Since all output bits from the LFSR can
be written as a linear combination of the initial state, ut+ti =

∑r−1
i=0 aiui, i =

1 . . . d where ai ∈ {0, 1} are constants, we get d equations of the kind ut+ti =∑r−1
i=0 aiui = 0 for each Ut = 0. Finding another value of t for which (9) holds

gives more expressions describing the key. Since a full rank of the system of
equations would only lead to the all zero solution, we need to guess at least
one bit of the key. Then simple Gauss elimination can be applied to the system
to deduce the other key bits. So we have described a key recovery attack. This
attack has major consequences for any filter generator, as well as for nonlinear
combining generators, and possibly also others. Basically, any filter generator of
length r where the number of inputs d is smaller than r/2 can be broken very
easily if we have access to a bit more than 2r/2 output symbols.

This leads to an attack as described in Figure 4.

1. Find m weight three multiples of g(x).
2. Calculate the length N we need to observe.
3. for t = 0 . . . N

if zt = 0 and
zt+τ1 = zt+τ2

zt+τ3 = zt+τ4

...
zt+τ2m−1 = zt+τ2m

then assign Ut = 0.
4. Guess at least one ut and then recover u1, u2, . . . by linear algebra.

Fig. 4. Summary of the weight three key recovery attack

5 A Key Recovery Attack on LILI-128

In 2000 a project called NESSIE was initialized. The aim of this project was
to collect a strong portfolio of cryptographic primitives. After a open call for
proposals the submissions were thoroughly evaluated. One proposed candidate
in the stream cipher category was called LILI-128 [3]. The cipher is very simple
and its design is shift register based and uses a key of length 128 bits.

5.1 Description of LILI-128

LILI-128 has the structure of a filter generator. The only difference is that LILI-
128 use an irregular clocking. LILI-128 consists of a first LFSR, called LFSRc,
that via a nonlinear function clocks a second LFSR, called LFSRd, irregularly.
The structured can be viewed in Figure 5. LILI-128 use a key length of 128 bits,
the key is used directly to initialize the two binary LFSRs from left to right. Since

48 H. Englund and T. Johansson

Fig. 5. Overview of LILI keystream generator

the the first shift register, LFSRc is a polynomial of length 39, the leftmost 39
bits of the key is used to initialize LFSRc. The remaining 89 bits are used in
the same manner to initialize LFSRd. The feedback polynomial for LFSRc is
given by

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1 .

The Boolean function fc takes two input bits from LFSRc, namely the bit in
stage 12 and the bit in stage 20 of the LFSR. The Boolean function fc is chosen
to be

fc(x12, x20) = 2 · x12 + x20 + 1 . (10)

The output of this function is used to clock LFSRd irregularly. The reason for
using irregular clocking [3], was that regularly clocked LFSRs are vulnerable to
correlation and fast correlation attacks. The output sequence from fc is denoted
c(t) and c(t) ∈ {1, 2, 3, 4}, i.e., LFSRd is clocked at least once and at most four
times between consecutive outputs. On average, LFSRd is clocked c̄ = 2.5 times.

LFSRd is chosen to have a primitive polynomial of length 89 which pro-
duces a maximal-length sequence with a period of Pd = 289 − 1. The feedback
polynomial for LFSRd is

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1 .

Ten bits are taken from LFSRd as input to the the function fd, these bits are
taken from the positions (0,1,2,7,12,20,30,44,65,80) of the LFSR. The function
fd is given as a truth table, see [3].

5.2 The Attack Applied on LILI-128

In this chapter we will give a description of how we turn our new ideas described
in Section 4 into a key recovery attack on LILI-128. The different steps of our
attack can be summarized as follows:

A New Simple Technique to Attack Filter Generators and Related Ciphers 49

– First we find a multiple of low weight of the LFSRd, see Section 4.1.
– Secondly, we guess the content of LFSRc. For each guess we perform a

distinguishing attack on the output keystream. If the guessed key is the
correct, we will detect a certain a bias in the output.

– When we have found the correct starting state of LFSRc, we recover the
initial state of LFSRd by just applying some well known attack, e.g. a time-
memory tradeoff attack, or the weight three attack described in this paper.

After calculation of one (or several) multiple(s) of the feedback polynomial
of LFSRd, our first step is to guess the initial state of LFSRc. If we guess the
correct key the clocking of LFSRd is correct and we should be able to detect
some bias in the keystream. To detect this bias we apply our distinguishing attack
on the keystream. If we instead made an incorrect guess, the output sequence
will have properties like a random source. For each guess of LFSRc we need to
make a decision whether this is the correct key or not. LILI-128 uses 10 bits as
input to the Boolean function fd. For a w-weight multiple we get

(zt, zt+τ1 , . . . , zt+τw−1) = (fd(Ut), fd(Ut+τ1), . . . , fd(
w−2∑
i=0

Ut+τi
)), (11)

where Ut+τl
is a column vector including the ten inputs to fd. If we consider the

fact that we have an irregularly clocked LFSR, not all of the terms in (4) will
be used to produce an output bit. If so, we cannot use this relation. Thus we
will need more keystream to be able to get the required number of valid vectors
Zt we want. As LFSRd is clocked on average 2.5 times between consecutive
outputs we can expect that we need to increase the keystream by roughly a
factor (2/5)w−1. (This is valid for the case of one weight w parity check. If we
would consider all weight w parity checks up to a certain length, we do not need
to increase the keystream length at all in the case of irregular clocking.)

5.3 Results with Weight Three Multiple

We first use the method described in Section 4.1 on LILI-128 to find a multiple of
weight three. In this case we have the degree of the original feedback r = 89 and
w = 3, hence the degree of the multiple is approximately 244.5. The complexity
to find one multiple of weight three according to [9] is approximately 250. If we
use the distinguishing attack described above on a regularly clocked LFSRd, the
bias is ε = 1.953·10−3 which is greater than we would usually expect. This means
that we will need approximately 1/ε2 = 218 keystream bits to distinguish it from
a stream of random data. We thus need about slightly more than 244.5/2.5 bits
of received sequence. The complexity for the attack is 238 · 218 · 2.52 since we
search through the initial states of LFSRc, each of these states takes 218 bits
to distinguish. To get 218 sample values, we need to use 218 ∗ 2.52 ≈ 221 parity
checks in the case of irregular clocking. The total complexity is about 260.

50 H. Englund and T. Johansson

5.4 Results with Weight Four Multiple

To find a multiple of weight four we use the same method as before. In this case
we have the degree of the original feedback r = 89 and k = 4, hence the degree
of the multiple is approximately 229.67. The complexity to find this multiple is
265. The bias is calculated to ε = 1.862 · 10−3, see [20] for an explanations on
why weight three and weight four multiples give almost the same bias. We will
need approximately 1/ε2 = 218.14 keystream bits in the case when all parities are
available. We use the same argument as in the 3-weight case for the uncertainty
of positions actually appearing in the output stream and we get that we in total
need 222 bits. Since the degree of the polynomial is 230 we will need about 230/2.5
bits to detect the bias. The complexity for the attack is about 261.

5.5 Results with Weight Five Multiple

To find a multiple of weight five we need a degree of the multiple of approximately
217.8 and it takes about 250 time. With a multiple of weight five the bias decreases
significantly to ε = 7.182 ·10−6 and hence we will need approximately 1/ε2 = 234

available checks. We need in total 240 bits to perform the distinguishing attack.
The complexity for the attack is around 279.

5.6 The Weight Three Attack

We can improve the results above by using several low weight parity checks as
described in Section 4.4. We do not present the results here, but consider only
the modified attack described in Section 4.6. In earlier sections we have stated
that the multiples of weight three start to appear at degree 244.5. If we use about
15 valid parity equations in the weight three attack, the probability that we make
an incorrect decision is low. The total complexity for this attack is roughly 253

since we still guess the contents of LFSRc 238 times on average, and for each
guess we need to test whether the set of equalities zt+τ1 = zt+τ2 , . . . is true. Since
the probability of such an event occurring for the correct key is > 2−10 we run
through a bit more, say 212 such t values. As all but one test correspond to the
random case, the equalities will hold with probability 1/2. Hence we need very
few comparisons on average (say 2). We also need to include the fact that not
all positions are present, a factor 2.52. The required keystream length to find 15
valid weight three parity checks is roughly 247.

5.7 Summary

In Table 2 we summarize our result. Note that the work to synchronize positions
for each guessed LFSRc state was not considered in previous work, but can be
done without increasing the overall complexity by choosing states in the order
they appear in the LFSRc cycle, see also [19].

We compare with the best attacks so far, summarized in Table 3. Here we
have recalculated the complexity of [22] to bit operations.

A New Simple Technique to Attack Filter Generators and Related Ciphers 51

Table 2. The sequence length and the complexity for different weights, the basic attack
is described in Section 5.2, and the weight three attack is described in Section 5.6

Sequence length Complexity

Weight three attack 247 253

3 243 260

Basic attack with weight 4 229 261

5 234 279

Table 3. Comparison of our attack with the best known attacks

Attack by Our [6] [22] [5]

Sequence length in bits 247 218 246 260

Attack complexity 253 296 260 “

6 Conclusions and Future Work

We have presented a new simple attack philosophy on filter generators and re-
lated ciphers. We demonstrated the efficiency by attacking LILI-128. We can
recover the key using 247 keystream bits with complexity around 253, an im-
provement compared to previous attacks. The weight three attack is a very
powerful key recovery attack on any filter generator, if enough output symbols
are available. It also applies to any filter generator with a weight three feedback
polynomial, by the squaring method.

It is an open problem to examine whether these techniques can be applied
on stronger designs like LILI-II and word-oriented stream ciphers.

Finally, we mention that related work has independently been done by Mol-
land and Helleseth [20].

References

1. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-
check equations of weight 4 and 5. In Advances in Cryptology—EUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science, pages 573–588. Springer-
Verlag, 2000.

2. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation
attacks on stream ciphers. In Fast Software Encryption 2000, volume 1978 of
Lecture Notes in Computer Science, pages 181–195. Springer-Verlag, 2001.

52 H. Englund and T. Johansson

3. A. Clark, E. Dawson, J. Fuller, J. Golic, H-J. Lee, William Millan, S-J. Moon,
and L. Simpson. The LILI-128 keystream generator. In Selected Areas in
Cryptography—SAC 2000, volume 2012 of Lecture Notes in Computer Science.
Springer-Verlag, 2000.

4. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology—CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 515–532. Springer-Verlag,
2002.

5. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
D. Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 176–194. Springer-Verlag, 2003.

6. N. Courtois and W. Meier. Algebraic attack on strem ciphers with linear feedback.
In E. Biham, editor, Advances in Cryptology—EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 345–359. Springer-Verlag, 2003.

7. T. Cover and J.A. Thomas. Elements of Information Theory. Wiley series in
Telecommunication. Wiley, 1991.

8. P. Ekdahl and T. Johansson. Distinguishing attacks on SOBER-t16 and SOBER-
t32. In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, volume
2365 of Lecture Notes in Computer Science, pages 210–224. Springer-Verlag, 2002.

9. J.D. Golić. Computation of low-weight parity-check polynomials. Electronic Let-
ters, 32(21):1981–1982, October 1996.

10. J.D. Golić. On the security of nonlinear filter generators. In D. Gollman, editor,
Fast Software Encryption’96, volume 1039 of Lecture Notes in Computer Science,
pages 173–188. Springer-Verlag, 1996.

11. J.D. Golić, A. Clark, and E. Dawson. Inversion attack and branching. In
J. Pieprzyk, R. Safavi-Naini, and J.Seberry, editors, Information Security and Pri-
vacy: 4th Australasian Conference, ACISP’99, volume 1587 of Lecture Notes in
Computer Science, pages 88–102. Springer-Verlag, 1999.

12. J.D. Golić, A. Clark, and E. Dawson. Generalized inversion attack on nonlinear
filter generators. 49(10):1100–1109, 2000.

13. T. Johansson and F. Jönsson. Fast correlation attacks based on turbo code tech-
niques. In Advances in Cryptology—CRYPTO’99, volume 1666 of Lecture Notes
in Computer Science, pages 181–197. Springer-Verlag, 1999.

14. T. Johansson and F. Jönsson. Improved fast correlation attacks on stream ciphers
via convolutional codes. In Advances in Cryptology—EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 347–362. Springer-Verlag, 1999.

15. T. Johansson and F. Jönsson. A fast correlation attack on LILI-128. In Information
Processing Letters, volume 81, pages 127–132, 2002.

16. S. Leveiller, G. Zémor, P. Guillot, and J. Boutros. A new cryptanalytic attack
for pn-generators filtered by a boolean function. In K. Nyberg and H. Heys, edi-
tors, Selected Areas in Cryptography—SAC 2002, volume 2595 of Lecture Notes in
Computer Science, pages 232–249. Springer-Verlag, 2003.

17. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In C.G.
Günter, editor, Advances in Cryptology—EUROCRYPT’88, volume 330 of Lecture
Notes in Computer Science, pages 301–316. Springer-Verlag, 1988.

18. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

19. H. Molland. Improved linear consistency attack on irregular clocked keystream
generators. In Fast Software Encryption 2004.

A New Simple Technique to Attack Filter Generators and Related Ciphers 53

20. H. Molland and T. Helleseth. An improved correlation attack against irregular
clocked and filtered keystream generators. In Advances in Cryptology—CRYPTO
2004.

21. E. Pasalic. On Boolean Functions in Symmetric-Key Ciphers. PhD thesis, Lund
University, Department of Information Technology, P.O. Box 118, SE–221 00,
Lund, Sweden, 2003.

22. M-J.O. Saarinen. A time-memory tradeoff attack against LILI-128. In J. Daemen
and V. Rijmen, editors, Fast Software Encryption 2002, volume 2365 of Lecture
Notes in Computer Science, pages 231–236. Springer-Verlag, 2002.

23. T. Siegenthaler. Correlation-immunity of non-linear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, 30:776–780,
1984.

24. D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in
Cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 288–303. Springer-Verlag, 2002.

0 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability

On XTR and Side-Channel Analysis

Daniel Page and Martijn Stam

Dept. Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
{page, stam}@cs.bris.ac.uk

Abstract. Over the past few years, there has been a large volume of work on both
attacking elliptic curve cryptosystems (ECC) using side-channel analysis and the
development of related defence methods. Lenstra and Verheul recently introduced
XTR, a cryptosystem that can compete with ECC in terms of processing and
bandwidth requirements. These properties make XTR ideal for use on smart-cards,
the devices that suffer most from vulnerability to side-channel attack. However,
there are relatively few papers investigating the side-channel security of XTR and
although some ECC techniques can be re-used, there are also notable differences.
We aim to fill this gap in the literature. We present the first known SPA attack
against XTR double exponentiation and two defence methods against such an
attack. We also investigate methods of defending XTR against DPA attack.

Keywords: XTR, LUC, finite field, power analysis, side channel attack.

1 Introduction

In 2000 Lenstra and Verheul introduced XTR [16], a cryptosystem using (a sub-group
of) the multiplicative group of Fp6 but with a compact representation based on the
trace over Fp2 that allows highly efficient arithmetic. Given the current state of affairs
in breaking the discrete logarithm problems over either finite fields or elliptic curves,
XTR can compete with elliptic curve cryptography (ECC) in terms of both speed and
bandwidth. This makes XTR suitable for deployment on similar sorts of constrained
devices as ECC, where computational power and storage capacity are both very limited.

Side-channel analysis [13, 12] moves the art of cryptanalysis from the mathematical
domain into the practical domain of implementation. Such attacks are based on the
assumption that one can observe an algorithm being executed on a processing device and
infer details about the internal state of computation from the features that occur.Although
timing attacks are the classic example of this technique, in the context of ECC, power
analysis is a popular method of monitoring the activity of the processor since smart-
cards which commonly implement ECC cryptography draw power from an external and
hence accessible source. Using simple equipment, an attacker can collect power profiles
from a target smart-card and break the security of a system if the implementation does
not include defences mechanisms. Techniques such as electromagnetic (EM) radiation
based side-channels are growing in popularity but in this paper we limit our scope to
attacks using simple (SPA) and differential (DPA) power analysis.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 54–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On XTR and Side-Channel Analysis 55

Due to wide spread use on devices such as smart-cards, there has been a large volume
of work on side-channel attacks against ECC and also on defending against these attacks.
Conversely, there are relatively few, if any papers addressing the side-channel security
of XTR. Although one can borrow some defence methods from ECC and successfully
apply them to XTR, there are also notable differences. For instance, ECC techniques
based on curve isomorphisms or curve isogenies do not seem to apply, while others,
such as exponent splitting, do apply but may not be the best engineering solution. We
aim to fill this gap in the literature by investigating possible weaknesses of XTR against
side-channel attacks and evaluating different defence techniques.

The paper is organised as follows. We use Section 2 to briefly recap on features
of side-channel attacks that relate to subsequent discussion before presenting the XTR
cryptosystem in Section 3. In Section 4 we describe an SPA attack against XTR, including
some experimental results. We then describe methods for defending XTR against SPA
and DPA attack in Sections 5 and 6 respectively.

2 Side-Channel Analysis

At the heart of power analysis is the concept of power traces. When a smart-card performs
an operation, it consumes power in proportion to a number of factors such as which
computational units are active and the Hamming weights of data involved. The power
trace is a profile of how much power is being consumed at a given point in time during
execution. Since the power supply on smart-cards is part of the reader terminal, it is both
easily controllable and inspected by the attacker unless masking devices are used [23].

Attackers can harness such traces in two main ways. In an SPA attack the attacker
executes the algorithm once and gleans information from the types of operation that
are performed, focusing mainly on control flow. The attacker uses an operation trace
that is constructed by spotting known operation profiles in the power trace. For exam-
ple, suppose it is possible to differentiate between when a squaring and when a more
general group multiplication is performed during an exponentiation using some secret
exponent. Using a shorthand of A and D to represent squaring and multiplication, or
addition and doubling in the additive case of elliptic curves, this leads to a sequence
we call an operation trace. Let us consider the example of a left-to-right binary expo-
nentiation algorithm used to perform ECC point multiplication. From a single trace, the
secret exponent can be read immediately if the addition and doubling operations are
distinguishable. For example, the operation trace DADD corresponds to an exponent of
(((1 ·2)+1) ·2) ·2 = 1210 = 11002. By simply noting where an addition follows a dou-
bling in the operation trace, the attacker can directly read the secret exponent and hence
break the presumed security without needing to resort to solving a discrete logarithm
problem.

DPA is a more powerful technique that may break systems that are secure against
SPA attack. It also filters out noise from a power trace. By running the algorithm many
times and focusing mainly on the value of data items used in each execution, the attacker
applies statistical techniques to correlate the secret information with features in the
collected profiles. To perform these statistical methods on an exponentiation algorithm
for example, large numbers of power traces using the same exponent are required. If the

56 D. Page and M. Stam

exponentiation is suitably randomised, the samples will be too uncorrelated to provide
useful information. However, if no randomised defence measures are in place DPA can
be used to break the exponentiation, potentially using a small number of traces. Recent
advances in DPA type analysis have seen address calculation as well as actual data values
being examined in order to break table or window based exponentiation algorithms [6].

3 XTR

3.1 Description of XTR

XTR [16] is based on the assumed hardness of the discrete logarithm problem in the
multiplicative group of Fp6 . Using Pohlig-Hellman-like techniques, Lenstra [15] argues
that the hardness of the DLP in F∗

p6 must in fact reside in the part that does not lie in
any proper subfield. This is called the cyclotomic subgroup and denoted Gp2−p+1 since
it has order p2 − p+ 1. Moreover a subgroup Gq of large prime order q is chosen in this
cyclotomic subgroup to prevent further Pohlig-Hellman attacks on the smooth part of
p2 − p+ 1.

In XTR elements of Gp2−p+1 are represented by their trace over Fp2 . For g ∈ F∗
p6

the trace Tr(g) over Fp2 is defined as the sum of the conjugates over Fp2 of g

Tr(g) = g + gp2
+ gp4 ∈ Fp2 .

Because the order of g divides p6 − 1, the trace over Fp2 of g equals the trace of the
conjugates over Fp2 of g, hence XTR makes no distinction between an element g and
its conjugates over Fp2 . If g ∈ Gp2−p+1 then the element g, or one of its conjugates,
can be retrieved from c = Tr(g) by determining a root of the cubic polynomial X3 −
cX2 + cpX − 1. Lenstra and Verheul also show that any given c ∈ Fp2 is the trace of
some element in Gp2−p+1 if the aforementioned cubic polynomial is irreducible over
Fp2 . This tightly and provably links the discrete logarithm problem for XTR to that of
the corresponding subgroup Gq ∈ F∗

p6 , and heuristically to that in the entire field F∗
p6 .

Henceforth, let p and q be primes with q dividing p2 − p+ 1. Suggested lengths to
provide adequate levels of security are k = lg q ≈ 160 and l = lg p ≈ 170. Also, let g
be a generator of Gq and let c = Tr(g). Lenstra and Verheul [17] show how p, q and c
can be found quickly. In particular, there is no need to find an explicit representation of
g ∈ Fp6 .

Throughout this article, cn denotes Tr(gn) ∈ Fp2 , for some p and g of order q
dividing p2 − p+ 1 as above. Note that c0 = 3 and c1 = c. Efficient computation of cn
given p, q and c depends on the recurrence relation

(1) cn+m = cncm − cpncn−m + cn−2m ,

which simplifies for n = m to

c2n = c2n − 2cpn .

Lenstra and Verheul note that the simplification of c2n allows for a considerable speedup
of its computation. This speedup will be responsible for providing different traces for A
corresponding to cn+m and D corresponding to c2n. We will occasionally abuse notation
and use A and D to denote the cost of the operations as well, where A ≈ 2D.

On XTR and Side-Channel Analysis 57

3.2 Binary Exponentiation

Algorithm 1 was introduced by Lenstra and Verheul alongside XTR. They already noted
that regardless of the bit being read in Step 3, two doublings and one addition are being
performed. Hence the operation trace contains no Shannon information on the exponent
apart from its length, provided that for both cases in Step 3 the same order is used [5]
(cf. [21, 10] for similar subtleties for the binary Lucas left-to-right algorithm [14]). The
algorithm can be slightly adapted to output the triple (cn−1, cn, cn+1), but care has to
be taken (e.g., by adding a dummy operation) that the least significant bit of n is not
leaked. The runtime of the algorithm is basically A + 2D per exponent bit.

Algorithm 1: Left-to-Right Binary Exponentiation.

On input n and c this algorithm returns cn or the triple (c2� n
2 �, c2� n

2 �+1, c2� n
2 �+2). It

maintains as invariant

0 ≤ j < k, a = 1 +
k−1∑

i=j+1

ni2i−j , Sa = (ca−1, ca, ca+1) .

(a is carried along for expository purposes only).

1. [Initialization] Set j ← k − 1, a← 1 as well as Sa ← (3, c, c2).
2. [Finished?] If j = 0 terminate with output ca−1 if n0 = 0 and with output ca

otherwise.
3. [Decrease j] If nj = 0, set Sa ← (c2(a−1), c(a−1)+a), c2a) and set a ← 2a− 1;

else (nj = 1) set Sa ← (c2a, c(a+1)+a, c2(a+1)) and set a ← 2a+ 1. Decrease j
by one and go back to the previous step.

3.3 Euclidean Exponentiation

A faster exponentiation routine for XTR was described by Stam and Lenstra [24]. It
is based on an adaptation of a Euclidean algorithm by Montgomery [20] using Lucas
chains. For ease of notation, we will momentarily use ordinary exponentiation in our
description instead of the third order XTR recurrence. The algorithm is based on the
invariant relationAdBe = gnhm, where the left-hand side are variables in the algorithm
and the right-hand side is the exponentiation to be performed. It is easy to initialise the
variables by (d, e) = (n,m) and (A,B) = (g, h). The algorithm then reduces d and
e in a way depending on the current values of d and e, updating A and B applying
multiplication and squaring operations as execution progresses. Finally, when e = 0,
the algorithm outputs A and the unprocessed part of the exponent d.

Algorithm 2: Euclidean Double Exponentiation.

Given bases cκ, cλ, cκ−λ, and cκ−2λ and positive exponents n,m, this algorithm outputs
u = gcd(n,m) and c(nκ+mλ)/u. It uses invariant

d > 0, e ≥ 0, ad+ be = nκ+mλ, gcd(d, e) = gcd(n,m),
A = ca, B = cb, C = ca−b, D = ca−2b .

(a and b are carried along for expository purposes only).

58 D. Page and M. Stam

Table 1. Two tables that describe the operation of Euclidean exponentiation

Type Condition Substitution Trace
Substitutions if d ≥ e

X1 d ≤ 4e (e, d − e) A
X2 d even (d/2, e) ADD
X3 d, e both odd ((d − e)/2, e) ADD
X4 e even (e/2, d) DD

Substitutions if e ≥ d

X5 e ≤ 4d (d, e − d) A
X6 e even (e/2, d) DD
X7 d, e both odd ((e − d)/2, d) ADD
X8 d even (d/2, e) ADD

Type Condition Substitution Trace
Substitutions if d ≥ e

X1 0 ≤ e ≤ 3d (d + e, d) A
X2 e < 1

2d and e odd (2d, e) ADD
X3 e < 2

3d and e odd (2d + e, e) ADD
X4 e > 8d and e odd (e, 2d) DD

Substitutions if e ≥ d

X5 0 ≤ e ≤ 3d (d, d + e) A
X6 e < 1

2d and e odd (e, 2d) DD
X7 e < 2

3d and e odd (e, 2d + e) ADD
X8 e > 8d and e odd (2d, e) ADD

(a) A table describing the operations per-
formed by the Euclidean exponentiation
algorithm and the SPA trace produced as
a result. Note the ordered constraints on
values of d and e that dictate the algo-
rithm execution

(b) A reverse engineering of Euclidean exponen-
tiation which shows the operations used if the
algorithm is run in reverse, starting with the pair
(1, 1) and moving towards the initial exponent
values

1. [Initialization] Let a = κ, b = λ, and set d ← n, e ← m, A ← cκ, B ← cλ,
C ← cκ−λ, and D ← cκ−2λ.

2. [Both even?] Set f2 ← 0. As long as d and e are both even, replace (d, e) by
(d/2, e/2) and f2 by f2 + 1.

3. [Finished?] If e = 0 terminate with output d2f2 and A.
4. [Decrease (d, e)] Substitute (d, e) using the first applicable rule in Table 1a.

Update a, b, A,B,C and D accordingly, in order to maintain the invariant. Go
back to the previous step.

Table 1a contains the rules that are used to decrease the pair (d, e), including the
operations-trace that is left by any particular rule. We have left out the optional ternary
rules described by Stam and Lenstra, because the speedup achieved is based upon a
clearly recognisable tripling operation and we believe the resulting increase of side-
channel leakage is likely to outweigh the gain in speed. On average, the algorithm takes
1.39A + 1.1D per exponent bit.

A single exponentiation routine can be based on the double exponentiation routine
by writing gn = gn−rgr where r can be chosen arbitrarily. A sensible way to do
this is described in Algorithm 3, where we have thrown out some speedups proposed
by Montgomery based on the factorisation of the exponent, since we deem them to
vulnerable to attack. If r is chosen as in Step 3 below coprime to the exponent n,
the call to Algorithm 2 will result in approximately 0.72 lgn applications of X1 after
which a random (lgn)/2-bit random double exponentiation follows. Overall, a single
exponentiation will take 1.41A + 0.55D.

On XTR and Side-Channel Analysis 59

X1 X5

X2

X3 X7

X8 X2

X3 X7

X8

X1

X5 X1

X5

Fig. 1. A parse tree generated by the SPA trace AADDA corresponding to the initial pair (5, 6).
Note that the edges are marked with operations that are applied by the exponentiation algorithm
to move between the nodes that contain intermediate (d, e) pairs

Algorithm 3: Single Exponentiation.

Given a base c and an exponent n, this algorithm computes cn.

1. [d = 1?] If d = 1, the algorithm terminates with output A.
2. [Initialise new GCD calculation] Set r ← � d

φ� and set (d, e) ← (r, d− r).
3. [Compute “Ap”] Run Algorithm 2 on input (c, c, 3, cp) and exponents (d, e). Let

the output be u and Ã. Set d← u and A← Ã. Go back to step 1.

4 SPA Attack

Since the single exponentiation routine starts off with a fairly predictable part after which
a random double exponentiation takes part, we direct our efforts into analysing the double
exponentiation (with coprime exponents). Curiously, attacking double exponentiation
algorithms has only received limited attention in the literature so far, although they are
essential if precomputation is used and of potential benefit if exponent splitting is used
to defend against SPA and DPA.

From the view of an adversary, the Euclidean algorithm starts with unknown values
for (d, e) but ends with the known pair (1, 0). In their analysis, the adversary can attempt
to run the algorithm backwards by trying to predict which step led to a certain pair (d, e).
For instance, (1, 0) is certain to be preceeded by (1, 1) which will be our starting point
henceforth. We can view the second-guessing of which operations were performed as
movement within a tree of choices where nodes represent (d, e) pairs and edges represent

60 D. Page and M. Stam

1

32

1024

32768

1048576

33554432

1073741824

5 10 15 20 25

N
um

be
r

of
 T

ria
l E

xp
on

en
tia

tio
ns

Number of Bits in d and e

Original Algorithm
Defended Algorithm

Fig. 2. A graph showing the results of implementing an SPA guided search attack against the
original and defended versions of Euclidean exponentiation

the operations performed. As such, there will be a single path through the tree from the
initial (d, e) pair to the root of the tree which will be the pair (1, 1). Each leaf in the tree
corresponds to a potential exponent. The adversary needs to check the exponents until
he has found the correct one, so in order to improve the efficiency of the attack we want
to minimise the number of leaves.

By using the collected SPA trace, we can prune the search tree considerably. For
example, if we notice the sequence DD we know that neither operation X1 nor X5 will
have generated it. We can therefore refine the full tree into what one might call a parse
tree derived from the operations observed in the SPA trace. That is, we include only
those paths that match what has been observed and prune the rest. Figure 1 shows an
example tree for the parse A,ADD,A of a trace AADDA corresponding to the initial pair
(5, 6).

As well as using the SPA trace to eliminate impossible paths, we can work from the
known root of the tree towards the leaves and use constraints on (d, e) pairs to eliminate
operations that could not have occurred. Table 1b illustrates such transformations and
constraints, which are essentially the postconditions that follow from the preconditions
and the transformations in Table 1a. One can see that rule X6 is almost superfluous: none
of the eight steps can actually lead to its precondition, so it can be called at most once
from the start in a double exponentiation routine. Also note that X4 is always followed
by either X7 or X8 and that the observation of ADDDD implies the last two D’s originate
from X4. As a more concrete example of pruning based on Table 1b, consider that we
arrive at pair (1, 2) and see the sequence ADD. We would ordinarily need to search the
paths for operations X2, X3, X7 and X8 but since we know that e must be odd for any
of these operations to have occurred, we can eliminate the impossible paths from our
search. In Figure 1, empty nodes with double rings denote nodes that are pruned using
this method. Using a brute force search of the key space, one might perform around 26

trial exponentiations in the worst case since the pair (5, 6) represents six unknown bits.
Using the SPA trace to prune this search, we perform only two trials due to the number

On XTR and Side-Channel Analysis 61

of false or impossible paths eliminated. However, with such small values of d and e, it
is not clear how the method might perform in the face of recommended key sizes.

In order to empirically investigate this technique with larger parameters, we imple-
mented the search mechanism and ran a large number of experiments. Ambiguity of
parses, such as the choice of A,ADD,A over A,A,DD,A from the trace AADDA is
managed inline with our search so that accumulated work is not wasted. We also added
two search heuristics to guide the selection of valid paths that rely on us first generating
a large number of random keys and constructing some tables from the probability of
generating a given trace. These tables allow us to order our selection of paths through
the tree based on the probability of their occurrence in our analysis phase. Specifically,
we maintain a path history from the root and use it to guide subsequent choices. For
example, at node (2, 1) we might descend down edge X3 before edge X7 since that has
shown to be a more probable path to target nodes.

From the graph of results in Figure 2 we can see that the average number of trial
exponentiations is roughly given by 21.09·k where k is the length of the exponents. Put
more simply, this implies that if an attacker can capture an SPA trace the system is only
as secure as where the exponents are about half as long. For example, given 80-bit values
of d and e, the attack can recover their value in the same time a naive exhaustive search
would take if they were around each around 43-bits. Although not totally devastating
for large keys, care must be taken to guard against smaller values of d and e being
vulnerable to such an attack. This is especially true since it might be attractive to use
such smaller values in constrained environments so as to balance performance against
available resources.

For a single exponentiation of a k-bit exponent, this implies the attack succeeds after
roughly 20.55·k trials. Although this is still more than using the Pollard rho method, it is
worryingly close. Moreover, it is not unthinkable that in significantly less time part of
the exponent can be recovered.

5 SPA Countermeasures

5.1 Adapting the Euclidean Algorithm

Precomputing r. For a fixed exponent, it is possible to precompute r in Algorithm 3
and store this value alongside the exponent. A clever choice of r might increase the
number of A’s in the operation trace without significantly increasing the total costs.
For instance, Montgomery conjectured the existence of an r with only 1,2 and 3 in the
continued fraction of n/r. Precomputation of such an r would yield an SPA-resistant
algorithm since it would only call rules X1 and X5. We did not attempt to find such
a conjectured r, but instead opted for generating a large number of r’s coprime to the
fixed exponent and picked the one that used the least number of steps in the Euclidean
algorithm without binary steps. We formed our r’s by dividing n by a deviation of the
golden ratio φ. The golden ratio has as continued fraction an infinite number of ones.
Our deviations also allow 2’s and some 3’s in the initial part of the continued fraction.
For 160-bit exponents we examined about hundred thousand possible values of r per
exponent. On average, the cost of the exponentiation, after this precomputation, is about
1.7A per exponent bit.

62 D. Page and M. Stam

As a result, for fixed exponents we achieve a SPA-resistant algorithm for hardly any
extra work, not taking into account the precomputation. Working harder during precom-
putation might result in a faster routine, potentially even faster than the unprotected
algorithm (this was observed for some smaller bitlengths). Essentially, a small addition
chain of a special type is being sought. In principal, similar techniques could apply to
ordinary exponentiation with a fixed exponent as well, although we are not aware of
any particular family of small addition chains that is resilient against SPA attacks yet
having a short certificate (although storing the description of the entire chain might be
an option).

This SPA countermeasure excludes several DPA countermeasures from Section 6.
This is unfortunate since the SPA countermeasure only makes sense if the same exponent
is reused over and over. For random exponents DPA is not an issue, but this particular
SPA countermeasure does not work. For random, fresh exponents one could consider
constructing the exponent by means of a randomly generated continued fraction with
sufficiently small entries. We did not explore this avenue, but it undoubtedly will skew
the probability distribution of the exponents in some way.

Choice Randomisation. Making the operation choices non-deterministic is a fairly
simple task that to some extent follows work in ECC where addition chains are traversed
in random patterns [22]. In order to implement this measure, we propose to relax the
bounding conditions that dictate when an operation is selected and then introduce some
random factor into the decision making process. For example, one might set the con-
ditions for X1 and X4 to be d < 2e and 2e < d < 4e but only execute the later with
probability of a half. Although this acts to randomise calculation and help to thwart DPA
attack, clearly some investigating of how this might effect security in the context of SPA
is required.

We implemented the defense strategy and mounted our search attack from Section 4
against it with results again shown in Figure 2. The introduction of non-determinism
clearly hampers the search with the number of trial exponentiations now given by about
21.52·k. This improvement in security is fairly inexpensive; a double exponentiation
now takes on average about 1.29A + 1.53D per exponent bit corresponding to a 3.2%
overhead for a single exponentiation. Given the low cost of the method, one might
implement further similar transformations that introduce more non-determinism should
higher degrees of resistance to SPA attack be required.

For ordinary binary algorithms, using randomization to prevent SPA can actually
weaken the algorithm if a small number of traces using the same exponent are known
due to attacks based on hidden Markov models [11]. The Euclidean algorithm does not
seem to be susceptible to this kind of attack, since a different random choice at one point
makes it extremely unlikely that further on in the algorithm the same state is going to
occur.

5.2 SPA-Resistant Trace Operations

In ECC the doubling and addition operations are mathematically quite different, so dis-
tinguishable traces for them are hard to avoid. Even so, there are some uniform solutions,
although they have additional problems [18, 8, 1, 7]. In contrast, for XTR obtaining indis-

On XTR and Side-Channel Analysis 63

tinguishable operations is really only a matter of choice beween accelerated and normal
arithmetic. An obvious way to hinder SPA is therefore to not bother speeding things up
and hope that the power traces of a real cn+m and a less general cn+n will be indistin-
guishable. However, there is no need to compromise since we can have SPA-resistant
trace operations that largely preserve the speedup and also make the trace of two ap-
plications of c2n indistinguishable to one application of cn+m. Similar techniques have
been described to do this in the context of ECC [26, 4].

For efficiency purposes, Lenstra and Verheul propose to pick p ≡ 2 mod 3 and
use {ζ3, ζ2

3} as a basis for Fp2 , where ζ3 is a root of the third cyclotomic polynomial
x2 + x+ 1. Later it was noted by Stam and Lenstra [25] that if p ≡ 3 mod 4, then one
can use {1, ζ4} without significant loss of efficiency, where ζ4 is a root of the fourth
cyclotomic polynomialx2+1. Using these bases, the costs of applying c2n are dominated
by two modular multiplications, whereas performing cn+m is twice as expensive, costing
four modular multiplications and several additions (cf. [16–Lemma 2.1.1], [24–Lemma
2.2], [2–Case p = 3], and [2–Case pk = 4]).

The 4:2 ratio in modular multiplications leads us to attempt to try and make two
applications of c2n indistinguishable from one application of cn+m. In the Appendix
we describe how to do this based on the field representation given by Lenstra and
Verheul if p is congruent to 2 modulo 3; and then for the alternative representation if p is
congruent to 3 modulo 4. We assume that modular addition and modular subtraction are
indistinguishable. We also assume that in the base field computing a+ (a+ 2), or more
generally a+ (b+ c) where c is very small, is indistinguishable from computing a+ b.
These are all modular additions and if some carry fiddling is allowed, the assumption
should hold. However, using Montgomery arithmetic might hamper things, in that 2 has
to be represented by the full fledged 2R mod p where R is the Montgomery radix. In
this case an Add’ will be equivalent to two ordinary modular additions and some extra
dummy additions have to be added to cn+m routine to make up for this.

6 DPA Countermeasures

The algorithms presented in Section 3 are deterministic in their use of data and are
therefore likely to be vulnerable against DPA type attacks. One way to prevent DPA
attacks is to inject randomness into both the behaviour of the algorithm and the data items
it operates on, so that correlation between executions is more difficult. Such techniques
have been well studied within the context of ECC and here we describe their applicability
for use with exponentiation routines in XTR.

6.1 Binary Exponentiation

Exponent Randomisation. One of the easiest ways to randomise an exponentiation
is to add a random multiple of the group order to the original exponent and run the
algorithm using the result [12, 3]. That is, one picks a random r and computes cn+rq

before recovering the required result at the end, a technique sometimes called exponent
blinding. This method is clearly applicable to XTR but suffers from the same significant
performance problems as when used in ECC and is therefore not ideal. For example, for

64 D. Page and M. Stam

a group of 160 bits in size if r is chosen to be 20 bits long, the exponentiation is slowed
down by around 12.5%.

Exponent Splitting. A related technique to randomising the exponent is splitting it into
two parts by picking a random r ∈ Zq and rewriting the exponent as (n − r) + r.
The values (n − r) and r are then used to compute two single exponentiations that
are multiplied together to reconstruct the required result. This final multiplication is
troublesome in XTR because although cn−r and cr are known, the required differences
cn−2r and cn−3r are typically not and explicitly computing cn−2r and cn−3r alongside
other calculations effectively quadruples the cost of a conventional exponentiation. One
can bypass this problem by computing gn−r and gr in Fp6 , multiply these two values
and trace back the result, but this would be outside the realm of XTR and we do not
expect it to be particularly efficient. The final possibility is to use a double exponentiation
routine that directly leads to cn. Stam and Lenstra [24] present a double exponentiation
version of the binary algorithm that is suitable for this purpose. In essence, the exponent
is rewritten as

n ≡ r

2k
(2k +

(n− r)2k

r
) mod q,

after which the binary algorithm is called twice on exponents (n−r)2k

r mod q and
r
2k mod q. Hence this countermeasure doubles the execution time required for an expo-
nentiation and can hardly be recommended.

Note that the problems just described also complicates the use of techniques such as
meet-in-the-middle [19], where one picks a random point in the binary expansion of an
exponent before using a left-to-right algorithm to compute one half and a right-to-left
algorithm for the other half.

Base Randomisation. Another method is to randomise the base value by operating
modulo some random multiple of the real modulus p and converting back only at the end
of an exponentiation. This method applies to XTR although the costs are harder to pin
down, since it requires comparing modular multiplications of different length exponents.

Field Randomisation. Han et al. [5] suggest using a field randomisation as a coun-
termeasure, mimicking an ECC countermeasure by Joye and Tymen [9]. Although the-
oretically XTR works for any field representation, it is essential for its efficiency that
the Frobenius endomorphism can be computed almost for free without aversely affect-
ing the costs of an ordinary field multiplication. This combined requirement severely
limits the number of field representations that can be used, so using randomised field
representations as a countermeasure against DPA will probably be expensive.

Order Randomisation. One could consider randomising the order in which operations
are called within Step 3 of the algorithm, for instance using the sequence DDA with
probability a half and ADD with probability a half. Although this does randomise the
traces in some sense, it does not alter any of the intermediate triples Sa and typically it
is leakage such as the Hamming weight of these data items that allows successful DPA
attacks. As a consequence, we doubt this countermeasure is suitable to defend against

On XTR and Side-Channel Analysis 65

DPA and note that it has the additional drawback of complicating parallel implementation
of the computation required in Step 3.

6.2 Euclidean Exponentiation

Most countermeasures discussed for binary exponentiation apply in equal measure to
Euclidean exponentiation (where exponent randomisation takes place before calling
Algorithm 3). The main difference is that exponent splitting is actually a very attractive
choice now, since it is a necessity part of the Euclidean exponentiation algorithm anyway.
If we replace φ in Step 2 of Algorithm 3 by a deviation of the golden ratio where the first
20 values in the continued fraction are independently changed to two with probability
a half, the runtime of the single exponentiation increases by less than one percent. We
believe this to be an efficient and adequate DPA countermeasure.

7 Conclusions

Previous work has shown that the public key cryptosystem XTR can be a high perfor-
mance alternative to ECC and is especially suited for implementation on constrained,
mobile devices such as smart-cards. In this paper, we have presented an analysis of sev-
eral security issues that are important if XTR is to be used on such devices. By examining
issues of side-channel security relating to the double exponentiation used in XTR, we
fill a gap in the literature left open by other work in this area.

We presented the first known SPA attack against XTR double exponentiation and two
defence methods against such an attack. The first method used a novel randomisation
of the exponentiation algorithm while the second borrowed a technique from ECC to
construct indistinguishable arithmetic. Finally, we investigated methods of defending
XTR against DPA attack, noting that adapting ECC specific techniques require several
subtle alterations to cope with the XTR group structure.

As a result, for security against currently known side-channel methods we propose
the use of the Euclidean method inAlgorithm 2 coupled with indistinguishable arithmetic
to guard against SPA and exponent splitting to cope with DPA. This offers a very low
performance overhead defence method while achieving a high level of security against
side-channel attack. In further work we intend to investigate this security level in physical
SPA and DPA experiments and also to explore defence methods for the explicit, i.e. non-
trace based, version of XTR.

The authors would like to thank Bart Preneel for his opposition, which led to this
research, and Arjen K. Lenstra for his encouragement and proofreading.

References

1. É. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. PKC’02, LNCS
2274, pages 335–345.

2. H. Cohen and A. K. Lenstra. Supplement to implementation of a new primality test. Mathe-
matics of Computation, 48(177): S1–S4, 1987.

66 D. Page and M. Stam

3. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryptosystems.
CHES’99, LNCS 1717, pages 292–302.

4. C. H. Gebotys and R. J. Gebotys. Secure elliptic curve implementations: An analysis of
resistance to power-attacks in a dsp processor. CHES’02, LNCS 2523, pages 114–128.

5. D.-G. Han, J. Lim, and K. Sakurai. On insecurity of the side channel attack on xtr. In The
2004 Symposium on Cryptography and Information Security (SCIS’04), page To appear. The
Institute of Electronics, Information and Communication Engineers, 2004.

6. K. Itoh, T. Izu, and M. Takenaka. Address-bit differential power analysis of cryptographic
schemes OK-ECDH and OK-ECDSA. CHES’02, LNCS 2523, pages 129–143.

7. T. Izu and T. Takagi. Exceptional procedure attack on elliptic curve cryptosystems. PKC’03,
LNCS 2567, pages 224–239.

8. M. Joye and J.-J. Quisquater. Hessian elliptic curves and side-channel attacks. CHES’01,
LNCS 2162, pages 93–100.

9. M. Joye and C. Tymen. Protection against differential power analysis for elliptic curve
cryptography – an algebraic approach. CHES’01, LNCS 2162, pages 377–390.

10. M. Joye and S.-M. Yen. The Montgomery powering ladder. CHES’02, LNCS 2523, pages
291–302.

11. C. Karlof and D. Wagner. Hidden markov model cryptanalysis. CHES’03, LNCS 2779, pages
17–34.

12. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. Crypto’96, LNCS 1109, pages 104–113.

13. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. Crypto’99, LNCS 1666, pages
388–397.

14. D. H. Lehmer. Computer technology applied to the theory of numbers. Studies in Number
Theory, volume 6 of MAA Studies in Mathematics, pages 117–151. Math. Assoc. Amer.
(distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969.

15. A. K. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm cryp-
tosystems over finite fields. ACISP’97, LNCS 1270, pages 127–138.

16. A. K. Lenstra and E. R. Verheul. The XTR public key system. Advances in Cryptography—
Crypto’00, LNCS 1880, pages 1–19.

17. A. K. Lenstra and E. R. Verheul. An overview of the XTR public key system. The proceedings
of the Public-Key Cryptography and Computational Number Theory Conference, pages 151–
180. Verlages Walter de Gruyter, 2001.

18. P.-Y. Liardet and N. P. Smart. Preventing SPA/DPA in ECC systems using the Jacobi form.
CHES’01, LNCS 2162, pages 391–401.

19. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Power analysis attacks on modular expo-
nentiation in smartcards. CHES’99, LNCS 1717, pages 144–157.

20. P. L. Montgomery. Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via Lucas
chains. Revised (1992) version from ftp.cwi.nl: /pub/pmontgom/Lucas.ps.gz, 1983.

21. K. Okeya and K. Sakurai. Power analysis breaks elliptic curve cryptosystems secure against
timing attack. Indocrypt’00, LNCS 1977, pages 178–190.

22. E. Oswald and M. Aigner. Randomized addition-subtraction chains as a countermeasure
against power attacks. CHES’01, LNCS 2162, pages 39–50.

23. A. Shamir. Protecting smart cards from passive power analysis with detached power supplies.
CHES’00, LNCS 1965, pages 71–77.

24. M. Stam and A. K. Lenstra. Speeding up XTR. Asiacrypt’01, LNCS 2248, pages 125–143.
25. M. Stam and A. K. Lenstra. Efficient subgroup exponentiation in quadratic and sixth degree

extensions. CHES’02, LNCS 2523, pages 318–332.
26. E. Trichina and A. Bellezza. Implementation of elliptic curve cryptography with built-in

counter measures against side channel attacks. CHES’02, LNCS 2523, pages 98–113.

On XTR and Side-Channel Analysis 67

A SPA-Resistant Trace Operations

A.1 Field Representation for p ≡ 2 mod 3

This is the original XTR field representation. Let p be a prime congruent to 2 mod 3,
then p generates Z∗

3 and Φ3(x) = x2 +x+1|(x3−1) is irreducible in Fp. Let ζ3 denote

a root of Φ3(x), then ζn = ζ
(n mod 3)
3 and in particular ζp

3 = ζ2
3 . Hence {ζ3, ζ2

3} is an
optimal normal basis of Fp2 over Fp.

Let cn ∈ Fp2 be represented by (cn,1, cn,2) ∈ (Fp)2, i.e., cn = cn,1ζ3 + cn,2ζ
2
3

(similarly for cm, cn−m and cn−2m). Using Fermat’s little theorem we have that cpn,1 =
cn,1 etc. and hence cpn = cn,2ζ3 + cn,1ζ

2
3 . We need to consider the computation of c2n

and cn+m. The first one is easiest, since

c2n = (cn,2 − 2(cn,1 + 1))cn,2ζ3 + (cn,1 − 2(cn,2 + 1))cn,1ζ
2
3 .

Computation of cn+m boils down to computing

cn+m = ((cn−m,1 − (cn−m,2 + cm,2))cn,1 + (cn−m,2 + cm,2 − cm,1)cn,2 + cn−2m,1)ζ3+

+ ((cn−m,2 − (cn−m,1 + cm,1))cn,2 + (cn−m,1 + cm,1 − cm,2)cn,1 − cn−2m,2)ζ2
3 .

If c2m−n is known instead of cn−2m the required Frobenius operation can be easily
incorporated into the formula above by swapping the roles of cn−2m,1 and cn−2m,2.
This is especially handy for the binary exponentiation algorithm.

One cn+m call Operation Two c2n calls

1. t1 = cn−m,2 + cm,2 Add Add’ t1 = cn,1 + (cn,1 + 2)
2. t2 = cn−m,1 − t1 Sub Sub t2 = cn,2 − t1
3. t3 = cn,1 · t2 Mul Mul c2n,1 = cn,2 · t2
4. t4 = cn−2m,1 + t3 Add Add’ t4 = cn,2 + (cn,2 + 2)
5. t2 = t1 − cm,1 Sub Sub t2 = cn,1 − t4
6. t3 = cn,2 · t2 Mul Mul c2n,2 = cn,1 · t2
7. cn+m,1 = t3 + t4 Add -
8. t1 = cn−m,1 + cm,1 Add Add’ t1 = cm,1 + (cm,1 + 2)
9. t2 = cn−m,2 − t1 Sub Sub t2 = cm,2 − t1
10. t3 = cn,2 · t2 Mul Mul c2m,1 = cm,2 · t2
11. t4 = t3 − cn−2m,2 Sub Add’ t4 = cm,2 + (cm,2 + 2)
12. t2 = t1 − cm,2 Sub Sub t2 = cm,1 − t4
13. t3 = cn,1 · t2 Mul Mul c2m,2 = cm,1 · t2
14. cn+m,2 = t3 + t4 Add -

Fig. 3. Indistinguishable arithmetic for p ≡ 2 mod 3

A.2 Field Representation for p ≡ 3 mod 4

Lenstra and Stam remark that the representation below can be used for XTR as well.
Let p be a prime congruent to 3 mod 4. Then p generates Z∗

4 and Φ4(x) = x2 + 1 is
irreducible in Fp. Let ζ4 denote a root of Φ4(x), then {1, ζ4} is a basis of Fp2 over Fp.

68 D. Page and M. Stam

Let cn ∈ Fp2 be represented by (cn,0, cn,1) ∈ (Fp)2, i.e., cn = cn,0 + cn,1ζ4
(similarly for cm, cn−m and cn−2m). Using Fermat’s little theorem we have that cpn,0 =
cn,0 etc. and hence cpn = cn,0 − cn,1ζ4. Below we list the formulae for c2n and cn+m

based on the current field representation

c2n = ((cn,0 + 1 + cn,1)(cn,0 + 1 − cn,1) − 1) + 2(cn,0 − 1)cn,1ζ4 .

cn+m = ((cn−m,0 + cm,0)cn,0 + (cn−m,1 − cm,1)cn,1 + cn−2m,0)+
+ ((cn−m,0 + cm,0)cn,1 − (cn−m,1 − cm,1)cn,0 + cn−2m,1)ζ4 .

In Figure 4 we show how to make two applications of c2n indistinguishable from one
application of cn+m. Note that we are doing some double work for the latter (1 and 7, 3
and 9) and are once more depending on additions with minor carry fiddling (and more
so than previously).

One cn+m call Operation Two c2n calls

1. t1 = cn−m,1 − cm,1 Sub Sub’ t1 = cn,0 + cn,0 − 2
2. t2 = cn,1 · t1 Mul Mul c2n,1 = t1cn,1

3. t1 = cn−m,0 + cm,0 Add Add’ t1 = cn,0 + cn,1 + 1
4. t3 = cn−2m,0 + t2 Add Sub’ t2 = cn,0 − cn,1 + 1
5. t4 = cn,0 · t1 Mul Mul’ c2n,0 = t1t2 − 1
6. cn+m,0 = t3 + t4 Add -
7. t1 = cm,1 − cn−m,1 Sub Sub’ t1 = cm,0 + cm,0 − 2
8. t2 = cn,0 · t1 Mul Mul c2m,1 = t1cm,1

9. t1 = cn−m,0 + cm,0 Add Add’ t1 = cm,0 + cm,1 + 1
10. t3 = cn−2m,1 + t2 Add Sub’ t2 = cm,0 − cm,1 + 1
11. t4 = cn,1 · t1 Mul Mul’ c2m,0 = t1t2 − 1
12. cn+m,1 = t3 + t4 Add -

Fig. 4. Indistinguishable arithmetic for p ≡ 3 mod 4

Provably Secure Masking of AES

Johannes Blömer1, Jorge Guajardo2, and Volker Krummel1

1 University of Paderborn, D-33095 Paderborn, Germany
{bloemer, krummel}@upb.de

2 Infineon Technologies, Secure Mobile Solutions, 81609 Munich, Germany
Jorge.Guajardo@infineon.com

Abstract. A general method to secure cryptographic algorithms against
side-channel attacks is the use of randomization techniques and, in par-
ticular, masking. Roughly speaking, using random values unknown to an
adversary one masks the input to a cryptographic algorithm. As a result,
the intermediate results in the algorithm computation are uncorrelated
to the input and the adversary cannot obtain any useful information
from the side-channel. Unfortunately, previous AES randomization tech-
niques have based their security on heuristics and experiments. Thus,
flaws have been found which make AES randomized implementations
still vulnerable to side-channel cryptanalysis. In this paper, we provide
a formal notion of security for randomized maskings of arbitrary cryp-
tographic algorithms. Furthermore, we present an AES randomization
technique that is provably secure against side-channel attacks if the ad-
versary is able to access a single intermediate result. Our randomized
masking technique is quite general and it can be applied to arbitrary al-
gorithms using only arithmetic operations over some finite field. To our
knowledge this is the first time that a randomization technique for the
AES has been proven secure in a formal model.

1 Introduction

The security of the Advanced Encryption Standard (AES) [27] against Simple
(SPA), Differential (DPA), Higher Order Differential Power Analysis (HODPA)
[14, 15], and Timing (TA) attacks [16] has received considerable attention since
the beginning of the AES selection process. Koeune and Quisquater [17] describe
timing attacks against careless implementations of AES. [3, 6] discuss DPA at-
tacks on the AES candidates in software based solutions. Örs et al. [21] describe
the first (documented) power analysis-based attack on a dedicated AES ASIC
implementation and Mangard [18] discusses an SPA attack on the key schedule
of the AES.

As a result of these attacks, numerous hardware and algorithmic countermea-
sures have been proposed. Hardware methodologies were proposed right from
the beginning. They include randomized clocks, memory encryption/decryption
schemes, (see [5], [10]), power consumption randomization [6], and decorrelat-
ing the external power supply from the internal power consumed by the chip.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 69–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 J. Blömer, J. Guajardo, and V. Krummel

Moreover, the use of different hardware logic, such as complementary logic [6],
sense amplifier based logic (SABL), and asynchronous logic [8, 20] has also been
proposed. Some of these methods soon proved to be ineffective while other more
successful countermeasures are very costly in terms of development, area and
power. For example, the techniques in [6, 23, 24, 8, 20] require about twice as
much area and will consume twice as much power as an implementation that is
not protected against power attacks. In addition, hardware countermeasure will
only protect against known techniques and attacks. They cannot provide security
in some precisely defined mathematical sense. Hence, although hardware coun-
termeasures are an important defense against side-channel attacks, they should
be complemented by mathematically analyzed algorithmic countermeasures.

In this paper, we concentrate on algorithmic countermeasures against tim-
ing and power attacks on AES. In general, algorithmic countermeasures against
timing and power attacks are based on randomization techniques. Here the prob-
lem is to guarantee that all information that can be gained via side-channels is
random and hence useless to the attacker. More precisely, one has to guarantee
that intermediate results of the computation look random to an adversary. Fur-
thermore, the randomization must be used in such a way that, at the end of the
algorithm, the correct encryption or signature corresponding to the input plain-
text is obtained. Randomized algorithmic countermeasures against timing and
power attacks include secret-sharing schemes, proposed by Goubin and Patarin
[11] and independently by Chari et al. [4] as well as methods based on the idea
of masking all data and intermediate results during an encryption operation,
originally introduced by Messerges in [19].

The first algorithmic countermeasure against power attacks customized for
the AES was the transformed masking method [2] by Akkar and Giraud. This
method was further simplified by Trichina et al. [26]. It was noticed in [26, 9]
that the multiplicative masking introduced in [2] masked only non-zero values,
i.e., a zero byte will not get masked because of the multiplicative nature of the
mask. This feature renders the method of Akkar and Giraud vulnerable to DPAs.
A second masking technique for AES is the random representation method by
Golić and Tymen [9]. Similar to Akkar and Giraud, Golić and Tymen do not try
to show that their technique randomizes all intermediate results. Instead, the
authors argue experimentally that using their methods the Hamming weights of
all intermediate results are distributed in roughly the same way, independent of
the plaintext and secret key. We conclude that so far customized randomization
techniques for AES were based on empirical assumptions about the power of
potential adversaries. Then these assumptions were used to define some ad-hoc-
model in which to analyze and argue the security of the methods. We believe
that this is a potentially dangerous approach. Therefore, in this paper

– We start with a mathematically precise security notion in which we dis-
cuss randomization techniques. For our security notion we only make some
inevitable assumptions: First, we assume that some (small) part of the com-
putation runs in a protected environment. Secondly, we limit the number
of intermediate results that an adversary has access to. Note that previous

Provably Secure Masking of AES 71

methods made at least these assumptions. On the other hand, we assume
that arbitrary differences in the distribution of an intermediate result that
depends on the plaintext or secret key of the cryptosystem can be used to
break the system completely. Accordingly, our security notion requires that
the distribution of any intermediate result is independent of the secret key
being used and independent of the plaintext. This requirement was already
briefly sketched by Golić in [10]. In the sequel, we call an algorithm an order
d perfectly masked algorithm if the joint distribution of any d intermedi-
ate results is independent of the secret key and the plaintext. This notion
of security strengthens the security notion proposed in [4] which only re-
quired distributions of intermediate results to be indistinguishable by an
adversary. Since our security notion assumes that even tiny differences in
the distribution of intermediate results completely break an implementation
of a cryptosystem, this notion is strong and often unrealistic. On the other
hand, we will argue that our security notion implies security against most
side-channel attacks.

– Based on this security notion we develop an order 1 perfectly masked algo-
rithm for AES. Hence this algorithm is secure against any adversary that
gets pairs of plain- and cipher-texts and a single intermediate result for each
of those pairs. The main problem here is to describe a secure algorithm for
the inversion operation that is the main ingredient of the AES SubBytes
transformation. Our solution is based on a general technique to turn an ar-
bitrary algorithm using arithmetic operations defined over some finite field
into a randomized algorithm that securely computes the same function. Our
method can be combined with standard d-out-of-d secret sharing schemes
to obtain order d perfectly masked algorithms for AES. However, at this
point the exact costs of this approach are not clear. We will present these
algorithms in a subsequent work.

– Show that masking countermeasures are inexpensive to implement in hard-
ware. The countermeasures shown here amount to only a 20% increase in the
overall area required for an AES hardware implementation when compared
to dual-rail logic type countermeasures. To show this, we provide a detailed
cost comparison of the different methods. Because our method is based on
the usage of multipliers and adders over any binary field, designers might
use this method to implement DPA-safe circuits which utilize previously de-
signed multiplier and adder blocks. Moreover, the method is modular and
encourages reusability.

The paper is organized as follows. Sections 2 and 3 introduce and discuss our
security notion. In Sect. 5, we show how to compute the SubBytes transformation
in the AES in a way that is provably secure in our model. We finish with a
discussion of a possible hardware implementation of our method and compare
its cost with the costs of other (less secure) countermeasures.

72 J. Blömer, J. Guajardo, and V. Krummel

2 Security Notion

In this section we describe our notion of security. To do so, we first need to
describe what we consider a successful attack. To simplify the exposition, we
assume that we are given some encryption function enc that we want to evaluate
in a side-channel resistant manner. The inputs to the function enc are a plaintext
x and a secret key k.

Given an algorithm that evaluates the function enc, for each plaintext x and
key k, we view the computation of enc(x, k) as a sequence of intermediate results
I1(x, k, r), . . . , It(x, k, r) = enc(x, k). Each intermediate result may depend on
the plaintext x, on the secret key k, and some r ∈ {0, 1}∗. The element r is used
to randomize the computation and is chosen uniformly at random from {0, 1}∗.
The ciphertext enc(x, k) only depends on x and k and not on r.

We consider an adversary that knows plaintext/ciphertext pairs (x, enc(x)).
Additionally, we assume that for each pair (x, enc(x)) the adversary gets several
intermediate results I1(x, k, r), . . . , Id(x, k, r). The adversary may get different
intermediate results for different plaintext/ciphertext pairs. If the adversary can
get at most d intermediate results for each pair (x, enc(x)) of plaintext and ci-
phertext, we call this an order d adversary. In any case, the goal of the adversary
is to compute parts of the secret key k.

Intuitively, we say that the algorithm computing enc is insecure or that an
adversary is successful, if the joint distribution of the intermediate results that
an adversary gets depends on the plaintext x and on the secret key k. To for-
malize this, fix some d-tuple I1, . . . , Id of intermediate results. For a pair (x, k)
of plaintext and key we denote by Dx,k(R) the joint distribution of I1, . . . , Id
induced by choosing r uniformly at random in {0, 1}∗.

Definition 1 (perfect masking). An algorithm that evaluates an encryption
function enc is order d perfectly masked if for all d-tuples I1, . . . , Id of interme-
diate results we have that Dx,k(R) = Dx′,k′(R) for all pairs (x, k), (x′, k′). For
d = 1 we say that an algorithm is perfectly masked.

3 Discussion of Security Notion

Our notion of security is very strong. Basically, we assume that an adversary can
determine the secret key even from tiny differences in the (joint) distribution of
intermediate results. In many realistic cases this may not be true. However, we
do not want to base our security model on assumptions about technical abilities
or limitations adversaries currently have. Instead we want to provide a precise
mathematical notion that captures security against current side-channel attacks
as well as future ones. Our notion of security strengthens the security notion
in [4]. We require that for any two pairs (x, k), (x′, k′) of plaintext and key the
joint distributions Dx,k(R), Dx′,k′(R) of d intermediate results induced by these
pairs must be identical. Chari et al., on the other hand only demand that the
distributions Dx,k(R), Dx′,k′(R) must be indistinguishable by an adversary. As
Chari et al. argue in their paper, if the joint distributions of d intermediate

Provably Secure Masking of AES 73

results induced by different plaintext/key pairs are indistinguishable for an ad-
versary then power analysis and timing attacks using information about at most
d intermediate results cannot be mounted. Clearly, identical distributions are
indistinguishable. Hence, an algorithm that is order d perfectly masked is secure
against timing and power analysis attacks using information about d intermedi-
ate results.

In this paper, we will concentrate on methods to achieve a perfectly masked
algorithm to compute AES. From the discussion above it follows that the per-
fectly masked algorithm for AES that we describe is secure against timing and
power analysis attacks using a single intermediate result. As can easily be seen,
our algorithm is not secure, if an adversary has access to two or more interme-
diate results. Notice that most countermeasures proposed so far also assume an
adversary with access to a single intermediate result (see [2, 9, 25]).

Notice that without further assumptions even a perfectly masked algorithm
is impossible. To see this, note that the secret key k itself can be considered
as an intermediate result. This intermediate result clearly does not satisfy the
condition stated in Definition 1. Hence, to achieve a perfectly masked algorithm
we must assume that some parts of the computation run in a guaranteed secure
environment. In other words, some intermediate results cannot be accessed by an
adversary. At least implicitly, all previously proposed countermeasures against
side-channel attacks have made the same assumption. Clearly, our goal has to
be to design perfect maskings that require only few intermediate results to be
inaccessible by an adversary. Moreover, we must be able to identify those inter-
mediate results that have to be computed in a secure environment. Note that
on modern smartcards, protected by different sensors and encrypted memories,
the assumption that at least some computations are done in a secure environ-
ment is realistic. Like all other countermeasures, we also assume that we have a
true random number generator (TRNG) and that the adversary is not able to
manipulate the random bits.

So far we have been talking of intermediate results without specifying what
we consider as possible intermediate results that an adversary may get. We con-
sider an algorithm as a sequence of operations that are treated as encapsulated
modules. This leads to a classification of intermediate results into different levels
down to the bit level:

1. Text level: The whole algorithm is treated as a module. This level is the one
of classical cryptography. The only information available to the adversary is
the plaintext and the ciphertext.

2. Block level: Each part or subroutine of the algorithm is treated as a module.
In the case of a block cipher such as the AES, each transformation within
a round is treated as a module (SubBytes, ShiftRows, MixColumns and
AddRoundKey).

3. Unit level: Each arithmetic operation is treated as a module. These opera-
tions work on the atomic units of information in the cipher. For example,
the AES units of information are bytes; no operation acts on bits or nibbles.
In hardware terms this level is based on the contents of registers.

74 J. Blömer, J. Guajardo, and V. Krummel

4. Bit level: Each bit manipulation is treated as a module, for example XOR,
shift etc.

Every output of such a module is an intermediate result. In this paper we
concentrate on intermediate results at the unit level. For AES this seems to be
a natural choice. Basically all operations in AES are arithmetic operations on
bytes. Therefore timing, power and fault attacks on AES have focused on these
operations as well. Moreover it is not hard to see that security on the unit level
implies security on the bit level since the distributions of inputs and outputs of
arithmetic operations are identical for all inputs of the algorithm.

4 Additive Masking and the AES

In [19], Messerges introduced the idea of masking all intermediate values of
an encryption operation as an effective countermeasure against DPA and SPA
type attacks. Randomizing the computation of a function f is, thus, achieved
as f(u′) where u′ = u + r and r is a randomly chosen mask. If the function
is linear, one can recover the desired value f(u) from f(u′) = f(u) + f(r). A
similar computation will recover f(u) if the function f is affine. For non-linear
functions, the previous equation does not hold true and it is necessary to come
up with a series of computations dependent only on r and u′ such that we obtain
the value of f(u) without leaking any information.

We notice that in the case of the AES [27], the only non-linear function in the
algorithm is the AES SubBytes transformation. In particular, most researchers
have concentrated their efforts on efficient methods to perform inversion over
F256 in a secure manner via masking countermeasures, i.e., computing u−1 + r
from u+ r without compromising the value of u. In this context, three masking
methods have been proposed: two of them [2, 9] are based on the idea of combin-
ing Boolean and multiplicative masking operations and the third one is based on
the idea of masking the individual logic operations required to compute a F256
inverse. A simplification of [2] was introduced in [26] but it has been recently
found in [1] that the simplifications lead to further vulnerabilities against DPA.
Thus, we do not consider it any further in this work. In the following, we shortly
summarize the previously mentioned countermeasures.

The Transform Masking Method (TMM). In [2], Akkar and Goubin in-
troduce the Transform Masking Method (TMM) and algorithms to transform
between boolean mask (XOR operation) and multiplicative masking (multipli-
cation in F256) which is compatible with inversion in F256. [2] solves the problem
using Algorithm 1, where r2 is a non-zero random value and all variables and
results are 8-bit long. However, as noticed in [26, 9], this countermeasure is sus-
ceptible to first-order DPA if u = 0 because zero cannot be masked with a
multiplicative mask. It is clear that because of the special nature of the zero
value, multiplicative masking cannot lead to perfect masking.

Provably Secure Masking of AES 75

Algorithm 1 Transform Masking Method
Input: u′ = u + r1, r2
Output: u−1 + r1
1: t1 ← u′ · r2; t2 ← r1 · r2 {t1 = (u + r1) · r2}
2: t1 ← t1 + t2; t3 ← r−1

2 {t1 = u · r2}
3: t1 ← t−1

1 ; t2 ← t3 · r1 {t1 = (u · r2)−1; t2 = r1 · r−1
2 }

4: t1 ← t1 + t2 {t1 = (u · r2)−1 + (r1 · r−1
2)}

5: t1 ← t1 · r2 {t1 = u−1 + r1}

Embedded Multiplicative Masking (EMM). The basic idea in [9] is to
embed the field F256 in the ring Rk = F2[x]/(pq) ∼= F256 × F2k , where q is
another irreducible polynomial of degree k that is co-prime to p. The field F256
is now a subring of the ring Rk with the isomorphism defined by v �→ (vp, vq),
where vp ≡ v mod p and vq ≡ v mod q. [9], then, suggests to use a random
mapping ρk defined by v �→ v + rp mod pq and modified inversion I ′ defined as
v254 mod pq, where r is a randomly chosen polynomial of degree less than k. In
this way, arithmetic operations remain compatible with F256 and the zero value
gets mapped to one of 2k random values. Thus, it is harder to detect the zero
value as k becomes larger. From a security point of view, however, the approach
in [9] does not yield perfect masking since the sets of representatives of different
values are pairwise disjoint. From an implementation point of view, we show
in Section 6.2 that this method is too expensive to implement in hardware.
This is important since our method can be implemented with less than half the
hardware resources and, at the same time, yield perfect masking.

Combinational Logic Design for AES S-Box on Masked Data. To the
authors’ knowledge, Trichina [25] is the first to consider embedding a masking
countermeasure directly in hardware. [25] allows for a modified inversion function
which on input u+r1 outputs u−1+r2, where r1 and r2 need not be the same. In
addition, [25] reduces the masking problem for inversion in F2k to the problem of
masking a logical AND operation since masking XOR operations is, in principle,
trivial. In particular, given masked bits u′ = u+r1, v′ = v+r2 and corresponding
masks r1, r2, we compute (u ∧ v) + r3, where r3 is the output mask. According
to [25] and setting r3 = r1 + r2 this can be accomplished as:

(u ∧ v) + r3 = (u ∧ v) + (r1 ∧ r2) = (u′ ∧ v′) + ((r1 ∧ v′) + (r2 ∧ u′)) (1)

where the parenthesis indicate the order in which intermediate results are com-
puted. Equation (1) implies that we can compute the AND operation of two bits
u, v without using the actual bits but rather their masked counterparts u′, v′

and corresponding masks r1, r2. We notice that if u = v = 0, the intermediate
value (r1 ∧ v′) + (r2 ∧ u′) is always equal to zero for any value of r1 and r2. This
implies that (1) does not lead to perfect masking.

76 J. Blömer, J. Guajardo, and V. Krummel

5 Perfectly Masking AES Against First-Order
Side-Channel Attacks

As mentioned before, in order to obtain a perfectly masked algorithm for AES we
concentrate on the problem of computing multiplicative inverses in F256 because

INV (x) =
{
x−1, if x ∈ F×

256
0, if x = 0

is the main step of the SubBytes-transformation. In this section we present an
algorithm that is secure against an adversary that is able to get one intermediate
result. However this solution can easily be generalized to higher order attacks
by using more randomness.

Let r, r′ be independently and uniformly distributed random masks. We start
with an additively masked value u+ r and would like to calculate INV (u) + r′.
However a direct application of INV leads to INV (u + r) that is of no use
because of the non-linearity of inversion.

5.1 Idea

The basis of our idea is to calculate INV (x) as x254 by using the square-and-
multiply algorithm or an optimal addition chain. In general the multiplicative
inverse of an element over an arbitrary finite field Fpm can always be calculated
by raising it to the (pm − 2)-th power. This can be efficiently done using only
squarings and multiplications. Since our inputs are additively masked values
(u+r) we correct the result of every single operation in the square-and-multiply
algorithm in order to obtain the desired result. Our invariant is that at the end
of each step our result has the form (ue + r′) for some e. Hence, the problem is
to correct the intermediate results without revealing any information about u.

5.2 Method

We introduce some variables: We name rj,i the jth random mask used in Step
i of our algorithm. All rj,i are independently and uniformly distributed masks.
The direct result of an operation (squaring or multiplication) in Step i performed
on some masked values is called fi. Furthermore, we need the auxiliary terms s1,i

and s2,i to correct fi. The variable t1,i is the intermediate result that appears
during the correction and ti is the final result of Step i which complies with our
invariant, i.e., it is of the form ue + r1,i for some e.

The input to our modified inversion algorithm is the masked value (u+ r1,0).
Next, we describe how to perform multiplications and squarings in a perfectly
masked manner. The security analysis is shown in Sect. 5.3. We distinguish
between squaring and multiplication because the former can be done more effi-
ciently.

Squaring. The squaring operation in Step i is described in Algorithm 2. The
input ti−1 = ue + r1,i−1 is squared in Step 1. In order to compute the output

Provably Secure Masking of AES 77

that respects our invariant we have to change the mask to r1,i. To do so in
Steps 2 and 3 we use the auxiliary term s1,i and compute the desired output
ti = u2e + r1,i.

Algorithm 2 Perfectly Masked Squaring (PMS)
Input: x = ue + r1,i−1

Output: u2e + r1,i

1: fi ← x2 {f1 = u2e + r2
1,i−1}

2: s1,i ← r2
1,i−1 + r1,i {auxiliary term to correct fi}

3: ti ← fi + s1,i {ti = u2e + r1,i}

Multiplication. Our perfectly masked multiplication (PMM) method is described
in Algorithm 3. The input are two intermediate results: The output of the pre-
vious step and a freshly masked value derived by securely changing the masked
value from u + r1,0 to u + r2,i. In Step 1 we calculate the product fi of two
intermediate results. fi contains the desired power of u as well as some disturb-
ing terms. In Steps 2-5 we compute the auxiliary terms s1,i and s2,i. In the end
(Steps 6 and 7) we eliminate the disturbing parts of fi and transform it accord-
ing to our invariant. This is done by simply adding up the two auxiliary terms
s1,i, s2,i and fi.

Algorithm 3 Perfectly Masked Multiplication (PMM)
Input: x = ue + r1,i−1, x′ = u + r2,i

Output: ue+1 + r1,i

1: fi ← x · x′ {fi = ue+1 + ue · r2,i + u · r1,i−1 + r1,i−1 · r2,i}
2: v1,i ← x′ · r1,i−1 {v1,i = u · r1,i−1 + r1,i−1 · r2,i}
3: v2,i ← v1,i + r1,i { v2,i = u · r1,i−1 + r1,i−1 · r2,i + r1,i}
4: s1,i ← v2,i + r1,i−1 · r2,i {s1,i = u · r1,i−1 + r1,i}
5: s2,i ← x · r2,i {s2,i = ue · r2,i + r1,i−1 · r2,i}
6: t1,i ← fi + s1,i {t1,i = ue+1 + ue · r2,i + r1,i−1 · r2,i + r1,i}
7: ti ← t1,i + s2,i {ti = ue+1 + r1,i}

5.3 Security Analysis

As defined in our security model we have to look at all intermediate results. For
Algorithms 2 and 3 we only have to analyze the distributions of the following
intermediate results: fi, s1,i, s2,i, ti, t1,i, v1,i, v2,i where 1 ≤ i ≤ 13. These are the
results that depend on u. We can neglect intermediate results such as r21,i since
they do not depend on u.

Our security analysis is based on the following 2 lemmas that characterize
the distributions of intermediate results.

Lemma 1. Let u ∈ F256 be arbitrary. Let r be uniformly distributed over
{0, . . . , 255} independent of u. Then I(u, r) = u+r = Z is uniformly distributed.

Lemma 2. Let u, u′ ∈ F256 and r, r′ ∈ F256 be independently and uniformly
distributed over {0, . . . , 255}. Set I1 = u+ r and I2 = u′ + r′. Then the product
Z = I1 · I2 is distributed according to

78 J. Blömer, J. Guajardo, and V. Krummel

Pr(Z = i) =
{

(29 − 1)/216 , if i = 0
(28 − 1)/216 , if i �= 0

The proofs of these lemmas are straightforward and therefore omitted. For our
security analysis we also need the following observation.

Remark 1. In any finite field of characteristic 2 squaring is a one-to-one mapping.

Analysis of fi. We have to look at the intermediate result fi in the two cases
of squaring and multiplication.

– Squaring: The calculation is fi ← t2i−1 = u2e +r21,i−1 for some 2 ≤ e ≤ 254.
Since r1,i−1 is chosen uniformly at random, Remark 1 together with Lemma
1 shows that fi is uniformly distributed for all u.

– Multiplication: fi ← (ue + r1,i−1) · (u + r2,i) = ue+1 + uer2,i + ur1,i−1 +
r1,i−1r2,i. Here the terms ue + r1,i−1 and u+ r2,i are independently (because
of the independence of r1,i−1 and r2,i) and uniformly distributed (Lemma
1). So by Lemma 2, fi is distributed according to D0 for all u.

Analysis of s1,i, s2,i

– Squaring: Here s1,i can be neglected since it does not depend on u.
– Multiplication: s1,i is calculated by adding or multiplying independent

masks on the term (u + r2,i) leading to the term ur1,i−1 + r1,i. So s1,i is
obviously uniformly distributed. s2,i ← (ue +r1,i−1)r2,i is the product of two
independently uniformly distributed variables each of which is distributed
independently of u. So independent of the value of u, the variable s2,i is
distributed according to D0.

Analysis of t1,i, ti. All these intermediate results are sums of some part de-
pending on u and an independent additive mask. So all of them are uniformly
distributed by Lemma 1.

Hence corresponding intermediate results are always identically distributed
independent of the value of u. This implies that the whole computation is per-
fectly masked. The analysis on the bit level is similar to the analysis on the
unit level. Instead of looking at the distributions of bytes one has to look at the
distributions of single bits.

5.4 Simplified Version

Previously we assumed that for each step we generate new random masks. In
the special case of first order side channel attacks we can reuse random masks
because the adversary is allowed to choose only one intermediate result. Thus, we
can reduce the number of random masks needed to only three masks (r1, r2, r3).
To achieve this we modify our calculations such that after each step we switch
back to our original mask. This can be done by simply adding our original mask
and then adding our temporarily used mask. Because of the independence of the
masks this has no impact on security.

Provably Secure Masking of AES 79

6 Implementation and Costs

Throughout the paper, we have only considered a theoretical implementation of
the inversion algorithm according to the square-and-multiply algorithm. How-
ever, our method is compatible with any implementation that combines addi-
tions, multiplications, and squarings in a field or ring. More precisely, an ar-
bitrary straight-line program over some finite field using only additions and
multiplications can be transformed to an equivalent program that is perfectly
masked. In this work, we do not consider software implementations of the pre-
sented countermeasures. However, we notice that for constrained environments
previous works have based their software implementations of side-channel coun-
termeasures on table look-ups. From a hardware point of view, the most area
efficient ASIC hardware implementation is the one described in [22] based on
composite fields. We will discuss a possible implementation of our countermea-
sure based on composite fields and will provide area and delay estimates in the
next section.

6.1 Efficient Hardware Implementation Over GF(((22)2)2)

First we describe in some detail how to implement an inverter over GF (((22)2)2),
so that it is clear how we obtained our area and delay estimates. This methodol-
ogy is nothing new and it is well known in the literature.We assume a composite
field representation GF (((22)2)2) ∼= F256 for the inverse transformation using
the following irreducible polynomials:

GF (22) : P (x) = x2 + x+ 1, P (α) = 0
GF ((22)2) : Q(y) = y2 + y + α, Q(β) = 0
GF (((22)2)2) : R(z) = z2 + z + λ, λ = (α+ 1)β

We use the PMM and PMS algorithms from Sect. 5 instead of the normal ones
to build our inversion circuit and, thus, render it secure against side-channel
attacks. Based on [13, 12], [22] notices that for A ∈ GF (((22)2)2), A−1 can be
computed as A−1 = (A17)−1A16, where A17 ∈ GF ((22)2). Notice that the Itoh
and Tsujii algorithm can be recursively applied to B = A17 ∈ GF ((22)2), thus
obtaining B−1 = (B4 · B)−1 · (B4) where B5 ∈ GF (22). In the following, we
write B = B1β + B0 ∈ GF ((22)2) with Bi ∈ GF (22). Then, we can minimize
the area requirement of the implementation using the following “tricks”:

– B4 ∈ GF ((22)2) can be computed as B4 ≡ B1β + (B1 + B0), i.e., only one
addition over GF (22).

– B5 ∈ GF (22) can be computed as B5 ≡ B0 ·B1 +B2
0 +B2

1 · α, where B2
1 · α

requires only wires for its implementation (no gates).
– Given C = c1α + c0 ∈ GF (22), C−1 ≡ c1α + (c1 + c0), i.e., it requires one
GF (2) adder.

– Thus, computingB−1 = B−5·B4 ∈ GF ((22)2) requires 3GF (22) multipliers,
1 GF (22) squarer, and 4 GF (22) adders. Inversion in GF (((22)2)2) can then
be implemented according to [22] with 2 adders, 3 multipliers, 1 inverter, and
1 squarer followed by multiplication by λ = (α+ 1)β, all over GF ((22)2).

80 J. Blömer, J. Guajardo, and V. Krummel

The hardware implementation of the perfectly masked version can be im-
plemented similarly except that now instead of using the normal adders, multi-
pliers, squarers, and inverters, we use circuits which implement the algorithms
from Sect. 5.

6.2 Cost and Comparison to Previous Countermeasures

Area and delay estimates for circuits with and without countermeasures are
provided in the appendix. The estimates are given in terms of the area and delay
of 2-input AND gates, 2-input XOR gates, and NOT gates. The complexity
and specific implementation of these circuits is taken from [28]. In addition,
we provide complexity estimates in terms of normalized area and delay. The
normalization is done with respect to the area and delay of a NOT gate. We
have assumed that the areas of a 2-input AND gate and 2-input XOR gate are
twice and 3 times that of an inverter, respectively. Similarly, it is assumed that
the delays of NOT, AND, and XOR gates are equal. Notice that the assumptions
regarding the gates’ area and delay are not arbitrary but based on the actual
sizes of several standard cell libraries. Finally, we point out that [22] which
describes AES ASIC implementations over GF (((22)2)2) does not provide the
actual circuits used to implement the AES S-box.

Table 1 provides a cost comparison among the different masking countermea-
sures. We did not consider the method from [9] because its hardware implemen-
tation requires too many hardware resources. We can estimate the cost of [9]
with k = 8 by simply considering the cost of a multiplier and an inverter over
F2[x]/(pq) ∼= F256 ×F2k . According to [7], such a multiplier requires 289 2-input
AND gates and 272 2-input XOR gates. The map I ′ can also be implemented
with a multiplier (a squarer requires only wires). Thus, we would need at least
1 multiplier and 1 inverter over F2[x]/(pq) and 3 multipliers and 1 inverter over
F256. This results in a circuit which requires at least 731 AND and 766 XOR2
or about twice as many gates as our method. We can see from Table 1 that

Table 1. Hardware cost comparison for different inversion circuits with side-channel
countermeasures

Arithmetic Operation A A/ANormal Inv. T T/TNormal Inv. A · T

Inversion over GF (((22)2)2) [22] 312 1 17 1 1
Inversion with DPA countermeasure from [25] according
to (1)

1071 3.4 26 1.5 5.3

GF (((22)2)2) PM inverter (this paper) 1704 5.5 21 1.2 6.7
Inversion with DPA countermeasure from [25]) 1341 4.3 34 2 8.6
Inversion with countermeasure from [2] 1784 5.7 34 2 11.4

the countermeasure of [25] implemented according to (1) has the best area/time
product of all the implementations. However, as we have shown in Section 4,
this countermeasure is susceptible to DPA attacks if the input byte is zero and,
thus, it does not provide perfect masking. If we then consider the best area/time
product of the countermeasures that offer DPA resistance, the implementation
presented in this work has the best area/time product. This result comes from

Provably Secure Masking of AES 81

the reduced critical path in the circuit presented here. In addition, our design
encourages re-usability of previously designed blocks. In other words, since the
masking method depends only on multipliers and adders, if one has multiplier
and adder blocks already designed, they can be used immediately to build a per-
fectly masked circuit (with the work from [25], implementation of the masking
countermeasure would require a complete circuit redesign). Finally, we estimate
the cost that our masking countermeasure would have on an AES hardware im-
plementation. To do this, we assume that the implementation would follow the
architecture described in [22] where the SubBytes transformation occupies about
22% of the design with 4 S-Boxes in parallel. In SubBytes, the inverse transfor-
mation accounts for 60% or about 14% of the total area. We also assume that
the remaining circuits require twice as much area as an implementation without
masking countermeasures. Then, our new inversion circuit would need about 2.5
times the area that an AES hardware implementation without countermeasures
would need. Of this 31% would correspond to the inverter circuit. The required
area is only 20% larger than an implementation that used hardware counter-
measures based on the usage of different hardware logic. Such methods double
the hardware resources when compared to an implementation using standard
(single-rail) logic.

In addition to time and area, other costs are also of importance. For exam-
ple, the amount of randomness is very important since its generation is quite
expensive. In our simplified algorithm we only need 3 random masks in order
to compute INV (x) in a secure manner. Another important cost factor is the
number of operations that have to be protected by hardware means. Our ap-
proach needs this inevitable protection only for one intermediate result. Hence
it is optimal with respect to this cost measure.

7 Conclusions and Recommendations for Further
Research

A natural way to extend this research is to consider more powerful adversaries
which can access more than one intermediate result at the time and develop
methods which would withstand such attacks. Here a major challenge is to design
methods which are ”practical”, in the sense, that they can be implemented at a
reasonable hardware cost. Another interesting problem is to see whether for less
powerful adversaries secure algorithms exist that require less randomness or are
more efficient than the algorithms presented in this paper. A further question
is if we can find more efficient methods to implement side-channel attack safe
circuits for the AES in hardware or software with respect to time or area. We
believe that, using masking methodologies, the best we could hope for is to use
twice as much area as a circuit without countermeasures (imagine simply that
the circuit could be implemented using only XOR gates). Is this bound possible
to achieve in practice? Related to this last question is the need for random masks.
Can we reduce the randomness requirement without affecting security?

82 J. Blömer, J. Guajardo, and V. Krummel

References

1. M.-L. Akkar, R. Bévan, and L. Goubin. Two Power Analysis Attacks against One-
Mask Methods. In 11th International Workshop on Fast Software Encryption —
FSE 2004, volume LNCS 3017. Springer-Verlag, 2004.

2. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In Workshop on Cryptographic Hardware and Embedded Systems
— CHES 2001, volume LNCS 2162, pages 309–318. Springer-Verlag, May 14-16,
2001.

3. E. Biham and A. Shamir. Power Analysis of the Key Scheduling of the AES
Candidates. In Proceedings of the Second AES Candidate Conference (AES2),
Rome, Italy, March 1999.

4. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In Advances in Cryptology — CRYPTO ’99,
volume LNCS 1666, pages 398–412. Springer-Verlag, August 1999.

5. C. Clavier, J.S. Coron, and N. Dabbous. Differential Power Analysis in the Pres-
ence of Hardware Countermeasures. In Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2000, volume LNCS 1965, pages 252–263. Springer-
Verlag, August 17-18, 2000.

6. J. Daemen and V. Rijmen. Resistance Against Implementation Attacks: A Com-
parative Study of the AES Proposals. In Proceedings of the Second AES Candidate
Conference (AES2), Rome, Italy, March 1999.

7. G. Drolet. A New Representation of Elements of Finite Fields GF (2m) Yield-
ing Small Complexity Arithmetic Circuits. IEEE Transactions on Computers,
47(9):938–946, September 1998.

8. J.J.A. Fournier, S. Moore, H. Li, R. Mullins, and G. Taylor. Security Evaluation
of Asynchronous Circuits. In Workshop on Cryptographic Hardware and Embed-
ded Systems — CHES 2003, volume LNCS 2779, pages 125–136. Springer-Verlag,
September 7-10, 2003.

9. J.Dj. Golić and C. Tymen. Multiplicative Masking and Power Analysis of AES.
In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2002,
volume LNCS 2523, pages 198–212. Springer-Verlag, 2002.

10. Jovan Dj. Golić. DeKaRT: A New Paradigm for Key-Dependent Reversible Cir-
cuits. In Cryptographic Hardware and Embedded Systems - CHES 2003, volume
LNCS 2779, pages 98–112. Springer Verlag, 2003.

11. L. Goubin and J. Patarin. DES and Differential Power Analysis, ”The Duplication
Method”. In Workshop on Cryptographic Hardware and Embedded Systems —
CHES 1999, volume LNCS 1717, pages 158–172. Springer-Verlag, 1999.

12. J. Guajardo and C. Paar. Itoh-Tsujii Inversion in Standard Basis and Its Applica-
tion in Cryptography and Codes. Design, Codes, and Cryptography, 25(2):207–216,
February 2002.

13. T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in
GF (2m) Using Normal Bases. Information and Computation, 78:171–177, 1988.

14. P. Kocher, J. Jaffe, and B. Jun. Introduction to Differential Power Analysis and
Related Attacks. Technical Report, Cryptography Research, Inc., 1998.

15. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology — CRYPTO ’99, volume LNCS 1666, pages 388–397. Springer-Verlag,
1999.

16. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS
and other systems. In Advances in Cryptology - Proceedings of CRYPTO 1996,
volume LNCS 1109, pages 104–113. Springer Verlag, 1996.

Provably Secure Masking of AES 83

17. Francois Koeune and Jean-Jacques Quisquater. A timing attack against Rijndael.
Technical Report CG-1999/1, Université Catholique de Louvain, 1999.

18. S. Mangard. A Simple Power-Analysis (SPA) Attack on Implementations of the
AES Key Expansion. In Proceedings of the 5th International Conference on Infor-
mation Security and Cryptology (ICISC 2002), volume LNCS 2587, pages 343–358.
Springer-Verlag, 2002.

19. T.S. Messerges. Securing the AES Finalists Against Power Analysis Attacks. In
B. Schneier, editor, 7th International Workshop on Fast Software Encryption —
FSE 2000, volume LNCS 1978, pages 150–164. Springer-Verlag, 2001.

20. S. Moore, R. Anderson, R. Mullins, G. Taylor, and J.J.A. Fournier. Balanced
Self-Checking Asynchronous Logic for Smart Card Applications. Journal of Mi-
croprocessors and Microsystems, 27(9):421–430, 2003.

21. S.B. Örs, F. Gürkaynak, E. Oswald, and B. Preneel. Power-Analysis Attack on an
ASIC AES Implementation. In Proceedings of the 2004 International Symposium
on Information Technology (ITCC 2004). IEEE Computer Society, 2004.

22. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In Advances in Cryptology — ASIACRYPT
2001, volume LNCS 2248, pages 239–254. Springer-Verlag, 2001.

23. K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In 28th European Solid-State Circuits Conference (ES-
SCIRC 2002), 2002.

24. K. Tiri and I. Verbauwhede. Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In C.D. Walter, Ç. K. Koç,
and C. Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems
— CHES 2003, volume LNCS 2779, pages 125–136. Springer-Verlag, 2003.

25. E. Trichina. Combinational logic design for aes subbyte transformation on masked
data. Cryptology eprint archive: Report 2003/236, IACR, November 11, 2003.

26. E. Trichina, D. De Seta, and L. Germani. Simplified Adaptive Multiplicative Mask-
ing for AES. In Workshop on Cryptographic Hardware and Embedded Systems —
CHES 2002, volume LNCS 2523, pages 187–197. Springer-Verlag, 2002.

27. U.S. Department of Commerce/National Institute of Standard and Technol-
ogy. FIPS PUB 197, Specification for the Advanced Encryption Standard (AES),
November 2001. Available at http://csrc.nist.gov/encryption/aes.

28. P. Voigtländer. Entwicklung einer Hardwarearchitektur für einen AES-
Coprozessor. Diplomarbeit, Fachbereich Informatik, Mathematik und Naturwis-
senshaften, Technische Informatik, HTWK Leipzig, Germany, May 2, 2003.

Perfect Diffusion Primitives for Block Ciphers
Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

École Polytechnique Fédérale de Lausanne, Switzerland
{pascal.junod, serge.vaudenay}@epfl.ch

Abstract. Although linear perfect diffusion primitives, i.e. MDS matri-
ces, are widely used in block ciphers, e.g. AES, very little systematic work
has been done on how to find “efficient” ones. In this paper we attempt
to do so by considering software implementations on various platforms.
These considerations lead to interesting combinatorial problems: how to
maximize the number of occurrences of 1 in those matrices, and how to
minimize the number of pairwise different entries. We investigate these
problems and construct efficient 4×4 and 8×8 MDS matrices to be used
e.g. in block ciphers.

1 Introduction

Block ciphers are cascades of diffusion and confusion layers [9]. We usually for-
malize confusion layers as application of substitution boxes which are defined by
lookup tables. Since those tables must be as small as possible for implementation
reasons, confusion layers apply substitution in parallel on pieces of informations,
e.g. elements whose values lie in a set K of size 256. The goal of diffusion is to
mix up those pieces. One possibility for formalizing the notion of perfect dif-
fusion is the concept of multipermutation which was introduced in [8, 10]. By
definition, a diffusion function f from Kp to Kq is a multipermutation if for any
x1, . . . , xp ∈ K and any integer r such that 1 ≤ r ≤ p, the influence of modifying
r input values on f(x1, . . . , xp) is to modify at least q − r + 1 output values.
Another way to define it consists of saying that the set of all words consisting of
x1, . . . , xp concatenated with f(x1, . . . , xp) is a code of (#K)p words of length
p + q with minimal distance1 q + 1. This notion matches the Singleton bound
which relates to MDS codes. Indeed, if K is a finite field, a linear multipermuta-
tion is equivalent to an MDS code expressed in a systematic way, i.e. an arbitrary
word of length p is encoded by concatenating it with the linear mapping applied
to the word. Since this notion of perfect diffusion was introduced, several block
ciphers used the so-called “MDS-matrix” primitive, e.g. AES [2,5], Twofish [6,7],
Khazad [1], or FOX [3], to name a few examples. It is furthermore noteworthy
that very few MDS codes are known and they are seldom used in practice. In
this paper, we will adopt the following definition of a linear multipermutation.

1 Here the notion of distance is the number of different K-entries.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 84–99, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Perfect Diffusion Primitives for Block Ciphers 85

Definition 1. Let K be a finite field and p and q be two integers. Let x �→M×x
be a mapping from Kp to Kq defined by the q × p matrix M . We say that it is
a linear multipermutation (or an MDS matrix) if the set of all pairs (x,M × x)
is an MDS code, i.e. a linear code of dimension p, length p + q and minimal
distance q + 1.

The following theorem [4, Theorem 8 (page 321)] is another way to characterize
an MDS matrix.

Theorem 1. A matrix is an MDS matrix if and only if every sub-matrix is
non-singular.

It is very difficult to define what is “an optimal matrix” in terms of im-
plementation performances, since there exists a large number of criteria which
are very dependent of the platform. In this paper we investigate the problem
of constructing MDS matrices whose implementation is very efficient on most
low-cost platforms. For this, we isolate a few criteria which seemed important to
us, and we derive several optimality results on these criteria. Note that we only
considered one direction, which renders somewhat easier the problem of finding
good matrices. Their inverses may not be very efficient but this is not important
if we use these matrices with self-inverting constructions, like the Feistel or the
Lai-Massey schemes.

2 Performances of Linear Multipermutations

We consider linear multipermutations from Kp to Kq where K is a finite field of
characteristic 2. Typically, K is GF(256). We let M denote a matrix of type q×p
whose elements lie in K. We let Mi,j denote the element on row i and column j
with 1 ≤ i ≤ q and 1 ≤ j ≤ p. The multipermutation is simply x �→ y = M × x
where x and y column vectors, i.e.

yi =
p∑

j=1

Mi,jxj for i = 1, . . . , q.

We consider several implementation strategies depending on the platform.

2.1 Software Implementation on 32/64-Bit Platforms

Modern 32-bit (or 64-bit) microprocessors with large cache memory2 lead to
well-known and quite simple implementation strategies. Indeed, columns of M
can be partitioned into several sub-columns whose size correspond to the word
size (or less). We let w denote the size of the words in terms of K elements. Then

2 By “cache memory”, we mean the fastest available cache memory, i.e. L1 cache. Most
modern CPUs have 16 kB available or more (current versions of the Intel Pentium
4, having 8 kB available, are an exception).

86 P. Junod and S. Vaudenay

all possible multiplications can be precomputed and put in a table. This means
that we consider M as a block matrix of type �q/w� × p, y as a block vector of
�q/w� elements, and where every block are vectors of w elements of K, except
the blocks in the last row which may be smaller if w does not divide q.

For instance, let us consider 32-bit words, the set K of bytes (i.e. w = 4 and
#K = 256), and p = q = 8. We let Tk,j be a table of 256 4-words vectors such
that

Tk,j(u) =

⎛⎜⎜⎝
M4k−3,j · u
M4k−2,j · u
M4k−1,j · u
M4k,j · u

⎞⎟⎟⎠
for all u ∈ K and k = 1, 2. Then we can compute y = M × x by computing
vk = Tk,1(x1)⊕· · ·⊕Tk,p(xp) for k = 1, 2. Then y is simply the concatenation of
v1 and v2. Using this approach, we can implement the computation of the linear
multipermutation by using �q/w�×p tables of #K entries where each entry is of
w log2 #K bits. For typical applications such as p = q = 8, #K = 256 and w = 4
or 8, we have tables of p× q×#K bytes, i.e. 16 kB of tables. This fits in the fast
cache memory of nowadays microprocessors. So this means that we can compute
y from x by using only (p− 1)×�q/w� XOR operations, i.e. 14 XORs for w = 4
or 7 XORs for w = 8, and table lookups. With this approach, performances only
depends on p, q, w,#K and are independent on the structure of M .

2.2 Software Implementation on 8-Bit Platforms

Low-cost 8-bit microprocessors cannot afford to use precomputed data with a
size of 16 kB: the matrix multiplication has to be computed on-the-fly. Obviously
no Mi,j elements can be equal to zero, since this would lead to a singular sub-
matrix of type 1 × 1 in M and thus would contradict Theorem 1; so we really
have to implement p× q operations. For #K = 256 we cannot even consider all
multiplication tables since this would require naively 64 kB of memory. Another
solution would be to express each element x of K as x = gi, where g is a generator
of K∗, and to store the precomputed mappings x �→ i and i �→ x (one needs
512 bytes of memory). Any multiplication in K can then be computed using
3 table lookups and 1 addition. However, this approach remains costly. Some
multiplication tables are quite simple though. For instance the multiplication by
1 — the neutral element in K∗ — is trivial. Since we need to make multiplications
by Mi,j only, we may need a small number of tables. Our basic approach is to
have all multiplication tables by Mi,j elements except for the multiplication table
by 1. This leads to the following definitions.

Definition 2. Let K∗ be a set including a distinguished one denoted 1. Let M
be a q × p matrix whose entries lie in K∗.

1. We let v1(M) denote the number of (i, j) pairs such that Mi,j is equal to 1.
We call it the number of occurrences of 1.

2. We let c(M) be the cardinality of {Mi,j ; i = 1, . . . , q; j = 1, . . . , p}. We call
it the number of entries.

Perfect Diffusion Primitives for Block Ciphers 87

3. If v1(M) > 0 we let c1(M) = c(M) − 1. Otherwise we let c1(M) = c(M).
We call it the number of nontrivial entries.

With this basic implementation approach we need tables of total size c1(M)×#K
entries in K in order to implement M . The number of operations consists of
(p−1)×q XORs and number of table lookup’s which is equal to c1(M1,.)+ · · ·+
c1(Mq,.) where Mi,. denotes the ith row of M . Indeed, for each row we can look at
all equal entries, XOR the corresponding xj element, look up at the appropriate
table, and XOR everything. So the number of CPU operations is within the order
of pq− q+ qc1(M). Hence the key metrics for this implementation approach are
c1(M) (for the memory complexity) and v1(M) (for the time complexity). Note
that we may save extra multiplication tables using “efficient GF elements”. Here
are four typical examples.

– With K = GF(256) we can represent a polynomial a0 + a1x + · · · + a7x
7

by the bitstring a7 · · · a1a0. The multiplication by the x element can be
implemented by a shift by one bit to the left and a conditional XOR with a
constant when a carry bit is set3.

– Similarly, the multiplication by the x−1 element can be implemented by a
shift by one bit to the right and a conditional XOR with a constant when a
carry bit is set.

– If M includes two elements α and α + 1, we can omit the multiplication
table by α+ 1. Multiplication by α+ 1 is performed by one table lookup (a
multiplication by α) and a XOR.

– If M includes two elements α and α2, we can omit the multiplication table
by α2. Multiplication by α2 is performed by two consecutive table lookup’s.

We can also optimize implementations afterward.

3 Bi-regular Arrays as Candidates for MDS Matrices

In this section we concentrate on making MDS matrices with high v1 and low c.
The following definition introduces bi-regular arrays which are useful objects to
build MDS matrices.

Definition 3. Let K∗ be a set including a distinguished one denoted 1.

1. We say that a 2× 2 array with entries in K∗ is bi-regular if at least one row
and one column have two different entries.

2. We say that a q×p array with entries in K∗ is bi-regular if all 2×2 sub-arrays
are bi-regular.

3. An array which is not bi-regular is called bi-singular.
4. Two arrays are equivalent if we can obtain the second by performing a finite

sequence of simple operations on the first one. Simple operations are per-
mutation of rows, columns, transpose, and permutation of K∗ elements for
which 1 is a fixed point.

3 With a special care about side-channel attacks.

88 P. Junod and S. Vaudenay

Note that an MDS matrix is necessary a bi-regular one (otherwise one 2×2 sub-
determinant is singular). Equivalence keeps the bi-regularity. Finally, equivalent
arrays have the same v1 and c metrics. So we can first focus on making bi-regular
arrays with high v1 and low c.

Definition 4. Let K∗ be a set including a distinguished one denoted 1. We let
vq,p
1 (resp. cq,p) be the maximal (resp. minimal) value of v1(M) (resp. c(M)) for

a bi-regular array M of type q × p.

Note that when K∗ has not enough elements for bi-regular arrays to exist,
then vq,p

1 and cq,p are undefined. Otherwise vq,p
1 and cq,p do not depend on K∗

at all.
One approach for constructing MDS matrices with high v1 and low c1 is first

to construct a bi-regular array, second to assign elements to some non-zero field
values until we get an MDS matrix. We can e.g. look at random values until it
succeeds or concentrate on efficient GF elements.

3.1 Highest v1 for Bi-regular Arrays

Here are easy facts about vq,p
1 .

1. We have vq,p
1 = vp,q

1 since we can transpose bi-regular arrays.
2. We have v1,p

1 = p for p ≥ 1.
3. vq,p

1 increases with p and q.

Lemma 1. The following facts hold:

• v2,p
1 = p+ 1 for any p ≥ 1.

• v3,p
1 = p+ 3 for any p ≥ 3.

• v4,4
1 = 9, v4,5

1 = 10, and v4,p
1 = p+ 6 for any p ≥ 6.

• v5,5
1 = 12, v5,6

1 = 13, v5,7
1 = 14, v5,8

1 = 17, v5,9
1 = 18, and v5,p

1 = p + 10 for
any p ≥ 10.

Proof. For the 2 rows case, the 2 × p array

1 1 1 · · · 1
1 a2 a3 · · · ap

is bi-regular when 1, a2, . . . , ap are pairwise different. We cannot have more oc-
currences for 1, otherwise we must have two different columns whose entries are
only 1, which leads to a bi-singular 2 × 2 sub-array.

For the 3 rows case, if one column has three occurrences of 1, all other columns
must have at most one occurrence of 1 which leads to p+2 in total. If no column
has three occurrences of 1, we notice that at most three columns can have two
occurrences, which leads to the following construction with p+ 3 occurrences in
total.

1 1 a1 1 1 · · · 1
1 a1 1 a2 a3 · · · ap−2

a1 1 1 a3 a4 · · · ap−1

Perfect Diffusion Primitives for Block Ciphers 89

For the 4 rows case, we similarly prove that no column has four occurrences of
1 in optimal solutions. We cannot have two different columns with 3 occurrences
of 1 so we easily notice that the constructions below are optimal.

a1 1 1 1
1 a1 a2 1
1 a2 1 a2

1 1 a2 a1

a1 1 1 1 1
1 a1 a2 1 a3

1 a2 1 a2 a3

1 1 a2 a1 a3

When we have more than 5 columns we notice that we get better results when
we limit the occurrence number to 2 in every column as done in the following
construction.

1 1 1 a1 a2 a3 1 1 1 · · ·
1 a3 a1 1 1 a2 a4 a5 a6 · · ·
a1 1 a2 1 a3 1 a5 a6 a7 · · ·
a2 a1 1 a3 1 1 a6 a7 a8 · · ·

For the 5 rows case, we similarly prove that having five occurrences of 1 in the
same row leads to sub-optimal solutions. Having a single row with four occur-
rences, four others with two occurrences, and the others with a single occurrence
yields v5,5

1 = 12, v5,6
1 = 13, and v5,7

1 = 14. We can have at most two columns with
three occurrences and up to four others with two occurrences, all others being
limited to a single occurrence. If we keep a single column with three occurrences
then we can have up to seven other columns with two occurrences, all others
being limited to a single occurrence. This yields v5,8

1 = 17. Finally, limiting the
occurrences number to two is optimal when we have more than 8 columns since
we achieve v5,9

1 = 18, and v5,p
1 = p+ 10 for any p ≥ 10. ��

We could continue the proof further and obtain v6,6
1 = 16, v6,7

1 = 18, v6,8
1 = 19,

v7,7
1 = 21, v7,8

1 = 22, v8,8
1 = 24. The optimal solutions with 6 rows consist of the

following array. (For 6 or 7 columns, restrict on the first columns.) Blank cells
need to be filled with elements other than 1.

1 1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

The optimal solutions with 7 rows and 7 or 8 columns, and 8 rows and columns
are the first rows and columns of the following array.

90 P. Junod and S. Vaudenay

1 1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1

The following lemma (with α = 2) indicates that vn,n
1 can be close to n

√
n

since we can put
√
n occurrences of 1 in every row.

Lemma 2. If p is a prime power, for any integers α > 1 and q ≤ pα−1(pα −
1)/(p− 1) we have vq,pα

1 ≥ q × p.

Proof. This comes from the following construction. We let K = GF(p) and we
consider the affine space Kα. We have pα−1(pα−1)/(p−1) straight lines in total
each containing exactly p points. We consider that every column corresponds to
a point and that every row corresponds to a straight line. We put 1 in cells in
which the corresponding point belongs to the straight line. We fill other cells so
that it does not introduce bi-singular sub-arrays. Since straight lines intersect
to at most one point, we have a bi-regular array. ��

The following lemma provides optimal constructions for small p and q.

Lemma 3. We have vq,p
1 ≥ p+ 2q − 3 for any p, q such that q ≤ p.

Proof. This lemma comes from the following construction:

ap−1 1 1 1 1 · · ·
1 1 a2 a3 a4 · · ·
1 ap−1 1 a2 a3 · · ·
1 ap−2 ap−1 1 a2 · · ·
1 ap−3 ap−2 ap−1 1 · · ·
...

...
...

...
...

. . .
��

In summary, Table 1 gives the first values of vq,p
1 . Underlined numbers are

obtained with the construction of Lemma 3.

3.2 Lowest c for Bi-regular Arrays

Here are easy facts about cq,p.

1. We have cq,p = cp,q since we can transpose bi-regular arrays.
2. We have c1,p = 1 for p ≥ 1. Indeed, the 1 × p array

1 1 1 · · · 1

is bi-regular and we cannot have more occurrences for 1.
3. cq,p increases with p and q.

Perfect Diffusion Primitives for Block Ciphers 91

Table 1. Values of vq,p
1

2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 6 7 8 9 10 11
4 5 7 9 10 12 13 14
5 6 8 10 12 13 14 17
6 7 9 12 13 16 18 19
7 8 10 13 14 18 21 22
8 9 11 14 17 19 22 24

Let us now demonstrate other results.

Lemma 4. We have c2,p = �√p� for any integer p ≥ 1.

So we deduce that cq,p ≥ �√p� for any q ≥ 2 and any p ≥ 1.

Proof. Let s = �√p�. Let a0, . . . , as−1 be pairwise different. For any j = 1, . . . , p
we first let j − 1 = qs+ r be the Euclidean division of j − 1 by s, i.e. 0 ≤ r < s.
Note that 0 ≤ q < s. We set M1,j = aq and M2,j = ar. We notice that M is a
2 × p bi-regular array. We have v1(M) = s and c(M) = s. Hence c2,p ≤ s.

Given an arbitrary 2 × p bi-regular array, let us assume that there are no
more than s− 1 pairwise different elements in the first row. Since we have more
than s(s−1) columns, one element at least occurs at least s times. Let us extract
a 2× s sub array whose first row is a constant element. Note that this sub-array
must be bi-regular as well. Obviously the second row must have pairwise different
elements. So there are at least s pairwise different elements in the array. Hence
c2,p ≥ s. ��
Lemma 5. For any k > 1 we have ck

2−k+1,k!+2 > k.

As an application we deduce that c3,4 > 2 and c7,8 > 3.

Proof. Let M be a (k2 − k + 1) × (k! + 2) array of k elements. We notice that
the first column must have an element a with k occurrences. Let us extract the
k × (k! + 2) sub-array M ′ corresponding to these occurrences. All elements in
the first column of M ′ are equal. If M was bi-regular, M ′ would be bi-regular
as well, so no other column could have two occurrences of the same element b.
Hence all columns but the first one would be permutations of the set of elements.
Since there are k elements and k! permutations, then two of the other columns
would be equal which would contradict the bi-regular property. ��
Lemma 6. For any k we have c2k−1,2k−1 ≤ k.

As an application we deduce that c3,3 ≤ 2, c5,5 ≤ 3, c7,7 ≤ 4, and c9,9 ≤ 5.

Proof. We construct a bi-regular (2k−1)× (2k−1) array by using matrices. Let
Ar be the (2k − 1) × (2k − 1) matrix with integral elements defined by

Ar
i,j =

{
1 if |i+ j − 2k| = 2k − r − 1 or |i− j| = r
0 otherwise.

92 P. Junod and S. Vaudenay

Note that the (i, j) coordinates which lead to Ar
i,j = 1 lie in a rectangle whose

edges are parallel to the diagonals of the matrix and whose (virtual) corners
have coordinate(

1
2
, r +

1
2

)
,

(
2k − r − 1

2
, 2k − 1

2

)
,

(
2k − 1

2
, 2k − r − 1

2

)
,

(
r +

1
2
,
1
2

)
.

Finally we let
M = a1A

0 + a2A
2 + · · · + akA

2k−2

with pairwise different a1, . . . , ak. As examples, here are the 5 × 5 and 9 × 9
arrays obtained with k = 3 and k = 5.

a b b c c
b a c b c
b c a c b
c b c a b
c c b b a

a b b c c d d e e
b a c b d c e d e
b c a d b e c e d
c b d a e b e c d
c d b e a e b d c
d c e b e a d b c
d e c e b d a c b
e d e c d b c a b
e e d d c c b b a

We first notice that for any 1 ≤ i, j ≤ 2k− 1 there exists a single even r such
that Ar

i,j = 1. Thus for every cell in M there exists one and only one Ar matrix
with r even with the corresponding cell containing 1.

Second we consider a 2× 2 sub-array corresponding to positions (i, j), (i, j′),
(i′, j) and (i′, j′). We assume that Mi,j = Mi,j′ and Mi′,j = Mi′,j′ and we want
to lead to a contradiction.

If i ≡ j ≡ j′ (mod 2) then |i−j| = |i−j′|. Since j �= j′ we deduce j+j′ = 2i.
If i �≡ j ≡ j′ (mod 2) then |i + j − 2k| = |i + j′ − 2k|. Since j �= j′ we deduce
j + j′ = 4k − 2i. Since i ≤ 2k − 1, we obtain that j ≡ j′ (mod 2) implies
i = k−|(j+j′)/2−k|. The same holds for i′. Since i �= i′ we have a contradiction
for the j ≡ j′ (mod 2) case.

If i ≡ j �≡ j′ (mod 2) then |i − j| = 2k − 1 − |i + j′ − 2k|. So we have
2i = j− j′ − 1. Similarly, if i �≡ j �≡ j′ (mod 2) then 2i = j′ − j− 1 thus if j �≡ j′

(mod 2) we have 2i = |j − j′| − 1. The same holds for i′. Since i �= i′ we have a
contradiction for the j �≡ j′ (mod 2) case as well.

So we cannot have Mi,j = Mi,j′ and Mi′,j = Mi′,j′ . By using the transpose,
we cannot have Mi,j = Mi′,j and Mi,j′ = Mi′,j′ . So M is bi-regular and c(M) =
k. ��
Lemma 7. We have c4,6 ≥ 4.

Proof. The proof can be found in the Appendix.

Lemma 8. Let q be a prime power. We have cq,q2−q+1 ≤ q.

As an application we deduce that c3,7 ≤ 3, c4,13 ≤ 4.

Perfect Diffusion Primitives for Block Ciphers 93

Proof. Let K be a finite field of cardinality q. We let f be a bijective mapping
from {2, . . . , q2 − q+1} to K∗ ×K. We let f(i) = (ai, bi) for i = 2, . . . , q2 − q+1.
We let x1, . . . , xq be a numbering of all K elements. We define Mi,1 = 1 and
Mi,j = aixj + bi for i = 1, . . . , q and j = 2, . . . , q2 − q + 1. Obviously M is a
q× (q2 − q+1) array of q elements. As an example, here is the array with q = 3.

a a a b b c c
a b c c a a b
a c b a c b a

Since ai �= 0 the x �→ aix + bj mappings are permutations so all 2 × 2
sub-array containing the first column are bi-regular. Let us now consider a 2×2
sub-array containing columns j and j′ such that 1 < j < j′. Assuming that
aix+ bi = ai′x+ bi′ and aiy+ bi = ai′y+ bi′ we have (ai − ai′)(x− y) = 0. Since
(ai, bi) �= (ai′ , bi′) we must have x = y. Hence the sub-array is bi-regular. ��
Lemma 9. We have c3,8 ≥ 4.

Proof. Here we must have at least one column which is not a permutation of
(abc). Let us assume without loss of generality that the first column is (aax).
Then for every other column the entries at row 1 and 2 must be different. But
there are only 6 possibilities which is not enough to fill all columns. ��
Lemma 10. We have c6,8 ≥ 5.

Proof. Assuming that we have a 6 × 8 array with c ≤ 4 then for every column
we can produce at least two different pairs {i, j} corresponding to two equal
elements in row i and row j. If the array were bi-regular all pairs would be
pairwise different so we would have 16 pairs in total. But we have only

(6
2

)
= 15

possible pairs in total so this is impossible. ��
In summary Table 2 provides the obtained cq,p values. Underlined numbers

are obtained from Lemma 4, 5, 6, 7, 8, 9, and 10. Other value come from basic
properties such as symmetry and monotonicity. The missing element c5,8 ≤ 4
result is obtained by the following construction.

a a a a d d b b
a d c b b a a d
b a d c b c d c
c b a d a b d a
d c b a c b c d

4 MDS Matrices Constructions for p = q = 4

We study constructions with p = q = 4 over the field K = GF(256). Elements
are represented as polynomials of degree at most 7 over GF(2). The a0 + a1x+
· · · + a7x

7 polynomial is represented by the bitstring a7 · · · a1a0. Formally, x
represents a root of an irreducible polynomial of degree 8.

94 P. Junod and S. Vaudenay

Table 2. Values of cq,p

2 3 4 5 6 7 8
2 2 2 2 3 3 3 3
3 2 2 3 3 3 3 4
4 2 3 3 3 4 4 4
5 3 3 3 3 4 4 4
6 3 3 4 4 4 4 5
7 3 3 4 4 4 4 5
8 3 4 4 4 5 5 5

4.1 The AES Matrix

Here is the MDS matrix4 taken from AES [2,5] with a = x and b = x+ 1:⎛⎜⎜⎝
a b 1 1
1 a b 1
1 1 a b
b 1 1 a

⎞⎟⎟⎠ (1)

Multiplication by a is a shift and a conditional XOR. In this case, c = 3 is optimal
according to our criteria, but v1 = 8 is not. As described in [2], a multiplication
by (1) can be implemented (in a pseudo-C notation) using 15 XORs, 4 table
lookups and 3 temporary variables:

t = a[0] ^ a[1] ^ a[2] ^ a[3]; /* a is the input vector */
u = a[0];
v = a[0] ^ a[1]; v = time[v]; a[0] = a[0] ^ v ^ t;
v = a[1] ^ a[2]; v = time[v]; a[1] = a[1] ^ v ^ t;
v = a[2] ^ a[3]; v = time[v]; a[2] = a[2] ^ v ^ t;
v = a[3] ^ u; v = time[v]; a[3] = a[3] ^ v ^ t;

Note that AES also requires to implement the inverse MDS matrix.

4.2 An Efficient Matrix

As we have seen, v4,4
1 = 9 and c4,4 = 3 and we can hit both optimal criteria with

the array of Lemma 3 (M1 in (2)); let us furthermore consider a second matrix
M2, which is a permuted version of M1.

M1 =

⎛⎜⎜⎝
a 1 1 1
1 1 b a
1 a 1 b
1 b a 1

⎞⎟⎟⎠ M2 =

⎛⎜⎜⎝
a 1 1 1
1 a 1 b
1 b a 1
1 1 b a

⎞⎟⎟⎠ (2)

4 In order to check that this is indeed an MDS matrix, we compute all sub-
determinants. They can be expressed as polynomials in terms of x. We can check
that none of these polynomials is zero. Since they are all of degree at most 4 and
that x is of degree 8, they cannot vanish so we have an MDS matrix.

Perfect Diffusion Primitives for Block Ciphers 95

One can easily verify that necessary conditions for M2 being a MDS matrix are,
for any a �= b which are not equal to 0 or 1, a �= b2, a �= b + 1, and a2 �= b. If
we dispose of two multiplication tables (namely, by a+ 1 and by b+ 1), we can
implement a multiplication by M2 in the following way:

u = a[0] ^ a[1] ^ a[2] ^ a[3]; /* a is the input vector */
a[0] = u ^ timeap1[a[0]]; v = timeap1[a[1]];
a[2] = timeap1[a[2]]; a[3] = timeap1[a[3]];
a[1] = u ^ v ^ timebp1[a[3]]; a[3] = u ^ a[3] ^ timebp1[a[2]];
a[2] = u ^ a[2] ^ timebp1[v];

This implementation needs 10 XORs, 2 temporary variables, 7 table lookups in
two tables. This allows us to decrease the overall number of temporary variables
and of operations (at the cost of a supplementary precomputed table), if the
XOR operations and table lookups generate identical costs. Note that the same
matrix (up to a permutation) forms the diffusive block of FOX64 [3].

5 MDS Matrices Constructions for p = q = 8

Here, we give explicit constructions with p = q = 8 over K = GF(256).

5.1 Circulating-Like Matrix

By using the construction of Lemma 3 with p = q = 8, we obtain v1 = 21
and c = 7 which, are not optimal. Many different possibilities for filling the
coefficients exist; we give here as illustration two different examples.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 1 1 1 1 1 1 1
1 1 a b c d e f
1 f 1 a b c d e
1 e f 1 a b c d
1 d e f 1 a b c
1 c d e f 1 a b
1 b c d e f 1 a
1 a b c d e f 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For GF(256) represented by the irreducible polynomial x8 +x4 +x3 +x2 +1 over
GF(2), a possible combination is given by a = x + 1, b = x3 + 1, c = x3 + x2,
d = x, e = x2 and f = x4. Note that we need a single precomputed table, namely
the multiplication by x. If we can afford two precomputed multiplication tables
(by x and by x−1, in this case), when using x8 +x7 +x6 +x5 +x4 +x3 +1 as field
representation, another possible combination is a = x+1, b = x−1 +x−2, c = x,
d = x2, e = x−1 and f = x−2. An implementation using 29 table lookups, 71
XORs is given in Appendix. Note that the same matrix (up to a permutation)
forms the diffusive block of FOX128 [3].

96 P. Junod and S. Vaudenay

5.2 Matrix with Rectangle Patterns

We use the construction of Lemma 6 with k = 5 and we remove the first row
and the last column. We obtain v1 = 15 and c = 5 so this is optimal for c.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b a c b d c 1 d
b c a d b 1 c 1
c b d a 1 b 1 c
c d b 1 a 1 b d
d c 1 b 1 a d b
d 1 c 1 b d a c
1 d 1 c d b c a
1 1 d d c c b b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Representing GF(256) with x8+x7+x6+x5+x4+x3+1 as irreducible polynomial,
a possible combination is given by a = x−3+x−1, b = x−2+x−1+1, c = x4+x and
d = x. With x8 +x4 +x3 +x2 +1 as irreducible polynomial, a valid combination
is a = x + 1, b = x4 + 1, c = x4 + x and d = x. Using these coefficients, we
are able to implement this matrix multiplication with the same amount of table
lookups (i.e. 16), 54 XORs instead of 56 and two less temporary variables than
the matrix used by the designers of Khazad (as described in [1]), for instance.
We might do even better by dedicated optimizations.

6 Conclusion

MDS matrices are a well-known way to build linear multipermutations, i.e. opti-
mal diffusion components which can be used as building blocks of cryptographic
primitives, like block ciphers and hash functions. Although their implementa-
tion is quite straightforward on 32/64-bit architectures, which have large data
L1 caches and thus allow to store large precomputed tables, we need to evaluate
the matrix multiplication on-the-fly on low-cost 8-bit architectures, and we can
afford only a very limited amount of precomputed data. In this paper, we have
studied MDS matrices under the angle of efficiency, defined mathematical crite-
ria and proven several optimality results relatively to these criteria; furthermore,
we give new constructions of efficient 4 × 4 and 8 × 8 matrices over GF(256).

Future potential investigations may go in the direction of hardware implemen-
tations of linear multipermutations, which are not covered by this paper. Further-
more, we may extend our mathematical considerations with criteria specifically
dedicated to SPNs; such matrices must have inverses which are also efficient,
for fast decryption operations. Finally, we studied bi-regularity of matrices as a
necessary condition for being MDS. It is however not sufficient. We indeed have
found optimal bi-regular arrays but no instances which are MDS. This problem
is left as future work.

Acknowledgments. The work presented in this paper was initiated by a project
supported by MediaCrypt AG, and supported (in part) by the National Compe-
tence Center in Research on Mobile Information and Communication Systems

Perfect Diffusion Primitives for Block Ciphers 97

(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322.

References

1. P. Barreto and V. Rijmen. The Khazad legacy-level block cipher. First Open
NESSIE Workshop, Leuven, 2000. See https://www.cryptonessie.org.

2. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography. Springer, 2002.

3. P. Junod and S. Vaudenay. FOX: a new family of block ciphers. In Proceedings of
SAC’04. Springer-Verlag, 2004.

4. F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-
Holland, 1977.

5. National Institute of Standards and Technology, U. S. Department of Commerce.
Advanced Encryption Standard (AES), 2001.

6. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. Twofish:
A 128-bit block cipher. In The First AES Candidate Conference. National Institute
for Standards and Technology, 1998.

7. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. The
Twofish encryption algorithm. Wiley, 1999.

8. C. Schnorr and S. Vaudenay. Black box cryptanalysis of hash networks based
on multipermutations. In A. De Santis, editor, Advances in Cryptology - EU-
ROCRYPT ’94. Proceedings, volume 950 of LNCS, pages 47–57. Springer-Verlag,
1995.

9. C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4), 1949.

10. S. Vaudenay. On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In B. Preneel, editor, Fast Software Encryption. Proceedings, volume
1008 of LNCS, pages 286–297. Springer-Verlag, 1995.

A Proof of Lemma 7

First we demonstrate that a 4×6 bi-regular array such that c = 3 has no column
equivalent to the pattern (aabb). Indeed, let M be a 4× 6 array of 3 elements a,
b, and c whose first column is (aabb). If the first row has two other occurrences of
a and two occurrences of another element x, we can permute columns in order to
get a first row equal to (aaaxx·). Then M2,2 and M2,3 must be pairwise different,
and different from a for M to be bi-regular. Similarly, either M2,4 or M2,5 must
be equal to a. We may permute columns 2 and 3, and columns 4 and 5 and
obtain the array below.

a a a x x
a b c a
b ? ? ?
b ? ? ?

98 P. Junod and S. Vaudenay

Positions with question mark cannot be equal to b, so we must fill them with
a and c elements. We have three pairs of question marks. Since we only have
two elements, either two different pairs are equal, or one pair consists of the
same element twice. In both case we contradict the bi-regular property. This
means that row 1 cannot be equivalent to (aaaxx·). Obviously row 1 cannot be
equivalent to (aaaa · ·) (otherwise we have not enough elements to put in row
2 below the a occurrences). For similar reasons row 1 cannot be equivalent to
(axxx · ·). Thus row 1 must be equivalent to (aabbcc). Since the same arguments
hold for row 2, both rows are equivalents. Now let us assume that row 1 is
(aabbcc). Looking at what we can put in row 2 we obtain (after potential column
permutations) the following array.

a a b b c c
a ? a c a b
b
b

So row 2 cannot be equivalent to (aabbcc) which leads to a contradiction. Hence
no column can be equivalent to (aabb) in a 4×6 bi-regular array of three elements.

Second, we show that no column can be equivalent to (xxxy). Indeed, if the
first column is (xxxy), the elements in row 1, 2, and 3 must be pairwise different
in every other column, which leads to 6 possibilities. Let us assume without loss
of generality that the array is

x a a b b c
x b c a c a
x c b c a b
y ?

If the entry at the position of the question mark is b, then the entry at position
(4, 3) must be different from b and different from the entry at position (2, 3), i.e.
it must be a. Similarly, if the entry at the position of the question mark is c, the
entry at position (4, 3) must also be a. After an eventual permutation of column
2 and 3 we can assume that the entry at the position of the question mark is a.
But then entries at position (4, 4) and (4, 5) must be c and a respectively which
lead to a singular sub-array.

In conclusion all column must be equivalent to (xxyz). Let us assume that
we have the following shape.

x x′ x′′ ?
x y′ y′′ ?
y x′ z′′ ?
z z′ x′′ ?

Then all entries in column 4 must be pairwise different, which is impossible.

Perfect Diffusion Primitives for Block Ciphers 99

B Implementation of the Circulant Matrix

The input is in x[0..7], and the output in y[0..7]. We use two precomputed tables,
namely xtime[.] (multiplication by x) and xm1time[.] (division by x).

y[0] = x[0]^x[1]^x[2]^x[3]^x[4]^x[5]^x[6]^xtime[x[7]];
y[1] = x[1]^x[0]^x[7]^xtime[x[1]^x[3]^xtime[4]]^

xm1time[x[2]^x[5]^xm1time[x[2]^x[6]];
y[2] = x[0]^x[6]^x[7]^xtime[x[0]^x[2]^xtime[3]]^

xm1time[x[1]^x[4]^xm1time[x[1]^x[5]];
y[3] = x[6]^x[5]^x[7]^xtime[x[6]^x[1]^xtime[2]]^

xm1time[x[0]^x[3]^xm1time[x[0]^x[4]];
y[4] = x[5]^x[4]^x[7]^xtime[x[5]^x[0]^xtime[1]]^

xm1time[x[6]^x[2]^xm1time[x[6]^x[3]];
y[5] = x[4]^x[3]^x[7]^xtime[x[4]^x[6]^xtime[0]]^

xm1time[x[5]^x[1]^xm1time[x[5]^x[2]];
y[6] = x[3]^x[2]^x[7]^xtime[x[3]^x[5]^xtime[6]]^

xm1time[x[4]^x[0]^xm1time[x[4]^x[1]];
y[7] = x[2]^x[1]^x[7]^xtime[x[2]^x[4]^xtime[5]]^

xm1time[x[3]^x[6]^xm1time[x[3]^x[0]];

C Implementation of the Matrix with Rectangle
Patterns

The input is in x[0..7], and the output in y[0..7]. We use two precomputed tables,
namely xtime[.] (multiplication by x) and x4time[.] (multiplication by x4).

t0 = x[0]^x[1]; t1 = x[0]^x[2]; t2 = x[3]^x[5];
t3 = x[1]^x[4]; t4 = x[2]^x[4]; t5 = x[5]^x[7];
t6 = x[3]^x[6]; t7 = x[4]^x[6];
r1 = t1^t5; r2 = t2^t4; r3 = t3^t6; r4 = t2^t6;
y[0] = t0^t6^xtime[t3^t5^x[2]]^x4time[t1^t2];
y[1] = r1^x[4]^xtime[t6^x[1]^x[2]]^x4time[t0^t7];
y[2] = r4^t3^xtime[r1^t2]^x4time[t0^t5];
y[3] = r2^x[6]^xtime[t0^x[4]^x[7]]^x4time[t1^x[6]];
y[4] = r2^x[7]^xtime[t1^x[5]^ x[6]]^x4time[x[2]^x[3]^x[7]];
y[5] = r3^xtime[r1^x[7]]^x4time[t4^x[7]];
y[6] = r1^xtime[r3^x[7]]^x4time[r4];
y[7] = t0^x[6]^x[7]^xtime[r2]^x4time[t5^t7];

Security of the MISTY Structure in the
Luby-Rackoff Model: Improved Results

Gilles Piret and Jean-Jacques Quisquater

UCL Crypto Group,
Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium

{piret, jjq}@dice.ucl.ac.be

Abstract. In this paper we consider the security of the Misty struc-
ture in the Luby-Rackoff model, if the inner functions are replaced by
involutions without fixed point. In this context we show that the success
probability in distinguishing a 4-round L-scheme from a random func-
tion is O(m2/2n) (where m is the number of queries and 2n the block
size) when the adversary is allowed to make adaptively chosen encryption
queries. We give a similar bound in the case of the 3-round R-scheme.
Finally, we show that the advantage in distinguishing a 5-round scheme
from a random permutation when the adversary is allowed to adaptively
chosen encryption as well as decryption queries is also O(m2/2n). This is
to our knowledge the first time involutions are considered in the context
of the Luby-Rackoff model.

1 Introduction

Proving the security of block ciphers has been a long-standing problem, and
it is not solved yet. In their seminal paper [4], M. Luby and C. Rackoff intro-
duced a model that permits the assessment of the security of some block cipher
constructions. In this model, only the high-level structure of a block cipher is
considered, while the lower-level operations are replaced by random functions.
This last hypothesis is pretty strong, but at least it permits to guarantee that
the basic structure of a block cipher is not flawed from the beginning.

More precisely, the model works as follows: let Φ(f1, ..., fr) be a construc-
tion which to r functions f1, ..., fr : {0, 1}n → {0, 1}n associates one function
F : {0, 1}2n → {0, 1}2n. We consider a distinguishing algorithm A which has
unbounded computation capabilities, and can make a certain number of adap-
tively chosen encryption queries to an oracle function O : {0, 1}2n → {0, 1}2n

he received as an input1. Based on the answers he obtains to his queries, A
outputs either 0 or 1. Let p = Pr[AΦ(f∗

1 ,...,f∗
r) = 1] and p∗ = Pr[AF ∗

= 1] denote
the probability that A outputs 1 when O is respectively a function of the form

1 The size of the input and output spaces of O are often 2n bits, where n is the size
of the inner functions. However these constraints are absolutely not mandatory; the
input and output sizes do not even need to be the same.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 100–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Security of the MISTY Structure in the Luby-Rackoff Model 101

Φ(f∗
1 , ..., f∗

r), where f∗
1 , ..., f∗

r are perfect random functions (i.e. functions ran-
domly chosen with respect to the uniform distribution), or O itself is a perfect
random function F ∗. We are interested in the advantage A has in distinguishing
Φ(f∗

1 , ..., f∗
r) from F ∗: AdvA(Φ(f∗

1 , ..., f∗
r), F ∗) = |p−p∗|. A security proof in the

Luby-Rackoff model consists in upper bounding this advantage (as a function of
the number of queries m and the block size 2n) for all possible distinguishers A.
If for n big enough, and for all distinguishing algorithms A of which the number
of queries m is polynomial in n, AdvA is polynomially small, then Φ is said to be
pseudorandom. If this criteria still holds when decryption queries are allowed
as well, then Φ is said to be superpseudorandom. As a shortcut, an algorithm
allowed to make adaptative encryption queries only will often be called pseu-
dorandom distinguisher, and an algorithm allowed to make both adaptative
encryption and adaptative decryption queries will be called superpseudoran-
dom distinguisher.

Luby and Rackoff’s paper initiated a significant amount of research in the
area: in 1992 Patarin [11, 12] made explicit the link between the advantage and
the transition probability associated with a given structure Φ (see section 2.3);
this gives a practical way of upper bounding the advantage. The same year,
Maurer showed how to generalise undistinguishability results to locally random
functions. More recently, Ramzan and Reyzin introduced a new model which
assumes that the attacker has oracle access to some of the round functions [16].
Besides, the Feistel structure (first examined by Luby and Rackoff) was widely
studied. On the one hand, its security bounds were tried to be improved [11,
13, 14, 15]. On the other hand, slightly modified constructions were examined:
constructions were some of the round functions are identical [12], or are replaced
by hash functions for example [5, 10]. Moreover some other constructions were
also examined [9, 19].

Recently, constructions used in the block ciphers Misty [6] and Kasumi were
examined. In 1997, Sakurai and Zheng [17] presented several negative results
(i.e. non-pseudorandomness and non-superpseudorandomness) on these schemes.
Then Gilbert and Minier [8] showed in 2001 that the 4-round Misty construc-
tion (called L-scheme) is pseudorandom, while 3 rounds of its inverse (called
R-scheme) is sufficient to obtain pseudorandomness. Moreover they showed that
5 rounds of these constructions are necessary to obtain superpseudorandomness.
The same year, Iwata et al. [3] showed that some of the 5 inner permutations can
be replaced by uniform ε-XOR universal permutations without losing superpseu-
dorandomness; moreover, following the model of Ramzan and Reyzin [16], they
show that oracle access to some specific inner permutations does not change
superpseudorandomness either. Finally, the next year about the same authors
showed that the second inner permutation of a 5-round Misty does not need to be
cryptographic at all to guarantee superpseudorandomness: it can be a constant
and public transformation g, provided g satisfies g(x) ⊕ x �= g(x′) ⊕ x′ [2].

In this paper, we consider another restriction on the inner functions: namely,
we assume that all of them are random involutions (i.e. permutations c such that
∀x : c(c(x)) = x) without fixed point. For implementation reasons, involutions

102 G. Piret and J.-J. Quisquater

were a basis of the design of several recent block ciphers (see e.g. Khazad [1],
Anubis, Noekeon, ICEBERG [18]), hence the interest of such hypothesis. We show
that the pseudorandom character of Misty constructions is preserved under this
constraint (the number of rounds considered remaining unchanged).

2 Preliminaries

2.1 The Misty L- and R-Schemes

We describe two basic schemes: the L-scheme has been used in the Misty [6]
and Kasumi block ciphers, the R-scheme is almost its inverse (we follow the
terminology used by Gilbert and Minier [8]).

We define a 1-round L-scheme as a 2n-bit permutation ψL taking a n-bit
permutation c as a round function and such that:

ψL(c)(L,R) = (R, c(L) ⊕ R)

It is depicted in Figure 1. An r-round L-scheme is simply the composition of
r 1-round L-schemes, transforming r n-bit permutations c1, ..., cr into a 2n-bit
permutation:

ψL(c1, c2, ..., cr) = ψL(cr) ◦ ... ◦ ψL(c1)

A 1-round R-scheme transforms a n-bit permutation c into a 2n-bit permu-
tation ψR(c) too. It is defined as (see Figure 1):

ψR(c)(L,R) = (c(L) ⊕ R, c(L))

The composition of r 1-round R-schemes is a r-round R-scheme:

ψR(c1, c2, ..., cr) = ψR(cr) ◦ ... ◦ ψR(c1)

In this paper we consider variants of the ψL and ψR schemes, where the last
XOR operation is omitted, as well as the last swap. We call them ψ′

L and ψ′
R.

Remark 1. Cryptographically speaking, ψ′
L and ψ′

R are equivalent respectively
to ψL and ψR.

Remark 2. ψ′
L(c1, c2, ..., cr) and ψ′

R(c−1
r , c−1

r−1, ..., c
−1
1) are inverses of each other.

It implies that their security against superpseudorandom distinguishers is the
same.

2.2 Notations

Throughout this paper we use the following notations:

– In denotes the {0, 1}n set.
– I := Im

n (where m is the number of plaintext-ciphertext pairs considered).
– For X,Y ∈ I: X ∼ Y informally means that X and Y could be the inputs

and outputs of a permutation. More formally: ∀i, j ∈ [1...m] : Xi = Xj ⇔
Yi = Yj .

Security of the MISTY Structure in the Luby-Rackoff Model 103

c

RL

c

RL

Fig. 1. 1-round L-scheme at left, 1-round R-scheme at right

– I �= := {X ∈ I|�i �= j ∈ [1...m] : Xi = Xj} I= := I\I �=.
– Let X be the subset of Im

2n such that ∀((Xi, Yi))i∈[1..m] ∈ X : ∀i �= j :
(Xi, Yi) �= (Xj , Yj). Then the m inputs to ψL (or ψR) are assumed2 to belong
to X and denoted by (L,R) = ((Li)i∈[1..m], (Ri)i∈[1..m]) ∈ X . Similarly the
m corresponding outputs are denoted by (S,T) = ((Si, Ti))i∈[1..m] ∈ X .

– f∗ always denotes a perfect random function (or permutation, or involution
without fixed point, depending on the context), i.e. one which is chosen in
accordance with the uniform probability distribution.

2.3 Patarin’s Coefficient H Technique

Let P(L,R)
(S,T) be the probability for a structure Φ(f1, ..., fr) to be such that

Φ(f1, ..., fr)(L,R) = (S,T) (computed over all possible f1, ..., fr)). Not sur-
prisingly, this probability plays a big role in upper bounding the advantage an
algorithm A has in distinguishing Φ from a perfect random function F ∗. The link
between P(L,R)

(S,T) and the best advantage has been quantified by Patarin [11, 12]3:

Theorem 1 (Patarin). Let F : I2n → I2n be a random function; let F ∗ :
I2n → I2n be a perfect random function. Let m be an integer. If there exists a
subset Y of Im

2n and two positive real numbers ε1 and ε2 such that

1. |Y| > (1 − ε1) · |I2n|m
2. ∀(L,R) ∈ X ∀(S,T) ∈ Y : P(L,R)

(S,T) ≥ (1 − ε2) · 1
|I2n|m

Then for any distinguisher A using m encryption queries

AdvA(F, F ∗) ≤ ε1 + ε2

Theorem 1 deals with pseudorandom distinguishers. A similar theorem holds
for superpseudorandom distinguishers:

2 This hypothesis reflects the fact that the distinguisher is assumed not to make two
times the same query. As the distinguisher would learn nothing more when repeating
a query, there is no loss of generality.

3 We particularized Patarin’s theorem to the case where the input and output sizes
are both 2n, but it holds for any size.

104 G. Piret and J.-J. Quisquater

Theorem 2 (Patarin). Let C : I2n → I2n be a random permutation; let C∗ :
I2n → I2n be a perfect random permutation. Let m be an integer, and ε > 0.
If for all (L,R) ∈ X , and all (S,T) ∈ X : P(L,R)

(S,T) ≥ (1 − ε) · 1
|I2n|m then for

any distinguisher A using m encryption or decryption queries: AdvA(C,C∗) ≤
ε + m(m−1)

2·22n

3 The 4-Round L-Scheme

We consider a 4-round L-scheme were the inner permutations c∗
1, ..., c

∗
4 are perfect

random involutions without fixed point. In section 4 we will prove the following
lemma:

Lemma 1. Let m,n > 0. Let (L,R) ∈ X ⊂ Im
2n, (S,T) ∈ I × I �=. Then the

probability for a 4-uple (c1, c2, c3, c4) of involutions without fixed point to satisfy
ψ′

L(c1, ..., c4)(L,R) = (S,T) is lower bounded by[
1 − 15m2

2n
− 9

32

∞∑
k=2

(
16m2

2n

)k
]
· 1
22nm

≥
(

1 − 24m2

2n

)
· 1
22nm

B

A

RL

1c

2c

3c

4c

S T

Fig. 2. 4 rounds L-scheme

It allows to prove the following theorem:

Theorem 3. Let c∗
1, ..., c

∗
4 be independent perfect random involutions without

fixed point on In. Let C := ψL(c∗
1, ..., c

∗
4). Let F ∗ : I2n → I2n be a perfect

Security of the MISTY Structure in the Luby-Rackoff Model 105

random function. Then for any pseudorandom distinguisher A allowed to make
m queries, we have:

AdvA(C,F ∗) ≤ 31m2

2 · 2n
+

9
32

∞∑
k=2

(
16m2

2n

)k

≤ 49m2

2 · 2n

Thus ψL(c∗
1, ..., c

∗
4) is pseudorandom, and secure as long as m 	 2n/2.

Proof. It is an immediate application of theorem 1. The constraint T ∈ I �= in
lemma 1 implies a non-zero ε1. More precisely, ε1 is equal to the probability for
a (perfect) random T ∈ I to belong to I=. It can be shown to be smaller than
m2

2·2n :

Pr[T ∈ I=] = Pr[
∨
i<j

Ti = Tj] ≤
∑
i<j

Pr[Ti = Tj] ≤ m2

2 · 2n

Lemma 1 gives the corresponding ε2.

4 Proof of Lemma 1

For a given (L,R,S,T), we define λ and ρ as the number of independent equal-
ities of the form Li = Lj and Ri = Rj (i �= j), respectively. We also de-
fine two intermediate states during the computation of ψ′

L(c1, ..., c4), namely
A := c1(L) ⊕ R and B := c2(R) ⊕ A (see Figure 2). Let P(L,R)

(S,T) be the proba-
bility that a random 4-uple (c1, c2, c3, c4) is such that
ψ′

L(c1, c2, c3, c4)(L,R) = (S,T). Then

P(L,R)
(S,T) =

∑
A,B∈I

Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)

∧ (c3(A) ⊕ B = S) ∧ (c4(B) = T)]
(1)

We consider the following conditions (C) on (A,B):

(C1) A ⊕ R ∼ L and �i, j s.t. Li = Aj ⊕ Rj .
(C2) A ⊕ B ∼ R and �i, j s.t. Ri = Aj ⊕ Bj .
(C3) B ⊕ S ∈ I �= and �i, j s.t. Ai = Bj ⊕ Sj .
(C4) �i, j s.t. Bi = Tj .

Then equation (1) implies:

P(L,R)
(S,T) ≥

∑
A,B∈I �=

(A,B) satisfies (C)

Pr[(c1(L) ⊕ R = A)] · Pr[c2(R) ⊕ A = B]

· Pr[c3(A) ⊕ B = S] · Pr[c4(B) = T]

(2)

The number of A such that (C1) is satisfied is (2n−m+λ)!
(2n−2m+2λ)! . For a (perfect)

random such A we have:

Pr[A ∈ I �=|(C1)] ≥ 1 −
∑
i<j

Pr[Ai = Aj |(C1)] (3)

106 G. Piret and J.-J. Quisquater

Consider given 1 ≤ i < j ≤ m, and assume Li �= Lj and Ri �= Rj . As there are
(2n −m + λ)(2n −m + λ− 1) possible values for (Ai, Aj) satisfying (C1), among
which 2n − m + λ satisfy Ai = Aj , we get

Pr[Ai = Aj |(C1)] =
2n − m + λ

(2n − m + λ)(2n − m + λ − 1)
≤ 2

2n
(4)

If Li = Lj or Ri = Rj , it is easy to see that Pr[Ai = Aj |(C1)] = 0.
Then we have

Pr[A ∈ I �=|(C1)] ≥ 1 − m(m − 1)
2

· 2
2n

≥ 1 − m2

2n
(5)

Similarly, the number of B such that (C2) is satisfied is (2n−m+ρ)!
(2n−2m+2ρ)! , and

Pr[B ∈ I �=|(C2)] ≥ 1 − m2

2n . Finally for a (perfect) random (A,B) we compute:

Pr[B satisfies (C3) ∧ B satisfies (C4) ∧ A ∈ I �= ∧ B ∈ I �=|(C1) ∧ (C2)]

≥ 1 − Pr[
∨
i<j

Bi ⊕ Si = Bj ⊕ Sj |(C1) ∧ (C2)]

− Pr[
∨
i,j

Ai = Bj ⊕ Sj |(C1) ∧ (C2)] − Pr[
∨
i,j

Bi = Tj |(C1) ∧ (C2)] − 2 · m2

2n

≥ 1 − m(m − 1)
2

· 2
2n

− 4m2

2n
− 2 · m2

2n
≥ 1 − 7m2

2n

Thus the number of (A,B) ∈ I �= satisfying (C) can be lower bounded by:

(2n − m + λ)!
(2n − 2m + 2λ)!

· (2n − m + ρ)!
(2n − 2m + 2ρ)!

· (1 − 7m2

2n
) (6)

Under these conditions on (A,B) we can evaluate

Pr[(c1(L) ⊕ R = A)] · Pr[c2(R) ⊕ A = B] · Pr[c3(A) ⊕ B = S] · Pr[c4(B) = T]

and we obtain:

(2n−2m+2λ)!
22n−1−m+λ·(2n−1−m+λ)!

· (2n−2m+2ρ)!
22n−1−m+ρ·(2n−1−m+ρ)!

·
[

(2n−2m)!
22n−1−m·(2n−1−m)!

]2

[
2n!

22n−1 ·(2n−1)!

]4 (7)

After multiplication of (7) by the number of terms (6):

24m−λ−ρ · (2n − m + λ)! · (2n − m + ρ)!
(2n−1 − m + λ)! · (2n−1 − m + ρ)!

· (2n−1)!4

(2n)!4
·
[

(2n − 2m)!
(2n−1 − m)!

]2

·
(

1 − 7m2

2n

)

= 24m−λ−ρ ·
∏m−λ−1

i=0
2n−1−i
2n−i

· ∏m−ρ−1
i=0

2n−1−i
2n−i

·
(∏m−1

i=0
2n−1−i
2n−i

)2

(∏2m−1
i=m 2n − i

)2 ·
(

1 − 7m2

2n

)

Security of the MISTY Structure in the Luby-Rackoff Model 107

By lower bounding the products, this expression can be shown to be greater
or equal than:

24m−λ−ρ ·
(

2n−1 − m

2n − m

)4m−λ−ρ

· 1
22nm

·
(

1 − 7m2

2n

)
(8)

It is easy to show that 2n−1−m
2n−m = 1

2 − 1
2

∑∞
k=1

mk

2nk . Then (8) is greater or
equal than: (

1 −
∞∑

k=1

mk

2nk

)4m

· 1
22nm

·
(

1 − 7m2

2n

)
(9)

By evaluating the first factor using the binomial theorem, we can show(
1 −

∞∑
k=1

mk

2nk

)4m

≥ 1 − 1
2

∞∑
k=1

(
16m2

2n

)k

(10)

Finally, immediate calculations show that (9) is greater or equal than:[
1 − 15m2

2n
− 9

32

∞∑
k=2

(
16m2

2n

)k
]
· 1
22nm

≥
(

1 − 24m2

2n

)
· 1
22nm

(11)

which concludes the proof.

5 The 3-Round R-Scheme

A result similar to theorem 3 can be proved for a 3-round R-scheme:

Theorem 4. Let c∗
1, c

∗
2, c

∗
3 be independent perfect random involutions without

fixed point on In. Let C := ψR(c∗
1, c

∗
2, c

∗
3). Let F ∗ : I2n → I2n be a perfect

random function. Then for any pseudorandom distinguisher A allowed to make
m queries, we have:

AdvA(C,F ∗) ≤ 11m2

2n
+

5
8

∞∑
k=2

(
8m2

2n

)k

≤ 13m2

2n

Thus ψR(c∗
1, c

∗
2, c

∗
3) is pseudorandom, and secure as long as m 	 2n/2.

6 The 5-Round Scheme

The following lemma is proved in the next section:

Lemma 2. Let m,n > 0. Let (L,R), (S,T) ∈ X ⊂ Im
2n. Then the probabil-

ity for a 5-uple (c1, c2, c3, c4, c5) of involutions without fixed point to satisfy
ψ′

L(c1, ..., c5)(L,R) = (S,T) is lower bounded by(
1 − 12m2

2n

)
· 1
2nm

108 G. Piret and J.-J. Quisquater

S T

B

A

C

RL

1c

2c

3c

4c

c5

Fig. 3. 5 rounds L-scheme

Using theorem 2, it implies superpseudorandomness for a 5-round scheme:

Theorem 5. Let c∗
1, c

∗
2, ..., c

∗
5 be independent perfect random involutions without

fixed point of In. Let C∗ be a perfect random permutation of I2n. Let C :=
ψL(c∗

1, c
∗
2, ..., c

∗
5) (resp. C := ψR(c∗

1, c
∗
2, ..., c

∗
5)). Then for any superpseudorandom

distinguisher A allowed to make m queries:

AdvA(C,C∗) ≤ 12m2

2n
+

m2

2 · 2n

Thus ψ(c∗
1, c

∗
2, ..., c

∗
5) is superpseudorandom, and secure as long as

m 	 2n/2.

The proof of lemma 2 will require the following lemma. Proving it is easy, it
is why we do not give the proof here.

Lemma 3. Let x, y ∈ In, 0 �= Δ ∈ In. The probability for a random involution
without fixed point c to satisfy

c(x) ⊕ c(y) = Δ

is at most 4/2n.

Security of the MISTY Structure in the Luby-Rackoff Model 109

7 Proof of Lemma 2

We use the intermediate states A := c1(L) ⊕ R, B := c2(R) ⊕ A and C :=
c3(A) ⊕ B (see Figure 3). Let P(L,R)

(S,T) be the probability that a random 5-uple
(c1, c2, c3, c4, c5) of involutions is such that ψ′

L(c1, c2, c3, c4, c5)(L,R)
= (S,T). Then:

P(L,R)
(S,T) =

∑
A,B,C∈I

Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)

∧ (c3(A) ⊕ B = C) ∧ (c4(B) ⊕ C = T) ∧ (c5(C) = S)]
(12)

We define the following three conditions (C) on (A,B,C):

(C1) �i, j : Li = Aj ⊕ Rj and �i, j : Ri = Aj ⊕ Bj

(C2) �i, j : Ai = Bj ⊕ Cj and �i, j : Bi = Cj ⊕ Tj

(C3) �i, j : Ci = Sj

Then P(L,R)
(S,T) is greater or equal than

∑
A,B∈I �=

A,B satisfy (C1)

(
Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)]

·
∑
C∈I

C satisfies (C2),(C3)

Pr[c3(A) ⊕ B = C] · Pr[c4(B) ⊕ C = T] · Pr[c5(C) = S]
) (13)

We first evaluate the inner sum for given A,B ∈ I �= satisfying (C1). Adding
constraints C ∼ S, C ⊕ T ∈ I �= and B ⊕ C ∈ I �= only removes zero terms from
the sum. Thus it is equal to:∑

C∼S
C⊕T∈I �=, B⊕C∈I �=

C satisfies (C2),(C3)

Pr[c3(A) ⊕ B = C] · Pr[c4(B) ⊕ C = T] · Pr[c5(C) = S] (14)

It is easy to see that |{C ∈ I : C ∼ S ∧ (C3)}| = (2n−m+σ)!
(2n−2m+2σ)! . Moreover we

compute:

Pr[C ⊕ T ∈ I �= ∧ B ⊕ C ∈ I �= ∧ (C2)|C ∼ S ∧ (C3)]

≥ 1 −
∑
i<j

Pr[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)]

−
∑
i<j

Pr[Bi ⊕ Ci = Bj ⊕ Cj |C ∼ S ∧ (C3)])

−
∑
i,j

Pr[Ai =Bj ⊕ Cj |C ∼ S ∧ (C3)]−
∑
i,j

Pr[Bi =Cj ⊕ Tj |C ∼ S ∧ (C3)]

110 G. Piret and J.-J. Quisquater

We evaluate the first sum. For given 1 ≤ i < j ≤ m, if Si �= Sj and Ti �= Tj ,
then the probability is smaller than 2

2n . If Si = Sj or Ti = Tj , it is easy to see
that it is 0. Therefore∑

i<j

Pr[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)] ≤ m(m − 1)
2

· 2
2n

≤ m2

2n
(15)

The second sum can be bounded similarly.
We now consider the third sum. Let 1 ≤ i, j ≤ m. As there are 2n − m + σ

possible values of Cj satisfying C ∼ S and (C3), we obtain Pr[Cj = Ai ⊕Bj |C ∼
S ∧ (C3)] = 1

2n−m+σ ≤ 2
2n . Therefore∑

i,j

Pr[Ai = Bj ⊕ Cj |C ∼ S ∧ (C3)] ≤ m2 · 2
2n

(16)

The fourth sum can be bounded similarly.
Putting these inequalities together, we finally get

Pr[C ⊕ T ∈ I �= ∧ B ⊕ C ∈ I �= ∧ (C2)|C ∼ S ∧ (C3)] ≥ 1 − 6m2

2n
(17)

The probabilities in (14) are easy to evaluate. Thus (14) is lower bounded by:[
(2n−2m)!

22n−1−m·(2n−1−m)!

]2
·
[

(2n−m+σ)!
22n−1−m+σ·(2n−1−m+σ)!

]
[

2n!
22n−1 ·(2n−1)!

]3 · (1 − 6m2

2n
) (18)

which is greater or equal than

23m−σ ·
(

2n−1 − m

2n − m

)3m−σ

· 1
2nm

≥
(

1 −
∞∑

k=1

mk

2nk

)3m

· 1
2nm

(19)

It remains to evaluate∑
A,B∈I �=

A,B satisfy (C1)

Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)] (20)

which is equal to

Pr[c1(L) ⊕ R ∈ I �= ∧ c1(L) ⊕ c2(R) ⊕ R ∈ I �=

∧ �i, j : c1(Li) = Lj ∧ �i, j : c2(Ri) = Rj]

≥ 1 −
∑
i<j

Pr[c1(Li) ⊕ c1(Lj) = Ri ⊕ Rj]

−
∑
i<j

Pr[c1(Li) ⊕ c2(Ri) ⊕ Ri = c1(Lj) ⊕ c2(Rj) ⊕ Rj]

−
∑
i<j

Pr[c1(Li) = Lj] −
∑
i<j

Pr[c2(Ri) = Rj]

Security of the MISTY Structure in the Luby-Rackoff Model 111

Let 1 ≤ i < j ≤ m. Pr[c1(Li) ⊕ c1(Lj) = Ri ⊕ Rj] is easy to evaluate. If
Ri ⊕Rj = 0, then Li �= Lj and the probability is 0. If Ri ⊕Rj �= 0, we can apply
lemma 3. Thus in any case

Pr[c1(Li) ⊕ c1(Lj) = Ri ⊕ Rj] ≤ 4/2n (21)

For shortness, let us denote Z(Ri, Rj) := c2(Ri)⊕ c2(Rj)⊕Ri ⊕Rj . The terms
of the second sum can be written:

Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)]
= Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) = 0] · Pr[Z(Ri, Rj) = 0]

+Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) �= 0] · Pr[Z(Ri, Rj) �= 0]
= Pr[c1(Li) ⊕ c1(Lj) = 0] · Pr[Z(Ri, Rj) = 0]

+Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) �= 0] · Pr[Z(Ri, Rj) �= 0]

If Ri = Rj then Li �= Lj and the first term is 0. Else by lemma 3 it is not greater
than 4/2n. Using lemma 3 again, the second term is also not greater than 4/2n.
The conclusion is that

Pr[c1(Li) ⊕ c2(Ri) ⊕ Ri = c1(Lj) ⊕ c2(Rj) ⊕ Rj] ≤ 8
2n

(22)

Finally using (21) and (22), (20) is greater or equal than

1 − m(m − 1)
2

· 4
2n

− m(m − 1)
2

· 8
2n

− 2 · m(m − 1)
2 · (2n − 1)

≥ 1 − 8m2

2n
(23)

Multiplying (19) and (23), we get

P(L,R)
(S,T) ≥

(
1 −

∞∑
k=1

mk

2nk

)3m

· 1
2nm

·
(

1 − 8m2

2n

)
(24)

which is greater or equal than (see proof of lemma 1)(
1 − 1

2

∞∑
k=1

(
8m2

2n

)k
)

·
(

1 − 8m2

2n

)
· 1
2nm

=
(

1 − 12m2

2n

)
· 1
2nm

(25)

8 Conclusion and Open Problems

In this paper we showed that replacing the inner permutations of a Misty struc-
ture by involutions without fixed point, without changing the number of rounds,
did not significantly affect the previously known security bounds.

Several open problems remain: first, one could wonder whether the hypothesis
“without fixed point” is important. Intuitively it is clearly not, as taking the inner

112 G. Piret and J.-J. Quisquater

permutations from a (much) bigger set increases the variety of functions one
can generate, and hence the difficulty to distinguish them from perfect random
functions.

Also, it is an open question whether in some cases involutions achieve sig-
nificantly weaker security bounds than permutations. It should be interesting
to consider involutions as inner functions of structures different from the Misty
ones.

Finally, being able to do security proofs when the inner functions are even
more specific (i.e. drawn from a smaller set) than involutions without fixed point
would be nice, as it could maybe pave the way to security proofs on structures
closer to real-life block ciphers.

References

1. P.S.L.M. Barreto and V. Rijmen. The Khazad Legacy-Level Block Ci-
pher. Submitted as a NESSIE Candidate Algorithm. Available at
http://www.cryptonessie.org.

2. T. Iwata, T. Yoshino, and K. Kurosawa. Non-cryptographic Primitive for Pseudo-
random Permutation. In Joan Daemen and Vincent Rijmen, editors, Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February
4-6, 2002, volume 2365 of Lecture Notes in Computer Science, pages 149–163.
Springer-Verlag, 2002.

3. T. Iwata, T. Yoshino, T. Yuasa, and K. Kurosawa. Round Security and Super-
Pseudorandomness of MISTY Type Structure. In Mitsuru Matsui, editor, Fast
Software Encryption, 8th International Workshop, FSE 2001, Yokohama, Japan,
April 2-4, 2001, volume 2355 of Lecture Notes in Computer Science, pages 233–247.
Springer-Verlag, 2002.

4. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

5. S. Lucks. Faster Luby-Rackoff Ciphers. In Dieter Gollmann, editor, Fast Software
Encryption, Cambridge, UK, February 21-23, 1996, volume 1039 of Lecture Notes
in Computer Science, pages 189–203. Springer-Verlag, 1996.

6. M. Matsui. New Block Encryption Algorithm MISTY. In Eli Biham, editor,
Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, volume 1267 of Lecture Notes in Computer Science, pages
54–68. Springer-Verlag, 1997.

7. M. Minier. Preuves d’Analyse et de Sécurité en Cryptologie à Clé Secrète. PhD
thesis, LACO, Université de Limoges, September 2002.

8. M. Minier and H. Gilbert. New Results on the Pseudorandomness of Some Block-
cipher Constructions. In Mitsuru Matsui, editor, Fast Software Encryption, 8th
International Workshop, FSE 2001, Yokohama, Japan, April 2-4, 2001, volume
2355 of Lecture Notes in Computer Science, pages 248–266. Springer-Verlag, 2002.

9. S. Moriai and S. Vaudenay. On the Pseudorandomness of Top-Level Schemes
of Block Ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology - ASI-
ACRYPT 2000, Kyoto, Japan, December 3-7, 2000, volume 1976 of Lecture Notes
in Computer Science, pages 289–302. Springer-Verlag, 2000.

10. M. Naor and O. Reingold. On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. Journal of Cryptology, 12(1):29–66, 1999.

Security of the MISTY Structure in the Luby-Rackoff Model 113

11. J. Patarin. Etude des Générateurs de Permutations Basés sur le Schéma du DES.
PhD thesis, Université Paris VI, November 1991.

12. J. Patarin. How to Construct Pseudorandom and Super Pseudorandom Permu-
tations from one Single Pseudorandom Function. In Rainer A. Rueppel, editor,
Advances in Cryptology - EUROCRYPT ’92, Balatonfüred, Hungary, May 24-28,
1992, volume 658 of Lecture Notes in Computer Science, pages 256–266. Springer-
Verlag, 1993.

13. J. Patarin. About Feistel Schemes with Six (or More) Rounds. In Serge Vaudenay,
editor, Fast Software Encryption, Paris, France, March 23-25, 1998, volume 1372
of Lecture Notes in Computer Science, pages 103–121. Springer-Verlag, 1998.

14. J. Patarin. Generic Attacks on Feistel Schemes. In Colin Boyd, editor, Advances in
Cryptology - ASIACRYPT 2001, Gold Coast, Australia, December 9-13, 2001, vol-
ume 2248 of Lecture Notes in Computer Science, pages 222–238. Springer-Verlag,
2001.

15. J. Patarin. Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ε) Security. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, Santa Barbara, USA,
August 17-21, 2003, volume 2729 of Lecture Notes in Computer Science, pages
513–529. Springer-Verlag, 2003.

16. Z. Ramzan and L. Reyzin. On the Round Security of Symmetric-Key Crypto-
graphic Primitives. In Mihir Bellare, editor, Advances in Cryptology - CRYPTO
2000, Santa Barbara, USA, August 20-24, 2000, volume 1880 of Lecture Notes in
Computer Science, pages 376–393. Springer-Verlag, 2000.

17. K. Sakurai and Y. Zheng. On Non-Pseudorandomness from Block Ciphers with
Provable Immunity Against Linear Cryptanalysis. IEICE Trans. Fundamentals,
E80-A(1), January 1997.

18. F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. ICE-
BERG : an Involutional Cipher Efficient for Block Encryption on Reconfigurable
Hardware. In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption,
11th International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, volume
3017 of Lecture Notes in Computer Science, pages 279–299. Springer-Verlag, 2004.

19. S. Vaudenay. On the Lai-Massey Scheme. In Kwok-Yan Lam, Eiji Okamoto, and
Chaoping Xing, editors, Advances in Cryptology - ASIACRYPT ’99, Singapore,
November 14-18, 1999, volume 1716 of Lecture Notes in Computer Science, pages
8–19. Springer-Verlag, 1999.

FOX : A New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

École Polytechnique Fédérale de Lausanne, Switzerland
{pascal.junod, serge.vaudenay}@epfl.ch

Abstract. In this paper, we describe the design of a new family of block
ciphers based on a Lai-Massey scheme, named FOX. The main features of
this design, besides a very high security level, are a large implementation
flexibility on various platforms as well as high performances. In addition,
we propose a new design of strong and efficient key-schedule algorithms.
We provide evidence that FOX is immune to linear and differential crypt-
analysis, and we discuss its security towards integral cryptanalysis, alge-
braic attacks, and other attacks.

Keywords: Block ciphers, Lai-Massey scheme.

1 Introduction

Why do we need another block cipher? First of all, industry is still requesting;
second, recent advances in the cryptanalysis field motivate new designs. The
AES [1] and NESSIE [27] efforts, among others, have resulted in a number of
new proposals of block ciphers. It is noteworthy that there exists a clear trend in
direction of lightweight and fast key-schedule algorithms, as well as substitution
boxes based on purely algebraic constructions. In a parallel way, we observe that,
on the one hand, several of the last published attacks against block ciphers take
often advantage of exploiting “simple” key-schedule algorithms (a nice illustra-
tion is certainly Muller’s attack [24] against Khazad), and, on the other hand,
algebraic S-boxes are helpful to Courtois-Pieprzyk algebraic attacks [8], and lead
to puzzling properties as shown by [2, 10,25].

In this paper, we describe the design of a new family of block cipher, named
FOX and designed upon the request of MediaCrypt AG [23]. The main features of
this design, besides a very high security level, are a large flexibility in terms of use
and of implementation on various platforms, as well as high performances. The
family consists in two block ciphers, one having a 64-bit block size and the other
one a 128-bit block size. Each block cipher allows a variable number of rounds
and a variable key size up to 256 bits. The high-level structure is based on a Lai-
Massey scheme, while the round functions consist of Substitution-Permutation
Networks with no algebraic S-boxes. In addition, we propose a new design of
strong and efficient key-schedule algorithms.

Our main motivations are the following: our first goal is to offer a serious
alternative to block ciphers following present trends; we have explicitely chosen

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 114–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

FOX : A New Family of Block Ciphers 115

to avoid a lightweight key-schedule and a pure algebraic construction as S-boxes.
Our second goal is to reach the highest possible flexibility, being in terms of round
number, key size, block size and in terms of implementation issues. For instance,
we feel that it is still useful to propose a 64-bit block size flavour for backward-
compatibility reasons. Finally, our last motivation was to design a family of
block ciphers which compares favourably with the performances of the fastest
block ciphers on hardware, 8-bit, 32-bit, and 64-bit architectures. This paper is
organized as follows: in §2, we give a formal description of the block ciphers, then
we successively discuss the rationales in §3 the security foundations in §4 and
several implementations aspects in §5. Test vectors are available in Appendix A.
The full version of this paper is [14].

Notations : A variable x indexed by i with a length of � bits is denoted xi(�). A
C-like notation is used for indexing i.e. indices begin with 0.

Representation of GF
(
28

)
: Some of the internal operations used in FOX are

the addition and the multiplication in the GF(28) finite field. Elements of the
field are polynomials with coefficients in GF(2) in α, a root of the irreducible
polynomial P (α) = α8 + α7 + α6 + α5 + α4 + α3 + 1: the 8-bit binary string
s = s0(1)||s1(1)||s2(1)||s3(1)||s4(1)||s5(1)||s6(1)||s7(1) represents s0(1)α7 + s1(1)α

6 +
s2(1)α

5 + s3(1)α
4 + s4(1)α

3 + s5(1)α
2 + s6(1)α+ s7(1).

2 Description

The different members of this block cipher family are denoted as follows:

Name Block size Key size Rounds number
FOX64 64 128 16
FOX128 128 256 16
FOX64/k/r 64 k r
FOX128/k/r 128 k r

In FOX64/k/r and FOX128/k/r, the number r of rounds must satisfy 12 ≤ r ≤
255, while the key length k must satisfy 0 ≤ k ≤ 256, with k multiple of 8. Note
that a generic instance of FOX has 16 rounds.

2.1 High-Level Structure

The 64-bit version of FOX is the (r − 1)-times iteration of a round function
lmor64, followed by the application of a slightly modified round function called
lmid64. For decryption, we replace lmor64 by lmio64. The encryption C(64) by
FOX64/k/r of a 64-bit plaintext P(64) is defined as

C(64) = lmid64(lmor64(. . . (lmor64(P(64), RK0(64)), . . . , RKr−2(64)), RKr−1(64))

116 P. Junod and S. Vaudenay

where RK(64r) = RK0(64)||RK1(64)|| . . . ||RKr−1(64) is the subkey stream pro-
duced by the key schedule algorithm from the key K(k) (see §2.3). The decryption
P(64) by FOX64/k/r of a 64-bit ciphertext C(64) is defined as

P(64) = lmid64(lmio64(. . . (lmio64(C(64), RKr−1(64)), . . . , RK1(64)), RK0(64))

In the 128-bit version of FOX, we simply replace lmor64, lmid64, and lmio64
by elmor128, elmid128, and elmio128, respectively. lmor64, illustrated in Fig. 1(a),
is built as a Lai-Massey scheme [19, 18] combined with an orthomorphism1

or, as described in [30]. This function transforms a 64-bit input X(64) split
in two parts X(64) = X0(32)||X1(32) and a 64-bit round key RK(64) in a 64-
bit output Y(64) = Y0(32)||Y1(32) as Y(64) = or

(
X0(32) ⊕ φ

) ∣∣∣∣ (X1(32) ⊕ φ
)

with
φ = f32

(
X0(32) ⊕X1(32), RK(64)

)
. lmid64 and lmio64 are defined like for lmor64

but for or, which is replaced by the identity function and io (the inverse of or), re-
spectively. elmor128, illustrated in Fig. 1(b), is built as an Extended Lai-Massey
scheme combined with two orthomorphisms or. This function transforms a 128-
bit input X(128) split in four parts X(128) = X0(32)||X1(32)||X2(32)||X3(32) and
a 128-bit round key RK(128) in a 128-bit output Y(128). Let F(64) = (X0(32) ⊕
X1(32))||(X2(32) ⊕X3(32)). Then,

Y(128) = or
(
X0(32) ⊕ φL

) ∣∣∣∣∣∣ (X1(32) ⊕ φL

) ∣∣∣∣∣∣or (X2(32) ⊕ φR

) ∣∣∣∣∣∣ (X3(32) ⊕ φR

)
where φL||φR = f64

(
F(64), RK(128)

)
. In elmid128, resp. elmio128, the two or-

thomorphisms or are replaced by two identity, resp. io functions. The ortho-
morphism or is a function taking a 32-bit input X(32) = X0(16)||X1(16) and
returning a 32-bit output Y(32) = Y0(16)||Y1(16) which is in fact a one-round
Feistel scheme with the identity function as round function; it is defined as
Y0(16)||Y1(16) = X1(16)||

(
X0(16) ⊕X1(16)

)
.

2.2 Definition of f32 and f64

The round function f32 builds the core of FOX64/k/r. It is built of three main
parts: a substitution part, denoted sigma4, a diffusion part, denoted mu4, and a
round key addition part (see Fig. 2(a)). Formally, the f32 function takes a 32-bit
input X(32), a 64-bit round key RK(64) = RK0(32)||RK1(32) and returns a 32-bit
output Y(32) = sigma4(mu4(sigma4(X(32) ⊕RK0(32))) ⊕RK1(32)) ⊕RK0(32).

The function f64, building the core of FOX128/k/r, is very similar to f32
(see Fig. 2(b)): it takes a 64-bit input X(64), a 128-bit round key RK(128) =
RK0(64)||RK1(64) and returns Y(64) = sigma8(mu8(sigma8(X(64) ⊕ RK0(64))) ⊕
RK1(64)) ⊕RK0(64).

The mapping sigma4 (resp. sigma8) consists of 4 (resp. 8) parallel compu-
tations of a non-linear bijective mapping (see §3.1 for a description and the
table in §B). The diffusive parts of f32 and f64, mu4 and mu8, consider an input

1 An orthomorphism o on a group (G, +) is a permutation x �→ o(x) on G such that
x �→ o(x) − x is also a permutation.

FOX : A New Family of Block Ciphers 117

X0(8)|| . . . ||Xn(8) as a vector (X0(8), . . . , Xn(8))T over GF
(
28

)
and multiply it

with a matrix to obtain an output vector of the same size. The two matrices are
the following:

mu4 :

⎛⎜⎜⎝
1 1 1 α
1 z α 1
z α 1 1
α 1 z 1

⎞⎟⎟⎠ mu8 :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 a
1 a b c d e f 1
a b c d e f 1 1
b c d e f 1 a 1
c d e f 1 a b 1
d e f 1 a b c 1
e f 1 a b c d 1
f 1 a b c d e 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where z = α−1+1 = α7+α6+α5+α4+α3+α2+1, and where a = α+1, b = α7+α,
c = α, d = α2, e = α7+α6+α5+α4+α3+α2 and f = α6+α5+α4+α3+α2+α.

2.3 Key-Schedule Algorithms

A FOX key K(k) must have a bit-length k such that 0 ≤ k ≤ 256, and k must
be a multiple of 8. Depending on the key length and the block size, a member
of the FOX block cipher family may use one among three different key-schedule
algorithm versions, denoted KS64, KS64h and KS128. The following table defines
which variant is used, as well as a constant ek.

Cipher Block size Key size Key-Schedule Version ek

FOX64 64 0 ≤ k ≤ 128 KS64 128
FOX64 64 136 ≤ k ≤ 256 KS64h 256
FOX128 128 0 ≤ k ≤ 256 KS128 256

The three different versions of the key-schedule algorithm are constituted
of four main parts: a padding part, denoted P, expanding K(k) into ek bits, a
mixing part, denoted M, a diversification part, denoted D, whose core consists
mainly in a linear feedback shift register denoted LFSR, and finally, a non-linear
part, denoted NLx, which is actually the only part which differs between the
different versions: we denote the three variants NL64, NL64h and NL128. When
ek = k, the P and M parts are omitted.

Definition of P. The P-part, taking ek and k as input, is a function expanding
a bit string by ek−k

8 bytes; it concatenates the key K(k) with the first ek − k
bits of a constant, pad, giving PKEY as output. The constant pad is defined as
being the first 256 bits of the hexadecimal development of e− 2 =

∑+∞
n=0

1
n! − 2:

pad = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF

Definition of M. The M-part mixes the padded key PKEY with the help of a
Fibonacci-like recursion. It takes as input a key PKEY with length ek (expressed
in bits) seen as an array of ek

8 bytes PKEYi(8), 0 ≤ i ≤ ek
8 − 1, and is processed

according to MKEYi(8) = PKEYi(8) ⊕
(
MKEYi−1(8) +MKEYi−2(8) mod 28

)
,

for 0 ≤ i ≤ ek
8 −1, assuming that MKEY−2(8) = 0x6A and MKEY−1(8) = 0x76.

118 P. Junod and S. Vaudenay

Definition of D and LFSR. The D-part takes a key MKEY having a length in
bits equal to ek, the total round number r, and the current round number i, with
1 ≤ i ≤ r; it modifies MKEY with the help of the output of a 24-bit Linear Shift
Feedback Register (LFSR) denoted LFSR. More precisely, MKEY is seen as an
array of

⌊
ek
24

⌋
24-bit values MKEYj(24), with 0 ≤ j ≤ ⌊

ek
24

⌋−1 concatenated with
one residue byte MKEY RB(8) (if ek = 128) or two residue bytes MKEY RB(16)

(if ek = 256), and is modified according to, for 0 ≤ j ≤ ⌊
ek
24

⌋− 1,

DKEYj(24) = MKEYj(24) ⊕ LFSR
(

(i− 1) ·
⌈
ek

24

⌉
+ j, r

)
and the DKEY RB(8) value (DKEY RB(16)) is obtained by XORing the most
8 (16) significant bits of LFSR((i − 1) · ⌈ ek

24

⌉
+

⌊
ek
24

⌋
, r) with MKEY RB(8)

(MKEY RB(16)), respectively. The remaining 16 (8) bits of the LFSR routine
output are discarded. The stream of pseudo-random values is generated by a
24-bit linear feedback shift register, denoted LFSR. It takes two inputs: the total
number of rounds r and the number of preliminary clockings. It is based on the
following primitive polynomial of degree 24 over GF(2): ξ24 +ξ4 +ξ3 +ξ+1. The
register is initially seeded with the value 0x6A||r(8)||r(8), where r(8) is expressed
as an 8-bit value.

Definition of NL64, NL128, and NL64h. We describe here the NL64 and NL128
processes, respectively. Basically, the DKEY value passes through a substitution
layer, made of four parallel sigma4 (sigma8) functions, a diffusion layer, made
of four parallel mu4 (mu8) functions and a mixing layer called mix64 (mix128),
respectively. Then, the constant pad[0...127] (pad[0...255]) is XORed and the result
is flipped if and only if k = ek. The result passes through a second substitution
layer, it is hashed down to 64 (128) bits using two exclusive-or operations and
the resulting value is encrypted first with a lmor64 (elmor128) round function,
where the subkey is the left half of the DKEY value and second by a lmid64
(elmid128) function, where the subkey is the right half of DKEY . The result-
ing value is defined to be the 64-bit (128-bit) round key, respectively. Detailed
descriptions may be found in Fig. 3(a) and Fig. 3(b), respectively. In the case
of NL64h, the process is very similar than for NL128; the difference is that the
sigma8 (mu8) functions are replaced by two concatenated sigma4 (mu4) func-
tions, respectively, that mix128 is replaced by mix64h, and that one uses three
lmor64 round functions, where the respective subkeys are the three left quarters
of the DKEY value and a lmid64 function, where the subkey is the rightmost
quarter of DKEY . The resulting value is defined to be the 64-bit round key.
Fig. 3(c) illustrates the NL64h process whose construction is similar to those of
NL64 and of NL128.

Definition of mix64, mix64h and mix128. Given an input vector of four 32-bit
values, denoted X = X0(32)||X1(32)||X2(32)||X3(32), the mix64 function consists
in processing it by the following relations, resulting in an output vector denoted
Y = Y0(32)||Y1(32)||Y2(32)||Y3(32). More formally, mix64 is defined as Yi(32) =

FOX : A New Family of Block Ciphers 119⊕
j �=i Xj(32) for 0 ≤ i, j ≤ 3. The mix64h and mix128 functions use identical

relations operating on 64-bit values.

3 Rationales

3.1 sbox Transformation and Linear Multipermutations

As outlined in the introduction, our primary goal was to avoid a purely algebraic
construction for the S-box; a secondary goal was the possibility to implement
it in a very efficient way on hardware using ASIC or FPGA technologies. The
sbox function is a bijective non-linear mapping on 8-bit values. It consists of
a Lai-Massey scheme with 3 rounds taking three different substitution boxes
as round function; these “small” S-boxes are denoted S1, S2 and S3, and their
content is given in §B. The orthomorphism2 or4 used in the Lai-Massey scheme
is a single round of a 4-bit Feistel scheme with the identity function as round
function. We describe now the generation process of the sbox transformation.
First a set of three different candidates for small substitution boxes, each having
a LPmax and a DPmax (with the common notations3 [22]) smaller than 2−2 were
pseudo-randomly chosen. Then, the candidate sbox mapping was evaluated and
tested regarding its LPmax and DPmax values until a good candidate was found.
The chosen sbox satisfy DPsbox

max = LPsbox
max = 2−4 and its algebraic degree is equal

to 6.
Both mu4 and mu8 are linear multipermutations. This kind of construction

was early recognized as being optimal for which regards its diffusion proper-
ties [28,29]. A linear application defined by a matrix A is a multipermutation if
and only if det(A) �= 0 and if the determinant of each submatrix of A is different
of zero as well. It is well-known that linear multipermutations are equivalent to
MDS linear codes (i.e. Maximum Distance Separable codes). Not all construc-
tions are very efficient to implement, especially on low-end smartcard, which
have usually very few available memory and computational power (see [15]).
In order to be efficiently implementable, the elements of the matrix, which are
elements of GF(28), should be efficient to multiply to4.

3.2 Key-Schedule Algorithms

The FOX key-schedule algorithms were designed with several rationales in mind:
first, the function, which depends on the block size, taking a key K and the
round number r in output and returning r subkeys should be a cryptographic
pseudo-random, collision resistant and one-way function. Second, the sequence

2 The orthormorphism of the third round is omitted.
3 Where DPsbox(a, b) = Pr[sbox(X ⊕ a) = sbox(X) ⊕ b] and where LPsbox(a, b) =

(2 · Pr[a · X = b · sbox(X)] − 1)2 with · being the inner dot-product on GF (2)n,
DPsbox

max = maxa�=0,b DPsbox(a, b), and LPsbox
max = maxa,b�=0 LPsbox(a, b).

4 The only really efficient operations are the addition, the multiplication by α and the
division by α. Note that α7 + α = α−1 + α−2, α7 + α6 + α5 + α4 + α3 + α2 = α−1,
and that α6 + α5 + α4 + α3 + α2 + α = α−2.

120 P. Junod and S. Vaudenay

of subkeys should be generated in any direction without any complexity penalty.
Third, all the bytes of MKEY should be randomized even when the key size is
strictly smaller than ek. Finally, the key-schedule algorithm should resist related-
cipher attacks as described by Wu in [33].

We are convinced that “strong” key-schedule algorithms have significant ad-
vantages in terms of security, even if the price to pay is a smaller key agility; in
the case of FOX, we believe that the time needed to compute the subkeys (about
equal to the time needed to encrypt 6 blocks5 of data) remains acceptable. The
second central property of FOX key-schedule algorithms is ensured by the LFSR
construction. The third property is ensured by our “Fibonacci-like” construction
(which is a bijective mapping). Furthermore, MKEY is expanded by XORing
constants depending on r and ek with no overlap on these constants sequences
(this was checked experimentally). Finally, the fourth property is ensured by the
dependency of the subkey sequence to the actual round number of the algorithm
instance for which the sequence will be used.

4 Security Foundations

4.1 Luby-Rackoff-Like Security

Although less popular than the Feistel scheme or SPN structures, the Lai-Massey
scheme offers similar (super-) pseudorandomness and decorrelation inheritance
properties, as was demonstrated by Vaudenay [30]. Note that we will indifferently
use the term “Lai-Massey scheme” to denote both versions, as we can see the
Extended Lai-Massey scheme as a Lai-Massey scheme6. From this point, we
will make use of the following notation: given an orthomorphism o on a group
(G,+) and given r functions f1, f2, . . . , fr on G, we note a r-rounds Lai-Massey
scheme using the r functions and the orthomorphism by Λo(f1, . . . , fr). Then
the following results are two Luby-Rackoff-like [21] results on the Lai-Massey
scheme. We refer to [30,31] for proofs thereof.

Theorem 1. 1. Let f∗
1 , f∗

2 and f∗
3 be three independent random functions uni-

formly distributed on a group (G,+). Let o be an orthomorphism on G. For
any distinguisher7 limited to d chosen plaintexts, where g = |G| denotes the
cardinality of the group, between Λo(f∗

1 , f
∗
2 , f

∗
3) and a uniformly distributed

random permutation c∗, we have Adv(Λo(f∗
1 , f

∗
2 , f

∗
3), c∗) ≤ d(d−1)(g−1+g−2).

5 In the case of FOX64 with keys strictly larger than 128 bit, it takes the time to
encrypt 12 blocks of data.

6 We can prove this by swapping the two inner inputs and noting that the function
(x, y) �→ or32(x)||or32(y) builds an orthomorphism.

7 A distinguisher A is a probabilistic Turing machine with unlimited computational
power. It has access to an oracle O and can send it a limited number of queries.
At the end, the distinguisher must output “0” or “1”. The advantage for distin-
guishing a random function f from a random function g is defined by Adv(f, g) =∣∣Pr

[AO=f = 1
] − Pr

[AO=g = 1
]∣∣.

FOX : A New Family of Block Ciphers 121

2. If f1, . . . , fr are r ≥ 3 independent random functions on a group (G,+) of
order g such that Adv(fi, f∗

i) ≤ ε
2 for any adaptive distinguisher between fi

and f∗
i limited to d queries for 1 ≤ i ≤ r and if o is an orthomorphism on

G, we have Adv(Λo(f1, . . . , fr), c∗) ≤ 1
2 (3ε+ d(d− 1)(2g−1 + g−2))� r

3�.
Basically, the first result proves that the Lai-Massey scheme provides pseudo-

randomness on three rounds unless the fi’s are weak , like for the Feistel scheme
[9]. Super-pseudorandomness corresponds to cases where a distinguisher can
query chosen ciphertexts as well; in this scenario, the previous result holds when
we consider Λo(f∗

1 , . . . , f
∗
4) with a fourth round. The second result proves that

the decorrelation bias of the round functions of a Lai-Massey scheme is inher-
ited by the whole structure: provided the fi’s are strong, so is the Lai-Massey
scheme8; in other words, a potential cryptanalysis will not be able to exploit the
Lai-Massey’s scheme only, but it will have to take advantage of weaknesses of
the round functions’ internal structure.

4.2 Linear and Differential Cryptanalysis

It is possible to prove some important results about the security of both f32 and
f64 functions towards linear and differential cryptanalysis, too. As these functions
may be viewed as classical Substitution-Permutation Network constructions, we
will refer to some well-known results on their resistance towards linear and differ-
ential cryptanalysis proved in [12] by Hong et al. As the mu4 (mu8) mapping is
a (4, 4)-multipermutation ((8, 8)-multipermutation), one is ensured that at least
nd = 5 (nd = 9) S-boxes before and after mu4 will be active, respectively. Then,
by Theorem 1 of [12], we have DPf32

max ≤ (DPsbox
max)

4 and DPf64
max ≤ (DPsbox

max)
8.

Similar results can be obtained with respect to linear cryptanalysis. By taking
into account the fact that in a Lai-Massey scheme, any differential or linear char-
acteristic on two rounds must involve at least one round function, we obtain the
following result; its complete proof can be found in [14].

Theorem 2. The differential (resp. linear) probability of any single-path char-
acteristic in FOX64/k/r is upper bounded by (DPsbox

max)
2r (resp. (LPsbox

max)
2r). Sim-

ilarly, the bounds are (DPsbox
max)

4r (resp. (LPsbox
max)

4r) for FOX128/k/r.

Since DPsbox
max = LPsbox

max = 2−4, we conclude that it is impossible to find any useful
differential or linear characteristic after 8 rounds for both FOX64 and FOX128.
Hence, a minimal number of 12 rounds provides a minimal safety margin.

4.3 Integral Attacks

Integral attacks [17] apply to ciphers operating on well-aligned data, like SPN
structures. As the round functions of FOX are SPNs, one can wonder whether it

8 One should not misinterpret these results in terms of the overall block cipher security:
FOX’s round functions are far to be indistinguishable from random functions, as it
is the case of DES round functions, for instance: the fact that DES is vulnerable to
linear and differential cryptanalysis does not contradict Luby-Rackoff results.

122 P. Junod and S. Vaudenay

is possible to find an integral distinguisher on the whole structure. We consider
now the case of FOX64: let us denote the input bytes by Xi(8) with 0 ≤ i ≤ 7.
Let X3(8) = a, X7(8) = a ⊕ c, and Xi(8) = c for i = 0, 1, 2, 4, 5, 6, where c is a
constant. We consider plaintext structures x(j) for 1 ≤ j ≤ 256 where a takes
all 256 possibles byte values. Let us denote the output of the third round lmid64
by Yi(8) with 0 ≤ i ≤ 7. Then,

⊕256
j=1 Y

(j)
i(8) =

⊕256
j=1 Y

(j)
i+4(8) for 0 ≤ i ≤ 3. Note

that we have still two such equalities if we replace the last round by a lmor64
round. This integral distinguisher9 can be used to break (four, five) six rounds
of FOX64 (by guessing the one, two, or three last round keys and testing the
integral criterion for each subkey candidate on a few structures of plaintexts)
with a complexity of about (264, 2128) 2192 operations. A similar property may
be used to break up to 4 rounds of FOX128 (by guessing the last round key)
with a complexity of about 2128 operations.

4.4 Other Attacks

Statistical Attacks. Due to the very high diffusion properties of FOX’s round
functions, the high algebraic degree of the sbox mapping, and the high number
of rounds, we are strongly convinced that FOX will resist to known variants of
linear and differential cryptanalysis (like differential-linear cryptanalysis [20, 4],
boomerang [32] and rectangle attacks [5]), as well as generalizations thereof, like
Knudsen’s truncated and higher-order differentials [16], impossible differentials
[3], and Harpes’ partitioning cryptanalysis [11], for instance.

Slide and Related-Key Attacks. Slide attacks [6,7] exploit periodic key-schedule
algorithms, which is not a property of FOX’s key-schedule algorithms. Further-
more, due to very good diffusion and the high non-linearity of the key-schedule,
related-key attacks are very unlikely to be effective against FOX.

Interpolation and Algebraic Attacks. Interpolation attacks [13] take advantage of
S-boxes exhibiting a simple algebraic structure. Since FOX’s non-linear mapping
sbox does not possess any simple relation over GF(2) or GF(28), such attacks are
certainly not effective. One of our main concerns was to avoid a pure algebraic
construction for the sbox mapping, as it is the case for a large number of modern
designs of block ciphers. Although such S-boxes have many interesting non-linear
properties, they probably form the best conditions to express a block cipher as
a system of sparse, over-defined low-degree multivariate polynomial equations
over GF(2) or GF(28); this fact may lead to effective attacks, as argued by
Courtois and Pieprzyk in [8]. Not choosing an algebraic construction for sbox
does not necessarily ensure security towards algebraic attacks. Note that we base
our non-linear mapping on “small” permutations, mapping 4 bits to 4 bits, and
that, according to [8], any such mapping can always be written as an overdefined

9 Note that one could extend it to four rounds using large precomputed tables, and
thus reduce the overall complexity by a factor of 264.

FOX : A New Family of Block Ciphers 123

system of at least 21 quadratic equations. Indeed, we checked that S1, S2, and
S3 cannot be described by a system with more than 21 quadratic equations over
GF (2); furthermore, we are not aware of any quadratic relation over GF

(
28

)
for sbox. Following the very same methodology than [8], it appears that XSL
attacks would break members of the FOX family within a complexity10 of 2171

to 2192, depending on the block size and the round numbers. However, one should
interpret these figures with an extreme care: on the one hand, the real complexity
of XSL attacks is by no means clear at the time of writing and is the subject of
much controversy [26]; on the other hand, we feel that the advantages of a small
hardware footprint overcome such a (possible) security decrease.

5 Implementation Issues

Hardware. The size of the small S-boxes allows to implement FOX very efficiently
on hardware using ASIC or FPGA technologies (which can usually implement
any 4-bit to 4-bit mapping very efficiently). Projects are currently in process.
We expect that FOX results in very high performances on hardware.

8-Bit Platforms. Obviously, the most intensive computations are related to the
evaluation of the sbox mapping and of mu4 and mu8. Different strategies may be
applied: when extremely few memory is available, one computes on-the-fly the
sbox mapping, as it is described in §3.1, and all the operations in GF

(
28

)
. The

sole needed constants are the small substitution boxes S1, S2 and S3 (see §B)
and the constants needed by the key-schedule algorithm. A significant speed gain
can be obtained if one precomputes the sbox mapping, the finite field operations
being all computed dynamically. A third possibility is to precompute two more
mappings: multiplication in GF

(
28

)
by α and by α−1. Finally, in the case of

FOX128, a further speed gain may be obtained by tabulating two more mappings:
multiplication by α2 and by α−2.

32/64-Bit Platforms. The f32 and f64 functions can be implemented very ef-
ficiently using a classical combinations of table-lookups and XORs. For a fully
precomputed implementation, one needs 8’192 bytes of memory space for FOX64,
as well as 32’768 bytes for FOX128. Depending on the target processor, the near-
est cache (i.e. the fastest memory) size may be smaller than 32 kB. In this case,
one can spare half of the space (at the cost of a few masking operations) by
noting that the S-boxes are “embedded” in the tables combining the S-box and
the diffusion layer; this allows to reduce the fast memory needs to 4’096 and
16’384 bytes, respectively.

Performance Results. The following table summarizes the results obtained so far
by our optimized implementations of the FOX family (in clock cycles to encrypt
one block, with precomputed subkeys):

10 Under the unchecked hypothesis that XSL can use Gaussian elimination within a
complexity equal to n2.376.

124 P. Junod and S. Vaudenay

Cipher Architecture Implementation r = 12 r = 16
FOX64/k/r Intel Pentium 3 C (gcc) 316 406
FOX64/k/r Intel Pentium 3 ASM 220 295
FOX64/k/r Intel Pentium 4 C (gcc) 388 564
FOX64/k/r AMD Athlon-XP C (gcc) 306 390
FOX64/k/r Alpha 21264 C (Compaq cc) 360 480
FOX128/k/r Intel Pentium 3 C (gcc) 636 840
FOX128/k/r AMD Athlon-XP C (gcc) 544 748
FOX128/k/r Alpha 21264 C (Compaq cc) 440 588

We note that FOX64 is extremely fast on 32-bit architectures, while FOX128 is
competitive on 64-bit architectures. Namely, according to the Nessie project [27],
FOX64/12 is the fourth fastest 64-bit block cipher on Pentium 3 behind Nimbus,
CAST-128 and RC5. It is 19% faster than Misty1 (NESSIE’s choice), 39% faster
than IDEA, 57% faster than DES and about three times faster than TDES. The
generic version of FOX64 (with 16 rounds) is still 8% faster than IDEA. On Alpha
21264, a 64-bit architecture, FOX128/12 is the third fastest block cipher behind
Nush and AES, according to [27], while FOX128 (16 rounds) with 256-bit keys is
still 30% faster than Camellia, which is one of NESSIE’s choices.

Finally, we have an implementation of FOX64/12 (resp. FOX64/16) on 8051,
a typical low-cost 8-bit architecture, needing 16 bytes of RAM, 896 bytes of
ROM (precomputed data and precomputed subkeys) and 575 bytes of code size
encrypting one block in 2958 (resp. 3950) clock cycles.

6 Conclusion

Obviously, proposing a new block cipher family leads to new open problems. We
strongly encourage the development of attacks against full or reduced versions
of any member of the FOX family.

Another very interesting open problem is the definition of new linear multi-
permutations which can be implemented efficiently on low-cost 8-bit smartcards.
Some proposals have been done in connection with the design of block ciphers
based on SPNs, where the inverse multipermutation also has to be implemented;
using them in a self-inverting structure, e.g. a Feistel or a Lai-Massey scheme,
allows to relax this condition. Hence, the linear mapping can be optimized.

Acknowledgments

We would like to thank MediaCrypt AG, for having motivated and supported
this work, as well as Jacques Stern and David Wagner for their review of a
preliminary version of FOX.

FOX : A New Family of Block Ciphers 125

References

1. AES Homepage. http://csrc.nist.gov/encryption/aes/.
2. E. Barkan and E. Biham. In how many ways can you write Rijndael? In Y. Zheng,

editor, Advances in Cryptology – ASIACRYPT’02, volume 2501 of Lecture Notes
in Computer Science, pages 160–175. Springer-Verlag, 2002.

3. E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In J. Stern, editor, Advances in Cryptology
- EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
12–23. Springer-Verlag, 1999.

4. E. Biham, O. Dunkelman, and N. Keller. Enhancing differential-linear cryptanal-
ysis. In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT’02, volume 2501
of Lecture Notes in Computer Science, pages 254–266. Springer-Verlag.

5. E. Biham, O. Dunkelman, and N. Keller. The rectangle attack - rectangling the
Serpent. In B. Pfitzmann, editor, Advances in Cryptology – EUROCRYPT’01, vol-
ume 2045 of Lecture Notes in Computer Science, pages 340–357. Springer-Verlag,
2001.

6. A. Biryukov and D. Wagner. Slide attacks. In L. Knudsen, editor, Fast Software
Encryption: 6th International Workshop, FSE’99, volume 1636 of Lecture Notes in
Computer Science, pages 245–259. Springer-Verlag, 1999.

7. A. Biryukov and D. Wagner. Advanced slide attacks. In B. Preneel, editor, Ad-
vances in Cryptology - EUROCRYPT’00, volume 1807 of Lecture Notes in Com-
puter Science, pages 589–606. Springer-Verlag, 2000.

8. N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT’02,
volume 2501 of Lecture Notes in Computer Science, pages 267–287. Springer-
Verlag, 2002.

9. H. Feistel. Cryptography and data security. Scientific American, 228(5):15–23,
1973.

10. N. Ferguson, R. Schroeppel, and D. Whiting. A simple algebraic representation of
Rijndael. In S. Vaudenay and A. Youssef, editors, Selected Areas in Cryptography:
SAC 2001, volume 2259 of Lecture Notes in Computer Science, pages 103–111.
Springer-Verlag, 2001.

11. C. Harpes and J. Massey. Partitioning cryptanalysis. In E. Biham, editor, Fast
Software Encryption: 4th International Workshop, FSE’97, volume 1267 of Lecture
Notes in Computer Science, pages 13–27. Springer-Verlag.

12. S. Hong, S. Lee, J. Lim, J. Sung, D. Cheon, and I. Cho. Provable security against
differential and linear cryptanalysis for the SPN structure. In B. Schneier, editor,
Fast Software Encryption: 7th International Workshop, FSE 2000, volume 1978 of
Lecture Notes in Computer Science, pages 273–283. Springer-Verlag, 2001.

13. T. Jakobsen and L. Knudsen. The interpolation attack against block ciphers. In
E. Biham, editor, Fast Software Encryption: 4th International Workshop, FSE’97,
volume 1267 of Lecture Notes in Computer Science, pages 28–40. Springer-Verlag,
1997.

14. P. Junod and S. Vaudenay. FOX specifications version 1.1. Technical Report
EPFL/IC/2004/75, École Polytechnique Fédérale, Lausanne, Switzerland, 2004.

15. P. Junod and S. Vaudenay. Perfect diffusion primitives for block ciphers – building
efficient MDS matrices. In Proceedings of SAC’04. Springer-Verlag, 2004.

16. L. Knudsen. Truncated and higher order differentials. In B. Preneel, editor,
Fast Software Encryption: Second International Workshop, volume 1008 of Lec-
ture Notes in Computer Science, pages 196–211. Springer-Verlag, 1995.

126 P. Junod and S. Vaudenay

17. L. Knudsen and D. Wagner. Integral cryptanalysis (extended abstract). In J. Dae-
men and V. Rijmen, editors, Fast Software Encryption: 9th International Work-
shop, FSE 2002, volume 2365 of Lecture Notes in Computer Science, pages 112–127.
Springer-Verlag, 2002.

18. X. Lai. On the design and security of block ciphers, volume 1 of ETH Series in
Information Processing. Hartung-Gorre Verlag, 1992.

19. X. Lai and J. Massey. A proposal for a new block encryption standard. In
I. Damg̊ard, editor, Advances in Cryptology - EUROCRYPT’90, volume 473 of
Lecture Notes in Computer Science, pages 389–404. Springer-Verlag, 1991.

20. K. Langford and E. Hellman. Differential-linear cryptanalysis. In Y. Desmedt,
editor, Advances in Cryptology - CRYPTO’94, volume 839 of Lecture Notes in
Computer Science, pages 17–25. Springer-Verlag, 1994.

21. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

22. M. Matsui. New block encryption algorithm MISTY. In E. Biham, editor, Fast
Software Encryption: 4th International Workshop, FSE’97, volume 1267 of Lecture
Notes in Computer Science, pages 53–67. Springer-Verlag.

23. MediaCrypt AG. Website http://www.mediacrypt.com.
24. F. Muller. A new attack against Khazad. In C. Laih, editor, Advances in Cryptology

- ASIACRYPT’03, volume 2894 of Lecture Notes in Computer Science, pages 347
– 358. Springer-Verlag, 2003.

25. S. Murphy and M. Robshaw. Essential algebraic structure within the AES. In
M. Yung, editor, Advances in Cryptology – CRYPTO’02, volume 2442 of Lecture
Notes in Computer Science, pages 1–16. Springer-Verlag, 2002.

26. S. Murphy and M. Robshaw. Comments on the security of the AES and the XSL
technique. Electronic Letters, 39(1):36–38. 2003.

27. NESSIE Homepage. https://www.cryptonessie.org.
28. C. Schnorr and S. Vaudenay. Black box cryptanalysis of hash networks based

on multipermutations. In A. De Santis, editor, Advances in Cryptology - EU-
ROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages 47–57.
Springer-Verlag, 1995.

29. S. Vaudenay. On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In B. Preneel, editor, Fast Software Encryption: Second International
Workshop, volume 1008 of Lecture Notes in Computer Science, pages 286–297.
Springer-Verlag, 1995.

30. S. Vaudenay. On the Lai-Massey scheme. In K. Lam, T. Okamoto, and C. Xing,
editors, Advances in Cryptology - ASIACRYPT’99, volume 1716 of Lecture Notes
in Computer Science, pages 8–19. Springer-Verlag, 2000.

31. S. Vaudenay. Decorrelation: a theory for block cipher security. Journal of Cryp-
tology, 16(4):249–286, 2003.

32. D. Wagner. The boomerang attack. In L. Knudsen, editor, Fast Software En-
cryption: 6th International Workshop, FSE’99, volume 1636 of Lecture Notes in
Computer Science, pages 156–170. Springer-Verlag, 1999.

33. H. Wu. Related-cipher attacks. In R. Deng, S. Qing, F. Bao, and J. Zhou, editors,
Information and Communications Security: 4th International Conference, ICICS
2002, volume 2513 of Lecture Notes in Computer Science, pages 447–455. Springer-
Verlag, 2002.

FOX : A New Family of Block Ciphers 127

A Test Vectors

An implementation of FOX can be validated using the following test vectors. The
ciphertexts corresponding to the plaintext 0x0123456789ABCDEF, respectively
0x0123456789ABCDEFFEDCBA9876543210 are given for two different key lengths,
for FOX64 and FOX128, respectively.

FOX64/16/128 K : 00112233 44556677 8899AABB CCDDEEFF
FOX64/16/128 C : B85D6B76 6DCE952E

FOX64/16/256 K : 00112233 44556677 8899AABB CCDDEEFF FFEEDDCC BBAA9988 77665544 33221100
FOX64/16/256 C : BB654D30 11DB367E

FOX128/16/128 K : 00112233 44556677 8899AABB CCDDEEFF
FOX128/16/128 C : 849E0F06 82F50CD5 88AE0730 06A10BEE

FOX128/16/256 K : 00112233 44556677 8899AABB CCDDEEFF FFEEDDCC BBAA9988 77665544 33221100
FOX128/16/256 C : 45CCB103 0F67B768 247F5302 66BC4996

B sbox Definition

The three small S-boxes S1, S2, and S3, as well as the full S-box, are defined in
the following tables:

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S1(x) 0x2 0x5 0x1 0x9 0xE 0xA 0xC 0x8 0x6 0x4 0x7 0xF 0xD 0xB 0x0 0x3
S2(x) 0xB 0x4 0x1 0xF 0x0 0x3 0xE 0xD 0xA 0x8 0x7 0x5 0xC 0x2 0x9 0x6
S3(x) 0xD 0xA 0xB 0x1 0x4 0x3 0x8 0x9 0x5 0x7 0x2 0xC 0xF 0x0 0x6 0xE

One should read the next table in that way: to compute sbox(0x4C), one
selects first the row named 4. (i.e. the fifth row), and then one selects the column
named .C (i.e. the thirteenth column) and we get finally sbox(0x4C) = 0x15.

sbox .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 5D DE 00 B7 D3 CA 3C 0D C3 F8 CB 8D 76 89 AA 12
1. 88 22 4F DB 6D 47 E4 4C 78 9A 49 93 C4 C0 86 13
2. A9 20 53 1C 4E CF 35 39 B4 A1 54 64 03 C7 85 5C
3. 5B CD D8 72 96 42 B8 E1 A2 60 EF BD 02 AF 8C 73
4. 7C 7F 5E F9 65 E6 EB AD 5A A5 79 8E 15 30 EC A4
5. C2 3E E0 74 51 FB 2D 6E 94 4D 55 34 AE 52 7E 9D
6. 4A F7 80 F0 D0 90 A7 E8 9F 50 D5 D1 98 CC A0 17
7. F4 B6 C1 28 5F 26 01 AB 25 38 82 7D 48 FC 1B CE
8. 3F 6B E2 67 66 43 59 19 84 3D F5 2F C9 BC D9 95
9. 29 41 DA 1A B0 E9 69 D2 7B D7 11 9B 33 8A 23 09
A. D4 71 44 68 6F F2 0E DF 87 DC 83 18 6A EE 99 81
B. 62 36 2E 7A FE 45 9C 75 91 0C 0F E7 F6 14 63 1D
C. 0B 8B B3 F3 B2 3B 08 4B 10 A6 32 B9 A8 92 F1 56
D. DD 21 BF 04 BE D6 FD 77 EA 3A C8 8F 57 1E FA 2B
E. 58 C5 27 AC E3 ED 97 BB 46 05 40 31 E5 37 2C 9E
F. 0A B1 B5 06 6C 1F A3 2A 70 FF BA 07 24 16 C6 61

128 P. Junod and S. Vaudenay

X X

Y Y

f32 RK(64)

L(32) R(32)

L(32) R(32)

or

(a) Round lmor64

XXXX

Y Y Y Y

LL(32) LR(32) RL(32) RR(32)

f64 RK(128)

LL(32) LR(32) RL(32) RR(32)

or or

(b) Round elmor128

Fig. 1. Round Functions

X X X X0(8) 1(8) 2(8) 3(8)

RK0(32)

sbox sbox sbox sbox

mu4

RK1(32)

sbox sbox sbox sbox

RK0(32)

YYYY
0(8) 1(8) 2(8) 3(8)

(a) Round function f32

X X X X X X X X7(8)6(8)5(8)4(8)3(8)2(8)1(8)0(8)

sbox sbox sbox sbox sbox sbox sbox sbox

mu8

sbox sbox sbox sbox sbox sbox sbox

Y Y Y Y Y Y Y
0(8) 1(8) 2(8) 3(8) 4(8) 5(8) 6(8)

sbox

Y
7(8)

RK

RK

RK

0(64)

1(64)

0(64)

(b) Round function f64

Fig. 2. Functions f32 and f64

FOX : A New Family of Block Ciphers 129

condflip

mu4 mu4 mu4 mu4

lmor64

lmid64

sigma4 sigma4 sigma4 sigma4

sigma4 sigma4 sigma4 sigma4

DKEY

RK

(a) NL64

mu8 mu8 mu8 mu8

condflip

elmor128

elmid128

sigma8sigma8 sigma8 sigma8

sigma8sigma8sigma8sigma8

DKEY

RK

(b) NL128

m
u4

m
u4

m
u4

m
u4

m
u4

m
u4

m
u4

m
u4

co
nd

fli
p

lm
or

64

lm
or

64

lm
or

64

lm
id

64

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

si
gm

a4
si

gm
a4

D
K

E
Y

R
K

(c) NL64h

Fig. 3. NL64, NL64h, and NL128 Functions

A Note on the Signed Sliding Window Integer
Recoding and a Left-to-Right Analogue

Roberto Maria Avanzi�

Institute for Experimental Mathematics (IEM) − Universität Duisburg–Essen
Ellernstraße 29, D-45326 Essen, Germany
mocenigo@exp-math.uni-essen.de

Communication Security (COSY) − Electrical Engineering and Information Technology
Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

Abstract. Addition-subtraction-chains obtained from signed digit recodings of
integers are a common tool for computing multiples of random elements of a
group where the computation of inverses is a fast operation. Cohen and Solinas
independently described one such recoding, the w-NAF. For scalars of the size
commonly used in cryptographic applications, it leads to the current scalar mul-
tiplication algorithm of choice. However, we could find no formal proof of its
optimality in the literature. This recoding is computed right-to-left.

We solve two open questions regarding the w-NAF. We first prove that the
w-NAF is a redundant radix-2 recoding of smallest weight among all those with
integral coefficients smaller in absolute value than 2w−1. Secondly, we introduce
a left-to-right recoding with the same digit set as the w-NAF, generalizing previ-
ous results. We also prove that the two recodings have the same (optimal) weight.
Finally, we sketch how to prove similar results for other recodings.

Keywords: Computer arithmetic, Integer Recoding, Non-adjacent form, Width-
w non-adjacent form (w-NAF), Signed-digit representation, Redundant number
representation, Left-to-right recoding.

1 Introduction

This paper deals with signed sliding window integer recodings. They are used to speed
up computations in Abelian groups where inversion has negligible computational cost.
Notable examples of such groups are: the rational point group of an elliptic curve,
independently suggested for cryptographic applications by Koblitz [14] and Miller [16];
the group of rational divisor classes of a hyperelliptic curve [15]; and the XTR subgroup
in its natural representation [24]. In the cryptosystems designed around such groups the
fundamental computation is the scalar multiplication, i.e. the computation of the n-fold
ng of a group element g for an arbitrary scalar n ∈ Z.

An addition (resp. addition-subtraction) chain for an integer n is a sequence of in-
tegers beginning with 1 and ending with n such that each element is the sum (resp.

� The work described in this paper has been supported in part by the European Commission
through the IST Programme under Contracts IST-2001-32613 (AREHCC).

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 130–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 131

sum or difference) of two previous elements of the sequence. For example {1,2,3,6,9}
and {1,2,4,8,9} are addition chains for 9. The computation of ng for any element
g of a group G can be done using an addition(-subtraction) chain for n. For exam-
ple, 9g can be obtained by computing g,2g,3g,6g and finally 9g. Methods for finding
short addition(-subtraction) chains are very important: The shorter is a chain, the faster
will be the corresponding scalar multiplication. An addition-subtraction can be shorter
than the shortest addition chain for the same integer. A shortest addition chain for 31 is
{1,2,3,6,7,14,28,31}, but a shortest addition-subtraction chain is{1,2,4,8,16,32,31}.

Downey, Leong, and Sethi [6] proved that the decision problem whose instances are
the tuples (k,n1,n2, . . . ,nk, �) such that there is an addition chain of length � containing
n1,n2, . . . ,nk is NP-complete. It is conjectured that the subset of instances with fixed k,
such as k = 1, is also NP-complete. Even if it were so, and thus the problem of finding
shortest chains were NP-hard, this would not necessarily rule out the existence of efficient
algorithms to find near optimal chains. Erd}os [7] proved that for almost all integers n the
shortest addition chain for n has length λ(n)+λ(n)/λ(λ(n)) where λ(n) = �log2(n)�.
The upper bound λ(n)+(1+o(1))λ(n)/λ(λ(n)) is attained by means of Thurber’s [25]
sliding windows variation of Brauer’s method [3] - which is therefore a concrete example
of a method giving almost always near optimal addition chains. Similar considerations
hold for addition-subtraction chains.

Let n=
∑�

i=0ni2i be a recoding of the integer n, where the integers ni belong to a
digit set S with {0,1}⊆ S ⊂Z, and n� �= 0. If digits other than zero and one are allowed,
we have a redundant representation.

It is easy to build an addition-subtraction chain from such a recoding by a tech-
nique called double-and-add. The chain starts with

{
1,2, . . . ,max{|ni|}

}
. For i =

�− 1, ...,2,1,0, we do the following: if ni = 0 we append ai := 2ai+1 to the chain;
if ni �= 0 we append both 2ai+1 and ai := 2ai+1 +ni. At the end, a0 = n. If the non-
zero coefficients are odd, to save some operations the chain can begin after 2 begin with{
1,2,3,5,7, . . . ,max{|ni|}

}
(the even numbers other than 2 are omitted). Apart from

the cost of computing 2g,3g,...,max{|ni|}g, the amount of doublings, resp. generic ad-
ditions in G equals the length, resp. the weight of the recoding: We recall that the length
of any expression n =

∑∞
i=0ni2i with only a finite number of non-vanishing terms, is

�+1, where � is the highest index for which n� �= 0; its weight is the number of non-zero
coefficients. It is then interesting to find recodings which minimize those quantities.

Cohen et al. [5] and Solinas [22] independently introduced the width-w non-adjacent
form, orw-NAF of the scalar. This signed digit representation is defined in Section 2. For
scalars of the size commonly used in cryptographic applications, it leads to the current
scalar multiplication algorithm of choice. Cohen [4] analyzes weight and length of the
w-NAF as a function of the input length.

A potential drawback of the w-NAF is that it scans the bits from the least significant
to the most significant ones, i.e. from right to left. This means that the recoding must be
completely known and stored in memory before the scalar multiplication in the group
G is performed with a classical double-and-add scalar multiplication algorithm. This
can be disadvantageous on a device with limited resources like a smart card. On the
other hand, if the bits could be scanned and the digits of the recoding generated from

132 R.M. Avanzi

left to right, one could interleave recoding and scalar multiplication: this is sometimes
called online recoding. Of course one can interleave a right-to-left recoding with Yao’s
[26] scalar multiplication algorithm, but this method requires a few more operations
than double-and-add even with the same recoding. (Surveys of scalar multiplication
algorithms can be found in [8] (slightly outdated) and [2].)

Not only for its intrinsic practical interest, but also because the subject itself is chal-
lenging, the development of algorithms for left-to-right optimal recodings has recently
attracted a lot of attention in the mathematical community [9, 12, 13]. Rizzo [21] has
analyzed the left-to-right unsigned sliding window method.

The non adjacent form (NAF) [20] is the special case of thew-NAF withw= 2. It is
known that the NAF is a recoding of minimal weight among all those having coefficients
in {0,±1}. As we started our research, there was no formal proof in the literature that
the general w-NAF is a recoding of minimal weight among those having the same digit
set. We provide this proof in Section 2, Theorem 2.3.

Joye andYen [12] devised a left-to-right recoding using the digit set {0,±1}, having
the same weight as the NAF, and which can be used online. Their method does not apply
to the w-NAF. We introduce a left-to-right analogue of the w-NAF in Section 3, and in
Section 4 we prove that it has the same weight as the w-NAF. While proving our results,
we in fact show that the two recodings parse their inputs essentially in the same way,
and use the same function of w+ 1 consecutive bits to generate the non-zero digits.
Some remarks, including generalizations of our results to unsigned recodings and joint
recodings of more integers, as well as references to related similar work, conclude the
paper.

2 Optimality

For each integer n and for any value of the positive integral parameter w ≥ 2, the w-
NAF of n is a representation n =

∑�
j=0nj 2j where the integer coefficients nj satisfy

the following two conditions:

(w-NAF-1) Either nj = 0 or nj is odd and |nj |< 2w−1.
(w-NAF-2) If nj �= 0, then nj+1 = · · · = nj+w−1 = 0.

Using the fact that the set of odd integers of absolute value smaller than 2w−1 is a
complete residue set modulo 2w for the odd integers, it is easy to write a simple algorithm
to generate a w-NAF for each integer n and to prove that it is uniquely determined.

The algorithm works as follows: A temporary variable x is put equal to the input. If
x is even, it is halved and a zero is output; otherwise the smallest residue r of x modulo
2w is subtracted from x; x is then halved w times and the digit r is output followed
by w−1 zeros. This process is repeated until x reaches 0. Correctness and termination
are obvious. For the applications we use a version that works directly on the binary
representation of the input n and does not modify it, whence it needs (at least in theory)
to keep a carry.

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 133

Algorithm 2.1 w-NAF Recoding

Input: An integer n =
∑�−1

j=0 ej 2j , and a parameter w ≥ 2.

Output: The w-NAF
∑�

j=0 nj 2j of n.

1. Initialize nj ← 0 for 0 ≤ j ≤ �. Assume e� = 0.

2. i ← 0, c ← 0.

3. while (i ≤ �) do {
4. if ei = c then {
5. i ← i+1.

6. } else {
7. w′ ← min{w,�− i+1}.

8. v ← c+
w′−1∑
j=0

ei+j2
j .

9. if v ≥ 2w−1 then c ← 1, v ← v −2w else c ← 0.

10. ni ← v.

11. i ← i+w′. } }
12. return

Note that, at Step 8 it is in fact v= 1+
∑w′−1

j=1 ei+j2j because c �= ej and the variables
c,ej can only take the values 0 and 1. This also guarantees that v, being odd, is non-zero.

Definition 2.2 Letn,w be integers. Aw-signed digit recoding, orw-SDR for short, is an
expression of the type n=

∑�
i=0ni2i where the digits ni are integers with |ni|< 2w−1.

(There is no restriction that the digits of a w-SDR either vanish or are odd.)
We use the notation H(·) to denote the Hamming weight of any recoding, where by

Hamming weight of
∑�

i=0ni2i we understand the number of non vanishing digits ni.

The w-NAF of an integer n is a particular w-SDR.

Theorem 2.3 Let n,w be integers. The w-NAF of n is a recoding of minimal weight
among all the w-SDR’s of n.

Proof. We define two transformations of recodings. The first one, called coefficient
formation (CF), takes as input anyw-SDR of an integer n, and outputs another recoding
of n. If n is odd, the least significant digit of the new recoding is non-zero, the next
w−1 digits are zero and the w-th digit (the coefficient of 2w) may have absolute value
possibly ≥ 2w−1 – in which case we say that an overflow has been generated – but still
smaller than 2w; all the other digits are equal to the corresponding ones of the input. If n
is even, the least significant digit of the new recoding will be zero, and the second least
significant digit may be an overflow. The Hamming weight of the output of CF is never
greater than that of the input, and it is strictly smaller than that if an overflow has been
generated. The second transformation, called overflow propagation (OP) is applied if

134 R.M. Avanzi

only if CF has generated an overflow. Its output may have Hamming weight equal to
that of the input, plus one.

We now describe in detail the two transformations, and prove some of their properties.
Later we shall use them to prove the theorem.

Coefficient formation: If n=
∑�

i=0ni2i is even, then n0 is even. Put n′
0 = 0 and n′

1 =
n1 + n0/2. If n1 = 0, then |n′

1| = |n1| < 2w−1 and the Hamming weight does not
change if we replace n0,n1 with n′

0,n
′
1. If |n′

1| ≥ 2w−1 then n0 and n1 were both
non-zero and the Hamming weight decreases by one. Plainly |n′

1| < 3
22w−1 < 2w and

n0 +2n1 = n′
0 +2n′

1, hence if we replace n0,n1 with n′
0,n

′
1 we obtain a new recoding

for n, which is also a w-SDR except for at most one overflow.
Let now n be odd. Define M =

∑w−1
i=0 ni2i (if the input recoding has length than w,

we suitably pad it with zeros). Now,

|M | ≤ (2w−1−1) ·
w−1∑
i=0

2i = (2w−1−1)(2w −1) = 22w−1−3 ·2w−1 +1 ,

hence there exist integers c,r such that M = c2w + r with |c|< 2w−1 and |r| ≤ 2w−1.
Put now n′

w = nw + c, n′
0 = r and n′

j = 0 for all j with 0< j < w.
Let h= H(∑w

i=0ni2i
)

and h′ = H(∑w
i=0n

′
i2

i
)
. We want to show that h≥ h′.

First note that only one coefficient among thew least significant ones in
∑w

i=0n
′
i2

i is
non-zero, namely n′

0, whereas at least one of the integers n0,n1, . . . , nw−1 is non-zero.
It can be c �= 0 only if at least one of the digits n1, . . ., nw−1 is non-zero, because if

these digits all vanish then |M |< 2w−1 and c= 0. In the case where c �= 0, it is therefore
h≥ 2 and h′ ≤ 2.

If an overflow occurs, it must be c �= 0 and nw �= 0, hence h ≥ 3 but h′ ≤ 2 by
construction.

If we replace nj with n′
j for 0 ≤ j ≤ w, we get a recoding for n whose w least

significant digits satisfy the properties of the w-NAF.

Overflow propagation: Let t be the only index in a recoding (which is the output of
CF) such that |nt| ≥ 2w−1, but |nt|< 2w. Define n′

t = sign(nt)(nt mod 2) and n′
t+1 =

nt+1 + nt−n′
t

2 . Replace then nt and nt+1 by n′
t and n′

t+1. Clearly, |nt+1| < 2w. If
|nt+1| ≥ 2w−1, we repeat the procedure just described with t+1 in place of t, otherwise
we stop. This process must terminate by the finiteness of the recoding, and it can increase
the Hamming weight at most by one.

OP is performed after CF if and only if the latter generates an overflow and decreases
the Hamming weight at least by one. Therefore the application of the two transformations
will not increase the Hamming weight of the input.

We can now prove the theorem by induction.
For integers of absolute value at most 2w−1 it is obvious that thew-NAF has minimal

weight. Let then |n|> 2w−1 in the sequel.
We consider first the case where n is odd. Let

∑�
i=0ni2i be original recoding, of

weight h, and
∑�′

i=0n
′
i2

i be the output of CF and OP, which has weight not greater than
h. Recall that n′

0 �= 0 and n′
1 = . . .= n′

w−1 = 0 by construction.

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 135

Considerm= n−n′
0

2w . Itsw-NAF
∑λ

i=0mi2i (for some upper bound λ on the indices)

has by the inductive assumption weight not greater than the weight of
∑�′−w

i=0 n′
i+w2i.

Since n′
0 +

∑λ
i=0mi2i+w satisfies the defining properties of thew-NAF, it is thew-NAF

of n and its weight satisfies

H
(
n′

0 +
λ∑

i=0

mi2i+w

)
= 1+H

(λ∑
i=0

mi2i+w

)
≤

≤ 1+H
(�′−w∑

i=0

n′
i+w2i

)
= H

(�′∑
i=0

n′
i2

i

)
≤ h .

If n is even, proceed in a similar (but simpler) way, using the w-NAF of n/2 to
complete the proof.

Remark 2.4 It is immediate to see that, upon repeated application of CF and OP, one can
obtain the w-NAF of any integer from a w-SDR. Making some obvious simplifications
and the overflow propagation implicit, we obtain the following algorithm:

Algorithm 2.5 w-SDR to w-NAF recoding

Input: An integer n given by a w-SDR n =
∑�−1

j=0 ej 2j .

Output: The w-NAF
∑�+w−1

j=0 nj 2j of n.

1. Initialize nj ← 0 for 0 ≤ j < �+w.

2. i ← 0, c ← 0.

3. while (i < �) do {
4. if ei + c is even then {
5. i ← i+1, c ← ei + c

2
·

6. } else {

7. M ← c+
w−1∑
j=0

ei+j2
j . [|M | ≤ 22w−1 −2w−1 +1]

8. Write M = c2w + r with r odd, |r| < 2w−1, and |c| < 2w−1.

9. Put ni ← r.

10. i ← i+w. } }
11. if c
= 0 then {
12. while c is even do {
13. i ← i+1, c ← c/2. }
14. ni ← c. }
15. return

136 R.M. Avanzi

3 A Left-to-Right Recoding

We introduce a left-to-right recoding using the same digit set as the w-NAF. For w = 2,
it is different from Joye andYen’s analogue of the NAF, but it produces the same output.
(On the other hand, Joye and Yen’s algorithm has no conditional tests and branches and
is thus resistent against simple power analysis on the recoding of the scalar.) We shall
then prove the correctness of our algorithm.

In the next Section we shall see that it scans its input essentially in the same way as
Algorithm 2.1, but in reversed order and that its output has the same Hamming weight
as the w-NAF.

Algorithm 3.1 w-LtoR: a left-to-right recoding

Input: An integer n =
∑�−1

j=0 ej 2j , with e�−1 = 1, and a parameter w ≥ 2.

Output: A signed digit recoding of n as
∑�

j=0 nj 2j where each digit nj are either 0 or

odd and |nj | < 2w−1.

1. Put nj ← 0 for 0 ≤ j < �+w. Assume e� = e−1 = 0.

2. i ← �.

3. while (i ≥ 0) do {
4. if (ei = ei−1) then {
5. i ← i−1.

6. } else {
7. w′ ← min{w,i+1}.

8. v ← −ei2
w′−1 +

w′−2∑
j=0

ei−(w′−1)+j2
j +ei−w′ .

9. ni−(w′−1)+s ← v/2s, where 2s‖v.

10. i ← i−w′. } }
11. return

Remark 3.2 We show that v as computed in Step 8 is non-zero. We are in the second
branch of the if-then-else construct, in other words ei �= ei−1. If i= 0 then w′ = 1, but
since the second branch has been taken, this means that e0 �= 0, and clearly v = −1. Let
now be w′ > 1. If ei = 1 then ei−1 = 0 and the positive contributions to v are ≤ 2w′−2,
therefore v < 0. (Of course, if in a summation the upper value of the index is smaller
than the initial value, the sum is intended empty, hence 0.) If ei = 0 then ei−1 = 1 and
v ≥ 2w′−2 > 0.

An useful way of interpreting the expression in Step 8 is the following one. The value
of v is obtained considering the number represented by the string of w′ consecutive bits
whose most significant bit is the i-th bit, with the sign of the i-th bit itself changed, and
adding the following bit to this number. For example, if w = 3 and the 3 bits starting

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 137

from the i-th one are 1011, the value of v is 1̄01+1 = −2. If these bits had been 0111,
v would have been 0̄11+1 = 4.

Remark 3.3 Algorithms 2.1 and 3.1 look very similar. In fact, they have been written
intentionally that way, in order to make the proof that the recodings they generate have
the same Hamming weight (Theorem 4.2) as straightforward as possible. Nevertheless,
they can produce quite different outputs.

Theorem 3.4 Algorithm 3.1 is correct, i.e. its output is an expression which evaluates
to the integer represented by its input.

Proof. Consider the expression

i−1∑
j=0

ej2j −ei2i +
�∑

j=i+1

nj2j . (1)

At the beginning of the algorithm, before entering the loop with i= �, (1) equals n. Upon
exiting the loop, (1) is the output of the algorithm. To prove the statement, we just need
to show that (1) is an invariant of the algorithm.

Suppose first that the condition at Step 4 is evaluated to true, i.e. ei = ei−1. The only
action is to decrement i by 1, and ni = 0 is left as initialised, whence

i−1∑
j=0

ej2j −ei2i +
�∑

j=i+1

nj2j =
i−2∑
j=0

ej2j +ei−12i−1−ei2i +
�∑

j=i

nj2j

=
i−2∑
j=0

ej2j −ei−12i−1 +
�∑

j=i

nj2j .

Let now i′ = i− 1, i.e. i′ is the value that i will take after Step 5, we see that the

last expression is in fact
∑i′−1

j=0 ej2j − ei′2i′ +
∑�

j=i′+1nj2j , which proves that (1) is
invariant in this case.

Suppose, on the other hand, that the second branch is taken. Before Step 9 we have
ni−(w′−1)+s = 0 for all s with 0 ≤ s≤ w′ −1 and

i−1∑
j=0

ej2
j −ei2

i +
�∑

j=i+1

nj2
j =

=
(i−w′−1∑

j=0

ej2
j +ei−w′2i−w′

+
w′−2∑
j=0

ei−(w′−1)+j2
i−(w′−1)+j

)
−ei2

i +
�∑

j=i+1

nj2
j

=
i−w′−1∑

j=0

ej2
j−ei−w′2i−w′

+
(
−ei2

w′−1+
w′−2∑
j=0

ei−(w′−1)+j2
j+ei−w′

)
2i−(w′−1)+

�∑
j=i+1

nj2
j

=
i−w′−1∑

j=0

ej2
j −ei−w′2i−w′

+
(�∑

j=i+1

nj2
j +v2i−(w′−1)

)
. (2)

138 R.M. Avanzi

Putting ni−(w′−1)+s = v/2s (note that 0 ≤ s ≤ w′ − 1) in Step 9 – and leaving
ni−(w′−1)+t = 0 for all t �= s with 0 ≤ t ≤ w′ − 1, as initialised at the beginning of
the algorithm – we obtain that (2) equals

i−w′−1∑
j=0

ej2j −ei−w′2i−w′
+

�∑
j=i−w′+1

nj2j .

Similarly to what we have done before, let now i′ = i−w′, i.e. i′ is the value that i will

take after Step 10. The last expression becomes
∑i′−1

j=0 ej2j − ei′2i′ +
∑�

j=i′+1nj2j ,
proving (1) invariant also in this case.

4 Equivalence

Definition 4.1 For any integer n, denote by w-NAF(n) its w-NAF, i.e. the output of
Algorithm 2.1, and by w-LtoR(n) the output of Algorithm 3.1.

If n =
∑�

i=0ni2i with ni ∈ {0,1} and n� = 1, let rev(n) be the integer obtained

by reversing the binary representation of n, i.e. rev(n) =
∑�

i=0n�−i2i. If n is odd,
rev(rev(n)) = n.

In this section we shall prove the following result.

Theorem 4.2 For all integersn, and for every value of the parameterw≥ 2, thew-NAF
of n and the output of Algorithm 3.1 always have the same Hamming weight. In other
words H(w-NAF(n)) = H(w-LtoR(n)) for all n and w.

In particular, the w-LtoR is a recoding of minimal weight among all the w-SDR’s,
besides the w-NAF.

Proof. The proof is based on a comparison of Algorithms 2.1 and 3.1, showing that they
both scan their input in the same way.

At Step 8 of Algorithm 2.1 it is v ≥ 2w (in which case, in fact, v > 2w) if and only
if w = w′ and ei+w = 1. This implies that c in Step 9 is equal to ei+w: In other words
c contains the “last bit read” (in the previously formed window). Assuming ek = 0 for
k < 0, Step 4 can be written as “if (ei = ei−1) then . . .”, and in Step 9

v = −ei+w′−12w′−1 +
w′−2∑
j=0

ei+j2j +ei−1 .

We see that there is no need to store a carry bit to compute the w-NAF, exactly as for
the w-LtoR.

In Algorithm 3.1 the test in Step 4 is also a comparison of the bit at the current
position with the “last bit read” (becaue the bits between two windows are equal to each
other).

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 139

We can rewrite Algorithm 3.1 by modifying a few steps as follows:

7. w′ ← min{w,i+1}, i← i− (w′ −1)

8. v←−ei+w′−12w′−1 +
w′−2∑
j=0

ei+j2j +ei−1.

9. ni+s ← v/2s, where 2s‖v.
10. i← i−1. } }

We immediately see that the expression for the value v is the same for both algorithms.
The expression is deceivingly simple, too: consider a window ofw′ +1 consecutive bits;
add the least significant one to the number represented by the w′ most significant ones
but with the highest bit negated. In fact, the algorithms also scan the bit pattern of the
input using the same set of rules!

The algorithms’behaviour can be described by a simple finite state machine that reads
the input (in the form of a string of zeros and ones) from a finite read-only tape. At the
beginning a reading head is placed on one end of the tape and it can only advance towards
the other end. The machine stops when the tape has been read completely. We shall also
assume that the input string is padded with zeros at both ends in order to properly handle
the termination and the cases whenw′ <w, yet using only the parameterw and ignoring
the additional variable w′. (Putting e−1 = e� = 0 in Algorithms 2.1 and 3.1 served
the same purpose, yet only for the case w′ = 1.) The machine has also two registers: c,
holding the “last bit read”; and e, containing the bit at the current position, which decides
whether a new window has to be formed from the current position. The machine might
write something with a second head on a second tape (in fact the algorithms write on an
output tape), but the details of this operation are not important here.

1. c← 0
2. while (tape not finished) do {
3. e← bit at current position
4. if (e= c) then {
5. Advance head by one position.
6. } else {
7. Advance head by w−1 positions.
8. c← bit at current position.
9. Advance head by one position.

10. (Output a non-zero digit.)
11. } }

The only difference which concerns us here is the following: Algorithm 2.1 scans
the bit string corresponding to the input from right to left, whereas Algorithm 3.1 works
left-to-right.

140 R.M. Avanzi

Let us now feed a bit sequence to the first algorithm, and then the reversing of the
same bit sequence to the second algorithm. As far as only the number of non-zero digits
in the output is concerned, the operations of the two algorithms can be described by two
different runs of the machine, where the tape and the direction of the head have been
reversed between the two runs. Clearly, the machine will perfom in the two runs exactly
the same steps and in the same order.

The two algorithms will therefore output the same number of non-zero digits
even though the values of the digits may differ. In other words: H(w-NAF(n)) =
H(w-LtoR(rev(n))) and H(w-LtoR(n)) = H(w-NAF(rev(n))).

Suppose now that the Theorem is false. Then, being the w-NAF a w-SDR of
minimal weight (Theorem 2.3), there exists a (without loss of generality) odd positive
integer n for which H(w-NAF(n)) < H(w-LtoR(n)). This in turn implies that
H(w-LtoR(rev(n)))<H(w-NAF(rev(n))), a contradiction.

Note that not only the individual digits, but also the lengths of the w-NAF and
of the w-LtoR of the same integer may differ. The 4-NAF and the 4-LtoR of 1971
(the author’s year of birth) coincide and are equal to (10000005̄0003). On the other
hand, the 4-NAF of 2004 is (100001̄000500) whereas its 4-LtoR is (100000005̄1̄00) –
here the two recodings differ but have the same length. Let us consider now 2359, the
dreaded CET last minute for submitting papers to SAC (without the seconds): the 4-
NAF is (10007̄00030007) but the 4-LtoR is (5003̄001̄001̄), which is shorter. Of course,
in all examples shown, the w-NAF and the w-LtoR have the same Hamming weight.
The recodings of 2004 and 2359 are examples of the fact that the w-LtoR does not
necessarily satisfy the generalized non-adjacency property w-NAF-2 of the w-NAF.

5 Additional Remarks

The approach presented in this paper can be used to show the corresponding results for
the unsigned sliding window recodings. The only (marginal) difficulty is adapting the
proof of the optimality to the right-to-left unsigned sliding window recoding. Then, the
result can be interpreted at a purely combinatorial level: the problem is here grouping
and counting substrings of bounded length in strings of two symbols, say 0 and 1, where
the zeros do not need to belong to a substring, but all ones must belong to some substring.
Then, it is obvious that the right-to-left and the left-to-right algorithms create the same
number of windows on a bit sequence and on its reversing, respectively. From this, as
in the concluding arguments of the proof of Theorem 4.2, it follows that they must form
the same number of windows also on the same input. Therefore, it does not come as a
surprise that Cohen’s [4] analysis of the expected Hamming weight for the right-to-left
unsigned sliding window method and Rizzo’s [21] for the left-to-right method lead to
the same result. Here, too, the lengths of the expansions can be different.

As another application of these ideas, let us consider the Joint Sparse Form (JSF),
introduced by Solinas [23] to make Shamir’s trick more effective for elliptic curves. It
is a simultaneous recoding of two integers ni =

∑�
j=0 ei,j2j for i = 0,1 with digit set

{0,±1}, uniquely determined by the following properties:

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 141

(JSF-1) Of any three consecutive columns
(

e0,j
e1,j

)
, at least one is zero.

(JSF-2) Adjacent non-zero bits have the same sign, i.e. ei,j+1ei,j = 0 or 1.
(JSF-3) If ei,j+1ei,j �= 0 then e1−i,j+1 �= 0 and e1−i,j = 0.

Here the weight is the number of non-zero columns. The JSF has optimal weight and
expected density 1/2. Note that joining the NAFs of the two given integers produces
a representation with expected density 5/9. The JSF is computed right-to-left, but a
left-to-right variant of the same weight exists [9]. Avanzi in [1] lets windows slide over a
JSF to further speed-up the computation of linear combinations of elements of a group.
The windows are formed distinguishing only between zero and non-zero columns, the
actual content of the non-zero columns playing no role. The complexity of this method
has been carefully analyzed in [10]. Constructing the windows from, say, right-to-left,
produces a minimal number of windows: To prove this claim we reuse the result for the
unsigned sliding windows recoding of one integer, in its combinatorial interpretation -
where we have two symbols, say 0 and � in place of every zero, resp. non-zero column.
By our arguments the number of windows obtained forming from right-to-left and from
left-to-right must be the same. (The same clearly applies also to windows sliding over a
joint recoding of more than two integers.)

During the preparation of the final version of the paper the author became aware
of the fact that Muir and Stinson [17, 18] independently obtained similar results. In
particular, they also proved the minimality of the w-NAF and found an optimal left-to-
right recoding with the same digit set. Our Theorem 2.3 is slightly more general and our
proofs are shorter. Their left-to-right algorithm is optimal, is different from ours and can
output up to two different recodings of the same integer, one of which is equal to that
of our algorithm, whereas the other one differs on some of the least significant digits.
Okeya et al. [19] also have a left-to-right algorithm, do not prove equivalence to the
w-NAF but only give asymptotic density estimates using Markov chains.

The w-NAF and the w-LtoR of an integer n can be computed also letting windows
of lengthw slide (from right to left and from left to right respectively) on the alternating
greedy expansion [10] of n. This is a representation n=

∑�
i=0 εi2i with digits 0 and ±1

satisfying the following two properties

(AGE-1) If εj = εi �= 0 for some j < i, then there is an index k with j < k < i such that
εj = −εk = εi.

(AGE-2) For j∗ := min{j : εj �= 0} and j∗ := max{j : εj �= 0}, we have sign(n) =
εj∗ = −εj∗ .

The alternating greedy expansion is computed from the binary expansion
n=

∑�−1
i=0 ei2i simply putting εi = ei−1−ei, where it is understood e−1 = e� = 0.

To obtain the w-NAF and the w-LtoR, the windows slide on the alternate greedy
expansion distinguishing only between zero and non-zero digits. This interpretation can
be found in [11]. Using it and the results on the minimality of sliding window methods

142 R.M. Avanzi

on string with two symbols, the fact that these representations have the same Hamming
weight follows at once.

Acknowledgment. Many results in this paper have been discovered by the author
in November 2002 traveling in a train to Oberwolfach with Tanja Lange and Preda
Mihăilescu. The author acknowledges useful discussions with Henri Cohen, Matthijs
Coster, Clemens Heuberger, Tanja Lange, Bodo Möller, James Muir, Helmut Prodinger
and Ottavio Rizzo, and the support of Simonetta. Gratitude goes also to the anonymous
reviewers for their comments.

References

1. R. M. Avanzi. On the complexity of certain multi-exponentiation techniques in cryptography.
To appear in: J. of Cryptology.

2. D. J. Bernstein. Pippenger’s exponentiation algorithm. Preprint.
Available from http://cr.yp.to

3. A. Brauer. On addition chains. Bull. AMS. 45, pages 736–739 (1939).
4. H. Cohen. Analysis of the flexible window powering algorithm. To appear in: J. of Cryptology.
5. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation. In Proceedings

ICICS’97, LNCS 1334, 282–290. Springer, 1997.
6. P. Downey, B. Leong, and R. Sethi. Computing sequences with addition chains. SIAM J. Com-

puting 10, 638–646 (1981). MR 82h:68064.
7. P. Erd}os. Remarks on number theory III. On addition chains. Acta Arith., 6, 77–81 (1960).
8. D. Gordon. A Survey of Fast Exponentiation Methods. J. of Algorithms, 27, 129–146 (1998).
9. P. J. Grabner, C. Heuberger, and H. Prodinger. Distribution results for low-weight binary

representations for pairs of integers. Theoretical Computer Science, to appear.
10. P. J. Grabner, C. Heuberger, H. Prodinger, and J. Thuswaldner. Analysis of linear combination

algorithms in cryptography. Preprint. Available from:
http://www.opt.math.tu-graz.ac.at/˜cheub/publications/Windows.pdf

11. C. Heuberger, R. Katti, H. Prodinger, and X. Ruan. The Alternating Greedy Expansion and
Applications to Left-To-Right Algorithms in Cryptography. Preprint.

12. M. Joye, and S.-M. Yen. Optimal left-to-right binary signed-digit recoding. IEEE Trans. on
Comp. 49 (7), 740–748 (2000).

13. M. Joye, and S.-M. Yen. New Minimal Modified Radix-r Representation. In Proceedings of
PKC 2002. LNCS 2274, 375–384. Springer, 2003.

14. N. Koblitz. Elliptic curve cryptosystems. Math. Comp. 48 (177), 203–209 (1987).
15. N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptology 1, 139–150 (1989).
16. V. S. Miller. Use of elliptic curves in cryptography. In: Proceedings of Crypto ’85, LNCS 218,

417–426. Springer, 1986.
17. J.A. Muir, and D. R. Stinson. Minimality and Other Properties of the Width-w Nonadja-

cent Form. Technical Report CORR 2004-08, Centre for Applied Cryptographic Research.
Available from http://www.cacr.math.uwaterloo.ca/techreports/2004/

18. J.A. Muir, and D. R. Stinson. New Minimal Weight Representations for Left-to-Right Window
Methods. Technical Report CACR 2004-03, Centre for Applied Cryptographic Research.
Available from http://www.cacr.math.uwaterloo.ca/techreports/2004/

19. K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi. Signed Binary Representations Re-
visited. Proceedings of Crypto 2004.

20. G. W. Reitwiesner. Binary arithmetic. Advances in Computers 1, 231–308 (1960).

A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue 143

21. O. Rizzo. On the complexity of the 2k-ary and of the sliding window algorithms for fast
exponentiation. To appear in: Rivista di Matematica dell’Universitá di Parma.

22. J.A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves. In Proceed-
ings of CRYPTO ’97, LNCS 1294, 357–371. Springer, 1997.

23. J.A. Solinas. Low-Weight Binary Representations for Pairs of Integers. Centre for Applied
Cryptographic Research, University of Waterloo, Combinatorics and Optimization Research
Report CORR 2001-41, 2001. Available from:
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

24. M. Stam and A. K. Lenstra. Efficient subgroup exponentiation in quadratic and sixth degree
extensions. In Proceedings of CHES 2002. LNCS 2523, 318–332. Springer, 2003.

25. E. G. Thurber. On addition chains l(mn) ≤ l(n)b and lower bounds for c(r). Duke Math. J.
40 907–913 (1973).

26. A. C. Yao. On the evaluation of powers. SIAM J. Computing 5 100–103 (1976).

Fast Irreducibility Testing for XTR
Using a Gaussian Normal Basis of

Low Complexity

Soonhak Kwon1, Chang Hoon Kim2, and Chun Pyo Hong2

1 Inst. of Basic Science and Dept. of Mathematics, Sungkyunkwan University,
Suwon 440-746, Korea

shkwon@skku.edu
2 Dept. of Computer and Information Engineering, Daegu University,

Kyungsan 712-714, Korea
chkim@dsp.taegu.ac.kr, cphong@daegu.ac.kr

Abstract. XTR appeared in 2000 is a very promising alternative to el-
liptic curve cryptosystem. Though the basic idea behind XTR is very
elegant and universal, one needs to restrict the primes p such as p ≡ 2
(mod 3) for optimal normal bases since it involves many multiplications
in GF (p2). Moreover the restriction p ≡ 2 (mod 3) is consistently used
to improve the time complexity for irreducibility testing for XTR poly-
nomials. In this paper, we propose that a Gaussian normal basis of type
(2, k) for small k can also be used for efficient field arithmetic for XTR
when p
≡ 2 (mod 3). Furthermore we give a new algorithm for fast ir-
reducibility testing and finding a generator of XTR group when p ≡ 1
(mod 3). Also we present an explicit generator of XTR group which does
not need any irreducibility testing when there is a Gaussian normal ba-
sis of type (2, 3) in GF (p2). We show that our algorithms are simple to
implement and the time complexity of our methods are comparable to
the best ones proposed so far.

Keywords: XTR cryptosystem, Gauss period, normal basis, roots of
unity, cubic residue.

1 Introduction

XTR public key cryptosystem is introduced by Lenstra and Verheul [1], where
it is shown that 170-bit XTR realizes a security of 1024-bit RSA. Therefore it
is comparable to 160-bit ECC. In a series of paper, Lenstra and Verheul [2,3],
and Stam and Lenstra [4,5] discuss various ideas and techniques to speed up
XTR implementation where the condition p ≡ 2 (mod 3) is used for a faster
arithmetic. The crucial steps of XTR are to test whether a given XTR polynomial
over GF (p2) is irreducible or not and to compute a suitable trace of a zero of the
polynomial to verify that the root is indeed a generator of XTR group. Stam and
Lenstra [5] showed that, when p ≡ 3 (mod 4), one can also compute the trace of

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 144–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 145

the root as effectively as when p ≡ 2 (mod 3). However for a fast irreducibility
testing, the condition p ≡ 2 (mod 3) is consistently used in [2,3,4].

Our aim in this paper is to give some evidence that the basic idea of XTR
implementation is not so dependent on the choice of primes p. That is, by pro-
viding a few alternative bases for different primes p, we show that the field arith-
metic in GF (p2) is as equally fast as the type I optimal normal basis which was
originally proposed. Furthermore we present an algorithm for fast irreducibility
testing which can be used when p ≡ 1 (mod 3) and show that our algorithm per-
forms as fast as the one proposed in [3,4]. Also we propose a method of finding a
generator of XTR group without any irreducibility testing by using a Gaussian
normal basis of type (2, 3) in GF (p2). Consequently one has much freedom to
choose a prime p for fast XTR implementation. Also some possible known or
unknown attacks (for example, variants of Number Field Sieve) which exploit
properties of special primes p may be avoided because we can choose either p ≡ 1
(mod 3) or p ≡ 2 (mod 3).

This paper is organized as follows. In section 2, we study basic properties of
XTR and Gauss periods. In section 3, We show that efficient field arithmetic
can be obtained using a low complexity Gaussian normal basis. In section 4, we
suggest a new irreducibility testing with Gauss period technique which can be
used when p ≡ 1 (mod 3) and show that our irreducibility testing is significantly
faster than the irreducibility testings in [3,4]. In section 5, we propose an algo-
rithm for finding an explicit generator of XTR group which does not need any
irreducibility testing when there exists a type (2, 3) Gaussian normal basis. In
section 6, we compare our methods with previously proposed algorithms. Finally,
in section 7, we give concluding remarks.

2 Overview of XTR and Gaussian Normal Basis in
GF (pn)

2.1 XTR Cryptosystem

Let p be a prime. For c ∈ GF (p2), define a cubic polynomial F (c,X) = x3 −
cX2 + cpX − 1. It is well known [1] that F (c,X) is irreducible over GF (p2) if
and only if all zeros of F (c,X) have order dividing p2 − p + 1 and > 3. When
F (c,X) is irreducible, letting h ∈ GF (p6) be any zero of F (c,X), we define cn
for any n as the trace of hn over GF (p2), i.e. cn = Tr(hn) = hn +hnp2

+hnp4
=

hn + hn(p−1) + h−np. Then the roots of F (cn, X) are hn, hnp2
, hnp4

, and for any
i and j, one has the following recurrence relation,

ci+j = cicj − cpj ci−j + ci−2j . (1)

Let q be a prime such that q divides p2−p+1. To realize a security comparable
to 1024 bit RSA, it is suggested to choose primes p, q ≈ 170 bit with p ≥ q. Then
GF (p6) has a unique multiplicative subgroup G of order q such that G is not
contained in any proper subfield of GF (p6). XTR cryptosystem is based on the
assumption that if g ∈ GF (p6) is a generator of G where both p and q are

146 S. Kwon, C.H. Kim, and C.P. Hong

sufficiently large, solving Tr(gn) = c for unknown n is very difficult. It is shown
[1] that finding such n is as difficult as solving a discrete logarithm problem in
GF (p6). On the other hand, basic manipulations such as choosing a key of XTR
are effectively done. Moreover one easily computes Tr(gn) for given Tr(g) and n
using the recurrence relation (1). Therefore efficient multiplication in GF (p2) is
a core of XTR speed up. When one chooses p ≡ 2 (mod 3), there exists a type
I ONB (optimal normal basis) for GF (p2) over GF (p) and using this basis, one
has the time complexity for the field arithmetic in GF (p2) as follows [4].

Lemma 1. Let p ≡ 2 (mod 3) and let {α, αp} be a type I ONB (optimal normal
basis) over GF (p) where α is a zero of X2 +X + 1. Then

1. Squaring in GF (p2) costs two multiplications in GF (p).
2. Computing xy ∈ GF (p2) costs 2.5 multiplications in GF (p).
3. Computing xz − zpy ∈ GF (p2) costs 3 multiplications in GF (p).

We assumed in the above lemma that small number of additions in GF (p2) is
free. Also it is assumed that the cost of one multiplication without reduction of
two x, y ≈ p and one reduction of x ≈ p2 (mod p) are roughly the same.

2.2 Gauss Periods of Type (n, k) in GF (pn)

The theory of Gauss periods has been studied by S. Gao, J. von zur Gathen,
D. Panario, I. Shparlinski, S. Vanstone, and many other people. We will briefly
review the theory of Gauss periods and the corresponding Gaussian normal bases
[16,17]. Let n, k be positive integers such that r = nk + 1 is a prime different
from p. Let K = 〈τ〉 be a unique subgroup of order k in GF (r)×. Let β be a
primitive rth root of unity in GF (pnk). The following element

α =
k−1∑
j=0

βτj

(2)

is called a Gauss period of type (n, k) or k in GF (pn). Let ordrp be the order
of p (mod r) and assume gcd(nk/ordrp, n) = 1. Then it is well known that α
is a normal element in GF (pn). That is, letting αi = αpi

for 0 ≤ i ≤ n − 1,
{α0, α1, α2, · · · , αn−1} is a basis for GF (pn) over GF (p). It is usually called a
Gaussian normal basis of type (n, k) or k in GF (pn). Since K = 〈τ〉 is a subgroup
of order k in GF (r)×, a cyclic group of order nk, the quotient group GF (r)×/K
is also a cyclic group of order n and the generator of the group is pK. Therefore
we have a coset decomposition of GF (r)× as a disjoint union,

GF (r)× = K0 ∪K1 ∪K2 · · · ∪Kn−1, (3)

where Ki = piK, 0 ≤ i ≤ n − 1. Note that any element in GF (r)× is uniquely
written as τ spt for some 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ n− 1.

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 147

Now for each 0 ≤ i ≤ n− 1, we have

ααi =
k−1∑
s=0

βτs
k−1∑
t=0

βτtpi

=
k−1∑
s=0

k−1∑
t=0

βτs(1+τt−spi) =
k−1∑
s=0

k−1∑
t=0

βτs(1+τtpi).

(4)

There are unique 0 ≤ u ≤ k−1 and 0 ≤ v ≤ n−1 such that 1+τupv = 0 ∈ GF (r),
that is, −1 = τupv ∈ Kv. If t �= u or i �= v, then we have 1 + τ tpi ∈ Kσ(t,i) for
some 0 ≤ σ(t, i) ≤ n − 1 depending on t and i, and we may write 1 + τ tpi =
τ t′
pσ(t,i) for some t′. Therefore when i �= v,

ααi =
k−1∑
s=0

k−1∑
t=0

βτs(1+τtpi) =
k−1∑
s=0

k−1∑
t=0

βτs(τt′
pσ(t,i))

=
k−1∑
t=0

k−1∑
s=0

βτs+t′
pσ(t,i)

=
k−1∑
t=0

αpσ(t,i)
=

k−1∑
t=0

ασ(t,i).

(5)

Also when i = v,

ααv =
k−1∑
s=0

k−1∑
t=0

βτs(1+τtpv)

=
∑
t�=u

k−1∑
s=0

βτs(τt′
pσ(t,v)) +

k−1∑
s=0

βτs(1+τupv)

=
∑
t�=u

k−1∑
s=0

βτs+t′
pσ(t,v)

+
k−1∑
s=0

1

=
∑
t�=u

αpσ(t,v)
+ k =

∑
t�=u

ασ(t,v) + k.

(6)

Thus ααi is computed by the sum of at most k basis elements in {α0, α1, · · · ,
αn−1} for i �= v and ααv is computed by the sum of at most k−1 basis elements
and the constant term k ∈ GF (p).

3 Efficient Field Arithmetic in GF (p2) with Gaussian
Normal Basis

XTR cryptosystem involves many multiplications in GF (p2). Consequently, an
appropriate choice of a basis for GF (p2) over GF (p) is necessary. Our purpose is
to show that a Gaussian normal basis of type (2, k) for small k can be used for a
fast arithmetic of XTR. Recall that a type (2, 1) Gauss period is used in [1] where
the corresponding irreducible polynomial is X2 + X + 1, and such basis exists

148 S. Kwon, C.H. Kim, and C.P. Hong

if and only if p ≡ 2 (mod 3). Similar statements can be derived for any Gauss
period of type (2, k). In other words, a necessary and sufficient condition for
the existence of such basis will be determined and the corresponding irreducible
polynomial will also be given.

For XTR, We have n = 2 and 2k + 1 = r is a prime. Thus the possible
choices of k are k = 1, 2, 3, 5, 6, 8, 9, 11, · · · . From the formula (3), the coset
decomposition of GF (r)× is GF (r)× = K ∪ pK where K = 〈τ〉 is a unique
subgroup of GF (r)× of order k.

Lemma 2. Let 2k+1 = r be a prime. Then a Gaussian normal basis {α, αp} of
type (2, k) exists in GF (p2) if and only if p is a quadratic nonresidue (mod r).
We have α + αp = −1 and ααp = k+1

2 if k is odd, −k
2 if k is even. That is,

the corresponding irreducible polynomial of α is X2 + X + k+1
2 if k is odd and

X2 +X − k
2 if k is even.

Proof. It is easy to show that the given Gauss period forms a normal basis if and
only if gcd(2k/ordrp, 2) = 1. This condition is equivalent to say that p is an odd
power of a primitive root (mod r), i.e. p is a quadratic nonresidue (mod r).
Recall that K = 〈τ〉 is a unique subgroup of order k in GF (r)× and GF (r)× =
K ∪ pK is a disjoint union. In particular p �∈ K. Also from α =

∑k−1
j=0 β

τj

where
β is a primitive rth root of unity over GF (p), we have

α+ αp =
k−1∑
j=0

βτj

+
k−1∑
j=0

βpτj

=
∑

t∈GF (r)×
βt =

βr − 1
β − 1

− 1 = −1. (7)

Now from the formulas (5) and (6), we have the followings depending on whether
−1 ∈ K or −1 ∈ pK,

ααp =
k−1∑
t=0

ασ(t,1) or ααp =
∑
t�=u

ασ(t,1) + k, (8)

where α0 = α, α1 = αp, and 1 + τ tp ∈ pσ(t,1)K with σ(t, 1) = 0 or 1. Let us
consider the case k = odd first. In this case, we have −1 ∈ pK and u (mod k)
in the second equation of (8) is a unique value satisfying 1 + τup = 0 in GF (r).
Using this, we have the following for any j �≡ 0 (mod k),

1 + τu−jp

1 + τu+jp
=

1 − τ−j

1 − τ j
= −τ−j = τu−jp ∈ pK. (9)

In other words, 1 + τu−jp and 1 + τu+jp are in different cosets for any j �≡ 0
(mod k). Since {1+ τu+jp|− k−1

2 ≤ j ≤ k−1
2 } = {1+ τ ip|0 ≤ i ≤ k− 1}, we find

ααp =
k − 1

2
(α+ αp) + k =

−k + 1
2

+ k =
k + 1

2
. (10)

Now suppose that k = even. Then −1 ∈ K and 1 + τ jp �= 0 ∈ GF (r) for any j.
Also we have

1 + τ jp = τ jp(1 + τ i−jp), (11)

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 149

where i (mod k) is a unique value satisfying p2 = τ−i ∈ K. In particular we
have j �≡ i − j (mod k). Thus 1 + τ jp and 1 + τ i−jp are in different cosets for
any j. By observing the residue system (mod k) can be written as a disjoint
union

{0, 1, 2, · · · , k − 1} = {j1, i− j1} ∪ {j2, i− j2} ∪ · · · ∪ {j k
2
, i− j k

2
}, (12)

we easily deduce

ααp =
k

2
(α+ αp) = −k

2
. (13)

��
The case k = 1 is used in original XTR where a type I ONB exists if and only if
p ≡ 2 (mod 3) with the corresponding irreducible polynomial X2 +X+1. Using
a Gaussian normal basis {α, αp} of type (2, k) where p is a quadratic nonresidue
(mod r) with r = 2k + 1, we have roughly the same computational complexity
of the field arithmetic in GF (p2). That is,

Lemma 3. If a Gaussian normal basis of type (2, k) is used for small k, Lemma
1 is also true.

Proof. This is a straightforward computation using Lemma 2. For example, let-
ting x = x0α+ x1α

p and y = y0α+ y1α
p in GF (p2), the multiplication of xy is

as follows when k = odd

xy = {(x0−x1)(y0−y1)
k + 1

2
−x0y0}α+{(x0−x1)(y0−y1)

k + 1
2

−x1y1}αp, (14)

and when k = even

xy = −{(x0 − x1)(y0 − y1)
k

2
+ x0y0}α− {(x0 − x1)(y0 − y1)

k

2
+ x1y1}αp. (15)

Thus the computation xy ∈ GF (p2) needs 3 multiplications (without reduction)
of integers ≈ p and 2 reductions (mod p) of integers ≈ p2. Therefore the total
cost is 2.5 multiplications in GF (p). Here we assumed that k is small and a small
number of additions in GF (p) is negligible compared with one multiplication in
GF (p). Also letting z = z0α+ z1α

p ∈ GF (p2), we have the value of xz− yzp as

{(sk + 1
2

− x0)z0 − (s
k + 1

2
− y0)z1}α+ {(sk + 1

2
+ y1)z0 − (s

k + 1
2

+ x1)z1}αp,

(16)
when k = odd, and we have

{(sk
2

+ y0)z1 − (s
k

2
+ x0)z0}α+ {(sk

2
− x1)z1 − (s

k

2
− y1)z0}αp, (17)

when k = even, where s = x0−x1 +y0−y1. Thus the cost of xz−yzp ∈ GF (p2)
is 4 integer multiplications plus 2 reductions (mod p), which is approximately
3 multiplications in GF (p). ��

150 S. Kwon, C.H. Kim, and C.P. Hong

It is not difficult to see that, with a Gaussian normal basis of type k, the num-
ber of necessary additions for each of the basic operations increases roughly in
proportion to log2

k+1
2 or log2

k
2 depending on whether k = odd or k = even.

The exact number of necessary additions with a type k Gaussian normal basis
is shown in Table 1 in section 6.

Note that so far we have only considered classical Gauss periods and their
implications. However one may repeat the same arguments as in Lemma 2 and
3 based on the more general Gauss periods [20] successfully developed by S.
Feisel, J. von zur Gathen, and M. Shokrollahi. Since the irreducible polynomial
of the (classical or general) Gauss period in GF (p2) is of the form X2 + aX + b
and since the linear coefficient a contributes twice of a computational cost of
the constant term b, one may not have a significant advantage of general Gauss
periods over classical Gauss periods in this case.

4 New Irreducibility Testing and Finding a Generator of
XTR Group

For a proper implementation of XTR, we need to find a generator of XTR
group. That is, an element g of prime order q with q|p2 − p + 1 should be
determined. This g is a zero of the polynomial F (c,X) = X3 − cX2 + cpX − 1
where c = g + gp2

+ gp4
and it can be found as follows. First one randomly

chooses c ∈ GF (p2) until one finds F (c,X) which is irreducible over GF (p2).
Here we need a fast irreducibility testing. Next, from an irreducible F (c,X),
one computes c(p2−p+1)/q using the recurrence relation (1). Here we need an
efficient field arithmetic such as Lemma 1 or 3. If c(p2−p+1)/q �= 3 (which is very
probable), then the roots of F (c(p2−p+1)/q, X) have order q.

In section 3, we showed that, with Gaussian normal bases of low weight,
the computation of c(p2−p+1)/q or ci for any i can be done as equally fast as
with the optimal normal basis of type I in [3,4]. On the other hand, the best
of a few irreducibility testings of F (c,X) is related to an irreducibility testing
of a certain cubic polynomial over GF (p) [3]. And the condition p ≡ 2 (mod 3)
is wisely used to determine whether a given cubic polynomial over GF (p) is
irreducible or not. If one follows the method in [3] in the case of p ≡ 1 (mod 3),
one instantly encounters with the problem of determining whether an element of
the form −f0±√

Δ
2 is a cubic residue in GF (p2) or not, where Δ and f0 are certain

integers determined from the coefficients of the cubic polynomial and Δ is a
quadratic residue (mod p). It seems that the computational cost of determining
whether −f0±√

Δ
2 is a cubic residue in GF (p2) when Δ is a quadratic residue

(mod p) is not so cheap compared with the computational cost of determining
whether −f0±√

Δ
2 is a cubic residue in GF (p2) when Δ is a quadratic nonresidue

(mod p) (See [3].). So we devise another method which combines the idea of
cubic residue (mod p) and the idea [2] of presenting an explicit generator of
XTR group without irreducibility testing.

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 151

Let us consider the following two irreducible polynomials over GF (p),

X2+X+a = (X−α)(X−αp) and X3−b = (X−γ)(X−γp)(X−γp2
), (18)

where α and γ are zeros the corresponding polynomials. A necessary condition
for the irreducibility of X3 − b is p ≡ 1 (mod 3). So throughout this section we
assume p ≡ 1 (mod 3).

Lemma 4. Let s �= 0 ∈ GF (p) and let g = (s+αγ)
p6−1

p2−p+1 . Then X3−Tr(g)X2+
Tr(g)pX−1 is irreducible over GF (p2), where Tr(g) = g+gp2

+gp4
is the trace

of g over GF (p2). Moreover letting w ≡ b
p−1
3 (mod p), Tr(g) has the following

expression

−3
P (−s){(s

6 + b{w(4a− 1) − a}s3 + a3b)α

+ (s6 − b{w(4a− 1) + 5a− 1}s3 + a3b)αp},
where P (X) = X6 + b(1 − 3a)X3 + a3b2.

Proof. Note that g = (s+ αγ)
p6−1

p2−p+1 = (s+ αγ)p4+p3−p−1. Clearly the order of
g divides p2 − p + 1. It is well known [1] that g has an order > 3 and dividing
p2 − p + 1 if and only if the corresponding cubic polynomial is irreducible over
GF (p2). Therefore to prove the irreducibility of X3 − Tr(g)X2 + Tr(g)pX − 1,
it is enough to show that g has an order > 3. Suppose that g has an order ≤ 3.
Then since p ≡ 1 (mod 3), we have gp = g. Thus

(s+ αγ)p5+p4−p2−p = (s+ αγ)p4+p3−p−1, (19)

which can be written as

(s+ αpγp2
)(s+ αγ) = (s+ αpγ)(s+ αγp2

). (20)

Cancelling common terms of both sides of (20) and since s �≡ 0 (mod p), we get

(α− αp)(γ − γp2
) = 0, (21)

which is a contradiction because the polynomials in (18) are irreducible over
GF (p). Now let us calculate Tr(g). Let

P (X) =
5∏

j=0

(X − (αγ)pj

) = X6 + b(1 − 3a)X3 + a3b2 (22)

be the irreducible polynomial of αγ over GF (p). From this one easily get

(s+ αγ)−p−1 =
1

P (−s) (s+ αγp)(s+ αγp2
)(s+ αpγ)(s+ αpγp2

)

=
1

P (−s){s
4 − (αγ + αpγp)s3 + (α2pγ1+p2

+ α2γp+p2
+ aγ1+p)s2

− a(αpγ2+p2
+ αγ2p+p2

)s+ a2bγp2}.
(23)

152 S. Kwon, C.H. Kim, and C.P. Hong

Also we have

(s+ αγ)p4+p3
= (s+ αγp)(s+ αpγ) = s2 + (αγp + αpγ)s+ aγ1+p. (24)

On the other hand, from the equation X3 − b = 0 in (18), we get Tr(γj) = 0
for any j �≡ 0 (mod 3). This is obvious from the third order linear recurrence
relation arising from the equation or one may directly show as follows. Letting
j = 3j′ + j′′ with j′′ = 1, 2, we have Tr(γj) = Tr(γ3j′

γj′′
) = bj

′
Tr(γj′′

) = 0
since γ is a zero of the irreducible polynomial X3−b. From (23) and (24), though
the complete expression of (s+αγ)p4+p3−p−1 is a little bit complicated, it is easy
to see that the coefficients of s, s2, s4 and s5 of (s+αγ)p4+p3−p−1 are polynomials
of γ where each of the exponents of γ is not divisible by 3. For example, the
coefficient of s5 is αγp + αpγ − αγ − αpγp. Therefore the trace of these terms
are 0 by the previous remark. Now since w = b

p−1
3 ∈ GF (p) and using

γ2+p = γ2p+p2
= bw, γ1+2p = γ2+p2

= bw2 (25)

in the expression of the multiplication of the equations (23) and (24), we find
that the coefficient of s3 of (s+ αγ)p4+p3−p−1 is

b{w(−4a+ 1) + a}α+ b{w(4a− 1) + 5a− 1}αp. (26)

Therefore the trace of g = (s+ αγ)p4+p3−p−1 over GF (p2) is

−3
P (−s){(s

6 + b{w(4a− 1) − a}s3 + a3b)α

+ (s6 − b{w(4a− 1) + 5a− 1}s3 + a3b)αp}.
(27)

��
Lemma 4 implies that, if the irreducible polynomials X2 + X + a and X3 − b
are given, one can find an element Tr(g) where g is of order > 3 and dividing
p2 − p+ 1. In view of Lemma 2, we may take a = k+1

2 if k = odd and a = −k
2 if

k = even. A Gaussian normal basis of type (2, k), or simply of type k, in GF (p2)
exists if and only if p is a quadratic nonresidue (mod 2k + 1). For example,
there exists a Gaussian normal basis of type 2 if and only if p ≡ 2, 3 (mod 5),
type 3 if and only if p ≡ 3, 5, 6 (mod 7), type 5 if and only if p ≡ 2, 6, 7, 8, 10
(mod 11), etc. On the other hand, X3 − b is irreducible over GF (p) if and only
if b is a cubic nonresidue (mod p), that is, b

p−1
3 �≡ 1 (mod p). The cost of

computing b
p−1
3 is 1.8 log2 p multiplications in GF (p) if one use a square and

multiply method using the same assumption in [3,4] saying that the cost of one
squaring is roughly 80 percent of the cost of one multiplication. Note that one
can reduce the cost of computation if one use more sophisticated argument on
addition chains. For a simple example, let p−1

3 =
∑l−1

i=0 si4i be a 4-ary expansion
of p−1

3 with l = �log4
p−1
3 � + 1. Then a 4-ary window method says that

b
p−1
3 = b

∑l−1
i=0 si4i

= (· · · (((bsl−1)4bsl−2)4bsl−3)4 · · ·)4bs0 (28)

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 153

can be computed with 2.6 log4 p = 1.3 log2 p multiplications in GF (p) using the
precomputed values of b2 and b3. Please refer to [18,19] for more advanced win-
dow techniques and tricks of additions chains. Since one thirds of integers b are
cubic residues (mod p), using the above mentioned 4-ary window method, it
is expected that after 1.95 log2 p multiplications one finds a cubic nonresidue b
(mod p) and an element g of order dividing p2 − p+ 1 with the irreducible poly-
nomial X3 −Tr(g)X+Tr(g)pX−1 over GF (p2). Now let q be a prime dividing

p2 − p+1. Then g
p2−p+1

q is an element of order q if and only if Tr(g
p2−p+1

q) �= 3.
One may use the recurrence relation (1) to compute the trace value and in view
of Lemma 3, the computational cost is 7 log2(

p2−p+1
q) multiplications in GF (p).

Also the probability that g
p2−p+1

q = (s+αγ)
p6−1

q is an element of order q, for
a randomly chosen s, is expected to (p6 − 1)(1 − 1

q)/(p6 − 1) = q−1
q . Of course,

this is not really correct unless we assume that the choice of s + αγ is random

in GF (p6)×. Since q is very large, the (error) probability that g
p2−p+1

q = 1 is
extremely small from a practical point of view as is already explained in [2].
Therefore we have the following result.

Theorem 5. Let p ≡ 1 (mod 3) and suppose that a Gaussian normal basis of
type (2, k) is given in GF (p2) for small k. Then one can find a generator of the
XTR group, a trace of an element of order q, using approximately 1.95 log2 p+
7 log2(

p2−p+1
q) multiplications in GF (p) on average.

Note that, compared with previous results, the computational cost of our al-
gorithm has been improved from 2.7 log2 p+7 log2(

p2−p+1
q) in [3,4] to 1.95 log2 p+

7 log2(
p2−p+1

q). This is because the methods in [3,4] have no other choice but to
use the trace map GF (p2) → GF (p) to avoid an exponentiation in GF (p2) with
the condition p ≡ 2 (mod 3) during the irreducibility testing, while our method
needs an exponentiation in GF (p) not in GF (p2). It should be mentioned that
our factor 1.95 can be improved further if we use more refined window tech-
niques. Another good point (or the difference) is that our algorithm is applied
to the primes p with p ≡ 1 (mod 3), whereas only the case p ≡ 2 (mod 3) is
dealt in [3,4].

5 Gaussian Normal Basis of Type (2, 3) and an Explicit
Generator of XTR Group Without Irreducibility
Testing

In section 4, assuming p ≡ 1 (mod 3), we explained how one can find a generator
of XTR group where an explicit value of b

p−1
3 and the irreducibility of X3 − b

need to be determined. However, as is already mentioned in [2], an irreducibility
testing may be omitted if one has an explicit irreducible polynomial of degree 6
over GF (p) with corresponding roots of low multiplicative order. For example,
Lenstra and Verheul [2] used a primitive 9th root of unity with the irreducible

154 S. Kwon, C.H. Kim, and C.P. Hong

polynomial X6 −X3 +1 and a type I ONB. A necessary and sufficient condition
for the irreducibility of X6 −X3 + 1 over GF (p) is p ≡ 2, 5 (mod 9), or equiva-
lently ord9p = 6. In this section, we show that a similar argument also works if
we use a primitive 7th root of unity with a Gaussian normal basis of type (2, 3)
over GF (p). Our method is applicable when p ≡ 3, 5 (mod 7) and no restriction
of p (mod 3) is necessary.

Let {α, αp} be a Gaussian normal basis of type (2, 3), or more simply type 3,
in GF (p2). That is, α = β+β2 +β4 where β is a primitive 7th root of unity over
GF (p) and 〈2〉 is a unique multiplicative subgroup of order 3 in GF (7)×. Such
basis exists if and only if p is a quadratic nonresidue (mod 7), i.e. p ≡ 3, 5, 6
(mod 7). Note that β is a zero of the polynomial

P (X) =
X7 − 1
X − 1

= X6 +X5 +X4 +X3 +X2 +X + 1. (29)

The above polynomial is irreducible over GF (p) if and only if p is a primitive
root (mod 7), i.e. p ≡ 3, 5 (mod 7). Therefore from now on, we assume p ≡
3, 5 (mod 7) to use the irreducibility of the polynomial in (29). Then using the
relation

{1, p2, p4} ≡ {1, 2, 4} (mod 7), {p, p3, p5} ≡ {3, 5, 6} (mod 7), (30)

we get
α = β + β2 + β4 = β + βp2

+ βp4
= Tr(β), (31)

and
αp = β3 + β5 + β6 = βp3

+ βp5
+ βp6

= Tr(βp). (32)

Lemma 6. Let s �= 0,±1 ∈ GF (p) and let g = (s + β)
p6−1

p2−p+1 . Then X3 −
Tr(g)X2 +Tr(g)pX− 1 is irreducible over GF (p2), where Tr(g) = g+ gp2

+ gp4

is the trace of g over GF (p2). Moreover Tr(g) has the following expression if
p ≡ 3 (mod 7),

Tr(g) =
−1

P (−s){(s
3−s)(3s3−3s2−s−2)α+((s2−s)(3s4−4s2−4s−6)−1)αp},

and if p ≡ 5 (mod 7),

Tr(g) =
−1

P (−s){(s
3−s)(3s3−3s2−s−2)αp+((s2−s)(3s4−4s2−4s−6)−1)α}.

Proof. It is enough to show that g has an order > 3 to show the irreducibility
of the cubic polynomial because g has an order dividing p2 − p+ 1. Recall that,
from (29),

P (X) = X6 +X5 +X4 +X3 +X2 +X + 1 (33)

is irreducible over GF (p) if and only if p ≡ 3, 5 (mod 7). If the order of g is ≤ 3,
then using gp2−1 = 1, we get

(s+ β)p6+p5−p3−p2
= (s+ β)p4+p3−p−1, (34)

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 155

which is reexpressed as

(s+ β)p5+p+2 = (s+ β)p4+2p3+p2
. (35)

Using β7 = 1 and p ≡ 3, 5 (mod 7), we may express both sides of the above
equations as polynomials of β of degree < 7. Comparing the coefficients of
βj , 0 ≤ j ≤ 6, we get a contradiction. Now let us calculate the trace value
of g = (s + β)p4+p3−p−1. The element g can be expressed as follows depending
on whether p ≡ 3 (mod 7) or p ≡ 5 (mod 7),

g0 =
(s+ β4)(s+ β6)
(s+ β3)(s+ β)

, or g1 =
(s+ β2)(s+ β6)
(s+ β5)(s+ β)

. (36)

Since it is trivial to show Tr(gp
0) = Tr(g1) and Tr(gp

1) = Tr(g0) regardless of
the choice of p ≡ 3, 5 (mod 7), we only need to find the trace in the case p ≡ 3
(mod 7). One easily get

(s+ β)−p−1 =
1

P (−s) (s+ β2)(s+ β4)(s+ β5)(s+ β6)

=
1

P (−s){s
4 − (1 + β + β3)s3 − β5s2 − (1 + β2 + β3)s+ β3}.

(37)

Also we have

(s+ β)p4+p3
= (s+ β4)(s+ β6) = s2 + (β4 + β6)s+ β3. (38)

Therefore g can be written as

g = (s+ β)
p6−1

p2−p+1 = (s+ β)p4+p3−p−1

=
1

P (−s){s
6 + (β2 + 2β4 + β5 + 2β6)s5

+ (−1 + β + 2β3 − β5)s4 + (1 + 2β + 2β5 + β6)s3

+ (−β + 2β3 + β5 − β6)s2 + (2 + β + 2β2 + β4)s+ β6}.

(39)

Taking the trace of g and using the relation (31) and (32), we get

Tr(g) =
−1

P (−s){(s
3 − s)(3s3−3s2 − s− 2)α

+ ((s2 − s)(3s4 − 4s2 − 4s− 6) − 1)αp}.
(40)

��
The condition s �= 0,±1 is necessary in view of the equation (40) for non

obvious choices of g, since when s = 0,±1, the trace value is α or αp and, from
the equations in (36), the corresponding g is of order 7, i.e. g ∈ 〈β〉. Note that
one has the similar restriction on s in [2]. Since the irreducibility testing is not
necessary in this case, we have
Theorem 7. Let p ≡ 3, 5 (mod 7). Then using a Gaussian normal basis of
type 3 in GF (p2), one can find a generator of the XTR group, a trace of an
element of order q, using approximately 7 log2(

p2−p+1
q) multiplications in GF (p)

on average.

156 S. Kwon, C.H. Kim, and C.P. Hong

6 Comparison with Previous Results

In section 3, we claimed that one can obtain equally fast arithmetic using a
Gaussian normal basis of type k for small k. This is true if one can really ignore
the cost of small number of additions of integers of bit size ≈ log2 p. In fact, our
method of Gaussian normal basis of type k ≥ 2 slightly increases the number
of necessary additions for each of the basic operations. Let A (resp. B) be the
cost of one addition (resp. one doubling) of integers of bit size ≈ log2 p without
reduction for each of the operations x2, xy, xz − yzp in GF (p2). From the equa-
tions (14)–(17) in Lemma 3, the number of necessary additions and doublings
with a Gaussian normal basis of type k can be computed easily and they are
shown in Table 1.

Table 1. The number of necessary additions and doublings

Type k 1 2 3 5 6 8 9 11
x2 3A 5A+B 5A+2B 6A+2B 6A+2B 5A+3B 6A+3B 6A+3B

xy 3A 4A 4A+B 5A+B 5A+B 4A+2B 5A+2B 5A+2B

xz − yzp 8A 9A 9A+B 10A+B 10A+B 9A+2B 10A+2B 10A+2B

For example, compared with the original XTR (i.e. k = 1) in [3,4], the com-
putation of xy needs one more addition of two integers of bit size ≈ log2 p with
a Gaussian normal basis of type 2, and needs one more addition and a doubling
with a Gaussian normal basis of type 3.

Typically, the cost of one addition (with or without reduction) is of linear
complexity O(log2 p) and the cost of one multiplication in GF (p) is of O(log2

2p).
Thus the cost of one addition is negligible compared with the cost of one mul-
tiplication in this point of view. The cost of computing Tr(gm) with g the gen-
erator of XTR group is 7 log2m multiplications in GF (p), where the constant
7 comes from the fact that two of x2 and one of xz − yzp are computed for
every iteration of the trace computation. Therefore compared with [3,4], our ba-
sis requires c log2m more additions for the computation of Tr(gm) where c is
a small constant depending on k. For example, we have c = 7 (resp. c = 10) if
we use a Gaussian normal basis of type 2 (resp. 3). Since the cost of c log2m
(with m < q ≈ p) additions is roughly equivalent to the cost of c multiplica-
tions in GF (p), we conclude that c more multiplications in GF (p) is needed
for the computation of Tr(gm) compared with the original XTR with a type I
ONB. This constant c is negligible compared with the total delay time of XTR
implementation including parameter set up and irreducibility testing, since the
worst case in Table 1 with a type 11 Gaussian normal basis requires only c = 16
more multiplications in GF (p) for the computation of the trace value. More-
over Theorem 5 says that our method can find a generator of XTR group in
1.95 log2 p + 7 log2(

p2−p+1
q) GF (p)-multiplications while the methods in [3,4]

need 2.7 log2 p+ 7 log2(
p2−p+1

q) GF (p)-multiplications to find a generator. Thus
0.75 log2 p GF (p)-multiplications is saved using our method and this is a huge
saving compared with c multiplications in GF (p).

Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis 157

It should be mentioned that an explicit example of XTR polynomial is given
in [12] using the assumption of p ≡ 3, 5 (mod 7). However the given XTR poly-
nomial needs another condition p ≡ 3 (mod 4) to be irreducible over GF (p2).
On the other hand, only the assumption p ≡ 3, 5 (mod 7) is needed in our The-
orem 7 and no further restriction (such as p ≡ 2 (mod 3) or p ≡ 3 (mod 4))
is needed. Moreover our theorem of using a Gaussian normal basis of type 3
presents a method of finding a generator of XTR group whereas no explicit
generator (nor the method of finding it) of XTR group is given in [12].

7 Conclusions

In this paper, we showed that an efficient implementation of XTR is not so de-
pendent on the choice of prime p. Using a Gaussian normal basis of type (2, k)
for small k, we find that the field arithmetic for XTR is as efficient as that of
the type I ONB used in [1]. Moreover, with the condition p ≡ 1 (mod 3), we
presented an algorithm which combines an efficient irreducibility testing and
finding a generator of XTR group, and showed that our irreducibility testing is
significantly faster than the methods in [3,4]. Also we proposed an efficient algo-
rithm, with a Gaussian normal basis of type (2, 3), which determines a generator
of XTR group without any irreducibility testing. The time complexity of these
algorithms are comparable to the best algorithms [3,4,5] proposed so far. Since
the generality of the idea behind XTR does not restrict the choice of particular
primes p and since no possible cryptographic weakness or strongness of choos-
ing special p ≡ 1 or 2 (mod 3) is known at this moment, our result provides a
meaningful improvement over the existing XTR implementations.

Acknowledgements. The authors would like to thank anonymous referees and
Prof. J. von zur Gathen who made valuable suggestions on the preliminary ver-
sion of this paper. Also, this work was supported by Korea Research Foundation
Grant (KRF-2004-015-C00004).

References

1. A.K. Lenstra and E.R. Verheul, “The XTR public key system,” Crypto 2000,
Lecture Notes in Computer Science, vol. 1880, pp. 1–19, 2000.

2. A.K. Lenstra and E.R. Verheul, “Key improvements to XTR,” Asiacrypt 2000,
Lecture Notes in Computer Science, vol. 1976, pp. 220–233, 2000.

3. A.K. Lenstra and E.R. Verheul, “Fast irreducibility and subgroup membership
testing in XTR,” PKC 2001, Lecture Notes in Computer Science, vol. 1992, pp.
73–86, 2001.

4. M. Stam and A.K. Lenstra, “Speeding up XTR,” Asiacrypt 2001, Lecture Notes
in Computer Science, vol. 2248, pp. 125–143, 2001.

5. M. Stam and A.K. Lenstra, “Efficient subgroup exponentiation in quadratic and
sixth degree extensions,” CHES 2002, Lecture Notes in Computer Science, vol.
2523, pp. 318–332, 2003.

158 S. Kwon, C.H. Kim, and C.P. Hong

6. W. Bosma, J. Hutton, and E.R. Verheul, “Looking beyond XTR,” Asiacrypt 2002,
Lecture Notes in Computer Science, vol. 2501, pp. 46–63, 2002.

7. A.E. Brouwer, R. Pellikaan, and E.R. Verheul, “Doing more with fewer bits,”
Asiacrypt 1999, Lecture Notes in Computer Science, vol. 1716, pp. 321–332, 1999.

8. E.R. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems,” Eurocrypt 2001, Lecture Notes in Computer Science, vol. 2045, pp.
195–210, 2001.

9. G. Gong and L. Harn, “Public key cryptosystems based on cubic finite field exten-
sions,” IEEE Trans. Information Theory, vol. 45, pp. 2601–2605, 1999.

10. G. Gong, L. Harn, and H. Wu, “The GH Public key cryptosystem,” SAC 2001,
Lecture Notes in Computer Science, vol. 2259, pp. 284–300, 2001.

11. S. Lim, S. Kim, I. Yie, J. Kim, and H. Lee, “XTR extended to GF (p6m),” SAC
2001, Lecture Notes in Computer Science, vol. 2259, pp. 301–312, 2001.

12. J. Kim, I. Yie, S. Oh, H. Kim, and J. Ryu, “Fast generation of cubic irreducible
polynomials for XTR,” Indocrypt 2001, Lecture Notes in Computer Science, vol.
2247, pp. 73–78, 2001.

13. D. Han, K. Yoon, Y. Park, C. Kim, and J. Lim, “Optimal extension fields for
XTR,” SAC 2002, Lecture Notes in Computer Science, vol. 2595, pp. 369–384,
2002.

14. W.W. Li, M. Naslund, and I. Shparlinski “Hidden number problem with the trace
and bit security of XTR and LUC,” Crypto 2002, Lecture Notes in Computer
Science, vol. 2442, pp. 433–448, 2002.

15. I. Shparlinski “On the generalized hidden number problem and bit security of
XTR,” AAECC 2001, Lecture Notes in Computer Science, vol. 2227, pp. 268–277,
2001.

16. A.J. Menezes, I.F. Blake, S. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian,
Applications of Finite Fields, Kluwer Academic Publisher, 1993.

17. S. Gao, J. von zur Gathen, and D. Panario, “Gauss periods and fast exponentiation
in finite fields,” Latin 1995, Lecture Notes in Computer Science, vol. 911, pp. 311–
322, 1995.

18. D.E. Knuth, “The Art of Computer Programming, Third Edition,” Vol. 2, Seminu-
merical Algorithms, Addison Wesley, 1997.

19. D.M. Gordon, “A survey of fast exponentiation methods,” J. of Algorithms, vol.
27, pp. 129–146, 1998.

20. S. Feisel, J. von zur Gathen, M. Shokrollahi, “Normal bases via general Gauss
periods,” Math. Comp., vol. 68, pp. 271–290, 1999.

Modular Number Systems:
Beyond the Mersenne Family

Jean-Claude Bajard1, Laurent Imbert1,2, and Thomas Plantard1

1 LIRMM, CNRS UMR 5506,
161 rue Ada, 34392 Montpellier cedex 5, France

2 ATIPS, CISaC, University of Calgary,
2500 University drive N.W, Calgary, T2N 1C2, Canada

{bajard, plantard, Laurent.Imbert}@lirmm.fr

Abstract. In SAC 2003, J. Chung and A. Hasan introduced a new class
of specific moduli for cryptography, called the more generalized Mersenne
numbers, in reference to J. Solinas’ generalized Mersenne numbers pro-
posed in 1999. This paper pursues the quest. The main idea is a new
representation, called Modular Number System (MNS), which allows ef-
ficient implementation of the modular arithmetic operations required in
cryptography. We propose a modular multiplication which only requires
n2 multiplications and 3(2n2 − n + 1) additions, where n is the size (in
words) of the operands. Our solution is thus more efficient than Mont-
gomery for a very large class of numbers that do not belong to the large
Mersenne family.

Keywords: Generalized Mersenne numbers, Montgomery multiplica-
tion, Elliptic curve cryptography

1 Introduction

Efficient implementation of modular arithmetic is an important prerequisite in
today’s public-key cryptography [6]. In the case of elliptic curves defined over
prime fields, operations are performed modulo prime numbers whose size range
from 160 to 500 bits [4].

For moduli p that are not of special form, Montgomery [7] or Barrett [1]
algorithms are widely used. However, modular multiplication and reduction can
be accelerated considerably when the modulus p has a special form. Mersenne
numbers of the form 2m − 1 are well known examples, but they are not useful
for cryptography because there are only a few primes (the first Mersenne primes
are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, etc). Pseudo-Mersenne of the
form 2m − c, introduced by R. Crandall in [3], allow for very efficient modular
reduction if c is a small integer. In 1999, J. Solinas [8] introduced the family of
generalized Mersenne numbers. They are expressed as p = f(t), where f is a
well chosen monic integral polynomial and t is a power of 2, and lead to very
fast modular reduction using only a few number of additions and subtractions.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 159–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 J.-C. Bajard, L. Imbert, and T. Plantard

For example, the five NIST primes listed below, recommended in the FIPS 186-2
standard for defining elliptic curves over primes fields, belong to this class1.

p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1

In 2003, J. Chung and A. Hasan, in a paper entitled “more generalized Mersenne
numbers” [2], extended J. Solinas’ concept, by allowing any integer for t.

In this paper we further extend the idea of defining new classes of numbers
(possibly prime), suitable for cryptography. However, the resemblance with the
previous works ends here. Instead of considering moduli of special form, we rep-
resent the integers modulo p in the so-called Modular Number System (MNS).
By a careful choice of the parameters which define our MNS, we introduce the
concept of Adapted Modular Number System (AMNS). We propose a modular
multiplication which is more efficient than Montgomery’s algorithm, and we ex-
plain how to define suitable prime moduli for cryptography. We provide examples
of such numbers at the end of the paper.

2 Modular Number Systems

In positional number systems, we represent any nonnegative integer X in base
β as

X =
k−1∑
i=0

di β
i, (1)

where the digits dis belong to the set {0, . . . , β − 1}. If dk−1 �= 0, we call X a
k-digit base-β number.

In cryptographic applications, computations have to be done over finite rings
or fields. In these cases, we manipulate representatives of equivalence classes
modulo P (for simplicity we use the set of positive integers {0, 1, 2, . . . , P − 1}),
and the operations are performed modulo P .

In the next definition, we extend the notion of positional number system to
represent the integers modulo P .

Definition 1 (MNS). A Modular Number System (MNS) B is defined accord-
ing to four parameters (γ, ρ, n, P), such that all positive integers 0 ≤ X < P can
be written as

X =
n−1∑
i=0

xi γ
i mod P, (2)

1 Note that p521 is also a Mersenne prime.

Modular Number Systems: Beyond the Mersenne Family 161

with 1 < γ < P , and xi ∈ {0, . . . , ρ− 1}. The vector (x0, x1, . . . , xn−1)B denotes
the representation of X in B.

In the sequel of the paper, we shall omit the subscript (.)B when it is clear from
the context, and we shall consider X either as a vector or as a polynomial (in
γ). In the later, the xis correspond to the coefficients of the polynomial (note
that we use a left-to-right notation; x0 is the constant term).

Example 1. Let us consider the MNS defined with γ = 7, ρ = 3, n = 3, P = 17.
Over this system, we represent the elements of Z17 as polynomials in γ of degree
at most 3 with coefficients in {0, 1, 2} (cf. Table 1).

Table 1. The elements of Z17 in B = MNS(7, 3, 3, 17)

0 1 2 3 4 5
0 1 2 γ + 2γ2 1 + γ + 2γ2 γ + γ2

6 7 8 9 10 11
1 + γ + γ2 γ 1 + γ 2 + γ 2γ + 2γ2 1 + 2γ + 2γ2

12 13 14 15 16
2γ + γ2 1 + 2γ + γ2 2γ 1 + 2γ 2 + 2γ

We remark that this system is redundant. For example, we can write 5 = 2+γ3 =
γ + γ2, or 14 = 1 + 2γ2 = 2γ. However, we do not take any advantage of this
property in this paper.

Definition 2 (AMNS). A modular number system B = MNS(γ, ρ, n, P) is
called Adapted Modular Number System (AMNS) if γn mod P = c is a small
integer. In this case we shall denote B = AMNS(γ, ρ, n, P, c).

Although c is given by γn mod P , we introduce it in the AMNS definition to
simplify the notations.

Note that it is not obvious (see Section 5) to prove that a given set of param-
eters (γ, ρ, n, P) is an MNS. Algorithm 3, presented in the next section, gives
sufficient conditions to prove that this is an AMNS.

In the rest of the paper, we shall consider B = AMNS(γ, ρ, n, P, c), unless
otherwise specified.

3 Modular Multiplication

As in [2], modular multiplication is performed in three steps presented in Algo-
rithm 1.

In order to evaluate the computational complexity of Algorithm 1, let us get
into more details. In the first step we evaluate

U(X) =
2n−2∑
i=0

ui X
i, where ui =

i∑
j=0

ai bi−j , (3)

162 J.-C. Bajard, L. Imbert, and T. Plantard

Algorithm 1 – Modular Multiplication
Input : An AMNS B = (γ, ρ, n, P, c), and A = (a0, ..., an−1), B = (b0, ..., bn−1)
Output : S = (s0, ..., sn−1) such that S = A B mod P
1: Polynomial multiplication in Z[X]: U(X) ← A(X) B(X)
2: Polynomial reduction: V (X) ← U(X) mod (Xn − c)
3: Coefficient reduction: S ← CR(V), gives S ≡ V (γ) (mod P)

where at = bt = 0 for t > n−1. We have u0 = a0b0 < ρ2, u1 = a0b1+a1b0 < 2ρ2,
etc. Clearly, the largest coefficient is un−1 < nρ2. Then, for the coefficients of
degree greater than n− 1, we have un < (n− 1)ρ2, . . . , u2n−2 < ρ2.

The cost of the first step clearly depends on the size of ρ and n. It requires
n2 products of size log2(ρ), and (n− 1)2 additions of size at most log2(nρ2).

In step 2, we compute

V (X) =
n−1∑
i=0

vi X
i, where vi = ui + c ui+n. (4)

This yields
vi < cnρ2, for i = 0 . . . n− 1. (5)

The cost of step 2 is (n−1) products between the constant c and numbers of size
log2(nρ2), and (n− 1) additions of size log2(cnρ2). When c is a small constant,
for example a power of 2, the (n − 1) products can be implemented with only
(n− 1) shifts and additions.

In order to get a valid AMNS representation we must reduce the coefficients
such that all the vis are less than ρ. This is the purpose of the coefficient reduc-
tion.

3.1 Coefficient Reduction

For simplicity, we define ρ = 2k+1. We reduce the elements of the vector V,
obtained after step 2 of Algorithm 1, by iteratively applying Algorithm 2, pre-
sented below, which reduces numbers of size � 3k

2 � bits to numbers of size k + 1,
i.e. less than ρ.

So, let us first consider a vector V with elements of size at most � 3k
2 � bits.

Our goal is to find a representation of V where the elements are less than ρ, i.e.
of size at most k + 1 bits.

If V = (v0, . . . , vn−1), we define two vectors V and V such that

V = V + V · 2kI, (6)

where the elements of V are less than 2k and those of V are less than 2�k/2�. In
equation (6), I denotes the n × n identity matrix explicitly given by Iij = δij

for i, j = 0, . . . , n− 1 and δij is the Kronecker delta.
If we can express V ·2kI as a vector with elements less than 2k, then the sum

of the two vectors in (6) is less than 2k+1, and gives a valid AMNS representation
of V . The idea is to find a matrix M with small coefficients which satisfies

Modular Number Systems: Beyond the Mersenne Family 163

M · (1, γ, . . . , γn−1)T ≡ 2kI · (1, γ, . . . , γn−1)T (mod P). (7)

Roughly speaking, the matrix M can be seen as a representation of 2kI in the
AMNS.

If 2k = (ξ0, . . . , ξn−1)B, is a representation of 2k in the AMNS, then by
definition 1 we have

2k ≡ ξ0 + ξ1γ + · · · + ξn−1γ
n−1 (mod P). (8)

Similarly the following congruences hold:

γ 2k ≡ cξn−1 + ξ0γ + · · · + ξn−2γ
n−1 (mod P) (9)

γ2 2k ≡ cξn−2 + cξn−1γ + ξ0γ
2 + · · · + ξn−3γ

n−1 (mod P) (10)
...

γn−1 2k ≡ cξ1 + cξ2γ + · · · + cξn−1γ
n−2 + ξ0γ

n−1 (mod P). (11)

Equations (8) to (11) allow us to define the matrix

M =

⎛⎜⎜⎜⎝
ξ0 ξ1 · · · ξn−1

cξn−1 ξ0 · · · ξn−2
...
cξ1 cξ2 · · · cξn−1 ξ0

⎞⎟⎟⎟⎠ (12)

which satisfies equation (7). Thus V · 2kI ≡ V ·M (mod P), and equation (6)
becomes

V = V + V ·M. (13)

If we impose c
∑n−1

i=0 ξi < 2�k/2�, then the elements of the vector V ·M are less
than 2k. Algorithm 2 implements equation (13) to reduce the elements of V to
a valid AMNS representation, i.e. with vi < ρ = 2k+1 for i = 0 . . . n− 1.

Algorithm 2 – Red(V,B): reduction from � 3k
2 � to k + 1 bits

Input : B = (γ, ρ, n, P, c) an AMNS with ρ = 2k+1; 2k = (ξ0, ..., ξn−1) with
c
∑n−1

i=0 ξi < 2�k/2�; a matrix M as defined in (12); a vector V = (v0, . . . , vn−1)
with vi < 2�3k/2� for i = 0 . . . n − 1.

Output : S = (s0, ..., sn−1) with si < ρ for all i = 0 . . . n − 1.
1: Define vectors V and V such that V = V + V · 2kI
2: Compute S ← V + V · M

The cost of Algorithm 2 is n2 multiplications of size k
2 and n additions of

size k. However, since the Mij in (12) are small constants, the n2 products can
be efficiently computed with only a small number of additions and shifts. For

164 J.-C. Bajard, L. Imbert, and T. Plantard

example, if c and the ξis are small powers of 2, then we can evaluate V ·M with
n(n− 1) additions. In this case the total cost for Red is n2 additions of size k.

In order to reduce polynomials with coefficients larger than 3k
2 bits, we itera-

tively apply the previous algorithm until all the coefficients are less than ρ. The
following theorem holds.

Theorem 1. Let us define B = AMNS(γ, ρ, n, P, c), with ρ = 2k+1. We denote
(ξ0, . . . , ξn−1) a representation of 2k in B, and we assume V = (v0, . . . , vn−1)
with vi < cnρ2.

If c
∑n−1

i=0 ξi < 2�k/2� then there exists an algorithm which reduces V into a
valid AMNS representation, in k+2+�log2(cn)�

�k/2�−1 calls to Red (algorithm 2).

Proof. After step 2 of Algorithm 1, and under the condition ρ = 2k+1, the
elements of V satisfy vi < 22k+2cn. Thus |vi| < 2k + 3 + �log2(cn)�, where
|vi| denotes the size of vi. Since each step of Red eliminates �k

2 � − 1 bits of
vi, the number of iteration is given by the value t which satisfy the equation
2k + 3 + �log2(cn)� − t

(�k
2 � − 1

)
= k + 1, i.e. t = k+2+�log2(cn)�

�k/2�−1 . This gives

t = 2 + 8+2�log2(cn)�
k−2 is k is even, and t = 2 + 6+2�log2(cn)�

k−1 if k is odd. �

Note that in practice, the number of iterations is very small. In the examples of
section 5, the coefficient reduction step only requires 3 or 4 calls to algorithm
Red. Algorithm 3 implements theorem 1.

Algorithm 3 – CR(V,B), Coefficient reduction
Input : B = (γ, ρ, n, P, c) an AMNS with ρ = 2k+1; 2k = (ξ0, ..., ξn−1) with

c
∑n−1

i=0 ξi < 2�k/2�; a vector V = (v0, ..., vn−1).
Output : S = (s0, ..., sn−1) with si < ρ for all i = 0 . . . n − 1.
1: l ← max(�log2(vi)
 + 1)
2: U ← V
3: while l > 3k

2 do
4: Define U and U s.t. U = U + 2l−3k/2 · U
5: U ← Red(U, B)
6: U ← U + 2l−3k/2 · U
7: l ← max(�log2(Ui)
 + 1)
8: end while
9: S ← Red(U, B)

4 Complexity Comparisons

In this section, we evaluate the number of elementary operations (word-length
multiplications and additions) of our modular multiplication algorithm. Since
the complexity of our algorithms clearly depends on many parameters we try to
consider different interesting options. For simplicity, we assume cn < ρ as this
is the case in the examples presented in the next section.

Modular Number Systems: Beyond the Mersenne Family 165

For a large part, the moduli (possibly primes) we are able to generate do
not belong neither to Solinas’ [8] or Chung and Hasan’s generalized Mersenne
family [2]. Thus, we only compare our algorithm with Montgomery since it was
the best known algorithm available for those numbers.

As explained in section 3, our modular multiplication requires three steps:
polynomial multiplication, polynomial reduction, and coefficient reduction.

The polynomial multiplication only depends on n and ρ. If ρ = 2k+1 (k + 1
is the word-size), the cost of the first step is n2 Tm, where Tm is the delay of one
word-length multiplication, and (n−1)2 additions involving two-word operands,
i.e. of cost less than 3(n − 1)2 Ta, where Ta is the delay of one word-length
addition. Thus, the cost of step 1 is

n2 Tm + 3(n− 1)2 Ta.

The polynomial reduction depends on n, ρ, and c. In the general case, it
requires (n − 1) multiplications of size log2(nρ2). However, if c = 1, 2, 4 (resp.
c = 3, 5, 6) it can be implemented in n shift-and-add of three-word numbers
(resp. 2n shift-and-add). This yields a cost of 3nTa (resp. 6nTa). Thus, for the
second step, a careful choice of c can lead to

3nTa.

The coefficient reduction depends on all the parameters. The cost of algorithm
Red, for ξi = 0, 1, 2 and c = 1, 2, 4 is n2 Ta (it becomes n2 + (n−1)2

2 Ta if c =
3, 5, 6). From theorem 1, algorithm CR requires 3 calls to Red if cn < 2(k−10)/2 (4
calls if cn < 2k−10). Finally, step 3 requires 3n2 Ta if cn < 2(k−10)/2, ξi = 0, 1, 2,
and c = 1, 2, 4 (we have 8n2 Ta if cn < 2k−10, ξi = 0, 1, 2, c = 3, 5, 6). As for the
previous step, a good choice of c and the ξis gives a complexity of

3n2 Ta.

The important point here is that we can perform the coefficient reduction with-
out multiplications.

To summarize, our algorithm performs the modular multiplication, where
the moduli do not belong to the generalized Mersenne families – introduced by
Solinas, and Chung and Hasan – in

n2 Tm + 3
(
2n2 − n+ 1

)
Ta.

This is better than Montgomery which requires 2n2 Tm (cf. [7], [5]).
In the next section we explain how we define such modulus and we give

examples that reach this complexity.

5 Construction of Suitable Moduli

In this section we explain how to find γ and P which allow fast modular arith-
metic.

166 J.-C. Bajard, L. Imbert, and T. Plantard

Let us first fix some of the parameters. Since we represent numbers as polyno-
mials of coefficients less than ρ = 2k+1, it is advantageous to define ρ according
to the word-size of the targeted architecture, i.e. by taking k = 15, 31, 63 for 16-
bit, 32-bit, and 64-bit architectures respectively. We define n such that (k+ 1)n
roughly corresponds to the desired dynamic range. To get a very efficient reduc-
tion of the coefficients, we impose restrictions on the ξis, for example by only
allowing values in {0, 1, 2}, and we choose very small values for c. Based on the
previous choices, we now try to find suitable P and γ.

From equation (7), we deduce V · (2kI − M) ≡ 0 (mod P), for all V =
(v0, . . . , vn−1)B. Thus, it is clear that the determinant

d =
∣∣2kI −M

∣∣ ≡ 0 (mod P). (14)

All the divisors of d, including d itself, can be chosen for P . If we need P to be
prime, we can either try to find a prime factor of the determinant which is large
enough (this is easier than factorization since it suffices to eliminate the small
prime factors up to an arbitrary bound), or consider only the cases where the
determinant is already a prime.

We remark that γ is a root, modulo P , of both γn − c and 2k −∑n−1
i=0 ξi γ

i.
Thus γ is also a root of gcd(γn − c, 2k −∑n−1

i=0 ξi γ
i) mod P .

5.1 Generating Primes for Cryptographic Applications

For elliptic curve defined over prime fields, P must be a prime of size at least
160 bits.

Let us assume a 16-bit architecture. We fix ρ = 216, and we see if we can
generate good primes P with n = 11. Note that nk = 176 does not guaranty 176-
bit primes for P . In practice, the candidates we obtain are slightly smaller. We
impose strong restrictions on the other parameters, by allowing only ξi ∈ {0, 1},
and 2 ≤ c ≤ 6.

As an example, we consider c = 3, and 2k = (1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)B, which
correspond to the polynomial 1 + x5 + x8 + x9 + x10. Using (14), we compute

d = 46752355065074474485602713457356337710161910767327,

which has

P = 792412797713126686196656160294175215426473063853

as a prime factor of size 160 bits.
Then, we compute a root of gcd(x11 −3, 215 −1−x5 −x8 −x9 −x10) modulo

P , and we obtain

γ = 474796736496801627149092588633773724051936841406.

We have investigated different set of parameters and applied the same tech-
nique to define suitable prime moduli. In Table 2, we give the number of such
primes and the corresponding parameters.

Modular Number Systems: Beyond the Mersenne Family 167

Table 2. Number of primes P greater than 2160 for use in elliptic curve cryptography,
and the corresponding AMNS parameters

k + 1 n c ξi Number of primes of size ≥ 160 bits

16 11 {2, 3} {0, 1} 132
16 11 {2, 3, 4, 5, 6} {0, 1} 306
16 11 2 {0, 1, 2} 3106
16 11 {2, 3, 4, 5, 6} {0, 1, 2} ≥ 7416 (a)
32 6 {2, 3, 4, 5, 6} {0, 1} ≥ 12 (b)
32 6 {2, 3, 4, 5, 6} {0, 1, 2} ≥ 87 (b)
64 16 {2, 3, 4, 5, 6} {0, 1} ≥ 1053 (b)

(a): the determinant d was already a prime in 7416 cases. We did not try to factorize
it in the other cases.
(b): computation interrupted.

6 Others Operations in an AMNS

In this section we briefly describe the other basic operations in AMNS in order
to provide a fully functional system for cryptographic applications. We present
methods for converting numbers between binary and AMNS, as well as solutions
for addition and subtraction. In the context of elliptic curve cryptography, it is
important to notice that, except for the inversion which can be performed only
once at the very end of the computations if we use projective coordinates, all
the operations can be computed within the AMNS. Thus conversions are only
required at the beginning and at the end of the process.

6.1 Conversion from Binary to AMNS

Theorem 2. If X is an integer such that 0 ≤ X < P , given in classical binary
representation, then a representation of X in the AMNS B is obtained with at
most 2(n− 1) + 6(n−1)

k−2 calls to Red.

Proof. We simply remark that P < 2n(k+1) and that the size of the largest
coefficient of X is reduced by �k

2 � − 1 bits after each call to Red. Thus the
reduction of 0 ≤ X < P requires at least (n−1)(k+1)

� k
2 �−1

iterations, or more precisely

2(n− 1) + 6(n−1)
k−2 is k is even, and 2(n− 1) + 4(n−1)

k−1 if k is odd. �

We use theorem 2 by applying the coefficient reduction CR (Algorithm 3) to the
vector (X, 0, . . . , 0).

6.2 Conversion from AMNS to Binary

Given X = (x0, . . . , xn−1)B, we have to evaluate X =
∑n−1

i=0 xiγ
i mod P . The

binary representation of X can be obtained with Horner’s scheme

X = x0 + γ (x1 + γ (x2 + · · · + γ (xn−2 + γ xn−1) · · ·)) mod P.

168 J.-C. Bajard, L. Imbert, and T. Plantard

Since γ is of the same order of magnitude as P , the successive modular
multiplications must be evaluated with Barrett or Montgomery algorithms. The
cost of the conversion is thus at most 3n3 Tm.

6.3 Addition, Subtraction

Given X = (x0, . . . , xn−1)B and Y = (y0, . . . , yn−1)B, the addition is simply
given by S = (x0 + y0, . . . , xn−1 + yn−1)B+ , where B+ denotes an extension
of the AMNS B where the elements are not necessarily less than ρ. Since the
input vectors of our modular multiplication algorithm do not need to have their
elements less than ρ, this is a valid representation. However, if the reduction to
B is required, it can be done thanks to algorithm CR.

Subtraction X − Y is performed by adding X and the negative of Y . We
use Z = (z0, . . . , zn−1)B+ as a representation of 0 in B+, i.e. with zi > ρ for
i = 0 . . . n− 1. From (12) and (13) we have

Z =
n−1∑
i=0

ziγ
i ≡ 0 mod P,

with zi = 3
[
2k −

(∑i
j=0 ξj + c

∑n−1
j=i+1 ξj

)]
.

The negative of Y is thus given in B+ by the vector (z0 − y0, . . . , zn−1 −
yn−1)B+. For the reduction in B, the same remark as for the addition applies.

7 Conclusions

In this paper we defined a new family of moduli suitable for cryptography. In
that sense, this research can be seen as an extension of the works by J. Solinas,
and J. Chung and A. Hasan. We introduced a new system of representation for
the integers modulo P , called Adapted Modular Number System (AMNS), and
we proposed a modular multiplication in AMNS which is more efficient than
Montgomery. We explained how to construct an AMNS which lead to moduli
suitable for fast modular arithmetic, and we explicitly provided examples of
primes for cryptographic sizes. Future researches on this subject will be dedicated
to the problem of defining an AMNS for a given number p, and to the exploration
of the potential advantages of the redundancy of this representation.

Acknowledgments

This work was done during L. Imbert leave of absence at the university of Cal-
gary, with the ATIPS2 and CISaC3 laboratories. It was also partly supported
by the French ministry of education and research under the ACI 2002, “OpAC,
Opérateurs arithmétiques pour la Cryptographie”, grant number C03-02.

2 Advanced Technology Information Processing Systems, www.atips.ca
3 Centre for Information Security and Cryptography, cisac.math.ucalgary.ca

Modular Number Systems: Beyond the Mersenne Family 169

References

1. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In A. M. Odlyzko, editor, Advances
in Cryptology - Crypto ’86, volume 263 of LNCS, pages 311–326. Springer-Verlag,
1986.

2. J. Chung and A. Hasan. More generalized mersenne numbers. In M. Matsui and
R. Zuccherato, editors, Selected Areas in Cryptography – SAC 2003, volume 3006 of
LNCS, Ottawa, Canada, August 2003. Springer-Verlag. (to appear).

3. R. Crandall. Method and apparatus for public key exchange in a cryptographic
system. U.S. Patent number 5159632, 1992.

4. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

5. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

6. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868,
USA, 1997.

7. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

8. J. Solinas. Generalized mersenne numbers. Research Report CORR-99-39, Cen-
ter for Applied Cryptographic Research, University of Waterloo, Waterloo, ON,
Canada, 1999.

Efficient Doubling on Genus Two Curves over
Binary Fields

Tanja Lange1,� and Marc Stevens2,�

1 Institute for Information Security and Cryptology (ITSC),
Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany

lange@itsc.ruhr-uni-bochum.de
http://www.ruhr-uni-bochum.de/itsc/

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
m.m.j.stevens@student.tue.nl

Abstract. In most algorithms involving elliptic and hyperelliptic curves,
the costliest part consists in computing multiples of ideal classes. This
paper investigates how to compute faster doubling over fields of charac-
teristic two.

We derive explicit doubling formulae making strong use of the defining
equation of the curve. We analyze how many field operations are needed
depending on the curve making clear how much generality one loses by
the respective choices. Note, that none of the proposed types is known to
be weak – one only could be suspicious because of the more special types.
Our results allow to choose curves from a large enough variety which
have extremely fast doubling needing only half the time of an addition.
Combined with a sliding window method this leads to fast computation
of scalar multiples. We also speed up the general case.

Keywords: Hyperelliptic curves, fast arithmetic, explicit group opera-
tions, binary fields.

1 Introduction

Hyperelliptic curves of low genus obtained a lot of attention in the recent past
for cryptographic applications. It is a rather recent result that they can compete
with elliptic curves in terms of efficiency of the group law [Ava03, Lan04a]. The
security of low genus hyperelliptic curves is assumed to be similar to that of
elliptic curves of the same group size. Here, low really means genus g ≤ 3
by [Gau00, Thé03, GT04, Nag04], and even for g = 3 some care has to be taken.

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 170–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Doubling on Genus Two Curves over Binary Fields 171

The main operation in protocols based on the discrete logarithm problem in
an additively written group is the computation of scalar multiples of a group ele-
ment. Using standard scalar multiplication methods this boils down to additions,
doublings, and perhaps some precomputations.

In this paper we concentrate on genus two curves over fields of characteristic
two and in detail on doubling formulae for the different types of curves. Obvi-
ously, choosing curves defined over F2 allows very efficient scalar multiplication
as shown in the publications on Koblitz curves [GLS00, Lan04b]. However, there
are only 6 different isogenie classes and, hence, the choice of curves is rather
limited. So there is a trade-off between speed-up and special parameters.

In this article, we give a complete study of all cases of defining equation of
the curve where we allow the curve to be defined over the extension field. In
combination with a windowing method the best case achieves a performance
only twice as slow as for Koblitz curves, the reason being that additions remain
costly in both cases and there are more of them in the Koblitz curve setting.
Clearly, this again is a special choice but the number of non-isomorphic curves
has grown considerably.

So far only one very special type of curves has been considered [PWP04] and
shown to lead to efficient doubling formulae. Our results improve their formulae
and provide clear tables with all types of defining equations together with the
number of operations and also give the doubling formulae.

After the submission of this paper the authors found a further work in special
curves [BD04]. They obtain less efficient doublings, but also do a complete study
of all kinds of curves. Even more recently, Duquesne (see [ACD+04]) made
improvements for the case where deg h = 2 and h0 �= 0.

We now briefly state the background needed on hyperelliptic curves and then
give a complete study of the doubling formulae. Section 7 provides timings for
the different cases giving evidence that the claimed speed up can actually be
obtained. We end with some remarks on side channel attacks.

2 Basic Notations and Preliminaries

We refer the interested reader to [FL03, Lor96, MWZ98, Sti93] for mathematical
background. For the scope of this paper we only try to motivate the representa-
tion of the group elements and the group law as this is what we concentrate on
in the remainder of the paper.

Let Fq, q = 2�, be a finite field of characteristic 2 and let C be a hyperelliptic
curve defined over Fq. In cryptography one usually deals with curves C given by

C : Y 2 + h(X)Y = f(X)
h, f ∈ Fq[X], f monic, deg f = 2g + 1, deg h ≤ g (1)

for which no point (x, y) ∈ C satisfies both partial derivative equations. For
characteristic 2 one needs to have a non-zero h to achieve this quality. The
integer g appearing in (1) is called the genus of C. We concentrate on curves of
genus 2.

172 T. Lange and M. Stevens

The group one uses for cryptographic applications is the ideal class group
Cl(C/Fq) of C over Fq. This is the quotient of the group of fractional ideals of
Fq[X,Y]/(Y 2 +h(X)Y +f(X)) by the group of principal ideals. Like in the case
of quadratic imaginary fields in each ideal class one finds an ideal generated by
two polynomials 〈u(X), v(X) + Y 〉.

There is a unique ideal of minimal degree in each class. Actually, each el-
ement D of Cl(C/Fq) can be represented by an ordered pair of polynomials
D = [u(X), v(X)], with u, v ∈ Fq,deg v < deg u ≤ g and u monic satisfying
u|v2 + hv + f .

3 Group Law

The group operation in Cl(C/Fq) is performed by first computing the product of
the ideals and then reducing it modulo the principal ideals. This is the principle
behind Cantor’s algorithm [Can87, Kob89].

Obviously, this algorithm has to depend on the properties of the input –
to derive explicit formulae one needs to study additions independently from
doublings. For a complete study of all possible inputs together with formulae we
refer to [Lan04a]. In this paper we concentrate on doublings for genus 2 curves
in the most frequent case where the input [u, v] has full degree and u and h do
not have a root in common. Accordingly, we assume from now on

D = [u, v], deg u = 2, res(h, u) �= 0.

Put u = x2 + u1x+ u0, v = v1x+ v0. Composing [u, v] with itself should result
in a class [unew, vnew], where

unew = u2,

vnew ≡ v mod u,

unew | v2
new + vnewh+ f.

Then this class is reduced to obtain [u′, v′] = 2[u, v].
We fix the notation to refer to the coefficient of Xi in a polynomial p(X) as

pi.
The following expressions follow those in [Lan04a] and are explained there.

We slightly modified them for the way we will apply them.

ṽ ≡ h mod u

r = res(ṽ, u)
inv′ ≡ rṽ−1 mod u ≡ ṽ1x+ ṽ0 + u1ṽ1 mod u

k = (f + hv + v2)/u = k′ + u(x+ f4), with k′ ≡ k mod u

s′ ≡ k′ inv′ mod u

s′′ = s′ made monic
l′′ = s′′u
u′ = s′′2 + (kr2/s′

1
2 + hs′′r/s′

1)/u
v′ ≡ h+ (l′′s′

1/r + v) mod u′

Efficient Doubling on Genus Two Curves over Binary Fields 173

Remark 1. In the actual formulae we do not follow these steps literally. It turns
out to be more efficient to perform the inversion of r and s′

1 jointly using Mont-
gomery’s trick.

Going into the details of these expressions one notices that the actual ex-
ecution of the steps depends on the coefficients of the curve. We will present
formulae for three different cases: deg h = 1, deg h = 2 with obtainable h0 = 0
and deg h = 2 in general. In the two first cases we have h0 = 0 and r will simplify
(to the form r = u0r̃ for some r̃). This allows us to cancel r in the expressions,
so its inverse is not needed anymore. This is how the major speedup is obtained
in the formulae. In the case of general h we need the inversion of r and perform
the inversion of r and s′

1 jointly as explained above.
We now study the different expressions for h separately, always performing

isomorphic transformations first to achieve as many zero coefficients as possible.
In characteristic 2, curves with constant h are known to be supersingular. This
makes them weak under the Frey-Rück attack [FR94, Gal01] and, hence, they
should be avoided for DL systems.1 Note, that in any case one needs to make
sure that the extension field of Fq the Tate pairing maps to has large enough
degree to avoid this attack.

4 Case deg h = 1

In this section we assume deg h = 1. One can obtain an isomorphic curve where
f4 = h0 = 0 and h1 is divided by any cube a3. In this case it is much more useful
to have h0 zero (at the cost of a non-zero f3) as mentioned above. It is suggested
to choose the cube a3 such that a3

h1
is ’small’. This allows the multiplications

with it to be performed via additions and thus they are almost for free. If, as
usual, one chooses F2n with n odd there are no non-trivial cube roots of unity.
Hence, there is always an a such that a3 = h1. For even n this happens with
probability 1/3. This isomorphic curve is obtained using the following change of
variables and dividing the equation by a10:

Y ← a5Ỹ + a4

√
f4 +

h0

h1
X̃2, X ← a2X̃ +

h0

h1

Hence, we obtain a curve of the form Y 2+h1XY = X5+f3X3+f2X2+f1X+f0,
usually with h1 = 1. Adding a linear factor to the substitution of Ỹ one can
achieve f2 = 0 with probability 1/2. A constant term leads to f1 = 0. Hence,
there are only two free parameters f3, f0 as opposed to three in the general case
showing that the type is indeed special.

1 These curves have found an application in pairing based cryptography. The explicit
formulae for this case together with information necessary to compute the pairing
are the topic of an upcoming paper.

174 T. Lange and M. Stevens

Table 1. Doubling deg h = 1, deg u = 2

Doubling deg h = 1, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0; h2

1, h−1
1

Output [u′, v′] = 2[u, v]
Step Expression h1 = 1 h−1

1 small h1 arbitrary
1 compute rs1: 3S 3S 3S

z0 = u2
0, k′

1 = u2
1 + f3;

w0 = f0 + v2
0(= rs′

1/h3
1);

If w0 = 0 see below
2 compute 1/s1 and s′′

0 : I, 2M I, 2M I, 2M
w1 = (1/w0)z0(= h1/s1);
z1 = k′

1w1, s′′
0 = z1 + u1;

3 compute u′: 2S S, 2M S, 2M
w2 = h2

1w1, u′
1 = w2w1;

u′
0 = s′′2

0 + w2;
4 compute v′: S, 3M S, 3M S, 5M

w3 = w2 + k′
1;

v′
1 = h−1

1 (w3z1 + w2u
′
1 + f2 + v2

1);
v′
0 = h−1

1 (w3u
′
0 + f1 + z0);

total I, 6S, 5M I, 5S, 7M I, 5S, 9M
Special case s = s0

2′ compute s and precomputations: 1M 1M 2M
s0 = (1/h1)k′

1, w1 = u0s0 + v0;
3′ compute u′: S S S

u′
0 = s2

0;
4′ compute v′: 2M 2M 2M

w2 = s0(u1 + u′
0) + v1 + h1;

v′
0 = u′

0w2 + w1;
total 4S, 3M 4S, 3M 4S, 4M

With the new curve coefficients the expressions r and s will simplify to:

r = h2
1u0,

s′
1 = h1k

′
0,

s′
0 = u1s

′
1 + h1u0u1.

Since f + hv + v2 = uk′ + u2x we also have that

f0 + v2
0 = u0k

′
0 (= rs′

1/h
3
1)

f1 + u2
0 + h1v0 = u1k

′
0 + u0k

′
1

f2 + v1(h1 + v1) = k′
0 + u1k

′
1

u2
1 + f3 = k′

1

Efficient Doubling on Genus Two Curves over Binary Fields 175

making it very cheap to calculate rs′
1 as the exact coefficients of k′ are not nec-

essary. We present the doubling formulae for this case in Table 1. The operations
are counted for the case that h1 = 1, h−1

1 is ’small’ (multiplications with h−1
1

are not counted), and arbitrary h1. Both h2
1 and h−1

1 are precomputed. In Step
2 the inversion and multiplication with z0 can also be replaced by a division as
the inverse is not used later on.

5 Case deg h = 2

If h is of degree two then in general we cannot make any of its coefficients zero,
however, it is possible to make a change of coordinates to obtain h2 = 1 and
f3 = f2 = 0. The case h0 = 0 allows for a significant speedup, however, we can
only obtain h0 zero if there exists a b such that b2 + bh1 = h0 and this will be at
the cost of a non-zero f4. If there is no such b, i. e. Tr(h0/h

2
1) �= 0, then choose

b = f4 making f4 zero. This can be done by the following change of variables
and dividing the resulting equation by h10

2 .

Y ← h5
2Ỹ + f3h2X̃ +

f3(f3 + h1h2 + f3h
2
2) + f2h

2
2

h3
2

, X ← h2
2X̃ + b

5.1 Case deg h = 2, h0 = 0

First, we assume that we have obtained h0 = 0 leading to an equation

Y 2 + (X2 + h1X)Y = X5 + f4X
4 + f1X + f0,

Using a quadratic term in the transformation of Y , one can additionally obtain
f4 = 0 with probability 1/2, namely if Tr((b+ f4)/h2

2) = 0, with b as above. If,
as usual, one chooses F2n with n odd then one can always obtain either f4 = 0
or f4 = 1. Accordingly, one has three free parameters h1, f1, f0.

Then the expressions for r and s will simplify to:

r = u0(u0 + h2
1 + h1u1)

s′
1 = h1k

′
0 + u0k

′
1 + u1k

′
0

s′
0 = u1s

′
1 + u0k

′
0 + h1u0k

′
1

And since f + hv + v2 = uk′ + u2(x+ f4) we also have that

f0 + v2
0 + h0v0 + f4u

2
0 = u0k

′
0

f1 + u2
0 + h1v0 + h0v1 = u1k

′
0 + u0k

′
1

v0 + v1(h1 + v1) + f4u
2
1 = k′

0 + u1k
′
1

u2
1 + v1 = k′

1.

176 T. Lange and M. Stevens

Table 2. Doubling, deg h = 2, h0 = 0, deg u = 2

Doubling, deg h = 2, h0 = 0, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0; h2

1

Output [u′, v′] = 2[u, v]
Step Expression h1 small h1 arbitrary

1 compute k′
1 and precomputations: 3S, M 2S, 3M

z0 = u2
0, z1 = u2

1, w0 = v1(h1 + v1);
k′
1 = z1 + v1, z2 = h1u1, z3 = f4u1;

2 compute resultant r =res(ṽ, u):
r̃ = u0 + h2

1 + z2 = (r/u0);
3 compute s′

1 and almost s′
0: M 3M

w2 = u1(k′
1 + z3) + w0, w3 = v0 + h1k

′
1;

s′
1 = f1 + z0 + h1w2;

m0 = w2 + w3(= (s′
0 − u1s

′
1)/u0);

If s′
1 = 0 see below

4 compute s′′ = x + s0/s1 and s1: I, S, 3M I, S, 3M
w2 = 1/(s′

1)(= 1/rs1), w3 = u0w2;
w4 = r̃w3(= 1/s1), w5 = w2

4;
s′′
0 = u1 + m0w3;

5 compute u′: S, 2M S, 2M
z4 = f4w4, u′

1 = w4 + w5;
u′

0 = s′′2
0 + w4(s′′

0 + h1 + u1 + z4);
6 compute v′: S, 5M S, 6M

z5 = w2(m2
0 + k′

1(s′
1 + h1m0));

z6 = s′′
0 + h1 + z4 + z5;

v′
0 = v0 + z2 + z1 + w4(u′

0 + z3) + s′′
0z6;

v′
1 = v1 + w4(u′

1 + s′′
0 + f4 + u1) + z5;

total I, 6S, 12M I, 5S, 17M
Special case s = s0

3′ compute s and precomputations: I, 2M I, 2M
w1 = 1/r̃, s0 = m0w1;
w2 = u0s0 + v0 + h0;

4′ compute u′: S S
u′

0 = s2
0 + s0;

5′ compute v′: 2M 2M
w1 = s0(u1 + u′

0) + u′
0 + v1 + h1;

v′
0 = u′

0w1 + w2;
total I, 4S, 6M I, 3S, 10M

Table 2 presents the operations for the case of h0 = 0. In the formulae
there are two counted multiplications with f4 and five with h1 which are
cheaper or for free when f4 resp. h1 is ’small’. Furthermore, h2

1 is
precomputed.

Efficient Doubling on Genus Two Curves over Binary Fields 177

Table 3. Doubling, deg h = 2, deg u = 2

Doubling, deg h = 2, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0; h2

0
Output [u′, v′] = 2[u, v]
Step Expression h1, h0 small h1 small hi arbitrary

1 compute k′
1 and precomputations: 3S 3S 2S,2M

z0 = u2
0, z1 = u2

1, w0 = v1(h1 + v1);
k′
1 = z1 + v1, w1 = h1u0;

2 compute resultant r =res(ṽ, u): 1M 2M 2M
w2 = h0u1, r = h2

0 + z0 + (h1 + u1)(w1 + w2);
3 compute s′

1 and almost s′
0: 1S,2M 1S,4M 1S,5M

s′
1 = f1 + z0 + h0z1 + h1(u1k′

1 + w0);
m0 = f0 + w1k′

1 + h0w0 + v2
0(= s′

0 − u1s′
1);

If s′
1 = 0 see below

4 compute s′′ = x + s0/s1 and s1: I, 2S, 5M I, 2S, 5M I, 2S, 5M
w1 = 1/(rs′

1)(= 1/r2s1), w2 = rw1(= 1/s′
1);

w3 = s′2
1 w1(= s1);

w4 = rw2(= 1/s1), w5 = w2
4 , s′′

0 = u1 + m0w2;
5 compute l′: 2M 2M 2M

l′2 = u1 + s′′
0 , l′1 = u1s′′

0 + u0, l′0 = u0s′′
0 ;

6 compute u′: S, M S, M S, M
u′

0 = s′′
0

2 + w4(s′′
0 + u1 + h1);

u′
1 = w4 + w5;

7 compute v′: 4M 4M 4M
w1 = l′2 + u′

1, w2 = u′
1w1 + u′

0 + l′1;
v′
1 = w2w3 + v1 + h1 + u′

1;
w2 = u′

0w1 + l′0, v′
0 = w2w3 + v0 + h0 + u′

0;
total I,7S,15M I,7S,18M I, 6S, 21 M

Special case s = s0

3′ compute s and precomputations: I,2M I,2M I,2M
w1 = 1/r, s0 = m0w1, w2 = u0s0 + v0 + h0;

4′ compute u′: S S S
u′

0 = s2
0 + s0;

5′ compute v′: 2M 2M 2M
w1 = s0(u1 + u′

0) + u′
0 + v1 + h1, v′

0 = u′
0w1 + w2;

total I,5S,7M I,5S,10M I,4S,13M

5.2 Case deg h = 2, h0 �= 0

For completeness we include the formulae for the general case deg h = 2, h2 =
1, h0 �= 0. Compared to the doubling formulae in [Lan04a] we manage to trade
one multiplication for a squaring which is usually more efficient in characteristic
2. To this aim we need to include one fixed precomputation h2

0 to the curve
parameters.

For h of full degree with non-zero h0 we can transform to

Y 2 + (X2 + h1X + h0)Y = X5 + f1X + f0.

Accordingly h2 and f4 are not mentioned in the formulae.
If one is willing to choose either (or both) h1 or h0 ’small’, we can get much

more operations for free.
Here we only used that f +hv+ v2 = uk′ +u2(x+ f4) to calculate s′ cheaper

and that s′
0 = u1s

′
1 +m0 for some relatively simple m0:

178 T. Lange and M. Stevens

s′
1 = f1 + u2

0 + h0u
2
1 + h1(u1k

′
1 + v1(h1 + v1))

m0 = f0 + h1u0k
′
1 + h0v1(h1 + v1) + v2

0

6 Summary

The previous sections showed a complete study of doubling formulae depending
on the type of h. We summarize the findings in Table 4 listing only the general
cases; for h of degree 1 and general h the case f4 not small does not apply since
then f4 = 0.

Table 4. Overview

h = X h = h1X h = X2 + h1X h = X2 + h1X + h0

h−1
1 small h1 small h1, h0 small h1 small

f4 small I, 6S, 5M I, 5S, 7M I, 5S, 9M I, 6S, 10M I, 5S, 15M I, 7S, 15M I, 7S, 18M I, 6S, 21M
f4 arb. n. a. n. a. n. a. I, 6S, 12M I, 5S, 17M n. a. n. a. n. a.

7 Experimental Results

We implemented our new formulae using the NTL library. We used a simple
sliding windows method with window size 3 to perform the scalar multiplication
in all tests. The extension fields over F2 were all defined by means of a trinomial.
Magma was used to create good random curve equations.

We tested the different cases for F = F283 and F = F297 and we used 1 as
synonym for ’small’ which means that for deg h = 1 the two cases h1 = 1 and h1
’small’ were combined. We also included the elliptic curve case where the field
is twice as big to have comparable security, here we also used the same sliding
windows method.

Field size * genus

226

199

194

191

179

173

163

157

149

139

131

126

M
ea

n
tim

e
(s

)

,010

,008

,006

,004

,002

0,000

Curve type

deg2 arb

deg2 nc arb f4

deg2 nc small

deg1 arb

ecc

deg1 monic

Timings on GF(2^n), n=63

deg1 m
onic

deg1 arb

ecc (n=127)

deg2 nc sm
all

deg2 nc sm
all f4

deg2 nc arb

deg2 nc arb f4

deg2 arb

M
ea

n
tim

e
(s

)

,0024

,0022

,0020

,0018

,0016

,0014

,0012

,0010

,0008

,0006

,0004

,0002

0,0000

Efficient Doubling on Genus Two Curves over Binary Fields 179

Timings on GF(2^n), n=81

deg1 m
onic

ecc (n=157)

deg1 arb

deg2 nc sm
all

deg2 nc sm
all f4

deg2 nc arb

deg2 nc arb f4

deg2 arb

M
ea

n
tim

e
(s

)

,005

,004

,003

,002

,001

0,000

Timings on GF(2^n), n=97

deg1 m
onic

ecc (n=193)

deg1 arb

deg2 nc sm
all

deg2 nc sm
all f4

deg2 nc arb

deg2 nc arb f4

deg2 arb

M
ea

n
tim

e
(s

)

,008

,007

,006

,005

,004

,003

,002

,001

0,000

All tests were performed on a AMD Athlon XP 2500+ laptop running Gen-
too linux. We used the NTL library to perform the field arithmetic. For all
field extensions we used a trinomial or a pentanomial for the field arithmetic.
Specifically for n = 63, 81, 97, 127, 193 we used a trinomial and for n = 157 a
pentanomial. For the three bar graphs we have chosen field sizes for HEC and
ECC such that the group orders were very close and that the arithmetic could
be done with a trinomial to make a fair comparison. However for n = 81 there
was no such comparable field extension for ECC. Therefore we have chosen for
a smaller group order (n = 157) and arithmetic based upon a pentanomial. The
cases included in the graphs are:

deg2 arb: The case where deg h = 2 and h0 �= 0
deg2 nc arb f4: The case where deg h = 2, h0 = 0, f4 �= 0;
deg2 nc arb: The case where deg h = 2, h0 = 0, f4 = 0;
deg2 nc small f4: The case where deg h = 2, h0 = 0, f4 �= 0 and h1 small;
deg2 nc small: The case where deg h = 2, h0 = 0, f4 = 0 and h1 small;
deg1 arb: The case where deg h = 1;
deg1 monic: The case where deg h = 1 and h1 = 1;
ecc: ECC on the according field extension.

8 Conclusion and Outlook

We have given a complete study of doubling formulae reaching the minimal
number of field operations in the respective cases and achieving a lower operation
count compared to the special cases [PWP04, BD04] published so far.

The addition formulae depend far less on the equation of h and not on that
of f . One can save one multiplication in case of h1 ∈ {0, 1}; all other special
choices allow to save at most some additions.

Accordingly, the operation counts for addition and doubling differ quite sig-
nificantly, especially in the case of h = X, making sidechannel attacks feasible.

180 T. Lange and M. Stevens

Following Coron’s double-and-always-add countermeasure would lead to includ-
ing many of the costly additions.

We assume first the setting of rather low storage capacities such that pre-
computations cannot be made. Then one uses the NAF of the scalar to minimize
the Hamming weight. This means that every addition (ADD) is followed by at
least two doublings. As doublings have become rather cheap now, we propose to
follow the strategy of putting the fixed sequence of . . . DBL, ADD, DBL, DBL,
DBL, ADD, DBL, DBL, DBL, . . . (or even four doublings following an addition).
This can be achieved by inserting several dummy doublings and only very few
dummy additions.

The situation looks much more friendly if we are allowed to store precomputed
multiples of the base class D. Möllers windowing method [M0̈1] allows to obtain
a uniform side channel by using only non-zero coefficients in the expansion.

In this article we restricted our attention to affine coordinates as in binary
fields an inversion is not prohibitively expensive. It is planned to extend the
formulae to inversion-free coordinate systems as well; our findings give new in-
sight in even more efficient choices of the additional coordinates. Furthermore,
the lower operation count obtained here for the special choices applies also to
other coordinate systems. Projective and new coordinates bear the additional
advantage that randomization techniques [Ava04] can be applied to avoid DPA,
e. g. all coordinates can be multiplied by (powers of) a random integer leading
to a different representation of the same ideal class. For affine coordinates one
can randomize the curve equation by making a transformation to an isomorphic
curve. This leaves invariant the classes of deg h = 1 and deg h = 2 but one cannot
keep all best choices made above and hence, cannot achieve the lowest number of
operations. As our publication details all possible cases one now has the choice
to trade efficiency for a larger class of curves and hence better randomization.

References

[ACD+04] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. The Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC, 2004. to appear.

[Ava03] R. M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in
Software Implementations. Cryptology ePrint Archive, Report 2003/253,
2003. to appear in CHES 2004.

[Ava04] R. M. Avanzi. Countermeasures Against Differential Power Analysis for
Hyperelliptic Curve Cryptosystems. In Proceedings of CHES 2003, volume
2779 of LNCS, pages 366–381, 2004.

[BD04] B. Byramjee and S. Duqesne. Classification of genus 2 curves over F2n

and optimization of their arithmetic. Cryptology ePrint Archive, Report
2004/107, 2004. http://eprint.iacr.org/.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math.
Comp., 48:95–101, 1987.

[FL03] G. Frey and T. Lange. Mathematical Background of Public Key Cryptog-
raphy. Technical Report 10, IEM Essen, 2003.

Efficient Doubling on Genus Two Curves over Binary Fields 181

[FR94] G. Frey and H. G. Rück. A remark concerning m-divisibility and the dis-
crete logarithm problem in the divisor class group of curves. Math. Comp.,
62:865–874, 1994.

[Gal01] S. D. Galbraith. Supersingular Curves in Cryptography. In Advances in
Cryptology – Asiacrypt 2001, volume 2248 of Lect. Notes Comput. Sci.,
pages 495–513. Springer, 2001.

[Gau00] P. Gaudry. An algorithm for solving the discrete log problem on hyper-
elliptic curves. In Advances in Cryptology – Eurocrypt’2000, Lect. Notes
Comput. Sci., pages 19–34. Springer, 2000.

[GLS00] C. Günther, T. Lange, and A. Stein. Speeding up the Arithmetic on Koblitz
Curves of Genus Two. In Selected Areas in Cryptography – SAC 2000,
volume 2012 of Lect. Notes Comput. Sci., pages 106–117. Springer, 2000.

[GT04] P. Gaudry and E. Thomé. A double large prime variation for small genus
hyperelliptic index calculus. Cryptology ePrint Archive, Report 2004/153,
2004.

[Kob89] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1:139–150, 1989.
[Lan04a] T. Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves.

http://www.itsc.ruhr-uni-bochum.de/tanja/preprints.html, 2004. to
appear in J. AAECC.

[Lan04b] T. Lange. Koblitz curve cryptosystems. Finite Fields and Their Applica-
tions, 2004. to appear.

[Lor96] D. Lorenzini. An Invitation to Arithmetic Geometry, volume 9 of Graduate
studies in mathematics. AMS, 1996.

[M0̈1] B. Möller. Securing elliptic curve point multiplication against side-channel
attacks. In Proc. of ISC 2001, pages 324–334, 2001.

[MWZ98] A. J. Menezes, Y.-H. Wu, and R. Zuccherato. An Elementary Introduc-
tion to Hyperelliptic Curves. In N. Koblitz, editor, Algebraic Aspects of
Cryptography, pages 155–178. Springer, 1998.

[Nag04] K. Nagao. Improvement of Thériault Algorithm of Index Calculus for Ja-
cobian of Hyperelliptic Curves of Small Genus. Cryptology ePrint Archive,
Report 2004/161, 2004.

[PWP04] J. Pelzl, T. Wollinger, and C. Paar. Special Hyperelliptic Curve Cryp-
tosystems of Genus Two: Efficient Arithmetic and Fast Implementation. In
Embedded Cryptographic Hardware: Design and Security, 2004. to appear.

[Sti93] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, 1993.
[Thé03] N. Thériault. Index calculus attack for hyperelliptic curves of small genus.

In Advances in cryptology – Asiacrypt 2003, volume 2894 of Lect. Notes
Comput. Sci., pages 75–92. Springer, 2003.

About the Security of Ciphers
(Semantic Security and Pseudo-Random

Permutations)

Duong Hieu Phan and David Pointcheval

CNRS/ENS – Dépt d’informatique – 45 rue d’Ulm, 75230 Paris Cedex 05, France
{duong.hieu.phan, david.pointcheval}@ens.fr

Abstract. Probabilistic symmetric encryption have already been widely
studied, from a theoretical point of view. Nevertheless, many applications
require length-preserving encryption, to be patched at a minimal cost to
include privacy without modifying the format (e.g. encrypted filesys-
tems). In this paper, we thus consider the security notions for length-
preserving, deterministic and symmetric encryption schemes, also termed
ciphers: semantic security under lunchtime and challenge-adaptive ad-
versaries. We furthermore provide some relations for this notion between
different models of adversaries, and the more classical security notions for
ciphers: pseudo-random permutations (PRP) and super pseudo-random
permutations (SPRP).

1 Introduction

The main goal for any encryption scheme is secrecy: ideally, such a notion means
that a ciphertext should not reveal any information about the plaintext, however
powerful is the adversary. This had been defined under “perfect secrecy” [11], but
also showed to be impossible, unless one uses one-time pad, which is a symmetric
encryption that uses a secret key as long as the messages to be encrypted. That
is, if one wants to use a small symmetric key in order to protect many plaintexts
or a long message, or asymmetric encryption, such perfect secrecy is impossible.

To overcome this theoretical impossibility, but which has no real practical
impact since adversaries are computationally limited, several security notions
have thereafter been defined, and namely the polynomial security [4], a.k.a.
indistinguishability of ciphertexts or semantic security. This intuitively means
that no polynomially bounded adversary can extract any information about the
plaintext, given the ciphertext.

However, in practice, an adversary is not only given the challenge ciphertext
about which plaintext it wants to learn some information. It may also have
access to extra information, such as plaintext-ciphertext pairs. According to the
way these pairs are obtained, several kinds of attacks may be mounted: known
pairs, chosen-plaintext or chosen-ciphertext attacks, in an adaptive way or not.
Furthermore, when considering semantic security, the choice of the plaintexts or
the ciphertexts may be allowed before the adversary has been given the challenge
ciphertext (lunchtime attacks [8]), or unlimited (challenge-adaptive attacks [10]).

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 182–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

About the Security of Ciphers 183

1.1 Some Wordings

In order to make things clear, let us note that all the adversaries considered in
this paper are implicitly adaptive, in the sense that their queries to any oracle
may depend on previous answers, but not necessarily on the challenge cipher-
text they want to break (when such a specific challenge exists, as in the semantic
security game, or the indistinguishability one). To make the distinction between
whether the challenge ciphertext may impact the queries or not, we will use
the terms “adaptive attacks” and “lunchtime attacks” respectively: in lunchtime
attacks the adversary has a full and adaptive access to oracles but before the
challenge ciphertext is known only, while in adaptive attacks this access is un-
limited in time.

1.2 Motivation

Relations between various security notions for symmetric encryption, under dif-
ferent kinds of attacks, have been deeply studied by Bellare et al. [1] and Katz
and Yung [6]. But they were mainly restricted to the probabilistic case. Never-
theless, many applications of encryption require length-preserving schemes. For
compatibility, one may indeed want the message format to be similar, whatever
it is in clear (no privacy) or encrypted (enhanced with privacy). Another famous
application of encryption is for encrypted filesystems [5], which need encryption
schemes able to encipher the sectors of a disk in-place, while sectors have a
fixed length. Length-preserving symmetric encryption thus means deterministic
encryption schemes. In the following we thus focus on length-preserving, deter-
ministic and symmetric encryption schemes, also termed ciphers. However, from
our knowledge, no analysis of ciphers has ever been done so far. The main reason
may be that, while the security goal is privacy, no semantic security definition fits
the deterministic case: it is clear that the straightforward extension of the usual
notion fails when considering deterministic encryption (probabilistic encryption
is a basic requirement for semantic security, when an oracle —encryption and
decryption— is available at least once). As a consequence, other notions are
used: pseudo-random permutation or super pseudo-random permutation prop-
erties [3, 7].

The security notion one usually requires from a block cipher is indeed to
look like perfectly random permutations for random keys (family of pseudo-
random permutations if one just considers chosen-plaintext attacks, or family
of super pseudo-random permutations if decryption queries are also possible).
This is a very strong security notion useful when the block cipher is seen as a all-
purpose primitive (for providing stream ciphers with encryption modes, message
authentication codes, etc.). But for confidentiality, the useful notion is secrecy
only: the view of the ciphertext does not leak any useful information about the
plaintext to a (polynomial) adversary. While the former notion of super pseudo-
random permutations is clearly stronger than the latter, the actual relations
have never been studied.

184 D.H. Phan and D. Pointcheval

1.3 Previous Work

Security notions for encryption have been defined a long time ago, namely with
the definition of polynomial security [4] (a.k.a. semantic security or indistin-
guishability). Bellare et al. [1] studied several variants of the latter, for symmetric
encryption, under the names of find-then-guess, left-or-right and real-or-random,
and relations in the concrete setting. Katz and Yung [6] studied the actual dif-
ference between these various kinds of attacks, against probabilistic symmetric
encryption. Indeed, whereas in the public-key setting chosen-plaintext attack
is the basic scenario for an adversary, since it can encrypt any plaintext of its
choice granted the public key, in the symmetric setting, simply some known
plaintext-ciphertext pairs may give extra information. However, they showed
that an adaptive chosen-plaintext attack (where queries are allowed even after
the challenge ciphertext is known) does not help more than a lunchtime attack
(where oracle accesses are limited up to the reception of the challenge cipher-
text.)

As already noted, the security notion usually required from a block cipher is
the (super) pseudo-randomness, which means to look like perfectly random per-
mutations, for randomly chosen keys. Depending on whether a decryption oracle
is available or not, one indeed considers either the super pseudo-randomness or
the pseudo-randomness only, respectively. The latter notion (the weakest) has
been recently studied by Desai and Miner [2]. They claimed the equivalence be-
tween this notion and the semantic security under lunchtime chosen-plaintext
attacks. Halevy and Rogaway [5] showed the equivalence between the super
pseudo-randomness and the left-or-right indistinguishability, with (almost) un-
limited oracle accesses, for tweakable ciphers.

1.4 Contributions

In this paper, we study the security notions of secrecy for ciphers, namely seman-
tic security (indistinguishability of ciphertext) and (super) pseudo-randomness,
with the existing relations between them.

We first show that the usual indistinguishability, modeled by the find-then-
guess game, (with some natural restrictions) is still equivalent to the natural
definition of semantic security (adapted for symmetric and deterministic en-
cryption).

We then show that some results relative to the probabilistic case remain true
for ciphers. Namely, adaptive chosen-plaintext attacks do not provide significant
advantage against lunchtime attacks. More interestingly, we also consider the
relation between adaptive and lunchtime chosen-ciphertext attacks, and prove
that an adaptive access does not help either in the case where the cipher and its
inverse are already both secure against lunchtime attacks.

Finally, for completeness, we provide relations between the above notions
and the notion of (super) pseudo-random permutations. We namely prove that
indistinguishability against lunchtime adversaries is equivalent to the notion of
super pseudo-random permutations, when the cipher and its inverse have the

About the Security of Ciphers 185

same security level against lunchtime attacks: challenge-adaptive security level
is not necessary. All the proofs and some additional relations, under various
assumptions, are provided in the full version [9].

We believe that these results have concrete applications for practical ciphers,
since the encryption and the decryption algorithms are often very similar, and
thus with a similar security level. For example, when considering DES possibly
using some mode of operation, under the conjecture that a slight modification of
the key schedule (replacement of the left rotation by a right rotation) does not
affect the security against at least lunchtime adversaries, we can show that the
above results hold without any additional assumption (see the full version [9] for
the application.)

2 Security Notions for Encryption

2.1 Symmetric Encryption Schemes

Let us first review the formal definition of a symmetric encryption scheme π =
(k, �, E ,D). It is defined by two algorithms, parameterized by a key k that is
assumed to be uniformly distributed in {0, 1}k. Note that the two main data in
practice are k, the bit-length of the keys, and � the bit-length of the block to be
encrypted:

– the encryption algorithm Ek, which on a message m from the set {0, 1}�, and
random coins r from {0, 1}μ, outputs a ciphertext c in {0, 1}ν ;

– the decryption algorithm Dk, which on a ciphertext c outputs the corre-
sponding plaintext m, or ⊥ if there is no corresponding plaintext.

2.2 Ciphers: Length-Preserving, Deterministic and Symmetric
Encryption Schemes

In the particular case of deterministic encryption, the encryption scheme does
not use any random coin, since it is furthermore length-preserving, any ciphertext
is valid: it is a permutation for each key (and thus μ = 0 and ν = �.) For a given
cipher π = (k, �, E ,D), we can denote the inverse cipher by:

π−1 = (k, �, E−1 = D,D−1 = E).

2.3 Semantic Security

The natural security notion for encryption is the computational variant of perfect
secrecy: the view of the ciphertext does not help to learn any information about
the plaintext. This has been formalized by the notion of semantic security [4],
for which a SEM-adversary A = (A1,A2) plays the following game, in two steps:

– a key k is first uniformly drawn from {0, 1}k;
– Stage 1: A1 outputs a samplable distribution D on the set {0, 1}�, together

with a state information s to be forwarded to the second step of the attack;

186 D.H. Phan and D. Pointcheval

– a message m is drawn from {0, 1}� according to the distribution D (denoted
m

D← {0, 1}�), and a random tape r is uniformly drawn from {0, 1}μ (denoted
r

R← {0, 1}μ) then one computes c = Ek(m; r);
– Stage 2: A2 is given the state information s and the ciphertext c. It outputs

a computable predicate f .

The adversary is said to be successful if f(m) is true. It means that it has
been able to learn at least one bit of information about m, from the ciphertext c.
However it is easy for an adversary to win all the time, by outputting a constant
predicate f . Then we say that A breaks the semantic security if the predicate
f holds on m with probability significantly greater than for another random
plaintext m′ (following the same “a priori” distribution D).

Therefore, we define the advantage Advsem
π (A) of an adversary A, against the

semantic security of an encryption scheme π, by Pr[f(m) = 1] − Pr[f(m′) = 1]
on the distribution space D = {k R← {0, 1}k; (D, s) ← A1();m,m′ D← {0, 1}�; r R←
{0, 1}μ; c = Ek(m; r); f ← A2(s, c)}
Definition 1. An encryption scheme π is said to be (ε, t)-semantically secure
if for any adversary A, that runs within time t, Advsem

π (A) ≤ ε.

Adversaries. Adversary A may be given extra information than just the chal-
lenge ciphertext, such as plaintext-ciphertext pairs. According to the way these
pairs are defined, several kinds of attacks may be mounted: known pairs, chosen-
plaintext and/or chosen-ciphertext attacks. Furthermore, the choice of the plain-
texts or the ciphertexts may be allowed before the adversary has been given the
challenge ciphertext only, or unlimited.

Such additional information is modeled by (un)limited access to oracles that
compute encryptions or decryptions. A (t, e1, d1, e2, d2)-adversary A = (AEk,Dk

1 ,

AEk,Dk
2) is a 2-stage adversary A where A1 (resp. A2) can ask up to e1 and d1

(resp. e2 and d2) queries to the encryption and decryption oracles Ek and Dk,
with a running time bounded by t. We cover this way the passive adversary,
where e1 = e2 = d1 = d2 = 0 that is denoted P0-C0, or any active adversary
that is denoted PX-CY, according to the oracles access:

X = ’1’ – e1 > 0 but e2 = 0, lunchtime chosen-plaintext (P1-CY);
Y = ’1’ – d1 > 0 but d2 = 0, lunchtime chosen-ciphertext (PX-C1);
X = ’2’ – e2 > 0 whatever e1 is, adaptive chosen-plaintext (P2-CY);
Y = ’2’ – d2 > 0 whatever d1 is, adaptive chosen-ciphertext (PX-C2).

We remind that all the adversaries are adaptive w.r.t. the previous oracle an-
swers, and thus by “adaptive” we mean “challenge-adaptive”, while “lunchtime”
stands for “challenge-non-adaptive”.

Such a PX-CY adversary can play the attack game against semantic security,
but there are natural restrictions in case of oracle access. Let us denote by
ΛE (ΛD resp.) the lists of plaintext-ciphertext (m, c) pairs obtained from the
encryption oracle (and the decryption oracle resp.). The superscript m (resp.

About the Security of Ciphers 187

c) will be used to restrict these lists to the first coordinates (resp. the second
coordinates), which thus leads to two lists of plaintexts Λm

E and Λm
D , and two

lists of ciphertexts Λc
E and Λc

D. The restrictions are thus:

– if the adversary has access to the decryption oracle (that is C1 or C2), it is
restricted not to ask the challenge ciphertext c in the second stage;

– in the deterministic case, if the adversary has access to the encryption oracle
(that is P1 or P2), the support SD of D (the set of plaintexts that have a
non-zero probability in D) must be disjoint with the list of the plaintexts
asked to the encryption oracle at any time, or obtained from the decryption
oracle during the first stage.

The former restriction is the classical one, and the latter one is quite natural
for deterministic encryption. We show later (by proving equivalence with the
find-then-guess notion) that it is a minimal restriction.

Definition 2. An encryption scheme π is said to be (ε, t, e1, d1, e2, d2)-seman-
tically secure if for any (t, e1, d1, e2, d2)-SEM adversary A, that asks at most e1
and d1 (resp. e2 and d2) encryption and decryption queries in the first stage
(resp. in the second stage) within time t, Advsem

π (A) ≤ ε.

2.4 Indistinguishability: Find-Then-Guess

The indistinguishability security notion (also known as find-then-guess [1]) in-
volves a (t, e1, d1, e2, d2)-IND adversary A = (AEk,Dk

1 ,AEk,Dk
2) that plays the fol-

lowing game:

– a key k is first uniformly drawn from {0, 1}k;
– Stage 1 (find): AEk,Dk

1 outputs two plaintexts (m0,m1) together with a state
information s;

– a bit b is randomly drawn, and a random tape r is uniformly drawn from
{0, 1}μ then one computes c = Ek(mb; r);

– Stage 2 (guess): AEk,Dk
2 is given the state information s and the ciphertext c.

It outputs its guess b′ for b.

The adversary is said to be successful if b′ = b. It means that it has been
able to distinguish the encryption of m0 from the encryption of m1. However
it is easy for an adversary to win half the time, by simply flipping a random
coin. Then we say that A breaks the find-then-guess security if b′ = b with
probability significantly greater than 1/2. Therefore, we define the advantage of
an adversary A, against the find-then-guess security, or indistinguishability, of
an encryption scheme π, by the following formula:

Advind
π (A) = 2 × Pr

[
k R← {0, 1}k; (m0,m1, s) ← AEk,Dk

1 (); b R← {0, 1};
r

R← {0, 1}μ; c = Ek(mb; r); b′ ← AEk,Dk
2 (s, c) : b′ = b

]
− 1.

As above, there are also natural restrictions in case of oracle access:

188 D.H. Phan and D. Pointcheval

– if the adversary has access to the decryption oracle (that is C1 or C2), it is
restricted not to ask the challenge ciphertext c in the second stage;

– in the deterministic case, if the adversary has access to the encryption oracle
(that is P1 or P2) it is restricted not to ask m0 or m1 to the encryption oracle
at any time, or to have obtained m0 or m1 from the decryption oracle during
the first stage.

Since we focus this paper on the deterministic case, one can note that the
above restrictions sum up to

m0,m1 �∈ Λm
E c �∈ Λc

D.

Definition 3. An encryption scheme π is said to be (ε, t, e1, d1, e2, d2)-indistin-
guishable if for any (t, e1, d1, e2, d2)-IND adversary A, that asks at most e1 and
d1 (resp. e2 and d2) encryption and decryption queries in the first stage, a.k.a.
the find stage (resp. in the second stage, a.k.a. the guess stage) within time t,
Advind

π (A) ≤ ε.

2.5 Pseudo-Random and Super Pseudo-Random Permutations

Pseudo-Random Permutation. The usual security notion one requires from
a block cipher is to look like perfectly random permutations, for the keys uni-
formly drawn. This notion can be formalized as follows: any adversary accessing
an oracle Ob (O0 corresponds to the perfectly random permutation P —a per-
mutation randomly chosen in the set SP� of the permutations onto {0, 1}�— and
O1 corresponds to an encryption permutation Ek, for a random key k) cannot
guess b (i.e, it cannot distinguish if it accesses the perfectly random permutation
P or the actual encryption algorithm Ek, with a random key):

Advprp
π (A) = 2 × Pr

[
k R← {0, 1}k;P R← SP�;O0 = P;O1 = Ek;
b

R← {0, 1}; b′ ← AOb() : b′ = b

]
− 1.

Definition 4. An encryption scheme π is said to be a (ε, t, n)-pseudo-random
permutation, denoted (ε, t, n)-PRP if for any (t, n)-PRP adversary A, that asks
at most n encryption queries within time t, Advprp

π (A) ≤ ε.

Super Pseudo-Random Permutation. The above notion does not take into
account the decryption oracle access. Hence the stronger notion: as above, one
requires that no adversary can distinguish if it accesses the perfectly random
permutation P or the actual cipher. But in this case, the adversary not only
accesses the permutation Ob itself, which is either P or Ek, but also its inverse
O−1

b , which is thus either P−1 or Dk:

Advsprp
π (A) = 2 × Pr

⎡⎢⎣k R← {0, 1}k;P R← SP�;
(O0,O−1

0) = (P,P−1); (O1,O−1
1) = (Ek,Dk);

b
R← {0, 1}; b′ ← AOb,O−1

b () : b′ = b

⎤⎥⎦− 1.

About the Security of Ciphers 189

Definition 5. An encryption scheme π is said to be a (ε, t, n,m)-super pseudo-
random permutation, denoted (ε, t, n,m)-SPRP if for any (t, n,m)-SPRP adver-
sary A, that asks at most n encryption queries and m decryption queries within
time t, Advsprp

π (A) ≤ ε.

2.6 Equivalences

For completeness, let us briefly recall a well-known result: indistinguishability
and semantic security are equivalent security notions, if D is required to be
efficiently samplable, and the predicate f to be efficiently computable. From a
more concrete point of view, we can state the following theorem.

Theorem 6. For any encryption scheme π = (k, �, E ,D):

1
2
× Advind

π (t, e1, d1, e2, d2) ≤ Advsem
π (t, e1, d1, e2, d2) ≤ Advind

π (t′, e1, d1, e2, d2),

where t′ ≤ t + 2TD + Tf , if the sampling time for D is bounded by TD and the
time to evaluate predicate f is bounded by Tf .

3 About the Indistinguishability of Ciphers

First, as already remarked, contrary to the probabilistic case, restrictions do not
exist for the challenge only, which should not have been asked to the decryption
oracle, but also form0 andm1: they should not have been asked to the encryption
oracle either, hence m0,m1 �∈ Λm

E and c �∈ Λc
D.

3.1 Normal Adversary

Moreover, in the following, we restrict any adversary to behave like a normal
adversary, which means that

– each query is asked at most once;
– if m has been asked as an encryption query (or to Ob), with answer c, the

query c will never be asked to the decryption oracle (or to O−1
b) later;

– if c has been asked as a decryption query (or to O−1
b), with answer m, the

query m will never be asked to the encryption oracle (or to Ob) later;
– for a (t, n)-PRP adversary (or (t, n,m)-SPRP adversary, respectively), the

adversary makes exactly n queries to Ob (n queries to Ob and m queries to
O−1

b , respectively) .

Proposition 7. Any adversary can be made normal (with just additional look
up in tables.)

3.2 Adaptive Adversaries

Since we consider general adversaries, with possible oracle access, according to
the values e1, d1, e2 and d2, for simpler notations we omit the oracle notation
A = (AEk,Dk

1 ,AEk,Dk
2) but simply use A = (A1,A2). Oracle access is now implicit.

190 D.H. Phan and D. Pointcheval

Adaptive Chosen-Plaintext Attacks. First, we review the property showed
by Katz and Yung [6] about probabilistic symmetric encryption schemes. By
the Corollary 10 below, we prove that it still holds for ciphers: an adaptive
access to the encryption oracle after the challenge ciphertext is known does
not significantly increase the power of an adversary which already had adaptive
access to this oracle in the first stage.

Theorem 8. For any cipher π:

Advind
π (t, e1, d1, e2, d2) ≤ (2e2 + 1) × Advind

π (t, e1 + e2, d1 + d2, 0, d2).

Proof. Let A be a (t, e1, e2, d1, d2)-normal adversary against indistinguishability.
We denote by A[ε2] the new adversary B we build using A, by restricting the
interactions A actually has with the world. We indeed filter the queries it asks:
all the queries asked by A1 are forwarded (as well as the answers); however,
only the first ε2 encryption queries are forwarded in the second stage, extra
encryption queries are answered at random, but different from any previously
involved ciphertext (the decryption queries, the ciphertext answers to encryption
queries, and the challenge ciphertext.) We easily see that A[ε2] is normal. Note
that A[e2] = A since in this case all the queries are forwarded, as well as the
answers, whereas A[0] is in fact an adversary who makes no encryption query in
the second stage, since the queries asked by A2 are answered at random, without
querying Ek.

Lemma 9. For any 1 ≤ ε2 ≤ e2:

Advind
π (A[ε2]) − Advind

π (A[ε2 − 1]) ≤ 2 × Advind
π (t, e1 + e2, d1 + d2, 0, d2).

The proof of this lemma is quite similar but simpler than the proof of the
Lemma 12 below. The full proof of the Lemma 12 is included below. By ap-
plying e2 times this lemma, using a classical hybrid argument, one gets

Advind
π (A) ≤ Advind

π (t, e1, d1, 0, d2) + 2e2 × Advind
π (t, e1 + e2, d1 + d2, 0, d2),

which implies the claimed result. ��
In the particular case where d2 = 0, one gets the following corollary which means
that adaptive chosen-plaintext attacks do not give any additional power to an
adversary.

Corollary 10. For any cipher π:

Advind
π (t, e1, d1, e2, 0) ≤ (2e2 + 1) × Advind

π (t, e1 + e2, d1, 0, 0).

Adaptive Chosen-Plaintext and Chosen-Ciphertext Attacks. This re-
sult was already known. But the particular case of deterministic encryption
admits improvements: under specific assumptions, an adaptive access to both
the encryption oracle and the decryption oracle after the challenge ciphertext
is known does not significantly increase the power of an adversary which al-
ready had access to these oracles in the first stage. Interestingly, the cost of the
reduction is only linear in the (total) number of queries.

About the Security of Ciphers 191

Theorem 11. For any cipher π: Advind
π (t, e1, d1, e2, d2) is upper-bounded by(

2(e2 + d2) + 1
)(

Advind
π (t, e1 + e2, d1 + d2, 0, 0)

+Advind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)
.

Proof. Let A be a (t, e1, e2, d1, d2)-normal adversary against indistinguishability.
As above, we denote by A[n] the new adversary B we build using A, by restricting
the interactions A actually has with the world: all the queries in the first stage
are forwarded, and the answers too, but only the first n queries are answered
correctly in the second stage, while extra queries are answered at random but
different from any message which previously appeared in the same category: if it
is an encryption query, the answer must be different from any previously involved
ciphertext (the decryption queries, the ciphertext answers to encryption queries,
and the challenge); if it is a decryption query, the answer must be different from
any previously involved plaintext (the encryption queries, the plaintext answers
to decryption queries, and the two plaintexts output of A1). We easily see that
A[n] is normal. Note that A[e2 + d2] = A, since there are at most e2 + d2 oracle
queries in the second stage. However, A[0] is a lunchtime adversary, since all
the queries in the second stage are answered at random, without querying any
oracle.

Lemma 12. For any n ≤ e2 +d2: the difference Advind
π (A[n])−Advind

π (A[n−1])
is upper-bounded by

2 ×
(

Advind
π (t, e1 + e2, d1 + d2, 0, 0) + Advind

π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)
)
,

where t is the running time of A.

Proof. We construct two adversaries B and C, such that for each successful exe-
cution of A, one of B or C is successful. The former is a (t, e1+e2, d1+d2, 0, 0)-IND
adversary against π, while the latter is a (t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)-IND
adversary against π−1.

Description of B and C. Our adversaries B and C actually restrict the interac-
tions A has, the same way as A[n − 1] or A[n] would do: B1 and C1 run A1,
forwarding any query/answer to their corresponding encryption/decryption or-
acles1. When A1 outputs (m0,m1), B1 and C1 choose a random bit b and get
c = Ek(mb). This value requires one more encryption query to π for B1, while
it requires one more decryption query to π−1 for C1. Then B1 and C1 run A2(c)
up to the nth query q, still forwarding any query/answer to their correspond-
ing oracles, except that last q one (the nth query of A2). In the case that A2
makes less than n queries, B and C complete randomly their games by choosing
immediately two random plaintexts different from any previous plaintext and
outputting randomly the guesses. The advantages are thus exactly zero in this
case. We thus now turn to the case where such a query q exists:

1 Note that a query to Ek corresponds to an encryption query to π (for B1), while it
corresponds to a decryption query to π−1 (for C1), and similarly for a query to Dk.

192 D.H. Phan and D. Pointcheval

– If q is an encryption query, C completes randomly its game in the above sense
with a random answer since we do not care about it but only about B, which
attacks π as follows. B1 chooses a random plaintext q0 for π, different from
any previous plaintext (encryption queries and decryption answers), and
then outputs (q0, q1 = q). Thereafter, the challenge ciphertext a = Ek(qd)
is produced, for a random bit d. On input a, B2 resumes A2 using a for
answering the query q (note that B2 does not query on q). When A2 outputs
its guess b′ for the bit b, B2 outputs its guess d′, for the bit d, that is defined
by the boolean value of the test b′ = b (in other words, if b′ = b, then d′ = 1,
else d′ = 0).

– If q is a decryption query, B completes randomly its game in the above sense
with a random answer since we do not care about it but only about C, which
attacks π−1 as follows. C1 chooses a random plaintext q0 for π−1 (and thus a
ciphertext for π), different from any previous plaintext for π−1 (Dk queries
and Ek answers) but also from Ek(mb) (C1 must ask this further query —a
decryption query for π−1— to learn this value and avoid the collision), and
then outputs (q0, q1 = q). Thereafter, the challenge a = Dk(qd), a ciphertext
for π−1, is produced for a random bit d. On input a, C2 resumes A2 using
a for answering the query q. When A2 outputs its guess b′ for the bit b, C2
outputs its guess d′, for the bit d, that is defined by the boolean value of the
test b′ = b (in other words, if b′ = b, then d′ = 1, else d′ = 0).

Advantages of B and C. We first check that B and C satisfy the access restriction
to the oracles, which is easy. Indeed, in the case B1 and C1 choose a random
plaintext q0 (when A makes the nth query), they choose it different from any
previous plaintext. Then, we know that B2 and C2 do not ask any other query, the
access restriction to the decryption oracle is then satisfied. Let us now evaluate
the number of queries:

– Algorithm B1 makes at most e1 + e2 encryption queries (all the encryption
queries that A makes up to the nth query q excepted q itself and it must
make one more encryption query to get c = Ek(mb)), and d1 + d2 decryption
queries (all the decryption queries that A makes up to the nth query);

– Algorithm C1 makes at most d1+d2−1 encryption queries (all the decryption
queries that A makes up to the nth query q excepted the query q itself) and
e1 + e2 + 2 decryption queries (all the encryption queries that A makes up
to the nth query, one more query to get c = Ek(mb), and one more query to
learn the value Ek(mb)).

About the running time, no extra computation has to be perform by either B or
C. We thus get the following upper-bounds, where t is the running time of A:

Advind
π (B) ≤ Advind

π (t, e1 + e2, d1 + d2, 0, 0),
Advind

π−1(C) ≤ Advind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0).

Let us now analyze the relation between the advantages of B and C, and those
of A[n] and A[n− 1]. We denote by Encq the event in which q is an encryption

About the Security of Ciphers 193

query and we also denote by Advind
π (A |Encq) the conditional advantage of A

providing the event Encq holds, that is

Advind
π (A |Encq) = Pr[A() = 1 | b = 1 ∧ Encq] − Pr[A() = 1 | b = 0 ∧ Encq].

– if q is an encryption query, we have a non trivial adversary B:

Advind
π (B) = 2 Pr[d′ = d] − 1 = Pr[d′ = 1 | d = 1] − Pr[d′ = 1 | d = 0].

When d = 1, the distribution of b and b′ used by B is exactly the same as the
usual attack game for A[n], since a is the correct answer of q1 = q. When
d = 0, the answer of the encryption query q (w.r.t. π) is a, the encryption of
q0 (a random distinct message), and thus a random ciphertext different from
any previously involved ciphertext because of the permutation propriety of
the cipher. The last remark shows that B is identical to A[n−1]. Since d′ = 1
means b′ = b, we have2:

Advind
π (B |Encq) = Pr[d′ = 1 | d = 1 ∧ Encq] − Pr[d′ = 1 | d = 0 ∧ Encq]

=
1
2
·
(
Advind

π (A[n] |Encq) − Advind
π (A[n− 1] |Encq)

)
.

– if q is a decryption query, a similar argument can be provided for the adver-
sary C: when d = 1, C is identical to A[n] and when d = 0, C is identical to
A[n − 1] because the encryption of q0 (a random distinct message) for C is
a random plaintext different from any previous plaintext (included m0 and
m1.) Therefore, we have2:

Advind
π (C |Encq) = Pr[d′ = 1 | d = 1 ∧ Encq] − Pr[d′ = 1 | d = 0 ∧ Encq]

=
1
2
·
(
Advind

π (A[n] |Encq) − Advind
π (A[n− 1] |Encq)

)
.

In the above formula, Encq denotes the negation of event Encq. With the remark
that Advind

π (B |Encq) = 0 and Advind
π (C |Encq) = 0, we have:

Pr[Encq] × Advind
π (B |Encq) = Advind

π (B) ≤ Advind
π (e1 + e2, d1 + d2, 0, 0),

Pr[Encq] × Advind
π (C |Encq) = Advind

π (C) ≤ Advind
π−1(d1 + d2 − 1, e1 + e2 + 2, 0, 0).

Combined with the two above equations, this leads to the expected result. ��
Starting from A = A[e2 + d2], and applying e2 + d2 times the above relation,
one gets:

Advind
π (A) ≤ Advind

π (A[0])+2(e2+d2)
(

Advind
π (t, e1 + e2, d1 + d2, 0, 0)

+Advind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)
.

Since A[0] is a (t, e1, d1, 0, 0)-IND adversary, and thus its advantage is bounded
by Advind

π (t, e1 + e2, d1 + d2, 0, 0), one gets the result. ��

2 We remind that Advind
π (A | E) denotes the conditional advantage of any adversary A

providing the event E holds.

194 D.H. Phan and D. Pointcheval

In many ciphers, the encryption algorithm and the decryption algorithm are
similar. Therefore, if the cipher is secure against any lunchtime adversary (IND-
P1-C1), its inverse achieves a similar security level. The above theorem implies
that the cipher is actually secure against any adaptive adversary (IND-P2-C2):
thus, adaptive attacks do not help against symmetric and deterministic encryp-
tion schemes.

4 Indistinguishability and Pseudo-Randomness

In this section, we give a relation between the notion of indistinguishability
defined above and the classical security notions for ciphers, namely to provide
a pseudo-random permutation family or a super pseudo-random permutation
family.

4.1 IND-P1-C0 is Equivalent to Pseudo-Randomness

In [2], Desai and Miner claimed that:

Proposition 13. For any cipher π:

1
2
× Advind

π (t, e1, 0, 0, 0) ≤ Advprp
π (t, e1 + 1) ≤ (e1 + 1) × Advind

π (t, e1 + 1, 0, 0, 0).

We prove this proposition (which has not been published anywhere) in the fol-
lowing two theorems whose results are more general. In fact, the left relation is
a particular case of Theorem 14 where d1 = e2 = d2 = 0, while the right relation
is a particular case of the proof of Theorem 15 where n = e1 + 1 and m = 0.
Since we know that the last query is always an encryption query, the second
term disappears. We just have to build the adversary B.

4.2 IND-P2-C2 is “Almost” Equivalent to Super
Pseudo-Randomness

The first theorem is the intuitive and easy direction:

Theorem 14. For any cipher π:

Advind
π (t, e1, d1, e2, d2) ≤ 2 × Advsprp

π (t, e1 + e2 + 1, d1 + d2).

Proof. We are assuming that π is SPRP-secure. We then show that π is also
secure in the sense of IND-P2-C2. Let A to be a (t, e1, d1, e2, d2)-IND adversary
attacking π. We want to show that Advind

π (A) is negligible. To this end, we
describe a SPRP adversary B which attacks π by using A as a sub-program.

Description of BOb,O−1
b . Our adversary B runs A1 by answering its encryp-

tion/decryption queries, which are simply forwarded to the oracles Ob and O−1
b ,

respectively. When A1 outputs (m0,m1), B chooses a random bit d and gets

About the Security of Ciphers 195

yd = Ob(md). B then runs A2(yd), still forwarding all the encryption/decryption
queries of A to the oracles Ob and O−1

b , respectively. When A2 outputs its guess
d′ for the bit d, B outputs its guess b′, for the bit b, that is defined by the boolean
value of the test d′ = d (i.e, if d′ = d, then b′ = 1, else b′ = 0).

Advantage of B. We now consider the relation between the advantage of B and
the advantage of A.

– in the case b = 1, this game is exactly the game in which A plays against
π. The probability that B outputs b′ = 1 is therefore the probability that
d′ = d: (Advind

π (A) + 1)/2.
– in the case b = 0, because A queries a random permutation, and yd = P(md)

is perfectly independent withm0 andm1, A2 therefore gives an answer d′ = d
with probability 1/2. Consequently, B gives b′ = 1 with probability 1/2.

Combining these two cases, in which A is a (t, e1, d1, e2, d2)-IND adversary and
B is a (t, e1 + e2 + 1, d1 + d2)-SPRP adversary, we get the expected result. B
indeed asks e1 + e2 + 1 queries to Ob, because of the extra query to get yd. ��

The other direction is less natural, and much more surprising:

Theorem 15. For any cipher π:

Advsprp
π (t, n,m) ≤ (n+m) ×

(
Advind

π (t, n,m, 0, 0) + Advind
π−1(t,m, n, 0, 0)

)
.

Proof. Let A be a (t, n,m)-SPRP normal adversary against π. We denote by
A[η] the hybrid adversary B, built using A by restricting its interactions: the
first η queries to the oracles are answered by Ek (for an encryption query – oracle
O) and by Dk (for a decryption query – oracle O−1), the following queries are
answered by P and P−1 respectively. The goal of the adversary is always to
output a bit b′. We define PI(B) to be the probability that any adversary B gives
the answer b′ = 1. We thus have:

Advsprp
π (A) = Pr[A() = 1 | b = 1] − Pr[A() = 1 | b = 0]

= PI[AEk,Dk() = 1] − Pr[AP,P−1
() = 1] = PI(A[n+m]) − PI(A[0]).

Lemma 16. For any η ≤ n+m:

PI(A[η]) − PI(A[η − 1]) ≤ Advind
π (n,m, 0, 0) + Advind

π−1(m,n, 0, 0).

This proof is similar to the one of the Lemma 12. The idea is that we con-
struct two adversaries, a (t, n,m, 0, 0)-adversary B against π and a (t,m, n, 0, 0)-
adversary C against π−1 such that one of their advantages is exactly equal to the
left-hand side. These two adversaries run A up to the ηth query of A[η] using Ek

for answering a query to Ob and using Dk for answering a query to Ob. Accord-
ing to the type of the ηth query of A[η] (an encryption query or a decryption

196 D.H. Phan and D. Pointcheval

query), B1 or C1 outputs this query as one of its two chosen messages (the other
is chosen randomly) and then B1 or C1 gives its received challenge as the answer
to the ηth query of A. B2 or C2 then outputs its guess according to the guess of
A without making any query.

Applying n+m times this lemma, we obtain the expected result. ��

From these two theorems, we see that a cipher is a super pseudo-random permu-
tation if and only if itself and its inverse achieve semantic security against any
lunchtime adversary (IND-P1-C1). In other words, under the conjecture that a ci-
pher and its inverse achieve a similar security level secure against any lunchtime
adversary, SPRP and IND-P1-C1 are equivalent with a linear-cost reduction.

The more intuitive equivalence, between IND-P2-C2 and SPRP, can be ob-
tained under a weaker condition: if π−1 is just IND-P1-C0. This result is given
in details in the full version [9].

Acknowledgement

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the authors’ views, is
provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk
and liability.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. In Proc. of
the 38th FOCS. IEEE, New York, 1997.

2. A. Desai and S. Miner. Concrete Security Characterization of PRFs and PRPs: Re-
duction and Applications. In Asiacrypt ’00, LNCS 1976, pages 503–516. Springer-
Verlag, Berlin, 2000.

3. O. Goldreich, S. Goldwasser, and S. Micali. On The Cryptographic Applications
of Random Functions. In Crypto ’84, LNCS 196. Springer-Verlag, Berlin, 1985.

4. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

5. S. Halevi and P. Rogaway. A Tweakable Enciphering Mode. In Crypto ’03, LNCS
2729, pages 482–499. Springer-Verlag, Berlin, 2003.

6. J. Katz and M. Yung. Complete Characterization of Security Notions for Prob-
abilistic Private-Key Encryption. In Proc. of the 32nd STOC. ACM Press, New
York, 2000.

7. M. Luby and Ch. Rackoff. How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM Journal of Computing, 17(2):373–386, 1988.

8. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New
York, 1990.

About the Security of Ciphers 197

9. D. H. Phan and D. Pointcheval. About the Security of Ciphers (Semantic Security
and Pseudo-Random Permutations). In SAC ’04. Springer-Verlag, Berlin, 2004.
Full version available from http://www.di.ens.fr/users/pointche/.

10. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-
Verlag, Berlin, 1992.

11. C. E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28(4):656–715, 1949.

A Subliminal Channel in Secret Block Ciphers

Adam Young1 and Moti Yung2

1 Cigital, Inc.
ayoung@cigital.com

2 Dept. of Computer Science, Columbia University
moti@cs.columbia.edu

Abstract. In this paper we present the first general purpose subliminal
channel that can be built into a secret symmetric cipher by a malicious
designer. Subliminal channels traditionally exploit randomness that is
used in probabilistic cryptosystems. In contrast, our channel is built into
a deterministic block cipher, and thus it is based on a new principle. It is
a broadcast channel that assumes that the sender and the receiver know
the subliminal message ms (i.e., something derived from their common
key). We show that the designer can expect to be able to read ms when
O(|ms|log|ms|) plaintext/ciphertext pairs are obtained. Here |ms| is the
length of ms in bits. We show how to turn the channel into a narrowcast
channel using a deterministic asymmetric cipher and then present an
application of the narrowcast channel. In this application, the secret
block cipher securely and subliminally transmits the symmetric key of
the sender and receiver to the malicious designer and confidentiality holds
even when the cipher is made public.

1 Introduction

One of the central concerns, from a user’s standpoint, of using a black-box crypto-
graphic device is the possibility that the output might maliciously expose private
data. Cryptosystems that contain subliminal channels allow this type of infor-
mation leakage to occur. Subliminal channels have been shown to exist in digital
signing algorithms, asymmetric key generation algorithms, and so forth. These
channels traditionally exploit randomness in the algorithms they are built into,
and more recently it has been shown how to exploit redundancies in plaintext
to create such channels. The methodology behind identifying a subliminal chan-
nel within a particular cryptosystem involves identifying these features wherever
they are present. However, to date, no general-purpose subliminal channel has
been shown to exist in a block cipher which is a deterministic function (this
holds for published as well as secret designs). In this paper we present the first
general-purpose subliminal channel in secret block ciphers.

We stress again that this channel is built into a deterministic function, which
contrasts with traditional subliminal channels that have been identified in prob-
abilistic cryptosystems. Subliminal channels typically use acceptance/rejection
on the random bits that are available to the cryptosystem in order to transmit

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 198–211, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Subliminal Channel in Secret Block Ciphers 199

the subliminal message ms in the output. A deterministic channel within a de-
terministic cryptosystem does not have the luxury of using random bits in this
fashion, so it may seem somewhat counter-intuitive that subliminal information
can be encoded in the output ciphertext.

This brings us to the nature of our channel, which is atypical and suggests
that the definition of a subliminal channel should be broadened. A typical sub-
liminal channel allows, e.g., a sender to send a subliminal message (through
digital signatures for example) to a receiver unbeknownst to a passive eaves-
dropper. Our channel allows a sending device to send a subliminal message to a
receiving device that already knows the subliminal message such that the sublim-
inal message can be read by a known-plaintext attacker that is privy to secret
information (a particular private key). Our main application is a backdoor attack
against a secret block cipher that covertly leaks the asymmetric encryption of
the sender and receiver’s symmetric key to the cipher designer. Furthermore, the
channel employed this way is robust against reverse-engineering (robust mean-
ing that the confidentiality of encryptions still holds even if the cipher becomes
public).

Due to space limitations only an overview of the other applications will be
given. A second application is an attack on operating systems that share the same
decryption private key within the security kernel (e.g., to decrypt encrypted pro-
grams before running them). The attack subliminally leaks the private key. A
third application is an attack that subliminally leaks the private signing sym-
metric key of Russia to the U.S. within the Salt II Treaty verification protocol
[23].

1.1 Modern Motivations for Backdoor Research

In the past, the motivation for studying backdoors in symmetric secret ciphers
was simple. The U.S. government had endorsed Skipjack, a classified block cipher
[16]. RC4 is another cipher that was initially a trade secret (of RSA Data Security
Inc.). Companies still engage in the practice of marketing secret ciphers under
the premise that they are proprietary. So, the chief motivation for this research
has not changed with time.

Also, digital rights management efforts have sought to utilize software obfus-
cation and hardware implementations to protect digital content ([4] obfuscated
a published cipher). In fact, recently Boneh et al. described a technique akin
to differential fault analysis to cryptanalyze a simplied version of a software
obfuscation package [10]. They suggested countermeasures to their attack and
mentioned the possibility of using secret designs prior to obfuscating the code.
So, the hazards of secret ciphers are still not fully observed.

1.2 Subliminal Channels and Backdoor Ciphers

To show that the notion of a subliminal channel was applicable in practice, the
prisoner’s problem was devised [21]. In this problem, two prisoners want to com-
municate subliminal messages to each other within digital signatures so that the

200 A. Young and M. Yung

warden, who verifies all signatures, will not know this is taking place. Solutions
to this problem have been given for DSA, ElGamal, and others. Progress has
been slow in subliminal channel research [6, 1] in both identifying attack possibil-
ities as well as in formally defining the subject. Progress has also been slow, yet
steady, in researching robust backdoors in cryptosystems [24, 26]. Previously, no
subliminal channel of a general nature was known to exist in secret block ciphers
nor in publishable block ciphers.

Rijmen and Preneel gave a methodology for designing a backdoor cipher
where the cipher that results has a public specification [19]. The recovery ability
is based on a specific trapdoor that allows the designer to break the encryption
using linear cryptanalysis. Security issues with this methodology were subse-
quently addressed [25]. Related work includes [17] which was cryptanalyzed in
[3, 7].

Earlier work on building backdoors into symmetric ciphers showed that a
shared string between the sender and receiver (the symmetric encryption key)
could be subliminally leaked. However, these designs left room for improvement.
The cipher in [27] reveals multiple plaintext bits (in particular bit positions) in
every ciphertext to the reverse-engineer. The backdoor presented in [28] only
leaks subliminal information when the input plaintext is highly redundant and
also reveals an upper or lower bound on the entropy of every plaintext to the
reverse-engineer. The non-trivial security goal that we achieve in this paper
is the construction of a backdoor cipher that does not leak plaintext bits to
the reverse-engineer nor one that requires redundancy in plaintexts to operate
correctly.

A fundamental difference between the cipher we present here and Monkey
[27] is the use of pre-processing symmetric decryption in the block encryption
function (Monkey uses only a post-processing encryption during block encryp-
tion). Thus, the block encryption function presented here involves both post and
pre-processing tranformations in the block encryption function. This is an in-
tegral part of the mechanism that prevents the reverse-engineer from learning
plaintext bits in individual bit positions.

2 Notation and Definitions

A || B denotes the concatenation of strings A and B. A⊕B denotes the bitwise
XOR of A with B. The symbol 	

= is used to define a function. For example, f(x)
	
= x2 +3x−7. {0, 1}∞ is the set of all bit strings that are each countably infinite
in length. A random oracle is defined [2] as:

Definition 1. A random oracle R is a function from {0, 1}∗ to {0, 1}∞ such
that for a given query s to R, each and every output bit of R(s) is chosen uni-
formly at random and independent of every bit in s.

If R is given query s twice, R will respond with the same bit string.
A random function is similar to a random oracle except that the range is

defined to be a finite set. It is possible to instantiate a random function Fθ :

A Subliminal Channel in Secret Block Ciphers 201

{0, 1}∗ → S where S = {0, 1, 2, ..., θ − 1} using a random oracle R as follows.
Let s be a binary string. Let t be the first |θ| bits of the infinitely long string
R(s). If t ∈ S then Fθ(s) = t. Otherwise, consider the next |θ| bits of R(s). If
this string is contained in S then this string is Fθ(s), and so on. So, Fθ(s) maps
to an element drawn uniformly at random from S.

In practice, cryptographic hash functions are used to instantiate random or-
acles (and random functions). However, when a public and private string are
supplied to a random function it may be desirable to use a pseudorandom func-
tion [9] instead.

A block cipher is a pair of algorithms (ENC,DEC) that is used to en-
crypt and decrypt plaintext messages m that are w bits in length. The en-
cryption is performed using a key k such that for all m, the equality m =
DEC(k,ENC(k,m)) holds. The function ENC must therefore be injective to
allow unambiguous decryption. In a block cipher, {0, 1}w is both the set of plain-
texts as well as the set of ciphertexts. The encryption function for a block cipher
is therefore a bijection (and must be deterministic). There are 2w! possible bi-
jections in total over {0, 1}w. This implies that about w2w bits are needed to
represent each possible bijection. An ideal random cipher is a w-bit block cipher
that implements all 2w! bijections on 2w elements. Each of the 2w! keys speci-
fies one such permutation [15]. However, a key size of about w2w bits is highly
impractical. So, a weaker definition of a cipher is needed for practical purposes.

An ideal classic cipher implements a randomly chosen subset of all 2w! per-
mutations from the message space onto the ciphertext space. They are secure
against chosen-plaintext attacks. It is standard practice to make the cardinality
of the key space exponential in some security parameter. A design principle for a
block cipher is to make the cipher as close to an ideal classic cipher as possible. A
block cipher is “secure” in some sense, if the encryption function corresponding
to a randomly selected key appears to be a randomly chosen invertible function
(pseudorandom permutation). The notion of choosing a block cipher at random
is as follows. If the subset of permutations can be chosen randomly, then a w-bit
ideal classic cipher can be chosen randomly.

Kerckhoffs’ basic principle is that the adversary will somehow learn the details
of the cipher. So in principle, all of the secrecy should reside in the key. A
secret block cipher, in contrast, is a block cipher in which ENC and DEC are
known only to the designer, unless an implementation of the cipher is reverse-
engineered. However, the key space, message space, and ciphertext space are
publicly known. A secret block cipher is a gross violation of Kerckhoffs’ principle,
and it is this that motivates the present investigation. Namely, we strive to justify
this principle from the perspective of information leakage attacks.

Recall that IND-CPA stands for Indistinguishability - chosen-plaintext attack.
In an IND-CPA attack, the adversary first mounts a CPA attack. The adversary
then submits two plaintexts of his choice to the encryption oracle and is then
given the encryption of one of the two at random and is asked to guess which
plaintext was encrypted. A cipher is IND-CPA secure if the adversary guesses
correctly with probability negligibly greater than 1/2.

202 A. Young and M. Yung

3 New Definitions and Building Blocks

Informally, a broadcast block cipher is a block cipher that broadcasts a subliminal
message ms to everyone that knows the algorithm for the cipher. The bit string
ms must be supplied as input (e.g., internally) to the broadcast encryption algo-
rithm as well as the broadcast decryption algorithm. Define BENC(k,m, ks,ms)
to be a broadcast block cipher with a w-bit block size, where m is the plaintext,
k is the symmetric key used to encrypt m, ms is the subliminal message, and ks

is a secret key. Algorithm BDEC(k, c, ks,ms) decrypts the output of BENC us-
ing k. Define algorithm ENC(k,m) 	

= BENC(k,m, ks,ms) and define algorithm
DEC(k, c) 	

= BDEC(k, c, ks,ms) for some pair (ks,ms).
Our threat model involves four entities that we define informally yet intu-

itively (a more formal definition will be given in the full version). The role of
each of these entities is as follows.

The designer is a malicious entity that is permitted to design and deploy the
black-box device. Therefore, the designer only has write-once and oracle access
to the device. The goal of the designer is to learn ms. The designer supplies the
secret key ks and the collected plaintext/ciphertext pairs to an algorithm called
BREC which then returns the subliminal message ms.

The reverse-engineer has only oracle access to the device (i.e., the cipher
can’t be changed). The reverse-engineer mounts a chosen-plaintext attack. Upon
completion of the attack the reverse-engineer knows α plaintext/ciphertext pairs
denoted by (m1, c1),(m2, c2),...,(mα, cα) computed using BENC(k, ·, ks,ms). It
is assumed that these ciphertexts subliminally transmit ms. So, the reverse-
engineer knows BENC, BDEC, ms, ks as well as the pairs (m1, c1),...,(mα, cα).
The goal of the reverse-engineer is to break the cipher by learning a non-negligible
amount of plaintext information.

The inquirer and sampler have only oracle access to the cipher. The in-
quirer is a boolean function. An output of true indicates a guess that the cipher
is an ideal classic cipher. An output of false indicates a guess that it is not an
ideal classic cipher (e.g., that it contains a subliminal channel and as a result
appears less than ideal).

There exists a set of weak probability distributions in the broadcast block
cipher that breaks the confidentiality of encryptions with respect to the reverse-
engineer. The purpose of formalizing the sampler is to show that with overwhelm-
ing probability a weak distribution will not be selected (by users in practice). The
sampler chooses a probability distribution over the message space and returns
plaintexts sampled accordingly.

So, the inquirer is a user (adversary) that tries to distinguish between “good”
and “bad” ciphers and the sampler is a user (adversary) that tries to choose a
probability distribution that allows the reverse-engineer to violate the confi-
dentiality of encryptions. It is assumed that the reverse-engineer, inquirer, and
sampler are computationally bounded.1

1 i.e., they are probabilistic poly-time Turing machines.

A Subliminal Channel in Secret Block Ciphers 203

Definition 2. A secure w-bit broadcast block cipher is a 3-tuple
(BENC,BDEC,BREC) that satisfies the following:

1. (inquirer indistinguishability) It is computationally intractable for the in-
quirer to distinguish a black-box implementation of (ENC,DEC) from a
randomly chosen ideal classic cipher.

2. (completeness) For all plaintexts m, for all symmetric keys k, for all sub-
liminal messages ms, and for all secret keys ks, the following equality holds,
m = BDEC(k,BENC(k,m, ks,ms), ks,ms).

3. (reverse-engineer confidentiality) After completing a chosen-plaintext attack,
the reverse-engineer learns at most W pairs of random plaintexts and corre-
sponding ciphertexts (computed using k) where W is bounded by a polynomial
in the length of ((m1, c1), ..., (mα, cα), ks).

4. (designer completeness) For sufficiently large α, for all ms, and for all
distinct plaintexts (m1,m2, ...,mα), the subliminal message ms is equal to
BREC((m1,m2, ...,mα, c1, c2, ..., cα), ks) with overwhelming probability
where each ciphertext ci = BENC(k,mi, ks,ms) for i = 1, 2, ..., α. The
probability is over the random choice of k and ks.

Property (2) guarantees that decryption will always yield the original plain-
text. The secret key ks is fixed and is contained in all of the black-box devices.
This value must be kept secret (hence, the subscript “s”) by the designer to pre-
vent users from being able to read the channel. The reverse-engineer knows ks

and so the reverse-engineer can read the subliminal channel. So, it is a broadcast
channel. It is made narrowcast using the deterministic asymmetric encryption
function E. In our main application we set ms = E(y, k) where y is the designer’s
public key. Clearly E(y, k) can be reconstructed by BENC and BDEC on input
k. Since only the designer knows the decryption private key corresponding to y,
only the designer (and not the reverse-engineer) can learn k.

Property (4) implies that a sufficient number of known plaintext-ciphertext
pairs under a common key k are required in order to read ms. Observe that this
construction constitutes a cipher within a cipher. The secret key ks acts like a
symmetric key that decrypts the “ciphertext” (m1,m2, ...,mα, c1, c2, ..., cα) to
reveal ms.

Building Blocks. Let s be a bit string. The function GetBit(s, i) returns the
bit at position i of s where 0 ≤ i ≤ |s|−1. The bits are ordered from right to left
starting with 0. For example, if s = 0001 thenGetBit(s, 0) = 1,GetBit(s, 1) = 0,
GetBit(s, 2) = 0, and GetBit(s, 3) = 0. Let Hδ−1 : {0, 1}∗ → {0, 1}δ−1 be a
random function. Also, let F1 : {0, 1}∗ → {0, 1} and GetRandPosθ : {0, 1}∗ →
{0, 1, 2, ..., θ − 1} be random functions. These random functions are publicly
known.

The pair (ENC1, DEC1) is a secret ideal classic cipher with a w-bit block
size. Let δ be a constant. The pair (ENC2, DEC2) is a secret ideal classic cipher
with block size w − δ bits. We are somewhat lax about specifying the set from
which the symmetric keys k are drawn. The set is typically, say {0, 1}128 or an
even larger set.

204 A. Young and M. Yung

These ciphers can be instantiated using a pseudorandom invertible permuta-
tion generator that will make the outputs secure against chosen plaintext attacks
[13]. In practice, symmetric ciphers often utilize Feistel transformations. Luby
and Rackoff have provided some theoretical justification for Feistel’s construction
[12, 11].

4 The Broadcast Block Cipher

The broadcast block encryption algorithm is given in Fig. 1.

Fig. 1. Subliminal Channel in Block Encryption Algorithm

(Intuitive Description). The channel transmits one pseudorandomly chosen
bit of the subliminal message in each ciphertext block that is output. First, a
large portion of the block is simply encrypted using a secure block cipher. The
resulting ciphertext is recoverable under a known plaintext attack by the reverse-
engineer. This block is used as the “public” input to a random function.2 This

2 It is not really a public input, but when pseudorandom functions are used to instan-
tiate these random functions, they correspond to the “public input.”

A Subliminal Channel in Secret Block Ciphers 205

public input is used to select a bit position randomly in the subliminal message.
The problem that remains is to display the subliminal bit in this bit position.

This is accomplished by embedding this bit in the encryption of the remaining
plaintext that has not been enciphered. To do so, the public input is again
supplied to a random function, but this time the user’s symmetric key is supplied
to the random function as well. The result is a random pad that is used to XOR
encrypt all but the last remaining plaintext bit. This bit is also XOR encrypted.
This is accomplished by supplying the pad along with the public input to yet
another random function, to obtain a one bit pad. The idea is that the larger pad
is secret due to the secrecy of the user’s symmetric key, and so this larger pad
can be used to derive a secret one-bit pad to XOR encrypt the final plaintext bit.
An initial permutation and a final permutation are also performed for reasons
that will become clear later on.

(Detailed Description). The pair ks = (kα, kβ) is randomly chosen by the de-
signer and is placed in the black-box device that implements BENC and BDEC
(so ks may become known to a reverse-engineer but the symmetric key k that
the user supplies to the device will not). For simplicity it is assumed that w is
even. The value δ is an integer constant used in the broadcast block cipher. The
function f is defined as follows.

f(b, βu, k�)
	
= Hδ−1(k� || βu) || (b ⊕ F1(Hδ−1(k� || βu) || βu))

Π1(k,m, kα,ms): /* subroutine for encryption algorithm */
1. let ku and k� be strings such that k = ku || k� and |ku| = |k�|
2. compute α = DEC1(kα,m) /* yes, we want to decrypt */
3. let αu and α� be strings such that α = αu || α� and |α�| = δ
4. βu = ENC2(ku, αu)
5. compute i = GetRandPos|ms|(βu) and then b = GetBit(ms, i)
6. compute pad = f(b, βu, k�), β� = pad⊕ α�, and return β = βu || β�

BENC(k,m, (kα, kβ),ms):
Input: w-bit plaintext m, symmetric key k where |k| is even,

subliminal message ms, secret key (kα, kβ)
Output: w-bit ciphertext c
1. β = Π1(k,m, kα,ms)
2. compute c = ENC1(kβ , β) and then output c

Π−1(k, c, kα,ms): /* subroutine for decryption algorithm */
1. let ku and k� be strings such that k = ku || k� and |ku| = |k�|
2. compute β = DEC1(kβ , c)
3. let βu and β� be strings such that β = βu || β� and |β�| = δ
4. αu = DEC2(ku, βu)
5. compute i = GetRandPos|ms|(βu) and then b = GetBit(ms, i)
6. compute pad = f(b, βu, k�), α� = pad⊕ β�, and return α = αu || α�

206 A. Young and M. Yung

BDEC(k, c, (kα, kβ),ms):
Input: w-bit ciphertext c, symmetric key k where |k| is even,

subliminal message ms, secret key (kα, kβ)
Output: w-bit plaintext m
1. α = Π−1(k, c, kα,ms)
2. compute m = ENC1(kα, α) and then output m

It is clear that property (2) of Definition 2 holds (completeness).
BRECBIT recovers a single bit of ms from a plaintext/ciphertext pair.

BREC invokes this subroutine for each plaintext/ciphertext pair that it is given
in order to recover ms.

BRECBIT ((kα, kβ),m, c):
Input: w-bit plaintext m, w-bit ciphertext c,

secret key (kα, kβ)
Output: (i, b) where b is the bit at bit position i of ms

1. compute α = DEC1(kα,m)
2. let αu and α� be strings such that α = αu || α� and |α�| = δ
3. compute β = DEC1(kβ , c)
4. let βu and β� be strings such that β = βu || β� and |β�| = δ
5. compute pad = α� ⊕ β�

6. let z and t be strings such that pad = z || t and |t| = 1
7. compute r = F1(z || βu) and then set b = t⊕ r
8. compute i = GetRandPos|ms|(βu) and then output (i, b)

Since each bit is selected uniformly at random from the |ms| bit positions, the
designer (and the reverse-engineer) can expect to have to obtain O(|ms|log|ms|)
plaintext/ciphertext pairs under a common key k in order to recover ms. This
results from analyzing the first moment of the coupon collector’s problem [8]. It
follows that property (4) of Definition 2 holds (designer completeness). We call
this the insignis channel, named after the carnivorous plant Nepenthes Insignis
Danser.

5 Security

The following claim is used to show that indistinguishability (i.e., property (1)
of Definition 2) holds.

Claim 1. ∀ k, ms, and kα, Π1(k, ·, kα,ms) is a permutation over {0, 1}w.

Proof. Assume for the sake of contradiction that this does not hold. Then there
exists k,ms, kα,m1, andm2 wherem1 �= m2 such that β1 = Π1(k,m1, kα,ms) =
Π1(k,m2, kα,ms) = β2.

Observe that α is a permutation of the input message. So, m1 maps to α1
and m2 maps to α2 where α1 �= α2. Define αu,1, α�,1, αu,2, α�,2, βu,1, β�,1, βu,2,
and β�,2 as follows:

A Subliminal Channel in Secret Block Ciphers 207

α1 = αu,1 || α�,1 α2 = αu,2 || α�,2 |α�,1| = |α�,2| = δ
β1 = βu,1 || β�,1 β2 = βu,2 || β�,2 |β�,1| = |β�,2| = δ

Suppose that αu,1 �= αu,2. Since ENC2(ku, ·) is a permutation it follows that
βu,1 �= βu,2. Hence, β1 �= β2 in this case. So, it remains to consider the case that
αu,1 = αu,2.

Since α1 �= α2 it must be the case that α�,1 �= α�,2. It is not hard to show
that pad is the same for m1 and m2. Since α�,1 �= α�,2 it follows that the strings
resulting from the bitwise XOR operation differ. Therefore, β�,1 �= β�,2. It follows
that β1 �= β2. Therefore, in all cases β1 �= β2 which is a contradiction. $

Let ms be any subliminal message and let ks be any secret key. Claim 1 shows
that ENC(k,m) maps eachm ∈ {0, 1}w under k to one and only one β ∈ {0, 1}w.
ENC then encrypts β using a randomly chosen key kβ in a randomly chosen ideal
classic cipher. Hence, this last operation is a randomly chosen permutation from
among the set of possible random permutations in the ideal classical cipher. Since
the composition of two permutations is a permutation and since kβ is secret, we
have therefore shown the following.

Claim 2. A secret implementation of (ENC,DEC) is indistinguishable from
an ideal classic cipher.

It follows that property 1 of Definition 2 holds. The following corollary follows
from Claim 2 and the notion of security for an ideal classic cipher.

Corollary 1. With only oracle access, ENC appears like a randomly chosen
invertible function.

(ENC,DEC) is as secure as ENC1 against attacks mounted by a user since
the key kβ is secret from the user. Therefore, since (ENC1, DEC1) is secure
against chosen-plaintext attacks mounted by the user (note that it is first [14])
(ENC,DEC) is secure against chosen-plaintext attacks mounted by the user.
We will now consider the security of (ENC,DEC) when attacks are carried out
by the reverse-engineer who knows kβ , among other things. Thus, the remainder
of this section is devoted to showing that property (3) of Definition 2 holds.

First, note that βu is the block encryption of αu. So, the encryption using
ENC2 will not compromise ku unless ENC2 is itself vulnerable to a chosen
plaintext attack. Now consider the confidentiality of α�.

Observe that in (ENC,DEC) there exist non-trivial distributions Mp that
compromise plaintexts. These Mp’s lead to a non-negligible probability of col-
lision in βu. A collision in βu implies a collision in pad. So, we must first show
that the chances that the sampler compromises its own plaintexts is negligible.

Define pc to be the probability that two messages m1 and m2 that are chosen
according to Mp lead to the same value for βu in the corresponding encryptions
c1 and c2. If pc is not negligible then the sampler may produces messages that are
compromised. This results from the fact that the random functions in f would
be given the same βu thereby resulting in a selection of pads for c1 and c2 that
are not only dependent, but identical.

208 A. Young and M. Yung

Claim 3 utilizes a fact that is related to the birthday paradox. An urn has u
balls numbered from 1 to u. Suppose that v balls are drawn from the urn one at
a time, with replacement, and their numbers are listed. (Fact 1) A well-known
fact is that as u → ∞, the expected number of draws before a coincidence is√

(πu)/2.

Claim 3. (random oracle model) If ENC2 is an ideal classic cipher and w− δ
is sufficiently large then pc is negligible.

Proof. Assume that ENC1 is an ideal classic cipher for sufficiently large w. It
follows that DEC1 is a bijection and so every message maps to one and only
one α. Also, assume that w − δ is sufficiently large.

Since ENC2 is an ideal classic cipher, each αu is assigned randomly to a βu

under the random permutation ENC2(ku, ·). It follows from Corollary 1 that
the sampler can do no better than guess a value for Mp that has a non-negligible
probability of yielding a collision in βu when sampled. So, it remains to consider
the probability of a collision for randomly chosen βu’s.

The value βu is selected randomly from a set with cardinality 2w−δ. It follows
from Fact 1 that the expected number of ciphertexts needed to have a collision
in βu is close to 2(w−δ)/2

√
π/2. Since w − δ is sufficiently large it follows that

with overwhelming probability the βu’s will be unique. Hence, pc is negligible. $
This analysis implies that w − δ should be at least 128.

Observe that the function f is known to the reverse-engineer since Hδ−1 and
F1 are public. From property (4) of Definition 2 it follows that ms is known
to the reverse-engineer. It is not hard to show that b and βu are known to the
reverse-engineer for every ciphertext. This implies that k� is a private input and
(b, βu) is a public input (from the reverse-engineer’s perspective) to f .

Claim 4. (random oracle model) If pc is negligible and k� is secret then with
overwhelming probability the values for pad that result (from the sampler’s choice
of plaintexts) in the resulting ciphertexts are independently random and secret.

Proof. Assume that k� is secret from the reverse-engineer. Also, assume that pc

is negligible. It follows from the latter assumption that the βu’s are different
with overwhelming probability. Consider the event that the βu’s differ.

Since the βu’s differ, the δ − 1 uppermost bits of pad are selected uniformly
at random and independent of every other plaintext. This follows from the fact
that βu is supplied as input to the random function Hδ−1. Furthermore, the
δ − 1 uppermost bits Hδ−1(k� || βu) of pad are secret due to the secret k� that
is supplied as input to Hδ−1 in f .

Since the βu’s differ, for each βu, the least significant bit of pad is selected
uniformly at random and independent of every other plaintext. This follows from
the fact that βu is supplied as input to the random function F1. Furthermore,
the least significant bit of pad is secret since it was shown that Hδ−1(k� || βu) is
secret and this value is supplied as input to F1 in f . $

This analysis implies that δ should not be less than 64. The assumption here
is that 64 is an acceptable security parameter, which even today is arguably

A Subliminal Channel in Secret Block Ciphers 209

cutting it close. We remark that Rijndael has block sizes of 128, 192, and 256
bits [5]. So, a block size of 192 bits or larger is not unreasonable. Also, the
bits that comprise pad are the outputs of a random oracle, so they will not
compromise k�. Claims 3 and 4 show that even if the computationally bounded
sampler wants to find an Mp that compromises plaintexts, the probability that
the sampler finds such an Mp is negligible.

Now consider the case that the reverse-engineer mounts a known-plaintext
attack. Recall that in a known plaintext attack the reverse-engineer queries an
encryption oracle (the sampler) and receives S = {(m1, c1), (m2, c2),..., (mγ ,
cγ)}. Here ci is the ciphertext of mi for 1 ≤ i ≤ γ. The encryption key k that is
generately randomly is used to compute all the ciphertexts, and is kept secret
by the sampler. The sampler samples the mi from the message space according
to Mp. The reverse-engineer is not permitted to query the sampler again.

Consider the problem for the reverse-engineer to learn information relating
to the plaintext in c where c �= ci for 1 ≤ i ≤ γ. This is possible in the following
known plaintext attack. The reverse-engineer computes pad, α�, βu, αu, etc.
used in (m1, c1). The reverse-engineer begins to iterate through the possible
values for α� (there are 2δ possible values in total). The values α = αu || α�

are encrypted using kα in the cipher ENC1. This yields a set of new plaintexts
for ENC. The reverse-engineer computes the corresponding ciphertexts in the
same way that ENC would. The number of plaintext/ciphertext pairs that can
be learned by the reverse-engineer is bounded by a polynomial in the length of
((m1, c1), ..., (mγ , cγ), ks) which is provided as “input” to the computationally
bounded reverse-engineer.

This attack also applies to IND-CPA attacks. Note that when the encryp-
tion oracle ENC(k, ·) is taken away, the reverse-engineer is able to make oracle
queries to ENC1(kα, ·) and learn more plaintext/ciphertext pairs. The reverse-
engineer can take one of the new plaintext/ciphertext pairs, make the IND-CPA
oracle request with the new plaintext, and then distinguish perfectly. For this
reason we use a weaker notion of confidentiality than IND-CPA in Definition 2.

However, by taking the probability over the coin tosses of when ENC1 was
generated, it follows that the new plaintexts that are learned are random (ENC1
is an ideal classic cipher). So, the reverse-engineer can only sample the new
plaintext/ciphertext pairs randomly. Under these arguments, property (3) of
Definition 2 holds.

Theorem 1. (BENC,BDEC,BREC) is a broadcast block cipher.

6 Kleptographic Attack

This section describes how to carry out a kleptographic attack that leaks k exclu-
sively to the designer. Let (E,D) be a deterministic asymmetric cryptosystem,
let y be the public key of the malicious designer and let x be the corresponding
private key. The ciphertext c = E(y,m) denotes the encryption of m. To decrypt
we compute m = D(x, c).

210 A. Young and M. Yung

In the attack, the cipher computes ms = E(y, k). The designer computes
k = D(x,ms). The reverse-engineer has access to (ms, y, E) but does not have
access to x. So, the broadcast subliminal channel is tranformed into a narrowcast
channel using y and E. Clearly other information besides k can be leaked this
way as well. The notion of a SETUP is given in [26]. We have therefore shown
the following.

Lemma 1. The subliminal transmission of E(y, k) is a SETUP attack against
the secret w-bit block cipher (ENC,DEC).

7 Conclusion

The notion of a broadcast subliminal channel in a block cipher was introduced
and an instantiation was given for secret block ciphers. The channel broadcasts
a subliminal message to the reverse-engineer and the malicious designer. It was
shown how to turn the broadcast channel into a narrow cast channel using a
deterministic asymmetric cipher. In the narrowcast construction, only the mali-
cious designer can obtain the plaintext message. An application of the narrowcast
channel was given that constitutes the first secretly embedded trapdoor attack
against a deterministic block cipher.

References

1. R. Anderson, S. Vaudenay, B. Preneel, K. Nyberg. The Newton Channel. In
Workshop on Information Hiding, pages 151–156, 1996.

2. M. Bellare, P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In Conference on Computer and Communications Security,
pages 62–73, ACM, 1993.

3. E. Biham. Cryptanalysis of Patarin’s 2-Round Public Key System S Boxes (2R).
In Advances in Cryptology—Eurocrypt ’00, pages 408–416, 1999.

4. S. Chow, P. Eisen, H. Johnson, P. C. van Oorshot. A White-Box DES Implemen-
tation for DRM Applications. Workshop on Digital Rights Management, ACM,
2002.

5. J. Daemen, V. Rijmen. The Block Cipher Rijndael. In Smart Card Research and
Applications, pages 288–296, 2000.

6. Y. Desmedt. Abuses in Cryptography and How to Fight Them. In Advances in
Cryptology—Crypto ’88, pages 375–389, 1988.

7. Y. Ding-Feng, L. Kwok-Yan, D. Zong-Duo. Cryptanalysis of the “2R” schemes. In
Advances in Cryptology—Crypto ’99, pages 315–325, 1999.

8. W. Feller. An Introduction to Probability Theory and its Applications. John Wiley
& Sons, Inc., pages 210–212, 1957.

9. O. Goldreich, S. Goldwasser, S. Micali. How to Construct Random Functions. J.
of the ACM, 33(4), pages 210–217, 1986.

10. M. Jacob, D. Boneh, E. Felten. Attacking an obfuscated cipher by injecting faults.
ACM Workshop on Digital Rights Management, 2002.

11. L. Knudsen. DEAL: A 128-bit block cipher. Technical Report 151, Department of
Informatics,University of Bergen, Norway, Feb. 1998.

A Subliminal Channel in Secret Block Ciphers 211

12. M. Luby, C. Rackoff. How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. In SIAM J. Comput., v. 17, 1988, pages 373–386.

13. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton Com-
puter Science Notes, Princeton University Press, Lectures 13 & 14, pages 128–145,
1996.

14. U. Maurer, J. Massey. Cascade Ciphers: The Importance of Being First. In Journal
of Cryptology, vol. 6, no. 1, pages 55–61, 1993.

15. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, pages 224–225, 1997.

16. Skipjack Symmetric Cipher. Declassified on June 23, 1998. Appeared on NIST
website on June 24, 1998 at http://csrc.nist.gov/encryption/skipjack-1.pdf and
http://csrc.nist.gov/encryption/skipjack-2.pdf (no author).

17. J. Patarin, L. Goubin. Asymmetric Cryptography with S-Boxes. In Proceedings of
ICICS, pages 369–380, 1997.

18. M. Rabin. Digitalized Signatures as Intractable as Factorization. MIT Laboratory
for Computer Science, MIT/LCS/TR-212, Jan, 1979.

19. V. Rijmen, B. Preneel, A Family of Trapdoor Ciphers. Fast Software Encryption,
pages 139–148, 1997.

20. R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. CACM, v. 21, n. 2, pages 120–126, Feb. 1978.

21. G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In Advances
in Cryptology—Crypto ’83, pages 51–67, Plenum Press, 1984.

22. G. J. Simmons. Subliminal Communication is Easy Using the DSA. In Advances
in Cryptology—Eurocrypt ’93, pages 218–232, 1993.

23. G. J. Simmons. The History of Subliminal Channels. IEEE Journal on selected
areas in communication, v. 16, n. 4, pages 452–462, 1998.

24. R. Weis, S. Lucks. “All Your Key Bit Are Belong to Us” The True Story of Blackbox
Cryptography. In Proceedings of the 3rd International System Administration and
Networking Conference—SANE ’02, Maastricht, 2002.

25. H. Wu, F. Bao, R. Deng, Q. Ye. Cryptanalysis of Rijmen-Preneel Trapdoor Ciphers.
In Advances in Cryptology—Asiacrypt ’98, pages 126–132, 1998.

26. A. Young, M. Yung. The Dark Side of Black-Box Cryptography, or: Should we
trust Capstone? In Advances in Cryptology—Crypto ’96, pages 89-103, 1996.

27. A. Young, M. Yung. Monkey: Black-Box Symmetric Ciphers Designed for MO-
Nopolizing KEYs. In Fast Software Encryption, pages 122–133, 1998.

28. A. Young, M. Yung. Backdoor Attacks on Black-Box Ciphers Exploiting Low-
Entropy Plaintexts. In Proceedings of ACISP, pages 297–311, 2003.

Blockwise Adversarial Model for On-line Ciphers
and Symmetric Encryption Schemes

Pierre-Alain Fouque1, Antoine Joux2, and Guillaume Poupard2

1 École normale supérieure, Département d’Informatique, 45 rue d’Ulm,
75230 Paris 5, France

Pierre-Alain.Fouque@ens.fr
2 DCSSI CryptoLab, 51, rue de Latour-Maubourg, 75007 Paris SP, France

{Antoine.Joux, Guillaume.Poupard}@m4x.org

Abstract. This paper formalizes the security adversarial games for on-
line symmetric cryptosystems in a unified framework for deterministic
and probabilistic encryption schemes. On-line encryption schemes allow
to encrypt messages even if the whole message is not known at the begin-
ning of the encryption. The new introduced adversaries better capture
the on-line properties than classical ones. Indeed, in the new model, the
adversaries are allowed to send messages block-by-block to the encryp-
tion machine and receive the corresponding ciphertext blocks on-the-fly.
This kind of attacker is called blockwise adversary and is stronger than
standard one which treats messages as atomic objects.

In this paper, we compare the two adversarial models for on-line en-
cryption schemes. For probabilistic encryption schemes, we show that
security is not preserved contrary to for deterministic schemes. We prove
in appendix of the full version that in this last case, the two models are
polynomially equivalent in the number of encrypted blocks. Moreover in
the blockwise model, a polynomial number of concurrent accesses to en-
cryption oracles have to be taken into account. This leads to the strongest
security notion in this setting. Furthermore, we show that this notion is
valid by exhibiting a scheme secure under this security notion.

1 Introduction

In 2002, Joux, Martinet and Valette introduce the blockwise adaptive attacks
(BA) in [17], in order to better model attackers in the real world. This adversarial
model is particularly relevant to study the security of on-line schemes where
output blocks are viewed gradually by the adversary since for example the whole
encrypted message cannot be stored by the encryption machine. Indeed, usually
in order to encrypt a message M with a symmetric scheme, M is first split into
blocks of the length of the block cipher: M = M [1]M [2] . . .M [l]. An encryption
scheme is said to be on-line if the encryption of the block M [i] only depends
on the previous blocks M [1],M [2], . . . ,M [i] and not on the next ones M [i +
1] . . .M [l]. Consequently, the encryption function can compute and return C[i]
before the introduction ofM [i+1] . . .M [l]. There exist a lot of on-line encryption

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 212–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Blockwise Adversarial Model for On-line Ciphers 213

schemes such as ECB, CBC, OFB, CFB [19] or OCB [1]. However, some schemes
require a pre-treatment on the whole plaintext before the encryption process [20]
or require two encryption passes in two directions [16], and thus are not on-line.

In this paper, we propose to study the relations between the security notions
in the standard and blockwise models for probabilistic and deterministic on-line
encryption schemes.

1.1 Standard Versus Blockwise Adversarial Model

The standard attack model for the CPA security is message oriented : i.e. the
messages are viewed as atomic object which cannot be split into blocks. Thus,
adversaries can only be adaptive between the messages. This model correctly cap-
tures the interactions of an adversary with an encryption machine for schemes
which require the whole plaintext before to start the encryption process or im-
plementations that can record the entire plaintext before the beginning of the
encryption.

However, sometimes the encryption process has to be started even if the entire
plaintext is not known. For example, in real-time applications, the cryptographic
device cannot store the whole plaintext before the starting of the encryption.
Consequently, on-line encryption schemes are useful in such scenario. Moreover,
in many practical applications, cryptographic devices (smart cards) are memory
restricted. Then, if messages are too large, they cannot be stored in the crypto-
graphic module before the beginning of the encryption process. Therefore, the
message must be sent block by block to the cryptographic module which returns
on-the-fly the output block C[i], say just after the query of the input block M [i]
in some implementations. As a consequence, the adversary model needs to be
changed to take into account attackers querying messages block by block. In
the BA model, attackers are more adaptive than standard adversaries: they are
adaptive during the encryption query, i.e. between each block of messages, and
not only between the encryption queries, i.e. between the messages. Hence the
name of “blockwise” adversaries. Obviously the BA model is stronger than the
standard one. In the sequel, we respectively denote BCPA and CPA adversaries
in the BA and standard models.

It is important to thwart such adversaries since they can lead to theoretical
attacks on traditional cryptosystems, such as on the CBC encryption mode or
on the authenticated encryption mode presented by Jutla [17]. In [3], Bellare
et al. have proved that the CBC encryption scheme is secure in the standard
model up to the encryption of 2n/2 blocks, where n denotes the block length
of a block cipher. However, in [17], Joux, Martinet and Valette have presented
a new simple attack showing that the CBC encryption scheme is not secure in
the BA model after only two encrypted blocks. This kind of adversary is mainly
meaningful in the private-key setting when long messages are encrypted. It is
worth noticing that blockwise adversaries are not only of theoretical interest
as the attacks in [17] seem to show. In [17], the attacks invalidate the security
proof by building distinguisher but do not allow to recover the secret key or
to totally break the scheme. However, it is easy to show that for example the

214 P.-A. Fouque, A. Joux, and G. Poupard

CBC encryption scheme in the BA model is as sensible as the ECB mode in the
standard model against a key recovery attack since the adversary can adapt his
queries to the block cipher by xoring its queries to the previous output blocks.

1.2 Backgrounds and Previous Results

Usually, in cryptography, security notions are defined by combining a security
goal and an attack model [4]. Different security goals have been proposed so far,
such as indistinguishability of ciphertexts (IND), one-wayness, non-malleability,...
For example, semantic security [14] formalizes the adversary’s inability to learn
any information about a plaintext M underlying a challenge ciphertext C. This
captures a strong notion of privacy and is also defined as indistinguishability of
ciphertexts. In the symmetric setting of interest to us, IND has been redefined
as left-or-right (LOR), real-or-random (ROR), and find-then-guess (FTG) indis-
tinguishability. All these latter notions, described in [3], encompass the same
security definition. Bellare et al. in [3] have defined several security goals, while
Katz and Yung, in [18], present a complete characterization of the security no-
tions for encryption scheme in the standard model. Based on these two works,
we examine the relations between the standard and the blockwise models.

The blockwise model has been introduced at Crypto 2002 by Joux, Martinet
and Valette in [17]. They show that several encryption schemes such as the CBC
and IACBC are not secure in the BA model. At FSE 2003, Fouque, Martinet
and Poupard in [10] show that a slight variant of the on-line CBC encryption
scheme, and the CFB mode of operation can be proved secure against blockwise
chosen plaintext attack. For this, they introduce a strong security model. We
show here that this model is the strongest one. At SAC 2003, Fouque et al. in [9]
study the security of authenticated on-line encryption mode against blockwise
chosen ciphertext attacks. Finally, at RSA Conf 2004, Boldyreva and Taesombut
introduced new security notions for chosen-ciphertext attacks in [6]. We will not
here take into account such adversaries due to lack of places.

1.3 Our Results

Several papers have considered blockwise adversaries either in order to attack
some schemes such as in [17] or in order to prove security against such adversaries
as in [10, 9, 7]. Our aim is to study the relations between the security notions
in the standard model and in the blockwise model. Therefore, in section 2 we
define more formally several security notions in order to study the relationship
between these notions and the related notions in the standard attacker model.
Then, in section 3, we study relations between the FTG and LOR security goals
for blockwise adaptive chosen plaintext attacks (BCPA) and standard chosen
plaintext attacks (CPA). First of all, in theorem 1, we generalize the result stat-
ing that security in the standard model does not imply security in the blockwise
model. We also show that an equivalence for probabilistic schemes does not hold
for on-line encryption schemes against the new adversarial model. In [18], Katz
and Yung have mainly analyzed the relations between the non-malleability and

Blockwise Adversarial Model for On-line Ciphers 215

the FTG notions for different adversaries having access or not to encryption or
decryption oracles. For the FTG security game, they have proved that oracle
accesses only before the challenge phase is equivalent to oracle accesses before
and after this phase. We show in theorems 2 and 3 that this equivalence no
longer holds in the BA model.

Furthermore, the equivalence of the LOR and FTG security goal is not security
preserving. In fact, the main results of Bellare et al. in [3] of interest for us about
probabilistic schemes are that LOR is the strongest security notion and that
LOR and FTG are not security preserving but are polynomially-equivalent in the
number of messages. We show in theorem 5 (section 3) that LOR and FTG are
not security preserving in the BA model. We show that in the BA model two
definitions of LOR exist. The stronger one corresponds to adversaries which can
concurrently access the oracles. This is the strongest security notion we define.
Moreover, we also exhibit in section 4 a special class of encryption schemes
for which the weakest LOR definition and FTG are exactly equivalent in both
models and not only polynomially related (theorems 4 and 6). This allows better
reductions for these schemes since security is preserved once we have a security
proof under the FTG security notion. Finally, in section 5, we show that the
security under concurrent blockwise adversarial can be achieved with the counter
mode for example.

In appendix A of the full version [11], we fully characterize the relations
between the security of ciphers in the BA model and in the standard one and
prove that for on-line ciphers, also known as deterministic schemes, the two
models are polynomially-equivalent in the number of encrypted blocks. However,
this reduction does not preserve the security since it is quadratic in the number of
encrypted blocks. Furthermore, we show that the bound is tight by exhibiting an
on-line cipher for which the security in the BA adversary model is not guaranteed
if the cipher encrypts more than N blocks although the security in the standard
model is preserved up to the encryption of (N − 1)(N − 2)/2 blocks.

1.4 Notations

In the rest of this paper, we use standard notations and conventions for writing
probabilistic algorithms and experiments. If A is a probabilistic algorithm, then
A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and coins r. We let
y ← A(x1, x2, . . . ; r) denote the experiment of picking r at random and letting y
be A(x1, x2, . . . ; r). If S is a finite set then x← S is the operation of picking an
element uniformly from S. We say that y can be output by A(x1, x2, . . .) if there is
some r such that A(x1, x2, . . . ; r) = y. If p(x1, x2, . . .) is a predicate, the notation
Pr[x1 ← S;x2 ← A(x1, y2, . . .); . . . : p(x1, x2, . . .)] denotes the probability that
p(x1, x2, . . .) is true after ordered execution of the listed experiments. In the
sequel, q denotes the number of message queries and μ denotes the total number
of blocks queried. We note by Dd,n the set of d-bit strings, where d is a multiple
of n, and by Permn, the set of permutations on n-bit blocks.

216 P.-A. Fouque, A. Joux, and G. Poupard

2 Security Notions for On-line Encryption Schemes

2.1 Description of On-line Encryption Schemes

We assume that if C = C[0] . . . C[l] is the encryption of M = M [1]M [2] . . ., then
C[0] represents some information used to randomize the encryption process such
as the initialization vector in the CBC encryption mode. Encryption of M [i] is
denoted by C[i]. This formalism is not restrictive and most of the encryption
schemes satisfy it. Moreover, it can be adapted to more exotic schemes.

A (symmetric) on-line encryption scheme SE = (K, E ,D) consists in three
algorithms.

– The randomized key generation algorithm K takes as input a security pa-
rameter k ∈ N and returns a key k; we write k R← K(k).

– The encryption algorithm E can be randomized or stateful. It takes the key
k and a plaintext M and returns a ciphertext C; we write C R← Ek(M). (If
randomized it flips new coins on each invocations. If stateful, it uses and then
updates a state that is maintained across invocations such as a counter.)
Moreover, on-line encryption schemes can encrypt block M [i] using only
M [1],M [2], . . . ,M [i].

– The decryption algorithm D is deterministic and stateless. It takes the key
k and a string C and returns either the corresponding plaintext M or the
symbol ⊥; we write x ← Dk(C) where x ∈ {0, 1}∗ ∪ {⊥}. We require that
Dk(Ek(M)) = M for all M ∈ {0, 1}∗. Moreover, on-line decryption can de-
crypt C[i] only using C[0], . . . , C[i].

2.2 Security Notions for On-line Encryption Schemes

In this section, we adapt the standard security notions for symmetric encryption
schemes to the BA model. Find-Then-Guess. Semantic security captures the
intuitive notion of privacy for an encrypted text. The formulation of semantic
security stipulates that given a ciphertext, a polynomially-bounded adversary
cannot gain any information about the corresponding plaintext (except maybe
its length). The Find-Then-Guess (FTG) goal is an equivalent security notion, as
shown in [3]. The adversary A, viewed as three sub-adversaries A = (A1, Ac, A2),
tries to win the following game: in the find phase, A1 tries to get some infor-
mation and returns some state information in s0. Then in the challenge phase,
Ac gradually submits two messages M0 and M1 to the encryption oracle which
chooses a random bit b at the beginning of the encryption process, encrypts the
blocks of Mb and returns the corresponding blocks Cb to Ac in an interactive
manner. Finally in the guess phase, A2 tries to distinguish whether Cb is the
encryption of M0 or M1. In the standard model, the adversary A1 chooses the
messages M0 and M1. In the BA model, we need to assume that in some cases,
the two messages are chosen by the adversary Ac since this new attacker is more
adaptive and can choose the two messages either at the beginning of the chal-
lenge phase or during it. We add the adversary Ac in order to take into account
the two adversarial models in a single definition.

Blockwise Adversarial Model for On-line Ciphers 217

In the FTG game, Amay have access to different oracles during each phase. To
avoid obfuscating security notions, we only define the three most representative
notions: if A is blockwise adaptive in the find phase, then we write BCPA-P1, or in
the find and guess phases, then we write BCPA-P2, or during the challenge phase
and in the find and guess phases, and then we write BCPA-D. The adversary
advantage in winning the FTG game in these different settings for a symmetric
scheme Π is given by:

Advftg−atk
Π,A (k) def=

∣∣∣∣∣∣2 · Pr

⎡⎣k ← K(1k); b← {0, 1}; s0 ← AO1
1 (1k);

(M0,M1, s1, C) ← AOc
c (s0) :

AO2
2 (s1,M0,M1, C) = b

⎤⎦− 1

∣∣∣∣∣∣
where

if atk=BCPA-P1, then O1 = Ebl
k (.) and Oc = Ek(., ., b) and O2 = ε

if atk=BCPA-P2, then O1 = Ebl
k (.) and Oc = Ek(., ., b) and O2 = Ebl

k (.)
if atk=BCPA-D, then O1 = Ebl

k (.) and Oc = Ebl
k (., ., b) and O2 = Ebl

k (.)

We measure as Advftg−atk
Π (k, t, q, μ) = max

A
{Advftg−atk

Π,A (k)} the security of the

scheme Π, where the maximum is over all legitimate A having time-complexity t,
making to the oracle at most q encryption queries totaling μ blocks. A secret-key
encryption scheme is said to be FTG -secure against blockwise adaptive chosen
plaintext attack in the FTG sense if for all polynomial-time probabilistic adver-
saries, the advantage in this guessing game is negligible as a function of the
security parameter k.

Left-Or-Right Indistinguishability. In the LOR security goal, the adver-
sary is allowed to make queries of the form (M0,M1) where M0 and M1 are
equal-length messages. Two experiments are considered. In the first one, each
query is answered with the encryption of the left message; in the second, the
right message is encrypted. Formally, the adversary has access to the left-or-
right oracle EK(LR(., ., b)), where b ∈ {0, 1}: it takes as input pairs of messages
(M0,M1) and, if b = 0, it computes C ← EK(M0) and returns C; else it computes
C ← EK(M1) and returns C. We consider an encryption scheme to be “good” if
a “reasonable” adversary cannot obtain “significant” advantage in distinguishing
the cases b = 0 and b = 1 given access to the left-or-right oracle.

In the BA model, adversaries are allowed to feed the oracle block by block.
This introduces new interactions since the adversary can interleave encryption
blocks for different messages. Consequently, we present two LOR games. In the
first game, called LORS, for LOR with sequential message queries, the adversary
has to finish an encryption query before requesting the next message. In the
second game, called LORC, for LOR with concurrent accesses, the adversary can
interleaved the block queries of different messages.

The Ebl,s
k (M0[i],M1[i], b) oracle is a LOR-block encryption oracle: the adver-

sary is allowed to query multiple pairs of messages (M j
0 ,M

j
1) with the restriction

that it begins the encryption of a new pair of messages only if it has finished

218 P.-A. Fouque, A. Joux, and G. Poupard

the encryption of the previous pair. In the Ebl,c
k (M j

0 [i],M j
1 [i], b) oracle, we add

a session identifier sid since the adversary is not limited to sequence its pairs of
messages but can interleaved the session queries. The session identifier will be
the first element in the query. Equivalently, we can say that the adversary can
run multiple Ebl,c

k (sid,M j
0 [i],M j

1 [i], b) oracles concurrently.

Advlors−bcpa
Π,A (k) =

∣∣∣2 · Pr
[
k ← K(1k); b← {0, 1} : AEbl,s

k (LR(.,.,b))(k) = b
]
− 1

∣∣∣
Advlorc−bcpa

Π,A (k) =
∣∣∣2 · Pr

[
k ← K(1k); b← {0, 1} : AEbl,c

k (LR(.,.,.,b))(k) = b
]
− 1

∣∣∣
Therefore, we define the Advlors−bcpa

Π (k, t, q, μ) = max
A

{Advlors−bcpa
Π,A (k)}, where

the maximum is over all legitimate A having time-complexity t, making to
the concurrent oracles at most q encryption queries totaling μ blocks (resp.
Advlorc−bcpa

Π (k, t, q, μ) = max
A

{Advlorc−bcpa
Π,A (k)}). A secret-key encryption scheme

is said to be LOR-secure against blockwise adaptive chosen plaintext attack in
the LORS sense (resp. LORC) if, for all polynomial-time probabilistic adversaries,
the advantage in this guessing game is negligible as a function of the security
parameter k.

3 Relations Between the Standard and Blockwise Models

In this section, we study relations between the BA and standard models for
probabilistic schemes. Figure 1 presents the main relations we prove in the sequel.
First, it is easy to see that FTG-BCPA-P1 implies FTG-CPA-P1, FTG-BCPA-
P2 implies FTG-CPA-P2, and LORS-BCPA implies LOR-CPA since the standard
model can be easily simulated in the BA model. Secondly, it is also clear from the
definitions of FTG-BCPA-P1, FTG-BCPA-P2, FTG-BCPA-D, LORC and LORS,
that FTG-BCPA-P2 implies FTG-BCPA-P1, FTG-BCPA-D implies FTG-BCPA-
P2, and LORC-BCPA implies LORS-BCPA. Thirdly, using hybrid arguments, it
is easy to prove the implication between LORS-BCPA and FTG-BCPA-D (see in
appendix of the full version).

In a lot of counterexamples, we use encryption schemes Π that treat the
blocks such that there is no way to distinguish an input block from an output
(in particular no redundancy is added on the input blocks): ∀i ≥ 1, n = |C[0]| =
|M [i]| = |C[i]|.

We use the notation A⇒ B to indicate a security-preserving reduction from
notion A to notion B. A

q→ B indicates a reduction (not necessarily security-
preserving) from A to B. We also assume that E is a symmetric encryption
scheme operating on n-bit blocks with a k-bit secret key k.

3.1 Blockwise Adversaries are Stronger Than Standard Ones

The following theorem shows the separation between BCPA and CPA adversaries
for the goals FTG-P1, FTG-P2 and LORS. It is a generalization of a result of
paper [17] which only state that FTG-CPA-P2 �⇒ FTG-BCPA-P2.

Blockwise Adversarial Model for On-line Ciphers 219

�

�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

�
�

FTG-BCPA-P1

FTG-CPA-P1

FTG-BCPA-P2

FTG-CPA-P2

FTG-BCPA-D LORS-BCPA

LOR-CPA

LORC-BCPA

[18] [3]

Th 1 Th 1 Th 1

Th 2 Th 3 Th 4,6
Th 5

Fig. 1. Relations between the FTG and LOR security goals in the standard and BA mod-
els. In the figure, a plain arrow means that security in the first notion implies security
in the second, a hatched arrow means that the first notion does not imply the second,
and a dashed arrow indicates that the security between the two notions is not preserved

Theorem 1. [FTG-CPA-P1 �⇒ FTG-BCPA-P1 and FTG-CPA-P2 �⇒ FTG-BCPA-
P2 and LOR-CPA�⇒ LORS-BCPA] If there exists an on-line encryption scheme Π
which is secure in the sense of FTG-CPA-P1 (resp. FTG-CPA-P2 or LOR-CPA),
then there exists an on-line encryption scheme Π ′ which is also secure in the
sense of FTG-CPA-P1 (resp. FTG-CPA-P2 or LOR-CPA) but which is not FTG-
BCPA-P1 secure (resp. FTG-BCPA-P2 or BCPA-LORS) assuming the existence
of pseudo-random permutations.

Proof. Assume that there exists some FTG-CPA-P1 secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K, E ′,D′) which is also
FTG-CPA-P1 secure but not secure in the FTG-BCPA-P1 sense:

Algorithm E ′
k(M [i]) Algorithm D′

k(C[i]‖v)
If i = 2 and M [2] = C[1] return Dk(C[i])

then return Ek(M [2])‖k
else return Ek(M [i])‖0k

In the description of Π ′, 0k denotes the concatenation of k zeros, and v denotes
a k-bit value.

A BCPA adversary can choose the message blocks so that the relation M [2] =
C[1] holds with probability 1. Hence a BCPA adversary obtains the secret key
and easily wins the FTG game. Thus Π ′ is not FTG-BCPA-P1 secure.

However a CPA adversary cannot choose the blocks. Then the relation holds
with probability 1/2n for each message queried if Ek is a pseudo-random per-
mutation. Indeed, except if the relation M [2] = C[1] holds, the CPA adver-
sary gains no additional advantage in winning the FTG game against Π ′ than
against Π. Therefore, it is easy to show that if Π is secure, then so is Π ′:
Advftg−cpa−p1

Π′ (k, t, q, μ) ≤ Advftg−cpa−p1
Π (k, t, q, μ) + 2q/2n. We can prove this

220 P.-A. Fouque, A. Joux, and G. Poupard

result using different games as in [21]. The first game G0 is the real security
game and in the next game G1, the simulation is stopped as soon as the relation
M [2] = C[1] holds. The difference between the two games can be analyzed using
the probability of collision. Let F be the event M [2] = C[1], S be the event of
the adversary wins the FTG security game against Π and S′ be the event the
adversary wins the FTG security game against Π ′. As long as F does not occur,
Pr[S] = Pr[S′] so Pr[S∧¬F] = Pr[S′∧¬F]. Therefore, |Pr[S]−Pr[S′]| ≤ Pr[F] as
a lemma in [21] shows. Then, it is easy to upper bound Pr[F] by q/2n since each
call will be independent (a new random value is used for each message query)
and Advftg−cpa−p1

Π′ (k, t, q, μ) ≤ Advftg−cpa−p1
Π (k, t, q, μ) + 2q/2n. The factor of 2

comes from the fact that the advantage is twice the probability of success minus
1. Consequently, Π ′ is FTG-CPA-P1 secure but is not FTG-BCPA-P1 secure. This
conversion can be adapted to prove the separation between FTG-BCPA-P2 and
FTG-CPA-P2, and between LORS-BCPA and LOR-CPA.

3.2 Adaptive Adversaries Can be More Powerful in the Blockwise
Model

Adaptive adversaries. Katz and Yung show in [18] that accesses to an adap-
tive encryption oracle after the challenge phase do not help an CPA adversary.
Formally, they show that FTG-CPA-P1 is polynomially-equivalent in the num-
ber of message queries to FTG-CPA-P2. In the BA model, this equivalence is no
longer valid and we prove that BCPA-P2 adversaries are strictly stronger than
BCPA-P1 ones since the CBC encryption mode is FTG-BCPA-P1 but not FTG-
BCPA-P2 according to [17]. Finally, it is worth noticing in the following proof
that if the condition M [4] = C[3] is not present, the scheme Π ′ is not FTG-CPA-
P1. Thus, as one could believe at first glance, the counterexample we use in the
proof cannot be applied in the standard model.

Theorem 2. [FTG-BCPA-P1 �⇒ FTG-BCPA-P2] If there exists an on-line en-
cryption scheme Π which is FTG-BCPA-P1 secure, then there exists an on-line
encryption scheme Π ′ which is also secure FTG-BCPA-P1 secure but not FTG-
BCPA-P2 secure assuming the existence of pseudo-random permutations.

Proof. Assume that there exists some FTG-BCPA-P1 secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K, E ′,D′) which is also
FTG-BCPA-P1 secure but not secure in the FTG-BCPA-P2 sense. The new on-
line encryption scheme Π ′ = (K, E ′,D′) is defined as follows:

Algorithm E ′
k(M [i]) Algorithm D′

k(C[i]‖b′)
If (i = 4) ∧ (M [4] = C[3]) ∧ (Dm

k (M [2]‖M [3]) = M [1]) return Dk(C[i])
then return Ek(M [4])‖1

else return Ek(M [i])‖0
where Dm

k (C) denotes the decryption of the whole ciphertext C using the se-
cret key k and not only as the decryption of one block of the ciphertext. More
precisely, in the above description, the block M [2] is treated for example as the
initialization vector C[0] and M [3] is the encryption of the first block.

Blockwise Adversarial Model for On-line Ciphers 221

Every BCPA adversary can choose the blocks of messages such that the relation
M [4] = C[3] holds with probability 1. We show that a FTG-BCPA-P2 adver-
sary A, can win its FTG game, i.e. distinguish between the encryption of M0
and M1. Now A tries to correctly guess the bit b. In the challenge phase, A
chooses two different random blocks {0, 1}n, M0[1] and M1[1] and sends them
to the encryption oracle which returns Cb[0]‖Cb[1]. In the guess phase, A sends
M [1] = M0[1] and receives C[0]‖C[1]. Then, A sends M [2] = Cb[0], receives
C[2], and sends M [3] = Cb[1] except the last bit and receives C[3]. Finally, A
sends M [4] = C[3] and the encryption oracle returns Ek(M [4])‖d. If d = 1, then
A has correctly guessed the bit b = 0, since Dm

k (M [2]‖M [3]) = M [1] (because
if b = 0, then Dm

k (Cb[0]‖Cb[1]) = M0[1]). Therefore A wins the FTG game with
probability 1. Hence a FTG-BCPA-P1 adversary B, which has not access to a
blockwise encryption oracle after the challenge phase cannot win the game with
significant advantage. Indeed, assume that there exists a FTG-BCPA-P1 adver-
sary A against scheme Π ′, then we will construct a FTG-BCPA-P1 attacker B
against scheme Π. The attacker B will simulate the challenger to the adversary
A. The event Dm

k (M [2]‖M [3]) = M [1] can appear in two situations: either at
random with probability 1/2n for each message, if Ek is a pseudo-random permu-
tation, or since the attacker B knows all encryption queries of A, he can decide
when this event occurs in the second case. Consequently, B is able to simulate
the encryption process to A except in the first case which appears with small
probability. Consequently, Π ′ is FTG-BCPA-P1 secure but is not FTG-BCPA-P2
secure.

Adaptive adversaries during the challenge phase. We also prove that
adversaries adaptive before, during and after the challenge phase, BCPA-D, are
stronger than adversary, BCPA-P2 adaptive before and after. The notion of
BCPA-D adversaries is equivalent to BCPA-P2 in the standard adversarial model
since messages are treated as atomic objects.

Theorem 3. [FTG-BCPA-P2 �⇒ FTG-BCPA-D] If there exists an on-line en-
cryption scheme Π which is FTG-BCPA-P2 secure, then there exists an on-line
encryption scheme Π ′ which is also FTG-BCPA-P2 secure but not FTG-BCPA-D
secure assuming the existence of pseudo-random permutations.

Proof. Assume that there exists some FTG-BCPA-P2 secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K, E ′,D′) which is also
FTG-BCPA-P2 secure but not FTG-BCPA-D secure. The new on-line encryption
scheme Π ′ = (K, E ′,D′) is a slight modification of the encryption function E
defined as follows:

Algorithm E ′
k(M [i]) Algorithm D′

k(C[i])
If i = 3 and M [2] = C[1] If i = 3 and M [2] = C[1]

then return M [3] then return C[3]
else return Ek(M [i]) else return Dk(C[i])

222 P.-A. Fouque, A. Joux, and G. Poupard

Clearly Π ′ is FTG-BCPA-P2 secure as Π as shown in the previous proofs. A
BCPA adversary can choose the blocks of messages such that the relation M [2] =
C[1] holds with probability 1 during the challenge phase. Therefore a FTG-
BCPA-D adversary A can distinguish between the encryption of M0 and M1: A
first sends (M0[1],M1[1]), gets C[0]‖C[1], and then queries (M0[2],M1[2]) where
M0[2] = C[1] and M0[2] �= C[1]. Finally, he queries (M0[3],M1[3]) such that
M0[3] �= M1[3]. Consequently, if he receives C[3] = M0[3], then b = 0, otherwise
b = 1. Hence Π ′ is FTG-BCPA-P2 secure but is not FTG-BCPA-D secure.

Relation between FTG and LOR in the BA model. In [3] Bellare et al.
prove that in the standard model FTG and LOR are polynomially-equivalent in
the number of encrypted queries. We prove here in the BA model that this rela-
tion holds between FTG-BCPA-D and LORS-BCPA. The proof is an adaptation
of [3] and uses the same hybrid argument (introduced in [12]) in the blockwise
setting. It is given in appendix of the full version.

Theorem 4. [LORS-BCPA ⇒ FTG-BCPA-D
q→ LORS-BCPA] For any scheme

SE = (K, E ,D),

Advftg−bcpa−d
SE (k, t, q, μ) ≤ Advlors−bcpa

SE (k, t, q, μ) ≤ q × Advftg−bcpa−d
SE (k, t, q, μ)

3.3 Concurrent Adversaries

Finally, we show that LORC-BCPA is the strongest security notion in the block-
wise model. Concurrent adversaries have already been considered in other con-
texts such as zero-knowledge proofs in [8]. According to our knowledge, it is
the first time that concurrent adversaries appear in encryption schemes. In the
BA model and for the LOR game, this notion is natural.

Theorem 5. [LORS-BCPA�⇒ LORC-BCPA] If there exists an on-line encryption
scheme Π which is LORS-BCPA secure, then there exists an on-line encryption
scheme Π ′ which is also LORS-BCPA secure but not LORC-BCPA secure assum-
ing the existence of pseudo-random permutations.

Proof. Assume that there exists some LORS-BCPA secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K′, E ′,D′) which is also
LORS-BCPA secure but not secure in the LORC-BCPA sense. The new on-line
encryption scheme Π ′ = (K, E ′,D′) is a slight modification of the functions E
and D :

Algorithm E ′
k(M [i])

If i = 3 and C[1] = Dm
k (M [2]‖M [3])

then return M [3]
else return Ek(M [i])

where Dm
k (M) denotes the decryption of the whole message M using the key k

and the decryption can be easily adapted.

Blockwise Adversarial Model for On-line Ciphers 223

Clearly Π ′ is LORS-BCPA secure as the initial scheme Π. Indeed, assume for
the sake of contradiction that there exists a LORS-BCPA adversary A′ against
Π ′. We must show that there also exists a LORS-BCPA adversary A against Π.
We have to simulate the challenger against A′. The only difference between the
two schemes is in the encryption of the third block if some relation occurs. The
relation can hold either by a correct guess of the adversary which is negligible if
Ek behaves as a pseudo-random permutation or if a collision occurs with previous
encryption queries. The last event is easily detectable by adversary A since all
encryption queries goes through A which forwards them to its challenger. Hence,
it is easy for A to not encrypt the third block if the relation occurs. In this case,
the simulation is quite perfect.

Any LORC-BCPA adversary can choose the message blocks such that the rela-
tion C[1] = Dm

k (M [2]‖M [3]) holds with probability 1. Indeed, a LORC-BCPA ad-
versary A begins the encryption of a pair of messages (M0,M1) by sending
(M0[1],M1[1]) to a first instance of the LOR-block encryption oracle which re-
turns Cb[0]‖Cb[1]. Then, he sends (M ′

0[1],M ′
1[1]) where M ′

0[1] = Cb[1] to a
second instance running concurrently and gets C ′

b[0]‖C ′
b[1]. He continues the

encryption of (M0,M1) by sending (M0[2],M1[2]) such that M0[2] = C ′
b[0] and

M1[2] is a random block. Finally, he queries (M0[3],M1[3]) with M0[3] = C ′
b[1].

A simple manipulation shows that if b = 0, then C0[1] = Dm
k (C ′

0[0]‖C ′
0[1]) and

consequently Ek(M0[3]) = M0[3]. Therefore Π ′ is LORS-BCPA secure but is not
LORC-BCPA secure.

4 On-line Encryption Schemes with a Special Property

In this section we define a new property for on-line encryption schemes, called
Resettable-Or-Continuous (ROC). For these schemes, the two security notions
LORS-BCPA and FTG-BCPA-D are exactly equivalent.

The Resettable-Or-Continuous property can be defined informally as follows:
it is computationally hard for a polynomial-time adversary to distinguish with
non-negligible advantage between the encryption of the concatenation of a poly-
nomial number of messages, E(M1‖M2‖ . . . ‖M�(k)), and the concatenation of
the encryptions of the same messages E(M1)‖E(M2)‖ . . . ‖E(M�(k)) for state-
ful encryption schemes such as the counter mode or for a stateless encryption
scheme between E(M1‖r1‖M2‖r2 . . . ‖r�(k)−1‖M�(k)), where the ri’s denote ran-
dom blocks such that the length of the two bitstring be the same. This special
class captures many important on-line encryption schemes such as the CBC and
CTR mode [3].

Formally, we define the resettable-or-continuous oracle ROC(Ebl
k (.), b), tak-

ing as input a message M and working as follows for a stateless encryption
scheme such as the CBC. At the beginning of the game, the ROC oracle chooses
a random bit b. The first message M = M [1]M [2] . . .M [l] is encrypted by the
ROC oracle which returns C[0]C[1] . . . C[l]. The adversary is free to stop this

224 P.-A. Fouque, A. Joux, and G. Poupard

encryption by using the stop command or to submit a new message block
by block. When the adversary submits the stop command and if b = 0, the
ROC encryption oracle stops the encryption of M and starts the encryption
of the new message M ′[1], . . .M [l′] under the key k and a new random value
C ′[0] and returns C ′ = C ′[0]C ′[1] . . . C ′[l′]. However if b = 1, the ROC oracle
does not stop the encryption of the first message. He takes a random block
r1 ∈ {0, 1}n, encrypts it into C ′[0] as if r1 was the next block in M . Then, he
encrypts the message M ′[1]M ′[2] . . .M ′[l′] block by block and returns gradu-
ally C ′[0]C ′[1]C ′[2] . . . C ′[l′]. In the case b = 1, the ROC encryption oracle has
encrypted the concatened message M [1] . . .M [l]‖r1‖M ′[1] . . .M ′[l′]. This game
continues for the other queries. This simulation can be made for any stateless
encryption scheme such as the CBC mode. For a stateful encryption scheme such
as the CTR mode, the random block is not present when b = 1. This property
can also be defined in the standard model.

Advind−roc
Π,A (k, t, q, μ) def=

∣∣∣2 · Pr
[
k ← K(1k); b← {0, 1} : AROC(Ebl

k (.),b)(k)=b
]
−1

∣∣∣
Therefore, the security bound for the schemeΠ is given by Advind−roc

Π (k, t, q, μ) =
max

A
{Advind−roc

Π,A (k)}, where the maximum is over all legitimate A having time-

complexity t, making to the oracle at most q encryption queries totaling μ blocks.
A secret-key encryption scheme is said to be IND-secure against blockwise adap-
tive chosen plaintext attack in the ROC sense if for all polynomial-time proba-
bilistic adversaries, the advantage in this game is negligible as a function of the
security parameter. The ROC class is the set of encryption schemes satisfying
the ROC property.

Theorem 6. [FTG-BCPA-D ROC⇒ LORS-BCPA] For any ROC scheme SE,

Advlors−bcpa
SE (k, t, q, μ) ≤ Advftg−bcpa−d

SE (k, t, q, μ) + Advind−roc
SE (k, t, q, μ)

Proof. The proof goes by contradiction. Let SE be a ROC encryption scheme.
Assume for the sake of contradiction that a LORS-BCPA adversary A wins the
LORS game against SE with non-negligible advantage. Then it can be used to
build a BCPA-D attacker B winning a FTG game against SE with non-negligible
advantage. The FTG adversary B does not use his find phase and begins the
challenge phase by running A. To simulate the LORS encryption queries of A,
B forwards the pairs of messages block by block and does not send the stop
command at the end of a message query. All messages are chained. The messages
are separated with a random block chosen by B in the case of stateless schemes
and are not separated for stateful schemes. This simulation is perfect for schemes
having the ROC property. Therefore, A wins the LORS game with non-negligible
advantage and B forwards the bit guessed by A and also wins the FTG game
with non-negligible advantage.

Blockwise Adversarial Model for On-line Ciphers 225

5 Security Under Concurrent Adversary

In this section, we prove that security against concurrent adversaries can be
achieved. We prove that the randomized counter mode, called XOR in [3] is se-
cure. We note that encryption with XOR or CTR mode of operation does not
require permutations. Therefore we use only functions. We prove such scheme
and not the standard counter mode where the counter is incremented between
each message since in the concurrent scenario, the adversary can begin the en-
cryption of several messages in parallel.

We consider several attacker games such that the distance between each game
can be easily shown. In the last game, it will be clear that the adversary has no
way to get some information about the random bit b in the LORC security game.

Theorem 7. For any adversary A running within time bound t, with less than
q < 2n/2 calls to the function F , totalling at most μ blocks,

Advlorc−bcpa
XOR,A (k, t, q, μ) ≤ Advprf

F,A(k, t, q) +
q(q − 1)

2n

where n denotes the block length, Advprf
F,A(k, t, q), the advantage of the adversary

A in distinguishing a function taken from F to a random function with at most
q black-box queries within time bounded by t. The same kind of definition can be
given for Advlorc−bcpa

XOR,A (k, t, q, μ).

The proof is in the full version [11].

6 Conclusion

In this paper we have analyzed the relations between the block adversary and the
standard models for probabilistic and deterministic schemes. For probabilistic
schemes, the relations are modified and we introduce new security notions. The
resettable-or-continuous property extends the result of Bellare et al.. Moreover,
we also prove that concurrent accesses lead to the strongest security notion
and we show that some schemes can be secure in this setting. Finally, we show
that the models are equivalent for deterministic schemes in appendix of the full
version.

References

1. M. Bellare, J. Black, T. Krovetz, and P. Rogaway. OCB : A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption. Available at
http : //www.cs.ucdavis.edu/users/~rogaway, 2001.

2. M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-Line Ciphers
and the Hash-CBC Constructions. In Crypto ’01, LNCS 2139, pages 292–309.
Springer-Verlag, 2001.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
for Symmetric Encryption. In Proc. 38th of FOCS, pages 394–403. IEEE, 1997.

226 P.-A. Fouque, A. Joux, and G. Poupard

4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions
of Security for Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages
26–45. Springer-Verlag, 1998.

5. M. Bellare and P. Rogaway. On the Construction of Variable-Input-Length Ciphers.
In FSE ’99, LNCS 1636. Springer-Verlag, 1999.

6. A. Boldyreva and N. Taesombut. On-line Encryption Schemes: New Security No-
tions and Constructions. In RSA Conf 2004, LNCS, pages –. Springer-Verlag,
Berlin, 2003.

7. Y. Dodis and J. H. An. Concealment and Its Applications to Authenticated En-
cryption. In Eurocrypt ’03, LNCS 2656, pages 312–329. Springer-Verlag, 2003.

8. C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In Proc. of the
30th STOC, pages 409–418. ACM Press, New York, 1998.

9. P. A. Fouque, A. Joux, G. Martinet, and F. Valette. Authenticated On-line En-
cryption. In Selected Areas in Cryptography ’03, LNCS. Springer-Verlag, 2003. To
appear.

10. P. A. Fouque, G. Martinet, and G. Poupard. Practical Symmetric On-line Encryp-
tion. In Fast Software Encryption ’03, LNCS. Springer-Verlag, 2003. To appear.

11. P. A. Fouque, A. Joux, and G. Poupard. Blockwise Adversarial Model for On-line
Ciphers and Symmetric Encryption Schemes. In Selected Areas in Cryptography
’04, LNCS. Springer-Verlag, 2004. http://www.di.ens.fr/~fouque/pubs/.

12. O. Goldreich. Foundations of Cryptography. Cambridge University Press, Weiz-
mann Institute of Science, 2001. Basic Tools.

13. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
Journal of the ACM, 33(4):210–217, 1986.

14. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

15. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. A Tweakable Enciphering
Mode. In Crypto ’03, LNCS. Springer-Verlag, 2003.

16. R. Housley. Cryptographic message syntax. S/MIME Working Group of the IETF,
Internet-draft draft-ietf-smime-cms-12.txt, March 1999.

17. A. Joux, G. Martinet, and F. Valette. Blockwise-Adaptive Attackers: Revisiting
the (in)security of some provably secure Encryptions Modes: CBC, GEM, IACBC.
In Crypto ’02, LNCS 2442, pages 17–31. Springer-Verlag, 2002.

18. J. Katz and M. Yung. Complete characterization of security notions for probabilis-
tic private-key encryption. In STOC ’00. ACM Press, 2000.

19. NBS. FIPS PUB 81 - DES Modes of Operation, December 1980.
20. R. Rivest. All-or-nothing encryption and the package transform. In FSE ’97, LNCS

1267. Springer-Verlag, 1997.
21. V. Shoup. OAEP Reconsidered. In Crypto ’2001, LNCS 2139, pages 239–259.

Springer-Verlag, Berlin, 2001.

Cryptanalysis of a White Box
AES Implementation

Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi�

France Télécom R&D
38–40, rue du Général Leclerc

92794 Issy les Moulineaux Cedex 9 — France
{olivier.billet, henri.gilbert}@francetelecom.com

charaf echchatbi@yahoo.fr

Abstract. The white box attack context as described in [1, 2] is the
common setting where cryptographic software is executed in an untrusted
environment—i.e. an attacker has gained access to the implementation
of cryptographic algorithms, and can observe or manipulate the dynamic
execution of whole or part of the algorithms. In this paper, we present an
efficient practical attack against the obfuscated AES implementation [1]
proposed at SAC 2002 as a means to protect AES software operated in
the white box context against key exposure. We explain in details how
to extract the whole AES secret key embedded in such a white box AES
implementation, with negligible memory and worst time complexity 230.

Keywords: white box, AES, block ciphers, tamper resistance, software
piracy, implementation.

1 Introduction

One of the consequences of the ever spreading use of cryptology within mass
applications—e.g. email, web servers access, digital content distribution, and so
on—implemented in software on standard terminals, like pcs, pdas, or mobile
phones, is that cryptologic algorithms are quite often executed in an untrusted
environment. The usual “black box” model, where keys and cryptographic algo-
rithms are confined and executed in a logically protected and tamper resistant
cryptographic module, like a smart card, is no longer applicable. This situa-
tion motivated the introduction of a new setting, coined “white box” context
of execution: the software representing cryptographic algorithms, cryptographic
keys when separate from the cryptographic software, and dynamic data pro-
duced during the execution of all or part of the cryptographic algorithms, are
exposed to being accessed or even manipulated by malicious processes hosted
by the same machine—which may be controlled either by an outsider or by the
legitimate user of the host terminal. Cryptographic applications running in the
white box context of execution are highly vulnerable to the most severe form

� Work performed at France Télécom R&D

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 227–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 O. Billet, H. Gilbert, and C. Ech-Chatbi

of attack, namely the leakage of the cryptographic keys. Thus, the protection
cryptographic algorithms would offer in the black box model of execution vanish.

This security issue is at the origin of the introduction, in a pair of seminal
articles [2, 1] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, of a new
protection technique preventing from key leakage for cryptographic software run
in the white box context. It consists in implementing key-instantiated versions of
an algorithm, as the composition of a series of lookup tables, each look-up table
concealing some components of the algorithm. Implementations of an algorithm
resulting from this protection technique are named white-box implementations.
White box implementations of the DES and AES blockciphers were respectively
described in [2] and [1]. Short after the publication of [2], it was shown by
M. Jacob, D. Boneh and D. Felten in [3], that the obfuscation technique applied
in [2] was insecure, i.e. that a low complexity attack requiring few accesses (with
partly chosen input values) to lookup tables representing external DES rounds,
allowed to extract the key from a white box DES implementation. However,
the attack technique of [3] is not applicable to the white box implementation of
AES described in [1] due to the additional protection provided by some extra
features introduced by [1]. More precisely, a fundamental difference between
both implementations results from the application, in the case of AES, of so-
called external encodings. One of the main security consequences of this extra
feature—which description is provided in Sec. 2—is that in the case of AES, and
unlike DES, the protection of external rounds is not weaker than the protection
of internal rounds. Since the attack strategy of [3] is essentially based upon the
extra weakness of external rounds, it is not applicable to the AES implementation
described in [1]. To the best of our knowledge, no realistic attack against the
white box implementation of [1] has been proposed so far.

In this paper, we present a practical low complexity attack—i.e. with negligi-
ble memory, and work factor 3·228 < 230—of the AES white box implementation
proposed in [1]. The conducting idea of the attack is that though none of the
lookup tables, when considered individually, leaks sensitive information related
to the AES key in an obvious way, the analysis (based on the observation of
related input/output values) of lookup tables composition, reveals information
on the encodings embedded in those lookup tables. We show that the informa-
tion provided by the analysis of such tables during three consecutive encoded
rounds, allows an attacker to entirely recover the AES 128-bit secret key of
an obfuscated AES implementation. The key steps of the proposed attack were
successfully implemented in C++, and confirmed by computer experiments.

This paper is organized as follows. In Section 2, we describe the white box
AES implementation as proposed by [1]. In Section 3 we show how to extract
the secret key. The last section concludes the paper.

2 Description of the White Box AES Implementation

We now describe the implementation proposed in [1]. The general strategy is to
merge several steps of the AES round function into table lookups, blended by
input/output encodings, and mixing bijections.

Cryptanalysis of a White Box AES Implementation 229

Internal encodings (resp. mixing bijections) are non-linear (resp. GF(2)-
linear) and introduce confusion (resp. diffusion) in the representation of the
intermediate blocks of the computation. Their inclusion in the implementation
must respect the fact that two consecutive tables in the data flow have match-
ing output and input encodings, as well as matching mixing bijections, at their
boundary.

Apart from the above pairwise canceling internal transformations, another
obfuscation technique called external encoding is used. It consists in feeding the
obfuscated implementation with AES inputs in an encoded form. At the same
time, the implementation also outputs the AES encrypted values in an encoded
form. Thus, the implementation does not exactly achieve an AES computation
Y = EK(X), but a modified computation Y = E′

K(X) = G◦EK ◦F−1(X). The
external input/output encodings G and F−1 have to be annihilated on the peer
site—e.g. a server when the AES obfuscated implementation is embedded in a
software player—in order to compute E′−1

K . Though the encodings G and F−1

suggested in [1] are hereafter taken into account, our attack is not highly depen-
dent upon their exact specification. One of the main consequences of using exter-
nal encodings is that internal input/output encodings can be used to blend the
first and last round, in addition to inner rounds’ blending. This prevents attack-
ers from exploiting specific weaknesses one would otherwise encounter against
external rounds of obfuscated implementations [3].

Let us hereafter denote AES-128 the AES version operating on 128 bits
blocks. Recall [4, 5] that the AES-128 round function is made of the four steps
described in Fig. 1 operating on the 16 bytes of a 4×4 state array. The AES-128

SubBytes

ShifRows

MixColumns

AddRoundKey

Fig. 1. tracking four bytes during an AES round

considered in [1] consists of 10 such rounds; a preliminary AddRoundKey step is
performed before the first round, and MixColumns is omitted in the final round.
Let us index the state bytes by their row and column numbers (i, j) in the
state array. If the S-box function operating on bytes during the SubBytes step
is denoted by S, define for any round r and any byte (i, j) with indexes taken
modulo 4:

1 ≤ r ≤ 9 T r
i,j(x) := S

(
x ⊕ kr

i,j

)
,

T 10
i,j (x) := S

(
x ⊕ k10

i,j

)⊕ k11
i,j−i .

(Note that we shifted the round index of the original AES-128 by 1, and that the
post-whitening key k11

i,j occuring in the last round is absorbed by the definition
of the last function T 10

i,j .) Now each 4-byte column of the output of the SubByte
plus ShiftRows steps will contribute to the 4-byte column of the state array
after MixColumns, and those four bytes are related to the former by a 32 × 8

230 O. Billet, H. Gilbert, and C. Ech-Chatbi

submatrix MCi of the 32 × 32 matrix MC representing MixColumns. Now the
entire function can be described by a lookup table. However, it is necessary to
obfuscate this table, which leads to encode its 4-bit input and output nibbles—
using concatenated non-linear permutations in and out respectively.

To add to the diffusion, 8× 8 affine “mixing” bijection is inserted before T r
i,j

and a 32 × 32 affine bijection MB is inserted after the MixColumn part. The
resulting lookup table is depicted in Fig. 2 as the sub table. The 32 × 8 linear
mapping of Fig. 2 is associated with MB × MCi.

Fig. 2. sub table (type II) and xor table (type IV)

To cancel the effect of MB, a lookup table takes care of the inversion. How-
ever, instead of constructing a huge table for the entire 32×32 matrix, the map-
ping MB−1 is split into four submatrices

(
MB−1)

i
, just like with the MixColumns

matrix MC. This results in the lookup table depicted in Fig. 3.

Fig. 3. untwist table (type III)

Finally, external input and output encodings are implemented, using two sets
of sixteen 8-bit to 128-bit lookup tables depicted in Fig. 4. Each external input
encoding table represents the linear mapping associated with one 128×8 vertical
stripe of a 128 × 128 matrix—the composition of MF and the concatenation of
the input mixing bijections for T 1

i,j ’s inverses—surrounded by 4-bit to 4-bit non-
linear encodings. Each external output encoding table represents one 128×8 ver-
tical stripe of a 128 × 128 parasitic matrix—the composition of one round 10’s
output mixing bijection’s inverse, one of the mappings T 10

i,j , and 128× 8 vertical
stripe of a 128 × 128 parasitic matrix MG—surrounded by 4-bit to 4-bit non
linear encodings. The outputs of the 16 external input encoding tables have
to be decoded, xored together and reencoded to complete the implementation.
This is done by using 15 × 32 additional xor tables per 128-block. The same
number of xor tables is needed to support the 16 extern encode tables.

Thus, in order to implement a white box instance of AES-128 associated
with a key K, 9 · 4 · 4 sub tables, 9 · 4 · 4 untwist tables, 9 · 4 · 3 · 8 xor
tables supporting sub tables, 9 · 4 · 3 · 8 xor tables supporting untwist tables,
2 ·16 extern encode tables, and 2 ·15 ·32 xor tables supporting extern encode
tables are needed. Therefore, the total size of lookup tables in an AES-128 white
box implementation is 770 048 bytes.

Cryptanalysis of a White Box AES Implementation 231

Fig. 4. extern encode tables for input and output respectively (type I)

3 Cryptanalysis of the White Box AES Implementation

We now describe a very efficient attack against the white box AES implemen-
tation of [1]. The leading idea is that, though recovering information about the
key by a local inspection of the lookup tables seems difficult—lookup tables
were designed to satisfy so-called diversity and ambiguity criteria—recovering
information by analyzing compositions of lookup tables corresponding to one
encoded AES round is easier. More precisely, it is convenient to analyze each
of the four mappings between four bytes of the input state array, and the four
corresponding bytes of the output state array, which together form an encoded
AES round. Each such mapping can be conceptualized by the box in Fig. 5,
where we can choose inputs and observe outputs, whereas intermediate values
remain concealed. Let us denote this box by Rr

j . Each Rr
j box is made of four

8-bit to 8-bit parasitic input permutations P r
i,j (resp. output permutations Qr

i,j)
constructed as the composition of two concatenated 4-bit to 4-bit input (resp.
output) encodings, and one 8-bit to 8-bit linear mixing bijection. Due to the fact
that internal input encodings plus linear mixing bijections and linear mixing bi-
jections plus output encodings mutually cancel out at the boundary between two
rounds r and r + 1, each Qr

i,j is the inverse of P r+1
i,j .

Fig. 5. One of the four Rr
j mappings, j = 0, . . . , 3

The attack proceeds in three steps. First of all, we recover the non-affine
part of the parasites Qr

i in round r = 1, . . . , 9, i.e. we determine Qr
i up to

unknown affine bijections, and thus get at the same time the non-affine part
of the inverse P r+1

i of round r + 1, r = 1, . . . , 9. At this stage we are in the
setting depicted in Fig. 5, but this time the permutations Pi and Qi are now
GF(2)-affine, except for the permutation P 1

i,j whose non-affine part has not been

232 O. Billet, H. Gilbert, and C. Ech-Chatbi

determined. In a second step, we recover those GF(2)-affine mappings (but P 1
i,j

and Q1
i,j), first up to an unknown GF(28)-affine bijection, and then entirely.

Eventually combining all this information in a third step, we extract the AES-
128 key.

3.1 Recovering Non-linear Parts

Consider the mapping Rr
j . We are trying to remove the non-linearity in the

parasites (Qr
i)i=0,...,3. To this end consider y0 as a function of (x0, x1, x2, x3),

and fix the values of x1, x2, and x3 to some constants, say c1, c2, and c3. One
easily checks that there exists two constants in GF(28), namely α independent
of c1, c2, c3, and βc1,c2,c3 , such that

y0(x, c1, c2, c3) = Qr
0,j

(
αT r

0,j

(
P r

0,j(x)
)⊕ βc1,c2,c3

)
.

Since x only takes 256 values, those mappings are known by input/output, as
well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
and keeping the other one fixed, has the effect that βc1,c2,c′

3
takes all the values

in GF(28). We are thus able to produce—as lookup tables, of course—all the
functions

y0(x, c1, c2, c3) ◦ y0(x, c1, c2, c
′
3)

−1 = Q0
(
Q−1

0 (x) ⊕ β
)

, (1)

where β = βc1,c2,c′
3
⊕ βc1,c2,c3 takes all the values in GF(28). This leads to

the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q ◦ ⊕β ◦ Q−1}β∈gf(28) given by
values, where Q is a permutation of GF(28) and ⊕β is the translation by β

in GF(28), one can construct a particular solution Q̃ such that there exists an
affine mapping A so that Q̃ = Q ◦ A.

Proof. There is an isomorphism between the commutative groups
(
GF(2)8,⊕)

and (S, ◦), given by
ϕ : S −→ GF(2)8

Q ◦ ⊕β ◦ Q−1 �−→ [β] ,

where [β] denotes the embedding of the element β into the vector space GF(2)8

with canonical base ([ei])i=1,...,8. The issue is we do not know this isomorphism.
The general idea of the proof is to recover this isomorphism up to an unknown
linear bijection, i.e. to recover a known isomorphism ψ equal to ϕ up to an
unknown linear bijection. To this end, first select from S a tuple (f1, . . . , f8)
of 8 functions such that their images through ϕ constitute a base of GF(2)8.
Although we do not know ϕ—and thus the underlying translations [βi] = ϕ(fi)

Cryptanalysis of a White Box AES Implementation 233

for each fi = Q ◦ ⊕βi
◦ Q−1—this can easily be done by gradually selecting f1

to f8 so that they span the whole set S through composition, that is

∀f ∈ S, ∃!(ε1, . . . , ε8) ∈ {0, 1}8, f = fε8
8 ◦ fε7

7 ◦ · · · ◦ fε1
1 , (2)

where f1
i = fi and f0

i denotes the identity function. An efficient algorithm to
compute such a tuple of functions (f1, . . . , f8) is described at the end of this
paragraph.

Now since ([βi])i=1...8 is a base of GF(2)8, there exists a unique one-to-one
linear change of base L mapping [ei] onto [βi] for all i = 1, . . . , 8. Also define the
isomorphism ψ

def= L−1 ◦ ϕ between (S, ◦) and
(
GF(2)8,⊕)

. One checks that ψ
can be efficiently recovered, by using the unique decomposition given by Eq. 2.
Indeed, for any f ∈ S the unique tuple of binary values (ε1, . . . , ε8) verifying
Eq. 2 is easily computed—an exhaustive search would be quick enough, but we
give a better algorithm at the end of this paragraph. By successively applying ϕ

Fig. 6. Relating f , ψ(f), and Q̃

and L−1 to f , one obtains

ψ(f) = L−1(ϕ(f)
)

= L−1

(⊕
i=1...8

εi[βi]

)
=

⊕
i=1...8

εi[ei] .

Thus the isomorphism ψ is entirely determined.
Let us explain how to recover Q from the knowledge of ψ, up to an unknown

affine transformation A. For that purpose, consider the commutative diagram
of Fig. 6, and define the GF(2)-affine one-to-one mapping A by

A(x) def= L
(
x ⊕ (Q ◦ L)−1([‘00’])

)
= L(x) ⊕ Q−1([‘00’]) ,

and let us set
Q̃

def= Q ◦ A .

One verifies that Q̃−1(‘00’) = [‘00’]. By applying the above definition of Q̃,
or equivalently by inspecting the commutative diagram of Fig.6, one checks
that f = Q̃ ◦ ⊕ψ(f) ◦ Q̃−1. Hence,

f(‘00’) = Q̃(ψ(f)) .

From our knowledge of ψ and f , we can therefore compute Q̃ = Q ◦ A. ��

234 O. Billet, H. Gilbert, and C. Ech-Chatbi

Now, we propose an efficient algorithm—time complexity is at most 224—
that chooses a tuple (f1, . . . , f8) on the fly, and computes the corresponding
mapping ψ. It was successfully implemented in C++.

input : S
output : R ⊂ S × GF(28) such that ∀(f, β) ∈ R, ψ(f) = [β]

algorithm : R ← {(id, ‘00’)}
ψ(id) = [‘00’]
e ← ‘01’
while #R < 28 do

S ← S \ {f}
if (f, ·)
∈ R then

e ← ‘02’ × e
ψ(f) = [e]
foreach (g, η) ∈ R do

R ← R ∪ {(f ◦ g, [e] ⊕ [η])}
ψ(f ◦ g) = [e] ⊕ [η]

enddo
endif

endwhile

Going back to our initial motivation, Theorem 1 enables us to recover for any
round r = 1, . . . , 9, the non-linear part Q̃r

i,j of Qr
i,j , i.e. such that Q̃r

i,j

−1 ◦ Qr
i,j

is an affine mapping Ar
i,j

−1. Given the fact that for the next round, the input
encoding P r+1

i,j must match the output encoding Qr
i,j of the previous round—

that is P r+1
i,j ◦Qr

i,j must be the identity—we have that P r+1
i,j ◦ Q̃r

i,j is exactly the
mapping Ar

i,j . Thus, we have reduced the original problem depicted in Fig. 5
where all P and Q are non-linear and matching, to one where they are affine
and still matching. The next step is to recover those affine mappings, which is
the subject of next sections.

3.2 Relations Between Affine Parasites

So let us start again with the setting depicted in Fig.5, except for the fact that
all parasitic mappings P r

i,j and Qr
i,j are now affine. Since the problem is identical

for each round, we drop the subscripts r and j without loss of generality. We
have access to the following functions as lookup tables⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y0(x0, x1, x2, x3) = Q0
(
‘02’ · T ′

0(x0) ⊕ ‘03’ · T ′
1(x1) ⊕ ‘01’ · T ′

2(x2) ⊕ ‘01’ · T ′
3(x3)

)
y1(x0, x1, x2, x3) = Q1

(
‘01’ · T ′

0(x0) ⊕ ‘02’ · T ′
1(x1) ⊕ ‘03’ · T ′

2(x2) ⊕ ‘01’ · T ′
3(x3)

)
y2(x0, x1, x2, x3) = Q2

(
‘01’ · T ′

0(x0) ⊕ ‘01’ · T ′
1(x1) ⊕ ‘02’ · T ′

2(x2) ⊕ ‘03’ · T ′
3(x3)

)
y3(x0, x1, x2, x3) = Q3

(
‘03’ · T ′

0(x0) ⊕ ‘01’ · T ′
1(x1) ⊕ ‘01’ · T ′

2(x2) ⊕ ‘02’ · T ′
3(x3)

)
with the shortcut T ′

i = Ti ◦ Pi. Actually there is one more issue, which is that
we do know the set {yi}i=0,...,3 but we do not know the labels to put on each
function. Put in another way, we know those functions have the general form

yi(x0, x1, x2, x3) = Q
(
αi,0 · T ′

0(x0) ⊕ αi,1 · T ′
1(x1) ⊕ αi,2 · T ′

2(x2) ⊕ αi,3 · T ′
3(x3)

)

Cryptanalysis of a White Box AES Implementation 235

but we do not know what the underlying coefficients αi,j occurring from the
MixColumn step are. Let us hereafter denote by Λα the matrix over GF(2)8 of
the multiplication by α.

Before going any further, let us state a very useful property. Though simple,
it is a corner stone in the strategy we designed for the affine parasites’ recovery,
as well as in resolving the above mentioned renaming issue.

Proposition 1. For any pair (yi, yj) as introduced above, there exists a unique
linear mapping L and a unique constant c such that,

∀x0 ∈ GF(28), yi(x0, ‘00’, ‘00’, ‘00’) = L (yj(x0, ‘00’, ‘00’, ‘00’)) ⊕ c . (3)

Proof. Decompose the affine maps Qi(x) = Ai(x) ⊕ qi and Qj(x) = Aj(x) ⊕ qj ,
where Ai and Aj are linear, qi and qj constants. Hence,

yi(x, ‘00’, ‘00’, ‘00’) = Ai(αi,0 · T ′
0(x) ⊕ ci) ⊕ qi ,

yj(x, ‘00’, ‘00’, ‘00’) = Aj(αj,0 · T ′
0(x) ⊕ cj) ⊕ qj .

Thus, by taking L = Ai ◦ Λαi,0/αj,0 ◦ A−1
j and c = qi ⊕ Ai(ci) ⊕ L [qj ⊕ Aj(cj)],

Eq. 3 holds, which shows the existence of a solution.
The other way round, assuming there is a linear mapping L and a constant c

such that Eq. 3 holds, amounts to saying that (Ai ◦Λαi,0 ⊕L◦Aj ◦Λαj,0)◦T ′
0 is a

constant mapping. Since T ′
0 = T0◦P0 is one-to-one, and (Ai◦Λαi,0⊕L◦Aj◦Λαj,0)

is a linear mapping, this constant must be ‘00’. Thus L = Ai ◦ Λαi,0/αj,0 ◦ A−1
j ,

which uniquely defines L. Then αi,0 ·yi⊕L◦αj,0 ·yj is constant, and this constant
uniquely defines c. ��

Obviously, there are analogous statements where one varies the second, third,
or fourth variable and keep the other one constant. Also note that given two
functions yi and yj , there is a straightforward practical algorithm to get the
corresponding affine mapping (L, c) connecting their affine parts together. In-
deed, considering the 64 entries of the matrix L as well as the 8 entries of the
constant vector of c as unknowns over GF(2), and using our knowledge of the
functions yi and yj by values, one can form a highly overdefined linear system
of 28 ×8 equations involving the 72 unknowns and solve it with time complexity
much lower than 216.

3.3 Recovering the Affine Parasites

We note that Prop. 1 of the previous section enables us to directly compute the
linear parts of Q1, Q2, and Q3 from the knowledge of Q0’s linear part. We will
therefore focus on Q0’s determination. This section is organized in two steps.
First, we show how to recover the linear part of Q0 up to Λγ , for some non-
zero γ in GF(28). Then we show how this information can be used to recover
both γ and the constant part q0 of Q0.

236 O. Billet, H. Gilbert, and C. Ech-Chatbi

About Q0’s Linear Part. Let us recall that we decompose each affine trans-
formation Qi into its linear and constant parts: Qi(x) = Ai(x) + qi. Applying
Prop. 1 with i = 0 and j = 1, we get L0 = A0 ◦Λα0,0/α1,0 ◦A−1

1 . Then, using the
variant of Prop. 1 with i = 0 and j = 1, but where one varies x1 instead of x0,
we obtain L1 = A0 ◦Λα0,1/α1,1 ◦A−1

1 . We are thus able to compute L = L0 ◦L−1
1 ,

that is L = A0◦Λβ ◦A−1
0 where β = α0,0α1,1/α0,1α1,0. Remembering that values

α are standing for the MixColumn coefficients—i.e., taking their values in the set
{‘01’, ‘02’, ‘03’}—only 16 values for β remain possible, which are collected in the
following set

B = {‘02’, ‘d8’, ‘03’, ‘6f’, ‘04’, ‘bc’, ‘06’, ‘b7’, ‘05’, ‘25’, ‘4a’, ‘f8’, ‘7f’, ‘c8’, ‘64’, ‘5f’} .
(One checks that no element of B is contained in any subfield of GF(28).)

Thus, the new starting point is a matrix L, with the form A0 ◦Λβ ◦A−1
0 , and

we want to retrieve both β and A0. Given that β is chosen from B, computing
the characteristic polynomial of L reduces the number of possibilities for β to
at most 2; actually, either β is already determined, or β ∈ {b, b2} ⊂ B. To
ease the exposition, we assume that β is known, for instance by testing the two
possibilities, and using Prop. 3 of the next section to determine the correct one.

Proposition 2. Given an element β of GF(28) not in any subfields of GF(28)
and its corresponding matrix L = A0 ◦ Λβ ◦ A−1

0 , we can compute with time
complexity lower than 216, a matrix Ã0 such that there exists a unique non-zero
constant γ in GF(28), so that Ã0 = A0 ◦ Λγ .

Proof. We seek for Ã0 such that L ◦ Ã0 = Ã0 ◦ Λβ . Considering Ã0’s entries as
unknowns, this equation gives 64 equations in the 64 unknowns. Some non-trivial
solution can be computed in time complexity 64ω < 216, which we hereafter
denote by Ã0. Then, define A = A−1

0 ◦ Ã0. The equation L ◦ Ã0 = Ã0 ◦ Λβ also
reads Λβ ◦A = A◦Λβ . The only GF(2)-affine mappings that commutes with the
multiplication by β, are the multiplications by a GF(28) element. (To see this,
write A(x) =

∑7
i=0 γi · x2i

. The commutativity constraint is then expressed by∑7
i=0 γiβ

2i · x2i

=
∑7

i=0 βγi · x2i

for all x ∈ GF(28). Since β is not contained
in any subfield of GF(28), this in turn implies γi = ‘00’ for all i but i = 0.
Therefore, as announced, A(x) = γ0 x.) Thus, there exists a unique γ ∈ GF(28)
such that A = Λγ , and remembering that A = A−1

0 ◦ Ã0, we have computed
Ã0 = A0 ◦ Λγ . ��

Now we only have to recover γ of Prop. 2 in order to fully determine A0, the
linear part of Q0. In the following paragraph we explain how to compute it, as
well as the constant part q0 of Q0, that is to recover Q0 entirely.

Recovering Pi up to the Key, and Q0. Let us return to the function we
originally studied, namely

y0(x0, x1, x2, x3) = Q0

(
3⊕

i=0

α0,i · Ti ◦ Pi(xi)

)
. (4)

Cryptanalysis of a White Box AES Implementation 237

Remember that Ti stands for the key addition, followed by the AES-128’s S-box
application, that is Ti(z) = S(z⊕ki). Hence, the mapping x �→ S−1◦Ti◦Pi(x) =
Pi(x) ⊕ ki is affine. Now, from Prop. 2 we get some matrix Ã0 = A0 ◦ Λ1/γ . We
have the following:

Proposition 3. There exists unique pairs (δi, ci)i=0,...,3 of elements in GF(28),
δi being non-zero, such that

P̃0 : x �−→ (S−1 ◦ Λδ0 ◦ Ã−1
0)

(
y0(x, ‘00’, ‘00’, ‘00’) ⊕ c0

)
,

P̃1 : x �−→ (S−1 ◦ Λδ1 ◦ Ã−1
0)

(
y0(‘00’, x, ‘00’, ‘00’) ⊕ c1

)
,

P̃2 : x �−→ (S−1 ◦ Λδ2 ◦ Ã−1
0)

(
y0(‘00’, ‘00’, x, ‘00’) ⊕ c2

)
,

P̃3 : x �−→ (S−1 ◦ Λδ3 ◦ Ã−1
0)

(
y0(‘00’, ‘00’, ‘00’, x) ⊕ c3

)
,

are affine mappings. Any pair (δi, ci) can be computed with time complexity 224.
Moreover, those mappings are exactly P̃i = Pi(x) ⊕ ki.

Proof. The proposition amounts to saying that x → S−1(δ · S(x) ⊕ c) is affine
and non-constant. Since S represent the AES-128 S-box, and δ in non-zero,
this is only possible if (δ, c) = (‘01’, ‘00’), hence the existence and uniqueness
of (δi, ci). (This is also very easy to verify by an exhaustive search, which we
have done.)

Since c is ‘00’, we have c0 = y0(x, ‘00’, ‘00’, ‘00’)⊕α0,0 · T0(P0(x)), and since
Ã0 = A0 ◦ Λ1/γ , we get P̃0(x) = S−1 ◦ Λδ0·γ·α0,0 ◦ S(P0(x) ⊕ k0), where k0 is a
byte of the corresponding round key. As shown above, δ0 · γ · α0,0 must be ‘01’,
hence P̃0(x) = P0(x) ⊕ k0. The proof goes the same for P̃1, P̃2, and P̃3.

For every possible values for the pairs (δi, ci)—there are 216 possible pairs—
we test if the corresponding mapping is affine. The lookup table has to be eval-
uated 28 times, and then 8 systems of 9 unknowns over GF(2), or equivalently
one system of 72 unknowns which can be precomputed, has to be solved. Since
the mapping evaluation through the lookup table dominates, the total time com-
plexity is bounded by 224.

��
Since δ−1

i = γ · α0,i, and given the fact that two of those α0,i are ‘01’, another
is ‘02’ and the last one is ‘03’, exactly two of the δ−1

i are equal and share the
common value γ. Therefore we know Λγ , and thus the matrix A0 = Ã0 ◦ Λγ , as
well as the underlying MixColumn coefficients α0,i.

Also note that we recover at the same time the constant q0 of the affine
mapping Q0. Indeed, let us define c4 = y0(‘00’, ‘00’, ‘00’, ‘00’). Considering Eq. 4,
it can also be written as

c4 =

(
3⊕

i=0

α0,i · Ti ◦ Pi(‘00’)

)
⊕ q0 .

238 O. Billet, H. Gilbert, and C. Ech-Chatbi

Then, remembering that

c0 = y0(x, ‘00’, ‘00’, ‘00’) ⊕ α0,0 · T0(P0(x)) ,

c1 = y0(‘00’, x, ‘00’, ‘00’) ⊕ α0,1 · T1(P1(x)) ,

c2 = y0(‘00’, ‘00’, x, ‘00’) ⊕ α0,2 · T2(P2(x)) ,

c3 = y0(‘00’, ‘00’, ‘00’, x) ⊕ α0,3 · T3(P3(x)) ,

which holds for every x and thus in particular for ‘00’, we easily check that the
constant part of Q0 is given by q0 = c0 ⊕ c1 ⊕ c2 ⊕ c3 ⊕ c4, which achieves to
fully recover the mapping Q0.

3.4 Putting Everything Together

Let us now summarize the whole process of recovering the white box AES-128
implementation’s original parasites. In Sec. 3.1 we have shown how to compute,
for any round r = 1, . . . , 9 and any index j = 0, . . . , 3, with time complexity 224,
the non-linear part of any parasitic mapping Qr

i,j , i = 0, . . . , 3—and thus at
the same time, the non-linear part of its inverse parasitic mapping P r+1

i,j —up to
some affine application x �→ Ar

i (x) ⊕ qr
i . Section 3.2 showed how to recover A1,

A2, and A3 from the knowledge of A0, with time complexity lower than 3 · 216.
Finally, Sec. 3.3 explained how to recover the affine mapping x �→ Ar

0(x) ⊕ qr
0,

for r = 2, . . . , 9, with time complexity lower than 216. At the same time, Sec. 3.3
also retrieved the missing affine part of P r

i,j up to the key addition, which will
allow us, as explained in the next section, to extract the key embedded in the
AES-128 white box implementation.

Hence the time complexity to compute the parasites for a complete obfuscated
AES-128 round, is bounded by 4 · 4 · 224 = 228.

3.5 Key Extraction

We now give the procedure for the key extraction. The white box implementation
of AES-128 key embeds round keys produced by the AES-128 key derivation
algorithm. Thus the keys for two different rounds are related to each other.
Using this property, one can obviously ease the recovery of the keys.

In a first step, we determine Qr
i,j ’s non-linear part for some round plus the

entire parasites of two consecutive AES-128 obfuscated rounds. For instance,
recover the parasitic mappings Q2

i,j , as well as P̃ 3
i,j , Q3

i,j , and P̃ 4
i,j , for i = 0, . . . , 3

and j = 0, . . . , 3 as described in Sec. 3.4. Then, since P r+1
i,j ◦ Qr

i,j must be the
identity, we get the round key bytes as the composition of the affine mappings
P̃ and the affine part of Q which is denoted here by Q̄, that is k3

i,j = P̃ 3
i,j ◦ Q̄2

i,j ,
and k4

i,j = P̃ 4
i,j ◦ Q̄3

i,j .
We now have the key bytes k3

i,j and k4
i,j , however they are not necessarily in

the right order. Still, the data flow exposed by the implementation, rules the way
each round r key bytes relates to the next round r +1 key bytes. If we assume—
according to Sec. 3.1 of [1]—that the round keys were generated using the key

Cryptanalysis of a White Box AES Implementation 239

derivation algorithm of AES-128, the added constraint between the 16 bytes k3
i,j

and the 16 bytes k4
i,j allows us to rearrange them the right way. Thus, having

correctly recovered an AES-128 round key, we are able to derive the whole set
of round keys.

4 Conclusion

This paper explained how to extract, in a very efficient way, the whole secret
key of a white box AES-128 implementation suggested in [1]. Some of our attack
methods, for instance the technique of Sec. 3.1 used to recover the non linear
parts of the encodings, are potentially applicable to other iterated blockciphers
white box implementations using similar encoding and linear mixing techniques.
However, parts of our attack take advantage from AES specificities. Therefore,
no general conclusion can be drawn about the possibility to construct a strong
white box AES implementation, or a strong white box implementations of other
iterated blockciphers. Despite the general impossibility results concerning obfus-
cation [6], there is no evidence so far that strong white box implementation of
blockciphers is unachievable; there is only some practical evidence that this is
not an easy task. An interesting avenue for further research on obfuscation tech-
niques might consist in developing a dedicated blockcipher, designed bottom-up
with white box implementation in mind.

Acknowledgements

The authors thank the anonymous referees for their valuable comments.

References

1. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-Box Cryptography
and an AES Implementation. In Nyberg, K., Heys, H.M., eds.: Selected Areas in
Cryptography – SAC 2002. Volume 2595 of Lecture Notes in Computer Science.,
Springer Verlag (2003) 250–270

2. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A White-Box DES Imple-
mentation for DRM Applications. In Feigenbaum, J., ed.: Digital Rights Manage-
ment Workshop – DRM 2002. Volume 2696 of Lecture Notes in Computer Science.,
Springer Verlag (2003) 1–15

3. Jacob, M., Boneh, D., Felten, E.W.: Attacking an Obfuscated Cipher by Injecting
Faults. In Feigenbaum, J., ed.: Digital Rights Management – DRM 2002. Volume
2696 of Lecture Notes in Computer Science., Springer Verlag (2003) 16–31

4. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer Verlag (2002)
5. National Institute of Standards and Technology: Advanced encryption standard.

FIPS publication 197 (2001)
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

240 O. Billet, H. Gilbert, and C. Ech-Chatbi

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (Im)possibility of Obfuscating Programs. In Kilian, J., ed.: Advances in
Cryptology – CRYPTO 2001. Volume 2139 of Lecture Notes in Computer Science.,
Springer Verlag (2001) 1–18

7. Biryukov, A., Preneel, B., Braeken, A., de Cannire, C.: A Toolbox for Cryptanalysis:
Linear and Affine Equivalence Algorithms. In Biham, E., ed.: Advances in Cryp-
tology – EUROCRYPT 2003. Volume 1267 of Lecture Notes in Computer Science.,
Springer Verlag (2003) 33–50

Predicting Subset Sum
Pseudorandom Generators

Joachim von zur Gathen1 and Igor E. Shparlinski2

1 Fakultät für Elektrotechnik, Informatik und Mathematik,
Universität Paderborn,

33095 Paderborn, Germany
gathen@upb.de

http://www-math.upb.de/~aggathen
2 Department of Computing, Macquarie University,

NSW 2109, Australia
igor@comp.mq.edu.au

http://www.comp.mq.edu.au/~igor

Abstract. We consider the subset sum pseudorandom generator, in-
troduced by Rueppel and Massey in 1985 and given by a linearly re-
current bit sequence u0, u1, . . . of order n over Z2, and weights w =
(w0, . . . , wn−1) ∈ Rn for some ring R. The rings R = Zm are of particu-
lar interest. The ith value produced by this generator is

∑
0≤j<n ui+jwj .

It is also recommended to discard about log n least significant bits of
the result before using this sequence. We present several attacks on this
generator (with and without the truncation), some of which are rigor-
ously proven while others are heuristic. They work when one “half” of
the secret is given, either the control sequence uj or the weights wj . Our
attacks do not mean that the generator is insecure, but that one has to
be careful in evaluating its security parameters.

1 Introduction

Let u0, u1, . . . be a linear recurrence sequence of order n over the field Z2 of
two elements; see [12–Chapter 8]. We may also consider each uj as an integer,
namely 0 or 1, and multiply by it an element z of an arbitrary ring R, so that
ujz ∈ R.

We consider the following subset sum generator of pseudorandom elements.
Given an n-dimensional vector w = (w0, . . . , wn−1) ∈ Rn, its output is the
sequence

vi =
∑

0≤j<n

ui+jwj , for i = 0, 1, . . . , (1)

of elements of R. A popular choice is to take R = Zm, the residue ring modulo
m ≥ 2. The choice m = 2k with some integer k is recommended, and in partic-
ular, it is natural to choose k = n; see [14–Section 6.3.2]. We also consider the

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 241–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

242 J. von zur Gathen and I.E. Shparlinski

case where m = p is prime. We call (uj) the control sequence and w0, . . . , wn−1
the weights.

This generator, which is also known as the knapsack generator , was intro-
duced in [19] and studied in [17], see also [14–Section 6.3.2] and [18–Section 3.7.9].
The generation algorithm is multiplication-free and involves only Boolean op-
erations, integer additions and one modular reduction; in the case R = Z2k ,
the reduction modulo m = 2k is essentially for free in the binary representa-
tion. Thus it presents a very attractive alternative to pseudorandom number
generators based on Boolean functions. On the other hand, its close relation to
the subset sum problem could make it cryptographically strong and suitable for
using in stream ciphers.

For cryptographic applications, it is usually recommended to use a linear
recurrence sequence of maximal period 2n − 1, however here we consider more
general settings.

The linear complexity and distribution of this generator have been studied
in [6, 17, 18] and have turned out to be rather attractive. Furthermore, [14–
page 220] states that no weaknesses of this generator have been reported in the
literature. This paper presents some weaknesses. We do not, however, consider
them as lethal.

We study predictability properties of the subset sum generator and show that
its security is smaller than has been assumed previously, but presumably still
large enough, with appropriate parameters. In the simplest cases our attacks
are based on linear algebra. In more practical settings we use lattice algorithms,
namely algorithms for the short vector problem which essentially go back to the
seminal paper of Lenstra, Lenstra and Lovász [11]. Thus our results add one
more example to the substantial list of cryptographic constructions which have
been successfully attacked by such algorithms, see [13, 15, 16].

We note that our results resemble those about predictability of various re-
cursive pseudorandom number generators; see [2, 3, 4, 5, 8, 9, 10] and references
therein.

In general, if R = Zm, the whole generator is defined by about n(2 + logm)
bits, where log z denotes the binary logarithm of z > 0. Indeed, one needs n
bits to describe the characteristic polynomial of the control linear recurrence
sequence (uj), n bits for its initial values, and about n logm bits to describe
the weight vector w. Thus a brute force search through the space of all possible
parameters takes about (4m)n steps.

In our attacks we use polynomial time and assume that some partial infor-
mation about the generator is known. However, one might as well “guess” this
information; in this formulation our attacks lead to a substantial reduction of
the cost of brute force search. In the same vein, some of our results deal with the
generator before truncation, but one may simply “guess” the truncated parts
and then apply our attacks. For example, as we have mentioned, it is suggested
to discard about logn bits of each output vi, see [14–Section 6.3.2]. Usually our
attacks need only O(n) consecutive outputs, so that the total number of guesses
for the discarded bits is 2O(n log n) which, for the typically recommended values

Predicting Subset Sum Pseudorandom Generators 243

of m near 2n, is substantially smaller than (4m)n ' 2n2
. On the other hand, in

some cases our attacks, empowered by lattice basis reduction algorithms, apply
to truncated outputs directly.

The upshot is that when n is large enough and both controls and weights are
kept secret, we still consider the generator to be secure. A simple observation
is that 2n outputs give away the linear recurrence of the control bits if m is
even. This leads to an exhaustive search with cost 2n, and for odd m, we can
mount an exhaustive search attack with cost 22n. Thus it is not clear in how far
larger values of m make the generator much more secure than m = 3. (Our short
vector attack becomes more expensive with growing m, but only by a polynomial
factor.)

2 Attacks with Known Control Sequence

We first consider the case when the linear recurrence sequence (uj) is known.
It is equivalent to know the characteristic polynomial and n initial values, or
just 2n initial values; the characteristic polynomial can then be computed by
the Berlekamp-Massey algorithm (see, for example, [7–Section 12.3]).

2.1 Exact Outputs

It is useful to express (1) in terms of the power series

hu =
∑
i≥0

uix
i, hv =

∑
i≥0

vix
i, hw =

∑
0≤i<n

wn−i−1x
i

in R[[x]]. We show that the power series hu ·hw and xn−1hv agree at all but the
small-order coefficients.

Lemma 1. Let r = hu · hw remxn−1 be the remainder of hu · hw on division by
xn−1. Then

hu · hw − r = xn−1hv. (2)

Proof. We have

xn−1hv =
∑
i≥0

vix
i+n−1 =

∑
i≥0

∑
0≤j<n

ui+jwjx
i+n−1

=
∑
i≥0

0≤j<n

ui+jx
i+j · wjx

n−j−1 =
∑

k+l≥n−1
0≤l<n

ukx
k · wn−l−1x

l.

The bijective correspondence

(i, j) = (k + l − n+ 1, n− l − 1) ↔ (k, l) = (i+ j, n− j − 1)

is responsible for the last equation. The condition i ≥ 0 means that k+ l ≥ n−1.
Thus the coefficient of the terms of degree at least n− 1 in the products xn−1hv

and hu · hw coincide. ��

244 J. von zur Gathen and I.E. Shparlinski

When we take the weights as unknowns, the equations (1), or, equivalently,
(2) yield a Hankel system of linear equations with the matrix

H = (ui+j)0≤i,j<n. (3)

In a finite prime field, the Hankel matrix (3) is not guaranteed to be non-
singular. Our attack works by building up matrices of maximal rank from lines
of the Hankel matrix (3). Accordingly, we may have to use n arbitrary outputs,
not necessarily the first ones. More precisely, we consider algorithms that for
i = 0, 1, . . . either output vi or query vi. The following result shows that we can
do with few queries.

Theorem 2. Over a finite field R = Fq of q elements, given a control sequence
(uj) of order n, there is a deterministic algorithm to compute the sequence vi

for i = 0, 1, . . ., in polynomial time per element, making no more than n queries
in total.

Proof. The algorithm builds up l × n matrices Ul consisting of rows

ri = (ui, ui+1, . . . , ui+n−1) ∈ Fn
q

for growing values of l, up to n. The matrix Ul has rank l over Fq. We also store
the values vi for the rows ri that appear in Ul.

We start with U0 = I0 = ∅, and consider i = 0, 1, If ri is not linearly
dependent over Fq on the rows of the current Ul (this is the case in the first step,
where i = 0, unless r0 = 0), then we set Il+1 = Il ∪{i} and add the row ri to Ul

to obtain Ul+1, of rank l + 1. We also query and store vi.
Otherwise we can write

ri =
∑
k∈Il

ckrk

as a linear combination of the rows rk of Ul, with k ∈ Il and coefficients ck ∈ Fq.
Then we output∑

k∈Il

ckvk =
∑
k∈Il

ck
∑

0≤j<n

uk+jwj

=
∑

0≤j<n

wj

∑
k∈Il

ckuk+j

∑
0≤j<n

wj ui+j = vi.

We have to make at most n queries for values vi, since once we have n linearly
independent (over Fq) rows ri, then we can actually compute the weight vector
w, and predict correctly ever after. ��

In characteristic 2, the Hankel matrix (3) is guaranteed to be nonsingular,
and the algorithm simplifies as follows.

Corollary 3. Given an integer k ≥ 1, a control sequence (uj) of order n over
Z2, and n consecutive outputs vi for 0 ≤ i < n over R = Z2k , one can find the
unknown weight vector w ∈ Rn in deterministic polynomial time.

Predicting Subset Sum Pseudorandom Generators 245

Proof. Because (uj) is of order n in F2, the integer Hankel matrix (3) is nonsin-
gular modulo 2, see [12–Section 8.6], and hence also modulo 2k. ��

The algorithm also works over rings R = Zm with squarefree m ≥ 2, by
using a “lazy” variant of Gaussian elimination. Here, whenever an element is to
be inverted, one calculates its greatest common divisor with the current moduli
(which initially is just m). If the greatest common divisor is nontrivial, one
obtains a factorization of the modulus, and continues with the factors separately
as new moduli. In fact, one should use the finest factorization of the moduli which
is easy to calculate from these partial factorizations (see [1]).

2.2 Truncated Outputs

We now consider the case where a certain number � of low-order bits of each
value vi gets discarded before the rest is output, that is, only the “truncated”
value

⌊
vi/2�

⌋
is known. Intuitively, it is clear that if the weights w0, . . . , wn−1

are known up to the 2s least significant bits, with 2s = o(2l/n), then these ap-
proximate values can be used to produce a sequence which with high probability
equals the truncated output of the original generator.

Following this intuition, we now use algorithms for the short vector problem in
lattices to find the truncations w̃j = �wj/2s� for 0 ≤ j < n. Although our method
also works in other situations, we make various simplifying assumptions about
the parameters m, n, �, and s. They always include the case when logm ∼ n,
which is of greatest practical interest.

Given k consecutive values
⌊
vi/2�

⌋
for 0 ≤ i < k, we define a lattice Lk as

the set of all integer solutions x = (x−1, x0, x1, . . . xn−1, y0, . . . , yk−1) ∈ Zk+n+1

of the system of congruences

x−1 + yi2�
⌊
vi/2�

⌋
x−1 + yi −

∑
0≤j<n

2sui+jxj ≡ 0 mod m for 0 ≤ i < k.

We use the celebrated algorithm of Lenstra, Lenstra and Lovász [11] for com-
puting short vectors in lattices. This has become a central tool in cryptography;
see [13, 15, 16] for outlines of recent progress in this area since the original result.
Standard heuristic arguments, as in [16–Section 3.4], imply that the discriminant
Dk of Lk is likely to be mk. Furthermore, the standard heuristics suggest that
if a vector w̃ ∈ Lk is such that ‖w̃‖ is substantially smaller than D

1/(k+n)
k , then

any vector in Lk of length substantially smaller than D
1/(k+n)
k is likely to be

proportional to w̃.
We observe that Lk contains a very short vector

z = (1, w̃0, . . . , w̃n−1, z0, . . . , zk−1),

where

zi = vi − 2�
⌊
vi/2�

⌋
+

∑
0≤j<n

ui+j (2s �wj/2s� − wj) for 0 ≤ i < k.

246 J. von zur Gathen and I.E. Shparlinski

We may assume that our parameters satisfy n2s ≤ 2�; otherwise the approx-
imate weights cannot be used. Under this condition we have

|zi| ≤ n2s + 2� ≤ 2�+1 for 0 ≤ i < k.

To simplify our calculations we also assume that

k1/222�+1 ≤ m and 2s ≥ n+ 1;

otherwise we either discard too many bits (and the generator is inefficient) or
try to use a lattice of very high dimension (and the attack is infeasible). In this
case,

k22�+2 ≤ m22−2� ≤ m22−2s and (n+ 2)1/22−s < n−1/2.

Then the Euclidean norm of the vector z satisfies

‖z‖ ≤ (
1 + nm22−2s + k22�+2)1/2 ≤ (n+ 2)1/2m2−s < mn−1/2.

Now if we assume that logm ∼ n, then for k = n2 − n we deduce

D
1/(k+n)
k = mk/(k+n) = m1−1/n,

which is much larger than ‖z‖ ≤ mn−1/2 as long as, say, logm = O(n). Hence
a nonzero multiple of z is likely to be recovered by a short vector problem
algorithm. Because the first component of z is known, this allows us to find z.

3 Attacks with Known Weights

We now consider the dual question, where the linear recurrence sequence (un)
is unknown but the vector of weights w = (w0, . . . , wn−1) ∈ Zn

m is given. When
we are given only a single output of the generator, then this is a subset sum
problem and NP -complete. However, having several consecutive outputs allows
us to mount efficient linear algebra attacks.

3.1 Exact Outputs

We start with even characteristic and present our results in the case when the
characteristic polynomial of the control linear recurrence sequence (uj) is ir-
reducible, which includes the most interesting cases of such sequences. In the
general case one can obtain similar results, which however hold only for almost
all weights rather than for all w ∈ Zn

m.

Theorem 4. Given an integer k ≥ 1, the weights w = (w0, . . . , wn−1) ∈ Rn

over R = Zm with even m, and 2n consecutive outputs vi for 0 ≤ i < 2n, not
all even, one can find the controls u = (u0, . . . , u2n−1) ∈ Z2n

2 in deterministic
polynomial time, provided that the (unknown) characteristic polynomial of degree
n over Z2 of the control linear recurrence sequence (uj) is irreducible.

Predicting Subset Sum Pseudorandom Generators 247

Proof. The reduction of the sequence (vi) modulo 2 satisfies the same linear
recurrent relation as the control sequence (uj). By assumption, this reduction
is not identical to zero modulo 2. We use the Berlekamp–Massey algorithm,
see [7–Chapter 7] or [12–Section 8.6], to recover the characteristic polynomial

f =
∑

0≤i≤n

fix
i ∈ Z2[x]

of this sequence, so that ∑
0≤i≤n

fiuk+i = 0

for all k ≥ 0. The first n equations in (2) plus the n−1 equations for the control
values un, . . . , u2n−2 lead to the following system of 2n − 1 linear equations in
the 2n− 1 unknowns u0, . . . , u2n−2:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0 w1 · · · wn−1 0 · · · 0
0 w0 · · · wn−2 wn−1 · · · 0
...

. · · · ...
0 · · · · · · w0 w1 · · · wn−1
f0 f1 · · · fn−1 fn · · · 0
...

.
...

0 · · · f0 f1 f2 · · · fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
u1
...

un−1
un

un+1
...

u2n−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0
v1
...

vn−1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote the matrix of the above system of equations by A ∈ R(2n−1)×(2n−1),
and observe that A is the (transpose of the) Sylvester matrix of the two polyno-
mials f and

w =
∑

0≤i<n

wix
i ∈ Z2[x].

The outputs are not all even, and hence also the weights, and thus w is nonzero
of degree less than n. Since f is irreducible of degree n, we have gcd(w, f) = 1
and hence A is nonsingular. Thus we can solve the system for u0, . . . , u2n−2. ��

When the characteristic polynomial f is not irreducible, the characteristic
polynomial g of v0, v1, . . . is a divisor of f . If the weights are chosen at random,
we expect g = f to hold with high probability; see [7–Section 12.4]. Furthermore,
for random w the condition gcd(w, f) = 1 (so that A is nonsingular) holds with
probability

Φ(f)/2n =
s∏

j=1

(1 − 2−dj),

where d1, . . . , ds are the degrees of the distinct irreducible factors of f . Thus,
Φ(f) is the polynomial analogue of Euler’s ϕ function. Using the fact that the
number of irreducible polynomials of degree d over Z2[x] is 2d/d+O(2d/2), one
can show that this probability is also reasonably large.

248 J. von zur Gathen and I.E. Shparlinski

We now consider the case of an arbitrary modulus m. Given k consecutive
values vi for 0 ≤ i < k, we may define the lattice Lk as the set of all integer
solutions x = (x−1, x0, x1, . . . xk+n−2) ∈ Zk+n of the system of congruences∑

0≤j<n

xi+jwj + vix−1 ≡ 0 mod m for 0 ≤ i < k.

By (1), it contains a very short vector u = (−1, u0, . . . , uk+n−2) with Eu-
clidean norm at most ‖u‖ ≤ (k+n)1/2. Standard heuristic arguments, as in [16–
Section 3.4], imply that the discriminant Dk of Lk is likely to be mk.

On the other hand, also standard heuristic arguments suggest that if ‖u‖ is
substantially smaller than D

1/(k+n)
k , then any nonzero vector x ∈ Lk of length

substantially smaller than D
1/(k+n)
k is likely to be proportional to u. Thus ap-

plying any of the algorithms for the shortest vector problem, we can hope to
recover x.

If k ≥ n + 1, then the vector x gives us the values uj for 0 ≤ j < 2n. By
the Berlekamp-Massey algorithm, one can find the characteristic polynomial of
the linear recurrence sequence (uj) over Z2 and thus continue to generate the
sequence (vi).

Furthermore, with k = n+ 1 we expect

D
1/(k+n)
k ∼ mk/(k+n) ≥ m1/2

which is much larger than (k+n)1/2 = (2n+ 1)1/2 for all practically interesting
situations.

3.2 Truncated Outputs

We now consider the case when some bits of the output are discarded before
exhibiting the remaining bits. Although our approach works in more general
settings, here consider only the case which is outlined in [14–Section 6.5.6]. In
this case t = 2n − 1, m = 2n and � = �log n� bits of each value vi get discarded
before the rest is output, that is, only the “truncated” values

⌊
vi/2�

⌋
are known.

Given k consecutive values
⌊
vi/2�

⌋
for 0 ≤ i < k, we define a lattice Lk as

the set of all integer solutions x = (x−1, x0, x1, . . . xk+n−2, y0, . . . , yk−1) ∈ Z2k+n

of the system of congruences∑
0≤j<n

xi+jwj + 2�
⌊
vi/2�

⌋
x−1 + yi ≡ 0 mod m for 0 ≤ i < k.

Again we observe that the discriminant of Lk is likely to be Dk = mk. We also
see that it contains a very short vector

z = (−1, u0, . . . , uk+n, z0, . . . , zk−1),

where zi = 2�
⌊
vi/2�

⌋− vi for 0 ≤ i < k, whose Euclidean norm satisfies

‖z‖ ≤ (
k + n+ k

(
2� − 1

))1/2
=

(
k2� + n

)1/2 ≤ (2kn+ n)1/2
.

Predicting Subset Sum Pseudorandom Generators 249

We see that if k = �log n�, then ‖z‖ ≤ (2n log n+O(n))1/2, while

D
1/(2k+n)
k = 2kn/(2k+n) ≥ nn/(2k+n) = n1+o(1), for n→ ∞,

is much larger. Certainly increasing the value of k increases the chances that z
is much shorter than any other non-parallel vectors in Lk and thus can be found
by an appropriate algorithm for the shortest vector problem.

We have conducted several tests for values of n up to n = 100 with m a 100-
bit prime. In each case, the short vector computed provided correctly the control
sequence. In all cases, there have not been other “smallish” short vectors in the
lattice. These experiments confirm that the algorithm always finds the control
sequence, at least for sufficiently large problems of cryptographically interesting
sizes.

4 Final Remarks

As noted before, our results do not rule out the possibility of successfully using
the subset sum generator for cryptographic purposes. They merely imply that
the security is less than its naive estimate based on counting unknown bits in the
parameters defining the generator. Thus with a careful choice of these parameters
this generator might turn out to be very useful and reliable.

It would be very interesting to obtain rigorous proofs for the heuristic attacks
described in this paper. Besides being of theoretic value, this may also give
further insight on the structure and thus security of the subset sum generator.

For convenience, we have assumed that R is a ring, so that we could use the
language of the power series ring R[[x]]. But the construction of the generator
applies to any semigroup R. Now if, for example, R is a finite cyclic group of order
m and the output sequence is given “as is”, without discarding any information,
then the prediction problem over R can be reduced to a prediction problem
over Zm by computing the discrete logarithms of v0, v1, At the small key
sizes for which we already expect security, the discrete logarithm problem is not
hard. Similar arguments apply also to groups which are not necessarily cyclic.
However, this reduction to discrete logarithms does not work if some information
about each generated value vi is discarded before the generator outputs the rest
of vi.

For example, one can use this idea in one of the cryptographically most
interesting groups, namely the group of rational points of an elliptic curve over
a finite field Fp, where p is a prime. We may choose the size m ≈ p ≈ 2n of the
group sufficiently large, and discard the logn low-order bits of the x-coordinate
of the point before using it as pseudorandom output. Then none of our attacks
works, and at the current state of knowledge the only available attack on this
generator is the brute force search over all parameters defining this generator.
Certainly this construction deserves a further study.

With our attacks, an exhaustive search to break a subset sum generator
requires about 2u many values, where u is the following “effective key size”, and
m ≈ 2n:

250 J. von zur Gathen and I.E. Shparlinski

group key size u
Zm, m even n
Zm, m odd 2n

elliptic curve, truncated output n2

We conclude with an observation which may seem somewhat paradoxical.
While we believe that truncation of the output sequence is a good idea, it must
be applied with great care. Indeed, although truncation provides less information
to the attacker, he only has to solve the simpler task of finding suitable approxi-
mations to the weights. This is exactly the observation that underlies our attack
in Section 2.2. This attack does not work if the number of truncated bits � is
too small. On the other hand, if this value is too large, the attack becomes pro-
hibitively expensive. It is an interesting question to estimate the “hardest” value
of � (as a function of m and n), which takes into account the cost of algorithms
for the short vector problem, both theoretic and heuristic.

References

1. E. Bach, J. Driscoll and J. Shallit, ‘Factor refinement’, J. Algorithms, 15 (1993),
199–222.

2. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, ‘Predicting
the inversive generator’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2898
(2003), 264–275.

3. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, ‘Predicting
nonlinear pseudorandom number generators’, Math. Comp., (to appear).

4. S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, ‘Reconstruct-
ing noisy polynomial evaluation in residue rings’, J. Algorithms, (to appear).

5. E. F. Brickell and A. M. Odlyzko, ‘Cryptoanalysis: A survey of recent results’,
Contemp. Cryptology , IEEE Press, NY, 1992, 501–540.

6. A. Conflitti and I. E. Shparlinski, ‘On the multidimensional distribution of the
subset sum generator of pseudorandom numbers’, Math. Comp., 73 (2004), 1005–
1011.

7. J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University
Press, Cambridge, 2003.

8. A. Joux and J. Stern, ‘Lattice reduction: A toolbox for the cryptanalyst’, J. Cryp-
tology , 11 (1998), 161–185.

9. H. Krawczyk, ‘How to predict congruential generators’, J. Algorithms, 13 (1992),
527–545.

10. J. C. Lagarias, ‘Pseudorandom number generators in cryptography and number
theory’, Proc. Symp. in Appl. Math., Amer. Math. Soc., Providence, RI, 42 (1990),
115–143.

11. A. K. Lenstra, H. W. Lenstra and L. Lovász, ‘Factoring polynomials with rational
coefficients’, Mathematische Annalen, 261 (1982), 515–534.

12. R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge,
1997.

13. D. Micciancio and S. Goldwasser, Complexity of lattice problems, Kluwer Acad.
Publ., 2002.

Predicting Subset Sum Pseudorandom Generators 251

14. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of applied cryp-
tography , CRC Press, Boca Raton, FL, 1996.

15. P. Q. Nguyen and J. Stern, ‘Lattice reduction in cryptology: An update’, Lect.
Notes in Comp. Sci., Springer-Verlag, Berlin, 1838 (2000), 85–112.

16. P. Q. Nguyen and J. Stern, ‘The two faces of lattices in cryptology’, Lect. Notes
in Comp. Sci., Springer-Verlag, Berlin, 2146 (2001), 146–180.

17. R. A. Rueppel, Analysis and design of stream ciphers, Springer-Verlag, Berlin,
1986.

18. R. A. Rueppel, ‘Stream ciphers’, Contemporary cryptology: The science of infor-
mation integrity , IEEE Press, NY, 1992, 65–134.

19. R. A. Rueppel and J. L. Massey, ‘Knapsack as a nonlinear function’, IEEE Intern.
Symp. of Inform. Theory, IEEE Press, NY, 1985, 46.

Collision Attack and Pseudorandomness of
Reduced-Round Camellia1

Wu Wenling, Feng Dengguo, and Chen Hua

State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, P. R. China

{wwl, feng, chenhua}@is.iscas.ac.cn

Abstract. Camellia is the final winner of 128-bit block cipher in NESSIE.
In this paper, we construct some efficient distinguishers between 4-round
Camellia and random permutation of the blocks space. By using collision-
searching techniques, the distinguishers are used to attack 6,7,8 and 9
rounds of Camellia with 128-bit key and 8,9 and 10 rounds of Camellia
with 192/256-bit key. The attack on 6-round of 128-bit key Camellia is
more efficient than known attacks. The complexities of the attack on
7(8,9,10)-round Camellia without FL/FL−1 functions are less than that
of previous attacks. Furthermore, we prove that the 4-round primitive-
wise idealized Camellia is not pseudorandom permutation and the 5-
round primitive-wise idealized Camellia is super-pseudorandom permu-
tation for non-adaptive adversaries.

Keywords: Block cipher; Camellia; Data complexity; Time complexity;
Pseudorandomness.

1 Introduction

Camellia[1] is a 128-bit block cipher which was published by NTT and Mitsubishi
in 2000 and selected as the final selection of the NESSIE[2] project. The security
of Camellia has been studied by many researchers using various cryptanalytic
methods, for instance: higher-order differential attack[3,4], truncated differential
attack[5], truncated and impossible differential attacks[6], differential attack[7],
square attack[8,9], integral attack[10]. In this paper we present collision attacks
on reduced-round variants of Camellia without FL/FL−1 and whitening func-
tion layers. The attack on 6-round of 128-bit key Camellia is more efficient than
known attacks. The complexities of the attack on 7(8,9,10)-round Camellia with-
out FL/FL−1 functions are less than that of previous attacks.

In addition to cryptanalytic methods mentioned above, pseudorandomness
is also an important cryptographic criterion of iterated block ciphers. In their
celebrated paper[11], Luby and Rackoff introduced a theoretical model for the

1 This work was supported by Chinese Natural Science Foundation (Grant
No.60373047 and 60025205) and 863 Project (Grant No. 2003AA14403).

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 252–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Collision Attack and Pseudorandomness of Reduced-Round Camellia 253

security of block ciphers by using the notion of pseudorandom and super-
pseudorandom permutations, which was later developed by Patarin[12],
Maurer[13], Vaudenay[14], and other researchers. This approach studies the pseu-
dorandomness of block cipher by assuming that each round function is ideally
random. Luby and Rackoff idealized DES by replacing each round function with
one large random function, then they proved that the idealized three round DES
yields a pseudorandom permutation and the idealized four round DES yields a
super-pseudorandom permutation. For this kind of idealization, the three round
idealized Camellia is a pseudorandom permutation and the four round idealized
Camellia is a super-pseudorandom permutation because Camellia has the same
Feistel structure as DES. Iwata and Kurosawa[15] introduced a primitive-wise ide-
alization in which some of the primitive operations of the round function(e.g.,
linear transformation and etc.) are left untouched and some of them (e.g., S-
boxes and etc.) are replaced with small random functions or permutations. It is
not known whether such a primitive-wise idealization DES is pseudorandom (or
super-pseudorandom). Similarly, the same problem has been open for Camellia,
which is solved in this paper. In section 6, Camellia is idealized by replacing
only the S-boxes with small random functions. We then prove that the 4-round
primitive-wise idealized Camellia is not pseudorandom permutation and the 5-
round primitive-wise idealized Camellia is super-pseudorandom permutation for
non-adaptive adversaries.

This paper is organized as follows: Section 2 briefly introduces the structure of
Camellia and the basic definitions on pseudorandomness. 4-round distinguishers
are explained in section 3. In section 4, we show how to use the 4-round distin-
guishers to attack 6 ,7,8 and 9 rounds of Camellia with 128-bit key. In section 5,
we describe attacks on 9 and 10 rounds of Camellia with 192/256-bit key. Section
6 present our results on the pseudorandomness and super-pseudorandomness of
Camellia, and Section 7 concludes the paper.

2 Preliminaries

2.1 Description of Camellia

Camellia has a 128 bit block size and supports 128,192 and 256 bit keys. The
design of Camellia is based on the Feistel structure and its number of rounds is
18(128 bit key) or 24(192/256 bit key). The FL/FL−1 function layer is inserted
at every 6 rounds. Before the first round and after the last round, there are pre-
and post-whitening layers which use bitwise exclusive-or operations with 128 bit
subkeys, respectively. But we will consider camellia without FL/FL−1 function
layer and whitening layers and call it modified camellia.

Let Lr−1 and Rr−1 be the left and the right halves of the rth round inputs,
and kr be the rth round subkey. Then the Feistel structure of Camellia can be
written as

Lr = Rr−1 ⊕ F (Lr−1, kr),
Rr = Lr−1,

254 W. Wenling, F. Dengguo, and C. Hua

here F is the round function defined below:

F : {0, 1}64 × {0, 1}64 −→ {0, 1}64

(X64, k64) −→ Y(64) = P (S(X(64) ⊕ k(64))).

where S and P are defined as follows:

S : {0, 1}64 −→ {0, 1}64

l1(8)||l2(8)||l3(8)||l4(8)||l5(8)||l6(8)||l7(8)||l8(8)
−→ l∗1(8)||l∗2(8)||l∗3(8)||l∗4(8)||l∗5(8)||l∗6(8)||l∗7(8)||l∗8(8)

l∗1(8) = s1(l1(8)), l∗2(8) = s2(l2(8)), l∗3(8) = s3(l3(8)),
l∗4(8) = s4(l4(8)), l∗5(8) = s2(l5(8)), l∗6(8) = s3(l6(8)),
l∗7(8) = s4(l7(8)), l∗8(8) = s1(l8(8)).

P : {0, 1}64 −→ {0, 1}64

Z1(8)||Z2(8)||Z3(8)||Z4(8)||Z5(8)||Z6(8)||Z7(8)||Z8(8)

−→ Z∗
1(8)||Z∗

2(8)||Z∗
3(8)||Z∗

4(8)||Z∗
5(8)||Z∗

6(8)||Z∗
7(8)||Z∗

8(8)

Z∗
1 = Z1 ⊕ Z3 ⊕ Z4 ⊕ Z6 ⊕ Z7 ⊕ Z8, Z∗

5 = Z1 ⊕ Z2 ⊕ Z6 ⊕ Z7 ⊕ Z8,

Z∗
2 = Z1 ⊕ Z2 ⊕ Z4 ⊕ Z5 ⊕ Z7 ⊕ Z8, Z∗

6 = Z2 ⊕ Z3 ⊕ Z5 ⊕ Z7 ⊕ Z8,

Z∗
3 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z5 ⊕ Z6 ⊕ Z8, Z∗

7 = Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z8,

Z∗
4 = Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7, Z∗

8 = Z1 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7.

Below briefly describes the key schedule of Camellia. First two 128-bit variables
KL and KR are generated from the user key. Then two 128-bit variables KA

and KB are generated from KL and KR. The round subkeys are generated by
rotating KL,KR,KA and KB . Details are shown in [1]

2.2 Pseudorandomness and Super-Pseudorandomness

Let {0, 1}n denote the set of binary strings of length n, let Fn denote the set
of functions from {0, 1}n to {0, 1}n and Pn denote the set of permutations from
{0, 1}n to {0, 1}n. A n-bit block cipher can be regarded as a subset of per-
mutations Bn ⊂ Pn obtained from all the keys. Let A be a computationally
unbounded distinguisher with an oracle O. The oracle chooses randomly a per-
mutation π from Pn or Bn. The aim of the distinguisher A is to distinguish
if the oracle O implements Pn or Bn. Let p0 denote the probability that A
outputs 1 when O implements Pn and p1 denote the probability that A out-
puts 1 when O implements Bn. That is p0 = Pr(A outputs 1 | O ← Pn) and
p1 = Pr(A outputs 1 | O ← Bn). Then the advantage of the distinguisher A is
defined as

AdvA =| p1 − p0 |
Assume that the distinguisher A is restricted to make at most q queries to

the oracle O, where q is some polynomial in n. We say that A is pseudorandom

Collision Attack and Pseudorandomness of Reduced-Round Camellia 255

distinguisher if it queries x and the oracle answers y = π(x), where π is randomly
chosen permutation by O. We say that A is super-pseudorandom distinguisher
if it is also allowed to query y and receives x = π−1(y) from the oracle.

Definition 1. A function h : N → R is negligible if for any constant c > 0 and
all sufficiently large n ∈ N , h(n) < 1

nc .

Definition 2. Let Bn be an efficiently computable permutation ensemble. Bn

is called a pseudorandom permutation ensemble if AdvA is negligible for any
pseudorandom distinguisher A.

Definition 3. Let Bn be an efficiently computable permutation ensemble. Bn

is called a super-pseudorandom permutation ensemble if AdvA is negligible for
any super-pseudorandom distinguisher A.

In definition 2 and 3, a permutation ensemble is efficiently computable if
all permutations in the ensemble can be computed efficiently. See[16] for the
rigorous definition of this. It is reasonable assumption that Bn is an efficiently
computable permutation ensemble if it is obtained from an n-bit block cipher. In
Section 6 , we consider a non-adaptive distinguisher which sends all the queries
to the oracle at the same time.

3 4-Round Distinguishers

Choose

L0 = (α1, α2, · · · , α8), R0 = (x, β2, · · · , β8).

where x take values in {0, 1}8, αi and βj are constants in {0, 1}8. Thus, the input
of 2nd round can be written as follows:

L1 = (x⊕ γ1, γ2, · · · , γ8), R1 = (α1, α2, · · · , α8),

where γi are entirely determined by αi(1 ≤ i ≤ 8), βj(2 ≤ j ≤ 8) and k1, so γi

are constants when the user key is fixed. In the 2nd round a transformation on
L1 using F (•, k2) is as follows:

L1 = (x⊕ γ1, γ2, · · · , γ8)
F (•, k2)−−−−−−→ (y⊕ θ1, y⊕ θ2, y⊕ θ3, θ4, y⊕ θ5, θ6, θ7, y⊕ θ8)

where y = s1(x⊕γ1⊕k2,1), k2,1 is the first byte of k2, θi are entirely determined
by γi(1 ≤ i ≤ 8) and k2, thus θi are constants when the user key is fixed.
Therefore, the output of 2nd round is

L2 = (y ⊕�1, y ⊕�2, y ⊕�3, �4, y ⊕�5, �6, �7, y ⊕�8),
R2 = L1 = (x⊕ γ1, γ2, · · · , γ8),

where �i = θi⊕αi are constants. In the 3rd round a transformation on L2 using
F (•, k3)is as follows:

L2 = (y⊕�1, y⊕�2, y⊕�3, �4, y⊕�5, �6, �7, y⊕�8)
F (•, k3)−−−−−−→ (z1, z2, · · · , z8).

256 W. Wenling, F. Dengguo, and C. Hua

Thus,we have the left half of output for the 3rd round:

L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

So the right half of output for the 4th round is as follows:

R4 = L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

Now we analyze the relations among bytes of R4. By observing the equation
(z1, z2, · · · , z8) = F (L2, k3), we get the following equations

z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 = s4(�7 ⊕ k3,7)
z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 = s1(y ⊕�1 ⊕ k3,1)
z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 = s3(�6 ⊕ k3,6)
z1 ⊕ z7 ⊕ z8 = s4(�4 ⊕ k3,4) ⊕ s3(�6 ⊕ k3,6)
z3 ⊕ z4 ⊕ z5 = s4(�4 ⊕ k3,4) ⊕ s2(y ⊕�2 ⊕ k3,2) ⊕ s3(�6 ⊕ k3,6)
z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 = s4(�4 ⊕ k3,4) ⊕ s3(y ⊕�3 ⊕ k3,3) ⊕ s3(�6 ⊕ k3,6)
z2 ⊕ z5 = s4(�4 ⊕ k3,4) ⊕ s2(y ⊕�5 ⊕ k3,5) ⊕ s3(�6 ⊕ k3,6)
z4 ⊕ z6 = s4(�4 ⊕ k3,4) ⊕ s1(y ⊕�8 ⊕ k3,8) ⊕ s3(�6 ⊕ k3,6)

Because s1 is a permutation, y = s1(x ⊕ γ1 ⊕ k2,1) differs when x takes
different values. As a consequence, s1(y ⊕�1 ⊕ k3,1) will have different values.
Similarly,s2(y⊕�2⊕k3,2), s3(y⊕�3⊕k3,3), s2(y⊕�5⊕k3,5) and s1(y⊕�8⊕k3,8)
have the same property as s1(y⊕�1⊕k3,1). Obviously, s4(�4⊕k3,4), s3(�6⊕k3,6)
and s4(�7 ⊕ k3,7) are constants, Thus, from the above discussion we know that
z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7, z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 and z1 ⊕ z7 ⊕ z8 are constants, and
z2⊕z3⊕z4⊕z6⊕z7⊕z8, z3⊕z4⊕z5, z2⊕z4⊕z5⊕z6⊕z7, z2⊕z5 and z4⊕z6 each will
have different values when x takes different values. Therefore we get the following
theorem by considering R4 = L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

Theorem 1. Let P = (L0, R0) and P ∗
0 = (L∗

0, R
∗
0) be two plaintexts of 4-round

Camellia, C = (L4, R4) and C∗
4 = (L∗

4, R
∗
4) be the corresponding ciphertexts, R0,i

denote the ith byte of R0. If L0 = L∗
0, R0,1
= R∗

0,1, R0,j = R∗
0,j(2 ≤ j ≤ 8), then R4

and R∗
4 satisfy:

R4,3 ⊕ R4,4 ⊕ R4,5 ⊕ R4,6 ⊕ R4,7 = R∗
4,3 ⊕ R∗

4,4 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,7 (1)

R4,2 ⊕ R4,3 ⊕ R4,5 ⊕ R4,6 ⊕ R4,8 = R∗
4,2 ⊕ R∗

4,3 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,8 (2)

R4,2 ⊕ R4,3 ⊕ R4,4 ⊕ R4,6 ⊕ R4,7 ⊕ R4,8

= R∗
4,2 ⊕ R∗

4,3 ⊕ R∗
4,4 ⊕ R∗

4,6 ⊕ R∗
4,7 ⊕ R∗

4,8 (3)

R4,1 ⊕ R4,7 ⊕ R4,8
= R∗
4,1 ⊕ R∗

4,7 ⊕ R∗
4,8 (4)

R4,3 ⊕ R4,4 ⊕ R4,5
= R∗
4,3 ⊕ R∗

4,4 ⊕ R∗
4,5 (5)

R4,2 ⊕ R4,4 ⊕ R4,5 ⊕ R4,6 ⊕ R4,7
= R∗
4,2 ⊕ R∗

4,4 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,7 (6)

R4,2 ⊕ R4,5
= R∗
4,2 ⊕ R∗

4,5 (7)

R4,4 ⊕ R4,6
= R∗
4,4 ⊕ R∗

4,6 (8)

The above (in)equations in the theorem 1 provide some efficient 4-round
distinguishers,which will be used to attack and show the pseudorandomness of
reduced-round Camellia.

Collision Attack and Pseudorandomness of Reduced-Round Camellia 257

4 Attacks on Reduced-Round Camellia with 128 Bit Key

4.1 Attacking 6-Round Camellia with 128 Bit Key

This section explains the attack on 6-round Camellia with 128-bit key in some
detail. First we recover the first byte k1,1 of k1 and the seventh byte k6,7 of k6.
From the key schedule for 128-bit key, we know that k6,7[2 ∼ 8] = k1,1[1 ∼ 7], so
we only need to guess 9 bits. Using the equation (1) of theorem 1, we construct
the following algorithm to recover(k1,1, k6,7) :

Algorithm 1
Step1. For each possible value t of k1,1, choose two plaintexts P0t = (L0t

0, R0t
0)

and P1t = (L1t
0, R1t

0) as follows:

L0t
0 = (i0, α2, · · · , α8),

R0t
0 = (s1(i0 ⊕ k1,1), s1(i0 ⊕ k1,1), s1(i0 ⊕ k1,1), β4, s1(i0 ⊕ k1,1), β6, β7, s1(i0 ⊕ k1,1)),

L1t
0 = (i1, α2, · · · , α8),

R1t
0 = (s1(i1 ⊕ k1,1), s1(i1 ⊕ k1,1), s1(i1 ⊕ k1,1), β4, s1(i1 ⊕ k1,1), β6, β7, s1(i1 ⊕ k1,1)).

where αi and βj are constants, 0 ≤ i0 < i1 ≤ 255. The corresponding cipher-
texts are C0t = (L0t

6, R0t
6) and C1t = (L1t

6, R1t
6).

Step2. For each possible value of (t, k6,7), compute

�0 = s4(R0t
6,7 ⊕ k6,7) ⊕ (L0t

6,3 ⊕ L0t
6,4 ⊕ L0t

6,5 ⊕ L0t
6,6 ⊕ L0t

6,7),

�1 = s4(R1t
6,7 ⊕ k6,7) ⊕ (L1t

6,3 ⊕ L1t
6,4 ⊕ L1t

6,5 ⊕ L1t
6,6 ⊕ L1t

6,7).

Check if �0 equals �1. If so, record the corresponding value of (t, k6,7). Other-
wise, move to next value of (t, k6,7).
Step3. For the recorded value of (t, k6,7) in Step2, choose some other plaintexts
P2t(
= P0t, P1t), compute �2, and check if �2 equals �0, if so, record the corre-
sponding value of (t, k6,7), otherwise, discard the value of (t, k6,7). If there are
more than one recorded value, then repeat Step 3 on the newly recorded values.

Take q values at random over {0, 1}8, the probability of that they are the
same is 2−8(q−1). So invalid subkey will pass step2 with a probability 2−8, and
there are about 29×2−8 = 2 remaining values after step2. So the attack requires
less than 3 × 28chosen plaintexts. The main time complexity of attack is from
step2, where the time complexity of computing each � is about the same as the
1-round encryption, so the time complexity of attack is less than 29 encryptions.

Knowing k1,1, we can choose plaintexts such that the outputs of the first
round meet the requirement of Theorem 1. Thus, R5 satisfies Theorem 1, and
from R5 = L6 ⊕ F (R6, k6) and that s1(R6,1 ⊕ k6,1) is the result of ⊕ of the 2nd
,3rd ,4th ,6th,7th and 8th byte of F (R6, k6), we have

R5,2⊕R5,3⊕R5,4⊕R5,6⊕R5,7⊕R5,8 = L6,2⊕L6,3⊕L6,4⊕L6,6⊕L6,7⊕L6,8⊕s1(R6,1⊕k6,1).

Using this equation and inequation (3) in Theorem 1, we can construct the
following algorithm to recover k6,1 :

258 W. Wenling, F. Dengguo, and C. Hua

Algorithm 2
Step1. Choose 64 plaintexts P i = (Li

0, R
i
0)(0 ≤ i ≤ 63) as follows:

Li
0 = (i, α2, · · · , α8),

Ri
0 = (s1(i ⊕ k1,1), s1(i ⊕ k1,1), s1(i ⊕ k1,1), β4, s1(i ⊕ k1,1), β6, β7, s1(i ⊕ k1,1)).

where αi and βj are constants. Denote by Ci = (Li
6, R

i
6) the corresponding

ciphertexts of the above plaintexts.
Step2. For each possible value of k6,1, compute

�i = s1(Ri
6,1 ⊕ k6,1) ⊕ (Li

6,2 ⊕ Li
6,3 ⊕ Li

6,4 ⊕ Li
6,6 ⊕ Li

6,7 ⊕ Li
6,8).

Check if there are collisions among �i. If so, discard the value of k6,1. Otherwise,
output k6,1.
Step3. From the output values of k6,1 in Step2, choose some other plaintexts,
and repeat Step2.

The probability of at least one collision occurs when we throw 64 balls into
256 buckets at random is larger than 1 − e−64(64−1)/2×28 ≥ 1 − 2−11. So the
probability of wrong output (invalid subkey) in Step2 is less than 2−11. For the
256 possible values of k6,1, at most 64 more plaintexts are needed in Step3. Thus,
the attack requires less than 27 chosen plaintexts and 212 encryptions.

Similarly, using equation (2) in Theorem 1 and the plaintexts chosen in Al-
gorithm 2, we can recover k6,6 by computing

�i = s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,2 ⊕ Li
6,3 ⊕ Li

6,5 ⊕ Li
6,6 ⊕ Li

6,8).

Check if �i is a constant. If so, output the value of k6,6 , otherwise, discard the
value of k6,6.Here the attack requires 210 encryptions.

And using k6,6 , inequation (4) in Theorem 1 and the plaintexts chosen in
Algorithm 2, we can recover k6,4 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s3(Ri

6,6 ⊕ k6,6) ⊕ (Li
6,1 ⊕ Li

6,7 ⊕ Li
6,8).

and the attack requires 212 encryptions.
And using inequation (5) in Theorem 1 and the plaintexts chosen in Algo-

rithm 2, we can recover k6,2 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s2(Ri

6,2 ⊕ k6,2) ⊕ s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,3 ⊕ Li
6,4 ⊕ Li

6,5).

and the attack requires 212 encryptions.
And using inequation (6) in Theorem 1 and the plaintexts chosen in Algo-

rithm 2, we can recover k6,3 by computing

�i = s4(Ri
6,4⊕k6,4)⊕s3(Ri

6,3⊕k6,3)⊕s3(Ri
6,6⊕k6,6)⊕(Li

6,2⊕Li
6,4⊕Li

6,5⊕Li
6,6⊕Li

6,7).

and the attack requires 212 encryptions.
And using inequation (7) in Theorem 1 and the plaintexts chosen in Algo-

rithm 2, we can recover k6,5 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s2(Ri

6,5 ⊕ k6,5) ⊕ s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,2 ⊕ Li
6,5).

and the attack requires 212 encryptions.

Collision Attack and Pseudorandomness of Reduced-Round Camellia 259

And using inequation (8) in Theorem 1 and the plaintexts chosen in Algo-
rithm 2, we can recover k6,8 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s1(Ri

6,8 ⊕ k6,8) ⊕ s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,4 ⊕ Li
6,6).

and the attack requires 212 encryptions.
Now we have recovered k1,1 and k6, using less than 210 chosen plaintexts and

6 × 212 + 210 + 29 encryptions. Similarly, by decrypting the 6th round, we can
recover k5. Therefore, the attack on the 6-round Camellia requires less than 210

chosen plaintexts and 215 encryptions.

Similarly we can get the user key of 7(8)-round Camellia. For 7-round Camel-
lia, the attack requires less than 212 chosen plaintexts and 254.5 encryptions. For
8-round Camellia, the attack requires less than 213 chosen plaintexts and 2112.1

encryptions.

4.2 Attacking 9-Round Camellia with 128 Bit Key

If we use the 4-round distinguisher from the 2nd to the 5th round of encryption as
in the case of 8-round, then the time complexity of recovering 9-round Camellia
key is larger than 2128 which is apparently useless. So we will use the 4-round dis-
tinguisher only from the 4th to the 7th round. First guess k1, k2,1, k2,2, k2,3, k2,5,
k2,8, k3,1, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8,When (k1, k2,1, k2,2, k2,3, k2,5, k2,8) is given,
we only need to guess 3 bits of (k9,3, k9,4, k9,5, k9,6, k9,8).

Algorithm 3
Step1. For each possible value t of (k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1), Choose 3
plaintexts Pjt = (Ljt

0, Rj
t
0)(1 ≤ j ≤ 3) such that

Ljt
2 = (ij , α2, · · · , α8),

Rjt
2 = (s1(ij⊕k3,1), s1(ij⊕k3,1), s1(ij⊕k3,1), β4, s1(ij⊕k3,1), β6, β7, s1(ij⊕k3,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding cipher-
texts are Cjt = (Ljt

9, Rj
t
9).

Step2. For each fixed value of t, and for each possible value of (k8,7, k9,3, k9,4,
k9,5, k9,6, k9,8), compute)1 and)2, where

)j = s4(Rjt
8,7 ⊕ k8,7) ⊕ (Rjt

9,3 ⊕Rjt
9,4 ⊕Rjt

9,5 ⊕Rjt
9,6 ⊕Rjt

9,7),

Rjt
8,7 = Ljt

9,7 ⊕ s3(Rjt
9,3 ⊕ k9,3) ⊕ s4(Rjt

9,4 ⊕ k9,4) ⊕ s2(Rjt
9,5 ⊕ k9,5)

⊕s3(Rjt
9,6 ⊕ k9,6) ⊕ s1(Rjt

9,8 ⊕ k9,8).

Check if)1 equals)2. If so, output the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).
Otherwise, discard the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).

For the output values of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8), compute)3, check if
)3 equals)1. If so, output the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). Otherwise,
discard the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).

260 W. Wenling, F. Dengguo, and C. Hua

Step3. For the output values of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8) in Step2, Choose
some other plaintexts P4t(�= Pjt, 1 ≤ j ≤ 3), compute)4, check if)4 equals
)1. If so, output the value of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). Otherwise, discard
the value of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). If there are more than one output
value, then repeat Step3.

Wrong values will pass step2 successfully with probability 2−16. Thus there
are about 2123 × 2−16 = 2107 output values in step2. So, the attack requires less
than 3 × 2112 + 2108 chosen plaintexts. The main time complexity of the attck
is in Step2, the time of computing each) is about the 1-round encryption, so
the time complexity of the attck is less than (2 × 2112 × 211 + 2116) × 1/9 <
2120 + 2119 + 2118 + 2117 encryptions.

Now we know k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8, we
can recover the other bytes of k9 and get the user key of 9-round Camellia. The
attack requires less than 2113.6 chosen plaintexts and 2121 encryptions.

5 Attacks Reduced-Round Camellia with 192/256 Bit
Key

5.1 Attacking 9-Round Camellia with 192/256 Bit Key

First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9. When k1,1 is given, we can
get 8 bits of k8 from the key schedule. So we need guess 176 bits subkey. Using
equation (1) in Theorem 1, we can construct the following algorithm:

Algorithm 4
Step1. For each possible value t of k1,1, Choose 22 plaintexts Pjt = (Ljt

0, Rj
t
0)

(1 ≤ j ≤ 22) as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 = (s1(ij⊕ k1,1), s1(ij⊕ k1,1), s1(ij⊕ k1,1), β4, s1(ij⊕k1,1), β6, β7, s1(ij⊕k1,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding cipher-
texts are Cjt = (Ljt

9, Rj
t
9).

Step2. For each fixed value of t, for each possible value of (k6,7, k7,3, k7,4, k7,5,
k7,6, k7,8, k8, k9) , First compute)1 and)2, where

)j = s4(Rjt
6,7 ⊕ k6,7) ⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7),

Ljt
7 =Rjt

8, Rj
t
7 = Ljt

8 ⊕ F (Rjt
8, k8), Ljt

8 = Rjt
9, Rjt

8 = Ljt
9 ⊕ F (Rjt

9, k9),
Rjt

6,7 = Ljt
7,7 ⊕ s3(Rjt

7,3 ⊕ k7,3) ⊕ s4(Rjt
7,4 ⊕ k7,4) ⊕ s2(Rjt

7,5 ⊕ k7,5)

⊕s3(Rjt
7,6 ⊕ k7,6) ⊕ s1(Rjt

7,8 ⊕ k7,8).

Check if)1 equals)2. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9) . Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9).

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9), compute)3,
check if)3 equals)1. If so, output the value of(k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,

Collision Attack and Pseudorandomness of Reduced-Round Camellia 261

k8, k9). Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). Sim-
ilar process will go through)4 up to)22.
Step3. For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) in Step2,
choose some other plaintexts P23t(�= Pjt, 1 ≤ j ≤ 22) , compute)23, check if
)23 equals)1. If so, output the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9). Otherwise, discard the value of(t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). If
there are more than one output value, then repeat Step3.

Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) that can pass Step2 will
be successful with probability 2−168. Thus it is likely that there is only one
output value for any fixed t after Step2, so there are about 28 different values
after step2. Thus, the attack requires 22×28+28+28 = 3×211 chosen plaintexts.
The main time complexity of the attack is in Step2, and the time of computing
each) is about the same as 3-round encryption, so the time complexity of an
attack is less than that of (2×28×2168 +28×2160 +28×2153)×1/3 < 2175 +2174

encryptions.
Now we have known (k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9), we can decrypt

the ninth and eighth round and recover the other bytes of k7 and get the user
key of 9-round Camellia. The attack requires less than 213 chosen plaintexts and
2175.6 encryptions.

5.2 Attacking 10-Round Camellia with 256 Bit Key

First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10. When k1,1is given, we
can get 8 bits of k8 from the key schedule. So we need guess 240 bits subkey.
Using equation (1) in Theorem 1, we construct the following algorithm:

Algorithm 5
Step1. For each possible value t of k1,1, Choose 30 plaintexts Pjt = (Ljt

0, Rj
t
0)

(1 ≤ j ≤ 30) as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 =(s1(ij⊕ k1,1), s1(ij⊕ k1,1), s1(ij⊕ k1,1), β4, s1(ij⊕ k1,1), β6, β7, s1(ij⊕ k1,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding cipher-
texts are Cjt = (Ljt

10, Rj
t
10).

Step2. For each fixed value of t, for each possible value of (k6,7, k7,3, k7,4, k7,5,
k7,6, k7,8, k8, k9, k10) , First compute)1 and)2,where

)j = s4(Rjt
6,7 ⊕ k6,7) ⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7).

Ljt
7 = Rjt

8, Rjt
7 = Ljt

8 ⊕ F (Rjt
8, k8),

Ljt
8 = Rjt

9, Rjt
8 = Ljt

9 ⊕ F (Rjt
9, k9),

Ljt
9 = Rjt

10, Rjt
9 = Ljt

10 ⊕ F (Rjt
10, k10),

Rjt
6,7 = Ljt

7,7 ⊕ s3(Rjt
7,3 ⊕ k7,3) ⊕ s4(Rjt

7,4 ⊕ k7,4) ⊕ s2(Rjt
7,5 ⊕ k7,5)

⊕s3(Rjt
7,6 ⊕ k7,6) ⊕ s1(Rjt

7,8 ⊕ k7,8).

262 W. Wenling, F. Dengguo, and C. Hua

Check if)1 equals)2. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9, k10) . Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,
k10).

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10), compute
)3, check if)3 equals)1. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9, k10). Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,
k10). Similar process will go through)4 up to)30.

Step3. For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) in
Step2, choose some other plaintexts P31t(�= Pjt, 1 ≤ j ≤ 30) , compute)31,
check if)31 equals)1. If so, output the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9, k10). Otherwise, discard the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,
k10). If there are more than one output value, then repeat Step3.

Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) that can pass Step2
will be successful with probability 2−232 . Thus it is likely that there is only one
output value for any fixed t after Step2, so there are about 28 different values
after step2. Thus, the attack requires 30×28+28+28 = 213 chosen plaintexts. The
main time complexity of the attack is in Step2, and the time of computing each
) is about the same as 4-round encryption, so the time complexity of an attack
is less than that of (2×28×2232+28×2224+28×2217)×4/10 < 2239+2238+2237

encryptions.
Now we have known (k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10), we can de-

crypt the tenth, ninth and eighth round and recover the other bytes of k7 and
get the user key of 10-round Camellia. The attack requires less than 214 chosen
plaintexts and 2239.9 encryptions.

6 Pseudorandomness of Primitive-Wise Idealized
Camellia

6.1 Primitive-Wise Idealization of Camellia

Let n denote the length of a plaintext which can be written as n = 16m, where
m is an integer. Now we idealize Camellia as shown in Fig.1, where each fij is
an independent random function from {0, 1}m to {0, 1}m.

6.2 Pseudorandomness of Primitive-Wise Idealized Camellia

Let P = (L0, R0) denote the plaintext, (Li, Ri) denote the output of the ith
round primitive-wise idealized Camellia. Let Li = (Li,1, Li,2, . . . , Li,8) and Ri =
(Ri,1, Ri,2, . . . , Ri,8), where each of Li,j and Ri,j is m bits long.

Theorem 2. The four round primitive-wise idealized Camellia is not a pseudo-
random permutation.

Proof. Let Bn be the set of permutations over {0, 1}n obtained from the four
round primitive-wise idealized Camellia. We consider a distinguisher A as fol-
lows.

Collision Attack and Pseudorandomness of Reduced-Round Camellia 263

Ri

Ri-1

fi8

fi7

fi6

fi5

fi4

fi3

fi2

fi1

Li-1

L

i

Fig. 1. The i-th round of the primitive-wise idealized Camellia

1. A randomly chooses two plaintexts P = (L0, R0) and P ∗ = (L∗
0, R

∗
0) such

that

L0 = L∗
0 and R0,1 �= R∗

0,1, R0,j = R∗
0,j(2 ≤ j ≤ 8) (9)

2. A sends them to the oracle and receives the ciphertexts C = (L4, R4) and
C∗ = (L∗

4, R
∗
4) from the oracle.

3. Finally, A outputs 1 if and only if

R4,3 ⊕ R4,4 ⊕ R4,5 ⊕ R4,6 ⊕ R4,7 = R∗
4,3 ⊕ R∗

4,4 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,7

R4,2 ⊕ R4,3 ⊕ R4,5 ⊕ R4,6 ⊕ R4,8 = R∗
4,2 ⊕ R∗

4,3 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,8

Suppose that the oracle implements the truly random permutation ensemble
Pn. Then it is clear that p0 = 2−2m. Next suppose that the oracle implements the
four round primitive-wise idealized Camellia. Using Theorem 1, we get p1 = 1.
Therefore, we obtained that

AdvA =| p1 − p0 |≥ 1 − 2−2m (10)

which is non-negligible. Hence, the four round primitive-wise idealized Camellia
is not a pseudorandom permutation.

We will use the following lemma of which the proof is trivial:

Lemma 1. Let f1, f2, . . . , ft be random functions from {0, 1}m to {0, 1}m. If
x = (x1, x2, . . . , xt) and y = (y1, y2, . . . , yt) are two distinct t-uple of {0, 1}m,
and δ is a given value of {0, 1}m, then

Pr[f1(x1) ⊕ . . . ft(xt) ⊕ f1(y1) ⊕ . . . ft(yt) = δ] ≤ 2−m

.
We next prove the following theorem.

264 W. Wenling, F. Dengguo, and C. Hua

Theorem 3. The five round primitive-wise idealized Camellia is a pseudoran-
dom permutation for non-adaptive adversaries.

Proof. Suppose that A makes q oracle calls. In the ith oracle call, A sends
a plaintexts P i = (Li

0, R
i
0) to the oracle and receives the ciphertexts Ci =

(Li
5, R

i
5). Let Li

3 = (Li
3,1, . . . , L

i
3,8) denote the inputs to (f41, . . . , f48) and Li

4 =
(Li

4,1, . . . , L
i
4,8) denote the inputs to (f51, . . . , f58).

Without loss of generality, we assume that P 1, . . . , P q are all distinct. Let T3l

be the event that L1
3,l, L

2
3,l, . . . , L

q
3,l are all distinct for l = 1, . . . , 8, and T3 be the

event that all T31, . . . , T38 occur. Let T4l be the event that L1
4,l, L

2
4,l, . . . , L

q
4,l are

all distinct for l = 1, . . . , 8, and T4 be the event that all T41, . . . , T48 occur. If T3
and T4 occur, then C1, . . . , Cq are completely random since f41, . . . , f48, f51, . . . ,
f58 are truly random functions. Therefore, AdvA is upper bounded by

AdvA =| p1 − p0 |≤ 1 − Pr(T3 ∩ T4) (11)

Further, it is easy to see that

1 − Pr(T3 ∩ T4) ≤
∑

1≤i<j≤q

Pr(Li
3,1 = Lj

3,1) + . . . +
∑

1≤i<j≤q

Pr(Li
3,8 = Lj

3,8) +

∑
1≤i<j≤q

Pr(Li
4,1 = Lj

4,1) + . . . +
∑

1≤i<j≤q

Pr(Li
4,8 = Lj

4,8) (12)

Fix i �= j arbitrarily. We show that all Pr(Li
3,1 = Lj

3,1), . . . , P r(Li
3,8 = Lj

3,8),
P r(Li

4,1 = Lj
4,1), . . . , P r(Li

4,8 = Lj
4,8) are sufficiently small. First we show Pr(Li

3,1 =
Lj

3,1) is sufficiently small.
Let E2l be the event that Li

2,l = Lj
2,l for l = 1, . . . , 8. Since P i
= P j , by Lemma

1 we have Pr(Li
1 = Lj

1) ≤ 2−m. If Li
1
= Lj

1, then (Li
1,1, L

i
1,3, L

i
1,4, L

i
1,6, L

i
1,7, L

i
1,8)

= (Lj
1,1, L

j
1,3, L

j
1,4, L

j
1,6, L

j
1,7, L

j
1,8) or (Li

1,1, L
i
1,2, L

i
1,3, L

i
1,5, L

i
1,6, L

i
1,8)
= (Lj

1,1, L
j
1,2, L

j
1,3,

Lj
1,5, L

j
1,6, L

j
1,8). From the 2nd round function of idealized Camellia, we have that

Li
2,1 = Li

0,1 ⊕ f21(Li
1,1) ⊕ f23(Li

1,3) ⊕ f24(Li
1,4) ⊕ f26(Li

1,6) ⊕ f27(Li
1,7) ⊕ f28(Li

1,8)

Li
2,3 = Li

0,3 ⊕ f21(Li
1,1) ⊕ f22(Li

1,2) ⊕ f23(Li
1,3) ⊕ f25(Li

1,5) ⊕ f26(Li
1,6) ⊕ f28(Li

1,8)

Therefore, by using Lemma 1 we get Pr(E21 | Li
1
= Lj

1) ≤ 2−m or Pr(E23 |
Li

1
= Lj
1) ≤ 2−m, hence Pr(E21) ≤ Pr(Li

1 = Lj
1) + Pr(E21 | Li

1
= Lj
1) ≤ 2−m+1 or

Pr(E23) ≤ Pr(Li
1 = Lj

1) + Pr(E23 | Li
1
= Lj

1) ≤ 2−m+1, and therefore, Pr(E21∩E23) ≤
2−m+1.

Similarly, from Lemma 1 and the following equation

Li
3,1 = Li

1,1 ⊕ f31(Li
2,1) ⊕ f33(Li

2,3) ⊕ f34(Li
2,4) ⊕ f36(Li

2,6) ⊕ f37(Li
2,7) ⊕ f38(Li

2,8)

we have Pr(Li
3,1 = Lj

3,1 | E21 ∩ E23) ≤ 2−m. Hence, we have

Pr(Li
3,1 = Lj

3,1)

=Pr(Li
3,1=Lj

3,1 | E21 ∩ E23)Pr(E21 ∩ E23)+Pr(Li
3,1 =Lj

3,1 | E21 ∩ E23)Pr(E21 ∩ E23)

≤ Pr(E21 ∩ E23) + Pr(Li
3,1 = Lj

3,1 | E21 ∩ E23)

≤ 2−m+1 + 2−m = 3 × 2−m (13)

Collision Attack and Pseudorandomness of Reduced-Round Camellia 265

Similarly for l = 2, . . . , 8, we can get Pr(Li
3,l = Lj

3,l) ≤ 3 × 2−m(l = 2, . . . , 8).
Next we show Pr(Li

4,l = Lj
4,l) is sufficiently small for l = 1, . . . , 8. For simplicity,

we only consider the case Pr(Li
4,1 = Lj

4,1).
Let E3l be the event that Li

3,l = Lj
3,l for l = 1, . . . , 8. Let W1 = E31 ∩ E33 ∩ E34 ∩

E36 ∩ E37 ∩ E38. Because

Li
4,1 = Li

2,1 ⊕ f41(Li
3,1) ⊕ f43(Li

3,3) ⊕ f44(Li
3,4) ⊕ f46(Li

3,6) ⊕ f47(Li
3,7) ⊕ f48(Li

3,8)

Lj
4,1 = Lj

2,1 ⊕ f41(Lj
3,1) ⊕ f43(Lj

3,3) ⊕ f44(Lj
3,4) ⊕ f46(Lj

3,6) ⊕ f47(Lj
3,7) ⊕ f48(Lj

3,8)

we have Pr(Li
4,1 = Lj

4,1 | W1) ≤ 2−m. Therefore, we obtain

Pr(Li
4,1 = Lj

4,1) = Pr(Li
4,1 = Lj

4,1 | W1)Pr(W1) + Pr(Li
4,1 = Lj

4,1 | W1)Pr(W1)

≤ Pr(W1) + Pr(Li
4,1 = Lj

4,1 | W1)

≤ Pr(Li
3,1 = Lj

3,1) + 2−m ≤ 4 × 2−m (14)

Similarly for l = 2, . . . , 8, we have Pr(Li
4,l = Lj

4,l) ≤ 4 × 2−m.
Since we have

(
q
2

)
choices of (i, j) pairs, so we have

1 − Pr(T3 ∩ T4) ≤
∑

1≤i<j≤q

Pr(Li
3,1 = Lj

3,1) + . . . +
∑

1≤i<j≤q

Pr(Li
3,8 = Lj

3,8) +

∑
1≤i<j≤q

Pr(Li
4,1 = Lj

4,1) + . . .
∑

1≤i<j≤q

Pr(Li
4,8 = Lj

4,8)

≤
(

q

2

)
× 8 × 3 × 2−m +

(
q

2

)
× 8 × 4 × 2−m

<
28q2

2m
(15)

Since q = poly(n),m = n
16 , we have that AdvA is negligible for any A. This

shows that the five round primitive-wise idealized Camellia is a pseudorandom
permutation for non-adaptive adversaries.

Similar to the above, we can prove the following corollary.

Corollary 1. The five round primitive-wise idealized Camellia is a super-
pseudorandom permutation for non-adaptive adversaries.

7 Concluding Remarks

In this paper we have proposed some 4-round distinguishers of Camellia, and dis-
cussed the security of Camellia by using the 4-round distinguishers and collision-
searching techniques. The 128-bit key of 6 rounds Camellia can be recovered with
210 chosen plaintexts and 215 encryptions.The 128-bit key of 7 roundsCamellia can
be recovered with 212 chosen plaintexts and 254.5 encryptions. The 128-bit key of
8 rounds Camellia can be recovered with 213 chosen plaintexts and 2112.1 encryp-
tions. The 128-bit key of 9 rounds Camellia can be recovered with 2113.6 chosen
plaintexts and 2121 encryptions. The 192/256-bit key of 8 rounds Camellia can be
recovered with 213 chosen plaintexts and 2111.1 encryptions. The 192/256-bit key

266 W. Wenling, F. Dengguo, and C. Hua

of 9 rounds Camellia can be recovered with 213 chosen plaintexts and 2175.6 en-
cryptions. The 256-bit key of 10 rounds Camellia can be recovered with 214 chosen
plaintexts and 2239.9 encryptions. Furthermore, we have shown that the four round
primitive-wise idealized Camellia is not pseudorandom permutation and the five
round primitive-wise idealized Camellia is super-pseudorandom permutation for
non-adaptive adversaries.

References

1. K.Aoki,T.Ichikawa,M.Kanda,M.Matsui,S.Moriai,J.Nakajima and T.Tokita, ”Spec-
ification of Camellia-a 128-bit Block Cipher,” Selected Areas in Cryptography -
SAC’2000, Springer-Verlag 2000,pp. 183-191.

2. http://www.cryptonessie.org
3. T.Kawabata, T.Kaneko, ”A study on higher order differential attack of Camellia,”

Proceedings of the 2nd NESSIE workshop,2001.
4. Y.Hatano,H.Sekine, and T.Kaneko, ”Higher order differential attack of Camel-

lia(II),”Selected Areas in Cryptography-SAC’02, LNCS 2595,Springer-Verlag 2002,
pp.39-56.

5. S. Lee, S. Hong, S. Lee, J. Lim and S. Yoon, ”Truncated Differential Cryptanalysis
of Camellia”, Information Security and Cryptology-ICISC’01,LNCS 2288, Springer-
Verlag,2001,pp.32-38.

6. M.Sugita,K.Kobara, and H.Imai, ”Security of reduced version of the block cipher
Camellia against truncated and impossible differential cryptanalysis,” Advances in
Cryptology– Asiacrypt’01,LNCS 2248,Springer-Verlag 2001, pp.193-207.

7. T.Shirai,S.Kanamaru,and G.Abe, ”Improved upper bounds of differential and
linear characteristic probability for Camellia,” Fast Software Encryption-
FSE’02,LNCS 2365,Springer-Verlag 2002,pp.128-142.

8. He Ye-ping and Qing Si-han, ”Square attack on Reduced Camellia Cipher,”
Information and Communication Security-ICICS’01,LNCS 2229, Springer-Verlag
2001,pp.238-245.

9. Y.Yeom, S.Park, and I. Kim, ”On the security of Camellia against the square at-
tack,” Fast Software Encryption-FSE’02,LNCS 2356, Springer-Verlag 2002,pp.89-
99.

10. Y.Yeom, I. Park, and I. Kim, ”A study of Integral type cryptanalysis on Camellia,”
The 2003 Symposium on Cryptography and Information Security-SCIS’03.

11. M. Luby and C. Rackoff, ” How to construct pseudorandom permu-
tations from pseudorandom functions,” SIAM Journal on Computing,
Vol.17,No.2,(1988),pp.373-386.

12. J.Patarin, ” New results on pseudorandom permutation generators based on the
DES Scheme,” Advances in Cryptology–Crypto’91, Springer-Verlag 1991,pp.72-77.

13. U.M.Maurer, ”A simplified and generalized treatment of Luby-Rackoff pseudo-
random permutation generators,” Advances in Cryptology-Eurocrypt’92, LNCS
658,Springer-Verlag 1992,pp.239-255.

14. S. Vaudenay, ”Provable security for block ciphers by decorrelation,” In Proc. of
STACS’98, LNCS 1373, Springer-Verlag 1998,pp.249-275.

15. T.Iwata and K. Kurosawa, ”On the Pseudorandomness of the AES Finalists-RC6
and Serpent,” Fast Software Encryption–FES’2000, LNCS 1978, Springer-Verlag
2000,pp.231-243,.

16. M.Naor and O.Reingold, ”On the construction of pseudorandom permutations
Luby-Rackoff revisited,” Journal of Cryptology, Vol.12, No.1,pp.29-66,1999.

Password Based Key Exchange with Mutual
Authentication

Shaoquan Jiang and Guang Gong

Department of Electrical and Computer Engineering,
University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada
{jiangshq, ggong}@calliope.uwaterloo.ca

Abstract. A reasonably efficient password based key exchange (KE)
protocol with provable security without random oracle was recently pro-
posed by Katz, et al. [17] and later by Gennaro and Lindell [13]. However,
these protocols do not support mutual authentication (MA). The authors
explained that this could be achieved by adding an additional flow. But
then this protocol turns out to be 4-round. As it is known that a high en-
tropy secret based key exchange protocol with MA1 is optimally 3-round
(otherwise, at least one entity is not authenticated since a replay attack
is applicable), it is quite interesting to ask whether such a protocol in
the password setting (without random oracle) is achievable or not. In
this paper, we provide an affirmative answer with an efficient construc-
tion in the common reference string (CRS) model. Our protocol is even
simpler than that of Katz, et al. Furthermore, we show that our protocol
is secure under the DDH assumption (without random oracle).

1 Introduction

In the area of secure communications, key exchange (KE) is one of the most
important issues. In this scenario, two interactive parties are assumed to hold
long-term secrets. Through an interactive procedure, they establish a temporary
session key and then use it to encrypt and authenticate the subsequent commu-
nication. There are two types of KE protocols in the literature. In the first case,
each party holds a high entropy secret (e.g., a signing key of a digital signa-
ture). Research along this line has been well studied, see [1, 6, 8, 12]. The other
case is a password authenticated key exchange protocol (see [19] for a detailed
description), in which it is assumed that the two parties only share a human-
memorable (low entropy) password. Unlike a high entropy secret, it is believed
that an exhaustive search attack (or a dictionary attack) is feasible. In fact, it is

1 We do not consider a protocol with a time stamp or a stateful protocol (e.g., a
counter based protocol). In other words, we only consider protocols in which a session
execution within an entity is independent of its history, and in which the network is
asynchronous.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 267–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 S. Jiang and G. Gong

this attack that makes a construction of a secure password based KE protocol
more difficult than the high entropy secret based one.

1.1 Related Work

Password authenticated key exchange was first studied by Bellovin and Merritt
[4]. Since then, it has been extensively studied in literature [5, 16]. However, none
of these solutions had provable security. The first effort to achieve provable se-
curity was due to Lucks [18]. Halevi and Krawczyk [15] proposed a password KE
protocol in an asymmetric setting: a user only holds a password while the server
additionally has a private key of a public key cryptosystem. Password KE proto-
cols without this asymmetric assumption were proposed in [2, 7]. However, these
protocols including [18] were proved in the random oracle model. It is known [9]
that a random oracle based cryptographic construction could be insecure when
the oracle is replaced by any real function. In the password setting, it is even
worse since a minor weakness of the real function might open the door to a
dictionary attack. The first solution without random oracle was due to Goldre-
ich and Lindell [14]. Actually, their protocol was based on a general assumption
only (i.e., the existence of trapdoor permutation). But this solution is very inef-
ficient. A reasonably efficient construction in CRS model without random oracle
was proposed by Katz, et al. [17]. We shall refer to this as the KOY protocol. An
abstract framework for this protocol was proposed by Gennaro and Lindell [13].
Nevertheless, these protocols do not support mutual authentication (MA). Katz,
et al. mentioned in their paper that a mutual authentication can be made by
adding an additional flow. This is indeed true. However, the resulting protocol
is then 4-round. It is known that a high entropy secret based KE protocol with
MA is optimally 3-round. Thus, it is quite interesting to ask whether there exists
such a protocol in the password setting without random oracles.

1.2 Contribution

In this paper, we provide an affirmative answer to the above problem with an ex-
plicit construction. Our construction is in the CRS model (as in [13, 17]), where
all the parties have access to a set of public parameters drawn from a predeter-
mined distribution, but nobody knows the corresponding secret key if any. Our
construction is optimally 3-round. Comparing with work in [13, 17], it addition-
ally supports mutual authentication and is also simpler than KOY protocol in
the sense of exponentiation cost. Nevertheless, their work has been instructive
to us. In fact, one technique in their construction helps us in authenticating the
initiator. As our important contribution, we formally prove the security under
the Decisional Diffie-Hellman (DDH) assumption (without random oracles).

2 Security Model

In this section, we introduce a formal model of security. This model is mainly
adopted from Bellare, et al. [2] and [3]. Our difference is in the mutual authenti-
cation where we feel our definition is more reasonable. Details are provided later.

Password Based Key Exchange with Mutual Authentication 269

The basic security model without MA was previously adopted by Katz, et al.
[17] and Gennaro and Lindell [13]. We start with the following notations, which
will be used throughout the paper.

− D: a password dictionary with a polynomial size (otherwise, it becomes
a KE problem with high entropy secrets). WOLG, we assume that D =
{1, · · · , N} with a uniform distribution for some N > 0.

− Pi: party i, either a client or a server. If it is a server, then it could
individually share a password with a set of clients.

− Π li
i : protocol instance li within party Pi. We require that li be unique

within Pi in order to distinguish local instances. However, we do not re-
quire it is globally unique, which reflects the practical concern for possible
independence of different parties.

− Flowi: The ith message exchanged between two particular instances.
− sidli

i : the session identifier of a particular instance Π li
i .

− pidli
i : the party with which instance Π li

i believes that he has been inter-
acting.

Partnering. We say two protocol instances Π li
i and Π

lj
j are partnered if (1)

pidli
i = Pj and pidlj

j = Pi; (2) sidli
i = sidlj

j .

Adversarial Model. Roughly speaking, the adversary is allowed to fully control
the external network. He can inject, modify, block and delete messages at will.
He can also request any session keys adaptively. Formally, he can adaptively
query the following oracles.

• Execute(i, li, j, lj): When this oracle is called, it checks whether instances
Π li

i and Π
lj
j are fresh. If either of them is old, it outputs ⊥. Otherwise,

a protocol execution between Π li
i and Π

lj
j takes place. At the end of the

execution, a complete transcript (messages exchanged between the two in-
stances) is returned. This oracle call models a threat from an eavesdropping
adversary.

• Send(d, i, li,M) : When this oracle is called, message M is sent to in-
stance Π li

i as Flowd. If instance Π li
i does not exist but d ≥ 2, or if oracle

Send(d, i, li, ∗) was called before, or if instance Π li
i already exists but either

Send(d − 2, i, li, ∗) was not previously called or its output was ⊥ if called,
then the oracle output is set to ⊥; otherwise, the oracle output is whatever
Π li

i returns. We stress that the oracle response needs to be consistent with
Send(d − 2t, i, li, ∗) for all t > 0. Furthermore, when Send(0, i, li, null) is
called, it first checks whether instance Π li

i is fresh. If it is old, then the
output is set to ⊥; otherwise, Π li

i is initiated within Pi, and the output is
whatever Π li

i returns as Flow1. Similarly, when Send(1, i, li,M) is called, it
first checks whether instance Π li

i is fresh. If it is old, then the output is set
to ⊥; otherwise, an instance Π li

i is initiated within party Pi as a responsor
with input M. The output is whatever Π li

i outputs as Flow2. The oracle call
reflects a threat from man-in-the-middle attack.

270 S. Jiang and G. Gong

• Reveal(i, li) : When this oracle is called, it outputs the session key of in-
stance Π li

i if it has accepted and completed with a session key derived;
otherwise, it outputs ⊥. This oracle reflects the threat from a session key
loss.

• Test(i, li) : This oracle does not reflect any real concern. However, it provides
a security test. The adversary is allowed to query it once. The queried session
must be completed and accepted. Furthermore, this session as well as its
partnered session (if it exists) should not be issued a Reveal query. When
this oracle is called, it flips a fair coin b. If b = 1, then the session key of Π li

i

is provided to adversary; otherwise, a random number of the same length is
provided. The adversary then tries to output a guess bit b′. He is successful
if b′ = b.

Having defined adversary behavior, we come to define the protocol security.
It contains two conditions: correctness and privacy. The mutual authentication
is considered in the privacy condition.

Correctness. If two partnered instances both accept, then they conclude with
the same session key except for a negligible probability.

Privacy. We define two types of adversary success:

$ If at any moment, an instance Π li
i with pidli

i = Pj has accepted and com-
pleted with a session key derived while there does not exist an instance Π lj

j

with pidlj
j = Pi such that the exchanged messages seen by Π li

i and Π lj
j prior

to this moment (especially not including the currently generated message by
Π li

i if any) are equal, then we announce the success of adversary. Further-
more, if such an instance Π

lj
j indeed exists, then we require it is unique

except for a negligible probability.
$ If the above event does not happen but the adversary succeeds in the test

session, we also announce its success.

We use random variable Succ to denote the above success events. We define the
advantage of adversary A as Adv(A):= 2 Pr[Succ] − 1.

Now we are ready to provide a formal definition of security.

Definition 1. A password authenticated key exchange protocol with mutual au-
thentication is said to be secure if it satisfies

• Correctness.
• Privacy.

If adversary A makes Qsend queries to Send oracle, then

Adv(A) <
Qsend

|D| + negl(n), (1)

where D is the password dictionary, n is the security parameter.

Password Based Key Exchange with Mutual Authentication 271

Remarks. Here we give two comments on our definition and that in [2].

1. From our first privacy condition, whenever an instance Π li
i with pidli

i =
Pj accepts and completes, there exists an (essentially) unique instance in
Pj (say, Π lj

j) with pidlj
j = Pi interacting with it and also the exchanged

messages prior to the moment Π li
i accepts are not tampered. This is indeed

our intuition about “Π lj
j is authenticated”.

2. In Bellare, et al. [2], MA is said to be violated if one instance terminates
while no partner instance exists. This definition is not always satisfactory.
Indeed, session identifier sidli

i for instance Π li
i is popularly [13, 17] defined

as a complete transcript seen by Π li
i . Under this SID, their version of MA

is always violated since once the adversary holds on the last message the
partnership is never established. However, this problem does not occur for
our version of MA since we only consider the messages exchanged before
the considered instance (i.e., Π li

i) accepts and completes. We stress that a
provable MA property of a particular protocol in [2] does not contradict our
remark here since their SID is defined as a partial transcript. More discussions
on the definition appear in the full paper [11].

3 Our Protocol

In this section, we introduce our 3-round construction under the common refer-
ence string (CRS) model, where all the parties have access to the public param-
eters that are drawn from a predetermined distribution. In reality, this condition
could be realized by a trusted third party or a threshold scheme. Assume p, q
are large primes with q|(p−1); Gq is the (unique) multiplicative subgroup of F ∗

p

of order q; g, h are uniformly random generators of Gq; H is a collision resistant
hash function; e← GenPK(1n) is the public key for a chosen ciphertext attack
(in the postprocessing model) (CCA2) secure public key cryptosystem E (we
stress that nobody knows the secret key of Ee); F is a pseudorandom function
family and its realization with secret key σ is denoted by Fσ(). Our protocol is
presented as Figure 1. Assume that password πij is ideally shared between party
Pi and Pj . In order to establish a session key, Pi and Pj interact as follows.
Assume Pi speaks first. He picks x← Zq uniformly, computes a plain ElGalmal
ciphertext A|C and sends it together with id Pi to Pj as Flow1. When Pj receives
Flow1, he chooses λ1, λ2 ← Zq, and computes μ,C ′,σ, r, ω,Σ properly, where r
is used as the random input in encryption of Σ, and if it requires a longer string,
r can be defined as Fσ(3)|Fσ(4)| · · · until it is long enough. We prefer the sim-
ple case since the security proof under this modification is essentially identical.
Then he sends μ|ω|Pj back to Pi (as Flow2). Using μ, Pi is able to compute σ
since σ = μx. Then he verifies whether ω is a ciphertext of H(μ|A|C ′|Pj |Pi)
using random bits r. If the verification is successful, then he believes Pj is
authentic and therefore returns an authentication tag τ = Fσ(2) as Flow3. Fur-
thermore, he outputs a session key sk = Fσ(1) and terminates. When Pj receives
τ , he checks whether τ is correct. If the verification succeeds, he believes Pi is

272 S. Jiang and G. Gong

Fig. 1. Key Exchange Protocol Execution between Pi and Pj

authentic. Therefore, he accepts and outputs a session key sk = Fσ(1). If the
verification fails, it rejects. Note in the above interaction, implementation issues
(e.g., a validity check whether appropriate elements belong to Gq) are omitted
for simplicity.

3.1 Comparison with KOY Protocol

Now we provide a more detailed comparison with KOY protocol. As mentioned
before, KOY protocol does not support MA, or it is 4-round if an additional
flow is added. In contrast, our protocol is 3-round with MA. Each party in their
construction needs 15 exps while ours needs at most 4 exps plus one ciphertext
of a CCA2-secure PKE(note it is easy to find such a PKE with a ciphertext cost
less than 11 exps). Their construction employs a one-time signature to “bind”
the whole transcript while we do not use such a technique since it requires the
responsor to store the whole transcript, which might be more vulnerable to denial
of service (DoS) attack. However, we stress their construction is instructive to
us. Specifically, in authentication of initiator, we use a technique that if A|C
is not an ElGamal ciphertext of gπij , then σ is uniformly random in Gq. This
technique is essentially from KOY protocol with a relaxation of Cramer-Shoup
ciphertext [10] to ElGamal ciphertext.

Password Based Key Exchange with Mutual Authentication 273

4 Security

In this section, we prove the security of our protocol.

Theorem 1. Let Γ be the password authenticated key exchange protocol in Fig-
ure 1. Let a, b, c be polynomially related to the security parameter n. Assume
e← GenPK(1n) is the public key of a CCA2 secure public key cryptosystem E;
H : {0, 1}∗ → {0, 1}a is a collision resistant hash function uniformly taken from
a family H; p, q are large primes with q|(p − 1); F is a pseudorandom function
family from {0, 1}b to {0, 1}c; Gq is the (unique) multiplicative subgroup of or-
der q in F ∗

p ; g, h are random generators of Gq. Then under DDH assumption,
protocol Γ is secure.

Proof. Define sidli
i to be the whole transcript seen by instance Π li

i . Assume Π li
i

and Π
lj
j are partnered and both accept. Then, pidli

i and pidlj
j are consistent

and the messages are faithfully exchanged. Thus, Pi and Pj derive the same σ:
σ = μx = Aλ1C ′λ2 . Thus, the correctness follows.

In the rest, we concentrate on the proof of the privacy condition. We look
the protocol execution as a game between a simulator and an adversary A. The
simulator picks large prime p, q with q|(p − 1) and takes g ← Gq, u ← Zq,
(e, d) ← Gen(1n)(= (GenPK,GenSK)(1n)), F a pseudorandom function family
from {0, 1}b to {0, 1}c and H uniformly from a family of a collision resistant
hash function (CRHF). He lets h = gu. Then he sets the public parameters
as g, h,H,F , e, p, q and assigns passwords to parties as in the real protocol. He
simulates the protocol execution with adversary A.

We construct a sequence of slightly modified protocols Γ1, Γ2, · · · from Γ and
show that the success probability of A in Γi is no less than that in Γi−1 except
for a negligible gap for any i ≥ 1, where Γ0 := Γ. And then we bound the success
probability of A in the last variant. Before our actual proof, we assume that in
response to any oracle query, the basic validity check in its definition has already
been successfully verified thus the output is never ⊥.

For given two parties Pi and Pj with common password πij , we say A|C
is inconsistent if logg A �= logh Cg

−πij . We first introduce the following simple
fact, where the proof is mainly due to the fact that λ1, λ2 are both uniform in
Zq (independent of anything else).

Fact 1. If A|C is inconsistent, then σ is uniformly random in Gq, given A|C|μ
where σ and μ are derived according to the responsor’s execution.

Game Γ1. Now we modify Γ0 to Γ1 with the only difference in Execute query,
where C in Γ1 is chosen uniformly random. Using a hybrid argument or a better
proof similar to Lemma 2 in [17], both with reduction to DDH assumption, we
have

Lemma 1. Under DDH assumption in Gq, the success probabilities of A in Γ
and Γ1 are negligibly close.

Game Γ2. We modify Γ1 to Γ2 with only difference in Execute queries where r, τ
and skli

i (= sk
lj
j) in any Execute(i, li, j, lj) are chosen uniformly random from

274 S. Jiang and G. Gong

{0, 1}3c. Note A|C is inconsistent in Execute queries of Γ1 (and Γ2) except for
a negligible probability. By Fact 1, one can conclude the following lemma using
a standard hybrid argument with reduction to the pseudorandomness of F .
Lemma 2. The success probabilities of A in Γ1 and Γ2 are negligibly close.

Game Γ3. Now we modify Γ2 to Γ3 with the only difference in computing ω
in Execute query, where Simulator picks C∗ ← Gq randomly and defines ω =
Ee(H(μ|A|C∗|Pj |Pi); r) instead of a ciphertext of Σ = H(μ|A|C ′|Pj |Pi). Here r
is uniformly random (as in Γ2). By a standard hybrid argument with reduction
to the semantic security2 of cryptosystem E (note the challenge template should
be set according to the above modification), we have the following lemma.

Lemma 3. The success probabilities of A in Γ2 and Γ3 are negligibly close.

Game Γ4. Till now, we have finished modifying Execute oracle. Next, let us
consider Send oracle. Before that, we introduce some notations. We say that a
message is adversary-generated if it is not exactly equal to the output of a Send
oracle or a Flow in a response of an Execute oracle; otherwise, we say it is an
oracle-generated message. Consider any query Send(2, i, li, μ|ω|Pj). If there ex-
ists Send(1, j, lj , A|C|Pi) such that it outputs μ|ω|Pj and that A|C|Pi is exactly
the output of Send(0, i, li, null), then we say that Send(2, i, li, μ|ω|Pj) matches
with Send(1, j, lj , A|C|Pi); otherwise, we say that a none-match event happens
to Send(2, i, li, μ|ω|Pj). Now we modify Γ3 to Γ4 with the only difference: upon
any query Send(2, i, li, μ|ω|Pj), if a none-match event happens to it (note Simu-
lator can check this since it controls all the oracles), then deciding accept/reject
only depends on whether ω can be decrypted to Σ = H(μ|A|C ′|Pj |Pi) or not,
where A|C| is in the output of Send(0, i, li, null) and C ′ = Cg−πij . If it accepts
in this case, it announces the success of A and halts. Note in case of a match
event it responses as in Γ3.

Lemma 4. The success probability of A in Γ4 is no less than that in Γ3.

Proof. Note in case of a none-match event, if Send(2, i, li, μ|ω|Pj) in Γ4 rejects,
then it rejects in Γ3 too. Therefore, before a none-match event is accepted in Γ4,
adversary view in Γ4 is identically distributed as that in Γ3. On the other hand,
an accepted none-match event in Γ4 already announces the success of A. Thus,
the conclusion follows. ��

Game Γ5. Now we modify Γ4 to Γ5 such that C in any send(0, i, li, null) is taken
uniformly random from Gq. In order of consistency (in view of A), we need to
take care of other oracle definitions. Send(1, j, lj ,M) remains unchanged. Since
there does not exist x in A|C such that the normal action can be executed,
Send(2, i, li, A|C|Pj) is modified as follows.

i) If there exists a unique lj such that Send(2, i, li, μ|ω|Pj) matches with
Send(1, j, lj ,M), then it accepts (without verification of ω) and computes

2 Here semantic security suffices and CCA2 security will be required later to deal with
Send oracle.

Password Based Key Exchange with Mutual Authentication 275

τ = Fσ(2) using σ defined in Send(1, j, lj ,M). Then, he outputs τ and de-
fines the session key skli

i = Fσ(1). If there are two or more lj , l′j , · · · such
that the above match event holds simultaneously (in the future, we call it
a multi-match event), then it chooses one match randomly and follows the
same procedure.

ii) If a none-match event happens to Send(2, i, li, μ|ω|Pj), then it responses as
in Γ4 (i.e. it decrypts ω, and decides to announce the success of A or to
reject).

The Send(3, j, lj ,M) answers normally. The rest oracles remain unchanged (note
the validity follows from the fact that their actions do not depend on the above
modification).

Lemma 5. The success probabilities of A in Γ4 and Γ5 are negligibly close.

Proof. To relate Γ4 and Γ5, we define a slightly modified Γ4 as Γ ′
4. The only

difference is that in case of a match event in Γ ′
4, Send(2, i, li, μ|ω|Pi) responses

as i) in definition of Γ5. On the one hand, if lj is always unique (whenever a
match event happens), then adversary views in Γ4 and Γ ′

4 are identically dis-
tributed since a unique match event is always accepted in Γ4. On the other hand,
the probability that a multi-match event happens throughout the simulation is
negligible since μ is uniform in Gq. Thus, the success probabilities of A in Γ4
and Γ ′

4 are negligibly close. Notice that executions of Games Γ ′
4 and Γ5 are dif-

ferent only in that C is real or random. Thus, if the conclusion were wrong, a
standard hybrid argument directly would reduce to break DDH assumption, a
contradiction. Details are omitted. ��

Game Γ6.Now we modify Γ5 to Γ6 with the only difference in oracle Send(1, j, lj ,
A|C|Pi). If A|C is consistent: C = Augπij , it announces the success of adversary
A and exits (recall Simulator knows u := logg h; recall normally C �= Augπij

since C is chosen uniformly random in oracle Send(0, ∗, ∗, null)); otherwise, it
answers normally (as in Γ5). The rest oracle definitions remain unchanged as
in Γ5. Note this modification only increases the success probability of A. In-
deed, if A|C is always inconsistent, then the adversary view in Γ6 is identically
distributed as in Γ5; otherwise, A already succeeds in Γ6. Thus, we have

Lemma 6. The success probability of A in Γ6 is no less than that in Γ5.

Game Γ7. Γ7 is modified from Γ6 as follows. In order to answer oracle Send(1, j,
lj , A|C|Pj) in Γ7, Simulator chooses σ uniformly random from Gq instead of
Aλ1C ′λ2 . Other oracle definitions remain unchanged as in Γ6 (here the validity
is due to the fact that the state information λ1, λ2 is not required in these oracle
definitions).

Lemma 7. The success probabilities of A in Γ6 and Γ7 are equal.

Proof. Whenever σ is defined in Γ6 (and Γ7), this implies that A is not an-
nounced to succeed in Send(1, j, lj , A|C|Pi) and thus A|C is inconsistent. Thus,

276 S. Jiang and G. Gong

from Fact 1, the adversary view in Γ6 and Γ7 is identically distributed. The
conclusion follows immediately. ��

Game Γ8. Now we modify Γ7 to Γ8 with the only difference: (r, τ, skli
i) in Send

oracles are chosen uniformly random from {0, 1}3c, which is the range of F .
Details are as follows. Whenever any Send(1, j, lj , A|C|Pi) is called, Simulator
follows the oracle definition in Γ7 except r is random in {0, 1}c. When any
Send(2, i, li, μ|ω|Pj) oracle is called, Simulator responses as in Γ5 − Γ7 with
the following exception: in case of a match event, τ, skli

i are taken uniformly
random in {0, 1}c and furthermore he saves tuple (μ, τ, skli

i , i, j) in his memory.
Whenever any Send(3, j, lj , τ ′) is called, Simulator searches for (μ, ∗, ∗, ∗, j) in
his memory. If a unique tuple is found, then it recovers (τ, skli

i , i) from this tuple
and checks whether τ ′ = τ. If it holds, Send(3, j, lj , τ ′) accepts and concludes
the session key sk

lj
j := skli

i . If more than one such a tuple are found, then it
chooses one randomly and follows the same procedure. Otherwise, if either of the
above two checks (i.e., search and comparison) fails, it rejects. The rest oracle
definitions (Reveal, Test, Execute) remain unchanged (the validity follows
since such definitions are independent of the way Send chooses (r, τ, skli

i)).

Lemma 8. The success probabilities of A in Γ7 and Γ8 are negligibly close.

Proof Sketch. Consider a slightly modified Γ7, denoted as Γ ′
7. Oracle defini-

tions in Game Γ ′
7 are identical to those in Γ8 except that (r, τ, skli

i (= sk
lj
j)) is

computed as Fσ(3), Fσ(2), Fσ(1). We show that the success probabilities of A in
Γ7 and Γ ′

7 are negligibly close. Indeed, for Send(1, ∗, ∗, ∗) and Send(2, ∗, ∗, ∗),
adversary views in Γ ′

7 and Γ7 are identical since their outgoing messages are
computed from the same definitions. In the full paper [11], we show that Send
(3, j, lj , τ ′) in Γ ′

7 can be answered consistently with Γ7 except for a negligible
probability.

Other oracle definitions in Γ ′
7 and Γ7 are identical. Thus, the success probabil-

ities of A in Γ7 and Γ ′
7 are negligibly close. Furthermore, the success probabilities

of A in Γ ′
7 and Γ8 are negligibly close, because their executions are identical only

except that (r, τ, skli
i) in Γ8 are taken uniformly random and thus a standard

hybrid argument with reduction to the pseudorandomness of F can be applied. ��

Game Γ9. Γ8 is modified to Γ9 so that ω in Send(1, j, lj , A|C|Pi) is defined as
Ee[Σ′; r], where r is uniform in {0, 1}c and Σ′ = H(μ|A|C∗|Pj |Pi) for C∗ ← Gq.
The rest oracles are unchanged. We have the following result.

Lemma 9. The success probabilities of A in Γ8 and Γ9 are negligibly close.

Proof Sketch. We define Γ
(l)
8 to be the variant of Γ8 such that the first l

Send(1, ∗, ∗, ∗) queries are answered according to Γ9 and the rest queries are
answered according to Γ8. It follows Γ (0)

8 = Γ8 and Γ
(η9)
8 = Γ9, where η9 is the

upperbound of number of queries Send(1, ∗, ∗, ∗). If the success gap in Γ8 and Γ9
were non-negligible, then there would exist z ∈ {1, · · · , η9} such that the success

Password Based Key Exchange with Mutual Authentication 277

gap between Γ (z−1)
8 and Γ (z)

8 would be non-negligible. We build a CCA2 breaker
D9 for Ee as follows. He takes l randomly from {1, · · · , η9} and initializes public
parameters as done by Simulator except e provided by his challenger. Then, D9

simulates Γ (l)
8 except for the lth Send(1, ∗, ∗, ∗) query, say Send(1, j, lj , A|C|Pi).

In this case, he computes Σ and gives (Σ,μ|A|Pj |Gq) to his encryption oracle,
requesting that a random message has a pattern Σ′ = H(μ|A|C∗|Pj |Pi) for
C∗ ← Gq. Then, he will receive ω∗, that is an encryption of either Σ or a random
message Σ′ of that pattern. Send(1, j, lj , A|C|Pi) outputs μ|ω∗|Pj . Different
from Simulator, D9 does not have a private key d for E. In the full paper, we
show that any Send(2, s, ls, μ′|ω′|Pt) can be consistently answered except for a
negligible error probability.

The rest oracles are answered normally as in Γ8 (or Γ9) since no decryption
is required any more. Thus, in case ω∗ is a ciphertext of Σ, then adversary view
in the simulation is negligibly close to that in Γ

(l−1)
8 ; otherwise it is negligibly

close to Γ
(l)
8 . Thus, a correct guess for z, which is non-negligible, immediately

implies non-negligible advantage of D9, a contradiction. ��

Bounding Success Probability in Γ9. Now let us consider protocol Γ9. The
adversary succeeds only possibly (1) at Send(1, j, lj , A|C|Pi) where he inputs a
consistent ElGamal ciphertext A|C, or (2) at oracle Send(2, i, li, μ|ω|Pj) where
a none-match event occurs, but the oracle decrypts ω to Σ = H(μ|A|C ′|Pj |Pi),
or (3) at Send(3, j, lj , τ), where the oracle accepts but τ is not the output by a
Send(2, i, li, ∗) that is matched to Send(1, j, lj , ∗), or (4) at Test query. Here
we stress that mutual authentication in Definition 1 is fully covered by (2) and
(3). For case (3), since τ will be compared with the value in the memory, suc-
cess here happens only when there are two Send(2, ∗, ∗, ∗) that match with
Send(1, j, lj , ∗). This implies that ∃ two Send(0, ∗, ∗, null) generate the same
output. This happens with only negligible probability since A is uniform in Gq.
We thus only consider cases (1), (2), and (4). We say the adversary attempt to
succeed in cases (1) (2) is an impersonation trial, denoted by ITri. In case (1),
no input can be successful in two protocol executions with different password
candidates (recall that D = {1, · · · , N} with N < q). In case (2), no input can
be accepted with non-negligible probability in two password candidates (other-
wise, we can break H in two steps: Step 1. Simulate the protocol execution and
record all the events in case (2); Step 2. Check whether the collision in case (2)
happens by trying to find two passwords that accept some recorded event simul-
taneously)3. Thus, we assume each input at case (1) or (2) can be accepted by at
most one password candidate. Notice that just before ITri happens, the adver-
sary view in Γ9 is completely independent of password. Thus, immediately after
the first ITri is rejected, the adversary view is distributed identically among a
password dictionary of size at least |D|− 1. The reason is: it has the same reject

3 Here in order for our attack to be polynomial time, we use the fact that |D| is
polynomially bounded. If |D| is super polynomial, although it is not the setting for
password KE protocol, a similar conclusion holds, see the full paper [11].

278 S. Jiang and G. Gong

event for at least |D| − 1 password candidates. Furthermore, using a simple in-
duction, we have the probability that the first l ITri events are rejected but it
succeeds in l+ 1th ITri event is 1

|D|−l

∏l
i=1(1− 1

|D|−(i−1)) = 1
|D| . Thus, suppose

the number of Send queries is upperbounded by Qsend. Then the success in ITri
happens with probability at most Qsend

|D| except for a negligible gap. Now we con-
sider case (4), this success event happens only if the success event in ITri does
not happen. In this case, since the session key is chosen uniformly random inde-
pendent of anything else. Thus, the success probability is exactly 1

2 except that
the session key was seen at a previous moment, which is only possible by Reveal
query. Note the test session is not allowed to issue Reveal query. We show the
revealed session must be its partnered session, which is not allowed by definition.
To this end, let Π li

i be the test session with pidli
i = Pj . Since Send(2, i, li, ∗)

accepts with skli
i derived, there must exist a matched Send(1, j, lj , ∗) and a tu-

ple (μ, τ, skli
i , i, j) is stored in the memory. And later only Send(3, j, l′j , τ

′) with

μ in the output of Send(1, j, l′j ,M) will access this tuple and define sk
l′j
j = skli

i .
Note in this case, lj = l′j except for a negligible probability since μ is uniform in

Gq. The exchanged messages seen by Π li
i and Π

lj
j (unique except for negligible

probability) are identical by definition of match, and they see the same τ (as in
the tuple). Thus, pidli

i = Pj , pidlj
j = Pi and sidli

i = sidlj
j . That is, they are

partnered sessions.
As a summary, the success probability of adversary in Test session is exactly

1
2 . Let α be the probability of ITri event. Then the total success probability of
adversary is α+ (1 − α) 1

2 ≤ 1
2 + Qsend

2|D| .

Proof of Theorem 1. Summarizing the results in Lemmas 1- 9 and success
probability of A in Γ9, we have Adv(A) < Qsend

|D| + negl(n). ♠

Acknowledgement. The authors would like to thank anonymous referees for
valuable comments. S. Jiang would like to thank Mihir Bellare for kind response
upon query on mutual authentication, and he especially feels grateful to David
Pointcheval for an instructive discussion on the definition of mutual authentica-
tion.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk, A Modular Approach to the
Design and Analysis of Authentication and Key Exchange Protocols, STOC 98:
419-428.

2. Mihir Bellare, David Pointcheval, Phillip Rogaway: Authenticated Key Exchange
Secure against Dictionary Attacks. EUROCRYPT 2000: 139-155.

3. Mihir Bellare, Phillip Rogaway: Entity Authentication and Key Distribution.
CRYPTO 1993: 232-249.

4. Bellovin, S.M.; Merritt, M., Encrypted key exchange: password-based protocols
secure against dictionary attacks, IEEE S&P’92, 72-84.

Password Based Key Exchange with Mutual Authentication 279

5. Steven M. Bellovin, Michael Merritt: Augmented Encrypted Key Exchange: A
Password-Based Protocol Secure against Dictionary Attacks and Password File
Compromise. ACM CCS’93: 244-250.

6. Simon Blake-Wilson, Don Johnson, Alfred Menezes: Key Agreement Protocols and
Their Security Analysis. IMA Int. Conf. 1997: 30-45.

7. Victor Boyko, Philip D. MacKenzie, Sarvar Patel: Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. EUROCRYPT 2000: 156-171.

8. Ran Canetti and Hugo Krawczyk, Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels, Eurocrypt 2001: 453-474.

9. Ran Canetti, Oded Goldreich, Shai Halevi: The Random Oracle Methodology,
Revisited (Preliminary Version). STOC 1998: 209-218.

10. Ronald Cramer, Victor Shoup: A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. CRYPTO 1998: 13-25.

11. Shaoquan Jiang and Guang Gong, Password Based Key Exchange with Mutual
Authentication, Available at http://calliope.uwaterloo.ca/∼jiangshq/

12. W. Diffie, P.C. van Oorschot, and M.J. Wiener, Authentication and Authenticated
Key Exchanges, Designs, Codes and Cryptography, vol. 2, no. 2, 1992, pp. 107-125.

13. Rosario Gennaro, Yehuda Lindell: A Framework for Password-Based Authenticated
Key Exchange. EUROCRYPT 2003: 524-543.

14. Oded Goldreich, Yehuda Lindell: Session-Key Generation Using Human Passwords
Only. CRYPTO 2001: 408-432.

15. Shai Halevi, Hugo Krawczyk: Public-Key Cryptography and Password Protocols.
ACM CCS’98: 122-131.

16. David P. Jablon, Extended Password Key Exchange Protocols Immune to Dictio-
nary Attacks. WETICE 1997: 248-255.

17. Jonathan Katz, Rafail Ostrovsky, Moti Yung: Efficient Password-Authenticated
Key Exchange Using Human-Memorable Passwords. EUROCRYPT 2001: 475-494.

18. Stefan Lucks, Open Key Exchange: How to Defeat Dictionary Attacks Without
Encrypting Public Keys. Security Protocols Workshop 1997: 79-90.

19. Alfred Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography. CRC Press 1996.

Product Construction of Key Distribution
Schemes for Sensor Networks

Reizhong Wei and Jiang Wu

Department of Computer Science, Lakehead University,
Thunder Bay, Ontario P7B 5E1, Canada

wei@ccc.cs.lakeheadu.ca
jwu1@lakeheadu.ca

Abstract. Wireless sensor networks are composed of a large number
of randomly deployed sensor nodes with limited computing ability and
memory space. These characteristics give rise to much challenge to key
agreement. General key agreement schemes like KDC, PKI and the Diffie-
Hellman key exchange schemes are not applicable to sensor networks.
Recently several key distribution schemes have been proposed specifically
for sensor networks, aimed to provide high connectivity and resilience
while keeping low memory usage in the sensor nodes. In this paper, we
formularize and analyze these methods, and deduce general conditions for
a scheme to be optimal in terms of connectivity, resilience and memory
usage. The result provides guideline to design optimal schemes. Based on
the result, we proposed 2 schemes that can achieve optimal connectivity
and resilience with the restriction of memory space.

1 Introduction

A distributed sensor network is composed of a large number of sensor nodes that
are densely deployed. The position of sensor nodes usually are not predetermined.
This allows random deployment in inaccessible terrains or disaster relief oper-
ations. This means that sensor network protocols and algorithms must possess
self-organizing capabilities. In general, a sensor node is battery powered and
equipped with integrated sensors, data processing capabilities, and short-range
radio communications. Examples of sensor network protocols include SmartDust
[9] and WINS [1]. There is a wide range of applications for sensor networks. Some
examples of the application areas are health, military, and smart environment
(see, e.g., [2]).

To secure communications for a sensor network is extremely important, as
the network is prone to different types of malicious attacks when it is deployed in
a hostile environment. An adversary can compromise sensor nodes much easier
than to compromise computers. However, since the limitation in both the mem-
ory resources and computing capacity of a sensor node, it is impractical to use
public-key cryptosystems to secure sensor networks. Using a traditional Internet
style key exchange and key distribution protocols based on trusted third parties
are also impractical.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 280–293, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Product Construction of Key Distribution Schemes for Sensor Networks 281

To solve the key management problem for sensor networks, several researchers
considered special key pre-distribution schemes. In [7], Eschnauer and Gligor
used random methods to distribute keys. In their scheme, each sensor node re-
ceived a random subset of keys from a large key pool before deployment. Any
two nodes able to find one common key within their respective subsets can use
that key as their shared secret to initiate communication. Some theory of random
graphs was used to analyze their scheme. Based on this scheme, Chan, Perrig and
Song in [4] proposed a q-composite random key pre-distribution scheme. In their
scheme, q common key instead of just one common key are used to establish se-
cure communications between two nodes, which increases the security (resilience)
of the network. Recently, Du, Deng, Han and Varshney in [6] and Liu and Ning
in [10] used a new method to construct key distribution schemes, which we will
call it product construction. In their method, they combined traditional pairwise
key distribution scheme with other schemes to construct new key distribution
schemes. Their methods improved network resilience comparing to previous key
pre-distribution schemes. The purpose of this paper is to formularize and ana-
lyze their methods in order to optimize this method. Upon these analysis, some
combinatorial methods are then used to improve their constructions.

When we design a key distribution scheme for a distributed sensor network,
the following key characteristics of the design must be considered.

– Small key size: Since the limited resource of a sensor node, key storage should
be small. For example, if there are b nodes in the network, then we cannot
expect that a node can store b − 1 keys to share a secrete key with each of
the other nodes.

– Resilience of the network: Even quite a large amount of sensor nodes are com-
promised by an adversary, the communications among other nodes should
be still secure. In other words, a coalition of certain number of sensor nodes
cannot compute other secrete keys used by other sensor nodes.

– Local connectivity: A sensor node should be able to securely communicate
with its local neighbors. Here a local neighbor means a sensor node physically
located within transmission range.

– Global connectivity: Any two nodes of the sensor network are connected.
So for any two nodes u and v in the network, there are notes c1, c2 · · · ct
such that u and c1 share a secret key, ci and ci+1 share a secret key for
i = 1, · · · , t− 1 and ct and v share a secret key.

We will only consider schemes satisfying all these properties. The main con-
tributions of this paper are as follows. First we use a uniformed method to
generalize the methods used in [6, 10]. We define a product of a key distribution
scheme and a set system and use that definition to construct new key distribution
schemes. Then we use combinatorial methods to analyze the product construc-
tion and give some necessary conditions to optimize the product construction.
Finally, we propose new constructions which meet all of these necessary condi-
tions.

The rest of this paper is organized as follows. Section 2 defines production
construction. In Section 3, set system used in the production construction is

282 R. Wei and J. Wu

analyzed using combinatorial methods. Section 4 describes our proposed schemes
which is then compared with the previous schemes. Section 5 concludes the
paper.

2 Product Construction

In this section, we give a generalized description of the schemes in [6] and [10],
which used a similar method to construct key pre-distribution schemes for sensor
networks. We start with a definition of a pairwise key pre-distribution scheme.

Definition 1. A pairwise key pre-distribution scheme D is a triple (U ,F ,K),
where U is a set of nodes, F is a set of algorithms and K is a set of keys, which
satisfies the following conditions:

1. For each u ∈ U an fu ∈ F is assigned to u;
2. For any u, v ∈ U there is a unique key Ku,v ∈ K shared between u and v,

which can be obtained from fu and from fv;
3. For any other w ∈ U , no information about Ku,v can be obtained by fw.

The above definition shows that we are considering unconditional secure
schemes (not for computational secure ones).

If a pairwise key pre-distribution scheme has the property that even λ nodes
are compromised the system is still secure, then we say that the scheme is λ-
secure, or the scheme is λ resilience. More formally, in a λ-secure pairwise key
pre-distribution scheme, for any w1, w2, · · · , wλ ∈ U ,Ku,v cannot be computed
by fw1 , fw2 , · · · , fwλ

where u, v are different from w1, w2 · · · , wλ.
Note that it is not necessary to use a pairwise key pre-distribution scheme to

a sensor network, because even two nodes shared a common key, they may not
be able to communicate each other when their distance is beyond transmission
range. For a sensor network, local communications are more important. So we
will consider both the local connectivity and the global connectivity of a key
distribution scheme for our purpose.

An example of λ-secure key pre-distribution scheme is the Blom’s scheme [3]
in which each node stores λ+ 1 keys.

The Blom’s scheme can be described as follows. Suppose there are b nodes
u1, u2, · · · , ub in a network. To distribute keys, an authorized center (AC) chooses
a random bivariate symmetric polynomial in a finite field GF (q):

f(x, y) =
λ∑

i=0

λ∑
j=0

ai,jx
iyj ,

where ai,j = aj,i. Then the CA gives Pi(x) = f(x, i) to ui as its personal key.
The common key between ui and uj is Pi(j) = Pj(i) = f(i, j). It is proved using
a linear algebra method that a Blom’s scheme is λ-secure.

To formularize the methods used in [6, 10], we need some concepts from com-
binatorics which we introduce below.

Product Construction of Key Distribution Schemes for Sensor Networks 283

A set system S is a pair (X,B) where X is a set of points and B is a collection
of k-subsets (called blocks) of X. For our purpose, same blocks are allowed in a
set system.

Suppose there is a map from the set of nodes U to the set of blocks B of a set
system so that for a ui ∈ U there is a unique Bi ∈ B corresponding to it. Then
we can define a product of D and S as follows.

Definition 2. Suppose D = (U ,F ,K) is a pairwise key pre-distribution scheme
and S = (X,B) is a set system, where |B| ≥ |U|. Suppose there is also a map
from U to B such that a ui ∈ U is mapped to a Bi ∈ B. A product of D and S,
D×S, is defined as a triple (U ,F ×B,K×X) such that the algorithm assigned
to ui is fui ×Bi.

The method used in [6] and [10] for key establishment of sensor networks
actually is the above product method. Both of the papers used Blom’s scheme
as D. [10] proposed two set systems. One is random subset assignment. In this
assignment, each node gains a random τ -subset of X, so B contains u random
τ -subsets (by this setting, repeated blocks are allowed). The other proposed set
system in [10] is grid-based system. In this system, X = M1 ∪M2 ∪ · · · ∪Mt,
where M1,M2, · · ·Mt are disjoint m-sets for m ≥ u1/t. The set B contains all the
blocks from {(i1, i2, · · · , it) : i1 ∈ M1, · · · , it ∈ Mt}. [6] used the random subset
assignment.

As an example, in the following we give a brief description of the random
subset assignment used in both [6] and [10].

To distribute keys, the AC chooses a set X where |X| = v. Then for each
element i ∈ X, the AC generates a random symmetric polynomial fi(x, y) as in
a Blom’s scheme. So v polynomials are generated. For a node uj ∈ U , the AC
chooses a random k-subset of X. Denote the subset as B = {i1, i2, · · · , ik}. The
keys given to uj are fis(x, j), for 1 ≤ s ≤ k. The choice of v and k depends on
the connectivity of the network. To form a secret key between ui and uj , they
will try to find a common element in the subset assigned to them. If they found
the element, say i0, then the secret key is fi0(i, j).

Sometimes we also can view the product construction as using different copies
of a pairwise key distribution scheme D and denote it as D ×X. So (D, i) will
be used to denote the ith scheme. It’s also called a key space in this paper.

The main purpose of using a set system is to add resilience of the key dis-
tribution scheme. However, [6] and [10] only discussed the specific set systems
used in their schemes. In next section, we will discuss how a set system effects
the resilience and connectivity of the product scheme in general.

3 Analysis of the Set System

For a better key pre-distribution system, we should consider several things: the
resilience of the system, the storage space requested for a node, the connectivity
of the network, etc. Basically, the storage space requested for a node depends
on the size of a block in the set system. In this section, we discuss how the set

284 R. Wei and J. Wu

system used in the product construction effects the resilience and connectivity
of the network if the size of block is fixed.

3.1 Resilience

Suppose the resilience of the original key pre-distribution scheme D is λ. When
a set system S is used in the product construction, we need to consider the
probability that one of the schemes in the product system D× S is broken. For
example we consider the probability that (D, 1) is broken (We denote this event
as D1). Let p1

j denote the probability that exact j blocks out of s blocks contain
1. Let Cs denote the event that s nodes were compromised. Then we have

Pr(D1|Cs) =
s∑

j=λ+1

p1
j . (1)

Therefore we want to keep p1
j as small as possible. On the other hand, since

Di and Dj are independent and we want the probability that any space is broken
as small as possible, we have the following result about the structure of D, which
gives some necessary condition for D.

Theorem 1. In a product scheme D × S, suppose D, the size of X, the size of
B and the size of a block are fixed. Then each element of X should appear in
equal number of blocks to keep the optimal resilience of the scheme.

Proof. Suppose all the parameters of the set system mentioned in the theorem
are fixed. Let b = |B|, k be the size of a block. Suppose X = {1, 2, · · · , v} and
i ∈ X appears in ri blocks. Then the probability that exact j out of s blocks
contain i is

pi
j =

(
ri

j

)(
b−ri

s−j

)(
b
s

) ,

which depends on the value of ri. Since
∑v

i=1 ri = kb is fixed, if there are some i
such that the value of

∑s
j=λ+1 p

i
j is small, then there must be some t such that∑s

j=λ+1 p
t
j is larger. That means (D, t) is easier to break. ��

In intuition, if an element in X appears in more blocks, then the correspond-
ing key space is weaker. So we want the elements distributed evenly.

It is easy to check that the grid-based system satisfies the condition of The-
orem 1 (However, we will see later that its local connectivity is not good). The-
oretically, the random subset assignment also satisfies the condition of Theorem
1 in a sense of probability. However, in practice the random subset assignment
may violate that condition. For example the worst case of the random subset as-
signment will not fit the condition of Theorem 1. So we want some deterministic
method to find a set system that has even distributions of elements.

Suppose each element appears in r blocks. Then we have

pi
j =

(
r
j

)(
b−r
s−j

)(
b
s

) . (2)

Therefore the value of Pr(Di|Cs) is determined by the values of r and b.

Product Construction of Key Distribution Schemes for Sensor Networks 285

To obtain a set system satisfying the condition of Theorem 1, we need a
definition from combinatorial design theory. For general information about com-
binatorial design theory used in this paper, see [11].

Definition 3. A 1-design Sr(1, k, v) is a set system (X,B) such that each el-
ement x ∈ X is contained in exactly r blocks, where v = |X|, k is the block
size.

The following construction is from [11–Theorem 9.10].

Theorem 2. There exists an Sr(1, k, v) with b blocks if b = vr/k is an integer.

Proof. Let u = gcd(k, r). Then r = ur′ and k = uk′ where gcd(r′, k′) = 1. Since
b = vr/k = vr′/k′ and gcd(r′, k′) = 1, it must be the case that v ≡ 0 (mod k′).
Let v = sk′ where s is a positive integer. Then b = sr′.

Let Y be a set of cardinality k′, and define X = Y × Zs. Let A1, A2, · · · , Ar′

be r′ arbitrary u-subsets of Zs. For 1 ≤ i ≤ r′, define Bi = Y × Ai. Then
each Bi is a k-subset of X. Now for each Bi, we develop s blocks Bj

i as follows.
Suppose Bi = Y × {s1, s2, · · · , sr′}. Then for each j, 1 ≤ j ≤ s − 1, let Bj

i =
Y × {s′

1, s
′
2, · · · , s′

r′}, where s′
t = st + j (mod s), 1 ≤ t ≤ r′. The result is an

Sr(1, k, v). ��
When r =

(
v
k

)
, we have a easy way to construct a 1-design.

Theorem 3. There exists an Sr(1, k, v) for r =
(

v−1
k−1

)
and b =

(
v
k

)
.

Proof. Let the set of blocks contains all the k-subsets of a v-set. ��
Suppose we fix |X| = v, and the size of block is k. Then we want each element

belongs to kb
v blocks so that the condition of Theorem 1 is satisfied. In practice,

we let b be multiples of v and r = kb
v .

3.2 Connectivity

To consider the connectivity of a sensor network, we consider the graph G(U , E),
where two nodes are connected by an edge if and only if these two nodes share
at least one common secret key. Following from the method used in [7], we view
a sensor network as a random graph. Since the connectivity of a random graph
is a monotone property (when the number of nodes are fixed, the probability of
connectivity is increasing when the number of edges is increasing), according to
a theory of [8], the expected node degree d can be computed as follows:

d =
b− 1
b

(ln b− ln(− lnPc)),

where b = |U| and Pc is the probability that the random graph is connected.
Therefore the connectivity of the network depends on the degree d when the
number of nodes are fixed.

286 R. Wei and J. Wu

In the product construction, two nodes share a common secret key if and only
if their blocks have at least one common element. Suppose in the set system, each
block intersects t other blocks. For a given density of sensor network deployment,
if the expected value of number of neighbors is n, then d = nt

b . So we have the
following result.

Lemma 1. The connectivity of the product scheme depends on the number of
blocks which share at least one element with a block in the set system.

From Lemma 1, we know that the connectivity of the scheme from grid-based
system in [10] is not good. In that system, each block intersects tv1/t − t other
blocks. However, we will see later that using other set system will improve the
connectivity of the network a lot.

Suppose X = {1, 2, · · · , v} and B = {B1, B2, · · · , Bb}. An incidence matrix of
the set system (X,B) is a b× v 0-1 matrix A = (ai,j), where

ai,j =
{

1 if j ∈ Bi,
0 otherwise.

Let C = AAT = (ci,j). Then C is a symmetric b × b matrix. Suppose each
element of X appears in r blocks. Then we have ci,i = k, 0 ≤ ci,j ≤ k and

b∑
i=1,i �=j

ci,j = k(r − 1). (3)

The number of blocks which intersect block Bi equals to the number of
nonzero elements in the ith row of C. So if we want to keep the local con-
nectivity as large as possible, we need to let the number of nonzero elements in
C as large as possible. In other words, we want to keep the individual ci,j as
small as possible. In intuition, we don’t want repeat blocks to avoid the case
that ci,j = k for some i �= j.

Remark 1. From (2) and (3) we can see that there is a trade-off between the
resilience and connectivity of the network. For the connectivity, we want r to
be large. However, when r is larger the probability that a scheme is broken is
increasing.

The following result indicates that the construction of Theorem 3 is optimal.

Theorem 4. When b =
(

v
k

)
, r =

(
v−1
k−1

)
and v > 2k, the set system constructed

in Theorem 3 has the largest number of intersections for a block.

Proof. It is easy to know that a block intersects

I =
(
v

k

)
−

(
v − k

k

)
− 1

other blocks in the set system of Theorem 3. We are going to prove that if there
are repeated blocks in an Sr(1, v, k), then a block intersects less blocks.

Product Construction of Key Distribution Schemes for Sensor Networks 287

Suppose there are two identical blocks. Then each element in that block
appears in r−2 other blocks. So that block can intersect at most I ′ = k(r−2)+1
other blocks. Since

(
v
k

)
= v

k

(
v−1
k−1

)
and r =

(
v−1
k−1

)
we have

I =
v

k

(
v − 1
k − 1

)
−

(
v − k

k

)
− 1,

and

I − I ′ =
v − k

k

(
v − 1
k − 1

)
−

(
v − k

k

)
+ 2k − 2

=
(v − 1)(v − 2) · · · (v − k)

(v − k)(v − k − 1) · · · (v − 2k + 1)

(
v − k

k

)
−

(
v − k

k

)
+ 2k − 2

=
(

(v − 1)(v − 2) · · · (v − k)
(v − k)(v − k − 1) · · · (v − 2k + 1)

− 1
)(

v − k

k

)
+ 2k − 2

> 0.

The conclusion follows. ��
In order to use construction of Theorem 2, we need to consider how to choose

the sets A1, A2, · · · , Ar′ . Suppose S ⊆ Zs, where Zs is the additive group of order
s. Define the differences of S as:

+S = {x− x′ (mod s) : x, x′ ∈ S, x �= x′}.
If an element of Zs \ {0} appears t times in ∪i + Si for some subsets Si, then
we say that the element has t − 1 repeatings. The sum of the repeatings of all
elements is called the repeatings of ∪i + Si.

Theorem 5. The 1-design constructed from Theorem 2 has the largest local
connectivity, if the collection

∪r′
i=1 + (Ai)

contains least repeatings.

Proof. If an element g ∈ Zs \ {0} has t − 1 repeatings in ∪r′
i=1 + (Ai), then

pairs (xi, xj) appear in t blocks, where xi − xj = g. Since each element appears
in r blocks, we want to reduce the number of blocks containing a same pair of
elements to maximize the number of blocks which intersect a fixed block. ��
Definition 4. Let G be an additive abelian group of order v. A set system (G,B)
is called a (v, k, λ) difference family if every nonzero element of G occurs λ times
in

∪B∈B +B.

For example, a (13, 3, 1) difference family contains blocks {0, 1, 4} and {0, 2, 7}.
There are many results about the construction of difference families in litera-

ture (see i.e., [5]). From Theorem 5 we know that we can use blocks in a (v, k, λ)
difference family with smallest λ to construct 1-design and then obtain a good
product scheme.

288 R. Wei and J. Wu

4 Proposed Schemes

Several recently proposed key distribution schemes used random distribution
method [4, 6, 7, 10]. There are reasons that deterministic method should be de-
veloped as well. For example, the theoretical analysis shows scheme in [6] can
provides good connectivity, resilience and memory consuming attributes to sen-
sor networks. But the random distribution of the keys leaves open issues in
practical implementation. We can view this scheme as a D × S scheme. Here
S is a set system (X,B), where X = {A1, A2, · · · , Av}, B = {B1, B2, · · · , Bb},
and each Bi contains k elements randomly selected from X. As we analyzed in
Section 3, in a sense of probability this scheme meets Theorem 1 and 5 to achieve
optimal connectivity and resilience. But in real implementation, it may produce
worse result. The result also depends on the random number generating function
used to generate the S set system. Different random number generators may re-
sult in different S systems. It is necessary to design a deterministic distribution
scheme that always meets Theorem 1 and 5 for the purpose of real applications.

In this section we consider the construction of set systems used in the key
distribution scheme. Given the scale and connectivity of the sensor networks, the
memory space of each sensor node, we need to determine which set system to be
used, what are the parameters of the selected set system, and how to construct
the set system.

The predefined requirements and restriction on the sensor network include:

– b, the number of nodes in the sensor network,
– M , the memory space of a sensor node to store the keys,
– Pc, the probability that the random graph of the sensor nodes are connected,

and
– n, the estimated number of neighbors of a sensor node after deployment.

The constructed set systems should meet the above requirements and restric-
tions and at the same time achieve optimal resilience. Analysis in Section 3 shows
that set systems that meet Theorem 1 and 5 can obtain optimal resilience and
connectivity. In the next parts we give construction using 2 such set systems.

4.1 Construction with (v, k, 1) Difference Families

From Definition 4 we know that (v, k, 1) Difference Families meet conditions of
Theorem 1 and 5. In this subsection, we give the construction using (v, k, 1)
Difference Families, and analyze its performance.

First we compute Pconnect, which is the probability that a pair of nodes share
at least one common key space:

Pconnect =
b− 1
nb

(ln b− ln(− lnPc)). (4)

Next we choose a proper (v, k, 1) difference family that can provide the desired
connectivity. We compute Pvk1, the probability that a pair of blocks from the
(v, k, 1) shares an element:

Product Construction of Key Distribution Schemes for Sensor Networks 289

Pvk1 =
k2(r′ − 1) + k(k − 1)

vr′ − 1
,

where r′ is the number of basic blocks of the chosen family. Also we can compute
the number of blocks of the (v, k, 1):

r = kr′

The following table chooses a sample collection of (v, k, 1) difference families
from [5] and computes their parameters:

v k r’ r Pvk1

25 3 4 100 0.33
27 3 5 135 0.31
31 3 5 155 0.27
33 3 6 198 0.25
37 3 6 222 0.23
39 3 7 273 0.22
43 3 7 301 0.20
40 4 4 160 0.38
49 4 6 196 0.31

Usually there are more than one families whose connectivity are better than and
close to Pconnect. We choose the one with least blocks that is larger than b, and
assign each block to a sensor node.

The third step is to construct v key spaces. We computer the security thresh-
old λ of the key space:

λ =
⌊
M

k

⌋
− 1

The construction of the key spaces is the same as that in [6] which is equiv-
alent to a Blom’s scheme. We briefly introduce an example as follows.

1. Select a primitive element s from a finite field GF (q), where q is the least
prime larger than the key size, then generate the following (λ+1)×b matrix
G:

G =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 1 1
s s2 s3 · · · sb

s2 (s2)2 (s3)2 · · · (sb)2
...

...
... · · · ...

sλ (s2)λ (s3)λ · · · (sb)λ

⎤⎥⎥⎥⎥⎥⎦
2. Randomly generate v symmetric matrix D1, . . . , Dv of size (λ+1)× (λ+1),

then compute the matrixes Ai = (Di ·G)T , for 1 ≤ i ≤ v. Here we get v key
spaces A1, · · · , Av. Every key space is λ-secure.

290 R. Wei and J. Wu

Finally, the key spaces are assigned to the sensor nodes according to the
blocks. For example, if a block {2,3,4} was assigned to node 5, the 5th rows of
matrixes A2, A3 and A4 are assigned to node 5.

We give an illustration of the resilience of the scheme using (v, k, 1) (we
call it (v, k, 1) scheme). We use the Pbreak = Pr(D1|Cs) defined in (1) as an
indication of resilience, and plot it as a function of number of compromised node
in Figure 1. In the figure, M is set to 200, 3 schemes with different parameters
and connectivity are shown. We see that to achieve a probability of 0.5 to break 1

Fig. 1. Probability that one key space is broken

Fig. 2. Difference between Pbreak of (v, k, 1) scheme and random scheme

Product Construction of Key Distribution Schemes for Sensor Networks 291

key space, more than 200 nodes are to be compromised. The lower the Pconnect of
the (v, k, 1), the more compromised nodes are needed. This is the same attribute
that the scheme in [6] (we call it random scheme in the following parts) provides.

Now we compare the (v, k, 1) scheme with the random scheme in Figure 2.
Figure 2 shows the difference between Pbreak of pairs of (v, k, 1) and random
schemes with same M and similar Pconnect. The figure shows the difference is
very small, and generally, the 2 schemes risk similar compromise possibility.

4.2 Construction Using all k-Subsets

One potential drawback of the (v, k, 1) scheme is that its number of blocks is
limited. So when the network size is large, we consider using all k-subsets which
provides large block size easily. As proved in Theorem 3 and 4, the set system
of all k-subsets meets Theorem 1 and 5, and can provide optimal connectivity
and resilience. We give construction steps using that set system as follows.

First, we compute Pconnect using (4), then we need to find the v and k so
that the set system meets the requirement on the scale and connectivity. The
next 2 conditions need to be met:

Pconnect ≥ 1 −
(
n−k

k

)(
n
k

)− 1

b ≤
(
v

k

)
The above functions produce a list of tables for v, k, Pconnect and b. From the
tables, given Pconnect and b, we can get corresponding v and k. Following is a
sample table for Pconnect = 0.3:

v k b
20 3 1140
21 3 1330
22 3 1540
23 3 1771

With v and k, it is easy to construct the set system of all k-subsets.
For the all k-subsets scheme, the resilience is

Pbreak =
s∑

j=λ+1

(
d
j

)(
x−d
s−j

)(
x
s

)
where x =

(
v
k

)
, d =

(
v−1
k−1

)
and λ = �M

k � − 1.
The Pconnect of all k-subsets scheme is

Pconnect = 1 −
(
v−k

k

)(
v
k

)− 1
,

which is very close to that of random scheme.

292 R. Wei and J. Wu

We compare the all k-subsets scheme with random scheme with the same v
and k in Figure 3. M is set to 200 here. The figure shows the difference between
Pbreak of all k-subsets and random sets is very small.

Fig. 3. Difference between Pbreak of all k-subsets and random scheme

5 Conclusion

In this paper, we introduced a generalized D×S key pre-distribution scheme for
sensor networks. We deduced conditions of the set system used in the scheme that
can provide optimal connectivity and resilience to the sensor network. Based on
the result we analyzed some existing key pre-distribution schemes and evaluated
their strength and weakness. Then we proposed 2 specific schemes and their
constructions that can achieve optimal connectivity and resilience.

This paper is focused on optimal connectivity and resilience of the key dis-
tribution scheme. Another important property of the schemes is scalability. In
real implementation, the scale of the sensor networks often impacts connectivity
and resilience. In the future research, we are going to focus on scalability and
its relationship with connectivity and resilience, and look for optimal schemes.

Acknowledgements

The authors wish to thank D.R. Stinson for informing us the construction in
Theorem 2. R. Wei’s research is supported by NSERC grant 239135-01.

References

1. Wireless Integrated Network Sensors, University of California,
http://www.janet.ucla.edu/WINS.

Product Construction of Key Distribution Schemes for Sensor Networks 293

2. I.F. Akyildiz, W. Su, Y. Sankarasugramaniam and E. Cayirci, A survey on sensor
networks, IEEE Communications Magzine, 40(2002), 102-114.

3. R. Blom, An optimal class of symmetric key generation systems, Advances in
Cryptology: EUROCRYP 84 (T. Beth, N. Cot and I. Ingemarsson, eds.) LNCS
209 (1985), 335-338.

4. H. Chan, A. Perrig and D. Song, Random key predistribution schemes for sensor
networks, IEEE Sumposium on Research in Security and Privacy, (2003), 197-213.

5. C. J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs,
CRC Press, 1996.

6. W. Du, J. Deng, Y. S. Han and P. K. Varshney, A pairwise key pre-distribution
scheme for wireless sensor networks, Proc. of the 10th ACM conf. on Computer
and communications Security, (2003), 42-51.

7. L. Eschenauer and V. D. Gligor, A key-management scheme for distributed sensor
networks, Proc. of the 9th ACM conf. on Computer and communications Security,
(2002), 41-47.

8. Erdös and Rényi, On random graphs I. Publ.Math. Debrecen, 6(1959), 290-297.
9. J.M. Kahn, R.H. Katz and K.S.J. Pister, Next century challenges: Mobile net-

working for smart dust, In: Proceedings of the 5th Annual ACM/IEEE Internation
Conference on Mobile Computing and Networking, (1999), 483-492.

10. D. Liu and P. Ning, Establishing pairwise keys in distributed sensor networks,
Proc. of the 10th ACM conf. on Computer and communications Security, (2003),
52-61.

11. D.R. Stinson, Combinatorial Designs: Constructions and Analysis, Springer, New
York, 2003.

Deterministic Key Predistribution Schemes
for Distributed Sensor Networks

Jooyoung Lee1 and Douglas R. Stinson2

1 Department of Combinatorics and Optimization
2 School of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
{j3lee, dstinson}@uwaterloo.ca

Abstract. It is an important issue to establish pairwise keys in dis-
tributed sensor networks (DSNs). In this paper, we present two key
predistribution schemes (KPSs) for DSNs, ID-based one-way function
scheme (IOS) and deterministic multiple space Blom’s scheme (DMBS).
Our schemes are deterministic, while most existing schemes are based on
randomized approach. We show that the performance of our schemes is
better than other existing schemes in terms of resiliency against coali-
tion attack. In addition we obtain perfectly resilient KPSs such that the
maximum supportable network size is larger than random pairwise keys
schemes.

1 Introduction

Distributed sensor networks (DSNs) are ad-hoc mobile networks that include
sensor nodes with limited computation and communication capabilities. They
are mainly used for military purposes but they also have wide applications in
civilian areas. In military operations, sensor nodes are distributed in a hostile ter-
ritory in order to monitor and collect various information (e.g., acoustic, seismic,
magnetic). Since they are typically carried by soldiers or spread from airplanes,
we assume that sensor nodes have no information on where they are located,
that is, they are distributed in a random way. Once deployed, they operate
unattended for extended periods without any movement. They have no external
power supply during their operation. Therefore the most essential requirement
is that each sensor should consume as small power as possible.

The sensor nodes in DSNs should be able to communicate with each other in
order to relay or accumulate secret information. There are three ways to establish
pairwise keys between sensor nodes. First is to establish secret keys using a
public key infrastructure. However, asymmetric cryptographic primitives are not
suitable due to expensive computational cost as well as storage constraints in
each node. In another strategy, a sensor node is chosen to be a trusted authority
(TA), which all other nodes in the network are assumed to trust. The TA shares a
long-lived key with every node and transmit session keys between sensor nodes on
request. This method can result in expensive costs for message relay. Arbitrated

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 294–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 295

protocols are also vulnerable to a single compromise of the TA. Therefore it is
natural that we are interested in key predistribution schemes (KPSs), where a set
of secret keys is installed in each node before each sensor node is deployed. After
being deployed, it sets up a secret key with every node in certain neighborhood
using their common information.

There are two simple strategies for KPSs. One is to use a single secret key
over the entire network. This scheme is obviously efficient in terms of the cost of
computation and memory. However the compromise of only a single node exposes
all communications over the entire network, which is a serious deficiency. The
other approach is to use distinct keys for all possible pairs of nodes. Then every
node is preloaded with n − 1 keys, where n is the network size. This scheme
guarantees perfect resiliency in that links between noncompromised nodes are
secure against any coalition of compromised nodes. However this scheme is not
suitable for large networks since the storage required per node increases linearly
with the network size. In a classic paper by Blom [1], a tradeoff between key
storage and security is presented. Given a security parameter 1 < t < n, each
node is deployed with t+ 1 keys. This scheme provides perfect security against
any coalition of up to t compromised nodes, while the compromise of t+1 nodes
would totally break the system. We briefly review this scheme in Sect. 5.

Recently, Eschenauer and Gliger [6] proposed a probabilistic key predistribu-
tion scheme. This scheme consists of three phases: key predistribution, shared-key
discovery, and path-key establishment. We briefly describe these phases since our
scheme also follow the same framework. In key predistribution phase, a large pool
of keys and their key identifiers are generated. Every sensor node is equipped
with a fixed number of keys randomly chosen from the key pool with their key
identifiers. After deployment, the shared-key discovery phase takes place, where
two nodes in a wireless communication range look for their common keys. If
they share common keys in their key rings, they can pick one of them as their
secret key. Sensor nodes can exchange the key identifiers of their keys, for exam-
ple, to discover if they share a common key. The path-key establishment phase
takes place in case there is no common key between a pair of nodes in a wireless
communication range. They look for multiple secure links (hops) to reach each
other so that one of them can choose an arbitrary key and relay it through the
links. In our paper, we focus on the key predistribution phase which is given by
a deterministic way.

The Eschenauer-Gliger scheme is generalized by Chan, Perrig and Song [3],
where two nodes compute a pairwise key only if they share at least q common
keys. They also presented a random-pairwise keys scheme, where a random graph
is generated as the network layer and each link receives a unique key. In [5] and
[9], the Eschenauer-Gligor schemes are combined with Blom’s schemes, resulting
in better performance compared with existing schemes.

DSNs can be regarded as superposition of a physical layer and a network layer.
Due to resource constraints, a sensor node can communicate with only nodes
within a limited radius. Hence the physical layer is represented by a random
geometric graph. On the other hand, the network layer is represented by a graph

296 J. Lee and D.R. Stinson

such that two nodes are adjacent if they share a secret key, which is called
a network graph. The network graph is determined by the KPS, independent
of the distribution of sensor nodes. The network graphs have been given by
random graphs since Eschenauer and Gliger’s work. In this paper, we propose to
use strongly regular graphs as network graphs. This means that the assignment
of keys is deterministic. We can reduce the storage per node without loss of
resiliency by introducing public one-way functions in our KPSs. We describe
this method in Sect. 3 and 4. In Sect. 5, we modify Blom’s scheme by allowing
asymmetric matrices when generating keys, which yields a tradeoff between the
connectivity of the network and the resiliency. In a similar way as Du-Deng-
Han-Varsheney/Liu-Ning schemes [5], we use the modified Blom’s schemes on
strongly regular graphs at a network layer. Our schemes show better resiliency
than Du-Deng-Han-Varsheney/Liu-Ning schemes.

2 Preliminaries

In this section we present some basic terminologies and facts on combinatorial
objects. These notions turn out to be useful to describe deterministic KPSs.

2.1 Set Systems and KPSs

We begin with the following definition.

Definition 2.1. A set system is a pair (X,A), where A is a finite set of sub-
sets of X, called blocks. The degree of a point x ∈ X is the number of blocks
containing the point x. (X,A) is regular (of degree d) if all points have the same
degree, d. The rank of (X,A) is the size of the largest block. If all blocks have
the same size, say r, then (X,A) is said to be uniform (of rank r).

Balanced incomplete block designs (BIBDs) are widely studied set systems.
For extensive survey, we refer to [4] and [10].

Definition 2.2. A (v, r, λ)-BIBD is a uniform set system (X,A) of rank r with
|X| = v such that every pair of points in X occurs in exactly λ blocks.

In the context of KPS, the set X corresponds to a key pool and each block to
a sensor node. Thus a node is loaded with the keys in the corresponding block. If
any two blocks have nonempty intersection, then they can establish their secret
key. We can obtain Eschenauer-Gliger schemes choosing blocks of the same size
randomly from a key pool. Each block is required to have size as small as possible
in view of limited memory of a sensor node. In a KPS based on a regular set
system of degree d, the exposure of one key in a node compromises d nodes.
Hence we also wish the degree of each node to be as small as possible.

Example 2.1. An (n2 +n+1, n+1, 1)-BIBD is called a projective plane of order
n. A projective plane of order n exists for a prime power n. It is a symmetric
BIBD, which means that the number of blocks is equal to the number of points. If

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 297

the network chooses a projective plane of order 32 for KPS, it can accommodate
1057 nodes. Each node has 33 keys loaded in it. This scheme is deterministic
and needs no path-key establishment.

For a set system (X,A), the network graph of the corresponding KPS is given
by the intersection graph (A, E) of the set system, where two blocks are adjacent
if they have nonempty intersection. In the above example, the intersection graph
is a complete graph.

2.2 Strongly Regular Graphs and KPSs

Once a set system is defined, we can check the connectivity of the corresponding
KPS through its intersection graph. On the other hand, we can first specify an
intersection graph, and then construct a corresponding KPS as follows: Given a
graph G on n nodes, we use E(G) as a key pool. A set of keys

K(v) = {e ∈ E : e is incident with v}
are predeployed in a node v. In this scheme, each node has a set of ≤ Δ(G)
keys, where Δ(G) is the maximal degree of G. No matter how many nodes
are captured, any link between noncompromised nodes remains secure. When
we take G as a random graph on n nodes, the KPS is reduced to the random
pairwise keys scheme [3]. We want small degrees at the nodes and short paths
between nonadjacent nodes of G. For this reason, we are interested in strongly
regular graphs [4] (though they have stronger properties than we require).

Definition 2.3. A strongly regular graph with parameters (n, r, λ, μ) is a graph
on n vertices, without loops or multiple edges, regular of degree r (with 0 < r <
n − 1), and such that any two distinct vertices have λ common neighbors when
they are adjacent, and μ common neighbors when they are nonadjacent.

Any pair of nonadjacent nodes in a strongly regular graph are connected by μ
paths of length two. There are various ways to construct strongly regular graphs
using combinatorial objects. We define an orthogonal array, a latin square and
mutual orthogonality [10] to describe a construction.

Definition 2.4. An orthogonal array OA(t, n) is an n2 × t array A on an al-
phabet X of n symbols such that every ordered pair of symbols occur in every set
of two columns of A exactly once.

Definition 2.5. A latin square of order n is an n × n array L on an alphabet
X of n symbols such that every symbol occurs exactly once in each row and each
column of L.

Definition 2.6. Let L and M be two latin squares of order n on alphabets X
and Y , respectively. L and M are orthogonal if their superposition contains every
ordered pair of symbols. A set of latin squares L1, . . . , Ls, all of the same order
n are mutually orthogonal if Li and Lj are orthogonal for all i �= j.

298 J. Lee and D.R. Stinson

The block graph of a (t, n)-orthogonal array A is a graph with the rows of A as
vertices, where two rows are adjacent if there exists a position in which they have
the same symbol. Such a graph is an (n2, t(n− 1), n+ t2 − 3t, t(t− 1))-strongly
regular graph. The following results are well-known.

Theorem 2.1. An OA(t+2, n) exists if and only if t mutually orthogonal latin
squares (MOLS) of order n exist, for positive integers n and t.

Theorem 2.2. Let N(n) denote the largest number of MOLS of order n. Then
N(n) ≤ n− 1, and if n is a prime power, then N(n) = n− 1.

We can construct n−1 MOLS of prime power order n from a projective plane
of order n. The construction of a projective plane and the corresponding MOLS
and orthogonal array is described in [10] in detail. To summarize, we have

Construction 2.3. Let n be a prime power and let 3 ≤ t ≤ n+1. Then we can
construct an (n2, t(n− 1), n+ t2 − 3t, t(t− 1))-strongly regular graph.

Consider a KPS whose intersection graph is an (n, r, λ, μ)-strongly regular
graph G. We assume that sensor nodes are distributed on a plane in a random
way and the range where a node can reach physically forms a circle, as shown
in Fig. 1. We call this circle a neighborhood of the sensor node. The probability
that a node shares a common key with another node in a neighborhood is p =
r/(n− 1). Let d denote the average number of nodes in a neighborhood and d′

the number of nodes in the common neighborhood of two nodes u and v within
a wireless communication range. The probability that u and v are connected
within two hops is given by

p2(u, v) = p+ (1 − p)
(

1 −
(
n− μ− 2
d′ − 2

)
/

(
n− 2
d′ − 2

))
≈ p+ (1 − p)

(
1 −

(
1 − μ

n

)d′−2
)

≥ p+ (1 − p)
(

1 −
(
1 − μ

n

) d
3
)
.

The last inequality follows from the fact that two circles of the same radius
has the intersection whose area is at least 1/3 the area of the circle if the distance
between the centres is less than the radius.

Example 2.2. Suppose that 1000 nodes are to be distributed and each neighbor-
hood contains about d = 40 nodes. By taking n = 32 and t = 14 in Construction
2.3, we obtain a (1024, 434, 186, 182)-strongly regular graph G. In the corre-
sponding KPS, we have p2(u, v) ≥ 0.9547 for any two nodes u and v within a
wireless communication range.

Example 2.3. Consider a complete bipartite graph Kn,n. It is a (2n, n, 0, n)-
strongly regular graph. In the corresponding KPS, we have

p2
Kn,n

(u, v) ≈ 0.5 + 0.5(1 − (0.5)d′−2) = 1 − (0.5)d′−1

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 299

Fig. 1. A 2-hop path between two sensor nodes u and v

for any two nodes u and v within a wireless communication range. If we choose
a random graph G2n,p with p = 0.5 as a network graph, the network layer has
the same local connectivity. However, we have

p2
G2n,p

(u, v) = 0.5 + (1 − 0.5)(1 − (1 − (0.5)2)d′−2) = 1 − (0.5)(0.75)d′−2,

which is smaller than p2
Kn,n

(u, v). Hence the complete bipartite graph Kn,n per-
forms better than a random graph.

3 Basic ID-Based One-Way Function Schemes

In this section we use a public one-way hash function h in order to reduce the
number of keys stored in a node. The KPSs presented here are ID-based since a
unique ID is assigned to each sensor node and the ID is used to compute secret
keys. First we determine a network graph G and construct a key pool K = {Kv :
v ∈ G}. Next we decompose the edges of graph G into star-like subgraphs. A
sensor node u receives a secret key Ku and ‘hashed’ keys h(Kv ‖ ID(u)) if it
is contained in a star-like subgraph centred at v. Since a node v can compute
h(Kv ‖ ID(u)) by evaluating the public one-way function h at the concatenation
of its unique key Kv and public ID, ID(u), both of u and v can establish their
secret key h(Kv ‖ ID(u)). In case v is a leaf of a star-like subgraph centred at
u, h(Ku ‖ ID(v)) is established as their secret key.

Now we consider an edge decomposition of a regular graph into star-like
subgraphs. We begin with the following definition.

Definition 3.1. An Euler circuit of G is a circuit in a graph G containing all
the edges.

300 J. Lee and D.R. Stinson

Theorem 3.1. A nontrivial connected graph has an Euler circuit if and only if
each vertex has even degree.

There is an algorithm to find Euler circuits in O(|E|)-time [7].

Theorem 3.2. A connected regular graph G of order n and even degree r has
an edge decomposition into star-like subgraphs such that each vertex is a centre
of one star and a leaf of r/2 distinct stars.

Proof. By using an Euler circuit, we will find an edge colouring of G such that
the edges with the same colour form a star-like subgraph.

Note that |E(G)| = nr/2. Let v0E0v1E1 · · · vnr
2 −2Enr

2 −2vnr
2 −1(= v0) be an

Euler circuit of G. We use a set of colours labeled by vertices in G. Now we
colour each edge Ei with colour vi. Then the edges coloured by v is the r/2
edges coming from the vertex v in the Euler circuit, which form a star-like sub-
graph centred at v. Thus this colouring yields an edge decomposition of G into
star-like subgraphs such that each vertex is a centre of one star and a leaf of r/2
distinct stars. ��

Each node v stores one secret key Kv and r/2 hashed keys for the nodes u
such that v is contained in a star-like subgraph centred at u. Therefore the total
number of keys stored in a sensor node is given by r/2 + 1. This scheme reduces
the number of keys per node by almost 50% as compared with the method
discussed in the previous section.

Security Analysis. When a node u is revealed to an adversary, he obtains Ku

as well as h(Kvi
‖ ID(u)) for r/2 adjacent nodes vi. It is infeasible to compute

Kvi
even though he knows the key h(Kvi

‖ ID(u)) since h is a one-way function.
It follows that an adversary cannot compromise any link between two noncom-
promised nodes. Under the restriction of perfect resiliency, random pairwise keys
schemes [3] exhibited the highest performance in terms of maximum supportable
network size. However the basic ID-based one-way function schemes (IOSs) with
regular network graphs (of even degree r) have maximum supportable network
size two times larger than the random pairwise keys scheme, for a fixed probabil-
ity p of sharing a common key, as shown in Fig. 2. Assuming each node contains
k secret keys, the maximum supportable network size n is estimated as

n =
2(k − 1)

p
+ 1 ≈ 2k

p
,

since p = r/(n − 1) and k = r/2 + 1. In random pairwise keys schemes, the
maximum supportable network size is given by n = k/p.

4 Multiple ID-Based One-Way Function Schemes

Basic IOSs are not suitable for a network of large size since they can accommo-
date only O(k) sensor nodes for the node storage of k keys. In this section, we

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 301

Fig. 2. The relationship between the probability of sharing a common key and the
maximum supported network size for perfect resilience against node compromise. Each
node is assumed to have k = 200 keys

use multiple copies of a single basic IOS to increase the network size relative to
available memory. In exchange, the resiliency of multiple IOSs is weakened. In
order to deploy n = ml sensor nodes, we first determine an (m, r, λ, μ)-strongly
regular graph G which is decomposed by star-like subgraphs. Each vertex u of G
corresponds to l sensor nodes, say u1, . . . , ul, of the network. We say the sensor
nodes u1, . . . , ul are contained in a class u. Every node in a class u receives a
common key Ku. If a vertex u is contained in a star-like subgraph centred at a
vertex v in G, each sensor node ui in a class u receives h(Kv ‖ ID(ui)). Since
any node vj in a class v can compute h(Kv ‖ ID(ui)), two nodes ui and vj can
establish their session key using this hashed key. We assume that the duplicates
u1, . . . , ul share no common key (even though we can set up an arbitrary key
among them). The number of keys stored in a node is k = r/2 + 1, which is 1/l
times smaller than using a single graph with the same probability of sharing a
common key. The probability that two nodes share a common key is given by
p = rl/(n− 1) ≈ r/m.

Security Analysis. Consider a DSN of size n = ml which adopts an l-multiple
IOS based on an (m, r, λ, μ)-strongly regular graph G. Suppose that an adver-
sary compromises s nodes randomly in the network. We compute the probabil-
ity that an arbitrary link uivj (u �= v) between two noncompromised nodes is
compromised. It also estimates the fraction of compromised links between non-
compromised nodes in the total network. Let u and v be the vertices (classes) of
G containing ui and vj , respectively, such that v is a leaf of a star-like subgraph

302 J. Lee and D.R. Stinson

centred at u. Then h(Ku ‖ ID(vj)) is established as a secret key between two
nodes ui and vj . In order to compute h(Ku ‖ ID(vj)) without capturing ui or
vj , the coalition have to contain at least one node in class u different from the
node ui. Therefore the probability is estimated as

P (s) = 1 −
(
n−l−1

s

)(
n−2

s

) ≈ 1 −
(

1 − l − 1
n− 2

)s

≈ 1 −
(
1 − p

2k

)s

. (1)

Figure 3 shows the performance of a multiple IOS compared with other ex-
isting schemes.
Example 4.1. Let G = Km

2 , m
2

be a complete bipartite graph, where 4|m. It is an
(m,m/2, 0,m/2)-strongly regular graph. Using l copies of the graph G, we can
accommodate lm sensor nodes. The number of keys per node is m/4+1. If a node
ui in a class u is compromised, then ml(l− 1)/4 links between noncompromised
nodes are compromised. These are the links between the other l − 1 duplicates
in the class u and the nodes whose class is a leaf of a star-like subgraph centred
at u in G. Note that we do not consider physical constraints in this analysis.

Key Revocation. If a node ui is detected as being compromised, a controller
node (which has a large communication range and may be mobile) broadcasts
ID(ui) so that secure nodes can stop communicating with ui. Nevertheless the
other duplicates uj , i �= j can still use the links established by the keys of the
form h(Kv ‖ ID(uj)).

In order to replace the captured node ui, a new node unew is installed with
a new key Kunew

and h(Kv ‖ ID(unew)) for r/2 node classes v, where the
node classes v are randomly chosen among secure classes. Alternatively, we can
choose the same classes v as the hashed keys of the revoked node ui has. Now
the controller node broadcasts ID(unew) so that every node vi can compute
h(Kvi

‖ ID(unew)). After deployment, the node unew can communicate with
a (physical) neighbor vj of a class v for which unew has h(Kv ‖ ID(unew)).
Shared-key discovery and path-key establishment phase should be restarted.

5 Deterministic Multiple Space Blom’s Schemes

In this section, we briefly describe Blom’s KPSs and present modified schemes
for DSNs. First we consider original Blom’s KPSs which are secure against up to
coalition of size t. Let n be the size of a network and q a prime power large enough
to assume that keys of ln q bits in length are secure. In order to accommodate n
sensor nodes, the TA constructs a public (t+ 1)× n matrix M over GF (q) such
that any t+ 1 columns of M are linearly independent. A well-known example of
such a matrix M is a Vandermonde matrix

M =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 2 3 . . . n
1 22 32 . . . n2

...
1 2t 3t . . . nt

⎞⎟⎟⎟⎟⎟⎠ .

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 303

Each node u receives a unique (t+ 1) × 1 column vector xu from the matrix
M , which is public. Using a Vandermonde matrix, a node given the j-th column
vector can store only a seed j ∈ GF (q) to generate the other elements [5]. In the
next step, the TA generates a secret random (t+ 1)× (t+ 1) symmetric matrix
D over GF (q) and assigns secret information Ku = xT

uD to each node u. Any
two nodes u and v can compute their secret key Kuv = xT

uDxv from one’s secret
information and the other’s public column vector. Note that xT

uDxv = xT
v Dxu

due to the symmetry of the matrix D.

5.1 Modified Blom’s KPSs on Complete Bipartite Graphs

As described above, any pair of nodes can establish a secret key in Blom’s
schemes. Thus the network layer is represented by a complete graph. We can
weaken the connectivity of the network graph in order to improve resiliency
against node compromise. We choose a complete bipartite graph Km1,m2 in-
stead of a complete graph as a network graph in this modification. We divide
the set of nodes into two sets U and V such that |U | = m1 and |V | = m2. The
initial assignment of public column vectors is the same as the original schemes.
The difference is that the TA generates a random (t + 1) × (t + 1) matrix D,
which is not necessarily symmetric. Secret information xT

uD is assigned to each
node u ∈ U and Dxv is assigned to each node v ∈ V , given their public col-
umn vectors xu and xv. Now both of the nodes xu and xv can compute their
secret key xT

uDxv. The following theorem supports the stronger resiliency of this
modification.

Theorem 5.1. Let U = {u1, . . . , um1} and V = {v1, . . . , vm2} be sets of (t +
1)× 1 column vectors over GF (q) such that any t+ 1 vectors, either all in U or
all in V , are linearly independent. Let D be a (t+ 1) × (t+ 1) matrix. Then

1. D is determined by t+ 1 row vectors uT
li
D, i = 1, . . . , t+ 1 or t+ 1 column

vectors Dvli , i = 1, . . . , t+ 1, and
2. for any t + 1 vectors uli ∈ U, (i = 1, . . . , t + 1), and for any t + 1 vectors

vli ∈ V, (i = 1, . . . , t + 1), and for any scalar k ∈ GF (q), there exists a
(t+ 1) × (t+ 1) matrix D′ such that

uT
liD

′ = uT
liD, and D

′vli = Dvli (i = 1, . . . , t), and uT
lt+1

D′vlt+1 = k.

Proof. Let

U =

⎛⎜⎜⎜⎝
uT

l1
uT

l2
...

uT
lt+1

⎞⎟⎟⎟⎠ and V =
(
vl1 vl2 . . . vlt+1

)
.

Then U and V are invertible (t + 1) × (t + 1) matrices over GF (q). Given UD
or DV , we can compute D by multiplying by the inverse matrix U−1 or V −1,
which proves the first part of the theorem.

304 J. Lee and D.R. Stinson

Now we define

(D̂)i,j =

{
k, if i = j = t+ 1,
(UDV)i,j , otherwise.

and
D′ = U−1D̂V −1.

Then we have
eT

i UD
′V = eT

i D̂ = eT
i UDV

and
UD′V ei = D̂ei = UDV ei,

for every elementary vector ei (with a “1” in position i and “0”s in all other
positions), i = 1, . . . , t. Since eT

i UD
′ = eT

i UD and D′V ei = DV ei for i =
1, . . . , t, it follows that

uT
liD

′ = eT
i UD

′ = eT
i UD = uT

liD,

and
D′vli = D′V ei = DV ei = Dvli

for i = 1, . . . , t, and

uT
lt+1

D′vlt+1 = eT
t+1UD

′V et+1 = eT
t+1D̂et+1 = k,

as desired. ��

Theorem 5.1 means that an adversary cannot obtain any information on the
keys of the links between noncompromised nodes unless it compromise at least
t+1 nodes, either all in U or in V . In the original Blom’s scheme with the same
threshold parameter t, the compromise of any t+1 keys breaks the total system.
However, in our modification, the probability of a total break is reduced to

P (t+ 1) =

(
m1
t+1

)
+

(
m2
t+1

)(
m1+m2

t+1

) .

In general, when s nodes are captured randomly, the probability P (s) of total
break is estimated as

P (s) = 1 −
∑

i+j=s
0≤i,j≤t

(
m1
i

)(
m2
j

)
(
m1+m2

s

) . (2)

We will use this modification as building blocks to construct new KPSs in
the next section.

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 305

5.2 Deterministic Multiple Space Blom’s Schemes (DMBSs)

We consider l copies of an (m, r, λ, μ)-strongly regular graph G to accommodate
n = ml nodes. We regard each vertex of G as a class of l nodes. Every sensor
node ui receives its public column vector xui

from a Vandermonde matrix M
and every edge e of G is associated with a random (t+ 1) × (t+ 1) matrix De,
not necessarily symmetric.

Now an arbitrary direction is assigned to every edge of G. For every edge
e ∈ E(G) incident to a vertex (class) u, each node ui of class u receives row
vector xT

ui
De if e starts from u, or column vector Dexui if e ends at u. Suppose

that an edge uv ∈ E(G) begins at u. Then two sensor nodes ui ∈ u and vj ∈ v can
compute their secret key Kuivj

= xT
ui
Duvxvj

using each other’s public vector.
Since each vector has size equivalent to t+1 keys, the total amount of information
per node is given by r(t + 1). The probability that two nodes share a common
key is p = rl/(n− 1) ≈ r/m.

Security Analysis. Suppose that s nodes are captured by an adversary in a
random way. Consider a link between two noncompromised nodes ui and vj ,
contained in classes u and v, respectively. In order to compute their secret key
Kuivj

= xT
ui
Duvxvj

, the coalition has to contain at least t + 1 nodes, either all
in the class of u or the class of v. Therefore the probability P (s) that the link is
compromised is estimated as

P (s) = 1 −
∑t

i=0
∑t

j=0

(
l−1

i

)(
l−1
j

)(
n−2l

s−i−j

)(
n−2

s

) . (3)

Figure 3 illustrates the graph of P (s) as a function of the number of compro-
mised nodes for various schemes. In this plot, we assume that

1. the total network size is n = 1200,
2. each node has 200 pieces of secret information,
3. the probability of sharing a common key between two nodes is p = 0.5.

We briefly describe the graphs and parameters used in this plot as follows:

(a) is from Fig. 2 in [9], where we take s′ = 2, s = 7, and t = 99.
(b) shows the resiliency of a modified Blom’s scheme with threshold parameter

t = 199 and network graph K600,600. We use (2) in Sect. 5.1.
(c) shows the resiliency of a deterministic multiple space Blom’s scheme based

on 300 copies of a (4, 2, 0, 2)-strongly regular graph, where we take threshold
parameter t = 99. We use (3) in Sect. 5.2.

(d) shows the resiliency of a basic scheme such that 200 keys are chosen from a
pool of size 58000 [6].

(e) shows the resiliency of a q-composite scheme with q = 1 [3].
(f) is given by (1) in Sect. 4.

306 J. Lee and D.R. Stinson

Fig. 3. Fraction of compromised links between noncompromised nodes v.s. number of
compromised nodes

6 Conclusion

We presented two KPSs for distributed sensor networks in this paper. We can
determine network graphs in both schemes. ID-based one-way function schemes
allow each node to reduce the storage by using one-way functions in generating
secret keys. Using a single copy of a network graph, we obtain a KPS with perfect
resiliency. A basic IOS has the maximum supportable network size larger than
a random pairwise keys scheme [3]. A multiple IOS provides a trade-off between
node storage (or total network size) and resiliency against coalition attack. MBSs
are based on modified Blom’s schemes and Du-Deng-Han-Varsheney/Liu-Ning
schemes. MBSs show stronger resiliency than Du-Deng-Han-Varsheney/Liu-Ning
schemes.

References

1. R. Blom. An Optimal Class of Symmetric Key Generation Systems, In Advances
in Cryptology - Eurocrypt ’84, pages 335-338, 1985. Lecture Notes in Computer
Science Volume 209.

2. D.W. Carmen, P.S. Kruus and B.J. Matt. Constraints and Approaches for Dis-
tributed Sensor Network Security. NAI Labs Technical Report #00-010, September
2000.

3. H. Chan, A. Perrig, and D. Song. Random Key Predistribution Schemes for Sensor
Networks, In IEEE Symposium on Research in Security and Privacy, pages 197-
213, May 2003.

Deterministic Key Predistribution Schemes for Distributed Sensor Networks 307

4. C.J. Colbourn, J.H. Dinitz (editors). The CRC Handbook of Combinatorial De-
signs, CRC Press, Boca Raton, 1996.

5. W. Du, J. Deng, Y.S. Han, and P.K. Varsheney. A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks, In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS), October 2003.

6. L. Eschenauer and V.D. Gligor. A Key-Management Scheme for Distributed Sensor
Networks, In Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 41-47, November 2002.

7. A. Gibbons. Algorithmic Graph Theory, Cambridge Univ. Press, Cambridge, 1985.
8. R.L. Graham, M. Grötschel and L. Lovász (editors). Handbook of Combinatorics,

vol. 2, North-Holland, Amsterdam, 1995.
9. D. Liu and P. Ning, Establishing Pairwise Keys in Distributed Sensor Networks,

In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), October 2003.

10. D.R. Stinson, Combinatorial Designs: Constructions and Analysis, Springer-
Verlag, New York, 2003.

On Proactive Secret Sharing Schemes

Ventzislav Nikov1 and Svetla Nikova2,�

1 Department of Mathematics and Computing Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
v.nikov@tue.nl

2 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
svetla.nikova@esat.kuleuven.ac.be

Abstract. This paper investigates the security of Proactive Secret Shar-
ing Schemes. We start with revision of the mobile adversary model of
Herzberg’s et al. imposing less restriction to the adversary. We first in-
vestigate the approach of using commitment to 0 in the renewal phase
in order to renew the player’s shares. In the considered model some well
known computationally secure protocols (which use this approach) turns
out to be vulnerable to a specific attack. We show that this type of attack
is applicable also in the unconditional case. Then we extend the attack
of D’Arco and Stinson to non-symmetric polynomials, which is appli-
cable even in the mobile adversary model of Herzberg et al. Next the
conditions for the security of a proactive scheme using this approach are
shown. We also investigate another approach to add proactivity, namely
using re-sharing instead of commitment to 0. Two protocols using this
approach are described and it is shown that both are not secure against a
mobile adversary. The main contribution of the paper is to show specific
weaknesses, when a mobile adversary is considered.

1 Introduction

Verifiable secret sharing (VSS) schemes are secret sharing schemes (SSSs) deal-
ing with possible misbehaving of the participants. Proactive security was first
suggested by Ostrovsky and Yung in [14]. This concept was applied to the se-
cret sharing schemes by Herzberg et al. in [9]. Basically the idea is that, if the
information stored by the servers in order to share a given secret stays the same
for all lifetime of the system, then an adversary can eventually break into a suf-
ficient number of servers, to learn and destroy the secret. On the other hand,

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT,
IWT STWW project on Anonymity and Privacy in Electronic Services and Con-
certed Research Action GOA-MEFISTO-666 of the Flemish Government.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 308–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Proactive Secret Sharing Schemes 309

let the time is divided into periods. At the beginning of each period the infor-
mation stored by the servers in a given time period changes, while the shared
secret stays the same. Then the adversary probably does not have enough time
to break into necessary number of servers. Moreover, the information he learns
during the period t is useless during the period t+ i, for i = 1, 2, So, he has
to start a new attack from scratch during each time period.

We revise the mobile adversary model from [9], imposing less restriction to
the adversary. In the model of Herzberg’s et al. the players corrupted during an
update phase were considered corrupt for both (adjacent) periods. We propose
a model in which these corrupt players are considered corrupt only in one of the
adjacent periods. As a result in the new model some well known computationally
secure protocols e.g. [9, 10, 8] became vulnerable to a specific attack, which we
call attacks of first type.

The first unconditionally secure proactive VSS was proposed by Stinson and
Wei [16]. In [12] a generalization of the scheme has been given, but D’Arco and
Stinson [2, 3] showed that these two proactive schemes can be broken. We refer to
their attack as of second type. The authors also proposed two new variations of
the schemes to add proactive security to VSS, based on two different approaches,
one using symmetric polynomials and another one using non-symmetric poly-
nomials. However, in [12] an attack on the scheme with symmetric polynomials
were described and slightly modified solution were proposed.

We next show that the first type attack is applicable also in the unconditional
case in the considered model. Then we extend the second type of attack to the
non-symmetric case. Note that the second type attack is successful even in the
mobile adversary model of Herzberg’s et al. We point out that a specific problem
arises in the renewal phase, namely we need a distributed commitment protocol
in which the committer is committed to 0 and the players are able to check that
the commitment is indeed 0 without revealing their auxiliary shares. In order
for this protocol to be secure against a mobile adversary we need to reduce the
number of cheating players. The necessary and sufficient condition for security
are consequently given in Theorem 3.

Last we investigate another approach [5, 6] to make an SSS proactively se-
cure, namely using re-sharing protocol instead of commitment to 0 in order to
renew and re-randomize the player’s shares. We describe two protocols using this
approach and show that both are subject to a modification of the second type
attack. Our goal is to show specific weaknesses when mobile adversary is con-
sidered. Note that all unconditionally secure protocols we describe in this paper
remain secure if the adversary is not mobile. Our aim throughout the paper is
to learn more from the systems that fail in order to build systems that succeed.

2 Preliminary

2.1 Notations

Denote the participants (players) of the scheme by Pi, 1 ≤ i ≤ n, and the set of
all players by P = {P1, . . . , Pn}. Denote the dealer of the scheme by D. The role

310 V. Nikov and S. Nikova

of the dealer is to share a secret s to all participants in the scheme. For the sake
of simplicity we will consider only the threshold case in this paper. The simplest
access structure Γ is called (k, n)-threshold if all subsets of players P with at
least k + 1 participants are qualified to reconstruct the secret and any subset
of up to k players are forbidden of doing it. Accordingly we will call a Secret
Sharing Scheme (SSS) (k, n)-threshold if the access structure Γ associated with
it is (k, n)-threshold.

2.2 Verifiable Secret Sharing Schemes

Verifiable Secret Sharing (VSS) schemes guarantee the robustness of the sharing
and the detection of corrupt players. Informally, there are n players, some of them
may be corrupt and deviate from the protocol. One of the players, the dealer,
possesses a value s as a secret input. In the first stage, the dealer commits to
a unique value s̃ (no matter what corrupt players may do); moreover, s̃ = s
whenever the dealer is not corrupt. In the second stage, the already committed
value s̃ will be recovered by all good players (no matter what the corrupt players
may do).

It is common to model cheating by considering an adversary A who may cor-
rupt some of the players (up to k players). One can distinguish between passive
and active corruption. Passive corruption means that the adversary obtains the
complete information held by the corrupt players, but the players execute the
protocol correctly. Active corruption means that the adversary takes full con-
trol of the corrupt players. Active corruption is strictly stronger than passive
corruption. Both passive and active adversaries may be static, meaning that the
set of corrupt players is chosen once and for all before the protocol starts, or
adaptive meaning that the adversary can at any time during the protocol choose
to corrupt a new player based on all the information he has at the time, as long
as the total number of corrupt players is less or equal to k.

In the Appendix certain VSS schemes are given. Most of the used computa-
tionally secure schemes are based on Feldman’s or Pedersen’s VSS. We chose to
consider only Feldman’s scheme since it is simpler, but our attacks work against
all these schemes. Also in the Appendix we present unconditionally secure VSS
protocols, one based on symmetric and one based on asymmetric bivariate poly-
nomials. We will refer to the unconditional secure sub-protocols described in the
Detection phase also as “pair-wise” checking, for obvious reasons. These proto-
cols ensure the consistency of the shares. We will refer to hv(0) and gv(0) as
“true parts” of the shares since they are used to reconstruct the secret. The
following result is classic for VSS theory.

Theorem 1. A computationally secure (k, n)-threshold VSS exists if and only
if 2k < n. An unconditional secure (k, n)-threshold VSS exists if and only if
3k < n.

On Proactive Secret Sharing Schemes 311

3 Computational Secure Proactive VSS Schemes

The concept of proactive security was introduced by Ostrovsky and Yung in [14]
and applied by Herzberg et al. in [9] to secret sharing schemes. Proactive security
refers to security and availability in the presence of a so-called mobile adversary.
Herzberg et al. [9] have further specialized this notion to robust secret sharing
schemes and have given a detailed efficient proactive secret sharing scheme.

Consider the following problem: if the information stored by the players in
order to share a given secret stays the same for a long period of time (e.g. the
lifetime of the system), then an adversary may gradually break into a sufficient
number of players, to learn and destroy the secret. A way to address this problem
is to divide the time into periods. At the beginning of each period the information
stored by the players in that period changes, while the shared secret stays the
same. The system is set up in such a way that the adversary does not have enough
time to break into a required set of players. Moreover, the information that the
adversary learns during a particular period is useless during later periods. So,
he has to start a new attack from scratch during each time period.

Proactive security provides enhanced protection to long-lived secrets against
a mobile adversary, i.e. the adversary which is allowed to potentially move among
players over time with the limitation that it can only control some subset of play-
ers at a time unit. In fact, proactive security adds protection by “time diffusion”.
Namely, all shares are periodically refreshed. This renders useless the knowledge
obtained by the mobile adversary in the past. Proactive systems also use robust-
ness techniques to enhance availability by tolerating (detecting and correcting)
malicious players. Moreover, it also allows recoveries of the previously corrupt
players, by “removing” the adversary influence and restoring their (correct) in-
formation. This gives the system a self-healing nature. As a result, the system
can tolerate a mobile adversary.

We will follow the settings of the schemes in [14, 9]. In general they coincide
with the settings of the VSS except that we consider a more powerful adversary
- a mobile one. In situations when the secret value needs to be maintained for a
long period of time, in order to protect the secret against a mobile adversary, the
life time is divided into time periods which are determined by the global clock. At
the end of each time period the players engage in an interactive update protocol.
The update protocol will not reveal the value of the secret. At the beginning of
the next period the players hold new shares of the secret.

We assume that the adversary intruding player Pi is “removable”, through
a “reboot” procedure, when the adversary influence is detected. By “rebooting”
the player we mean that the adversary’s influence over this player is stopped and
all player’s information is erased. That is why after this procedure the correct
share should be recovered. It is important to note that in proactive protocols
some information (e.g. the check values, the old share, etc.) should be “erased”.
This operation, to be performed by honest players, is essential for the proactive
security. Not doing so would provide an adversary that attacks a player at a given
time period with information from a previous period that later could enable the
adversary to break the system.

312 V. Nikov and S. Nikova

The following new phases Recovery and Renewal can be distinguished [9],
compare to a VSS scheme. In [9] the update phase (also called update protocol)
is separated from the time frames in a sense that if a player is corrupt during
an update phase the authors consider it corrupt during both (adjacent) periods
to that update phase. We consider the following
MOBILE ADVERSARY MODEL
At the beginning and at the end of the life time of the system we have Share-
Detection respectively Reconstruction. At the end of each time period we have
Detection followed by Recovery after that the next period begins with Renewal.
Together Detection, Recovery and Renewal form an update phase, but we do
not restrict additionally the adversary to corrupt players in this phase as in [9].
In fact the “rebooting” of the corrupt players finishes the current time frame
and new time period begins.

The shares computed in period t for player Pu are denoted by using super-
script (t), i.e. s(t)u , h(t)

u (x) or g(t)
u (y), t = 0, 1, Dealer’s polynomials corre-

sponding to these shares are denoted by f (t)(x) and f (t)(x, y). Let us describe
the Recovery and Renewal protocols given in [9].

We first briefly describe the idea how the player’s shares are renewed at
period t = 1, 2, When the secret s is distributed as a value f (t−1)(0) = s
of a k degree polynomial f (t−1)(x), we can update this polynomial by adding
it to a k degree random polynomial δ(t−1)(x), where δ(t−1)(0) = 0, so that
f (t)(0) = f (t−1)(0) + δ(t−1)(0) = s. Thus we can renew the shares f (t)(αu) =
f (t−1)(αu) + δ(t−1)(αu) thanks to the linearity.

Renewal Phase:
1. Each player Pu plays the role of the dealer.
2. Pu runs the Share-Detection Phase of Feldman’s VSS with a random polynomial

δu(x) =
∑k

j=0 δu,jx
j subject to δu(0) = 0. The following broadcast values are

used Au,j = gδu,j .
3. As a result of this Share-Detection Phase every player Pv has a temporary share

δu(αv) if the player Pu is not blamed as a corrupt dealer.
4. Let A be the set of uncorrupt players.
5. Each player Pv updates its own share by performing

s(t)
v = s(t−1)

v +
∑
u∈A

δu(αv).

6. The new verification values are set A
(t)
j = A

(t−1)
j

∏
u∈A Au,j .

Note that δ(t−1)(x) =
∑

u∈A δu(x) and that A
(t)
j corresponds to the j-th

coefficient in f (t)(x).
Now we describe the idea how the player’s shares are recovered at period

t = 1, 2, Let the players in a set B are detected as corrupt and thus their
shares should be recovered. Set A = P \ B to be the set of uncorrupt players.
In general an analogous way to that used for re-randomization in the renewal
phase is applied. First all corrupt players Pv ∈ B are “rebooted”. In order to

On Proactive Secret Sharing Schemes 313

recover the share of player Pv ∈ B every player Pu ∈ A share a random k-degree
polynomial δu(x), such that δu(αv) = 0. By adding δu(x) to f (t)(x) (for u ∈ A)
a new random polynomial δ(x) is obtained. Now the players Pu ∈ A send their
temporary shares δ(αu) to Pv, which allow him to recover the whole polynomial
δ(x) and to compute his share δ(αv).

Theorem 2. [9] A computationally secure (k, n)-threshold proactive VSS exists
if and only if 2k < n.

3.1 The First Type of Attack

Proactive secret sharing [9] and proactive signature schemes [10] were introduced
to cope with mobile adversary who may corrupt more than k servers during the
life time of the secret. In both papers the proactive scheme is build on top of
Feldman’s VSS scheme [4]. In [8] the authors showed a specific attack against
Feldman’s VSS scheme and proposed a distributed key generation protocol build
on top of Pedersen’s VSS scheme [15]. The authors in [8] then claimed that their
protocol is secure against a mobile adversary which can corrupt up to k players
in given time frame.

In this section we will illustrate an attack against the renewal phase, in the
schemes of Feldman, Pedersen and Genarro et al. We will show that even a
passive, but mobile adversary can break these schemes in the considered model.
For the sake of simplicity we will illustrate the attack only for Feldman’s scheme.

Suppose that the attacker has corrupted a set B of players in some time frame
t− 1, i.e. he knows their shares f (t−1)(αu) for u ∈ B. All players Pu ∈ B being
detected as corrupt are “rebooted” and the new period t starts with the renewal
phase, when all shares are updated. Now let the adversary corrupt k players
(not in B) in this period and note that any k corrupt players can uniquely
reconstruct the polynomial δ(x) since they have the additional information that
δ(0) = 0. Thus the adversary which gets information from k corrupt players
in this period is able to compute the new player’s shares f (t)(αu) for u ∈ B.
Note that in this period the players Pu ∈ B are no more corrupt. Therefore,
incrementally breaking different sets of players the attacker is able to compute
the secret. Actually the attacker needs to know only one share from the previous
period which together with k player’s shares from the current time frame will
allow him to reconstruct the secret.

Note that the proposed attack applies if the renewal phase is considered as
the beginning of the next period. However a slightly modified attack can be
applied if we consider the renewal phase as the end of the previous period.

Therefore the first solution of Herzberg et al. allows even a passive, mobile
adversary to break the scheme in the considered adversary model. Also most of
the consecutive schemes, we will cite only some of them [9, 7, 10, 8], are subject
to this kind of attack in the considered adversary model.

314 V. Nikov and S. Nikova

4 Unconditionally Secure Proactive VSS Schemes

The first unconditionally secure proactive VSS was proposed by Stinson and
Wei [16]. A generalization of this scheme to general access structures has later
been given in [11]. Recently D’Arco and Stinson [2, 3] showed that some existing
unconditionally secure proactive schemes [11, 16] can be broken.

In [16, 2, 3] the authors consider different model in which all subsets of players
with at least k + 1 participants are qualified, but any subset of up to b (b < k)
players is forbidden, where the restriction is due to the fact that some information
is broadcast. So, we will consider (k, n) access structure where up to b (b < k)
players are corrupt and will denote it by (b, k, n). Again we will present only
Recovery and Renewal Phases. Recall that as a result of the previous phases
all players maintain a set A of honest (not corrupt) players and possess shares
h

(t)
u (x). The shares h(t)

u (x) are derived from a symmetric polynomial f (t)(x, y)
by setting y = αu. Set B = P \A to be the set of corrupt players.

Recovery Phase:
1. Every corrupt player Pv ∈ B is “rebooted”.
2. Every good player Pu computes and sends to every corrupt player Pv ∈ B a check-

value Cu,v = h
(t)
u (αv).

3. Upon receiving the data, Pv computes h
(t)
v (x), such that h

(t)
v (αu) = Cu,v holds

for certain subset of honest, qualified players Pu ∈ Ã, Ã ⊆ A.
4. Player Pv sets h

(t)
v (x) as his share.

Renewal Phase:
1. In this phase each player Pu plays the role of the dealer.
2. Each player Pu selects a random symmetric polynomial δu(x, y) of degree k, subject

to δu(0, 0) = 0.
3. Player Pu sends δu;v(x) = δu(x, αv) to Pv for 1 ≤ v ≤ n and broadcasts δu;0(x) =

δu(x, 0).
4. Player Pv checks whether δu;v(0) = δu;0(αv) and whether δu;0(0) = 0.
5. If these relations are satisfied, then Pv computes and sends to Pw the usual check

value Cu;v,w = δu;v(αw). Otherwise Pv broadcasts an accusation to Pu.
6. All players perform the (usual) pair-wise checking with accusations protocol. At

the end they update the set of good players A.
7. Each player Pv updates his share by putting

h(t)
v (x) = h(t−1)

v (x) +
∑
u∈A

δu;v(x).

Set δ(x, y) =
∑

u∈A δu(x, y), then f (t)(x, y) = f (t−1)(x, y) + δ(x, y) holds.
Note that in Step 2 of the renewal phase additional information is broadcast,
that we do not have in the standard Share-Detection phase. This information
allows the players (in Step 4) to check that the value committed by Pu in Renewal
phase is indeed 0. The latter ensures that the secret will not be changed.

On Proactive Secret Sharing Schemes 315

4.1 The Second Type of Attack

Notice that the attack proposed in the previous section (the first type) is not
applicable in this setting, since this attack is successfully mounted only when the
number of corrupt players b = k. Obviously any k players using their temporary
shares δv(x) together with the broadcast value δ0(x) are able to compute δ(x, y).
Therefore in case b = k the first type of attack is applicable to the unconditional
model.

But, it turns out that the broadcast information in the renewal phase allows
the attacker to break the system even when b < k. We will demonstrate briefly
the attack against the proactivity, proposed by D’Arco and Stinson [2], which
we call second type attack.

Note that δu;v(0) = δu;0(αv) holds. Suppose that the attacker has corrupted
player Pv in some time frame t − 1, i.e. he knows his share h

(t−1)
v (x). Then

Pv being detected as corrupt is “rebooted”. In the renewal phase his share is
updated by

h(t)
v (x) = h(t−1)

v (x) +
∑
u∈A

δu;v(x).

But since δu;0(x) is public the attacker is able to compute
∑

u∈A δu;v(0) =∑
u∈A δu;0(αv). Thus he knows the “true part” of the Pv’s new share, namely

h
(t)
v (0) = h

(t−1)
v (0)+

∑
u∈A δu;v(0). Recall that the knowledge of the “true part”

of the shares is enough for reconstructing the secret. Therefore, incrementally
breaking different sets of players the attacker is able to compute the secret.

4.2 Patching Stinson and Wei’s Scheme

D’Arco and Stinson [2, 3] proposed two new variations of the unconditional
schemes to add proactive security to VSS, based on two different approaches, one
using symmetric polynomials and another one using asymmetric polynomials.

However, in [12] an attack on the proactive scheme with symmetric polyno-
mials from [2] were described and a slightly modified scheme was proposed that
solves this problem (see also [3]). For the sake of completeness we will provide
here the solution for the symmetric case. The Recovery Phase is the same as in
Stinson and Wei scheme.

Renewal Phase:
1. Each player Pu plays the role of the dealer.
2. Each player Pu selects a random symmetric polynomial δu(x, y) of degree k − 1.
3. Player Pu sends δu;v(x) = δu(x, αv) to Pv for 1 ≤ v ≤ n.
4. Then Pv computes and sends to Pw the usual check value Cu;v,w = δu;v(αw).
5. All players perform the (usual) pair-wise checking with accusations protocol. At

the end they update the set of good players A.
6. Each player Pv updates his share by putting

h(t)
v (x) = h(t−1)

v (x) + (x + αv)
∑
u∈A

δu;v(x).

316 V. Nikov and S. Nikova

Note that δ(x, y) =
∑

u∈A δu(x, y) is a polynomial of degree k − 1, but since
at most b (b < k) players are corrupt the adversary can not compute δ(x, y).

4.3 D’Arco and Stinson’s Scheme - The Asymmetric Case

In this section we will consider the second solution of D’Arco and Stinson (using
asymmetric polynomials) proposed in [2, 3]. As in the previous section, we will
consider (b, k, n) access structure where up to b (b < k) players are corrupt.

Recall that as a result of the previous phases all players maintain a set A of
“good” (not corrupt) players and have shares h(t)

u (x) and g(t)
u (y). The shares are

derived from an asymmetric polynomial f (t)(x, y) by setting y = αu for h(t)
u (x)

and by setting x = αu for g(t)
u (y). Let B = P \A be the set of corrupt players.

Recovery Phase:
1. Every corrupt player Pv ∈ B is “rebooted”.
2. Every good player Pu ∈ A computes and sends to every corrupt player Pv ∈ B the

values Cu,v = g
(t)
u (αv) and Du,v = h

(t)
u (αv).

3. Upon receiving the data, Pv computes h
(t)
v (x) and g

(t)
v (y), such that h

(t)
v (αu) =

Cu,v, g
(t)
v (αu) = Du,v and h

(t)
v (αv) = g

(t)
v (αv) hold for certain subset of honest,

qualified players Pu ∈ Ã and Ã ⊆ A.
4. Player Pv sets h

(t)
v (x) and g

(t)
v (y) as his shares.

Renewal Phase:
1. Each player Pu plays the role of the dealer.
2. Each player Pu selects a random polynomial δu(x, y) of degree k, subject to

δu(0, 0) = 0.
3. Player Pu sends hu;v(x) = δu(x, αv) and gu;v(y) = δu(αv, y) to Pv for 1 ≤ v ≤ n

and broadcasts hu;0(x) = δu(x, 0).
4. Player Pv checks whether gu;v(0) = hu;0(αv) and hu;0(0) = 0.
5. If the conditions are satisfied, then Pv computes and sends to Pw the (usual) check

value Cu;v,w = gu;v(αw). Otherwise Pv broadcasts an accusation to Pu.
6. All players perform the usual pair-wise checking with accusations protocol and

update the set of good players A.
7. Each player Pv updates his shares by putting

h(t)
v (x) = h(t−1)

v (x) +
∑
u∈A

hu;v(x)

g
(t)
i (y) = g(t−1)

v (y) +
∑
u∈A

gu;v(y).

4.4 The Second Type of Attack - Asymmetric Case

We will show now that the above described protocol has a flaw. The idea is to
apply a similar attack as described in [2, 3] for [16] (see also the previous section)
but now applied to g(t)

u (y) instead of h(t)
u (x).

On Proactive Secret Sharing Schemes 317

Suppose that the attacker has corrupted player Pv at some time frame t− 1,
i.e. he knows his shares h

(t−1)
v (x) and g

(t−1)
v (y). Then Pv being detected as

corrupt is “rebooted”. In the renewal phase his share is updated by

h(t)
v (x) = h(t−1)

v (x) +
∑
u∈A

hu;v(x) g(t)
v (y) = g(t−1)

v (y) +
∑
u∈A

gu;v(y).

Note that gu;v(0) = hu;0(αv) holds. But since hu;0(x) is public the attacker
is able to compute

∑
u∈A gu;v(0) =

∑
u∈A hu;0(αv). Thus he knows the “true

part” of the Pv’s new share, namely g
(t)
v (0) = g

(t−1)
v (0) +

∑
u∈A gu;v(0). Note

that the knowledge of the “true part” of the share of either gv(y) or hv(x) is
enough for reconstructing the secret (see Remark 2 in the Appendix). Also it
does not matter whether hu;0(x) = δu(x, 0) or gu;0(y) = δu(0, y) is broadcast
since the attack is symmetric. Therefore incrementally breaking different set of
players the attacker is able to compute the secret.

4.5 Conditions for Security of Proactive VSS

Now we are ready to refine the conditions for security of proactive VSS (Theorem
2), based on the considered approach to renew player’s shares by sharing 0.

Theorem 3. A computationally secure (b, k, n) (for b < k) proactive VSS exists
if and only if k+ b < n. An unconditionally secure (b, k, n) (for b < k) proactive
VSS exists if and only if k + 2b < n.

The first proactive protocols [9, 10] were applied to threshold access structures
in the cryptographic setting. Since it was quite easy in that case to add the
functionality of proactivity it was a common expectation that it would also be
easy to add this functionality to all existing distributed protocols like VSS. But
it turns out that a specific problem arises, namely in the renewal phase we need a
distributed commitment protocol in which the committer is committed to 0 and
the players are able to check that the commitment is indeed 0 without revealing
their auxiliary shares. As a result of this specific problem several attacks against
the Renewal phase that break the proactive security have been found. Thus the
approach to refresh the shares by sharing 0 as a secret in the renewal phase
seems to have a drawback, i.e. in order for the protocols to be secure against b
cheating players we need to use polynomials of degree k − 1 (instead of k) and
hence we impose the requirement b < k.

Remark 1. The Renewal phase protocol in which 0 is shared as a secret is used
as a stand alone sub-protocol in several other distributed protocols. Note that
the weaknesses we pointed out here to these protocols arise only when mobile
adversary is considered.

For the unconditional case all described attacks work even in the Herzberg
et al. mobile adversary model.

318 V. Nikov and S. Nikova

5 Another Approach to Add Proactivity

Another approach to refresh (renew) the shares of the players is to re-share each
share amongst the participants and then to combine the auxiliary shares in a
special way. This approach was first applied to proactive SSS in [5, 6] divided
there in two sub-protocols called sum-to-poly and poly-to-sum. These two sub-
protocols together achieve the re-sharing goal. In general, every player first shares
his own share (re-sharing) and then computes his new share as a certain linear
combination of the auxiliary shares he receives from the other players, in such a
way that at the end the players have new shares for the same secret as required
in the renewal phase.

The approach of re-sharing the players shares is well known is SSS and it
could be applied to change dynamically the access structure associated with the
scheme. For example let f(x) be k-degree polynomial such that f(0) = s and
let every player Pu has a share su = f(αu). Then every player Pu chooses an �-
degree polynomial gu(x) such that gu(0) = su, i.e. he re-shares his share sending
auxiliary shares gu(αv) to player Pv. A set A of at least k + 1 good players is
determined. For such a set A there exist constants rw (which depends only on
A, but not on player’s shares) such that

∑
w∈A rwsw = s. Now every player

Pv combines the auxiliary shares he has received to compute his new share, i.e.
s̃u =

∑
w∈A rwgw(αv). It is easy to check that the new shares correspond to

the same secret s and that the access structure is changed from (k, n) to (�, n).
Nearly the same protocol works in the computational secure VSS setting, e.g.
Feldman’s VSS.

On the other hand in the unconditionally secure VSS setting re-sharing and
especially changing the access structure is more subtle. We will consider two
protocols, which do not allow changing the access structure, since it is out of
scope. Our goal is to show that the usual ways of doing re-sharing are not secure
against a mobile adversary. First we will describe the straightforward way to
re-share the shares. Then we will show that this protocol is not secure against a
mobile adversary. Second we will describe another (more complex) protocol and
will show that it is also not secure.

5.1 A Simple Re-sharing Protocol

Let us consider the protocol on Fig. 1 proposed in [13]. Every player Pu holds
a share hu(x). The shares are derived from a symmetric polynomial f(x, y) by
setting y = αu. In the renewal phase the new shares are computed by h

(t)
v (x) =∑

u∈A ru δu;v(x). It is not difficult to verify that indeed A. We have new sharing
for the same secret and B. The “symmetry” is not destroyed, i.e. the pair-wise
check h

(t)
v (αu) = h

(t)
u (αv) still holds for every u, v. The latter implies that there

exists a symmetric polynomial f (t)(x, y) such that f (t)(0, 0) = s and h
(t)
v (x) =

f (t)(x, αv).
Suppose now that the attacker has corrupted player Pv in some time frame

t − 1, i.e. he knows his share h
(t−1)
v (x). Then Pv being detected as corrupt is

“rebooted” and in the renewal phase his share is updated. Note that δu;v(0) =

On Proactive Secret Sharing Schemes 319

Re-sharing Phase:
1. Each player Pu re-shares the “true part” of his share, i.e. hu(0), by choosing a

symmetric polynomial δu(x, y) of degree k such that δu(x, 0) = hu(x).
2. Player Pu sends to Pv (1 ≤ v ≤ n) temporary shares δu;v(x) = δu(x, αv).
3. Each pair of players Pv and Pw exchange and then performs the usual pairwise-

check: δu;v(αw) = δu;w(αv).
4. In addition, each Pv checks his “true part” of the temporary share

δu;v(0) = δu(0, αv) = hu(αv) = hv(αu).

The last equality is the pair-wise check in the VSS used to distribute the secret s.
Note that this additional check ensures that player Pu really re-shares his share,
i.e., he is an honest “dealer”, and that player Pv has a consistent “true part” of
the temporary share.

5. All players agree on a set of “good” players A ∈ Γ , which were not accused as
corrupt dealers. Let ru be the constants which correspond to players Pu ∈ A.

6. Each player Pv computes his new-share as follows:

hv(x) ←−
∑
u∈A

ru δu;v(x).

Fig. 1. A Simple Re-sharing Protocol [13]

hv(αu) holds. But since the attacker is able to compute
∑

u∈A ru δu;v(0) =∑
u∈A ru h

(t−1)
v (αu), thus he knows the “true part” of the Pv’s new share, namely

h
(t)
v (0) =

∑
u∈A ru δu;v(0). Recall that the knowledge of the “true part” of the

shares is enough for reconstructing the secret. Therefore, again incrementally
breaking different sets of players the attacker is able to compute the secret.

5.2 Re-sharing Protocol with Randomization

Another drawback of the protocol described in the previous section (on Fig. 1)
is that the “true parts” of the shares are not re-randomized. That is why in
this section we will avoid this drawback using a commitment transfer protocol
[1] and proposing a kind of commitment sharing protocol [1] (see Fig. 2). As in
the previous section we consider the following scenario. Every player Pu holds
a share hu(x). The shares are derived from a symmetric polynomial f(x, y) by
setting y = αu. The protocol is on Fig. 2. Note that again the new shares are
computed by h

(t)
v (x) =

∑
u∈A ru δu;v(x). In the same way it is not difficult to

verify that the conditions A and B are satisfied.
Suppose now that the attacker has corrupted player Pv in some time frame

t − 1, i.e. he knows his share h
(t−1)
v (x). Then Pv being detected as corrupt is

“rebooted” and in the renewal phase his share is updated. Note that δu;v(0) =
h

(t−1)
v (αu)−gu(αv) and that gu(x) is public. Thus the attacker is able to compute∑

u∈A ruδu;v(0) =
∑

u∈A ru (h(t−1)
v (αu) − gu(αv)). He knows the “true part” of

320 V. Nikov and S. Nikova

the Pv’s new share, namely h
(t)
v (0) =

∑
u∈A ru δu;v(0). Therefore, again incre-

mentally breaking different sets of players the attacker is able to compute the
secret.

On the negative side we do not know secure perfect proactive VSS protocols,
based on the considered approach to re-share the player’s shares. On the positive
side we can improve the conditions for security of proactive VSS (Theorem 3).

Re-sharing Phase:
1. Each player Pu re-shares the “true part” of his share, i.e. hu(0), by choosing a

symmetric polynomial δu(x, y) of degree k.
2. Player Pu plays the role of the dealer executing Share-Detection phase.
3. As a result every player Pv posses a share δu;v(x) polynomial of degree k, if Pu is

not blamed as a corrupt dealer.
4. In order to prove that the shared secret is indeed hu(0), Pu broadcasts a k-degree

polynomial gu(x) = hu(x)−δu(x, 0). Note that if Pu is honest dealer then gu(0) =
0 holds.

5. Each player Pv verifies that gu(0) = 0 and that

gu(αv) = hu(αv) − δu(αv, 0) = hv(αu) − δu;v(0).

If these relations are satisfied he accepts his auxiliary share, otherwise an accusation
against Pu is broadcast.

6. Let A be the set of uncorrupt players. Let ru be the constants which correspond
to players Pu ∈ A.

7. Each player Pv computes his new-share as follows:

hv(x) ←−
∑
u∈A

ru δu;v(x).

Fig. 2. Re-sharing Protocol with Randomization

Theorem 4. A computationally secure (k, n) proactive VSS exists if and only
if 2k < n.

6 A Remark on the General Access Structure Case

We first want to point out that all threshold protocols and attacks described in
this paper can be easily generalized for the general access structure case using
Monotone Span Programs (see [11, 12]). We choose not to do it just for the sake
of simplicity, now we will only state the corresponding result to Theorem 3.

Denote the set of all subsets of P (i.e. the power set of P) by P (P). The set of
qualified groups is denoted by Γ and the set of forbidden groups by Δ. The set Γ
is called monotone increasing if for each set A in Γ also each set containing A is
in Γ. Similarly, Δ is called monotone decreasing, if for each set B in Δ also each
subset of B is in Δ. A monotone increasing set Γ can be efficiently described by

On Proactive Secret Sharing Schemes 321

the set Γ− consisting of the minimal elements (sets) in Γ, i.e. the elements in
Γ for which no proper subset is also in Γ. Similarly, the set Δ+ consists of the
maximal elements (sets) in Δ, i.e. the elements in Δ for which no proper superset
is also in Δ. The tuple (Γ,Δ) is called an access structure if Γ ∩ Δ = ∅. If the
union of Γ and Δ is equal to P (P) (so, Γ is equal to Δc, the complement of Δ),
then we say that access structure (Γ,Δ) is complete and we denote it just by Γ.
The adversary is characterized by a particular subset ΔA of Δ, which is itself
monotone decreasing structure. The set ΔA is called adversary structure while
the set Δ is called privacy structure The players which belong to Δ are also called
curious and the players which belong to ΔA are called corrupt. An (Δ,ΔA)-
adversary is an adversary who can (adaptively) corrupt some players passively
and some players actively, as long as the set A of actively corrupt players and
the set B of passively corrupt players satisfy both A ∈ ΔA and (A ∪ B) ∈ Δ.
For any two monotone decreasing sets Δ1,Δ2 operation element-wise union ,
is defined as follows: Δ1 , Δ2 = {A = A1 ∪A2;A1 ∈ Δ1, A2 ∈ Δ2}.

Now we give a formal definition of a Monotone Span Program.

Definition 1. A Monotone Span Program (MSP) M is a quadruple (F,M, ε,ψ),
where F is a finite field, M is a matrix (with m rows and d ≤ m columns) over F,
ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε = (1, 0, . . . , 0)T ∈ F d

is called target vector. The size of M is the number m of rows and is denoted
as size(M).

As ψ labels each row with a number i from [1, . . . ,m] that corresponds to player
Pψ(i), we can think of each player as being the “owner” of one or more rows.
Let MA denote the restriction of M to the rows i with i ∈ A. An MSP is said
to compute a (complete) access structure Γ when ε ∈ im(MT

A) if and only if A
is a member of Γ . We denote such an access structure by Γ (M). We say that
A is accepted by M if and only if A ∈ Γ , otherwise we say A is rejected by M.
In other words, the players in A can reconstruct the secret precisely if the rows
they own contain in their linear span the target vector of M, and otherwise they
get no information about the secret.

Theorem 5. Let M = (F,M, ε,ψ) be an MSP and M be an m× d matrix. Let
Δ̃c = Γ (M) and let Δ̃ � Δ. Then there exist a perfect proactive VSS scheme
secure against (Δ,ΔA)-adversary if the following conditions are satisfied:

1. rank(MA) = d, for any group A ∈ Γ (M)−; (Recovery)
2. rank(MB) � d− 1, for any group B ∈ Δ+; (Renewal)
3. P /∈ ΔA , ΔA , Δ̃. (VSS)

Note that the Vandermonde matrix is the matrix for MSP in the threshold
case. Hence conditions 1. and 2. imply that Δ̃ � Δ, i.e. b < k.

7 Conclusions

In this paper we have revised the mobile adversary model of Herzberg et al. and
showed that the first scheme as well as most of the consecutive computationally

322 V. Nikov and S. Nikova

secure schemes are subject to a kind of attack in the new adversary model. We
have shown that several unconditionally secure schemes can be broken when
mobile adversary is considered (even in the Herzberg et al. adversary model),
while the same protocols remain secure in case the adversary is not mobile. In
conclusion we have shown several specific weaknesses. It is an open question
whether we can do better than Theorem 3 (and Theorem 5), using for example
the re-sharing approach instead of commitment to 0.

Acknowledgements

The authors would like to thank the anonymous referees for the valuable com-
ments and remarks.

References

1. R. Cramer, I. Damgard, U. Maurer, General Secure Multi-Party Computation from
any Linear Secret Sharing Scheme, EUROCRYPT’2000, LNCS 1807, Springer-
Verlag 2000, pp. 316-334.

2. P. D’Arco, D. Stinson, On Unconditionally Secure Proactive Secret Sharing Scheme
and Distributed Key Distribution Centers, Manuscript, May 2002.

3. P. D’Arco, D. Stinson, On Unconditionally Secure Robust Distributed Key Dis-
tribution Centers, ASIACRYPT’2002, LNCS 2501, Springer-Verlag 2002, pp. 346-
363.

4. P. Feldman, A practical scheme for non-interactive verifiable secret sharing,
FOCS’1987, pp. 427-437.

5. Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung, Proactive RSA, CRYPTO’1997,
LNCS 1294, Springer-Verlag 1997, pp. 440-454.

6. Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung, Optimal-resilience proactive
public-key cryptosystems, FOCS’1997, pp. 384-393.

7. S. Jarecki, Proactive Secret Sharing and Public Key Cryptosystems, M.Sc. Thesis,
1995, MIT.

8. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, Secure Distributed Key Generation
for Discrete-Log Based Cryptosystems, EUROCRYPT’1999, LNCS 1592, Springer-
Verlag 1999, pp. 295-310.

9. A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, Proactive secret sharing or: How
to cope with perpetual leakage, CRYPTO’1995, LNCS 963, Springer-Verlag 1995,
pp. 339-352, (extended version 1998).

10. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung, Proactive Public
Key and Signature Systems, ACM’1997 - Computer and Communication Security,
pp. 100-110.

11. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, Applying General Access Structure
to Proactive Secret Sharing Schemes, Proc. Benelux, Springer-Verlag 2002, pp. 197-
206, Cryptology ePrint Archive: Report 2002/141.

12. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, On Distributed Key Distribution
Centers and Unconditionally Secure Proactive Verifiable Secret Sharing Schemes
based on General Access Structure, INDOCRYPT’2002, LNCS 2551, Springer-
Verlag 2002, pp. 422-437.

On Proactive Secret Sharing Schemes 323

13. V. Nikov, S. Nikova, B. Preneel, Multi-Party Computation from any Linear Secret
Sharing Scheme Unconditionally Secure against Adaptive Adversary: The Zero-
Error Case, ACNS’2003, LNCS 2846, Springer-Verlag 2003, pp. 1-15.

14. R. Ostrovsky, M. Yung, How to withstand mobile virus attack, PODC’1991, pp. 51-
59.

15. T. Pedersen, Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing, CRYPTO’1991, LNCS 547, Springer-Verlag 1991, pp. 129-140.

16. D. Stinson, R. Wei, Unconditionally Secure Proactive Secret Sharing Scheme with
combinatorial Structures, SAC’1999, LNCS 1758, Springer-Verlag 1999, pp. 200-
214.

A Appendix

We first present Feldman’s computational secure VSS protocol.

Sharing Phase:
Let s be a secret from a finite field F = Zp and g is primitive element in F.
Each player Pu is associated publicly with different non-zero element αu ∈ F.

1. Dealer D chooses a random polynomial f(x) over F of degree k subject
to the condition f(0) = s.

2. Each share su is computed by D as su = f(αu) and then transmitted
secretly to participant Pu.

3. Let f(x) =
∑k

j=0 ajx
j . The dealer broadcasts the values Aj = gaj for

j = 0, 1, . . . , k.

Detection Phase:
1. Each player Pu verifies his own share by checking the following equation:

gsu =
∏k

j=0A
αj

u
j . If the equation does not hold the player broadcasts an

accusation to the dealer.
2. If there are more than k accusations to the dealer then D is blamed

corrupt, and the protocol is stopped.

Reconstruction Phase:
1. Each player Pu broadcasts f(αu).

2. Take k + 1 broadcast values for which gf(αu) =
∏k

j=0A
αj

u
j holds.

3. Determine f̃(x) of degree at most k that passes through these points and
output f̃(0).

324 V. Nikov and S. Nikova

Next we present two unconditional secure VSS protocols. The first one is
based on symmetric bivariate polynomials.

Sharing Phase:
Let s be a secret from some finite field F. Each player Pu is associated publicly
with different non-zero element αu ∈ F.

1. D chooses a random symmetric polynomial f(x, y) =
∑k

i=0
∑k

j=0 ai,jx
iyj

over F, where a0,0 = s and ai,j = aj,i.
2. Then, for each player Pu, D sends hu(x) = f(x, αu) to Pu through a

private channel.

Detection Phase:
1. Player Pu sends a check-value Cu,v = hu(αv) to Pv for 1 ≤ v ≤ n, (v �= u).
2. Each player Pv checks whether hv(αu) = Cu,v for 1 ≤ v ≤ n, (v �= u). If

Pv finds that this is not true, then Pv broadcasts an accusation to Pu in
the form (v;u).

3. For each player Pw, who has been accused by a qualified group of play-
ers, the dealer must broadcast his share hw(x). Then each player again
performs all relevant verifications on the values broadcast by the dealer
and those known to him and accuses D if there is an inconsistency. The
dealer defends himself by broadcasting back the share of the accusing
player. This process continues until no new accusations are made.

4. Each player Pw computes the minimum subset A ⊆ P, such that any
ordered pair (v;u) ∈ A × A is not broadcast (i.e. is consistent). If |A| ≥
n− k, then Pw accepts his share. Otherwise, Pw accuses the dealer.

5. If there are more than k accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase:
1. Each player Pv ∈ A sends hv(x) to each Pu ∈ A.
2. After having received the polynomials hv(x), each Pu ∈ A again applies

non-interactive pair-wise checking for all received polynomials, namely:
filling the consistency matrix with a 1 on position (v, w) if hv(αw) =
hw(αv) holds and with a 0 otherwise. Then Pu computes a subset of
consistent shares Ã ⊆ A, Ã ∈ Γ .

3. Next, player Pu computes a polynomial fu(0, y), such that fu(0, αv) =
hv(0), for those v with Pv ∈ Ã. Finally, the player Pu computes and
outputs s′ = fu(0, 0).

On Proactive Secret Sharing Schemes 325

The second protocol is based on non-symmetric bivariate polynomials.

Sharing Phase:
Let s be a secret from some finite field F. Each player Pi is associated publicly
with different non-zero element αi ∈ F.

1. D chooses a random polynomial f(x, y) =
∑k

i=0
∑k

j=0 ai,jx
iyj , where

ai,j ∈ F and a0,0 = s.
2. Then, for each player Pu, D sends hu(x) = f(x, αu) and gu(y) = f(αu, y)

to Pu through a private channel.

Detection Phase:
1. Player Pu checks whether hu(αu) = gu(αu). If this condition is not satis-

fied he broadcasts an accusation on the dealer.
2. Next, player Pu sends a check value Cu,v = gu(αv) to Pv for 1 ≤ v ≤ n,

(v �= u).
3. Each player Pv checks whether hv(αu) = Cu,v for 1 ≤ v ≤ n, (v �= u). If

Pv finds that this is not true, then Pv broadcasts an accusation to Pu in
the form (v;u).

4. For each player Pw, who has been accused by a qualified group of play-
ers, the dealer must broadcast his share hw(x). Then each player again
performs all relevant verifications on the values broadcast by the dealer
and those known to him and accuses D if there is an inconsistency. The
dealer defends himself by broadcasting back the share of the accusing
player. This process continues until no new accusations are made.

5. Each player Pw computes the minimum subset A ⊆ P, such that any
ordered pair (v;u) ∈ A × A is not broadcast (i.e. is consistent). If |A| ≥
n− k, then Pw accepts his share. Otherwise, Pw accuses the dealer.

6. If there are more than k accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase:
1. Each player Pv ∈ A sends hv(x) and gv(y) to each Pu ∈ A.
2. After having received the polynomials hv(x) and gv(y), each Pu ∈ A

again applies non-interactive pair-wise checking for all received polyno-
mials, namely: filling the consistency matrix with a 1 on position (v, w)
if hv(αw) = gw(αv) holds and with a 0 otherwise. Then Pu computes a
subset of consistent shares Ã ⊆ A, Ã ∈ Γ .

3. Next, Pu computes a polynomial fu(0, y), such that fu(0, αv) = hv(0),
for those v with Pv ∈ Ã. Finally, Pu computes and outputs s′ = fu(0, 0).

Remark 2. Notice that the roles of the polynomials hv(x) and gv(y) are sym-
metric. Indeed, in the reconstruction phase a player Pu can also compute a
polynomial fu(x, 0), such that fu(αv, 0) = gv(0) for those v with Pv ∈ Ã and
then he can again compute s′ = fu(0, 0).

Efficient Constructions of Variable-Input-Length
Block Ciphers

Sarvar Patel1, Zulfikar Ramzan2 and Ganapathy S. Sundaram1

1 Lucent Technologies
{sarvar, ganeshs}@bell-labs.com

2 DoCoMo Communications Laboratories, USA��

ramzan@docomolabs-usa.com

Abstract. Existing block ciphers operate on a fixed-input-length (FIL)
block size (e.g., 64-bits for DES). Often, one needs a variable-input-
length (VIL) primitive that can operate on a different size input; it is,
however, undesirable to construct this primitive from “scratch.” This pa-
per contains two constructions that start with a fixed-input-length block
cipher and show how to securely convert it to a variable-input-length
block cipher without making any additional cryptographic assumptions.
Both constructions model the FIL block cipher as a pseudorandom per-
mutation (PRP) – that is, indistinguishable from a random permutation
against adaptive chosen plaintext attack. The first construction converts
it to a VIL PRP and is an efficiency improvement over the scheme of Bel-
lare and Rogaway [4]. The second construction converts it to a VIL super
pseudorandom permutation (SPRP) – that is, the resulting VIL block
cipher is indistinguishable from a random permutation against adaptive
chosen plaintext and ciphertext attack.

1 Introduction

A cryptographic primitive which operates on an input of fixed size is called a
fixed-input-length (FIL) primitive. For example, block ciphers typically operate
on messages of fixed size (64 bits in the case of DES [18]). But often in practice,
one is faced with the situation of applying a cryptographic primitive on data of
varying lengths. A striking example is the need for an encryption algorithm which
deals with messages of varying sizes but at the same time preserves the property
that the length of ciphertext equals the length of the plaintext. This situation
is very common in Internet applications where traffic consists of “packets” of
varying sizes. If a block cipher is being used for encryption, then the blocks that
need to be encrypted could be of varying lengths. Differential packet sizes are
also prevalent in wireless applications: this is due to the fact that the frames of
data that are sent to each user may be different from user to user because of
the difference in the so called path-loss of the users relative to the base station.

�� Work done while the author was a visiting member at Lucent Technologies.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 326–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Constructions of Variable-Input-Length Block Ciphers 327

Moreover, channel conditions are a function of time, thereby forcing a change in
the transmission rates (and hence block sizes). This calls for the development of
variable-input-length (VIL) cryptographic primitives.

In general, one wants to avoid having to construct new primitives “from
scratch” to deal with specific applications, since this approach might be prone
to error. Instead, one can attempt to utilize a FIL primitive as a building block
in order to build a VIL primitive. In this paper, we take this approach and
provide efficient constructions for the conversion of a FIL block cipher to a VIL
block cipher. We also provide proofs of security relating the security of the VIL
primitive to the security of the underlying FIL primitive.

1.1 Related Work

FIL to VIL for Block Ciphers. The first formal treatment for converting
a fixed-input-length block cipher to a variable-input-length block cipher is due
to Bellare and Rogaway [4]. They formalized the problem and gave a generic
technique for constructing a block cipher which operates on any arbitrary length
input from a block cipher that works on a fixed length input; they used the idea
of a parsimonious pseudorandom function and parsimonious encryption scheme.
In addition, their cipher possesses the customary requirement, initially due to
Luby and Rackoff [15], of being a secure “pseudorandom permutation (PRP)”
as long as the original cipher is.

A number of other papers could also be used as partial solutions towards con-
verting FIL block ciphers into VIL block ciphers. For example, the celebrated
paper of Luby and Rackoff [15] showed how to convert a n-bit to n-bit pseudoran-
dom function (PRF) into a block cipher operating on 2n-bits. The subsequent
work by Naor and Reingold [17], provided constructions for converting block
ciphers operating on n-bits to block ciphers on cn-bits for a constant c ≥ 1. Ble-
ichenbacher and Desai [7] have a construction that potentially converts a FIL
SPRP to a VIL SPRP, though they do not provide a formal security proof. More
recently, Halevi and Rogaway [12, 13] have provided constructions of tweakable
enciphering schemes that operate on mn bits where m can be any positive in-
teger and n is the size of the underlying block cipher. It was initially unclear
how to use the techniques of [15] and [17] to attain provably-secure ciphers that
operate on lengths which are not a multiple of n. One of the contributions of the
present paper is to utilize these previous results to achieve such a construction.

FIL to VIL for Other Primitives. The FIL to VIL problem has been ad-
dressed for Message Authentication Codes (MACs) and for PRFs. The elegant
FIL-MAC to VIL-MAC work of An and Bellare [1] is a Damg̊ard-like [10] nested
iteration construction. Numerous works implicitly address the issue of convert-
ing a fixed-input-length PRF into a variable-input-length one; to name a few:
Bellare, Kilian and Rogaway’s CBC-MAC analysis [3] (which assumes messages
are fixed length, but arbitrarily large), Petrank and Rackoff’s [21] extension
to variable-length messages, Bellare, Canetti, and Krawzyck’s [16] cascade con-
struction, and Bernstein’s [5] protected counter sum construction.

328 S. Patel, Z. Ramzan, and G.S. Sundaram

1.2 Meaning of FIL to VIL

There is some ambiguity in the meaning of a FIL to VIL construction which we
would like to clarify. A VIL primitive operates on messages x ∈ {0, 1}∗ or some
large set containing strings of various lengths. The VIL construction can only use
the given FIL primitive in conjunction with other non-cryptographic operations,
but it cannot use other types of FIL cryptographic primitives. For example, if
a VIL MAC is being constructed then only the given FIL MAC primitive can
be used, but other cryptographic primitives like a PRG or PRF cannot be used.
There are two possible meanings of using the FIL cryptographic primitive:

– Oracle Model: In this model, we only have oracle access to the FIL crypto-
graphic primitive. We can query the FIL primitive with an input and get
back an output. But, we cannot look inside the primitive for a key or run
many instances of the primitive. This is a restrictive model which is useful
to model certain scenarios; e.g., a smartcard or an assistant server which can
answer our queries without giving internal access.

– Keyed Model: Unlike the Oracle model, here we are given a FIL crypto-
graphic primitive which takes a single fixed key and message as input. Next,
we can run various instances of the FIL primitive each keyed with its own
key. However, any other key material must be derived from the single given
key and using the FIL primitive itself without making any additional cryp-
tographic assumption other than what is implied by the FIL primitive. The
restriction of not having extra key material is appropriate because it would
not be an apples to apples comparison of VIL constructions which take large
keys with those that do not. Next, it is interesting and important to see
if an efficient construction can be so achieved. Practically speaking, in ex-
isting systems, layer and functionality separation may mean, for example,
that after a session key agreement, a key of fixed size may be handed to
the encryption layer to encrypt the messages. As designers of the encryption
layer we may be able to use a VIL construction, but we cannot request more
key material from the session key agreement protocol because that may be
a standardized protocol over which we have no control. So, if we need more
keys for the VIL construction we have to create them using the given key
and the FIL primitive. Bellare-Rogaway [4] used this keyed model and both
of our constructions do as well.

1.3 Our Results

In this work, our goal is to provide very efficient VIL constructions for block ci-
phers. We utilize various classes of universal hash functions together with the ex-
isting cryptographic primitives to attain very efficient constructions; using such
hash functions in conjunction with cryptographic primitives is a well-studied
idea, but the novelty of this paper is their use in constructing block ciphers in
the variable-input-length setting. Moreover, for our constructions we provide an
exact security analysis. In some cases we utilize a technique / framework due to
Naor and Reingold [17] that enables us to provide clean proofs of security in the
presence of adaptive adversaries. We obtain the following results:

Efficient Constructions of Variable-Input-Length Block Ciphers 329

– Sections 3 and 4 give a FIL to VIL Block Cipher construction that is almost
twice as fast as the Bellare-Rogaway construction [4]. Here we model the
block cipher as a pseudorandom permutation.

– Section 5 gives a FIL to VIL Block Cipher that is super pseudorandom. We
provably achieve an open goal suggested by Bellare-Rogaway [4].

In both cases, the concrete security of our schemes are limited by birthday
bounds, so 2n/2 should be sufficiently large, where n is the starting block size.

2 Definitions

We introduce the notions of pseudorandom functions (PRFs) and pseudoran-
dom permutations (PRPs). Although these primitives are often treated asymp-
totically, we model them in the concrete security framework. This is necessary
since we deal with fixed-input-length primitives; as a result, meaningful security
results are not captured by an asymptotic treatment. The exposition borrows
freely from [3], [16].

Notation. For a bit string x, we denote its length by |x|. If a, b > 0 are integers,
and a ≤ b, then the substring of x starting at bit position a and ending at bit
position b (counting from the left) is denoted x[a, . . . , b]. Let S be a probability
space, then the process of picking an element from S according to the underlying
probability distribution is denoted x

R← S. We use In to denote {0, 1}n (the set
of bit strings of length n). The set of all functions mapping In to Im is denoted
Fn,m, and set of permutations on In is denoted Pn.

Computational Model. We follow the convention in [3] and model our ad-
versary A as a program for a Random Access Machine. This adversary will have
access to an oracle for computing a specified function f ; it can make black-box
queries to this oracle, and we assume that it will receive a correct response in
unit time. We denote by Af an adversary with access to an oracle for computing
function f . Following the convention of [3], we define the running time of the
adversary to be its execution time plus the length of its description.1 The query
complexity of A is defined as the number of queries it makes to its oracle.

Finite Function Families. A finite function family F , is a collection of func-
tions, all of which have domain Dom(F) and range Range(F). Our focus is on
function families in which each function in the family can be formally specified
by (by at least one) “key.” Typically, the key for a function family will be a
pre-defined fixed-length bit string. And for a function family F , and a key k, we
let Fk denote the function associated with the given key, and we assume that
computing Fk at any given point of Dom(F) is easy given the key k.

Examples. Perhaps the simplest example is the set of all functions with do-
main Ik and range I�, under the uniform distribution. We denote this family by

1 By defining the running time as such, we prevent anomalies that may arise from
embedding arbitrarily large lookup tables in A’s description.

330 S. Patel, Z. Ramzan, and G.S. Sundaram

Randk→�. A function in this family can be represented by k2� bits – hence an
appropriate key space is Ik2� . Another simple example is the set of all permu-
tations on I�. We denote this family by Perm�. Any block cipher constitutes a
keyed family of permutations. For example, DES [18] has key space I56, with
domain and range I64, and the AES algorithm (Rijndael [9]) is typically instan-
tiated with a key space, a domain, and a range of I128 (though the specification
accommodates alternate lengths).

Distinguishability. The concept of distinguishability, due to Goldreich, Gold-
wasser, and Micali [11], helps capture the idea of a “computational distance”
between two function families. This notion will be useful when we discuss pseu-
dorandom functions and permutations. Suppose that F0 and F1 are two function
families that have both identical domains and identical ranges. An adversary A
will get oracle access to either a function sampled from F0, or a function sam-
pled from F1. The adversary will not, however, be told whether the oracle really
sampled from F0 or F1. The adversary’s goal is to determine which function
family was actually sampled. Informally, distinguishability corresponds directly
to the adversary’s success rate in making this determination. In particular, let
AdvA(F0,F1) � Pr[f R← F0 : Af = 1]−Pr[f R← F1 : Af = 1], where the proba-
bilities are taken over the choice of f and A’s internal coin tosses. Now, we say
that A (t, q, n, ε)-distinguishes F0 from F1 if A runs for time at most t, makes
at most q queries to its oracle each length at most n, and AdvA(F0,F1) ≥ ε.

Pseudorandom Functions and Permutations. Pseudorandomness captures
the computational distance between Randk→�, and another function family F
with domain Ik and range I�.

Definition 1. Let F be a keyed function family with domain Ik and range I�.
Let A be an adversary that is equipped with an oracle. Then, Advprf

F (A) � Pr[f R←
F : Af = 1] − Pr[f R← Randk→� : Af = 1]. For any integers q, t ≥ 0, we define
an insecurity function Advprf

F (q, t) � maxA{Advprf
F (A)}. Where the maximum is

taken over choices of adversary A that are restricted to running time at most t,
and q oracle queries.

We employ the convention due to [3] and incorporate the amount of time it
takes to sample f from F into the running time of A.

We now consider the concept of a pseudorandom permutation family, which
was originally defined by Luby and Rackoff [15]. The original notion considered
the computational indistinguishability between a given family of permutations
and the family of all functions. Following the treatment of Bellare et al. [3], we
measure the pseudorandomness of a permutation family on I� in terms of its
indistinguishability from Perm�.

Definition 2. Let F be a keyed permutation function family with domain and
range I�. Let A be an adversary that is equipped with an oracle. Then,

Advprp
F (A) � Pr[f R← F : Af = 1] − Pr[f R← Perm� : Af = 1].

Efficient Constructions of Variable-Input-Length Block Ciphers 331

We define an insecurity function Advprp
F (q, t) � maxA{Advprp

F (A)}, for any in-
tegers q, t ≥ 0. The maximum is taken over choices of adversary A that are
restricted to running time at most t, and q oracle queries.

Luby and Rackoff [15] also considered the notion of a super pseudorandom
permutation (SPRP). In this setting, the adversary is given access to both an
oracle that computes the permutation for a given element, and an oracle that
computes the inverse of the permutation.

Definition 3. Let F be a keyed permutation function family with domain and
range I�. Let A be an adversary that is given access to two oracles. Then,

Advsprp
F (A) � Pr[f R← F : Af,f−1

= 1] − Pr[f R← Perm� : Af,f−1
= 1].

We define an insecurity function Advsprp
F (q, t) � maxA{Advprp

F (A)}, for any in-
tegers q, t ≥ 0. The maximum is taken over choices of adversary A that are
restricted to running time at most t, and q oracle queries.

The security of a Block Cipher against chosen plaintext attacks can be un-
derstood by examining it as a pseudorandom permutation, whereas the security
against chosen plaintext and ciphertext attacks can be understood by examining
it as a super pseudorandom permutation.

Universal Hash Functions. Let H be a family of functions with domain D
and range S 2 that comes with an induced distribution (e.g., uniform); functions
can be sampled fromH according to this distribution. Let ε be a “small” constant
such that 1/|S| ≤ ε ≤ 1.

– We call H an ε-almost universal family of hash functions if, for all x �= y ∈ D,
Prh∈H [h(x) = h(y)] ≤ ε.

– We call H ε-almost-Δ-universal family of hash functions if, for all x �= y ∈ D,
Prh∈H [h(x) − h(y) = δ] ≤ ε.

– We call H an ε-almost-strongly-universal family of hash functions if, for
all x �= y ∈ D, Prh∈H [h(x) = a, h(y) = b] ≤ ε/|S|. If H consists only of
permutations, we say that H is a strongly universal family of permutations.

The above definitions are due to [8] [22]. As an example, the linear congru-
ential hash h(x) = ax + b mod p where a is non-zero and p is a prime, meets
the above criteria. For simplicity, we often say that h is a certain type of uni-
versal hash function to mean that h was drawn from the family H according
to its equipped distribution. We will later need universal and Δ-universal hash
functions to operate on variable-length domains. Standard techniques of padding
and length appending to create variable-input-length universal hash functions
can be used (e.g., UMAC [6]) and we do not discuss them further.

2 S is a usually a finite group with ‘+’ and ‘−’ as the addition and subtraction oper-
ators respectively.

332 S. Patel, Z. Ramzan, and G.S. Sundaram

3 FIL to VIL PRP: An Example Construction

Before presenting our general construction, we provide a concrete instantiation
which takes the DES block cipher [18] with key K and creates a variable-input-
length block cipher for block sizes larger than 64 bits. This example is primarily
pedagogical – in practice, one should apply our construction on a longer starting
block length to avoid birthday-type attacks. As depicted in Figure 1, we need
several keys. We use key K1 in DES in the second round, we use K2 in the last
round where DES is called in counter mode, and we need a key for the universal
hash function h in round 1. To generate these keys, we run DES with key K and
inputs 1, 2, . . . , i and label the outputs K1,K2, . . . ,Ki. We can then use key K1
to key DES in round 2 and we can use key K2 to key DES in round 3. The rest
of the keys can be used as the hash keys. This key expansion step will take place
only once. The exact hash key size we need in order to deal with large inputs
depends upon the exact nature of the hash function. For concreteness, we will
use the Δ-universal hash function utilized in UMAC [6] which can work with a
limited size hash key and specifies methods (e.g., padding, length appending, and
a well-known Toeplitz key-scheduling trick) to deal with variable-length inputs.

Encryption

1. The message M is divided into two parts Mpref of size |M | − n bits and
Msuff of size n = 64 bits.

2. In round 1, the universal hash function h is applied on Mpref and the result
is added to Msuff to create S. Mpref is also carried forward to round 2.

3. In round 2, S is encrypted using the DES block cipher keyed with key K1
resulting in output T . Mpref is carried forward.

4. In round 3, T is carried forward. T is also used as the initial counter value
used to encrypt Mpref using DES in counter mode; i.e., DES is keyed with
K2 and called with as many inputs T, T + 1, . . . as needed to create enough
stream bits to XOR with Mpref to create Cpref . The output is (T,Cpref).

To see that the above procedure yields a variable-input-length block cipher
it suffices to note that each round yields an invertible permutation. Round 1 is
a Feistel permutation where the universal hash function is the underlying round
function, so it is invertible. Round 2 block encrypts S and is invertible by the
nature of block ciphers. Finally, round 3 uses T as the initial value for counter
mode encryption, and so is also invertible. The details for decryption follow.

Decryption

1. The ciphertext C is divided into two parts, T of size n bits and Cpref of size
|M | − n bits.

2. T, T + 1, . . . are fed through DES block cipher keyed with K2 to create a
stream of output bits which are XORed with Cpref to recover Mpref . We
have now inverted round 3 to recover (T,Mpref).

3. T is decrypted using DES block cipher keyed with K1 to recover S. We have
now inverted round 2 to recover (S,Mpref).

Efficient Constructions of Variable-Input-Length Block Ciphers 333

Fig. 1. An example of our construction for FIL to VIL conversion of DES

4. Mpref is fed to the universal hash function h and the result is XORed with S
to recoverMsuff . We have now recovered the plaintextM = (Mpref ,Msuff).

As we describe next, we can instantiate the above example with any block
cipher (not just one with a 64-bit block length) and any Δ-universal hash func-
tion. Furthermore, round 3 can employ other encryption schemes besides counter
mode.

4 FIL to VIL PRP: Generalization and Security

The problem of constructing a variable-input-length encryption mode for block
ciphers was considered by Bellare and Rogaway [4]. They give a generic ap-
proach for solving this problem, and then instantiate it with a specific con-
struction. The generic approach involves utilizing a parsimonious pseudorandom
function together with a parsimonious encryption scheme. It turns out that the
CBC-MAC is a parsimonious PRF. In addition, both CBC-mode encryption and
counter-mode encryption (with a random initial counter) serve as examples of
parsimonious encryption schemes. In this section, we give an efficient construc-
tion for taking an existing fixed-input-length pseudorandom permutation, and
building a variable-input-length parsimonious PRF (this is equal to round 1 and
round 2 in figure 1). Our construction is more efficient than the CBC-MAC.
Overall the construction in [4] requires two cryptographic passes on the entire
input, whereas our construction requires one cryptographic pass and one non-
cryptographic pass using a computationally lightweight universal hash function.

334 S. Patel, Z. Ramzan, and G.S. Sundaram

We now describe the Bellare-Rogaway framework [4] which we use to generalize
our construction and analyze its security.

Parsimonious PRF. Let F be a keyed function family with domain Ik and
range In, where k ≥ n. We call F a parsimonious family if, for any key a ∈
Keys(F), and any input x ∈ Ik, the last n bits of x are uniquely determined by:
the remaining bits of x, the key a, and Fa(x).

Parsimonious Encryption. Following Bellare-Rogaway [4] we define a parsi-
monious encryption scheme via three algorithms S = (K, E ,D). The algorithm
K is a key-generation algorithm, and returns a random key κ to be used for the
encryption. The algorithm E takes this key κ and the message M , picks a ran-
dom, fixed-length IV , and then encrypts M to get a ciphertext C = (IV ;C∗),
where C∗ and M have the same length.

General Scheme for VIL Block Ciphers. Given a parsimonious PRF and
encryption scheme, we can construct a general VIL scheme F as follows. We let
G be the parsimonious PRF whose domain is the message space and whose range
is In. Let Recover denote G’s corresponding recovery algorithm that obtains the
last n bits of the message M given the key to G, the first |M | − n bits of M ,
and the output of G. Let S = (K, E ,D) be a parsimonious encryption scheme.
Let Kprf and Kenc be the secret keys for the parsimonious PRF and encryption
schemes respectively. Let Mpref be the first |M | − n bits of M .

Algorithm Encrypt Kprf ,Kenc (M)
T = GKprf

(M)
Cpref = EKenc

(Mpref ;T)
return C = (T ;Cpref)

Algorithm Decrypt Kprf ,Kenc (C)
Let T be the first n bits of C.
Mpref = DKenc

(C)
Msuff = RecoverKprf

(Mpref , T)
return M = (Mpref ;Msuff)

Security for VIL Mode Encryption. Before giving any security analysis for
general VIL Mode block cipher encryption, we discuss security for parsimonious
encryption. The security for a parsimonious encryption scheme is defined by
the adversary’s inability to distinguish the encryption of a message from the
encryption of a randomly chosen string of equal length. This definition was given
in [4], but follows a definition given by [2]. More formally, if S = (K, E ,D) is a
parsimonious encryption scheme, and A is a distinguishing adversary, then

Advpriv
A (S) � Pr[K ← K : AEK(·) = 1] − Pr[K ← K : AEK($|·|) = 1].

In the first experiment, the oracle returns a random encryption of the message
under the given key K, and in the second, a random encryption of a random
string of the same length as the message (under the key K) is returned. We
define Advpriv

S (t, q, μ) as maxA{Advpriv
S (A)}. Here the maximum is taken over all

adversaries A who are restricted to time t, and make at most q oracle queries
whose total length is no more than μ bits. Now, Bellare-Rogaway [4] proved

Efficient Constructions of Variable-Input-Length Block Ciphers 335

the following theorem relating the security of their general VIL block cipher
construct in terms of its constituent parsimonious PRF and encryption scheme.

Theorem 1 (Bellare-Rogaway [4]). Let B denote the VIL block cipher con-
structed from the parsimonious PRF family F and the parsimonious encryption
scheme S. Moreover, suppose that the functions in F have range In. Then

Advprp
B (t, q, μ) ≤ Advprf

F (t′, q, μ) + Advpriv
S (t′, q, μ) +

q2

2n
,

where t′ = t+O(qn+ μ).

VIL Parsimonious PRF. We now show how to efficiently construct a parsi-
monious PRF that can handle variable input lengths. As pointed out above,
our construction is the most efficient known parsimonious PRF. Combining our
parsimonious PRF with an existing parsimonious encryption scheme (see [4] for
examples) we get a very efficient scheme for VIL block cipher encryption. For
now, we assume that we have a PRP over In (any block cipher will work). We
show how to construct a parsimonious PRF family with domain In+b and range
In, where n ≤ b. Referring to figure 1, b = |M | − n = |Mpref |.
Construction 1. Let P be any pseudorandom permutation family on In, and
let H be an ε-almost Δ-universal family of hash functions with domain Ib and
range In. We construct a parsimonious PRF ParG with domain In+b and range
In as follows: A key of a function sampled from ParG is a pair 〈h, g〉 where h is
sampled from H and g is sampled from P. For every input x ∈ In+b, we define
the value of ParGh,g as ParGh,g(x) = g(h(x[1 . . . b]) ⊕ x[b+ 1 . . . n+ b]).

Remark. We observe that ParG is parsimonious: given the output T and
x[1 . . . b], it is easy to see x[b+ 1 . . . n+ b] = g−1(T) ⊕ h(x[1 . . . b]).

Note that if b < n, we can simply append a fixed padding to the input x,
to achieve total length 2n; the security bounds we prove remain the same, and
almost the exact same security proof will go through. Our construction is more
efficient than [4] because, the CBC pass on the input in the first round in [4] has
been replaced by a non-cryptographic Δ-universal hash applied to the input. We
note that one can use this idea of applying a Δ-universal hash function to all
but the last block to speed-up some MAC constructions in the Wegman-Carter
paradigm [23] (e.g., UMAC [6]), especially for shorter messages.

At this point, the reader may feel that something is amiss because the task
of dealing with variable input has been passed to the Δ-universal hash function
without adequately dealing with all the issues. We deal with them individually:

– Variable Input Length: As previously mentioned, Δ-universal hash functions
can be made to handle variable-length inputs by using standard techniques
of padding and length appending; e.g., see UMAC [6].

– Large Universal Hash Keys: There are some universal hash functions whose
key size grows linearly with the input, but not all suffer from this problem.
Tree hashing makes the key size grow much slower (about logarithmic in the

336 S. Patel, Z. Ramzan, and G.S. Sundaram

input size). There are other universal hash function constructions whose key
sizes are not dependent on the input size, but are rather dependent on the
output size [14]. Again UMAC [6] is an example of how one can limit the
key size of a universal hash function without compromising efficiency.

– Single Key: In the keyed model that we are working in, we are only given
a single key K, yet we need keys for the universal hash function, a key
for the block cipher g in ParGh,g and a key for the block cipher in the
parsimonious encryption scheme S. To generate the needed keys, we run the
FIL PRP or block cipher with key K and inputs 1, 2, . . . , i and label the
outputs K1,K2, . . . ,Ki. We can then use K1 to key the block cipher g, and
use K2 to key the block cipher in the parsimonious encryption S. The rest
of the keys can be used as the hash keys. We note that this key expansion
step takes place once, so the amortized cost is minimal.

We state the security theorem, but leave the detailed proof for the full version
of this paper.

Theorem 2. Define ParG as in construction 1. Let ε1 be the parameter associ-
ated with the Δ-universal family of hash functions in the construction, and sup-
pose that the underlying pseudorandom permutation family P utilized by ParG
is (t, q, n, ε2)-secure. Then, for any adversary A restricted to t time steps, and q
oracle queries of length at most n+ b:

Advprf
ParG(A) = Pr[g R← ParG : Ag = 1] − Pr[g R← Randn+b→n : Ag = 1]

≤
(
q

2

)
· ε1 + ε2.

Proof Sketch. We use the standard argument of demonstrating that the tran-
scripts resulting from interacting with an idealized ParG oracle are distributed
identically to those from interacting with a truly random function so long as
certain “bad” conditions do not occur. These bad conditions are related to the
likelihood that the g component does not see the same input from two distinct
queries. By the Δ-universal property of H, this happens with low probability.

5 FIL PRP to VIL SPRP

We now show how to convert a fixed-input-length block cipher that is secure
against chosen plaintext attacks to a variable-input-length block cipher that is
secure against both chosen plaintext and ciphertext attacks. This construction
achieves an open goal stated in [4]. The VIL SPRP construction requires about
5 cryptographic passes over the input, thus it should be considered a first step in
constructing more efficient VIL SPRPs. The idea is to first treat the original PRP
as a PRF and create two different variable-input-length PRFs of specific lengths
from it. Finally, we use these PRFs in an unbalanced Feistel network together
with universal hash functions in the right places to yield the desired result (see
figure 2). The construction we outline works when one needs to convert a block

Efficient Constructions of Variable-Input-Length Block Ciphers 337

Fig. 2. Constructing a VIL SPRP from a PRP

cipher on In to a cipher on In+b where b ≥ n. We can extend the ideas to work
for the case when b < n, but there is a loss in security.

Construction 2. Let P be any pseudorandom permutation family on In, and
let H be a family of pairwise independent permutations on In+b, and let H ′ be a
universal family of hash functions with domain Ib and range In. Define f1 and
f2 as follows:

f1(x) � pk0(h
′
1(x)), (1)

f2(x) � (pk1(x), pk2(x), . . . , pkr
(x))[1, . . . , b] (2)

where r = � b
n� and pk0 , pk1 , . . . , pkr

are independently keyed permutations drawn
from P, and h′

1 is drawn from H ′. Now, we define a new permutation family P ′

which maps input x ∈ In+b to h−1
2 (S(x), T (x)), where

y � h1(x),
S(x) � y[1, . . . , n] ⊕ f1(y[n+ 1, . . . , n+ b]), and
T (x) � y[n+ 1, . . . , n+ b] ⊕ f2(S(x)),

where h1, h2 are drawn from H.

We state the security theorem. Due to space constraints, we sketch the proof.

338 S. Patel, Z. Ramzan, and G.S. Sundaram

Theorem 3. Let P be a (t, (1 + � b
n�)q, n, ε1)-secure pseudorandom permutation

family on In, let H be a family of pairwise independent permutations on In+b,
let H ′ be an ε2 universal family of hash functions with domain Ib and range In,
and let P ′ be the permutation family defined above. Then P ′ is (t, q, n + b, ε′)
secure where: ε′ =

(
q
2

)
(2/2n + 1/2b + 1/2n+b−1 + ε2) + ε1.

Proof Sketch. The proof easily follows by first utilizing theorem 4.1 from
the paper of Naor and Reingold [17]. We first assume that the underlying round
functions are truly random (from which the final advantage can be bounded by
several applications of the triangle inequality in a series of hybrid arguments
in which we eventually replace the truly random functions with f1 and f2 as
above). In order to invoke theorem 4.1 of [17], we need to identify the “BAD”
conditions (as a function of h1 and h2 on the transcript of the adversary’s
interaction with the block cipher). Letting the input-output pairs be denoted
(xk, ck) for 1 ≤ k ≤ q (where the adversary makes q queries), the condition
BAD(h1, h2) occurs whenever h1(xi)[n+ 1, . . . , n+ b] = h1(xj)[n+ 1, . . . , n+ b]
or h2(ci)[1, . . . , n] = h2(cj)[1, . . . , n] for 1 ≤ i < j ≤ q. By the strongly-universal
property of the h1, the first condition occurs with probability 2−b and the second
occurs with probability 2−n. To complete the proof, one merely has to form the
hybrid argument by showing that f1 and f2 are pseudorandom functions. To do
so, one should first replace the PRP p with a PRF. Then, the proof that f1 is
pseudorandom is very similar to the proof that our parsimonious function from
the previous construction is pseudorandom. It is also clear that f2 is pseudo-
random since it is the concatenation of invocations of a pseudorandom function
on random and independently chosen keys. Now, the final hybrid step involves
showing that PRPs are statistically close to PRFs, which is well known.

A few remarks are in place:

– Single Key Model: Since we only have a single key K for a block cipher, we
need to specify how the rest of the keys are created. There are 4 rounds in our
construction and keys are needed in each round. The first and fourth rounds
need keys for the pairwise independent permutation h1 and h2. The second
round needs keys for the universal hash h′

1 and k0. The third round needs
keys k1, . . . , kr. We create the other keys from the permutation, pK() by hav-
ing arguments pK(roundnumber, index); for round 2, we set k0 = pK(2, 0)
and use index values 1 and higher to create the keys for the universal hash
h′

1. For round 3, k1 = pK(3, 1) . . . ki = pK(3, i). For rounds 1 and 4, we can-
not reuse keys created for a specific length input message as part of the keys
for another larger length input message. The keys have to be independent.
We achieve this by including a length parameter in the argument. To create
keys for h1 we would run pK(1, length, 1) . . . pK(1, length, i). Similarly for
h2 we would run pK(4, length, 1) . . . pK(4, length, i).

– Efficiency: In rounds two and three we have to basically do a cryptographic
pass over the entire input. The keys k0, . . . , kr and the keys for h′

1 are gen-
erated once and can be reused, hence their cost is not dominant when amor-
tized over multiple runs. However, the keys for h1 and h2 cannot be reused

Efficient Constructions of Variable-Input-Length Block Ciphers 339

and they have to be created again for each separate message length. Since a
pairwise independent permutation takes a key whose size is twice the mes-
sage length, we need to do effectively two cryptographic passes for round
one and another two cryptographic passes for round 4. Thus, for the Strong
VIL construction we effectively need five cryptographic passes.

– Optimizations: Note that when a message length has been previously used,
then the keys of h1 and h2 previously calculated for that length can be
reused. Thus, a table of keys can be kept for each length. This makes sense
in applications that only involve a few specific message lengths. We also note
that the above construction can be optimized in several ways using some
standard tricks from [17, 19, 20]. First, the pairwise independent functions
can be replaced by Δ-universal hash functions; the security proof is very
similar to the ones in [17] and the full version of [19] (but we can no longer
simply use theorem 4.1 from [17]). We may further use the same key material
in the PRF in rounds 2 and 3 by strengthening the condition on the hash
function as was done in [19]. Finally, we can in some cases recycle the key
material used in the outer round hash functions by considering Feistel group
operations other than XOR as was done in [20]. If we were to replace the pair-
wise independent permutation in the first round with a Feistel-permutation
with a pseudorandom round function (as we did in the third round), and use
a Feistel-permutation with a Δ-universal round function for the last round,
we can eliminate the need for any additional key generation phase, thereby
allowing us to handle dynamic block lengths efficiently (i.e., we generate keys
once and they can be used for any block length). These types of tricks are
fairly standard, so we omit a full discussion due to space constraints.

6 Conclusion and Open Problems

The constructions in this paper have been motivated by one dominant thought:
push the application of universal hash functions in all directions to create VIL
primitives from FIL primitives. The harder part has been to know exactly which
cryptographic operations can be replaced by universal hashes, what kind of uni-
versal hashes should be used (e.g., universal vs. Δ-universal hashes), and pro-
viding security proofs. Specifically:

1. We show how to construct a VIL PRP from a FIL PRP which is almost
twice as fast as the previous construction [4].

2. We show how to construct a VIL SPRP from a FIL PRP which solves an
open problem in [4].

There are many open problems remaining in constructing VIL block ciphers
including the construction of a VIL PRP and a VIL SPRP from a FIL PRP in
the oracle model and a more efficient VIL SPRP construction in either model.
The problem of creating efficient and secure VIL PRPs and VIL SPRPs for
messages smaller than two block lengths remains open.

340 S. Patel, Z. Ramzan, and G.S. Sundaram

References

[1] J. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message au-
thentication under weakened assumptions. In Proc. CRYPTO 99.

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption: Analysis of the DES modes of operation. FOCS 1997.

[3] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In
Proc. CRYPTO 94.

[4] M. Bellare and P. Rogaway. On the construction of Variable-Input-Length ciphers.
In Proc. Fast Software Encryption, 1999.

[5] D. J. Bernstein. How to stretch random functions: The security of protected
counter sums. J. Cryptology, 12(3):185–192, Summer 1999.

[6] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: fast and
secure message authentication. In Proc. CRYPTO 99.

[7] D. Bleichenbacher and A. Desai. A construction of a super-pseudorandom cipher.
Manuscript, February 1999.

[8] J. L. Carter and M. N. Wegman. Universal classes of hash functions. JCSS,
18(2):143–154, April 1979.

[9] J. Daemen and V. Rijmen. AES proposal Rijndael. NIST AES Proposal, 6/98.
[10] I. Damg̊ard. A design principle for hash functions. In Proc. CRYPTO 89.
[11] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

Journal of the ACM, 33(4):792–807, October 1986.
[12] S. Halevi and P. Rogaway. A tweakable enciphering mode. In Proc. CRYPTO

’03.
[13] S. Halevi and P. Rogaway. A parallelizable enciphering mode. In Proc. RSA

Conference, Cryptographer’s Track ’04.
[14] H. Krawczyk. LFSR-based hashing and authentication. In Proc. CRYPTO 94.
[15] M. Luby and C. Rackoff. How to construct pseudorandom permutations from

pseudorandom functions. SIAM J. Computing, 17(2):373–386, April 1988.
[16] M.Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The

cascade construction and its concrete security. In Proc. FOCS 1996.
[17] M. Naor and O. Reingold. On the construction of pseudo-random permutations:

Luby-Rackoff revisited. J. of Cryptology, 12:29–66, 1999. Previously in STOC 97.
[18] National Bureau of Standards. FIPS publication 46: Data Encryption Standard,

1977. Federal Information Processing Standards Publication 46.
[19] S. Patel, Z. Ramzan, and G. Sundaram. Towards making Luby-Rackoff ciphers

optimal and practical. In Proc. Fast Software Encryption, 1999. Full version avail-
able from http://theory.lcs.mit.edu/~zulfikar/MyResearch/homepage.html.

[20] S. Patel, Z. Ramzan, and G. Sundaram. Luby-Rackoff ciphers: XOR is not so
exclusive. In Proc. Selected Areas of Cryptography, 2002.

[21] E. Petrank and C. Rackoff. CBC MAC for Real Time Data Sources. Technical
Report 97-26, Dimacs, 1997.

[22] D. R. Stinson. Universal Hashing and Authentication Codes. Design, Codes, and
Cryptography, 4:369–380, 1994. Preliminary version appeared at CRYPTO 1991.

[23] Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in
authentication and set equality. JCSS, 22(3):265–279, June 1981.

A Sufficient Condition for Optimal Domain
Extension of UOWHFs

Mridul Nandi

Applied Statistics Unit,
Indian Statistical Institute
mridul r@isical.ac.in

Abstract. In this paper we will provide a non-trivial sufficient condition
for UOWHF-preserving (or valid) domain extension which can be very
easy to verify. Using this result we will prove very that all known domain
extension algorithms are valid. This would be a nice technique to prove
and to construct a valid domain extension. We also propose an optimal
(with respect to both time complexity and key size) domain extension
algorithm based on an incomplete binary tree.

Keywords: Hash function, UOWHF, Domain Extension Algorithm, mask-
ing assignment.

1 Introduction

A UOWHF or Universal One-Way Hash Function is a family of (n,m)-hash
functions {hk}k∈K with hk : {0, 1}n → {0, 1}m, where the following task is hard:
adversary has to commit an n-bit string x and then given a random key k he
has to find another n-bit string x′ �= x such that hk(x) = hk(x′). The pair (x, x′)
with x �= x′ and hk(x) = hk(x′) is known as collision pair. More precisely, {hk}
is (ε, t)-UOWHF if every adversary with runtime at most t has success probabil-
ity (i.e. probability of finding the collision pair in the above task) at most ε. We
say the above hash family {hk}k∈K is (n,m,K) hash family if K = {0, 1}K and
for each k, hk is an (n,m) hash function. K and K are known as the key space
and key size respectively. Here, we are mainly interested in valid or UOWHF-
preserving domain extension which means that given a (n,m,K) hash family
{hk}k∈K (called base hash family) which is (ε, t)-UOWHF we want to construct
another (N,m,P) (ε′, t′)-UOWHF {Hp}p∈P (called extended hash family) based
on {hk} where N > n and ε′, t′ are constant multiples of ε, t respectively. We will
be interested in valid domain extensions where the key expansion i.e. (P −K)
is as small as possible. Also we will try to reduce the time complexity by con-
sidering parallel domain extension algorithms.

Brief History. To sign a big message it is always better to compress the mes-
sage first and then run a short domain signing algorithm on the compressed
message. To have the security of signature scheme we need a Collision Resistant

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 341–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

342 M. Nandi

Hash Function or CRHF in which given a random key k it is hard to find a
collision pair. But, Bellare and Rogaway (BR) [1] constructed a generic signa-
ture scheme where a UOWHF is sufficient to prove the security of the signature
scheme. In their algorithm, sigsk(hk(M)||k)||k is a signature of the message
M . If the key size is large then one can use sigsk(hk2(hk1(M)||k1)||k2)||k1||k2
as a signature of the message M . Usually the key size is O(log(|M |)) so input
size of sigsk(·) is m + O(log(log|M |)) which is very small. UOWHF is first in-
troduced by Naor and Yung [7] and they constructed a UOWHF based on a
one-way function. But the construction is much theoretical and slow. To con-
struct a UOWHF of arbitrary domain we start with a construction of UOWHF
with smaller domain from scratch and then extend it to an arbitrary domain.
Natural domain extension method is MD construction which works for CRHF.
But unfortunately, Bellare and Rogaway in the same paper [1] showed that MD
construction will not work in case of UOWHF. They proposed a binary tree
based construction with the notion of XOR-ing masks (parts of the key). Then
Shoup [10] constructed a sequential domain extension and Mironov [4] proved
that it is optimum in key size among all sequential construction (say S denotes
set of all sequential construction). Sarkar [9] gave another binary tree based con-
struction where the number of masks or key size is less than that of BR but it
is more than that of Shoup. But this algorithm (also the BR algorithm) can be
implemented in parallel. So these will be much faster than Shoup’s algorithm.
Sarkar considered a general class of domain extension algorithm (say C, S ⊂ C)
which includes all known UOWHF-preserving domain extension algorithm and
provided a lower bound for the number of masks (or key size) to have a valid
domain extension from C. In S the both bounds given by Sarkar and Mirinov
agree. Nandi [5] modified the Sarkar’s algorithm with less number of masks. Lee
et al [6] constructed an optimum algorithm in the general class C but parallelism
is much smaller than binary tree based algorithm because they used incomplete
l-ary tree. Finally in this paper we have an algorithm which has maximum pos-
sible parallelism and minimum key size.

Motivation. It is clear that UOWHF is a weaker notion than CRHF in the
sense that a hash family is UOWHF whenever it is CRHF but the converse need
not be true. In fact, Simon [11] proved that there exists an oracle relative to
which UOWHF exists but CRHF does not exist. Unlike CRHF the birth-day
attack will not work in the case of UOWHF. So roughly, to have a collision in
UOWHF one needs O(2m) many computations whereas in CRHF one can find
a collision pair in O(2m/2) computations. So one can use the signature scheme
proposed by BR using any standard hash functions e.g. SHA-256 or RIPEMD-
160. Till now, we believe that those hash functions are CRHF and we can study
the security of the signature scheme under the assumption of UOWHF. We can
treat SHA-256, RIPEMD-160 as a hash family keyed by the initial values. Even
if somebody finds a collision for the above hash functions it would not give any
immediate threat to the signature scheme. One disadvantage for UOWHF is that
if the signer himself is dishonest then the signature scheme proposed by Bellare

A Sufficient Condition for Optimal Domain Extension of UOWHFs 343

and Rogaway will not be secure. Suppose {hk}k is UOWHF but not CRHF. So,
there exists a collision pair M1 and M2 for hk. The signer can sign the message
M1 with the key k and then one can forge the signature of the message M2. This
problem could be solved if the signer does not have any control to choose the
key k or the key is output of some random function depending on the message M .

General Domain Extension Algorithm. The general class of domain ex-
tension algorithm C is described in detail in [9]. Here we give a brief discussion
on this. It is very natural that to extend the domain of a function we have to
apply the function repeatedly. The question is how we will combine this itera-
tion. If the output of one invocation of hk is completely fed into the input of
another invocation then the method of combination can be completely captured
by a rooted directed tree. T = (V,E, q) is called a rooted directed tree where
V = [1, r] := {1, . . . , r} is the set of vertices, E is the set of arcs and q ∈ V is a
special vertex called the root of the tree with the property that, outdeg(q) = 0
whereas outdeg(i) = 1 for other vertices i. Here, outdeg(i) = |{j : (i, j) ∈ E}|.
A hash function hk(·) is placed on each node of T . The output of hk(·) is passed
through the arc i.e. if (i, j) ∈ E then the output of hk(·) at node i is fed into
the input of hk(·) at node j. For example, a sequential domain extension i.e.
MD construction can be viewed by a sequential tree. As this is not UOWHF-
preserving domain extension the notion of XOR-ing mask (a part of the key)
is introduced. So, after each invocation the output is XOR-ed with some mask
before feeding into next invocation. To determine the algorithm we have to
specify which mask will be XOR-ed for every invocation. So we have a function
ψ : E → [1, l] := {1, . . . , l} known as masking assignment. We also say that ψ
is a l-masking assignment. So, if ψ((i, j)) = a then output of hk at node i is at
first XOR-ed with the mask μa and then it is fed into the input of hk at node j.
The domain extension algorithm is described in detail in the next section. It is
clear that the above algorithm is completely determined by the rooted directed
tree and the masking assignment on it. We will say the above algorithm is based
on (T,ψ). The pair (T,ψ) is known as the structure of the domain extension
algorithm. The class C consists of all such above algorithms based on any pair
(T,ψ) where ψ is a masking assignment on a rooted tree T .

Our Contributions and Future Work. In this paper we provide a non
trivial sufficient condition for valid domain extensions in the general class C
defined by Sarkar [9]. More precisely, a domain extension algorithm based on
(T,ψ) is UOWHF-preserving or valid if ψ is strongly even-free (See Definition 1).
We show that all known valid domain extensions belong to the class C and
satisfy the sufficient condition viz. the masking assignments are strongly even-
free. Hence one can try to prove that the condition is also a necessary condition
which will completely characterize the UOWHF-preserving domain extension
algorithm. This sufficient condition would be very easy tool to prove that a
domain extension is valid. It also helps to construct an optimal (with respect to
both time complexity and key size) valid domain extension for the general class.

344 M. Nandi

In fact, we construct an optimum domain extension algorithm for the general
class.

2 The General Domain Extension Algorithm

Some Notes on Rooted Directed Tree. In any rooted directed tree T =
(V,E, q), from any vertex i there is one and only one path from that vertex
i to the root q. So, we can define l(i) (called level of the vertex i) by the
number of vertices in the unique path from i to q. Note, l(q) = 1. Write,
V [k] = {i ∈ V : l(i) = k} for each k ≥ 1. Define h(T) (called height of the
tree T) by maxi∈V l(i). We also use the notation h(i) (called height of i) for
t− l(i)+1 when T is a complete binary tree of height t. A sub-tree T1 of T is the
tree induced by a subset of the vertex set V . Root of a sub-tree T1 = (V1, E1) is
the vertex with minimum level. More precisely, i is called a root of the sub-tree
T1 if i ∈ V1 and l(i) = minj∈V1 l(j). If i ∈ V , define V (i) by the set of all vertices
from which there is a path to the vertex i i.e. V (i) = {j ∈ V : there is a path
from j to i}. We will say the induced full sub-tree rooted at i by the sub-tree
induced by V (i) (in notation T (i)). Note that i becomes the root of the sub-tree
T (i). Define son(i) = {j : (j, i) ∈ E}. In the next paragraph we state the general
algorithm in the class C defined by Sarkar [9].

Domain Extension Algorithm (to compute Hp(X))
Let ψ be a l-masking assignment on T = (V,E, q) where V = [1, r] for some pos-
itive integers l and r. We want to define (N,m,P) hash family {Hp}p∈P given
a (n,m,K) hash family {hk}k∈K where, N = (n−m)r +m and P = K +m.l.
Write, p = k||μ1|| . . . ||μl and X = x1|| . . . ||xr where, |p| = P , |k| = K, |μi| = m,
|X| = N and |xi| = n − indeg(i) ×m. We need to assume that, n ≥ δ(T) ×m
where, δ(T) = maxi∈V indeg(i). Note, |X| =

∑r
i=1 |xi| = (n −m)r + m. Here,

p is a key of extended hash family and X is any input of that hash family. We
will treat k as a key of base hash family. We use the term mask for μ′

is. Now we
are ready to define Hp(X) using the hash function hk.

1. For i ∈ V [t] (t = h(T))
Compute zi = hk(xi).

2. For j = t− 1 down to 1
For i ∈ V [j] do in parallel
zi = hk((zi1 ⊕μψ(i1))|| . . . ||(zid

⊕μψ(id))||xi) where son(i) = {i1, . . . , id} and
i1 < . . . < id.

3. zq is the output of Hp(X).

Main Parameters of the Above Domain Extensions

1. Key expansion is most important parameter in practical point of view. For
above type of domain extension algorithms (key expansion) = (number of
masks) × (size of range). So we need to have valid domain extension with
smallest possible number of masks. In [8] author showed that at least �log2r�

A Sufficient Condition for Optimal Domain Extension of UOWHFs 345

many masks are necessary to have a valid domain extension where r is the
total number of invocation i.e. number of vertices in the tree. Later we will
construct a parallel algorithm called opt which needs t many masks for 2t

many invocations which is minimum possible.
2. The algorithm from above class can be implemented in parallel (unless the

tree is a sequential tree i.e. a path). If we run the algorithm in parallel,
number of rounds is same as the height of the tree. If we have n ≥ 2m
then we can consider binary trees. So number of rounds should be at least
[log2(r + 1)] where r is the number of vertices of the the binary tree. A
complete binary tree of height t has 2t−1 many vertices and hence a domain
extension algorithm based on a complete binary tree needs t rounds only.
Note that, this will have maximum possible parallelism if we only assume
that n ≥ 2.m. Later we will show that our construction opt needs t + 1
rounds for 2t invocation which is minimum possible for binary tree based
domain extensions.

3 Sufficient Condition of UOWHF-Preserving Domain
Extension

In [8] it was proved that every valid domain extension should be based on even-
free masking assignment (See Definition 1). In this section we will prove that
any domain extension based on a strongly even-free masking assignment (See
Definition 1) is valid. We also show that all known valid domain extensions
satisfy this sufficient condition.

Definition 1. A l-masking assignment ψ on T = (V,E) is called an even-free
masking assignment if for any non-trivial sub-tree T1 = (V1, E1) of T there exists
i ∈ [1, l] such that i appears odd many times in the multi-set ψ(E1) = {ψ(e) :
e ∈ E1}. Similarly, ψ on T = (V,E) is called strongly even-free masking
assignment if for any non-trivial sub-tree T1 = (V1, E1) of T there exists i ∈ [1, l]
such that i appears exactly once in the multi-set ψ(E1) = {ψ(e) : e ∈ E1}. This
i is called a single man for that sub-tree T1.

Theorem 1. If a domain extension algorithm is based on a strongly even-free
masking assignment ψ on T then it is a valid domain extension. More precisely, if
for any (ε, t)-strategy for {Hp} there is an (ε′, t′)-strategy for {hk} where ε′ = ε/r
and t′ = t+O(r) where r is the size of the tree i.e. r = |V |.
Proof. Let A be an adversary with runtime at most t and success probability
at least ε for {Hp}. Now we will define an adversary B for {hk} with runtime
atmost t′ and success probability at least ε′.
Bguess :

1. (X, s′) ← Aguess . (|X| = N)
2. Choose i ∈R V = [1, r] (i is chosen randomly from [1, r]).

If i ∈ V [h], set y = xi, s = (s′, i, y). Output (y, s) and stop.

346 M. Nandi

Else ri1 , . . . rid
∈R {0, 1}m (randomly) where son(i) = {i1, . . . , id}, y =

ri1 || . . . ||rid
||xi and s = (s′, i, y) where, i1 < . . . < id. Output (y, s) and

stop.

At this point the adversary is given a k which is chosen uniformly at random
from the set K = {0, 1}K . The adversary then runs Bfind which is described
below.

Bfind(y, k, s) : (Note s = (s′, i, y).)

1. μ1|| . . . ||μl ← Mdef(X, k, i, ri1 || . . . ||rid
, T,ψ) (see the algorithm Mdef be-

low).
2. X ′ ← Afind(X, p, s′) where p = k||μ1|| . . . ||μl. Let y′ be the input to proces-

sor at node i while computing Hp(X ′). Output y′.

Now we state a lemma which says that there exists an algorithm Mdef(·)
which outputs random string where input of a specified node is predefined ran-
dom string. More precisely,

Lemma 1. There exists an algorithm Mdef(X, k, i, ri1 || . . . ||rid
, T,ψ) which al-

ways returns a random string μ1 || . . . ||μl whenever ri1 || . . . ||rid
is a random

string. Also input of node i while computing Hp(x) is ri1 || . . . ||rid
||xi if i �∈ V [h].

Proof of the Lemma: First we describe the algorithm below.

Algorithm. Mdef(X, k, i, ri1 || . . . ||rid
, T,ψ) (Note |ri| = m and d = indeg(i))

1. We can assume that i = q the root of the tree (otherwise we can do the same
thing for the induced full sub-tree rooted at i, T (i)). Suppose, ψ(eu) = l (say)
is a single man for T . Let T ′ = T − (T (u) ∪ {eu}) = (V ′, E′). If r′ = |E′|
then, r′ < r. Assume, u ∈ son(j) and son(j) = {j1, . . . , jc = u} where j1 <
. . . < jc. If j = q then R = ru = rid

otherwise it is a random string. Define,
x′

j = R||xj , x
′
k = ε (empty string) if k ∈ V ′−{j}, otherwise x′

k = xk. Now, we
define X ′ = x′

1|| . . . x′
r. Run recursively Mdef(X ′, k, q, ri1 || . . . ||rid−1 , T

′,ψ′)
if j = q or Mdef(X ′, k, q, ri1 || . . . ||rid

, T ′,ψ′) if j �= q to define the masks
where ψ′ is ψ restricted on T ′. Note Mdef will always define those masks
which are in the range of masking assignment. When we call Mdef(., .,ψ′)
it will not define μl as l is not in the range of ψ′.

2. If |E| = 1 then μ = μ1 where μ1 = hk(x) ⊕ ru.
3. Define all other yet undefined masks except l by random strings. Compute

the output at vertex u, call it by z. Define μl = R⊕ z. This will completely
define all masks.

Note that we assume that jc = u which need not be true. To avoid this prob-
lem we can redefine the general tree based domain extension by considering any
order of the input at all nodes. Previously the input at node i is si1 || . . . ||sic

||xi

but we can modify it to σi(si1 || . . . ||sic
||xi) where σi is some permutation of

n-bit strings. In that case we have to redefine the permutation accordingly when

A Sufficient Condition for Optimal Domain Extension of UOWHFs 347

we recursively call Mdef . For simplicity of the proof we can ignore this. We can
check easily that all the masks are random strings as either they are random
strings or they are XOR of two strings one of which is a random string. So, we
can prove the first part of the lemma by using induction on size of the tree. We
also prove the second part of the lemma by induction. So, if input at node j
contributed by node u is R then input of node i will be ri1 || . . . ||rid

||xi by the
induction hypothesis. The mask μl is defined by μl = z ⊕R. As output of node
u be z (see step-3 in the algorithm Mdef) the input at node j contributed by
node u is R . Note that μl is a single-man so it is not used any where else. This
proves the lemma. ��

So, by above lemma input of node i while computing Hp(X) will be y which
is already committed in Bguess. Also note that p is a randomly chosen key from
the set P as both k and μi’s are random strings. Now We now lower bound the
winning probability. Suppose X and X ′ collide for the function Hp. Then there
must be a v ∈ V such that at vertex v there is a collision for the function hk.
(Otherwise it is possible to prove by a backward induction that X = X ′.) The
probability that i = v is 1

|V | . Hence, if the winning probability of A is at least ε,
then the winning probability of B is at least ε

|V | as two events i = v and A wins
are independent (the value of i is not known to A). Also the number of invocation
of hk by B is equal to the number of invocation of hk by A plus at most 2|V |.
(the number 2|V | is coming from the fact that in Mdef algorithm we need at
most |V | many invocations and we may need at most |V | many invocations of
hk again to compute y′). We skip the checking of time parameter as it is easy
to verify. This completes the proof of the theorem. ��

3.1 Sufficient Condition and Some of Known Previous
Constructions

One can check easily that all previously known domain extension algorithms
belong to the class C. We will prove some of previous constructions are valid
using the above sufficient condition. The same technique will also work for other
known secure domain extensions. So, we reduce a problem of computational
reduction to verifying strongly even-free property of a function (i.e. whether a
masking assignment is strongly even-free or not) which would be much easier
task. We list some known algorithms in terms of their structures.

1. Shoup [10] : V = [1, r], E = {(i, i + 1) : 1 ≤ i ≤ r − 1}, q = r is the root
and ψ(i) = ν2(i) + 1. ν2(i) = j means that 2j |i but 2j+1 � | i.

2. Bellare-Rogaway [1] , Sarkar [9], Nandi [5]: The tree is full binary tree
of height t and the masking assignments are given below. The complete
binary tree of height t has a set of vertices [1, 2t − 1] and a set of edges
E = {ei = (i, [i/2]) : 2 ≤ i < 2t}.

3. Lee et al [6] : In their paper a 4-dimensional construction is given which can
be generalized to l-dim construction. Here we will describe 2-dimensional
construction for simplicity. For integer t, g(t) = (a, b), where a = �t/2�,
b = �(t + 1)/2�. Tt = (Vt, Et, 1) be a rooted binary tree, where Vt = [1, 2t]

348 M. Nandi

and Et = {ei : 2 ≤ i ≤ 2t} where ei = (i, i−1) for 2 ≤ i ≤ 2a, ei = (i, i−2a)
for 2a < i ≤ 2a+b = 2t (note, a+ b = t).
The authors defined two functions αt, βt as follows.
(a) αt : [1, 2a − 1] → [1, a] is defined by αt(i) = 1 + ν2(2a − i).
(b) βt : [1, 2b − 1] → [a+ 1, a+ b] is defined by βt(i) = a+ 1 + ν2(2b − i).
The masking assignment ψt(ei) is defined as follow:
(a) ψt(ei) = αt(j) if 2 ≤ i ≤ 2a and j = i− 1.
(b) ψt(ei) = βt(j) if 2a < i ≤ 2a+b and j2a < i ≤ (j + 1)2a.

To define the masking assignment used in [1, 9, 5] we have to define level-
uniform masking assignments.

Definition 2. (Level-Uniform Masking Assignment)
A masking assignment ψ is said to be a level-uniform masking assignment
on a complete binary tree Tt = (Vt, Et) of height t if there are two functions
αt and βt : [2, t] → [1, l] such that ψ(2i + 1) = α(j) and ψ(2i) = β(j) where
2t−j ≤ i < 2t−j+1 i.e. l(i) = t − j + 1. The edge (2i + 1, i) (or (2i, i)) will be
known as α-edge (or β-edge).

In every complete binary tree all nodes except leave (the vertices i where
2t−1 ≤ i < 2t) have two sons called left or right son. So, a level-uniform masking
assignments depends on the level of the vertex and type of son i.e. whether it
is a left or right son of its father. Also the values of masking assignment of
α-edges (or β-edges) are determined by the functions αt (or βt). The masking
assignments for Sarkar [9], BR [1] and Nandi [5] are level-uniform so we only
describe the functions αt and βt.

1. Bellare-Rogaway [1] : βt(i) = i − 1 and αt(i) = t + i − 2. no. of masks
= 2(t− 1).

2. Sarkar [9] : αt(i) = i−1 and βt(i) = t+ν(i−1). no. of masks = t+�log2(t−
1)�.

3. Nandi [5, 6] : Define two sequences {lk}k≥0 and {mt}t≥2 as follow : lk+1 =
2lk+k + lk where, l0 = 2 and if k ≥ 1, mt = t + k for all t ∈ [lk−1 + 1, lk].
Define m2 = 2. Note that, both lk and mt are strictly increasing sequences
and if t = lk for some k then mt+1 = mt + 2 and if for some k, lk < t < lk+1
then mt+1 = mt +1. It is proved in [5] that no of masks = mt = t+O(log∗

2t).
Here, log∗

2t = j means that after applying log function j many times for t it
becomes less than 1 for first time. The recursive definitions of αt and βt are
given below :
(a) α2(2) = 2 and β2(2) = 1.
(b) For t ≥ 3, αt(i) = αt−1(i) and βt(i) = βt−1(i) whenever 2 ≤ i ≤ t− 1.
(c) αt(t) = αt−1(t− 1) + 2, βt(t) = αt−1(t− 1) + 1 if t = lk + 1 for some k

and αt(t) = αt−1(t−1)+1, βt(t) = ν2(t−1− lk)+1 if lk < t−1 < lk+1.

Now we can use the above theorem to prove the UOWHF-preserving property
for the domain extension algorithms presented in this Section. In fact, one can
check that all other known valid domain extensions are based on strongly even-
free masking assignments.

A Sufficient Condition for Optimal Domain Extension of UOWHFs 349

Theorem 2. The domain extension algorithms [1, 10, 9, 5, 6] presented above
are valid domain extensions. In fact, all these domain extension algorithms are
based on strongly even-free masking assignments.

Proof. We only prove that all these domain extensions are based on strongly
even-free masking assignments. So the theorem follows from Theorem 1. We will
prove only in two cases. other cases are very easy to prove so we skip the proofs.

(1) (Nandi [5]) : Take a sub-tree say S rooted at height t′ and lk+1 ≥ t′ ≥
lk + 1 then from height lk+1 to lk + 1 no α-edge can be in S (otherwise first
such one i.e. the α edge having maximum height will be a single-man so we are
done). So, T ′ can contain at most one β edge at height lk + 1. If it contain that
then βt(lk + 1) is a single-man for that sub-tree. So, if S does not contain that
β edge then again it is a sequential sub-tree consists of only β-edges from height
t′ to at least height lk + 1. But on that tree masking assignment is define by
ν2 function which is itself strongly even-free masking assignment. So, the above
masking assignment is strongly even-free.

(2)(Lee et al (l − dim)) [6] : Let T ′ = (V ′, E′) be any sub-tree. Note
that, [1, 2a] ∩ V ′ is an interval say, [c, d]. If d > c then from the definition of
the masking assignment it is clear that on [1, 2a] is same as Shoup’s assignment
which is strongly even-free. Also note that the masks used on [1, 2a] are totally
different with the masks used in other parts. So the single man on [c, d] is also
a single man of T ′. Now if c = d or [1, 2a] ∩ V ′ = φ then T ′ is a sequential
sub-tree of the tree induced by the vertices {i, i + 2a, . . . , 2a(2b − 1) + i} for
some 2 ≤ i ≤ 2a. Again along this tree the masking assignment is determined
by βt which is strongly even-free (which is same as Shoup’s assignment). So the
masking assignment is strongly even-free. ��
Remark : The fact that all known valid domain extensions satisfy the sufficient
condition may lead us to try to prove that strongly even-free is a necessary
condition of valid domain extensions. If somehow we can prove that the minimum
number of masks for existence of even-free is same as that for existence of strongly
even-free then we can completely find out the best algorithm based on a given
tree. Because, given a rooted directed tree one can find recursively the strongly
even-free masking assignment with minimum number of masks. This idea will
helps us to construct an optimum domain extension presented in Section 4.

4 Optimal Parallel Domain Extension

In this section we will construct valid and optimum with respect to both par-
allelism and key expansion (See Table 1) domain extension algorithm. Here, we
will consider a rooted binary tree (not complete) instead of directed rooted bi-
nary tree. It is easy to correspond a directed binary tree to a binary tree and
vice-versa. Let T = (V,E, v0) be a rooted binary tree i.e. v0 ∈ V and deg(v) ≤ 3
for all v ∈ V and deg(v0) ≤ 2. v0 is called the root of the binary tree. To con-
struct a valid domain extender it is enough to construct a strongly even-free
masking assignment on a tree by our sufficient condition in the section 3.

350 M. Nandi

Definition 3. (i-binary tree) T = (V,E, v1) is called i-binary tree if there ex-
ists a binary sub-tree T1 = (V1, E1, vi) of T such that E = E1∪{v1v2, . . . vi−1vi}
and vk are not in V1 for 1 ≤ k ≤ i − 1. The path v1v2 . . . vi is called the i-path
of the i-binary tree T .

See examples of i-binary trees are given in Figure 2. A i-binary tree of size i is
a sequential tree i.e. a path of length i−1. Given two disjoint binary tree (vertex
sets are disjoint) T1 = (V1, E1) and T2 = (V2, E2) we can concatenate as follow:
T = T1 +uv T2 (notation) where, T = (V,E), V = V1 ∪ V2, u ∈ V1, v ∈ V2 and
E = E1∪E2∪{uv}. Like concatenation of two trees we can define concatenation
of two masking assignments as follow (see figure 1). Suppose, ψi is a k-masking
assignment on Ti for i = 1, 2 then, we can define ψ a (k+1)-masking assignment
on T1 +uv T2 where, ψ on Ti is same as ψi on Ti and ψ(uv) = k + 1. We will
denote ψ as ψ1 +uv ψ2. If both ψ1 and ψ2 are strongly even-free then so is ψ.

u vk

(k-1)-m.a. (k-1)-m.a.

k-m.a. on
(T1+uv T2)

T1 T2

Fig. 1. Concatenation of two masking assignments

Some Useful Observations : We know that if ψ is even-free (also for strongly
even-free) m-masking assignment then, 2m ≥ |V | (proved in [8]). A m-masking
assignment ψ on T = (V,E) is called an optimal masking assignment if it is
strongly even-free and 2m ≥ |V | > 2m−1. So, an optimal masking assignment
is a strongly even-free masking assignment whose size of image is minimum
possible. One such example is given by Shoup’s [10] sequential construction. If
both ψ1 and ψ2 are optimal then so is ψ.

Definition 4. A m-masking assignment is called (m, l, i)-optimal masking
assignment if it is optimal masking assignment on a i-binary tree T such that
l(T) = l and |V | = 2m.

(3,4,1) (3,6,3)(3,5,2)

3

2

1

1

1

2

1

3

1

2

1 21

1

2

1

13

2 1
1

Fig. 2. some optimal masking assignments (the numbers besides edges denote the
values of masking assignment)

A Sufficient Condition for Optimal Domain Extension of UOWHFs 351

Table 1. Specific comparison of domain extenders for UOWHF 1:seq/par, 2:message
length, 3:# invocation of hk, 4:# masks, 5:# rounds, 6:speed-up, 7:rank in parallelism,
8:rank in key expansion

Param Shoup [10] l-DIM(l ≥ 2) Sarkar[9] Nandi[5] Opt
1 sequential parallel parallel parallel parallel
2 2tn 2tn 2tn (2t − 1)n 2tn

−(2t − 1)m −(2t − 1)m −(2t − 1)m −(2t − 2)m −(2t − 1)m
3 2t 2t 2t − 1 2t − 1 2t

4 t t t+ O(log2t) t+ O(log∗
2t) t

5 2t l2t/l − l + 1(t ≡ 0 mod l) t t t + 1
6 1 2t

l2t/l−l+1
(t ≡ 0 mod l) 2t

t+1
2t

t+1
2t

t+1

7 3 2 1 1 1
8 1 1 3 2 1

Theorem 3. There exists an (n, n+ i, i)-optimal masking assignment if i ≤ 2n.

Proof. Let f(k) = 2k + k + 1 for k ≥ 0. It is strictly increasing function, So,
given positive integers n and i there exists a unique k ≥ 1 such that f(k) >
(n+ i) ≥ f(k − 1). We will prove the theorem by induction on n+ i. For small
values of n + i we have shown some examples in Figure 2. Now given n and
i we assume that the theorem is true for any i1 and n1 such that i1 ≤ 2n1

and i1 + n1 < i + n. Choose k as above for these n and i. First assume that,
f(k) > (n + i) > f(k − 1). Let j = (n + i) − f(k − 1) ≥ 1. By induction
hypothesis there is a (k− 1, k− 1 + j, j)-optimal masking assignment (2k−1 ≥ j
as f(k) > n + i). Call this by ψk−1. Now, ψk−1 is a masking assignment on
a j-binary tree Tk−1 = (Vk−1, Ek−1, v1) where, {v1, . . . , vj} is the i-path. Now
take the sequential (k − 1)-optimal masking assignment ψ on T = (V,E) and
define ψk = ψk−1 +vjvj+1 ψ where, V = {vj+1, . . . vj+2k−1}. Now we can add
optimal masking assignment one by one with ψk at vi’s. More precisely, let ψ′

l

be a (l−1, 1, l)-optimal masking assignment on Tl = (Vl, El, ul) for k+1 ≤ l ≤ n.
Define ψl = ψl−1+vl−k+1ul

ψ′
l recursively for k+1 ≤ l ≤ n. Now it can be checked

easily that ψn is (n, n+ i, i)-optimal masking assignment.
We leave with other possible case where n + i = f(k) for some k. In this

case construct a k-sequential optimal masking assignment ψ on a sequential tree
Tk = (Vk, Ek) where, Vk = {v1, . . . , v2k} For each l, k ≤ l ≤ n − 1 we have
(l, l+ 1, 1)-optimal masking assignment psil. We can concatenate ψl with ψ one
by one. Finally we will have (n, n+ i, i)-optimal masking assignment. ��

One immediate corollary is given below which tells that we have a domain
extension algorithm which needs t many masks and t + 1 many rounds for 2t

many invocations of base hash function. Note that both number of rounds and
number of keys are minimum possible.

352 M. Nandi

k

k+1 n-1

sequential opt m.a.(k-1,k-1+j,j)-opt m.a.

(k,k+1,1)-opt m.a. (n-1,n,1)-opt m.a.

Fig. 3. Construction of (n, n + i, i)-optimal masking assignment

Corollary 1. There exists an (m,m + 1, 1)-optimal masking assignment i.e.
there exists a binary tree T of size 2m with l(T) = m + 1 which is minimum
possible (a complete binary tree of level m has size 2m − 1) so that an optimal
masking assignment ψ on T exists.

5 Conclusion

This paper has both theoretical and practical interests. Here, we will construct a
UOWHF-preserving domain extension algorithm which is optimum in both key
size and number of rounds. In this paper we also study how to check UOWHF-
preserving property of a domain extension algorithm by just verifying a simple
property called strongly even-free. It is very interesting to note that all known
UOWHF-preserving domain extension algorithms satisfy the sufficient condition.
So one can try to prove that the condition is also a necessary condition. The
sufficient condition makes it easy to construct a UOWHF-preserving domain
extension algorithm.

References

1. M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs
practical. Proceedings of CRYPTO 1997, pp 470-484.

2. I. B. Damg̊ard. A design principle for hash functions. Lecture Notes in Computer
Science, 435 (1990), 416-427 (Advances in Cryptology - CRYPTO’89).

3. R. C. Merkle. One way hash functions and DES. Lecture Notes in Computer
Science, 435 (1990), 428-226 (Advances in Cryptology - CRYPTO’89).

4. I. Mironov. Hash functions: from MD to Shoup. Lecture Notes in Computer
Science, 2045 (2001), 166-181 (Advances in Cryptology - EUROCRYPT’01).

5. M. Nandi. A New Tree based Domain Extension of UOWHF. IACR e-print server
http://eprint.iacr.org/2003/142.

6. W. Lee, D. Chang, S. Lee, S. Sung and M. Nandi. New Parallel Domain Exten-
ders for UOWHF. Lecture Notes in Computer Science Advances in Cryptology -
ASIACRYPT’03).

7. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. Proceedings of the 21st Annual Symposium on Theory of Computing,
ACM, 1989, pp. 33-43.

8. P. Sarkar. Masking Based Domain Extenders for UOWHFs: Bounds and Construc-
tions IACR preprint server, http://eprint.iacr.org/2003/225.

A Sufficient Condition for Optimal Domain Extension of UOWHFs 353

9. P. Sarkar. Construction of UOWHF : Tree Hashing Revisited . IACR preprint
server, http://eprint.iacr.org/2002/058.

10. V. Shoup. A composition theorem for universal one-way hash functions. Proceed-
ings of Eurocrypt 2000, pp 445-452, 2000.

11. D. Simon. Finding collisions on a one-way street: Can secure hash function be based
on general assumptions?, Lecture Notes in Computer Science - EUROCRYPT’98,
pp 334-345, 1998.

Author Index

Armknecht, Frederik 19
Avanzi, Roberto Maria 130

Babbage, Steve 1
Bajard, Jean-Claude 159
Billet, Olivier 227
Blömer, Johannes 69

Dengguo, Feng 252

Ech-Chatbi, Charaf 227
Englund, H̊akan 39

Fouque, Pierre-Alain 212

Gilbert, Henri 227
Gong, Guang 267
Guajardo, Jorge 69

Hong, Chun Pyo 144
Hua, Chen 252

Imbert, Laurent 159

Jiang, Shaoquan 267
Johansson, Thomas 1, 39
Joux, Antoine 212
Junod, Pascal 84, 114

Kim, Chang Hoon 144
Krummel, Volker 69
Kwon, Soonhak 144

Lange, Tanja 170
Lano, Joseph 19
Lee, Jooyoung 294

Maximov, Alexander 1

Nandi, Mridul 341
Nikov, Ventzislav 308
Nikova, Svetla 308

Page, Daniel 54
Patel, Sarvar 326
Phan, Duong Hieu 182
Piret, Gilles 100
Plantard, Thomas 159
Pointcheval, David 182
Poupard, Guillaume 212
Preneel, Bart 19

Quisquater, Jean-Jacques 100

Ramzan, Zulfikar 326

Shparlinski, Igor E. 241
Stam, Martijn 54
Stevens, Marc 170
Stinson, Douglas R. 294
Sundaram, Ganapathy S. 326

Vaudenay, Serge 84, 114
von zur Gathen, Joachim 241

Wenling, Wu 252
Wei, Reizhong 280
Wu, Jiang 280

Young, Adam 198
Yung, Moti 198

	Frontmatter
	Stream Cipher Cryptanalysis
	An Improved Correlation Attack on A5/1
	Extending the Resynchronization Attack
	A New Simple Technique to Attack Filter Generators and Related Ciphers

	Side-Channel Analysis
	On XTR and Side-Channel Analysis
	Provably Secure Masking of AES

	Block Cipher Design
	Perfect Diffusion Primitives for Block Ciphers
	Security of the MISTY Structure in the Luby-Rackoff Model: Improved Results
	FOX : A New Family of Block Ciphers

	Efficient Implementations
	A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue
	Fast Irreducibility Testing for XTR Using a Gaussian Normal Basis of Low Complexity
	Modular Number Systems: Beyond the Mersenne Family
	Efficient Doubling on Genus Two Curves over Binary Fields

	Secret Key Cryptography I
	About the Security of Ciphers (Semantic Security and Pseudo-Random Permutations)
	A Subliminal Channel in Secret Block Ciphers
	Blockwise Adversarial Model for On-line Ciphers and Symmetric Encryption Schemes

	Cryptanalysis
	Cryptanalysis of a White Box AES Implementation
	Predicting Subset Sum Pseudorandom Generators
	Collision Attack and Pseudorandomness of Reduced-Round Camellia

	Cryptographic Protocols
	Password Based Key Exchange with Mutual Authentication
	Product Construction of Key Distribution Schemes for Sensor Networks
	Deterministic Key Predistribution Schemes for Distributed Sensor Networks
	On Proactive Secret Sharing Schemes

	Secret Key Cryptography II
	Efficient Constructions of Variable-Input-Length Block Ciphers
	A Sufficient Condition for Optimal Domain Extension of UOWHFs

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

