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Preface

This volume of Lecture Notes in Computer Science contains the revised versions
of the papers presented at the 9th International Conference on Implementa-
tion and Application of Automata, CIAA 2004. Also included are the extended
abstracts of the posters accepted to the conference.

The conference was held at Queen’s University in Kingston, Ontario, Canada
on July 22–24, 2004. As for its predecessors, the theme of CIAA 2004 was the
implementation of automata and grammars of all types and their application
in other fields. The topics of the papers presented at the conference range from
applications of automata in natural language and speech processing to protein
sequencing and gene compression, and from state complexity and new algorithms
for automata operations to applications of quantum finite automata.

The 25 regular papers and 14 poster papers were selected from 62 submissions
to the conference. Each submitted paper was evaluated by at least three Program
Committee members, with the help of external referees. Based on the referee
reports, the paper “Substitutions, Trajectories and Noisy Channels” by L. Kari,
S. Konstantinidis and P. Sośık was chosen as the winner of the CIAA 2004 Best
Paper Award. The award is sponsored by the University of California at Santa
Barbara.

The authors of the papers presented here come from the following countries
and regions: Austria, Canada, Czech Republic, Finland, France, Germany, Hong
Kong, Netherlands, Portugal, Russia, Slovakia, South Africa, Spain, UK, and
USA.

It is a pleasure for the editors to thank the members of the Program Com-
mittee and the external referees for reviewing the papers and maintaining the
high standard of the CIAA conferences. We are grateful to all the contributors
to the conference, in particular to the invited speakers, for making CIAA 2004
a scientific success.

We are grateful to the conference sponsors for their generous financial sup-
port. For help with the local arrangements, we thank Nancy Barker, Michelle
Crane, Lynda Moulton, Sandra Pryal and Amber Simpson. Thanks are due to
the School of Computing systems group for arranging Internet access for the
conference participants.

Finally, we are indebted to Ms. Christine Günther and Mrs. Anna Kramer
from Springer for the efficient collaboration in producing this volume.

September 2004 M. Domaratzki
A. Okhotin
K. Salomaa

S. Yu
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Automata-Theoretic Techniques for Analyzing
Infinite-State Systems�

Oscar H. Ibarra

Department of Computer Science,
University of California,

Santa Barbara, California 93106, USA
ibarra@cs.ucsb.edu

Automata theory tries to answer questions concerning machine models and
the languages they define. Classical questions like the relationships between fi-
nite/pushdown automata and regular/context-free languages, their closure and
decidable properties are standard material in many undergraduate theory
courses. New questions that arise from real-world applications, such as in verifi-
cation, internet/web services, and molecular computing are providing interesting
and challenging problems to automata theorists. In this talk, I will present some
automata-theoretic and related techniques for analyzing various forms of re-
stricted infinite-state systems in the areas of formal verification, e-services, and
membrane systems.

� This research was supported in part by NSF Grants IIS-0101134 and CCR02-08595.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, p. 1, 2005.
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Enumerating Regular Expressions and
Their Languages

Jonathan Lee� and Jeffrey Shallit��

School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
jwlee@alumni.uwaterloo.ca

shallit@graceland.uwaterloo.ca

Abstract. We discuss enumeration of regular expressions and the dis-
tinct languages they represent.

1 Introduction

Regular expressions have been studied for almost fifty years, yet many interesting
and challenging problems about them remain unsolved. By a regular expression,
we mean a string over the alphabet

Σ ∪ {+, ∗, (, ), ε, ∅}

that represents a regular language. For example, (0+10)*(1+ε) represents the
language of all strings over {0,1} that do not contain two consecutive 1’s.

We would like to enumerate valid regular expressions and the distinct lan-
guages they represent. Enumeration of regular languages is, generally speaking,
a difficult problem. For example, define Gk(n) to be the number of distinct
languages accepted by nondeterministic finite automata with n states over a k-
letter input alphabet. The following problem, studied by Domaratzki, Kisman,
and Shallit [2], seems very difficult:

Find good upper and lower bounds for Gk(n).
The analogous problem for regular expressions, however, is somewhat easier.

Strangely enough, it does not seem to have been studied previously. We define
Rk(n) to be the number of distinct languages specified by regular expressions of
length n over a k-letter alphabet. The “length” of a regular expression can be
defined in several different ways [3]:

– Ordinary length: total number of symbols, including parentheses, ∅, ε, etc.,
counted with multiplicity.
• (0+10)*(1+ε) has ordinary length 12

� Research of this author supported by an NSERC Undergraduate Student Research
Award.

�� Research of this author supported in part by NSERC.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 2–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Enumerating Regular Expressions and Their Languages 3

– Reverse polish length: number of symbols in a reverse polish equivalent,
including a symbol • for concatenation

– Equivalently, number of nodes in a syntax tree for the expression

• (0+10)*(1+ε) in reverse polish would be 010•+*ε+•
• This has reverse polish length 10

– Alphabetic length: number of symbols from Σ, not including ε, ∅, parens,
operators

• (0+10)*(1+ε) has alphabetic length 4

2 Valid Regular Expressions

In this section we introduce our basic method by counting the number of valid
regular expressions of (ordinary) length n. Let Sk(n) be the number of such
expressions over an alphabet Σ of size k. Since a regular expression is defined
over the alphabet {ε, ∅, (, ),+, ∗} ∪ Σ, we immediately get the trivial upper
bound Rk(n) ≤ Sk(n) ≤ (k+6)n. To improve our estimate for Sk(n), it becomes
necessary to state more precisely what a valid regular expression is.

There is some ambiguity about the definition of a valid regular expression.
For example, is the empty expression valid? How about () or a**? The first two,
for example, generate errors in Grail version 2.5 [7].

Surprisingly, very few textbooks, if any, define valid regular expressions prop-
erly or formally. For example, using the definition given in Martin [6–p. 86], the
expression 00 is not valid, since it is not fully parenthesized. (To be fair, after
the definition it is implied that parentheses can be omitted in some cases, but
no formal definition of when this can be done is given.)

Probably the best way to define valid regular expressions is with a grammar.
We now present a grammar for valid regular expressions:

S → E+ | E• | G
E+ → E+ + F | F + F

F → E• | G
E• → E• G | GG

G→ E∗ | C | P
C → ∅ | ε | a (a ∈ Σ)
E∗ → G ∗
P → (S)

The meaning of the variables is as follows:

– S generates all regular expressions
– E+ generates all unparenthesized expressions where the last operator was +
– E• generates all unparenthesized expressions where the last operator was ·

(implicit concatenation)
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– E∗ generates all unparenthesized expressions where the last operator was ∗
(Kleene closure)

– C generates all unparenthesized expressions where there was no last operator
(i.e., the constants)

– P generates all parenthesized expressions

Here by “parenthesized” we mean there is at least one pair of enclosing paren-
theses. Note this grammar allows a ∗ ∗ but disallows ().

We claim this grammar is unambiguous. Because of this, we can apply the
Chomsky-Schützenberger theorem [1], which states that if a language is gener-
ated by an unambiguous CFG, then the generating function

f(x) =
∑
i≥0

|L ∩ Σi|xi

is algebraic over Q(x).
So we look at the “commutative image” of this grammar, which replaces each

terminal by x, each occurrence of the empty string ε by 1, and each occurrence
of | by +. This gives the following system of equations:

S = E+ + E• + G

E+ = E+Fx + F 2x

F = E• + G

E• = E•G + G2

G = E∗ + C + P

C = (k + 2)x (k = |Σ|)
E∗ = Gx

P = Sx2

Now we can use Gröbner bases to find the algebraic equation satisfied by S.
It is

(x2 + x3)S2 + ((k + 3)x2 + (k + 3)x− 1)S + (k + 2)x = 0.

Solving for S, we get

S =
−(k + 3)x2 − (k + 3)x + 1−√D

2(x2 + x3)
.

where the discriminant

D = (k + 1)2x4 + 2(k2 + 4k + 5)x3 + (k + 1)(k + 3)x2 − 2(k + 3)x + 1.

We can expand this as a power series to get a generating function enumerating
the regular expressions of length n. For example, for k = 2, we have

S = 4x + 20x2 + 120x3 + 716x4 + 4356x5 + 26880x6 + · · · .
(The 20 regular expressions of length 2 are
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Table 1. Number of Valid Regular Expressions

k = 1 2 3 4
n = 1 3 4 5 6

2 12 20 30 42
3 60 120 210 336
4 297 716 1465 2682
5 1509 4356 10375 21666
6 7800 26880 74340 176736
7 40962 168068 538540 1455018
8 218052 1063156 3940280 12080862

– yz
– y∗

where y, z ∈ {ε, ∅, a, b}.)
The number Sk(n) of valid regular expressions of length n with alphabet size

k is summarized in Table 1.
The asymptotic growth rate of the coefficients of the generating function for

S depends on the reciprocal of the smallest zero of the discriminant D [5]. This
smallest zero is, as k →∞, asymptotically equal to

1
k
− 6

k2 +
42
k3 −

1319
4k4 +

22463
8k5 − · · · ,

and its reciprocal is

k + 6− 6
k
− 167

4k2 −
2615
8k3 − · · · .

For k = 1 this the smallest zero is about .16246250262 and for k = 2 it is
about .13755127577.

Using Darboux’s method, we can prove

Theorem 1. We have Sk(n) ∼ ckα
n
kn

−3/2 for some constant ck, where α1
.=

6.1552665 and α2
.= 7.2700161767.

While we have counted valid regular expressions with n symbols, we are still
a long way from counting the distinct languages they represent. This is because
using our definition, many languages are double-counted. To improve the bound,
we can attempt to improve the grammar to weed out evidently uninteresting
regular expressions, such as those containing redundant parentheses.

An unambiguous grammar for regular expressions without redundant paren-
theses is as follows:

S → E+ | E• | E∗ | C
E+ → E+ + F | F + F

F → E• | E∗ | C
E• → E• G | GG

G→ (E+) | E∗ | C
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C → ∅ | ε | a (a ∈ Σ)
E∗ → (E+)* | (E•)* | E∗* | C*

We can mimic the analysis given for the previous grammar. For k = 2, we
get the equation (x9 + x6)S4 + (2x6 + 5x5 + x3)S3 + (5x4 + 5x3 + 5x2 − x)S2 +
(8x2 + 5x− 1)S + 4x = 0 which has the power series solution

S = 4 + 20x2 + 116x3 + 660x4 + 3780x5 + 21844x6 + · · · .

The discriminant is a polynomial of degree 30, the smallest positive root is
.146378001, and the asymptotic growth rate is O(6.832n).

Maple worksheets for these examples are available at
http://www.cs.uwaterloo.ca/~shallit/papers.html .

Using more complicated grammars, we can dramatically improve these
bounds; we do this in Section 5. For now, however, we turn to lower bounds.

3 Lower Bounds

We now turn to lower bounds on Rk(n).
In the unary case (k = 1), we can argue as follows: consider any subset

of {ε, a, a2, . . . , at−1}. Such a subset can be denoted by a regular expression of
(ordinary) length at most t(t+1)/2. Since there are 2t distinct subsets, this gives
a lower bound of R1(n) ≥ 2

√
2n−1. Similarly, when k ≥ 2, there are kn distinct

strings of length n, so Rk(n) ≥ kn.
However, these naive bounds can be improved somewhat using a grammar-

based approach.
Consider a regular expression of the form

x1(ε + x2(ε + x3(ε + ...)))

where the xi denote nonempty words. Every distinct choice of the xi specifies a
distinct language. Such expressions can be generated by the grammar

S → Y | Y (ε + S)
Y → aY | a, a ∈ Σ

which has the commutative image

S = Y + Y Sx4

Y = kxY + kx.

The solution to this system is

S =
kx

1− kx− kx5 .
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Once again, the asymptotic behavior of the coefficients of the power series
for S depend on the zeros of 1− kx− kx5. The smallest (indeed, the only) real
root is, asymptotically as k →∞, given by∑

i≥0

(−1)i
(5i

i

)
4i + 1

k−(4i+1) =
1
k
− 1

k5 +
5
k9 −

35
k13 + · · · .

The reciprocal of this series is∑
i≥0

4
(5i+5

i+1

)
5(5i + 4)

k1−4i = k +
1
k3 −

4
k7 +

26
k11 −

204
k15 +

1771
k19 − · · · .

For k = 1 the only real root of 1−kx−kx5 is approximately .754877666 and
for k = 2 it is about .4756527435. Thus we have

Theorem 2. R1(n) = Ω(1.3247n) and R2(n) = Ω(2.102374n).

We now turn to improving these lower bounds.

4 Better Lower Bounds

4.1 Trie Representations of Finite Languages

We begin by describing how to represent non-empty finite languages not con-
taining ε via a trie structure; an example is given Fig. 1.

0

1

2

4

6

7

83 5 ε

Fig. 1. Trie representation for 01(2+34+5)+6(ε+7)

Algorithm 1 below takes as input a finite non-empty language L not contain-
ing ε and returns a trie in our desired format. The words in such a language L
correspond to the leaf nodes of the trie for L; moreover, the concatenation of
labels from the root to a leaf node gives an expression for the word associated
with that leaf node. For regular languages L1 and L2, we write L−1

2 L1 to denote
the left quotient of L1 by L2; formally

L−1
2 L1 = {x : there exists y ∈ L2 such that yx ∈ L1}.
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Algorithm 1 CREATE-TRIE(L)
Require: ε �∈ L, L �= ∅
1: create a tree T with an unlabelled root
2: for all a ∈ Σ such that a−1L �= ∅ do
3: add the subtree returned by CREATE-TRIE-HELP({a}−1L, a) as a child of the

root of T
4: end for
5: return T

Algorithm 2 CREATE-TRIE-HELP(L, a)
1: create a tree T with a root labelled a
2: if L �= {ε} then {need to create children}
3: for all b ∈ Σ such that b−1L �= ∅ do
4: add the subtree returned by CREATE-TRIE-HELP({b}−1L, b) as a child of

the root of T
5: end for
6: if ε ∈ L then
7: add a node labelled ε as a child of the root of T
8: end if
9: end if

10: return T

4.2 Star-Free Regular Expressions

We begin with the simple problem of counting the number of regular languages
that may be specified by regular expressions of length n.

We develop lower bounds by specifying a context-free grammar that generates
regular expressions, factoring out common prefixes in a style similar to Horner’s
rule. In fact, the grammar is designed so that if r is a regular expression generated
by the grammar, then the structure of r mimics that of the trie for L(r) —
nodes with a single child correspond to concatenations while nodes with multiple
children correspond to concatenations with a union. For notational convenience,
we take our alphabet to be Σ = {a0, a1, . . . , ak−1}, where k ≥ 1 denotes our
alphabet size.

S → Y | Z
E → Y | (Z) | (ε + S)
Y → Pi for 0 ≤ i < k

Z → Pn0 + Pn1 + · · ·+ Pnt where 0 ≤ n0 < n1 < · · · < nt < k for t > 0
Pi → ai | aiE for 0 ≤ i < k

The set of regular languages represented corresponds to all non-empty finite
languages over Σ not containing the empty string ε. We briefly describe the
non-terminals:

S generates all non-empty finite languages not containing ε — this corresponds
to Algorithm 1.



Enumerating Regular Expressions and Their Languages 9

E generates all non-empty finite languages containing at least one word other
than ε — this corresponds to line 2 of Algorithm 2.

Y generates all non-empty finite languages (not containing ε) whose words all
begin with the same letter — this corresponds to line 2 of Algorithm 1 and
line 3 of Algorithm 2 when the body of the for loop is executed only once.

Z generates all non-empty finite languages (not containing ε) whose words do
not all begin with the same letter — this corresponds to line 2 of Algorithm 1
and line 3 of Algorithm 2 when the body of the for loop is executed more
than once.

Pi generates all non-empty finite languages (not containing ε) whose words all
begin with ai — this corresponds to line 1 of Algorithm 2.

We remark that this grammar is unambiguous and that no regular language
is represented more than once; this should be clear from the relationship between
regular expressions generated by the grammar and their respective tries.

(Note that it is possible to slightly optimize this grammar in the case of
ordinary length to generate expressions such as 0 + 00 in lieu of 0(ε + 0), but
as it results in marginal improvements to the lower bound at the cost of greatly
complicating the grammar, we do not do so here.)

To obtain bounds, we make use of the following result adapted from Klarner
and Woodworth [5].

Theorem 3. Suppose it is known that the coefficients of an algebraic power
series F (x) grow at a rate of Ω(αn) and O(βn) for α < β. Suppose also there
is a polynomial P ∈ Z[x, y] such that P (x, F ) = 0 and whose discriminant δ
with respect to y has only one root γ in the interval [1/β, 1/α]. Then modulo
some sub-exponential growth rate, the coefficients of F (x) grow asymptotically
like 1/γn.

Proof. We may assume that F has a radius of convergence 0 < R <∞. Klarner
and Woodworth deduce that R is a singularity of F , so it suffices to show that γ is
the smallest positive singularity of F ; that is, R. Suppose there exists a smallest
positive singularity γ′ < γ. By assumption, γ′ < 1/β so 1/γ′ > β. However,
γ′ determines the radius of convergence of F , contradicting the fact that the
coefficient growth is O(βn). It remains to show that γ is indeed a singularity.
Since the coefficient growth is Ω(αn), there must be a singularity less than 1/α.
By assumption, this must be γ.

Table 2 lists the lower bounds obtained through this grammar.

Remark 1. By virtue of Theorem 3, these lower bounds were obtained by boot-
strapping off the trivial bounds of Ω(kn), Ω(kn/2) and Ω(kn) for the ordinary,
reverse polish and alphabetic length cases, respectively.

Asymptotic Analysis for Alphabetic Length. We first state a version of
the Lagrange implicit function theorem as a simplification of [4–Theorem 1.2.4].
If f(t) is a power series in t, we write [tn]f(t) to denote the coefficient of tn in
f(t).
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Table 2. Lower bounds for Rk(n) with respect to length measure and alphabet size

ordinary reverse polish alphabetic
1 Ω(1.3247n) Ω(1.2720n) Ω(2n)
2 Ω(2.5676n) Ω(2.1532n) Ω(6.8284n)
3 Ω(3.6130n) Ω(2.7176n) Ω(11.1961n)
4 Ω(4.6260n) Ω(3.1806n) Ω(15.5307n)
5 Ω(5.6264n) Ω(3.5834n) Ω(19.8548n)
6 Ω(6.6215n) Ω(3.9451n) Ω(24.1740n)

Lemma 1. Let R be a commutative ring of characteristic 0 and take φ(λ) ∈
R[[λ]] such that [λ0]φ is invertible. Then there exists a unique formal power
series w(t) ∈ R[[t]] such that [t0]w = 0 and w = tφ(w). For n ≥ 1,

[tn]w(t) =
1
n

[λn−1]φn(λ) .

Due to the simplicity of alphabetic length, the problem of enumerating regular
languages in this case may be interpreted as doing so for rooted k-ary trees,
where each internal node is marked with one of two possible colours. We thus
investigate how our lower bound varies with k.

More specifically, consider a regular expression r generated by the grammar
from the previous section and its associated trie. Colour each node with a child
labelled ε black and all other nodes white. After deleting all nodes marked ε, call
the resultant tree T (r). This operation is reversible, and shows that we may put
the expressions of alphabetic length n in correspondence with the k-ary rooted
trees with n+ 1 vertices where every non-root internal node may assume one of
two colours. In order to estimate the latter, we first prove a basic result:

Lemma 2. There are 1
n

(
kn

n−1

)
k-ary trees of n nodes. Moreover, the expected

number of leaf nodes among k-ary trees of n nodes is asymptotic to (1− 1/k)kn
as n→∞.

Proof. Fix k ≥ 1. For n ≥ 1, let an denote the number of k-ary rooted trees
with n vertices and consider the generating series:

f(t) =
∑
n≥1

ant
n .

By the recursive structure of k-ary trees, we have the recurrence:

f(t) = t(1 + f(t))k .

Thus, by the Lagrange implicit function theorem, we have

an = [tn]f(t)

=
1
n

[λn−1](1 + λ)kn

=
1
n

(
kn

n− 1

)
.



Enumerating Regular Expressions and Their Languages 11

We now calculate the number of leaf nodes among all k-ary rooted trees with
n vertices. Let bn,m denote the number of k-ary rooted trees with n vertices and
m leaf nodes and cn the number of leaf nodes among all k-ary rooted trees with
n vertices. Consider the bivariate generating series:

g(s, t) =
∑

n,m≥1

bn,msmtn .

By the recursive structure of k-ary trees, we have the recurrence:

g(s, t) = t(s− 1 + (1 + g(s, t))k) .

The Lagrange implicit function theorem once again yields

cn =
∂

∂s
[tn]g(s, t)

∣∣∣∣
s=1

=
∂

∂s

1
n

[λn−1](s− 1 + (1 + g(s, t))k)n

∣∣∣∣
s=1

=
1
n

[λn−1]
∂

∂s
(s− 1 + (1 + λ)k)n

∣∣∣∣
s=1

= [λn−1](1 + λ)k(n−1)

=
(
k(n− 1)
n− 1

)
.

Thus, the expected number of leaf nodes among n-node trees is

cn

an
=

n
(
k(n−1)

n−1

)(
kn

n−1

)
=

n(kn− n + 1)(kn− n) · · · (kn− k − n + 2)
(kn)(kn− 1) · · · (kn− k + 1)

∼ n

(
k − 1
k

)k

as n→∞ for fixed k.

We wish to find a bound on the expected number of subsets of non-root
internal nodes among all k-ary rooted trees with n nodes, where a subset corre-
sponds to those nodes marked black. Fix k ≥ 2. Since the map x → 2x is convex,
for every ε > 0 and sufficiently large n, Jensen’s inequality (e.g., [8–Thm. 3.3])
applied to the lemma above implies the following lower bound on the number of
subsets:

2(1−(1−1/k)k−ε)n .

Since −(1− 1/k)k > −1/e for k ≥ 1, we may choose ε > 0 such that

−(1− 1/k)k − ε > −1/e .

This yields a lower bound of
2(1−1/e)n .
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Assuming k ≥ 2, we now estimate
(

kn
n−1

)
. By Stirling’s formula, we have that

as n→∞,(
kn

n− 1

)
=

(kn)!
n! ((k − 1)n)!

n

(k − 1)n + 1

∼
√

2πkn (kn/e)kn

√
2πn (n/e)n

√
2π(k − 1)n ((k − 1)n/e)(k−1)n

n

(k − 1)n + 1

= Θ

((
kk

(k − 1)k−1)

)n)
.

Putting our two bounds together, we have the following lower bound as n→
∞ on the number of star-free regular expressions of alphabetic length n:

Ω

((
2(1−1/e)kk

(k − 1)k−1

)n
)

where the implied constants depend only on k.

4.3 General Regular Languages

We now turn our attention to enumerating regular languages in general; that is,
we allow for regular expressions with Kleene stars.

Our grammars for this section are based on the those for the star-free cases.
Due to the difficulty of avoiding specifying duplicate regular languages, we settle
for a “small” subset of regular languages. For simplicity, we only consider taking
the Kleene star closure of singleton alphabet symbols.

Recall the trie representation of a star-free regular expression written in our
common prefix notation. With this representation, we may mark nodes with
stars while satisfying the following conditions:

– each starred symbol must have a non-starred parent other than the root;
– a starred symbol may not have a sibling or an identically-labelled parent

(disregarding the lack of star) with its own sibling; and
– a starred symbol may not have an identically-labelled child (disregarding the

lack of star).

The first condition eliminates duplicates such as

0*11*0*1*0*↔ 0*1*0*11*0* ;

the second eliminates those such as

01*↔ 0(ε+11*) and 0(1+2*1)↔ 02*1

and the third eliminates those such as

0*0↔ 00* .

In this manner, we end up with starred tries such as in Fig. 2.
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1*

4*

0

2 3 5

7

6

8ε

Fig. 2. Trie representation for 01*(2+34*+5)+6(ε+7)

Algorithm 3 CREATE-STAR-TRIE(L)
Require: ε �∈ L, L �= ∅
1: create a tree T with an unlabelled root
2: for all a ∈ Σ such that {a}−1L �= ∅ do
3: add the subtree returned by CREATE-STAR-TRIE-HELP({a}−1L, a) as a child

of the root of T
4: end for
5: return T

Algorithm 4 CREATE-STAR-TRIE-HELP(L, a)
1: create a tree T with a root labelled a
2: if exists b ∈ Σ such that {bn}−1L∩ (ε+(Σ \ {b})Σ∗) �= ∅ for all n ≥ 0 then {need

a starred child labelled b∗}
3: attach a child labelled b∗ to the root of T
4: if L �= b∗ then {starred child will be an internal node}
5: for all c ∈ Σ \ {b} such that {c}−1L �= ∅ do {determine children}
6: add the subtree returned by CREATE-STAR-TRIE-HELP({c}−1L, c) as a

child of the node labelled b∗

7: end for
8: if b ∈ L then
9: add a node labelled ε as a child of the node labelled b∗

10: end if
11: end if
12: else
13: for all b ∈ Σ such that {b}−1L �= ∅ do {need an unstarred child labelled b}
14: add the subtree returned by CREATE-STAR-TRIE-HELP({b}−1L, b) as a

child of the root of T
15: end for
16: end if
17: if ε ∈ L and the root of T has at least one unstarred child then
18: add a node labelled ε as a child of the root of T
19: end if
20: return T
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Algorithm 3 illustrates how to recreate such a starred trie from the language
it specifies.

Let T be any starred trie satisfying the conditions above. Then T represents
a regular expression, which in turn specifies a certain language. We now show
that when the algorithm is run with that language as input, it returns the trie T
by arguing that at each step of the algorithm when a particular node (matched
with language L if the root and aL otherwise) is being processed, the correct
children are determined.

We first consider children of the root. By the original trie construction (for
finite languages without ε), no such children may be labelled ε. Thus, by the first
star condition, the only children may be unstarred alphabet symbols. Thus, line
2 of Algorithm 3 suffices to find all children of the root correctly.

Now consider a non-root internal node, say labelled a. By the third star
condition, a starred node may not have a child labelled with the same alphabet
symbol, so if a has a child labelled b∗, then

{bn}−1L ∩ (ε + (Σ \ {b})Σ∗) is non-empty for all n ≥ 0.

Conversely, by the second condition, a starred node may not have an identically-
labelled parent that has ε as a sibling, so if

{bn}−1L ∩ (ε + (Σ \ {b})Σ∗)

is non-empty for all n ≥ 0, then a must have a child labelled b∗. By the second
star condition, a starred node may not have siblings, so the algorithm need not
check for other children once a starred child is found. This shows that line 2 of
Algorithm 4 correctly finds all children in the case of a starred child.

Assuming a has a starred child b∗, then by the third condition, line 5 of
Algorithm 4 correctly determines all children of b∗.

Otherwise, a has no starred children, and line 13 of Algorithm 4 suffices to
find all children.

We give a grammar that generates expressions meeting these conditions. As
before, we take our alphabet to be {a0, a1, . . . , ak−1}.

S → Y | Z

E → Y | (Z) | (ε + Y ′) | (ε + Z)
Ei → Yi | (Zi) | (ε + Y ′

i ) | (ε + Zi) for 0 ≤ i < k

Y → Pi for 0 ≤ i < k

Y ′ → P ′
i for 0 ≤ i < k

Yi → Pj for 0 ≤ i, j < k and i �= j

Y ′
i → P ′

j for 0 ≤ i, j < k and i �= j

Z → P ′
n0

+ P ′
n1

+ · · ·+ P ′
nt

where 0 ≤ n0 < n1 < · · · < nt < k for t > 0
Zi → P ′

n0
+ P ′

n1
+ · · ·+ P ′

nt
as above, but with nj �= i for all 0 ≤ j ≤ t
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Pi → ai | aiE | aia
∗
j | aia

∗
jEj for 0 ≤ i, j < k

P ′
i → ai | aiE | aia

∗
j | aia

∗
jEj for 0 ≤ i, j < k and i �= j

We describe the non-terminals.

S generates all expressions — this corresponds to Algorithm 3.
E,Ei generate expressions that may be concatenated to non-starred and starred

alphabet symbols, respectively. The non-terminal E corresponds to lines 2
and 13 while Ei corresponds to line 5 of Algorithm 4. These act the same as
S except for the introduction of parentheses to take precedence into account
and restriction that no prefixes of the form ε + aa∗ are generated, used to
implement the second condition.
Additionally, Ei has the restriction that its first alphabet symbol produced
may not be ai — this is used to implement the third condition.

Y, Y ′, Yi, Y
′
i generate expressions whose prefix is an alphabet symbol. As a

whole, these non-terminals correspond to Algorithm 4, and may be con-
sidered degenerate cases of Z and Zi; that is, trivial unions.
The tick-mark signifies that expressions of the form aa∗ for a ∈ Σ are dis-
allowed, used to implement the second condition. The subscripted i signifies
that the initial alphabet symbol may not be ai, used to implement the third
condition.

Z,Zi generate non-trivial unions of expressions beginning with distinct alphabet
symbols — Z corresponds to line 2 of Algorithm 3 and line 13 of Algorithm 4,
while Zi corresponds to line 5 of Algorithm 4.
The subscripted i signifies that none of initial alphabet symbols may be ai,
used to implement the third condition.

Pi, P
′
i generate expressions beginning with the specified alphabet symbol ai.

They correspond to line 1 of Algorithm 4.
The tick-mark signifies that expressions may not have the prefix aia

∗
i , used

to implement the second condition.

Since the algorithm correctly returns a trie when run on the language repre-
sented by the trie, the correspondence between the algorithm and the grammar
gives us the following result.

Theorem 4. The grammar above is unambiguous and the generated regular ex-
pressions represent distinct regular languages.

Table 3. Improved lower bounds for Rk(n) with respect to length measure and alpha-
bet size

ordinary reverse polish alphabetic
1 Ω(1.3247n) Ω(1.2720n) Ω(2n)
2 Ω(2.7799n) Ω(2.2140n) Ω(7.4140n)
3 Ω(3.9582n) Ω(2.8065n) Ω(12.5367n)
4 Ω(5.0629n) Ω(3.2860n) Ω(17.6695n)
5 Ω(6.1319n) Ω(3.6998n) Ω(22.8082n)
6 Ω(7.1804n) Ω(4.0693n) Ω(27.9500n)
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Table 3 lists the improved lower bounds for Rk(n).

Remark 2. These lower bounds were obtained via Theorem 3, boot-strapping off
the bounds in Table 2.

5 Better Upper Bounds

Turning our attention back to upper bounds, we develop grammars for regular
expressions such that every regular language is represented by at least one short-
est regular expression generated by the grammar, where a regular expression R
of length n is said to be shortest if there are no expressions R′ of length less
than n with L(R) = L(R′).

In increasing order of precedence, the operations on regular languages are
union, concatenation and Kleene-star closure, which we denote by the symbols
+, • and ∗, respectively. In our grammars for this section, we will denote these
by the non-terminals A, B and C, respectively.

As + and • are associative, we will consider them to be variadic operators
taking at least 2 arguments and impose the condition that in any parse tree (see
Fig. 3), neither of them are permitted to have themselves as children.

0

•

* *

+ 5

1 4•

2 3

Fig. 3. Parse tree for 0(1+23+4)*5*

Taking into mind associativity, we start with the following unambiguous
grammar as our basis for regular expressions — note that this is different from
the grammar given previously.

S → A | B | C | D | ε | ∅ (start symbol)

A→ A0 + A0 | A0 + A (union)
A0 → B | C | D | ε

B → B0 B0 | B0 B (concatenation)
B0 → (A) | C | D
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C → (A)∗ | (B)∗ | D∗ (Kleene-star closure)

D → a for a ∈ Σ (alphabet symbols) .

We claim that each regular language has at least one shortest regular ex-
pression that is generated by the grammar; our immediate aim is to modify the
grammar to generate fewer regular expressions per regular language while still
generating at least one shortest one.

There are a few possible optimizations for removing duplicate regular lan-
guages.

– In all cases, by the commutativity of + (viewed as a variadic operator), we
may impose the condition that its operands appear in the following order:
1. the symbol ε;
2. starred expressions (those generated by C);
3. concatenated expressions (those generated by B); then
4. singleton alphabet symbols (those generated by D).

Also, given that for languages L1, L2, . . . , Ln we have

(L1 + L2 + · · ·Ln)∗ = (L∗
1 + L∗

2 + · · ·+ L∗
n) ,

we impose the restriction that whenever + is an operand of ∗, none of its own
operands may be ∗ or ε. Otherwise, at most one operand may be ε, provided
none of the other operands are ∗. These conditions prevent expressions such
as (a∗)∗, (ε + a)∗ and ε + a∗ when a∗ will suffice.
We implement these two conditions by modifying the “A”-productions to:

A→ ε + AB | C + AC | B + AB | D + AD (union)
A′ → B + AB | D + AD

AC → C | C + AC | AB

AB → B | B + AD | AD

AD → D | D + AD .

In addition, we modify the “C”-production to:

C → (A′)∗|(B)∗|D∗ (Kleene-star closure).

– In the unary cases, by the commutativity of • (viewed as a variadic operator),
we may impose a similar condition as for +; namely, that its operands appear
in the following order:
1. starred expressions (those generated by C);
2. united expressions (those generated by A); then
3. single alphabet symbols (those generated by D).

We also impose the condition that at most one such operand may be a starred
expression. For if we have an operand of the form a∗ for a ∈ Σ, all other
starred expressions are redundant. Otherwise, due to precedence, we may
assume we have operands of the form (r1) and (r2) for regular expressions
r1 and r2, so with respect to ordinary length,
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|(r1 + r2)∗| = |(r1)∗(r2)∗| − 2 .

Note that in the alphabetic and reverse polish length cases, this condition is
implied by the one we will state next.
We implement these conditions by modifying the “B”-productions to:

B → CBA | (A)BA | DBD (concatenation)
BA → (A) | (A)BA | BD

BD → D | DBD .

– In the alphabetic and reverse polish measure of length cases, we impose the
restriction that no two adjacent operands of •, the concatenation operator,
are starred expressions. For if r1, r2 denote regular expressions, then r∗

1r
∗
2 =

(r1 + r2)∗. Furthermore, with respect to alphabetic length,

|(r1 + r2)∗| = |r∗
1r

∗
2 |;

and with respect to reverse polish length,

|(r1 + r2)∗| = |r∗
1r

∗
2 | − 1.

We implement these conditions by modifying the “B”-productions to:

B = (A)B0 | CB1 | DB0 (concatenation)
B0 = (A) | C | D | (A)B0 | CB1 | DB0

B1 = (A) | D | AB0 | DB0 .

With these enhancements, we obtain improved upper bounds on Rk(n), as
listed in Table 4.

Remark 3. In the case of reverse polish length, the least positive root was less
than 1/(k+4), meaning it could be safely ignored by Theorem 3. In the ordinary
unary case, the bound was boot-strapped from the bound obtained from relax-
ing the operand ordering of +; in the ordinary non-unary cases, the restriction
disallowing ε and starred expressions to be siblings was dropped due to apparent
computational infeasibility.

By discarding the productions for the non-terminal C altogether, we obtain
upper bounds for the star-free analogue of Rk(n), as shown in Table 5.

Table 4. Improved upper bounds for Rk(n) with respect to length measure and al-
phabet size

ordinary reverse polish alphabetic
1 O(2.9090n) O(2.7037n) O(21.7527n)
2 O(4.2198n) O(3.9675n) O(62.9522n)
3 O(5.3182n) O(4.6899n) O(94.4282n)
4 O(6.4068n) O(5.2957n) O(125.9043n)
5 O(7.4736n) O(5.8276n) O(157.3804n)
6 O(8.5261n) O(6.3074n) O(188.8564n)
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Table 5. Improved upper bounds for star-free Rk(n) with respect to length measure
and alphabet size

ordinary reverse polish alphabetic
1 O(2.4702n) O(2.4495n) O(14.6032n)
2 O(3.5051n) O(3.3096n) O(29.2063n)
3 O(4.5681n) O(3.9837n) O(43.8095n)
4 O(5.6208n) O(4.5579n) O(58.4126n)
5 O(6.6629n) O(5.0670n) O(73.0158n)
6 O(7.6969n) O(5.5292n) O(87.6189n)

Remark 4. For the unary reverse polish and alphabetic length cases, it can be
shown directly that the lower bounds given in Table 2 are indeed upper bounds
as well.

6 Exact Enumerations

Tables 6 to 11 give exact numbers for the number of regular languages repre-
sentable by a regular expression of length n, but not by any of length less than n.

Table 6. Star-free ordinary cases

1 2 3 4
1 3 4 5 6
2 1 4 9 16
3 2 11 33 74
4 3 28 117 336
5 3 63 391 1474
6 5 156 1350 6560
7 5 358 4546 28861
8 8 888 15753 128720
9 9 2194 55053 578033

10 14 5665 196185

Table 7. Star-free reverse polish cases

1 2 3 4
1 3 4 5 6
3 2 7 15 26
5 3 25 85 202
7 5 109 589 1917
9 9 514 4512 20251

11 14 2641 37477
13 24 14354 328718
15 41 81325 231152
17 71 475936
19 118
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Table 8. Star-free alphabetic cases

1 2 3 4
0 2 2 2 2
1 2 4 6 8
2 4 24 60 112
3 8 182 806 2164
4 16 1652 13182 51008
5 32 16854 242070 1346924
6 64 186114

Table 9. General ordinary cases

1 2 3 4
1 3 4 5 6
2 2 6 12 20
3 3 17 48 102
4 4 48 192 520
5 5 134 760 2628
6 9 397 3090 13482
7 12 1151 12442 68747
8 17 3442 51044 354500
9 25 10527 211812

10 33 32731 891228

Table 10. General reverse polish cases

1 2 3 4
1 3 4 5 6
2 1 2 3 4
3 2 7 15 26
4 2 13 33 62
5 3 32 106 244
6 4 90 361 920
7 6 189 1012 3133
8 7 580 3859 13529
9 11 1347 11655 48388

10 15 3978 43431 208634

We explain how these numbers were obtained. Using the upper bound
grammars described previously, a dynamic programming approach was taken
to produce (in order of increasing regular expression size) the regular expres-
sions generated by each non-terminal. To account for duplicates, each regular
expression was transformed into a DFA, minimized and relabelled via a breadth-
first search to produce a canonical representation. Using these representations as
hashes, any regular expression matching a previous one generated by the same
non-terminal was simply ignored.
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Table 11. General alphabetic cases

1 2 3 4
0 2 2 2 2
1 3 6 9 12
2 6 56 150 288
3 14 612 3232 9312
4 30 7923 82614 357911
5 72 114554
6 155 1768133
7 343
8 731
9 1600

10 3407

A Commutative Images

We provide the commutative images for the grammars described. We do not
explicitly provide images for the star-free cases, as they may be obtained from
those below by simply ignoring the images of sentential forms containing a star.

We also set one of δo, δr, δa to 1, depending on whether the ordinary, reverse
polish or alphabetic case is being considered, respectively — all others are set
to 0. As usual, k denotes the alphabet size.

A.1 Lower Bounds

S = Y + Z

E = Y + Zx2δo + Y ′x4δo+2δr + Zx4δo+2δr

EN = YN + ZNx2δo + Y ′
Nx4δo+2δr + ZNx4δo+2δr

Y = kPN

Y ′ = kP ′
N

YN = (k − 1)PN

Y ′
N = (k − 1)P ′

N

Z =
k∑

i=2

(
k

i

)
P ′i

Nx(δo+δr)(i−1)

ZN =
k−1∑
i=2

(
k − 1
i

)
P ′i

Nx(δo+δr)(i−1)

PN = x + Ex1+δr + kx2+δo+2δr + kENx2+δo+3δr

P ′
N = x + Ex1+δr + (k − 1)x2+δo+2δr + (k − 1)ENx2+δo+3δr .
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A.2 Upper Bounds

S = A + B + C + D + 2(δo + δr)x (start symbol)
A = ABx2(δo+δr) + CACx

δo+δr + BABxδo+δr + DADxδo+δr (union)
A′ = BABxδo+δr + DADxδo+δr

AC = C + CACx
δo+δr + AB

AB = B + BADxδo+δr + AD

AD = D + DADxδo+δr

C = A′x3δo+δr + Bx3δo+δr + Dxδo+δr (Kleene-star closure)
D = kx (alphabet symbols)

In the unary cases:

B = CBAx
δr + ABAx

2δo+δr + DBDxδr (concatenation)
BA = Ax2δo + ABAx

2δo+δr + BD

BD = D + DBDxδr

In the ordinary, non-unary cases:

B = AB0x
2 + CB0 + DB0 (concatenation)

B0 = Ax2 + C + D + AB0x
2 + CB0 + DB0

In the non-ordinary, non-unary cases:

B = AB0x
δr + CB1 + DB0 (concatenation)

B0 = A + C + D + AB0x
δr + CB1x

δr + DB0x
δr

B1 = A + D + AB0x
δr + DB0x

δr
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Abstract. We present a general weighted grammar software library,
the GRM Library, that can be used in a variety of applications in text,
speech, and biosequence processing. The underlying algorithms were de-
signed to support a wide variety of semirings and the representation and
use of very large grammars and automata of several hundred million rules
or transitions. We describe several algorithms and utilities of this library
and point out in each case their application to several text and speech
processing tasks.

1 Introduction

The statistical methods used in text and speech processing [19] or in bioinformat-
ics [10] require the representation and use of models that are given as weighted
automata either directly or as a result of the approximation and compilation
of more powerful grammars such as probabilistic context-free grammars. In all
cases, the weights play a crucial role in their definition and use, in particular
because they can be used to rank alternative sequences.

This constituted our original motivation for the creation of a general weighted
grammar library and the design of essential algorithms for creating, modifying,
compiling, and approximating large weighted statistical or rule-based grammars.
The algorithms of our software library, GRM Library, were designed to support
a wide variety of semirings, thus weight sets. While keeping a high degree of
generality, the algorithms were also designed to be very efficient to support the
representation and use of grammars and automata of several hundred million
rules or transitions. The representations and functions of a general weighted-
transducer library (the FSM library [18]), served as the basis for the design of
the GRM library.
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Another motivation for the design of the GRM library was the need for gen-
eral text and automata processing algorithms, which, in many cases, constitute
the first step of the creation of a statistical grammar. An example is the require-
ment to compute from the input, the counts of some fixed sequences to create
statistical language models. When the input is not just text, but a collection of
weighted automata output by a speech recognizer or an information extraction
system, novel algorithms and utilities are needed.

In the following, we describe several algorithms and utilities of the GRM
library and point out in each case their application to several text and speech
processing tasks. Some of the algorithms and utilities of an older version of
this library, e.g., the algorithms and utilities for the compilation of weighted
context-dependent rules, were presented elsewhere [16]. Here we describe three
categories of algorithms and utilities of the library: local grammar and text
processing utilities, context-free grammar compilation and approximation, and
statistical language modeling algorithms and tools.

2 Design

The core foundation of the GRM library is the FSM library [18]. Both libraries
are implemented in C and share the same data representations, the same binary
file format and the same command-line interface style. In the FSM library, the
memory representation of a weighted automaton or transducer is determined by
the use of an FSM class that defines methods for accessing and modifying it.
The efficient implementation of several algorithms required the definition of new
FSM classes in the GRM library: the edit, replace and failure classes. The latter
will be described in this article, the reader can refer to the documentation for
the other classes.

3 Local Grammars and Text Processing

The GRM library includes several utilities for text processing. This section briefly
reviews the relevant utilities.

3.1 Failure Transitions

There exists a general technique for representing the transitions of automata in
an implicit manner, which can lead to substantial savings in space. The method
is based on the use of failure transitions. A failure transition is a specific type of
transitions with the semantic of ’otherwise’: it is taken when no regular transition
with the desired input label is found. Failure transitions were popularized by [1]
and are used to represent local grammars (see section 3.2) and backoff language
models (see section 5.3).

The use of failure transitions is made possible in the GRM library through
a dedicated FSM class, the failure class. The utility grmfailure can convert
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a regular FSM representation to a failure class representation by interpreting
transitions labeled with the symbol phi specified by the option -p as failure
transitions:

grmfailure -p phi A.fsm > A.failure.fsm

3.2 Local Grammars

Algorithm. Let A be a deterministic finite automaton and let L(A) be the
regular language accepted by A. An algorithm constructing a compact represen-
tation of the deterministic automaton representing Σ∗L(A) using failure transi-
tions was given by [15]. This algorithm can be seen as an extension to the case
of an arbitrary deterministic automaton A of the classical algorithms of [13, 1]
which were designed for a string or a tree. When A is a tree, its complexity
coincides with that of [1]: it is linear in the sum of the lengths of the strings
accepted by A.

Utility. The algorithm of [15] was implemented in the GRM Library. The utility
grmlocalgrammar takes as input a deterministic finite automaton A and returns
a deterministic finite automaton recognizing Σ∗L(A) represented with failure
transitions. The symbol used to label the failure transitions can be specified
through the option -p:

grmlocalgrammar -p phi A.fsm > sigma-star.A.fsm

Examples and Applications. A deterministic finite automaton A is given by
Figure 1(a) and the corresponding automaton recognizing Σ∗L(A) is given by
Figure 1(b), the failure transitions being labeled with φ. The main applications
of local grammars are string-matching [1, 15] and disambiguation as a first step
before part-of-speech tagging or parsing [14].

3.3 Weighted Suffix Automata

Algorithms. The suffix automaton of a string u is the minimal deterministic
finite automaton recognizing the set of suffixes of u [5, 8]. Its size is linear in

0 1a 2b 3a 4b
c

0

φ

1a
φ

2b
φ

3

a
φ

4b

5

c

φ

φ

(a) (b)

Fig. 1. (a) A deterministic finite automaton A and (b) a deterministic automaton
recognizing Σ∗L(A) where transitions labeled with φ are failure transitions
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the length of u, n. More precisely, its number of states is between n and 2n− 1
and its number of transitions between n + 1 and 3n − 2. This automaton can
be obtained by minimizing the suffix trie of u. A crucial advantage of suffix
automata is that, unlike suffix trees, they do not require the use of ’compact’
transitions (transitions labeled with strings) for the size to be linear in |u|. In
[8], the notion of weighted suffix automaton was introduced. It is defined over
the tropical semiring and has the same topology as the suffix automaton. Let
SA(u) be the weighted suffix automaton of a string u and let x be a suffix of
u. The weight associated by SA(u) to x is the position of the suffix x in u. A
string x is a factor of u iff it is the label of a path π in SA(u) starting from
the initial state. The weight of π gives the position of the first occurrence of x
in u. A weighted suffix automaton can be built by an on-line algorithm deriv-
ing SA(uσ) from SA(u) for σ ∈ Σ. This algorithm is based on the definition of
failure transitions similar to the suffix links defined in a suffix tree. The com-
plexity of the on-line construction algorithm is O(log(|Σ|)|u|) in time and O(|u|)
in space.

The weighted suffix oracle SO(u) of a string u is an approximation of the
suffix automaton recognizing a superset of the set of suffixes of u [2]. It has
exactly |u|+ 1 states and at most 2|u| − 1 transitions. The weight associated by
SO(u) to a string x is the position in u where x would occurs if x was a suffix of
u. The construction algorithm is a simplified version of the on-line construction
algorithm of the suffix automaton, its complexity is O(log(|Σ|)|u|) in time and
O(|u|) in space.

Utilities. The on-line construction algorithms of the weighted suffix automaton
and oracle have been implemented in the GRM library and can be invoked
through the grmsuffix command-line utility:

grmsuffix A.fsm > suffix.fsm
grmsuffix -o A.fsm > oracle suffix.fsm

This utility takes as input a string represented by a finite automaton and
returns the weighted suffix automaton of that string. When the -o option is
used, the weighted suffix oracle is returned instead.

Examples and Applications. The weighted suffix automaton SA(abbab) of
the string abbab is given by Figure 2(b). The weight associated by SA(abbab) to
ab is 3, which is the position in abbab where ab occurs as a suffix, and the weight of
the path starting from the initial state and labeled with ab is 0, which is indeed
the position of the first occurrence of ab in abbab. The weighted suffix oracle
SO(abbab) of abbab is given Figure 2(c). Note that the string abab is recognized
by SO(abbab) although it is not a suffix of abbab.

The (weighted) suffix automaton can be used for indexing [6, 8], string-
matching [9, 4] and compression [8]. The main application of the suffix oracle
is string-matching [2].
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2/3b/0
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6/0b/0
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0/5
1a/0

2/3
b/1

b/0 3b/0
4

a/1

a/0
5/0b/0

(c)

Fig. 2. (a) A string u represented by a finite automaton. (b) The weighted suffix
automaton of u. (c) The weighted suffix oracle of u

4 Context-Free Grammars

The GRM library includes several utilities for reading, compiling, and approxi-
mating context-free grammars (CFGs) into finite automata. This section briefly
reviews the relevant utilities of the GRM library.

4.1 Textual and Binary Representations

A textual representation of a weighted context-free grammar can be used directly
as input to the GRM utilities. The following illustrates that representation in
the case of a simple CFG.

CFG rules cfg.txt

Z .1 → XY
X .2 → aY
Y .3 → bX | .4 c

Z .1 X Y
X .2 a Y
Y .3 b X | .4 c

The textual representation is a straightforward translation of the classical
way a CFG is written. Since, by definition, the first symbol of each rule is a non-
terminal, there is no need to keep the arrow symbol for indicating the rule deriva-
tion. The second symbol of each line is the weight associated to the rule (in the
case of weighted CFGs). The weights can be elements of an arbitrary semiring.

For efficiency purposes, this textual representation can be turned into a bi-
nary format using the utility grmread. The following is a command line sequence
that generates the binary representation cfg.bin of the CFG cfg.txt where the
file labels is a user-defined association between the symbols (terminal and non-
terminal) and some numbers associated with them.
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grmread -i labels -w cfg.txt >cfg.bin

The flag -w indicates that the input CFG is weighted. In the GRM library,
the current binary representation is in fact that of a weighted transducer, see
Figure 3(a). There are several reasons that motivated that choice. First, this
representation makes it natural to apply grammar operations such as union or
concatenation directly at the binary level. Secondly, and perhaps more impor-
tantly, the use of general determinization and minimization algorithms with this
representation increase the sharing (factoring) among grammar rules that start
or end the same way, which improves dramatically the time and space needed
for the grammar compilation.

4.2 Compilation and Regular Approximation

When the input weighted context-free grammar is strongly regular, it can be
compiled by the GRM library into an equivalent weighted automaton using the
utility grmcfcompile. A CFG is strongly regular when the rules of each set
M of mutually recursive nonterminals are either all right-linear or all left-linear
(nonterminals that do not belong to M are considered as terminals for deciding if
a rule of M is right- or left-linear). The following illustrates the use of the GRM
utility grmcfcompile for compiling a CFG given by the binary representation
cfg.bin.

grmcfcompile -i labels -s Z cfg.bin >cfg.fsm

Figure 3(b) shows the result of the compilation of that grammar. The CFG
compilation of the GRM library produces an FSM that can be expanded on-
demand. The FSM returned by grmcfcompile is a delayed acceptor, thus, its
states and transitions are expanded as required by the FSM operation that is
applied to it.

Not all weighted CFGs are strongly regular and thus can be compiled into
weighted automata using grmcfcompile. We have designed an efficient context-
free approximation algorithm that transforms any context-free grammar into
one that is strongly regular [17]. The algorithm is based on a simple transforma-
tion that applies to any context-free grammar. The resulting grammar contains

0

1
X:ε/.2

2Y:ε/.3

3

Y:ε/.4

4Z:ε/.1
5ε:a/0

6
ε:b/0

7/0

ε:c/0

ε:X/0 ε:Y/0

ε:X/0

0 1a/0.3

2b/0.3

3
c/0.4

a/0.2
4b/0.3

5/0c/0.4

a/0.2

(a) (b)

Fig. 3. (a) Binary representation of the context-free grammar G. (b) Compilation of
G into a weighted automaton
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at most one new nonterminal for any nonterminal symbol of the input gram-
mar. The result thus remains readable and if necessary modifiable. A mapping
from an arbitrary CFG generating a regular language into a corresponding fi-
nite automaton cannot be realized by any algorithm [24]. Thus, in general, our
approximation cannot guarantee that the language is preserved when the gram-
mar already generates a regular language (neither can any other approximation).
However, this is guaranteed when the grammar is strongly regular.

The GRM utility grmcfapproximate takes as input the binary represen-
tation of a CFG and produces the textual representation of a strongly regular
grammar approximating the input. The approximation creates new non-terminal
symbols. The option -o olab specifies a new symbols file to be created, olab,
containing the original and the new symbols. The following illustrates the use of
grmcfapproximate.

grmcfapproximate -i lab -o nlab cfg.bin >ncfg.txt
grmread -i nlab ncfg.txt | grmcfcompile -i nlab -s E >cfg.fsm

cfg.txt ncfg.txt cfg.fsm

E E + T
E T
T T * F
T F
F ( E )
F a

E’ eps
T’ eps
F’ eps
E E
E’ + T
T’ E’
E T
T’ E’

T T
T’ * F
F’ T’
T F
F’ T’
F ( E
E’ ) F’
F a F’

0

(

1

a
*
+

)

The grammar cfg.txt above represents a simple grammar of arithmetic ex-
pressions. When applied to cfg.txt, grmcfapproximate returns the strongly
regular grammar ncfg.txt that can be compiled into the automaton cfg.fsm
represented by the figure.

5 Statistical Language Models

The GRM library includes utilities for counting n-gram occurrences in corpora
of text or speech, and for estimating and representing n-gram language models
based upon these counts. The use of weighted finite-state transducers allows
for an efficient algorithm for computing the expected value of n-gram sequences
given a weighted automaton. Failure transitions provide a natural automata
encoding of stochastic language models in the tropical semiring. Some of the
algorithmic details related to these utilities are presented in [3]. Here we give a
brief tutorial on their use.

5.1 Corpora

For counting purposes, a corpus is a collection (or archive) of weighted automata
in the log semiring. A corpus of strings can be compiled into such an archive
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with the FSM library utility farcompilestrings. A collection of word lattices
(acyclic weighted graphs of alternative word strings, e.g. output from a speech
recognizer) can be simply concatenated together to form an archive. For posterior
counts from word lattices, weights should be pushed toward the initial state and
the total cost should be removed, using fsmpush.

5.2 Counting

We define the expected count (the count for short) c(x) of the sequence x in A
as: c(x) =

∑
u∈Σ∗ |u|x [[A]](u), where |u|x denotes the number of occurrences of

x in the string u, and [[A]](u) the weight associated to u by A. The transducer
of Figure 4 can be used to provide the count of x in A through composition
with A, projection onto output labels, and epsilon-removal. While we have been
mentioning just acyclic automata, e.g., strings and lattices, the algorithm can
count from cyclic weighted automata, provided that cycle weights are less than
one, a requirement for A to represent a distribution. There exists a general
algorithm for computing efficiently higher order moments of the distributions of
the counts of a sequence x in a weighted automaton A [7].

The utility grmcount takes an archive of weighted automata and produces a
count automaton as shown in figure 5. Optional arguments include the n-gram
order, and the start and final symbols, which are represented by <s> and </s>
respectively in the examples of this Section. These symbols are automatically ap-
pended by grmcount to the beginning and end of each automaton to be counted.

0

a:ε/1
b:ε/1

1/1x:x/1

a:ε/1
b:ε/1

Fig. 4. Counting transducer for sequence x

corp wl
hello ε 0
bye hello 1
hello bye 2
bye bye <s> 3

</s> 4

0

2
<s>/4

3hello/2

1</s>/4

4

bye/3

hello/2

bye/2

</s>/2

</s>/2

bye/1

Fig. 5. Example corpus and count automata resulting from the command:
farcompilestrings -i wl corp | grmcount -n2 -s"<s>" -f"</s>" -i wl>bg.fsm
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In addition to grmcount, the utility grmmerge is provided, which takes k
count files of the format produced by grmcount, and combines the counts into
a single file of the same format. This allows counting to be parallelized, and the
results combined. These counting utilities are used as follows:

grmcount -n2 -s3 -f4 foo.far > foo.2g.counts.fsm
grmmerge foo.counts.fsm bar.counts.fsm > foobar.counts.fsm

5.3 Creating a Backoff Model from Counts

The counts described in the previous section can be used in a variety of ap-
plications, e.g., to compute expected counts and gradients for machine learning
algorithms. They can also be used to produce n-gram backoff language models,
commonly used in many natural language processing applications, e.g., auto-
matic speech recognition, speech synthesis, information retrieval, or machine
translation.

An n-gram model is based on the Markovian assumption that the probability
of the occurrence of a word only depends on the n− 1 preceding words. Thus,

P(w) =
k∏

i=1

P(wi | hi) (1)

where the conditioning history hi has length at most n−1: |hi| ≤ n−1. Let c(hw)
denote the count of n-gram hw and let P̂(w | h) be the maximum likelihood
probability of w given h, estimated from counts. P̂ is often adjusted to reserve
some probability mass for unseen n-gram sequences. Denote by P̃(w | h) the
adjusted conditional probability. For all n-grams h = wh′ where h ∈ Σk for
some k ≥ 1, we refer to h′ as the Katz backoff n-gram of h [11]. Conditional
probabilities in a backoff model are of the form:

P(w | h) =
{

P̃(w | h) if c(hw) > 0
αhP(w | h′) otherwise

(2)

where αh is a factor that ensures a normalized model. In practice, for numerical
stability, negative log probabilities are used. Furthermore, when the Viterbi ap-
proximation is used, which is common in speech processing applications, then an
n-gram language model is represented by a weighted automaton over the tropical
semiring. The utility grmmake takes counts in the format produced by grmcount
and produces a backoff model in the tropical semiring:

grmmake foo.2g.counts.fsm > foo.2g.lm.fsm

Figure 6 shows the bigram language model in the tropical semiring that re-
sults from the counts in Figure 5. The smoothing technique that is used by
default is Katz backoff [11], but the utility also provides for alternative esti-
mation methods, such as absolute discounting [20] and Kneser-Ney smoothing
[12]. Backoff transitions are naturally represented as failure transitions, but the
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Fig. 6. Bigram language model with ε backoff arcs

grmmake utility produces them with ε-transitions, a convenient off-line approxi-
mation of the failure-function representation.

The utility grmshrink takes a model output from grmmake and removes tran-
sitions when their absence results in a change to the model of magnitude less than
some threshold. Two methods are provided, the weighted difference method [21]
and the relative entropy method [22]. The utility grmconvert converts a model
output from grmmake or grmshrink to a failure class model or an interpolated
model. Also, an exact off-line model can be produced from grmconvert, using
ε-transitions instead of failure transitions, as detailed in [3]. These utilities are
used as follows:

grmshrink -c 4 foo.2g.lm.fsm > foo.2g.s4.lm.fsm
grmconvert -t failure foo.2g.lm.fsm >foo.fail.2g.lm.fsm

5.4 Comparison with Other Utilities

The statistical language modeling utilities of the GRM library are similar in
many ways to those of the SRI Language Modeling Toolkit (SRILM toolkit) [23],
but there are some key differences. The SRILM toolkit provides a large variety
of scripts and utilities for not only counting and creating language models, but
also for the use and manipulation of these models. Since the models produced by
the GRM library are in the format used by the FSM library, they can be readily
used and manipulated with existing FSM utilities. Hence additional utilities are
not part of the core GRM library.

For example, to score a string with a language model, the string must simply
be encoded as an automaton (farcompilestrings) and intersected with the model
(fsmintersect). Many of the same modeling options are provided by the utilities
in both the SRILM toolkit and the GRM library, as well as count merging and
model pruning capabilities. Class-based modeling is included explicitly in the
SRILM toolkit, but, as shown in [3], general class-based models can be straight-
forwardly represented with the GRM library, without requiring additional util-
ities, through the use of weighted transducers. With such an approach, classes
can be (weighted) regular languages, rather than just a finite set of words or a
finite list of sequences of words.

The GRM library provides some features that are not covered by the SRILM
Toolkit. It allows for counting from weighted automata, e.g., word lattices, which
is crucial in a number of text and speech processing applications. Also, the use
of failure transitions for the representation of language models and its off-line
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approximation based on ε-transitions provide efficient and useful encodings for
intersection and composition with other finite automata and finite-state trans-
ducers. Finally the GRM’s tight coupling with the FSM library allows one to
benefit from the wide range of utilities of that library. In reverse, some of the
features provided by the SRILM Toolkit, e.g., different discounting methods such
as that of Witten-Bell are not provided by the current release of the GRM li-
brary but are likely to be available in future versions. The SRILM Toolkit also
provides a utility for converting its models to and from that of the FSM library.

6 Conclusion

We presented a general weighted grammar library and emphasized its use in
several text and speech processing applications. The binary executables of the
library are available for download from the following URL:

http://www.research.att.com/sw/tools/grm/

The GRM algorithms and utilities can be used in a similar way in many com-
putational biology applications.
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Abstract. Hopcroft’s algorithm for minimizing a deterministic automa-
ton has complexity O(n log n). We show that this complexity bound is
tight. More precisely, we provide a family of automata of size n = 2k

on which the algorithm runs in time k2k. These automata have a very
simple structure and are built over a one-letter alphabet. Their sets of
final states are defined by de Bruijn words.

1 Introduction

Efficient state minimization algorithms are an important issue for tools involving
finite state automata, as they arise e.g. in computational linguistics. The elemen-
tary minimization algorithm usually credited to Moore (see also [1]) has been
improved by Hopcroft [2]. In the special case of finite sets, minimal automata
can be constructed and maintained even more efficiently (see [3, 4] and [5] for
a recent survey). Extensions to more general situations of Hopcroft’s algorithm
are considered in [6, 7, 8].

Hopcroft’s algorithm is known to run in time O(n logn) for an automaton
with n states. We show here that this bound is tight, that is that this running
time is reached for an infinite family of automata. For that purpose we define
a class of automata over a unary alphabet. These automata have a very simple
structure since they are just made of a single cycle. The final states of these
automata are defined by a pattern given by de Bruijn words. The simple structure
of the automaton and the special layout of the final states allows us to control
precisely how some particular execution of the algorithm runs.

We should point out that Hopcroft’s algorithm has a degree of freedom be-
cause, in each step of its main loop, it allows a free choice of a set of states to be
processed. Hopcroft has proved that any sequence of choices can be processed
in time O(n logn). Our family of examples results in showing that there exists
some “unlucky” sequence of choices that slows down the computation to achieve
the lower bound Ω(n log n). Partial results on another family of examples have
been obtained in [9].
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The paper is organized as follows. After some general definitions we outline
Hopcroft’s algorithm. We next present de Bruijn words, and then introduce our
family of automata. These are simply one letter automata with n = 2k states
organized as a cycle. The key property is the choice of final states. Exactly one
half of the states are final, and they are chosen according to the occurrence of
the symbol 1 in a de Bruijn word of order k.

Given such a cyclic automaton, we next present the strategy used to choose
the sets in Hopcroft’s algorithm. We then prove that this choice indeed leads to
a running time in O(n logn). It should be observed that minization of one-letter
automata can be performed in linear time by another algorithm [7].

2 Minimal Automaton

In this section, we fix some notation and we give some basic definitions.
We only use deterministic and complete automata. An automaton A over

a finite alphabet A is composed of a finite state set Q, a distinguished state
called the initial state, a set F ⊆ Q of final states, and of a next-state function
Q×A→ Q that maps (q, a) to a state denoted by q · a.

A partition of a set Q is a family {Q1, . . . , Qn} of nonempty subsets of Q
that are pairwise disjoint (that is Qi ∩ Qj = ∅ for i �= j) and cover Q, (that is
Q = Q1 ∪ · · · ∪Qn). The subsets Qi are called the classes of the partition.

If Q is the state set of an automaton A, a congruence of A is a partition
which is compatible with the transitions of A. This means that if q and q′ are
in the same class, then q · a and q′ · a are also in the same class for any q, q′ ∈ Q
and any a ∈ A.

A partition of Q saturates a subset F of Q if F is the union of some of its
classes. This also means that in a class either all elements or none belong to F . A
partition {Q1, . . . , Qn} is coarser than a partition {Q′

1, . . . , Q
′
m} if the partition

{Q′
1, . . . , Q

′
m} saturates each class Qi. This relation defines a partial order on

partitions.
It is well known that any regular set L of finite words is accepted by a unique

minimal deterministic automaton.
It should be noticed that the minimal automaton of A does not depend on

the initial state of A as long as any state is reachable from it. In what follows,
we often omit to specify the initial state since it does not matter.

3 Hopcroft’s Algorithm

Hopcroft [2] has given an algorithm that computes the minimal automaton of
a given deterministic automaton. The running time of the algorithm is O(|A| ×
n logn) where |A| is the cardinality of the alphabet and n is the number of states
of the given automaton. The algorithm has been described and re-described
several times [2, 10, 11, 12, 13, 14].

The algorithm is outlined below, and it is explained then in some more detail.
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It is convenient to use the shorthand T c = Q \ T when T is a subset of the
set Q of states. We denote by min(B,C) the set of smaller size of the two sets
B and C, and any one of them if they have the same size.

1: P ← {F, F c}
2: for all a ∈ A do
3: Add((min(F, F c), a), S)
4: while S �= ∅ do
5: (C, a) ← Some(S) � takes some element in S
6: for each B ∈ P split by (C, a) do
7: B′, B′′ ← Split(B, C, a)
8: Replace B by B′ and B′′ in P
9: for all b ∈ A do

10: if (B, b) ∈ S then
11: Replace (B, b) by (B′, b) and (B′′, b) in S
12: else
13: Add((min(B′, B′′), b), S)

Algorithm 1. HopcroftMinimization

Given a deterministic automaton A, Hopcroft’s algorithm computes the
coarsest congruence which saturates the set F of final states. It starts from
the partition {F, F c} which obviously saturates F and refines it until it gets a
congruence. These refinements of the partition are always obtained by splitting
some class into two classes.

Before explaining the algorithm in more detail, some notation is needed. For
a set B of states, we note by B · a the set {q · a | q ∈ B}. Let B and C be two
sets of states and let a be a letter. We say that the pair (C, a) splits the set B if
both sets (B ·a)∩C and (B ·a)∩Cc are nonempty. In that case, the set B is split
into the two sets B′ = {q ∈ B | q · a ∈ C} and B′′ = {q ∈ B | q · a /∈ C} that we
call the resulting sets. Note that a partition {Q1, . . . , Qn} is a congruence if and
only if for any 1 ≤ i, j ≤ n and any a ∈ A, the pair (Qi, a) does not split Qj .

The algorithm proceeds as follows. It maintains a current partition P =
{B1, . . . , Bn} and a current set S of pairs (C, a) where C is a class of P and
a is a letter that remain to be processed. The set S is called the waiting set.
The algorithm stops when the waiting set S becomes empty. When it stops, the
partition P is the coarsest congruence that saturates F . The starting partition
is the partition {F, F c} and the starting set S contains all pairs (min(F, F c), a)
for a ∈ A.

The main loop of the algorithm takes one pair (C, a) out of the waiting
set S and performs the following actions. Each class B of the current partition
(including the class C) is checked whether it is split by the pair (C, a). If (C, a)
does not split B, then nothing is done. Otherwise, the class B is replaced in the
partition P by the two resulting sets B′ and B′′ of the split. For each letter b,
if the pair (B, b) is in S, it is replaced in S by the two pairs (B′, b) and (B′′, b),
otherwise only the pair (min(B′, B′′), b) is added to S.
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The main ingredient in the analysis of the running time of the algorithm is
that the splitting of all classes of the current partition according to a pair (C, a)
takes a time proportional to the size of C. Therefore, the global running time
of the algorithm is proportional to the sum of the sizes of the classes processed
in the main loop. Note that a pair which is added to the waiting set S is not
necessarily processed later because it can be split by the processing of another
pair before it is considered.

It should be noted that the algorithm is not really deterministic because
it has not been specified which pair (C, a) is taken from S to be processed at
each iteration of the main loop. This means that for a given automaton, there
are many executions of the algorithm. It turns out that all of them produce
the right partition of the states. However, different executions may give rise to
different sequences of splitting and also to different running time. Hopcroft has
proved that the running time of any execution is bounded by O(|A| × n log n).

In this paper, we show that this bound is tight. More precisely, we show that
there exist automata over a one-letter alphabet and of size n and there exist
executions on these automata that give a running time of magnitude O(n logn).
Actually, we will not give automata for all integers n but those of the form 2k.

4 De Bruijn Words

The family of automata that we use to show the lower bound on the running time
of Hopcroft’s algorithm are based of de Bruijn words. We recall their definition.

Let w = w1 . . . wm a word of length m. By a slight abuse, we use the notation
wi even if the integer i is greater than m. We denote by wi the letter wi′ where
i′ is the unique integer such that 1 ≤ i′ ≤ m and i′ = i mod m. A circular
occurrence of a word u = u1 . . . up of length p in w is an integer k in the interval
[1;m] such that wk+i−1 = ui for each i in [1; p].

A de Bruijn word of order n over the alphabet B is a word w such that each
word of length n over B has exactly one circular occurrence in w. Since there
are |B|n words of length n, the length of a de Bruijn word of order n is |B|n.

Set for instance the alphabet B = {0, 1}. The word w = 1100 is a de Bruijn
word of order 2 since each of the words {00, 01, 10, 11} has a circular occurrence
in w. The word w = 11101000 is a de Bruijn word of order 3.

De Bruijn words are widely investigated (see for instance [15]). It is well
known that for any alphabet, there are de Bruijn words for all orders. We recall
here a short proof of this fact. Let B be a fixed alphabet and let n be a fixed
integer. We recall the definition of the de Bruijn graph Bn of order n. Its vertex
set is the set Bn−1 of all words of length n − 1. The edges of Bn are the pairs
of the form (bu, ua) for u ∈ Bn−2 and a, b ∈ B. This graph is often presented
as a labeled graph where each edge (bu, ua) is labeled by the letter a. Note that
the function which maps each word w = bua of length n to the edge (bu, ua) is
one to one. Therefore, a de Bruijn word of order n corresponds to an Eulerian
circuit in Bn. Since there are exactly |B| edges entering and leaving each vertex
of Bn, the graph Bn has Eulerian circuits [15] and there are de Bruijn words
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of order n. In Fig. 1 below we show the de Bruijn graph of order 4. Taking an
Eulerian circuit from it, one obtains the de Bruijn word w = 0000100110101111
of order 4.

Fig. 1. The de Bruijn graph of order 4 over the alphabet {0, 1}

5 Cyclic Automata

In what follows, we only consider de Bruijn words over the binary alphabet
B = {0, 1}. Let w be a de Bruijn word of order n. Recall that the length of w
is 2n. We define an automaton Aw over the unary alphabet {a} as follows. The
state set of Aw is {1, . . . , 2n} and the next state function is defined by i ·a = i+1
for i < 2n and 2n · a = 1. Note that the underlying labeled graph of Aw is just
a cycle of length 2n. The final states really depend on w. The set of final states
of Aw is F = {1 ≤ i ≤ 2n | wi = 1}.

For a word u over B, we define a subset Qu of states of Aw. By definition the
set Qu is the set of positions of circular occurrences of u in w. If the length of u
is n, the set Qu is a singleton since the de Bruijn word w has exactly one circular
occurrence of u. More generally, if the length of u is less than n, the cardinality
of Qu is 2n−|u| since there are as many circular occurrences of u as there are
words v such that |uv| = n. If u is the empty word, then Qu is by convention
the set Q of all states of Aw. By definition, the set F of final states of Aw is Q1
while its complement F c is Q0.

Fig. 2. Cyclic automaton Aw for w = 11101000
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Let w be the de Bruijn word 11101000. The automaton Aw is pictured in
Fig. 2. The sets Q1, Q01 and Q011 of states are respectively {1, 2, 3, 5}, {4, 8}
and {8}.

Since any circular occurrence of u in w is followed by either 0 or 1, the equality
Qu = Qu0 ∪ Qu1 holds. If a word u = bu′ has a circular occurrence k in w, its
suffix u′ has a circular occurrence k + 1 in w. If follows that if u is factorized
u = bu′ where b ∈ B, then Qu · a ⊂ Qu′ .

6 Hopcroft’s Algorithm on Cyclic Automata

We claim that the running time of Hopcroft’s algorithm on a cyclic automa-
ton Aw may be of order n2n. Before giving the proof of this claim, we give an
example of an execution on the automaton pictured in Fig. 2. Since cyclic au-
tomata are over the unary alphabet A = {a}, we merely say that a class C splits
a class B to mean that the pair (C, a) splits the class B.

– The starting partition is P = {F, F c} = {Q0, Q1} and S = {Q1}.
– The class Q1 is processed.

• The class Q0 is split into Q00 and Q01, and Q01 is added to S.
• The class Q1 is split into Q10 and Q11, and Q11 is added to S.

Then P = {Q00, Q01, Q10, Q11} and S = {Q01, Q11}.
– The class Q01 is processed.

• The class Q00 is split into Q000 and Q001, and Q001 is added to S.
• The class Q10 is split into Q100 and Q101, and Q101 is added to S.

Then P = {Q000, Q001, Q01, Q100, Q101, Q11} and S = {Q11, Q001, Q101}.
– The class Q11 is processed.

• The class Q01 is split into Q010 and Q011, and Q011 is added to S.
• The class Q11 is split into Q110 and Q111, and Q111 is added to S.

Then P = {Q000, Q001, Q010, Q011, Q100, Q101, Q110, Q111} and
S = {Q001, Q011, Q101, Q111}.

– Classes Q001, Q011, Q101, Q111 are processed but this gives no further split-
ting since the partition is made of singletons.

Let us point out some properties of this particular execution of the algorithm.
The classes that appear during the the execution are all of the form Qu for some
word u. Every time a class Qu is split, it is split into the classes Qu0 and Qu1.
Since these two classes have the same cardinality, the algorithm may either add
one or another one to S. In this execution we have always assumed that it
chooses Qu1.

When the algorithm processes Q01, it could have chosen to process Q11 in-
stead. The algorithm would have run differently because the class Q01 would
have been split by Q11.

We now describe the worst case strategy which we use to prove that the
O(n log n) bound of Hopcroft’s algorithm is tight. Given n and the automaton
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Aw, we construct a sequence (Pk,Sk) for k = 1, . . . , n where Pk and Sk are the
partition and the waiting set given by

Pk = {Qu | u ∈ Bk} and Sk = {Qv | v ∈ Bk−11}.
In particular, P1 = {Q0, Q1} is the starting partition of Hopcroft’s algorithm
and S1 = {Q1} is the starting content of the waiting set. The pair (Pk+1,Sk+1)
is obtained from the pair (Pk,Sk) by obeying to the following strategy: choose
the sets Qv of Sk in such an order that Qv does not split any set in the current
waiting set S.

More precisely, a linear order < on Sk is said to be non-splitting if whenever
Qv′ splits Qv then Qv < Qv′ . In other terms the strategy we choose is to process
sets in Sk in some order which avoids splitting. We call such a strategy a non-
splitting strategy. We will see in Proposition 1 that during this process, each
removal of an element of Sk contributes to two elements in Sk+1. It happens,
as we will prove, that the new sets are not split by the currently processed set
either. We will see in Proposition 2 that non-splitting orders do exist.

The transition from (Pk,Sk) to (Pk+1,Sk+1) involves 2k−1 iterations of the
main loop of the algorithm. Each iteration removes one set from the waiting set,
and as we will show splits exactly two sets in the current partition and adds
exactly two sets to the waiting set. These latter sets are of the form Qv for
v ∈ Bk1.

Proposition 1. If Hopcroft’s algorithm starts from (Pk,Sk) and processes the
sets in Sk in a non-splitting order, it yields the pair (Pk+1,Sk+1).

Proposition 2. Each Sk admits non-splitting orders.

We start with several lemmas. Some properties of the splitting of the sets of
the form Qu are needed. They are stated in the following lemma.

Lemma 1. Let u and v be two words of length smaller than n. The pair (Qv, a)
splits Qu if and only if there are b ∈ B and s ∈ B+ such that us = bv. If (Qv, a)
splits Qu, the resulting sets are Qus and Qu \Qus. In particular if |u| > |v|, then
Qv does not split Qu.

Proof. Assume that u = bu′ where b ∈ B. Then the inclusion Qu ·a ⊂ Qu′ holds.
Therefore if v is not equal to u′s for some s ∈ B∗, the intersection (Qu · a) ∩Qv

is empty and (Qv, a) does not split Qu. Assume now that v = u′s for some s.
If s is the empty word, the intersection (Qu · a) ∩Qc

v is empty and (Qv, a) does
not split Qu. It follows that s is not empty and that us = bv. ��
Corollary 1. If u and v are two words of the same length, the pair (Qv, a) splits
Qu if and only if there are b, b′ ∈ B such that ub′ = bv. If (Qv, a) splits Qu, the
resulting sets are Qu0 and Qu1.

In other terms, if u and v are two words of the same length k, then Qv splits
Qu iff there is an edge (u, v) in the de Bruijn graph Bk+1.

We are now ready for the proof of Proposition 1.
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Proof. (of Proposition 1) We consider how the execution goes according to our
non-splitting strategy from the pair (Pk,Sk) to the pair (Pk+1,Sk+1). We denote
by P and S the current values of the partition and of the waiting set when we
process the classes in Sk in a fixed non-splitting order. At the beginning of the
execution, P = Pk and S = Sk and at the end P = Pk+1 and S = Sk+1. By
Corollary 1, each class Qu of Pk is split by exactly one class Qv in Sk and each
class Qv splits two classes Qu and Qu′ in Pk. Moreover, Qv does not split any
other class in the current partition. By the choice of the ordering, both classes
Qu and Qu′ do not belong to S when Qv is processed. The class Qu is split
into the classes Qu0 and Qu1. Since these two classes have the same cardinality,
either Qu0 or Qu1 may be added to S. Similarly the class Qu′ is split into the
classes Qu′0 and Qu′1. The execution of our strategy adds the classes Qu1 and
Qu′1 to the set S. The execution continues until all classes in Sk have been
processed. While this is done, classes Qu1 for u ∈ Bk are added to S. When all
classes Qu from Sk have been processed, the partition P and the set S are Pk+1
and Sk+1. ��

We now proceed to proof of the existence of non-splitting orders on Sk.

Proof. (of Proposition 2) Let Gk = (Vk, Ek) be the graph where the vertex set is
Vk = Bk−11 and the set of edges is Ek = {(u, v) | Qv splits Qu}. By Corollary 1,
the graph Gk is actually the subgraph of the de Bruijn Bk+1 defined by the set
Vk of vertices. The main property of that graph Gk is to be almost acyclic: For
each k ≥ 0, the only cycle in Gk is the edge (1k, 1k).

It is easy to see that if there is a path of length � from some node to v
in G, then the word v belongs to Bk−�−11�+1. It follows from the claim that the
vertex 1k is the only vertex which can appear in a cycle.

Since this graph is acyclic, the words of Bk−11 can be topologically ordered.
Thus a non-splitting order on Sk is defined by Qu < Qv iff u < v in the previous
topological order. ��

The graph G3 of the previous proof is pictured in Fig. 3.

Fig. 3. The graph G3

Let us come back to the execution given at the beginning of that section. After
Q1 is processed, the partition P and the set S are P = {Q00, Q01, Q10, Q11} and
S = {Q01, Q11}. The class Q11 splits the class Q01 while the class Q01 does not
split the class Q11. A non-splitting order on S2 is given by Q01 < Q11. The class
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Q01 is therefore processed before the class Q11. The partition P and the set S
become P = {Qu | u ∈ B3} and S = {Qu1 | u ∈ B2}.

We finally analyze the running time of the algorithm. The following result
shows that the O(n log n) upper bound of the running time of Hopcroft’s algo-
rithm is tight.

Theorem 1. The non-splitting strategy requires n2n operations for the mini-
mization of the automaton Aw of size 2n for any de Bruijn word w of order n.

Proof. The time needed to process a class C is proportional to the size of C. In
the execution that we give the algorithm processes all classes Qu1 for |u| < n.
Summing all the sizes, we get that the running time of the algorithm is n2n

whereas the size of the automaton Aw is 2n. ��

7 Conclusion

We have shown that Hopcroft’s algorithm may have executions running in time
O(n logn). These executions run on the cyclic automata that we have defined. It
is not very difficult to see that there are also executions that run in linear time
for the same automata. It is still open whether there are automata on which all
executions of Hopcroft’s algorithm do not run in linear time.

These different executions depend on the choice of the class which is processed
at each iteration of the main loop of the algorithm. Defining strategies which
specify which class is processed might be of interest from a theoretical and
practical point of view.

Acknowledgment. We would like to thank Luc Boasson and Isabelle Fagnot for
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Abstract. Taking advantage of the weak determinism inherent to the
simulation of deterministic register machines by catalytic P systems, we
present an efficient implementation of such P systems.

1 Introduction

In the original paper (see [12]) introducing membrane systems (P systems) as a
symbol manipulating model, catalysts as well as priority relations on the rules
were used to prove them to be computationally complete (see [14] for a com-
prehensive overview and [18] for actual developments in the area); in [16] it was
shown that a priority relation on the rules is not necessary to obtain this uni-
versality result. The best results on the number of catalysts known so far can be
found in [7] (the results needed in this paper will be cited in Section 3).

When going to implement catalytic P systems (which notion was introduced
by Ibarra in [3]) we can take advantage of a kind of “weak” determinism -
introduced as k-determinism in [11] - allowing for an efficient simulation of de-
terministic register machines. In order to figure out which set of rules has to
be applied to the current configuration, we only have to make a look-ahead of
bounded depth k, i.e., we consider all possible continuations making (at most)
k further steps in the catalytic P system. For every successful computation of
the underlying deterministic register machine, at each step in the simulating
catalytic P system, there exists exactly one set of rules to be applied determined
by this look-ahead of depth k. Based on this theoretical background we present
an efficient implementation of catalytic P systems that can compute any par-
tial recursive function f : Nα → Nβ (where N denotes the set of non-negative
integers) using only one membrane and α + 3 catalysts. This implementation
allowed us to easily verify the complicated construction given in the theoretical
proof for the simulation of register machines; moreover, its user-friendly inter-
face and visualization of the derivation steps and the configurations during any
computation in an arbitrary k-deterministic catalytic P system make it a useful
tool for introducing P systems to students.

In the following section, after some prerequisites we define the variant of reg-
ister machines the simulation results for catalytic P systems are based on. In Sec-
tion 3, we define catalytic P systems and introduce the notion of k-determinism;
moreover, we prove the main theoretical result the implementation is based on.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 45–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In Section 4, we describe the tool implemented for simulating k-deterministic
catalytic P systems, and finally we give a short conclusion.

2 Definitions

Let m ≥ 2 and let k, l be two positive integers not greater than m; then we
define:

l �m k :=
{
l − k for l > k
l − k + m for l ≤ k

2.1 Register Machines

In this subsection we briefly recall the concept of Minsky’s register machine
(e.g., see [10]). Such an abstract machine uses a finite number of registers for
storing arbitrarily large non-negative integers and runs a program consisting of
numbered instructions of various simple types. Several variants of the machine
with different numbers of registers and different instruction sets were shown to be
computationally complete (e.g., see [10] for some original definitions and proofs
as well as [5], [6], and [8] for the definitions and results we use in this paper).

A deterministic n-register machine is a construct M = (n, P, i, h) where

– n is the number of registers,
– P is a set of labelled instructions of the form j : (op (r) , k, l), where op (r)

is an operation on register r of M , j, k, l are labels from the set Lab (M)
(which numbers the instructions of the program of M represented by P ),

– i is the initial label, and
– h is the final label.

The machine is capable of the following instructions:

(A (r) , k, k) : Add one to the contents of register r and proceed to instruction
k.

(S (r) , k, l) : If register r is not empty then subtract one from its contents
and go to instruction k, otherwise proceed to instruction l.

Halt : Stop the machine. This additional instruction can only be assigned to
the final label h.

Deterministic n-register machines can be used to compute any partial recur-
sive function f : Nα → Nβ ; starting with (n1, ..., nα) ∈ Nα in registers 1 to
α, M has computed f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h
with registers 1 to β containing r1 to rβ . If the final label cannot be reached,
f (n1, ..., nα) remains undefined.

The results proved in [5] as well as in [6] and [8] immediately lead us to the fol-
lowing result (using a slightly different definition for the result of a computation):

Proposition 1. For any partial recursive function f : Nα → Nβ there ex-
ists a deterministic (α + 2 + β)-register machine M computing f in such a way
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that, when starting with (n1, ..., nα) ∈ Nα in registers 1 to α, M has computed
f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h with registers α + 3 to
α + 2 + β containing r1 to rβ , and all other registers being empty; if the final
label cannot be reached, f (n1, ..., nα) remains undefined.

3 Catalytic P Systems

The standard type of membrane systems (P systems) has been studied in many
papers and several monographs; we refer to [4], [12], [13], and [14] for motivation
and examples as well as to [18] for an up-to-date bibliography. In the definition
of a (special variant of a) catalytic P system (catalytic P systems first were
considered in [3]) below we omit some ingredients (like priority relations on the
rules) not needed in the following.

3.1 Definition

A catalytic P system (of degree d, d ≥ 1) is a construct

Π = (V,C, T1, T2, μ, w0, . . . , wd, R0, . . . , Rd, i0) where

1. V is an alphabet; its elements are called objects;
2. C ⊆ V is a set of catalysts;
3. T1 ⊆ V − C is the input alphabet;
4. T2 ⊆ V − C is the output alphabet;
5. μ is a membrane structure consisting of d + 1 membranes (usually labelled

with i and represented by corresponding brackets [i and ]i, 0 ≤ i ≤ d);
6. wi, 0 ≤ i ≤ d, are strings over V associated with the regions 0, . . . , d of μ;

they represent multisets of objects from V, the objects from C appearing at
most once in each region of μ;

7. Ri, 0 ≤ i ≤ d, are finite sets of catalytic evolution rules over V associated
with the regions 0, . . . , d of μ; these catalytic evolution rules are of the form
ca→ cv, where c is a catalyst, a is an object from V − C, and v is a string
from ((V − C)× {here, out, in})∗;

8. i0 is a number between 0 and d and it specifies the input/output membrane
of Π.

The membrane structure and the multisets represented by wi, 0 ≤ i ≤ d, in Π
constitute the initial configuration of the system; the input vector is given by the
corresponding multiset of symbols over T1 in membrane i0. A transition between
configurations is governed by the application of the evolution rules which is done
in parallel: all objects, from all membranes, which can be the subject of local
evolution rules have to evolve simultaneously.

The system continues parallel steps until there remain no applicable rules in
any region of Π; then the system halts. We consider the number of objects from
T2 contained in the output membrane i0 at the moment when the system halts
as the result of the underlying computation of Π.
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3.2 k-Determinism

To represent a computation in a catalytic P system we will now, following the
definition given in [14], use the notion of a computation tree:

The computation tree of a catalytic P system is a rooted labelled maximal
tree, where the root node of the tree corresponds to the initial configuration of
the system. The children of a node are configurations that follow in a one-step
transition. Nodes are labelled by configurations and edges are labelled by sets of
applicable rules. We say that a computation halts if it represents a finite branch
in the computation tree.

To be more efficient in an implementation, we only consider catalytic P sys-
tems having the specific feature that we do not have to expand the complete
computation tree during the simulation, but rather “look ahead” in the com-
putation tree at most k steps for some fixed k to be able to exclude the paths
which would lead to an infinite loop (because of containing a special symbol #,
the trap symbol, for which always rules have to be present to guarantee that a
configuration containing at least one such symbol can never be part of a halt-
ing computation) and choose the (only) path which may lead to a successful
continuation (i.e., possibly being part of a halting computation).

For k ≥ 0, the notion of k-determinism for catalytic P systems is defined as
follows:

k = 0 : A catalytic P system is called deterministic (is called 0-deterministic,
is said to have a level of look-ahead 0), if at any step of a computation,
there exists at most one configuration derivable from the current one. If at
some stage of the computation the trap symbol # appears in the current
configuration, we stop the computation without getting a result.

k = 1 : A catalytic P system is called 1-deterministic (is said to have a level of
look-ahead 1), if at any step of a computation, either
– there is no configuration derivable from the current one, i.e., the com-

putation halts (and yields a result) or
– all configurations derivable from the current one contain the trap sym-

bol # (hence, we stop without continuing the computation, no result is
obtained) or

– there exists exactly one configuration which is derivable from the cur-
rent one and does not contain the trap symbol #. As configurations con-
taining the trap symbol can never lead to a halting computation (and
therefore can never yield a result), the only reasonable continuation is
the configuration not containing the trap symbol.

k > 1 : For k > 1, a catalytic P system is called k-deterministic (is said to have
a level of look-ahead k) if the following condition holds: At any moment of
a computation, either
– the computation halts (and yields a result) or
– for any arbitrary configuration derivable from the current one we make

k − 1 further steps and for all these branches of depth k − 1 we end
up with a configuration containing the trap symbol # (hence, we stop
without continuing the computation, no result is obtained) or



Implementation of Catalytic P Systems 49

– for exactly one configuration c derivable from the current one there is
at least one branch of the computation tree which cannot be contin-
ued (and therefore will yield a result at the end of this branch) or is of
depth k − 1, with the root being this configuration, and the trap sym-
bol # does not appear in any of the configurations along this branch.
This uniquely determined configuration c is chosen for continuing the
computation.

In each step of a computation in a k-deterministic P system there exists
exactly one uniquely determined set of rules to be applied for possibly continuing
the computation: either this set is empty, i.e., we stop (getting a result only in
the case that we halt), or we continue with applying a non-empty set yielding
the uniquely determined configuration possibly being part of a successful halting
computation.

Following the proofs elaborated in [7] (by using Proposition 1) as well as
in [11] we now show that any partial recursive function f : Nα → Nβ can be
computed by a 4-deterministic catalytic P system with only one membrane and
with only α + 3 catalysts:

Theorem 2. For each partial recursive function f : Nα → Nβ there is a
catalytic P system Π = (V,C, T1, T2, [0]0, w,R, 0) with α + 3 catalysts and
with the objects oa ∈ T1 satisfying the following conditions: For any arbitrary
(x1, ..., xα) ∈ Nα, denote

Π(x1,...,xα) = (V,C, T1, T2, [0]0, wox1
1 ...oxα

α , R, 0) .

The system Π(x1,...,xα) halts if and only if f (x1, ..., xα) is defined, and if it
halts, then in the skin membrane, besides the catalysts, only the terminal sym-
bols oα+3 to oα+2+β appear with multiplicities y1, ..., yβ representing the output
vector f (x1, ..., xα) = (y1, ..., yβ). Moreover, the catalytic P system Π is 4-
deterministic.

Proof. Consider a (deterministic) register machine M as defined above with
m′ registers, the last β registers being special output registers which are never
decremented. (From the result stated in Proposition 1 we know that m′ = α +
2+β is sufficient). Now let m = m′−β and let P be a program which computes
the function f such that the initial instruction has the label 1 and the halting
instruction has the label n. The input values x1, ..., xα are expected to be in the
first α registers and the output values from f (x1, ..., xα) are expected to be in
registers m+ 1 to m′. Moreover, without loss of generality, we may assume that
at the beginning of a computation all the registers except possibly the registers
1 to α contain zero.

We now construct the P system

Π = (V,C, {ok | 1 ≤ k ≤ α} , {ok | m + 1 ≤ k ≤ m′} , [0]0, w,R, 0) with
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V = {#} ∪ {ci, c
′
i, c

′′
i | 1 ≤ i ≤ m} ∪ {cm+1} ∪ {ok | 1 ≤ k ≤ m′}

∪
{
p

〈h,1〉
n | 1 ≤ h ≤ m

}
∪
{
p

〈h,1〉
j | 1 ≤ h ≤ m, j : (A (a) , k, k) ∈ P

}
∪

{
p

〈h,1〉
j | 1 ≤ h ≤ m, j : (S (a) , k, l) ∈ P

}
∪

{
p

〈h,l〉
j | 2 ≤ h < m, 1 ≤ l ≤ 4, j : (S (a) , k, l) ∈ P

}
∪ {

p′
j , p

′′
j , p̄j , p̄

′
j , p̄

′′
j , p̂j , p̂

′
j , p̂

′′
j | j : (S (a) , k, l) ∈ P

}
,

the set of catalysts

C = {ci | 1 ≤ i ≤ m + 1} ,
the initial multiset

w = c1 . . . cmcm+1p
〈1,1〉
1 ...p

〈m,1〉
1

(for any arbitrary (x1, ..., xα) ∈ Nα
0 , the initial multiset of the corresponding

system Π(x1,...,xα) therefore is c1 . . . cmcm+1p
〈1,1〉
1 ...p

〈m,1〉
1 ox1

1 . . . oxα
α ), as well as

the following set of catalytic rules R :

R = {cm+1x→ cm+1# | x ∈ V − (C ∪ {ok | 1 ≤ k ≤ m′}∪{
p̄′

j , p̂
′
j | j : (S (a) , k, l) ∈ P

})}
∪

{
cm
mhp

〈h,1〉
n → cm
mh | 1 ≤ h ≤ m

}
∪

{
cm
mhp

〈h,1〉
j → cm
mh | 1 ≤ h < m, 1 ≤ a ≤ m′,

j : (A (a) , k, k) ∈ P}
∪

{
cmp

〈m,1〉
j → cmp

〈1,1〉
k ...p

〈m,1〉
k oa | 1 ≤ a ≤ m′, j : (A (a) , k, k) ∈ P

}
∪

{
ca
mhp

〈h,l〉
j → ca
mhp

〈h,l+1〉
j | 2 ≤ h < m, 1 ≤ a ≤ m,

1 ≤ l ≤ 3, j : (S (a) , k, l) ∈ P}
∪

{
ca
mhp

〈h,4〉
j → ca
mh | 2 ≤ h < m, 1 ≤ a ≤ m, j : (S (a) , k, l) ∈ P

}
∪

{
cap

〈m,1〉
j → cap̂j p̂

′
j , cap

〈m,1〉
j → cap̄j p̄

′
j p̄

′′
j ,

caoa → cac
′
a, cac

′
a → cac

′′
a, ca
m1c

′′
a → ca
m1,

cap̂
′
j → ca#, ca
m1p̂

′
j → ca
m1p̂

′′
j , cap̂

′′
j → cap

〈1,1〉
k ...p

〈m,1〉
k ,

cap̄j → ca, ca
m1p̄
′′
j → ca
m1p

′′
j , ca
m1p

′′
j → ca
m1p

′
j ,

cap
′
j → cap

〈1,1〉
l ...p

〈m,1〉
l | 1 ≤ a ≤ m, j : (S (a) , k, l) ∈ P

}
∪

{
ca
m1y → ca
m1 | y ∈

{
p

〈1,1〉
j , p̂j , p̄

′
j

}
, 1 ≤ a ≤ m,

j : (S (a) , k, l) ∈ P} .
The set of rules R depends on the instructions of P ; the halting instruction

as well as each add-instruction is simulated in one step, whereas each subtract-
instruction is simulated in four steps; in more detail, the simulation works as
follows:
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1. Every simulation of a rule starts with the program labels p
〈1,1〉
1 , ..., p

〈m,1〉
1 .

The halting instruction eliminates the final labels p
〈1,1〉
n , ..., p

〈m,1〉
n by using

the rules cm
mhp
〈h,1〉
n → cm
mh, 1 ≤ h ≤ m.

2. Each add-instruction j : (A (a) , k, k) ∈ P, 1 ≤ a ≤ m′, is simulated in one
step by using the catalytic rules cm
mhp

〈h,1〉
j → cm
mh, 1 ≤ h < m, as well

as cmp
〈m,1〉
j → cmp

〈1,1〉
k ...p

〈m,1〉
k oa. Observe that by definition a�mm = a for

all a with 1 ≤ a ≤ m.
3. Each subtract-instruction j : (S (a) , k, l) ∈ P is simulated in the four steps

that are shown in the following table:

simulation of the subtract-instruction j : (S (a) , k, l) if
a. register a is not empty b. register a is empty
cap

〈m,1〉
j → cap̂j p̂

′
j

ca
m1p
〈1,1〉
j → ca
m1

cap
〈m,1〉
j → cap̄j p̄

′
j p̄

′′
j

ca
m1p
〈1,1〉
j → ca
m1

caoa → cac
′
a〈

cap̂
′
j → ca#

〉
ca
m1p̂j → ca
m1

cap̄j → ca

ca
m1p̄
′′
j → ca
m1p

′′
j

cac
′
a → cac

′′
a

ca
m1p̂
′
j → ca
m1p̂

′′
j

〈caoa → cac
′
a〉

ca
m1p
′′
j → ca
m1p

′
j

cap̂
′′
j → cap

〈1,1〉
k ...p

〈m,1〉
k

ca
m1c
′′
a → ca
m1

cap
′
j → cap

〈1,1〉
l ...p

〈m,1〉
l

ca
m1p̄
′
j → ca
m1

p
〈m,1〉
j p

〈1,1〉
j�

�p̂j p̂
′
j

� p̄j p̄
′
j p̄

′′
j

�
#

� � � � � � � � � � � � � � � � � � � �
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�
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#
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Fig. 1. Schematic representaion of the computation subtree
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In order to argue that we only have to make a look-ahead of depth 4 to find out
the correct set of catalytic rules for a successful continuation of the computation
in Π, we give a schematic representation of the computation subtree of this
situation for a subtract-instruction in Fig. 1, where we omit any objects that
might also be part of the respective configuration, but do not appear in the table
given above, and we also omit to include the catalysts ca and ca
m1, respectively,
as they are contained in all configurations; moreover, we represent all misleading
configurations by # only.

It follows from the explanations given above that at most four steps are
needed until the trap symbol # finally appears after having made a wrong non-
deterministic decision. Consequently, the constructed catalytic P system Π is
4-deterministic.

4 Implementation

Only a few variants of P systems have been implemented so far (e.g., see [1],
[2], and [17]). Usually, the main difficulty is how to choose a branch of the
computation tree possibly leading to a result in a halting computation.

The main feature used in our implementation is the k-determinism of the
underlying model of P systems which at any step of the computation allows for
a deterministic continuation of the computation, i.e., the next configuration (if
it exists) is uniquely determined (after having checked all branches of depth at
most k, starting from the current configuration) and at the same time we are
also able to state the set of productions leading to this uniquely determined
configuration.

Based on the theoretical background elaborated in the preceding section,
we implemented a simulation tool for k-deterministic catalytic P systems; the
program was written in Java 2.0 (to be platform-independent) and was tested
with several examples (e.g., see below for a very simple one; other examples based
on the general simulation procedures described in the proof of Theorem 2 were
chosen, too, in order to verify the given construction) showing efficient run-time
behaviour on standard PCs.

The first screenshot (see Fig. 2) shows how arbitrary membrane structures
can be edited. In the example we see the membrane structure [0[1]1[2[3]3[4]4]2]0;
the outermost membrane - labelled by 0 - is called skin (membrane).

The following screenshots show the initialization of the system (Fig. 3) and
the editing of the catalytic rules (Fig. 4). For showing the main features of the
tool, we here refer to the catalytic P system

Π = (V, {c1, c2, c3} , {a0} , {b0} , [0]0, c1c2c3X4X5, R, 0) with
V = {Xi | 0 ≤ i ≤ 7} ∪ {a0, b0,#, c1, c2, c3}

which by adding the input a0
n computes b0

2n using the following rules in R :
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Fig. 2. Editing the membrane structure

Fig. 3. Initial configuration
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Fig. 4. Editing rules

c1X5 → c1X6X7b0b0 c2X4 → c2
c1X6 → c1X2 c2a0 → c2, c2X7 → c2#
c1X7 → c1X4 c2X2 → c2X5
c1X5 → c1X0X1 c2X4 → c2
c1a0 → c1# c2X0 → c2X3
c1X3 → c1 c2X1 → c2
c3X → c3#, X ∈ {Xi | i ∈ {0, 2, 3, 4, 5, 6}} ∪ {#}

We should like to mention that this set of rules was chosen in order to show
the main features of the tool we implemented; obviously, the same function
a0

n → b0
2n could easily be computed by just using the single catalytic rule

c1a0 → c1b0b0, too. Due to space limitations, we cannot give an example of an
inherently non-deterministic catalytic P system.

The first three lines describe the three steps computed as long as there still
is an a0 in the skin membrane; we finish with executing the rules depicted in
lines 4 to 6. The rules using the third catalyst c3 are never used in successful
computations because they introduce the trap symbol #. It is easy to see that
the catalytic P system Π specified above is 2-deterministic, as after at most two
steps the wrong choice of rules has lead to the introduction of the trap symbol
#, whereas there always is exactly one set of catalytic rules leading from one
configuration to the next one within a successful computation until the system
halts.

For example, starting with the input a0
2, the tool computes the correct out-

put value b0
4 halting in the final configuration as depicted in Fig. 5:

Moreover, the screenshot above also shows that the tool computes every
branch of the computation tree until the trap symbol appears, which allows the
user to check the correct working of the catalytic P system.
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Fig. 5. Final configuration

5 Conclusion

In this paper we have presented an implementation of catalytic P systems which
turned out to be quite efficient due to the k-deterministic simulation of de-
terministic register machines. The idea of k-determinism can also be used for
obtaining more efficient implementations of several other variants of P systems;
such implementations will be part of future research.
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Abstract. In this paper we model code selection by tree series transduc-
ers. We are given an intermediate representation of some compiler as well
as a machine grammar with weights, which reflect the number of machine
cycles of the instructions. The derivations of the machine grammar are
machine codes. In general, a machine grammar is ambiguous and hence
there might exist more than one derivation of an intermediate code. We
show how to filter out a cheapest such derivation and thereby perform
tree parsing and tree pattern matching using tree series transducers.

1 Introduction

In this paper we model code selection (cf. [GG78]) by tree series transducers
(for short: trstr’s). In general, a machine grammar is ambiguous and hence,
for some intermediate representation (for short: IR) there might exist several
machine codes. We would like to find a cheapest machine code, i.e., a machine
code with the least number of machine cycles. To visualize this, let us consider
the following example (cf. [GL97]): for the C-expression (f + i), where f and i
are of type float and int, respectively, a cheapest machine code for an Intel
iapX86 instruction set should be generated. All floating point operations are
performed in an internal format. There are several possibilities for encoding
(f + i) in the Intel instruction set: first both f and i are loaded and converted
into the internal format and then put into registers, from which the floating point
addition finally takes its arguments. Alternatively, only f is loaded and converted
into the internal format and put into a register; the floating point addition
then would take i from the memory and implicitly perform the loading and
converting, or vice versa. It turns out that the second of these alternatives is best.

In this paper we follow and extend the approach of [FSW94], in which tech-
niques of tree automata (e.g., subset construction) are applied to code selection.
We generate the cheapest machine code by using the more powerful model of
trstr’s (cf. [EFV02]). This gives us the chance to describe the cheapest machine
code as output of a sequence of trstr’s. Let us therefore briefly recall the concept
of (polynomial, top-down) trstr’s. Basically, trstr’s generalize tree transducers
(for short: trtr’s) by associating to every transition a weight, which is taken from
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a semiring. The tree transformation of a trstr is similar to that of classical trtr,
but additionally weights are accumulated: the weights of the transitions of a run
on an input tree s are multiplied and finally the weights of all accepting runs
which translate s to the same output tree t are summed up. Hence s is trans-
formed by M into the tree series τM (s). The support of τM (s) can be considered
as the set of output trees and

(
τM (s)

)
(t) denotes the weight of the transforma-

tion from s to t. We note that trstr’s also cover (top-down) finite state weighted
tree automata (for short: w-fta, cf. [BR82]).

We select the cheapest machine code by modeling the given machine grammar
G by a regular, weighted tree grammar. Then the trstr MTP

G translates the
given IR s into the tree series τMTP

G
(s). Each tree of the support of this tree

series uniquely corresponds to a machine code, i.e., a derivation of the associated
regular, weighted tree grammar, and the coefficient of such an output tree is
the number of required machine cycles of the corresponding machine code, i.e.,
the weight of the corresponding derivation (tree parsing; also cf. [GG78]). The
cheapest machine code of s then can be found by searching in the tree series
τMTP

G
(s) for a tree with minimal weight. We also show how to compute this

minimal weight by providing the w-fta Mmincost
G . Moreover, we would like to find

all occurrences of the right hand side of a rule r of G in s (tree pattern matching;
also cf. [HO82]). Therefore we present the w-fta MPM

r̃ , which generates the set
of all occurrences of the right hand side of r in the input tree.

Let us point out the two main improvements to [FSW94]. There tree parsing is
done by representing machine code as a computation of tree automata, while we
generate the machine code explicitly. Moreover, tree pattern matching is solved
in the aforementioned paper by deciding, whether or not a pattern is contained
in the input tree, whereas we compute all the references on the occurrences of
the pattern in the input tree.

This paper is organized as follows: in Sect. 2 we recall basic concepts, while
the code selection problem is attacked in Sect. 3. We conclude this paper in
Sect. 4 by stating open problems.

2 Preliminaries

2.1 Notions on Trees

Throughout this paper IN and IN+ denote the sets of all non-negative integers
and all positive integers, respectively. Moreover, for every i, j ∈ IN, [i, j] = {n ∈
IN | i ≤ n ≤ j}. We abbreviate [1, i] by [i]. Also, let x1, x2, . . . be variables,
X = {x1, x2, . . . }, and Xn = {x1, . . . , xn} for every n ∈ IN. A ranked alphabet is
a tuple (Σ, rk) consisting of a non-empty, finite set Σ being disjoint with X and a
rank mapping rk : Σ → IN. We always assume the rank mapping to be implicitly
given and write Σ rather than (Σ, rk). Moreover, let Σ(k) = {σ ∈ Σ | rk(σ) = k}
for every k ∈ IN and let maxrk(Σ) ∈ IN = max{k ∈ IN | Σ(k) �= ∅}. Now let
X ′ ⊆ X. The set of trees over Σ (indexed by X ′) is denoted by TΣ(X ′) and
defined to be the smallest subset T of (Σ ∪X ′ ∪{(, ), ,})∗ satisfying (i) X ′ ⊆ T
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and (ii) given k ∈ IN, σ ∈ Σ(k), and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T .
As usual, we set TΣ = TΣ(∅). We will be short in notation and write s =
σ(s1, . . . , sk) ∈ TΣ(X ′) as a shorthand for “there exist k ∈ IN, σ ∈ Σ(k), and
s1, . . . , sk ∈ TΣ(X ′)”. To define the tree substitution let t ∈ TΣ(Xn) for some
n ∈ IN and s1, . . . , sn ∈ TΣ(X). Then t[s1, . . . , sn] ∈ TΣ(X) is obtained from t
by replacing simultaneously every occurrence of every variable xi ∈ Xn by si.

Let us now define some properties of a tree s ∈ TΣ(X ′). The number #X′(s) ∈
IN of occurrences of elements of X ′ in s and the set pos(s) ∈ P(IN∗) of positions
of s are given by #X′(s) = 1 and pos(s) = {ε} if s ∈ X ′, and #X′(s) =∑

i∈[k] #X′(si) and pos(s) = {ε} ∪ {i.o | i ∈ [k], o ∈ pos(si)} provided that
s = σ(s1, . . . , sk) ∈ TΣ(X ′). Further, for every i ∈ IN the position o(s, i) ∈ pos(s)
of the ith occurrence of an element of X ′ in s is o(s, 1) = ε provided that s ∈ X ′,
o(s, i) = j.o(sj , i

′) if s = σ(s1, . . . , sk) ∈ TΣ(X ′) and there exist an i′ ∈ IN and a
j ∈ [k] such that j =

∑
l∈[j−1] #X′(sl)+i′; otherwise o(s, i) is undefined. Further,

for every o ∈ pos(s) the subtree s|o ∈ TΣ of s at position o is defined by s|o = s
and provided that o = ε and if o = i.o′ for some i ∈ [k] and o′ ∈ pos(si) then
s|o = si|o′ . We call s a subtree of t, denoted by s ≤ t if s = t|o for some o ∈ pos(t).
Finally, for every o ∈ pos(s) the label labs(o) ∈ Σ of s at position o is given by
labs(o) = s provided that s ∈ X ′, labs(o) = σ if s = σ(s1, . . . , sk) ∈ TΣ(X ′) and
o = ε, and labs(o) = labsi

(o′), if s = σ(s1, . . . , sk) ∈ TΣ(X ′) and o = i.o′ for
some i ∈ [k] and o′ ∈ pos(si).

For a given n ∈ IN and ranked alphabet Σ, a pattern (also: (Σ-n-) context)
is a tree C ∈ (Xn) such that every variable xi ∈ Xn occurs precisely once in C.
The class of all Σ-n-contexts is denoted by CΣ(Xn). If C ∈ CΣ(Xn), t ∈ TΣ ,
and o ∈ pos(t), then C is a pattern of t at position o, if t|o = C[t1, . . . , tn] for
some trees t1, . . . , tn ∈ TΣ . Finally, occC(t) is the set of all o ∈ pos(t) of t such
that C is a pattern of t at o.

2.2 Semirings

A semiring is tuple A = (A,⊕,�,0,1) satisfying the following conditions: (i)
(A,⊕,0) is a commutative monoid (i.e., ⊕ is a binary, associative, commutative
operation on A with the neutral element 0), (ii) (A,�,1) is a monoid, (iii) �
distributes over ⊕, (i.e., a�(b⊕c) = (a�b)⊕(a�c) and (a⊕b)�c = (a�c)⊕(b�c)
for every a, b, c ∈ A), and (iv) 0 is absorptive (i.e., 0 � a = 0 = a � 0 for
every a ∈ A). For a finite index set I = {i1, . . . , in} and semiring elements
aij

∈ A for every j ∈ [n] we write
⊕

i∈I ai for ai1 ⊕ · · · ⊕ ain
provided that

I �= ∅. For the sake of completeness we set
⊕

i∈I ai = 0 if I = ∅. Throughout
this paper let A = (A,⊕,�,0,1) be a semiring. In this paper we make us of
the Boolean semiring Bool = ({0, 1},∨,∧, 0, 1), the Tropical semiring Trop =
(IN ∪ {+∞},min,+,+∞, 0), and for a (not necessarily finite) alphabet Σ the
language semiring LangΣ = (P(Σ),∪, ., ∅, {ε}).

2.3 Tree Series and Tree Series Substitution

Let Σ be a ranked alphabet and X ′ ⊆ X. A (formal) tree series (over Σ and A)
is a total mapping S : TΣ(X ′) → A. The image S(t) ∈ A is called coefficient of
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t ∈ TΣ(X ′), and as usual, we write (S, t) rather than S(t). The tree series, which
maps every t ∈ TΣ(X ′) to 0, is denoted by 0̃. The support of S is defined to be the
set supp(S) = {t ∈ TΣ(X ′) | (S, t) �= 0}. We will be short in notation and write⊕

t∈supp(S)(S, t) t to denote
⊕

t∈TΣ
(S, t) t. The tree series S is called polynomial,

if its support is finite. Further, A〈〈TΣ(X ′)〉〉 and A〈TΣ(X ′)〉 are the classes of
all tree series and of all polynomial tree series over Σ and A, respectively. The
sum of two tree series S, T ∈ A〈〈TΣ(X ′)〉〉 is denoted by S + T and defined by
pointwise addition, i.e. (S + T, s) = (S, s)⊕ (T, s) for every s ∈ TΣ(X ′).

To define the tree series substitution (cf. [EFV02]) let T ∈ A〈TΣ(Xk)〉 and
S = (S1, . . . , Sk) ∈ A〈TΣ〉k for some k ∈ IN. Then for every s ∈ TΣ

(T ← S, s) =
⊕

t∈supp(T )
(∀i∈[k]):ti∈supp(Si)

s=t[t1,...,tk]

(T, t)� (S1, t1)� · · · � (Sk, tk) .

2.4 Regular, Weighted Tree Grammars

Definition 1 (cf. [AB87]). A regular, weighted tree grammar is defined to be a
6-tuple G = (N , Σ, I,R,A,wt) satisfying N ∩Σ = ∅, where N and Σ are ranked
alphabets (of non-terminals and terminals, respectively) with N = N (0), I ∈ N
(the initial non-terminal), R is a finite set (of rules) N → s, where N ∈ N ,
s ∈ TΣ(N )\N , and wt : R → A is the weight mapping. Let r = (N → s) ∈ R be
a rule. The type of r is type(r) = (N1, . . . , Nn) → N , where (N1, . . . , Nn) ∈ Nn

is the sequence of non-terminals, which is obtained by reading the leaves of s from
left to right and omitting all terminals. Moreover, we denote the right hand side
s of r by RHS(r) and define the set RHS(G) = {RHS(r) | r ∈ R}.

In order to define the semantics of a regular, weighted tree grammar G let
us introduce the notation r̃ for some rule r ∈ R of type (N1, . . . , Nn) → N : we
define r̃ ∈ CΣ(Xn) as the context, which is obtained from RHS(r) by replacing
Ni by xi for every i ∈ [n]. Moreover, let Δ(G) = {r(n) | r ∈ R, type(r) =
(N1, . . . , Nn) → N} be a ranked alphabet. An N -derivation (tree) of s ∈ TΣ

(with respect to G) is a tree ψ = r(ψ1, . . . , ψn) ∈ TΔ(G) such that r ∈ R is
of type (N1, . . . , Nn) → N and there exist trees s1, . . . , sn ∈ TΣ with s =
r̃[s1, . . . , sn] and ψi is an Ni-derivation of si for every i ∈ [n]. An I-derivation
of s is also called a derivation (tree) (also: abstract syntax tree) of s. The set
of all derivations of s with respect to G is denoted by derG(s). The weight
of an N -derivation r(ψ1, . . . , ψn) where r ∈ R is of type (N1, . . . , Nn) → N
and ψi is a Ni-derivation for every i ∈ [n] is defined by wt(r(ψ1, . . . , ψn)) =
wt(r)� wt(ψ1)� · · · � wt(ψn).

2.5 Tree Series Transducer

Let us now recall the definition of trstr’s. Being more precise, we instantiate the
concept of trstr’s introduced in [EFV02]: for our purposes it suffices to consider
top-down trstr, which is reflected in Condition (b) of the next paragraph; also,
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we restrict the devices to polynomial trstr’, i.e., the weight of every transition is
a polynomial tree series.

The transitions of a trstr and their weights are coded in a tree representation
(over a non-empty ranked alphabet Q = Q(1) of states, ranked alphabets Σ and
Δ (of input and output symbols, respectively), and A), which is a family μ =
(μk : Σ(k) → A〈TΔ(X)〉Q×Q(Xk)∗ | k ∈ IN) of mappings such that

(a) for every σ ∈ Σ(k) there exist only finitely many indices (q, w) ∈ Q×Q(Xk)∗

satisfying μk(σ) �= 0̃ and
(b) for every σ ∈ Σ(k) and (q, w) ∈ Q×Q(Xk)∗ it holds that supp(μk(σ)q,w) ⊆

CΣ(Xl), where l denotes the length of w.

The semantics of a trstr is defined in terms of the mapping hμ : TΣ →
A〈TΔ〉Q, given for every s = σ(s1, . . . , sk) ∈ TΣ and q ∈ Q by

hμ(s)q =
⊕

w=q1(xi1 )...ql(xil
)∈Q(Xk)∗

μk(σ)q,w ← (
hμ(si1)q1 , . . . , hμ(sil

)ql

)
.

Definition 2 (cf. [EFV02]). A (polynomial, top-down) tree series transducer
(for short: trstr) is a tuple M = (Q,Σ,Δ,Qd,A, μ), where Q = Q(1), Σ, and
Δ are ranked alphabets, Qd ⊆ Q, and μ is a tree representation over Q, Σ, Δ,
and A. Moreover, M is called tree transducer (for short: trtr), if A = Bool,
and it is called (finite state) weighted tree automaton (for short: w-fta) if Σ =
Δ and for every k ∈ IN, σ ∈ Σ(k), q ∈ Q, and w ∈ Q(Xk)∗ it holds that
μk(σ)q,w = a σ(x1, . . . , xk) for some a ∈ A provided that w = q1(x1) . . . qk(xk),
and μk(σ)q,w = 0̃ otherwise. The semantics of M is a mapping τM : TΣ →
A〈TΔ〉, which is defined for every s ∈ TΣ by τM (s) =

⊕
q∈Qd

hμ(s)q.

As usual, we simplify notations for a trtr by writing M = (Q,Σ,Δ, F, μ)
rather than M = (Q,Σ,Δ, F,Bool, μ) and identifying every tree series occurring
in the syntax or semantics of M with its support. Moreover, the generation of the
output tree by a w-fta is superfluous. Further, if μk(σ)q,w �= 0̃, then w is of type
q1(x1) . . . qk(xk). In particular, μk(σ)q,w with w not being of the aforementioned
type do not contribute to any generated tree series. We therefore shorten notation
by writing M = (Q,Σ,Qd,A, μ) and μk(σ)q,(q1,...,qk) = a rather than M =
(Q,Σ,Σ,Qd,A, μ) and μk(σ)q,(q1(x1),...,qk(xk)) = a σ(x1, . . . , xk), respectively.
Also, in the accepted tree series τM (s) we omit the output tree, i.e., a stands
for a s. Hence, every input tree is accepted by a w-fta with a semiring element.
Thus the semantics of M also can be considered as a tree series, which we denote
by SM .

3 Code Selection

For the rest of this section let G = (N , Σ, I,R,Trop,wt) be a regular, weighted
tree grammar and s ∈ TΣ .
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3.1 Tree Parsing

In this section we generate a representation of all derivations of s together with
their costs, i.e. we solve the (extended) tree parsing problem (cf. [GG78]):

(Extended) Tree Parsing Problem: Compute explicitly derG(s)
and the weight of every ψ ∈ derG(s).

Therefore we define the trstr MTP
G . This trstr generates for every input tree t

a tree series the support of which uniquely corresponds to derG(t). Moreover, the
coefficient of a tree contained in supp(τMTP

G
) is the weight of the corresponding

derivation.
Let us first show, how we represent a derivation ψ ∈ derG(s). We introduce for

every k ∈ [0,maxrk(Σ)] a symbol ek. The pseudo-code tree also contains nodes
the label of which represents a rule r ∈ R and the rank of which equals the rank of
the topmost element of RHS(r): Δpseu = {e(k)

k | k ∈ [0,maxrk(Σ)]}∪{r(k)
pseu | r ∈

R, k = rk(labRHS(r)(ε))}. By definition it holds that ψ = r(ψ1, . . . , ψn) for some
r ∈ R, n ∈ IN, and ψ1, . . . , ψn ∈ derG. The pseudo-code tree of ψ is inductively
defined to be the tree pseu(ψ) = Cr[pseu(ψ1), . . . ,pseu(ψn)] ∈ TΔpseu , where
Cr ∈ CΔpseu(Xn) is a context satisfying pos(Cr) = pos(r̃) (= pos(RHS(r))) and
for every o ∈ pos(C),

labCr (o) =

⎧⎪⎨⎪⎩
rpseu , if o = ε

ek , if o �= ε and labr̃(o) ∈ Σ(k) for some k ∈ IN
labr̃(o) , otherwise .

Clearly, from the pseudo-code tree the original computation ψ can be induc-
tively reobtained by replacing the context Cr by the n-ary label r.

Let us now present the trstr MTP
G , which solves the tree parsing problem. It

traverses the input tree s and successively replaces patterns of s corresponding to
a right hand side of some r ∈ R by Cr also checking, whether the “connecting”
non-terminals are of appropriate type. Hence the states of MTP

G are all the proper
subtrees of trees contained in RHS(G) as well as the initial non-terminal I. The
transitions are defined in the obvious way, where the weight of the rule r is
assigned to the transition, which consumes the topmost element of RHS(r).

Definition 3. The trstr MTP
G = (Q,Σ,Δ, F,A, μ) is defined by Q = {I}∪{t′ ∈

TΣ(N ) | (∃t ∈ RHS(G)) : t′ < t}, Δ = Δpseu, Qd = {I}, A = Trop, and for
every k ∈ IN, σ ∈ Σ(k), w = q1(xi1) . . . ql(xil

) ∈ Q(Xk)∗, and q ∈ Q it holds that

μk(σ)q,w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wt(r) rpseu(x1, . . . , xk) , if w = q1(x1) . . . qk(xk),
r = (q → σ(q1, . . . , qk)) ∈ R

0 ek(x1, . . . , xk) , if w = q1(x1) . . . qk(xk),
q = σ(q1, . . . , qk)

+̃∞ , otherwise .
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Lemma 1. It holds that τMTP
G

(s) =
⊕

ψ∈derG(s) wt(ψ) pseu(ψ).

Example 1. Let us consider the regular, weighted tree grammar G given by N =
{I, A,B}, Σ = {σ(2), α(0)}, and R = {r1, r2, r3, r4}, where

r1 : I → σ(σ(A,A), A) wt(r1) = 3, r3 : I → σ(B,α) wt(r3) = 2,
r2 : A → α wt(r2) = 1, r4 : B → σ(A,A) wt(r4) = 3.

According to Definition 3 the set of states of MTP
G is Q = {I, A,B, α, σ(A,A)},

where I is the unique designated state. Moreover,

r1 : μ2(σ)I, σ(A,A)(x1) A(x2) = 3 (r1)pseu(x1, x2),
μ2(σ)σ(A,A), A(x1) A(x2) = 0 e2(x1, x2),

r2 : μ0(α)A, () = 1 (r2)pseu,

r3 : μ2(σ)I, B(x1) α(x2) = 2 (r3)pseu(x1, x2),
μ0(α)α, () = 0 e0,

r4 : μ2(σ)B, A(x1) A(x2) = 3 (r4)pseu(x1, x2),

and the not yet defined entries of the tree representation μ are set +̃∞. Let us
consider the input tree s = σ(σ(α, α), α). Clearly, derG(s) = {ψ1, ψ2}, where
ψ1 = r1(r2, r2, r2), wt(ψ1) = 6, ψ2 = r3(r4(r2, r2)), and wt(ψ2) = 7. Let us
now compute τMTP

G
(s). For this purpose we calculate the characteristic vec-

tor hμ(s) of s, which is shown in the following table, where t1 and t2 denote
the trees pseu(ψ1) = (r1)pseu(e2((r2)pseu, (r2)pseu), (r2)pseu) and pseu(ψ2) =
(r3)pseu((r4)pseu((r2)pseu, (r2)pseu), e0), respectively.

hμ(t)q α σ(α, α) s

I +̃∞ +̃∞ min {6 t1, 7 t2}
A 1 (r2)pseu +̃∞ +̃∞
B +̃∞ 5 (r4)pseu((r2)pseu, (r2)pseu) +̃∞
α 0 e0 +̃∞ +̃∞

σ(A,A) +̃∞ 2 e2((r2)pseu, (r2)pseu) +̃∞
Consequently, τMTP

G
(s) = hμ(s)I = min {6 pseu(ψ1), 7 pseu(ψ2)}.

3.2 Cost of a Cheapest Derivation

Now we compute the weight of a cheapest derivation of s with respect to G by the
w-fta Mmincost

G , which works very similar to MTP
G . Rather than replacing input

symbols it just copies them. Moreover, it accumulates in every run the weight of
a derivation of the input tree. Since a w-fta finally sums up (in Trop: takes the
minimum) over the weights of all successful runs, Mmincost

G indeed computes the
minimum of the weights of all derivations of the input tree.

Definition 4. The w-fta Mmincost
G = (Q,Σ,Qd,A, μ) is defined by Q = {I} ∪

{t′ ∈ TΣ(N ) | (∃t ∈ RHS(G)) : t′ < t}, Qd = {I}, A = Trop, and for every
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k ∈ IN, σ ∈ Σ(k), q = (q1, . . . , qk) ∈ Qk, and q ∈ Q it holds that

μk(σ)q,q =

⎧⎪⎨⎪⎩
wt(r) , if r = (q → σ(q1, . . . , qk)) ∈ R
0 , if q = σ(q1, . . . , qk)
+∞ , otherwise .

Lemma 2. It holds that (SMmincost
G

, s) = min{wt(ψ) ∈ IN | ψ ∈ derG(s)}.
The pseudo-code tree of a derivation having minimal weight is obtained by

searching in τMTP
G

(s) for an output tree with the coefficient (SMmincost
G

, s).

3.3 Obtaining the Cheapest Machine Code

In this section we translate each pseudo-code tree pseu(ψ) into its correspond-
ing machine code ψ by the trtr M trans

G . Clearly, the input ranked alphabet
of this trtr is Δpseu and its output ranked alphabet is Δ(G) = {r(n) | r ∈
R, type(r) = (N1, . . . , Nn) → N}. Now let us show the states and transitions
of M trans

G . For this purpose let us consider the pseudo-code tree pseu(ψ) =
Cr[pseu(ψ1), . . . ,pseu(ψn)] for some rule r ∈ R of type N → (N1, . . . , Nn)
and Ni-derivation ψi for every i ∈ [n]. The trtr M trans

G should generate for this
particular input tree the set {r(ψ1, . . . , ψn)}. By traversing pseu(ψ) the device
consumes the topmost symbol rpseu, generates {r(x1, . . . , xn)}, and changes to
w = q1(x1) . . . ql(xl). Since M trans

G should substitute each of the variables xi of
{r(x1, . . . , xn)} by {ψi} (which is generated by the “subrun” on pseu(ψi)), the
automaton has to traverse Cr to the node at position o(Cr, i) when fulfilling the
computation of qi(xi). Therefore all the tuples (t, i) are states of M trans

G where
t is a subtree Cr for some rule r of G and i is a positive integer such that t
contains at least i variables. Further, (I, 1) is a state. In particular, it is the
unique designated state of M trans

G . The transitions are defined according to the
aforementioned procedure.

Definition 5. Let M trans
G = (Q,Σ,Δ,Qd, μ) be the trtr which is given by Q =

{(I, 1)} ∪ {(t, i) | (∃i ∈ IN+)(∃r ∈ R) : t < Cr, o(t, i) defined}, Δ = Δ(G),
and Qd = {(I, 1)}. Moreover, for every k ∈ IN, q ∈ Q, and σ ∈ Σ(k), w =
(q1(xi1), . . . , ql(xil

)), it holds that

μk(σ)q,w

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{r(x1, . . . , xl)} , if (∃r = N → t ∈ R), (∀j ∈ [l]), (∃j′ ∈ [l]) :
Cr = σ(Cr|1, . . . , Cr|k) ∈ CΣ(Xl), q = (N, 1),(
qj = (Cr|ij

, j′) ⇐⇒ o(Cr, j) = ij .o(Cr|ij
, j′)

)
{x1} , if (∃t ∈ TΣ(Xl), (∃i ∈ [k]), (∃j, j′ ∈ IN) :

σ = ek, t = σ(t|1, . . . , t|k), q = (t, j), l = 1,(
q1 = (t|i1 , j′) ⇐⇒ o(t, j) = i1.o(t|i1 , j′)

)
∅ , otherwise .
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Lemma 3. For every ψ ∈ derG(s) it holds that τMtrans
G

(pseu(ψ)) = {ψ}.
Example 2. Let us reconsider the regular, weighted tree grammar G of Ex-
ample 1. According to Definition 5 the set of states of M trans

G is given by
Q = {(I, 1), (A, 1), (B, 1), (e2(A,A), 1), (e2(A,A), 2)}, where (I, 1) is the unique
designated state. The transitions having a weight different from ∅ are

Cr1 : μ2((r1)pseu)(I,1), (e2(A,A),1)(x1).(e2(A,A),2)(x1).(A,1)(x2)
= {r1(x1, x2, x3)},

μ2(e2)(e2(A,A),1), (A,1)(x1) = {x1},
μ2(e2)(e2(A,A),2), (A,1)(x2) = {x1},

Cr2 : μ0((r2)pseu)(A,1), () = {r2},
Cr3 : μ2((r3)pseu)(I,1), (B,1)(x1) = {r3(x1)},
Cr4 : μ2((r4)pseu)(B,1), (A,1)(x1).(A,1)(x1) = {r4(x1, x2)}.

Let us now consider pseu(ψ1) = (r1)pseu(e2((r2)pseu, (r2)pseu), (r2)pseu), which we
generated in Example 1. The following table shows all the intermediates steps
of the translation of M trans

G from pseu(ψ1) to {ψ1}.
hμ(t)q (r2)pseu e2((r2)pseu, (r2)pseu) pseu(ψ1)
(I, 1) ∅ ∅ {r1(r2, r2, r2)}
(A, 1) {r2} ∅ ∅
(B, 1) ∅ ∅ ∅

(e2(A,A), 1) ∅ {r2} ∅
(e2(A,A), 1) ∅ {r2} ∅

In particular, τMtrans
G

(ψ1) = hμ(pseu(ψ1))(I,1) = {r1(r2, r2, r2)} = {ψ1}.

3.4 Tree Pattern Matching

In this section we attack the tree pattern matching problem, i.e., for a given
pattern C /∈ X we generate the set occC(s) of occurrences of the pattern C in
an input tree s ∈ TΣ (cf. [HO82]).

Tree Pattern Matching Problem: Let s ∈ TΣ and C ∈ CΣ(Xn)\
Xn for some n ∈ IN. Compute the set occC(s).

The tree pattern matching problem is solved by the w-fta MPM
C over LangIN.

By letting MPM
C run on the input tree s ∈ TΣ we obtain a set containing an

element o ∈ occC(s). How is this o computed? The automaton traverses s start-
ing at its root as far as it assumes an occurrence of C. It also outputs as a
weight the set containing the position of s, at which it assumes the copy of C.
By consuming the top-most symbol of this assumed occurrence of C it changes
the state keeping the information that it just has consumed the root of C. Now
MPM

C either meets the whole pattern C and consumes it without changing the
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up to now generated output or it stops. Clearly, if the w-fta has consumed a
copy of C, then it has to consume the subtrees of s at the open position of the
copy of C and keep the information that a pattern C was found. The traversing
of s up to the occurrence of C is done in a state C, while the consumption of
the pattern C is done in the states t < C, t /∈ X. The traversing of the subtrees
at the open positions of C is done in the state ⊥.

Definition 6. Let n ∈ IN. Moreover, let C ∈ CΣ(Xn) \Xn. The w-fta MPM
C =

(Q,Σ,Qd,A, μ) is defined by Q = {⊥}∪ {t ∈ TΣ(Xn) \Xn | t ≤ C}, Qd = {C},
A = LangIN, and for every k ∈ IN, σ ∈ Σ(k), q = (q1, . . . , qk) ∈ Qk, q ∈ Q, and
l ∈ [k] by

μk(σ)q,q

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ε} , if
(
(∀i ∈ [k]) : q = qi = ⊥) or(
(∃I ⊆ [k]), (∀i ∈ I), (∀j ∈ [k] \ I), (∃Ti, Tj ∈ TΔ(Xn)) :
Ti = labi(q) ∈ Xn, Tj = qj , q = σ(T1, . . . , Tk), qi = ⊥,
qj ∈ TΣ(Xn)

)
{l} , if (∀i ∈ [k] \ {l}) : ql = C = q, qi = ⊥,
∅ , otherwise .

Lemma 4. For every n ∈ IN and C ∈ CΣ(Xn) \Xn, (SMPM
C

, s) = occC(s).

4 Conclusion and Open Problems

We extended the techniques of [FSW94] for code selection by using trstr’s rather
than tree automata and represented the cheapest machine code as output of a
sequence of trstr’s. Thereby we solved the tree parsing and the tree pattern
matching problems by trstr’s. It remains to “optimize”, i.e., determinize and
minimize these devices. In particular, it is an interesting question under which
conditions trstr’s over Trop can be determinized and minimized.
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[EFV02] J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree series
transformations. J. Automata, Languages and Combinatorics, 7:11–70, 2002.

[FSW94] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree automata for code selection.
Acta Informatica, 31(8):741–760, 1994.

[GG78] R.S. Glanville and S.L. Graham. A new method for compiler code generation.
In Proceedings of the 5th ACM Symposium on Principles of Programming
Languages, pages 231–240, 1978.

[GL97] K.J. Gough and J. Ledermann. Optimal code-selection using MBURG. Pre-
sented to the 20th Australian Computer Science Conference, Sydney, 1997.

[HO82] C. Hoffmann and M.J. O’Donnell. Pattern matching in trees. J. ACM,
29:68–95, 1982.



Some Non-semi-decidability Problems
for Linear and Deterministic

Context-Free Languages

Henning Bordihn1, Markus Holzer2, and Martin Kutrib3

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Straße 89, D-14482 Potsdam, Germany

henning@cs.uni-potsdam.de
2 Institut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany
holzer@informatik.tu-muenchen.de

3 Institut für Informatik, Universität Giessen,
Arndtstraße 2, D-35392 Giessen, Germany

kutrib@informatik.uni-giessen.de

Abstract. We investigate the operation problem for linear and deter-
ministic context-free languages: Fix an operation on formal languages.
Given linear (deterministic, respectively) context-free languages, is the
application of this operation to the given languages still a linear (de-
terministic, respectively) context-free language? Besides the classical op-
erations, for which the linear and deterministic context-free languages
are not closed, we also consider the recently introduced root and power
operation. We show non-semi-decidability for all of the aforementioned
operations, if the underlying alphabet contains at least two letters. The
non-semi-decidability and thus the undecidability for the power opera-
tion solves an open problem stated in [4].

1 Introduction

Elementary undecidable questions for formal language families appeared first
in [3], where it was shown that the family of languages defined by context-free
grammars is too wide to admit a decidable theory for language equivalence.
The same holds true even in the case when restricting to linear context-free
grammars, but in contrast deterministic context-free language equivalence was
recently shown to be decidable [17]. Additional results show that, e.g., inclusion,
intersection emptiness, inherent ambiguity, and regularity for context-free lan-
guages are undecidable, too. On the other hand some related questions such as,
membership, non-emptiness, and finiteness are decidable and obey fast sequen-
tial algorithms. Similar results hold true for linear context-free languages, while
for the family of regular languages all of the above mentioned problems are well
known to be decidable. In fact, many of the fundamental works on particular
language families include results as to whether certain common questions are de-
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cidable or semi-decidable. In particular, (un)decidability results for sub-families
of context-free languages are abundant, see, e.g., [7, 8, 9, 10, 11, 15].

Another important class of decision problems can be stated as follows. Fix
a family of languages and operations thereon. Is it decidable or semi-decidable,
given languages from this family, whether or not the application of the oper-
ation to the given languages leads out of this family? In the forthcoming this
problem is referred to the operation problem. From an implementation point of
view, the operation problem is related to the question whether, e.g., a parser or
acceptor for a given language can be decomposed in several simpler automata.
Advantages of simpler automata, whose result after applying the operation is
equivalent to the given device, are obvious. For example, the total size of the
simpler devices could be smaller than the given automaton, the verification is
easier, etc. Therefore, there is a natural interest in efficient decomposition algo-
rithms. From this point of view, the complexity of the converse question, whether
the composition of languages yields a given language, is interesting. The oper-
ation problem can be seen as a weaker class of such problems. Of course, the
operation problem makes only sense for language operations under which the
family under consideration is not closed, since the aforementioned problem be-
comes trivially decidable otherwise. For instance, for context-free languages it is
well known that the operation problems with respect to intersection and com-
plementation are both undecidable. In fact, most of the undecidability results
for context-free languages can be obtained from the fact that the calculations,
i.e., the valid computations, of a given Turing machine can be identified with the
intersection of two context-free languages [12], while the invalid computations
can be identified with a context-free language. A closer look on these proofs re-
veals that in fact linear context-free languages are sufficient for the description
of valid and invalid computations [2, 13]. Moreover, by using this technique it is
shown that the problems under consideration are not even semi-decidable.

The aim of the present paper is just about to complete the picture afforded
by the above decision problem for the family of linear and deterministic context-
free languages. Besides the classical Boolean operations union, intersection, and
complementation, we also consider concatenation, Kleene star, non-erasing ho-
momorphism, non-erasing substitution, and shuffle, and moreover, the recently
introduced operations root, and power [6]. For all of the above mentioned op-
erations we prove non-semi-decidability, which implies undecidability, whenever
the language family under consideration is not closed with respect to the stud-
ied operation. The technical depth of our results varies from immediate to more
subtle constructions. Indeed, we use the two major techniques developed in the
literature, namely (in)valid computations and Post’s Correspondence Problem
(PCP). The difficulty, when working with linear and deterministic context-free
languages is that some of the “context-free” tricks are a priori unusable. A typ-
ical example arises with the power operation: The standard PCP construction
clashes with the linear context-free property in case of having no solutions, be-
cause of the inherent copy feature of the power operation—compare with [4],
where the decidability status of the linear context-freeness of the power of linear
context-free languages was stated as an open problem.
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2 Preliminaries

Concerning our notation, we have the following conventions: V + denotes the set
of nonempty words over alphabet V ; if the empty word λ is included, then we use
the notation V ∗. The mirror image of a string w is denoted by w̃, its length by |w|.
Generally, for a singleton {a} we simply write a. Moreover, the reader is assumed
to be familiar with basic concepts of formal language theory, in particular with
the definition of linear context-free grammars as well as deterministic pushdown
automata, as contained, e.g., in [13, 16, 18]. A language is linear context free, if
it is generated by some linear context-free grammar. A language is deterministic
context free, if there is a deterministic pushdown automaton, where acceptance
is defined to be by final state, that accepts the language.

In the following, we exploit the following property of all context-free, hence,
of all linear and deterministic context-free languages.

Lemma 1 (Bader, Moura [1]). For any context-free language L, there exists
a natural number k, such that for all words z in L, if d positions in z are
“distinguished” and e positions are “excluded,” with d > ke+1, then there are
words u, v, w, x, and y such that z = uvwxy and (1) vx contains at least
one distinguished position and no excluded positions, (2) if r is the number of
distinguished positions and s is the number of excluded positions in vwx, then
r ≤ ks+1, and (3) word uviwxiy is in L for all i ≥ 0.

Finally, we recall some notations on computability theory. A problem (or
language) is called decidable, if there is a Turing machine, that will halt on all
inputs and, given an encoding of any instance of the question, will return the
answer “yes” or “no” for the instance. The problem is semi-decidable, if the
Turing machine halts on all instances for which the answer is “yes,” and it is
not semi-decidable, if no such Turing machine exists that solves the task. For
example, the equivalence and non-equivalence of two linear languages given by
linear context-free grammars are undecidable. But it is easy to see that the
non-equivalence is semi-decidable.

We will use the set of (in)valid computations of a Turing as a tool to prove
some of our non-semi-decidability results. Basically, a valid computation is a word
built from a sequence of configurations of a deterministic Turing machine M with
one single tape and one single read-write head. The sequence of configurations
is passed through during an accepting computation. Without loss of generality,
one can assume that any accepting computation of M has at least three and, in
general, an odd number of steps. So, it is represented by a sequence of configura-
tions of even length. Moreover, it is assumed that a configuration is halting if and
only if it is accepting. The language accepted by some Turing machine M is de-
noted by L(M). In what follows, the set of valid computations VALC(M) is now
defined to be the set of words of the form w0$w2$ . . . $w2k#w̃2k+1$ . . . $w̃3$w̃1,
where wi are configurations $,# are symbols not appearing in wi, w0 is an initial
configuration, w2k+1 is an accepting configuration, and wi+1 is the successor con-
figuration of wi, with 0 ≤ i ≤ 2k. The set of invalid computations INVALC(M)
is the complement of VALC(M) with respect to the coding alphabet.
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3 Results

In this section we consider the decision problem of the families of linear and
deterministic context-free languages with respect to Boolean operations, cate-
nation, Kleene star, non-erasing homomorphism and substitution, shuffle, root,
and power. It is worth mentioning, that all of the aforementioned operations in-
duce decidable problems, if one considers context-free languages over a one-letter
alphabet only. This is due to the fact that from a context-free grammar with
one-letter terminal alphabet one can effectively construct an equivalent regular
grammar, and one-letter regular languages are closed under the above mentioned
operations [13], except for the power operation. The power operation problem for
one-letter regular languages was shown to be decidable [5], but the decidability
status for regular languages in general is still an open problem [14]. Since the fam-
ily of linear context-free languages is closed under homomorphisms and inverse
homomorphism, easy encodings to binary input alphabet can be applied. Thus,
the non-semi-decidability results already hold whenever the linear context-free
language has a terminal alphabet with at least two letters. Since deterministic
context-free languages are not closed under homomorphism in general, the above
given argument does not apply. Nevertheless, one can reduce the alphabet size
to two letters in the deterministic context-free case. Let V = {a1, . . . , an} with
n ≥ 3 and define the encoding h : V ∗ → {a, b}∗ by h(ai) = abia, for 1 ≤ i ≤ n.
Obviously, the deterministic context-free languages are closed under this form
of encoding. Thus, with respect to alphabet size our results are optimal for both
linear and deterministic context-free languages.

3.1 Boolean Operations

The family of linear context-free languages is closed under union, but not closed
under intersection and complementation, whereas the deterministic context-free
languages are closed under complementation, but neither under union nor under
intersection. The first goal is to show that it is not semi-decidable whether the
application of one of the Boolean non-closure operations yields a language from
the same family.

Theorem 2. (1) Given two linear context-free languages L1 and L2, it is not
semi-decidable whether the intersection L1∩L2 or whether the complement of L1
is linear context free. (2) Given two deterministic context-free languages L1
and L2, it is not semi-decidable whether the intersection L1 ∩ L2 or whether
the union L1 ∪ L2 is deterministic context free.

Proof. In contrast to the assertion, assume the intersection problem is semi-
decidable. Then let M be an arbitrary Turing machine. In [2] it has been shown
that VALC(M) is the intersection of two linear context-free languages, and the
grammars for these languages can be effectively constructed from M . Taking
a closer look at the proof shows that the languages are also deterministic con-
text free, such that the deterministic pushdown acceptors can be effectively con-
structed. Therefore, two deterministic or linear context-free languages L1 and L2
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can be effectively constructed such that VALC(M) = L1 ∩ L2. Due to the as-
sumption, it is semi-decidable whether L1 ∩L2 is deterministic or linear context
free, i.e., whether VALC(M) is deterministic or linear context free. Another re-
sult in [2] says that the valid computations of an arbitrary Turing machine are
context free if and only if the language accepted by the Turing machine is finite.
In fact, if L(M) is finite, then VALC(M) is finite and, hence, deterministic and
linear context free. If, conversely, VALC(M) is deterministic or linear context
free, then it is context free and, thus, L(M) is finite. Therefore, due to the as-
sumption, it is semi-decidable whether L(M) is finite. This is a contradiction
since the finiteness of recursively enumerable languages is not semi-decidable.

Now assume, the complementation problem for linear context-free languages
is semi-decidable. In [13] it has been shown that a linear context-free gram-
mar for the language INVALC(M) can be effectively constructed. So, the semi-
decidability of the linearity of the complement of the language INVALC(M)
yields the semi-decidability of the linearity of VALC(M). This implies the semi-
decidability of the finiteness for the language L(M), a contradiction.

The non-semi-decidability of the union problem for deterministic context-free
languages follows from the closure under complementation and the observation
that L1 ∪ L2 is deterministic context free if and only if L1 ∩ L2 is deterministic
context free. ��

3.2 Concatenation and Kleene Star

Next we consider concatenation and Kleene star, both operations under which
deterministic and linear context-free languages are not closed. A known fact
about linear context-free languages is the undecidability of regularity. Exploiting
the notion of invalid computations and the fact that they are linear context-free
languages, it can be seen that the property is not even semi-decidable. If the
language L(M) of some Turing machine M is finite, then VALC(M) is finite
and, hence, regular. Since regular languages are closed under complementation,
in this case the language INVALC(M) must be regular, too. Conversely, let
INVALC(M) be a regular language. This implies that VALC(M) must be regular
and, hence, context free. Thus the finiteness of L(M) follows.

The following valuable result has been shown in [10].

Theorem 3 (Greibach [10]). Let R and S be two linear context-free languages
over some alphabet V and c /∈ V be a new symbol. The concatenation RcS is
linear context free if and only if at least one of R and S is regular.

Theorem 4. (1) Given two linear context-free languages, it is not semi-de-
cidable whether their concatenation or whether their iteration closure is lin-
ear context free. (2) Given two deterministic context-free languages, it is not
semi-decidable whether their concatenation or whether their iteration closure is
deterministic context free.

Proof. (1) Let L be an arbitrary linear context-free language over some alpha-
bet V . Then a linear context-free grammar for the language L1 = Lc, where
c /∈ V is a new symbol, can be effectively constructed.
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Set L2 = L and consider the concatenation L1 · L2. Since L1 · L2 = LcL,
by Theorem 3 the regularity of L could be semi-decided, if the linearity of the
concatenation is semi-decidable.

Assume now the linearity of (Lc)∗ is semi-decidable. In order to obtain a
contradiction, it suffices to show that (Lc)∗ is linear context free if and only if L
is regular.

Let L be regular, then Lc is regular. Since the regular languages are closed
under Kleene star, (Lc)∗ must be regular and, hence, linear context free. Con-
versely, let (Lc)∗ be linear context free. Since the linear context-free languages
are closed under intersection with regular sets, the intersection (Lc)∗ ∩ V ∗cV ∗c
is linear, too. Then together with the closure of linear context-free languages
under gsm-mappings, the linearity of LcL follows. Now Theorem 3 implies the
regularity of L.

(2) Let L1 and L2 be two arbitrary deterministic context-free languages over
some alphabet V and c /∈ V be a new symbol. The marked union cL1 ∪ L2 is
clearly a deterministic context-free language. Now we consider the concatena-
tion L = {c, c2} · (cL1 ∪ L2) and assume that it is semi-decidable whether L
is deterministic context free. In order to obtain a contradiction to Theorem 2
it suffices to show that L is deterministic context free if and only if L1 ∪ L2 is
deterministic context free.

Assume L1∪L2 is deterministic context free. Then there exists a deterministic
pushdown acceptor for the language. An acceptor for the language L works as
follows: At the beginning it reads the symbols c. If it finds one symbol, then
it simulates the acceptor for L2. If it finds two symbols, then it simulates the
acceptor for L1 ∪ L2. If it finds three symbols, then it simulates the acceptor
for L1. In any other case it rejects the input. Conversely, assume now L1 ∪L2 is
not deterministic context free. If L is deterministic context free, then L∩c2V ∗ =
c2(L1 ∪ L2) would be deterministic context free. This implies that L1 ∪ L2 is
deterministic context free by the closure under fixed word quotient. This is a
contradiction to our assumption.

Now set L = c2L1 ∪ cL2 ∪ {c}. In order to prove the second part of the
theorem it suffices to show that L∗ is deterministic context free if and only if
L1∪L2 is deterministic context free. If L1∪L2 is deterministic context free, then
a deterministic pushdown acceptor for L∗ can be constructed similarly to the
construction given in the first part of the proof. If, conversely, L∗ is deterministic
context free, then L∗ ∩ c2V + = c2((L1 ∪L2) \ {λ}) is deterministic context free.
This implies that L1 ∪ L2 is deterministic context free. ��

3.3 Non-erasing Substitution and Non-erasing Homomorphism

Let V be some alphabet. For all symbols a ∈ V , let s(a) be some language over
some alphabet Va, and denote the union

⋃
a∈V Va by U . A mapping s : V ∗ → 2U∗

is a substitution, if it satisfies s(λ) = {λ} and s(aw) = s(a)s(w), for all a ∈ V
and w ∈ V ∗. Here 2U∗

denotes the powerset of U∗. The mapping is extended
to languages in the usual way: s(L) =

⋃
w∈L s(w). A substitution is said to be

non-erasing, if the empty word does not belong to any of the languages s(a),
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it is linear, if all languages s(a) are linear context free, it is regular, if all lan-
guages s(a) are regular. If all languages s(a) are singletons, then the substitution
is said to be a homomorphism. It is well known that the linear context-free lan-
guages are closed under arbitrary (erasing) homomorphisms and gsm-mappings,
but not closed under linear non-erasing substitutions. The deterministic context-
free languages are not closed under substitution and homomorphisms, even if the
homomorphisms are non-erasing.

Theorem 5. (1) Given a linear context-free language L and a non-erasing lin-
ear substitution s, it is not semi-decidable whether s(L) is linear context free.
(2) Given a deterministic context-free language L and a non-erasing homomor-
phism h, it is not semi-decidable whether h(L) is deterministic context free.

The previous theorem can be strengthened to regular languages in the follow-
ing way. The regular languages are closed under arbitrary regular substitutions
but are not closed under non-erasing linear substitutions. Moreover, it is not
semi-decidable for an arbitrary regular language L and an arbitrary non-erasing
linear substitution s whether s(L) is regular or linear context free or not at all.
The theorem can be strengthened furthermore to marked substitutions, since we
have shown the non-semi-decidability of the marked concatenation.

3.4 Shuffle

The next results concern the shuffle operation, which is defined as follows. Let V
be some alphabet and x and y be two words over V . The shuffle of x and y
is the set {x1y1x2y2 . . . xnyn | x = x1 . . . xn, y = y1 . . . yn, xi, yi ∈ V ∗, 1 ≤ i ≤
n, n ≥ 1 } and is denoted by xX y. The shuffle of two languages L1, L2 ⊆ V ∗ is
{w ∈ V ∗ | w ∈ x X y for some x ∈ L1 and y ∈ L2 }. The families in question are
not closed under the shuffle operation. For example, consider the deterministic
linear context-free languages L1 = { ancn | n ≥ 0 } and L2 = { bndn | n ≥
0 }, whose shuffle is a non-context-free language, since (L1 X L2) ∩ a∗b∗c∗d∗

equals { anbmcndm | m,n ≥ 0 }, and both families in question are closed under
intersection with regular languages. The following theorems show that shuffle
for deterministic and linear context-free languages is not semi-decidable.

Theorem 6. (1) Given two linear context-free languages, it is not semi-decid-
able whether their shuffle is linear context free. (2) Given two deterministic
context-free languages, it is not semi-decidable whether their shuffle is deter-
ministic context free.

Proof. (1) For an arbitrary linear language L over some alphabet V , let L′ be
the primed copy of L over the disjoint primed copy V ′ of V . Assume contrarily
to the assertion that the linearity of L X L′ can be semi-decided. In order to
obtain a contradiction, it suffices to show that L X L′ is linear context free if
and only if L is regular.

Let L be regular, then L′ is regular. Since the regular languages are closed
under shuffle, LXL′ must be regular and, hence, linear context free. Conversely,
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let L X L′ be linear context free. Then the intersection (L X L′) ∩ V ∗V ′∗ is
linear context free. Since V and V ′ are disjoint, this intersection represents the
concatenation L · L′, which must be linear context free, too. Since the linear
context-free languages are closed under inverse homomorphisms, we obtain the
linearity of the marked concatenation LcL′, where c /∈ V ∪ V ′ is a new symbol.
Now Theorem 3 implies the regularity of L.

(2) Let L1 and L2 be two arbitrary deterministic context-free languages over
some alphabet V and c /∈ V . The marked union cL1 ∪ L2 is a deterministic
context-free language. Now we consider the shuffle L = c∗ X (cL1 ∪ L2).

If L is deterministic context free, then L∩ cV ∗ = c(L1 ∪L2) is deterministic
context free, which implies that L1∪L2 is deterministic context free. Conversely,
if L1∪L2 is deterministic context free, then a deterministic pushdown acceptor M
for L can be constructed as follows: If M starts reading a symbol not equal to c,
then it simulates a modified acceptor for L2, otherwise a modified acceptor for
L1 ∪ L2. The modifications are such that further input symbols c are ignored.
So, the semi-decidability of the shuffle would imply the semi-decidability of the
union. ��

3.5 Root and Power

In the following we turn to use Post’s Correspondence Problem (PCP) for prov-
ing non-semi-decidability. On the one hand, this makes the construction of a
linear context-free grammar easier whose root or power is not linear context
free anymore. On the other hand, it makes the argumentation for the non-semi-
decidability more involved. First we consider the root operation.

The root of a word w, denoted by
√
w, is the unique primitive word v such

that w = vn, for some positive integer n. A word v is primitive if and only
if v is not the power of another, different word. The root of a language L is√
L = {√w | w ∈ L and w �= λ }. The families in question are not closed un-

der the root operation. Consider, e.g., the linear context-free language L =
{ apbaqcar#asbarcap# | p, q, r, s ≥ 0 }, which is also deterministic context free
and whose root obeys

√
L ∩ a∗ba∗ca∗# = { anbancan# | n ≥ 1 }, which is a

non-context-free language.

Theorem 7. (1) Given a linear context-free language L, it is not semi-decidable
whether

√
L is linear context free or whether it is context free. (2) Given a

deterministic context-free language L, it is not semi-decidable whether
√
L is

deterministic context free or whether it is context free.

Proof. We show the first part only. The proof for the deterministic case is sim-
ilarly. So, let {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ {a, b}+ × {a, b}+ be a finite set
of pairs, an instance of Post’s Correspondence Problem. We consider the linear
context-free grammar G = ({S, S′, A,B,C,D}, {a, b, $,#}, P, S), where P is the
union of the following sets of productions:

P1 = {S → $S′} ∪ {S′ → uiS
′ṽi | 1 ≤ i ≤ n } ∪ {S′ → #A#},

P2 = {A→ xA | x ∈ {a, b} } ∪ {A→ Ax | x ∈ {a, b} } ∪ {A→ #B#},
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P3 = {B → aBa,B → bBb} } ∪ {B → $C$},
P4 = {C → xC | x ∈ {a, b} } ∪ {C → #D},
P5 = {D → aDa,D → bDb} ∪ {D → #}.

The derivation process starts with an application of P1 generating a senten-
tial form $ui1ui2 . . . uik

#A#ṽik
. . . ṽi2 ṽi1 . The occurrence of A can then be re-

placed by productions in P2 leading to $ui1ui2 . . . uik
#y1#B#y3#ṽik

. . . ṽi2 ṽi1 ,
for some y1 and y3 in {a, b}∗. Then the only way to get rid of the nonterminal B
is applying P3, which results in $ui1ui2 . . . uik

#y1#w$C$w̃#y3#ṽik
. . . ṽi2 ṽi1 ,

for some w ∈ {a, b}∗. After further derivation steps using productions from P4
and P5 in sequence a terminal string of the following form is obtained, with y2
and z over alphabet {a, b}: $ui1ui2 . . . uik

#y1#w$y2#z#z̃$w̃#y3#ṽik
. . . ṽi2 ṽi1

Observe, that any terminating derivation starting off with axiom S is of this
form. Thus, the language L(G) consists only of those words x, for which there
is a partition x = x1x2x3, with xi ∈ ${a, b}∗#{a, b}∗#{a, b}∗, for 1 ≤ i ≤ 3.
Therefore,

√
L ⊆ ⋃

i∈{1,3}(${a, b}∗#{a, b}∗#{a, b}∗)i.
First, let us consider L′ =

√
L ∩ (${a, b}+#{a, b}+#{a, b}+). If L′ �= ∅, then

there is a terminal word in L(G), as given above, such that ui1 . . . uik
= y2 = w̃

and w = z̃ = ṽik
. . . ṽi2 ṽi1 . In conclusion, the mirror image of ui1 . . . uik

is equal
to ṽik

. . . ṽi2 ṽi1 , that is, there is a solution of the PCP for the given instance.
Moreover, the equation y1 = z = y3 must hold true. Conversely, if there is a
solution to the PCP, then there are appropriate w, z, y1, y2, y3 such that there
exists a word in L′. Hence, we have

L′ = { $x#x#x̃ | x = ui1ui2 . . . uik
where i1i2 . . . ik is a solution of the PCP },

and L′ is empty if and only if there is no solution of the PCP for the given in-
stance. Now let z be a solution of the PCP for the given instance. Then every
power of z is a solution, too. Assume that L′ is linear context free and let k be the
constant of Lemma 1 of Bader and Moura. Consider the string α = $zs#zs#z̃s,
with s = k3+1, which is an element of L′. Let all positions occupied by the first zs

be distinguished, and all letters $ and # are excluded. Then there is a factoriza-
tion α = uvwxy according to Lemma 1. The pumping on α can be performed only
in a way such that at most two substrings of the form zs or z̃s are modified and,
therefore, at least one of them remains unchanged. This yields a string, which is
not of the appropriate form. Therefore, language L′ is not (linear) context free.

Now let us consider
√
L. If the PCP has a solution for the given instance,

then
√
L is not linear context free, since the language family under consideration

is closed with respect to the intersection with regular sets, and L′ is not even
context free as seen above. Otherwise, we find

√
L = L(G), since L′ is empty if

and only if there is no solution to the PCP, and therefore
√
L is linear context free

in the non-solution case. This proves the non-semi-decidability, since verifying
that a given PCP instance has no solution is not semi-decidable. ��

In the remainder of this subsection we consider the power operation. For any
language L, the power of L is the set pow(L) = {wi | i ≥ 0, w ∈ L } =

⋃
w∈L w∗.

Clearly, pow(L) is a subset of L∗ =
⋃

i≥0 L
i. The families in question are not
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closed under the power operation. Consider, e.g., the language defined by the
regular expression a+b, its power is the non-context-free language

⋃
i>0(a

ib)∗.
In the forthcoming we prove, that the linearity of the power of linear context-
free languages is non-semi-decidable. The proof for the context-free case does not
transfer to the cases in question here because it employs the closure of the family
of context-free languages under Kleene star. In the following, we give a more or
less far-reaching modification of that reduction, adapting it to deterministic and
linear context-free languages.

Theorem 8. (1) Given a linear context-free language L, it is not semi-decidable
whether pow(L) is linear context free or context free. (2) Given a deterministic
context-free language, it is not semi-decidable whether pow(L) is deterministic
context free or context free.

Proof. We show the first part only. The proof for the deterministic case is
similarly. Let {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ {a, b}+ × {a, b}+ be a finite
set of pairs, an instance of Post’s Correspondence Problem. Furthermore, let
T = {a, b,#, $,@}. Let G0 = ({S,A,B,C,D, S′, A′, B′, C ′, D′}, T, P, S) be a
linear context-free grammar, where P is the union of the following sets of pro-
ductions:

P1 = {S → λ, S → S′}
∪ {S′ → xS′ | x ∈ T } ∪ {S′ → S′x | x ∈ T } ∪ {S′ → $A$},

P2 = {A→ aAa,A→ bAb},
P3 = {A→ aBb,A→ bBa} ∪ {B → xBy | x, y ∈ {a, b} },
P4 = {A→ aC,A→ bC,B → C} ∪ {C → aC,C → bC},
P5 = {A→ Da,A→ Db,B → D} ∪ {D → Da,D → Db},
P6 = {B → @A′@, C → @A′@, D → @A′@},
P7 = {A′ → aA′a,A→ bA′b},
P8 = {A′ → aB′b, A→ bB′a} ∪ {B′ → xB′y | x, y ∈ {a, b} },
P9 = {A′ → aC ′, A′ → bC ′, B′ → C ′} ∪ {C ′ → aC ′, C ′ → bC ′},
P10 = {A′ → D′a,A′ → D′b, B′ → D′} ∪ {D′ → D′a,D′ → D′b},
P11 = {B′ → #, C ′ → #, D′ → #}.

The derivation process starts off with an application of P1 generating only λ
or the set T ∗$A$T ∗. The nonterminal A can be replaced by productions in P2 fol-
lowed by exactly one A-production in P3, P4 or P5. Note that there is no other
way to get rid of the nonterminal A. After further derivation steps using produc-
tions from P3, P4 or P5, from the nonterminal A a string of one of the follow-
ing forms is obtained: (i) z1Bz2 with z1, z2 ∈ {a, b}∗ and |z1| = |z2|, z2 �= z̃1,
(ii) z1Cz2 with z1, z2 ∈ {a, b}∗ and |z1| > |z2|, and (iii) z1Dz2 with z1, z2 ∈
{a, b}∗ and |z1| < |z2|. The application of P6 yields the set of sentential forms
T ∗{ $w1@A′@w2$ | w1, w2 ∈ {a, b}∗ and w2 �= w̃1 }T ∗. Now, analogous deriva-
tions dealing with the primed nonterminals can be performed, such that the lan-
guage.
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L0 = T ∗{$w1@z1#z2@w2$ | w1, w2, z1, z2 ∈ {a, b}∗, w2 �= w̃1, z2 �= z̃1}T ∗ ∪ {λ}
is generated by G0. Next, let G1 be the linear context-free grammar G1 =
({S,E,E′}, T,R, S) with

R = {S → $E$} ∪ {E → uiEṽi | 1 ≤ i ≤ n } ∪ {E → ui@E′@ṽi | 1 ≤ i ≤ n }
∪ {E′ → uiE

′ṽi | 1 ≤ i ≤ n } ∪ {E′ → ui#ṽi | 1 ≤ i ≤ n }
generating the language

L1 = { $ui1ui2 . . . ui�
@uj1uj2 . . . ujm

#ṽjm
. . . ṽj2 ṽj1@ṽi�

. . . ṽi2 ṽi1$ |
�,m ≥ 1, 1 ≤ ik ≤ n for 1 ≤ k ≤ �, 1 ≤ jk ≤ n for 1 ≤ k ≤ m }.

Since the family of linear context-free languages is closed under union, the
language L = L0∪L1 is linear context free. Assume that the PCP does not have
a solution for the given instance. Then L1 ⊆ L0 holds. Hence L = L0 in this
case. Since L0 is the set of all strings over the alphabet T containing at least one
infix of the form $w1@z1#z2@w2$ with w1, w2, z1, z2 ∈ {a, b}∗, w2 �= w̃1 and
z2 �= z̃1, we have pow(L0) = L0, and L0 is linear context free. Hence, pow(L) is
linear context free if there is no solution for the instance of the PCP.

Now, let z be a solution of the PCP for the given instance. Then, every
power of z is a solution, too. Assume that pow(L) is linear context free and
let k be the constant of Lemma 1, the pumping lemma by Bader and Moura.
Consider the string α = ($zs@z#z̃@z̃s$)3 with s = k6|z|+16, which is an element
of pow(L). Let all positions occupied by letters of some zs or z̃s be distinguished,
whereas all remaining positions are excluded. Note that 6|z| + 15 positions are
excluded and 6|z|k6|z|+15+1 positions are distinguished, such that the constraint
on the relation between the number of excluded and distinguished positions is
obeyed. So there is a factorization α = uvwxy. The pumping on α can be per-
formed only in a way such that at most two substrings of the form zs or z̃s are
modified and, therefore, at least one of them remains unchanged. This yields
a string of the form $w1@z#z̃@w2$$w3@z#z̃@w4$$w5@z#z̃@w6$, where (1)
(w1, w2) = (zs, z̃s) (component wise) but (w3, w4) or (w5, w6) is not equal to
(zs, z̃s), or (2) (w3, w4) = (zs, z̃s) but (w1, w2) or (w5, w6) is not equal to (zs, z̃s),
or (3) (w5, w6) = (zs, z̃s) but (w1, w2) or (w3, w4) is not equal to (zs, z̃s). Obvi-
ously, a string with this property belongs neither to L0 nor to pow(L1), thus it
does not belong to pow(L), a contradiction.

Thus, we have shown that the Post’s Correspondence Problem for a given in-
stance has no solution if and only if pow(L) is linear context free. Since verifying
that PCP has no solution is not semi-decidable, the stated claim follows. ��

4 Conclusions

We have considered the operation problem for deterministic and linear context-
free languages, i.e., we fix an operation on formal languages, and ask the following
question: Is it decidable or semi-decidable, given languages from the language
family under consideration, whether or not the application of the operation to
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the given languages leads out of this family? It is worth mentioning that the
non-semi-decidabilities of the operation problem with respect to the power op-
eration solve an open problem recently stated in [4]. Moreover, observe that the
regularity of the power of general regular languages is still an open problem—for
some further reading we refer to [5] and [14].

Another point of interest could be the investigation of the border between
decidability and undecidability of the operation problem for linear and deter-
ministic context-free languages. Are there some nontrivial operations for which
the problem is decidable? Can we characterize these cases?
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Abstract. Finite automata determinization is a critical operation for
numerous practical applications such as regular expression search. Al-
gorithms have to deal with the possible blow up of determinization.
There exist solutions to control the space and time complexity like the
so called “on the fly” determinization. Another solution consists in per-
forming brute force determinization, which is robust and technically fast,
although a priori its space complexity constitutes a weakness. However,
one can reduce this complexity by perfoming a partial brute force deter-
minization. This paper provides optimizations that consist in detecting
classes of unreachable states and transitions of the subset automaton,
which leads in average to an exponential reduction of the complexity of
brute force and partial brute force determinization.

1 Introduction and Notation

Finite automata determinization is a critical operation for numerous practical ap-
plications such as regular expression search, e.g. Prosite and Swiss-prot patterns
[1] in biology, or the family of grep commands in text manipulation systems [7].

Let A =< Q,Σ, δ, I, F > be a nondeterministic automaton, where Q is the
set of states, I (resp. F ) is the set of initial (resp. final) states, δ is the transition
function defined from Q×Σ into 2Q. A computation of the word a1 · · · ak in A is
a sequence P1, . . . , Pk+1 of subsets of Q such that Pl+1 = δ(Pl, al) for all l. The
determinization of A consists in precomputing δ(P, a) for all P ⊆ Q and a ∈ Σ,
which enables to parse a text of length n within time O(n). Determinization by
reachability consists in computing δ(P, a) only for reachable subsets P , that is,
subsets that can be reached at the end of some computation starting in I. On
the contrary, brute force determinization consists in precomputing δ(P, a) for all
subsets P and letters a.

In most cases, one can proceed to a simple incremental determinization by
reachability. Unfortunately, the number of reachable subsets is potentially expo-
nential, which can make determinization practically untractable. Moreover, the
size of the structure used to store subsets that have been already parsed consti-
tutes an obstacle. Indeed, this structure has to provide a fast testing procedure
for membership and hence must be stored in memory. It is usually a list, a binary
search tree, a trie, combined or not with a hashing table [10, 3, 8].

There are several known solutions to deal with the exponential blow up of
determinization, including the so-called on the fly determinization used in grep,
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and the partial brute force determinization. The latter is a trade off between
parsing time and determinization complexity. This trade off consists in splitting
the set of states into several blocks Q1, . . . , Qr. Then one precomputes δ(Pj , a)
for all Pj ⊆ Qj , 1 ≤ j ≤ r. Yet, given a subset P of Q, one can recover
δ(P, a) as ∪jδ(P ∩Qj) during the parse of the text. This is described by Wu and
Manber in [13]. Moreover, brute force determinization has an efficient bitwise
implementation [12, 8]. Indeed, subsets of Q are coded bitwise (one bit codes for
the presence of one element of Q), and the deterministic transition table is an
array indexed on subsets of Q. Each union is performed bitwise.

However, brute force determinization carries on a huge amount of useless
precalculus. Navarro and Raffinot recently proposed a first improvement in [11]
by dividing the complexity by the size of the alphabet using position automata
[9] (or Glushkov automata). The position automaton obtained from an n-long
regular expression is an (n + 1)-state automaton without epsilon transitions. A
position automaton is homogeneous, in the sense that, all the transitions entering
a given state are labelled by the same letter, so that one can represent such an
automaton by labelling states instead of transitions. Hence we have a unique
transition function δ : Q → 2Q and a state partitioning with respect to their
labels: we note Qa the set of states labelled by a. The technique of Navarro
and Raffinot consists in precomputing δ(P ) for all P ⊆ Q. Then δ(P, a) can be
recovered during the parse as δ(P ) ∩ Qa. So the precalculus needs a space 2|Q|

instead of |Σ|2|Q| for the “naive” brute force determinization.
We proposed a second improvement in [4], simply by considering that reach-

able subsets of a position automaton are necessarily contained in one Qa. Hence
the parse of the text can be done as soon as one knows every δ(P ) for P con-
tained in some Qa. The space complexity of the precalculus is then reduced to∑

a 2|Qa|, which is in average exponentially smaller than the latter.
The present paper no longer considers position automata. It aims, for general

automata, to extend the idea of performing brute force determinization on blocks
rather than on the complete automaton. We propose different techniques, either
polynomial or not, for computing partitionings or covers (Q1, . . . , Qr), such that
each reachable subset P is contained in one Qj . When applied to position au-
tomata, these covers reveal to be at least as efficient as the symbol partitioning
mentioned above. The tests we have carried out show that they are indeed much
more efficient for reducing the space complexity of brute force determinization.

The paper is organized as follows. Section 2 describes our technique based
on the notion of deterministic covers, whose practical computing is described in
Section 3. Then we present experimental results in Section 4.

2 Deterministic Covering Automata

Many transitions outgoing from unreachable subsets are calculated in vain dur-
ing a brute force determinization. In this section, we consider the problem of
detecting subsets that are a priori known to be unreachable.
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In the following, A =< Q,Σ, δ, I, T > stands for an NFA, and we note
n = |Q|. Let R = {R1, R2, . . . , Rk} be a collection of non empty subsets of Q. If⋃

1≤i≤k Ri = Q, then R is said to be a cover of Q. If R is a cover and satisfies
Ri ∩Rj = ∅ ( ∀i, j ), then R is a partitioning of Q.

Definition 1 (Deterministic Cover). A cover R = {R1, . . . , Rk} of Q is a
deterministic cover of A if:

1. ( ∃R0 ∈ R ) I ⊆ R0,
2. ( ∀R ∈ R )( ∀a ∈ Σ )( ∃R′ ∈ R ) δ(R, a) ⊆ R′.

A deterministic cover provides additional information about which subsets
are visited during a simulation of the automaton: being in a subset of a block
R, we know that one can go in some block R′ by a symbol a and nowhere else.
This behaviour can be modelled by a super-automaton:

Definition 2. Let R be a deterministic cover of A. We get a covering automa-
ton1 < R, Σ,Δ, I > of A by letting: Δ(R, a) = {R′ | δ(R, a) ⊆ R′}, and
I = {R | I ⊆ R}.

This super-automaton is not necessarily deterministic. We call deterministic
covering automaton any automaton obtained from the latter by keeping only one
element in each Δ(R, a), and one element in I.

The elements kept for getting a deterministic covering automaton can be
chosen arbitrarily, since we only need that there exists one R′ such that δ(R, a) ⊆
R′. Covering automata do not have final states since their purpose is just to
describe transitions of the original automaton.

For example, consider the automaton at left of Figure 1. The cover {B1, B2}
with B1 = {0, 1, 2} and B2 = {2, 3, 4} is deterministic. One associated covering
automaton is drawn at right.

0

1

2

3

4a
a

a a

b
b

bb

0, 1, 2 2, 3, 4

b

a

a b

Fig. 1. An automaton recognizing (a3a∗ + b3b∗)∗, and one of its covering automata

We easily see that every subset of the subset automaton is contained in one
block of the deterministic cover. This gives an upper bound for the number of
reachable subsets in the subset automaton:

1 Let us mention that the covering automata introduced by this definition are not
related to the covering automata for a finite language L due to Câmpeanu, Pǎun
and Yu in [2].
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Proposition 1. Let A =< Q,Σ, δ, I, T > be an NFA and R = {R1, R2, . . . , Rk}
be a deterministic cover of A. The size of the subset automaton is lower than∑k

i=1 2|Ri|.

A brute force determinization does not take this bound into account and
creates the 2n subsets in vain. On the contrary, the brute force determinization
technique that we present fits the bound.

Consider a deterministic cover R = {R1, R2, . . . , Rk} of A and one associated
deterministic covering automaton < R, Σ,Δ, {Rinit} >.

We build a deterministic automaton related to the cover R by the following
way. The deterministic transitions are stored in k tables (C[i])i=1,...,k. Each table
C[i] contains |Σ| tables (C[i][a])a∈Σ . Each table C[i][a] is made of 2|Ri| entries.
And we let:

( ∀P ∈ Ri )( ∀a ∈ Σ ) C[i][a][P ] = δ(P, a)

The simulation of the automaton is carried out by the following way. The
current state of our system is a couple (i, P ) where P ⊆ Ri. The initial state is
(init, I), then each transition is given by the transition function δ′ defined by
δ′((i, P ), a) = (Δ(i, a), C[i][a][P ]). The couple we get is a state of the system
since C[i][a][P ] = δ(P, a) ⊆ Δ(i, a).

For each i, the table C[i] contains the transitions of 2|Ri| subsets. Hence,

Proposition 2. The tables (C[i])i=1,...,k are computed and stored with a com-
plexity lower than

n|Σ|
k∑

i=1

2|Ri|

Using these tables, each transition of the subset automaton can be calculated in
time O(n).

The O(n) time complexity is due to the manipulation of a state number.
Indeed, states rank from 0 to 2n − 1, so that storing a state number requires n
bits in the worst case. However in practice, the memory limitation implies that
a table index can always be stored in a processor register.

3 Computing a Deterministic Cover

We focus now on the existence and the practical calculus of deterministic covers.

3.1 The Maximal Cover

Definition 3. Let D be the set of reachable subsets of A. The maximal cover of
A is the set of all maximal elements of D with respect to inclusion.

Clearly, the maximal cover ofA is a deterministic cover. In practice, this cover
is obtained as the fixed point of the sequence (Ri) defined in the following way:
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The collection R0 contains initially the only block I. The collection Ri+1 is
deduced from Ri as follows:

R′
i+1 = Ri ∪ {δ(R, a) | R ∈ Ri, a ∈ Σ}

Then, Ri+1 is obtained from R′
i+1 by keeping only subsets that are maximal

for inclusion. The sequence (Ri) converges to the maximal cover of A.
The maximal cover can be exponentially greater than the automaton:

Proposition 3. If |Σ| ≥ 2, then for all n, there exists an automaton An such
that its maximal cover is made up of

(
n

 n
2 �
)

blocks.

Proof. We build an n-state automaton An =< Qn, Σ, δn, In, Fn > whose max-
imal cover contains

(
n

 n
2 �
)

blocks. We note Qn = {1, . . . , n}, and we let In =
{1, . . . , !n

2 "}. Let a, b ∈ Σ, we let

δn(q, a) =

{2 if q = 1
1 if q = 2
q otherwise

and δn(q, b) =
{
q + 1 if q < n
1 if q = n

The mappings q → δn(q, a) and q → δn(q, b) are permutations of Qn, respec-
tively the transposition (1, 2) and the cycle (1, 2, . . . , n). Yet, these two permu-
tations are generators of the symmetric group of degree n. Hence, the reachable
subsets of An are all permutations of I, that is, all subsets of cardinality !n

2 ".
The algorithm for computing a maximal cover is as follows:

Algorithm 1 Maximal Cover(A)
1: Let R contain the only block I, and mark I.
2: while there exists a marked block in R do
3: pick a marked block R in R and unmark it
4: for a ∈ Σ do
5: P ← δ(R, a)
6: if P is not included in any block of R then
7: remove blocks of R that are included in P
8: add P to R and mark it
9: end if

10: end for
11: end while

All the following cover algorithms have been implemented using the same
schema.

3.2 Other Covers

Different techniques can provide deterministic covers with a polynomial com-
plexity. But those covers may contain larger blocks than blocks of the maximal
cover.
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The Optimal Partitioning. Among deterministic covers, the class of covers
that are just partitionings can be easily studied. We refer to these covers as
deterministic partitionings. There exists a unique optimal deterministic parti-
tioning that can be calculated by an algorithm similar to the latter one, but
whose complexity is polynomial.

Consider the partitioning of Q obtained as the fixed point of the sequence
(Pi) defined in the following way. The collection P0 contains initially the block
I and all singletons of Q \ I. The collection Pi+1 is deduced from Pi as the
finest partitioning that is compatible with Pi and with each block δ(B, a), (B ∈
Pi, a ∈ Σ). That is, let first Pi+1 ← Pi. For all couples of blocks B1, B2 in
Pi that intersect a same block δ(B, a), B1 and B2 are removed and replaced by
B1∪B2. This operation is repeated until all blocks δ(B, a), (B ∈ Pi, a ∈ Σ) are
included in a block B ∈ Pi+1.

The sequence (Pi)i converges toward a deterministic partitioning of A. On
the other hand, since the partitioning Pi+1 is obtained by merging elements of
Pi, the sequence reaches its fixed point at least at Pn. As a result:

Proposition 4. The fixed point of the sequence (Pi)i is a deterministic parti-
tioning finer than any other deterministic partitioning of A. Hence, it is called
the optimal deterministic partitioning. Moreover, it can be calculated in time
|Σ|n3.

Proof. The partitioning P0 is clearly finer than any deterministic partitioning,
and Pi inherits this property from Pi+1 for all i. Indeed, Pi+1 is the finest
partitioning that is compatible with Pi and all δ(Pi, a). On the other hand,
a deterministic partitioning P is compatible with itself and all δ(P, a). If P is
coarser than Pi, then P is compatible with Pi and all δ(Pi, a), hence P is coarser
than Pi+1.

The Neighbourhood Cover. We propose a first polynomial heuristic provid-
ing covers that are not just partitionings.

Definition 4. Let q be a state, the left language of q is the set of labels of paths
starting in an initial state and ending in q. It is denoted

←−L (q).

Definition 5. Consider the non oriented graph G =< Q,G > whose vertices
are the states of A, and whose set of edges G is defined by

(q, p) ∈ G⇐⇒←−L (q) ∩←−L (p) �= ∅

Proposition 5. The graph G can be calculated in time O(n4). Let q, p ∈ Q,
the edge (q, p) is in G if and only if there exists a reachable subset P of A that
contains q and p.

Definition 6. We denote V(p) = {p} ∪ {q ∈ Q | (q, p) ∈ G} the neighbourhood
of a state p.
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Proposition 6. If the automaton A is complete and has just one initial state
(I = {i0}), then the cover R = {V(p) | p ∈ Q} is deterministic and can be
computed in time O(n4).

Proof. Let p be a state of A and a ∈ Σ, there exists p′ ∈ δ(p, a) since the
automaton is complete. It is sufficient to prove that δ(V(p), a) ⊆ V(p′). So, let
q ∈ δ(V(p), a). We have q′ = δ(q, a) for some q ∈ V(p). Hence, there exists a word
w contained in

←−L (p)∩←−L (q), which implies wa ∈ ←−L (p′)∩←−L (q′), thus (q′, p′) ∈ G
or q′ = p′, and finally q′ ∈ V(p′).

The Merging Cover. We present a second cover calculus whose complexity is
polynomial.

Here is the general description of the algorithm: initially, we have the cover
R made up of I and the singletons of Q \ I. As long as the cover R is not
deterministic, there exists a block P and a letter a such that δ(P, a) is included
in no block. The algorithm picks a block R ∈ R and replaces it by R ∪ δ(P, a).
This operation is repeated until one gets a deterministic cover. The blocks of the
cover R are numbered from 1 to n. The ith block is noted Bi.

Algorithm 2 Merging Cover (A)
1: The cover R is made up of I and the singletons of Q \ I
2: Mark all blocks B1, . . . , Bn

3: while there exists a marked block in R do
4: pick a marked block Bi in R and unmark it
5: for a ∈ Σ do
6: P ← δ(Bi, a)
7: if P is not included in any bloc of R then
8: pick a bloc Bj such that Bj ∩ P �= ∅
9: Bj ← Bj ∪ P

10: mark Bj

11: remove blocks Bk ( k �= j ) that are included in Bj

12: end if
13: end for
14: end while

During the running of the algorithm, the number of blocks is n, and each
iteration raises strictly the size of a given block. Hence, such an algorithm ends
within n2 iterations. The algorithm efficiency depends on the technique used to
pick the block Bj at line 8.

The objective is to generate small blocks. A technique likely to be efficient
consists in picking the block Bj such that Bj ∪ P is the smallest possible.

This choice can be performed in time n2. Hence,

Proposition 7. The merging cover of A is deterministic and can be calculated
in time O(n4).
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4 Experimental Results

4.1 Implementation

Three algorithms have been implemented for computing a deterministic cover of
an NFA: the maximal cover algorithm, the merging cover algorithm and the opti-
mal partitioning algorithm. They are deduced from an unique scheme described
in Section 3.1 for the case of maximal cover algorithm. The implementation of
the algorithms must fit with the theoretical complexities given previously. Con-
sequently, a marked block should be accessed in constant time, which is achieved
by representing a cover by a double linked list.

4.2 Performance Tests

Tests have been carried out from two different sets of regular expressions, and
from random NFAs. In the first set (RandExpr), regular expressions are randomly
built on an alphabet of size 4. In the second one (RandText), they are built
from words randomly picked in the text ”Alice’s adventures in wonderland”.
The random NFAs (RandNFAs) are generated as described in [5]. As usually,
each random regular expression is prefixed by Σ� in order to perform pattern
matching over a text.

We define the space requirement of a cover as the number of states of the
deterministic automaton related to this cover. The distribution of the space
requirement of the covers obtained by each algorithm applied on each random
object is illustrated in the following figures. On these figures, for each algorithm,
a graph gives the number of regular expressions (or random NFAs) whose cover
leads to a given space requirement. Each graph have been made from 10 000
random regular expressions (or random NFAs).

The Figures 2, 3 and 4 give the logarithm of the space requirement of the
covers obtained respectively from the optimal partitioning algorithm (b), the
maximal cover algorithm (d) and the merging cover algorithm (c).

The following observations can be made about the space distribution:

– For all algorithms the space distribution is better in the case of RandExpr
and RandText than in the case of RandNFAs. Moreover it is better in the case
of RandText than in the case of RandExpr.

– The distribution of the maximal cover gives informations about the size of
the subsets obtained during a determinization by reachability. The larger
the space requirement is, the larger is the size of the subsets.

– In the case of RandomNFAs, since the reachable subsets are large ones (see [5]),
the space requirement of all covers is important.

– In the case of RandExpr, since both alphabet and words used to build these
expressions are small, the distribution of the optimal partitioning is similar
to the distribution of the symbol partitioning.

– In the case of RandText, the distribution of the merging cover is similar to
the distribution of the maximal cover. Both of these two distributions are
closer to the space requirement of the determinization by reachability; the
reason is that the size of reachable subsets is small.



88 J.-M. Champarnaud, F. Coulon, and T. Paranthoën
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Fig. 2. Case of RandExpr expressions of size 500 (on an alphabet of size 4)
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Fig. 3. Case of RandText expressions of size approximately 500
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Fig. 4. Case of random 500-NFAs on an alphabet of size 2
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5 Conclusion

Deterministic covers enable a consequent reduction of brute force determiniza-
tion complexity, so that we can reasonably handle 500-long regular expressions
on text (Figure 3). We expect them also to reduce the complexity of deter-
minization by reachability. The first optimization described in paper [4] has
been implemented in the software CCP [6]. We shall soon design a new version
implementing improvements of this paper.
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Abstract. Small nondeterministic recognizers are very useful in prac-
tical applications based on regular expression searching. The follow au-
tomaton, recently introduced by Ilie and Yu, is such a small recognizer,
since it is a quotient of the position automaton. The aim of this paper
is to present an efficient computation of this quotient, based on specific
properties of the ZPC-structure of the expression. The motivation is
twofold. Since this structure is already a basic tool for computing the po-
sition automaton, Antimirov’s automaton and Hromkovic’s automaton,
the design of an algorithm for computing the follow automaton via this
structure makes it easier to compare all these small recognizers. Secondly
such an algorithm provides a straightforward alternative to the rather
sophisticated handling of ε-transitions used in the original algorithm.

1 Introduction

Regular expressions are a very convenient formalism used in a wide range of ap-
plications like regular expression searching, text processing or natural language
processing. Since they are fully equivalent, finite automata are their natural
implementation. Simple and very efficient, regular expressions and their finite
automata are integrated into many computer science applications such as grep,
perl, flex, etc. Thus, computing small finite state automata from regular ex-
pressions is a challenging problem.

The position automaton of a regular expression [8, 14] is of particular inter-
est. Let |E| be the size of the expression E, i.e. the number of nodes of its syntax
tree and let ||E|| be the number of occurrences of symbols in E. The position
automaton of E has ||E||+1 states. It can be built in O(|E|3) time by a naive al-
gorithm and in O(|E|2) time by optimized implementations based on expression
transformation [2], lazy evaluation [7], or implicit structure computation [17, 15].
Moreover, it has been proved that quotients of this automaton can be computed
with the same quadratic time complexity. Champarnaud and Ziadi have shown
that Antimirov’s automaton [1] is such a quotient; they have used the notion
of canonical derivative to design a quadratic algorithm to compute it [4]. More
recently, Ilie and Yu [12] have introduced the follow automaton of a regular ex-
pression E. There exists an equivalence relation over the set of positions of E,
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called the follow relation and denoted by ≡f , such that the follow automaton is
the quotient of the position automaton by the relation ≡f .

Our aim is to design an efficient computation of this quotient, based on spe-
cific properties of the ZPC-structure of the expression [17, 15]. The motivation
is twofold. First this structure is already a basic tool for computing not only
the position automaton and Antimirov’s automaton, but also Hromkovic’s au-
tomaton [10, 9] which focuses on the reduction of the number of transitions.
An algorithm based on the ZPC-structure for computing the follow automaton
makes it easier to compare all these small recognizers. Secondly such an algo-
rithm provides a straightforward alternative to the rather sophisticated handling
of ε-transitions used in the original algorithm.

In our approach, the expression is first normalized; the normalization that
we consider includes size reduction (elimination of redundant ε’s, ∅’s and ∗’s) as
well as Star Normal Form transformation [2] and its time complexity is linear
w.r.t. the size |E| of the expression. Then its ZPC-structure is built in linear
time and space w.r.t. |E|. We prove that, as far as the expression is a normalized
one, the set of follow links of the ZPC-structure has specific properties. It allows
us to compute the follow relation via a simple marking of the nodes of the ZPC-
structure, hence with a linear time complexity w.r.t. |E|. Finally we present a
new algorithm to compute the follow automaton of a regular expression, with
an O(c× |E|) time complexity, where c is the index of the relation ≡f . It turns
out that this algorithm is about three times faster than the original one.

Next section gathers definitions concerning expressions and automata and a
short description of classical constructions (position automaton, ZPC-structure
and follow automaton). Section 3 presents the specific properties of the ZPC-
structure of a normalized expression and the new algorithm to build the follow
automaton. Experimental tests are reported in Section 4.

2 Preliminaries

In this section we first recall some basic definitions and properties about regular
expressions and finite automata. For more details, we refer to [11] and [16].

2.1 Regular Expressions and Finite Automata

Let Σ be a non-empty finite set of symbols, called an alphabet. The set of all the
words over Σ is denoted by Σ∗. The empty word is denoted by ε. A language
over Σ is a subset of Σ∗. Regular expressions over an alphabet Σ are inductively
defined as usually. We will write Sym(E) = ‘+’ (resp. ‘·’, ‘∗’) if E = F +G (resp.
E = FG, E = F ∗). We call alphabetic width of E, denoted by ||E||, the number
of occurrences of symbols of Σ in E whereas we call size of E, denoted by |E|,
the number of nodes of the syntax tree of E. For all integer j, 1 ≤ j ≤ ||E||, if x is
the jth alphabetic symbol in E, the pair (x, j) (written xj) is called a position of
E. The set of all the positions of E is denoted by Pos(E). An expression E is said
to be linear over Σ if and only if every symbol of Σ occurs at most one time in
E. The linearized version of E is the expression E deduced from E by replacing
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the symbol x in position j by xj , for all j, 1 ≤ j ≤ ||E||. We denote by h the
mapping from Pos(E) to Σ induced by the linearization of E. An expression E
is said to be nullable if and only if ε ∈ L(E). We set Null(E) = {ε} if ε ∈ L(E)
and ∅ otherwise.

In practical applications, it is usual to preprocess the input expression in
order to reduce its size and to make its size proportional to its alphabetic width.
We will consider the following definition [12]:

Definition 1. Given a regular expression E, an equivalent reduced expression
can be computed in linear time by applying the following rules to every node ν
of the syntax tree of E:
a) ∅-reduction: if L(ν) = ∅, the subtree rooted by ν is replaced by ∅. At the end,
E contains no ∅ or equals to ∅.
b) ε-reduction: if L(ν) = {ε}, the subtree rooted by ν is replace by ε. Then, if
the parent node is labelled by ‘·’, it is replaced by the other child. If it is labelled
by ‘∗’, it is replaced by the child. If it is labelled by ‘+’ and if ε belongs to the
language of the other child, then the parent is replaced by its child.
c) ∗-reduction: every vertex labelled with ‘∗’ such that parent node is also labelled
by ‘∗’ is replaced by the child.

An automaton is a quintuple A = (Q,Σ, δ, I, F ) where Q is a finite set of
states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the transition mapping, I ⊆ Q is
the set of initial states and F ⊆ Q is the set of final states. An ε-automaton is
an automaton with δ ⊆ Q× (Σ ∪ ε)×Q.

2.2 Classical Constructions

The Position Automaton. The position automaton [8, 14] of a regular ex-
pression E, denoted by PE , is related to specific subsets of Pos(E). If E is
linear, the following subsets of Σ are computed: First(E) (resp. Last(E)), the
set of symbols that match the first (resp. last) symbol of some word in L(E),
and, for all x in Σ, Follow(E, x), the set of symbols that follow the symbol x
in some word of L(E). The functions First, Last and Follow can be induc-
tively computed. The set of states of the position automaton of E is Pos(E)
added with a specific position denoted by 0. The following notation will be used:
Pos0(E) = Pos(E) ∪ {0}; the set Last0(E) is equal to Last(E) if Null(E) = ∅
and to Last(E)∪{0} otherwise; the set Follow0(E, x) is equal to Follow(E, x) if
x ∈ Pos(E) and to First(E) if x = 0. It is easy to see that the position automa-
ton of a regular expression E is such that PE = (Pos0(E), Σ, δ, {0}, Last0(E)),
with δ(x, a) = {y | y ∈ Follow0(E, x) and h(y) = a}, ∀x ∈ Pos0(E), ∀a ∈ Σ.

Remark 1. We consider the expression E0 = $E where $ �∈ Σ. ThenPos(E0) =
Pos0(E), Last(E0) = Last0(E) and, for all x ∈ Pos(E0), Follow(E0, x) =
Follow0(E, x). Hence an equivalent definition of the position automaton of E:
PE = (Pos(E0), Σ, δ, {0}, Last(E0)), with δ(x, a) = {y | y ∈ Follow(E0, x) and
h(y) = a}, ∀x ∈ Pos(E0), ∀a ∈ Σ.
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Definition 2. Two positions x and y of a regular expression E are said to be
Last-equivalent in E (x ∼E y) if and only if x ∈ Last(E) ⇔ y ∈ Last(E).

Definition 3. A regular expression E is said to be in Star Normal Form (E is
in SNF) if and only if for every expression F such that F ∗ is a subexpression of
E, the following property holds: ∀x ∈ Last(F ), Follow(F, x) ∩ First(F ) = ∅.

It was shown in [2] that any regular expression can be turned into Star Normal
Form in linear time.

The ZPC-Structure. The ZPC-structure of a regular expression [17, 15] is a
linear space and time representation of the position automaton that is based on
two state forests connected by a set of links. Let us briefly recall how to convert
a regular expression into its ZPC-structure (see Figure 1). More details can be
found in [3, 6].
1. We perform a depth-first traversal of the syntax tree T (E) of E in order to add
specific links from each leaf to its successor and from each node to its leftmost
leaf and to its rightmost leaf. These specific links allow us to directly access to
the set of positions of each node.
2. We create two copies of the tree T (E), respectively denoted by Lasts(E) and
Firsts(E).
3. For each node A = B · C of Lasts(E), if C is not nullable, we disable the
connection to B, and we update the leftmost leaf pointer of A.
4. For each node A = B · C of Firsts(E), if B is not nullable, we disable the
connection to C, and we update the rightmost leaf pointer of A.
5. For every node A = B ·C, we create a follow link from B in Lasts(E) to C in
Firsts(E). It encodes the set of transitions associated with Last(B)×First(C).
6. For every node A = B∗, we create a follow link from B in Lasts(E) to A in
Firsts(E) It encodes the set of transitions associated with Last(B)×First(B).

It has been shown in [17, 15] that the ZPC-structure of a regular expression
requires O(|E|) space, can be built in O(|E|) time and converted into a position
automaton in O(|E|2) time. A follow link is said to be redundant if and only if
the set of transitions it encodes is included into the set of transitions encoded
by another follow link. Redundant follow links may be eliminated in linear time
w.r.t. |E|.

The Follow Automaton. The inductive construction of the ε-automaton
Aε

f (E) of a regular expression E is defined by Ilie and Yu in [12]. Its computation
is in O(|E|) time; see Section 5 for more details. The follow automaton Af (E)
(see Figure 2) is produced by eliminating ε-transitions from Aε

f (E), which can
be performed in O(|E|2) time. Let ≡f⊆ (Pos0(E))2 be the equivalence relation
defined by

x ≡f y ⇔ Follow0(E, x) = Follow0(E, y) and x ∈ Last0(E) ⇔ y ∈ Last0(E)

Then Af (E) is a quotient of the position automaton: Af (E) & PE/≡f
.
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Fig. 1. The ZPC-structure of E0 = $ · ((a + b) + (c + d)∗) · (a + c)∗ · d

Fig. 2. The follow automaton of E = ((a + b) + (c + d)∗) · (a + c)∗ · d

Following Definition 2 and Remark 1, we will rather consider the relation
≡f⊆ (Pos(E0))2 such that x ≡f y ⇔ Follow(E0, x) = Follow(E0, y)∧x ∼E0 y.
Indeed, this definition is more convenient when working on aZPC-structure since
it allows us to express properties directly on the basic sets of the expression E0.

3 From a ZPC-Structure to a Follow Automaton

Our aim is to provide an efficient algorithm to compute a follow automaton. We
first introduce normalized expressions and prove some of their properties. Then
we describe an efficient computation of the relation ≡f over the ZPC-structure
of a normalized expression. Finally we show how the transition function of the
follow automaton can be deduced from the ZPC-structure.

3.1 Normalized Expressions

Definition 4. A regular expression E is said to be normalized if the following
conditions hold:
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1. The expression E is a reduced one (according to Definition 1).
2. The operation ‘·’ is assumed to be left associative when building the syntax
tree of the expression.
3. The expression E is in SNF.

Here is a detailed list of properties of normalized expressions. Let H be a
subexpression of a normalized expression E. Then the following properties hold:
a. If H = F + G, then F �= ∅ and G �= ∅.
b. If H = F + ε, then Null(F ) = ∅.
c. If H = F ·G, then F �= ∅, G �= ∅, F �= ε and G �= ε.
d. If H = F ·G, then Sym(G) �= ‘·’.
e. If H∗ is a subexpression of E, then for all x ∈ Last(H), Follow(H,x) ∩
First(H) = ∅.

Properties (a), (b) and (c) come from the fact E is reduced. Property (d)
comes from the fact the operation ‘·’ is left associative. Property (e) is a con-
sequence of the fact E is in SNF. It is straightforward to check that given a
regular expression E′ of size s′, it is possible to construct an equivalent nor-
malized expression E in O(s′) time and space. Therefore we can assume that
all regular expressions are normalized. We now state two useful propositions.
The first one addresses arbitrary regular expressions; the second one addresses
normalized expressions.

Proposition 1. Let x and y be two Last-equivalent positions of a regular ex-
pression E. If E is in SNF, for all H such that H∗ is a subexpression of E, it
holds: Follow(F ∗, x) = Follow(F ∗, y) ⇔ Follow(F, x) = Follow(F, y).

Proposition 2. Let E be a normalized expression such that E = F · G and
let x and y be two positions of E such that x ∈ Last(F ), y ∈ Last(G) and
Follow(E, x) = Follow(E, y). Then G is such that G = H∗.

3.2 Computation of ≡f over the ZPC-Structure

Let E be a regular expression and let us consider its ZPC-structure. We denote
by λF (resp. ϕF ) the root of the tree associated with the subexpression F in
Lasts(E) (resp. Firsts(E)). Let x be a position of E. In order to shorten nota-
tion, the node associated with x in Lasts(E) is denoted by x too. In the tree that
contains x there is a unique path from the root to x. We consider the reverse path
π(x) = λi1λi2 ...λip , with λi1 = x. We will denote Colast(E) = Pos(E)\Last(E).

Definition 5. Let E be a regular expression and x a position of E. We denote
by ΔE(x) the set of nodes of Firsts(E) that are head of a follow link whose tail
belongs to the path π(x). We have:

ΔE(x) = {follow(λ) | λ ∈ π(x) and (λ, follow(λ)) is a follow link}
Let x and y be two positions of an arbitrary regular expression. It is easy

to check that ΔE(x) = ΔE(y) ⇒ x ≡f y. We are going to show that, as far
as normalized expressions are concerned, the inverse also holds, i.e.: x ≡f y ⇒
ΔE(x) = ΔE(y).
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Theorem 1. Let x and y be two positions of a normalized expression E. It
holds: (Follow(E, x) = Follow(E, y) ∧ x ∼E y) ⇔ ΔE(x) = ΔE(y).

Proof is by induction on the size of E. Theorem 1 allows us to compute the
relation ≡f over the ZPC-structure of a normalized expression. We now see
how it can be achieved efficiently. Let x be in Pos(E). We denote by DE(x)
the head of the lower follow link having its tail on the path π(x). We write
DE(x) = ⊥ if there exists no such follow link. More precisely DE(x) can be
recursively computed as follows.

Proposition 3. The lower follow link of a regular expression E is such that:
1. Case E = F + G:
If x ∈ Pos(F ), then DE(x) = DF (x).
If x ∈ Pos(G), then DE(x) = DG(x).
2. Case E = F ·G:
If x ∈ Colast(F ), then DE(x) = DF (x).
If x ∈ Last(F ), then DE(x) = DF (x) if DF (x) �= ⊥ and ϕG otherwise.
If x ∈ Pos(G), then DE(x) = DG(x).
3. Case E = F ∗:
If x ∈ Colast(F ), then DE(x) = DF (x).
If x ∈ Last(F ), then DE(x) = DF (x) if DF (x) �= ⊥ and ϕG otherwise.

Theorem 2. Let x and y be two positions of a normalized expression E. It
holds: DE(x) = DE(y) ⇔ ΔE(x) = ΔE(y).

3.3 Algorithms

Let E be a normalized regular expression and E0 = $E. Theorem 2 leads to
the Algorithm 1 that computes the relation ≡f of E via the ZPC-structure of
E0 = $E, and hence the set Qf of states of the follow automaton of E. On the
other hand, Algorithm 2 computes the set of transitions of the follow automaton.

Algorithm 1. Since the expression E is normalized, the expression E0 is nor-
malized too, as far as the syntax tree of E0 satisfies left associativity of ’·’ oper-
ation. Thus, according to Theorem 2, it comes: x ≡f y ⇔ DE0(x) = DE0(y).

The Algorithm 1 is based on a marking of the positions of Lasts(E0) (see
Figure 3). The set Qf is initialized to ∅ and the call Marking(λE , φ0) is per-
formed. Every position x is marked with the head of the lower follow link whose
tail is on the path π(x). Two positions in E0 are ≡f -equivalent iff they have
an identical marking. The predicate broken(λ) is true iff λ is not connected to
its parent in Lasts(E0). The procedure Marking performs a prefix traversal of
Lasts(E0). The marking D(λ) of the node λ is equal to ϕ = follow(λ) if there
exists a follow link (λ, ϕ) and to the marking of its parent otherwise.

The set of classes of ≡f is the set of markings of the positions of E0. The
computation of the set of transitions is facilitated by the use of a class repre-
sentative, such as the least leaf (w.r.t. the order of the traversal) with a given
marking. It can be achieved by a marking of the nodes of Firsts(E0) that is not
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Algorithm 1 Computes the set Qf of states of the follow automaton.
Procedure Marking(λ: node, parent mark: node)

if follow(λ) = ⊥ then
D(λ) ← parent mark

else
D(λ) ← follow(λ)

end if
leftson ← left(λ)
if leftson �= ⊥ then

if broken(leftson) then
Marking(leftson, ⊥)

else
Marking(leftson, D(λ))

end if
end if
rightson ← right(λ)
if rightson �= ⊥ then

Marking(rightson, D(λ))
end if
if leftson = ⊥ ∧ rightson = ⊥ then {case of a node}

if (D(λ), .) �∈ Qf then
Qf ← Qf ∪ (D(λ), λ)

end if
end if

Algorithm 2 Computes the set δf of transitions of the follow automaton.
Procedure Transitions()

for all (D(x), x) ∈ Qf do
for all y ∈ Targets(x) do

δf ← δf ∪ {((D(x), x), h(y), (D(y), .))}
end for

end for
Function Targets(λ : node)

T ← ∅
repeat

φ = follow(λ)
if φ �= ⊥ then

T ← T ∪ First(φ)
end if
if broken(λ) then

λ ← ⊥
else

λ ← parent(λ)
end if

until λ = ⊥
return T



98 J.-M. Champarnaud, F. Nicart, and D. Ziadi

Fig. 3. Computation of the set of states according to Algorithm 1

Fig. 4. Computation of the transitions of the state (ϕ8, c3) according to the Algorithm 2

detailed here. Finally we get: Qf = {(ϕ, x) | ϕ ∈ Firsts(E0), x ∈ Pos(E0), x
is the least position s.t. D(x) = ϕ}. At the end of the execution, every position
in Lasts(E0) is marked with the head of its associated lower follow link. There-
fore two positions in E0 are equivalent iff they get an identical marking by the
Algorithm 1. Moreover the Algorithm 1 has an O(|E|) time complexity.
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Algorithm 2. The Algorithm 2 computes the set of transitions of the follow au-
tomaton of E (see Figure 4). There exists a transition ((ϕ, x), h(y), (ϕ′, x′)) from
(ϕ, x) to (ϕ′, x′) in Qf iff (x, h(y), y) is a transition of the position automaton
and D(y) = ϕ′. The function Targets computes the set T of targets of the tran-
sitions coming from the state (ϕ, x). For each follow link (λ1, ϕ1 = follow(λ1))
such that λ1 belongs to the path π(x), the sets First(ϕ1) and T are merged in
linear time. Moreover, since the expression E0 is in SNF, the successive First(ϕ1)
sets are disjoint. Therefore, for each state (ϕ, x), the computation of T is linear.
Hence the Algorithm 2 has an O(c × |E|) time complexity. Finally we get the
following proposition:

Proposition 4. The follow automaton of a normalized regular expression can be
computed from its ZPC-structure by the Algorithms 1 and 2, with an O(c× |E|)
time complexity, where c is the index of the relation ≡f .

4 Experimental Results

The two algorithms have been coded in C++ using the STL (Standard Template
Library) and the general design is object oriented. Both of the algorithms benefit
from the same implementation of automata. Automata are represented by a data
structure that allows fast insertion of states and transitions and a variant has
been designed for the epsilon follow automaton that carries some optimizations.

The modus operandi is the following. For every regular expression, the two
algorithms have been run one thousand times in order to have measurable times.
The function clock() as been used since it provides the real CPU time of a
process. All the tests have been run under Linux on a Pentium II 300 Mhz
computer with 192 MB memory. The Figure 5 gives the running time (in seconds)
versus the length of the expressions.

1. Randomly generated regular expressions: we used an home made random
expression generator to produce 1000 expressions of length 30 to 240 with a
step of 30. See Figure 5.(a) for the results.

2. Families of regular expressions: we have tested some families of regular ex-
pressions proposed by Ilie and Yu [13].
– Family 1: we consider the expressions inductively defined by E1 = (a1 +

ε)∗ and Ei+1 = (Ei + Fi)∗ where Fi is obtained from Ei by replacing
each aj by aj+|Ei|. See Figure 5.(b) for the results.

– Family 2: we consider the expressions of the form En = a1 · (b1 + · · · +
bn)∗ + a2 · (b1 + · · · + bn)∗ + · · · + an · (b1 + · · · + bn)∗. We generate
expressions up to n = 30. See Figure 5.(c) for the results.

– Family 3: we consider the expressions of the form En,m = (a1+a2+ · · ·+
an) · (a1 + a2 + · · ·+ an + b1 + · · ·+ bm)∗. We generate a set of regular
expressions for length from 20 to 150 by step of 10 and for each length
l, we consider all the possible values of n and m such that l = 2n + m.
See Figure 5.(d) for the results.
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(a) (b)

(c) (d)

Fig. 5. Running time of the two algorithms: (a) Randomly generated expressions, (b)
Family 1, (c) Familiy 2 and (d) Family 3

5 Conclusion

Experimental tests show that the ε-free algorithm for computing the follow au-
tomaton is about three times faster than the original one. Moreover it is quite
easy to implement it from the ZPC-structure. This new construction should
facilitate the study of the properties of the follow automaton and its compar-
ison with other small NFAs such as Antimirov’s automaton and Hromkovic’s
automaton.
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Abstract. The smallest known biological organisms are, by far, the
viruses. One of the unique adaptations that many viruses have aquired
is the compression of the genes in their genomes. In this paper we study
a formalized model of gene compression in viruses. Specifically, we define
a set of constraints that describe viral gene compression strategies and
investigate the properties of these constraints from the point of view of
genomes as languages. We pay special attention to the finite case (rep-
resenting real viral genomes) and describe a metric for measuring the
level of compression in a real viral genome. An efficient algorithm for
establishing this metric is given along with applications to real genomes
including automated classification of viruses and prediction of horizontal
gene transfer between host and virus.

1 Introduction

In contrast to the lengthy, often redundant, genomes of higher organisms, the
genomes of viruses are extremely efficient in the encoding of their genes. Where
mammalian genomes, for example, possess lengthy introns which code for no
genes at all, any given segment of a viral genome may be a coding region for sev-
eral genes. In addition to prefix and suffix overlap of viral genes, some genes may
also be encoded in a retrograde fashion (that is, the gene would be read in a direc-
tion opposite to other genes). These systems provide evidence that viruses have
evolved a special type of information compression technique. Studying this natu-
ral compression system in a rigorous setting could yield insight into the structure
of viral genomes and may contribute to a basis for classifying such structures.

In this paper, we will specifically consider the types of compression seen in two
small double-stranded DNA virus families, Papillomavirus and Polyomavirus,
and single-stranded RNA viruses from the Bornavirus, Coronavirus and, to a
lesser extent, the Filovirus and Retrovirus families.
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The importance of this genetic compression becomes obvious when consid-
ering the structure of viruses. Viruses generally consist of two principal compo-
nents: a protein capsid, and genetic material inside the capsid. The capsid serves
as protection for the genetic material and also as a mechanism for inserting the
genetic material into a host cell. The genetic material may consist of single- or
double-stranded DNA or RNA and, in some rare cases, a mixture of the former
possibly also including proteins.

The need for compression stems from the fact that the size of the capsid
limits the amount of room for genetic information inside the virus. In the case
of Polyomaviruses, the genome is constrained to be approximately 5kbp (5,000
basepairs) of DNA (compare to the human genome of size 3,150,000 kb), yet still
manages to encode 6 distinct genes.

We exposit here a formal model of the viral compression techniques in terms
of constraints on languages. For example, we would say that a language satisfies
the “viral overlapping compression” property if some prefix of some word in the
language is also a suffix of some other word in the language. We can likewise
define constraints for other viral compression techniques, including retrograde
encodings. We will focus here on deterministic modeling of the gene-level me-
chanics, in contrast to the probabilistic analysis of [8], which addresses gene
compression from the point of view of evolutionary pressures and constraints on
entire genomes.

The organization of the paper is as follows: In section 2 we consider basic no-
tation and prerequisites. In section 3 we define formal versions of the basic viral
compression techniques and investigate relationships and dependencies between
them. We consider also the question of for which families of languages it is possi-
ble to decide these properties. Section 4 focuses on the finitary case of the problem
as this is the most interesting from the point of view of applied viral genetics. We
present efficient algorithms to decide each of the properties for real viral genomes.
Section 5 contains our conclusions and a discussion of practical applications.

2 Notation and Prerequisites

For a general introduction to virology, we refer the reader to [3] and [10]; for
formal language theory preliminaries, we refer to [9]. Let Σ be a finite alphabet.
We denote, by Σ∗ and Σ+, the sets of words and non-empty words, respectively,
over Σ and the empty word by λ. A language L is any subset of Σ∗. For a word
w ∈ Σ∗, we denote the length of w by |w| and the reversal of w by wR. Let N
be the set of positive integers. Furthermore, for k ∈ N, define Σ≥k = {w ∈ Σ∗ |
|w| ≥ k}.

A full trio is a language family closed under homomorphism, inverse homo-
morphism and intersection with regular sets. A full trio is also referred to as a
cone. It is known that every full trio is closed under arbitrary a-transductions1

and hence arbitrary gsm mappings. We refer to [1, 4] for the theory of AFL’s.

1 An a-transducer is also referred to as a rational transducer.
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For a binary relation � ⊆ Σ∗ ×Σ∗ and a language L ⊆ Σ∗, we define

�(s) = {t ∈ Σ∗ | (s, t) ∈ �},
�(L) = {t ∈ Σ∗ | s ∈ L, (s, t) ∈ �},
�R = {(s, tR) | (s, t),∈ �},
�−1 = {(t, s) | (s, t) ∈ �},
�−R = (�−1)R.

We will consider the following well-known relations. Let w, v ∈ Σ∗.

1. prefix order: w ≤p v (or (w, v) ∈≤p) if and only if v = wx for some x ∈ Σ∗.
2. suffix order: w ≤s v (or (w, v) ∈≤s) if and only if v = xw for some x ∈ Σ∗.
3. infix order: w ≤i v (or (w, v) ∈≤i) if and only if v = xwy for some x, y ∈ Σ∗.

Also, for each of the relations above, we prepend the word “proper”, which will
be denoted by <p, <s, <i where we enforce that x, y ∈ Σ+ above.

For example, ≤p (L) = {w ∈ Σ∗ | v ≤p w, v ∈ L} and ≤−R
i (L) = {w ∈ Σ∗ |

xwRy ∈ L, x, y ∈ Σ∗}.

3 Viral Properties

Before formally stating the definitions of the viral properties, we will define the
following sets which will be used for the conditions.

Let L ⊆ Σ∗ be a language, and let n ∈ N such that 1 ≤ n ≤ 6 and let k ∈ N.
Then we define the following sets:

U(1, L, k) = {w ∈ Σ∗ | ∃u ∈ Σ≥k, x ∈ Σ+, v ∈ Σ∗, xu ∈ L,w = uv},
U(2, L, k) = {w ∈ Σ∗ | ∃v ∈ Σ≥k, y ∈ Σ+, u ∈ Σ∗, vy ∈ L,w = uv},
U(3, L, k) = U(1, L, k) ∪ U(2, L, k),
U(4, L, k) = {w ∈ Σ∗ | ∃u, v ∈ Σ≥k, x, y ∈ Σ+, xu ∈ L ∧ vy ∈ L,w = uv},
U(5, L, k) = {w ∈ Σ≥k | ∃u, v ∈ Σ∗, uwRv ∈ L},
U(6, L, k) = {w ∈ Σ≥k | ∃u, v ∈ Σ∗, uwRv ∈ L+}.

Furthermore, for each i, 1 ≤ i ≤ 6, k ∈ N and L ⊆ Σ∗, let Z(i, L, k) = U(i, L, k)∩
L.

So, for example, Z(i, L, k) consists of all words w ∈ L such that there exists
a word u of length at least k, a non-empty word x and a word v whereby xu is
in L and w = uv which is also in L.

We now define the properties that we will study.

Definition 1. Let L ⊆ Σ∗, let n satisfy 1 ≤ n ≤ 6 and let k, l ∈ N. We say that
L satisfies condition W (n, k, l) if |Z(n,L, k)| ≥ l.

We also call condition W (1, k, l) the l-weak k-prefix overlapping property,
condition W (2, k, l) the l-weak k-suffix overlapping property, condition W (3, k, l)
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the l-weak k-overlapping property, condition W (4, k, l) the l-weak k-double-sided
overlapping property, condition W (5, k, l) the l-weak k-retrograde overlapping
property and condition W (6, k, l) the l-weak k-concatenated retrograde overlap-
ping property.

For example, a language L satisfies W (1, k, l) if and only if there exists l
distinct words w ∈ L whereby w = uv for some u, v, x ∈ Σ∗, with u of length at
least k,x non-empty and xu ∈ L.

We also define a strong version of the properties above.

Definition 2. Let L ⊆ Σ∗, let n satisfy 1 ≤ n ≤ 6 and let k ∈ N. We say that L
satisfies condition V (n, k) if L ⊆ U(n,L, k). Equivalently, L satisfies condition
V (n, k) if and only if L = Z(n,L, k).

We also refer to each of these properties by replacing the prefix “l-weak” of
each condition above with “strong”.2

We now consider the relationships of these properties to each other. The
following is immediate from the definitions.

Lemma 1. Let i, j satisfy 1 ≤ i, j ≤ 6, k, l ∈ N and let L ⊆ Σ∗. Then the
following are true:

1. If U(i, L, k) ⊆ U(j, L, k) then both L satisfies V (i, k) implies L satisfies
V (j, k) and L satisfies W (i, k, l) implies L satisfies W (j, k, l).

2. If |L ∩Σ≥k| ≥ l, then L satisfies V (i, k) implies L satisfies W (i, k, l).
3. If L ∩Σ≤k �= ∅, then L does not satisfy V (i, k).

Also, we note the following:

Lemma 2. Let L ⊆ Σ∗, k ∈ N. Then the following are true:

1. U(4, l, k) ⊆ U(i, l, k), for each i ∈ {1, 2, 3},
2. U(5, l, k) ⊆ U(6, l, k),
3. Z(1, L, k)R = Z(2, LR, k) and thus |Z(1, L, k)| = |Z(2, LR, k)|.

Proof. The first three statements are straightforward. For the fourth statement,
let z ∈ Z(1, L, k)R. Thus, zR = uv ∈ L, xu ∈ L, u ∈ Σ≥k, x ∈ Σ+, v ∈
Σ∗. Then z = vRuR ∈ LR, uRxR ∈ LR and z ∈ Z(2, LR, k). Conversely, let
z ∈ Z(2, LR, k). Thus, z = uv, vy ∈ LR, v ∈ Σ≥k, y ∈ Σ+, u ∈ Σ∗. Then
vRuR, yRvR ∈ L, vRuR ∈ Z(1, L, k) and z = uv ∈ Z(1, L, k)R. ��

Combining Lemma 1, 2, we obtain:

Proposition 1. Let L ⊆ Σ∗, k, l ∈ N. Then the following statements are true:

1. L satisfies W (1, k, l) or W (2, k, l) implies L satisfies W (3, k, l),
2. L satisfies V (1, k) or V (2, k) implies L satisfies V (3, k),

2 While prefix/suffix overlap compression is very common in viruses, it is not often
the case that every gene will have some overlap; hence the motivation to study
“weakened” versions of these operations.
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3. L satisfies W (4, k, l) implies L satisfies W (1, k, l), W (2, k, l) and W (3, k, l),
4. L satisfies V (4, k) implies L satisfies V (1, k), V (2, k) and V (3, k),
5. L satisfies W (5, k, l) implies L satisfies W (6, k, l),
6. L satisfies V (5, k) implies L satisfies V (6, k).
7. L (respectively LR) satisfies W (1, k, l) iff LR (resp. L) satisfies W (2, k, l),
8. L (respectively LR) satisfies V (1, k) iff LR (resp. L) satisfies V (2, k).

We see, however that if L1 = {abc, aa} and L2 = {abc, cc}, then Z(1, L1, 1) =
{aa, abc}, Z2(2, L1, 1) = {aa}, Z(1, L2, 1) = {cc} and also Z(2, L2, 1) = {abc, cc}.
So, in general, there are languages satisfying W (1, k, l) (respectively V (1, k)) but
not W (2, k, l) (respectively V (2, k)) and there are languages satisfying W (2, k, l)
(respectively V (2, k)) but not W (1, k, l) (respectively V (1, k)). We note also
that, since Z(3, L1, 1) = Z(1, L1, 1) ∪ Z(2, L1, 1) and Z(3, L2, 1) = Z(1, L2, 1) ∪
Z(2, L2, 1), there are languages satisfying W (3, k, l) (respectively V (3, k)) but
not W (1, k, l) (respectively (V (1, k)) and there are languages satisfying W (3, k, l)
(respectively V (3, k)) but not W (2, k, l) (respectively V (2, k)). Additionally,
Z(4, L1, 1) = {aa} and Z(4, L2, 1) = {cc}. Thus, in general, there are languages
satisfying W (1, k, l) (respectively V (1, k)) but not satisfying W (4, k, l) (respec-
tively V (4, k)), there are languages satisfying W (2, k, l) (respectively V (2, k))
but not satisfying W (4, k, l) (respectively V (4, k)) and there are languages sat-
isfying W (3, k, l) (respectively V (3, k)) but not satisfying W (4, k, l) (respec-
tively V (4, k). Further, let L3 = {a, b, c, abc}. Then Z(5, L3, 1) = {a, b, c} but
Z(6, L3, 1) = L3 and so, in general, there are languages satisfying W (6, k, l)
(respectively V (6, k, l)) but not W (5, k, l) (respectively V (6, k, l)).

We also define the following sets which we will use for a characterization.

C(1, L, k) =≤p (<−1
s (L) ∩Σ≥k),

C(2, L, k) =≤s (<−1
p (L) ∩Σ≥k),

C(3, L, k) = C(1, L, k) ∪ C(2, L, k),
C(4, L, k) = (<−1

s (L) ∩Σ≥k) · (<−1
p (L) ∩Σ≥k),

C(5, L, k) =≤−R
i (L) ∩Σ≥k,

C(6, L, k) =≤−R
i (L+) ∩Σ≥k.

Proposition 2. Let i satisfy 1 ≤ i ≤ 6, let k ∈ N and let L ⊆ Σ∗. Then
U(i, L, k) = C(i, L, k).

Proof. Let i = 1. “⊆” Let w ∈ U(1, L, k). Thus, there exists u ∈ Σ≥k, v ∈
Σ∗, x ∈ Σ+, xu ∈ L,w = uv. Therefore, u ∈<−1

s (L) ∩ Σ≥k and w ∈≤p (<−1
s

(L) ∩Σ≥k).
“⊇” Let w ∈≤p (<−1

s (L) ∩ Σ≥k). Thus, there exists u, v ∈ Σ∗ such that
w = uv with u ∈<−1

s (L) ∩Σ≥k. Hence, there exists x ∈ Σ+ such that xu ∈ L.
Let i = 2. “⊆” Let w ∈ U(2, L, k). Thus, there exists v ∈ Σ≥k, u ∈ Σ∗, y ∈

Σ+, vy ∈ L,w = uv. Therefore, v ∈<−1
p (L)∩Σ≥k and w ∈≤s (<−1

p (L)∩Σ≥k).
“⊇” Let w ∈≤s (<−1

p (L) ∩ Σ≥k). Thus, there exists u, v ∈ Σ∗ such that
w = uv with v ∈<−1

p (L) ∩Σ≥k. Hence, there exists x ∈ Σ+ such that vx ∈ L.
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Let i = 3. Immediate from case 1, 2.
Let i = 4. “⊆” Let w ∈ U(4, L, k). Thus, there exists u, v ∈ Σ≥k, x, y ∈

Σ+, w = uv, (xu ∈ L∧vy ∈ L). Therefore, u ∈<−1
s (L)∩Σ≥k, v ∈<−1

p (L)∩Σ≥k

and w ∈ (<−1
s (L) ∩Σ≥k)(<−1

p (L) ∩Σ≥k).
“⊇” Let w ∈ (<−1

s )(L) ∩ Σ≥k)(<−1
p (L) ∩ Σ≥k). Thus, there exists u ∈<−1

s

(L) ∩Σ≥k, v ∈<−1
p (L) ∩Σ≥k with w = uv. Hence, there exists x, y ∈ Σ+ such

that xu ∈ L and vy ∈ L.
Let i = 5. “⊆” Let w ∈ U(5, L, k). Thus, there exists u, v ∈ Σ∗ with uwRv ∈

L and w ∈ Σ≥k. Then w ∈≤−R
i (L) ∩Σ≥k.

“⊇” Let w ∈≤−R
i (L) ∩ Σ≥k. Then there exists u, v with uwRv ∈ L and

w ∈ Σ≥k.
Let i = 6. “⊆” Let w ∈ U(6, L, k). Thus, there exists u, v ∈ Σ∗ with uwRv ∈

L+, w ∈ Σ≥k. Then w ∈≤−R
i (L+) ∩Σ≥k.

“⊇” Let w ∈≤−R
i (L+) ∩Σ≥k. Then there exists u, v with uwRv ∈ L+, w ∈

Σ≥k. ��
This leads naturally to some decision problems. One would like to provide

algorithms to test whether languages (or genomes) satisfy these properties.
Namely, can we decide whether a given language satisfies one of the proper-
ties, depending on the language family that the given language is in? For each
weak condition, this amounts to deciding whether |Z(i, L, k)| ≥ l and for each
strong condition, it amounts to deciding whether Z(i, L, k) = L.

Proposition 3. Let L1,L2 be language families effectively closed under inter-
section and the full trio operations with L1 being effectively semilinear and L2
having a decidable equality problem. Then the following are true:

1. For each k, l ∈ N and i, 1 ≤ i ≤ 4, it is decidable whether L ∈ L1 satisfies
W (i, k, l) and it is decidable whether L ∈ L2 satisfies V (i, k).

2. If L1,L2 are also effectively closed under reversal, then it is decidable whether
L ∈ L1 satisfies W (5, k, l) and it is decidable whether L ∈ L2 satisfies
V (5, k).

3. If L1,L2 are also effectively closed under reversal and +, then it is decid-
able whether L ∈ L1 satisfies W (6, k, l) and it is decidable whether L ∈ L2
satisfies V (6, k).

Proof. It is easy to construct a-transducers which output ≤−1
p (L),≤−1

s (L), <−1
p

(L), <−1
s (L),≤p (L),≤s (L) for each L in L1 or L2. Also, every intersection-

closed full trio is closed under union and concatenation since L1$Σ∗ ∩ Σ∗$L2
is in L1 and L2, there is an a-transducer which outputs L1 ∪ L2 and there is
a homomorphism which outputs L1L2. Thus, Z(1, L, k), Z(2, L, k), Z(3, L, k),
Z(4, L, k) are in L1 and L2. Additionally, if L1,L2 are closed under reversal,
then Z(5, L, k) is in L1 and L2 and if L1,L2 are closed under reversal and
+, then Z(6, L, k) is in L1 and L2. Since L1 is effectively semilinear, we can
decide if L ∈ L1 is infinite [5] and if it is not, then we can effectively find the
length of the longest word in L. Then, we can test membership of every word
of length less than or equal to that length to determine whether |Z(i, L, k)| ≥ l
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(emptiness is always decidable for semilinear sets, and since L1 is closed under
intersection with regular languages, we can decide whether w ∈ L by testing
whether L∩{w} �= ∅). Also, by the decidability of equality for L2, the proposition
follows. ��

We denote by NCM the family of languages defined by one-way nondeter-
ministic, reversal-bounded multicounter machines. It is known that NCM is an
intersection and reversal closed full trio effectively closed under semilinearity [7].
Also, it is known that the family of regular languages is closed under all of the
operations above and has a decidable equality problem.

Corollary 1. For each L ∈ NCM, each i, 1 ≤ i ≤ 5 and each k, l ∈ N, it is
decidable whether L satisfies W (i, k, l). In addition, for each L ∈ REG, each i,
1 ≤ i ≤ 6 and each k, l ∈ N, it is decidable whether L satisfies W (i, k, l) and
V (i, k).

4 Computational Verification of Viral Properties

Ideally, one would like to apply the formal definitions given here to real viral
genomes as a method for classifying viruses based on gene compression. In this
section we will consider fast algorithms to do exactly this, and their complexity.
Since all real viral genomes are finite, we will restrict ourselves to dealing with
finite input languages here. We will describe algorithms which will verify each
of the viral properties for a given input viral genome. A viral genome is a finite
language in which the words are the genes of the virus.

For a finite language L ⊆ Σ+, we let sL be the sum of the lengths of every
word of L (the length of the genome).

We recall a well-known and important result from [2]. A partial deterministic
finite automaton is a deterministic finite automaton in which each state need not
have a transition on every letter. The smallest partial DFA for a given regular
language is the partial DFA that recognizes the language and has the smallest
number of states. In [2], it is demonstrated that, for each word w ∈ Σ∗, the
smallest partial DFA accepting ≤−1

s (w) is linear in the length of w. Precisely,
it has at most 2|w| − 1 states and 3|w| − 4 transitions. Moreover, it is shown
that the smallest partial DFA accepting ≤−1

i (w) is linear in the length of w.
That is, if |w| > 2, then it has at most 2|w| − 2 states and at most 3|w| − 4
transitions. In addition, they show that for any w over a fixed finite alphabet
Σ, both the smallest partial DFA accepting ≤−1

s (L) and the smallest DFA
accepting ≤−1

i (L) can be built in time linear in the length of w.
Now, let L = {w1, . . . , wm} ⊆ Σ+. For our algorithms, we construct a method

which we call suffix dfa(L) which returns a DFA accepting ≤−1
s (L). Let w =

w1#w2# · · ·#wm#. Then ≤−1
s (w) = (≤−1

s (wm#)) ∪ (≤−1
s (wm−1#)wm#) ∪

. . . ∪ (≤−1
s (w1#)w2#w3# · · ·wm#). Let M = (Q,Σ ∪ {#}, q0, F, δ) be the

smallest partial DFA accepting ≤−1
s (w). Thus, it is clear that for every x ∈ Σ∗,

x ∈≤−1
s (L) if and only if x#v ∈≤−1

s (w) = L(M), where v ∈ (Σ ∪ {#})∗.
Moreover, since M is partial and the smallest DFA, for each y ∈ (Σ ∪ {#})∗,
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δ(q0, y) is defined if and only if yu ∈ L(M) for some u ∈ (Σ ∪ {#})∗. Thus, for
each x ∈ Σ∗, x ∈≤−1

s (L) if and only if δ(q0, x#) is defined. Hence, we transform
M into a new DFA M ′ by making the new final state set F ′ to be the set of all
states q ∈ Q such that δ(q,#) is defined, and by removing all transitions of the
form δ(q,#) = p for p, q ∈ Q. Let w ∈ L(M ′). Then w ∈ Σ∗ since there are no
transitions on # and necessarily w# is defined in M . Thus, w#v ∈ L(M) for
some v ∈ (Σ ∪ {#})∗. Thus, w ∈≤−1

s (L). Conversely, let w ∈≤−1
s (L). Then

w#v ∈ L(M) for some v ∈ (Σ ∪ {#})∗ and so w ∈ L(M ′). Hence we see that
L(M ′) =≤−1

s (L) and M ′ can be constructed in linear time from M which is
linear in |w| which is linear in sL. We note that suffix dfa(Σ−1L) =<−1

s (L).
Further, for a DFA M = (Q,Σ, q0, F, δ) over Σ and w ∈ Σ∗, define SM,k(w) =
{q ∈ Q | δ(q0, w1) = q, w1 ≤p w, |w1| ≥ k}. For each algorithm in this section,
we assume that we have some encoding of L as input, whereby there is only one
copy of each word given.

Algorithm 1 input: k ∈ N, L ⊆ Σ+, Σ fixed, L finite, returns: largest l1, l2, l3
such that L satisfies W (1, k, l1),W (2, k, l2) and W (3, k, l2)
1: Let l1, l2, l3 := 0, v1, v2 := false, if k ≥ sL, return.
2: Let M = (Q1, Σ ∪ {#}, q0, F1, δ1) := suffix dfa(Σ−1L),
3: Let MR = (Q2, Σ ∪ {#}, p0, F2, δ2) := suffix dfa((LΣ−1)R)
4: for all w ∈ L do
5: if SM,k(w) ∩ F1 �= ∅ then
6: v1 := true, l1 := l1 + 1
7: end if
8: if SMR,k(wR) ∩ F2 �= ∅ then
9: v2 := true, l2 := l2 + 1,

10: end if
11: if either v1 or v2 is true, then
12: l3 := l3 + 1, v1 := false, v2 := false.
13: end if
14: end for

We have discussed above how to perform the method suffix dfa. It is easy
to pass in the reversal of a language to suffix dfa, in time linear in sL. Then,
in line 5 of Algorithm 1, we can check to see if the intersection is empty by
keeping a counter starting at k and running w through the transition function
of M , decreasing the counter at each step. Then, when the counter reaches 0,
we test every state we hit on input w to see whether it is a final state. If it is,
we increase l1 and set v1 indicating that w ∈ Z(1, L, k). Also, in line 8, we are
testing whether wR ∈ Z(1, LR, k). Indeed, by Lemma 2(3), wR ∈ Z(1, LR, k) if
and only if w ∈ Z(2, L, k). Thus, if this is true, we increase l2 and set v2 to true.
In addition, w ∈ Z(3, L, k) if and only if w ∈ Z(1, L, k) ∪ Z(2, L, k) and so we
increase l3 if and only if either v1 or v2 is true, and we reset each to false. In this
way, when the method completes, l1, l2 and l3 will be the maximum such that
L satisfies W (1, k, l1),W (2, k, l2) and W (3, k, l3), respectively. Furthermore, this
method runs in time O(sL) time.
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For the fourth property, our algorithm requires only a small modification. For
a word w, let w(i) be the ith position of w. This algorithm, for each word w,

Algorithm 2 input: k ∈ N, L ⊆ Σ+, Σ fixed, L finite, returns: the largest
integer l4 such that L satisfies W (4, k, l4)

Let l4, if k ≥ sL, return.
2: Let M = (Q1, Σ ∪ {#}, q0, F1, δ1) := suffix dfa(Σ−1L),

Let MR = (Q2, Σ ∪ {#}, p0, F2, δ2) := suffix dfa((LΣ−1)R)
4: for all w ∈ L do

Let b1, b2 be bit vectors of length |w| all initialized to 0, let j := 0,
6: while j ≤ |w| do

if δ(w(1) · · · w(j)) ∩ F1 �= ∅ then
8: set b1(j) := 1,

end if
10: if δ(w(|w|) · · · w(|w| − j + 1) ∩ F2 �= ∅ then

set b2(|w| − j + 1) := 1,
12: end if

j := j+1,
14: end while

if there exists j such that (k ≤ j)∧(k ≤ |w|−j+1)∧(b1(j) = 1)∧(b2(j+1) = 1)
then

16: l4 := l4 + 1.
end if

18: end for

remembers every position of w which has the prefix of that length in <−1
s (L)

and it also remembers every position of wR which has the prefix of that length
in <−1

s (LR). Then w = uv for some u, v with u ∈<−1
s (L), vR ∈<−1

s (LR) and
|u|, |v| ≥ k if and only if statement 14 is true. Hence, upon completion, l4 will
be the largest integer such that L satisfies W (4, k, l4). Furthermore, this method
also runs in O(sL) time.

Property 5 can also be verified easily. Indeed, wR is defined if and only if

Algorithm 3 input: k ∈ N, L ⊆ Σ+, Σ fixed, L finite, returns: largest integer
l5 such that L satisfies W (5, k, l5)

Let l5 := 0, if k ≥ sL then return.
2: Let M = (Q, Σ ∪ {#}, q0, F, δ) := suffix dfa(LR),

for all w ∈ L do
4: if δ(q0, w

R) is defined then
let l5 := l5 + 1.

6: end if
end for

wRu ∈≤−1
s (L) for some u if and only if wR ∈≤−1

i (L). Hence we can decide this
property in time O(sL).

For property 6, we note that a word w ≤i v ∈ L+ if and only if w ∈ R =
(≤−1

i (L)) ∪ (≤−1
s (L)L∗ ≤−1

p (L)). Moreover, it is easy to construct an NFA
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M = (Q,Σ, q0, F, δ) accepting R in linear time, with the number of states linear
in sL. In addition, it is well-known that we can test whether a word w is in the
language generated by an NFA in time O(|Q||w|) (see [6]). Thus, to find the
largest integer l6 such that L satisfies W (6, k, l), we construct the NFA from L
and decide membership of wR for each w ∈ L. This takes time O(|w1||Q|+ · · ·+
|wm||Q|) = O(|Q|sL). Thus, one can decide whether a finite language L satisfies
W (6, k, l) in time O(s2

L).
Finally, the strong properties can also be verified straightforwardly using the

algorithms presented above. Indeed, they are just a special case where l = |L|.
We summarize the preceding thusly:

Proposition 4. Let i satisfy 1 ≤ i ≤ 5 and let Σ be some fixed alphabet. Then
given a finite language L ⊆ Σ+ as input without duplicates and k ∈ N, we can
both find the largest integer l such that L satisfies W (i, k, l) and we can decide
whether L satisfies V (i, k) in time O(sL). Furthermore, we can both find the
largest l whereby L satisfies W (6, k, l) and we can decide whether L satisfies
V (6, k) in time O(s2

L).

5 Conclusions and Discussion

We have presented here a formalization of the process of gene compression that
occurs in many viral genomes. We have shown dependencies and relationships
between these properties and demonstrated that, in general, most of the weak
versions of the properties can be decided for languages defined by nondetermin-
istic finite automata augmented with reversal-bounded counters while the strong
versions can be decided for regular languages. Most significantly, we have given
algorithms which can efficiently decide these properties for real viral genomes
and provide information which is immediately useful to virologists.

These algorithms give us the ability to study the relative amount of gene
compression between related viruses in a quantifiable way. It may be possible
to infer evolutionary relationships between viruses using this information. The
fact that genes overlap one another provides a very serious constraint for viral
genome evolution. It is known that viruses occasionally aquire genes horizontally
(that is, a gene from an infected host becomes part of the virus’s own genome).
Clearly, only those genes which meet very specific constraints (e.g. those that are
“compressible” relative to the virus’s genome) will be able to be incorporated
into the virus. Using the algorithms presented here and real viral genome data,
we can find target genes in the host organism which, due to their structure, have
the greatest probability of being incorporated into the viral genome.

Finally, the formal properties here also present a framework for automated
classification of a virus given only its genome. The family of Coronaviruses, for
example, has a very regular genomic structure: a single strand of +-sense RNA of
length 27-30kb. The beginning of this RNA strand always encodes a viral poly-
merase (often as part of a polyprotein) and the remainder encodes a series of
“nested” genes. Each of these nested genes is a proper suffix of the previous gene.
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This structure can obviously be formally encoded using the properties given
here. Similar compression regularities can be found in other viral genomes and
encoded using our properties. Classification of a new virus is then simply a
matter of verifying compliance to our properties and then checking to see if this
matches any known structures.

By formalizing this ancient form of data compression, we have provided tools
which will allow for further insight in the molecular evolution of viruses and
assist in the automated classification of new viruses by reference to only their
genomes.
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Abstract. We introduce a class of deterministic push-down transducers
called concatenation state machines (CSM), and we study its semantic
domain which is a class of partial mappings over finitely generated free
monoids, called simple functions.

1 Introduction

IDT Canada, a subsidiary of Integrated Device Technology, recently developed a
specialized programmable processing unit for real-time network packet filtering
and classification, called PAX.port. In this paper we define a mathematical model
for PAX.port hardware which we call a concatenation state machine (CSM).

A CSM can be seen as a pass-through device transforming a flow of input
data into a flow of output data. More formally, a concatenation state machine
M defines a partial mapping |M | : Σ∗ → Ω∗ where Σ and Ω are two finite
alphabets. We demonstrate that there is a strong correlation between CSM and
simple languages as defined in [1]. Thus, a mapping which can be defined by a
CSM will be called “simple function”.

The main result of the paper is the proof that a partial mapping f : Σ∗ → Ω∗

is a simple function if and only if there exists a finite set G of classifiers (classifiers
are mappings defined on prefix codes and they constitute a monoid with respect
to classifier concatenation) such that all quotients of f are included in G∗.

We end the paper with some results concerning the expressive power of simple
functions.

2 Concatenation State Machine

Let Σ and Ω be two disjoint finite sets, called input and output alphabets, re-
spectively. A Concatenation State Machine (CSM) is a rooted directed labeled
graph with three types of vertices: switch nodes, concatenation nodes, and ac-
cepting nodes; such that:

– All edges outgoing from a switch node are labeled by different symbols of Σ.
– There are two ordered edges, left and right, outgoing from a concatenation

node.
– Accepting nodes have no outgoing edges. An accepting node is labeled by

an accepting string from Ω∗.
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Consider the concatenation state machine in Figure 1. It is built over the
input alphabet Σ = {a, b, c}, and the output alphabet Ω = {α, β, γ}. Switch
nodes are represented by plain circles with outgoing edges labeled by letters of
the input alphabet. Concatenation nodes are represented by rectangles with the
left edge outgoing from the left, and the right edge outgoing from the right part
of the node. Accepting nodes are represented by double circles marked by their
labels which are words over the output alphabet Ω. The initial node of the CSM
is distinguished by a short incoming arrow. Intuitively, a switch node can be seen

a b

c

ε

c2 c3

c1

s1

α β

γ

Fig. 1. Concatenation State Machine

as a state in the deterministic automaton. A concatenation node represents a
“subroutine call” for the destination of the left edge; once the subroutine returns,
we continue with the destination of the right edge. Accepting nodes are “return”
instructions producing values defined by their labels.

Definition 1. A CSM is a 9-uplet (Σ,Ω, S,C,A, ηS , ηC , λ, i), where:

– Σ, Ω, S, C, A are finite pairwise disjoint sets of input symbols, output
symbols, switch nodes, concatenation nodes, and accepting nodes, respec-
tively.

– ηS : (S,Σ) → (S ∪ C ∪ A), ηC : (C, {left, right}) → (S ∪ C ∪ A), and
λ : A → Ω∗, are partial mappings; and

– i ∈ (S ∪ C ∪A) is the initial node.

A state of the concatenation state machine M = (Σ,Ω, S,C,A, ηS , ηC , λ, i),
is defined by execution stack denoted stack. An execution stack is a list of nodes,
i.e., stack ∈ (S ∪C ∪A)∗. The initial state of M consists of the execution stack
containing one element, the initial node.

A CSM processes the nodes of the execution stack until the stack becomes
empty. The machine runs the following execution loop. It pops the top node,
s, of the stack. If s is an accepting node, s ∈ A, then the machine outputs
λ(s). If s is a switch node, s ∈ S, then the machine reads a new input symbol
a ∈ Σ and pushes the node ηS(s, a) onto the top of the execution stack. If s
is a concatenation node, s ∈ C, the machine pushes two nodes on the stack,
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first ηS(s, right) and then ηS(s, left), so node ηS(s, left) is on the top of the
execution stack. If the execution stack is not empty, the execution loop continues.
The pseudo-code defining the execution loop of a CSM (Σ,Ω, S,C,A, ηS , ηC , λ, i)
is presented in Figure 2.

1 while (stack is not empty) do
2 s := pop(stack); // pop the top of stack into an auxiliary variable s
3 if (s ∈ A) then
4 write(λ(s));
5 if (s ∈ S) then
6 read(a); // read input symbol into an auxiliary variable a
7 push(ηS(s, a), stack);
8 if (s ∈ C) then
9 push(ηS(s, right), stack);
10 push(ηS(s, left), stack);
11 end while

Fig. 2. Pseudo-code for the execution loop of a CSM

For a given input w, M completes if its execution stack becomes empty after
reading the whole input w. Then we say that M accepts w and the result of the
acceptance, denoted by |M |(w), is the concatenation of all outputs produced by
write(). Otherwise we say that M is not defined on w, denoted by |M |(w) = ∅.
M will reject input w if one of the partial mappings ηS , ηC , or λ, is called with
arguments for which the mapping is not defined, or if w is too short and no new
symbol can be read, or if w is too long and the execution stack becomes empty
before reading the last symbol of w.

The CSM in Figure 1 can be described by (Σ,Ω, S,C,A, ηS , ηC , λ, i), where:
Σ = {a, b, c}, Ω = {α, β, γ}, S = {s1}, C = {c1, c2, c3}, A = {a1, a2, a3, a4},
ηS = {(s1, a) → c2, (s1, b) → c3, (s1, c) → a2}, ηC = {c1 → (s1, a4), c2 →
(a1, s1), c3 → (s1, a3)} (by ηC : c → (x, y), for c ∈ C and x, y ∈ S ∪ C ∪ A,
we mean that x = ηC(c, left), y = ηC(c, right), and that both values are
defined), λ = {a1 → α, a2 → ε, a3 → β, a4 → γ}, and i = c1. The execution

steps of M on input word “bac” are: (c1)
ηC(c1)−−−−→ (s1, a4)

read(b)−−−−→ (c3, a4)
ηC(c3)−−−−→

(s1, a3, a4)
read(a)−−−−→ (c2, a3, a4)

ηC(c2)−−−−→ (a1, s1, a3, a4)
write(α)−−−−−→ (s1, a3, a4)

read(c)−−−−→
(a2, a3, a4)

write(ε)−−−−−→ (a3, a4)
write(β)−−−−−→(a4)

write(γ)−−−−−→(). Thus, on input “bac”, the
CSM produces output string “αβγ”.

A concatenation state machine M = (Σ,Ω, S,C,A, ηS , ηC , λ, i) is called
trimmed if:

– all nodes S ∪ C ∪A are accessible from i;
– from every switch node s ∈ S there is a path to at least one accepting node

a ∈ A;
– for every concatenation node c ∈ C, values ηC(c, left) and ηC(c, right) are

both defined;
– there is no loop passing exclusively through concatenation nodes.
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It is relatively easy to trim any concatenation state machine by removing all
nodes which make the CSM non-trimmed. The trimmed CSM defines the same
mapping from input strings into output strings as the original CSM.

3 Algebraic Definition of CSM

Let u,w ∈ Σ∗. We say that u is a prefix (initial segment) of w, denoted by
u ≤ w, if there exists a word v ∈ Σ∗ such that uv = w. If u ≤ w and u �= w then
u is a proper prefix of w. A language L ⊂ Σ∗ is called a prefix code if L does not
contain two words such that one is a proper prefix of the other.

Definition 2. We call classifier any partial mapping f : Σ∗ → Ω∗ such that
f−1(Ω∗) is a prefix code.

Classifiers, i.e., partial mappings defined on prefix codes, are particularly impor-
tant to real-time network packet classification because a classification decision
can be made on-line by looking into an initial segment of the packet. This elim-
inates the risk of having to change the decision later, when more bits arrive.

Proposition 1. Every concatenation state machine defines a classifier.

Proof. Since the execution of a concatenation state machine M is deterministic
on the input word (read from left-to-right) and it stops once the execution stack
becomes empty, M cannot accept an input word and its proper prefix at the
same time. ��

The classifier which is not defined for any input, i.e., such that its co-image of
Ω∗ is empty, will be called empty classifier and will be denoted by ∅. Classifiers
which are defined (only) for the empty input word ε ∈ Σ∗, will be denoted
by the result they produce, i.e., every output word u ∈ Ω∗ defines classifier
u

def= {ε → u}.

Definition 3. Let f, g : Σ∗ → Ω∗ be two classifiers. Classifier concatenation,
fg, is defined as:

fg(w) def= {f(v1)g(v2) ∈ Ω∗ | w = v1v2 and v1 ∈ f−1(Ω∗)} .

Since f−1(Ω∗) is a prefix code, fg(w) is empty or a singleton set. Also, the co-
image (fg)−1(Ω∗) = f−1(Ω∗)g−1(Ω∗) is a prefix code. Thus fg is a classifier.

Classifiers under classifier concatenation constitute a monoid with ε : {ε →
ε} as unit. Both, empty ∅ and unit ε classifiers, are called trivial classifiers. The
monoid will be called classifier monoid.

Lemma 2. Classifier monoid is a cancellative monoid, i.e., for every non-empty
classifiers f, g, g′, h, the equality fgh = fg′h implies g = g′.
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Definition 4. Let Σ = {a1, . . . , an} be the input alphabet and f1, . . . , fn : Σ∗ →
Ω∗ be classifiers. Switch composition, a1f1 + . . . + anfn, is defined as:

(a1f1 + . . . + anfn)(w) def= fi(v), where w = aiv, for some i ∈ [1, n] .

Switch composition a1f1 + . . . + anfn yields a classifier.

Switch composition is an n-ary operation, where n is the size of the input al-
phabet. We allow abbreviated notation by omitting ε and terms with ∅. E.g., we
will write (a1 + a3f3) instead of (a1ε + a2∅+ a3f3 + a4∅+ . . . + an∅).
Definition 5. Let f : Σ∗ → Ω∗ be a classifier and v ∈ Σ∗ an input word. Quo-
tient, v−1f , is defined as (v−1f)(w) def= f(vw). Quotient v−1f yields a classifier.
By Q(f) we denote the set of all quotients of f , i.e., Q(f) def= {w−1f | w ∈ Σ∗}.

3.1 Representation of CSM by Equations

Let V = {X1, . . . , Xn} be an ordered set of variables. A system of equations over
V is a vector E = (E1, . . . , En), where Ei, for i ∈ [1, n], is an expression of one
of the following forms:

1. Concatenation: XiXj , for i, j ∈ [1, n];
2. Switch: a1Xi1 + . . . + akXik

, where {a1, . . . , ak} = Σ and i1, . . . , ik ∈ [1, n];
3. Accepting string : u, with u ∈ Ω∗.

For example, let Σ = {0, 1}, Ω = {a, b}, V = {X1, X2, X3}, and E =
(X2X2, 0X1 + 1X3, ab). This system of equations can also be written in a more
familiar way:

{X1 = X2X2, X2 = 0X1 + 1X3, X3 = ab} .

A solution for a system of equations (E1, . . . , En) over {X1, . . . , Xn} is a
vector F = (f1, . . . , fn) of classifiers such that fi = Ei[f1/X1, . . . , fn/Xn], for
all i ∈ [1, n]. By Ei[f1/X1, . . . , fn/Xn] we denote the expression Ei in which
every occurrence of X1, . . . , Xn is replaced by classifier f1, . . . , fn, respectively.

We say that a system of equations is proper if it does not contain a loop
over concatenation equations (i.e., the transitive closure of {(Xi, Xj) | Ei =
XjXk or Ei = XkXj} is irreflexive).

Proposition 3. Every proper system of equations has exactly one solution.

Proposition 4. Let f be a classifier. The two following statements are equiva-
lent:
1. There is a concatenation state machine M implementing f .
2. There is a proper system of equations E whose solution includes f .

Proof. There is a one-to-one correspondence between CSMs and systems of equa-
tions. The variables of a system of equations correspond to nodes of CSM: switch
nodes are variables defined by switch expressions; concatenation nodes are vari-
ables defined by concatenation expressions, and accepting nodes are variables
defined by the accepting string. ��
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Sometimes, it is more natural to represent a system of equations using more
general expressions allowing variables occurring as subexpressions to be substi-
tuted by their defining expressions. E.g., the system of three equations, {X1 =
X2X2, X2 = 0X1 +1X3, X3 = ab}, could be represented by {X = 0XX+1ab},
assuming we are interested in the solution for X2. In the case of a proper system
of equations, all the variables defined by concatenation expressions can always
be eliminated. The resulting system of equations corresponds to a context-free
grammar which is a simple grammar (i.e., LL(1) grammar under Greibach nor-
mal form, [1, 2, 3]). The languages generated by simple grammars are called sim-
ple languages (or s-languages or LL(0)). Simple languages are precisely those
languages which are recognized by simple push-down automata (deterministic
push-down automata with one state). If the output alphabet is empty, Ω = ∅,
then concatenation state machines can be seen as a simple push-down automata.
Therefore, the classifiers which can be defined by a CSM can be seen as a gen-
eralization of s-languages, and thus, they will be called simple functions (or
s-functions). The immediate consequence of the above observations is the fol-
lowing proposition.

Proposition 5. Let Σ and Ω be two disjoint alphabets. If a partial mapping
f : Σ∗ → Ω∗ is an s-function, then there exists a simple language L ⊆ (Σ∪Ω)∗,
such that

{(x, f(x)) | x ∈ Σ∗} = {(πΣ(w), πΩ(w)) | w ∈ L},
where πΣ and πΩ are projections of (Σ ∪Ω)∗ onto Σ∗ and Ω∗, respectively.

4 Characterization of Simple Functions

In [3] it was proved that a language L is an s-language if and only if the set
Q(L) of its quotients1 is a subset of a free monoid generated by a finite set G of
prefix codes, i.e., Q(L) ⊆ G∗. In this section we extend this result by providing
a characterization theorem for s-functions.

A classifier is called prime if it is non-trivial and it cannot be represented
as a concatenation of two non-trivial classifiers. Every non-trivial classifier f
admits a (not necessarily unique) prime form, i.e., f can be expressed as a finite
concatenation of prime classifiers, f = p1p2 . . . pn. The number of factors is
bounded by |w|+ |f(w)| for any w ∈ f−1(Ω∗).

Lemma 6. Let f, g, h be non-empty classifiers and p, q prime classifiers such
that f = pg = qh. If p �= q then p is an output letter (p ∈ Ω) and h = ph′, or q
is an output letter and g = qg′, for some classifiers h′, g′.

Proof. Since f = pg = qh, f−1(Ω∗) = p−1(Ω∗)g−1(Ω∗) = q−1(Ω∗)h−1(Ω∗).
Domains of classifiers are prefix codes, thus p−1(Ω∗)P = q−1(Ω∗) (or, symmet-
rically, q−1(Ω∗)P = p−1(Ω∗)), for some prefix code P ⊂ Σ∗. Thus, every word

1 A language L′ is called quotient of L ⊆ Σ∗ if there exists a word w such that
L′ = {v ∈ Σ∗ | wv ∈ L}. Intuitively, the quotients of L correspond to the states of
the minimal deterministic automaton for L.
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w ∈ f−1(Ω∗) decomposes uniquely into w = xyz with x ∈ p−1(Ω∗), y ∈ P , and
z ∈ h−1(Ω∗). Then Ph−1(Ω∗) = g−1(Ω∗).

Let Ω⊗ def= (Ω ∪Ω)∗
/{aa=aa=ε|a∈Ω} be the free group, where Ω is a copy of Ω

with bijection : Ω → Ω playing the role of the inverse. Therefore, apart from
monoid properties, i.e., x(yz) = (xy)z, xε = εx = x, we have aa = aa = ε, for
every a ∈ Ω. For example, (abc)−1 = cba, or bc(abc)−1 = a.

Let I ⊆ Σ∗ ×Ω⊗ be defined by:

I
def= {(y, (p(x))−1(f(xyz)(h(z))−1)) | x ∈ p−1(Ω∗), y ∈ P, z ∈ h−1(Ω∗)}.

Relation I is a function. Intuitively, I : Σ∗ → Ω⊗ defines an imaginary classifier
over prefix code P representing the “gap” between output produced by p and
h, i.e., f = pIh. I is called imaginary because it may yield an element from Ω

+

(i.e., non-empty string over Ω), in the case when the outputs of p and h overlap.
Since the classifier monoid is cancellative we also have pI = q and Ih = g.

There exists (y, u) ∈ I such that u ∈ Ω
+
, otherwise q is not prime or p = q.

This means that every output produced by p must end by u−1, i.e., p = p′u′ for
u′ = u−1 ∈ Ω+. Similarly, every output produced by h must start by u′. Since
p is a prime classifier, p′ = ε and u′ ∈ Ω, i.e., p ∈ Ω, and h = ph′, for some
classifier h′. ��

Proposition 7. Let p be a prime classifier and a ∈ Ω be an output symbol a.
If pa = aq (or ap = qa) for some classifier q, then q is a prime.

Proof. If p = a then q = a. Assume p �= a. Since pa = aq and p is prime,
{ε} ⊆ p(Σ∗) ⊆ aΩ∗ ∪ {ε}. Thus, {ε} ⊆ q(Σ∗) ⊆ Ω∗a ∪ {ε}. By contradiction,
suppose that q = q1q2 is not prime. {ε} ⊆ q1(Σ∗)q2(Σ∗) ⊆ Ω∗a ∪ {ε}, implies
{ε} ⊆ qi(Σ∗) ⊆ Ω∗a ∪ {ε}, for i ∈ [1, 2]. Therefore, pi

def= aqia
−1, for i ∈ [1, 2],

are well defined classifiers. Thus, we have pa = aq = aq1q2 = aq1a
−1aq2a

−1a =
p1p2a and, by Lemma 2, p = p1p2, which contradicts the assumption for p being
a prime. ��

Let p : Σ∗ → Ω∗ be a prime classifier such that {ε} ⊆ p(Σ∗) ⊆ Ω∗a ∪ {ε}.
The equation ap = p′a is called conjugation equation, p′ def= apa−1 is called the
left-conjugate of p by a, and p

def= a−1p′a is called the right-conjugate of p′ by
a. We write p ∼ p′ to denote that p is a (right- or left-) conjugate of p′. The
equivalence relation on prime classifiers defined as the transitive and reflexive
closure of ∼, will be denoted by &. Notice that p & q if and only if there exists
an output word w ∈ Ω∗ such that wp = qw or pw = wq.

Proposition 8. For every prime classifier p, its equivalence class [p]�
def= {q |

p & q} is finite.

Proof. If p(Σ∗) = {ε} then [p]� = {p}. Otherwise, we consider two cases: 1)
There are the longest words w and u such that wp = qw and pu = uq′. Clearly
[p]� contains no more elements than the length of wu plus one. 2) There are
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no such words. This implies that all non-empty words in p(Σ∗) are a power of
a unique primitive word w, [4]. Therefore, [p]� contains no more elements than
the length of w plus one. ��

Theorem 9. Let p = p1p2 . . . pn and q = q1q2 . . . qm be two prime forms of two
non-empty classifiers p and q. We have p = q if and only if p1p2 . . . pn can be
rewritten into q1q2 . . . qm in a finite number of steps using conjugation equations.

Proof. If p = p1p2 . . . pn can be rewritten into q = q1q2 . . . qm by using con-
jugation equations, then, obviously p = q. The other implication is proved by
induction. Assume p1p2 . . . pn = q1q2 . . . qm. If n = 1 or m = 1 then n = m and
p1 = q1. Let us now assume n > 1 and m > 1. If p1 = q1 then p2 . . . pn = q2 . . . qm

and induction can be applied. Otherwise, by Lemma 6, p1 = a ∈ Ω (or q1 ∈ Ω)
and q2 . . . qm = ah, for some classifier h. Thus, by iterating Proposition 7 and
Lemma 6, there exists i ≤ m such that qi = a and qj has a right-conjugate
q′
j , for every j ∈ [1, i). Therefore, q1q2 . . . qi−1qiqi+1 . . . qm can be rewritten by

using i−1 conjugations into aq′
1q

′
2 . . . q

′
i−1qi+1 . . . qm, bringing us to the situation

already considered, i.e., where p1 = q1. ��

The immediate consequences of Theorem 9 are that all prime forms of a non-
empty classifier have the same length, and that they contain the same output
symbols as prime factors occurring in the same order.

Proposition 10. Every non-empty classifier admits a finite number of prime
forms.

Proof. By Lemma 6, if two prime forms for classifier f have output letters at the
same positions, then the two forms are identical. In particular, if no prime factor
is an output symbol, then the prime form is unique. In general, if a classifier has
a prime form of length n, f = p1p2 . . . pn, with k factors being output symbols,
then f has at most

(
n
k

)
prime forms. ��

Theorem 11. Let f : Σ∗ → Ω∗ be a classifier. The two following statements
are equivalent:

1. f is an s-function.
2. There exists a finite set G of classifiers such that Q(f) ⊆ G∗.

Proof. If f is a simple function then there exists a system of equations whose
solution F = (f1, . . . , fk) contains f and Q(f) ⊆ {f1, f2, . . . , fk, ∅}∗. Thus, 1
implies 2.

The other direction (2 implies 1) is less obvious. Let G be a finite set of
classifiers such that Q(f) ⊆ G∗. Without loss of generality, we assume that G

consists of primes. We define H
def=

⋃
g∈Q(f) P(g), where by P(g) we denote the

set of all prime factors occurring in at least one of the prime forms for g. Since
for each h ∈ H there exists p ∈ G such that p & h (Theorem 9), H ⊆ ⋃

p∈G[p]�.
By Proposition 8 and that G is finite,

⋃
p∈G[p]� is finite. Thus, H is finite.
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Firstly, we show that for every h ∈ H and a ∈ Σ, a−1h ∈ H∗ ∪{∅}. If h is an
output letter, h ∈ Ω, then the inclusion is valid. Assume h �∈ Ω. Since h ∈ H,
there exists w ∈ Σ∗ such that w−1f = r1 . . . ri−1riri+1 . . . rm and ri = h. Let
u ∈ (r1 . . . ri−1)−1(Ω∗) ⊂ Σ∗ and a ∈ Σ such that a−1h is non-trivial. We have

(wua)−1f = r1 . . . ri−1(u)(a−1h)ri+1 . . . rm = α1 . . . αlx1 . . . xkri+1 . . . rm

for r1 . . . ri−1(u) = α1 . . . αl ∈ Ω∗ and some prime classifiers x1, . . . , xk. By
definition of H, x1, . . . , xk are all in H, therefore a−1h ∈ H∗.

We can construct a system of equations over all elements of H ∪ {f}. Let
Σ = {a1, . . . , an}. If h ∈ H is not an output letter than h is defined by switch
equation h = a1(a−1

1 h) + . . .+ an(a−1
n h), otherwise h is defined by an accepting

equation. Since f ∈ H∗, f is simple (if f is not in H, we add a concatenation
equation for f). ��

CSMs are powerful tools for implementing simple functions. One could ask a
question about “normal form CSM”, which would be used as a vehicle to compare
s-functions. For example, let f : {0, 1}∗ → {a, b}∗ def= {0n1n+1 → anbn | n ≥ 0},
which can be defined as the solution for {X = 1 + 0aXb1} and is represented
by CSM in Figure 3. We could have represented f as the solution for {X =

1

1

0

b

a

ε

Fig. 3. CSM for f = {0n1n+1 �→ anbn | n ≥ 0}

1 + 0aX1b}, in which case the final b would be produced after input symbol 1.
The choice of “producing output as soon as possible”, as often adopted in the
case of subsequential functions, e.g., [5], is not applicable here. In the case of our
example this approach leads to an infinite CSM, corresponding to the following
infinite system of equations: {X0 = 1 + 0aX11, X1 = 1b + 0aX21, · · · , Xk =
1bk + 0aXk+11, · · · }, generating non context-free input/output language L =
{(0a)n1bn1n | n ≥ 0}.

Due to Theorem 11, we can easily establish a variety of normal forms, as
long as we choose them from prime forms, which means that switch nodes are
used only for representing primes. An effective method for calculating normal
CSM (with output symbol prime factors moved to the right) is being developed.
The algorithm combines the techniques for deciding the equivalence of simple
grammars [6, 1] with the techniques from graph theory for finding D-articulation
points [7, 8].
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5 Simple Functions and Transducers

Simple functions are special cases of transductions, i.e., partial mappings from
one free monoid into another. In this section we compare simple functions with
transductions defined by transducers.

A transducer T is a 6-uple (Σ,Ω,Q, q0, δ, F ) where Σ, Ω are two finite sets
called input and output alphabets respectively, Q is a finite set of states, q0 ∈ Q is
the initial state, δ is a finite subset of Q×Σ∗×Ω∗×Q called transition relation,
and F ⊆ Q is the set of final states. A path π ∈ δ∗ in T is a finite sequence
of consecutive transitions, π = (q1, x1, y1, q2)(q2, x2, y2, q3) . . . (qk, xk, yk, qk+1),
which defines a pair of words (x1x2 . . . xk, y1y2 . . . yk) ∈ Σ∗×Ω∗. The semantics
of a transducer is a relation over Σ∗ × Ω∗ defined as the set of pairs of words
generated by all paths from initial state q0 to one of the final states qf ∈ F .
Such a relation is called rational. If a rational relation defines a partial mapping,
then it is called rational function.

A sequential transducer is a transducer (Σ,Ω,Q, q0, δ, F, ) defining a function,
where δ is deterministic on the input, i.e., for every p, q, q′ ∈ Q, x, x′ ∈ Σ∗, and
y, y′ ∈ Ω∗, if (p, x, y, q) ∈ δ and (p, xx′, y′, q′) ∈ δ then x′ = ε, y = y′, and
q = q′. A sequential function is a rational function realized by some sequential
transducer. Some authors call these functions subsequential [9, 10].

Simple functions are classifiers and thus they are defined on prefix codes.
However, every language L ⊆ Σ∗ can be embedded into prefix code L$ ⊆ (Σ ∪
{$})∗, by extending Σ by a new symbol $ representing end-of-word. Therefore,
from now on we assume that all mappings are on prefix codes explicitly or
implicitly.

Proposition 12. Every sequential function is simple.

Proof. We suppose that f is defined on a prefix code, thus we can assume that
no final state in a sequential transducer T = (Σ,Ω,Q, q0, δ, F, ) defining f , has
outgoing transitions. Also, we can suppose that every transition (p, α, β, q) ∈ δ
is such that α ∈ Σ ∪ {ε}. Construction of a CSM (Σ,Ω, S,C,A, ηS , ηC , λ, i)
corresponding to T is straightforward. Intuitively, every final state p ∈ F is
transformed into an accepting node a ∈ A with λ(a) = ε. Every state p ∈ Q with
a single outgoing transition (p, ε, β, q) ∈ δ is transformed into a concatenation
node c ∈ C and an accepting node a ∈ A such that ηC(c) = (a, q) and λ(a) =
β. A state p ∈ Q with k outgoing transitions (p, αi, βi, qi), with αi ∈ Σ, is
transformed into a switch node s ∈ S, k concatenation nodes ci ∈ C, and k
accepting nodes ai ∈ A, such that ηS(s, αi) = ci, ηC(ci) = (ai, qi), and λ(ai) =
βi, for i ∈ [1, k]. ��

Notice that if, in the construction of CSM for a sequential function f as
described above, we reverse the left and right edges of the concatenation nodes
(i.e., instead of ηC(c) = (x, y) we put ηC(c) = (y, x)), then the resulting CSM
will implement the reverse of f , i.e., RΩ ◦ f , where RΩ : Ω∗ → Ω∗ is the reverse
function i.e., RΩ

def= {w → w̃ | w ∈ Ω∗} with w̃ being the mirror of w.

Proposition 13. There are some simple functions which are not rational.
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Proof. Function f = {anbn+1 → xn | n ≥ 0} is simple because it can be defined
as the solution for X = b + aXbc, with Σ = {a, b} and Ω = {x}. The function
is not rational because its domain {anbn+1 | n ≥ 0} is not a regular language.
Another example of a simple function which is not rational is the reverse function
RΩ , whenever Ω has more than one symbol. ��

Proposition 14. There are some rational functions which are not simple.

Proof. Function f = {anb → xn, anc → yn | n ≥ 0} is rational. It can be
realized by a four state (non sequential) transducer. Q(f) ⊇ {a−kf | k ≥ 0} and
a−kf = {anb → xn+k, anc → yn+k | n ≥ 0}. Since a−kf are all different primes,
there is no finite set of classifiers G such that Q(f) ⊆ G∗. Thus, by Theorem 11,
f is not simple. ��

Unlike rational functions, simple functions are not closed by functional com-
position. Even a composition of a simple function and a sequential function may
yield a non simple function. The intersection of a rational and a simple language
is not always simple. Language an(b + c)n, for n > 0, is simple and language
a∗b∗ +a∗c∗ is rational. The intersection of these two languages, anbn +ancn, for
n > 0, is not simple. Thus the composition of the identities on both languages
(that is the identity on their intersection), is not a simple function.

We will say that a classifier is k-simple if it can be defined as the functional
composition of k simple functions.

Proposition 15. The class of rational functions is a strict subclass of 2-simple
functions.

Proof. Every rational function f : Σ∗ → Ω∗ can be represented as a composition
f = r ◦ l of a right-sequential function r : Δ∗ → Ω∗ and a sequential function
l : Σ∗ → Δ∗, for some alphabet Δ, [10]. Function r is right-sequential if r =
RΩ ◦ r′ ◦RΔ for some sequential function r′ : Δ∗ → Ω∗, where RΩ and RΔ are
reverse functions. Thus f = RΩ ◦r′ ◦RΔ ◦ l = (RΩ ◦r′)◦ (RΔ ◦ l), where (RΩ ◦r′)
and (RΔ ◦ l) are simple functions. ��

There are still many questions concerning simple functions and the hierarchy
of k-simple functions that we have yet to answer. For example, are the sequen-
tial functions those classifiers which are simple and rational at the same time?
Palindrome characteristic function P def= {w → ε | w = w̃} is 3-simple, however
is it 2-simple? Is the hierarchy of k-simple functions proper?

6 Final Remarks

Concatenation state machines are playing an important role in a real-time net-
work packet classification using PAX.port hardware. This study was conducted
in order to better understand the power and the limitations of the PAX.port
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solution. Initially, PAX.port was designed as a compact interpreter for sequen-
tial transducers, where concatenation nodes were designed in order to compress
the memory requirements. It turned out that the introduction of concatenation
nodes extended the expressive power of the device. The partial mappings which
can be defined by concatenation state machines are called simple functions as
they are a natural extension of simple languages.

In the paper we introduced the notion of classifiers as partial mappings
on words whose domains are prefix codes. Such classifiers, together with the
classifier concatenation, constitute a monoid. We proved that a classifier f :
Σ∗ → Ω∗ is a simple function if and only if there exists a finite set G of classifiers
such that all quotients of f , Q(f) def= {w−1f | w ∈ Σ∗}, are included in G∗. This
result as well as other properties of the classifier monoid proved in the paper,
have many practical applications, e.g., the elaboration of an effective method to
calculate a unique normal form for concatenation state machines.
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Abstract. We discuss a new tool, FIRE Station, for the visualiza-
tion, exploration and manipulation of regular languages and their var-
ious representations, including regular expressions and finite state
automata.

1 Introduction

A regular language can be expressed in many forms; for example as a set of
strings (if the language is finite), a regular expression, a parse tree or as a
finite state automaton. The latter two also define relations between regular lan-
guages: in a parse tree, the language of each node is defined by its operator
and the language of each of its children; and in a finite state automaton, the
regular language of each state is its right-linear language. The goal for our
new tool FIRE Station has been to visualize the various representations of
regular languages, and the relationships between them. FIRE Station is de-
signed as a framework so that visualization of other algorithms can be added
easily.

FIRE Station uses graphs to visualize regular languages, their properties
and their interconnecting relationships. Each regular language is represented by
a node in the graph. Binary relationships between regular languages are repre-
sented as edges between the nodes. Properties of regular languages are visualized
in several other ways: node color, node shape, node symbols, etc. Figure 1, for
example, shows how FIRE Station displays the parse tree of regular expres-
sion abc along with all (deterministic) derivatives of abc and derivatives of its
subexpressions. The solid, straight lines form the parse graph, while the curved,
dashed lines represent the derivative relations.

2 Concepts

There exists a large number of functions on regular languages, yielding different
binary relationships between regular languages. We split these relationships into

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 125–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



126 M. Frishert, L. Cleophas, and B.W. Watson

a

b

c

b

a

0 10 1 2

 a  b  c

 . .

 1

Fig. 1. Parse Trees for abc and its derivatives in FIRE Station

so-called layers. Each layer represents one particular algorithm working on regular
expressions, and is visually represented by edges of a particular color or line style.

Two constructions for which relationships between regular languages fol-
low naturally from their algorithms are parse trees and (partial) derivatives
automata. In a parse tree, the language of a particular node in the tree is de-
fined by its subtree. In a derivatives automaton, the regular expression repre-
sented by a state in the automaton is known inherently from the derivatives
algorithm, since the state is representative for that regular expression (see [1]
and [2]).

It has been a goal in FIRE Station to ensure that for each and every node,
the regular expression (in the form of a parse tree) is known. Although it comes
naturally for the derivatives algorithm, it will require some additional work on
the implementation of future layers. We justify this effort because it provides us
with sufficient information that all operations can always be performed at the
regular expression level. Why this can be benificial is best shown by example.
For example, if we have two states from two different automata and want to
compute the intersecting automaton (the automaton recognizing the regular
language that is the intersection of the regular languages of those two automaton
states), then there are algorithms to compute this automaton. However, if we
have the regular expressions for the nodes to be intersected, then we can create
the regular expression of the intersection and compute the new automaton from
that regular expression. In this manner we have greater control of the way the
automaton for the intersection is created.
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3 Layers

3.1 Parse Tree Layer

The parse tree layer represents regular expressions in a n-ary tree structure. The
more traditional binary tree allows a node to have two children, while a node
in the n-ary tree has a set of any number of children. One big advantage of the
n-ary tree is that it can be represented visually with greater efficiently because
we generally need fewer nodes and edges. Also, certain algorithms work more
efficiently with n-ary trees, examples of which are global common subexpression
elimination and rewriting, which will be discussed below. All algorithms that
traditionally use binary trees can be adapted to work on n-ary trees; we will,
however, not go into details on how this is done here.

An optimization well known in the field of compilers is global common subex-
pression elimination (GCSE), which we have added to the parse tree layer. GCSE
merges parse trees that are identical in form, that is, they represent the same
regular expression. This transforms the parse tree into a directed acyclic graph
(DAG), but since we still interpret the DAG as a tree, we will continue to refer
to it as the parse tree layer. In Figure 2 we show an example of a tree with
common subexpressions merged.

A second optimization applied to any subtree that is created on the parse
tree is rewriting (see [3]): based on a given set of rewrite rules, an equivalent
and more efficient regular expression is computed, and created instead. Rewrite

0 1 2

1 2 3

0

 a  b  c

 .

 *

 .

Fig. 2. Parse Tree after GCSE for (abc)∗abc
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rules can be used for example to reduce using the identities: ε · E → E, or to
remove redundancies such as: ((E)∗)∗ → E∗.

Users can create new nodes on the parse tree layer in two ways. The first
method is to enter a regular expression, which is parsed into a parse tree. The
second method is to apply a regular operator to a node or set or list of nodes.
The root node of the parse tree created by the first method, as well as the node
created in the second method are called user nodes.

3.2 Nullable Layer

There are several useful properties of regular languages, each of which we rep-
resent by their own property layer. The nullable layer determines whether the
regular language represented by a node contains the empty string. Nullability is
what determines whether a state in an automaton is an accepting state, which
is traditionally illustrated by two concentric circles. We adopt the same visual
representation as illustrated in Figure 2.

3.3 Derivatives Layer

The parse tree layer along with the nullable layer provide sufficient informa-
tion to compute Brzozowski’s derivatives ([1]) for any node. The Derivatives
Layer does just this. When a node is created on the parse tree layer, the deriva-
tives layer computes all derivatives of the regular expression represented by the
parse tree rooted at that node. For each of these derivatives, the regular ex-
pression is then created on the parse tree. For all new nodes that are created
in this process, the derivatives layer again computes and creates derivatives
nodes.

The computation of derivatives continues until all unique derivatives for the
original regular expression have been computed. The computation is guaranteed
to terminate because of the parse tree layer’s elimination of common subexpres-
sions. Reduction of derivatives by the identities is achieved using a set of rewrite
rules on the parse tree layer.

Figure 3 shows an example of derivatives (dashed lines) and parse trees
(solid lines) for each node. Note that we can add additional rewrite rules, which
potentially leads to a smaller number of derivatives than Brzozowski’s original
algorithm. In similar vein to the derivatives layer, we compute Antimirov’s
partial derivatives (see [2]) on the partial derivatives layer, which is not shown
here.

3.4 Equivalent States Layer

Using Watson’s incremental algorithm for DFA minimization discussed in [4], the
equivalent states layer determines which states are indistinguishable (describing
the same regular language) on the derivatives and nullable layers. These nodes
are connected by edges in the equivalent states graph, see Figure 4.
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Fig. 3. Parse Trees for (abc)∗ and all its derivatives
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Fig. 4. The Equivalent States Layer illustrating that (abc)∗abc is equal to (abc)+

4 Graphs

Graphs are extracted from those layers that describe relations between regular
expressions. Currently the only layer that does not describe relations between
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regular expressions is the nullable layer. The edges of the graphs are merged
into one large graph, and a traditional node-and-edge layout algorithm is ap-
plied. Using this layout, we draw the graph for each layer succesively, using
different colors.

Graph layout is preceded by two steps. In the first step, node visibility is
determined. User nodes are considered to be of specific interest to the user, as
they were explicitly created by the user, and therefore always made visible. The
user can determine what other nodes are visible by changing the set of node
visibility graphs; nodes that are reachable from a user node through the edges in
the node visibility graphs are also made visible.

The second step preceeding graph layout is to determine which edges con-
tribute to the layout of nodes. The user can control the set of layout driving
graphs, and each layout driving graph contributes its edges to a grand layout
graph, which contains all of the edges of the layout driving graphs (edges of
which one or both nodes are invisible are not added to the layout graph).

The layout is performed on the layout graph. The layout algorithm is in-
terchangable, in the sense that a new algorithm can easily be added to FIRE
Station, as long as it conforms to the interface specified by FIRE Station.
Currently FIRE Stationuses the layered digraph layout algorithm described
in chapter 9 of [5]. This algorithm is fairly generic in that it gives reasonable
results in most cases, but is not optimized for any graph types in particular. The
resulting node layout is used to render each of the visible graphs (again omitting
edges of which one or both nodes are invisible).
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Fig. 5. Alternative Layout for Parse Trees and Derivatives for abc
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Note that the node visibility graphs, layout driving graphs and visible graphs
are independent of each other, meaning that, a graph can determine node visi-
bility, while not being visible itself, or the graph is visible but doesn’t influence
node visibility. For example, the equivalent states layer shows which nodes have
equivalent regular languages. Oftentimes we want to see whether two visible
nodes are equal, however if a node is visible, we invisible nodes to remain invis-
ible even though they might be equivalent, as to avoid cluttering our view. In
the case of the parse graph, if we make its edges visible, but do not use it to
determine nodes visibility, we end up with an incomplete parse graph; however
we can then, for example, see which states in the derivatives automaton are in
fact subexpressions of some other state in the automaton.

In Figure 1 we have already seen a traditional parse tree layout, with the
edges for the derivatives added in, but not affecting layout. Figure 5 shows an
alternative layout to Figure 1, with the edges of the derivatives graph (instead
of the parse tree) driving the layout. All graphs are contributing to node visi-
bility, making all nodes are visible. Note that for nodes with the concatenation
operator, the parse tree edges are numbered because the layout sometimes does
not (and cannot) retain the usual left-to-right order, see for example Figure 1.

5 Current Implementation

The current implementation is split into two parts: the core, named FIRE
Works, consists of the layers framework, graph generation and graph layout
algorithms. Currently, FIRE Works is implemented in high performance C++
code. FIRE Station consists of FIRE Works with an added graphical user
interface (GUI). The GUI code is written in the Objective-C language using
Apple’s Cocoa framework for OS X. Figure 6 shows a screenshot of FIRE Sta-
tion’s GUI in action.

6 Future Work

There are many directions in which FIRE Station can be extended. First and
foremost, we have the ability to add more layers. We currently have plans to
add a layer for the position automaton, as well as structures from the field of
(multiple) string pattern matching, including directed acyclic word graphs, tries
with failure functions and factor oracles.

Importing automata back into FIRE Station is an important goal. Because
of our goal of having a regular expression for each node, we need to recover
a regular expression for each state in the automaton. The algorithms convert-
ing automata back to regular expressions that are currently available have the
drawback that their regular expressions tend to blow up in size, and when then
generating an automata from these computed regular expressions we end up with
an automaton looking totally different from the original. (The exception is the
position automaton, for which the regular expression can be recovered using the
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Fig. 6. FIRE Station in Action

characteristics described in [6]). Better algorithms and heuristics will need to be
developed for this extension to FIRE Station to work well.

Export functionality will allow the use of computed automata and graphs
outside of FIRE Station. We are currently working on functionality to export
to XML, the graphviz format and in the longer term to hardcoded automata
(see [7]).

Another intended use for FIRE Station is to simulate pattern matching.
For this purpose, FIRE Station functions as a typical software debugging ap-
plication. Using breakpoints or by single-stepping through the matching process,
the user can pinpoint problems with specific regular expressions. Such debugging
of regular expressions can be useful in any situation where regular expressions
are used, we specifically mention the fields of intrusion detection systems, text
search and DNA search.
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Abstract. We present a technique based on the construction of finite
automata to prove termination of string rewriting systems. Using this
technique the tools Matchbox and TORPA are able to prove termination of
particular string rewriting systems completely automatically for which
termination was considered to be very hard until recently.

1 Introduction

Consider a finite string over {a, b} and only one rule: if aabb occurs in the string
than it may be replaced by bbbaaa. The goal is to prove termination: prove
that application of this rule cannot go on forever. This is a surprisingly hard
problem for which only ad hoc proofs were available until recently [11, 13]. A set
of such string replacement rules is called a string rewriting system (SRS) or semi-
Thue system. In this paper we describe a technique based on the construction
of finite automata by which termination of such SRSs including this example
{aabb→ bbbaaa} can be proved fully automatically.

It is widely accepted that being able to prove termination of programs is
highly desirable. String rewriting is one of the simplest paradigms having full
computational power, and is extensively studied, e.g., in Book and Otto [3].
For instance, Turing machine computation is easily seen to be a special case of
string rewriting. Therefore it is natural to consider techniques for automatically
proving termination of SRSs. On the other hand string rewriting can be seen as a
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special case of term rewriting, for which a wide range of termination techniques
has been developed; for a recent overview see Zantema [14].

In order to prove termination of an SRS R, we construct an infinite SRS
match(R), obtained from R by labelling the symbols by natural numbers. By
construction, on the one hand, match(R)-steps simulate R-steps, and on the
other hand, every finite subsystem of match(R) terminates. Now we construct
a finite automaton such that an accepting computation of s is transformed into
an accepting computation of t whenever s rewrites to t by a match(R)-step.
This closure property entails that the simulation of an R-derivation involves
only a finite subsystem of match(R). Termination of R follows. Since in this way
a bound on the labels occurring in derivations is established, this is called the
match-bound approach.

The inspiration of match-bounds was taken from Ravikumar’s change-bounds.
Ravikumar [10] proposes an infinite SRS similar to match(R), and shows that
change-bounded length-preserving SRSs preserve regular languages. It is easy
to see that change-bounds imply match-bounds, while also the converse can be
proved to hold. However, in contrast to change-bounds, match-bounds work also
for SRSs that do not preserve lengths.

An earlier version of the match-bound approach was presented before [5, 6].
Here we describe the basic approach in a more general setting. The reason for
doing this is twofold: the presentation is more modular and therefore hopefully
simpler, and this generalization can be used for variants and extensions of the
method. Indeed in this new setting we are able to give short proofs of the main
theorems.

Our main new contribution is to describe new algorithms to construct ap-
propriate automata. In the earlier approach [5, 6] some of us described how a
suitable rewriting closure of a language may effectively preserve regularity. The
main algorithm then consisted of constructing an automaton that accepts ex-
actly the desired rewriting closure. A drawback of this approach is that even for
very small SRSs like aabb → bbbaaa intermediate automata with thousands of
states are constructed, while the final automaton for this example consists only
of 42 states.

In the new approach, the constructed automaton need no longer be exact:
it may accept any superset of the desired rewriting closure. Therefore the new
approach is called approximate. Like the exact approach, the approximate ap-
proach is correct: the constructed automaton certifies termination of the SRS. In
contrast to the exact approach, it may fail. However, we have observed that the
approximate approach often succeeds, and even yields the same automaton as
the exact approach. The approximate approach is usually much more economi-
cal: all intermediate automata are no bigger than the final one. This efficiency
allows one to solve examples that the exact approach, in spite of its completeness,
could not handle within reasonable time and memory.

The match-bound technique is one of the few techniques that are able to prove
termination on a given language: no infinite rewrite sequence exists starting with
some string in the language. Most other techniques only prove (uniform) termi-
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nation: no infinite rewrite sequence exists at all. Therefore it profits from the
theory of forward closures, according to which full termination can be concluded
from termination on a particular language.

Versions of the approximate approach have been implemented in three tools:
Matchbox, TORPA, and AProVE. The tool Matchbox [12] was the first tool that
implemented the match-bound approach, and it offers a variety of match-bound
related computations. The tool TORPA [15] is a tool for proving termination of
string rewriting by various techniques: polynomial interpretations, recursive path
order, semantic labelling, dependency pairs and finally one particular version of
match-bounds for forward closures. The tool AProVE [7] is a tool for proving
termination of term rewriting mainly by dependency pairs, but also covering
various other techniques. In the most recent version the approach using match-
bounds for forward closures was copied from TORPA. In the category ”string
rewriting” in the termination competition of the 7th International Workshop on
Termination in 2004 these three tools ranked third, first, and second, respectively.

The paper is organized as follows. In Section 2 the basic theory is presented,
including preliminaries and all proofs, except for the proofs of forward closure
theory. Next in Section 3 the various ways of finding compatible automata are
discussed: the exact approach and the approximate approach. For the latter, two
variants are discussed: the one that has been implemented in TORPA, and the one
that has been implemented in Matchbox.

2 Basic Theory

A string rewrite system (SRS) over an alphabet Σ is a set R ⊆ Σ∗×Σ∗. Elements
(�, r) ∈ R are called rules and are written as � → r; the string � is called the
left hand side (lhs) and r is called the right hand side (rhs) of the rule. A string
s ∈ Σ∗ rewrites to a string t ∈ Σ∗ with respect to an SRS R, written as s→R t if
strings u, v ∈ Σ∗ and a rule �→ r ∈ R exist such that s = u�v and t = urv. The
reflexive transitive closure of →R is written as →∗

R. In this paper we consider
both finite and infinite SRSs over both finite and infinite alphabets, on the other
hand all automata we consider are finite.

A sequence t1, t2, t3, . . . is called an R-derivation if ti →R ti+1 for all i =
1, 2, 3, . . . . An SRS R is called terminating on a language L ⊆ Σ∗ if no infinite
R-derivation t1, t2, t3, . . . exists such that t1 ∈ L. An SRS R is called terminating
if no infinite R-derivation exists at all, i.e., it is terminating on Σ∗. Any SRS
having an empty lhs is non-terminating, hence we generally assume that each
lhs is non-empty.

For a map h : Σ′ → Σ we reuse the notation h for its morphism extension
h : Σ′∗ → Σ∗ by h(ε) = ε and h(uv) = h(u)h(v), and to languages over Σ′ by
h(L) = {h(u) | u ∈ L}.

Let R be an SRS over an alphabet Σ, and let L ⊆ Σ∗. Let R′ be an SRS over
an alphabet Σ′, and let L′ ⊆ Σ′∗. The triple (Σ′, R′, L′) is called an enrichment
of (Σ,R,L) by h : Σ′ → Σ if L = h(L′) and
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h(�′) = � ∧ (�→ r) ∈ R⇒ ∃r′ ∈ Σ′∗. (�′ → r′) ∈ R′ ∧ h(r′) = r

for all �′ ∈ Σ′∗ and (�→ r) ∈ R. From the enrichment property, it follows that

h(s′) →R t⇒ ∃t′ ∈ Σ′∗. s′ →R′ t′ ∧ t = h(t′)

for all s′, t′ ∈ Σ′∗, and so if R′ terminates on L′ then R terminates on L.
For an SRS R over an alphabet Σ for which all lhs’s are non-empty we define

the infinite SRS match(R) over Σ×N to consist of all rules (a1, n1) · · · (ap, np) →
(b1,m1) · · · (bq,mq) for which a1 · · · ap → b1 · · · bq ∈ R and mi = 1+minj=1,...,p ni

for all i = 1, . . . , q. For instance, if R contains the rule aa→ aba, then
(a, 3)(a, 1) → (a, 2)(b, 2)(a, 2) is a rule of match(R).

We define base : Σ × N → Σ by base((a, n)) = a for all a ∈ Σ, n ∈ N,
and lift0 : Σ → Σ × N by lift0(a) = (a, 0) for all a ∈ Σ. By construction,
(Σ ×N,match(R), lift0(L)) is an enrichment of (Σ,R,L) by base.

An SRS R′ over Σ′ is called locally terminating if for every finite alphabet
Σ′

0 ⊆ Σ′ the SRS R′
0 = { �′ → r′ ∈ R′ | �′, r′ ∈ Σ′∗

0 } is terminating.

Theorem 1. Let R be any finite SRS over Σ. Then match(R) is locally termi-
nating.

Proof. Let Σ′
0 ⊆ Σ′ = Σ×N be finite; we have to prove that R′

0 as defined above
for R′ = match(R) is terminating. Let n be the maximum value for which there
is a ∈ Σ such that (a, n) ∈ Σ′

0. Assume that R′
0 admits an infinite derivation,

then there is also an infinite R′
0-derivation in which all symbols (a, k) satisfy

k ≤ n. Let m be a number such that for every rhs of R the length is less than
m. Now for a symbol (a, k) define its weight W ((a, k)) = mn−k, and for a string
of symbols the weight is the sum of the weights of the symbols. For every rule
�′ → r′ in R′

0 we have r′ = (b1, k), (b2, k), . . . , (bq, k) while �′ contains a symbol
(a, k − 1). Hence

W (�′) ≥W ((a, k − 1)) = mn−k+1 > q ·mn−k = W (r′).

Hence in every step of the infinite derivation the weight in N strictly de-
creases, contradiction. ��

Finiteness of R is not essential for validity of Theorem 1: using multisets
easily a proof can be given not requiring finiteness. However, we intend to use
Theorem 1 only for finite systems and we will use the present proof using weights
to conclude a result on derivational complexity.

All automata we consider in this paper are standard non-deterministic finite-
state automata. For two states p, q in an automaton A over Σ and a string u ∈ Σ∗

we write p
u→A q if there is a path from p to q in A in which the transitions are

successively labelled by the symbols in u. More precisely, the transition relation
a→A for a ∈ Σ is extended to Σ∗ by defining inductively p

au→A q if a state r
exists such that p a→A r and r

u→A q, and p
ε→A p for all states p. Let A, L and R

be a finite automaton, a language and an SRS over an alphabet Σ, respectively.
Then A is called compatible with L and R if
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– L ⊆ L(A), and

– A is closed under R, i.e., if � → r ∈ R and p
�→A q for two states p, q of A,

then also p
r→A q.

A direct consequence of this definition is that if A is compatible with L and R,
then we have →∗

R(L) ⊆ L(A), where the set of R-successors →∗
R(L) is defined

by
→∗

R(L) = {u | ∃t ∈ L : t→∗
R u}.

If Σ is finite then such a compatible automaton trivially exists: take the
automaton for Σ∗ consisting of one state, and a-transitions from that state to
itself for every a ∈ Σ. We will focus on finding finite compatible automata for
infinite SRSs over infinite alphabets, starting from a language described by a
finite automaton.

Theorem 2. Let (Σ′, R′, L′) be an enrichment of (Σ,R,L) by h, let R′ be locally
terminating, and assume that L′ and R′ admit a compatible finite automaton.
Then R terminates on h(L′).

Proof. Suppose there is an infinite R-derivation u1 →R u2 →R u3 →R · · ·
for which u1 ∈ h(L′). Then there exists v1 ∈ L′ such that h(v1) = u1. By
repeated application of the definition of enrichment this gives rise to an infinite
R′-derivation v1 →R′ v2 →R′ v3 →R′ · · · for which h(vi) = ui for i = 1, 2, 3, . . ..
Let A be a finite automaton compatible with L′ and R′; let Σ′

0 be the finite
set of transition labels occurring in A. Since L′ ⊆ L(A) we have p0

v1→A pf for
the initial state p0 and a final state pf , since A is closed under R′ we obtain
by induction on i that p0

vi→A pf for all i = 1, 2, 3, . . .. Hence for every rule
�′ → r′ ∈ R′ that is applied in the infinite derivation v1 →R′ v2 →R′ v3 →R′ · · ·
there are states p, q in A satisfying p

�′
→A q and p

r′
→A q. Hence in the infinite

derivation only rules from R′
0 are applied, contradicting the assumption that R′

is locally terminating. ��

Theorem 2 will be used as follows. If termination of R on a language L
over Σ has to be proved then we define L0 = lift0(L) = {(s, 0) | s ∈ L }. By
definition, base(L0) = L. Now according to Theorems 1 and 2 it suffices to find
a compatible automaton for L0 and match(R). Due to the form of the weights
we used in the proof of Theorem 1 this does not only prove termination of R on
L but even linear derivational complexity: there is a constant C such that every
R-derivation starting in s ∈ L has length at most C · |s|.

To prove termination on Σ∗ (usually simply called termination) we may
apply this approach for L = Σ∗. However, by a result of Dershowitz [4] on
forward closures, we may also choose another language for L that may be smaller.
Thus we can prove termination for SRSs that do not satisfy linear derivational
complexity, like {ab→ ba} or {ab→ bba}.

We describe forward closures by rewriting using an extended SRS R# [5, 6];
this way we characterize termination on Σ∗ by termination on a small regular
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set, which makes it amenable to automation. A self-contained presentation of
this R#-approach including all proofs will appear in [16].

For an SRS R over an alphabet Σ we define the SRS R# over Σ ∪ {#} by

R# = R ∪ { �1# → r | �→ r ∈ R ∧ � = �1�2 ∧ �1 �= ε �= �2 }.

Write rhs(R) for the set of rhs’s of R.

Theorem 3. Let R be a finite SRS. Then R is terminating if and only if R# is
terminating on rhs(R) · {#}∗.

We omit the proof. Combining Theorems 1, 2, and 3 now for proving (uni-
form) termination of a finite SRS R it suffices to find a compatible automaton
for lift0(rhs(R) · {#}∗) and match(R#).

3 Finding a Compatible Automaton

Due to the observations we made termination of an SRS can be proved by
proving the existence of a finite automaton A compatible with a language L and a
(usually infinite) SRS R. Such an automaton A is called exact if L(A) =→∗

R(L).
We describe two basic ways of constructing a compatible automaton: an exact

approach that always yields an exact automaton in case of success, and an ap-
proximate approach that yields a compatible automaton that need not be exact.
Each approach starts from an automaton that accepts L.

3.1 The Exact Approach

The exact approach is based on the notion of a deleting string rewriting system [8,
9]. A string rewriting system R over an alphabet Σ is called deleting if it has no
empty lhs and there is an irreflexive partial order > on Σ (a precedence) such
that for each rule �→ r in R and for each letter a in r, there is some letter b in
� with b > a.

Similar to the proof of Theorem 1 it is easy to see that every deleting string
rewriting system over a finite alphabet is terminating. The class of deleting string
rewriting systems enjoys the following strong effective decomposition property.
An SRS is called context-free if every lhs has length at most 1.

Theorem 4 ([9]). If R is a finite deleting string rewriting system over a finite
alphabet Σ, then there are, effectively, an extended alphabet Γ ⊇ Σ, a terminat-
ing, context-free SRS T over Γ , and a context-free SRS C over Γ , such that for
each language L ⊆ Σ∗, →∗

R(L) =←∗
C(→∗

T (L)) ∩Σ∗.

The exact approach consists of using this decomposition to construct an au-
tomaton that accepts →∗

R(L) from an automaton that accepts L. Let matchk(R)
be the restriction of match(R) to the (finite) alphabet Σ×{0, . . . , k}. It is obvious
that matchk(R) is deleting, so Theorem 4 applies. Now a finite automaton Ak is
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constructed such that L(Ak) = base(→∗
matchk(R)(lift0(L))). We do this construc-

tion successively for k = 0, 1, 2, . . .. If some k is found that satisfies Lk = Lk+1
then Ak is the desired exact automaton compatible with match(R) and L.

The extended alphabet may turn out to be rather large (a few hundred letters
even for small systems), so the automaton for →∗

T (L) has many states as well.
We do not give details here; to give a flavor we sketch a small fragment of this
approach as it occurs for computing A2 for the single rule aa→ aba.

Let R be the SRS consisting of the rules aa→ cdc, ac→ cdc, ca→ cdc, cc→
fgf . This SRS is a renaming of (the accessible part–see [5, 6]–of) the system
match2({aa→ aba}). Observe that R is deleting with a > c > d > f > g. Using
Theorem 4 we get the decomposition Γ = Σ ∪ {b, e, a1, a2, a3, a22, a32, a11, c2};

T =

{
a→ b, a→ cda2, a→ cda3, a→ a1dc, c→ e,

c→ fgc2, a2 → fga22, a3 → fga32, a1 → a11gc2;

C =

{
c→ a2b, e→ a2b, c→ a3c, e→ a3c, c→ ca1,

e→ ca1, f → c2e, c2 → a22b, c2 → a32c, f → ca11.

Now let L = {a}∗. The automaton for →∗
T (L) is constructed by supplement-

ing, as long as possible, a path p
r→ q for each transition p

x→ q and rule x→ r
in T .

For a better overview, we render the initial state in the center of the left
figure without the looping transitions labelled by a and b.

The automaton for ←∗
C(→∗

T (L)) is obtained by adding, as long as possible,
a transition p

x→ q for each path p
r→ q and rule x → r in C, see [1, 2]. The

result is given in the right figure, rendering only the new transitions. Finally,
the automaton for →∗

R(L) is obtained by dropping all transitions labelled with
Γ \Σ letters.

3.2 The Approximate Approach

The intermediate automata constructed during the exact approach may be much
bigger than the final compatible automaton. For simple examples these interme-
diate automata may have thousands of nodes and may take minutes to compute.
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We therefore introduce an approximate approach that avoids the construction
of automata that are bigger than the result.

The basic idea of this approach is to start with an automaton that accepts
exactly L, and then to add only states and transitions as needed for closure
under rewriting. More precisely, the procedure systematically looks for coun-
terexamples to closure under rewriting, i.e., for states p, q and rules �→ r ∈ R

such that p
�→A q ∧ p

r

�→A q. States and transitions are added to the automaton
such that p

r→A q. The procedure repeats this step until either there are no
counterexamples left, in which case the resulting automaton is compatible; or
the resources are exceeded and the construction has failed.

There are various strategies how to add states and transitions suitably; we
will describe two of them.

Our approach is currently restricted to the case where each right hand side is
non-empty. Empty right hand sides can be included by automata having epsilon-
transitions. Alternatively, empty right hand sides can be eliminated by prepro-
cessing the SRS as we will see in an example.

The Strategy in TORPA [15]. If A has to be extended in order to satisfy p
r→A q

in TORPA this is done as follows. As stated above, we assume that r is non-empty,
so we may write r = au for a ∈ Σ, u ∈ Σ∗. It is checked whether a state n exists
satisfying n

u→A q. If so, then only one single transition p
a→A n is added. If not,

then a completely fresh path from p to q is constructed: if r = a1 · · · ak then
k − 1 fresh states n1, . . . , nk−1 and k fresh transitions

p
a1→A n1, n1

a2→A n2, . . . , nk−2
ak−1→ A nk−1, nk−1

ak→A q

are added. In both cases the extended automaton A indeed satisfies p
r→A q.

This strategy is particularly powerful for proving termination using match(R)
and forward closures. As a simple example consider the SRS R consisting of the
single rule aba→ abbba. Due to Theorem 3 termination of R may be proved by
proving that R# is terminating on {abbba}·{#}∗, where R# consists of the rules

aba→ abbba, a# → abbba, ab# → abbba.

Due to Theorems 1 and 2 it now suffices to find a compatible automaton for
{a0b0b0b0a0} · {#0}∗ and match(R#). Here we shortly write xi rather than (x, i)
for x ∈ {a, b,#}, i ∈ N, and match(R#) consists of the rules

aibjak → ambmbmbmam for i, j, k,m ∈ N, m = min{i, j, k}+ 1
ai#0 → a1b1b1b1a1 for i ∈ N

aibj#0 → a1b1b1b1a1 for i, j ∈ N.

Formally match(R#) also contains rules with #i in the left hand side for i > 0,
but it is easy to see that these will never be involved in derivations starting from
a string not containing #i for i > 0. This observation holds for every SRS, not
only this example. Now the search for a compatible automaton may start. We
start by the following automaton for {a0b0b0b0a0} · {#0}∗:
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The numbering of the nodes is as generated in TORPA where the initial node
is always 1 and the final node is always 2.

The first counterexample we find is 6
a0#0→ A 2 for the rule a0#0 → a1b1b1b1a1

in match(R#). We have to construct a path from 6 to 2 labelled by a1b1b1b1a1.
As there is no path from any state to 2 labelled by b1b1b1a1, a fresh path is
added with the fresh states 7, 8, 9, 10 and transitions between them. The next
counterexample is 10

a1#0→ A 2 for the rule a1#0 → a1b1b1b1a1 of match(R#).
Here a path from 10 to 2 labelled by a1b1b1b1a1 has to be created. Since there is
already a path from 7 to 2 labelled by b1b1b1a1, only the single transition from
10 to 7 is added. There are no further counterexamples. This yields the following
compatible automaton:

This simple strategy was found during a trial to reconstruct by pencil and
paper the exact automaton for match(R#) for R = {aabb → bbbaaa} as it
was given in [5, 6]. Using this strategy, TORPA generates the same automaton,
only a few hundred times faster. Other, more involved strategies turned out
unsatisfactory for forward closures.

The Strategy in Matchbox [12]. For a rule �→ r ∈ R and states p, q in A for
which p

�→A q holds but not p
r→A q, this strategy considers all decompositions

r = xyz and states p′, q′ such that p x→A p′ and q′ z→A q and y �= ε. Then among
all possibilities one is chosen for which y has minimal length, and a new path
p′ y→A q′ is constructed.

The TORPA strategy can also be seen as a variant of this decomposition ap-
proach, constrained by |x| = 0 ∧ (|y| = 1 ∨ |z| = 0).

As an illustration of both strategies consider the automaton

for L = {aa} and the rule aa→ aba. Then a path 1 aba→A 3 has to be created. In
the TORPA strategy it is observed that no state n exists satisfying n

ba→A 3. As a
consequence two fresh states 4, 5 and three fresh transitions are created:
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After this single step the automaton is closed under rewriting.
In contrast, in the Matchbox strategy no fresh states are required at all: by

1 a→A 2 and 2 a→A 3 only one fresh b-transition from 2 to 2 is added:

and again after a single step the automaton is closed under rewriting. This
illustrates non-exactness of the Matchbox strategy: by the latter automaton A
the string abba is in L(A) but not in →∗

R(L).
Similar non-exactness occurs in the TORPA strategy, for instance by starting

from the automaton

and the same rule aa → aba in the TORPA strategy the transition 1 a→A 4 is
added, by which again the string abba is in L(A) but not in →∗

R(L).
We have experimented with several conceivable variants of such a strategy

for re-using transitions. Roughly speaking in using forward closures the TORPA-
strategy is often the most successful, while in not using forward closures the
Matchbox-strategy is often more powerful. In any case, the order in which paths
are handled strongly influences the process; and there does not seem to be a
straightforward complete strategy: one that terminates in all cases where the
exact computation is successful.

3.3 An Example with Empty Right Hand Sides

In an SRS one or more rules � → r may be replaced by a� → ar for all a ∈ Σ
without changing the termination behavior. As an example, consider the SRS R
consisting of the rules

Ab→ baBA, Ba→ abAB, Aa→ ε, Bb→ ε.

Due to empty rhs’s the approximate approach cannot be applied directly. How-
ever, by using the above observation termination of R may be concluded from
termination of the SRS consisting of the rules

Ab→ baBA, Ba→ abAB, aAa→ a, bAa→ b, AAa→ A, BAa→ B,
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aBb→ a, bBb→ b, ABb→ A, BBb→ B.

This is easily proved using our approximate approach for forward closures by an
automaton having only 14 states.

4 Conclusions

For an extensive class of string rewriting systems, termination can be shown
by the construction of a compatible automaton, i.e., a finite automaton that
has a suitable closure property. Whereas in theory the construction of an exact
compatible automaton always succeeds if it exists, i.e., if the system is match-
bounded, it may be prohibitively expensive. So we proposed an approximate
approach that is more efficient but may fail. For instance, this new approach
allows to prove termination of the single rule SRSs

{babaa→ aaababab}, {babaa→ abaabbaba}, {baaabbaa→ aaabbaaabb}

within fractions of seconds by automata having 72, 98 and 155 states, respec-
tively. The exact approach, in contrast, fails due to lack of memory. All standard
techniques for proving termination [14] fail, too, for these examples.

The notion of match-bounds was inspired by Ravikumar [10], who showed
that change-bounded string rewriting preserves regularity of languages. Similar
to match(R), he defined a related system over the alphabet Σ ×N to consist of
all rules (a1, n1) · · · (ap, np) → (b1, n1 + 1) · · · (bp, np + 1) for which a1 · · · ap →
b1 · · · bp is in the system R over Σ. This definition, however, is only meaningful
for length-preserving systems, where |�| = |r| for every rule � → r. For this
particular class of systems it can be shown that match-boundedness actually
coincides with change-boundedness.

Presently we work on extending these techniques to term rewriting. To this
end the automata are replaced by finite tree automata.
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IRISA / CNRS / Université de Rennes 1 35042 Rennes Cedex, France
{mgiraud, lavenier}@irisa.fr

Abstract. In this paper, we show that the linear encoding scheme effi-
ciently implements weighted finite automata (WFA). WFA with t tran-
sitions can be hardwired with O(t) cells. They solve pattern matching
problems in a pipelined way, parsing one character every clock cycle.
With the massive parallelism of reconfigurable processors like FPGAs, a
significant speed-up is obtained against software solutions.

1 Introduction

Weighted finite automata (WFA) are finite-state machines with weights on tran-
sitions. They have been widely used in image compression [1] or in speech recog-
nition [2]. In Biology, searching genomic banks for patterns with error counting,
or with arbitrary matrices of substitution scores, can be made using WFA. These
applications involve sequential scans of large databases (today tens of gigabytes
of data) whose size is increasing faster than CPU power.

Whereas efficient simulation of a non-deterministic finite automaton (NFA)
can be achieved by first determinizing it (although leading to a potential ex-
ponential number of states), direct simulation of WFA is needed as they are
not all determinizable [3]. Mark G. Eramian proposed in 2002 an algorithm in
O(nt) time, where t is the number of transitions and n the length of the parsed
sequence [4].

One can use dedicated hardware to accelerate parsing. Reetinder Sidhu and
Viktor K. Prasanna proposed in 2001 an FPGA architecture to implement NFA
[5]. This paper aims to extend their idea to WFA: we prove that WFA can be
hardwired using a linear encoding scheme, providing a significant acceleration
over software methods. In such a material implementation, space concerns be-
come prominent and we need to ensure the WFA fits into FPGA devices. Thus,
an estimation of the surface area will be conducted.

The rest of the paper is organized as follows. Section 2 provides background
definitions about pattern matching and WFA. In Section 3, we show how to
generalize the one-hot encoding scheme for NFA to the linear encoding scheme
for WFA. Section 4 presents some experimental results comparing our method
against software techniques.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 146–155, 2005.
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2 Preliminaries

2.1 Continuous Pattern Matching

Let Σ be a finite alphabet. Elements of Σ are called characters. A word is a
finite sequence of characters w = w1w2 . . . wn ∈ Σ∗. A language L is a subset
of Σ∗. Given a word w and a language L, the problem of continuous pattern
matching is to find all subwords v of w such that v ∈ L.

Because this problem can have O(
n2

)
solutions (like a∗ in the word an), we

restrict it to find only all positions in the initial word which are terminating
matching subwords, that is determining the set Pos(L, w) = { j ∈ [1;n] | ∃ i ∈
[1; j], wiwi+1 . . . wj ∈ L}.

When L is a singleton or a finite dictionary, some indexing techniques can
handle the continuous pattern matching. Here those techniques do not apply
since L will be defined by a weighted finite automata.

2.2 Weighted Finite Automaton

Weighted finite automata (WFA) are finite-state machines describing languages
of higher complexity than NFA [2, 4].

Let (K, ⊕, ⊗) be a semiring, where 0̄ and 1̄ are the identity elements for ⊕
and ⊗. A weighted finite automaton (WFA) is a 5-uple A = (Q, Σ, δ, I, F ),
where Q is a finite set of states, Σ a finite alphabet, δ : Q × Σ × Q → K the
transition table, I ⊂ Q and F ⊂ Q the initial and final states set. The WFA A
gives to every word w = w1w2 . . . wn a weight W (w) defined by

W (w) = ⊕q1,...,qn−1∈Q
q0∈I, qn∈F δ(q0, w1, q1)⊗ δ(q1, w2, q2)⊗ . . .⊗ δ(qn−1, wn, qn).

This weight is the ⊕-sum (i.e. the sum according to ⊕) of all the weights
on paths from an initial state to a final state labeled by w. Let us now define
a recognizing set J ⊂ K. We say that the word w is recognized by A when
W (w) ∈ J.

If for every state q1 and for every character α, there exists at most one state
q2 with δ(q1, α, q2) �= 0̄, the WFA is said to be deterministic.

The nondeterministic finite automata (NFA) are only a particular case of
WFA over the boolean semiring ({T, F},∨, ∧) with the recognizing set J = {T}.
In this case, a word w is recognized by A when there exists a path from a initial
state to a final state labeled by w.

Other semirings are used like (R+,+, ×) (probabilistic), (R∪{−∞}, ⊕log, +)
(logarithm) and (R ∪ {−∞}, max,+) (Viterbi’s approximation). For practical
use, we consider only a finite subset of the semiring (Z ∪ {−∞}, max,+).

In that case and with the recognizing set J = {x ∈ Z |x ≥ 0}, the WFA
A2 represented in Fig. 1 recognizes the subset of L1 containing strictly more
occurrences of b than c. This language L2 is not regular.

In the following, we want to solve on large databases the continuous pattern
matching problem in which the language L is described by a WFA. The set
Pos(L, w) will have the form { j ∈ [1;n] | ∃ i ∈ [1; j], W (wiwi+1 . . . wj) ∈ J }.
The next section presents an hardware representation of WFA.
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Fig. 1. On the left side, the NFA A1 recognizing the regular language L1 =
a (b|c)∗ (ca | bc). On the right side, the WFA A2 over the semiring (Z∪{−∞}, max, +).
It recognizes the non-regular language L2 = {w ∈ L1 | |w|b > |w|c}

3 Linear Encoding Scheme for WFA

This section gives an overview of encoding schemes for finite-state machines,
then describes the linear encoding scheme for WFA and its properties.

3.1 Encoding Schemes for Finite-State Machines

There are two major schemes to encode a finite state machine with |Q| states in
hardware, according to the representation of its states [6]:

– the logarithmic scheme uses a bit vector of size log2 |Q| in binary encoding
(natural, Gray, or any encoding tailored to a particular application). For
|Q| = 5, one can have the values {000, 001, 011, 101, 111};

– the linear scheme (or one-hot scheme) uses a bit vector of size |Q| where
only one bit is set to 1, like in the set {00001, 00010, 00100, 01000, 10000}.

Those schemes lead to different hardware implementations. The size of the
logarithmic scheme merely depends on the logic part and can be reduced with
a good numbering scheme. This approach is usual for a conventional serial ma-
chine, but is limited to deterministic automata.

On the other hand, there can be several states active at the same time in the
linear encoding scheme, implementing a NFA in a multi – hot fashion. Sidhu and
Prasanna showed that this representation is very effective to scan for a regular
expression with an FPGA [5].

As the linear encoding scheme needs as many operators as the number of tran-
sitions, one could think that it is limited to implement automata with few tran-
sitions. However, it has be shown that, for common automata, the linear scheme
is less power-consuming and even smaller than the logarithmic scheme [6].

3.2 Linear Encoding Scheme for WFA

Sidhu and Prasanna build an NFA from a regular expression describing it [5].
We present here a linear encoding scheme for WFA by giving another point of
view: we directly map a given WFA into hardware.
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Let A = (Q, Σ, δ, I, F ) a WFA over a semiring K, as defined in section 2.2.
We denote by k and p the number of bits needed to represent respectively the
alphabet Σ and the weights in K. Typical values are k = 8 for an ASCII text or
k = 5 for amino acid patterns, and bit widths for the weight ranging from p = 1
to p = 16.

Principle. The hardware implementation can be viewed as a shift register, in
which a weight with p bits is moving. For each state q, there will be a p-bit
register. We call eq

j its value at the clock cycle j.

– Each transition set from a state q′ to a state q is materialized with an evalua-
tor (left part of Fig. 2). It receives k bits (current character wj) and generates
the weight δ(q′, wj , q). In the general case, this evaluator will be a 〈k →p〉
function (k binary inputs, p binary outputs).

– This weight is aggregated with the weight at the previous state, giving the
value sq′,q

j = eq′

j−1 ⊗ δ(q′, wj , q).
– Each state is a register driven by the ⊕-sum of all the values at the outputs

of its incoming transitions sq′,q
j (right part of Fig. 2). At the following clock

cycle, this ⊕-sum eq
j will be given as input for other transitions.

The initialization phase of the automaton, not showed here, consists in setting
all states to 0̄ except the initial states which are set to 1̄. Those initial states
always receive an additional incoming transition whose weight is kept to 1̄.

The surface area needed by the WFA is here O(
2kpt

)
, where t is the number

of pairs (q′, q) having a non-void transition δ(q′, α, q) for some α.

Fig. 2. Principle of linear encoding scheme for WFA over a finite subset of (Z ∪
{−∞}, max, +). Here the identity elements are 0̄ = −∞ and 1̄ = 0. The p bits rep-
resenting the weight are a compound of p − 1 bits representing a two’s complement
integer, and 1 bit representing −∞ (for the initialization, inexistent transitions, and
overflows).As we consider only a finite subset of the semiring, one must ensure that the
overflows are correctly handled. The overflow at −∞ can be neglected, as it represents
a weight which is very unlikely to participate to a final maximum. The overflow at +∞
is detected at the output and gives a hit in the recognition. If there are cycles in the
automaton, a reset of the whole automaton must follow the overflow at +∞
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Fig. 3. Linear encoding scheme for the WFA A2

Values of States. The previous descriptions can be summarized to:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
eq
0 =

{
1̄ if q ∈ I,
0̄ if q �∈ I,

sq′,q
j = eq′

j−1 ⊗ δ(q′, wj , q),

eq
j =

{
1̄⊕ (⊕q′∈Q sq′,q

j ) if q ∈ I,

⊕q′∈Q sq′,q
j if q �∈ I.

With this equation set, the following lemma holds:

Lemma. If q is a state and j an integer, one has

eq
j = ⊕j

i=0 ⊕qi+1,...,qj−1∈Q
qi∈I,qj=q ⊗j−1

t=i δ(qt, wt+1, qt+1).

Corollary. The ⊕-sum of all the weights at the final states is

Ej = ⊕q∈F eq
j = ⊕j

i=0 W (wiwi+1 . . . wj).

The proof of the lemma, which relies on the right-distributivity of ⊗, is given
in Appendix A. The corollary says that the final value Ej shows the ⊕-sum of
all the weights of the words wi . . . wj . Thus, if one could deduce from Ej if there
is an i such that W (wiwi+1 . . . wj) is in J, one would know if a word wi . . . wj

has been recognized by checking if Ej is in J. For this, we say now that J is a
good recognizing set if it has the two following properties:

– ∀a ∈ J, ∀b ∈ K, a⊕ b ∈ J,
– ∀a ∈ K, ∀b ∈ K, a⊕ b ∈ J =⇒ a ∈ J or b ∈ J.

With this definition, a direct consequence of the above corollary is:

Theorem. If J is a good recognizing set, then

Ej ∈ J ⇐⇒ j ∈ Pos(L, w).
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Therefore, if the hypothesis of the theorem holds, the continuous pattern
matching problem is resolved by parsing one character on every clock cycle and
by observing the value at the final states. In fact, the clock cycle time is in
O(p log dmax), where dmax is the maximum incoming degree of the states, but
this is not a limitation for usual WFA.
– In the case of the NFA (boolean semiring ({T, F},∨, ∧)), only one bit is

needed to represent the weight: we fall back on the one-hot scheme. The
subset J = {T} is a good recognizing set. Each evaluator 〈k →1〉 is reduced
to a comparator (wi ∈ A) for some subset A ⊂ Σ, the ⊗ is an AND gate and
the ⊕ an OR gate.

– In the semiring (Z,max,+), the only good recognizing sets are those of the
form J = {x ∈ Z, x ≥ x0} for some x0. Those sets fit perfectly in the
applications of WFA where the weight is a score compared to a threshold to
know if a sequence was recognized.

4 Performance Evaluation

This section is about the performances of a real implementation of the linear
encoding scheme described in section 3.2. Here the WFA are over a finite subset
of (Z,max,+). We begin by describing the context of use. As we use a low-cost
FPGA chip and as the main constraint is about size, we need to know precisely
the surface area taken by the WFA; this is done in section 4.2. In section 4.3,
we compare the speed achieved against software techniques.

4.1 Context of Use

FPGAs. Field Programmable Gate Arrays (FPGAs) are reconfigurable chips
composed by a matrix of interconnected logic cells [7]. The logic inside each cell
as the interconnections can be configurated in a few milliseconds, allowing to
have a custom chip. The cost of such solutions is orders of magnitude below the
cost of ASIC (Application Specific Integrated Circuits) full-custom chips.

Prototype Board. Our prototype board, which is part of the R-disk system
[8] is devoted to filter large genomic databases on-the-fly. The board contains an
hard disk and a low-cost FPGA which directly filters data from the disk. The
total cost for the components is less than $200. The FPGA is the Spartan-II
from Xilinx. It contains 1176 cell logic blocs (CLB), each one having 4 look-up
tables (LUT) of 16 bits. The LUTs can realize any 〈4 →1〉 boolean function.
Almost two thirds the of FPGA is devoted to the filter; that is a little more than
3000 LUTs. It operates at a clock frequency of 40 MHz.

4.2 Implementing the Linear Encoding Scheme on FPGAs

FPGA devices are well suited for the linear encoding scheme because of the high
number of available registers and the local propagation of data without global
control. Furthermore, the computation of transition weights fits perfectly into
LUTs with 4 inputs.



152 M. Giraud and D. Lavenier

Automaton Transitions Weight Total, by Maximum number
type logic operators transition of transitions
NFA 〈5 �→1〉 AND / OR

(1 bit) 2 LUTs ≤ 1 LUT ≤ 3 LUTs ≥ 1000
WFA, Z 〈5 �→p〉 max / +
(p bits) 2p LUTs ≤ 3p LUTs ≤ 5p LUTs ≥ 600/p

Fig. 4. Upper bound for the number of LUTs when k = 5. The last column shows the
maximum number of transitions for a Spartan-II FPGA with 3000 LUTs

The regularity of the architecture allows a relative ease of programming.
Our implementation, written in OCaml, translates WFA abstract descriptions
into their representation in the hardware design language VHDL. One of the
main issues with WFA is that their topology may change for each query. Design
techniques with J-Bits [9] would allow a fast compilation of arbitrary WFA
shapes, but they would need a custom place (& route) algorithm. The current
slower solution is to perform a full compilation from VHDL for each query,
the overhead due to compilation (4-5 minutes) being small compared to the
performance gain when scanning large databases.

For the scanning of protein databases (alphabet with 5 bits), an automaton
with q states and t transitions with a weight of p bits takes a surface area of
3pt + 2p(t − q) LUTs before compiler optimizations. The total area taken is
less than 5pt LUTs. Thus WFA with 75 transitions and an 8-bit weight can be
encoded.

To verify this bound, real FPGA experiments were done using the standard
Xilinx framework. We run our method on two bench sets. The first one is random
WFA, and results show that the real limit is beyond the 75 transitions (left part
of Fig. 5). The other bench set is the PROSITE protein pattern bank [10], which
contains about 1300 patterns that we translate into WFA to allow substitution
errors. More than 98% of the PROSITE bank can be translated in the FPGA.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20  40  60  80  100  120

LU
T

s

Transitions

LUTs
5pt
3pt
2pt

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120

P
ro

ce
ss

in
g 

B
an

dw
ith

 (
M

B
/s

)

Transitions

PC : agrep (4 errors)
PC : WFA simulation

One prototype board (R-disk)

Fig. 5. Experimental results for the linear encoding scheme. The left part shows the
LUT count for different WFA sizes. The right part compares the bandwidth processed
by one prototype board with an FPGA against software solutions on a PC
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4.3 Performance Comparison

Sidhu and Prasanna [5] showed that their FPGA realization is more effective
than softwares like agrep if data is large enough. Their conclusions remain for
WFA as they do even more operations (additions, maximums).

We compared our approach with some software techniques using WFA. The
low-cost Spartan-II is compared against a Pentium IV 2 GHz with 728 MB
RAM. This comparison is fair since the Spartan II was released in 2000 and the
Pentium IV 2 GHz in 2001. Results are shown in the right part of Fig. 5.

The comparison with agrep [11] is for reference only, as this software only
parse for regular expressions or for weighted expressions with a fixed score (with
at most 4 substitution errors). When patterns are small and with no errors, data
can be parsed through agrep at the disk rate. But those flows go down with
errors and with larger patterns.

More interesting is the comparison against a software simulation of WFA, as
in the algorithm described by Eramian in [4] that parses data in O(nt) time.
Data rates go from 10 MB/s for small WFA down to less than 1 MB/s for WFA
with more than 30 states.

On the contrary, our WFA implementation on the FPGA parses a constant
bandwidth of data (which is now 15 MB/s), as far as the WFA fits into the
available surface area of the FPGA. This bandwidth implies parsing less than
one amino acid (5 bits) at the 40 MHz clock cycle of the FPGA, allowing to
parse a character on every clock cycle. Experiment were done on real data (80-
transition WFA, 34 GB canine DNA database). It takes more than 20 hours
on a 2 GHz Pentium. On a single prototype R-disk board, it takes less than 45
minutes (5 minutes for compiling and 40 minutes for parsing).

5 Conclusion

Weighted finite automata can be effectively hardwired on FPGAs with the lin-
ear encoding scheme. That encoding is perfectly suited for standard FPGA de-
vices and provides a significant speed-up over software implementations. To our
knowledge, this is the first hardware realization of WFA.

The main current limitation with the linear encoding scheme is the size re-
quirements of the targeted WFA. Currently, we can implement WFA with an
8-bit weight and more than 75 transitions. This limit is already pushed away by
the next generation of FPGAs: in 2004, Xilinx sells the low-cost FPGAs Spartan-
3 with more than 18,000 CLB, that is 15 times larger than the chip we use in
our prototype board. The transition limit raises accordingly. If an higher number
of transitions is available, one could distribute them among several automata,
especially when one need to parse nucleic banks for protein patterns through six
reading frames.

More generally, the speed-up obtained by such a spatial implementation [12]
against software techniques will continue to increase, as it is easier to exploit
more resources in a reconfigurable device than in a sequential CPU.
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Appendix A

Proof of Lemma. Here we prove by induction on j the following property:

eq
j = ⊕j

i=0 ⊕qi+1,...,qj−1∈Q
qi∈I,qj=q ⊗j−1

t=i δ(qt, wt+1, qt+1).

At the cycle j = 0, the property is eq
0 = ⊕q0=q

q0∈I 1̄, that is eq
0 equals 1̄ if q ∈ I

and 0̄ if q �∈ I: the property is true. Assume that the induction is true until the
cycle j − 1, with j ≥ 1. Let q be a non-initial state. We compute the value eq

j of
the state q at the cycle j.
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eq
j = ⊕q′∈Q sq′,q

j

= ⊕q′∈Q

[
eq′

j−1 ⊗ δ(q′, wj , q)
]

= ⊕q′∈Q

[(
⊕j−1

i=0 ⊕qi+1,...,qj−2∈Q
qi∈I,qj−1=q′ ⊗j−2

t=i δ(qt, wt+1, qt+1)
)
⊗ δ(q′, wj , q)

]
(hypothesis of induction)

= ⊕q′∈Q ⊕j−1
i=0 ⊕qi+1,...,qj−2∈Q

qi∈I,qj−1=q′

[(
⊗j−2

t=i δ(qt, wt+1, qt+1)
)
⊗ δ(q′, wj , q)

]
(right-distributivity of ⊗)

= ⊕q′∈Q ⊕j−1
i=0 ⊕qi+1,...,qj−1∈Q

qi∈I,qj−1=q′,qj=q

[
⊗j−1

t=i δ(qt, wt+1, qt+1)
]

= ⊕q′∈Q ⊕j
i=0 ⊕qi+1,...,qj−1∈Q

qi∈I,qj−1=q′,qj=q

[
⊗j−1

t=i δ(qt, wt+1, qt+1)
]

(because q is not initial)

= ⊕j
i=0 ⊕qi+1,...,qj−1∈Q

qi∈I,qj=q ⊗j−1
t=i δ(qt, wt+1, qt+1)

Thus the property is true at the cycle j. If q is initial, the same result is
obtained by a similar computation by adding a 1̄ to each term. By induction,
the property is true for every cycle j ≥ 0. ��



The Generalization of Generalized Automata:
Expression Automata

Yo-Sub Han and Derick Wood

Department of Computer Science,
The Hong Kong University of Science and Technology, Hong Kong

{emmous, dwood}@cs.ust.hk

Abstract. We explore expression automata with respect to determin-
ism, minimization and primeness. We define determinism of expression
automata using prefix-freeness. This approach is, to some extent, simi-
lar to that of Giammarresi and Montalbano’s definition of deterministic
generalized automata. We prove that deterministic expression automata
languages are a proper subfamily of the regular languages. We define the
minimization of deterministic expression automata. Lastly, we discuss
prime prefix-free regular languages.

Note that we have omitted almost all proofs in this preliminary ver-
sion.

1 Introduction

Recently, there has been a resurgence of interest in finite-state automata that
allow more complex transition labels. In particular, Giammarresi and Montal-
bano [4] have studied generalized automata (introduced by Eilenberg [3]) with
respect to determinism. Generalized automata have strings (or blocks) as tran-
sition labels rather than merely characters or the null string. (They have also
been called string or lazy automata.) Generalized automata allow us to more
easily construct an automaton in many cases. For example, given the reserved
words for C++ programs, construct a finite-state automaton that discovers all
reserved words that appear in a specific C++ program or program segment. The
use of generalized automata makes this task much simpler.

It is well known that generalized automata have the same expressive power
as traditional finite-state automata. Indeed, we can transform any generalized
automaton into a traditional finite-state automaton using state expansion.
Giammarresi and Montalbano, however, took a different approach by defining
deterministic generalized automata (DGAs) directly in terms of a local
property which we introduce in Section 4.

Our goal is to re-examine the notion of expression automata; that is,
finite-state automata whose transition labels are regular expressions over the
input alphabet. We define deterministic expression automata (DEAs) by
extending the applicability of prefix-freeness.

We first define traditional finite-state automata and generalized automata
and their deterministic counterparts in Section 2 and formally define expression
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automata in Section 3. In section 4, we define determinism based on prefix-
freeness and investigate the relationship between deterministic expression au-
tomata and prefix-free regular languages. Then we consider minimization of de-
terministic expression automata, in Section 5, and introduce prime prefix-free
regular languages in Section 6.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ, where the elements of Σ∗ are called strings or blocks. We call an element
of Σ a character and an element of Σ∗ a string. A language over Σ is a subset
of Σ∗. The character ∅ denotes the empty language and the character λ denotes
the null string.

Given two strings x and y in Σ∗, x is said to be a prefix of y if there is a
string w such that xw = y and we define x to be a proper prefix of y is x �= λ
and x �= y. Given a set X of strings over Σ, X is prefix-free if no string in X
is proper prefix of any other string in X.

A traditional finite-state automaton A is specified by a tuple (Q,Σ, δ, s, F ),
where Q is a finite set of states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a
(finite) set of transitions, s ∈ Q is the start state and F ⊆ Q is a set of final
states. A string x over Σ is accepted by A if there is a labeled path from s to a
state in F such that this path spells out the string x. Thus, the language L(A) of
a finite-state automaton A is the set of all strings that are spelled out by paths
from s to a final state in F . Automata that do not have any useless states;
that is states that do not appear on any path from the start state to some final
state are called trim or reduced [3, 9].

Eilenberg [3] introduced generalized automata, an extension of traditional
finite-state automata by allowing strings on the transitions. A generalized au-
tomaton A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set of states,
Σ is an input alphabet, δ ⊆ Q×Σ∗×Q is a finite set of block transitions, s ∈ Q
is the start state and F ⊆ Q is a set of final states. Giammarresi and Mon-
talbano [4] define a deterministic generalized automaton using a local notion of
prefix-freeness. A generalized automaton A is deterministic if, for each state q
in A, the following two conditions hold:

1. The set of all blocks in out-transitions from q is prefix-free.
2. For any two out-transitions (q, x, p) and (q, y, r) from q, if x = y, then we

require that p = r.

Note that Giammarresi and Montalbano do not require condition 2 and, as
a result, some DGAs are nondeterministic.

Since regular languages L are sets of strings, we can apply the notion of
prefix-freeness to such sets.

Definition 1. A (regular) language L over an alphabet Σ is prefix-free if, for
all distinct strings x and y in L, x is not a prefix of y and y is not a prefix of
x. A regular expression α is prefix-free if L(α) is prefix-free.
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Lemma 1. A regular language L is prefix-free if and only if there is a trim
deterministic finite-state automaton (DFA) A for L that has no out-transitions
from any final state.

3 Expression Automata

It is well known that regular expressions and (deterministic) finite-state au-
tomata have exactly the same expressive power [6, 12]. A finite-state automaton
allows only a single character in a transition and a generalized automaton [3]
allows a single string, possibly the null string, in a transition. It is natural to
extend this notion to allow a regular expression in a transition, since a character
and a string are also regular expressions. This concept was first considered by
Brzozowski and McCluskey, Jr. [1].

Definition 2. An expression automaton A is specified by a tuple
(Q,Σ, δ, s, f), where Q is a finite set of states, Σ is an input alphabet, δ ⊆
Q×RΣ ×Q is a finite set of expression transitions, where RΣ is the set of all
regular expressions over Σ, s ∈ Q is the start state and f ∈ Q is the final state.
(Note that we need only have one final state.) We require that, for every pair p
and q of states, there is exactly one expression transition (p, α, q) in δ, where α
is a regular expression over Σ.

We can also use the functional notation δ:Q×Q→ RΣ that gives the equiv-
alent representation. An expression transition (p, α, q) gives δ(p, q) = α. Note
that δ contains exactly |Q|2 transitions, one transition for each pair of states,
and whenever (p, ∅, q) is in δ, for some p and q in Q, A cannot move from p to
q directly.

We generalize the notion of accepting transition sequences to accepting ex-
pression transition sequences and accepting language transition sequences.

Definition 3. An accepting expression transition sequence is a transition
sequence of the form:

(p0 = s, α1, p1) · · · (pm−1, αm, pm = f),

for some m ≥ 1, where s and f are the start and final states, respectively.
The second notion is an accepting language transition sequence of the

form:
(p0 = s, L(α1), p1) · · · (pm−1, L(αm), pm = f),

for some m ≥ 1, where s and f are the start and final states, respectively.

We include a proof sketch that every finite-state automaton can be converted
into an equivalent expression automaton and conversely.

Lemma 2. Every trim finite-state automaton can be converted into an equiva-
lent trim expression automaton. Therefore, every regular language is an expres-
sion automaton language.
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Fig. 1. An example of the state elimination of a state q

We next establish that we can convert every expression automaton A into an
equivalent finite-state automaton; that is combining the two results, expression
automata and finite-state automata have the same expressive power. We prove
this fact by constructing a regular expression α such that L(α) = L(A). A trim
expression automaton A = (Q,Σ, δ, s, f) is non-returning if δ(q, s) = ∅, for
all q ∈ Q. It is straightforward to show that any trim expression automaton A
can be converted into a trim non-returning expression automaton for the same
language L(A).

We define the state elimination of q ∈ Q \ {s, f} in A to be the bypassing
of state q, q’s in-transitions, q’s out-transitions and q’s self-looping transition
with equivalent expression transition sequences. For each in-transition (pi, αi, q),
1 ≤ i ≤ m, for some m ≥ 1, for each out-transition (q, γ, rj), 1 ≤ j ≤ n, for
some n ≥ 1, and for the self-looping transition (q, β, q) in δ, construct a new
transition (pi, αi ·β∗ · γj , rj). Since there is always an existing transition (p, ν, r)
in δ, for some expression ν, we merge two transitions to give the bypass transition
(p, (αi · β∗ · γj)+ν, r). We then remove q and all transitions into and out of q in
δ. We denote the resulting expression automaton by Aq = (Q \ {q}, Σ, δq, s, f)
after the state elimination of q. Thus, we have established the following state
elimination result:

Lemma 3. Let A = (Q,Σ, δ, s, f) be a trim and non-returning expression au-
tomaton with at least three states and q be a state in Q \ {s, f}. Define Aq =
(Q \ {q}, Σ, δq, s, f) to be a trim and non-returning expression automaton such
that, for all pairs p and r of states in Q \ {q},

δq(p, r) = δ(p, r) + (δ(p, q) · δ(q, q)∗ · δ(q, r)).

Then, L(Aq) = L(A) and Aq is trim and non-returning.

The elimination of a state q preserves all the labeled paths from q’s predeces-
sors to its successors. Therefore, state elimination does not change the language
accepted by the expression automaton A.

To complete the construction of an equivalent regular expression, we re-
peatedly eliminate one state at a time until Q = {s, f}. Thus, we are left
with a trim and non-returning expression automaton Ā, that has exactly two
states s and f . Note that δ(s, s) = ∅ and δ(f, s) = ∅ since Ā is trim and non-
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Fig. 2. An expression automaton for the regular language L(a(ab)∗(aa∗b+ab)) and its
state eliminations

returning. Thus, only the transitions δ(s, f) and δ(f, f) can be nontrivial. Hence,
L(Ā) = L(δ(s, f) · δ(f, f)∗) = L(A). We have established the following result:

Theorem 1. A language L is an expression automaton language if and only if
L is a regular language.

4 Deterministic Expression Automata

We now define deterministic expression automata (DEAs) and investigate
their properties. A traditional finite-state automaton is deterministic if, for
each state, the next state is uniquely determined by the current state and the
current input character [12].

For an expression automaton, the situation is not as simple. When processing
an input string with a given expression automaton and a given current state,
we need to determine not only the next state but also an appropriate prefix of
the remaining input string since each of the current state’s out-transitions is
labeled with a regular expression (or a regular language) instead of with a single
character.

An expression automaton is deterministic if and only if, for each state p of the
automaton, each two distinct out-transitions have disjoint regular languages and,
in addition, each regular language is prefix-free. For example, the out-transition
of the expression automaton in Figure 3(a) is not prefix-free, L(a∗) is not prefix-
free since ai is a prefix of aj , for all i and j such that 1 ≤ i ≤ j; hence, this
expression automaton is not deterministic. On the other hand, the expression
automaton in Figure 3(b) is deterministic since L(a∗b) is a prefix-free language.
We give a formal definition as following.

Definition 4. An expression automaton A = (Q,Σ, δ, s, f), where |Q| = m, is
deterministic if and only if the following three conditions hold:
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a∗ba∗

(b)(a)

Fig. 3. a. Example of non-prefix-freeness. b. Example of prefix-freeness

1. Prefix-freeness: For each state q ∈ Q and for q’s out-transitions

(q, α1, q1), (q, α2, q2), . . . , (q, αm, qm),

L(α1) ∪ L(α2) ∪ · · · ∪ L(αm) is a prefix-free regular language.
2. Disjointness: For each state q ∈ Q and for all pairs of out-transitions αi

and αj, where i �= j and 1 ≤ i, j ≤ m,

L(αi) ∩ L(αj) = ∅.

3. Non-exiting: For all q ∈ Q, δ(f, q) = ∅.
We use the acronym DEA to denote deterministic expression automaton.

Lemma 4. If a trim DEA A = (Q,Σ, δ, s, f) has at least three states, then, for
any state q ∈ Q \ {s, f}, Aq is deterministic. However the converse does not
hold.

Proof. This result follows from Lemma 3 since the catenation of prefix-free lan-
guages is a prefix-free language.

Therefore, state elimination for a DEA preserves determinism.

Lemma 5. There exists a trim expression automaton A that is deterministic if
and only if L(A) is prefix-free.

Lemma 5 demonstrates that the regular languages accepted by DEAs are
prefix-free and conversely. Thus, DEA languages define a proper subfamily of
the regular languages.

Theorem 2. The family of prefix-free regular languages is closed under catena-
tion and intersection but not under union, complement or star.

These closure and nonclosure results can be proved straightforwardly.

5 Minimization of DEAs

It is natural to attempt to reduce the size of an automaton as much as possible to
save space. There are well-known algorithms to truly minimize DFAs [5, 8] in that
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they give unique (up to renaming of states) minimal DFAs. Recently, Giammar-
resi and Montalbano [4] suggested a minimization algorithm for deterministic
generalized automata (DGAs). The technique does not however result in a
unique minimal DGA. For a given DGA they introduce two operations in their
quest for a minimal DGA. The first operation identifies indistinguishable states
similar to minimization for DFAs and the second operation applies state elim-
ination to reduce the number of states in a DGA (at the expense of increasing
the label lengths of the transitions).

We define the minimization of a DEA as the transformation of a given DEA
into a DEA with a smaller number of states. Note that, for all DEAs, we can
construct an equivalent simple DEA, which consists of one start and one final
states with one transition between them, from any DEA using a sequence of
state eliminations.

Given a trim DEA A = (Q,Σ, δ, s, f), we define, for a state q ∈ Q, the
right language L−→q to be the set of strings defined by the trim DEA A−→q =
(Q′, Σ′, δ′, q, f), where Q′ ⊆ Q,Σ′ ⊆ Σ, δ′ ⊆ δ. Similarly we define the left
language L←−q defined by the trim DEA A←−q = (Q′, Σ′, δ′, s, q), where Q′ ⊆
Q,Σ′ ⊆ Σ, δ′ ⊆ δ.

We define two distinct states p and q to be indistinguishable if L−→p = L−→q .
We denote this indistinguishability by p ∼ q. Note that if p ∼ q, then there must
exist a pair of indistinguishable states in the following states in a DFA. However,
this property does not always hold for a DEA; see Fig. 4.

a∗b

b

dbq

p

ca

a

b

bcad

c

a

s

r

u v

f

Fig. 4. An example of indistinguishable states. Note that r and u are distinguishable
although p ∼ q

Based on the notion of the right language, we define a minimal DEA as
following.

Definition 5. A trim DEA A is minimal if all states A are distinguishable from
each other.

Thus, we minimize a DEA by merging indistinguishable states. We now ex-
plain how to merge two indistinguishable states p and q to give one state p,
say. The method is simple, we first remove state q and its out-transitions and
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q
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Fig. 5. An example of the merging two indistinguishable states p and q. The dotted
lines show the removal of transitions

then redirect its in-transitions into state p. Once we have defined this micro-
operation, we can repeat it wherever and whenever we find two indistinguishable
states. Since there are only finitely many states, we can guarantee termination
and minimality.

Now we need to prove that the micro-operation on p ∼ q in A does not
change L(A). Observe that since L−→p = L−→q , we can remove state q and its
out-transitions and redirect q’s in-transitions to be in-transitions of p. Now, let
L←−p and L←−q be the left languages of p and q. Observe that redirecting q’s in-
transitions to be new in-transitions of p implies that the new left language of
p is now L←−p ∪ L←−q whereas before the redirection the left language of p and
q are L←−p and L←−q . Moreover, since L−→p = L−→q , once q is removed the right

a + b
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db
a∗b

unreachable

a

c

bcad
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b

c
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(a) (b)
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a + b
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b

c

a + b dba∗b ca

Fig. 6. Two different minimal DEAs for the DEA in Fig. 4
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language of p is unchanged. Finally, we catenate the two languages to obtain
(L←−p ∪L←−q ) ·L−→p = (L←−p ·L−→p )∪ (L←−q ·L−→p ) = (L←−p ·L−→p )∪ (L←−q ·L−→q ), before
the removal of q.

Note that, as with DGA, we cannot guarantee that we obtain a unique mini-
mum DEA from a given DEA. We can only guarantee that we obtain a minimal
DEA. For example, the automaton in Fig. 4 can be minimized in at least two
different ways. As shown in Fig. 6(a), we merge p into q and remove state r
which is now unreachable. In Fig. 6(b), we merge q into p and remove state
u which is unreachable. But the second state v from q has an in-transition
from s, which prevents v from being useless. The two minimizations result
in two different minimal expression automata that have the same numbers of
states.

6 Prime Prefix-Free Regular Languages

Assume that we have the regular expressions α1 = b∗a∗ and α2 = a∗b∗. Once
we catenate them however, α1 ·α2 = b∗a∗b∗ and we have only three stars, b∗, a∗

and b∗, instead of four stars. Prefix-freeness ensures that there is no such loss
as a result of catenation. Similarly, any infinite regular language, can be split
unboundedly often. For example, L(a∗) = L(a∗) · L(a∗) · L(a∗) · · ·L(a∗).

These two examples have led us to investigate whether an unbounded split
is possible for an infinite prefix-free regular language. There are some known
results on the prime decomposition of finite languages and decomposition of
regular languages [7, 10].

Definition 6. A prefix-free regular language L is prime if L �= L1 · L2 for any
two non-trivial prefix-free regular languages L1 and L2.

We say a state b in a DFA A is a bridge state if the following conditions
hold:

1. b is neither a start nor a final state.
2. For any string w ∈ L(A), its path in A must pass through b at least once.

Then we partition A at b into two subautomata A1 and A2 such that all
out-transitions from b belong to A2 and make b to be the final state of A1 and
the start state of A2, respectively. It ensures that A1 defines a prefix-free regular
language.

Theorem 3. A prefix-free regular language L is a prime prefix-free regular lan-
guage if and only if there is no bridge state in the minimal DFA A for L.

Theorem 3 shows that a given prefix-free regular language L cannot be split
unboundedly often because its minimal DFA has a finite number of states.
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7 Conclusion

State elimination is a natural way to compute a regular expression from a given
automaton that results in an automaton that we call an expression automaton.
We have formally defined expression automata and DEAs based on the notion
of prefix-freeness. In addition, we have shown that DEA languages are prefix-
free regular languages and, therefore, they are a proper subfamily of regular
languages.

We have studied the minimization of DEA and demonstrated that minimiza-
tion is not unique in general. Since the regular expression equivalence problem
is PSPACE-complete [11], we believe that the complexity of minimization is at
least PSPACE-complete.
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Abstract. Tandem mass spectrometry (MS/MS) is the most impor-
tant method for the peptide and protein identification. One approach
to interpret the MS/MS data is de novo sequencing, which is becoming
more and more accurate and important. However De novo sequencing
usually can only confidently determine partial sequences, while the unde-
termined parts are represented by “mass gaps”. We call such a partially
determined sequence a gapped sequence tag. When a gapped sequence tag
is searched in a database for protein identification, the determined parts
should match the database sequence exactly, while each mass gap should
match a substring of amino acids whose masses total up to the value of
the mass gap. In such a case, the standard string matching algorithm
does not work any more. In this paper, we present a new efficient algo-
rithm to find the matches of gapped sequence tags in a protein database.

1 Introduction

Proteins are essential to life, playing key roles in all biological processes. For ex-
ample, enzymes that catalyze reactions are proteins and antibodies in an immune
response are proteins. One of the first steps in understanding proteins is pro-
tein identification. Protein identification is to identify the primary structure of a
protein, which is a chain of amino acids. There are 20 different amino acids, and
therefore, the primary structure of a protein can be represented as a string over
an alphabet of size 20. Protein identification is a fundamental problem in Pro-
teomics. Nowadays, tandem mass spectrometry (MS/MS) is becoming the most
important and standard technology for this importance protein identification
problem [1]. In the current practice of protein identification using MS/MS, pu-
rified proteins are digested into short peptides with enzymes like trypsin. Then,
tandem mass spectra are measured for the peptides with a tandem mass spec-
trometer. Fig. 1 shows an example of MS/MS spectrum. A peak in the MS/MS
spectrum indicates the mass-to-charge ratio (m/z) of the type of ions that pro-
duce the peak, and the intensity of the peak indicates the number of the same
type of ions detected. Finally the MS/MS spectra are interpreted by computer
software to identify the amino acid sequences of the peptides and proteins.

Many algorithms have been developed and applied in software to interpret
the MS/MS data. They can be grouped into two major approaches. The first
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Fig. 1. An MS/MS spectrum

approach correlates MS/MS spectra with peptides in a protein database to find
the best matches [10, 18, 19, 25]. We call this approach database search approach.
Among the many software programs developed using this approach, Mascot [10]
and Sequest [18] are the two most well-known programs.

The other approach is de novo sequencing [6, 8, 9, 11, 12, 13, 15, 20, 23, 24],
which produces amino acid sequences of the peptides from the MS/MS data
directly without the help of the protein database. De novo sequencing software
often uses the mass difference between the peaks in an MS/MS spectrum to
determine the amino acids of the peptide. Because the MS/MS spectra are al-
ways not perfect due to the impure sample, incomplete fragmentation and other
factors in the MS/MS experiments, the mass difference between two peaks in an
MS/MS spectrum may not indicate the mass of only one amino acid. Instead,
it may be the sum of the mass of several amino acids. In this case, there can be
several combinations of amino acids have the same mass. For example, mass(EE)
= mass(GSN) = 258.1 Dalton. Even some single amino acids also have this kind
of ambiguous mass, like mass(L) = mass(I) and mass(N) = mass(GG).

As a result, most de novo sequencing software cannot determine these am-
biguous masses, therefore outputs erroneous results. We call this type of error
same mass segments replacement, i.e., one segment of amino acids has the similar
mass to another segment. There are some de novo sequencing software available,
such as commercial software PEAKS [14] and free software Lutefisk [23, 24]. Both
PEAKS and Lutefisk have their own mechanisms to reduce the effects of these
errors. Lutefisk outputs a mass gap when it cannot confidently determine the
sequence that fills the gap. One example output is

[258.1]TLMEYLE[114.0]PK,
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where the mass gaps [258.1] and [114.0] represent two short segments of amino
acids whose masses add up to 258.1 and 114.0 Dalton, respectively. We call such
a sequence tag the gapped sequence tag.

A possible match of such a tag in the database is EETLMEYLENPK, as
follows:

Tag: [258.1]TLMEYLE[114.0]PK
Match: [EE ]TLMEYLE[N ]PK,

where mass(EE) = 258.1 and mass(N)=114.0.
PEAKS uses different colors to represent different confidences on different

amino acids in a sequence. PEAKS version 1.x outputs the low confidence
level (< 80%) amino acids with black color, compared to the other colors (red,
green, blue) for higher confidences (95%-100%, 90%-95%, 80-90%) [14]. 1 Here
we use brackets for the low confidence level parts. For example, the output
[GSN]TLMEYLE[GG]PK indicates that PEAKS is not confident at the two seg-
ments GSN and GG. Clearly, this [GSN]TLMEYLE[GG]PK can be converted to
Lutefisk’s output format by replacing GSN with the mass gap [258.1] and GG
with [114.0].

The determined parts of sequence tags produced by Lutefisk and high con-
fident parts of PEAKS are very likely the correct sequences. Therefore, when
the gapped sequence tag is searched in a database, we require the determined
parts to match exactly. However, the mass gaps should be matched by substrings
whose total masses equal to the mass gaps.

2 Related Work

Software programs have been developed for the purpose of searching sequence
tags in the database to identify peptides and proteins. MS-BLAST [22] uses
a BLAST-like algorithm [4, 5], which first finds a seed in the database, and
then extends around the seed attempting to find a match. MS-BLAST can find
approximate matches using a homology model. However, MS-BLAST does not
accept inputs with mass gaps. When mass gaps are present in a query, MS-
BLAST requires the user to find all possible exact matches of the tag, and then it
uses all those possibilities as query and searches them all together simultaneously.
This may create too many possible exact matches when there are very long
mass gaps.

Another software program, OpenSea [21], considers the mass gaps and other
de novo sequencing errors. But the mass gaps can only be matched by substrings
with up to 3 amino acids. Therefore OpenSea does not work for long mass
gaps either.

In this paper, we present our approach to match gapped sequence tags against
database sequences. Our approach separates the query sequence tags into seg-
ments by mass gaps. A segment is a short run of amino acid sequence. We modify

1 The color scheme has been changed slightly in later versions of the software.
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Aho-Corasick automaton to find the exact matches of those segments, and a neat
algorithm is used to assemble the exact matches together to get the match of
the whole gapped sequence tag. We note that a straightforward assembly will
not result into a linear running time as our algorithm does.

3 An Algorithm to Match Sequence Tags

In this section, we first describe our algorithm to match one gapped sequence
tag against the protein database. Then by slightly modifications, we extend it
to simultaneously match multiple gapped sequence tags against the database.

3.1 Problem Definition

In this section we define our problem more formally. Let Σ be an alphabet
of constant size. Each letter a in Σ is associated with a mass m(a). Let s =
s[1]s[2] . . . s[k] be a string. |s| = k denotes the length of the string, and m(s) =∑|s|

i=1 m(s[i]).
A gapped sequence tag P is represented by m substrings, p1, p2, . . . , pm,

and m − 1 mass gaps, M1,M2, . . . ,Mm−1. We want to find all the strings
s in the database, such that, s = p1q1p2 . . . qm−1pm, and m(qj) = Mj for
j = 1, 2, . . . ,m− 1. We use the notation |P | to denote the total length of the m
substrings, p1, p2, . . ., and pm.

It is possible that a mass gap is at the beginning of or the end of a gapped
tag. In such a case, we simply let p1 or pm to be null string that matches every
position of the database.

Our idea is to use the standard algorithm for multiple string matching to find
every occurrence of every substring pi; and carefully assemble the occurrences
together to get the match of the whole gapped sequence tag. The difficulty is
that qj can have variable lengths. However, as later shown in the paper, the
constraint m(qj) = Mj allows us to do the assembly efficiently.

In the following section, we first briefly review the Aho-Corasick algorithm
for multiple string matching.

3.2 Aho-Corasick Algorithm

As the extension of Knuth-Morris-Pratt algorithm [16], the Aho-Corasick algo-
rithm is a widely used algorithm that finds all occurrences of multiple patterns
in a text using an automaton in linear time. This algorithm serves as the ba-
sis for the UNIX tool fgrep, and has many applications in bioinformatics. For
example, the Tandem Repeat Occurrence Locator (TROLL) [2] is an applica-
tion developed on the basis of Aho-Corasick algorithm to find tandem repeats of
pre-selected motifs from DNA sequence. Another application called CHAOS [7]
using an algorithm including a simplified version of the Aho-Corasick algorithm
to find local alignments, which are used as anchor points to improve the running
time of DIALIGN [17], a slow but sensitive multiple-alignment tool.
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An Aho-Corasick automaton can be constructed by the following two steps:
firstly, construct a trie and goto functions from the multiple patterns to be
searched. The goto function maps a pair (s, α), where s is a state and α is an
input symbol, into a state or the message fail. Secondly, add failure and output
functions. The failure function f(s) maps a state into another state s′. L(s′) is
the longest proper suffix of L(s) such that L(s) is a prefix of some pattern. An
output function out(s) gives the set of patterns matched when entering state s.
The time complexity of the construction of Aho-Corasick automaton is linearly
proportional to the total length of the patterns. The searching time is linear to
the text size, and the out(s) function will take O(z) time, where z is the total
number of occurrences of all the patterns. The details of constructing such an
automaton and proof of time complexity can be found in [3].

However, the Aho-Corasick algorithm or its variances cannot apply to our prob-
lem directly. We need to modify it to allow mass gaps between matched segments.

3.3 Our Algorithm

The alphabet set Σ is 20 amino acid letters. We construct an extended Aho-
Corasick automaton such that each state has 20 transitions according the seg-
ments in the sequence tag P . This automaton is a deterministic finite automaton,
which contains five elements: (Q,Σ, σ, q0, F ). Q is the set of states. Σ is an input
alphabet, i.e., 20 amino acid letters. σ is a transition function: σ : Q×Σ → Q.
q0 is the start state, q0 ∈ Q. The automaton is in the start state before the run
of each protein sequence in the database. F is a set of final states, F ∈ Q. Each
segment in the sequence tag will produce a final state while constructing the
extended Aho-Corasick automaton. Entering a final state, the automaton will
output matched position in the protein sequence and the number of segment in
the sequence tag.

There are two special pair of amino acids (I,L) and (K,Q). I and L have the
same mass, and K and Q have very similar mass. In most case, it is desired
that they are not considered to be mismatch. So we have an option that make
I and L have the same transition, K and Q have the same transition in each
state according the passed parameters when constructing the automaton. For
each protein sequence in the database, we will run this modified Aho-Corasick
automaton to find all the segment matches of the sequence tag P .

When a segment match is found, it is attempted to assemble with other
segment matches. For the joint of two adjacent segments, we need to compute the
mass of the substring between the two occurrences of the two segments. Let T be
the database string. Given any two positions i and j, it is possible to compute the
total mass of substring T [i..j] in O(1) time by building a accumulated protein
mass table while we read each amino acid from the database. Let acm[i] be
m(T [1..i]). Then m(T [i..j]) = acm[j]− acm[i− 1].

However, if we straightforwardly compute the mass value between every oc-
currence of segment pi and segment pi+1, the running time will be quadratic.
Also, because a gap can be filled by substrings of variable lengths, a linear time
algorithm cannot be achieved by trying every possible length of the substring.
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The Segments Assembly Procedure. We use a set of queues {q1, q2, . . . qm}
to keep the matches that can be potentially parts of a whole tag match and
discard the matches that do not have such a potential. Each qi corresponds to
the ith segment, pi, of the gapped sequence tag. For the segment match of the
first segment, p1, we simply add the match to q1. However, if pi is matched at
database position k for i > 1, before we add k to the queue qi, we check whether
there is a match of pi−1, such that the two matches have a mass gap equal to
Mi−1 in between. This can be done by checking the queue qi−1. Let k′ be the
first element in qi−1. Let M = m(T [(k′ + |pi−1|)..k]), the mass gap between
k′ + |pi−1| and k.

There are three cases:

Case 1: M < Mi−1.
This means the occurrence of pi at k cannot be joined with the occurrence of pi−1
at k′. Moreover, the former cannot be joined with any occurrences of pi−1 after
k′, because we use first-in-first-out queues. Therefore, we can safely discard k.
Case 2: M > Mi−1.
This means the occurrence of pi at k cannot be joined with the occurrence of
pi−1 at k′. Moreover, the latter cannot be joined with any occurrences of pi after
k, because we use first-in-first-out queues. Therefore, we can safely delete the
occurrence of pi−1 at k′ and continue to consider the next element in qi−1.
Case 3: M = Mi−1.
This means the occurrence of pi at k can be joined with the occurrence of pi−1
at k′. But the latter cannot be joined with any occurrences of pi after k, because
that will make the gap too large. Therefore, we can safely delete k′ from qi−1
but add k to qi.

Let i be the segment that matches the current database position k. Let acm[k]
be the accumulated mass of the database. Then our assembly process for this
match is shown in Figure 2.

Lemma 1. For any position k in qi, there is a substring T [j..k+ |pi|], such that
T [j..k+ |pi|] matches p1M1...pi−1Mi−1pi. On the other hand, for every substring
T [j..k + |pi|] that matches p1M1...pi−1Mi−1pi, k is added into qi once.

Proof. We prove by induction on i. Obviously the lemma is true for i = 1 because
of line 2 of Algorithm Assembly. Now suppose the lemma is true for i = i0. We
want to prove it is true for i = i0 + 1.

When k is added into qi in line 13, we know that k′ was in qi−1. By induction,
we know that there is j such that T [j..k′ + |pi−1|] matches p1M1...pi−1. Also we
know by line 11 that the mass gap between the occurrence of pi−1 at k′ and
the occurrence of pi at k is equal to Mi−1. Therefore, T [j..k + |pi|] matches
p1M1...pi−1Mi−1pi.

On the other hand, if k is such that T [j..k+ |pi|] matches p1M1...pi−1Mi−1pi,
there must be k′ that T [j..k′ + |pi−1|] matches p1M1...pi−1. By induction, k′ is
added into qi−1, and it is removed only when k was added into qi in line 13.
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Algorithm Assembly(i, k)
1 if i = 1
2 add k to q1

3 else
4 while qi−1 is not empty do
5 k′ ← the first element of qi−1

6 massDiff ← (acm[k] − acm[k′ + |pi−1|])
7 if massDiff < Mi−1

8 break;
9 else if massDiff > Mi−1

10 delete k′ from qi−1

11 else
12 delete k′ from qi−1

13 append k to qi

14 break;
15 if qm is not empty
16 output k as a match of the whole tag

Fig. 2. The procedure is called whenever the ith segment, pi, is matched at the
database position k. In the algorithm, acm[k] is the accumulated mass of the database.
qi is a first-in-first-out queue

Lemma 2. The Assembly procedure will be called O(z) time, where z is the total
number of occurrences of the segments in the database. The total time that the
Assembly procedure takes is also O(z).

Proof. Because we only call the Assembly procedure whenever we find a match
of a segment, the procedure is called O(z) time.

Lines 1 − 2 and 15 − 16 of the Assembly procedure will take O(1) time for
each invocation of the procedure. And lines 5− 14 will take O(1) time for each
iteration of the while loop. Therefore, we only need to prove that the while loop
is repeated O(z) time in total.

We note that there is one element deleted from the queues every time the
while loop is repeated, or the while will break in line 14. And we add at most
one element into the queue when a match of a segment is found. Therefore, at
most z elements will be added to the queues, and the total time of deletions can
be at most z. Therefore, the while loop is repeated in total O(z) time.

Theorem 1. By using the automaton described above and calling the Assembly
procedure whenever a segment match is found, all the matches of a gapped se-
quence tag can be found in O(n + |P | + z) time, where n is the database size,
|P | is the total length of the segments in the queries, and z is the number of
occurrences of the segments in the database.

Proof. The correctness directly follows Lemma 1. For the time complexity, there
are three main parts. First, constructing of the extended-AC automaton will
take O(|P |) time. Secondly, running the automaton against each amino acid
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letter in the protein database will take O(n) time. Thirdly, assembling segments
when a segment match is found in the database. From Lemma 2, the Assembly
procedure will take O(z) time in total.

Multiple Sequence Tags Match. The algorithm discussed above matches a
mass gapped sequence tag against the database. It can be modified to adapt to
multiple sequence tags. As mentioned in the first section of this paper, in an
MS/MS experiment, a protein is digested into many peptides and each peptide
will produce a corresponding MS/MS spectrum. The advantage of using multi-
ple sequences is clear: even if some of the sequence tags produced by de novo
sequencing software are wrong, the correct and partially correct sequence tags
can still provide enough information to identify the protein. To adapt to multiple
sequence tags, we need to the following modifications on our previous algorithm:

1. First, let the automaton include all the segments from all the sequence tags.
That is, let P = {P1, P2, . . . , PK} be the set of input query sequence tags
from de novo sequencing software. Then we include all the segments of all the
Pi in the construction of the extended Aho-Corasick automaton. For exam-
ple, if the query P contains three sequence tags: HGTVVLTALG[170.10]LK,
[184.12]ELFR and [276.14]EFLSD[184.12]LHVLHSK. The automaton is con-
structed to search the sequence segments {HGTVVLTALG, LK, ELFR,
EFLSD, LHVLFSK}.

2. The second modification is output function of the extended AC automaton.
We have to modify the output to include the information of which sequence

queuespeptide sequence
in the database

Output matched 

a segment match
is found

Token Construct

Extended AC Automaton

Sequence Tags Segments

Segments Assemble Procedure

K

Protein Sequence1
Protein Sequence2
Protein Sequence3  Database

      Protein

2
1

Fig. 3. The process overview of matching gapped sequence tags against a database
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tag in the query and which segment in this sequence tag is matched as well
as the segment match location in a protein sequence.

3. Third modification is about the queues implemented in segments assembly
procedure. Instead of using one set of queues, we need K sets of queues.
That is, qi,j corresponds to the jth segment of Pi. And whenever the jth

segment of Pi is matched in the database position k, qi,j−1 will be checked
to determine whether k is inserted to qi,j .

The rest of algorithm stays the same as before. It is easy to see the time
complexity of matching multiple sequence tags is O(n + |P| + z), where |P| is
the total length of the sequence segments in all Pi ∈ P. The process is illustrated
in Figure 3.

4 Experiments

We have implemented our algorithm into a Java program. We computed the de
novo sequencing results of 54 Q-Tof MS/MS spectra, using PEAKS and Lutefisk,
respectively. The 54 MS/MS spectra were obtained from the paper [14] of Ma
et al and can be found at www.csd.uwo.ca/∼bma/peaks. Both PEAKS and
Lutefisk output some sequence tags completely correct and some sequences only
partially correct. For example, PEAKS output [NGG]PVPKPK and Lutefisk
output [228.11]PVPKPK while the correct peptide sequence is DIPVPKPK. The
brackets in the PEAKS output indicates low confident level (lower than %80).
We submitted each of the sequences to our program to search in Swiss-Prot
protein database and examined whether the first match output by our program
is the correct sequence. Lutefisk only outputs gapped sequence tags when it is
not confident to some amino acids. PEAKS’ output is also converted to gapped
sequence tags by using the method discussed in the introduction.

Table 1 show the difference on the numbers (ratios) of correctly computed
sequences before and after using our program on the two sets of data.

Table 1. A comparison of peptide identification before and after using our program

PEAKS Lutefisk
Before our program 22 (41%) 11 (20%)
After our program 36 (67%) 23 (42%)

A more interesting use of our program is protein identification with multiple
sequence tags. The de novo sequencing results of the spectra for the same protein
can be submitted to our programm together. The 26 spectra we used are in
four groups, each for one of the four proteins, beta casein (bovine), myoglobin
(horse), albumin (bovine), and cytochrome C (horse). By submitting each group
of PEAKS (or Lutefisks) de novo sequencing results to our program, all of the
four proteins can be correctly identified. The organisms of the proteins can also
be identified except that beta casein (bovine) obtained the same score as beta
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casein (water buffalo). The reason is that the two proteins differ at only three
amino acids, which are not covered by the peptides of the MS/MS spectra.
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{jirasek, szabari}@science.upjs.sk
2 Mathematical Institute, Slovak Academy of Sciences,
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Abstract. We investigate the state complexity of concatenation and
the nondeterministic state complexity of complementation of regular lan-
guages. We show that the upper bounds on the state complexity of con-
catenation are also tight in the case that the first automaton has more
than one accepting state. In the case of nondeterministic state complex-
ity of complementation, we show that the entire range of complexities,
up to the known upper bound can be produced.

1 Introduction

Finite automata are one of the simplest computational models. Despite their
simplicity, some challenging problems concerning finite automata are still open.
For instance, we recall the question of how many states are sufficient and nec-
essary for two-way deterministic finite automata to simulate two-way nondeter-
ministic finite automata. The importance of this problem is underlined by its
relation to the well-known open question whether or not DLOGSPACE equals
NLOGSPACE [23].

Recently, a renewed interest in regular languages and finite automata can be
observed. For a discussion, the reader may refer to [13, 27]. Some aspects of this
area are now intensively investigated. One such aspect is the state complexity
of regular languages and their operations.

The state complexity of a regular language is the number of states of its mini-
mal deterministic finite automaton (DFA). The nondeterministic state complex-
ity of a regular language is the number of states of a minimum state nondeter-
ministic finite automaton (NFA) accepting the language. The state complexity
(the nondeterministic state complexity) of an operation on regular languages
represented by DFAs (NFAs, respectively) is the number of states that are suffi-
cient and necessary in the worst case for a DFA (an NFA, respectively) to accept
the language resulting from the operation.
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The state complexity of some operations on regular languages was investi-
gated in [17, 1, 2]. Yu, Zhuang, and Salomaa [25] were the first to systematically
study the complexity of regular language operations. Their paper was followed
by several articles investigating the state complexity of finite language operations
and unary language operations [3, 20, 21]. The nondeterministic state complexity
of regular language operations was studied by Holzer and Kutrib in [9, 10, 11].
Further results on this topic are presented in [6, 4, 16] and state-of-the-art surveys
for DFAs can be found in [29, 28].

In this paper, we investigate the state complexity of concatenation and the
nondeterministic state complexity of complementation of regular languages. In
the case of concatenation, we show that the upper bounds m2n − k2n−1 on the
concatenation of an m-state DFA language and an n-state DFA language, where
k is the number of accepting states in the m-state automaton, are tight for any
integer k with 0 < k < m. In the case of complementation, we show that for
any positive integers n and m with logn ≤ m ≤ 2n, there is an n-state NFA
language such that minimal NFAs for its complement have m states.

To prove the result on concatenation we show that a deterministic finite
automaton is minimal. To obtain the result on complementation we use a fooling-
set lower-bound technique known from communication complexity theory [12],
cf. also [1, 2, 7].

The paper consists of five sections, including this introduction. The next
section contains basic definitions and notations used throughout the paper. In
Section 3 we present our result on concatenation. Section 4 deals with the prob-
lem of which kind of relations between the sizes of minimal NFAs for regular
languages and minimal NFAs for their complements are possible. The last sec-
tion contains some concluding remarks and open problems.

2 Preliminaries

In this section, we recall some basic definitions and notations. For further details,
the reader may refer to [24, 26].

Let Σ be an alphabet and Σ∗ the set of all strings over the alphabet Σ
including the empty string ε. The power-set of a finite set A is denoted by 2A

and its maximum by maxA.
A deterministic finite automaton (DFA) is a 5-tuple M = (Q,Σ, δ, q0, F ),

where Q is a finite set of states, Σ is a finite input alphabet, δ : Q × Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. In this paper, all DFAs are assumed to be complete, i.e., the
next state δ(q, a) is defined for any state q in Q and any symbol a in Σ. The
transition function δ is extended to a function from Q×Σ∗ to Q in the natural
way. A string w in Σ∗ is accepted by the DFA M if the state δ(q0, w) is an
accepting state of the DFA M .

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q,Σ, δ, q0, F ),
where Q,Σ, q0, and F are as above, and δ : Q×Σ → 2Q is the transition function
which can be naturally extended to the domain Q × Σ∗. A string w in Σ∗ is
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accepted by the NFA M if the set δ(q0, w) contains an accepting state of the
NFA M.

The language accepted by a finite automaton M, denoted L(M), is the set of
all strings accepted by the automaton M . Two automata are said to be equivalent
if they accept the same language.

A DFA (an NFA) M is called minimal if all DFAs (all NFAs, respectively)
that are equivalent to M have at least as many states as M. By a well-known
result, each regular language has a unique minimal DFA, up to isomorphism.
However, the same result does not hold for minimal NFAs.

Any nondeterministic finite automaton M = (Q,Σ, δ, q0, F ) can be converted
to an equivalent deterministic finite automaton M ′ = (2Q, Σ, δ′, q′

0, F
′) using

an algorithm known as the “subset construction” [22] in the following way. Every
state of the DFA M ′ is a subset of the state set Q. The initial state of the
DFA M ′ is {q0}. A state R in 2Q is an accepting state of the DFA M ′ if it
contains an accepting state of the NFA M. The transition function δ′ is defined
by δ′(R, a) =

⋃
r∈R δ(r, a) for any state R in 2Q and any symbol a in Σ. The

DFA M ′ need not be minimal since some of its states may be unreachable or
equivalent.

3 Concatenation

We start our investigation with concatenation operation. The state complexity of
concatenation of regular languages represented by deterministic finite automata
was studied by Yu et al. [25]. They showed that m2n − k2n−1 states are suffi-
cient for a DFA to accept the concatenation of an m−state DFA language and
an n−state DFA language, where k is the number of the accepting states in
the m−state DFA. In the case of n = 1, upper bound m was shown to be tight,
even for a unary alphabet. In the case of m = 1 and n ≥ 2, the worst case
2n − 2n−1 was given by the concatenation of two binary languages. Otherwise,
the upper bound m2n−2n−1 was shown to be tight for a binary alphabet in [16].
In the case of unary languages, the upper bound on concatenation is mn and it
is known to be tight if m and n are relatively prime [25]. The unary case when m
and n are not necessarily relatively prime was studied by Pighizzini and Shallit
in [20, 21]. In this case, the tight bounds are given by the number of states in the
noncyclic and in the cyclic parts of the resulting automata. The next theorem
shows that the upper bounds m2n − k2n−1 are also tight for any integer k with
0 < k < m.

Theorem 1. For any integers m,n, k such that m ≥ 2, n ≥ 2, and 0 < k < m,
there exist a DFA A of m states and k accepting states, and a DFA B of n states
such that any DFA accepting the language L(A)L(B) needs at least m2n−k2n−1

states.

Proof. Let m,n, and k be arbitrary but fixed integers such that m ≥ 2, n ≥ 2,
and 0 < k < m. Let Σ = {a, b, c}.
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Define an m-state DFA A = (QA,Σ,δA,q0,FA), where QA = {q0,q1,. . ., qm−1},
FA = {qm−k, qm−k+1, . . . , qm−1}, and for any i ∈ {0, 1, . . . ,m− 1},

δA(qi, X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qi+1, if i < m− k and X = a,
q0, if i ≥ m− k and X = a,
qi, if X = b,
qm−1, if i = 0 and X = c,
qi−1, if i > 0 and X = c.

Define an n-state DFA B = (QB , Σ, δB , 0, FB), where QB = {0, 1, . . . , n−1},
FB = {n− 1}, and for any i ∈ {0, 1, . . . , n− 1},

δB(i,X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if i = 0 and X = a,
i, if i > 0 and X = a,
i + 1, if i < n− 1 and X = b,
0, if i = n− 1 and X = b,
i, if X = c.

The DFA A and B are shown in Fig. 1 and Fig. 2, respectively.
We first describe an NFA accepting the language L(A)L(B), then we con-

struct an equivalent DFA, and show that the DFA has at least m2n − k2n−1

reachable states no two of which are equivalent.
Consider the NFA C = (Q,Σ, δ, q0, {n − 1}), where Q = QA ∪ QB , and for

any q ∈ Q and any X ∈ Σ, δ(q,X) = {δA(q,X)} if q ∈ QA \ FA, δ(q,X) =
{δA(q,X), δB(0, X)} if q ∈ FA, and δ(q,X) = {δB(q,X)} if q ∈ QB , see Fig. 3.

Fig. 1. The deterministic finite automaton A; f = m − k

Fig. 2. The deterministic finite automaton B
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Fig. 3. The nondeterministic finite automaton C

Clearly, NFA C accepts the language L(A)L(B). Let C ′ = (2Q, Σ, δ′, {q0}, F ′)
be the DFA obtained from the NFA C by the subset construction. Let R be
the following system of sets: R = {{q} ∪ S | q ∈ QA \ FA and S ⊆ QB}
∪{{q} ∪ S | q ∈ FA, S ⊆ QB , and 0 ∈ S}, i.e., any set in R consists of exactly
one state of QA and some states of QB , and if a set in R contains a state of FA,
then it also contains state 0. There are m2n − k2n−1 sets in R. To prove the
theorem it is sufficient to show that (I) any set in R is a reachable state of the
DFA C ′ and (II) no two different states in R are equivalent.

We prove (I) by induction on the size of sets. The singletons {q0}, {q1}, . . . ,
{qm−k−1} are reachable since {qi} = δ′({q0}, ai) for i = 0, 1, . . . ,m− k − 1. Let
1 ≤ t ≤ n and assume that any set in R of size t is a reachable state of the
DFA C ′. Using this assumption we prove that any set {qi, j1, j2, . . . , jt}, where
0 ≤ j1 < j2 < · · · < jt < n if 0 ≤ i < m − k, and 0 = j1 < j2 < · · · <
jt < n if m − k ≤ i < m, is a reachable state of the DFA C ′. There are two
cases:

(i) j1 = 0. Then we have {qi, 0, j2, j3, . . . , jt} = δ′({q0, j2, j3, . . . , jt}, cm−i) for
i = 0, 1, . . . ,m−2, and {qm−1, 0, j2, j3, . . . , jt} = δ′({q0, j2, j3 . . . , jt}, cm+1),
where the set {q0, j2, j3, . . . , jt} is reachable by induction.

(ii) j1 ≥ 1 and 0 ≤ i < m−k. Then we have {qi, j1, j2, . . . , jt} = δ′({q0, 0, j2−j1,
j3 − j1, . . . , jt − j1}, bj1ai), where the latter set is considered in case (i).

To prove (II) let {qi} ∪ S and {ql} ∪ T be two different states in R with
0 ≤ i ≤ l ≤ m− 1. There are two cases:

(i) i < l. Then the string ciam−kbn−1 is accepted by the DFA C ′ starting
in state {qi} ∪ S but it is not accepted by the DFA C ′ starting in state
{ql} ∪ T.

(ii) i = l. Without loss of generality, there is a state j in QB such that j ∈ S
and j /∈ T (note that j ≥ 1 if m − k ≤ i ≤ m − 1). Then the string bn−1−j

is accepted by the DFA C ′ starting in state {qi} ∪ S but it is not accepted
by the DFA C ′ starting in state {ql} ∪ T.

��
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4 Complementation

We now turn our attention to complementation operation. For DFAs, it is an ef-
ficient operation since to accept the complement we can simply exchange accept-
ing and rejecting states. On the other hand, the complementation of NFAs is an
expensive task. The upper bound on the size of an NFA accepting the comple-
ment of an n−state NFA language is 2n and it is known to be tight for a binary
alphabet [16]. For complementation of unary NFA languages a crucial role is
played by the function F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}. It is
known that F (n) ∈ eΘ(

√
n ln n) and that O(F (n)) states suffice to simulate any

unary n−state NFA by a DFA [5]. This means that O(F (n)) states are sufficient
for an NFA to accept the complement of an n−state unary NFA language. The
lower bound is known to be F (n− 1) + 1 in this case [16].

In this section, we deal with the question of which kind of relations between the
nondeterministic complexity of a regular language and the nondeterministic com-
plexity of its complement are possible. We provide a complete solution by showing
that for any positive integersn andmwith logn ≤ m ≤ 2n, there exists ann−state
NFA language such that minimal NFAs for its complement have m states.

To obtain the above result we use a fooling-set lower-bound technique known
from communication complexity theory [12]. Although lower bounds based on
fooling sets may sometimes be exponentially smaller than the true bounds [14,
15], for some regular languages the lower bounds are tight [1, 2, 7]. In this section,
the technique helps us to obtain tight lower bounds. After defining a fooling set,
we give the lemma from [1] describing a fooling-set lower-bound technique. For
the sake of completeness, we recall its proof here. Then, we give an example.

Definition 1. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a regular language L if for any i and j in {1, 2, . . . , n},

(1) xiyi ∈ L, and
(2) if i �= j then xiyj /∈ L or xjyi /∈ L.

Lemma 1 ([1]). Let a set of pairs {(xi, yi) | i = 1, 2, . . . , n} be a fooling set for
a regular language L. Then any NFA for the language L needs at least n states.

Proof. Let M = (Q,Σ, δ, q0, F ) be any NFA accepting the language L. Since
xiyi ∈ L, there is a state pi in Q such that pi ∈ δ(q0, xi) and δ(pi, yi) ∩ F �= ∅.
Assume that a fixed choice of pi has been made for any i in {1, 2, . . . , n}. We
prove that pi �= pj for i �= j. Suppose by contradiction that pi = pj for some
i �= j. Then the NFA M accepts both strings xiyj and xjyi which contradicts
the assumption that the set {(xi, yi) | 1 ≤ i ≤ n} is a fooling set for the language
L. Hence the NFA M has at least n states. ��
Example 1. Let n ≥ 1, let Ln = {w ∈ {a, b}∗ | #a(w) ≡ 0 mod n}, and let
An = {(ai, an−i) | i = 1, 2, . . . , n}. Note that for any i and j in {1, 2, . . . , n},
(1) aian−i ∈ Ln, and (2) if i �= j then, w.l.o.g., i < j, so 0i0n−j /∈ Ln. Hence the
set An is a fooling set for the language Ln, and so any NFA for the language Ln

needs at least n states. ��
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We start our investigation with two propositions.

Proposition 1. For any m in {1, 2}, there is a 1-state NFA Dm such that
minimal NFAs for the complement of the language L(Dm) have m states.

Proof. Let Σ = {a, b}. Consider the following 1-state NFAs:
D1 = ({s}, Σ, δ1, s, {s}) with δ1(s,X) = {s} for any X ∈ Σ,
D2 = ({s}, Σ, δ2, s, {s}) with δ2(s, a) = {s} and δ2(s, b) = ∅.
The NFAs D1 and D2 do satisfy the proposition since the complement of

the language L(D1) is the empty language, and the set of pairs of strings
{(ε, b), (b, ε)} is a fooling set for the complement of the language L(D2). ��

Proposition 2. For any integer n ≥ 2, there is a minimal NFA N of n states
such that minimal NFAs for the complement of the language L(N) have n states.

Proof. Let n be arbitrary but fixed integer with n ≥ 2. Let Σ = {a, b}.
Define an n-state NFA N = (Q,Σ, δ, n, F ), see Fig. 4, where Q = {1, 2, . . . , n},
F = {2, 3, . . . , n}, and for any i ∈ Q,

δ(1, a) = δ(1, b) = {2},
δ(i, a) = {i− 1} and δ(i, b) = {1} if i > 1.

Fig. 4. The nondeterministic finite automaton N

We are going to show that (a) the NFA N is a minimal NFA for the language
L(N); (b) the language Lc(N) is accepted by an n-state DFA; (c) any NFA for
the language Lc(N) needs at least n states. Then, the proposition follows.

Consider the set of pairs A = {(ai−1, an−ib) | i = 1, 2, . . . , n}. The set A
is a fooling set for the language L(N) because for any i and j in {1, 2, . . . , n},
(1) ai−1an−ib ∈ L(N) since the string an−1b is accepted by the NFA N, and
(2) if i < j, then ai−1an−jb /∈ L(N) since any string alb with 0 ≤ l < n−1 is not
accepted by the NFA N. By Lemma 1, any NFA for the language L(N) needs
at least n states which proves (a).

To prove (b) note that the NFA N is, in fact, deterministic, and so after
exchanging the accepting and the rejecting states we obtain an n-state DFA for
the language Lc(N).

Finally, consider the set of pairs B = {(ai−1, an−i) | i = 1, 2, . . . , n}. The set
B is a fooling set for the language Lc(N) because for any i and j in {1, 2, . . . , n},
(1) ai−1an−i ∈ Lc(N) since the string an−1 is not accepted by the NFA N, and
(2) if i < j, then ai−1an−j /∈ Lc(N) since any string al with 0 ≤ l < n − 1 is
accepted by the NFA N. By Lemma 1, any NFA for the language Lc(N) needs
at least n states and our proof is complete. ��
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The following theorem is proved in [16].

Theorem 2 ([16]). For any positive integer n, there exists a binary NFA M of
n states such that any NFA for the complement of the language L(M) needs at
least 2n states. ��

In the next theorem, we show that the nondeterministic state complexity of
complements of n−state NFA languages may be arbitrary between n + 1 and
2n − 1.

Theorem 3. For any integers n and m with 3 ≤ n+1 ≤ m ≤ 2n−1, there exists
a minimal NFA M of n states such that minimal NFAs for the complement of
the language L(M) have m states.

Proof. Let n and m be arbitrary but fixed integers such that 3 ≤ n + 1 ≤
m ≤ 2n − 1. Then m can be expressed as m = n + k for an integer k with
1 ≤ k ≤ 2n − 1 − n. Let Σ = {a, b} ∪ {c1, c2, . . . , ck} ∪ {d1, d2, . . . , dk} be
a (2k + 2)-letter alphabet. We are going to define a minimal n−state NFA M
over the alphabet Σ such that minimal NFAs for the language Lc(M) have n+k
states. To this aim let S1, S2, . . . , S2n−1−n be a sequence of subsets of the set
{1, 2, . . . , n} that contain at least two elements and are ordered in such a way
that for any i and j in {1, 2, . . . , 2n − 1− n}, the following two conditions hold:

(1) if maxSi < maxSj , then i < j;
(2) if maxSi = maxSj and 1 ∈ Si \ Sj , then i < j,

i.e., the subsets are ordered according to their maxima, and if two sets have the
same maximum, then all sets that contain the state 1 precede the sets that do
not contain the state 1. Clearly, there are several such orderings, we choose one of
them. Note that S1 = {1, 2}. For example, the subsets of {1, 2, 3, 4} that contain
at least two elements could be ordered as follows: S1 = {1, 2}, S2 = {1, 3}, S3 =
{1, 2, 3}, S4 = {2, 3}, S5 = {1, 4}, S6 = {1, 2, 4}, S7 = {1, 3, 4}, S8 = {1, 2, 3, 4},
S9 = {2, 4}, S10 = {3, 4}, S11 = {2, 3, 4}.

Define an n−state NFA M = (Q,Σ, δ, n, F ), where Q = {1, 2, . . . , n}, F =
{2, 3, . . . , n}, and for any i ∈ Q and any j ∈ {1, 2, . . . , k},

δ(i,X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 2}, if i = 1 and X = a,
{i− 1}, if i > 1 and X = a,
{2}, if i = 1 and X = b,
{1}, if i > 1 and X = b,
Sj , if i = 1 and X = cj ,
{1}, if i > 1 and X = cj ,
{1}, if i ∈ Sj and X = dj ,
{2}, if i /∈ Sj and X = dj .

We will show that:
(a) the NFA M is a minimal NFA for the language L(M);
(b) the language Lc(M) can be accepted by an (n + k)-state DFA;
(c) any NFA for the language Lc(M) needs at least n + k states.
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Then, the theorem follows immediately.
To prove (a) consider the following set of pairs of strings

A = {(ai−1, an−ib) | i = 1, 2, . . . , n}.

The set A is a fooling set for L(M) because for any i and j in {1, 2, . . . , n},
(1) ai−1an−ib ∈ L(M) since the string an−1b is accepted by the NFA M, and
(2) if i < j, then ai−1an−jb /∈ L(M) since for any l with 0 ≤ l < n−1, the string

alb is not accepted by the NFA M.

By Lemma 1, any NFA for L(M) needs at least n states which proves (a).
To prove (b) let M ′ = (2Q, Σ, δ′, {n}, F ′) be the DFA obtained from the

NFA M by the subset construction. Let R be the following system of sets

R = {{1}, {2}, . . . , {n}, S1, S2, . . . , Sk}.

Note that the initial state {n} of the DFA M ′ and the state S1 = {1, 2} belong
to the system R. We are going to prove that any set in R is a reachable state of
the DFA M ′ and no other states are reachable in the DFA M ′. Clearly, any set of
the system R is reachable since we have {i} = δ′({n}, an−i) for i = 1, 2, . . . , n,
and Sj = δ′({1}, cj) for j = 1, 2, . . . , k. To prove that no other subset of the
set Q is a reachable state of the DFA M ′ it is sufficient to show that for any
state R in R and any symbol X in Σ, the state δ′(R,X) is a member of the
system R. There are three cases:

(i) R = {1}. Then we have (j = 1, 2, . . . , k) :

δ′({1}, X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{1, 2}, if X = a,
{2}, if X = b,
Sj , if X = cj ,
{1}, if 1 ∈ Sj and X = dj ,
{2}, if 1 /∈ Sj and X = dj .

Since all sets on the right are in the system R, we are ready in this case.
(ii) R = {i} for an i �= 1. Then for any X in Σ, the set δ′({i}, X) is a singleton

set and so is in R.
(iii) R = Sj for a j in {1, 2, . . . , k}. Then the set δ′(Sj , a) is a subset of the

set {1, 2, . . . ,maxSk − 1} or equals {1, 2}. Since the sets S1, S2, . . . , Sk are
ordered according to their maxima, any subset of {1, 2, . . . ,maxSk − 1} is
in the system R. Next, the set δ′(Sj , b) is equal either to {1} or to {1, 2},
and the set δ′(Sj , dl), l = 1, 2, . . . , k, is equal either to {1}, or to {2}, or to
{1, 2}. Finally, the set δ′(Sj , cl), l = 1, 2, . . . , k, is equal either to {1} or to
Sl ∪{1}. Since the set Sl ∪{1} precedes the set Sl or equals Sl, we are ready
in this case.

Thus we have shown that the DFA M ′ obtained from the NFA M by the
subset construction has exactly n + k reachable states. After exchanging the



State Complexity of Concatenation and Complementation 187

accepting and the rejecting states of the DFA M ′ we obtain an (n + k)−state
DFA for the language Lc(M) which proves (b).

To prove (c) consider the following sets of pairs of strings

B = {(ai−1, an−i) | i = 1, 2, . . . , n},
C = {(an−1cj , dj) | j = 1, 2, . . . , k}.

We will show that the set B ∪ C is a fooling set for the language Lc(M).

(1) For any i ∈ {1, 2, . . . , n}, the string ai−1an−i is in the language Lc(M) since
the string an−1 is not accepted by the NFA M.
For any j ∈ {1, 2, . . . , k}, the string an−1cjdj is in the language Lc(M) since

δ(n, an−1) = {1}, δ({1}, cj) = Sj , δ(Sj , dj) = {1}, and 1 /∈ F,

and so the string an−1cjdj is not accepted by the NFA M.
(2) If 1 ≤ i < s ≤ n, then the string ai−1an−s is not in the language Lc(M)

since the NFA M accepts any string al with 0 ≤ l < n− 1.
Next, if 1 ≤ j, t ≤ k and j �= t, then, w.l.o.g., there is a state p in Q such
that p ∈ Sj and p /∈ St. Thus,

p ∈ δ(n, an−1cj) and 2 ∈ δ(p, dt),

and so the string an−1cjdt is accepted by the NFA M, i.e., is not in the
language Lc(M).
Finally, if i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k}, then the string an−1cja

n−i

is not in the language Lc(M) since δ(n, an−1cj) = Sj , the size of the set Sj

is at least two, and the string an−i is not accepted by the NFA M starting
in state n− i + 1 but it is accepted by M starting in any other state.

Thus the set B∪C is a fooling set for the language Lc(M). By Lemma 1, any
NFA for the language Lc(M) needs at least n + k states which completes our
proof. ��

Corollary 1. For any positive integers r and s with log r ≤ s ≤ r, there exists
a minimal NFA E of r states such that minimal NFAs for the complement of
the language L(E) have s states.

Proof. Let r and s be arbitrary but fixed positive integers with log r ≤ s ≤ r.
Then we have

s ≤ r ≤ 2s,

and by the above results, there is a minimal s-state NFA S such that a minimal
NFA, say R, for the language Lc(S) has r states. Set E = R. Then the NFA E
is a minimal r-state NFA for the language Lc(S), and minimal NFAs for the
complement of the language Lc(S), i.e., for Lc(E), have s states. ��

Hence, we have shown the following result.

Theorem 4. For any positive integers n and m with log n ≤ m ≤ 2n, there
exists a minimal NFA M of n states such that minimal NFAs for the complement
of the language L(M) have m states. ��
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5 Conclusions

In this paper, we obtained several results concerning the state complexity of
concatenation and the nondeterministic state complexity of complementation of
regular languages.

In the case of concatenation, we showed that the upper bounds m2n−k2n−1

on the concatenation of an m-state DFA language and an n-state DFA language,
where k is the number of the accepting states in the m-state automaton, are tight
for any integer k with 0 < k < m. To prove the result, we used a three-letter
alphabet. In the case of m = 3, k = 2, and n = 2, the upper bound can be
reached by the concatenation of two binary languages. The problem remains
open for a binary alphabet and larger values of m, k, n.

In the case of complementation, we showed that for any positive integers
n and m with logn ≤ m ≤ 2n, there exists a minimal NFA M of n states such
that minimal NFAs for the complement of the language L(M) have m states.
However, the input alphabet size grows exponentially with n. We conjecture that
the input alphabet could be decreased at least to linear size.

Further investigations may concern the deterministic concatenation and the
nondeterministic complementation of finite languages.

Acknowledgements

We would like to thank Professor Geffert for proposing the problem on the
nondeterministic complementation and for our helpful discussions on the topic.
We are also very grateful to the referees for their corrections and suggestions.

References

1. J.C. Birget, Intersection and union of regular languages and state complexity,
Inform. Process. Lett. 43 (1992) 185–190.

2. J.C. Birget, Partial orders on words, minimal elements of regular languages, and
state complexity, Theoret. Comput. Sci. 119 (1993) 267–291.
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Abstract. A nondeterministic finite automaton with ε-transitions
(εNFA) accepts a regular language. Among the εNFA accepting a cer-
tain language some are more compact than others. This essay treats the
problem of how to compactify a given εNFA by reducing the number
of transitions. Compared to the standard techniques to minimize deter-
ministic complete finite automata (complete DFA) two novel features
matter in compactifying εNFA: the principle of transition partition and
the principle of transition union. An algorithm for compactifying εNFA
is presented that exploits the union principle. This algorithm has the
following property: if the algorithm returns an unambiguous automaton,
then this automaton is the transition minimal εNFA.

1 Introduction

Minimization of finite automata is important for theoretical and practical rea-
sons. In several application domains only small automata and their represen-
tations yield feasible solutions for practical problems. Basic algorithms for the
problem of minimizing deterministic finite automata (DFA) have been published
50 years ago [10, 15, 17]. About succinctness, the feature of nondeterminism in-
troduced in [21] allows to give much more compact automata. A nondeterministic
finite automaton (NFA) may be smaller than a DFA by an exponential factor
[16]. This even holds for unambiguous NFA [23, 26, 22]; ie NFA, which have at
most one accepting computation for every word.

This essay treats the problem of how to compactify a given nondeterministic
finite automaton with ε-transitions (εNFA). In general, the problem to compute
a state minimal εNFA from a given εNFA is pspace-complete, by reduction to a
problem given in [1, 6, p. 174], whereas in the deterministic case the problem to
compute minimal complete DFA can be solved in time O(n log n) [8] — a DFA
is complete if each state has a transition for all inputs. Hereby, the minimal
complete DFA is unique up to isomorphism [10, 17] and the number of states
and the number of transitions are simultaneously minimized. A state minimal
complete DFA is a transition minimal complete DFA, and vice versa. This does
not hold for NFA and εNFA.

Essentially, there are three ways to define a minimization problem for NFA
resp. εNFA : to minimize the number of states or the number of transitions or a
sophisticated weighted sum of both. All of them can be solved by an exhaustive
search algorithm in time 2O(n2). In the formal language community, it is tradi-
tional to minimize the number of states. The approaches to this problem, that
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c© Springer-Verlag Berlin Heidelberg 2005



Minimal Unambiguous εNFA 191

work by searching a minimal subautomaton, started with [5]. Many algorithms
and heuristics have been proposed by [12, 13, 3, 4, 2, 14].

Another approach to reduce the number of states is due to [25, 20], where the
minimization techniques for complete DFA are applied [9, 18, 19]. According to
their reduction criteria, a NFA is most compact if there are no equivalent states.
But in general, this does not mean state minimization, because there may be
NFA accepting the same language using a smaller number of states.

Contrary, this essay investigates transition minimization. We do so mainly for
three reasons : the size of an automaton is primarily influenced by the number of
transitions, eg regarding an adjacency list, which is an efficient linear represen-
tation of an automaton. Secondly, the minimal unambiguous ε-complete εNFA
is unique up to isomorphism. And finally, our algorithm to reduce εNFA with
respect to the number of transitions performs better than the best known al-
gorithms to compute state minimal NFA. The problem to compute a transition
minimal εNFA from a given εNFA is pspace-complete by reduction to a problem
described in [1, 6, p. 174]. The time complexity for our algorithm depends on the
time needed to compute NFA equivalences or NFA complements. At the time,
we therefore obtain a bound of O(2n) for the running time of the algorithm.

The essay proceeds as follows. Section 2 introduces the formalism of εNFA, ex-
plains how the compactness of an εNFA is measured and defines the problem, to
be solved. Section 3 elaborates the theory necessary to reduce the number of tran-
sitions. This theory and the proofs of the theorems are presented in more detail
and with examples in [11]. Section 4 presents the algorithm, proves its correctness
and determines its complexity. In Section 5 we conclude with final remarks.

In the sequel, N denotes the set of natural numbers including 0, Σ is the set
of input symbols, Σ∗ the set of finite words over Σ including the empty word
λ. Variables u, v, w ∈ Σ∗ stand for words, P, F ⊆ Σ∗ for sets of words, A,B for
automata, s, t ∈ T for transitions, and p ∈ T ∗ for finite paths with p = p1...pn

and n ∈ N. By default, indices are omitted if it is clear from the context, what
is meant.

2 Problem

Definition 1. An εNFA A = (Q,Σ, I, F,E, T ) is given by

– a finite set of states Q
– a finite set of input symbols Σ
– a set of initial states I ⊆ Q
– a set of final states F ⊆ Q
– a set of ε-transitions E ⊆ Q×Q
– a set of transitions T ⊆ Q×Σ ×Q

A word w ∈ Σ∗, including the empty word λ ∈ Σ∗, is accepted by the automaton,
w ∈ L(A), if there is a path from an initial state via the automaton’s transi-
tions to a final state yielding w. We come back to that point later. Two εNFA A
and B are equivalent if and only if L(A) = L(B). Among the εNFA accepting the
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same language there are some that are more compact than others. In our case,
the measurement of compactness is based on the number of transitions. More
precisely, on the number of transitions not counting ε-transitions. For εNFA A
and B, the term “A is more compact than B”, for short A < B, is defined by:

Definition 2 (Compactness). A < B :⇐⇒ L(A) = L(B) and |TA| < |TB |
Problem : The problem is to find an algorithm, that computes a most compact
automaton, ie: to compute from any given εNFA A an εNFA B with L(A) =
L(B) such that C �< B for all εNFA C.

Theorem 1 (Main Theorem). There is an algorithm with running time O(2n)
that does always find an εNFA at least as compact as the input εNFA. The al-
gorithm returns an εNFA, which is transition minimal if unambiguous.

3 Theory

3.1 Acceptance Criterium

Words are accepted by an automaton along transition paths from initial to final
states. We make this more precise by introducing a follow–relation and a label–
path homomorphism in contrast to a direct definition as it is commonly used
(eg [24, 9]).

The follow–relation −→ expresses the connectivity of transitions within an
εNFA A. For s, t ∈ T , the statement s −→ t displays that s is connected via
states and ε-transitions to t. For convenience, we add a new transition t0 �∈ T ,
set T0 := T ∪ {t0} and define the follow–relation −→ on T0×T0. We denote the
source state and the target state of a transition t as source(t) and target(t):

Definition 3 (follow–relation). For s, t ∈ T :

– s −→ t :⇔ target(s) E∗ source(t)
– t0 −→ t :⇔ There is an initial state q ∈ I with q E∗ source(t)
– s −→ t0 :⇔ There is a final state q ∈ F with target(s) E∗ q

Transitions t with t0 −→ t are called initial transitions, transitions s with s −→
t0 are called final transitions.

A path p ∈ T ∗ is a sequence p = t1... tn with n ∈ N of transitions ti ∈ T
connected by the follow–relation each labeled l(ti) ∈ Σ. The word yielding from
the path is given by the label–path homomorphism l : T ∗

0 → Σ∗ with l(p) =
l(t1)... l(tn). More precisely, t0 transitions are allowed to be at the beginning or
at the end or both for the purpose of accepting paths:

Definition 4 (label–path homomorphism). l(stp) := l(s)l(tp) ⇔ s −→ t
with l(λ) := λ and l(t0) := λ.

Note, that the definition incorporates the connectivity via the follow–relation,
elsewhere l is partially undefined.

Proposition 1. ∀p ∈ T ∗ : |l(p)| = |p|
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The accepted language L(A) of an εNFA A, given in the notion of the follow–
relation and the label–path homomorphism l, is defined on paths p of connected
transitions from an initial to a final transition yielding words w according to l:

Definition 5. L(A) = {w ∈ Σ∗ there is a path p ∈ T ∗ with l(t0pt0) = w}
An εNFA A is unambiguous if and only if for each w ∈ L(A) there is exactly
one path p with l(t0pt0) = w.

Regarding the definition of the unambiguousness of an εNFA, arbitrary many
ε-transitions are not relevant with respect to this essay. That point would oth-
erwise provoke to distinct strong and weak unambiguousness by the means of
ε-transitions.

The information given by the follow–relation of an automaton A is sufficient
to reconstruct an automaton that accepts the language L(A). This reconstruction
is not unique, but can be done canonically or small regarding the number of states
and ε-transitions.
Fact : From any follow–relation an εNFA can be reconstructed.
For convenience, we assume in the following, without the loss of generality, that
every εNFA considered has only productive transitions t ∈ T — there is a linear
time algorithm to eliminate every non-productive transition. A transition is pro-
ductive if and only if it is connected to an initial and a final state over a path of
other transitions possibly including ε-transitions, ie: it might be responsible for
the acceptance of at least one word of the language. Thus, in the following, for
all εNFA considered, and transitions t ∈ T it holds: t0 −→+ t −→+ t0.

3.2 Future and Past

In this section, we will determine the semantics of the transitions by exploring
what a transition t ∈ T is responsible for — the future ϕ(t) and the past π(t).
Similar ideas for states already appeared in [12, 6, 2].

Along a path to accept a word w, there is a transition t processing one of the
letters of w. The letters before are part of the past π(t). The letters, which are
to be processed, belong to future ϕ(t), whereby the present l(t) is part of both
π(t) and ϕ(t). This reflects the setting of the transition t among the others:

Definition 6 (future and past). ϕ, π : T → Σ∗

– ϕ(t) = {w ∈ Σ∗ there is a path p with l(pt0) = w and p1 = t}
– π(t) = {w ∈ Σ∗ there is a path p with l(t0p) = w and p|w| = t}

We define the language M :1 of words of M ⊆ Σ∗ without the last letter and
1:M without the first letter:

Definition 7. M :1 := {w ∈ Σ∗ wa ∈M} and 1:M := {w ∈ Σ∗ aw ∈M}
According to future ϕ(t) and past π(t) there are the strict future 1:ϕ(t) and the
strict past π(t):1 each without the present l(t). Because the present l(t) of a
transition t is unique, we observe obviously, that past is strict past combined
with the present and analogously future is present combined with strict future:
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Proposition 2. π(t) = π(t):1 l(t) and ϕ(t) = l(t) 1:ϕ(t)

By a little more algebraic investigation of the label–path homomorphism l, we
get for all transitions t, all words w, v ∈ Σ∗ and all a ∈ Σ that:

Lemma 1. vaw ∈ L(A) ⇔ ∃ t ∈ T : va ∈ π(t) and aw ∈ ϕ(t)
In case that the εNFA is unambiguous, the property holds for exactly one t ∈ T .

The accepted language of an εNFA A is completely determined by its future and
past and from its strict future and strict past:

Proposition 3. L(A) =
⋃

s →
A

t

π(s)ϕ(t) =
⋃
t∈T

π(t):1 l(t) 1:ϕ(t)

More central is the point that future ϕ and past π of an εNFA may be ob-
tained by a fixpoint construction as they fulfill the equation system if we set
ϕ(t0) := {λ} =: π(t0):

Lemma 2 (fixpoint). ϕ(s) =
⋃

s →
A

t

l(s)ϕ(t) and π(t) =
⋃

s →
A

t

π(s)l(t)

The Fixpoint Lemma implies directly a correspondence between the follow–
relation and the future and past:

Corollary 1. For transitions s and t with same label l(s) = l(t) it holds:
s −→ = t −→ implies ϕ(s) = ϕ(t) and −→ s = −→ t implies π(s) = π(t)

3.3 Slicing

Central to the Minimizing Theorem 2 is the notion of slicing a regular language.
Slices are unified to most compact slices, ST , which forms a compact εNFA.

Definition 8 (slice). Given a regular language L ⊆ Σ∗. For all P, F ⊆ Σ∗,
a ∈ Σ :

(P, a, F ) is a slice of L :⇔ P �= ∅ and F �= ∅ and PaF ⊆ L

A slicing of L is a set of slices of L. In particular, let S be the set of all slices
of L. We define a partial order on S:

(P1, a, F1) ≤ (P2, a, F2) :⇔ P1 ⊆ P2 and F1 ⊆ F2

We define ST ⊆ S, the set of maximal slices of L, by

ST := {(P, a, F ) ∈ S there is no (P ′, a, F ′) ∈ S with (P, a, F ) < (P ′, a, F ′)}
Lemma 3. Given the set of all slices S of a regular language L, every linearly
ordered set X ⊆ S has a maximum in S, which is:

(
⋃

(P,a,F )∈X

P, a,
⋃

(P,a,F )∈X

F )

Proof : Let us assume the settings ∪P := ∪(P,a,F )∈XP and ∪F = ∪(P,a,F )∈XF .
First, we show that we have defined a slice of L. Because future F and past P
of a slice (P, a, F ) ∈ X are not empty, the unions ∪P and ∪F are not empty,
either.
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It remains to show ∪Pa∪F ⊆ L. Every w ∈ ∪Pa∪F is split into subwords
w1 ∈ ∪P and w2 ∈ ∪F with w = w1aw2, those come out of slices x, y ∈ X with
w1 ∈ Px and w2 ∈ Fy. These slices are ordered. We assume without the loss of
generality that x ≤ y, which implies w1 ∈ Px ⊆ Py and w1aw2 ∈ PyaFy ⊆ L.
So, w = w1aw2 ∈ L and consequently ∪Pa∪F ⊆ L. ��

Due to the fact that every slice is part of a maximal linearly ordered set, we
have:

Corollary 2. ∀x ∈ S, ∃ y ∈ ST : x ≤ y

In the following, we want to read an automaton out of a slicing of L. In order
to do so, we transform every slice into a transition. Usually, there are more than
a finite number of slices. So, let us relax the finiteness of εNFA for the moment.
We define the automaton AS from the slicing S of L via the follow–relation.
The other automata are subautomata of AS , especially the ones corresponding
to the finite slicings, which are subsets of S; eg ST is a finite slicing of a regular
language L. We come back to this point within the Minimizing Theorem 2.

Definition 9 (AS , AST , AF̄ ). Assume t0 �∈ S and S0 := S ∪ {t0}. The follow–-
relation −→⊆ S0 × S0 is defined for all slices (P1, a, F1) and (P2, b, F2) ∈ S :

(P1, a, F1) −→ (P2, b, F2) :⇔ P1a ⊆ P2 and bF2 ⊆ F1
t0 −→ (P2, b, F2) :⇔ λ ∈ P2

(P1, a, F1) −→ t0 :⇔ λ ∈ F1
[ t0 −→ t0 :⇔ λ ∈ L ]

The last case fits if λ is not excluded from L from the beginning.

Lemma 4. L(AS′) ⊆ L for each slicing S′ ⊆ S.

Sketch of proof : Let w = a1... an ∈ L(AS′). There is a path p ∈ T ∗ with
l(t0pt0) = w. Examining the path p = p1... pn, it sequences slices of the form
pi = (Pi, ai, Fi) ∈ S with the initial slice p1 and final slice pn due to λ ∈ P1 and
λ∈Fn. The follow–relation implies a1∈P1a1⊆P2 and by the induction principle
a1... an ∈ Pnan. Together with λ ∈ Fn, we get w = a1... an ∈ PnanFn ⊆ L. ��
Lemma 5. The regular language L is accepted by AS and AST :

L(AS) = L and L(AST ) = L

Sketch of proof : Let w = a1... an ∈ L we prove by induction:
L ⊆ L(AS): Let pk = ({a1... ak−1}, ak, {ak+1... an}) = (Pk, ak, Fk) ∈ S. The
sequence p = p1... pn is an accepting path in AS .
L ⊆ L(AST ): By Corollary 2 there is, for each slice pk, a slice p∗

k = (P ∗
k , ak,

F ∗
k ) ∈ ST with pk ≤ p∗

k. That forms an accepting path p∗ = p∗
1... p

∗
n. To prove

that, we use intermediate slices (P̃k+1, ak+1, F̃k+1) = (P ∗
k ak, ak+1, {w | ak+1w ∈

F ∗
k }) to analyze ak+1F

∗
k+1 − F ∗

k in order to prove p∗
k −→ p∗

k+1. ��
Lemma 6. Given a regular language L and a slicing S′ ⊆ S of L. Within the
εNFA AS′ we observe that for all slices (P, a, F ) ∈ S′, which are transitions in
AS′ , it holds:
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– π(P, a, F ) ⊆ Pa and ϕ(P, a, F ) ⊆ aF

Moreover, if S′ = S or S′ = ST :

– π(P, a, F ) = Pa and ϕ(P, a, F ) = aF

Sketch of proof : By induction on the word length, we reason about the follow–
relation. In case of π, consider the predecessors introduced by the fix point
lemma, 2, and show that π(P, a, F ) =

⋃
(P̃ ,b,F̃ )→(P,a,F )π(P̃ , b, F̃ )a, and finally

P̃ b ⊆ P if (P̃ , b, F̃ ) → (P, a, F ). A proof works analogously for ϕ.
The second part uses, in addition to the idea in the part above, an idea

similar to the one of the proof of Lemma 5: For each slice (P, a, F ) ∈ S analyse
({w|wb ∈ P}, b, aF )—which has also a maximum in ST in case S′ = ST —being
connected to (P, a, F ) by the follow–relation. ��

3.4 Minimal Unambiguous εNFA

The following theorem is presented in the style of [9, 18, 19].

Theorem 2. The three following statements are equivalent for languages L ⊆ Σ∗

if the slicing ST of L induces an unambiguous εNFA AST :

– L is accepted by an εNFA
– L = L(AF̄ ) for some finite slicing F̄ ⊆ S
– ST is finite

Furthermore it holds:

– |ST | ≤ |F̄ | ≤ |TA|

Corollary 3. An unambiguous εNFA AST is transition minimal.

Proof : (1) → (2) : Let A be an εNFA with L = L(A). For transitions t ∈ T
we define t̄ := (π(t):1, l(t), 1:ϕ(t)) to construct a finite slicing F̄ = {t̄|t ∈ T}—
Proposition 3 includes π(t):1 l(t)1:ϕ(t) ⊆ L. And F̄ is finite: |F̄ | ≤ |T |.

It remains to show, that L = L(AF̄ ): We show for transitions s and t ∈ T0A

that s −→A t implies s̄ −→ t̄ provided that t̄0 := t0. Hence, every accepting path
of A is an accepting path of AF̄ , ie: L = L(A) ⊆ L(AF̄ ) ⊆ L, and by Corollary 4
then L(AF̄ ) = L.

Assume s −→A t. By the Fix Point Lemma 2, we get π(s)l(t) ⊆ π(t). There-
fore π(s):1l(s)P.2= π(s) = π(s)l(t):1 ⊆ π(t):1. That means π(s):1l(s) ⊆ π(t):1 and
similarly l(t)1:ϕ(t) ⊆ 1:ϕ(s), which implies s̄ −→ t̄ by the definition of the follow
relation, 9. The cases of t0 are easy to show.

(2) → (3) : Assume a finite slicing F̄ ⊆ S with L(AF̄ ) = L. By the Lemma 2
we know ∀x ∈ F̄ ⊆ S,∃ y ∈ ST : x ≤ y. Hence, we are allowed to assume a
function f : F̄ → ST with x ≤ f(x) ∈ ST . We show that f is surjective.

For all slices (P, a, F ) ∈ ST there are w1 ∈ P and w2 ∈ F with w1aw2 ∈
PaF ⊆ L = L(AF̄ ). This implies by Lemma 1 and 6 that there is a slice (P̃ , a, F̃ )
in the finite slicing F̄ with w1a ∈ πF̄ (P̃ , a, F̃ ) ⊆ P̃ a ⊆ Pa = πST (P, a, F ) and
aw2 ∈ ϕF̄ (P̃ , a, F̃ ) ⊆ aF̃ ⊆ aF = ϕST (P, a, F ).
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Applying the function f to the slice (P̃ , a, F̃ ) we will prove that we get
the same slice, which we have started with. For that purpose, we assume a
slice (P ′, a, F ′) with f(P̃ , a, F̃ ) = (P ′, a, F ′) and we are going to show that
(P, a, F ) = (P ′, a, F ′). For that slice holds (P̃ , a, F̃ ) ≤ (P ′, a, F ′) and therefore
w1a ∈ P̃ a ⊆ P ′a = πST (P ′, a, F ′) and aw2 ∈ aF̃ ⊆ aF ′ = ϕST (P ′, a, F ′).
That means we have found to (P, a, F ) another slice (P ′, a, F ′) responsible to
accept the word wav. But for unambiguous AST there can be only one slice, by
Lemma 1. Thus it must be that (P, a, F ) = (P ′, a, F ′) = f(P̃ , a, F̃ ). We conclude
that f is surjective, ie: f(F̄ ) = ST , from which it follows that |ST | ≤ |F̄ | and
therefore ST is finite.

(3) → (1) : We take AST for that automaton into account. Because of
Lemma 5 it is L(AST ) = L.

4 The Algorithm

In this section, an algorithm is outlined to minimize an εNFA A. It reduces the
set of transitions T0 = {t0, t1, . . . , tn}. The algorithm is given in pseudo code.
Takes as input a boolean adjacency matrix A : T0 × T0 → {0, 1} representing
the follow–relation of the input automaton, ie: A(s, t) = 1 ⇔ s −→A t. Those
prerequisites are fixed in the declaration (line 0-1).

The algorithm proceeds in two phases. The first pass (line 2-8), which we
might name ε-completion, introduces ε-transitions without changing the original
regular language. That the language doesn’t change is assured by the test L(A) =
L(A0) in line 6. The second pass (line 9-13) eliminates superfluous transitions
in order to reduce the εNFA A. Afterwards, the algorithm returns a result in A,
which is the automaton with the remaining transitions.

Algorithm

(0) T0 = [0, 1, . . . , n] ; =̂ {t0, t1, . . . , tn}
(1) A : T0 × T0 → {0, 1} ; =̂ A(s, t) = 1⇔ s −→A t

(2) A0 = A ;
(3) for s = 0 to n do
(4) for t = 0 to n do
(5) A(s, t) = 1 ;
(6) if L(A0) �= L(A) thenA(s, t) = 0
(7) end
(8) end ;
(9) for s = 1 to n do

(10) for t = s + 1 to n do
(11) if l(s) = l(t) and A(s, ) = A(t, ) then delete(s)
(12) end
(13) end

Theorem 3. The algorithm on input of an εNFA A outputs an εNFA B, so that
L(A) = L(B) and B ≤ A. Moreover, if B is unambiguous then B is transition
minimal.

We prove this theorem in the following subsection.
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4.1 Correctness

We shall now be concerned with the correctness of the algorithm. Within the
first pass we are adding ε-transition to the automaton. As a result there are
more paths possible to accept the words of L. The sole chance to change the
language is to accept more words, which is exactly ruled out by the test in line
(6) of the algorithm. Moreover, we have

Proposition 4. It is sufficient to check L(A) �⊆ L(A0) with regard to line (6).

The second pass eliminates superfluous transitions if there is still an equivalent
transition within the automaton covering all accepting paths of the transition.
Hence, it still holds L(A0) = L(A) after the second pass. In fact, the only chance
to fail the invariant L(A0) = L(A) is in line (5), that is instantly corrected in
line (6) thereafter.

We are deleting transitions; none are added, ie: A ≤ A0. We have sketched
that the algorithm is correct in the sense that it still returns an automaton,
which accepts the same language compared to the input automaton, having a
smaller or equal number of transitions.

Let us now investigate the algorithm’s minimization property, ie the fact,
that the returned automaton is transition minimal if it is unambiguous. For
that purpose, we use the notations of the Theorem 2. Then each transition
t ∈ TA has got assigned the strict future Ft and the strict past Pt, yielding
slice t̄ = (Pt, a, Ft) according to the automaton A’s finite slicing F̄ , which is
mapped via function f to ST — recall the construction of the function f of the
Theorem 2:

t̄ = (Pt, a, Ft) ∈ F̄ and f(t̄) ∈ ST

Consider the first pass, the ε-completion, in which ε-transitions are placed if
and only if the language is not changed. At least this is the case if and only
if their correspondent transitions f(s̄) and f(t̄), with respect to the automaton
according to ST , are connected f(s̄) −→ST f(t̄). We observe:

Lemma 7. f(s̄)−→ST f(t̄) implies s−→At

Proof : By the setting of f in Theorem 2 it is s̄ ≤ f(s̄) = (Ps, a, Fs) and t̄ ≤
f(t̄) = (Pt, b, Ft), which implies π(s) = (π(s):1)a ⊆ Psa and ϕ(t) = b(1:ϕ(t)) ⊆
bFt ⊆ Fs. We conclude π(s)ϕ(t) ⊆ PsaFs ⊆ L. In that case, the algorithm
connects s and t by an ε-transition, which does not change the original language
L(A) = L we have started with.
Via the proof of Lemma 5 it also holds: s−→At =⇒ f(s̄)−→ST f(t̄) in every
stage of the algorithm. That is why we obtain after the first pass:

Corollary 4. s−→At if and only if f(s̄)−→ST f(t̄)

The second pass of the algorithm deletes all except one of equivalent transitions.
Two transitions s and t are equivalent if and only if there is a semantically
more compact transition x ∈ ST with s̄ ≤ x ≥ t̄. Actually, this transition is
f(s̄) = x = f(t̄) — see Lemma 8. We define:
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Definition 10. s ≡ t :⇐⇒ f(s̄) = f(t̄)

Within the proof it turns out that after the first pass of the algorithm the
semantics of the transitions in automaton A in terms of future and past are the
same as in the automaton according to ST . The deletion of transitions cleans
up by dropping the superfluous material. It results in an automaton with equal
many transitions having equal semantics, compared to the one of f(F̄ ) = ST , if
ST is unambiguous.

Lemma 8. f(s̄) = f(t̄) if and only if l(s) = l(t) and s−→A = t−→A

Sketch of proof : Slices are equal iff future and past are equal — show π(s̄) =
π(f(s̄)) and ϕ(s̄) = ϕ(f(s̄)) by maintaining Corollary 4. It is sufficient to check
s−→A = t−→A because of ε-completeness. ��

This completes the correctness proof as the algorithm computes f(F̄ ) from
the input automaton. If ST is unambiguous, it holds that f(F̄ ) = ST . Thus the
result is transition minimal. If ST is not unambiguous, the algorithm returns a
subautomaton f(F̄ ) ⊆ ST . Considering all this, and Lemma 8, we conclude:

Corollary 5. ST forms a unambiguous εNFA:
– If there is a minimal unambiguous εNFA, then the algorithm returns it.
– The minimal unambiguous ε-complete εNFA is unique upto isomorphism.

Corollary 6.

– If the algorithm returns an ambiguous εNFA then a minimal εNFA is a
subautomaton thereof.

4.2 Complexity

We consider the deterministic worst case time complexity of the algorithm. Let
t(n) be the deterministic time complexity for the test whether L(A) = L(B)
or not for two εNFA A and B. Then the algorithm runs in deterministic time
O(n2t(n)+n3). At the time one only knows t(n) ∈ O(2n). Therefore the running
time of the algorithm is in

O(n22n + n3) ⊆ 2O(n)

The observation in Proposition 4 is interesting because it allows us to speed up
the first pass. Instead of the equivalence test, we should better run an implication
test:

L(A) ⊆ L(A0) ⇔ L(A) ∩ ¬L(A0) = ∅
Here the most time consuming operation is the complement ¬L(A0) =L(¬A0)

— the automaton has to be made complete and deterministic via the power set
construction [21] in order to complement it — but this expression only depends
on A0 and can be precomputed. Hence, the implication test has to do the com-
plement operation just once. In every test, to compute the intersection takes
O(n2) steps, combined with the test of emptiness, O(n). Let t(n) the determin-
istic time complexity to compute the complement. It is t(n) ∈ O(2n) [7]. Hence,
the worst case time complexity with this optimization is
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O(t(n) + n2(n2 + n) + n3) ⊆ O(2n + n4 + 2n3) = O(2n)

Moreover, there is a rich variety of possibilities to further optimize the run-
ning time of the algorithm. But this is out of the scope for this paper. Finally,
it is worth to mention. that the test whether the returned automaton is unam-
biguous and therefore transition minimal is easy to check in deterministic time
O(n2), eg [24, p. 97].

5 Conclusion

Minimization of εNFA was investigated, in particular the theory and an algo-
rithm was developed to reduce the number of transitions of a given εNFA. In
general, this problem is pspace-complete. The algorithm presented reduces the
problem of transition minimization polynomially to NFA equivalences, or alter-
natively to NFA complements; and runs in deterministic time O(2n).

Generally observed, the union principle was exploited. By this means, two tran-
sitions t1 and t2 are equivalent if there is a semantically more compact transition
t with t1 ≤ t ≥ t2. The algorithm unions the transitions such that t1 ∪ t2 ≤ t.
Essentially, the reduction is based on partial orders; as opposed to state equiva-
lences in the deterministic case of DFA. The fact that states resp. transitions in
NFA are no objects of equivalence classes, is the main difference to other work.

The union principle is sufficient to reduce εNFA to minimal unambiguous
εNFA. In other cases, the minimal εNFA it not unambiguous, a partition prin-
ciple may be applicable, eg a transition t is superfluous if it can be partitioned
into t1 and t2 with t = t1 ∪ t2 such that there are more compact transitions tc1
and tc2 with t1 ≤ tc1 and t2 ≤ tc2.

It remains the main open question for further work whether the union and the
partition principle together are sufficient to minimize the number of transitions
of an εNFA, in general.

Acknowledgements. Stephan Weber and Arfst Nickelsen are gratefully thanked
for their fruitful discussions on the subject. And the referees for their interesting
remarks.
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Abstract. The word substitutions are binary word operations which
can be basically interpreted as a deletion followed by insertion, with some
restrictions applied. Besides being itself an interesting topic in formal
language theory, they have been naturally applied to modelling noisy
channels. We introduce the concept of substitution on trajectories which
generalizes a class of substitution operations. Within this framework, we
study their closure properties and decision questions related to language
equations. We also discuss applications of substitution on trajectories in
modelling complex channels and a cryptanalysis problem.

1 Introduction

There are two basic forms of the word substitution operation. The substitution in
α by β means to substitute certain letters of the word α by the letters of β. The
substitution in α of β means to substitute the letters of β within α by other letters,
provided that β is scattered within α. In both cases the overall length of α is not
changed. Also, we assume that a letter must not be substituted by the same letter.

These two operations are closely related and, indeed, we prove in Section 3
that they are mutual left inverses. Their motivation comes from coding theory
where they have been used to model certain noisy channels [7]. The natural idea
is to assume that during a transfer through a noisy channel, some letters of the
transferred word can de distorted — replaced by different letters. This can be
modelled by a substitution operation extended to sets of words. This approach
also allows one to take into the account that certain substitutions are more likely
than others. Hence the algebraic, closure and other properties of the substitution
operation are of interest, to study how a set of messages (=language) can change
when transferred through a noisy channel.

In this paper we generalize the idea of substitution using the syntactical
constraints — trajectories. The shuffle on trajectories as a generalization of se-
quential insertion has been studied since 1996 [15]. Recently also its inverse —
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the deletion on trajectories has been introduced [1, 9]. A trajectory acts as a
syntactical condition restricting the positions of letters within the word where
an operation places its effect. Hence the shuffle and deletion on trajectories can
be understood as meta-operations, defining a whole class of insertion/deletion
operations due to the set of trajectories at hand. This idea turned out to be
fruitful, with several interesting consequences and applications [1, 2, 3, 4, 10, 14].

In Section 3 we introduce on a similar basis the substitution and difference on
trajectories. From the point of view of noisy channels, the application of trajec-
tories allows one to restrict positions of errors within words, their frequency etc.
We then study the closure properties of substitution on trajectories in Section 4
and basic decision questions connected with them in Section 5. In Section 6 we
discuss a few applications of the substitution on trajectories in modelling com-
plex noisy channels and a cryptanalysis problem. In the former case, the channels
involved permit only substitution errors. This restriction allows us to improve
the time complexity of the problem of whether a given regular language is error-
detecting with respect to a given channel [13]. Due to the page limitations, some
proofs are omitted and can be found in [11].

2 Definitions

An alphabet is a finite and nonempty set of symbols. In the sequel we shall use
a fixed alphabet Σ. Σ is assumed to be non-singleton, if not stated otherwise.
The set of all words (over Σ) is denoted by Σ∗. This set includes the empty
word λ. The length of a word w is denoted by |w|. |w|x denotes the number of
occurrences of x within w, for w, x ∈ Σ∗.

For a nonnegative integer n and a word w, we use wn to denote the word that
consists of n concatenated copies of w. The Hamming distance H(u, v) between
two words u and v of the same length is the number of corresponding positions
in which u and v differ. For example, H(abba, aaaa) = 2.

A language L is a set of words, or equivalently a subset of Σ∗. If n is a
nonnegative integer, we write Ln for the language consisting of all words of the
form w1 · · ·wn such that each wi is in L. We also write L∗ for the language
L0∪L1∪L2∪ · · · and L+ for the language L∗−{λ}. The notation Lc represents
the complement of the language L, that is, Lc = Σ∗ − L.

A nondeterministic finite automaton, a NFA for short, is a quintuple A =
(S,Σ, s0, F, P ) such that S is the finite and nonempty set of states, s0 is the
start state, F is the set of final states, and P is the set of productions of the
form sx→ t, where s and t are states in S, and x is a symbol in Σ. The language
accepted by the automaton A is denoted by L(A). The size |A| of the automaton
A is the number |S|+ |P |.

A binary word operation is a mapping ♦ : Σ∗ ×Σ∗ → 2Σ∗
, where 2Σ∗

is the
set of all subsets of Σ∗. For any languages X and Y , we define

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)
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The left and the right inverse ♦l and ♦r of ♦, respectively, are defined as

w ∈ (x♦ v) iff x ∈ (w♦l v) iff v ∈ (x♦r w), for all v, x, w ∈ Σ∗.

Moreover, the word operation ♦′ defined by u♦′ v = v♦u is called reversed
♦. If x and y are symbols in {l, r,′ }, the notation ♦xy represents the operation
(♦x)y. Using the above definitions, one can establish identities between opera-
tions of the form ♦xy.

Lemma 1. (i) ♦ll = ♦rr = ♦′′ = ♦,
(ii) ♦′l = ♦r′ = ♦lr,
(iii) ♦′r = ♦l′ = ♦rl .

Bellow we list several binary word operations together with their left and right
inverses.

Catenation: 1 u · v = {uv}, with ·l = −→rq and ·r = −→lq.
Left quotient: u −→lq v = {w} if u = vw, with −→l

lq = ·′ and −→r
lq = ·.

Right quotient: u −→rq v = {w} if u = wv, with −→l
rq = · and −→r

rq = −→′
lq.

Shuffle (or scattered insertion): u�� v = {u1v1 · · ·ukvkuk+1 | k ≥ 1,
u = u1 · · ·ukuk+1, v = v1 · · · vk}, with ��l = � and ��r = �′.

Scattered deletion: u � v = {u1 · · ·ukuk+1 | k ≥ 1, u = u1v1 · · ·ukvkuk+1, v =
v1 · · · vk}, with �l = �� and �r = �.

3 Substitution on Trajectories

Based on the previously studied concept of the insertion and deletion on tra-
jectories, we consider a generalization of three natural binary word operations
which are used to model certain noisy channels [7]. Generally, channel [13] is a
binary relation γ ⊆ Σ∗ × Σ∗ such that (u, u) is in γ for every word u in the
input domain of γ – this domain is the set {u | (u, v) ∈ γ for some word v}.
The fact that (u, v) is in γ means that the word v can be received from u via
the channel γ. In [7], certain channels with insertion, deletion and substitution
errors are characterized via word operations. For instance, the channel with at
most m insertion errors is the set of pairs {(u, v) | v ∈ u��(Σ0∪ . . .∪Σm)}. The
following definitions allow one to characterize channels with substitution errors.

Definition 1. If u, v ∈ Σ∗ then we define the substitution in u by v as

u � v = {u1v1u2v2 . . . ukvkuk+1 | k ≥ 0, u = u1a1u2a2 . . . ukakuk+1,

v = v1 . . . vk, ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi,∀i, 1 ≤ i ≤ k}.

The case k = 0 corresponds to v = λ when no substitution is performed.

1 We shall also write uv for u · v.
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Definition 2. If u, v ∈ Σ∗ then we define the substitution in u of v as

u+ v = {u1a1u2a2 . . . ukakuk+1 | k ≥ 0, u = u1v1u2v2 . . . ukvkuk+1,

v = v1 . . . vk, ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi,∀i, 1 ≤ i ≤ k}.
Definition 3. Let u, v ∈ Σ∗, |u| = |v|, let H(u, v) be the Hamming distance of
u and v. We define

u � v = {v1v2 . . . vk | k = H(u, v), u = u1a1 . . . ukakuk+1,

v = u1v1 . . . ukvkuk+1, ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi,∀i, 1 ≤ i ≤ k}.
The above definitions are due to [7], where it is also shown that the left-

and the right-inverse of � are + and �, respectively. Given two binary word
operations ♦1, ♦2, their composition (♦1♦2) is defined as

w ∈ u(♦1♦2)v ⇐⇒ w ∈ (u♦1 v1)♦2 v2, v = v1v2,

for all u, v, w ∈ Σ∗. Then it is among others shown that:

(i) The channel with at most m substitution and insertion errors is equal to
{(u, v) | v ∈ u(+��)(Σ0 ∪ . . . ∪Σm)}.

(ii) The channel with at most m substitution and deletion errors is equal to
{(u, v) | v ∈ u(��)(Σ0 ∪ . . . ∪Σm)}.
Moreover, further consequences including composition of channels, inversion

of channels etc. are derived. The above substitution operations can be generalized
using trajectories as follows.

Definition 4. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the substitution
in u by v on trajectory t as

u �t v = {u1v1u2v2 . . . ukvkuk+1 | k ≥ 0, u = u1a1 . . . ukakuk+1, v = v1 . . . vk,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi,∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.
Definition 5. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the substitution
in u of v on trajectory t as

u+t v = {u1a1u2a2 . . . ukakuk+1 | k ≥ 0, u = u1v1 . . . ukvkuk+1, v = v1 . . . vk,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi,∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.
Definition 6. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the right differ-
ence of u and v on trajectory t as

u �t v = {v1v2 . . . vk | k ≥ 0, u = u1a1 . . . ukakuk+1, v = u1v1 . . . ukvkuk+1,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi,∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.
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These operations can be generalized to sets of trajectories in the natural way:

u �T v =
⋃
t∈T

u �t v, u+T v =
⋃
t∈T

u+t v and u �T v =
⋃
t∈T

u �t v.

Example 1. Let T = V ∗, i.e. the set T contains all the possible trajectories.
Then �T =�, +T = + and �T = �.

One can observe that similarly as in [7], the above defined substitution on
trajectories could be used to characterize channels where errors occur in certain
parts of words only, or with a certain frequency and so on. If we replace the
language Σ0∪ . . .∪Σm in the above examples by a more specific one, we can also
model channels where errors may depend on the content of the message. In the
sequel we study various properties of the above defined substitution operations.

Lemma 2. For a set of trajectories T and words u, v ∈ Σ∗, the following holds:

(i) �l
T = +T and �r

T = �T ,

(ii) +l
T = �T and +r

T = �′
T ,

(iii) �l
T = +′

T and �r
T = �T .

4 Closure Properties

Before addressing the closure properties of substitution, we show first that any
(not necessarily recursively enumerable) language over a two letter alphabet can
be obtained as a result of substitution.

Lemma 3. For an arbitrary language L ⊆ {a, b}∗ there exists a set of trajecto-
ries T such that

(i) L = a∗ �T b∗,
(ii) L = a∗+T a∗.

Proof. Let T = φ(L), φ : {a, b}∗ −→ V ∗ being a coding morphism such that
φ(a) = 0, φ(b) = 1. The statements follow easily by definition. ��

Similarly as in the case of shuffle and deletion on trajectories [1, 15, 9], the
substitution on trajectories can be characterized by simpler language operations.

Lemma 4. Let ♦T be any of the operations �T , +T , �T . Then there exists a
finite substitution h1, morphisms h2, g and a regular language R such that for
all languages L1, L2 ⊆ Σ∗, and for all sets of trajectories T ⊆ V ∗,

L1♦T L2 = g((h1(L1)��h2(L2)��T ) ∩R). (2)

The previous lemmata allow us to make statements about closure properties
of the substitution operations now.
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Theorem 1. For a set of trajectories T ⊆ V ∗, the following three statements
are equivalent.

(i) T is a regular language.
(ii) L1 �T L2 is a regular language for all L1, L2 ⊆ Σ∗.
(iii) L1+T L2 is a regular language for all L1, L2 ⊆ Σ∗.

Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) follow by Lemma 4 due to the
closure of the class of regular languages with respect to shuffle, finite substitu-
tion, morphisms and intersection. Alternatively, one can give a polynomial-time
construction of an NFA which accepts the language L1 �T L2 or L1+T L2,
respectively.

To show the implication (ii) ⇒ (i), assume that L1 �T L2 is a regular lan-
guage for all L1, L2 ⊆ Σ∗. Let a, b ∈ Σ without loss of generality, then also
L = a∗ �T b∗ is a regular language, and T = φ−1(L), φ being the coding defined
in the proof of Lemma 3. Consequently, T is regular. The implication (iii) ⇒ (i)
can be shown analogously. ��
Theorem 2. For all regular set of trajectories T ⊆ V ∗ and regular languages
L1, L2 ⊆ Σ∗, L1 �T L2 is a regular language.

Proof. The same as the proof of Theorem 1, (i) ⇒ (ii). ��
Theorem 3. Let ♦T be any of the operations �T , +T , �T .

(i) Let any two of the languages L1, L2, T be regular and the third one be
context-free. Then L1♦T L2 is a context-free language.

(ii) Let any two of the languages L1, L2, T be context-free and the third one be
regular. Then L1♦T L2 is a non-context-free language for some triples (L1,
L2, T ).

We note that in the case of Theorem 3 (ii), one can obtain e.g. languages of the
form anbncn.

5 Decision Problems

In this section we study three elementary types of decision problems for language
equations of the form L1♦T L2 = R, where ♦T is one of the operations �T ,
+T , �T . These problems, studied already for various binary word operations in
[6, 1, 9, 5] and others, are stated as follows. First, given L1, L2 and R, one asks
whether the above equation holds true. Second, the existence of a solution L1
to the equation is questioned, when L1 is unknown (the left operand problem).
Third, the same problem is stated for the right operand L2. All these problems
have their variants when one of L1, L2 (the unknown language in the case of the
operand problems) consists of a single word.

We focus now on the case when L1, L2 and T are all regular languages, hence
they are defined by means of NFA’s accepting them. Then L1♦T L2 is also a
regular language by Theorems 1, 2, ♦T being any of the operations �T , +T ,
�T . Immediately we obtain the following result.
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Theorem 4. The following problems are both decidable if the operation ♦T is
one of �T , +T , �T , T being a regular set of trajectories:

(i) For given regular languages L1, L2, R, is L1♦T L2 = R?
(ii) For given regular languages L1, R and a word w ∈ Σ∗, is L1♦T w = R?

Also the decidability of the left and the right operand problems for languages
are straightforward consequences of the results in Section 4 and some previously
known facts about language equations [6].

Theorem 5. Let ♦T be one of the operations �T , +T , �T . The problem “Does
there exist a solution X to the equation X ♦T L = R?” (left-operand problem)
is decidable for regular languages L, R and a regular set of trajectories T.

Proof. Due to [6], if a solution to the equation X ♦T L = R exists, then also
Xmax = (Rc♦l

T L)c is also a solution, ♦T being an invertible binary word oper-
ation. In fact, Xmax is the maximum (with respect to the subset relation) of all
the sets X such that X ♦T L ⊆ R. We can conclude that a solution X exists iff

(Rc♦l
T L)c♦T L = R. (3)

holds. Observe that if ♦T is one of �T , +T , �T , then ♦l
T is +T , �T or +′

T ,
respectively, by Lemma 2. Hence the left side of the equation (3) represents
an effectively constructible regular language by Theorems 1, 2. Consequently,
the validity of (3) is decidable and moreover the maximal solution Xmax =
(Rc♦l

T L)c can be effectively found if one exists. ��

Theorem 6. Let ♦T be one of the operations �T , +T , �T . The problem “Does
there exist a solution X to the equation L♦T X = R?” (right-operand problem)
is decidable for regular languages L, R and a regular set of trajectories T.

Proof. Analogous as in the previous case. ��

Theorem 7. Let ♦T be one of the operations �T , +T , �T . The problem “Does
there exist a word w such that w♦T L = R?” is decidable for regular languages
L, R and a regular set of trajectories T.

Proof. Assume that ♦T is one of �T , +T , �T . Observe first that if y ∈ w♦T x
for some w, x, y ∈ Σ∗, then |y| ≤ |w|. Therefore, if R is infinite, then there
cannot exist a solution w of a finite length satisfying w♦T L = R. Hence for an
infinite R the problem is trivial.

Assume now that R is finite. As shown in [6], the regular set Xmax =
(Rc♦l

T L)c is the maximal set with the property X ♦T L ⊆ R. Hence w is a
solution of w♦T L = R iff
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(i) w♦T L ⊆ R, i.e. w ∈ Xmax, and
(ii) w♦T L �⊂ R.

Moreover, (ii) is satisfied iff w♦T L �⊆ R1 for all R1 ⊂ R, and hence w �∈
(Rc

1♦l
T L)c. Hence we can conclude that the set S of all singleton solutions to

the equation w♦T L = R can be expressed as

S = (Rc♦l
T L)c −

⋃
R1⊂R

(Rc
1♦l

T L)c.

Since we assume that R is finite, the set S is regular and effectively constructible
by Lemma 2, Theorems 1, 2 and closure of the class of regular languages under
finite union and complement. Hence it is also decidable whether S is empty or
not, and eventually all its elements can be effectively listed. ��
Theorem 8. Let ♦T be one of the operations �T , +T , �T . The problem “Does
there exist a word w such that L♦T w = R?” is decidable for regular languages
L, R and a regular set of trajectories T.

Proof. Assume first that ♦T is one of �T , +T . Observe that if y ∈ x♦T w for
some w, x, y ∈ Σ∗, then |y| ≥ |w|. Therefore, if a solution w to the equation
L♦T w = R exists, then |w| ≤ k, where k = min{|y| | y ∈ R}. Hence, to
verify whether a solution exists or not, it suffices to test all the words from
Σ0 ∪Σ1 ∪ . . . ∪Σk.

Focus now on the operation �T . Analogously to the case of Theorem 7, we
can deduce that there is no word w satisfying L �T w = R, if R is infinite.
Furthermore, the set Xmax = (L�r

T Rc)c = (L �T Rc)c is the maximal set with
the property L �T X ⊆ R. The same arguments as in the proof of Theorem 7
allow one to express the set of all singleton solutions as

S = (L �T Rc)c −
⋃

R1⊂R

(L �T Rc
1)

c.

For a finite R, the set S is regular and effectively constructible, hence we can
decide whether it contains at least one solution. ��

We add that in the above cases of the left and the right operand problems, if
there exists a solution, then at least one can be effectively found. Moreover, in
the case of their singleton variants, all the singleton solutions can be effectively
enumerated.

6 Applications

In this section we discuss a few applications of the substitution-on-trajectories
operation in modelling certain noisy channels and a cryptanalysis problem. In
the former case, we revisit a decidability question involving the property of error-
detection.
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For positive integers m and l, with m < l, consider the SID channel [12]
that permits at most m substitution errors in any l (or less) consecutive symbols
of any input message. Using the operation �T , this channel is defined as the
set of pairs of words (u, v) such that u is in v �T Σ∗, where T is the set of all
trajectories t such that, for any subword s of t, if |s| ≤ l then |s|1 ≤ m. In general,
following the notation of [7], for any trajectory set T we shall denote by [�T Σ∗]
the channel {(u, v) | v ∈ u �T Σ∗}. In the context of noisy channels, the concept
of error-detection is fundamental [13]. A language L is called error-detecting for
a channel γ, if γ cannot transform a word in Lλ to another word in Lλ; that is,
if u, v ∈ Lλ and (u, v) ∈ γ then u = v. Here Lλ is the language L ∪ {λ}. The
empty word in this definition is needed in case the channel permits symbols to
be inserted into, or deleted from, messages – see [13] for details. In our case,
where only substitution errors are permitted, the above definition remains valid
if we replace Lλ with L.

In [13] it is shown that, given a rational relation γ and a regular language
L, we can decide in polynomial time whether L is error-detecting for γ. Here we
take advantage of the fact that the channels [�T Σ∗] permit only substitution
errors and improve the time complexity of the above result.

Theorem 9. The following problem is decidable in time O(|A|2|T |).
Input: NFA A over Σ and NFA T over {0, 1}.
Output: Y/N, depending on whether L(A) is error-detecting for [�T Σ∗].

Proof. In [8] it is shown that given an NFA A, one can construct the NFA Aσ,
in time O(|A|2), such that the alphabet of Aσ is E = Σ × Σ and the language
accepted by Aσ consists of all the words of the form (x1, y1) · · · (xn, yn), with each
(xi, yi) ∈ E, such that x1 · · ·xn �= y1 · · · yn and the words x1 · · ·xn and y1 · · · yn

are in L(A). Let φ be the morphism of E into {0, 1} such that φ(x, y) = 0 iff
x = y. One can verify that L(A) is error-detecting for [�T Σ∗] iff the language
φ(L(Aσ))∩L(T ) is empty. Using this observation, the required algorithm consists
of the following steps: (i) Construct the NFA Aσ from A. (ii) Construct the NFA
φ(Aσ) by simply replacing each transition s(x, y) → t of Ac with sφ(x, y) → t.
(iii) Use a product construction on φ(Aσ) and T to obtain an NFA B accepting
φ(L(Aσ))∩L(T ). (iv) Perform a depth first search algorithm on the graph of B
to test whether there is a path from the start state to a final state. ��

We close this section with a cryptanalysis application of the operation �T .
Let V be a set of candidate binary messages (words over {0, 1}) and let K be a
set of possible binary keys. An unknown message v in V is encrypted as v ⊕ t,
where t is an unknown key in K, and ⊕ is the exclusive-OR logic operation.
Let e be an observed encrypted message and let T be a set of possible guesses
for t, with T ⊆ K. We want to find the subset X of V for which X ⊕ T = e,
that is, the possible original messages that can be encrypted as e using the keys
we have guessed in T . In general T can be infinite and given, for instance, by a
regular expression describing the possible pattern of the key. We can model this
problem using the following observation whose proof is based on the definitions
of the operations �T and ⊕, and is left to the reader.
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Lemma 5. For every word v and trajectory t, v �t Σ
∗ = {v ⊕ t}.

By the above lemma, we have that the equation X ⊕ T = e is equivalent to
X �T Σ∗ = e. By Theorem 5, we can decide whether there is a solution for
this equation and, in this case, find the maximal solution Xmax. In particular,
Xmax = (ec+TΣ

∗)c. Hence, one needs to compute the set M∩Xmax. Most likely,
for a general T , this problem is intractable. On the other hand, this method
provides an alternate way to approach the problem.
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H. Maurer, G. Paun, G. Rozenberg (Eds.), Theory Is Forever – Essays Dedicated to
Arto Salomaa on the Occasion of His 70th Birthday. LNCS 3113, 2004, 145–158.



212 L. Kari, S. Konstantinidis, and P. Sośık
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Abstract. In this paper we consider the state complexity of an opera-
tion on formal languages, root(L). This naturally entails the discussion
of the monoid of transformations of a finite set. We obtain good upper
and lower bounds on the state complexity of root(L) over alphabets of all
sizes. As well, we present an application of these results to the problem
of 2DFA-DFA conversion.

1 Introduction

A deterministic finite automaton, or DFA, is a 5-tupleA = (Q,Σ, δ, q0, F ), where
Q is a finite non-empty set of states, Σ is the finite input alphabet, δ : Q×Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. We assume that δ is defined on all elements of its domain. The domain
of δ can be extended in the obvious way to Q×Σ∗, where Σ∗ is the free monoid
over the alphabet Σ. For a DFA A, the set L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F} is
said to be the language recognized by A.

The state complexity of a regular language L ⊆ Σ∗, denoted sc(L), is defined
as the number of states in the smallest DFA recognizing L. We may extend
this concept to consider the state complexity of an operation on regular lan-
guages, that is, the complexity of the resulting language relative to the complex-
ity of the operand languages. The state complexity of basic operations, such as
union, intersection, and concatenation, have been studied extensively by Yu et al.
[16, 17].

In this paper we examine the less familiar operation, root(L), given by

root(L) = {w ∈ Σ∗ : ∃n ≥ 1 such that wn ∈ L} .

In pursuit of good bounds on the state complexity of root(L), we study its
realtionship to the connections between algebra and finite automata.

For a finite set Q, a function f : Q→ Q is called a transformation. We denote
the set of all transformations of Q by QQ. For f, g ∈ QQ, their composition is
written fg, and is given by (fg)(q) = g(f(q)), for all q ∈ Q. Together, QQ and
the composition operator form a monoid.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 213–224, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Transformations and their monoids have been studied in some detail by Dénes
(whose work is summarized in [4]), and Salomaa [13, 14]. Dénes investigates
several algebraic and combinatorial properties of transformations, while much
of Salomaa’s work is concerned with subsets that generate the full monoid of
transformations.

In Theorem 1, we will show that transformations of the states in a DFA
recognizing a language L can be used to construct a DFA to recognize root(L).
This establishes the connection between transformations and root(L), which we
will explore. As well, it shows that root(L) is a regularity-preserving operation,
that is, if L is regular, then root(L) is regular.

Let L be a language and let A = (Q,Σ, δ, q0, F ) be a DFA such that L =
L(A). For w ∈ Σ∗, define δw(q) = δ(q, w), for all q ∈ Q. Then δw is a transfor-
mation of Q. If we denote the empty word by ε, then δε is the identity transfor-
mation.

Theorem 1. For a language L and a DFA A = (Q,Σ, δ, q0, F ) with L = L(A),
define the DFA A′ = (QQ, Σ, δ′, q′

0, F
′) where q′

0 = δε, F ′ = {f : ∃n ≥
1 such that fn(q0) ∈ F}, and δ′ is given by

δ′(f, a) = fδa, for all f ∈ QQ and a ∈ Σ .

Then root(L) = L(A′).

Proof. An easy induction on the length of w ∈ Σ∗ shows that δ′(q′
0, w) = δw.

Then x ∈ root(L) ⇔ ∃n ≥ 1 : xn ∈ L ⇔ δx ∈ F ′ ⇔ δ′(q′
0, x) ∈

F ′.

Zhang [18] used a similar technique to characterize regularity-preserving op-
erations. To recognize the image of a language under an operation, Zhang con-
structs a new DFA with states based on Boolean matrices. These matrices rep-
resent the transformations of states in the original DFA.

Corollary 1. For a regular language L, if sc(L) = n then sc(root(L)) ≤ nn.

Proof. This is immediate from the construction given in Theorem 1.

Corollary 1 gives us our first bound on the state complexity of root(L). In
the remainder of this paper we improve this upper bound, and give a non-trivial
lower bound for the worst-case blow-up of the state complexity of root(L), for
alphabets of all sizes. These upper and lower bounds demonstrate that a simple,
intuitive operation can increase the state complexity of a language from n to
nearly nn, even over binary alphabets. Our most important results are given in
Corollary 3, Corollary 4, and Theorem 6.

2 Unary Languages

For the sake of completeness, we examine the state complexity of root(L) in the
unary case. Due to the simpler structure of unary languages, sc(root(L)) can be
determined without investigating the transformations of states. It turns out that
sc(root(L)) is bounded by the complexity of the original language.
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Proposition 1. If L is a unary regular language, then sc(root(L)) ≤ sc(L).
This bound is tight.

The idea of the following proof is that given a particular DFA recognizing L,
we can modify it by adding states to the set of final states. The resulting DFA
will recognize the language root(L).

Proof. Let Σ = {a} be the alphabet of L. Since L is regular and unary, there
exists a DFAA recognizing L, such thatA = ({q0, . . . , qn−1}, {a}, δ, q0, F ), where
δ(qi, a) = qi+1, for all 0 ≤ i < n−1, and δ(qn−1, a) = qj , for some 0 ≤ j ≤ n−1.
We call the states q0, . . . , qj−1 the tail, and the states qj , . . . , qn−1 the loop.

Notice that root(L) = {as ∈ Σ∗ : s | t, at ∈ L}. For all strings at ∈ L, we
have some k ≥ 0 and some b ≤ n− 1 such that t = kl+ b, where l = n− j is the
number of states in the loop. Let s = lm+ c for some m ≥ 0 and some 0 ≤ c < l.
Then

s | t ⇔ ∃r : lk + b = r(lm + c)
⇔ ∃r : lk − rlm = rc− b

⇔ ∃r : gcd(l,−lm) | rc− b (by Theorem 4.3.1 of [1])
⇔ ∃r : l | rc− b

⇔ ∃r, v : rc− b = lv

⇔ ∃r, v : rc− lv = b

⇔ gcd(l, c) | b . (by Theorem 4.3.1 of [1])

Thus, a number of the form kl + b, where k ≥ 0 and b ≤ n− 1, has the divisors

{lm + c ∈ Z : m ≥ 0, gcd(l, c) | b} .

So for each at ∈ L, the divisors of t = kl + b can be recognized by changing the
corresponding states into final states. Therefore, sc(root(L)) ≤ sc(L).

To show this bound is tight, for n ≥ 2 consider the language Ln = {an−2}.
Under the Myhill-Nerode equivalence relation [7], no two strings in the set
{ε, a, a2, . . . , an−1} are equivalent. All other strings in Σ∗ are equivalent to an−1.
Hence sc(Ln) = n. Furthermore, since an−2 is the longest word in root(Ln),
δ(q0, an−2) cannot be a state in the loop. It follows that we require exactly n−1
states in the tail plus a single, non-final state in the loop. Hence sc(root(Ln)) = n.
Therefore the bound is tight.

3 Languages on Larger Alphabets

For a regular language L and its minimal DFA A = (Q,Σ, δ, q0, F ), Theorem 1
describes how to construct an automaton A′ to recognize root(L). The automa-
ton A′ has all transformations of Q as its states. However, it is easy to see that
the only reachable states are compositions of the transformations δε, δa1 , . . . , δam

,
where each ai ∈ Σ. The elements δε, δa1 , . . . , δam

, and all of their compositions
form the transition monoid of A. We can now state the following improvement
of the upper bound on the state complexity of root(L).
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Corollary 2. For a regular language L, let A be the smallest DFA recognizing
L. Then if M is the transition monoid of A, we have that sc(root(L)) ≤ |M |.
Proof. In Theorem 1, the only reachable states in the construction of A′ are
those that belong to the transition monoid of A.

Define Zn = {1, 2, . . . , n}. Now define Tn = ZZn
n , the set of transformations

of Zn, and Sn ⊆ Tn as the set of permutations of Zn. For γ ∈ Tn we write

γ =
(

1 2 · · · n
γ(1) γ(2) · · · γ(n)

)
.

Definition 1. If M ⊆ Tn is the set of all compositions of the transformations
f1, . . . , fm ∈ Tn, then we say that {f1, . . . , fm} generates M .

The relationship between the state complexity of a language and the transi-
tion monoid of its minimal DFA naturally leads to the question: for a positive
integer m, how large a submonoid of Tn can be generated by m elements? In
connection with the study of Landau’s function (for a survey see [12]), Szalay
[15] showed that, for m = 1, the largest submonoid of Tn has size

exp

{√
n

(
log n + log log n− 1 +

log log n− 2 + o(1)
log n

)}
.

When m ≥ 3, the result, as follows, is well known.

Definition 2. For γ ∈ Tn, define the image of γ by img(γ) = {y ∈ Zn : y =
γ(z), z ∈ Zn}.

Definition 3. For γ ∈ Tn, define the rank of γ as the number of distinct ele-
ments in the image of γ, and denote it by rank(γ).

Lemma 1. Let n ≥ 3. Suppose H ⊆ Tn such that H generates Tn. Then |H| ≥
3. Furthermore, |H| = 3 if and only if H can be written in the form H =
{α, β, γ}, where {α, β} generates Sn and rank(γ) = n− 1.

For a proof of this lemma, see Dénes [3]. This shows that the largest sub-
monoid generated by three elements has the full size nn.

Only recently has there been any study of the largest submonoid on two
generators. Significant progress has been made in this area by Holzer and König
[5, 6], and, independently, by Krawetz, Lawrence, and Shallit [9]. The results of
Holzer and König are summarized here.

Let k, l be coprime integers with k, l ≥ 2, and k + l = n. Furthermore, let
α = (1 2 · · · k)(k + 1 k + 2 · · · n) be a permutation of Zn composed of two
cycles, one of length k, the other of length l. Define Uk,l to be the set of all
transformations γ ∈ Tn where exactly one of the following is true:
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1. γ = αm for some positive integer m;
2. For some i ∈ {1, . . . , k} and some j ∈ {k+1, . . . , n} we have that γ(i) = γ(j)

and for some m ∈ {k + 1, . . . , n} we have that m �∈ img(γ).

Let π1 = (1 2 · · · k) be an element of Sn−1, and let π2 ∈ Sn−1 be a permu-
tation such that π1 and π2 generate Sn−1. Now define β ∈ Tn by

β =
(

1 2 · · · n− 1 n
π2(1) π2(2) · · · π2(n− 1) π2(1)

)
.

Lemma 2 (Holzer and König). The set Uk,l is a submonoid of Tn and is
generated by {α, β}.

It is worth noting that in their definition of Uk,l, Holzer and König allow
k = 1 and l = 1. They show implicitly, however, that the size of the monoid in
these degenerate cases is too small to be of any consequence here.

Theorem 2 (Holzer and König). For n ≥ 7, there exist coprime integers k,l
such that n = k + l and |Uk,l| ≥ S(n) , where

S(n) = nn

(
1−

√
2
(

2
e

)n
2

e
1
12 −

√
8

1√
n
e

1
12

)
.

In addition to a lower bound on the size of the largest two-generated monoid,
Theorem 2 proves the existence of a sequence of two-generated monoids whose
size approaches nn as n tends toward infinity. Similar results were obtained
independently by Krawetz, Lawrence, and Shallit [9]. More recently, Holzer and
König [6] proved the following result regarding the maximality of monoids of the
form Uk,l.

Theorem 3 (Holzer and König). For all prime numbers n ≥ 7, there exist
coprime integers k,l ≥ 2 such that k+ l = n and Uk,l is the largest two-generated
submonoid of Tn.

They also stated the following conjecture.

Conjecture 1 (Holzer and König). For any n ≥ 7, there exist coprime integers
k,l ≥ 2 such that k+l = n and Uk,l is the largest two-generated submonoid of Tn.

In Corollary 2, we established the relationship between the state complexity
of root(L) and the size of the transition monoid of the minimal DFA recognizing
L. We now show that we can construct a language based on a particular monoid,
so that we may take advantage of Theorems 2 and 3. By associating an alphabet
with the generators of a monoid, we can define a transition function for a DFA.
We can then complete the definition of the DFA by choosing a start state and a
set of final states. We give the DFA construction more formally below.

Let n,m be integers with n,m ≥ 1. Let X = {α1, . . . , αm} be a set of
transformations in Tn. Finally, let M ⊆ Tn denote the monoid generated by
X. Then a DFA based on X is a DFA M = (Zn, Σ, δ, z0, F ) where: |Σ| ≥ m;
z0 ∈ Zn; F ⊆ Zn; and for some map Ψ : Σ → X ∪ {δε} that is surjective on X,
δ is given by δa = Ψ(a), for all a ∈ Σ.
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Proposition 2. Let M = (Zn, Σ, δ, z0, F ) be a DFA. Then M is the transition
monoid of M if and only if M is based on X, for some X ⊆ Tn that generates
M .

Proof. For a DFA M based on X, it is immediate from the construction that
M is the transition monoid of M. For any DFA M that has M as its transition
monoid, the set {δa ∈ Tn : a ∈ Σ} will generate M . We can then take Ψ given
by Ψ(a) = δa, for all a ∈ Σ.

Let AΨ,X = (Zn, Σ, δ, z0, F ) denote the DFA based on X when z0 = 1,
F = {1}, and Ψ is bijective on an m-element subset of Σ, with all other elements
of Σ mapped to δε. It is easily seen that if Ψ1 and Ψ2 are maps over the same
domain, then AΨ1,X is isomorphic to AΨ2,X , up to a renaming of the states and
alphabet symbols. For this reason, we denote this DFA simply by AΣ,X .

Example 1. Let Y = {α, β}, where

α =
(

1 2 3 4 5
2 1 4 5 3

)
, and β =

(
1 2 3 4 5
2 3 4 1 2

)
.

Define Φ by Φ(a) = α and Φ(b) = β. Then Fig. 1 depicts the DFA AΦ,Y .

1 2

4 3 5

a,b

a,b
b

a

b

a

b

a

Fig. 1. The automaton AΦ,Y

For a set X of transformations in Tn, let M(X) denote the monoid gener-
ated by X. We now state the following important result concerning the state
complexity of root(L).

Theorem 4. Let X be a set of transformations in Tn. If Uk,l ⊆ M(X) for
some coprime integers k ≥ 2 and l ≥ 3, with k + l = n, then the minimal DFA
recognizing root(L(AΣ,X)) has |M(X)| − (

n
2

)
states.

Before we can prove this theorem, we must provide a few more definitions
and lemmas.

Definition 4. Let ρ ∈ Tn. For any i, j, k, if ρ(i) = k = ρ(j) implies that i = j,
then we say that k is unique.
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Definition 5. Let ρ ∈ Tn have rank 2, with img(ρ) = {i, j}. Then by the com-
plement of ρ, we mean the transformation ρ ∈ Tn, where

ρ(k) =

{
i, if ρ(k) = j;
j, if ρ(k) = i .

For example, if ρ =
(

1 2 3 · · · n− 1 n
3 3 2 · · · 2 2

)
, then ρ =

(
1 2 3 · · · n− 1 n
2 2 3 · · · 3 3

)
. In

general, it is easy to see that ρ and ρ have the same rank, and that ρ = ρ.
For a set of transformations X ⊆ Tn, letM = (Zn, Σ, δ, z0, F ) be an automa-

ton based on X. We define the DFA M∗ as follows. Let δ′(η, a) = ηδa for all
η ∈M(X) and a ∈ Σ. Also, let F ′ = {η ∈M(X) : ηn(z0) = F for some n ≥ 1}.
Then define M∗ = (M(X), Σ, δ′, δε, F

′). It follows that L(M∗) = root(L(M)).
In order to analyze the state complexity of the language L(M∗), we must

identify the equivalent states of M∗. For η, θ ∈ M(X), note that η and θ are
equivalent states if and only if for all w ∈ Σ∗ we have δ′(η, w) ∈ F ′ ⇔ δ′(θ, w) ∈
F ′. However, since δ′(η, w) = ηδw, this is equivalent to saying that η and θ are
equivalent states if and only if for all ρ ∈M(X) we have ηρ ∈ F ′ ⇔ θρ ∈ F ′.

Lemma 3. Let X ⊆ Tn, and let M = (Zn, Σ, δ, z0, F ) be an automaton based
on X such that z0 ∈ F . Let η, θ ∈ M(X), with rank(η) = 2. If η(z0) is unique
for η, and η = θ, then η and θ are equivalent states in M∗.

Lemma 4. Let X ⊆ Tn, and let M = (Zn, Σ, δ, z0, F ) be an automaton based
on X, such that z0 �∈ F . Let η, θ ∈M(X), with η(z0) unique for η, rank(η) = 2,
and img(η) = img(θ). If θ(z0) = η(z0), and if θ(z) = η(z0) implies that z ∈ F ,
then η and θ are equivalent states in M∗.

The proofs of Lemmas 3 and 4 have been omitted due to space constraints.
Now that we have seen some examples of equivalent states in M∗ in the

general case, we restrict our focus. For the remainder of this section, let Y be a
set of transformations in Tn such that Uk,l ⊆ M(Y ), for some coprime integers
k ≥ 2 and l ≥ 3, with k + l = n.

Lemma 5. Let η, θ ∈ M(Y ), with η �= θ. If rank(η) = 1, then η and θ are not
equivalent states in A∗

Σ,Y .

Proof. Since η has rank 1, we have that img(η) = {z1} for some z1. If η(1) �= θ(1),
then take ρ ∈ Uk,l such that ρ(z1) = 2, and ρ(z) = 1, for all z �= z1. Then
img(ηρ) = {2}, so that ηρ �∈ F ′. But θρ(1) = 1, so that θρ ∈ F ′. Hence η and
θ are not equivalent. If η(1) = θ(1), then rank(θ) �= 1 so that for some z2 �= 1
we have θ(z2) �= z1. Take ρ ∈ Uk,l such that ρ(θ(z2)) = 1, and ρ(z) = z2, for
all z �= θ(z2). Then img(ηρ) = {z2}, so that ηρ �∈ F ′. But (θρ)2(1) = 1, so that
θρ ∈ F ′. Hence η and θ are not equivalent.

Lemma 6. For η, θ ∈ M(Y ) with η �= θ, let η have rank 2. Then η and θ are
equivalent states in A∗

Σ,Y if and only if η(1) is unique for η, and η = θ.
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The proof of Lemma 6 has been omitted due to space constraints.

Lemma 7. Let η, θ ∈ M(Y ), with η �= θ. If η, θ have rank ≥ 3, then η and θ
are not equivalent states in A∗

Σ,Y .

Proof. Since η �= θ, there exists some z1 ∈ Zn such that η(z1) �= θ(z1). Let
z2 = η(z1). Take ρ ∈ Uk,l such that ρ(z2) = 1, and ρ(z) = 2, for all z �= z2. Now,
since rank(η) ≥ 3, we have rank(ηρ) = 2. If ηρ(1) is not unique, then by Lemma
6, ηρ and θρ are not equivalent. Hence η and θ are not equivalent. If ηρ(1) is
unique, it must be that z1 = 1. Furthermore, since rank(θ) ≥ 3, we cannot have
θ(z) = z2 for all z �= 1, so we cannot have θρ(z) = 1 for all z �= 1. Therefore
θρ �= ηρ. Then by Lemma 6, ηρ and θρ are not equivalent. Hence η and θ are
not equivalent.

We are now ready to prove Theorem 4.

Proof (Theorem 4). Lemmas 5 – 7 cover all possible cases for η, θ ∈M(X), η �= θ.
Therefore, two states are equivalent if and only if they satisfy the hypothesis of
Lemma 6. There are

(
n
2

)
such equivalence classes in M(X), each containing

exactly 2 elements. All other elements of M(X) are in equivalence classes by
themselves. It follows that the minimal DFA recognizing root(L(AΣ,X)) has
|M(X)| − (

n
2

)
states.

Now that we have established a close relationship between sc(root(L)) and
the transition monoid of the minimal automaton recognizing L, we can take
advantage of results concerning the size of the largest monoids. The follow-
ing corollary gives a lower bound on sc(root(L)) for alphabets of size two. It
also proves the existence of a sequence of regular binary languages with state
complexity n whose roots have state complexity approaching nn as n increases
without bound.

We now state our first main result.

Corollary 3. For n ≥ 7, there exists a regular language L over an alphabet of
size 2, with sc(L) ≤ n, such that

sc(root(L)) ≥ nn

(
1−

√
2
(

2
e

)n
2

e
1
12 −

√
8

1√
n
e

1
12

)
−

(
n

2

)
.

Proof. The result follows from a combination of Theorem 2 and Theorem 4.

Our results from Theorem 4 do not apply when l = 2. Unfortunately, The-
orem 3 does not exclude this possibility. To guarantee that this fact is of no
consequence, we must show that not only is the monoid Un−2,2 never the largest,
but that it is also at least

(
n
2

)
smaller than the largest monoid. The following

lemma deals with this.

Lemma 8. For n ≥ 7, we have that

|U2,n−2| − |Un−2,2| ≥
(
n

2

)
.
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The proof of Lemma 8 has been omitted due to space constraints.
In the construction of the DFA AΣ,Y , the choice of start and final states is

optimal. The following theorem shows that for any other DFA with the same
transition function, another assignment of start and final states will not increase
the state complexity of the language it recognizes.

Theorem 5. Let M = (Zn, Σ, δ, z0, G) be an automaton based on Y . Then
sc(root(L(M))) ≤ sc(root(L(AΣ,Y )).

Proof. If z0 ∈ G, then Lemma 3 applies. It follows that there are at least
(
n
2

)
pairs of equivalent states in M∗. If z0 �∈ G, then Lemma 4 applies, and again we
have at least

(
n
2

)
pairs of equivalent states in M∗. In either case, this gives

sc(root(L(M))) ≤ |M(Y )| −
(
n

2

)
= sc(root(L(AΣ,Y )) .

We now state our second main result.

Corollary 4. For prime numbers n ≥ 7, there exist positive, coprime integers
k ≥ 2, l ≥ 3, with k + l = n, such that if L is a language over an alphabet of
size 2 and sc(L) ≤ n, then sc(root(L)) ≤ |Uk,l| −

(
n
2

)
. Furthermore, this bound

is tight.

Proof. Let U ′ denote the largest two-generated submonoid of Tn. Then by The-
orem 3 and Lemma 8, we have that U ′ = Uk′,l′ for some coprime integers k′ ≥ 2,
l′ ≥ 3 with k′ + l′ = n.

Let M be the smallest DFA recognizing L, and let M be the transition
monoid of M. If M is of the form Uk,l, with k ≥ 2, l ≥ 3, then it follows from
Theorem 5 that sc(root(L)) ≤ |Uk,l| −

(
n
2

)
. Hence sc(root(L)) ≤ |U ′| − (

n
2

)
. If M

is of the form Uk,l, with k = n− 2, l = 2, then by Corollary 2 and Lemma 8 we
have sc(root(L)) ≤ |Un−2,2| ≤ |U2,n−2| −

(
n
2

) ≤ |U ′| − (
n
2

)
.

To deal with the case where M is not isomorphic to a Uk,l monoid, the result
of Theorem 3 is not quite strong enough. However, by re-visiting the proof given
by Holzer and König, we can obtain the following improvement [8]:

For all prime numbers n ≥ 7, there exist coprime integers k,l ≥ 2 such that
k + l = n and Uk,l is the largest two-generated submonoid of Tn. Furthermore,
if V is the largest two-generated submonoid of Tn such that V is not isomorphic
to Uk′′,l′′ for some appropriate k′′ and l′′, then |Uk,l|− |V | ≥

(
n
2

)
. Then it follows

that

sc(root(L)) ≤ |M | ≤ |Uk,l| −
(
n

2

)
.

The fact that the bound is tight is an immediate consequence of Theorem 4.

If Conjecture 1 is true, then for all n ≥ 7 (prime or composite), the construc-
tion AΣ,X will yield a language that is within

(
n
2

)
of the upper bound on the

state complexity of root(L). We conjecture that this construction will actually
reach the upper bound.
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Conjecture 2. For any integer n ≥ 7, there exist positive, coprime integers k ≥ 2,
l ≥ 3, with k + l = n, such that if L is a language over an alphabet of size 2,
with sc(L) ≤ n, then sc(root(L)) ≤ |Uk,l| −

(
n
2

)
. This bound is tight.

Since the results concerning the largest monoid on 3 or more generators are
specific, we can obtain much better bounds on the state complexity of root(L)
for alphabets of size at least 3.

Lemma 9. For n ≥ 1, if M ⊆ Tn is a monoid such that |M | > nn − (
n
2

)
, then

M = Tn.

Proof. For 1 ≤ n ≤ 3, the result can easily be verified computationally, so assume
that n ≥ 4.

Since |M | > |Tn|−
(
n
2

)
, there are at most

(
n
2

)−1 elements of Tn missing from
M . There are

(
n
2

)
transpositions in Tn. Then it follows that M must contain at

least one transposition. Also, there are (n− 1)! permutations of Zn whose cycle
structure consists of a single cycle with length n. Since n ≥ 4, we have that
(n− 1)! ≥ (

n
2

)
. Again, considering the size of M , it follows that M must contain

at least one n-cycle. Hence Sn ⊆M .
Now consider the transformations in Tn with rank n−1. For a transformation

to have rank n − 1, two elements of Zn must have the same image; this can be
done in

(
n
2

)
ways. Furthermore, we must have that one element of Zn is missing

from the image; this can be done in n ways. Finally, the n − 1 elements of the
image can be arranged in (n− 1)! ways. This gives a total of

(
n
2

) · n!. It follows
that M must contain at least one transformation of rank n−1. Then by Lemma
1, we have that M = Tn.

We now state our third main result.

Theorem 6. Let Σ be an alphabet of size m ≥ 3. For n ≥ 1, if L is a language
over Σ with sc(L) ≤ n, then sc(root(L)) ≤ nn− (

n
2

)
. Furthermore, this bound is

tight.

Proof. Define M to be the transition monoid of the smallest DFA recognizing
L. If |M | ≤ nn − (

n
2

)
, then certainly sc(root(L)) ≤ nn − (

n
2

)
. So suppose that

|M | > nn − (
n
2

)
. Then it follows from Lemma 9 that M = Tn.

For 1 ≤ n ≤ 6, it has been verified computationally that if the transition
monoid of the minimal DFA recognizing L is Tn, then sc(root(L)) = nn − (

n
2

)
.

For n ≥ 7, if the transition monoid is Tn, then clearly Uk,l ⊆ Tn for some suitable
k, l so that Theorem 4 applies, and hence sc(root(L)) = nn − (

n
2

)
.

To show that the bound is tight, it suffices to show that for any n there
exists a language L over Σ such that the transition monoid of the minimal DFA
recognizing L is Tn. Let X be a set of transformations such that |X| = m and
X generates Tn. For n ∈ {1, 2}, the fact that such an X exists is obvious. For
n ≥ 3, the existence of X follows from Lemma 1. Then the language L(AΣ,X)
gives the desired result.
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4 An Application to 2DFA-DFA Conversion

Conversion between different types of automata is a well-studied topic in com-
puter science. In this section, we discuss how the bounds on the state complex-
ity of root(L) can be used to improve results concerning the conversion from
a two-way deterministic automaton (2DFA) to a DFA. Specifically, we concern
ourselves with 2DFA with end-markers. For a complete definition of a 2DFA
with end-markers and its accepted language see [2].

Previous results concerning 2DFA-DFA conversion have been obtained by
Meyer and Fischer [10] who constructed a sequence of languages recognizable by
an n-state 2DFA and with state complexity of nΘ(n). Moore [11] also demon-
strated a sequence with a similar bound. Our construction is as follows.

For a language L with state complexity n, it is possible to recognize root(L)
using a 2DFA with 2n states. The idea is to construct a 2DFA to simulate the
behaviour of the minimal DFA for L, but with that added ability to suspend
computation when the end of input reaches a non-final state q of the DFA. At this
point, the 2DFA rewinds to the beginning of input, then resumes computation
from state q. After t passes, a word w reaches a final state in the DFA if and
only if wt ∈ L.

Let Σ = {0, 1}. For sufficiently large n, choose the integers k and l as per The-
orem 2, and let Xn ⊂ Tn be a two-element set generating Uk,l. Since L(AΣ,Xn)
has state complexity n, it follows from the previous paragraph that the language
Ln = root(L(AΣ,Xn

)) can be recognized by an n-state 2DFA. Then, by applying
Theorems 2 and 4, we get

sc(Ln) ≥ S
(n

2

)
− 1

8
n2 ,

where S(n) is defined as in Theorem 2.
This gives us another example of a language with an nΘ(n) blow-up in the

number of states. Furthermore, it can be shown that this example provides an
improvement of

Θ
(
n

5
2

)
and Θ

((
25
32

) 1
10 n

n
3
10 n

)
,

over the Moore and Meyer-Fischer examples, respectively. A more detailed treat-
ment of this discussion is given in [8].
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An Application of Quantum Finite Automata
to Interactive Proof Systems�

(Extended Abstract)

Harumichi Nishimura and Tomoyuki Yamakami

Department of Computer Science, Trent University,
Peterborough, Ontario, Canada K9J 7B8

Abstract. Quantum finite automata have been studied intensively since
their introduction in late 1990s. This paper seeks their direct application
to interactive proof systems in which a mighty quantum prover commu-
nicates with a quantum-automaton verifier through a common commu-
nication cell.

Keywords: quantum finite automaton, quantum interactive proof sys-
tem, quantum measurement, quantum circuit.

1 Development of Quantum Finite Automata

A quantum-mechanical computing device has drawn wide attention since the
pioneering work of Feynman, Benioff, and Deutsch in the 1980s. Moore and
Crutchfield [14] as well as Kondacs and Watrous [13] introduced the notion of
a quantum finite automaton (qfa, in short) as a simple but natural model of a
quantum computer equipped with finite-dimensional quantum memory space. A
qfa performs a series of unitary operations as its head scans input symbols and
the qfa eventually enters accepting or rejecting states when it halts. Any entry
of such a unitary operator is a complex number, called a (transition) amplitude.
A quantum computation is seen as an evolution of a quantum superposition of
the machine’s configurations, where a configuration is a pair of an inner state
and a head position of the machine. A quantum evolution is reversible in nature.
A special operation called a measurement is performed to “observe” whether the
qfa enters an accepting state, a rejecting state, or a non-halting state. Of all the
variations of qfa’s discussed in the past literature, we shall focus our study only
on the original models of Moore and Crutchfield and of Kondacs and Watrous
for our application to interactive proof systems.

Kondacs and Watrous [13] defined a 1-way quantum finite automaton (1qfa,
in short) as well as a 2-way quantum finite automaton (2qfa, in short) that
performs a projection measurement at every step. In the model of Moore and
Crutchfield, however, a 1-way qfa is measured only once when the head scans
the right-end marker. Their model is often referred to as a measure-once 1-way
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M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 225–236, 2005.
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quantum finite automaton (mo-1qfa, in short) and the qfa model of Kondacs and
Watrous is by contrast called a measure-many 1-way quantum finite automaton.
As Brodsky and Pippenger [4] showed, mo-1qfa’s are so restrictive that they are
fundamentally equivalent in power to “permutation” automata, which recognize
exactly group languages. On the contrary, Kondacs and Watrous [13] proved
that a 2qfa can recognize a certain non-regular language in worst-case linear
time by exploiting its quantum superposition. The power of a qfa may vary
in general depending on restrictions of its behaviors: for instance, head move,
measurement, mixed quantum state, etc.

We are particularly interested in a qfa whose error probability is bounded
above by a certain constant ε ∈ [0, 1/2) independent of input lengths. Such a
qfa is conventionally called bounded error. We use the notation 1QFA (2QFA,
resp.) to denote the class of all languages recognized by bounded-error 1qfa’s
(2qfa’s, resp.) with arbitrary complex amplitudes. Similarly, let MO-1QFA be
the class of all languages recognized by bounded-error mo-1qfa’s. Moreover,
2QFA(poly-time) denotes the collection of all languages recognized by expected
polynomial-time 2qfa’s with bounded error, where an expected polynomial-time
2qfa is a 2qfa whose average running time on each input of length n is bounded
above by a fixed polynomial in n. When all amplitudes are drawn from a desig-
nated amplitude set K, we emphatically write 2QFAK and 2QFAK(poly-time).
For comparison, we write REG for the class of all regular languages. How pow-
erful is a 2qfa? It directly follows from [18] that any bounded-error 2qfa with
A-amplitudes1 can be simulated on a certain probabilistic Turing machine (PTM,
in short) using O(logn)-space with unbounded error. Since any unbounded-error
s(n)-space PTM can be simulated deterministically in time 2O(s(n)) [3], we con-
clude that 2QFAA ⊆ P. For an overview of qfa’s, see the textbook, e.g., [10].

In this paper, we seek an application of qfa’s to an interactive proof system,
which can be viewed as a two-player game between the players called a prover
and a verifier. Throughout the paper, we study the computational power of
several variations of such systems. In the following section, we take a quick tour
of the notion of interactive proof systems.

2 Basics of Interactive Proof Systems

In mid 1980s, Goldwasser, Micali, and Rackoff [8] and independently Babai [2]
introduced the notion of a so-called (single-prover) interactive proof system (IP
system, in short), which can be viewed as a two-player game in which a player P ,
called a prover, who has unlimited computational power, tries to convince or fool
the other player V , called a verifier, who runs a randomized algorithm. These
two players can access a given input and share a common communication bulletin
board on which they can communicate with each other by posting their messages
in turn. The goal of the verifier is to decide whether the input is in a given
language L with designated accuracy. We say that L has an IP system (P, V )

1 The set A consists of all algebraic complex numbers.
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(or an IP system (P, V ) recognizes L) if there exists an error bound ε ∈ [0, 1/2)
such that the following two conditions hold: (1) if the input x belongs to L,
then the “honest” prover P convinces the verifier V to accept x with probability
≥ 1 − ε and (2) if the input x is not in L, then the verifier V rejects x with
probability ≥ 1−ε even though it plays against any “dishonest” prover. Because
of their close connection to cryptography, program checking, and list decoding,
the IP systems have become one of the major research topics in computational
complexity theory.

When a verifier is a polynomial-time PTM, Shamir [17] proved that the
corresponding IP systems exactly characterize the complexity class PSPACE.
This demonstrates the power of interactions made between mighty provers and
polynomial-time PTM verifiers.

The major difference between the models of Goldwasser et al. [8] and of
Babai [2] is the amount of the verifier’s private information that is revealed
to the prover. Goldwasser et al. considered the IP systems whose verifiers can
hide his probabilistic moves from provers to prevent any malicious attack of the
provers. Babai, by contrast, considered the IP systems in which verifiers’ moves
are completely known to provers. Although he named his IP system an Arthur-
Merlin game, it is also known as an IP system with “public coins.” Despite the
difference of the models, Goldwasser and Sipser [9] proved that the classes of all
languages recognized by both IP systems with polynomial-time PTM verifiers
coincide.

In early 1990s, Dwork and Stockmeyer [7] focused their research on IP sys-
tems with weak verifiers, particularly, bounded-error 2-way probabilistic finite
automaton (2pfa, in short) verifiers that “privately” flip fair coins. For later use,
let IP(2pfa) be the class consisting of all languages recognized by IP systems
with 2pfa verifiers and let IP(2pfa, poly-time) be the subclass of IP(2pfa) where
the verifiers run in expected polynomial time. When the verifiers flip only “pub-
lic coins,” we write AM(2pfa) and AM(2pfa, poly-time) instead. Dwork and
Stockmeyer showed without any unproven assumption that the IP systems with
2pfa verifiers are more powerful than 2pfa’s alone (which are viewed as IP sys-
tems without any prover). Moreover, they showed the existence of an IP system
with a private-coin 2pfa verifier that is more powerful than any IP system with
a 2pfa verifier who flips coins only publicly. The IP systems of Dwork and Stock-
meyer are seen as a special case of a much broader concept of space-bounded IP
systems. See [5] for their overview.

Recently, a quantum analogue of an IP system was introduced by Watrous
[19] under the term (single-prover) quantum interactive proof system (QIP sys-
tem, in short). The QIP systems with uniform polynomial-size quantum-circuit
verifiers exhibit significant computational power of recognizing every language
in PSPACE by exchanging only three messages between a prover and a veri-
fier [11, 19]. The study of QIP systems, including their variants (such as multi-
prover model and zero-knowledge model), has become a major topic in quantum
complexity theory. In particular, quantum analogues of Babai’s Merlin-Arthur
games, called quantum Merlin-Arthur games have drawn significant attention.
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3 An Application of QFAs to QIP Systems

Following the success of IP systems with 2pfa verifiers, we wish to apply qfa’s to
QIP systems. A purpose of our study is to examine the power of interaction when
a weak verifier, represented by a qfa, meets with a mighty prover. The main goal
of our study is (i) to investigate the roles of the interactions between a prover
and a weak verifier, (ii) to understand the influence of various restrictions and
extensions of QIP systems, and (iii) to study the QIP systems in a broader but
general framework. When the power of verifiers are limited, we can prove without
any unproven assumption the separations and collapses of certain complexity
classes defined by QIP systems with such weak verifiers.

We first give a “basic” definition of a QIP system whose verifier is a qfa. Our
basic definition is a natural concoction of the IP model of Dwork and Stockmeyer
[7] and the qfa model of Kondacs and Watrous [13]. In the subsequent section,
we discuss a major difference between our QIP systems and the circuit-based
QIP systems of Watrous [19]. We shall later restrict the behaviors of a prover
and a verifier to obtain several variants of our basic QIP systems since these
restricted models have never been addressed in the literature.

Let Q and C be respectively the sets of all rational numbers and of all complex
numbers. Let N be the set of all natural numbers (i.e., nonnegative integers) and
set N+ = N \ {0}. For any n ∈ N, Zn denotes the set {0, 1, 2, . . . , n − 1}. By
C̃, we denote the set of all polynomial-time approximable2 complex numbers.
Our alphabet Σ is an arbitrary finite set throughout this paper. Opposed to the
notation Σ∗, Σ∞ stands for the collection of all infinite sequences, each of which
consists of symbols from Σ.

We assume the reader’s familiarity with basic concepts of quantum computa-
tion. Conventionally, the notation (P, V ) is used to denote the QIP system with
the prover P and the verifier V . In such a QIP system (P, V ), the 2qfa verifier V
is specified by a finite set Q of verifier’s inner states, a finite input alphabet Σ, a
finite communication alphabet Γ , and a verifier’s transition function δ. The set
Q is the union of three mutually disjoint subsets Qnon, Qacc, and Qrej , where
any state in Qnon, Qacc, and Qrej are respectively called a non-halting state, an
accepting state, and a rejecting state. Accepting states and rejecting states are
simply called halting states. In particular, Qnon has the so-called initial inner
state q0. The input tape is indexed by natural numbers (the first cell is indexed
0). The two designated symbols |c and $ not in Σ, called respectively the left-end
marker3 and the right-end marker, mark the left end and the right end of the
input. For convenience, set Σ̌ = Σ ∪{|c, $} and assume that Γ contains a special
symbol #. At the beginning of the computation, an input string x over Σ of
length n is written orderly from the first cell to the nth cell of the input tape.
The tape head initially scans the left-end marker. The communication cell holds

2 A complex number is called polynomial-time approximable if its real parts and imag-
inary parts are deterministically approximated to within 2−n in polynomial time.

3 For certain variants of qfa’s, the left-end marker is redundant. See, e.g., [1].
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only a symbol in Γ and initially the symbol # is written in the cell. Similar to
the original definition of [13], our input tape is circular; that is, whenever the
verifier’s head scanning |c ($, resp.) on the input tape moves to the left (right,
resp.), the head reaches to the right end (resp. left end) of the input tape.

A configuration of the verifier V on an input of length n is represented by a
triplet (q, γ, k) ∈ Q×Γ ×Zn+2, which indicates that the verifier is in state q, the
content of the communication cell is γ, and the verifier’s head position is k on
the input tape. A superposition of the verifier’s configurations is a vector in the
verifier’s configuration space, that is, the finite dimensional Hilbert space Hn

spanned by the computational basis {|q, γ, k〉 | (q, γ, k) ∈ Q × Γ × Zn+2}. The
verifier’s transition function δ is a map from Q×Σ̌×Γ×Q×Γ×{0,±1} to C and
is interpreted as follows. For any q, q′ ∈ Q, σ ∈ Σ̌, γ, γ′ ∈ Γ , and d ∈ {0,±1},
the complex number δ(q, σ, γ, q′, γ′, d) specifies the transition amplitude with
which the verifier V scanning symbol σ on the input tape and symbol γ on the
communication cell in state q changes q to q′, replaces γ with γ′, and moves the
machine’s head on the input tape in direction d.

For any input x of length n, δ induces the unitary operator Ux
δ on Hn defined

by Ux
δ |q, γ, k〉 =

∑
q′,γ′,d δ(q, xk, γ, q

′, γ′, d)|q′, γ′, k + d (mod n + 2)〉, where xk

denotes the kth symbol in x. The verifier is called well-formed if Ux
δ is unitary on

Hn. Since we are interested only in well-formed verifiers, we henceforth assume
that all verifiers are well-formed.

For every input x of length n, the 2qfa verifier V starts with the superposition
|q0,#, 0〉. A single step of the verifier on input x consists of the following process.
First, V applies his operation Ux

δ to an existing superposition |φ〉 and then
Ux

δ |φ〉 becomes the new superposition |φ′〉. Let Wacc = span{|q, γ, ξ〉 | (q, γ, ξ) ∈
Qacc × Γ × Zn+2}, Wrej = span{|q, γ, ξ〉 | (q, γ, ξ) ∈ Qrej × Γ × Zn+2}, and
Wnon = span{|q, γ, ξ〉 | (q, γ, ξ) ∈ Qnon × Γ × Zn+2}. Moreover, let kacc, krej ,
and knon be respectively the positive numbers representing “accept,” “reject,”
and “non halt.” The new superposition |φ′〉 is then measured by the observable
kaccEacc +krejErej +knonEnon, where Eacc, Erej , and Enon are respectively the
projection operators on Wacc, Wrej , and Wnon. Assuming that |φ′〉 is expressed as
|ψ1〉+ |ψ2〉+ |ψ3〉 for certain vectors |ψ1〉 ∈Wacc, |ψ2〉 ∈Wrej , and |ψ3〉 ∈Wnon,
we say that, at this step, V accepts x with probability ‖|ψ1〉‖2 and rejects x with
probability ‖|ψ2〉‖2. Only the non-halting superposition |ψ3〉 continues to the
next step and V is said to continue (to the next step) with probability ‖|ψ3〉‖2. In
particular, if the verifier is a 1qfa, then the verifier’s transition function δ must
satisfy the following two additional conditions: (i) for every q, q′ ∈ Q, σ ∈ Σ̌,
and γ, γ′ ∈ Γ , δ(q, σ, γ, q′, γ′, d) = 0 if d �= 1 (i.e., the head always moves to the
right) and (ii) the verifier must enter halting states exactly when or before the
verifier scans the left end-marker $.

In contrast to the verifier, the prover P has an infinite private tape and
accesses an input x and a communication cell. Let Δ be a finite set of the prover’s
tape alphabet, which includes the blank symbol #. The prover’s configuration
space is the Hilbert space spanned by the computational basis {|γ〉|y〉 | (γ, y) ∈
Γ × Δ∞

fin}, where Δ∞
fin = Δ∗ × {#}∞. We require the prover to alter only a
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finite segment of his private tape at each step. Formally, the prover P on input
x is specified by a series of unitary operators {Ux

P,i}i∈N+ , each of which acts on
the prover’s configuration space, such that Ux

P,i is of the form V x
P,i ⊗ I, where

dim(V x
P,i) is finite and I is the identity operator. Such a series of operators is

sometimes called the prover’s strategy. For any function k from N2 to N, we call
the prover k(n, i)-space bounded if the prover uses at most the first k(n, i) cells
of his private tape; that is, at the ith step, V x

P,i is applied only to the first k(n, i)
cells in addition to the communication cell. If the prover has a string y in his
private tape and scans symbol γ in the communication cell, then he applies Ux

P,i

to the quantum state |γ〉|y〉 at the ith step. If Ux
P,i|γ〉|y〉 =

∑
γ′,y′ αi

γ′,y′ |γ′〉|y′〉,
then the prover changes y into y′ and replaces γ by γ′ with amplitude αi

y′,γ′ .
The computation of the QIP system (P, V ) on input x starts with the initial

configuration of V with the prover’s private tape consisting of all blank symbols.
The two players apply their unitary operators Ux

δ and {Ux
P,i}i∈N+ in turn starting

with the verifier’s move. A measurement is made after every move of the verifier
to determine whether V is in a halting state. Each computation path therefore
ends exactly when V enters a certain halting state along this path. As the running
time of the QIP system, we count the number of steps taken by the verifier and
the prover. We define the probability that (P, V ) accepts (rejects, resp.) the input
x as the limit, as t → ∞, of the probability that V accepts (rejects, resp.) x in
at most t steps. We say that V always halts with probability 1 if, for every input
x and every prover P ∗, (P ∗, V ) reaches halting states with probability 1. In
general, V may not always halt with probability 1.

Let L be any language and a, b be any two real numbers in the unit interval
[0, 1]. Let (P, V ) be any QIP system. We say that L has an (a, b)-QIP system
(P, V ) (or (P, V ) recognizes L) if the following two conditions hold:

1. (completeness) for every x ∈ L, (P, V ) accepts x with probability at least a,
and

2. (soundness) for any x �∈ L and any prover P ∗, (P ∗, V ) rejects4 x with prob-
ability at least b.

For convenience, we use the same notation (P, V ) to mean a QIP system and
also a protocol taken by the prover P and the verifier V .

Adapting Condon’s [5] notational convention, we write QIPa,b(〈R〉), where
〈R〉 is a set of restrictions, to denote the collection of all languages recognized by
certain (a, b)-QIP systems with the restrictions specified by 〈R〉. Let QIP(〈R〉) be⋃

ε>0 QIP1/2+ε,1/2+ε(〈R〉). If in addition the verifier’s amplitudes are restricted
to an amplitude set K (but there is no restriction for the prover), then we
rather write QIPK(〈R〉). Although it is possible to consider a wide variety of
QIP systems by choosing different 〈R〉, we focus mostly on the following four
basic restrictions: 〈mo-1qfa〉 (“measure-once” 1qfa verifiers), 〈1qfa〉 (“measure-
many” 1qfa verifiers), 〈2qfa〉 (“measure-many” 2qfa verifiers), and 〈poly-time〉

4 The QIP system may increase its power if we instead require (P ∗, V ) to accept x
with probability ≤ 1 − b for any prover P ∗. See, e.g., [7] for the classical case.
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(expected polynomial running time). For instance, QIP(2qfa, poly-time) denotes
the language class defined by QIP systems with expected polynomial-time 2qfa
verifiers.

4 A Comparison with Circuit Based QIP Systems

We briefly discuss the major difference between our automaton-based QIP sys-
tems and circuit-based QIP systems in which a prover and a verifier are viewed
as series of quantum circuits intertwined each other in turn, sharing only mes-
sage qubits. We assume the reader’s familiarity with Watrous’s circuit-based
QIP model [19].

In the circuit-based model of Watrous, the measurement of the output qubit
is performed only once at the end of the verifier’s computation since any measure-
ment during the computation can be postponed (see, e.g., [15]). This is possible
because the verifier has private qubits and his running time is bounded. How-
ever, since our qfa verifier has no private tape and may not halt within a finite
number of steps, if we want to simulate the qfa verifier on a quantum circuit,
then we need to measure a certain number of qubits (as a halting flag) after each
move of the verifier.

A verifier in the circuit-based model is allowed to carry out a large number
of basic unitary operations in a single interaction round while a qfa verifier in
our model is constantly attacked by a malicious prover after every step of the
verifier. Therefore, such a malicious prover may exercise more influence on the
verifier in our QIP model than in the circuit-based model. Later in Section 9, we
shall introduce a variant of our basic QIP systems that allow a verifier to make
a series of transitions without communicating with a prover.

5 A QFA Verifier Against a Mighty Prover

Following the definition of a QIP system with a qfa verifier, we demonstrate how
well a qfa verifier plays against a powerful prover. We begin with the case of 1qfa
verifiers. It is well-known in [13] that 1QFA � REG. In the following theorem,
we show that the interaction between a prover and a 1qfa verifier truly enhances
the power of recognizing languages.

Theorem 1. 1QFA � QIP(1qfa) = REG.

Note that the first inequality of Theorem 1 follows from the last equality since
1QFA �= REG. In particular, to show the inclusion QIP(1qfa) ⊆ REG, we need
Lemmas 1 and 2. For convenience, we first introduce a restricted QIP system.
Let s and t be any functions from N to N. A (t(n), s(n))-bounded QIP system is
obtained from a QIP system by forcing the QIP protocol to “terminate” after
t(|x|) steps by collapsing any non-halting state to the special output symbol “I
don’t know” and by using only s(|x|)-space bounded provers. A language has
a (t(n), s(n))-bounded QIP system if the system satisfies the completeness and
soundness conditions of Section 3 with error probability at most ε ∈ [0, 1/2).
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Lemma 1. Let L be any language in QIP(1qfa). There exists a constant c ∈ N+

such that L has a (n + 2, c)-bounded QIP system with a 1qfa verifier.

Lemma 1 can be seen as a special case of Lemma 3. Lemma 2 relates to
the notion of 1-tiling complexity [6]. For any language L over alphabet Σ and
any number n ∈ N, we define the finite binary matrix ML(n) whose rows and
columns are indexed by the strings in Σ≤n in the following fashion: any (x, y)-
entry of ML(n) is 1 if xy ∈ L and 0 otherwise. A 1-tiling of ML(n) is a set S
of ML’s submatrices M such that (i) all the entries of ML(n) are specified by a
certain index set R × C, where R,C ⊆ Σ≤n, (ii) all the entries of M have the
same value 1, and (iii) every 1-valued entry of ML(n) is covered by at least one
element of S. The 1-tiling complexity of L is the function T 1

L(n) whose value is
the minimal size of a 1-tiling of ML(n).

Lemma 2. Let L be any language and let ε ∈ [0, 1/2). If a (n + 2, c)-bounded
QIP system (P, V ) with a 1qfa verifier recognizes L with error probability at
most ε, then the 1-tiling complexity of L is at most [2(1 + 2d2)/(1 − 2ε)]2d+1,
where d = |Q||Γ ||Δ|c for the set Q of the verifier’s inner states, the prover’s
tape alphabet Δ, and the communication alphabet Γ .

We return to the proof of Theorem 1. Recall that a language is regular if and
only if its 1-tiling complexity is bounded above by a certain constant [6]. Since
Lemma 2 implies that every language in QIP(1qfa) has O(1) 1-tiling complexity,
we conclude that QIP(1qfa) ⊆ REG. This completes the proof.

Next, we turn our interest to 2qfa verifiers. Consider the complexity classes
QIP(2qfa) and QIP(2qfa, poly-time). We begin with our main result:
QIP(2qfa, poly-time) is located between 2QFA(poly-time) and NP with an ap-
propriate choice of amplitudes. This can be compared with the result of Dwork
and Stockmeyer [7] that REG � IP(2pfa, poly-time) ⊆ PSPACE. Note that
REG � 2QFA(poly-time) [13] and 2QFA(poly-time) ⊆ QIP(2qfa, poly-time).

Theorem 2. QIP
C̃
(2qfa, poly-time) ⊆ NP.

A key idea for the proof of Theorem 2 is to bound the prover’s configuration
space. Similar to Lemma 1, we can prove the following.

Lemma 3. Every language in QIP(2qfa, poly-time) has a (t(n), c log n + c)-
bounded QIP system for a certain polynomial t and a certain constant c > 0.

Lemma 3 directly comes from the following claim, which is proven in a fashion
similar to [12–Lemma 9].

Lemma 4. Let (P, V ) be any QIP system with a 2qfa (1qfa, resp.) verifier and
let Q,Γ be respectively the sets of all inner states and of all communication
symbols. There is a prover P ′ that satisfies the following conditions: for every
input x, (i) the prover’s ith operation Ux

P ′,i is |Q||Γ |(|x|+2)-dimensional (|Q||Γ |-
dimensional, resp.) unitary operator, where i ∈ N+, and (ii) the probability of
accepting x by (P ′, V ) is exactly equal to the one by (P, V ).
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We therefore pay our attention only to (nO(1), O(log(n))-bounded QIP sys-
tems. To simulate such a system, we need to approximate the prover’s unitary
operations using a fixed universal set of quantum gates. Lemma 5 relates to
an upper bound of the number of quantum gates necessary to approximate a
given unitary operator. The lemma is explicitly stated in [16]. We fix an appro-
priate universal set consisting of the Controlled-NOT gate and a finite number
of single-qubit gates, with C̃-amplitudes, that generate a dense subset of SU(2)
with their inverse.

Lemma 5. For every sufficiently large k ∈ N+, every k-qubit unitary operator
Uk, and every ε > 0, there exists a quantum circuit C acting on k qubits such
that C has size at most 23k log3 (1/ε) and ‖U(C)− Uk‖ < ε, where U(C) is the
unitary operator associated with C, where ‖A‖ = sup|φ〉�=0 ‖A|φ〉‖/‖|φ〉‖.

A quantum circuit can be further encoded into a binary string, provided that
the encoding length is at least the size of the quantum circuit. Such an encoding
proves the following proposition for any polynomial-time computable increasing
functions t(n) and s(n).

Proposition 1. Any language that has a (t(n), s(n))-bounded QIP system with
C̃-amplitudes belongs to NTIME(nO(1)t(n)2O(s(n)) logO(1) t(n)).

Theorem 2 follows immediately from Proposition 1 together with Lemma 3.

Proposition 2. QIP(2qfa) and QIP(2qfa, poly-time) are closed under union.

6 How Often Is Measurement Performed?

A measurement is one of the most fundamental operations in quantum computa-
tion. Although a measurement is necessary to “know” the content of a quantum
state, the measurement collapses the quantum state and thus causes a quantum
computation irreversible. We make a brief comparison between mo-1qfa verifiers
and 1qfa verifiers. As mentioned in Section 1, mo-1qfa’s and 1qfa’s are quite
different in power because the numbers of measurement operations are different.

Theorem 3. MO-1QFA � QIP(mo-1qfa) � QIP(1qfa).

Theorem 3 is a direct consequence of Proposition 3 because MO-1QFA and
REG are known to be closed under complementation5 [4].

Proposition 3. QIP(mo-1qfa) is not closed under complementation.

To prove Proposition 3, it suffices to show an counter example that {a}∗ \
{λ} ∈ QIP(mo-1qfa) and {λ} �∈ QIP(mo-1qfa). More generally, we can claim
that no finite language belongs to QIP(mo-1qfa). This claim is a consequence
of the following lemma, which shows a more general limit of QIP systems with
mo-1qfa verifiers.

5 A complexity class C is closed under complementation if, for any language A over
alphabet Σ in C, its complement Σ∗ \ A also is in C.
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Lemma 6. Let L be a language and M be its minimal automaton. Assume that
there exist an input symbol a, an accepting state q1, and a rejecting state q2
satisfying: (1) if M reads a in the state q1, then M enters the state q2 and (2) if
M reads a in the state q2, then M stays in the state q2. The language L is then
outside of QIP(mo-1qfa).

7 Is a Quantum Prover Stronger Than a Classical One?

Our prover can perform any operation that quantum physics allows. If the prover
is limited to wield only “classical” power, we call such a prover “classical.” More
precisely, a prover is classical if the prover’s move is dictated by a unitary op-
erator whose entries are either 0s or 1s. By contrast, we sometimes refer to
any standard prover as a quantum prover. Intuitively, more powerful the prover
becomes, more easily may the weak verifier be convinced as well as fooled. Here-
after, the restriction 〈c-prover〉 means that a prover is forced to be classical.

Proposition 4. QIP(1qfa) ⊆ QIP(1qfa, c-prover).

Next, we consider the complexity class QIP(2qfa, poly-time, c-prover). Since
QIP(2qfa, poly-time, c-prover) contains 2QFA(poly-time), we immediately ob-
tain REG � QIP(2qfa, poly-time, c-prover). Moreover, using classical provers,
we can show that QIP(2qfa, poly-time, c-prover) contains the non-regular lan-
guage Center = {x | ∃y, z[|y| = |z| ∧ x = y1z]}. More strongly, Center can be
recognized by a certain QIP system with a 2qfa verifier that runs in worst-case
polynomial time. Since no IP system with an expected polynomial-time 2pfa
verifier recognizes Center with public coins [7], we therefore attain the following
separation.

Theorem 4. QIP(2qfa, poly-time, c-prover) � AM(2pfa, poly-time).

8 What if a Verifier Reveals His Private Information?

The strength of a prover’s strategy hinges on the amount of the information
that a verifier knowingly reveals. The classical notion of “public coins” means
that the complete information of the verifier’s configurations is given to a prover.
When the verifier reveals his choice of next moves, the prover can calculate the
verifier’s current configuration and even predict the verifier’s next move. This
paper considers only its straightforward analogy in the quantum setting. We call
such a system public. Formally, we introduce a public QIP system as follows.

Definition 1. A QIP system (P, V ) with the qfa verifier V is called public if the
verifier V writes his choice of inner state and head direction in the communica-
tion cell at every step; that is, the verifier’s transition function δ satisfies that, for
any x, q, γ, and k, Ux

δ |q, γ, k〉 =
∑

q′,ξ,d δ(q, xk, γ, q
′, ξ, d)|q′, ξ, k+d (mod n+2)〉,

where ξ = (q′, d) whenever q′ is a non-halting state.
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To emphasize the public QIP system, we use the restriction 〈public〉. We ob-
tain the following separation results. Let 1RFA denote the class of all languages
recognized by 1-way reversible finite automata (i.e., 1qfa’s whose transition am-
plitudes are drawn from {0, 1}).
Proposition 5. 1RFA � QIP1,1(1qfa, public) � 1QFA.

9 How Many Interactions Are Necessary?

In the previous sections, we have shown that quantum interaction between a
prover and a verifier clearly enhances the qfa’s ability to recognize languages.
Since our original definition allows a verifier to communicate with a prover at
every step, it is natural to ask whether such interactions are necessary. In this
section, we carefully examine the number of interactions performed in a QIP
system. To study the number of interactions, we need to modify our original
definition of QIP systems with qfa verifiers. Ideally, the prover changes the sym-
bol in the communication cell only when the verifier asks the prover to do so. For
such a modification, we first look into the IP systems of Dwork and Stockmeyer
[7]. In their system, a verifier is allowed to do computation silently with no com-
munication with a prover at any chosen step. The verifier communicates with
the prover only when the help of the prover is needed. We can view the verifier’s
silent mode as follows: if the verifier V does not want to communicate with the
prover, he writes a special communication symbol in the communication cell to
signal the prover that he does not need any help from the prover. We use the
communication symbol # to condition that the prover is not allowed to alter the
content of the communication cell.

We introduce a new QIP system. To avoid any messy technicality, we rather
take a simple approach: we prohibit any malicious prover to cheat a verifier
by altering the symbol # willfully. Formally, we require the prover’s operation
{Ux

P,i}i∈N+ to satisfy that, for every i ∈ N+ and every y ∈ Δ∞
fin that appears

on the prover’s tape with a non-zero amplitude after the previous operation
Ux

P,i−1 (if i ≥ 2), there is a certain pure quantum state |ψy,i〉 in the Hilbert
space span{Δ∞

fin} for which Ux
P,i|#〉|y〉 = |#〉|ψy,i〉. Since the verifier can make

several moves without any direct interaction with the prover, this new model is
in essence close to the circuit-based QIP model discussed in Section 4. We call
our new model an interaction-bounded QIP system. For comparison, we use the
notation QIP#(1qfa) to denote the class of all languages recognized by certain
interaction-bounded QIP systems. Since QIP#(1qfa) includes QIP(1qfa), our
interaction-bounded QIP systems can also recognize the regular languages.

Lemma 7. REG ⊆ QIP#(1qfa).

We need to clarify the meaning of the number of interactions. Here, the
number of interactions means the maximum number of steps at which the verifier
writes any symbol except for # in the communication cell along any computation
path. Let QIP#

k (1qfa) be the class of all languages recognized by interaction-
bounded QIP systems which conduct interactions at most k times.
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Theorem 5. 1QFA � QIP#
1 (1qfa) � QIP#(1qfa).

Final Note. All the proofs omitted from this extended abstract will appear in
its forthcoming complete version.
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Abstract. In this paper, we study the constrained sequence alignment
problem, which is a generalization of the classical sequence alignment
problem with the additional constraint that some characters in the align-
ment must be positioned at the same columns. The problem finds im-
portant applications in Bioinformatics. Our major result is an O(n2)-
time and O(n)-space algorithm for constructing an optimal constrained
alignment of two sequences where n is the length of the longer sequence
and  is the length of the constraint. Our algorithm matches the best
known time complexity and reduces the best known space complexity
by a factor of n for solving the problem. We also apply our technique
to design time and space efficient heuristic and approximation algorithm
for aligning multiple sequences.

1 Introduction

In Bioinformatics, sequence alignment is a useful method for measuring the simi-
larity of DNA sequences. By constructing an alignment of the DNA sequences of
different species, Biologists may obtain important information on the evolution-
ary history of these species or discover conserved regions in their genomes. For
the Pairwise Sequence Alignment problem (PSA), which asks for aligning only
two sequences, there are polynomial-time algorithms for constructing optimal
solutions [3, 11]. For the Multiple Sequence Alignment problem (MSA), which
aligns more than two sequences, we know that the problem is NP-complete [10, 8],
and there are many heuristics [5, 4, 7] and approximation algorithms [12, 2, 9] for
constructing good, but not necessary optimal, solutions.

Existing sequence alignment programs do not allow users to use their biolog-
ical knowledge to improve the quality of the alignment. For example, it is gener-
ally agreed that in the alignment of RNase sequences, three active-site residues
His12, Lys41 and His119 should be aligned in the same columns. However, most
sequence alignment programs mis-align these important residues. To solve this
problem, Tang et al. [1] formulated the Constrained Sequence Alignment problem,
which is a natural generalization of the classical sequence alignment problem. The
new problem has an additional input of a constrained sequence, which imposes
a structure on the alignment by requiring every character in the constrained se-
quence to appear in the same column of the alignment. They gave an algorithm for

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 237–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the Constrained Pairwise Sequence Alignment problem (CPSA) (i.e., constructing
constrained alignment of two sequences) that runs inO(�n4)) time and usesO(�n4)
space where n is the length of the longer input sequence and � is the length of the
constrained sequence. They also proposed the progressive alignment heuristic for
the Constrained Multiple Sequence Alignment (CMSA) problem, which basically
uses an optimal algorithm for CPSA to align pairs of input sequences progressively.
Using the O(�n4)-time and O(�n4)-space algorithm for CPSA to implement the
heuristic gives an O(�kn4) time and O(�n4) space complexity, where k is the num-
ber of sequences to be aligned.

In [6], Chin et al. gave an O(�n2)-time and O(�n2)-space algorithm for CPSA.
When applying this algorithm to the progressive alignment heuristic, they re-
duced both the time and space complexity of the heuristic by a factor of n2. They
also gave an approximation algorithm, called Center-star, for CMSA which runs
in O(�Ck2n2) time and uses O(�k2n2) memory space, and guarantees that the
distance score of the alignment returned by the algorithm is always at most
(2 − 2/k) times the distance score of the optimal alignment. Here, C is a con-
stant depending on the input sequences. Experiments showed that the quality
of the alignment returned by Center-Star is 15%–30% better than that of the
progressive alignment heuristic.

Both the progressive alignment heuristic and Center-star are not practical
because of their huge O(�k2n2) memory space requirement. The DNA sequences
that we study in Bioinformatics are usually more than 1M characters long. Thus,
to align four such sequences with a constrained sequence of 4 characters, we
need at least 216Gb = 65536Gb of memory. Note that a typical workstation is
equipped with at most 4Gb memory.

The major result of this paper is an O(�n2)-time and O(�n)-space algorithm
for the CPSA problem. Note that we have reduced the space requirement by a
factor of n without increasing the time complexity. This algorithm immediately
enables us to reduce the space requirement of the progressive alignment heuristic
from O(�n2) to O(�n). Furthermore, we adapt our space-saving technique so as
to reduce the space complexity of Center-star to O(�k2n) without increasing its
time complexity. These improvements are very important practically. Now, to
align four DNA sequences of 1M long with a constrained sequence of 4 characters,
we need only 64Mb of memory, which is well within the capability of a typical
workstation.

The organization of this paper is as follows. In Section 2, we give the def-
initions and notations that are used in our discussion. In Sections 3 and 4, we
describe our algorithm for the CPSA problem and analyze its time and space
complexity. We show how to adapt our technique to reduce the space complexity
of Center-Star in Section 5.

2 Definitions and Notations

Let Σ be a finite set of characters which does not include ‘ ’, the space char-
acter. We are given a distance function δ : (Σ ∪ { }) × (Σ ∪ { }) → - such
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that any two characters a, b in Σ ∪ { } have distance δ(a, b). We assume that
δ( , ) = 0. (Intuitively, the distance δ(a, b) measures the mutation distance
between characters a, b.) For any sequence S = S[1]S[2] · · ·S[n] over Σ, let |S|
denote its length n, and for any 1 ≤ i ≤ j ≤ n, let S[i..j] denote the sub-
string S[i]S[i+1] · · ·S[j]. To simplify our discussion, we let S[i..j] be the empty
sequence if i > j.

Let S and S′ be any two sequences over Σ. A sequence alignment of S and
S′ is given by an alignment matrix, which has two rows and w ≥ max{|S|, |S′|}
columns, such that when we remove all the spaces in the first (resp. second)
row, we get S (resp. S′). Let P be a common subsequence of S and S′ (i.e., P
is a subsequence of S and is also a subsequence of S′). A constrained sequence
alignment (CSA) of S and S′ with respect to P is an alignment A of S and S′

with the following additional property: there are |P | columns c1, c2, . . . c|P | in A
such that for all 1 ≤ j ≤ |P |, we have A[1, cj ] = A[2, cj ] = P [j]. Figure 1 gives
an example.

C KC C C

S1: 

S2: 

P: 

IN− YR WR C KNQN− − L R T T F ANV− − C GNQS R C P HNR T − − NC HR SI R − − VP L L HC DL − − P

L T T P− − HC NGS QVPC H−N SNKT R K− C P S−C GNP NNVVNVL − T −QNT F L− R C KNINNYQ F

N

Fig. 1. An example on constrained sequence alignment

Define δ(A) =
∑

1≤j≤w δ(A[1, j], A[2, j]) to be the score of the alignment A.
We say that A is optimal if it has the smallest score among all CSAs of S and S′

with respect to P . We let δopt(S, S′, P ) denote the score of an optimal CSA. To
unify our discussion, we let δopt(S, S′, P ) = ∞ if P is not a common subsequence
of S and S′.

We generalize sequence alignment to multiple sequences naturally. Consider
k > 2 sequences S1, S2, . . . , Sk over Σ. A sequence alignment of S1, S2, . . . , Sk

is given by an alignment matrix of k rows and w ≥ max{|S1|, |S2|, . . . , |Sk|}
columns such that for any 1 ≤ i ≤ k, if we remove all the space charac-
ters in row i, we get the sequence Si. Let P be a common subsequence of
S1, S2, . . . , Sk. A constrained sequence alignment (CSA) of S1, S2, . . . , Sk with
respect to P is an alignment A of S1, S2, . . . , Sk with the following property:
there are |P | columns c1, c2, . . . c|P | in A such that for all 1 ≤ j ≤ |P |, we have
A[1, cj ] = A[2, cj ] = · · · = A[k, cj ] = P [j]. Define the sum-of-pair score of A, or
simply the score of A, to be

δ(A) =
∑

1≤p<q≤k

∑
1≤j≤w δ(A[p, j], A[q, j]).

We say that A is optimal if δ(A) has the smallest value. The score of an
optimal CSA is denoted as δopt(S1, S2, . . . , Sk;P ).
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3 Two Useful Formulas

Let S = S[1..m] and S′ = S′[1..n] be two sequences of m and n characters
over Σ. Let P = P [1..�] be a common subsequence of S and S′. In the next
two sections, we describe an algorithm for computing an optimal CSA of S and
S′ with respect to P . Our algorithm is recursive and it needs to compute all
optimal CSAs of S[1..i] and S′[1..j] with respect to P [1..k] for some i, j, k. It
also needs to compute all optimal CSAs of S[i..m] and S′[j..n] with respect to
P [k..�]. Below, we state two useful formulas that are important for us to find
these optimal alignments efficiently.

For any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ �, let D(i, j, k) be the score of an
optimal alignment of S[1..i] and S′[1..j] with respect to P [1..k]. In other words,
D(i, j, k) = δopt(S[1..i], S′[1..j];P [1..k]). Recall that δopt(S[1..i], S′[1..j];P [1..k])
= ∞ if P [1..k] is not a common subsequence of S[1..i] and S′[1..j]. In [6], Chin
et al. gave a formula that relates with different D(i, j, k):
Formula I:

D(i, j, k) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(i− 1, j − 1, k − 1) + δ(S[i], S′[j]) if S[i] = S′[j] = P [k],
D(i− 1, j − 1, k) + δ(S[i], S′[j]) if i, j ≥ 1,
D(i− 1, j, k) + δ(S[i], ) if i ≥ 1,
D(i, j − 1, k) + δ( , S′[j]) if j ≥ 1.

Furthermore, we have D(0, 0, 0) = 0, and D(i, 0, k) = ∞ and D(0, j, k) = ∞
for all 0 ≤ k ≤ �, 0 ≤ i ≤ m, and 0 ≤ j ≤ n. (Recall that is the space
character.)

The above formula is useful for computing the score of alignment for se-
quences S[1..i], S′[1..j], P [1..k]. To handle alignments for sequences S[i..m],
S′[j..n], P [k..�], we need the following lemma.

Lemma 1. For any 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, and 1 ≤ k ≤ � + 1, let
Q(i, j, k) = δopt(S[i..m], S′[j..n];P [k..�]). We have
Formula II:

Q(i, j, k) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q(i + 1, j + 1, k + 1) + δ(S[i], S′[j]) if S[i] = S′[j] = P [k],
Q(i + 1, j + 1, k) + δ(S[i], S′[j]) if i ≤ m and j ≤ n,
Q(i + 1, j, k) + δ(S[i], ) if i ≤ m,
Q(i, j + 1, k) + δ( , S′[j]) if j ≤ n,

with the boundary conditions (i) Q(m+1, n+1, �+1) = 0, and (ii) Q(i, n+1, k) =
∞ and Q(m+1, j, k) = ∞ for all 1 ≤ k ≤ �+1, 1 ≤ i ≤ m+1, and 1 ≤ j ≤ n+1.

Proof. We consider the construction of an optimal constrained sequence align-
ment A of S[i..m] and S′[j..n] with respect to P [k..�]. Note that δ(A) = Q[i, j, k].
There are four possibilities:

– If S[i] = S′[j] = P [k], A can align S[i], S′[j] and P [k] at the same column,
and the remaining columns of A form an optimal alignment of S[i + 1..m]
and S′[j + 1..n] with respect to P [k + 1..�]. In this case, δ(A) = Q[i+ 1, j +
1, k + 1] + δ(S[i], S′[j]).
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– If i ≤ m, j ≤ n, A can align S[i] and S′[j] at the same column, and the re-
maining columns of A form an optimal alignment of S[i+1..m] and S′[j+1..n]
with respect to P [k..�]; in this case, δ(A) = Q[i + 1, j + 1, k] + δ(S[i], S′[j]).

– If i ≤ m, then A can align S[i] with a space, and the remaining columns
of A form an optimal alignment of S[i + 1..m] and S′[j..n] with respect to
P [k..�]; in this case, δ(A) = Q(i + 1, j, k) + δ(S[i], ).

– If j ≤ n, then A can align S′[j] with a space, and the remaining columns
of A form an optimal alignment of S[i..m] and S′[j + 1..n] with respect to
P [k..�]; in this case, δ(A) = Q(i, j + 1, k) + δ( , S′[j]).

Obviously, δ(A) must be equal to the minimum of these four values. ��

4 An Optimal CSA Algorithm for Two Sequences

In this section, we describe an algorithm for constructing an optimal alignment
of S = S[1..m] and S′ = S′[1..n] with respect to P = P [1..�]. We need the
following lemma, which gives a structural property about the alignment.

Lemma 2. Let i be any integer in [1,m], the set of integers between 1 and m.
Then δopt(S[1..m], S′[1..n], P [1..�]) is equal to

min
0≤j≤n
0≤k≤�

{δopt(S[1..i], S′[1..j];P [1..k]) + δopt(S[i + 1..m], S[j + 1..n];P [k + 1..�])}

Proof. Consider an optimal CSA A of S and S′ with respect to P . Recall that
A has two rows, and after throwing all the space characters in the first row,
we get S. Suppose the ith character of S, i.e., S[i], is at the pth column of the
first row. In other words, S[i] = A[1, p]. Now, we consider S′ and the second
row of A. Suppose that S′[1..j] falls into the first p columns of the second row.
Furthermore, suppose that c1, c2, . . . , c� are the � columns in the CSA A such that
A[1, ch] = A[2, ch] = P [h](1 ≤ h ≤ �), and that either k = 0 or 1 ≤ k ≤ p ≤ �.
Then, the first p columns of A form a CSA A1 of S[1..i] and S′[1..j] with respect
to P [1..k], and the remaining columns form a CSA A2 of S[i+1..m] and S[j+1..n]
with respect to P [k + 1..�]. Because of the optimality of A, we conclude that A1
and A2 must be optimal. ��

We give below our recursive algorithm for finding an optimal CSA of S and
S′ with respect to P .

Algorithm CSA(S[1..m], S′[1..n], P [1..])
begin

S1: Find the pair (j, k) ∈ [1, n] × [1, ] such that δopt(S[1..m/2], S′[1..j]; P [1..k])
+δopt(S[m/2 + 1..m], S′[j + 1..n]; P [k + 1..]) is minimum;

S2: Call recursively CSA(S[1..m/2], S′[1..j], P [1..k]) to find an optimal alignment
A1 of S[1..m/2] and S′[1..j] with respect to P [1..k].

S3: Call recursively CSA(S[m/2+1..m], S′[j +1..n], P [k+1..]) to find an optimal
alignment A2 of S[m/2 + 1..m] and S′[j + 1..n] with respect to P [k + 1..].

S4: Return A1A2.
end
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Note that Steps S2, S3 and S4 are straightforward. The following lemma gives
the details of Step S1.

Lemma 3. We can finish Step 1 using O(�mn) time and O(�n) space.

Proof. Recall that in Section 3, we have D(i, j, k) = δopt(S[1..i], S′[1..j];P [1..k])
and Q(i, j, k) = δopt(S[i..m], S′[j..n];P [k..�]). For any 0 ≤ p ≤ m, let

D[p, ∗, ∗] = {D[i, j, k] | i = p, 0 ≤ j ≤ n, 0 ≤ k ≤ �}.

For any 1 ≤ p ≤ m + 1, let

Q[p, ∗, ∗] = {Q[i, j, k] | i = p, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ � + 1}.

It is easy to see that if we are given D[m/2, ∗, ∗] and Q[m/2 + 1, ∗, ∗], we can
find the pair (j, k) required in Step 1 using O(�n) time.

Note that we know all the values in D[0, ∗, ∗], and from Formula I, we know
that for any p > 0, we can compute D[p, j, k] from D[p − 1, j − 1, k − 1],
D[p−1, j−1, k], D[p, j−1, k] and D[p−1, j, k] in constant time. Thus, we can com-
pute D[1, ∗, ∗] from D[0, ∗, ∗], and in general, D[p, ∗, ∗] from D[p− 1, ∗, ∗] by ap-
plying Formula I to find sequentially D[p, 0, 0], D[p, 2, 0], . . . , D[p, 1, 1], D[p, 1, 2],
. . . , D[p, n, �]. The total time taken is O(�n). It follows that we can compute
D[m/2, ∗, ∗] iteratively from D[0, ∗, ∗], D[1, ∗, ∗], . . . , D[m/2 − 1, ∗, ∗] using to-
tally O(�mn) time. Since we can reuse the space after each iteration, the total
space needed is O(�n).

Similarly, we can apply Formula II to find Q[m/2 + 1, ∗, ∗] using the same
time and space complexity. The lemma follows. ��

Now, we are ready to analyze the time and space complexity of our algorithm.

Theorem 1. The algorithm CSA runs in O(�mn) time and uses O(�n) space.

Proof. Let T (m,n, �) and S(m,n, �) be the worst case time and space complexity
of CSA for finding an optimal constrained sequence alignment of two sequences
with length m and n with respect to a common subsequence with length �. First,
we analyse the space complexity. We will prove by induction that S(m,n, �) =
O(�n). By Lemma 3, Step 1 uses O(�n) space. Step 2 and Step 3 use respectively
S(m/2, j, k) and S(m/2, n − j, � − k) space. Note that we can reuse the space
after each step. Hence, we have

S(m,n, �) ≤ max{O(�n), O(kj), O((�− j)(n− j))} = O(�n).

Now, we consider the time. By Lemma 3, Step 1 takes at most c�mn time for
some constant c. We prove below by induction that the running time of the
whole algorithm is at most double the running time of Step 1. In other words,
T (m,n, �) ≤ 2cmn�.
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As mentioned above, Step 1 runs in c�mn time. Steps 2 and 3 call CSA recur-
sively, each take T (m/2, n, �) time. Hence, we have the following recurrence:

T (m,n, �) ≤ c�mn + T (m/2, j, k) + T (m/2, n− j, �− k)

≤ c�mn + 2c · m
2
jk + 2c · m

2
(n− j)(�− k)

≤ (c + 2 · c
2
)mn�

≤ 2cmn�.

The theorem is proved. ��

5 An Approximating CSA Algorithm for Multiple
Sequences

In this section, we describe how to adapt our space-saving technique to reduce
the space complexity of the Center-star approximation algorithm of Chin et al.,
which constructs a constrained sequence alignment of S = {S1, S2, . . . , Sk} with
respect to P in O(�Ck2n2) time and O(�k2n2) space, where � = |P |, C is some
constant depending on input, and n = max{|S1|, |S2|, . . . , |Sk|}. The alignment
constructed by the algorithm is guaranteed to have a score no greater than
(2− 2/k) times that of an optimal alignment. We show below how to implement
this algorithm such that the space complexity is reduced to O(�k2n) while the
time complexity is still O(�Ck2n2).

5.1 The Center-Star Algorithm

To describe the Center-star algorithm, we need some definitions. Let S be any
sequence in S. Let S′ be another sequence, and A be a constrained sequence
alignment of S and S′ with respect to P . We say that in A, the ith character
of S is aligned with the jth character of P if at some column p of A, S[i] =
A[1, p] = A[2, p] = P [j] and after removing all spaces in the first row of A,
A[1, p] becomes the ith character of S. We say that A aligns S to P at positions
1 ≤ c1 < c2 < · · · < c� if for all 1 ≤ j ≤ �, the cjth character of S is aligned
with the jth character of P in A. We let Aopt(S, S′, P, (c1, c2, . . . , c�)) denote the
optimal CSA of S and S′ with respect to P that aligns S with P at (c1, c2, . . . , c�).

Now, we are ready to describe the Center-star algorithm. To find a CSA of
S1, S2, . . . , Sk with respect to P , it executes the following two steps:

1. Find S∗ ∈ S = {S1, S2, . . . , Sk} and list of positions (c1, c2, . . . , c�) such that∑
S′∈S δ(Aopt(S∗, S′, P, (c1, c2, . . . , c�))) is minimum.

2. Merging the k − 1 alignments Aopt(S∗, S′, P, (c1, c2, . . . , c�)) (S′ ∈ S − S∗)
into an alignment of sequences S1, S2, . . . , Sk with respect to P by adding
spaces at the appropriate positions.

It is easy to see that the most time and space consuming computation in
the algorithm is to find Aopt(S, S′, P, (c1, c2, . . . , c�)). Chin et al. showed that
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such optimal alignment can be found in O(�n2) time and O(�n2) space. (Recall
that n = max{|S1|, |S2|, . . . , |Sk|}.) In the next section, we apply our technique
to reduce the space complexity from O(�n2) to O(�n), while keeping the time
complexity to be O(�n2). It follows that our implementation reduces the overall
space complexity of the Center-star algorithm from O(�k2n2) to O(�k2n) without
increasing the time complexity. We refer to [6] for more details on the complexity
analysis of the Center-star algorithm.

5.2 Reducing the Space Complexity

Let S = S[1..m], S′ = S′[1..n] and P = P [1..�]. Let δopt(S, S′, P, (c1, c2, . . . , c�))
denote the score of the optimal constrained sequence alignment of S and S′ with
respect to P that aligns S to P at position (c1, c2, . . . , c�). To simplify discussion,
we let δopt(S, S′, P, (c1, c2, . . . , c�)) =∞ if no such alignment is possible. We need
the following lemma.

Lemma 4. Let i ∈ [1,m]. δopt(S[1..m], S[1..n], P [1..�], (c1, c2, . . . , c�)) equals

min
0≤j≤n,0≤k≤�

δopt(S[1..i], S[1..j], P [1..k], (c1, c2, . . . , ck)) +

δopt(S[i + 1..m], S[j + 1..n], P [k + 1..�], (ck+1, ck+2, . . . , c�))

Proof. Similar to the proof of Lemma 2. ��
The above lemma suggests immediately the a recursive algorithm for finding
Aopt(S, S′, P, (c1, c2, . . . , c�)), which is given in Figure 2. To execute Step S1 effi-

Algorithm CSAP(S[1..m], S′[1..n], P [1..], (c1, c2, . . . , c�))
begin

S1: Find the j, k such that the sum of δopt(S[1..m/2], S′[1..j], P [1..k], (c1, . . . , ck))
and δopt(S[m/2 + 1..m], S′[j + 1..n], P [k + 1..], (ck+1, . . . , c�)) is minimum;

S2: Call recursively CSAP(S[1..m/2], S′[1..j], P [1..k], (c1, . . . , ck)) to find the opti-
mal alignment A1

S3: Call recursively CSAP(S[m/2+1..m], S′[j +1..n], P [k +1..], (ck+1, . . . , c�)) to
find the optimal alignment A2

S4: Return A1A2.
end

Fig. 2. Algorithm for constructing an optimal CSA with position constraints

ciently, we need two formulas similar to Formulas I and II. The first one is given
in [6].

For any 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ �, let

D′(i, j, k) = δopt(S[1..i], S′[1..j], P [1..k], (c1, c2, . . . , ck)).
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For any 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ � + 1, let

Q′(i, j, k) = δopt(S[i..m], S′[j..n], P [k..�], (ck, ck+1, . . . , c�)).

We have

D′(i, j, k) = min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D′(i− 1, j − 1, k − 1) + δ(S[i], S′[j]) if ck = i and
S[i] = S′[j] = P [k],

D′(i− 1, j − 1, k) + δ(S[i], S′[j]) if i, j ≥ 1,
D′(i− 1, j, k) + δ(S[i], ) if i ≥ 1,
D′(i, j − 1, k) + δ( , S′[j]) if j ≥ 1.

and

Q′(i, j, k) = min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q′(i + 1, j + 1, k + 1) + δ(S[i], S′[j]) if ck = i and
S[i] = S′[j] = P [k],

Q′(i + 1, j + 1, k) + δ(S[i], S′[j]) if i ≤ m and j ≤ n,
Q′(i + 1, j, k) + δ(S[i], ) if i ≤ m,
Q′(i, j + 1, k) + δ( , S′[j]) if j ≤ n,

with the boundary conditions

– D′(0, 0, 0) = 0, D′(i, 0, k) = ∞ and D′(0, j, k) = ∞ for all 0 ≤ k ≤ �,
0 ≤ i ≤ m, 0 ≤ j ≤ n, and

– Q′(m+ 1, n+ 1, �+ 1) = 0, and Q′(i, n+ 1, k) = ∞ and Q′(m+ 1, j, k) = ∞
for all 1 ≤ k ≤ � + 1, 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1.

Given these formulas, we can apply the technique used in Section 4 to implement
Step 1 of CSAP efficiently.

Theorem 2. We can finish Step 1 of CSAP in O(�n2) time and O(�n) space.
Furthermore, CSAP runs in O(�n2) time and used O(�n) space.

Proof. Similar to the proofs of Lemma 3 and Theorem 1. ��
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Abstract. The rapid progress in proteomics has generated an increased
interest in the full characterization of glycoproteins. Tandem mass spec-
trometry is a useful technique. One common problem of current bioin-
formatics tools for automated interpretation of tandem mass spectra of
glycoproteins is that they often give many candidates of oligosaccharide
structures with very close scores. We propose an alternative approach in
which stochastic context-free graph grammars are used to model oligosac-
charide structures. Our stochastic model receives as input structures of
known glycans in the library to train the probability parameters of the
grammar. After training, the method uses the learned rules to predict the
structure of glycan given a composition of unknown glycoprotein. Prelim-
inary results show that integrating such modelling with the automated
interpretation software program, GlycoMaster, can very accurately elu-
cidate oligosaccharide structures with tandem mass spectra. This paper
describes the stochastic graph grammars modelling glycoproteins.

1 Introduction

The rapid progress in proteomics has generated an increased interest in the full
characterization of glycoproteins. The elucidation of glycoprotein structures and
functions remains one of the most challenging tasks in proteomics [11]. Tandem
mass spectrometry has been recognized as a useful technique for the determina-
tion of the oligosaccharide structures [2]. In the current practice of glycoprotein
structural determination by MS/MS, purified glycoproteins are digested into gly-
copeptides, short peptides linked to oligosaccharides, with enzymes like trypsin.
Then tandem mass spectra are measured for glycopeptides with a tandem mass
spectrometer. Finally, the spectra are interpreted by computer software to de-
termine the structures of oligosaccharides [29].

Current bioinformatics tools for automated interpretation of tandem mass
spectra of glycoproteins [9, 13, 14, 24] apply the approaches similar to de novo
sequencing for protein identification [3, 6, 22], which compute directly from the
MS/MS spectra. However, unlike DNA and proteins where sequence is linear
and provides nearly all the primary structure, oligosaccharides of glycoproteins
are characterized by their two dimentional sequence, linkage and stereochem-
istry. One common problem of current computer softwares is that they often
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give many candidates with close scores for a MS/MS spectrum. Typically, those
candidates have same composition (numbers of each monosaccharide contained
in a glycan) with different sequence structures. Therefore, current bioinformatics
tools can accurately compute compositions of oligosaccharides from tandem mass
spectra. However, it seems not feasible to directly interpret branched oligosac-
charide tandem mass spectra, because different branched structures with same
composition often give very similar spectra experimentally.

Definition 1. Given a composition of a glycoprotein, modelling problem is to
determine the most possible structure of the glycan.

There are two kinds of approaches reported to tackle such problem. One is
instrumental approach in which the ring-cleavage fragmentation provide linkage
information [16]. However, very few such experiments have successfully been re-
ported due to the limitation of fragmentation in MS/MS spectrometer [22]. The
other is catalog-library approach [19, 28]. Often, oligosaccharides released from a
family of glycoproteins are composed of a small finite set of monosaccharides. In
this regard, the numerous oligosaccharide species are analogous to the products
found in syntheses involving combinnatorial libraries. Structure similarities ex-
ist between different oligosaccharides, because specific substructural motifs are
preserved among different compounds. Such motif information is very useful to
determine branched structures. However, this requires directly compare spectra.
To the best of our knowledge, no such bioinformatics tool has been reported.

We proposed an alternative approach to this problem in which stochastic
context-free graph grammars are used to model oligosaccharide structures, and
developed a software tool which uses information from more than one spectrum
by referencing databases of glycoproteins [27]. Applying stochastic grammars
is based on the observation that the family of structures of glycoproteins are
derived from a common precursor oligosaccharide by a network of competing
biosynthetic pathways. Intuitively, we could use a prior probability distribution
of structures. Production rules of the grammars model glycosylation reactions
at each step in biosynthesis pathways.

Our software first compute structural candidates from the tandem mass
spectrum. Then, stochastic graph grammars are used to refine candidates. The
stochastic model is trained by structures of known glycans in the library. Then,
for each composition computed from tandem mass spectrum of unknown gly-
coprotein, it gives the most possible structures of the oligosaccharide. In this
paper, we describe the stochastic graph grammars used in our approach.

2 Related Works

A grammar consists of a set of variables, some terminal and some non-terminal.
Specifically, a starting nonterminal S is contained in a grammar. The nontermi-
nals are rewritten according to a set of production rules. A stochastic grammar
is a variant of a grammar in which each production is associated with a proba-
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bility, a real number between 0 and 1. The probability of the derivation will be
the product of the probabilities of all productions used in the derivation.

Stochastic grammars are getting more interest in bioinformatics. Hidden
Markov Model (HMM) approaches were introduced to the analysis of molec-
ular sequences by Churchill [7], who analyzed regions of varying G+C content
in single DNA sequences. They were extensively used for gene finding [4, 20, 21].
Hidden Markov model and evolutionary trees were used in protein secondary
structure prediction and other comparative sequence analyses [15, 23].

Stochastic context-free grammars (SCFGs) are succefully used to model a
family of homologous RNA sequence and secondary structure prediction [25, 25].
Context-free grammars are ideal to model interactions of nucleotides in RNA
molecules. The rewriting rules (with probabilities) can be used to specify nested
correlations of residues in an RNA sequence and therefore how the sequence is
structurally formed. For RNA stem-loops these SCFGs have provided a general
modelling approach that permits effective construction of algorithmic solutions
to the RNA structure determination problems.

However, above sequence grammars are hard to describe full relationship
among objects in biology. Formally, a context-sensitive grammar is required to
model RNA pseudoknotted structures [5]. Stochastic Ranked Node Rewriting
Tree Grammars are needed to predict protein beta-parallel structure [1], which
can handle a complicated combination of anti-parallel and parallel dependencies.

Stochastic graph grammars active area of research [26]. They were success-
fully used to represent chemical compounds and to model the evolution of de-
velopmental pathways [10, 12]. Stochastic graph grammars defined a probability
distribution over graphs and were used to generate graphs according to that dis-
tribution and to determine the probability of a given graph which may be new
or unseen. As compact grammatical representations of sets of graphs or proba-
bility distributions over graphs, the application of stochastic graphs grammars
to situation where the relationships between biological objects can be described
using graphs.

3 Graph Grammars

Let Σ be an alphabet of node labels and Γ an alphabet of edge labels. A graph
over Σ and Γ is a tuple G = (V,E, λ), where V is a finite nonempty set of
nodes, E is a finite set of edges E ⊆ {(v, γ, w)|v, w ∈ V, v �= w, γ ∈ Γ}, and λ:
V → Σ,E → Γ is a labelling function for each node and each edge.

The set of all graphs over Σ and Γ is denoted GRΣ,Γ . A subset of GRΣ,Γ is
called a graph language.

A production of a node replacement grammar will be of the form X → (D,C)
where X is a nonterminal node label, D is a graph, and C is a set of connection
instructions. In a node-replacement graph grammar, anode of a given graph is
replaced by a new subgraph, which is connected to the remainder of the graph
by new edges, depending on how the node was connected to it. These node
replacements are controlled by the productions (or replacement rules) of the
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grammars. In this paper, the context-free node-replacement graph grammars
are used, in which the result of the replacements does not depend on the order
in which they are applied [26]. The replacement of nodes is specified by a finite
number of productions and the embedding mechanism is specified by a finite
number of connections.

4 Our Contributions

4.1 Biosynthetic Pathways and Graph Grammar

Oligosaccharides are composed of monosaccharides by glycosylation. In mam-
malian glycoproteins, common monosaccharide are Xylose (Xyl), Fucose (Fuc),
Galactose (Gal), Mannose (Man), Glucose (Glu), N-acetyl-glucosamine (Glc-
NAc), N-acetyl-galactosamine (GalNAc) and N-acetylneuraminic acid (NueAc).
In mass spectrometry, galactose, mannose and glucose are undistinguishable,
and so are N-acetyl-glucosamine and N-acetyl-galactosamine. In this paper, the
structures are simplified with square corresponding to N-acetyl-glucosamine and
N-acetyl-galactosamine, and cycle corresponding to galactose, mannose and glu-
cose. A structural representation for a glycan (GlcNAc4Gal3FucXyl) of a peanut
peroxidase is shown in Fig. 1.

β1−4β1−4

α1−6

α1−3 β1−2 α1−3

β1−4

β1−4

Fig. 1. A structural representation of a glycan

We focus on the most abundant, N-linked “complex-type” glycoproteins,
oligosaccharides of which are characterized [11] bysharinga commontrimannosyl-
chitobiose core (Fig. 2a) and the presence of variable numbers of antennae (Fig.
2b, c). The dotted line in Fig. 2b stands for optional attachment of monosac-
charides to the core structure. That is, GlcNAc and Xyl may also be attached
to the core. The core is often modified by the addition of Fuc to GlcNAc. Fur-
ther biosynthetic processing converts the small pool of “core plus stubs” into an
extensive array of mature oligosaccharides.

Although the biosynthesis of “complex-type” oligosaccharides follows a com-
plex multistep pathway, the family of structures are derived from a common
precursor oligosaccharide by a network of competing biosynthetic pathways. So,
there is a distribution among the glycan structures in a glycoprotein family,
which can be described by graph grammars. Specifically, stochastic context-free
node-replacement graph grammars are used to model glycoproteins. An oligosac-
charide of N-linked glycoprotein is abstracted as an connected graph with vertex
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(a)

NeuNAcXylHex HexNac

(b)

Fuc
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Fig. 2. The frequent substructures and core of mammalian glycans

labels and edges representing sugar types (e.g., Man, GlcNAc) and glycosidic
linkages (e.g., α 2-3, β 1-4). The graph representation is typically a rooted tree
with labelled nodes and labelled edges. Each node has only one parent and at
most four children. The edge is labelled from the numbering position of child to
that of parent. α and β stand for structurally in-planar and out-planar respec-
tively. The glycosylation reactions that make up the biosynthetic pathways are
abstracted as production rules of the graph grammars (Fig. 3) with the form
(M, D, E) where M (capital letter) is “mother” graph which consists of one node
only, D is “daughter” graphs and E is connecting embedding. Glycosylation is
modelled as graph rewriting. Rewriting rules from the graph grammar are used
to transform the graph.

As a test case, tandem mass spectra of cationic isozyme peanut peroxidases
were used in this paper. Only four symbols, Hex (h), HexNac (n), Xyl (x),
and Fuc (f) are needed to represent their glycan structures. Based on above
observation, we have

Lemma 1. Let Σ = {Hex,Xyl, Fuc,HexNAc,NeuNac} be an alphabet of
node labels and Γ = {αi − j, βi − j}, i, j ∈ {1, 2, 3, 4, 6} an alphabet of edge
labels. A glycan structure is represented as a graph S over Σ and Γ s.t. S =
(V,E, λ), where V is a finite nonempty set of nodes, E is a finite set of edges
E ⊆ {(v, γ, w)|v, w ∈ V, v �= w, γ ∈ Γ}, and λ: V → Σ,E → Γ is a labelling
function for each node and each edge.
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Fig. 3. The productions of the graph grammar

Lemma 2. Let G be a graph grammar G = (Σ,Δ, Γ, P, S0) where Σ is the
alphabet of node labels, Δ ⊆ Σ is the alphabet of terminal node labels, Γ is
alphabet of edge labels, P is the finite set of productions listed in Fig. 3, and S0
is the initial nonterminal, and S be a family of glycan structures. S = L(G),
where L(G) = {H | S0 ⇒ ∗H}.

Parsing of the structure in Fig. 1 is shown in Fig. 4. The structure corresponds
to two derivations, S0S1S2HHNN and S0S1S2HNHN .

4.2 Expression Probability of Glycoprotein

In theory, the entire human genome sequence, coupled with methods to mea-
sure the expression level of each gene, provides tools for thorough study of gly-
can biosynthesis. The development of sophisticated computational algorithms
should allow glycosylation-specific effects on gene expression to be deconvoluted
from irrelevant secondary effects. So, there is a distribution among the glycan
structures in a glycoprotein family, which can be described by graph grammars.

Definition 2. Let P be a set of production rules. Probability of a graph s is
defined as

pr(s) =
∑
d∈D

∏
pi∈d

pri , (1)

where pri be the probability of a production rule pi ∈ P , D be a set of derivation
paths to a graph s.
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Fig. 4. An example of structure parsing

Lemma 3. Given a composition of glycan, expression levels of structures can
be described by stochastic graph grammars

4.3 Training

Training approach is based on parsing the input graph that minimizes the deriva-
tion length of the graph and then estimating probabilities on productions [8]. For
a known glycoprotein, the structure of its glycan is represented as a graph s. The
algorithm Parsing takes as an input a graph s and the grammars G defined in
Fig. 3. Specifically, starting from S0 the algorithm searches compatible produc-
tion to the substructure in the graph starting from root, and replaces it; Then,
find productions for new nonterminal nodes. The parsing order for nonterminal
nodes is not considered, because given a structure, different derivations have
same numbers of productions just with different orders. For simplicity, depth
first approach is used. Finally, the algorithm gives as output a set of derivations
D with minimal length. Each d ∈ D has same the number for each production.

Algorithm Parsing(G, s)
Input: G (Graph grammar), s(structure graph)
Output: D (a set of derivations)

1. Enqueue(N, roots)
2. while not Empty(N)
3. v ← Dequeue(N)
4. for each child c of v
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5. Enqueue(T )
6. while not Empty(T )
7. t← Dequeue(T )
8. if t is not a leaf node
9. Enqueue(N, t)

10. Find q of (v, q) //based on children
11. Enqueue(D, (v, q))
12. return D

The algorithm Learning takes as input a set of structures S and a set of
production rules G. It first parses each graph s ∈ S to find one of the deriva-
tions with the minimum number of productions, then updates the count of each
production used in that derivation. Finally, it computes the probability for each
production, which is the ratio of count(n,q), the number of production (n, q) used
in all graph parsing, to countn, total number for that nonterminal node n.

Algorithm Learning(G,S)
Input: G (production rules), S (set of structure)
Output: Pr (set of probabilities of productions)

1. for each (p, q) ∈ G
2. count(p,q) ← 0
3. for each structure s ∈ S
4. D ← Parsing(G, s)
5. for each (p, q) ∈ D
6. count(p,q) ← count(p,q) + 1
7. for each nonterminal node n ∈ G
8. countn ← 0
9. for each q s.t. (n, q) ∈ G

10. countn ← countn + count(n,q)
11. for each q s.t. (n, q) ∈ G
12. pr(n,q) ← count(n,q)/countn
13. Pr ← Pr ∪ {pr(n,q)}
14. return Pr

4.4 Predicting

After training, given a composition the algorithm starts from starting symbol
S0 to generate derivations by applying production rules continuously. Because
graph grammars may be ambiguous, a structure may have multiple derivations
and thus the probability is the sum of all distinct derivations. Finally, structures
with desired probabilities are the output.

The computation of such probability is very expensive (exponential time
complexity). Heuristic dynamic programming technique was used in this paper.
We assume the structures are derived with most probably glycosylation in a
network of competing biosynthetic pathways. So, derivations with i productions
is computed by the most probably derivation with i − 1 productions and ith
productions.
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Theorem 1. Let P (i) be optimal probability of derivation with first i produc-
tions applied, and p(i, k) be a probability of ith production which applies to kth
nonterminal node contained in the derivation with first i− 1 productions.

P (i) = maxP (i− 1)× p(i, k) (2)

In order to improve the accuracy of prediction, J derivations are considered
for each length of derivation.

Theorem 2. Let P (i, j) be optimal probability of jth derivation (j = 1 to J)
with first i productions applied, and p(i,m, k) be a probability of ith production
which applies to kth nonterminal node contained in mth optimal derivation with
first i− 1 productions.

P (i, j) = maxm=1toJP (i− 1,m)× p(i,m, k). (3)

Algorithm: Predicting(G, c)
Input: G (production rules), c (composition)
Output: S(c) (a set of candidates of structure)

1. N1,1, N1,2 ← {S0}
2. i← 1, count1 ← 2
3. do i← i + 1, j ← 0
4. for k = 1 to J
5. for each n ∈ Ni−1,k

6. for each (n, q) ∈ G s.t. (n, q) is valid for c
7. j ← j + 1
8. parenti,j ← pi−1,k // for backtracking
9. di,j ← (n, q)

10. Ni,j ← N(i−1,k) ∪ {n1} s.t. (n1 ∈ q)
11. pri,j ← pr(n,q) × pri−1,k

12. if hit composition then D ← D ∪ {di,j}
13. counti ← j
14. while counti ≥ 1
15. for each d ∈ D
16. s← backtracking(d)
17. if s /∈ S(c) then S(c) ← S(c) ∪ {s}
18. else sum the probability
19. return S(c)

Predicting, starts from starting symbol, S0, to generate derivations by ap-
plying production rules (line 1-2). Ni,j is a set of nonterminal nodes contained
in jth derivation with i productions. Derivation paths are getting longer and
longer, which correspond to larger and larger substructures, by continuing ap-
plying production rules (line 3-14). di,j is ith production of jth derivation with
i length. Whenever the derivation reach the desired composition (line 12), it
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is added to the set of valid derivations, D. When generating graphs, produc-
tion rule is applied non-terminal nodes from leftmost to rightmost with shortest
distance from the root node, and independently of all other productions in the
derivation. Thus the probability, pri,j , of the derivation is obtained by multiply-
ing the probabilities of all productions used. Because graph grammars may be
ambiguous, a structure may have multiple derivations and thus the probability
is the sum of all distinct derivations (line 15-19). Finally, structures with desired
probabilities are the output. The time complexity becomes O(n2).

4.5 Application

Such grammars modelling glycoproteins were integrated with GlycoMaster, a
software automated interpreting tandem mass spectra of glycoprotein [27]. In
an tandem mass spectrum, each connected subcomponent of the glycan may
yield a specific m/z. A matching score can be attributed to a subcomponent ac-
cording to the peak that matches the subcomponent mass. If no peak matches,
a negative score is given. GlycoMaster outputs a structure that has the opti-
mal total subcomponent matching scores with the input mass spectrum. For
branched oligosaccharides, GlycoMaster gives multiple candidates of structure
with similar score. The stochastic graph grammars were used to refine outputs
of GlycoMaster. Practically, refining process is simplified. For each composi-
tion, the software parses the candidates and computes the most possible struc-
tures.

5 Preliminary Results

The tandem mass spectra in our experiment were obtained by using Q-TOF2 in
the positive ion nano ESI tandem mass mode with borosilicate nano tips.

Our modelling was experimented with the cationic peanut peroxidase. The
known glycopeptides in the database [17] were used for training. Our software
was tested using ten samples. The ten glycopeptide samples are cationic isozyme
peanut peroxidase with tryptic digestion. Spectra of the samples were obtained
by Q-TOF2 as described above. Correctness of automated interpretation is eval-
uated by comparing with manual analysis [34]. The structures computed by
GlycoMaster without referring the stochastic graph grammars for eight out of
ten samples are the same as deduced form of manual interpretation. The software
integrating with the grammars gave nine same structures as manual interpreta-
tion. In this initial set of experiments, all the structures are N-linked structures
and the number of monomers ranged from 6 to 15.

The preliminary experiments show conclusions following.

– Stochastic context-free graph grammars can be used to model glycoproteins.
They capture major characteristics of biosynthetic pathways. Such stochastic
grammars are very useful in predicting the structures given the compositions
of unknown oligosaccharides.
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– Integrating the grammar modelling with GlycoMaster can very accurately
determine the most probable structures of N-linked glycans from the MS/MS
spectrum of the glycopeptide.

– Because we use a sophisticated heuristic algorithm instead of enumerating
all possible structures, the software works well even for large size polysac-
charides.

6 Future Works

Stochastic context-free graph grammars provide useful information for elucida-
tion of oligosaccharide tandem mass spectra. More libraries of tandem mass spec-
tra of glycoproteins and quick library-searching techniques are needed. Specifi-
cally, bioinformatics tools must be developed to allow the facile comparison of
tandem mass spectrometeric data from unknown and known structures.
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Abstract. Weighted finite automata (WFA) are nondeterministic finite
automata labeled with real weights on their edges and states. They com-
pute real functions on the unit interval. Parametric weighted finite au-
tomata (PWFA) are weighted finite automata with a multi-dimensional
codomain. The only completely smooth functions computable by WFA
are polynomials, while PWFA are also able to compute the sine, cosine,
exponential and logarithmic function. We will present methods for con-
structing PWFA computing basic shapes, Catmull-Rom splines, Bezier
polynomials and B-splines. We show how these possibilities can be com-
bined to obtain a figure drawing framework that is based on a very simple
automaton model that has only the operations of sum, multiplication by
a constant and iteration.

1 Introduction

A definition of weighted finite automata (WFA), as it is used in this paper, can
be found in [5]. WFA compute real functions, their domain is the set of words
of infinite length over Σ = {0, 1, . . . , k}, where k ∈ IN is usually at least 1.
Every domain word w = w0w1 . . . is interpreted as the number 0.w0w1 . . ., so
for k ≥ 1 WFA compute real functions on the unit interval [0; 1]. It was shown
in [5] that WFA can compute every real polynomial on [0; 1] and that the set of
WFA-computable functions is closed under sum, difference and product. On the
other hand it was proven in [6] that polynomials are the only completely smooth
functions (having all derivatives in some open interval containing properly the
closed unit interval) computable by WFA. It is simple to show though that it
is possible to define non-polynomial functions with WFA that are differentiable
infinitely often almost everywhere in [0; 1]. The most popular application of WFA
so far was image compression, see for example [4].

Parametric weighted finite automata (PWFA) were defined in [1]. They are
generalized WFA that are parameterized with a natural number d called their
dimension. They can be seen as d simultaneously running versions of the same
WFA that are only differing in their initial distribution. Therefore a PWFA of
dimension d computes a d-dimensional real function on Σ∗. The set of functions

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 259–268, 2005.
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in IR2 interpreted as (x, y) that are computable by PWFA contains the sine,
cosine and exponential function as well as all corresponding inverse functions
obtainable by swapping x and y in the result vectors. All this was shown in [1].

Here we show that the set of sets definable by PWFA is closed under set
union, affine transformation and restriction of the domain language to any regu-
lar language. These results will be, as far as they are relevant for figure drawing,
described shortly in this paper; the proof details can be found in [9]. We will show
that certain kinds of spline functions are computable by PWFA. This includes
Bezier polynomials[8], Catmull-Rom splines[3] and B-splines[2].

2 Properties of PWFA

A PWFA P is a quintuple (Q,Σ,W, I, F ) where

1. Q is a finite set of states
2. Σ = {0, 1, . . . , l − 1} is a finite alphabet
3. W = {A0, A1, . . . , Al−1}, Ai ∈ IR|Q|×|Q| is the set of transition matrices
4. I = (I0I1 . . . Id−1), Ii ∈ IR|Q| are the d initial distributions; the Ii are the

rows of the matrix I
5. F ∈ IR|Q| is the final distribution

For every word w = w0w1 . . . wn−1 ∈ Σ∗ of finite length, P computes a result
vector defined as

fP (w) = I

n−1∏
i=0

Awi
F . (1)

The set S(P ) the automaton computes is

S(P ) =
∞⋂

n=0

S≥n(P ) (2)

with

S≥n(P ) =
∞⋃

i=n

Si(P ) (3)

and
Si(P ) = {fP (w)|w ∈ Σi} (4)

where the overline notation in equation 2 denotes the topological closure of
the set under the line. Input words of WFA are interpreted as real numbers.
For a PWFA the input word has no such interpretation; we solely consider the
computed set S(P ). Figure 1 provides a small example.

The following properties are provided here, because most of them are used
later on in the paper.

Theorem 1. Let X and Y be PWFA with dX = dY . Then S(X) ∪ S(Y ) is
computable by a PWFA. ��
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Fig. 1. An automaton computing the set {(x, x2−x)|x ∈ [0; 1]} is shown on the left. The
set it computes is visualized on the right. The states are labeled with their number, the
initial distribution for each dimension and the final distribution. The edges are labeled
with the corresponding weights. Edges that carry weight 0 are not shown

⋃
=

Fig. 2. Closure under set union: if there are automata for painting figure a (e.g. a set
[v, w] × [x, y] for real intervals [v, w] and [x, y] interpreted as a filled rectangle) and
figure b (set that denotes a filled circle), then there is an automaton that produces the
merged figure

This property is visualized in figure 2. The proof is constructive and can be
found in [9]. In the worst case the union automaton has a state set that has
cardinality |QX |+ |QY |+ d.

A PWFA can be seen as a structure that contains a certain set of functions.
In particular every state represents a function that the automaton computes in
a dimension that has it’s initial distribution set to 1 for this state and zero for
all other states. We call this function fPi

. Thus choosing initial distribution Ik

for dimension k means that the automaton computes the function

f̃Pk
=

|QP |−1∑
i=0

Ik(i)fPi
(5)

in dimension k. The set of WFA-computable functions is closed under addition,
subtraction and multiplication, so it forms a commutative, associative ring with
identity element. This ring contains polynomials and characteristic functions of
closed intervals J = [a; b] ⊆ [0; 1] if a and b have finite representations in any g-
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f(x)⇒

Fig. 3. Closure under affine transformation: the square on the left side is moved, rotated
and scaled to obtain the square on the right side

adic system for g ≥ 2. This implies that PWFA can represent Bezier polynomials,
Catmull-Rom splines and certain B-splines.

We say a vector produced by a PWFA is useless, if it does not contribute
to the computed set. All PWFA known to be relevant for figure drawing do
not produce useless vectors. Another useful property for figure drawing is the
following:

Theorem 2. Let A be PWFA of dimension d that does not compute an infinite
number of useless vectors and f(x) = Bx + c any affine transformation on IRd.
Then the set f(S(A)) is computable by a PWFA. ��

As above the proof is constructive and can be found in [9]. The multiplicative
part can be implemented by substituting the matrix IP by BIP and the additive
part by the introduction of one additional state, so any affine transformation can
be applied to a PWFA by adding no more than one state.

Another interesting property of PWFA is that the restriction of their input
language to any regular set instead of Σ∗ is still PWFA-computable.

Theorem 3. Let P be a PWFA and R ⊆ Σ∗
P regular. There is a PWFA P ′

that computes the set S(P ′) with Si(P ′) as defined in equation 4 replaced by
Si(P ′) = {fP (w)|w ∈ R ∩Σi} ��

The construction used in the proof[9] generates an automaton P ′ that has
O(|QP | · |QDR

|) states, where DR is the deterministic minimal automaton of the
language R. This enables us to remove certain parts of the output set, figure 4
shows an example. The set R−7

64
is the set of words that represent numbers in[ 1

8 ,
7
8

]
. It is regular and can be written as

R−7
64

= ((((001 + 01) + 10) + 110)((0 + 1)∗)) (6)

in the notation used in [7]. This set describes values z with z2−z ≤ −7
64 . Although

the construction of an automaton for a given set R is simple, the inference of
such a set to restrict a PWFA produced set to a specific subset is usually not.
In the simple example above it requires the solution of the quadratic polynomial
z2−z− 7

64 and even here the value − 7
64 was chosen so that it produces roots with

a short finite binary representation (1
8 = 0.001 and 7

8 = 0.111). In other cases
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Fig. 4. Regular restriction of the input language: figure (x(z), y(z)) = (z3 − z2, z2 − z),
z ∈ [0; 1] for Σ∗ (left) and for R −7

64
(right)

we can show that some desirable restrictions of the output of a PWFA cannot
be achieved by a regular restriction of the input set. The exponential function in
[1] e.g. cannot be restricted to the domain of non-negative real numbers using a
regular restriction, because the required language is not regular. As this property
is apparently hard to control, it appears less helpful for figure drawing than the
closure under set union and affine transformation.

3 Figure Drawing with PWFA

We will show that a simple figure drawing framework that uses only a single
PWFA for rendering can be constructed. It includes the drawing of rectangles,
filled rectangles, circles, filled circles and some splines and thus also applications
for these splines like the construction of font shapes.

The computation of circles with PWFA was introduced in [1]. It is done by
constructing an automaton along the formula

unitcircle =
∞⋃

k=0

(
1 0
0 1

)(
0.8 0.6

−0.6 0.8

)k (
1
0

)
. (7)

This can be extended to the production of circular discs with an arbitrary
inner and outer radius. The automaton in figure 5 shows this. An automaton
that implements equation 7 is contained with the states 0 and 1. It is also simple
to form unfilled and filled rectangles, figure 6 shows an automaton that draws an
unfilled square. Color images can be implemented by adding more dimensions,
for example one more for gray-level images or three more for color images in
RGB or YCbCr mode. In addition to such simple geometric forms PWFA can
also display some splines.

This includes the Catmull-Rom splines introduced in [3]. These splines are
interpolating control points with piecewise cubic polynomials. The control points
are equally spaced; we assume that we have values of a curve at the points
{0, 1, . . . , k−1}. The resulting curve is built from k pieces. It is C∞ (differentiable
infinitely often) between the control points and C1 (is differentiable) at the
control points, the second derivative is linear interpolated. The Catmull-Rom
spline is a special case of the Hermite cubic curve
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F(0)
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Fig. 5. PWFA computing circular disc with inner radius a and outer radius b (left)
and the image it produces for a = 0.55 and b = 0.75 (right)
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Fig. 6. PWFA computing unit square (left) and the image it produces (right)

h(t) = (2t3 − 3t2 + 1)p0 + (t3 − 2t2 + t)m0+
(−2t3 + 3t2)p1 + (t3 − t2)m1

(8)

that is a curve with two control points p0 and p1 and the tangents m0 and m1
at these control points. For the Catmull-Rom spline the tangents are computed
using the control points p−1 and p2, so the tangents do not have to be provided
explicitely. Every Catmull-Rom spline with k = 2n, n ∈ IN control points can be
implemented by a PWFA with

|Q| = 2
(
k

2
+

k

4
+ . . . + 1

)
+ 4 = 2k + 2 (9)

states. This is clear from figure 7. There are 4 states that represent the cubic
polynomial (states 0 to 3) and two decision trees for the x (states 4 to 6) and y
(states 7 to 9) components. If k is not a power of 2, the number of states necessary
is at most 2

(
2log2 k� + !log2 k"

)
+ 4. The cubic polynomial sub-automaton is

shared between all segments of the spline.
Bezier polynomials can also be computed by PWFA. The point-set B defined

by a Bezier polynomial b of degree k and dimension d is given in virtue of it’s
control-point vector

((b0,0, b0,1, . . . , b0,d−1), . . . , (bk,0, bk,1, . . . , bk,d−1))
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Fig. 7. PWFA computing a Catmull-Rom spline for the control-vector (0 4 2 3) (left)
and the image it produces (right)

as
B =

⋃
z∈[0;1]

b(z) (10)

with

b(z)(j) =
k∑

i=0

(
k

i

)
zi(1− z)k−ibi,j for j = 0, 1, . . . , d− 1 . (11)

All dimensions are computed by evaluating a polynomial and all these poly-
nomials have at most degree k, so every Bezier polynomial of degree k can be
represented as a PWFA with k + 1 states. The curve in figure 4 is an example
of a Bezier polynomial for the control-point vector

((0, 0) , (−1/3, 0) , (−1/3,−1/3) , (0, 0)) .

Similar to the construction of PWFA for the Catmull-Rom spline it is possi-
ble to construct automata that produce several Bezier polynomials of the same
degree while reusing the states that build the polynomial. The number of states
necessary to draw a set of l Bezier polynomials of degree k with dimension d is
thus at most k + 1 + d(2log2l� + log2 !l").

Both Bezier polynomials and Catmull-Rom splines are by construction C1

everywhere and C∞ almost everywhere. This leaves no other possibility as to
break up a spline into several pieces, if it is desired that the curve is not smooth
at some point, for example the shape of the letter T. It is also hard to control
the behavior of the curve between it’s control points. B-splines overcome some
of these problems. They can be defined inductively as
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Bi,1(x) =
{

1 for ti ≤ x ≤ ti+1
0 otherwise (12)

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x) (13)

where t = (ti), i ∈ ZZ is called the knot vector. We first observe that B-splines
are computable by PWFA, if the characteristic functions of the knot intervals
[ti; ti+1] are PWFA-computable. The equations 12 and 13 are apparently func-
tionally invariant against translation and dilation of the knot vector, so we have
some limited influence on the PWFA computability of a given B-spline. This
implies that B-splines with ti+1 − ti = pi

qi
c for pi ∈ ZZ, qi ∈ IN+ and c ∈ IR for

all i ∈ ZZ are PWFA-computable. We can write

Bi,k = { (x,Bi,k(x))|x ∈ IR}
= {(LCM(qj)(x− t0)/c,Bi,k (LCM(qj)(x− t0)/c)) |x ∈ IR} (14)

where LCM(qj) denotes the least common multiple of all relevant qj ∈ IN+ and
substitute the knot vector ti, i ∈ ZZ by t′i = LCM(qj)(ti−t0)

c , i ∈ ZZ. The number
of relevant qj is finite for every finite set of B-splines of a certain degree k,
because they are all only depending on a finite set a knots in the knot vector.
After this transformation, the relevant knots are all integers. We can divide the
knot vector by 2.log2 t′

max/, where t′max is the maximum relevant knot value, to
get a WFA friendly input. The B-spline will then be evaluated on the interval
[0; 2−.log2 t′

max/].
The construction of PWFA that compute uniform (that means ti+1 − ti =

ti+2− ti+1 for all i ∈ ZZ) B-splines is simple. As in [8], we substitute u = x−ti

L =
x
L − i under the assumption of ti = iL. We then derive an algebraic form of the
B-spline as a function of (i+ u)L. In case of the uniform linear B-spline we get

Ui,2((i + u)L) =
{

u 0 ≤ u ≤ 1
2− u 1 ≤ u ≤ 2 . (15)

There are as many cases as the degree of the B-spline. These cases correspond
to the leafs of a complete binary tree with depth .log2(k)/− 1. One level can be
saved, because there are two outgoing edges from each tree leaf. Figure 8 shows
an example for the uniform linear B-spline. The tree consists only of state 2. If z is
the input word, the automaton computes the function f(z) := 2z for 0 ≤ z ≤ 0.5
and f(z) := 2(1− z) for 0.5 ≤ z ≤ 1 in the y component. This differs from equa-
tion 15, because the reading of the first symbol that is used to decide which case
the automaton is to compute equals a variable substitution. In the first case the
substitution is u → x, in the second it is u → x+1 etc. The scaling with 2 is due to
the fact that the automaton has already made one transition through the binary
tree, when it enters the spline computation. If k is a power of 2, there is a PWFA
with 2k− 1 states that computes the uniform B-spline U0,k, otherwise a few ad-
ditional states are needed to control the behavior of the automaton for leafs of
the complete binary tree that do not carry any case of the algebraic formulation
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Fig. 8. PWFA computing a uniform linear B-spline B0,2 (t0 = 0, t1 = 1, t2 = 2) (left)
and the image it produces in [0; 2] × [0; 1] (right)

Fig. 9. PWFA computing a uniform quadratic B-spline B0,3 (t0 = 0, t1 = 1, t2 = 2, t3 =
3) (left) and the image it produces in [0; 3] × [0; 0.75] (right)

of the B-spline. For the uniform quadratic B-spline we could for example let the
automaton produce the first case again for the non-existent fourth case that ex-
ists in the complete binary tree with 2 leafs. Figure 9 shows this. States 0, 1 and 2
build a quadratic polynomial. States 5, 6 and 7 build the complete binary tree for
the three cases of the quadratic B-spline, the fourth, non-existent state is mapped
to the first case. States 3 and 4 control the x-component of the result vectors. It
produces the same values for 00w as for 11w for all w ∈ Σ∗. Usually B-splines
are used in linear combinations to build splines. An extension of a PWFA that
computes a uniform B-spline Bi,k to one that computes a finite linear combina-
tion of uniform B-splines Bj,k, j ∈ ZZ with the same knot vector, can be done by
assigning all appropriate B-spline cases to the corresponding binary tree leafs. In
case of the linear uniform B-spline leaf i would carry two algebraic expressions
Ui,2 and Ui+1,2 multiplied by the coefficient from the linear combination.

4 Conclusion

We showed that basic figures can be drawn with PWFA. This includes simple
shapes as rectangles and circles but also more complex shapes such as Catmull-
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Rom splines, Bezier polynomials and some B-splines. All these objects can be
combined in one automaton. During the decoding of the automaton the only
arithmetic operations needed are addition, multiplication by a constant and
iteration.
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Abstract. We describe an algorithm to deal with error repair over finite-
state architectures. Such a technique is of interest in spelling correction
as well as approximate string matching in a variety of applications related
to natural language processing, such as information extraction/recovery
or answer searching, where error-tolerant recognition allows misspelled
input words to be integrated in the computational process. Our proposal
relies on a regional least-cost repair strategy, dynamically gathering all
relevant information in the context of the error location. The system
guarantees asymptotic equivalence with global repair strategies.

1 Introduction

An ongoing question in natural language processing (nlp) is how to recover
ungrammatical structures for processing text. Focusing on spelling correction
tasks, there are few things more frustrating than spending a great deal of time
debugging typing or other errors in order to ensure the accuracy of nlp tools
over large amount of data. As a consequence, although it is one of the oldest
applications to be considered in the field of nlp [4], there is an increased interest
in devising new techniques in this area.

In this regard, previous proposals extend the repair region to the entire string,
complemented with the consideration of thresholds on an editing distance [7, 8].
This global approach, which seems to be universally accepted, has probably been
favored by the consideration of English, a non-concatenative language with a re-
duced variety of morphological associated processes [11], as running language.
However, the application of this kind of techniques to highly inflectional lan-
guages such as Latin ones [1], or agglutinative languages such as Turkish [10],
could fail to take advantage of the underlying grammatical structure, leading to
a significant loss of efficiency.
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projects PGIDIT03SIN30501PR and PGIDIT02SIN01E.
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In this context, we are interested in exploring regional repair techniques,
introducing proper tasks for error location and repair region estimation. Our
aim is to avoid examining the entire word, in contrast to global algorithms that
expend equal effort on all parts of the word, including those containing no errors.

2 The Operational Model

Our aim is to parse a word w1..n = w1 . . . wn according to a regular grammar G =
(N,Σ, P, S), where N is the set of non-terminals, Σ the set of terminal symbols,
P the rules and S the start symbol. We denote by w0 (resp. wn+1) the position
in the string, w1..n, previous to w1 (resp. following wn). We generate from G
a numbered minimal acyclic finite state automaton for the language L(G). In
practice, we choose a device [6] generated using Galena [3]. A finite automaton
(fa) is a 5-tuple A = (Q, Σ, δ, q0 ,Qf ) where: Q is the set of states, Σ the set
of input symbols, δ is a function of Q × Σ into 2Q defining the transitions of
the automaton, q0 the initial state and Qf the set of final states. We denote
δ(q, a) by q.a, and we say that the fa is deterministic when, in any case, |
q.a |≤ 1. The notation is transitive, so q.w denotes the state reached by using
the transitions labelled by each letter wi, i ∈ {1, ..., n} of w. Therefore, w
is accepted iff q0.w ∈ Qf , that is, the language accepted by A is defined as
L(A) = {w, such that q0.w ∈ Qf}. An fa is acyclic when the underlying graph
is. We talk about a path in the fa to refer to a sequence of states {q1, . . . , qn},
such that ∀i ∈ {1, . . . , n− 1}, ∃ai ∈ Σ, qi.ai = qi+1.

In order to reduce the memory requirements, we minimize the fa [2]. So, we
say that two fas are equivalent iff they recognize the same language. Two states,
p and q, are equivalent iff the fa with p as initial state and the one that starts in
q recognize the same language. An fa is minimal iff no pair in Q is equivalent.

It is important to note that although the standard recognition process is
deterministic, the repair process could introduce non-determinism by exploring
alternatives associated to possibly more than one recovery strategy. So, in order
to get polynomial complexity, we avoid duplicating intermediate computations
in the repair of w1..n ∈ Σ+, storing them in a table I of items, I = {[q, i], q ∈
Q, i ∈ [1, n+1]}, where [q, i] looks for the suffix wi..n to be analyzed from q ∈ Q.

We describe our proposal using parsing schemata [9], a triple 〈I,H,D〉, with
H = {[a, i], a = wi} an initial set of items called hypothesis that encodes the
word to be recognized1, and D a set of deduction steps that allow new items to be
derived from already known items. Deduction steps are of the form {η1, . . . , ηk 0
ξ /conds}, meaning that if all antecedents ηi are present and the conditions conds
are satisfied, then the consequent ξ is generated. In our case, D = DInit ∪DShift,
where:

DInit = {� [q0, 1]} DShift = {[p, i] 0 [q, i + 1] /∃[a, i] ∈ H, q = p.a}

1 A word w1...n ∈ Σ+, n ≥ 1 is represented by {[w1, 1], [w2, 2], . . . , [wn, n]}.
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The recognition associates a set of items Sw
p , called itemset, to each p ∈ Q;

and applies these deduction steps until no new application is possible. The word
is recognized iff a final item [qf , n + 1], qf ∈ Qf has been generated. We can
assume, without lost of generality, that Qf = {qf}, and that exists an only
transition from (resp. to) q0 (resp. qf ). To get it, we augment the original fa
with two states becoming the new initial and final states, and relied to the
original ones through empty transitions, a concession to the minimality.

3 The Edit Distance

The edit distance [5] between two strings measures the minimum number of edit-
ing operations of insertion, deletion, replacement of a symbol, and transposition
of adjacent symbols that are needed to convert one string into another. Let x1..m

(resp. y1..n) be the misspelled string (resp. a possible partial candidate string),
the edit distance, ed(x, y) is computed as follows:

ed(xi+1, yj+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ed(xi, yj) iff xi+1 = yj+1
(last characters are the same)

1 + min{ ed(xi−1, yj−1),
ed(xi+1, yj),
ed(xi, yj+1)} iff xi = yj+1, xi+1 = yj

(last two characters transposed)
1 + min{ ed(xi, yj),

ed(xi+1, yj),
ed(xi, yj+1)} otherwise

ed(x0, yj) = j 1 ≤ j ≤ n
ed(xi, y0) = i 1 ≤ i ≤ m

where x0 (resp. y0) is ε. We can now extend the concept of language accepted
by an fa A, L(A), to define the language accepted by an fa A with an error
threshold τ > 0 as Lτ (A) = {x, such that ed(x, y) ≤ τ, y ∈ L(A)}. We shall
consider the edit distance as a common metrical basis in order to allow an
objective comparison to be made between our proposal and previous ones.

4 Regional Least-Cost Error Repair

We talk about the error in a portion of the word to mean the difference between
what was intended and what actually appears in the word. So, we can talk about
the point of error as the point at which the difference occurs.

Definition 1. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, and let w1..n be a word. We
say that wi is a point of error iff it verifies the following conditions:

(1) q0.w1..i−1 = q (2) q.wi �∈ Q
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Fig. 1. The concept of region applied to error repair

The point of error is fixed by the recognizer and it provides the starting point
for the repair, in which the following step consists in locating the origin of that
error. We aim to limit the impact on the prefix already analyzed, focusing on
the context close to the point of error and saving on computational effort. To do
so, we first introduce a collection of topological properties that we illustrate in
Fig. 1.

Definition 2. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, and let p, q ∈ Q. We say that
p is lesser than q iff there exists a path {p, . . . , q}. We denote that by p < q.

We have, in Fig. 1, that qi < qi+1, ∀i ∈ {1, . . . , 7}. Our order is induced by
the transitional formalism, which results in a well defined relation since our fa
is acyclic. In this sense, we can also give a direction to the paths.

Definition 3. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, we say that qs ∈ Q (resp. qd)
is a source (resp. drain) state for any path in A, {q1, . . . , qm}, iff ∃a ∈ Σ, such
that q1 = qs.a (resp. qm.a = qd).

Intuitively, we talk about source (resp. drain) states on out-coming (resp.
incoming) transitions, which orientates the paths from sources to drains. So,
in Fig. 1, q1 (resp. q8) is a source (resp. drain) for paths {q9}, {q2, q10, q6, q7},
{q2, q3, q11, q5, q6, q7} or {q2, q3, q4, q5, q6, q7}. We can now consider a coverage for
fas by introducing the concept of region.

Definition 4. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, a pair (qs, qd), qs, qd ∈ Q is
a region in A, denoted by Rqd

qs
(A), iff it verifies that

(1) qs = q0 and qd = qf (the global fa)
or

(2) {∀ρ, source(ρ) = qs} ⇒ drain(ρ) = qd and | {∀ρ, source(ρ) = qs} |> 1

which we write as Rqd
qs

when the context is clear. We also denote paths(Rqd
qs

) =
{ρ/source(ρ) = qs, drain(ρ) = qd} and, given q ∈ Q, we say that q ∈ Rqd

qs
iff

∃ρ ∈ paths(Rqd
qs

), q ∈ ρ.
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This allows us to ensure that any state, with the exception of q0 and qf ,
is included in a region. Applied to Fig. 1, the regions are A = Rqf

q0 , Rq8
q1

, Rq7
q2

and Rq5
q3

, with {q4, q11, q12} ⊂ Rq5
q3
�1 q3 and Rq7

q2
1 q9 �∈ Rq5

q3
. In a region, all

prefixes computed before the source can be combined with any suffix from the
drain through the paths between both. This provides a criterion to place around
a state a zone for which any change in it has no effect on its context.

Definition 5. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, we say that a region Rqd
qs

is the minimal region in A containing p ∈ Q iff it verifies that qs ≥ ps (resp.
qd ≤ pd), ∀Rpd

ps
1 p. We denote it as M(A, p), or simply M(p) when the context

is clear.

In Fig. 1,M(q4) =M(q11) = Rq5
q3

andM(q3) =M(q9) = Rq7
q2

. At this point,
it is trivial to prove the following lemma, which guarantees the consistence of
the previous concept based on the uniqueness of a minimal region.

Lemma 1. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, then p ∈ Q\{q0, qf} ⇒
.

∃ M(p).

Proof. Trivial from definition 5.

We can now formally introduce the concept of point of detection, the point at
which the recognizer detects that there is an error and calls the repair algorithm.

Definition 6. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, and let wj be a point of error
in w1..n ∈ Σ+. We say that wi is a point of detection associated to wj iff:

∃qd > q0.w1..j , M(q0.w1..j) = Rqd
q0.w1..i

We denote this by detection(wj) = wi, and we say that M(q0.w1..j) is the
region defining the point of detection wi.

In our example in Fig. 1, if we assume wj to be a point of error such that q10 =
q0.w1..j , we conclude that wi = detection(wj) if q2 = q0.w1..i since M(q10) =
Rq7

q2
. So, the error is located in the immediate left recognition context, given

by the closest source. However, we also need to locate it from an operational
viewpoint, as an item in the computational process.

Definition 7. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, let wj be a point of error in
w1..n ∈ Σ+, and let wi be a point of detection associated to wj. We say that
[q, j] ∈ Sw

q is an error item iff q0.wj−1 = q; and we say that [p, i] ∈ Sw
p is a

detection item associated to wj iff q0.wi−1 = p.

Following our running example in Fig. 1, [q2, i] is a detection item for the
error item [q10, j]. Intuitively, we talk about error and detection items when they
represent states in the fa concerned with the recognition of points of error and
detection, respectively. Once we have identified the beginning of the repair region
from both the topological and the operational viewpoint, we can now apply the
modifications intended to recover the recognition process from an error.
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Definition 8. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, a modification to w1..n ∈ Σ+

is a series of edit operations, {Ei}n
i=1, in which each Ei is applied to wi and

possibly consists of a sequence of insertions before wi, replacement or deletion
of wi, or transposition with wi+1. We denote it by M(w).

We now use the topological structure to restrict the notion of modification,
introducing the concept of error repair. Intuitively, we look for conditions that
guarantee the ability to recover the standard recognition, at the same time as
they allow us to isolate repair branches by using the concept of path in a region.

Definition 9. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa, x1..m a prefix in L(A), and
w ∈ Σ+, such that xw is not a prefix in L(A). We define a repair of w following
x as M(w), so that:

(1) M(q0.x1..m) = Rqd
qs

(minimal region including the point of error, x1..m )
(2) ∃{q0.x1..i = qs.xi, . . . , qs.xi..m.M(w)} ∈ paths(Rqd

qs
)

We denote it by repair(x,w), and Rqd
qs

by scope(M).

However, the notion of repair(x,w) is not sufficient for our purposes, since our
aim is to extend the recovery process to consider all possible repairs associated to
a given point of error, which implies simultaneously considering different prefixes.

Definition 10. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let yi ∈ y1..n be a point
of error, we define the set of repairs for yi, as

repair(yi) = {xM(w) ∈ repair(x,w)/w1 = detection(yi)}
We now need a mechanism to filter out undesirable repair processes, in order

to reduce the computational charges. To do so, we should introduce comparison
criteria to select only those repairs with minimal cost.

Definition 11. For each a, b ∈ Σ we assume insert, I(a); delete, D(a), replace,
R(a, b), and transpose, T (a, b), costs. The cost of a modification M(w1..n) is
given by cost(M(w1..n)) = Σj∈J�I(aj) + Σn

i=1(Σj∈Ji
I(aj) + D(wi) + R(wi, b) +

T (wi, wi+1)), where {aj , j ∈ Ji} is the set of insertions applied before wi;
wn+1 =2 the end of the input and Twn,� = 0.

In order to take edit distance as the error metric for measuring the quality of
a repair, it is sufficient to consider discrete costs I(a) = D(a) = 1, ∀a ∈ Σ and
R(a, b) = T (a, b) = 1, ∀a, b ∈ Σ, a �= b. On the other hand, when several repairs
are available on different points of detection, we need a condition to ensure that
only those with the same minimal cost are taken into account, looking for the
best repair quality. However, this is not in contradiction with the consideration
of error thresholds or alternative error metrics.

Definition 12. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let yi ∈ y1..n be a point
of error, we define the set of regional repairs for yi, as follows:

regional(yi) = {xM(w) ∈ repair(yi)
/

cost(M) ≤ cost(M ′), ∀M ′ ∈ repair(x, w)
cost(M) = minL∈repair(yi){cost(L)} }
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It is also necessary to take into account the possibility of cascaded errors,
that is, errors precipitated by a previous erroneous repair diagnosis. Prior to
dealing with the problem, we need to establish the existing relationship between
the regional repairs for a given point of error and future points of error.

Definition 13. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let wi, wj be points of
error in w1..n ∈ Σ+, j > i. We define the set of viable repairs for wi in wj, as

viable(wi, wj) = {xM(y) ∈ regional(wi)/xM(y) . . . wj prefix for L(A)}
Intuitively, the repairs in viable(wi, wj) are the only ones capable of ensuring

the continuity of the recognition in wi..j and, therefore, the only possible repairs
at the origin of the phenomenon of cascaded errors.

Definition 14. Let wi be a point of error for w1..n ∈ Σ+, we say that a point
of error wk, k > j is a point of error precipitated by wj iff

∀xM(y) ∈ viable(wj , wk), ∃Rqd
q0.w1..i

defining wi = detection(wj)

such that scope(M) ⊂ Rqd
q0.w1..i

.

In practice, a point of error wk is precipitated by the result of previous re-
pairs on a point of error wj , when the region defining the point of detection
for wk summarizes all viable repairs for wj in wk. This implies that the in-
formation compiled from those repair regions has not been sufficient to give
continuity to a recognition process locating the new error in a region containing
the preceding ones and, therefore, depending on them. That is, the underlying
grammatical structure suggests that the origin of the current error could be a
mistaken treatment of past errors. Otherwise, the location would be fixed in a
zone not depending on these previous repairs.

5 The Algorithm

We propose that the repair be obtained by searching the fa itself to find a
suitable configuration to allow the recognition to continue, a classic approach in
error repair. However, in the state of the art there is no theoretical size limit for
the repair region, but only for the edit distance on corrections in it. So, in order
to avoid distortions due to unsafe error location, the authors make use of global
algorithms limiting the computations by a threshold on the edit distance. This
allows them to restrict the section of the fa to be explored by pruning either
all repair paths which are more distant from the input than the threshold [7], or
those not maintaining a minimal distance no bigger than the threshold [8].

However, the fact that we are not profiting from the linguistic knowledge
present in the fa to locate the error and to delimit its impact may lead to
suboptimal computational costs or to precipitating new errors. We eliminate
this problem by a construction where all repair phases are dynamically guided
by the fa itself and, therefore, inspired by the underlying grammatical structure.
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5.1 A Simple Case

We assume that we are dealing with the first error detected in a word w1..n ∈ Σ+.
The major features of the algorithm involve beginning with the error item, whose
error counter is zero. So, we extend the item structure, [p, i, e], where e is now
the error counter accumulated in the recognition of w at position wi in state p.

We refer again to Fig. 1. So, given an error item, [q10 = q0.w1..j , j, ej ], the
system locates the corresponding detection item, [q2 = q0.w1..i, i, ei], by using a
pointer on M(q10) = Rq7

q2
. We then apply all possible transitions in this region

beginning at both, the point of error and the its associated point of detection,
which corresponds to the following deduction steps in error mode, Derror =
DShift

error ∪ DInsert
error ∪ DDelete

error ∪ DReplace
error ∪ DTranspose

error :

DShift
error = {[p, i, e] � [q, i + 1, e], ∃[a, i] ∈ H, q = p.a}
DInsert

error = {[p, i, e] � [p, i + 1, e + I(a)], � ∃ p.a}
DDelete

error = {[p, i, e] � [q, i − 1, e + D(wi)]

/
M(q0.w1..j) = Rqd

qs

p.wi = qd ∈ Rqd
qs or q = qd

}

DReplace
error = {[p, i, e] � [q, i + 1, e + R(wi, a)],

/
M(q0.w1..j) = Rqd

qs

p.a = q ∈ Rqd
qs or q = qd

}

DTranspose
error = {[p, i, e] � [q, i + 2, e + T (wi, wi+1)]

/
M(q0.w1..j) = Rqd

qs

p.wi.wi+1 = q ∈ Rqd
qs or q = qd

}

where w1..j looks for the current point of error. Note that, in any case, the
error hypotheses apply on transitions behind the repair region. The process
continues until a repair covers the repair region, accepting a character in the
remaining string. Returning to Fig. 1, the scope of repair for the error detected
at wi ∈ detection(wj) is M(q10) = Rq7

q2
, the region defining the detection item

[q2 = q0.w1..i, i, ei]. Once this has been performed on each recognition branch,
we select the regional repairs and the process goes back to standard mode.

5.2 The General Case

We now assume that the repair process is not the first one in the word and,
therefore, can modify a previous one. This arises when we realize that we come
back to a detection item for which some recognition branch includes a previous
repair process. To illustrate such a case, we return to Fig. 1 assuming [q10 =
q0.w1..k, k, ek] and [q8 = q0.w1..l, l, el] to be points of error. As a consequence,
[q8 = q0.w1..l, l, el] would be precipitated by [q10 = q0.w1..k, k, ek] since A = Rqf

q0

defining w0 = detection(wl) includes Rq7
q2=q0.w1..j

, the scope of a previous repair.
To deal with precipitated errors, the algorithm re-takes the previous error

counters, adding the cost of the new repair hypotheses to profit from the expe-
rience gained from previous recovery phases. At this point, regional repairs have
two important properties. First, they are independent of the fa construction and
secondly, there is no loss of efficiency in relation to global repair approaches.

Lemma 2. (The Expansion Lemma) Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let
wk, wl be points of error in w1..n ∈ Σ+, such that wl is precipitated by wk, then:

q0.w1..i < q0.w1..j , M(q0.wl) = Rqd
q0.w1..i

, wj = y1, xM(y) ∈ viable(wk, wl)
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Proof. Let wj ∈ Σ, such that wj = y1, xM(y) ∈ viable(wk, wl) be a point
of detection for wk, for which some recognition branch derived from a repair
in regional(wk) has successfully arrived at wl. Let also wl be a point of error
precipitated by xM(y) ∈ viable(wk, wl). By definition 14, we can affirm that

scope(M) ⊂M(q0.wl) = Rqd
q0.w1..i

Given that scope(M) is the lowest region summarizing q0.w1..j , it follows
that q0.w1..i < q0.w1..j . We conclude the proof by extending it to all repairs in
viable(wk, wl). ��

Intuitively, we prove that the state associated to the point of detection in a
cascaded error is lesser than the one associated to the source of the scope in the
repairs precipitating it. As a consequence, the minimal possible scope of a repair
for the cascaded error includes any scope of those previous repairs.

Corollary 1. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let wk, wl be points of
error in w1..n ∈ Σ+, such that wl is precipitated by wk, then

max{scope(M), M ∈ viable(wk, wl)} ⊂ max{scope(M̃), M̃ ∈ regional(wl)}
Proof. It immediately follows from lemma 2. ��

This allows us to get an asymptotic behavior close to global repair methods.
That is, the algorithm ensures a quality comparable to global strategies, but
at the cost of a local one. This has profound implications for the efficiency,
measured by time, the simplicity and the power of computing regional repairs.

Lemma 3. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let wi be a point of error in
w1..n ∈ Σ+, the time bound for the regional repair is, in the worst case,

O(
n!

τ ! ∗ (n− τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτμ)

where τ and fan-outμ are, respectively, the maximal error counter computed and
the maximal fan-out of the automaton in the scope of the repairs considered.

Proof. Here, the proof is a simple extrapolation of the estimation proposed for
the Savary’s algorithm [8]. In the worst case, there are at most n!/(τ ! ∗ (n −
τ)!) possible distributions of τ modifications over n word positions. For each
distribution (1 + 2 ∗ fan-outμ)τ paths at most are followed, each path being of
length n + τ at most. So, the worst case complexity is the one proposed. ��

However, this lemma does not yet determine the relation with classic global
approaches [7, 8], as is our aim, but only an average case estimation of our own
time complexity. To reach this, we extend the repair region to the total fa.

Corollary 2. Let A = (Q, Σ, δ, q0 ,Qf ) be an fa and let wi be a point of error
in w1..n ∈ Σ+, the time bound for the regional repair is, in the worst case, the
same reached for a global approach.



278 M. Vilares, J. Otero, and J. Graña

Proof. It immediately follows from the previous lemma 3 and corollary 1, as well
as [8]. In effect, in the worst case, the scope of the repair is the global fa. ��

Taking into account the kind of proof applied on lemma 3, this implies that
our technique has the same time complexity claimed for Savary’s global one [8],
in the best of our knowledge the most efficient proposal on spelling correction.

6 Practical Aspects

Our aim here is to validate the practical interest of our proposal in relation
to classic global ones, trying to corroborate the theoretical results previously
advanced. We think that it is an objective criterion for measuring the quality of
a repair algorithm, since the point of reference is a technique that guarantees the
best quality for a given error metric when all contextual information is available.
So, we have compared our algorithm with the Savary’s global approach [8]. The
restrictions imposed on the length of this paper limit our present discussion to
some relevant practical details.

6.1 The Running Languages

We choose to work with languages with a great variety of morphological pro-
cesses, which make them adequate for our description. In particular, the first
preliminary practical tests have been performed on Spanish. The most outstand-
ing features are to be found in verbs, with their highly complex conjugation
paradigm, as well as in complex gender and number inflection.

We have taken for Spanish a lexicon with 514,781 different words, to illustrate
our work. This lexicon is recognized by an fa containing 58,170 states connected
by 153,599 transitions, of sufficient size to allow us to consider this automaton
as a representative starting point for our purposes. From this lexicon, we have
selected a representative sample of morphological errors for practical evaluation
of the algorithm. This sample has the same distribution observed in the original
lexicon in terms of lengths of the words dealt with. This is of some importance
since, as the authors claim, the efficiency of previous proposals depends on these
factors [7, 8], which makes no practical sense. No other dependencies have been
detected at morphological level and, therefore, they have not been considered.
In each length-category, errors have been randomly generated in a number and
position in the input string.

6.2 Preliminary Experimental Results

We are interested in both computational and quality aspects. In this sense, we
consider the concept of item previously defined in order to measure the com-
putational effort. To take into account data related to the performance from
both the user’s and the system’s viewpoint, we have introduced the following
two measures, for a given word, w, containing an error:

performance(w) =
useful items
total items

recall(w) =
proposed corrections

total corrections
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Fig. 2. Performance and recall results

that we complement with a global measure on the precision of the error repair
approach in each case, that is, the rate reflecting when the algorithm provides
the correction attended by the user. We use the term useful items to refer to
the number of generated items that finally contribute to the obtaining of a
repair, and total items to refer to the number of these structures generated
during the process. We denote by proposed corrections the number of corrections
provided by the algorithm, and by total corrections the number of possible ones,
in absolute terms.

The practical results shown in Fig. 2 appear to corroborate that not only
the performance in our case is better than Savary’s, but also that the difference
existing between them increases with the location of the first point of error.
With respect to the recall relation, Savary’s algorithm shows a constant graph
since the approach applied is global and, consequently, the set of corrections
provided is always the entire one for a fixed error counter. In our proposal, the
results prove that the recall is smaller than that for Savary’s, which illustrates
the gain in computational efficiency in comparison with the global method. Fi-
nally, the precision of the regional (resp. the global) method is of 77% (resp.
81%). We must remember that here we are only taking into account morpho-
logical information, which has an impact on precision for a regional approach,
but not for a global one, which always provides all possible repair alternatives.
So, a precision measure represents a disadvantage for our proposal since we
base efficiency on limitation of the search space. The future integration of lin-
guistic information from both syntactic and semantic viewpoints should signif-
icantly reduce this gap in precision, which is less than 4%, or may even elimi-
nate it.
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7 Conclusion

As an extension of a recognition process, error repair is strongly influenced by
the underlying grammatical structure, which should be taken into account in
order to design efficient handling strategies. In this sense, spelling correction in
nlp on fas applies on states distributed in such a way that the number of path
alternatives usually becomes exponential with the length of the input string.

These considerations are of importance in practical systems because they
impact both the performance and the implementation techniques. So, most pro-
posals exploit the apparently structural simplicity at word level to apply global
techniques that examine the entire word and make a minimum of changes to
repair all possible errors, which can be extremely time-consuming on a fa.

Our proposal drastically reduces this impact by dynamically graduating the
size of the error repair zone. We describe a least-cost error repair method able
to recover and resume the recognition at the point of each error, to avoid the
possibility of non-detection of any subsequent errors. This translates into an
improved performance without loss of quality in relation to global strategies.
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Abstract. The paper formulates projective dependency grammars in
terms of constraints on a string based encoding of dependency trees
and develops an approach to obtain a regular approximation for these
grammars. In the approach, dependency analyses are encoded with bal-
anced bracketing that encodes dependency relations among the words of
the analyzed sentence. The brackets, thus, indicate dependencies rather
than delimit phrases. The encoding allows expressing dependency rules
(in the sense of Hays and Gaifman) using a semi-Dyck language and a
so-called context restriction operation. When the semi-Dyck language in
the representation is replaced with a regular restriction of it, we obtain
an approximation for the original dependency grammar.

1 Introduction

Simple and efficient approaches to the task of dependency parsing, where de-
pendency analyses are assigned to sentences, has recently attracted considerable
attention ([1, 2] etc.). In this paper, we will show that parsing with ambiguous
projective dependency grammars is an intersection problem. With a certain re-
striction, this leads to a linear-time parser, implementable with finite automata.

A dependency analysis consists of a dependency tree (D-tree) whose nodes
are, as assumed in this paper, words in a sentence. A D-tree shows which words
are related to which other words and in what way. It shows the structure of the
sentence in terms of hierarchical links between its actual elements. D-trees can
be visualized using tree diagrams such as the one in Fig. 1.

that man an apple
det det objpred

ate
subj

Fig. 1. A D-tree consists of dependency links drawn above a sentence. (This example is
borrowed from (Oflazer 2003), but the arrows are drawn here in the opposite direction.)

The links denote syntactic dependencies and are represented by arcs with
arrows and category labels. If X � Y is an arc between two words X and Y ,

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 281–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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we will say that Y depends immediately on X (or, conversely, X governs Y
immediately), and that Y is an immediate syntactic dependent of X (or, X is
the immediate syntactic governor of Y ). In the D-tree, there is a unique non-
governed word called the root. The category label of each link indicates how Y
is dependent on X. Word Y can be e.g. a subject (subj), a object (obj) or a
determiner (det) of X. (Cf. [3], p.14,23)

A D-tree is said to be planar (more precisely, semi-planar) if the links do not
cross each other when drawn above the sentence [4]. Thus, the example in Fig. 1
is planar. A planar D-tree D is projective [5, 6] if it remains planar (Fig. 2) even
if we add the so-called left wall node (/////) that governs the root of D (cf. [7],
pages 99–100).

that man an apple/////
det det objpred

ate
subj

Fig. 2. The D-tree of Fig. 1 maintains planarity when the wall node is added

In this paper, we will present a regular approximation of grammars that gen-
erate only projective dependency trees. The approximation is based on a new
formulation of the Hays [8] and Gaifman [9] dependency grammars. The for-
mulation represents dependency trees as bracketed strings. The correspondence
between tree diagrams and their bracket-encoding is best understood through
an example, such as the one shown in Fig. 3.

apple
pred det

an
obj

ate
det
that/////

subj
man

# /////[−−→
pred

# that[←−
det

# ]←−
det

man[←−−
subj

# ]←−−
subj

]−−→
pred

ate[−→
obj

# an[←−
det

# ]←−
det

]−→
obj

apple #

Fig. 3. The correspondence between a tree diagram and its encoding as a string. In
order to facilitate reading, brackets belonging to the same tree node have been grouped
with an underline that is not part of the encoding

The string encoding of a D-tree involves the words of a sentence, labeled square
brackets, a symbol (#) for word boundaries, and the wall node /////. Each bracket
belongs to the word (or to the wall) within the closest surrounding word bound-
aries. The wall node ///// is not needed to enforce projectivity, but it will make all
the word nodes have a governor link, which slightly simplifies the representation.

In the encoding, each arc of the D-tree is split into two parts. An opening
bracket [ (with an additional label as a subscript) indicates the left end of the
arc, and a closing bracket ] (with an additional label as a subscript) indicates
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the right end of the arc. The substring between these brackets must contain a
balanced bracketing. A pair of matching brackets always indicate a link between
two words in the sentence.

Let Λ be the set of category labels in D-trees. For each category label a ∈ Λ,
the string encoding has two different labels for brackets. If e.g. ’subject’ is a
label in the D-tree, ’

−−−−→
subject’ and ’

←−−−−
subject’ are possible labels of brackets in the

string encoding. Using the bracket label ’
−−−−→
subject’ indicates that the subject is

at the closing bracket and using the bracket label ’
←−−−−
subject’ indicates that the

subject is at the opening bracket.
The first important contribution of this paper is to point out certain less

obvious properties of Robinson’s [10] set of axioms for projective D-trees:
– The usual projectivity condition [6] is stronger than her fourth axiom.
– Her axioms do not themselves imply treeness (cf. vs. [11], p.4).
– Robinson premised the acyclicity property, but this nuance of the axiom set

is often disregarded (cf. e.g. [12, 11, 2]).
– Antisymmetricity is a necessary consequence of non-crossing brackets that

represent dependencies and a simple local condition.
– Projectivity follows from the placement and the uniqueness of the root node,

irreflexivity, and non-crossing brackets.
The second important contribution of this paper is a reformulation of the

generative dependency rules of the Hays and Gaifman dependency grammars
(HGDG) as properties of bracketed string languages. The grammar representa-
tion makes use of a semi-Dyck language (cf. [13]) in order to capture non-local
properties of bracketed strings. Because HGDGs generate context-free languages
[9], we get from the intersection of these constraints a homomorphic representa-
tion for context-free languages. This new characterization resembles the famous
Chomsky-Schützenberger theorem [14] that says that every context-free language
is a homomorphic image of an intersection of a semi-Dyck language and a regular
language.

Finally, the third important contribution of this paper is to present a linear-
time parseable non-deterministic dependency grammar with restriction to lim-
ited projective dependency trees. This is obtained by replacing the semi-Dyck
language with a regular language. A regular approximation for the semi-Dyck
language can handle only limited balanced bracketing. Consequently, the inter-
section of constraints becomes a regular subset approximation for the grammar
that does not limit the depth of balanced bracketing. The regular approxima-
tion grammar obtained can obviously be applied to sentences in linear time. In
contrast to typical linear-time deterministic dependency parsers, our approach
leaves the ambiguity unsolved. Moreover, our approach can be used for enumer-
ation of valid D-trees and sentences.

2 Some Related Work

The applicability of finite-state methods to automatic syntactic analysis of natu-
ral language has been investigated in different approaches [15]. In pure finite-state
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approaches, finite-state devices are combined so that the whole system could be
represented by a single finite-state machine, although it may be of an impracti-
cal size. In extended finite-state approaches, finite-state devices are used as basic
components, but they are combined in such a way that the finite-state nature of
the whole system is not necessarily retained.

Oflazer [2] has presented an interesting extended finite-state approach for
dependency parsing of natural language. In particular, the string encoding used
in our approach can be seen as a notational variant of Oflazer’s representation.
The representation used by Oflazer encodes the example in Fig. 1 as the string

<00(that)0d> <D0(man)0s> <S0(ate)O0> <01(an)1d> <Do(apple)00>

where the stacked “brackets” d,D, O,o and s,S (corresponding to our [←−
det, ]←−

det,
[−→
obj, ]−→obj, [←−−

subj, ]←−−
subj) are stored into so-called channels.

There exist cubic-time dependency parsers for HGDGs [16]. Most phrase
types can be produced with a parser with quadratic time complexity [17]. Deter-
ministic linear time dependency parsers have been studied e.g. in [1]. Constraint-
based approaches to dependency parsing include Constraint Dependency Gram-
mar [18] and Topological Dependency Grammar [19], which can actually generate
non-context-free languages. Other approaches to assigning dependency struc-
tures to sentences include many lexicalized grammar formalisms that will not be
listed here.

3 Hays and Gaifman Dependency Grammars

Tesnière’s work [20] pioneered dependency-syntax grammars (DG). A formula-
tion of more restricted dependency grammars given by Hays [8] and Gaifman
[9] is only loosely related to Tesnière’s theory, but it is still very influential in
practical DG implementations. Their dependency grammar, HGDG, contains
three kinds of rules by which the dependency analysis for a particular language
is done:

1. Rules of the form X( ) that state that elements of the word category X may
govern the sentence. (We adopt a short-hand notation  ({X1, X2, . . . , Xn})
for the set of these rules.)

2. Rules giving for every word category X the list of words belonging to it.
These are of the form X : {w1, w2, . . . , wn}.

3. Rules which give for each word category X those categories which may derive
directly from it with their relative positions. For each X there is a finite
number of rules of the type X(V1V2 . . . Vn  Y1Y2 . . . Ym). An application of
this rule means that in the D-tree a word of the category X immediately
governs words of categories V1, V2, . . . , Vn on the left of X and words of
the categories Y1, Y2, . . . , Ym on the right. The governed words occur in the
order in which their categories are specified in the rule. These rules are called
dependency rules.

For details of the semantics of HGDGs, the reader is referred to Gaifman [9].
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//// W1 W2 W3 W4 W5 W6 W7 W8 W9

Fig. 4. A D-graph that conforms to Robinson’s four axioms but violates acyclicity. The
Harper, Hays, Lecerf and Ihm projectivity accepts the cycles at W5-W9, but not at
W2-W3

3.1 Axiomatization of Projective Dependency Trees

A famous mathematical axiomatization of the D-graphs generated by HGDGs
is given by Robinson [10]. This axiomatization is usually regarded as a set con-
sisting of the following axioms:

1. There is one and only one word that is independent.
2. All other words are immediately governed by some word.
3. No word depends immediately (i.e. directly) on more than one other word.
4. If word A depends immediately on word B and some word C intervenes

between them (in the linear order of the words in the sentence), then C
depends immediately on A or B or some other intervening element.

It should be noted that Robinson’s fourth axiom is not equivalent to the usual
condition of projectivity in the sense of Harper, Hays, Lecerf and Ihm (cf. [6]).
The projectivity condition drops the underlined part in the fourth axiom and
says instead that C depends transitively on A or B. In contrast to what is
claimed in [1], neither of these conditions imply non-existence of cycles longer
than one or two edges (Fig. 4). The reader can now easily proof that acyclicity
and connectedness of the dependency trees are not consequences of Robinson’s
set of axioms, contrary to what is often suggested [12, 11, 2]. It is often forgot-
ten that Robinson included a crucial premise according to which the transitive
closure of the immediate dependency relation will be (i) irreflexive i.e. with-
out trivial cycles and (ii) antisymmetric i.e. without other cycles. When these
extra requirements are taken as additional axioms, we are restricted to acyclic
structures and the extended axiom set describes exactly the set of projective
dependency trees.

4 The Essentials of the New Representation

4.1 The Alphabet

Assume that Λ is the set of category labels. We define four disjoint bracket sets
as follows:

BL = {[−→a | a ∈ Λ}; Br = {]−→a | a ∈ Λ};
Bl = {[←−a | a ∈ Λ}; BR = {]←−a | a ∈ Λ}.

The brackets with capital L and R subscripts attach to the governor and the
brackets with small l and r subscripts to the dependent member of the pair.
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We will assume that Σ is the alphabet for building strings. It is the union of
a number of disjoint subsets, namely the set of word tokens W , the labeled left
square brackets BL ∪Bl, the labeled right square brackets BR ∪Br, and the set
of other special symbols {#, ///// }.

The first string homomorphism g : Σ∗ → Σ′∗, where [, ] /∈ Σ and Σ′ =
Σ − (BL ∪ Bl ∪ BR ∪ Br) ∪ {[, ] }, is defined in such a way that it essentially
replaces labeled brackets with the corresponding unlabeled ones. The second
string homomorphism h : Σ′∗ → W ∗ is defined in such a way that it deletes
from the strings all other symbols except the words W .

Obviously, the inverse homomorphism h−1 can be used to freely inject sym-
bols {#, /////, [, ] } into strings of W ∗, and g−1 to replace [ and ]with various
left and right square brackets. To parse a string w ∈ W+, we will intersect
the inverse homomorphic image g−1(h−1(w)) with the grammar G that is an
intersection C1 ∩ C2 ∩ · · ·Cn of constraint languages.

4.2 The Context Restriction Operation

A context restriction of a center X in contexts C1,C2, · · · ,Cn is an operation
whose first argument X is a subset of Σ∗ and each context Ci, 1 ≤ i ≤ n, is
of the form Vi Yi, where Vi,Yi ⊆ Σ∗. The operation is expressed using a
notation

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn.

and it defines the set of all strings w ∈ Σ∗ such that, for every possible v, y ∈ Σ∗

and x ∈ X , for which w = vxy, there exists some context Vi Yi, 1 ≤ i ≤ n,
where both v ∈ Σ∗Vi and y ∈ YiΣ

∗.
If all the languages involved in a context restriction are regular, the operation

defines a regular language. In case n = 1, the language expressed by the operation
is Σ∗−((Σ∗−Σ∗V1)XΣ∗∪Σ∗X (Σ∗−Y1Σ

∗)). Context restrictions with multiple
contexts can also be routinely compiled into finite automata [21].

4.3 The Semi-Dyck Derivative and Its Regular Approximations

The semi-Dyck language (cf. [13]) over the alphabet { [, ]} is the language D1
generated by the context-free grammar with single nonterminal S, two terminals
[, ] and the productions S → ε | S [ S ] S. The regular language D1,d is an
approximation of D1, where the depth d of bracketing is bounded:

D1,d =

{
ε if d = 0
(D1,d−1 ∪ ( [ D1,d−1 ]))∗ if d > 0

Let f : Σ∗ → (BL ∪Br ∪Bl ∪BR)∗ be a string homomorphism that deletes
all the other symbols except the square brackets. Obviously, the inverse homo-
morphism f−1 can be used to insert other symbols into the strings of square
brackets.
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The variable Δ can be given different kinds of values in the following ways:

Δ ← f−1(g−1(D1)) (1)

Δ ← f−1(g−1(D1,d)) (2)

Assignment (1) makes Δ a context-free language and (2) makes it regular.
The choice between (1) and (2) will determine whether the grammar in this
paper gives exactly the power of HGDGs or whether it admits only a regular
approximation for them. Our motivation to use variable Δ is that, in the second
case, we actually get a neat finite-state equivalent formalism for a regular subset
of context-free sets whose dependency structures are naturally described by non-
finite-state formalisms.

In both cases, the language Δ is more liberal with respect to bracket labels
compared to a semi-Dyck language based on an equivalent number of terminal
symbols. Later on in this paper we will, however, employ a technique presented
by Wrathall [22] in order to enforce matching bracket labels in aid of variable Δ
and the context restriction operation (Wrathall used more elementary operations
instead of context restriction).

Note that when Δ is defined to be a context-free derivative of the semi-Dyck
language D, the obtained grammar representation will not be regular. Although
context-free languages in general are not closed under relative complement that
is used in context restrictions, all the constraints and their intersection will be
context-free languages because of the “backbone” of balanced bracketing.

5 The Axiomatization of Bracketed Dependency Trees

5.1 The Basic Set of Strings with Balanced Brackets

In our encoding of D-trees, the sentence begins and ends with a word boundary
# (3a), and the bracketing must be balanced (3b). These axioms are expressed
as constraints:

#Σ∗#; Δ. (3)

Moreover, between each two word boundaries there exists at least one word,
and two words are always separated by a word boundary. These axioms are
expressed by the following regular constraint languages:

Σ∗ −Σ∗# (Σ − (W ∪ {/////}))∗ # Σ∗; (4)
Σ∗ −Σ∗ (W ∪ {/////}) (Σ − {#})∗ (W ∪ {/////}) Σ∗ .

In addition, the matching brackets must have equivalent labels. This is done
through the following constraints that are inserted for each bracket label (i.e.
word category) a ∈ Λ (cf. [22]):

[−→a ⇒ Δ ]−→a ; [←−a ⇒ Δ ]←−a . (5)



288 A. Yli-Jyrä

5.2 The Properties of Projective Dependency Trees

We will now implement each of the requirements stated by Robinson by means
of language properties. Our convention to use the wall node causes some unim-
portant modifications.

1. There is one and only one node that is independent, i.e.

Σ∗#(Σ − {#} ∪Bl ∪Br)∗#Σ∗; (6)
Σ∗ −Σ∗#(Σ − {#} ∪Bl ∪Br)∗#(Σ∗#)∗(Σ − {#} ∪Bl ∪Br)∗#Σ∗. (7)

2. All word nodes except the wall node (/////) are immediately governed by
some node:

W ⇒ (Br ∪Bl)(Σ − {#})∗ , (Σ − {#})∗(Br ∪Bl). (8)

3. No word depends immediately on more than one other word, i.e.

Σ∗ − Σ∗(Br ∪Bl)(Σ − {#})∗(Br ∪Bl)Σ∗. (9)

4. There are no trivial cycles (irreflexivity), i.e.

Σ∗ −Σ∗(Bl ∪BL)(Σ − {#})∗(Br ∪BR)Σ∗. (10)

5. If Robinson’s fourth axiom is violated between two words A and B, where
A is immediately dependent on B, then at least one of the following cases
must hold:
(a) An intervening word C is the root of the sentence. This case can be

excluded with the following constraint that requires that the root (in
practice, the wall) is not an intervening word:

# ///// Σ∗. (11)

(b) An intervening word C is one of the independent words of the sentence
(−→ multiple roots). This case is excluded by Constraint (7).

(c) An intervening word C is dependent on itself (−→ violates irreflexivity).
This case is excluded by Constraint (10).

(d) An intervening word C is governed by a word that is not A, B, C nor
any other intervening word (−→ a crossing edge). This case is excluded
by Constraint (3b).

6. The simplest kind of nontrivial cycle contains two adjacent words. Such a
case occurs if the bracketing has either of the following two patterns:

· · · # E [←−
X
[−→

Y
# ]−→

Y
]←−
X F # · · · or

· · · # F [−→
Y
[←−

X
# ]←−

X
]−→
Y E # · · ·

Observe that at the word F , the bracket indicating the category of the word
itself is not adjacent to it. This means that the link from F to its governor
is shorter than a link to one of its dependents that is in the same direction
as the governor. In fact, every cycle containing at least two words must have
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such a word F . There are also other situations where the bracket indicating
the category of a word is not adjacent to the word itself. These are exactly
those cases in which an intervening element C governs two linked words A
or B.

Σ∗ −Σ∗(BLBl ∪BrBR)Σ∗. (12)

Due to Constraint (10) we can adopt a convention that places closing brackets
on the left side of each word and opening brackets on the right side by saying
that

(W ∪ {/////}) ⇒ # (BR ∪Br)∗ (BL ∪Bl)∗ #. (13)

Because the bracketing used in the encoding is balanced, the bracket corre-
sponding to the longest link will be placed closest to the word, and the bracket
corresponding to the shortest link will be placed closest to the word boundary
#. This conforms the same order that is used by Oflazer [2–page 524] when he
allocates so called channel symbol slots in his representation.

6 The New Representation for the Grammars

We will now re-express all the rules of HGDGs using context restrictions. The
rule listing the categories that can be independent is of the form  ({X1, X2, . . . ,
Xn}). This is expressed through the following regular constraint

/////⇒ # {[−→
X1

, [−→
X2

, · · · , [−→
Xn
} #. (14)

The rules listing words {w1, w2, . . . , wn} in each category X are of the form
X : {w1, w2, . . . , wn}. In the presence of (13), these rules can be expressed by
the following constraints:

[←−
X
⇒ {w1, w2, . . . , wn} ; ]−→

X
⇒ {w1, w2, . . . , wn}. (15)

Each dependency rule X(V1V2 . . . Vn  Y1Y2 . . . Ym) specifying a set of depen-
dents for category X corresponds to the context C(V1V2...Vn�Y1Y2...Ym):

# ]←−
Vn
]←−−−
Vn−1

· · · ]←−
V1

W ∗ W ∗ [−→
Ym

[−−−→
Ym−1

· · · ]−→
Y1

#.

When a word category X has n such contexts C1,C2, . . . ,Cn, their union
corresponds to the following regular context restriction:

{ ]−→
X
, [←−

X
} ⇒ C1,C2, . . . ,Cn. (16)

For example, the dependency rule

bitransitive(subject  object indirect-object)

will be represented using the following context restriction1:

{ ]−−−−−−−−→
bitransitive, [←−−−−−−−−

bitransitive } ⇒ # ]←−−−−
subject W

∗ W ∗ [−−−−−−−−−−→
indirect-object

[−−−−→
object

#.

1 In the expression, the opening bracket for the indirect-object precedes the bracket
of the object, because matching brackets obey the LIFO discipline.
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7 Discussion on Practical Applicability

As to the regular approximation that is obtained when an approximation D1,d

of D1 is assigned to the variable Δ, the most important practical question is:
Can we actually use the obtained finite-state grammar to parse natural language
sentences efficiently and accurately?

Parsing of the obtained approximation grammars means computing the in-
tersection of the language g−1(h−1(w)) and the grammar constraints. Such a
system can be seen as a special variant of Finite-State Intersection Grammar
(FSIG) (cf. [15]), where the most striking problem has been to prevent interme-
diate results from blowing up in size when the intersection is computed. However,
we have some reasons to be more optimistic with the current grammars than
with FSIGs in general:

1. There are examples of so-far more successful extended finite-state approaches
[2] (cf. also [15]), where bracketing at different depths is elaborated incre-
mentally, according to a Bottom-Up or Top-Down parsing strategy. It seems
that such strategies could be implemented also in the framework of FSIG by
splitting each context restriction into sub-constraints [21].

2. The bracketing employed here represents local context-free trees, which gives
rise to new ambiguity packing methods [23] based on parallel decompositions
of automata. This may lead to improvements that narrow the distance be-
tween techniques for parsing through finite-state intersection and parsing
with Chart-like data structures.

3. Most of the constraint languages presented here are locally testable, which
entails that their intersection can be done without considerable difficulties.
In our initial experiments, we applied them first and enforced the non-local
constraints (3b) and (5) in a later stage.

At this stage our experiments are still very limited and they merely highlight
that the proposed representation is implementable and can be used both in pars-
ing and enumeration of valid sentences. We extracted two kinds of grammars
from a portion of the Danish Dependency Treebank [24] (the second, smaller
grammar was mainly hand-crafted). As word categories, we used syntactic func-
tions in the first grammar and words themselves in the second one. These gram-
mars represented two (almost) extreme ways to make generalizations from the
available data. In both cases, the grammar constraints were given in a script to
the XFST program [25]. Compiling a grammar with a few hundred rules into a
set of separate automata took only one second. Intersection during parsing of
both grammars was also quite fast because the constraint automata were small
and only a few of them contributed to parsing of the actual input sentence.

In the bracketing scheme presented of the current paper, the number of de-
pendents per node contributes directly to the depth of nested brackets. It is,
however, possible to optimize bracketing depth in such cases by using so-called
reduced bracketing. Accordingly, the bracketing of Fig. 3 can be replaced with
the following bracketing:

# /////[−−→
pred

# that[←−
det

# ←−
det

] man 〈←−−
subj

# ←−−
subj

−−→
pred

]ate[−→
obj

# an 〈←−
det

# ←−
det

−→
obj

]apple #
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Due to space limitations the intricate details of reduced dependency bracketing
cannot be handled here. A scheme for reduced bracketing of dependencies and
its extension to non-projective dependency trees appear in [26]. The problems
related to grammar induction or extraction and accuracy cannot be discussed
here in depth due to space limitations.
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Abstract. We study the equivalence-checking problem for a formal mo-
del of computer programs which is used for the purpose of verification.
In this model programs are viewed as deterministic finite automata op-
erating on Kripke structures defined in the framework of dynamic logics.
When a transition relation in such structures is functional and weakly
directed, the result of a program execution does not depend on the order
in which basic statements are applied to data states. The models of pro-
grams with commuting statements have a close relationship to multi-tape
finite automata. We consider the case when evaluation functions which
specify truth-values of basic predicates in programs are monotonic. This
corresponds to multi-tape automata operating on binary words of the
type 0∗1∗. The main theorem states that the equivalence-checking prob-
lem in the model of programs with commuting and monotonic statements
is decidable in polynomial time.

In this paper we study the equivalence-checking problem for a formal model
of computer programs which may be of practical use for the purpose of veri-
fication. In the framework of this model programs are viewed as deterministic
finite automata operating on Kripke structures. One of the point in favor of this
formalism is that the semantics of programs can be conveniently specified by
means of dynamic logic formulae. Depending on these specifications (axioms)
one faces models of programs with decidable as well as undecidable equivalence-
checking problem (see [7, 13] for a survey). In [12] it was developed some uniform
approach to the designing of efficient (polynomial time) decision procedures for
the equivalence-checking problem for such programs. The main limitation of this
approach is that it is insensitive to specific features of evaluation functions in
Kripke structures; these functions specify truth values of basic predicates oc-
curring in programs. Meanwhile, in some models the characteristic properties of
evaluation functions are of primary importance for decidability and complexity
of the equivalence-checking problem.

We demonstrate this effect by considering the equivalence-checking problem
for a model Mcm of deterministic imperative programs with commuting and
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monotonic statements. Commutativity of statements means that the result of
a computation does not depend on a relative order in which these statements
are applied to data. In [12] it was demonstrated that the equivalence-checking
problem for a model Mc of deterministic programs with commuting statements
is decidable in time O(n2). Monotonicity refers to the property of predicates
to preserve true value in any computation since they are evaluated to true —
this indicates some kind of progress in program runs. The equivalence-checking
problem for the model of programs with commuting and monotonic statements
was studied in [10, 11]. In [11] the problem is shown to be decidable, although
no complexity results are obtained. The decision procedure developed in [11]
involves an exhaustive search in the set of all paths of some bounded length
in programs under consideration. When developing our decision technique we
introduce some new data structure for succinct representation of compatible
paths in programs and this yields a polynomial time decision procedure for the
equivalence-checking problem.

Commutativity and monotonicity can be expressed in terms of dynamic logic
axioms. By making small changes in the monotonicity axioms, one falls into
the model Mdmta of programs whose expressive power is exactly the same as
that of deterministic multi-tape automata (DMTAs). The equivalence-checking
problem for DMTAs is one of the famous problems in automata theory. After
numerous attempts [1, 9, 6] it was finally solved in [4], though the complexity
of this problem is still unclear. We may assume that the equivalence-checking
problem for programs with commuting and monotonic statements is intermediate
in its complexity between the same problems for two known models of programs
Mc and Mdmta. And it is reasonable to suggest that studying this problem for
Mcm furnishes some new information on decision problems for DMTAs.

The paper is organized as follows. In Sect. 1, we define formally the syntax
and semantics of propositional sequential programs (PSPs) and set an equiva-
lence-checking problem. In Sect. 2, the modelMcm which captures the semantics
of programs with commuting and monotonic statements is introduced. We also
discuss in some details the relationships between programs with commuting and
monotonic statements and DMTAs. In Sect. 3, we introduce the concept of a
cut of compatible paths in programs. Paths α1 and α2 in programs π1 and π2
are called compatible if there exists a Kripke structure M such that both paths
are traversed when π1 and π2 are executed on M . If π1 and π2 have different
behaviors, then this difference manifests itself in at least one pair of compatible
paths. A cut G(α1, α2) is an encoding of α1 and α2 into a small data structure
which carries enough information for constructing compatible extensions of α1
and α2. We develop a technique for deducing one cut from another and show
that equivalence of programs with commuting and monotonic statements can
be checked by manipulating cuts. Section 4 presents a decision procedure for
the equivalence-checking problem, which is the main result of this paper. The
complexity of this procedure is polynomial of the size of programs to be analyzed,
but the degree of the polynomial is a function of the cardinality of the alphabets
of basic statements and predicates used in programs. Finally, we discuss to what
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extent the technique developed in this paper could be generalized. As an example,
we show that it can be adapted for the equivalence-checking of DMTAs operating
on “monotonic” binary words of the type 0∗1∗.

1 Preliminaries

In this section we define the syntax and the semantics of propositional sequential
programs (PSPs).

Fix two finite alphabets A = {a1, . . . , ar}, P = {p1, . . . , pk}. In what follows
r and k denote the cardinality of alphabets A and P respectively. The elements
of A are called basic statements. Intuitively, each basic statement stands for some
assignment statement in imperative program. The elements of P are called basic
predicates. They stand for elementary built-in relations on program data. Each
basic predicate may be evaluated by 0 (false) or 1 (true). A tuple 〈δ1, . . . , δk〉 of
truth-values of basic predicates is called a condition. The set of all conditions is
denoted by C. It is clear that |C| = 2k. We write Δ1, Δ2, . . . for generic elements
from C. Given a condition Δ = 〈δ1, . . . , δk〉 and an integer i, 1 ≤ i ≤ k, we denote
by Δ[i] a truth-value δi of the predicate pi. We also define a partial order relation
3 on the set of conditions: Δ′ 3 Δ′′ ⇐⇒ ∀i : 1 ≤ i ≤ k : Δ′[i] ≤ Δ′′[i].

Definition 1. A propositional sequential program (PSP, for short) is a finite
transition system π = 〈V, entry, exit, T,B〉, where

– V is a non-empty set of program points;
– entry is the initial point of the program;
– exit is the terminal point of the program;
– T : (V − {exit})× C → V is a (total) transition function;
– B : (V − {exit}) → A is a (total) binding function.

A transition function represents the control flow of a program, whereas a
binding function associates with each point some basic statement. A PSP may
also be thought of as a deterministic finite state automaton operating over the
input alphabet C and the output alphabet A. By the size |π| of a program π we
mean the cardinality of the set V .

Let π = 〈V, entry, exit, T,B〉 be a PSP. A finite or infinite sequence of pairs

α = (v1, Δ1), (v2, Δ2), . . . , (vi, Δi), (vi+1, Δi+1), . . . , (1)

such that vi ∈ V , Δi ∈ C, and vi+1 = T (vi, Δi) hold for every i, i ≥ 1, is called
a path from a point v1 in π. If α ends with a pair (vn, Δn) then we say that
α reaches a point vn+1 = T (vn, Δn). If v1 = entry then α is called an initial
path. A path is called acyclic if no points occur in this path more than once. If
α is finite then we write |α| for its length. We use a notation α|n, n > 0, for the
prefix of α of the length n.

The semantics of PSPs is defined with the help of Kripke structures in the
framework of dynamic logics.
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Definition 2. A Kripke structure is a quadruple M = 〈S, s0, R, ξ〉, where

– S is a non-empty set of data states;
– s0 ∈ S is a distinguished initial state;
– R : A× S → S is a (total) updating function;
– ξ : S → C is a (total) evaluation function.

An updating function R is used for the interpretation of basic statements: a
data state R(a, s) is the result of application of a statement a to a data state s.
An evaluation function ξ is used for the interpretation of basic predicates: given
a data state s, an evaluation ξ(s) returns a tuple of truth-values for all basic
predicates on s. In fact, a Kripke structure M can also be viewed as a deter-
ministic (possibly infinite state) automaton operating over the input alphabet
A and the output alphabet C. It is in this way semantics of PSPs was defined
in [2].

Let π be a PSP, and M be a Kripke structure. The run of π on M is a
sequence (finite or infinite) of triples

r(π,M) = (v1, s1, Δ1), (v2, s2, Δ2), . . . , (vi, si, Δi), (vi+1, si+1, Δi+1), . . . , (2)

such that

1. v1 = entry, s1 is the initial state of M ;
2. Δi = ξ(si), vi+1 = T (vi, Δi), si+1 = R(B(vi), si) hold for every i, i ≥ 1;
3. the sequence r(π,M) either is infinite (in this case we say that the run

loops and yields no results), or ends with a triple (vn, sn, Δn) such that
T (vn, Δn) = exit (in this case we say that the run terminates with a result
sn+1 = R(B(vn), sn)).

We denote by [r(π,M)] the result of a run r(π,M) assuming that the result
is undefined when r(π,M) loops.

Given a run of the form (2), it is clear that the sequence

α = (v1, Δ1), (v2, Δ2), . . . , (vi, Δi), (vi+1, Δi+1), . . .

is an initial path in π; we say that α is associated with the run (2).
In what follows when referring to a model of programs M we mean the set

of all PSPs over fixed alphabets A,P whose semantics is specified by the set M
of Kripke structures.

Definition 3. Given a model of programs M, PSPs π1 and π2 are said to be
equivalent (π1 ∼M π2 in symbols) if [r(π1,M)] = [r(π2,M)] holds for every
structure M from M.

The equivalence-checking problem for a model of programs M is specified as
follows: given a pair of PSPs π1 and π2, check whether π1 ∼M π2 holds.
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2 Programs with Commuting and Monotonic Statements

In this paper we focus on the equivalence-checking problem for the model of
programs which captures at the propositional level the semantics of programs
with commuting and monotonic statements. Given a structure M = 〈S, s0, R, ξ〉,
we say that

– updating function R is commutative if R(a,R(b, s)) = R(b, R(a, s)) holds for
every pair of basic statements a and b and any data state s;

– evaluation function ξ is monotonic if ξ(s) 3 ξ(R(a, s)) holds for every basic
statement a and data state s.

The set Mc of Kripke structures with commutative updating functions is
completely characterized by dynamic logic axioms: 〈ai〉Q↔ [ai]Q and 〈ai; aj〉Q↔
〈aj ; ai〉Q, 1 ≤ i, j ≤ r. When assuming |A| = |P| = k and restricting our con-
sideration only to such evaluation functions ξ that for every basic statement ai

and data state s, conditions ξ(s) and ξ(R(ai, s)) may differ only in the i-th po-
sition (in truth values for the basic predicate pi corresponding to ai), we obtain
a model Mdmta which is a submodel of Mc. This model is distinguished with
help of axioms pj ↔ 〈ai〉pj , 1 ≤ i, j ≤ k, i �= j. In [10] it was shown that Mdmta
has the same expressive power as deterministic k-tape automata.

Denote by Mcm the submodel Mc which consists of all structures with com-
mutative updating functions and monotonic evaluations. The model Mcm is
separated from Mc with help of axioms pj → 〈ai〉pj , 1 ≤ i, j ≤ k. Since these
axioms are closely related with those used for specification of Mdmta, there is
a hope that results obtained for Mcm furnish some information on the com-
plexity of decision problems for DMTAs. The aim of this paper is to study the
equivalence-checking problem for Mcm. We begin with reducing this problem to
the equivalence-checking problem for the subclass MIN whose structures have a
data space and an updating function in common.

Let IN = {0, 1, 2, . . . } be the set of all non-negative integers. We use two
operations on IN: addition +, and truncated subtraction .−, where

n
.−m =

{
n−m, if n ≥ m,
0 otherwise.

We consider r-dimensional integer vector space INr as a common data space
for structures fromMIN. Generic elements of INr are denoted by d (possibly with
indices). We write 0 for the vector 〈0, 0, . . . 0〉 and use + and .− for the compo-
nentwise summation and truncated subtraction on vectors from INr. A partial
order relation ≤ on INr is defined as usual: d1 ≤ d2 ⇐⇒ ∃d0 ∈ INr : d2 =
d1 +d0. By the norm ‖d‖ of a vector d we mean the sum of all its components.

To introduce a common updating function R we relate each basic statement
ai, 1 ≤ i ≤ r, with a unit vector [ai] = 〈0, 0, . . . , 1, . . . 0〉 which has a single non-
zero component 1 at the position i. Then R is specified as follows: R(ai,d) =
d + [ai] for every basic statement ai and data state d.
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The model MIN consists of all structures Mξ = 〈INr,0, R, ξ〉, where ξ is a
monotonic evaluation function on INr. It is easy to see that any Mξ is a com-
mutative and monotonic structure. Let π′, π′′ be any pair of PSPs. Since any
structure M from Mcm is a homomorphic image of some structure Mξ from
MIN, we have

Proposition 1. π′ ∼Mcm π′′ ⇐⇒ π′ ∼MIN π′′.

Our next step is to reduce the class of programs under consideration to those
whose syntactic structure is most suitable for efficient equivalence-checking. We
say that an initial path α in PSP π is executable if it is a prefix of some path
associated with the run of π on some structure Mξ ∈MIN. It is easy to see that a
path (1) is executable iff Δi 3 Δi+1 holds for every i ≥ 0. It should be noted also
that due to monotonicity of evaluation functions each predicate pj , 1 ≤ j ≤ k,
changes its value at most once along every executable path. Therefore every
executable path (1) contains at most k pairwise different conditions. A PSP π
is called free if every path in π from entry to exit is executable.

Proposition 2. For every PSP π there exists a PSP π0 that is free and such
that π ∼MIN π0 and |π0| ≤ 2k|π|.
Proof. Given a PSP π = 〈V, entry, exit, T,B〉, we introduce a new distinguished
point loop and consider a PSP π′ = 〈V ′, entry′, exit, T ′, B′〉 such that V ′ =
{(v,Δ) : v ∈ V − {exit}, Δ ∈ C} ∪ {exit, loop}, entry′ = (entry, 〈0, 0, . . . , 0〉),
B′((v,Δ)) = B(v) (here B′(loop) is irrelevant), and T ′ is defined as follows

T ′((v,Δ), Δ′) =

⎧⎪⎨⎪⎩
(T (v,Δ′), Δ′), if Δ 3 Δ′ and T (v,Δ′) �= exit,
exit, if Δ 3 Δ′ and T (v,Δ′) = exit,
loop otherwise.

T ′(loop, Δ) = loop for all Δ ∈ C.
It should be noticed that π′ has exactly the same set of executable paths as

π, and therefore π′ ∼MIN π. A PSP π0 is obtained from π′ by directing to loop
all transitions that do not belong to any path from entry to exit. Also, this
doesn’t affect the set of terminating runs of π′. Hence, π0 ∼MIN π. ��

Proposition 3. Let π0 be a free PSP, and u′, u′′ be two points that belong to
some path from entry to exit. Then there are at most |π0|k acyclic paths in π0
from u′ to u′′.

Proof. The length of any acyclic path in π0 doesn’t exceed |π0|. Since π0 is a
deterministic PSP, any acyclic path (1) that begins from u′ and reaches u′′ is
completely characterized by the sequence of conditions Δ0, Δ1, . . . , Δi. Since π0
is a free PSP, such path is a suffix of some executable path. Therefore, as it was
noted above, each predicate pj , 1 ≤ j ≤ k, changes its value at most once along
every such path. This implies that the cardinality of the set of all acyclic paths
from u′ to u′′ does not exceed |π0|k. ��
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3 Compatible Paths and Cuts

Now we restrict our consideration only to free PSPs. Free PSPs enable us to check
the equivalence by examining paths in programs instead of runs on structures.
Our next step is to reduce the equivalence-checking of free PSPs π1 and π2 to
the analysis of compatible paths in π1 and π2. Initial paths α1 and α2 in π1
and π2 are called compatible if both paths are executable on the same structure
Mξ ∈ MIN. It is worth noting that if π1 and π2 have different behaviors then
this difference manifests itself in at least one pair of compatible paths. This is a
reason for developing an effective means for the analysis of compatible paths.

We begin with bringing into use some suitable notation for operating with
paths in free PSPs. When considering a finite path α, |α| = n, of the form (1) in a
PSP π, we write u(α) for the point reached by this path (i.e., u(α) = T (vn, Δn)).
Furthermore, for every i, 1 ≤ i ≤ n, we denote by Δ(α, i) the condition Δi

which fires the i-th transition along this path, and write d(α, i) for the vector
[B(v1)] + [B(v2)] + · · ·+ [B(vi)] which is the data state “computed” at the i-th
transition. A vector d(α, i) may be viewed as the intermediate result of the run
of π along α. To complete the picture we will assume that d(α, 0) = 0.

The following proposition delivers a straightforward criterion for checking
compatibility of finite initial paths in free PSPs.

Proposition 4. Initial paths α1 and α2 in free PSPs π1 and π2 are compatible
iff the following implications

d(α1, i− 1) ≤ d(α2, j − 1) =⇒ Δ(α1, i) 3 Δ(α2, j),
d(α2, j − 1) ≤ d(α1, i− 1) =⇒ Δ(α2, j) 3 Δ(α1, i)

hold for every pair i, j such that 1 ≤ i ≤ |α1|, 1 ≤ j ≤ |α2|.
Proof. If α1 and α2 are compatible then, by definition, there exists some Mξ ∈
MIN such, that Δ(α1, i) = ξ(d(α1, i − 1)) and Δ(α2, j) = ξ(d(α1, j − 1)) hold
for all i, j, 1 ≤ i ≤ |α1|, 1 ≤ j ≤ |α2|. The implications above just reflect the
fact that the evaluation function ξ is monotonic.

On the other hand, as it can be seen from the definition of a run of a PSP,
a path αq, q = 1, 2, is executable on Mξ iff ξ(d(αq, i− 1)) = Δi holds for every
1 ≤ i ≤ |αq|. The implications above guarantee that the set of equations

ξ(d(α1, i− 1)) = Δ(α1, i), 1 ≤ i ≤ |α1|,
ξ(d(α2, j − 1)) = Δ(α2, j), 1 ≤ j ≤ |α2|,

specifies consistently a monotonic evaluation ξ, such that both paths α1 and α2
are executable on the structure Mξ. ��
Proposition 4 is not quite efficient for generating compatible paths since keeping
track of all transitions along paths is both time- and space-consuming. This can
be alleviated significantly if we take into account that, due to monotonicity of
evaluation functions, conditions change at most k times along every executable
path.
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Assume that paths α1 and α2 in free PSPs π1 and π2 have the same length
(i.e. |α1| = |α2| = n). Then for every such pair of paths we define the cut of α1,
α2 as a sextuple

G(α1, α2) = (u(α1), u(α2),d1,d2, c1, c2) ,

where d1 = d(α1, n) .− d(α2, n), d2 = d(α2, n) .− d(α1, n), and c1 and c2 are
constraints induced by α1 and α2 as follows:

c1 = {〈d̂i, Δ(α1, i)〉 : i = 1, or i > 1 and Δ(α1, i) �= Δ(α1, i− 1),
d̂i = d(α1, i− 1) .− d(α2, n), 1 ≤ i ≤ n}

c2 = {〈d̂j , Δ(α2, j)〉 : j = 1, or j > 1 and Δ(α2, j) �= Δ(α2, j − 1),
d̂j = d(α2, j − 1) .− d(α1, n), 1 ≤ j ≤ n}

Intuitively, a cut G(α1, α2) is a specific data structure which carries all nec-
essary information for constructing compatible extensions of paths α1 and α2.
Vectors d1 and d2 indicate the discrepancy of the paths, i.e. how much differ
the intermediate results of the runs along α1 and α2. These results coincide
iff d1 = d2 = 0. It follows immediately from the definition of G(α1, α2) that
vectors d1 and d2 are always orthogonal and ‖d1‖ = ‖d2‖. The latter is due
to the fact that ‖d(α1, n)‖ = ‖d(α2, n)‖ = n. Constraints c1, c2 provide the
requirements to be satisfied by every pair of compatible extensions of the paths
α1, α2. Since every path in a free PSP contains at most k pairwise different con-
ditions, each constraint cq, q = 1, 2, contains at most k pairs of the form 〈d̂, Δ〉
and every such vector d̂ obeys the relation d̂ ≤ dq. Hence, if four components
u1, u2,d1,d2 of a cut are fixed then no more than ‖d1‖2kr different cuts of the
form (u1, u2,d1,d2, c1, c2) are possible for pairs of paths in PSPs π2, π2.

Propositions 5 and 6 below elucidate the intended meaning of cuts. Denote
by C(c) the set of all conditions occurred in a constraint c.

Proposition 5. Let α1 and α2 be a pair of compatible paths of the same length
in free PSPs π1 and π2, and G(α1, α2) = (u1, u2,d1,d2, c1, c2) be the cut of
α1, α2. Then paths α′

1 = α1, (u1, Δ1) and α′
2 = α2, (u2, Δ2) are compatible iff

conditions Δ1 and Δ2 meet the following requirements (q = 1, 2):
Req 1: d1 = d2 =⇒ Δ1 = Δ2;
Req 2: the relationship Δ 3 Δq holds for every pair 〈0, Δ〉 in c3−q.

Furthermore, the cut G(α′
1, α

′
2) = (u′

1, u
′
2,d

′
1,d

′
2, c

′
1, c

′
2) of the paths α′

1 and
α′

2 can be obtained as follows (q = 1, 2):

u′
q = Tπq (uq, Δq), (3)

d′
q = (dq + [Bπq

(uq)])
.− [Bπ3−q

(u3−q)], (4)

c′
q = {〈d′, Δ〉 : 〈d̂, Δ〉 ∈ cq,d′ = d̂ .− [Bπ3−q

(u3−q)]} ∪ cnew
q , (5)

where

cnew
q =

{
(dq

.− [Bπ3−q (u3−q)], Δq), if Δq /∈ C(cq),
∅ otherwise.
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Proof. (⇒) Suppose α′
1 and α′

2 are executable on some Mξ ∈MIN. Then d1 = d2
implies d(α1, n) = d(α2, n), where n = |α1| = |α2|, which, in turn, implies Δ1 =
ξ(d(α1, n)) = ξ(d(α2, n)) = Δ2. (Req 1 proved.) Also, if 〈0, Δ〉 ∈ c3−q then, by
definition of constraints, there exists i, 1 ≤ i ≤ n, such that Δ = Δ(α3−q, i) and
d(α3−q, i− 1) ≤ d(αq, n). Then Req 2 follows from Proposition 4.

(⇐) Since vectors d1 and d2 are always orthogonal, Req 1 gives the same
effect as the pair of implications from Proposition 4 for the case i = j = m,
where m = |α′

1| = |α′
2|. If i < m and d(α1, i − 1) ≤ d(α2,m − 1) then, by

definition of c1, the pair 〈0, Δ〉 belongs to c1. Therefore, Req 2 gives the same
effect as all those implications from Proposition 4 that correspond to the cases
when i < |α′

1| and j = |α′
2|. The same arguments are applicable to the case when

i = |α′
1| and j < |α′

2|. The implications from Proposition 4 corresponding to the
cases when i < |α′

1| and j < |α′
2| also hold due to the compatibility of α1 and

α2. Thus, by Proposition 4, the paths α′
1 and α′

2 are compatible as well.
Equalities (3)–(5) follow immediately from the definition of a cut. ��

Proposition 6. Let α1 and α2 be a pair of compatible paths of the same length
n in free PSPs π1 and π2. Let G(α1, α2) = (v1

n, v
2
n,d1,d2, c1, c2) be the cut of

α1 and α2. Suppose that α′
1 = (v1

n, Δ0), (v1
n+1, Δ1), . . . , (u1

n+m, Δm) is a path in
π1 from the point v1

n. Then the paths α1α′
1 and α2 are compatible iff α′

1 satisfies
the requirement below:

Req 3: the implication (d̂ ≤ d1+[B(v1
n)]+· · ·+[B(v1

n+i−1)])⇒ (Δ 3 Δi)
holds for every pair (d̂, Δ) from c2 and for every i, 0 ≤ i ≤ m.

Proof. The arguments are similar to those used in the proof of Proposition 5. ��
Thus, Propositions 5 and 6 testify that a cut G(α1, α2) is all we need to

know about paths α1 and α2 to yield all their compatible extensions. Given a
cut G = (u1, u2,d1,d2, c1, c2), we say, with Propositions 5 and 6 in mind, that

1. a pair of conditions (Δ1, Δ2) is G-admissible if both conditions Δ1 and Δ2
satisfy Req 1 and Req 2;

2. a point w in PSP π1 is G-accessible from u1 if there exists a path α′
1 in π1

which reaches w and satisfies Req 3.

It should be readily apparent that the G-admissability of a pair (Δ1, Δ2) can
be checked in time O(rk2). And when checking the G-accessibility of a point w
from u1, one should take into account the following simple consideration.

Remark 1. If w is G-accessible from u1 then w can be reached as well by some
acyclic path which satisfies Req 3.

The reason for this is the fact that in free PSPs the sequence of conditions
in every path is non-decreasing. Hence, all cycles can be eliminated from a path
without violating Req 3. Because of this, for checking the G-accessibility of w
it is sufficient to inspect all acyclic paths from u1 to w. By Proposition 3, the
amount of such paths is bounded by |π1|k and for each of them Req 3 can be
verified in time O(rk|π1| log ‖d2‖). Thus, we arrive at the following proposition.
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Proposition 7. Let G = (u1, u2,d1,d2, c1, c2) be the cut of a pair of compatible
paths in free PSPs π1 and π2. Let w be a point in π1. Then the G-accessibility
of w from u1 can be checked within a time O(rk|π1|k+1 log ‖d2‖).

By introducing the concepts of compatible paths and cuts we get a possibility
to offer a criterion for the equivalence of free PSPs on MIN.

Theorem 1. Let π1 and π2 be free PSPs. Then π1 and π2 are not equivalent on
MIN iff there exists a pair of compatible paths α1 and α2 whose cut G(α1, α2) =
(u1, u2,d1,d2, c1, c2) complies with at least one of the following four demands:

Dem 1. u1 = u2 = exit and d1 �= d2;
Dem 2. one of the points (say, u1) is exit, whereas the other (u2) is not;
Dem 3. one of the points (say, u2) is loop, whereas exit is G(α1, α2)-

accessible from the other (u1);
Dem 4. the relationship ‖d1‖ > max(|π1|, |π2|) holds and at least in one of

PSPs πq, q = 1, 2, the point exit is G(α1, α2)-accessible from uq.

Proof. (⇒) Suppose that [r(π1,Mξ)] �= [r(π2,Mξ)] holds for some evaluation
ξ. We may assume w.l.o.g. that r(π1,Mξ) terminates and it is no longer than
r(π2,Mξ). Denote its length by n. Let α1 and α2 be paths in π1 and π2 associated,
respectively, with the runs r(π1,Mξ) and r(π2,Mξ). Then behaviors of π1 and
π2 on Mξ fall into one of the two following cases.

1. Both runs r(π1,Mξ) and r(π2,Mξ) terminate and have the same length n.
Since d(α1, n) = [r(π1,Mξ)] and d(α2, n) = [r(π2,Mξ)], the cut G(α1, α2) =
(exit, exit,d1,d2, c1, c2) is such that d1 �= d2.

2. The run r(π2,Mξ) is infinite, or has a length exceeding that of r(π1,Mξ).
Then G(α1, α2|n) = (exit, u2,d1,d2, c1, c2) and u2 �= exit.

(⇐) Let G(α1, α2) = (u1, u2,d1,d2, c1, c2) be a cut of some compatible paths
α1 and α2 in PSPs π1 and π2 respectively, and let |α1| = |α2| = n. Suppose

1. u1 = u2 = exit and d1 �= d2. Let Mξ be some common structure the paths
α1 and α2 are executable on. Then d(α1, n) = [r(π1,Mξ)] and d(α2, n) =
[r(π2,Mξ)]. Since d1 = d(α1, n) .− d(α2, n) and d2 = d(α2, n) .− d(α1, n), it
follows herefrom that [r(π1,Mξ)] �= [r(π2,Mξ)].

2. u1 = exit and u2 �= exit. Let Mξ be a structure the paths α1 and α2 are
executable on. Then either the run r(π2,Mξ) is infinite, or it terminates after
m steps, m > n. The latter means that ‖[r(π2,Mξ)]‖ > ‖[r(π2,Mξ)]‖. Thus,
in both cases [r(π1,Mξ)] �= [r(π2,Mξ)].

3. u2 = loop and u1 �= loop. If exit is G(α1, α2)-accessible from u1 then, by
Proposition 6, there exist compatible paths α1α

′
1 and α2 such that α1α

′
1

reaches exit and α2 reaches loop. They are associated with runs r(π1,Mξ)
and r(π2,Mξ) on some common structure Mξ yielding different results.

4. ‖d1‖ > max(|π1|, |π2|) and exit is G(α1, α2)-accessible from u1. By Re-
mark 1, exit can be reached from u1 by some path α′

1 such that α′
1 satisfies

Req 3 and |α′
1| = m < |π1|. By Proposition 6, paths α1α

′
1 and α2 are com-

patible and, hence, they are executable on the same structure Mξ. Clearly,
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α1α
′
1 is associated with a terminated run r(π1,Mξ). Consider the case when

r(π2,Mξ) is a terminated run of the same length as r(π1,Mξ) (in other cases
it immediately follows that [r(π1,Mξ)] �= [r(π2,Mξ)]) and let α2α

′
2 be the

path associated with r(π2,Mξ). Then the relationships
[r(π1,Mξ)] = d(α1, n) + d(α′

1,m), [r(π2,Mξ)] = d(α2, n) + d(α′
2,m),

‖d(α1, n) .− d(α2, n)‖ = ‖d1‖ > |π1|, ‖d(α′
2,m)‖ = ‖d(α′

1,m)‖ < |π1|
imply ‖[r(π1,Mξ)]

.− [r(π2,Mξ)]‖ > 0. The latter means that [r(π1,Mξ)] �=
[r(π2,Mξ)]. ��

4 Decision Procedure and Complexity

As it follows from Theorem 1, to detect non-equivalence of free PSPs π1 and π2
it will suffice to check those cuts G = (u1, u2,d1,d2, c1, c2) of compatible paths
in these programs, whose discrepancy indicated by d1 and d2 is small enough,
or to be more precise, ‖d1‖ = ‖d2‖ ≤ max(|π1|, |π2|). In the data space INr the
number of vectors whose norm does not exceed some fixed value n is bounded
by nr. As noted above, the number of cuts having the same pair of points u1, u2
and the same pair of vectors d1,d2, ‖d1‖ = ‖d2‖ ≤ n, does not exceed n2kr.
Proposition 5 provides us with a simple technique for generating the cuts of all
pairs of compatible paths, and Propositions 6, 7 give us an effective means for
checking G-accessibility of exit.

Equivalence-checking procedure. Let π1 and π2 be free PSPs whose size
does not exceed N . Starting with the initial cut G0 = (entry, entry,0,0, ∅, ∅)
generate a set of cuts in accordance with the instructions:

1. given a cut G, build, using the requirements Req 1 and Req 2, the set of
G-admissible pairs of conditions (Δ1, Δ2);

2. for every G-admissible pair of conditions (Δ1, Δ2) construct, using relation-
ships (3)–(5), a cut G′.

For every new cut G′ = (u′
1, u

′
2,d

′
1,d

′
2, c

′
1, c

′
2) check whether any of the de-

mands Dem 1–4 is met (when checking Dem 3 and Dem 4 use the requirement
Req 3 and Propositions 6, 7 for examining G-accessibility of exit from u1 or
u2). If one of the demands is satisfied then stop and reject programs π1, π2 as
non-equivalent. As soon as all constructed cuts are checked and no new cuts
emerge, stop and accept programs π1, π2 as equivalent.

Note, that, by Propositions 7, the number of cuts that do not comply with
Dem 4 is less than n2+2r+2kr. This guarantees termination of the procedure.
Theorem 1, coupled with Propositions 3–7, guarantees correctness, completeness
and effectiveness of the procedure above. By combining these considerations with
Propositions 1 and 2, we arrive at the main result of this paper.

Theorem 2. The equivalence-checking problem for PSPs operating on Kripke
structures with commutative updating functions and monotonic evaluation func-
tions is decidable in time nO(kr), where n is the size of programs to be analyzed,
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r and k are the cardinalities of the sets of basic statements and basic predicates
used in the programs.

5 Discussion

Our approach to the designing of polynomial time equivalence-checking algo-
rithms can be adapted to other models of programs with commuting or partially
commuting statements. The key to the decision procedures lies within the con-
cept of cut which makes it possible to reduce the analysis of program runs to the
manipulations with a limited number of cuts. This can be achieved when the set
of evaluation functions ξ used in Kripke structures Mξ have a finite or regular
behavior along all paths in a program.

We think that our approach can not be applied directly to the equivalence-
checking problem forMdmta. Although it is possible to extend easily the concept
of compatible runs and cuts to this model, we do not see any way to estimate the
number of cuts to be checked in order to detect non-equivalence of PSPs. Nev-
ertheless, if we consider the equivalence-checking problem for DMTAs operating
on some specific tuples of words then our approach can be applicable sometimes.
For example, it can be used in efficient equivalence-checking of DMTAs oper-
ating on the words 0∗1∗. With only slight modifications of Propositions 2 and
Req 1 the algorithm presented above can be transformed into a new decision
procedure for the model Mdmta∩Mcm; the complexity of this procedure will be
polynomial of the DMTAs size and exponential of the number of tapes.

Acknowledgement. We thank anonymous referees for their stimulating criticism
on the submitted version of this paper.
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Abstract. In this paper we prove a lower bound for the maximum state
complexity of Deterministic Finite Cover Automata (DFCAs) obtained
from Non-deterministic Finite Automata (NFAs) of a given state com-
plexity n, in case of a binary alphabet. We show, for binary alphabets,
that the difference between maximum blow-up state complexity of DFA
and DFCA can be as small as 2� n

2 �−2 compared to the number of states
of the minimal DFA. We conjecture that the lower bound given in the
paper is also the upper bound.

1 Introduction

State complexity of deterministic automata is important because it gives an
accurate estimate of the memory space needed to store the automaton. In case
of finite languages, DFCA reduces this space by taking into account the length
of the longest word in the language, so that in practice the amount of memory
necessary to store such a structure is significantly reduced. In [1] and [2] it is
proved that for a given finite language the state complexity of a minimal DFCA is
always less than or equal to the state complexity of a DFA recognizing the same
language. Using this idea, it is interesting to know whether this improvement
can always be significant or not in the number of states of the automaton, since
transforming a DFA to a DFCA is also time consuming.

The main purpose of this paper is to study the state complexity of the trans-
formation from NFA to DFCA.

In [3] it is given an upper bound for converting NFA to minimal DFA for finite
languages and non-unary alphabets, and it is proved that the upper bound is
reached in case of a binary alphabet. However, in the general case there is no
result about the structure of states/transitions of these automata.

� The first author is supported by Natural Sciences and Engineering Research Council
of Canada (NSERC) grant UPEI-600089 and the second author is supported by a
LATECH-CenIT grant.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 306–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Tight Bounds for NFA to DFCA Transformations for Binary Alphabets 307

We focus mainly on the binary case proving that in the worst case the minimal
number of states of a minimal DFCA for a finite language L generated by an
n-state NFA can be at least as high as 2n−t − 2t−2 + 2t − 1, where t = .n

2 /.
Notice that this bound is just with 2t−2 lower than the bound obtained in [3]
for the worst case transformation from NFA to DFA.

2 The Lower Bound for the Worst Case DFCA
Complexity

Let LB(n) =
{

2t−1 + 2t−2 + 2t − 1, if n is even,
2t−2 + 2t − 1, if n is odd.

Theorem 1. For each integer n > 1, there exists a finite language L ⊆ {a, b}
such that L is accepted by a minimal acyclic n-state NFA, and any complete
DFCA for L has at least LB(n) states.

Proof. Let Σ = {a, b}. We consider the language Ln = L′
n ∪ L′′

n, L′
n = {w | w =

w1b, |w| = t}, L′′
n = {w | w = uava, such that |w| < n, and |v| = !n

2 " − 2}.
The language Ln is accepted by the nondeterministic automaton with n states

0, 1, ..., n− 1 presented in Figure 1 (f = n− 1).

�
����0 �a, b

����1 �a, b �a, b
�� ��t − 1 �a

����t �a, b �a, b
�� ��n − 2 �a

����f

	



�
�� �a � �a �� �a

�

� �
�

b

Fig. 1. An example of NFA for which the DFCA reaches LB(n) states

We have proved that for an NFA with n states accepting a finite language
over a binary alphabet the equivalent minimal DFCA has at least 2� n

2 �−2 less
states than the number of states of the minimal DFA.
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Abstract. Ciliates are protozoic organisms having two types of nuclei:
micronuclei (that store the DNA) and macronuclei (that provide the
RNA). Another feature that makes them distinct is the phenomenon
of transformation of micronuclear genes into macronuclear genes during
their sexual reproduction, called the Gene Assembly Process in Ciliates
(GAPC). Parallel Communicating Finite Transducer Systems (PCFTS)
are translating devices composed of several finite transducers that work
in parallel in a synchronized manner. They communicate with each other
by states and by the output tapes. In this paper we present a simulation
of the molecular operations performed during GAPC with PCFTS.

Micronuclear genes are composed of combinations of residual segments, i.e. In-
ternal Eliminated Segments (IES) and active segments, i.e. Macronuclear Des-
tinated Segments (MDS). The prominent feature of GAPC consists in the very
spectacular manner in which, during the transformation of micronuclear genes
into macronuclear genes, the MDS regions are spliced and the IES portions are
excised. The splicing process is carried on in some weaker points of the micronu-
clear gene, named pointers, and it is based on three molecular operations: ld,
hi, and dlad. Let Π be the (finite) pointers alphabet. For p, r ∈ Π, p �= r, and
π ∈ Π∗, these operations have been mathematically formalized in [3] as follows:

1. the ldp operation on π = π1ppπ2 is defined as ldp(π) = π1π2,
2. the hip operation on π = π1pπ2p̄π3 is defined as hip(π) = π1rs(π2)π3, where

rs(π2) is the reversed switch of π2, i.e. rs(qr...t) = t̄...r̄q̄, for q, r, ..., t ∈ Π,
3. the dladp,r operation on π = π1pπ2rπ3pπ4rπ5 is dladp,r(π) = π1π4π3π2π5.

A generalization of these operations for the case when p, r ∈ Π+ can be
found in [1], i.e. the extended version of this paper. PCFTS have been intro-
duced in [2], with linguistic proposes. Next, we present a PCFTS with two com-
ponents, that works on legal strings ([3]) and simulates the hip operation. Let
T=(Π,Π, T1, T2,K) be a rpcft(2) ([2]), and q0/s0 be the initial state of T1/T2.
The δ mappings1, for a given p ∈ Π and any y ∈ Π, are defined below:

1.δ1(q0, y) = {(q0, λ), (K2, ȳ)�} 2.δ1(q0, p) = {(qp, λ)} 3.δ1(q0, λ) = {(q0, λ)}
4.δ1(s[0], λ)={(s[0̄], λ), (sf , λ)} 5.δ1(qp, y) = {(q[p], ȳ)} 6.δ1(s[0], p̄)={(qp̄, λ)}
7.δ1(qp̄, λ) = {(qp̄, λ), (qf , λ)} 8.δ1(qpp, λ) = {(qf , λ)} 9.δ1(sf , λ) = {(sf , λ)}
10.δ1(qp̄, y) = {(qpp, y)}� 11.δ1(qpp, y)={(qpp, y)}�

1 Here each � marks the condition y �= p, and each � marks the condition y /∈ {p, p̄}.
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1. δ2(s0, λ)={(s0, λ), (K1, λ)} 2. δ2(s0, y)={(s1, y)}� 3. δ2(s1, y)={(s1, y)}�,
4. δ2(q[p], λ)={(s[0], λ)} 5. δ2(s2, y)={(s2, y)} 6. δ2(s[0̄], λ)={(s[0], λ)},
7. δ2(s1, p)={(s2, p), (K1, λ)} 8. δ2(qf , y)={(qf , λ)}�.

Briefly, the system works as follows: in the beginning, only the first transducer
T1 reads pointers without any output. When p is found, the state q0 is changed
into the state qp and, in the next step, the second transducer T2 is obliged to
query T1, otherwise T1 will not be able to continue the computation in the state
q[p]. In this moment the system begins to compute rs(π2). The result is always
yielded on the output tape of T1, and ends when p̄ is found. From now on both
transducers synchronously yield on the first tape the string π3 and on the second
tape the string π1. When this procedure ends too, T2 asks for the content of the
first tape in order to have on the second tape the result of the hip operation,
i.e. π1rs(π2)π3. The final system state is (q0, qf ), when the long distance pair
(p, p̄) is found. For the case when only the pointer p is found the system ends
in (sf , s2), while in the case when p is not found the system ends in (q0, s1). In
both last cases the input string is entirely outputted on the tape of T2.

A rpcft(2) that simulates the dladp,r operation, presented also in [1], works
as follows: firstly only T1 reads pointers without any output. When the first
occurrence of p is found, the current state of T1 is changed into sp. From now
on T1 outputs the string π2. When the first occurrence of r is found, the state
sp is changed into sr. In this moment, T2 has to query T1, otherwise T1 will be
blocked in the state sr. The content of the first output tape is discharged into
the output tape of T2 in order to give freedom to T1 to yield on its tape the
string π3. When the second occurrence of p is found, T1 asks for the content
of the second output tape in order to compute the sequence π3π2, and to give
freedom to T2 to output the sequence π1π4. This is the moment when T2 starts to
read symbols. Simultaneously, T1 yields the sequence π3π2π5. At the end of the
computation the content of the first output tape is discharged into the second
one in order to obtain the result of the dladp,r operation, i.e. π1π4π3π2π5.

The above examples show that PCFTS with two components are description-
ally very efficient to simulate complex molecular operations. They also can be
used to check whether a strategy for a realistic MDS descriptor ([3]) is successful,
i.e., at the end of all possible applications of ld, hi and dlad operations, the
input is reduced into the empty string, according to the chosen strategy.
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Finite Automata are basic structures that appear in many areas of Computer
Science and other disciplines. The emergence of new tools based on automata
for the manipulation of infinite structures [4, 5, 1] makes a crucial challenge of
improving the efficiency of automata packages. The present work is motivated
by model-checking problems. where most of the algorithms are based on fixed
point computations that share many identical subcomputations. A promising
track is the realization of a BDD-like package because BDDs have proved these
capability to take advantage of this aspect when using cache technique. Since
Bryant’s original publication of BDD algorithms [2], there has been a great deal
of research in the area. One of the most powerful applications of BDDs has been
symbolic model checking, used to formally verify digital circuits and other finite
state systems [3]. A BDD package is based on an efficient implementation of the
if-then-else (ITE) operator. It uses essentially two principles:

– (1) a hash table, called unique table, maintains a strong canonical form in
BDDs and stores a forest of BDDs sharing common substructures,

– (2) a hash table, called computed cache, keeps subresults when evaluating a
recursive ITE operation.

Applying the BDD principle to automata is not that easy. Thus a solution to
our problem has to design new principles to overcome the following difficulties:
define a strong canonical form for automata, handle a forest of automata shar-
ing common substructures, design a constant time procedure to check automata
equality and an efficient hash function. Notice that classic notion of minimal
automata are far from solving these problems. One needs to design a new struc-
ture, well-adapted to substructures sharing and a new algorithm transforming
an automaton into this new structure, guaranteeing a strong canonical form.

In this paper we propose a data structure, called shared automata, for rep-
resenting deterministic finite automata. Informally, a shared automaton codes
a strongly connected component of an automaton and its exit states. Thus, an
automaton may be considered as an acyclic graph of shared automata. This
representation is well-adapted to substructure sharing between automata. We
have designed an incremental algorithm based on this decomposition producing
shared automata where states respect some canonical order. During the canoni-
sation of an automaton, produced shared automata are stored in a unique table,
guaranteeing a strong canonical form like for BDDs. In our system, automata
operations, as set operations, are obtained when computing on-the-fly a non
canonical representation of the result while applying the canonical algorithm.
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Table 1. Experimentation results for some Petri nets

Model | {Place} | | {Transition} | LASH PresTaf

LEA 30 35 6min 36s 1min 13s

Manufacturing System 14 13 9min 37s 1min 4s

CSM 13 8 14min 38s 1min 2s

PNCSA 31 36 66min 3min22

ConsProd 18 14 1316min 3min55

During this evaluation, subresults are stored in a computer cache, avoiding un-
necessary re-evaluation of subexpressions. We experimentally compare PresTaf, a
direct implementation of the Presburger arithmetic built on the shared automata
package, and the Presburger package LASH [5] based on standard automata al-
gorithms. The goal of this experimentation is to evaluate the benefits that shared
automata techniques can bring to systems using standard automata algorithms.
Comparison with other kind of Presburger package is out of the scope of our ex-
perimentation. We chose a classic problem verification: the backward symbolic
state space exploration for Petri nets. Experimental results (see Table 1) show
the great benefit of the new canonical structure applied to this kind of problems.
As BDD [6], the main factor of this benefit is the computed cache. Indeed, the
iterations of a state space exploration share many subproblems.
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Abstract. A regular expression that represents the language accepted
by a given finite automaton can be obtained using the the state elim-
ination algorithm. The order of vertex removal affects the size of the
resulting expression. We use here an heuristic to compute an approxi-
mation to the order of vertex removal that leads to the smallest regular
expression obtainable this way.

1 Introduction and Motivation

The size of a regular expression is the number of occurrences of alphabetical
symbols in it. A representation of a regular language through a small sized
expression is in general preferable to a representation of the same language
through an expression of bigger size. This is clearly the case when one wants
to perform computations with the expression. The interest of the first author
in this problem arose when, to solve a problem in finite semigroup theory,
he needed to compute the commutative image of a regular language. He kept
the interest in this problem even after developing an algorithm to perform the
needed computations without passing through a regular expression [1]. In that
paper the reader may find a brief description of the state elimination algo-
rithm as well as more formal definition of generalized transition graph (GTG),
which is similar to that of a finite automaton, but the edges are labeled with
regular expressions instead of just letters. To learn more on the mentioned
problem in finite semigroup theory we suggest the paper [2], where compu-
tations with the transformation monoids POIn and POPIn have been per-
formed. These monoids, for n = 4 and n = 5, will be used in the table
below.

We remark that to compute a regular expression for the language of a deter-
ministic automaton it is in general a good idea to start minimizing the automaton
given, since the minimal automaton obtained is quite often much smaller than

� Both authors gratefully acknowledge support of FCT and the POCTI program
through CMUP.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 312–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Approximation to the Smallest Regular Expression 313

the original one. In a recent GAP [4] package by S. Linton and the authors [3]
an efficient algorithm to minimize a deterministic automaton is implemented.

Next we present an heuristic that attempts to remove the vertices in an order
leading to the smallest result.

2 Heuristic

We define the weight of a GTG as the sum of the sizes of all regular expressions
labeling the edges of the GTG. The weight of a vertex is defined as the weight
that will be added to the weight of the GTG by the removal of that vertex.
Using the convention

∑0
k=1 ak = 0, one may easily check that the weight of a

vertex x can be computed by the formula

In∑
k=1

(Win(k)× (Out− 1)) +
Out∑
k=1

(Wout(k)× (In− 1)) + Wloop × (In×Out− 1)

where In is the number of edges (not loops) that go into x, Out is the number
of edges (not loops) that go out from x, Win(k) is the size of the label of the kth

edge that goes into x, Wout(k) is the size of the label of the kth edge that goes
out from x and Wloop is the size of the label of the loop around x.

Our approach to the problem of computing small expressions is to remove,
at each step, one of the least weighted vertices. Notice that using the above
formula, the time consumed to compute the weight of a vertex is not
relevant.

The following table, produced using automata obtained from Cayley graphs
of certain transformation monoids already referred, shows that the usage of this
heuristic gives quite satisfactory results. The computations have been achieved
using GAP [4] (to deal with monoids) and the GAP package [3]. (The time is
measured in GAP units, in a Pentium IV 2.6 GHz.)

Automaton States Alph. Exp. without heuristic Exp. with heuristic
size time size time

Min(POI4[1, 20]) 16 4 1807 40 491 30
Min(POI5[1, 125]) 32 5 107438 270 8602 130
Min(POPI4[1, 60]) 33 2 8381 40 704 30
Min(POPI5[1, 70]) 81 2 398620 340 11528 260

Unfortunately, “less weight” does not necessarily mean “better choice”. To
deal with this problem we have also implemented a function that uses a looka-
head approach. It takes two additional arguments: lk and nv and it “looks ahead”
lk steps, by at each step computing the nv least weighted vertices and repeat-
ing the process for the GTG obtained by removing each of these nv. This ap-
proach leads in general to considerably better results, but the time consumed is
higher.
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The hierarchical algebraic decomposition of finite state automata (Krohn-Rhodes
Theory) has been a mathematical theory without any computational implemen-
tations until the present paper, although several possible and promising practical
applications, such as automated object-oriented programming in software deve-
lopment [5], formal methods for understanding in artificial intelligence [6], and a
widely applicable integer-valued complexity measure [8, 7], have been described.
As a remedy for the situation, our new implementation, described here, is freely
available [2] as open-source software. We also present two different computer
algebraic implementations of the Krohn-Rhodes decomposition, the V ∪ T and
holonomy decompositions [4, 3], and compare their efficiency in terms of the
number of hierarchical levels in the resulting cascade decompositions.

The difficulties of computational implementations of the Krohn-Rhodes de-
composition come from the fact that mathematical proofs do not consider com-
putational feasibility, i.e. the space and time complexity of the required calcu-
lations. This problem is especially acute in semigroup theory, where semigroups
have so many elements. We represent a semigroup by a set of generators (the
transformations induced by the input symbols of the automaton) instead of
by a Cayley-table, finite presentation, or explicit enumeration of all elements;
transformations are represented as mappings on the set n = {1, . . . , n}. This
internal representation is still human-readable as well since it coincides with the
mathematical notation. Transformations are stored as 1-dimensional arrays. The
content of the cell with index i is the image of i. This way the multiplication of
transformations can be done in time linear in n, the number of states. As usual,
for getting fast set operations, subsets are represented as bitvectors encoding
characteristic functions. For deciding whether element is contained in a set or
not, hashtables are used.

Two different decompositions have been implemented in this work. The V ∪T
technique and the holonomy decomposition were chosen since they are inherently
different, representing distinct classes of algorithms, and their proofs are close to
an algorithmic description. The V ∪ T method is one of the earliest proof tech-
niques [4]. It works with semigroups and uses the right regular representation
for the resulting cascaded components. The main idea of the algorithm is that
we iteratively decompose the semigroup into two possibly overlapping subsemi-
groups (a left-ideal and a proper subsemigroup). The iteration ends when the
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components are left-simple or cyclic semigroups. The list of the components in
order form the cascaded product. The inefficiency of the V ∪ T algorithm orig-
inates from the iterative step: V and T may overlap and thus subcomponents
may appear again and again. Therefore the standard V ∪ T technique cannot
be used for practical purposes: due to its redundancy it may produce even more
components than the order of the characteristic semigroup (e.g. the full trans-
formation on 4 points has 44 = 256 elements and its decomposition has 401
components). Getting more elements than nn for an automaton with n states is
far from being efficient. We implemented the V ∪ T method as a package [2] for
GAP [1].

The holonomy method works by the detailed study of how the characteristic
monoid of an automaton acts on the automaton’s state set. It looks for and
cascades holonomy groups, i.e. subgroups of the characteristic monoid permut-
ing certain sets of subsets of the state set. Isomorphic holonomy groups under
a certain equivalance relation may be represented together thus avoiding rep-
etitions in the wreath product. Therefore the holonomy algorithm was chosen
and further optimized by using a more direct constructive method for holonomy
groups instead of brute force breadth-first search based implementation. Due
to the experimental nature of the method, it was implemented as standalone
software [2].
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It has been suggested by Jürgensen and Staiger [1] that local Hausdorff dimen-
sion is representative of local image texture complexity, or “messiness”. If true,
this could be a useful local texture feature in computer vision applications such
as image segmentation and object classification. In this study we investigate
whether the interpretation of Hausdorff dimension as a measure of texture com-
plexity corresponds to reality, that is, human perception of texture complexity.
Jürgensen and Staiger consider black and white images described by finite-state
and closed ω-languages [1]. The (local) Hausdorff dimension of an ω-language
can be computed from its corresponding automaton. Thus, we are interested in
the relationship between the Hausdorff dimension of ω-languages which describe
black and white texture images and the perceived texture complexity of the
image described.

Culik II and Kari were the first to investigate binary and greyscale image
compression using automata [2, 3]. Staiger showed that the entropy of regular
ω-languages is computable from the transition matrix of the automaton of such a
language [4] and that entropy coincides with the Hausdorff dimension for finite-
state and closed ω-languages [5]. Jürgensen and Staiger postulated that the
Hausdorff dimension of a language would be a good measure of the complexity of
a texture generated by a corresponding automaton [6]. Subsequently they defined
the local Hausdorff dimension and postulated that a map of local Hausdorff
dimension for an image would be a good method of illustrating how relative
image texture complexity varied over the image [1].

We conducted an experiment to test the supposed correlation between Haus-
dorff dimension and perceived texture complexity. Surveys were distributed in
which participants were asked to rank two sets of texture images according to
their “complexity”. Some images were common to both sets. Participants were
also asked to directly compare five pairs of images and indicate which they be-
lieved to be more complex, or whether they believed them to be of the same
complexity. The texture images were obtained by randomly generating automa-
ton transition matrices and selecting automata that generated suitable images.
All images used were generated by automata having only a single strongly con-

� This research was funded in part by NSERC grant RGPIN262027-03 (M. G.
Eramian), in part by an NSERC Undergraduate Research Award (M. Drotar) and
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nected component, thus ensuring that local entropy over each image was constant
[1]. We received about 100 responses to the survey.

Analysis of the data indicates that there appears to be no significant cor-
relation between Hausdorff dimension and perceived texture complexity. There
was little agreement among participants over how the images should be ranked;
moreover about 73% of respondents gave different relative rankings to the same
two images in different sets suggesting that context may influence perceived tex-
ture complexity. There was also little agreement over the relative complexity of
the directly compared pairs of images. In three of the five cases, the majority of
respondents perceived that image A was more complex than image B when in
fact, in all five pairs, image A had the lower Hausdorff dimension. Finally, for no
pair did a majority of the participants believe that the images were of the same
complexity, despite the fact that each pair of images had nearly equal Hausdorff
dimension.

Our conclusion from this study must be that Hausdorff dimension appears
to be unsuitable for characterizing image texture complexity.
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Derivatives of regular expressions were first introduced by Brzozowski in [1].
By recursively computing all derivatives of a regular expression, and associating
a state with each unique derivative, a deterministic finite automaton can be
constructed. Convergence of this process is guaranteed if uniqueness of regular
expressions is recognized modulo associativity, commutativity, and idempotence
of the union operator. Additionaly, through simplification based on the identities
for regular expressions, the number of derivatives can be further reduced.

Alternative approaches to computing the derivatives automaton that we have
found either store duplicate copies of the parse trees, or compute and then de-
terminize the (non-deterministic) partial derivatives automaton. An implemen-
tation using an approach similar to ours was published by Mark Hopkins in a
1993 note on the comp.compilers newsgroup, see [2].

Regular expressions are commonly represented as parse trees, and compu-
tation of derivatives can easily be implemented using such trees. The regular
expression represented by a subtree of a parse tree is called a subexpression. Due
to the nature of the Brzozowski derivatives, the same subexpression is often con-
tained in more than one derivative. Such common subexpressions can be removed
through the process of global common subexpression elimination (GCSE).

Our implementation uses n-ary parse trees rather than binary parse trees.
This avoids the need of binary trees to keep the tree left (or right) heavy and
sorted for fast equivalence detection. When creating a new node in the parse
tree, with a given set (or list) of child nodes, we test for equivalent nodes by
checking the parents of one of the child nodes. By storing the set of parents
for each node in the parse tree, and through hash tables this can be done in
near-constant time.

The n-ary parse tree along with GCSE ensure that equivalence is detected
modulo associativity, idempotence and commutativity, which guarantees ter-
mination of the algorithm. Rewrite rules are used to implement simplification
through the identities. The generic rewrite system allows us to add additional
rewrite rules if desired. The rewrite rules are applied before GCSE.

Derivatives can be computed in two fashions: lazily (top-down), or eagerly
(bottom-up). The first approach derivatives are computed as they are needed
to find the derivatives of the parse tree root. The second approach computes
derivatives for all subexpressions as they become available from parsing. In many
cases, the exact same set of derivatives are computed in both methods, because
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Fig. 1. Combined Parse Trees for the Derivatives of (abc)∗

the derivatives of a regular expression are defined in terms of the derivatives of its
subexpressions. For the top-down approach there are cases where we can avoid
computing the derivatives of subexpressions as follows: for each node in the parse
tree we maintain a first-symbol set, which is the set of symbols for which that
node will have a non-empty derivative. This can be computed directly from the
parse tree. We only compute derivatives for those symbols in the first-symbol set.
The improvement becomes obvious for example for the intersection of regular
expressions ab and cd. Because the intersection of their first-symbol sets is empty,
we do not compute derivatives of ab or cd, or for their subexpressions in turn.
This benefits only the top-down approach, as the bottom-up approach already
computes the derivatives of both subexpressions before ever encountering the
node intersecting the two.

Figure 1 shows the combined parse graph for the derivatives of (abc)∗. Solid,
straight lines form the parse graph, while dashed, curved lines represent the
derivatives relations. The numbered edges indicate the order of concatenation in
the parse graph.
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Abstract. We give a logical characterization of semilinear sets L of the
form L(C, P) that can be checked in double exponential time from an
automaton A accepting L. Sets C and P such L = L(C, P) are computed
during the verification process.

Presburger Arithmetic, Semilinear Sets and Automata. Presburger arithmetic is
the first-order theory of addition of natural numbers N . A set L = {→

x | →
x=

→
b

+Σi=k
i=1λi

→
p i, λi ∈ N} ⊆ N p is a linear set denoted by L(

→
b ,P) (P is the set of

periods) and a semilinear set is a finite union of linear sets. L(C,P) denotes the
semilinear set

⋃
→
c ∈C L(

→
c ,P) i.e. a finite union of linear sets with the same pe-

riods. IfΣ is the alphabet of p-tuples on the alphabet 0, 1, finite state automata
on Σ accepts sets of representation of p-tuples of natural numbers. Semilinear
sets are the models of Presburger arithmetic formulas and the representation
of semilinear sets are regular languages of Σ∗, but a regular language may not
represent a semilinear set. Muchnik characterizes the automata that represents
the model of a Presburger formula [Muc03]. Unfortunately, there is no simple
way to extract the semilinear set from this characterization whereas the ability
of computing the semilinear set from the automaton is an interesting feature
for the verification of infinite state systems [RV02, BW02]. Moreover, to decide
if an automaton represents a semilinear set may require a tower of 4 exponen-
tials. We prove that a semilinear representation can be extracted from another
characteristic formula in double exponential time for semilinear sets of the form
L(C,P) =

⋃
→
c ∈C L(

→
c ,P). Recently, Leroux [Ler03] has given an algorithm to

reconstruct an unquantified formula from the automaton that accepts its so-
lutions, which covers different sets and Latour [Lat04] has done the same for
integer convex polyhedra which is a special case of our result.

Semilinear Sets L(C,P). Let L ⊆ N p, an element
→
x∈ L is reducible in L iff

either
→
x= 0 or there exist

→
x1∈ L,

→
x2∈ L such that

→
x=

→
x1 +

→
x2 and

→
x1,

→
x2 �= 0.

�� The complete version of this paper is available as [Lug04]. This work was done while
on sabbatical leave at LSV, UMR 8643, ENS de Cachan, 61 avenue du Président
Wilson, 94235 CACHAN Cedex, FRANCE.
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A element
→
x �= 0 is irreducible iff it is not reducible. Let Ir(L) be the set of

irreducible elements of L. Let Add(L) be the set {→
z | ∀ →

x∈ L,
→
x +

→
z∈ L}.

Proposition 1. A set L is a semilinear set of the form L(C,P) iff (i) Ir(Add(L))

is finite, (ii) ∃C ∈ N such that ∀ →
x [

→
x> C =⇒ ∃ →

z ,
→
x

′
(
→
z∈ Add(L)∧ →

x
′∈

L∧ →
x=

→
x

′
+

→
z )]. If (i) and (ii) holds then L = L(C, Ir(Add(L))) for C =

{→
x | | →

x | ≤ C}.
Given an automaton A such that L = L(A) the conditions (i),(ii) can be

checked in double exponential time.
Expressivity of semilinear sets L(C,P). For each integer convex polyhedron P
there is a set L(C,P) that is equal to P [SCH86] (the set of periods P is the
Hilbert basis of the polyhedron). More general sets can be represented: Let (C)
be a conjunction (C) of inequalities Σi=p

i=1ai,jxi ≥ dj j ∈ J and moduli equations
Σi=p

i=1bi,kxi ≡ ck mod mk k ∈ K where ai,j , bi,k, dj are integers (possibly negative
ones), ck,mk are positive integers.

Proposition 2. The set of solutions of (C) is a semilinear set L(C,P).

This holds also for a disjunction of conjunctions that differ in the terms dj ’s and
ck’s only, like in (C)∨ (C ′) where C is defined by x+ y ≥ 1∧ 3x ≡ 1 mod 4 and
(C ′) is defined by x + y ≥ 2 ∧ 3x ≡ 2 mod 4.

Therefore, given an automaton accepting sets of (binary representations) of
natural numbers, it is decidable if this set is the set of solutions of a conjunction
of inequalities and moduli equations (and we can compute a equivalent semilinear
set representing the set of solutions).
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Abstract. We generalize the classical Myhill-Nerode theorem for fi-
nite automata to the setting of sequential transducers over unique GCD-
monoids, which are cancellative monoids in which every two non-zero
elements admit a unique greatest common (left) divisor. We prove that
a given formal power series is sequential, if and only if it is directed
and our Myhill-Nerode equivalence relation has finite index. As in
the classical case, our Myhill-Nerode equivalence relation also admits
the construction of a minimal (with respect to the number of states)
sequential transducer recognizing the given formal power series.

Deterministic finite automata and sequential transducers are applied, for exam-
ple, in lexical analysis, digital image manipulation, and speech processing [2]. In
the latter application area also very large sequential transducers, i.e., transduc-
ers having several million states, over various monoids are encountered [2], so
without minimization algorithms [4] the applicability of sequential transducers
would be severely hampered.

In [2, 3] efficient algorithms for the minimization of sequential transducers
are presented in case the weight is taken out of the monoid (Δ∗, ·, ε) or out of
the monoid (IR+,+, 0). A Myhill-Nerode theorem also allowing minimization
is well-known for sequential transducers over groups [1].

We use (A,�,1,0) to denote a monoid with the absorbing element 0. A
unique GCD-monoid is a cancellation monoid (A,�,1,0) in which (i) a|1 im-
plies a = 1, (ii) a greatest common divisor (gcd) exists for every two non-zero
elements, and (iii) a least common multiple (lcm) exists for every two non-zero
elements having a common multiple. Unique GCD-monoids exist in abundance
(e.g., (IN∪{∞},+, 0,∞) and (IN, ·, 1, 0) as well as the monoids mentioned in the
previous paragraph).

A sequential transducer (ST) is a tuple M = (Q, q0, F,Σ, δ,A, a0, μ) where
(i) Q is a finite set, (ii) q0 ∈ Q, (iii) F ⊆ Q, (iv) Σ is an alphabet,
(v) δ : Q × Σ −→ Q, (vi) A = (A,�,1,0) is a monoid, (vii) a0 ∈ A \ {0},
and (viii) μ : Q × Σ −→ A. For every q ∈ Q the mappings δ̂q : Σ∗ −→ Q and
μ̂q : Σ∗ −→ A are recursively defined by (i) δ̂q(ε) = q and μ̂q(ε) = 1, and
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for every w ∈ Σ∗ and σ ∈ Σ by (ii) δ̂q(w·σ) = δ(δ̂q(w), σ) and μ̂q(w·σ) =
μ̂q(w) � μ(δ̂q(w), σ). Finally, the power series SM ∈ A〈〈Σ∗〉〉 recognized by M

is then defined to be (SM , w) = a0 � μ̂q0(w), if δ̂q0(w) ∈ F , otherwise 0. We
call a power series S ∈ A〈〈Σ∗〉〉 sequential (with respect to A), if there exists a
sequential transducer M such that S = SM .

In the following, let A = (A,�,1,0) be a unique GCD-monoid,
M = (Q, q0, F,Σ, δ,A, a0, μ) be a ST, and S ∈ A〈〈Σ∗〉〉. Moreover, we use
g(w) = gcdu∈Σ∗, w·u∈supp(S)(S,w·u) for every w ∈ Σ∗. If (S,w) = g(w) for
all w ∈ supp(S), then S is called directed.

Definition 1. The ST M is normalized, if there exists ⊥ ∈ Q \ (F ∪{q0}) such
that δ(⊥, σ) = ⊥ for every σ ∈ Σ and μ(q, σ) = 0 ⇐⇒ δ(q, σ) = ⊥ for every
q ∈ Q.

Definition 2. We define the Myhill-Nerode relation ≡S ⊆ Σ∗ × Σ∗ by
w1 ≡S w2, iff there exist a1, a2 ∈ A \ {0} such that for every w ∈ Σ∗

w1·w ∈ supp(S) ⇐⇒ w2·w ∈ supp(S) and a−1
1 g(w1·w) = a−1

2 g(w2·w).

Proposition 1. If S is directed and ≡S has finite index, then there exists a
sequential transducer M with index(≡S) states such that SM = S.

Proof. In the proof we write [w] and [Σ∗] instead of [w]≡S
and [Σ∗]≡S

. Let
M = (Q, q0, F,Σ, δ,A, a0, μ) where for every w ∈ Σ∗ and σ ∈ Σ

(i) Q = [Σ∗], q0 = [ε], F = { [w] | w ∈ supp(S) },
(ii) δ([w], σ) = [w·σ], a0 = g(ε), and μ([w], σ) = g(w)−1 � g(w·σ).

Moreover, the constructed ST is minimal with respect to the number of states
amongst all normalized deterministic ST computing S.

Theorem 1. The following are equivalent.

(i) S is directed and ≡S has finite index.
(ii) S is sequential.
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In this contribution we shall see how our (algebraic) approach to the so-called
universal automaton of a given regular language helps to understand the process
of the minimalization of a NFA. The minimality is meant with respect to the
number of states. Although it is known that the problem is PSPACE-complete
(see [5]) one can propose algorithms of not too high complexities to compute
relatively good approximations.

The universal automaton was considered implicitly already by Conway in
[3]. Its significance for the problem of the minimalization of a NFA was stated
by Arnold, Dicky and Nivat in [1] where the authors proved that an arbitrary
minimal NFA for a given regular language L is isomorphic to a subautomaton of
the universal automaton U for L. They credit that result to Carrez [2]. In fact,
also the calculations of Kameda and Weiner in [6] were done implicitly in U .

Our view on the universal automaton is based on author’s paper [8]. The
methods of several previous works on minimalizations of NFA can be modified
so that they fit in our approach. We formulate various conditions on sets of
states of the universal automaton U and we investigate the relationships between
them. Any such set of states P determines an automaton UP . The conditions (L)
and (B) determine those sets in a unique way, so they form bases for concrete
implementations. A checking of the conditions with the exception of “UP accepts
L” leads to polynomial time algorithms with respect to the dimension of the so-
called universal matrix for L.

Let D = {u−1L | u ∈ A∗} = {u−1
1 L, . . . , u−1

n L}, D̂ = {Lv−1 | v ∈ A∗} =
{Lv−1

1 , . . . , Lv−1
m }, U = { w−1

1 L ∩ · · · ∩ w−1
k L | k ≥ 0, w1, . . . , wk ∈ A∗ } . Let

B = (βij) be a matrix of type m/n with entries from {0, 1} where βij = 1 if
and only if ujvi ∈ L. This matrix is called the basic matrix of the language L.
Adding to the columns of B new ones which are componentwise meets of sets of
columns of B (0∧ 0 = 0∧ 1 = 1∧ 0 = 0, 1∧ 1 = 1) we get the matrix U which is
called the universal matrix of L. Note that the states of the minimal complete
deterministic automaton of L correspond to the columns of B and the states of
the universal automaton of L correspond to the columns of U . Moreover, we can
easily compute unions and intersections of states of U using the matrix U .

Let U = (U , A,E, I, T ) be the universal automaton of a regular language
L ⊆ A∗. Each P ⊆ U induces a subautomaton UP = (P,A,EP , I ∩ P, T ∩ P ) of
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U where EP = {(p, a, q) ∈ E | p, q ∈ P}. Clearly, the language accepted by UP

is a subset of L. We can formulate several conditions on a subset P of U :
(A) the automaton UP accepts the language L,
(C) the automaton UP is complete, i.e. ( ∀ p ∈ P )( ∀ a ∈ A )( ∃ q ∈ P ) q ⊆ a−1p,
(I) the initial state is covered, i.e. L =

⋃ {p ∈ P | p ⊆ L},
(D) closeness with respect to derivatives, i.e. ( ∀ p ∈ P )( ∀ a ∈ A ) a−1p ∈ P ,
(K) (Kiel) ( ∀ p ∈ P )( ∀ a ∈ A ) a−1p =

⋃ {q ∈ P | q ⊆ a−1p},
(W) (Waterloo) ( ∀ q ∈ D ) q =

⋃ {p ∈ P | p ⊆ q},
(LM) the local minimality,i.e.P |= (A) but for each p ∈ P we have P \{p} |= ¬(A),
(L) (Lille) Pl = { p ∈ D | p is union-irreducible in (D ,⊆), p �= ∅ },
(B) (Brno) Pb = { ⋂ {u−1

j L | βij = 1} | Lv−1
i union-irreducible in ( D̂ ,⊆) }.

We also put P0 = { q ∈ D | q �= ⋃ {r ∈ U | r ⊆ q, r �= q} }.
The following results relate the above conditions.

Theorem 1. The following implications between our conditions hold.
(i) (D) =⇒ (K) & (C).
(ii) (L) =⇒ (I) & (K) =⇒ (A) =⇒ (W).

Moreover, (iii) Pb satisfies (A).
(iv) Both Pl and Pb satisfy the condition (LM).
(v) For each P ⊆ U satisfying (A) we have P0 ⊆ P .
(vi) None of the implications in (i) and (ii) can be reversed.

Compact proofs, algorithms for constructing the matrices B and U , several
examples and exact lines to the related works [4, 6, 7, 10] can be find in [9].
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Abstract. A new method that transforms a special type of non-deter-
ministic two-dimensional online tesselation automata into deterministic
ones is presented. This transformation is then used in a new general
approach to exact and approximate two-dimensional pattern matching
based on two-dimensional online tessellation automata that generalizes
pattern matching approach based on finite automata well known from
one-dimensional case.

Two-dimensional pattern matching is a natural extension of a well known pattern
matching problem into two dimensions. The fundamental version is a seeking of
rectangular patterns in rectangular text.

Let us suppose squared pattern P of size (m,m), squared text T of size
(n, n), and σ = min

(|A|,m2
)
, where |A| is the size of the alphabet A. The

first linear time two-dimensional exact pattern matching algorithm, which takes
O ((

m2 + n2
)
log σ

)
time, was introduced by Bird [1]. Using two-dimensional

periodicity, Galil and Park [2] proposed the truly alphabet independent algo-
rithm, which requires O (

m2 + n2
)

time. Two-dimensional online tessellation
automata were introduced by Inoue and Nakamura [3]. An algorithm for two-
dimensional pattern matching using these automata, which simulates the algo-
rithm of Bird [1], was given by Toda, Inoue, and Takanami [4]. The best result
in the pattern matching with at most k substitutions gave Amir and Landau [5]
achieving O (

(k + log σ)n2
)

using O (
n2

)
space.

A nondeterministic (deterministic) two-dimensional online tessellation au-
tomaton, referred as 2OTA (2DOTA), is a 5-tuple A = (A,Q, δ, q0, F ) where
A is the input alphabet, Q is the finite set of states, δ : Q × Q × A → P(Q)
(δ : Q×Q×A→ Q) is the transition function, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states.

Inoue and Nakamura [3] showed that 2OTA are more powerful than 2DOTA,
because there is at least one 2OTA accepting language that is not recognizable
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by any 2DOTA. It means that it is not possible to create a universal algorithm
for 2OTA to 2DOTA transformation.

Fortunately, this algorithm can be constructed for a special type of 2OTA
by generalization of the subset construction, which is well know from one-
dimensional case. It means that states of the created 2DOTA will be formed
by sets of states of original 2OTA. Since this construction is based on the sim-
ulation of nondeterministic automata in a deterministic way, these automata
will be called simulatable 2OTA. A simulatable 2OTA A = (A,Q, δ, q0, F )
can be transformed into equivalent 2DOTA A′ = (A,Q′, δ′, q′

0, F
′) as follows:

Q′ = P(Q), δ′(p, q, a) =
⋃

o∈p

⋃
r∈q δ(o, r, a) ∀p, q ∈ Q′, ∀a ∈ A, q′

0 = {q0},
F ′ = {q | q ∈ Q′, q ∩ F �= ∅}.

The pattern matching than works in three independent phases. At first, a
2OTA for given pattern and pattern matching problem is constructed. This is
the only step that differs for different pattern matching problems because each
problem requires special automaton. After that, this automaton is transformed
into equivalent 2DOTA. At last, deterministic automaton reads the input text
and whenever it reaches a final state it reports an occurrence of the pattern.

The biggest advantage of this approach is the fact that the matching phase is
really fast. It requiresO(n2) time for the text of size (n, n) with very small hidden
constant. Moreover, the time complexity of the preprocessing phase depends only
on the size of the pattern, size of the alphabet, the number of allowed errors, and
the type of used error distance. Disadvantage is that the preprocessing phase is
exponential with the size of the pattern. For pattern of size (m,m) it isO(|A|2m2

)
in case of exact pattern matching and O(|A|2k2m2

) in case of pattern matching
with at most k substitutions. Thus this pattern matching algorithm is very useful
in case that the text is much greater than the size of the pattern (m 4 n), or
when the pattern is searched in many input texts. The extra space required by
presented algorithm is O(|A|2m2

+ n) in case of exact pattern matching, and
O(|A|2k2m2

+ n) in case of pattern matching with at most k substitutions.
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Several models of multitape automata have been introduced over the years. Here
we consider a modified version of the Rabin-Scott model [2] motivated by the
needs of developing a string manipulating database system of [1]. We present
an algorithm to reduce the size of a multitape automaton in this model. The
algorithm uses certain local transformations that change the order in which
transitions concerning different tapes occur in the automaton graph, and merge
suitable states together into a single state. Although the resulting automaton is
not necessarily minimal, the size of the automaton may be reduced considerably
as the example below indicates.

An n-tape automaton A is given by a quintuple (Q,Σ, δ, I, F ) where Q is a
finite set of states, Σ is the input alphabet, δ : Q×Σ{1,...,n} → 2Q is the transition
function where Σ{1,...,n} = {ai | a ∈ Σ, i ∈ {1, ..., n}}, I ⊆ Q is the set of initial
states and F ⊆ Q is the set of final states.

Our reduction algorithm is based on the following four language preserving
automaton transformations.

Swap Upwards. Let q′ ∈ Q be a non-initial and non-final state with k ≥ 1
incoming and one outgoing transition. Let the transitions associated with q′ be

q1
(a1)i1−→ q′, ..., qk

(ak)ik−→ q′ and q′ bj−→ q, such that j refers to a tape that is different
from all tapes il, l ∈ {1, ..., k}. Then q′ and its incoming and outgoing transitions
can be removed and replaced with new non-initial and non-final states q′

1, ..., q
′
k

and transitions q1
bj−→ q′

1, ..., qk
bj−→ q′

k, and q′
1

(a1)i1−→ q, ..., q′
k

(ak)ik−→ q.
Sink Combine. Let q1, ..., qk be some non-initial states of A, all having exactly

one incoming transition labelled ai from a state q of A where q is different from all
qi, i ∈ {1, ..., k}. Then q1, ..., qk can be combined into one state q′, meaning that
q1, ..., qk and their incoming and outgoing transitions are removed and replaced
by a new non-initial state q′ which is final if and only if any of q1, ..., qk is final,
with all outgoing transitions of q1, ..., qk now leaving q′, and a transition q

ai−→ q′.
Symmetric operations Swap Downwards and Source Combine are defined

similarly.
Based on these transformations we have designed an algorithm to reduce the

size of an n-tape automaton A. For a given automaton tape, Swap Upwards
and Sink Combine transformations are performed on one copy of A, and Swap
Downwards and Source Combine transformations are performed on another copy
of A. Transformations are carried out locally only in places where certain con-
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ditions hold implying that the size of the automaton will be reduced by them.
The smaller of the aforementioned two automata is retained, and the process is
repeated using the next tape, until no more reduction can be achieved for any
tape. The algorithm runs in O(N4) time where N is the number of states of the
automaton.

An example. Let Lk = {wwR | w ∈ {0, 1}k} where k ≥ 1. Let Ak be a 2-
tape automaton accepting all tuples (w1, w2) such that w1 ∈ L∗

k and w2 is a
string of the same length as w1, consisting of 0’s; Ak is created in a certain way,
exemplified for k = 2 by the leftmost automaton shown below.

01

11

01 11 01 11

20

20

20

20

11011101

01 11

20 20

20 20 20

20 20 20

20

20

01

01 01

01

11

11

11 01 11

20

11

20

01 11

The result of applying the reduction algorithm on Ak with 7×2k−7 states is
the automaton Akred with 3×2k +2k−3 states. The automaton A2red is shown
above at right. For example, for k = 5, from the 217 states of A5, 114 states are
eliminated.

Detailed description and an application of the reduction algorithm can be
found in [3] where this algorithm combined with the classical DFA minimiza-
tion procedure is used to reduce the size of multitape automata generated from
alignment declarations of [1].
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An oracle finite automaton (OFA) is a finite/Buchi automaton augmented with
a finite number of unbounded, one-way, and writable query tapes. By each tran-
sition, an OFA can read an input symbol, append a symbol to the end of a query
tape, erase the content of a query tape, or query an oracle with the content of
a query tape (called a query string). Here, an oracle O is a language in some
language class O (all oracles in the OFA must be in the same language class O,
and we denote such OFAs with OFAO). The name of “oracle” comes from the
fact that, except for its language class, the definition of O is not given. However,
the oracle O can always be queried with the answer whether a query string w is
in O.

Obviously, for the OFA defined above, its emptiness problem (whether an
OFA accepts an empty language) can not be solved by simply analyzing the
OFA’s transition graph, since whether a transition can be chosen during its exe-
cution may depend on the results of queries to its oracles. We solve the problem
by first computing a number, called a query bound, from the specification of the
OFA and the language class O of its oracles such that querying the oracles with
query strings not longer than the query bound is sufficient to answer its empti-
ness problem. Once the query bound is computable, we say that the emptiness
problem is solvable or, more accurately, testable.

Our results focus on establishing conditions on the language class O and on
the OFA such that the emptiness problem is testable. Specifically, we consider
cases when O is the class of languages accepted by nondeterministic finite au-
tomata with n states (FA(n)), accepted by nondeterministic pushdown automata
with n states (PDA(n)), or is the class of commutative semilinear languages with
characteristic n (LIN(n), defined in the full paper). We also consider cases when
the OFA is in some restricted forms: positive (a ”no” answer from a query always
makes the OFA crash), memoryless (a query tape is always erased immediately
after being used to query an oracle), or prefix-closed (if a query string is a word
of an oracle then all prefixes of the query string are also words of the oracle).
We say that an OFA is k-query if it never queries its oracles more than k times
during its executions, and an OFA is single if it has only one oracle. Most of
our testability results also demonstrate respective query bounds explicitly. For
instance, consider an OFA M with an oracle O drawn from PDA(n) whose stack
alphabet is Σ. Then, in general, the emptiness problem for M is not testable.
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However, the problem becomes testable with a query bound 2O(|M |2·n2·|Σ|) when
M is restricted to each of the following cases: (1) MPDA(n) is positive, single,
and prefix-closed; (2) MPDA(n) is positive, single, and 1-query; (3) MPDA(n) is
positive, single, and memoryless; (4) MPDA(n) is MDPDA(n) and single.

We also generalize our testability results on OFA to oracle Buchi automata
(ω-OFA). For instance, consider an ω-OFA M with oracles drawn from LIN(n).
In general, the emptiness problem for M is not testable. However, the problem
becomes testable with a query bound O(nk·|M |k) when M is k-query. The query
bound becomes O(n|M |) when M is memoryless and single.

Using standard automata-theoretic approaches [7], we can show that various
verification problems (such as reachability, safety, LTL model-checking, etc.) for
an (ω-) oracle automaton can be reduced to its emptiness problem. And this
result can immediately find applications in the automatic verification of systems
containing some unspecified/partially specified components, which can not be
solved either by algorithmic analysis techniques (like model-checking [1, 7, 2])
or traditional software testing techniques (like black-box testing [4]). With the
oracle finite automata introduced in this paper, the expected behaviors of an
unspecified/partially specified component can be modeled as an oracle; the com-
munications between the system and the component can be modeled as queries
to the oracle and the query results are obtained by testing the component. With
the testability results of oracle automata obtained in this paper, the various
verification problems (as mentioned earlier) concerning systems with unspeci-
fied/partially specified component can be solved through both algorithmic anal-
ysis and black-box testing. And this approach fits nicely within the current trend
[5, 3, 6] of seeking innovative ways to combine model-checking with software test-
ing techniques.
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Magic Numbers for Symmetric Difference NFAs
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Iwama et al [1] showed that there exists an n-state binary nondeterministic finite
automaton such that its equivalent minimal deterministic finite automaton has
exactly 2n − α states, for all n ≥ 7 and 5 ≤ α ≤ 2n − 2, subject to certain
coprimality conditions. We investigate the same question for both unary and
binary symmetric difference nondeterministic finite automata [2]. In the binary
case, we show that for any n ≥ 4, there is an n-state ⊕-NFA which needs 2n−1 +
2k−1−1 states, for 2 < k ≤ n−1. In the unary case, we prove the following result
for a large practical subclass of unary symmetric difference nondeterministic
finite automata: For all n ≥ 2, we show that there are many values of α such that
there is no n-state unary symmetric difference nondeterministic finite automaton
with an equivalent deterministic finite automaton with 2n − α states, where
0 < α < 2n−1. For each n ≥ 2, we quantify such values of α precisely.
⊕-NFAs were defined in [2]; suffice it to say that ⊕-NFAs are NFAs with

the union operation in the subset construction replaced with the symmetric
difference operation.

In the unary case, we prove the following theorem:

Theorem 1. (a) For any n ≥ 2, there is an n-state unary ⊕-NFA with nonsin-
gular characteristic matrix which needs 2n − 1 deterministic states.
(b) For any n ≥ 2, let n = n1 + n2 + . . . + nj, and let

B = {lcm(2n1 − 1, 2n2 − 1, . . . , 2nj − 1)}.
If M is an n-state unary ⊕-NFA with nonsingular characteristic matrix
whose minimal ⊕-DFA has b states with 2n−1 ≤ b ≤ 2n − 1, then b ∈ B.

��
Experimentation on smaller values of n indicated that there are always n-

state unary ⊕-NFAs such that their ⊕-DFAs with lcm(2n1−1, 2n2−1, . . . , 2nj−1)
states are minimal, and we give the following conjecture:

Conjecture 1. For any n ≥ 2, there is an n-state unary ⊕-NFA which needs
lcm(2n1 − 1, 2n2 − 1, . . . , 2nj − 1) > 2n−1 deterministic states, where n = n1 +
n2 + . . . + nj .

��
We now consider binary ⊕-NFAs:

Theorem 2. For any n ≥ 4, there is a binary n-state ⊕-NFA M which needs
2n−1 + 2k−1 − 1 states, for 2 < k ≤ n− 1.
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Proof. By construction. Construct M = (Q, {a, b}, δ, {q0}, F,⊕) such that Q =
{q0, q1, . . . , qn−1}. Let δ(qn−1, a) = ∅, and set up δ over a for states q0 to qn−2 so
that the characteristic polynomial ca(X) is primitive and irreducible seen over
the states q0 to qn−2. Then M ′

a has exactly 2n−1−1 reachable states, in a single
cycle. Also, state qn−1 does not occur as a constituent part of any of the states
in M ′

a.
Now construct the transition table for the alphabet symbol b in such a manner

that b will generate a cycle of length 2k−1, starting at state q0, so that this cycle
shares exactly 2k−1 − 1 states with M ′

a, and exactly 2k−1 of the states in M ′
b

contains qn−1: Let δ(qn−1, b) = ∅. For any k, choose cb(X) over state q0 to qk−1
to be a primitive irreducible polynomial, and construct the transition function
accordingly. For states qk to qn−1, let the transition function go to the empty
set. Now add state qn−1 to every set which is not the empty set.

From the construction of M , we know that none of the states in the a-cycle
of M ′ contains qn−1, while 2k−1 of the states in the b-cycle contain qn−1. The
other 2k−1− 1 states in the b-cycle are those that intersect with the a-cycle. We
now choose our final state as qn−1.

To show minimality, we show that for any two states Y �= Z in M ′, there is
a word w ∈ L such that δ′(Y,w) leads to a final state, but δ′(Z,w) does not.
If Y is from the a-cycle and Z from the b-cycle (excluding intersection points),
then Y is nonfinal and Z final and they cannot be equivalent. If both Y and Z
are from the b-cycle, then there is some p such that such that δ′(Y, bp) leads to a
final state, while δ′(Z, bp) does not and hence Y and Z cannot be equivalent. If
both Y and Z are from the a-cycle, there must be at least one value p such that
δ′(Y, bp) leads to a final state, but δ′(Z, bp) does not. Again Y and Z cannot be
equivalent, and the proof holds. ��

Future work on this topic includes an analysis of the behaviour of traditional
unary NFAs. Another area for future work is an investigation of magic numbers
for unary ⊕-NFAs with singular characteristic matrices. Empirical results in [3]
seem to indicate that there will be few if any values of α such that this class of
unary NFAs needs 2n − α deterministic states, where 2n−1 < α ≤ 2n − 1.
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Sośık, Petr 202
Szabari, Alexander 178

Tamm, Hellis 329
Ting, H.F. 237
Tischler, German 259

Ukkonen, Esko 329



336 Author Index

Vilares, Manuel 269
van Zijl, Lynette 333

Waldmann, Johannes 134
Watson, Bruce W. 125, 319
Wood, Derick 156

Xie, Gaoyan 331

Yamakami, Tomoyuki 225
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